Paperid: 1, https://arxiv.org/pdf/2509.21309.pdf   GitHub
Authors:Yu Yuan, Xijun Wang, Tharindu Wickremasinghe, Zeeshan Nadir, Bole Ma, Stanley H. Chan
Title: NewtonGen: Physics-Consistent and Controllable Text-to-Video Generation via Neural Newtonian Dynamics
Abstract:
A primary bottleneck in large-scale text-to-video generation today is physical consistency and controllability. Despite recent advances, state-of-the-art models often produce unrealistic motions, such as objects falling upward, or abrupt changes in velocity and direction. Moreover, these models lack precise parameter control, struggling to generate physically consistent dynamics under different initial conditions. We argue that this fundamental limitation stems from current models learning motion distributions solely from appearance, while lacking an understanding of the underlying dynamics. In this work, we propose NewtonGen, a framework that integrates data-driven synthesis with learnable physical principles. At its core lies trainable Neural Newtonian Dynamics (NND), which can model and predict a variety of Newtonian motions, thereby injecting latent dynamical constraints into the video generation process. By jointly leveraging data priors and dynamical guidance, NewtonGen enables physically consistent video synthesis with precise parameter control.
Authors:Guanjie Wang, Zehua Ma, Han Fang, Weiming Zhang
Title: I2VWM: Robust Watermarking for Image to Video Generation
Abstract:
The rapid progress of image-guided video generation (I2V) has raised concerns about its potential misuse in misinformation and fraud, underscoring the urgent need for effective digital watermarking. While existing watermarking methods demonstrate robustness within a single modality, they fail to trace source images in I2V settings. To address this gap, we introduce the concept of Robust Diffusion Distance, which measures the temporal persistence of watermark signals in generated videos. Building on this, we propose I2VWM, a cross-modal watermarking framework designed to enhance watermark robustness across time. I2VWM leverages a video-simulation noise layer during training and employs an optical-flow-based alignment module during inference. Experiments on both open-source and commercial I2V models demonstrate that I2VWM significantly improves robustness while maintaining imperceptibility, establishing a new paradigm for cross-modal watermarking in the era of generative video. \href{https://github.com/MrCrims/I2VWM-Robust-Watermarking-for-Image-to-Video-Generation}{Code Released.}
Authors:Kabir Hamzah Muhammad, Marawan Elbatel, Yi Qin, Xiaomeng Li
Title: Echo-Path: Pathology-Conditioned Echo Video Generation
Abstract:
Cardiovascular diseases (CVDs) remain the leading cause of mortality globally, and echocardiography is critical for diagnosis of both common and congenital cardiac conditions. However, echocardiographic data for certain pathologies are scarce, hindering the development of robust automated diagnosis models. In this work, we propose Echo-Path, a novel generative framework to produce echocardiogram videos conditioned on specific cardiac pathologies. Echo-Path can synthesize realistic ultrasound video sequences that exhibit targeted abnormalities, focusing here on atrial septal defect (ASD) and pulmonary arterial hypertension (PAH). Our approach introduces a pathology-conditioning mechanism into a state-of-the-art echo video generator, allowing the model to learn and control disease-specific structural and motion patterns in the heart. Quantitative evaluation demonstrates that the synthetic videos achieve low distribution distances, indicating high visual fidelity. Clinically, the generated echoes exhibit plausible pathology markers. Furthermore, classifiers trained on our synthetic data generalize well to real data and, when used to augment real training sets, it improves downstream diagnosis of ASD and PAH by 7\% and 8\% respectively. Code, weights and dataset are available here https://github.com/Marshall-mk/EchoPathv1
Authors:Mohamed Eltahir, Osamah Sarraj, Abdulrahman Alfrihidi, Taha Alshatiri, Mohammed Khurd, Mohammed Bremoo, Tanveer Hussain
Title: AutoArabic: A Three-Stage Framework for Localizing Video-Text Retrieval Benchmarks
Abstract:
Video-to-text and text-to-video retrieval are dominated by English benchmarks (e.g. DiDeMo, MSR-VTT) and recent multilingual corpora (e.g. RUDDER), yet Arabic remains underserved, lacking localized evaluation metrics. We introduce a three-stage framework, AutoArabic, utilizing state-of-the-art large language models (LLMs) to translate non-Arabic benchmarks into Modern Standard Arabic, reducing the manual revision required by nearly fourfold. The framework incorporates an error detection module that automatically flags potential translation errors with 97% accuracy. Applying the framework to DiDeMo, a video retrieval benchmark produces DiDeMo-AR, an Arabic variant with 40,144 fluent Arabic descriptions. An analysis of the translation errors is provided and organized into an insightful taxonomy to guide future Arabic localization efforts. We train a CLIP-style baseline with identical hyperparameters on the Arabic and English variants of the benchmark, finding a moderate performance gap (about 3 percentage points at Recall@1), indicating that Arabic localization preserves benchmark difficulty. We evaluate three post-editing budgets (zero/ flagged-only/ full) and find that performance improves monotonically with more post-editing, while the raw LLM output (zero-budget) remains usable. To ensure reproducibility to other languages, we made the code available at https://github.com/Tahaalshatiri/AutoArabic.
Authors:Chang Soo Lim, Joonyoung Moon, Donghyeon Cho
Title: Enriched Feature Representation and Motion Prediction Module for MOSEv2 Track of 7th LSVOS Challenge: 3rd Place Solution
Abstract:
Video object segmentation (VOS) is a challenging task with wide applications such as video editing and autonomous driving. While Cutie provides strong query-based segmentation and SAM2 offers enriched representations via a pretrained ViT encoder, each has limitations in feature capacity and temporal modeling. In this report, we propose a framework that integrates their complementary strengths by replacing the encoder of Cutie with the ViT encoder of SAM2 and introducing a motion prediction module for temporal stability. We further adopt an ensemble strategy combining Cutie, SAM2, and our variant, achieving 3rd place in the MOSEv2 track of the 7th LSVOS Challenge. We refer to our final model as SCOPE (SAM2-CUTIE Object Prediction Ensemble). This demonstrates the effectiveness of enriched feature representation and motion prediction for robust video object segmentation. The code is available at https://github.com/2025-LSVOS-3rd-place/MOSEv2_3rd_place.
Authors:Kazuma Nagata, Naoshi Kaneko
Title: DACoN: DINO for Anime Paint Bucket Colorization with Any Number of Reference Images
Abstract:
Automatic colorization of line drawings has been widely studied to reduce the labor cost of hand-drawn anime production. Deep learning approaches, including image/video generation and feature-based correspondence, have improved accuracy but struggle with occlusions, pose variations, and viewpoint changes. To address these challenges, we propose DACoN, a framework that leverages foundation models to capture part-level semantics, even in line drawings. Our method fuses low-resolution semantic features from foundation models with high-resolution spatial features from CNNs for fine-grained yet robust feature extraction. In contrast to previous methods that rely on the Multiplex Transformer and support only one or two reference images, DACoN removes this constraint, allowing any number of references. Quantitative and qualitative evaluations demonstrate the benefits of using multiple reference images, achieving superior colorization performance. Our code and model are available at https://github.com/kzmngt/DACoN.
Authors:Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Fei Ren, Shaobo Wang, Kaixin Li, Linfeng Zhang
Title: SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching
Abstract:
Diffusion models have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. These models face two fundamental challenges: strict temporal dependencies preventing parallelization, and computationally intensive forward passes required at each denoising step. Drawing inspiration from speculative decoding in large language models, we present SpeCa, a novel 'Forecast-then-verify' acceleration framework that effectively addresses both limitations. SpeCa's core innovation lies in introducing Speculative Sampling to diffusion models, predicting intermediate features for subsequent timesteps based on fully computed reference timesteps. Our approach implements a parameter-free verification mechanism that efficiently evaluates prediction reliability, enabling real-time decisions to accept or reject each prediction while incurring negligible computational overhead. Furthermore, SpeCa introduces sample-adaptive computation allocation that dynamically modulates resources based on generation complexity, allocating reduced computation for simpler samples while preserving intensive processing for complex instances. Experiments demonstrate 6.34x acceleration on FLUX with minimal quality degradation (5.5% drop), 7.3x speedup on DiT while preserving generation fidelity, and 79.84% VBench score at 6.1x acceleration for HunyuanVideo. The verification mechanism incurs minimal overhead (1.67%-3.5% of full inference costs), establishing a new paradigm for efficient diffusion model inference while maintaining generation quality even at aggressive acceleration ratios. Our codes have been released in Github: \textbf{https://github.com/Shenyi-Z/Cache4Diffusion}
Authors:Yanyun Pu, Kehan Li, Zeyi Huang, Zhijie Zhong, Kaixiang Yang
Title: MVQA-68K: A Multi-dimensional and Causally-annotated Dataset with Quality Interpretability for Video Assessment
Abstract:
With the rapid advancement of video generation models such as Sora, video quality assessment (VQA) is becoming increasingly crucial for selecting high-quality videos from large-scale datasets used in pre-training. Traditional VQA methods, typically producing single numerical scores, often lack comprehensiveness and interpretability. To address these challenges, we introduce MVQA-68K, a novel multi-dimensional VQA dataset comprising over 68,000 carefully annotated videos, covering seven essential quality dimensions: overall aesthetics, camera movement, dynamic degree, texture detail, composition, visual quality, and factual consistency. Each annotation includes detailed chain-of-thought reasoning to facilitate interpretability and comprehensive understanding. Extensive experiments demonstrate that MVQA-68K significantly enhances the performance of various multimodal large language models (MLLMs) on the VQA task, achieving state-of-the-art results not only on our internal test set (Fig.1) but also on public benchmarks including LSVQ-test, LSVQ-1080p, and LIVE-VQC. Meantime, incorporating explicit reasoning process during VQA training substantially boosts the zero-shot generalization. Code and dataset will be available at github: https://github.com/Controller01-ai/MVQA-68K
Authors:Zhixin Zheng, Xinyu Wang, Chang Zou, Shaobo Wang, Linfeng Zhang
Title: Compute Only 16 Tokens in One Timestep: Accelerating Diffusion Transformers with Cluster-Driven Feature Caching
Abstract:
Diffusion transformers have gained significant attention in recent years for their ability to generate high-quality images and videos, yet still suffer from a huge computational cost due to their iterative denoising process. Recently, feature caching has been introduced to accelerate diffusion transformers by caching the feature computation in previous timesteps and reusing it in the following timesteps, which leverage the temporal similarity of diffusion models while ignoring the similarity in the spatial dimension. In this paper, we introduce Cluster-Driven Feature Caching (ClusCa) as an orthogonal and complementary perspective for previous feature caching. Specifically, ClusCa performs spatial clustering on tokens in each timestep, computes only one token in each cluster and propagates their information to all the other tokens, which is able to reduce the number of tokens by over 90%. Extensive experiments on DiT, FLUX and HunyuanVideo demonstrate its effectiveness in both text-to-image and text-to-video generation. Besides, it can be directly applied to any diffusion transformer without requirements for training. For instance, ClusCa achieves 4.96x acceleration on FLUX with an ImageReward of 99.49%, surpassing the original model by 0.51%. The code is available at https://github.com/Shenyi-Z/Cache4Diffusion.
Authors:Feng Wang, Zihao Yu
Title: Coefficients-Preserving Sampling for Reinforcement Learning with Flow Matching
Abstract:
Reinforcement Learning (RL) has recently emerged as a powerful technique for improving image and video generation in Diffusion and Flow Matching models, specifically for enhancing output quality and alignment with prompts. A critical step for applying online RL methods on Flow Matching is the introduction of stochasticity into the deterministic framework, commonly realized by Stochastic Differential Equation (SDE). Our investigation reveals a significant drawback to this approach: SDE-based sampling introduces pronounced noise artifacts in the generated images, which we found to be detrimental to the reward learning process. A rigorous theoretical analysis traces the origin of this noise to an excess of stochasticity injected during inference. To address this, we draw inspiration from Denoising Diffusion Implicit Models (DDIM) to reformulate the sampling process. Our proposed method, Coefficients-Preserving Sampling (CPS), eliminates these noise artifacts. This leads to more accurate reward modeling, ultimately enabling faster and more stable convergence for reinforcement learning-based optimizers like Flow-GRPO and Dance-GRPO. Code will be released at https://github.com/IamCreateAI/FlowCPS
Authors:Haiwei Xue, Xiangyang Luo, Zhanghao Hu, Xin Zhang, Xunzhi Xiang, Yuqin Dai, Jianzhuang Liu, Zhensong Zhang, Minglei Li, Jian Yang, Fei Ma, Zhiyong Wu, Changpeng Yang, Zonghong Dai, Fei Richard Yu
Title: Human Motion Video Generation: A Survey
Abstract:
Human motion video generation has garnered significant research interest due to its broad applications, enabling innovations such as photorealistic singing heads or dynamic avatars that seamlessly dance to music. However, existing surveys in this field focus on individual methods, lacking a comprehensive overview of the entire generative process. This paper addresses this gap by providing an in-depth survey of human motion video generation, encompassing over ten sub-tasks, and detailing the five key phases of the generation process: input, motion planning, motion video generation, refinement, and output. Notably, this is the first survey that discusses the potential of large language models in enhancing human motion video generation. Our survey reviews the latest developments and technological trends in human motion video generation across three primary modalities: vision, text, and audio. By covering over two hundred papers, we offer a thorough overview of the field and highlight milestone works that have driven significant technological breakthroughs. Our goal for this survey is to unveil the prospects of human motion video generation and serve as a valuable resource for advancing the comprehensive applications of digital humans. A complete list of the models examined in this survey is available in Our Repository https://github.com/Winn1y/Awesome-Human-Motion-Video-Generation.
Authors:Jiayi Gao, Changcheng Hua, Qingchao Chen, Yuxin Peng, Yang Liu
Title: Identity-Preserving Text-to-Video Generation via Training-Free Prompt, Image, and Guidance Enhancement
Abstract:
Identity-preserving text-to-video (IPT2V) generation creates videos faithful to both a reference subject image and a text prompt. While fine-tuning large pretrained video diffusion models on ID-matched data achieves state-of-the-art results on IPT2V, data scarcity and high tuning costs hinder broader improvement. We thus introduce a Training-Free Prompt, Image, and Guidance Enhancement (TPIGE) framework that bridges the semantic gap between the video description and the reference image and design sampling guidance that enhances identity preservation and video quality, achieving performance gains at minimal cost.Specifically, we first propose Face Aware Prompt Enhancement, using GPT-4o to enhance the text prompt with facial details derived from the reference image. We then propose Prompt Aware Reference Image Enhancement, leveraging an identity-preserving image generator to refine the reference image, rectifying conflicts with the text prompt. The above mutual refinement significantly improves input quality before video generation. Finally, we propose ID-Aware Spatiotemporal Guidance Enhancement, utilizing unified gradients to optimize identity preservation and video quality jointly during generation.Our method outperforms prior work and is validated by automatic and human evaluations on a 1000 video test set, winning first place in the ACM Multimedia 2025 Identity-Preserving Video Generation Challenge, demonstrating state-of-the-art performance and strong generality. The code is available at https://github.com/Andyplus1/IPT2V.git.
Authors:Xurui Peng, Hong Liu, Chenqian Yan, Rui Ma, Fangmin Chen, Xing Wang, Zhihua Wu, Songwei Liu, Mingbao Lin
Title: ERTACache: Error Rectification and Timesteps Adjustment for Efficient Diffusion
Abstract:
Diffusion models suffer from substantial computational overhead due to their inherently iterative inference process. While feature caching offers a promising acceleration strategy by reusing intermediate outputs across timesteps, naive reuse often incurs noticeable quality degradation. In this work, we formally analyze the cumulative error introduced by caching and decompose it into two principal components: feature shift error, caused by inaccuracies in cached outputs, and step amplification error, which arises from error propagation under fixed timestep schedules. To address these issues, we propose ERTACache, a principled caching framework that jointly rectifies both error types. Our method employs an offline residual profiling stage to identify reusable steps, dynamically adjusts integration intervals via a trajectory-aware correction coefficient, and analytically approximates cache-induced errors through a closed-form residual linearization model. Together, these components enable accurate and efficient sampling under aggressive cache reuse. Extensive experiments across standard image and video generation benchmarks show that ERTACache achieves up to 2x inference speedup while consistently preserving or even improving visual quality. Notably, on the state-of-the-art Wan2.1 video diffusion model, ERTACache delivers 2x acceleration with minimal VBench degradation, effectively maintaining baseline fidelity while significantly improving efficiency. The code is available at https://github.com/bytedance/ERTACache.
Authors:Xurui Peng, Hong Liu, Chenqian Yan, Rui Ma, Fangmin Chen, Xing Wang, Zhihua Wu, Songwei Liu, Mingbao Lin
Title: ERTACache: Error Rectification and Timesteps Adjustment for Efficient Diffusion
Abstract:
Diffusion models suffer from substantial computational overhead due to their inherently iterative inference process. While feature caching offers a promising acceleration strategy by reusing intermediate outputs across timesteps, naive reuse often incurs noticeable quality degradation. In this work, we formally analyze the cumulative error introduced by caching and decompose it into two principal components: feature shift error, caused by inaccuracies in cached outputs, and step amplification error, which arises from error propagation under fixed timestep schedules. To address these issues, we propose ERTACache, a principled caching framework that jointly rectifies both error types. Our method employs an offline residual profiling stage to identify reusable steps, dynamically adjusts integration intervals via a trajectory-aware correction coefficient, and analytically approximates cache-induced errors through a closed-form residual linearization model. Together, these components enable accurate and efficient sampling under aggressive cache reuse. Extensive experiments across standard image and video generation benchmarks show that ERTACache achieves up to 2x inference speedup while consistently preserving or even improving visual quality. Notably, on the state-of-the-art Wan2.1 video diffusion model, ERTACache delivers 2x acceleration with minimal VBench degradation, effectively maintaining baseline fidelity while significantly improving efficiency. The code is available at https://github.com/bytedance/ERTACache.
Authors:Haitang Feng, Jie Liu, Jie Tang, Gangshan Wu, Beiqi Chen, Jianhuang Lai, Guangcong Wang
Title: ObjFiller-3D: Consistent Multi-view 3D Inpainting via Video Diffusion Models
Abstract:
3D inpainting often relies on multi-view 2D image inpainting, where the inherent inconsistencies across different inpainted views can result in blurred textures, spatial discontinuities, and distracting visual artifacts. These inconsistencies pose significant challenges when striving for accurate and realistic 3D object completion, particularly in applications that demand high fidelity and structural coherence. To overcome these limitations, we propose ObjFiller-3D, a novel method designed for the completion and editing of high-quality and consistent 3D objects. Instead of employing a conventional 2D image inpainting model, our approach leverages a curated selection of state-of-the-art video editing model to fill in the masked regions of 3D objects. We analyze the representation gap between 3D and videos, and propose an adaptation of a video inpainting model for 3D scene inpainting. In addition, we introduce a reference-based 3D inpainting method to further enhance the quality of reconstruction. Experiments across diverse datasets show that compared to previous methods, ObjFiller-3D produces more faithful and fine-grained reconstructions (PSNR of 26.6 vs. NeRFiller (15.9) and LPIPS of 0.19 vs. Instant3dit (0.25)). Moreover, it demonstrates strong potential for practical deployment in real-world 3D editing applications. Project page: https://objfiller3d.github.io/ Code: https://github.com/objfiller3d/ObjFiller-3D .
Authors:Haonan Qiu, Ning Yu, Ziqi Huang, Paul Debevec, Ziwei Liu
Title: CineScale: Free Lunch in High-Resolution Cinematic Visual Generation
Abstract:
Visual diffusion models achieve remarkable progress, yet they are typically trained at limited resolutions due to the lack of high-resolution data and constrained computation resources, hampering their ability to generate high-fidelity images or videos at higher resolutions. Recent efforts have explored tuning-free strategies to exhibit the untapped potential higher-resolution visual generation of pre-trained models. However, these methods are still prone to producing low-quality visual content with repetitive patterns. The key obstacle lies in the inevitable increase in high-frequency information when the model generates visual content exceeding its training resolution, leading to undesirable repetitive patterns deriving from the accumulated errors. In this work, we propose CineScale, a novel inference paradigm to enable higher-resolution visual generation. To tackle the various issues introduced by the two types of video generation architectures, we propose dedicated variants tailored to each. Unlike existing baseline methods that are confined to high-resolution T2I and T2V generation, CineScale broadens the scope by enabling high-resolution I2V and V2V synthesis, built atop state-of-the-art open-source video generation frameworks. Extensive experiments validate the superiority of our paradigm in extending the capabilities of higher-resolution visual generation for both image and video models. Remarkably, our approach enables 8k image generation without any fine-tuning, and achieves 4k video generation with only minimal LoRA fine-tuning. Generated video samples are available at our website: https://eyeline-labs.github.io/CineScale/.
Authors:Gaurav Parmar, Or Patashnik, Daniil Ostashev, Kuan-Chieh Wang, Kfir Aberman, Srinivasa Narasimhan, Jun-Yan Zhu
Title: Scaling Group Inference for Diverse and High-Quality Generation
Abstract:
Generative models typically sample outputs independently, and recent inference-time guidance and scaling algorithms focus on improving the quality of individual samples. However, in real-world applications, users are often presented with a set of multiple images (e.g., 4-8) for each prompt, where independent sampling tends to lead to redundant results, limiting user choices and hindering idea exploration. In this work, we introduce a scalable group inference method that improves both the diversity and quality of a group of samples. We formulate group inference as a quadratic integer assignment problem: candidate outputs are modeled as graph nodes, and a subset is selected to optimize sample quality (unary term) while maximizing group diversity (binary term). To substantially improve runtime efficiency, we progressively prune the candidate set using intermediate predictions, allowing our method to scale up to large candidate sets. Extensive experiments show that our method significantly improves group diversity and quality compared to independent sampling baselines and recent inference algorithms. Our framework generalizes across a wide range of tasks, including text-to-image, image-to-image, image prompting, and video generation, enabling generative models to treat multiple outputs as cohesive groups rather than independent samples.
Authors:Yifu Zhang, Hao Yang, Yuqi Zhang, Yifei Hu, Fengda Zhu, Chuang Lin, Xiaofeng Mei, Yi Jiang, Bingyue Peng, Zehuan Yuan
Title: Waver: Wave Your Way to Lifelike Video Generation
Abstract:
We present Waver, a high-performance foundation model for unified image and video generation. Waver can directly generate videos with durations ranging from 5 to 10 seconds at a native resolution of 720p, which are subsequently upscaled to 1080p. The model simultaneously supports text-to-video (T2V), image-to-video (I2V), and text-to-image (T2I) generation within a single, integrated framework. We introduce a Hybrid Stream DiT architecture to enhance modality alignment and accelerate training convergence. To ensure training data quality, we establish a comprehensive data curation pipeline and manually annotate and train an MLLM-based video quality model to filter for the highest-quality samples. Furthermore, we provide detailed training and inference recipes to facilitate the generation of high-quality videos. Building on these contributions, Waver excels at capturing complex motion, achieving superior motion amplitude and temporal consistency in video synthesis. Notably, it ranks among the Top 3 on both the T2V and I2V leaderboards at Artificial Analysis (data as of 2025-07-30 10:00 GMT+8), consistently outperforming existing open-source models and matching or surpassing state-of-the-art commercial solutions. We hope this technical report will help the community more efficiently train high-quality video generation models and accelerate progress in video generation technologies. Official page: https://github.com/FoundationVision/Waver.
Authors:Zichi Liu, Yinggui Wang, Tao Wei, Chao Ma
Title: AnchorSync: Global Consistency Optimization for Long Video Editing
Abstract:
Editing long videos remains a challenging task due to the need for maintaining both global consistency and temporal coherence across thousands of frames. Existing methods often suffer from structural drift or temporal artifacts, particularly in minute-long sequences. We introduce AnchorSync, a novel diffusion-based framework that enables high-quality, long-term video editing by decoupling the task into sparse anchor frame editing and smooth intermediate frame interpolation. Our approach enforces structural consistency through a progressive denoising process and preserves temporal dynamics via multimodal guidance. Extensive experiments show that AnchorSync produces coherent, high-fidelity edits, surpassing prior methods in visual quality and temporal stability.
Authors:Haoran Bai, Xiaoxu Chen, Canqian Yang, Zongyao He, Sibin Deng, Ying Chen
Title: Vivid-VR: Distilling Concepts from Text-to-Video Diffusion Transformer for Photorealistic Video Restoration
Abstract:
We present Vivid-VR, a DiT-based generative video restoration method built upon an advanced T2V foundation model, where ControlNet is leveraged to control the generation process, ensuring content consistency. However, conventional fine-tuning of such controllable pipelines frequently suffers from distribution drift due to limitations in imperfect multimodal alignment, resulting in compromised texture realism and temporal coherence. To tackle this challenge, we propose a concept distillation training strategy that utilizes the pretrained T2V model to synthesize training samples with embedded textual concepts, thereby distilling its conceptual understanding to preserve texture and temporal quality. To enhance generation controllability, we redesign the control architecture with two key components: 1) a control feature projector that filters degradation artifacts from input video latents to minimize their propagation through the generation pipeline, and 2) a new ControlNet connector employing a dual-branch design. This connector synergistically combines MLP-based feature mapping with cross-attention mechanism for dynamic control feature retrieval, enabling both content preservation and adaptive control signal modulation. Extensive experiments show that Vivid-VR performs favorably against existing approaches on both synthetic and real-world benchmarks, as well as AIGC videos, achieving impressive texture realism, visual vividness, and temporal consistency. The codes and checkpoints are publicly available at https://github.com/csbhr/Vivid-VR.
Authors:Haomin Zhang, Kristin Qi, Shuxin Yang, Zihao Chen, Chaofan Ding, Xinhan Di
Title: LD-LAudio-V1: Video-to-Long-Form-Audio Generation Extension with Dual Lightweight Adapters
Abstract:
Generating high-quality and temporally synchronized audio from video content is essential for video editing and post-production tasks, enabling the creation of semantically aligned audio for silent videos. However, most existing approaches focus on short-form audio generation for video segments under 10 seconds or rely on noisy datasets for long-form video-to-audio zsynthesis. To address these limitations, we introduce LD-LAudio-V1, an extension of state-of-the-art video-to-audio models and it incorporates dual lightweight adapters to enable long-form audio generation. In addition, we release a clean and human-annotated video-to-audio dataset that contains pure sound effects without noise or artifacts. Our method significantly reduces splicing artifacts and temporal inconsistencies while maintaining computational efficiency. Compared to direct fine-tuning with short training videos, LD-LAudio-V1 achieves significant improvements across multiple metrics: $FD_{\text{passt}}$ 450.00 $\rightarrow$ 327.29 (+27.27%), $FD_{\text{panns}}$ 34.88 $\rightarrow$ 22.68 (+34.98%), $FD_{\text{vgg}}$ 3.75 $\rightarrow$ 1.28 (+65.87%), $KL_{\text{panns}}$ 2.49 $\rightarrow$ 2.07 (+16.87%), $KL_{\text{passt}}$ 1.78 $\rightarrow$ 1.53 (+14.04%), $IS_{\text{panns}}$ 4.17 $\rightarrow$ 4.30 (+3.12%), $IB_{\text{score}}$ 0.25 $\rightarrow$ 0.28 (+12.00%), $Energy\Delta10\text{ms}$ 0.3013 $\rightarrow$ 0.1349 (+55.23%), $Energy\Delta10\text{ms(vs.GT)}$ 0.0531 $\rightarrow$ 0.0288 (+45.76%), and $Sem.\,Rel.$ 2.73 $\rightarrow$ 3.28 (+20.15%). Our dataset aims to facilitate further research in long-form video-to-audio generation and is available at https://github.com/deepreasonings/long-form-video2audio.
Authors:Wenqi Guo, Shan Du
Title: VSF: Simple, Efficient, and Effective Negative Guidance in Few-Step Image Generation Models By Value Sign Flip
Abstract:
We introduce Value Sign Flip (VSF), a simple and efficient method for incorporating negative prompt guidance in few-step diffusion and flow-matching image generation models. Unlike existing approaches such as classifier-free guidance (CFG), NASA, and NAG, VSF dynamically suppresses undesired content by flipping the sign of attention values from negative prompts. Our method requires only small computational overhead and integrates effectively with MMDiT-style architectures such as Stable Diffusion 3.5 Turbo, as well as cross-attention-based models like Wan. We validate VSF on challenging datasets with complex prompt pairs and demonstrate superior performance in both static image and video generation tasks. Experimental results show that VSF significantly improves negative prompt adherence compared to prior methods in few-step models, and even CFG in non-few-step models, while maintaining competitive image quality. Code and ComfyUI node are available in https://github.com/weathon/VSF/tree/main.
Authors:Jingwei Liu, Ling Yang, Hao Luo, Fan Wang, Hongyan Li, Mengdi Wang
Title: Preacher: Paper-to-Video Agentic System
Abstract:
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/Gen-Verse/Paper2Video
Authors:Yuji Wang, Moran Li, Xiaobin Hu, Ran Yi, Jiangning Zhang, Chengming Xu, Weijian Cao, Yabiao Wang, Chengjie Wang, Lizhuang Ma
Title: From Large Angles to Consistent Faces: Identity-Preserving Video Generation via Mixture of Facial Experts
Abstract:
Current video generation models struggle with identity preservation under large facial angles, primarily facing two challenges: the difficulty in exploring an effective mechanism to integrate identity features into DiT structure, and the lack of targeted coverage of large facial angles in existing open-source video datasets. To address these, we present two key innovations. First, we introduce a Mixture of Facial Experts (MoFE) that dynamically combines complementary cues from three specialized experts, each designed to capture distinct but mutually reinforcing aspects of facial attributes. The identity expert captures cross-pose identity-sensitive features, the semantic expert extracts high-level visual semantxics, and the detail expert preserves pixel-level features (e.g., skin texture, color gradients). Furthermore, to mitigate dataset limitations, we have tailored a data processing pipeline centered on two key aspects: Face Constraints and Identity Consistency. Face Constraints ensure facial angle diversity and a high proportion of facial regions, while Identity Consistency preserves coherent person-specific features across temporal sequences, collectively addressing the scarcity of large facial angles and identity-stable training data in existing datasets. Leveraging this pipeline, we have curated and refined a Large Face Angles (LFA) Dataset from existing open-source human video datasets, comprising 460K video clips with annotated facial angles. Experimental results on the LFA benchmark demonstrate that our method, empowered by the LFA dataset, significantly outperforms prior SOTA methods in face similarity, face FID, and CLIP semantic alignment. The code and dataset will be made publicly available at https://github.com/rain152/LFA-Video-Generation.
Authors:Wenhui Song, Hanhui Li, Jiehui Huang, Panwen Hu, Yuhao Cheng, Long Chen, Yiqiang Yan, Xiaodan Liang
Title: LaVieID: Local Autoregressive Diffusion Transformers for Identity-Preserving Video Creation
Abstract:
In this paper, we present LaVieID, a novel \underline{l}ocal \underline{a}utoregressive \underline{vi}d\underline{e}o diffusion framework designed to tackle the challenging \underline{id}entity-preserving text-to-video task. The key idea of LaVieID is to mitigate the loss of identity information inherent in the stochastic global generation process of diffusion transformers (DiTs) from both spatial and temporal perspectives. Specifically, unlike the global and unstructured modeling of facial latent states in existing DiTs, LaVieID introduces a local router to explicitly represent latent states by weighted combinations of fine-grained local facial structures. This alleviates undesirable feature interference and encourages DiTs to capture distinctive facial characteristics. Furthermore, a temporal autoregressive module is integrated into LaVieID to refine denoised latent tokens before video decoding. This module divides latent tokens temporally into chunks, exploiting their long-range temporal dependencies to predict biases for rectifying tokens, thereby significantly enhancing inter-frame identity consistency. Consequently, LaVieID can generate high-fidelity personalized videos and achieve state-of-the-art performance. Our code and models are available at https://github.com/ssugarwh/LaVieID.
Authors:Qiwei Tian, Chenhao Lin, Zhengyu Zhao, Qian Li, Shuai Liu, Chao Shen
Title: Adversarial Video Promotion Against Text-to-Video Retrieval
Abstract:
Thanks to the development of cross-modal models, text-to-video retrieval (T2VR) is advancing rapidly, but its robustness remains largely unexamined. Existing attacks against T2VR are designed to push videos away from queries, i.e., suppressing the ranks of videos, while the attacks that pull videos towards selected queries, i.e., promoting the ranks of videos, remain largely unexplored. These attacks can be more impactful as attackers may gain more views/clicks for financial benefits and widespread (mis)information. To this end, we pioneer the first attack against T2VR to promote videos adversarially, dubbed the Video Promotion attack (ViPro). We further propose Modal Refinement (MoRe) to capture the finer-grained, intricate interaction between visual and textual modalities to enhance black-box transferability. Comprehensive experiments cover 2 existing baselines, 3 leading T2VR models, 3 prevailing datasets with over 10k videos, evaluated under 3 scenarios. All experiments are conducted in a multi-target setting to reflect realistic scenarios where attackers seek to promote the video regarding multiple queries simultaneously. We also evaluated our attacks for defences and imperceptibility. Overall, ViPro surpasses other baselines by over $30/10/4\%$ for white/grey/black-box settings on average. Our work highlights an overlooked vulnerability, provides a qualitative analysis on the upper/lower bound of our attacks, and offers insights into potential counterplays. Code will be publicly available at https://github.com/michaeltian108/ViPro.
Authors:Weilun Feng, Haotong Qin, Chuanguang Yang, Xiangqi Li, Han Yang, Yuqi Li, Zhulin An, Libo Huang, Michele Magno, Yongjun Xu
Title: S$^2$Q-VDiT: Accurate Quantized Video Diffusion Transformer with Salient Data and Sparse Token Distillation
Abstract:
Diffusion transformers have emerged as the mainstream paradigm for video generation models. However, the use of up to billions of parameters incurs significant computational costs. Quantization offers a promising solution by reducing memory usage and accelerating inference. Nonetheless, we observe that the joint modeling of spatial and temporal information in video diffusion models (V-DMs) leads to extremely long token sequences, which introduces high calibration variance and learning challenges. To address these issues, we propose S$^2$Q-VDiT, a post-training quantization framework for V-DMs that leverages Salient data and Sparse token distillation. During the calibration phase, we identify that quantization performance is highly sensitive to the choice of calibration data. To mitigate this, we introduce \textit{Hessian-aware Salient Data Selection}, which constructs high-quality calibration datasets by considering both diffusion and quantization characteristics unique to V-DMs. To tackle the learning challenges, we further analyze the sparse attention patterns inherent in V-DMs. Based on this observation, we propose \textit{Attention-guided Sparse Token Distillation}, which exploits token-wise attention distributions to emphasize tokens that are more influential to the model's output. Under W4A6 quantization, S$^2$Q-VDiT achieves lossless performance while delivering $3.9\times$ model compression and $1.3\times$ inference acceleration. Code will be available at https://github.com/wlfeng0509/s2q-vdit.
Authors:Zeyu Zhu, Weijia Wu, Mike Zheng Shou
Title: Multi-human Interactive Talking Dataset
Abstract:
Existing studies on talking video generation have predominantly focused on single-person monologues or isolated facial animations, limiting their applicability to realistic multi-human interactions. To bridge this gap, we introduce MIT, a large-scale dataset specifically designed for multi-human talking video generation. To this end, we develop an automatic pipeline that collects and annotates multi-person conversational videos. The resulting dataset comprises 12 hours of high-resolution footage, each featuring two to four speakers, with fine-grained annotations of body poses and speech interactions. It captures natural conversational dynamics in multi-speaker scenario, offering a rich resource for studying interactive visual behaviors. To demonstrate the potential of MIT, we furthur propose CovOG, a baseline model for this novel task. It integrates a Multi-Human Pose Encoder (MPE) to handle varying numbers of speakers by aggregating individual pose embeddings, and an Interactive Audio Driver (IAD) to modulate head dynamics based on speaker-specific audio features. Together, these components showcase the feasibility and challenges of generating realistic multi-human talking videos, establishing MIT as a valuable benchmark for future research. The code is avalibale at: https://github.com/showlab/Multi-human-Talking-Video-Dataset.
Authors:Sheng Wu, Fei Teng, Hao Shi, Qi Jiang, Kai Luo, Kaiwei Wang, Kailun Yang
Title: QuaDreamer: Controllable Panoramic Video Generation for Quadruped Robots
Abstract:
Panoramic cameras, capturing comprehensive 360-degree environmental data, are suitable for quadruped robots in surrounding perception and interaction with complex environments. However, the scarcity of high-quality panoramic training data-caused by inherent kinematic constraints and complex sensor calibration challenges-fundamentally limits the development of robust perception systems tailored to these embodied platforms. To address this issue, we propose QuaDreamer-the first panoramic data generation engine specifically designed for quadruped robots. QuaDreamer focuses on mimicking the motion paradigm of quadruped robots to generate highly controllable, realistic panoramic videos, providing a data source for downstream tasks. Specifically, to effectively capture the unique vertical vibration characteristics exhibited during quadruped locomotion, we introduce Vertical Jitter Encoding (VJE). VJE extracts controllable vertical signals through frequency-domain feature filtering and provides high-quality prompts. To facilitate high-quality panoramic video generation under jitter signal control, we propose a Scene-Object Controller (SOC) that effectively manages object motion and boosts background jitter control through the attention mechanism. To address panoramic distortions in wide-FoV video generation, we propose the Panoramic Enhancer (PE)-a dual-stream architecture that synergizes frequency-texture refinement for local detail enhancement with spatial-structure correction for global geometric consistency. We further demonstrate that the generated video sequences can serve as training data for the quadruped robot's panoramic visual perception model, enhancing the performance of multi-object tracking in 360-degree scenes. The source code and model weights will be publicly available at https://github.com/losehu/QuaDreamer.
Authors:Sheng Wu, Fei Teng, Hao Shi, Qi Jiang, Kai Luo, Kaiwei Wang, Kailun Yang
Title: QuaDreamer: Controllable Panoramic Video Generation for Quadruped Robots
Abstract:
Panoramic cameras, capturing comprehensive 360-degree environmental data, are suitable for quadruped robots in surrounding perception and interaction with complex environments. However, the scarcity of high-quality panoramic training data-caused by inherent kinematic constraints and complex sensor calibration challenges-fundamentally limits the development of robust perception systems tailored to these embodied platforms. To address this issue, we propose QuaDreamer-the first panoramic data generation engine specifically designed for quadruped robots. QuaDreamer focuses on mimicking the motion paradigm of quadruped robots to generate highly controllable, realistic panoramic videos, providing a data source for downstream tasks. Specifically, to effectively capture the unique vertical vibration characteristics exhibited during quadruped locomotion, we introduce Vertical Jitter Encoding (VJE). VJE extracts controllable vertical signals through frequency-domain feature filtering and provides high-quality prompts. To facilitate high-quality panoramic video generation under jitter signal control, we propose a Scene-Object Controller (SOC) that effectively manages object motion and boosts background jitter control through the attention mechanism. To address panoramic distortions in wide-FoV video generation, we propose the Panoramic Enhancer (PE)-a dual-stream architecture that synergizes frequency-texture refinement for local detail enhancement with spatial-structure correction for global geometric consistency. We further demonstrate that the generated video sequences can serve as training data for the quadruped robot's panoramic visual perception model, enhancing the performance of multi-object tracking in 360-degree scenes. The source code and model weights will be publicly available at https://github.com/losehu/QuaDreamer.
Authors:Bowen Yang, Yun Cao, Chen He, Xiaosu Su
Title: GAID: Frame-Level Gated Audio-Visual Integration with Directional Perturbation for Text-Video Retrieval
Abstract:
Text-to-video retrieval requires precise alignment between language and temporally rich video signals. Existing methods predominantly exploit visual cues and often overlook complementary audio semantics or adopt coarse fusion strategies, leading to suboptimal multimodal representations. We present GAID, a framework that jointly address this gap via two key components: (i) a Frame-level Gated Fusion (FGF) that adaptively integrates audio and visual features under textual guidance, enabling fine-grained temporal alignment; and (ii) a Directional Adaptive Semantic Perturbation (DASP) that injects structure-aware perturbations into text embeddings, enhancing robustness and discrimination without incurring multi-pass inference. These modules complement each other -- fusion reduces modality gaps while perturbation regularizes cross-modal matching -- yielding more stable and expressive representations. Extensive experiments on MSR-VTT, DiDeMo, LSMDC, and VATEX show consistent state-of-the-art results across all retrieval metrics with notable efficiency gains. Our code is available at https://github.com/YangBowenn/GAID.
Authors:Chende Zheng, Ruiqi suo, Chenhao Lin, Zhengyu Zhao, Le Yang, Shuai Liu, Minghui Yang, Cong Wang, Chao Shen
Title: D3: Training-Free AI-Generated Video Detection Using Second-Order Features
Abstract:
The evolution of video generation techniques, such as Sora, has made it increasingly easy to produce high-fidelity AI-generated videos, raising public concern over the dissemination of synthetic content. However, existing detection methodologies remain limited by their insufficient exploration of temporal artifacts in synthetic videos. To bridge this gap, we establish a theoretical framework through second-order dynamical analysis under Newtonian mechanics, subsequently extending the Second-order Central Difference features tailored for temporal artifact detection. Building on this theoretical foundation, we reveal a fundamental divergence in second-order feature distributions between real and AI-generated videos. Concretely, we propose Detection by Difference of Differences (D3), a novel training-free detection method that leverages the above second-order temporal discrepancies. We validate the superiority of our D3 on 4 open-source datasets (Gen-Video, VideoPhy, EvalCrafter, VidProM), 40 subsets in total. For example, on GenVideo, D3 outperforms the previous best method by 10.39% (absolute) mean Average Precision. Additional experiments on time cost and post-processing operations demonstrate D3's exceptional computational efficiency and strong robust performance. Our code is available at https://github.com/Zig-HS/D3.
Authors:Suhang Cai, Xiaohao Peng, Chong Wang, Xiaojie Cai, Jiangbo Qian
Title: GV-VAD : Exploring Video Generation for Weakly-Supervised Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) plays a critical role in public safety applications such as intelligent surveillance. However, the rarity, unpredictability, and high annotation cost of real-world anomalies make it difficult to scale VAD datasets, which limits the performance and generalization ability of existing models. To address this challenge, we propose a generative video-enhanced weakly-supervised video anomaly detection (GV-VAD) framework that leverages text-conditioned video generation models to produce semantically controllable and physically plausible synthetic videos. These virtual videos are used to augment training data at low cost. In addition, a synthetic sample loss scaling strategy is utilized to control the influence of generated synthetic samples for efficient training. The experiments show that the proposed framework outperforms state-of-the-art methods on UCF-Crime datasets. The code is available at https://github.com/Sumutan/GV-VAD.git.
Authors:Xinhan Di, Kristin Qi, Pengqian Yu
Title: JWB-DH-V1: Benchmark for Joint Whole-Body Talking Avatar and Speech Generation Version 1
Abstract:
Recent advances in diffusion-based video generation have enabled photo-realistic short clips, but current methods still struggle to achieve multi-modal consistency when jointly generating whole-body motion and natural speech. Current approaches lack comprehensive evaluation frameworks that assess both visual and audio quality, and there are insufficient benchmarks for region-specific performance analysis. To address these gaps, we introduce the Joint Whole-Body Talking Avatar and Speech Generation Version I(JWB-DH-V1), comprising a large-scale multi-modal dataset with 10,000 unique identities across 2 million video samples, and an evaluation protocol for assessing joint audio-video generation of whole-body animatable avatars. Our evaluation of SOTA models reveals consistent performance disparities between face/hand-centric and whole-body performance, which incidates essential areas for future research. The dataset and evaluation tools are publicly available at https://github.com/deepreasonings/WholeBodyBenchmark.
Authors:Yili Li, Gang Xiong, Gaopeng Gou, Xiangyan Qu, Jiamin Zhuang, Zhen Li, Junzheng Shi
Title: T2VParser: Adaptive Decomposition Tokens for Partial Alignment in Text to Video Retrieval
Abstract:
Text-to-video retrieval essentially aims to train models to align visual content with textual descriptions accurately. Due to the impressive general multimodal knowledge demonstrated by image-text pretrained models such as CLIP, existing work has primarily focused on extending CLIP knowledge for video-text tasks. However, videos typically contain richer information than images. In current video-text datasets, textual descriptions can only reflect a portion of the video content, leading to partial misalignment in video-text matching. Therefore, directly aligning text representations with video representations can result in incorrect supervision, ignoring the inequivalence of information. In this work, we propose T2VParser to extract multiview semantic representations from text and video, achieving adaptive semantic alignment rather than aligning the entire representation. To extract corresponding representations from different modalities, we introduce Adaptive Decomposition Tokens, which consist of a set of learnable tokens shared across modalities. The goal of T2VParser is to emphasize precise alignment between text and video while retaining the knowledge of pretrained models. Experimental results demonstrate that T2VParser achieves accurate partial alignment through effective cross-modal content decomposition. The code is available at https://github.com/Lilidamowang/T2VParser.
Authors:Simin Huo, Ning Li
Title: Iwin Transformer: Hierarchical Vision Transformer using Interleaved Windows
Abstract:
We introduce Iwin Transformer, a novel position-embedding-free hierarchical vision transformer, which can be fine-tuned directly from low to high resolution, through the collaboration of innovative interleaved window attention and depthwise separable convolution. This approach uses attention to connect distant tokens and applies convolution to link neighboring tokens, enabling global information exchange within a single module, overcoming Swin Transformer's limitation of requiring two consecutive blocks to approximate global attention. Extensive experiments on visual benchmarks demonstrate that Iwin Transformer exhibits strong competitiveness in tasks such as image classification (87.4 top-1 accuracy on ImageNet-1K), semantic segmentation and video action recognition. We also validate the effectiveness of the core component in Iwin as a standalone module that can seamlessly replace the self-attention module in class-conditional image generation. The concepts and methods introduced by the Iwin Transformer have the potential to inspire future research, like Iwin 3D Attention in video generation. The code and models are available at https://github.com/cominder/Iwin-Transformer.
Authors:Xiaofeng Mao, Shaoheng Lin, Zhen Li, Chuanhao Li, Wenshuo Peng, Tong He, Jiangmiao Pang, Mingmin Chi, Yu Qiao, Kaipeng Zhang
Title: Yume: An Interactive World Generation Model
Abstract:
Yume aims to use images, text, or videos to create an interactive, realistic, and dynamic world, which allows exploration and control using peripheral devices or neural signals. In this report, we present a preview version of \method, which creates a dynamic world from an input image and allows exploration of the world using keyboard actions. To achieve this high-fidelity and interactive video world generation, we introduce a well-designed framework, which consists of four main components, including camera motion quantization, video generation architecture, advanced sampler, and model acceleration. First, we quantize camera motions for stable training and user-friendly interaction using keyboard inputs. Then, we introduce the Masked Video Diffusion Transformer~(MVDT) with a memory module for infinite video generation in an autoregressive manner. After that, training-free Anti-Artifact Mechanism (AAM) and Time Travel Sampling based on Stochastic Differential Equations (TTS-SDE) are introduced to the sampler for better visual quality and more precise control. Moreover, we investigate model acceleration by synergistic optimization of adversarial distillation and caching mechanisms. We use the high-quality world exploration dataset \sekai to train \method, and it achieves remarkable results in diverse scenes and applications. All data, codebase, and model weights are available on https://github.com/stdstu12/YUME. Yume will update monthly to achieve its original goal. Project page: https://stdstu12.github.io/YUME-Project/.
Authors:Yue Ma, Kunyu Feng, Zhongyuan Hu, Xinyu Wang, Yucheng Wang, Mingzhe Zheng, Xuanhua He, Chenyang Zhu, Hongyu Liu, Yingqing He, Zeyu Wang, Zhifeng Li, Xiu Li, Wei Liu, Dan Xu, Linfeng Zhang, Qifeng Chen
Title: Controllable Video Generation: A Survey
Abstract:
With the rapid development of AI-generated content (AIGC), video generation has emerged as one of its most dynamic and impactful subfields. In particular, the advancement of video generation foundation models has led to growing demand for controllable video generation methods that can more accurately reflect user intent. Most existing foundation models are designed for text-to-video generation, where text prompts alone are often insufficient to express complex, multi-modal, and fine-grained user requirements. This limitation makes it challenging for users to generate videos with precise control using current models. To address this issue, recent research has explored the integration of additional non-textual conditions, such as camera motion, depth maps, and human pose, to extend pretrained video generation models and enable more controllable video synthesis. These approaches aim to enhance the flexibility and practical applicability of AIGC-driven video generation systems. In this survey, we provide a systematic review of controllable video generation, covering both theoretical foundations and recent advances in the field. We begin by introducing the key concepts and commonly used open-source video generation models. We then focus on control mechanisms in video diffusion models, analyzing how different types of conditions can be incorporated into the denoising process to guide generation. Finally, we categorize existing methods based on the types of control signals they leverage, including single-condition generation, multi-condition generation, and universal controllable generation. For a complete list of the literature on controllable video generation reviewed, please visit our curated repository at https://github.com/mayuelala/Awesome-Controllable-Video-Generation.
Authors:Yaofang Liu, Yumeng Ren, Aitor Artola, Yuxuan Hu, Xiaodong Cun, Xiaotong Zhao, Alan Zhao, Raymond H. Chan, Suiyun Zhang, Rui Liu, Dandan Tu, Jean-Michel Morel
Title: PUSA V1.0: Surpassing Wan-I2V with $500 Training Cost by Vectorized Timestep Adaptation
Abstract:
The rapid advancement of video diffusion models has been hindered by fundamental limitations in temporal modeling, particularly the rigid synchronization of frame evolution imposed by conventional scalar timestep variables. While task-specific adaptations and autoregressive models have sought to address these challenges, they remain constrained by computational inefficiency, catastrophic forgetting, or narrow applicability. In this work, we present Pusa, a groundbreaking paradigm that leverages vectorized timestep adaptation (VTA) to enable fine-grained temporal control within a unified video diffusion framework. Besides, VTA is a non-destructive adaptation, which means it fully preserves the capabilities of the base model. By finetuning the SOTA Wan2.1-T2V-14B model with VTA, we achieve unprecedented efficiency -- surpassing the performance of Wan-I2V-14B with $\leq$ 1/200 of the training cost (\$500 vs. $\geq$ \$100,000) and $\leq$ 1/2500 of the dataset size (4K vs. $\geq$ 10M samples). Pusa not only sets a new standard for image-to-video (I2V) generation, achieving a VBench-I2V total score of 87.32\% (vs. 86.86\% of Wan-I2V-14B), but also unlocks many zero-shot multi-task capabilities such as start-end frames and video extension -- all without task-specific training. Meanwhile, Pusa can still perform text-to-video generation. Mechanistic analyses reveal that our approach preserves the foundation model's generative priors while surgically injecting temporal dynamics, avoiding the combinatorial explosion inherent to vectorized timesteps. This work establishes a scalable, efficient, and versatile paradigm for next-generation video synthesis, democratizing high-fidelity video generation for research and industry alike. Code is open-sourced at https://github.com/Yaofang-Liu/Pusa-VidGen
Authors:Xiaojie Li, Chu Li, Shi-Zhe Chen, Xi Chen
Title: U-MARVEL: Unveiling Key Factors for Universal Multimodal Retrieval via Embedding Learning with MLLMs
Abstract:
Universal multimodal retrieval (UMR), which aims to address complex retrieval tasks where both queries and candidates span diverse modalities, has been significantly advanced by the emergence of MLLMs. While state-of-the-art MLLM-based methods in the literature predominantly adopt contrastive learning principles, they often differ in their specific training recipes. Despite their success, the mechanisms underlying their retrieval capabilities remain largely unexplored, potentially resulting in suboptimal performance and limited generalization ability. To address these issues, we present a comprehensive study aimed at uncovering the key factors that drive effective embedding learning for UMR using MLLMs. We begin by implementing a general MLLM-based embedding learning pipeline, and systematically analyze the primary contributors to high-performing universal retrieval systems. Based on this, we explore various aspects of the details in embedding generation and training strategies, including progressive transition, hard negative mining and re-ranker distillation. Notably, our findings reveal that often-overlooked factors can have a substantial impact on model performance. Building on these discoveries, we introduce a unified framework termed U-MARVEL (\textbf{U}niversal \textbf{M}ultimod\textbf{A}l \textbf{R}etrie\textbf{V}al via \textbf{E}mbedding \textbf{L}earning), which outperforms state-of-the-art competitors on the M-BEIR benchmark by a large margin in supervised settings, and also exihibits strong zero-shot performance on several tasks such as composed image retrieval and text-to-video retrieval. These results underscore the generalization potential of our framework across various embedding-based retrieval tasks. Code is available at https://github.com/chaxjli/U-MARVEL
Authors:Tongtong Su, Chengyu Wang, Bingyan Liu, Jun Huang, Dongming Lu
Title: Encapsulated Composition of Text-to-Image and Text-to-Video Models for High-Quality Video Synthesis
Abstract:
In recent years, large text-to-video (T2V) synthesis models have garnered considerable attention for their abilities to generate videos from textual descriptions. However, achieving both high imaging quality and effective motion representation remains a significant challenge for these T2V models. Existing approaches often adapt pre-trained text-to-image (T2I) models to refine video frames, leading to issues such as flickering and artifacts due to inconsistencies across frames. In this paper, we introduce EVS, a training-free Encapsulated Video Synthesizer that composes T2I and T2V models to enhance both visual fidelity and motion smoothness of generated videos. Our approach utilizes a well-trained diffusion-based T2I model to refine low-quality video frames by treating them as out-of-distribution samples, effectively optimizing them with noising and denoising steps. Meanwhile, we employ T2V backbones to ensure consistent motion dynamics. By encapsulating the T2V temporal-only prior into the T2I generation process, EVS successfully leverages the strengths of both types of models, resulting in videos of improved imaging and motion quality. Experimental results validate the effectiveness of our approach compared to previous approaches. Our composition process also leads to a significant improvement of 1.6x-4.5x speedup in inference time. Source codes: https://github.com/Tonniia/EVS.
Authors:Dmitrii Mikhailov, Aleksey Letunovskiy, Maria Kovaleva, Vladimir Arkhipkin, Vladimir Korviakov, Vladimir Polovnikov, Viacheslav Vasilev, Evelina Sidorova, Denis Dimitrov
Title: $\nabla$NABLA: Neighborhood Adaptive Block-Level Attention
Abstract:
Recent progress in transformer-based architectures has demonstrated remarkable success in video generation tasks. However, the quadratic complexity of full attention mechanisms remains a critical bottleneck, particularly for high-resolution and long-duration video sequences. In this paper, we propose NABLA, a novel Neighborhood Adaptive Block-Level Attention mechanism that dynamically adapts to sparsity patterns in video diffusion transformers (DiTs). By leveraging block-wise attention with adaptive sparsity-driven threshold, NABLA reduces computational overhead while preserving generative quality. Our method does not require custom low-level operator design and can be seamlessly integrated with PyTorch's Flex Attention operator. Experiments demonstrate that NABLA achieves up to 2.7x faster training and inference compared to baseline almost without compromising quantitative metrics (CLIP score, VBench score, human evaluation score) and visual quality drop. The code and model weights are available here: https://github.com/gen-ai-team/Wan2.1-NABLA
Authors:Zhimin Liao, Ping Wei, Ruijie Zhang, Shuaijia Chen, Haoxuan Wang, Ziyang Ren
Title: $I^{2}$-World: Intra-Inter Tokenization for Efficient Dynamic 4D Scene Forecasting
Abstract:
Forecasting the evolution of 3D scenes and generating unseen scenarios via occupancy-based world models offers substantial potential for addressing corner cases in autonomous driving systems. While tokenization has revolutionized image and video generation, efficiently tokenizing complex 3D scenes remains a critical challenge for 3D world models. To address this, we propose $I^{2}$-World, an efficient framework for 4D occupancy forecasting. Our method decouples scene tokenization into intra-scene and inter-scene tokenizers. The intra-scene tokenizer employs a multi-scale residual quantization strategy to hierarchically compress 3D scenes while preserving spatial details. The inter-scene tokenizer residually aggregates temporal dependencies across timesteps. This dual design preserves the compactness of 3D tokenizers while retaining the dynamic expressiveness of 4D tokenizers. Unlike decoder-only GPT-style autoregressive models, $I^{2}$-World adopts an encoder-decoder architecture. The encoder aggregates spatial context from the current scene and predicts a transformation matrix to enable high-level control over scene generation. The decoder, conditioned on this matrix and historical tokens, ensures temporal consistency during generation. Experiments demonstrate that $I^{2}$-World achieves state-of-the-art performance, outperforming existing methods by 25.1\% in mIoU and 36.9\% in IoU for 4D occupancy forecasting while exhibiting exceptional computational efficiency: it requires merely 2.9 GB of training memory and achieves real-time inference at 37.0 FPS. Our code is available on https://github.com/lzzzzzm/II-World.
Authors:Hangjie Yuan, Weihua Chen, Jun Cen, Hu Yu, Jingyun Liang, Shuning Chang, Zhihui Lin, Tao Feng, Pengwei Liu, Jiazheng Xing, Hao Luo, Jiasheng Tang, Fan Wang, Yi Yang
Title: Lumos-1: On Autoregressive Video Generation from a Unified Model Perspective
Abstract:
Autoregressive large language models (LLMs) have unified a vast range of language tasks, inspiring preliminary efforts in autoregressive video generation. Existing autoregressive video generators either diverge from standard LLM architectures, depend on bulky external text encoders, or incur prohibitive latency due to next-token decoding. In this paper, we introduce Lumos-1, an autoregressive video generator that retains the LLM architecture with minimal architectural modifications. To inject spatiotemporal correlations in LLMs, we identify the efficacy of incorporating 3D RoPE and diagnose its imbalanced frequency spectrum ranges. Therefore, we propose MM-RoPE, a RoPE scheme that preserves the original textual RoPE while providing comprehensive frequency spectra and scaled 3D positions for modeling multimodal spatiotemporal data. Moreover, Lumos-1 resorts to a token dependency strategy that obeys intra-frame bidirectionality and inter-frame temporal causality. Based on this dependency strategy, we identify the issue of frame-wise loss imbalance caused by spatial information redundancy and solve it by proposing Autoregressive Discrete Diffusion Forcing (AR-DF). AR-DF introduces temporal tube masking during training with a compatible inference-time masking policy to avoid quality degradation. By using memory-efficient training techniques, we pre-train Lumos-1 on only 48 GPUs, achieving performance comparable to EMU3 on GenEval, COSMOS-Video2World on VBench-I2V, and OpenSoraPlan on VBench-T2V. Code and models are available at https://github.com/alibaba-damo-academy/Lumos.
Authors:Yukang Chen, Wei Huang, Baifeng Shi, Qinghao Hu, Hanrong Ye, Ligeng Zhu, Zhijian Liu, Pavlo Molchanov, Jan Kautz, Xiaojuan Qi, Sifei Liu, Hongxu Yin, Yao Lu, Song Han
Title: Scaling RL to Long Videos
Abstract:
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 104K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In our experiments, LongVILA-R1-7B achieves strong performance on video benchmarks, reaching 65.1% and 71.1% accuracy on VideoMME without and with subtitles, respectively, and consistently outperforming LongVILA-7B across multiple benchmarks. Moreover, LongVILA-R1-7B supports processing up to 8,192 video frames per video, and configurable FPS settings. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames).
Authors:Rongsheng Wang, Junying Chen, Ke Ji, Zhenyang Cai, Shunian Chen, Yunjin Yang, Benyou Wang
Title: MedGen: Unlocking Medical Video Generation by Scaling Granularly-annotated Medical Videos
Abstract:
Recent advances in video generation have shown remarkable progress in open-domain settings, yet medical video generation remains largely underexplored. Medical videos are critical for applications such as clinical training, education, and simulation, requiring not only high visual fidelity but also strict medical accuracy. However, current models often produce unrealistic or erroneous content when applied to medical prompts, largely due to the lack of large-scale, high-quality datasets tailored to the medical domain. To address this gap, we introduce MedVideoCap-55K, the first large-scale, diverse, and caption-rich dataset for medical video generation. It comprises over 55,000 curated clips spanning real-world medical scenarios, providing a strong foundation for training generalist medical video generation models. Built upon this dataset, we develop MedGen, which achieves leading performance among open-source models and rivals commercial systems across multiple benchmarks in both visual quality and medical accuracy. We hope our dataset and model can serve as a valuable resource and help catalyze further research in medical video generation. Our code and data is available at https://github.com/FreedomIntelligence/MedGen
Authors:Jingwei Shi, Zeyu Zhang, Biao Wu, Yanjie Liang, Meng Fang, Ling Chen, Yang Zhao
Title: PresentAgent: Multimodal Agent for Presentation Video Generation
Abstract:
We present PresentAgent, a multimodal agent that transforms long-form documents into narrated presentation videos. While existing approaches are limited to generating static slides or text summaries, our method advances beyond these limitations by producing fully synchronized visual and spoken content that closely mimics human-style presentations. To achieve this integration, PresentAgent employs a modular pipeline that systematically segments the input document, plans and renders slide-style visual frames, generates contextual spoken narration with large language models and Text-to-Speech models, and seamlessly composes the final video with precise audio-visual alignment. Given the complexity of evaluating such multimodal outputs, we introduce PresentEval, a unified assessment framework powered by Vision-Language Models that comprehensively scores videos across three critical dimensions: content fidelity, visual clarity, and audience comprehension through prompt-based evaluation. Our experimental validation on a curated dataset of 30 document-presentation pairs demonstrates that PresentAgent approaches human-level quality across all evaluation metrics. These results highlight the significant potential of controllable multimodal agents in transforming static textual materials into dynamic, effective, and accessible presentation formats. Code will be available at https://github.com/AIGeeksGroup/PresentAgent.
Authors:Xin Zhou, Dingkang Liang, Kaijin Chen, Tianrui Feng, Xiwu Chen, Hongkai Lin, Yikang Ding, Feiyang Tan, Hengshuang Zhao, Xiang Bai
Title: Less is Enough: Training-Free Video Diffusion Acceleration via Runtime-Adaptive Caching
Abstract:
Video generation models have demonstrated remarkable performance, yet their broader adoption remains constrained by slow inference speeds and substantial computational costs, primarily due to the iterative nature of the denoising process. Addressing this bottleneck is essential for democratizing advanced video synthesis technologies and enabling their integration into real-world applications. This work proposes EasyCache, a training-free acceleration framework for video diffusion models. EasyCache introduces a lightweight, runtime-adaptive caching mechanism that dynamically reuses previously computed transformation vectors, avoiding redundant computations during inference. Unlike prior approaches, EasyCache requires no offline profiling, pre-computation, or extensive parameter tuning. We conduct comprehensive studies on various large-scale video generation models, including OpenSora, Wan2.1, and HunyuanVideo. Our method achieves leading acceleration performance, reducing inference time by up to 2.1-3.3$\times$ compared to the original baselines while maintaining high visual fidelity with a significant up to 36% PSNR improvement compared to the previous SOTA method. This improvement makes our EasyCache a efficient and highly accessible solution for high-quality video generation in both research and practical applications. The code is available at https://github.com/H-EmbodVis/EasyCache.
Authors:Yiming Ju, Jijin Hu, Zhengxiong Luo, Haoge Deng, hanyu Zhao, Li Du, Chengwei Wu, Donglin Hao, Xinlong Wang, Tengfei Pan
Title: CI-VID: A Coherent Interleaved Text-Video Dataset
Abstract:
Text-to-video (T2V) generation has recently attracted considerable attention, resulting in the development of numerous high-quality datasets that have propelled progress in this area. However, existing public datasets are primarily composed of isolated text-video (T-V) pairs and thus fail to support the modeling of coherent multi-clip video sequences. To address this limitation, we introduce CI-VID, a dataset that moves beyond isolated text-to-video (T2V) generation toward text-and-video-to-video (TV2V) generation, enabling models to produce coherent, multi-scene video sequences. CI-VID contains over 340,000 samples, each featuring a coherent sequence of video clips with text captions that capture both the individual content of each clip and the transitions between them, enabling visually and textually grounded generation. To further validate the effectiveness of CI-VID, we design a comprehensive, multi-dimensional benchmark incorporating human evaluation, VLM-based assessment, and similarity-based metrics. Experimental results demonstrate that models trained on CI-VID exhibit significant improvements in both accuracy and content consistency when generating video sequences. This facilitates the creation of story-driven content with smooth visual transitions and strong temporal coherence, underscoring the quality and practical utility of the CI-VID dataset We release the CI-VID dataset and the accompanying code for data construction and evaluation at: https://github.com/ymju-BAAI/CI-VID
Authors:Kaiwen Zhang, Zhenyu Tang, Xiaotao Hu, Xingang Pan, Xiaoyang Guo, Yuan Liu, Jingwei Huang, Li Yuan, Qian Zhang, Xiao-Xiao Long, Xun Cao, Wei Yin
Title: Epona: Autoregressive Diffusion World Model for Autonomous Driving
Abstract:
Diffusion models have demonstrated exceptional visual quality in video generation, making them promising for autonomous driving world modeling. However, existing video diffusion-based world models struggle with flexible-length, long-horizon predictions and integrating trajectory planning. This is because conventional video diffusion models rely on global joint distribution modeling of fixed-length frame sequences rather than sequentially constructing localized distributions at each timestep. In this work, we propose Epona, an autoregressive diffusion world model that enables localized spatiotemporal distribution modeling through two key innovations: 1) Decoupled spatiotemporal factorization that separates temporal dynamics modeling from fine-grained future world generation, and 2) Modular trajectory and video prediction that seamlessly integrate motion planning with visual modeling in an end-to-end framework. Our architecture enables high-resolution, long-duration generation while introducing a novel chain-of-forward training strategy to address error accumulation in autoregressive loops. Experimental results demonstrate state-of-the-art performance with 7.4\% FVD improvement and minutes longer prediction duration compared to prior works. The learned world model further serves as a real-time motion planner, outperforming strong end-to-end planners on NAVSIM benchmarks. Code will be publicly available at \href{https://github.com/Kevin-thu/Epona/}{https://github.com/Kevin-thu/Epona/}.
Authors:Jianzong Wu, Liang Hou, Haotian Yang, Xin Tao, Ye Tian, Pengfei Wan, Di Zhang, Yunhai Tong
Title: VMoBA: Mixture-of-Block Attention for Video Diffusion Models
Abstract:
The quadratic complexity of full attention mechanisms poses a significant bottleneck for Video Diffusion Models (VDMs) aiming to generate long-duration, high-resolution videos. While various sparse attention methods have been proposed, many are designed as training-free inference accelerators or do not optimally capture the unique spatio-temporal characteristics inherent in video data when trained natively. This paper introduces Video Mixture of Block Attention (VMoBA), a novel sparse attention mechanism specifically adapted for VDMs. Motivated by an in-depth analysis of attention patterns within pre-trained video transformers, which revealed strong spatio-temporal locality, varying query importance, and head-specific concentration levels, VMoBA enhances the original MoBA framework with three key modifications: (1) a layer-wise recurrent block partition scheme (1D-2D-3D) to dynamically adapt to diverse spatio-temporal attention patterns and improve efficiency; (2) global block selection to prioritize the most salient query-key block interactions across an entire attention head; and (3) threshold-based block selection to dynamically determine the number of attended blocks based on their cumulative similarity. Extensive experiments demonstrate that VMoBA significantly accelerates the training of VDMs on longer sequences, achieving 2.92x FLOPs and 1.48x latency speedup, while attaining comparable or even superior generation quality to full attention. Furthermore, VMoBA exhibits competitive performance in training-free inference, offering 2.40x FLOPs and 1.35x latency speedup for high-res video generation.
Authors:Yu Shang, Xin Zhang, Yinzhou Tang, Lei Jin, Chen Gao, Wei Wu, Yong Li
Title: RoboScape: Physics-informed Embodied World Model
Abstract:
World models have become indispensable tools for embodied intelligence, serving as powerful simulators capable of generating realistic robotic videos while addressing critical data scarcity challenges. However, current embodied world models exhibit limited physical awareness, particularly in modeling 3D geometry and motion dynamics, resulting in unrealistic video generation for contact-rich robotic scenarios. In this paper, we present RoboScape, a unified physics-informed world model that jointly learns RGB video generation and physics knowledge within an integrated framework. We introduce two key physics-informed joint training tasks: temporal depth prediction that enhances 3D geometric consistency in video rendering, and keypoint dynamics learning that implicitly encodes physical properties (e.g., object shape and material characteristics) while improving complex motion modeling. Extensive experiments demonstrate that RoboScape generates videos with superior visual fidelity and physical plausibility across diverse robotic scenarios. We further validate its practical utility through downstream applications including robotic policy training with generated data and policy evaluation. Our work provides new insights for building efficient physics-informed world models to advance embodied intelligence research. The code is available at: https://github.com/tsinghua-fib-lab/RoboScape.
Authors:Xingyang Li, Muyang Li, Tianle Cai, Haocheng Xi, Shuo Yang, Yujun Lin, Lvmin Zhang, Songlin Yang, Jinbo Hu, Kelly Peng, Maneesh Agrawala, Ion Stoica, Kurt Keutzer, Song Han
Title: Radial Attention: $O(n\log n)$ Sparse Attention with Energy Decay for Long Video Generation
Abstract:
Recent advances in diffusion models have enabled high-quality video generation, but the additional temporal dimension significantly increases computational costs, making training and inference on long videos prohibitively expensive. In this paper, we identify a phenomenon we term Spatiotemporal Energy Decay in video diffusion models: post-softmax attention scores diminish as spatial and temporal distance between tokens increase, akin to the physical decay of signal or waves over space and time in nature. Motivated by this, we propose Radial Attention, a scalable sparse attention mechanism with $O(n \log n)$ complexity that translates energy decay into exponentially decaying compute density, which is significantly more efficient than standard $O(n^2)$ dense attention and more expressive than linear attention. Specifically, Radial Attention employs a simple, static attention mask where each token attends to spatially nearby tokens, with the attention window size shrinking with temporal distance. Moreover, it allows pre-trained video diffusion models to extend their generation length with efficient LoRA-based fine-tuning. Extensive experiments show that Radial Attention maintains video quality across Wan2.1-14B, HunyuanVideo, and Mochi 1, achieving up to a 1.9$\times$ speedup over the original dense attention. With minimal tuning, it enables video generation up to 4$\times$ longer while reducing training costs by up to 4.4$\times$ compared to direct fine-tuning and accelerating inference by up to 3.7$\times$ compared to dense attention inference.
Authors:Yifan Zhang, Chunli Peng, Boyang Wang, Puyi Wang, Qingcheng Zhu, Fei Kang, Biao Jiang, Zedong Gao, Eric Li, Yang Liu, Yahui Zhou
Title: Matrix-Game: Interactive World Foundation Model
Abstract:
We introduce Matrix-Game, an interactive world foundation model for controllable game world generation. Matrix-Game is trained using a two-stage pipeline that first performs large-scale unlabeled pretraining for environment understanding, followed by action-labeled training for interactive video generation. To support this, we curate Matrix-Game-MC, a comprehensive Minecraft dataset comprising over 2,700 hours of unlabeled gameplay video clips and over 1,000 hours of high-quality labeled clips with fine-grained keyboard and mouse action annotations. Our model adopts a controllable image-to-world generation paradigm, conditioned on a reference image, motion context, and user actions. With over 17 billion parameters, Matrix-Game enables precise control over character actions and camera movements, while maintaining high visual quality and temporal coherence. To evaluate performance, we develop GameWorld Score, a unified benchmark measuring visual quality, temporal quality, action controllability, and physical rule understanding for Minecraft world generation. Extensive experiments show that Matrix-Game consistently outperforms prior open-source Minecraft world models (including Oasis and MineWorld) across all metrics, with particularly strong gains in controllability and physical consistency. Double-blind human evaluations further confirm the superiority of Matrix-Game, highlighting its ability to generate perceptually realistic and precisely controllable videos across diverse game scenarios. To facilitate future research on interactive image-to-world generation, we will open-source the Matrix-Game model weights and the GameWorld Score benchmark at https://github.com/SkyworkAI/Matrix-Game.
Authors:Cong Wang, Zexuan Deng, Zhiwei Jiang, Fei Shen, Yafeng Yin, Shiwei Gan, Zifeng Cheng, Shiping Ge, Qing Gu
Title: Advanced Sign Language Video Generation with Compressed and Quantized Multi-Condition Tokenization
Abstract:
Sign Language Video Generation (SLVG) seeks to generate identity-preserving sign language videos from spoken language texts. Existing methods primarily rely on the single coarse condition (\eg, skeleton sequences) as the intermediary to bridge the translation model and the video generation model, which limits both the naturalness and expressiveness of the generated videos. To overcome these limitations, we propose SignViP, a novel SLVG framework that incorporates multiple fine-grained conditions for improved generation fidelity. Rather than directly translating error-prone high-dimensional conditions, SignViP adopts a discrete tokenization paradigm to integrate and represent fine-grained conditions (\ie, fine-grained poses and 3D hands). SignViP contains three core components. (1) Sign Video Diffusion Model is jointly trained with a multi-condition encoder to learn continuous embeddings that encapsulate fine-grained motion and appearance. (2) Finite Scalar Quantization (FSQ) Autoencoder is further trained to compress and quantize these embeddings into discrete tokens for compact representation of the conditions. (3) Multi-Condition Token Translator is trained to translate spoken language text to discrete multi-condition tokens. During inference, Multi-Condition Token Translator first translates the spoken language text into discrete multi-condition tokens. These tokens are then decoded to continuous embeddings by FSQ Autoencoder, which are subsequently injected into Sign Video Diffusion Model to guide video generation. Experimental results show that SignViP achieves state-of-the-art performance across metrics, including video quality, temporal coherence, and semantic fidelity. The code is available at https://github.com/umnooob/signvip/.
Authors:Jinheng Xie, Zhenheng Yang, Mike Zheng Shou
Title: Show-o2: Improved Native Unified Multimodal Models
Abstract:
This paper presents improved native unified multimodal models, \emph{i.e.,} Show-o2, that leverage autoregressive modeling and flow matching. Built upon a 3D causal variational autoencoder space, unified visual representations are constructed through a dual-path of spatial (-temporal) fusion, enabling scalability across image and video modalities while ensuring effective multimodal understanding and generation. Based on a language model, autoregressive modeling and flow matching are natively applied to the language head and flow head, respectively, to facilitate text token prediction and image/video generation. A two-stage training recipe is designed to effectively learn and scale to larger models. The resulting Show-o2 models demonstrate versatility in handling a wide range of multimodal understanding and generation tasks across diverse modalities, including text, images, and videos. Code and models are released at https://github.com/showlab/Show-o.
Authors:Zheqi He, Yesheng Liu, Jing-shu Zheng, Xuejing Li, Jin-Ge Yao, Bowen Qin, Richeng Xuan, Xi Yang
Title: FlagEvalMM: A Flexible Framework for Comprehensive Multimodal Model Evaluation
Abstract:
We present FlagEvalMM, an open-source evaluation framework designed to comprehensively assess multimodal models across a diverse range of vision-language understanding and generation tasks, such as visual question answering, text-to-image/video generation, and image-text retrieval. We decouple model inference from evaluation through an independent evaluation service, thus enabling flexible resource allocation and seamless integration of new tasks and models. Moreover, FlagEvalMM utilizes advanced inference acceleration tools (e.g., vLLM, SGLang) and asynchronous data loading to significantly enhance evaluation efficiency. Extensive experiments show that FlagEvalMM offers accurate and efficient insights into model strengths and limitations, making it a valuable tool for advancing multimodal research. The framework is publicly accessible at https://github.com/flageval-baai/FlagEvalMM.
Authors:Boya Zeng, Yida Yin, Zhiqiu Xu, Zhuang Liu
Title: Generative Modeling of Weights: Generalization or Memorization?
Abstract:
Generative models, with their success in image and video generation, have recently been explored for synthesizing effective neural network weights. These approaches take trained neural network checkpoints as training data, and aim to generate high-performing neural network weights during inference. In this work, we examine four representative methods on their ability to generate novel model weights, i.e., weights that are different from the checkpoints seen during training. Surprisingly, we find that these methods synthesize weights largely by memorization: they produce either replicas, or at best simple interpolations, of the training checkpoints. Current methods fail to outperform simple baselines, such as adding noise to the weights or taking a simple weight ensemble, in obtaining different and simultaneously high-performing models. We further show that this memorization cannot be effectively mitigated by modifying modeling factors commonly associated with memorization in image diffusion models, or applying data augmentations. Our findings provide a realistic assessment of what types of data current generative models can model, and highlight the need for more careful evaluation of generative models in new domains. Our code is available at https://github.com/boyazeng/weight_memorization.
Authors:Yixuan Zhu, Haolin Wang, Shilin Ma, Wenliang Zhao, Yansong Tang, Lei Chen, Jie Zhou
Title: FADE: Frequency-Aware Diffusion Model Factorization for Video Editing
Abstract:
Recent advancements in diffusion frameworks have significantly enhanced video editing, achieving high fidelity and strong alignment with textual prompts. However, conventional approaches using image diffusion models fall short in handling video dynamics, particularly for challenging temporal edits like motion adjustments. While current video diffusion models produce high-quality results, adapting them for efficient editing remains difficult due to the heavy computational demands that prevent the direct application of previous image editing techniques. To overcome these limitations, we introduce FADE, a training-free yet highly effective video editing approach that fully leverages the inherent priors from pre-trained video diffusion models via frequency-aware factorization. Rather than simply using these models, we first analyze the attention patterns within the video model to reveal how video priors are distributed across different components. Building on these insights, we propose a factorization strategy to optimize each component's specialized role. Furthermore, we devise spectrum-guided modulation to refine the sampling trajectory with frequency domain cues, preventing information leakage and supporting efficient, versatile edits while preserving the basic spatial and temporal structure. Extensive experiments on real-world videos demonstrate that our method consistently delivers high-quality, realistic and temporally coherent editing results both qualitatively and quantitatively. Code is available at https://github.com/EternalEvan/FADE .
Authors:Huihan Wang, Zhiwen Yang, Hui Zhang, Dan Zhao, Bingzheng Wei, Yan Xu
Title: FEAT: Full-Dimensional Efficient Attention Transformer for Medical Video Generation
Abstract:
Synthesizing high-quality dynamic medical videos remains a significant challenge due to the need for modeling both spatial consistency and temporal dynamics. Existing Transformer-based approaches face critical limitations, including insufficient channel interactions, high computational complexity from self-attention, and coarse denoising guidance from timestep embeddings when handling varying noise levels. In this work, we propose FEAT, a full-dimensional efficient attention Transformer, which addresses these issues through three key innovations: (1) a unified paradigm with sequential spatial-temporal-channel attention mechanisms to capture global dependencies across all dimensions, (2) a linear-complexity design for attention mechanisms in each dimension, utilizing weighted key-value attention and global channel attention, and (3) a residual value guidance module that provides fine-grained pixel-level guidance to adapt to different noise levels. We evaluate FEAT on standard benchmarks and downstream tasks, demonstrating that FEAT-S, with only 23\% of the parameters of the state-of-the-art model Endora, achieves comparable or even superior performance. Furthermore, FEAT-L surpasses all comparison methods across multiple datasets, showcasing both superior effectiveness and scalability. Code is available at https://github.com/Yaziwel/FEAT.
Authors:Zhengyao Lv, Chenyang Si, Tianlin Pan, Zhaoxi Chen, Kwan-Yee K. Wong, Yu Qiao, Ziwei Liu
Title: Dual-Expert Consistency Model for Efficient and High-Quality Video Generation
Abstract:
Diffusion Models have achieved remarkable results in video synthesis but require iterative denoising steps, leading to substantial computational overhead. Consistency Models have made significant progress in accelerating diffusion models. However, directly applying them to video diffusion models often results in severe degradation of temporal consistency and appearance details. In this paper, by analyzing the training dynamics of Consistency Models, we identify a key conflicting learning dynamics during the distillation process: there is a significant discrepancy in the optimization gradients and loss contributions across different timesteps. This discrepancy prevents the distilled student model from achieving an optimal state, leading to compromised temporal consistency and degraded appearance details. To address this issue, we propose a parameter-efficient \textbf{Dual-Expert Consistency Model~(DCM)}, where a semantic expert focuses on learning semantic layout and motion, while a detail expert specializes in fine detail refinement. Furthermore, we introduce Temporal Coherence Loss to improve motion consistency for the semantic expert and apply GAN and Feature Matching Loss to enhance the synthesis quality of the detail expert.Our approach achieves state-of-the-art visual quality with significantly reduced sampling steps, demonstrating the effectiveness of expert specialization in video diffusion model distillation. Our code and models are available at \href{https://github.com/Vchitect/DCM}{https://github.com/Vchitect/DCM}.
Authors:Xiuyu Yang, Bohan Li, Shaocong Xu, Nan Wang, Chongjie Ye, Zhaoxi Chen, Minghan Qin, Yikang Ding, Xin Jin, Hang Zhao, Hao Zhao
Title: ORV: 4D Occupancy-centric Robot Video Generation
Abstract:
Acquiring real-world robotic simulation data through teleoperation is notoriously time-consuming and labor-intensive. Recently, action-driven generative models have gained widespread adoption in robot learning and simulation, as they eliminate safety concerns and reduce maintenance efforts. However, the action sequences used in these methods often result in limited control precision and poor generalization due to their globally coarse alignment. To address these limitations, we propose ORV, an Occupancy-centric Robot Video generation framework, which utilizes 4D semantic occupancy sequences as a fine-grained representation to provide more accurate semantic and geometric guidance for video generation. By leveraging occupancy-based representations, ORV enables seamless translation of simulation data into photorealistic robot videos, while ensuring high temporal consistency and precise controllability. Furthermore, our framework supports the simultaneous generation of multi-view videos of robot gripping operations - an important capability for downstream robotic learning tasks. Extensive experimental results demonstrate that ORV consistently outperforms existing baseline methods across various datasets and sub-tasks. Demo, Code and Model: https://orangesodahub.github.io/ORV
Authors:Lingwei Dang, Ruizhi Shao, Hongwen Zhang, Wei Min, Yebin Liu, Qingyao Wu
Title: SViMo: Synchronized Diffusion for Video and Motion Generation in Hand-object Interaction Scenarios
Abstract:
Hand-Object Interaction (HOI) generation has significant application potential. However, current 3D HOI motion generation approaches heavily rely on predefined 3D object models and lab-captured motion data, limiting generalization capabilities. Meanwhile, HOI video generation methods prioritize pixel-level visual fidelity, often sacrificing physical plausibility. Recognizing that visual appearance and motion patterns share fundamental physical laws in the real world, we propose a novel framework that combines visual priors and dynamic constraints within a synchronized diffusion process to generate the HOI video and motion simultaneously. To integrate the heterogeneous semantics, appearance, and motion features, our method implements tri-modal adaptive modulation for feature aligning, coupled with 3D full-attention for modeling inter- and intra-modal dependencies. Furthermore, we introduce a vision-aware 3D interaction diffusion model that generates explicit 3D interaction sequences directly from the synchronized diffusion outputs, then feeds them back to establish a closed-loop feedback cycle. This architecture eliminates dependencies on predefined object models or explicit pose guidance while significantly enhancing video-motion consistency. Experimental results demonstrate our method's superiority over state-of-the-art approaches in generating high-fidelity, dynamically plausible HOI sequences, with notable generalization capabilities in unseen real-world scenarios. Project page at https://github.com/Droliven/SViMo_project.
Authors:Xiao Fu, Xintao Wang, Xian Liu, Jianhong Bai, Runsen Xu, Pengfei Wan, Di Zhang, Dahua Lin
Title: Learning Video Generation for Robotic Manipulation with Collaborative Trajectory Control
Abstract:
Recent advances in video diffusion models have demonstrated strong potential for generating robotic decision-making data, with trajectory conditions further enabling fine-grained control. However, existing trajectory-based methods primarily focus on individual object motion and struggle to capture multi-object interaction crucial in complex robotic manipulation. This limitation arises from multi-feature entanglement in overlapping regions, which leads to degraded visual fidelity. To address this, we present RoboMaster, a novel framework that models inter-object dynamics through a collaborative trajectory formulation. Unlike prior methods that decompose objects, our core is to decompose the interaction process into three sub-stages: pre-interaction, interaction, and post-interaction. Each stage is modeled using the feature of the dominant object, specifically the robotic arm in the pre- and post-interaction phases and the manipulated object during interaction, thereby mitigating the drawback of multi-object feature fusion present during interaction in prior work. To further ensure subject semantic consistency throughout the video, we incorporate appearance- and shape-aware latent representations for objects. Extensive experiments on the challenging Bridge V2 dataset, as well as in-the-wild evaluation, demonstrate that our method outperforms existing approaches, establishing new state-of-the-art performance in trajectory-controlled video generation for robotic manipulation.
Authors:Tao Yang, Ruibin Li, Yangming Shi, Yuqi Zhang, Qide Dong, Haoran Cheng, Weiguo Feng, Shilei Wen, Bingyue Peng, Lei Zhang
Title: Many-for-Many: Unify the Training of Multiple Video and Image Generation and Manipulation Tasks
Abstract:
Diffusion models have shown impressive performance in many visual generation and manipulation tasks. Many existing methods focus on training a model for a specific task, especially, text-to-video (T2V) generation, while many other works focus on finetuning the pretrained T2V model for image-to-video (I2V), video-to-video (V2V), image and video manipulation tasks, etc. However, training a strong T2V foundation model requires a large amount of high-quality annotations, which is very costly. In addition, many existing models can perform only one or several tasks. In this work, we introduce a unified framework, namely many-for-many, which leverages the available training data from many different visual generation and manipulation tasks to train a single model for those different tasks. Specifically, we design a lightweight adapter to unify the different conditions in different tasks, then employ a joint image-video learning strategy to progressively train the model from scratch. Our joint learning leads to a unified visual generation and manipulation model with improved video generation performance. In addition, we introduce depth maps as a condition to help our model better perceive the 3D space in visual generation. Two versions of our model are trained with different model sizes (8B and 2B), each of which can perform more than 10 different tasks. In particular, our 8B model demonstrates highly competitive performance in video generation tasks compared to open-source and even commercial engines. Our models and source codes are available at https://github.com/leeruibin/MfM.git.
Authors:Yu Huang, Junhao Chen, Shuliang Liu, Hanqian Li, Qi Zheng, Yi R. Fung, Xuming Hu
Title: Video Signature: In-generation Watermarking for Latent Video Diffusion Models
Abstract:
The rapid development of Artificial Intelligence Generated Content (AIGC) has led to significant progress in video generation but also raises serious concerns about intellectual property protection and reliable content tracing. Watermarking is a widely adopted solution to this issue, but existing methods for video generation mainly follow a post-generation paradigm, which introduces additional computational overhead and often fails to effectively balance the trade-off between video quality and watermark extraction. To address these issues, we propose Video Signature (VIDSIG), an in-generation watermarking method for latent video diffusion models, which enables implicit and adaptive watermark integration during generation. Specifically, we achieve this by partially fine-tuning the latent decoder, where Perturbation-Aware Suppression (PAS) pre-identifies and freezes perceptually sensitive layers to preserve visual quality. Beyond spatial fidelity, we further enhance temporal consistency by introducing a lightweight Temporal Alignment module that guides the decoder to generate coherent frame sequences during fine-tuning. Experimental results show that VIDSIG achieves the best overall performance in watermark extraction, visual quality, and generation efficiency. It also demonstrates strong robustness against both spatial and temporal tampering, highlighting its practicality in real-world scenarios. Our code is available at \href{https://github.com/hardenyu21/Video-Signature}{here}
Authors:Muhammad Adnan, Nithesh Kurella, Akhil Arunkumar, Prashant J. Nair
Title: Foresight: Adaptive Layer Reuse for Accelerated and High-Quality Text-to-Video Generation
Abstract:
Diffusion Transformers (DiTs) achieve state-of-the-art results in text-to-image, text-to-video generation, and editing. However, their large model size and the quadratic cost of spatial-temporal attention over multiple denoising steps make video generation computationally expensive. Static caching mitigates this by reusing features across fixed steps but fails to adapt to generation dynamics, leading to suboptimal trade-offs between speed and quality. We propose Foresight, an adaptive layer-reuse technique that reduces computational redundancy across denoising steps while preserving baseline performance. Foresight dynamically identifies and reuses DiT block outputs for all layers across steps, adapting to generation parameters such as resolution and denoising schedules to optimize efficiency. Applied to OpenSora, Latte, and CogVideoX, Foresight achieves up to \latencyimprv end-to-end speedup, while maintaining video quality. The source code of Foresight is available at \href{https://github.com/STAR-Laboratory/foresight}{https://github.com/STAR-Laboratory/foresight}.
Authors:Zheng Tan, Weizhen Wang, Andrea L. Bertozzi, Ernest K. Ryu
Title: STORK: Improving the Fidelity of Mid-NFE Sampling for Diffusion and Flow Matching Models
Abstract:
Diffusion models (DMs) have demonstrated remarkable performance in high-fidelity image and video generation. Because high-quality generations with DMs typically require a large number of function evaluations (NFEs), resulting in slow sampling, there has been extensive research successfully reducing the NFE to a small range (<10) while maintaining acceptable image quality. However, many practical applications, such as those involving Stable Diffusion 3.5, FLUX, and SANA, commonly operate in the mid-NFE regime (20-50 NFE) to achieve superior results, and, despite the practical relevance, research on the effective sampling within this mid-NFE regime remains underexplored. In this work, we propose a novel, training-free, and structure-independent DM ODE solver called the Stabilized Taylor Orthogonal Runge--Kutta (STORK) method, based on a class of stiff ODE solvers with a Taylor expansion adaptation. Unlike prior work such as DPM-Solver, which is dependent on the semi-linear structure of the DM ODE, STORK is applicable to any DM sampling, including noise-based and flow matching-based models. Within the 20-50 NFE range, STORK achieves improved generation quality, as measured by FID scores, across unconditional pixel-level generation and conditional latent-space generation tasks using models like Stable Diffusion 3.5 and SANA. Code is available at https://github.com/ZT220501/STORK.
Authors:Yufan Deng, Xun Guo, Yuanyang Yin, Jacob Zhiyuan Fang, Yiding Yang, Yizhi Wang, Shenghai Yuan, Angtian Wang, Bo Liu, Haibin Huang, Chongyang Ma
Title: MAGREF: Masked Guidance for Any-Reference Video Generation
Abstract:
Video generation has made substantial strides with the emergence of deep generative models, especially diffusion-based approaches. However, video generation based on multiple reference subjects still faces significant challenges in maintaining multi-subject consistency and ensuring high generation quality. In this paper, we propose MAGREF, a unified framework for any-reference video generation that introduces masked guidance to enable coherent multi-subject video synthesis conditioned on diverse reference images and a textual prompt. Specifically, we propose (1) a region-aware dynamic masking mechanism that enables a single model to flexibly handle various subject inference, including humans, objects, and backgrounds, without architectural changes, and (2) a pixel-wise channel concatenation mechanism that operates on the channel dimension to better preserve appearance features. Our model delivers state-of-the-art video generation quality, generalizing from single-subject training to complex multi-subject scenarios with coherent synthesis and precise control over individual subjects, outperforming existing open-source and commercial baselines. To facilitate evaluation, we also introduce a comprehensive multi-subject video benchmark. Extensive experiments demonstrate the effectiveness of our approach, paving the way for scalable, controllable, and high-fidelity multi-subject video synthesis. Code and model can be found at: https://github.com/MAGREF-Video/MAGREF
Authors:Shi-Xue Zhang, Hongfa Wang, Duojun Huang, Xin Li, Xiaobin Zhu, Xu-Cheng Yin
Title: VCapsBench: A Large-scale Fine-grained Benchmark for Video Caption Quality Evaluation
Abstract:
Video captions play a crucial role in text-to-video generation tasks, as their quality directly influences the semantic coherence and visual fidelity of the generated videos. Although large vision-language models (VLMs) have demonstrated significant potential in caption generation, existing benchmarks inadequately address fine-grained evaluation, particularly in capturing spatial-temporal details critical for video generation. To address this gap, we introduce the Fine-grained Video Caption Evaluation Benchmark (VCapsBench), the first large-scale fine-grained benchmark comprising 5,677 (5K+) videos and 109,796 (100K+) question-answer pairs. These QA-pairs are systematically annotated across 21 fine-grained dimensions (e.g., camera movement, and shot type) that are empirically proven critical for text-to-video generation. We further introduce three metrics (Accuracy (AR), Inconsistency Rate (IR), Coverage Rate (CR)), and an automated evaluation pipeline leveraging large language model (LLM) to verify caption quality via contrastive QA-pairs analysis. By providing actionable insights for caption optimization, our benchmark can advance the development of robust text-to-video models. The dataset and codes are available at website: https://github.com/GXYM/VCapsBench.
Authors:Tongtong Su, Chengyu Wang, Jun Huang, Dongming Lu
Title: Zero-to-Hero: Zero-Shot Initialization Empowering Reference-Based Video Appearance Editing
Abstract:
Appearance editing according to user needs is a pivotal task in video editing. Existing text-guided methods often lead to ambiguities regarding user intentions and restrict fine-grained control over editing specific aspects of objects. To overcome these limitations, this paper introduces a novel approach named {Zero-to-Hero}, which focuses on reference-based video editing that disentangles the editing process into two distinct problems. It achieves this by first editing an anchor frame to satisfy user requirements as a reference image and then consistently propagating its appearance across other frames. We leverage correspondence within the original frames to guide the attention mechanism, which is more robust than previously proposed optical flow or temporal modules in memory-friendly video generative models, especially when dealing with objects exhibiting large motions. It offers a solid ZERO-shot initialization that ensures both accuracy and temporal consistency. However, intervention in the attention mechanism results in compounded imaging degradation with over-saturated colors and unknown blurring issues. Starting from Zero-Stage, our Hero-Stage Holistically learns a conditional generative model for vidEo RestOration. To accurately evaluate the consistency of the appearance, we construct a set of videos with multiple appearances using Blender, enabling a fine-grained and deterministic evaluation. Our method outperforms the best-performing baseline with a PSNR improvement of 2.6 dB. The project page is at https://github.com/Tonniia/Zero2Hero.
Authors:Siyuan Wang, Jiawei Liu, Wei Wang, Yeying Jin, Jinsong Du, Zhi Han
Title: MMGT: Motion Mask Guided Two-Stage Network for Co-Speech Gesture Video Generation
Abstract:
Co-Speech Gesture Video Generation aims to generate vivid speech videos from audio-driven still images, which is challenging due to the diversity of different parts of the body in terms of amplitude of motion, audio relevance, and detailed features. Relying solely on audio as the control signal often fails to capture large gesture movements in video, leading to more pronounced artifacts and distortions. Existing approaches typically address this issue by introducing additional a priori information, but this can limit the practical application of the task. Specifically, we propose a Motion Mask-Guided Two-Stage Network (MMGT) that uses audio, as well as motion masks and motion features generated from the audio signal to jointly drive the generation of synchronized speech gesture videos. In the first stage, the Spatial Mask-Guided Audio Pose Generation (SMGA) Network generates high-quality pose videos and motion masks from audio, effectively capturing large movements in key regions such as the face and gestures. In the second stage, we integrate the Motion Masked Hierarchical Audio Attention (MM-HAA) into the Stabilized Diffusion Video Generation model, overcoming limitations in fine-grained motion generation and region-specific detail control found in traditional methods. This guarantees high-quality, detailed upper-body video generation with accurate texture and motion details. Evaluations show improved video quality, lip-sync, and gesture. The model and code are available at https://github.com/SIA-IDE/MMGT.
Authors:Zhe Kong, Feng Gao, Yong Zhang, Zhuoliang Kang, Xiaoming Wei, Xunliang Cai, Guanying Chen, Wenhan Luo
Title: Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation
Abstract:
Audio-driven human animation methods, such as talking head and talking body generation, have made remarkable progress in generating synchronized facial movements and appealing visual quality videos. However, existing methods primarily focus on single human animation and struggle with multi-stream audio inputs, facing incorrect binding problems between audio and persons. Additionally, they exhibit limitations in instruction-following capabilities. To solve this problem, in this paper, we propose a novel task: Multi-Person Conversational Video Generation, and introduce a new framework, MultiTalk, to address the challenges during multi-person generation. Specifically, for audio injection, we investigate several schemes and propose the Label Rotary Position Embedding (L-RoPE) method to resolve the audio and person binding problem. Furthermore, during training, we observe that partial parameter training and multi-task training are crucial for preserving the instruction-following ability of the base model. MultiTalk achieves superior performance compared to other methods on several datasets, including talking head, talking body, and multi-person datasets, demonstrating the powerful generation capabilities of our approach.
Authors:Weilun Feng, Chuanguang Yang, Haotong Qin, Xiangqi Li, Yu Wang, Zhulin An, Libo Huang, Boyu Diao, Zixiang Zhao, Yongjun Xu, Michele Magno
Title: Q-VDiT: Towards Accurate Quantization and Distillation of Video-Generation Diffusion Transformers
Abstract:
Diffusion transformers (DiT) have demonstrated exceptional performance in video generation. However, their large number of parameters and high computational complexity limit their deployment on edge devices. Quantization can reduce storage requirements and accelerate inference by lowering the bit-width of model parameters. Yet, existing quantization methods for image generation models do not generalize well to video generation tasks. We identify two primary challenges: the loss of information during quantization and the misalignment between optimization objectives and the unique requirements of video generation. To address these challenges, we present Q-VDiT, a quantization framework specifically designed for video DiT models. From the quantization perspective, we propose the Token-aware Quantization Estimator (TQE), which compensates for quantization errors in both the token and feature dimensions. From the optimization perspective, we introduce Temporal Maintenance Distillation (TMD), which preserves the spatiotemporal correlations between frames and enables the optimization of each frame with respect to the overall video context. Our W3A6 Q-VDiT achieves a scene consistency of 23.40, setting a new benchmark and outperforming current state-of-the-art quantization methods by 1.9$\times$. Code will be available at https://github.com/cantbebetter2/Q-VDiT.
Authors:Chika Maduabuchi, Hao Chen, Yujin Han, Jindong Wang
Title: Corruption-Aware Training of Latent Video Diffusion Models for Robust Text-to-Video Generation
Abstract:
Latent Video Diffusion Models (LVDMs) achieve high-quality generation but are sensitive to imperfect conditioning, which causes semantic drift and temporal incoherence on noisy, web-scale video-text datasets. We introduce CAT-LVDM, the first corruption-aware training framework for LVDMs that improves robustness through structured, data-aligned noise injection. Our method includes Batch-Centered Noise Injection (BCNI), which perturbs embeddings along intra-batch semantic directions to preserve temporal consistency. BCNI is especially effective on caption-rich datasets like WebVid-2M, MSR-VTT, and MSVD. We also propose Spectrum-Aware Contextual Noise (SACN), which injects noise along dominant spectral directions to improve low-frequency smoothness, showing strong results on UCF-101. On average, BCNI reduces FVD by 31.9% across WebVid-2M, MSR-VTT, and MSVD, while SACN yields a 12.3% improvement on UCF-101. Ablation studies confirm the benefit of low-rank, data-aligned noise. Our theoretical analysis further explains how such perturbations tighten entropy, Wasserstein, score-drift, mixing-time, and generalization bounds. CAT-LVDM establishes a principled, scalable training approach for robust video diffusion under multimodal noise. Code and models: https://github.com/chikap421/catlvdm
Authors:Jintao Zhang, Xiaoming Xu, Jia Wei, Haofeng Huang, Pengle Zhang, Chendong Xiang, Jun Zhu, Jianfei Chen
Title: SageAttention2++: A More Efficient Implementation of SageAttention2
Abstract:
The efficiency of attention is critical because its time complexity grows quadratically with sequence length. SageAttention2 addresses this by utilizing quantization to accelerate matrix multiplications (Matmul) in attention. To further accelerate SageAttention2, we propose to utilize the faster instruction of FP8 Matmul accumulated in FP16. The instruction is 2x faster than the FP8 Matmul used in SageAttention2. Our experiments show that SageAttention2++ achieves a 3.9x speedup over FlashAttention while maintaining the same attention accuracy as SageAttention2. This means SageAttention2++ effectively accelerates various models, including those for language, image, and video generation, with negligible end-to-end metrics loss. The code will be available at https://github.com/thu-ml/SageAttention.
Authors:Zeqing Wang, Bowen Zheng, Xingyi Yang, Zhenxiong Tan, Yuecong Xu, Xinchao Wang
Title: Minute-Long Videos with Dual Parallelisms
Abstract:
Diffusion Transformer (DiT)-based video diffusion models generate high-quality videos at scale but incur prohibitive processing latency and memory costs for long videos. To address this, we propose a novel distributed inference strategy, termed DualParal. The core idea is that, instead of generating an entire video on a single GPU, we parallelize both temporal frames and model layers across GPUs. However, a naive implementation of this division faces a key limitation: since diffusion models require synchronized noise levels across frames, this implementation leads to the serialization of original parallelisms. We leverage a block-wise denoising scheme to handle this. Namely, we process a sequence of frame blocks through the pipeline with progressively decreasing noise levels. Each GPU handles a specific block and layer subset while passing previous results to the next GPU, enabling asynchronous computation and communication. To further optimize performance, we incorporate two key enhancements. Firstly, a feature cache is implemented on each GPU to store and reuse features from the prior block as context, minimizing inter-GPU communication and redundant computation. Secondly, we employ a coordinated noise initialization strategy, ensuring globally consistent temporal dynamics by sharing initial noise patterns across GPUs without extra resource costs. Together, these enable fast, artifact-free, and infinitely long video generation. Applied to the latest diffusion transformer video generator, our method efficiently produces 1,025-frame videos with up to 6.54$\times$ lower latency and 1.48$\times$ lower memory cost on 8$\times$RTX 4090 GPUs.
Authors:Shenghai Yuan, Xianyi He, Yufan Deng, Yang Ye, Jinfa Huang, Bin Lin, Jiebo Luo, Li Yuan
Title: OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation
Abstract:
Subject-to-Video (S2V) generation aims to create videos that faithfully incorporate reference content, providing enhanced flexibility in the production of videos. To establish the infrastructure for S2V generation, we propose OpenS2V-Nexus, consisting of (i) OpenS2V-Eval, a fine-grained benchmark, and (ii) OpenS2V-5M, a million-scale dataset. In contrast to existing S2V benchmarks inherited from VBench that focus on global and coarse-grained assessment of generated videos, OpenS2V-Eval focuses on the model's ability to generate subject-consistent videos with natural subject appearance and identity fidelity. For these purposes, OpenS2V-Eval introduces 180 prompts from seven major categories of S2V, which incorporate both real and synthetic test data. Furthermore, to accurately align human preferences with S2V benchmarks, we propose three automatic metrics, NexusScore, NaturalScore and GmeScore, to separately quantify subject consistency, naturalness, and text relevance in generated videos. Building on this, we conduct a comprehensive evaluation of 18 representative S2V models, highlighting their strengths and weaknesses across different content. Moreover, we create the first open-source large-scale S2V generation dataset OpenS2V-5M, which consists of five million high-quality 720P subject-text-video triples. Specifically, we ensure subject-information diversity in our dataset by (1) segmenting subjects and building pairing information via cross-video associations and (2) prompting GPT-Image-1 on raw frames to synthesize multi-view representations. Through OpenS2V-Nexus, we deliver a robust infrastructure to accelerate future S2V generation research.
Authors:Wenchao Sun, Xuewu Lin, Keyu Chen, Zixiang Pei, Yining Shi, Chuang Zhang, Sifa Zheng
Title: DriveCamSim: Generalizable Camera Simulation via Explicit Camera Modeling for Autonomous Driving
Abstract:
Camera sensor simulation serves as a critical role for autonomous driving (AD), e.g. evaluating vision-based AD algorithms. While existing approaches have leveraged generative models for controllable image/video generation, they remain constrained to generating multi-view video sequences with fixed camera viewpoints and video frequency, significantly limiting their downstream applications. To address this, we present a generalizable camera simulation framework DriveCamSim, whose core innovation lies in the proposed Explicit Camera Modeling (ECM) mechanism. Instead of implicit interaction through vanilla attention, ECM establishes explicit pixel-wise correspondences across multi-view and multi-frame dimensions, decoupling the model from overfitting to the specific camera configurations (intrinsic/extrinsic parameters, number of views) and temporal sampling rates presented in the training data. For controllable generation, we identify the issue of information loss inherent in existing conditional encoding and injection pipelines, proposing an information-preserving control mechanism. This control mechanism not only improves conditional controllability, but also can be extended to be identity-aware to enhance temporal consistency in foreground object rendering. With above designs, our model demonstrates superior performance in both visual quality and controllability, as well as generalization capability across spatial-level (camera parameters variations) and temporal-level (video frame rate variations), enabling flexible user-customizable camera simulation tailored to diverse application scenarios. Code will be avaliable at https://github.com/swc-17/DriveCamSim for facilitating future research.
Authors:Wenhao Sun, Rong-Cheng Tu, Yifu Ding, Zhao Jin, Jingyi Liao, Shunyu Liu, Dacheng Tao
Title: VORTA: Efficient Video Diffusion via Routing Sparse Attention
Abstract:
Video Diffusion Transformers (VDiTs) have achieved remarkable progress in high-quality video generation, but remain computationally expensive due to the quadratic complexity of attention over high-dimensional video sequences. Recent attention acceleration methods leverage the sparsity of attention patterns to improve efficiency; however, they often overlook inefficiencies of redundant long-range interactions. To address this problem, we propose \textbf{VORTA}, an acceleration framework with two novel components: 1) a sparse attention mechanism that efficiently captures long-range dependencies, and 2) a routing strategy that adaptively replaces full 3D attention with specialized sparse attention variants throughout the sampling process. It achieves a $1.76\times$ end-to-end speedup without quality loss on VBench. Furthermore, VORTA can seamlessly integrate with various other acceleration methods, such as caching and step distillation, reaching up to $14.41\times$ speedup with negligible performance degradation. VORTA demonstrates its efficiency and enhances the practicality of VDiTs in real-world settings.
Authors:Zhiteng Li, Hanxuan Li, Junyi Wu, Kai Liu, Linghe Kong, Guihai Chen, Yulun Zhang, Xiaokang Yang
Title: DVD-Quant: Data-free Video Diffusion Transformers Quantization
Abstract:
Diffusion Transformers (DiTs) have emerged as the state-of-the-art architecture for video generation, yet their computational and memory demands hinder practical deployment. While post-training quantization (PTQ) presents a promising approach to accelerate Video DiT models, existing methods suffer from two critical limitations: (1) dependence on lengthy, computation-heavy calibration procedures, and (2) considerable performance deterioration after quantization. To address these challenges, we propose DVD-Quant, a novel Data-free quantization framework for Video DiTs. Our approach integrates three key innovations: (1) Progressive Bounded Quantization (PBQ) and (2) Auto-scaling Rotated Quantization (ARQ) for calibration data-free quantization error reduction, as well as (3) $δ$-Guided Bit Switching ($δ$-GBS) for adaptive bit-width allocation. Extensive experiments across multiple video generation benchmarks demonstrate that DVD-Quant achieves an approximately 2$\times$ speedup over full-precision baselines on HunyuanVideo while maintaining visual fidelity. Notably, DVD-Quant is the first to enable W4A4 PTQ for Video DiTs without compromising video quality. Code and models will be available at https://github.com/lhxcs/DVD-Quant.
Authors:Xueji Fang, Liyuan Ma, Zhiyang Chen, Mingyuan Zhou, Guo-jun Qi
Title: InfLVG: Reinforce Inference-Time Consistent Long Video Generation with GRPO
Abstract:
Recent advances in text-to-video generation, particularly with autoregressive models, have enabled the synthesis of high-quality videos depicting individual scenes. However, extending these models to generate long, cross-scene videos remains a significant challenge. As the context length grows during autoregressive decoding, computational costs rise sharply, and the model's ability to maintain consistency and adhere to evolving textual prompts deteriorates. We introduce InfLVG, an inference-time framework that enables coherent long video generation without requiring additional long-form video data. InfLVG leverages a learnable context selection policy, optimized via Group Relative Policy Optimization (GRPO), to dynamically identify and retain the most semantically relevant context throughout the generation process. Instead of accumulating the entire generation history, the policy ranks and selects the top-$K$ most contextually relevant tokens, allowing the model to maintain a fixed computational budget while preserving content consistency and prompt alignment. To optimize the policy, we design a hybrid reward function that jointly captures semantic alignment, cross-scene consistency, and artifact reduction. To benchmark performance, we introduce the Cross-scene Video Benchmark (CsVBench) along with an Event Prompt Set (EPS) that simulates complex multi-scene transitions involving shared subjects and varied actions/backgrounds. Experimental results show that InfLVG can extend video length by up to 9$\times$, achieving strong consistency and semantic fidelity across scenes. Our code is available at https://github.com/MAPLE-AIGC/InfLVG.
Authors:Xiaoyu Ye, Songjie Cheng, Yongtao Wang, Yajiao Xiong, Yishen Li
Title: T2VUnlearning: A Concept Erasing Method for Text-to-Video Diffusion Models
Abstract:
Recent advances in text-to-video (T2V) diffusion models have significantly enhanced the quality of generated videos. However, their ability to produce explicit or harmful content raises concerns about misuse and potential rights violations. Inspired by the success of unlearning techniques in erasing undesirable concepts from text-to-image (T2I) models, we extend unlearning to T2V models and propose a robust and precise unlearning method. Specifically, we adopt negatively-guided velocity prediction fine-tuning and enhance it with prompt augmentation to ensure robustness against LLM-refined prompts. To achieve precise unlearning, we incorporate a localization and a preservation regularization to preserve the model's ability to generate non-target concepts. Extensive experiments demonstrate that our method effectively erases a specific concept while preserving the model's generation capability for all other concepts, outperforming existing methods. We provide the unlearned models in \href{https://github.com/VDIGPKU/T2VUnlearning.git}{https://github.com/VDIGPKU/T2VUnlearning.git}.
Authors:Yuechen Zhang, Jinbo Xing, Bin Xia, Shaoteng Liu, Bohao Peng, Xin Tao, Pengfei Wan, Eric Lo, Jiaya Jia
Title: Training-Free Efficient Video Generation via Dynamic Token Carving
Abstract:
Despite the remarkable generation quality of video Diffusion Transformer (DiT) models, their practical deployment is severely hindered by extensive computational requirements. This inefficiency stems from two key challenges: the quadratic complexity of self-attention with respect to token length and the multi-step nature of diffusion models. To address these limitations, we present Jenga, a novel inference pipeline that combines dynamic attention carving with progressive resolution generation. Our approach leverages two key insights: (1) early denoising steps do not require high-resolution latents, and (2) later steps do not require dense attention. Jenga introduces a block-wise attention mechanism that dynamically selects relevant token interactions using 3D space-filling curves, alongside a progressive resolution strategy that gradually increases latent resolution during generation. Experimental results demonstrate that Jenga achieves substantial speedups across multiple state-of-the-art video diffusion models while maintaining comparable generation quality (8.83$\times$ speedup with 0.01\% performance drop on VBench). As a plug-and-play solution, Jenga enables practical, high-quality video generation on modern hardware by reducing inference time from minutes to seconds -- without requiring model retraining. Code: https://github.com/dvlab-research/Jenga
Authors:Xinran Wang, Songyu Xu, Xiangxuan Shan, Yuxuan Zhang, Muxi Diao, Xueyan Duan, Yanhua Huang, Kongming Liang, Zhanyu Ma
Title: CineTechBench: A Benchmark for Cinematographic Technique Understanding and Generation
Abstract:
Cinematography is a cornerstone of film production and appreciation, shaping mood, emotion, and narrative through visual elements such as camera movement, shot composition, and lighting. Despite recent progress in multimodal large language models (MLLMs) and video generation models, the capacity of current models to grasp and reproduce cinematographic techniques remains largely uncharted, hindered by the scarcity of expert-annotated data. To bridge this gap, we present CineTechBench, a pioneering benchmark founded on precise, manual annotation by seasoned cinematography experts across key cinematography dimensions. Our benchmark covers seven essential aspects-shot scale, shot angle, composition, camera movement, lighting, color, and focal length-and includes over 600 annotated movie images and 120 movie clips with clear cinematographic techniques. For the understanding task, we design question answer pairs and annotated descriptions to assess MLLMs' ability to interpret and explain cinematographic techniques. For the generation task, we assess advanced video generation models on their capacity to reconstruct cinema-quality camera movements given conditions such as textual prompts or keyframes. We conduct a large-scale evaluation on 15+ MLLMs and 5+ video generation models. Our results offer insights into the limitations of current models and future directions for cinematography understanding and generation in automatically film production and appreciation. The code and benchmark can be accessed at https://github.com/PRIS-CV/CineTechBench.
Authors:Xuan Shen, Weize Ma, Yufa Zhou, Enhao Tang, Yanyue Xie, Zhengang Li, Yifan Gong, Quanyi Wang, Henghui Ding, Yiwei Wang, Yanzhi Wang, Pu Zhao, Jun Lin, Jiuxiang Gu
Title: FastCar: Cache Attentive Replay for Fast Auto-Regressive Video Generation on the Edge
Abstract:
Auto-regressive (AR) models, initially successful in language generation, have recently shown promise in visual generation tasks due to their superior sampling efficiency. Unlike image generation, video generation requires a substantially larger number of tokens to produce coherent temporal frames, resulting in significant overhead during the decoding phase. Our key observations are: (i) MLP modules in the decode phase dominate the inference latency, and (ii) there exists high temporal redundancy in MLP outputs of adjacent frames. In this paper, we propose the \textbf{FastCar} framework to accelerate the decode phase for the AR video generation by exploring the temporal redundancy. The Temporal Attention Score (TAS) is proposed to determine whether to apply the replay strategy (\textit{i.e.}, reusing cached MLP outputs from the previous frame to reduce redundant computations) with detailed theoretical analysis and justification. Also, we develop a hardware accelerator on FPGA with Dynamic Resource Scheduling (DRS) based on TAS to enable better resource utilization and faster inference. Experimental results demonstrate the effectiveness of our method, which outperforms traditional sparse attention approaches with more than 2.1x decoding speedup and higher energy efficiency on the edge. Furthermore, by combining FastCar and sparse attention, FastCar can boost the performance of sparse attention with alleviated drifting, demonstrating our unique advantages for high-resolution and long-duration video generation. Code: https://github.com/shawnricecake/fast-car
Authors:Xuan Shen, Chenxia Han, Yufa Zhou, Yanyue Xie, Yifan Gong, Quanyi Wang, Yiwei Wang, Yanzhi Wang, Pu Zhao, Jiuxiang Gu
Title: DraftAttention: Fast Video Diffusion via Low-Resolution Attention Guidance
Abstract:
Diffusion transformer-based video generation models (DiTs) have recently attracted widespread attention for their excellent generation quality. However, their computational cost remains a major bottleneck-attention alone accounts for over 80% of total latency, and generating just 8 seconds of 720p video takes tens of minutes-posing serious challenges to practical application and scalability. To address this, we propose the DraftAttention, a training-free framework for the acceleration of video diffusion transformers with dynamic sparse attention on GPUs. We apply down-sampling to each feature map across frames in the compressed latent space, enabling a higher-level receptive field over the latent composed of hundreds of thousands of tokens. The low-resolution draft attention map, derived from draft query and key, exposes redundancy both spatially within each feature map and temporally across frames. We reorder the query, key, and value based on the draft attention map to guide the sparse attention computation in full resolution, and subsequently restore their original order after the attention computation. This reordering enables structured sparsity that aligns with hardware-optimized execution. Our theoretical analysis demonstrates that the low-resolution draft attention closely approximates the full attention, providing reliable guidance for constructing accurate sparse attention. Experimental results show that our method outperforms existing sparse attention approaches in video generation quality and achieves up to 1.75x end-to-end speedup on GPUs. Code: https://github.com/shawnricecake/draft-attention
Authors:Sand. ai, Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tianning Zhang, W. Q. Zhang, Weifeng Luo, Xiaoyang Kang, Yuchen Sun, Yue Cao, Yunpeng Huang, Yutong Lin, Yuxin Fang, Zewei Tao, Zheng Zhang, Zhongshu Wang, Zixun Liu, Dai Shi, Guoli Su, Hanwen Sun, Hong Pan, Jie Wang, Jiexin Sheng, Min Cui, Min Hu, Ming Yan, Shucheng Yin, Siran Zhang, Tingting Liu, Xianping Yin, Xiaoyu Yang, Xin Song, Xuan Hu, Yankai Zhang, Yuqiao Li
Title: MAGI-1: Autoregressive Video Generation at Scale
Abstract:
We present MAGI-1, a world model that generates videos by autoregressively predicting a sequence of video chunks, defined as fixed-length segments of consecutive frames. Trained to denoise per-chunk noise that increases monotonically over time, MAGI-1 enables causal temporal modeling and naturally supports streaming generation. It achieves strong performance on image-to-video (I2V) tasks conditioned on text instructions, providing high temporal consistency and scalability, which are made possible by several algorithmic innovations and a dedicated infrastructure stack. MAGI-1 facilitates controllable generation via chunk-wise prompting and supports real-time, memory-efficient deployment by maintaining constant peak inference cost, regardless of video length. The largest variant of MAGI-1 comprises 24 billion parameters and supports context lengths of up to 4 million tokens, demonstrating the scalability and robustness of our approach. The code and models are available at https://github.com/SandAI-org/MAGI-1 and https://github.com/SandAI-org/MagiAttention. The product can be accessed at https://sand.ai.
Authors:Joel Jang, Seonghyeon Ye, Zongyu Lin, Jiannan Xiang, Johan Bjorck, Yu Fang, Fengyuan Hu, Spencer Huang, Kaushil Kundalia, Yen-Chen Lin, Loic Magne, Ajay Mandlekar, Avnish Narayan, You Liang Tan, Guanzhi Wang, Jing Wang, Qi Wang, Yinzhen Xu, Xiaohui Zeng, Kaiyuan Zheng, Ruijie Zheng, Ming-Yu Liu, Luke Zettlemoyer, Dieter Fox, Jan Kautz, Scott Reed, Yuke Zhu, Linxi Fan
Title: DreamGen: Unlocking Generalization in Robot Learning through Video World Models
Abstract:
We introduce DreamGen, a simple yet highly effective 4-stage pipeline for training robot policies that generalize across behaviors and environments through neural trajectories - synthetic robot data generated from video world models. DreamGen leverages state-of-the-art image-to-video generative models, adapting them to the target robot embodiment to produce photorealistic synthetic videos of familiar or novel tasks in diverse environments. Since these models generate only videos, we recover pseudo-action sequences using either a latent action model or an inverse-dynamics model (IDM). Despite its simplicity, DreamGen unlocks strong behavior and environment generalization: a humanoid robot can perform 22 new behaviors in both seen and unseen environments, while requiring teleoperation data from only a single pick-and-place task in one environment. To evaluate the pipeline systematically, we introduce DreamGen Bench, a video generation benchmark that shows a strong correlation between benchmark performance and downstream policy success. Our work establishes a promising new axis for scaling robot learning well beyond manual data collection. Code available at https://github.com/NVIDIA/GR00T-Dreams.
Authors:Zihan Su, Xuerui Qiu, Hongbin Xu, Tangyu Jiang, Junhao Zhuang, Chun Yuan, Ming Li, Shengfeng He, Fei Richard Yu
Title: Safe-Sora: Safe Text-to-Video Generation via Graphical Watermarking
Abstract:
The explosive growth of generative video models has amplified the demand for reliable copyright preservation of AI-generated content. Despite its popularity in image synthesis, invisible generative watermarking remains largely underexplored in video generation. To address this gap, we propose Safe-Sora, the first framework to embed graphical watermarks directly into the video generation process. Motivated by the observation that watermarking performance is closely tied to the visual similarity between the watermark and cover content, we introduce a hierarchical coarse-to-fine adaptive matching mechanism. Specifically, the watermark image is divided into patches, each assigned to the most visually similar video frame, and further localized to the optimal spatial region for seamless embedding. To enable spatiotemporal fusion of watermark patches across video frames, we develop a 3D wavelet transform-enhanced Mamba architecture with a novel spatiotemporal local scanning strategy, effectively modeling long-range dependencies during watermark embedding and retrieval. To the best of our knowledge, this is the first attempt to apply state space models to watermarking, opening new avenues for efficient and robust watermark protection. Extensive experiments demonstrate that Safe-Sora achieves state-of-the-art performance in terms of video quality, watermark fidelity, and robustness, which is largely attributed to our proposals. Code is publicly available at https://github.com/Sugewud/Safe-Sora
Authors:Jiarui Wang, Huiyu Duan, Ziheng Jia, Yu Zhao, Woo Yi Yang, Zicheng Zhang, Zijian Chen, Juntong Wang, Yuke Xing, Guangtao Zhai, Xiongkuo Min
Title: LOVE: Benchmarking and Evaluating Text-to-Video Generation and Video-to-Text Interpretation
Abstract:
Recent advancements in large multimodal models (LMMs) have driven substantial progress in both text-to-video (T2V) generation and video-to-text (V2T) interpretation tasks. However, current AI-generated videos (AIGVs) still exhibit limitations in terms of perceptual quality and text-video alignment. Therefore, a reliable and scalable automatic model for AIGV evaluation is desirable, which heavily relies on the scale and quality of human annotations. To this end, we present AIGVE-60K, a comprehensive dataset and benchmark for AI-Generated Video Evaluation, which features (i) comprehensive tasks, encompassing 3,050 extensive prompts across 20 fine-grained task dimensions, (ii) the largest human annotations, including 120K mean-opinion scores (MOSs) and 60K question-answering (QA) pairs annotated on 58,500 videos generated from 30 T2V models, and (iii) bidirectional benchmarking and evaluating for both T2V generation and V2T interpretation capabilities. Based on AIGVE-60K, we propose LOVE, a LMM-based metric for AIGV Evaluation from multiple dimensions including perceptual preference, text-video correspondence, and task-specific accuracy in terms of both instance level and model level. Comprehensive experiments demonstrate that LOVE not only achieves state-of-the-art performance on the AIGVE-60K dataset, but also generalizes effectively to a wide range of other AIGV evaluation benchmarks. These findings highlight the significance of the AIGVE-60K dataset. Database and codes are anonymously available at https://github.com/IntMeGroup/LOVE.
Authors:Yanbo Ding, Xirui Hu, Zhizhi Guo, Chi Zhang, Yali Wang
Title: MTVCrafter: 4D Motion Tokenization for Open-World Human Image Animation
Abstract:
Human image animation has gained increasing attention and developed rapidly due to its broad applications in digital humans. However, existing methods rely largely on 2D-rendered pose images for motion guidance, which limits generalization and discards essential 3D information for open-world animation. To tackle this problem, we propose MTVCrafter (Motion Tokenization Video Crafter), the first framework that directly models raw 3D motion sequences (i.e., 4D motion) for human image animation. Specifically, we introduce 4DMoT (4D motion tokenizer) to quantize 3D motion sequences into 4D motion tokens. Compared to 2D-rendered pose images, 4D motion tokens offer more robust spatio-temporal cues and avoid strict pixel-level alignment between pose image and character, enabling more flexible and disentangled control. Then, we introduce MV-DiT (Motion-aware Video DiT). By designing unique motion attention with 4D positional encodings, MV-DiT can effectively leverage motion tokens as 4D compact yet expressive context for human image animation in the complex 3D world. Hence, it marks a significant step forward in this field and opens a new direction for pose-guided human video generation. Experiments show that our MTVCrafter achieves state-of-the-art results with an FID-VID of 6.98, surpassing the second-best by 65%. Powered by robust motion tokens, MTVCrafter also generalizes well to diverse open-world characters (single/multiple, full/half-body) across various styles and scenarios. Our video demos and code are on: https://github.com/DINGYANB/MTVCrafter.
Authors:Hu Yue, Siyuan Huang, Yue Liao, Shengcong Chen, Pengfei Zhou, Liliang Chen, Maoqing Yao, Guanghui Ren
Title: EWMBench: Evaluating Scene, Motion, and Semantic Quality in Embodied World Models
Abstract:
Recent advances in creative AI have enabled the synthesis of high-fidelity images and videos conditioned on language instructions. Building on these developments, text-to-video diffusion models have evolved into embodied world models (EWMs) capable of generating physically plausible scenes from language commands, effectively bridging vision and action in embodied AI applications. This work addresses the critical challenge of evaluating EWMs beyond general perceptual metrics to ensure the generation of physically grounded and action-consistent behaviors. We propose the Embodied World Model Benchmark (EWMBench), a dedicated framework designed to evaluate EWMs based on three key aspects: visual scene consistency, motion correctness, and semantic alignment. Our approach leverages a meticulously curated dataset encompassing diverse scenes and motion patterns, alongside a comprehensive multi-dimensional evaluation toolkit, to assess and compare candidate models. The proposed benchmark not only identifies the limitations of existing video generation models in meeting the unique requirements of embodied tasks but also provides valuable insights to guide future advancements in the field. The dataset and evaluation tools are publicly available at https://github.com/AgibotTech/EWMBench.
Authors:Yuping Wang, Shuo Xing, Cui Can, Renjie Li, Hongyuan Hua, Kexin Tian, Zhaobin Mo, Xiangbo Gao, Keshu Wu, Sulong Zhou, Hengxu You, Juntong Peng, Junge Zhang, Zehao Wang, Rui Song, Mingxuan Yan, Walter Zimmer, Xingcheng Zhou, Peiran Li, Zhaohan Lu, Chia-Ju Chen, Yue Huang, Ryan A. Rossi, Lichao Sun, Hongkai Yu, Zhiwen Fan, Frank Hao Yang, Yuhao Kang, Ross Greer, Chenxi Liu, Eun Hak Lee, Xuan Di, Xinyue Ye, Liu Ren, Alois Knoll, Xiaopeng Li, Shuiwang Ji, Masayoshi Tomizuka, Marco Pavone, Tianbao Yang, Jing Du, Ming-Hsuan Yang, Hua Wei, Ziran Wang, Yang Zhou, Jiachen Li, Zhengzhong Tu
Title: Generative AI for Autonomous Driving: Frontiers and Opportunities
Abstract:
Generative Artificial Intelligence (GenAI) constitutes a transformative technological wave that reconfigures industries through its unparalleled capabilities for content creation, reasoning, planning, and multimodal understanding. This revolutionary force offers the most promising path yet toward solving one of engineering's grandest challenges: achieving reliable, fully autonomous driving, particularly the pursuit of Level 5 autonomy. This survey delivers a comprehensive and critical synthesis of the emerging role of GenAI across the autonomous driving stack. We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models (LLMs). We then map their frontier applications in image, LiDAR, trajectory, occupancy, video generation as well as LLM-guided reasoning and decision making. We categorize practical applications, such as synthetic data workflows, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI. We identify key obstacles and possibilities such as comprehensive generalization across rare cases, evaluation and safety checks, budget-limited implementation, regulatory compliance, ethical concerns, and environmental effects, while proposing research plans across theoretical assurances, trust metrics, transport integration, and socio-technical influence. By unifying these threads, the survey provides a forward-looking reference for researchers, engineers, and policymakers navigating the convergence of generative AI and advanced autonomous mobility. An actively maintained repository of cited works is available at https://github.com/taco-group/GenAI4AD.
Authors:Wei Li, Ming Hu, Guoan Wang, Lihao Liu, Kaijing Zhou, Junzhi Ning, Xin Guo, Zongyuan Ge, Lixu Gu, Junjun He
Title: Ophora: A Large-Scale Data-Driven Text-Guided Ophthalmic Surgical Video Generation Model
Abstract:
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/uni-medical/Ophora.
Authors:Beichen Wen, Haozhe Xie, Zhaoxi Chen, Fangzhou Hong, Ziwei Liu
Title: 3D Scene Generation: A Survey
Abstract:
3D scene generation seeks to synthesize spatially structured, semantically meaningful, and photorealistic environments for applications such as immersive media, robotics, autonomous driving, and embodied AI. Early methods based on procedural rules offered scalability but limited diversity. Recent advances in deep generative models (e.g., GANs, diffusion models) and 3D representations (e.g., NeRF, 3D Gaussians) have enabled the learning of real-world scene distributions, improving fidelity, diversity, and view consistency. Recent advances like diffusion models bridge 3D scene synthesis and photorealism by reframing generation as image or video synthesis problems. This survey provides a systematic overview of state-of-the-art approaches, organizing them into four paradigms: procedural generation, neural 3D-based generation, image-based generation, and video-based generation. We analyze their technical foundations, trade-offs, and representative results, and review commonly used datasets, evaluation protocols, and downstream applications. We conclude by discussing key challenges in generation capacity, 3D representation, data and annotations, and evaluation, and outline promising directions including higher fidelity, physics-aware and interactive generation, and unified perception-generation models. This review organizes recent advances in 3D scene generation and highlights promising directions at the intersection of generative AI, 3D vision, and embodied intelligence. To track ongoing developments, we maintain an up-to-date project page: https://github.com/hzxie/Awesome-3D-Scene-Generation.
Authors:Zongxia Li, Xiyang Wu, Guangyao Shi, Yubin Qin, Hongyang Du, Tianyi Zhou, Dinesh Manocha, Jordan Lee Boyd-Graber
Title: VideoHallu: Evaluating and Mitigating Multi-modal Hallucinations on Synthetic Video Understanding
Abstract:
Synthetic video generation has gained significant attention for its realism and broad applications, but remains prone to violations of common sense and physical laws. This highlights the need for reliable abnormality detectors that understand such principles and are robust to hallucinations. To address this, we introduce VideoHallu, a benchmark of over 3,000 video QA pairs built from synthetic videos generated by models like Veo2, Sora, and Kling, paired with expert-crafted counterintuitive QA to evaluate the critical thinking abilities of Multi-modal Large Language Models (MLLMs) on abnormalities that are perceptually obvious to humans but often hallucinated due to language priors. VideoHallu evaluates MLLMs' abnormality detection abilities with examples across alignment, consistency, commonsense, and physics. We benchmark SOTA MLLMs, including GPT-4o, Gemini-2.5-Pro, Qwen2.5-VL, Video-R1, and VideoChat-R1. We observe that these models perform well on many real-world benchmarks like MVBench and MovieChat, but still struggle with basic physics-based and commonsense reasoning in synthetic videos. We further show that post-training with Group Relative Policy Optimization (GRPO), using curriculum learning on datasets combining video QA with counterintuitive commonsense and physics reasoning over real and synthetic videos, improves MLLMs' abnormality detection and critical thinking, demonstrating the value of targeted training for improving their understanding of commonsense and physical laws. Our code is available at https://github.com/zli12321/VideoHallu.git.
Authors:Jiangtong Tan, Hu Yu, Jie Huang, Jie Xiao, Feng Zhao
Title: FreePCA: Integrating Consistency Information across Long-short Frames in Training-free Long Video Generation via Principal Component Analysis
Abstract:
Long video generation involves generating extended videos using models trained on short videos, suffering from distribution shifts due to varying frame counts. It necessitates the use of local information from the original short frames to enhance visual and motion quality, and global information from the entire long frames to ensure appearance consistency. Existing training-free methods struggle to effectively integrate the benefits of both, as appearance and motion in videos are closely coupled, leading to motion inconsistency and visual quality. In this paper, we reveal that global and local information can be precisely decoupled into consistent appearance and motion intensity information by applying Principal Component Analysis (PCA), allowing for refined complementary integration of global consistency and local quality. With this insight, we propose FreePCA, a training-free long video generation paradigm based on PCA that simultaneously achieves high consistency and quality. Concretely, we decouple consistent appearance and motion intensity features by measuring cosine similarity in the principal component space. Critically, we progressively integrate these features to preserve original quality and ensure smooth transitions, while further enhancing consistency by reusing the mean statistics of the initial noise. Experiments demonstrate that FreePCA can be applied to various video diffusion models without requiring training, leading to substantial improvements. Code is available at https://github.com/JosephTiTan/FreePCA.
Authors:Haiyang Zhou, Wangbo Yu, Jiawen Guan, Xinhua Cheng, Yonghong Tian, Li Yuan
Title: HoloTime: Taming Video Diffusion Models for Panoramic 4D Scene Generation
Abstract:
The rapid advancement of diffusion models holds the promise of revolutionizing the application of VR and AR technologies, which typically require scene-level 4D assets for user experience. Nonetheless, existing diffusion models predominantly concentrate on modeling static 3D scenes or object-level dynamics, constraining their capacity to provide truly immersive experiences. To address this issue, we propose HoloTime, a framework that integrates video diffusion models to generate panoramic videos from a single prompt or reference image, along with a 360-degree 4D scene reconstruction method that seamlessly transforms the generated panoramic video into 4D assets, enabling a fully immersive 4D experience for users. Specifically, to tame video diffusion models for generating high-fidelity panoramic videos, we introduce the 360World dataset, the first comprehensive collection of panoramic videos suitable for downstream 4D scene reconstruction tasks. With this curated dataset, we propose Panoramic Animator, a two-stage image-to-video diffusion model that can convert panoramic images into high-quality panoramic videos. Following this, we present Panoramic Space-Time Reconstruction, which leverages a space-time depth estimation method to transform the generated panoramic videos into 4D point clouds, enabling the optimization of a holistic 4D Gaussian Splatting representation to reconstruct spatially and temporally consistent 4D scenes. To validate the efficacy of our method, we conducted a comparative analysis with existing approaches, revealing its superiority in both panoramic video generation and 4D scene reconstruction. This demonstrates our method's capability to create more engaging and realistic immersive environments, thereby enhancing user experiences in VR and AR applications.
Authors:Yinqi Li, Hong Chang, Ruibing Hou, Shiguang Shan, Xilin Chen
Title: DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks
Abstract:
Diffusion models have shown remarkable progress in various generative tasks such as image and video generation. This paper studies the problem of leveraging pretrained diffusion models for performing discriminative tasks. Specifically, we extend the discriminative capability of pretrained frozen generative diffusion models from the classification task to the more complex object detection task, by "inverting" a pretrained layout-to-image diffusion model. To this end, a gradient-based discrete optimization approach for replacing the heavy prediction enumeration process, and a prior distribution model for making more accurate use of the Bayes' rule, are proposed respectively. Empirical results show that this method is on par with basic discriminative object detection baselines on COCO dataset. In addition, our method can greatly speed up the previous diffusion-based method for classification without sacrificing accuracy. Code and models are available at https://github.com/LiYinqi/DIVE .
Authors:Ning Li, Antai Andy Liu, Jingran Zhang, Justin Cui
Title: Latent Video Dataset Distillation
Abstract:
Dataset distillation has demonstrated remarkable effectiveness in high-compression scenarios for image datasets. While video datasets inherently contain greater redundancy, existing video dataset distillation methods primarily focus on compression in the pixel space, overlooking advances in the latent space that have been widely adopted in modern text-to-image and text-to-video models. In this work, we bridge this gap by introducing a novel video dataset distillation approach that operates in the latent space using a state-of-the-art variational encoder. Furthermore, we employ a diversity-aware data selection strategy to select both representative and diverse samples. Additionally, we introduce a simple, training-free method to further compress the distilled latent dataset. By combining these techniques, our approach achieves a new state-of-the-art performance in dataset distillation, outperforming prior methods on all datasets, e.g. on HMDB51 IPC 1, we achieve a 2.6% performance increase; on MiniUCF IPC 5, we achieve a 7.8% performance increase. Our code is available at https://github.com/liningresearch/Latent_Video_Dataset_Distillation.
Authors:Xuming Hu, Hanqian Li, Jungang Li, Yu Huang, Aiwei Liu
Title: VideoMark: A Distortion-Free Robust Watermarking Framework for Video Diffusion Models
Abstract:
This work introduces \textbf{VideoMark}, a distortion-free robust watermarking framework for video diffusion models. As diffusion models excel in generating realistic videos, reliable content attribution is increasingly critical. However, existing video watermarking methods often introduce distortion by altering the initial distribution of diffusion variables and are vulnerable to temporal attacks, such as frame deletion, due to variable video lengths. VideoMark addresses these challenges by employing a \textbf{pure pseudorandom initialization} to embed watermarks, avoiding distortion while ensuring uniform noise distribution in the latent space to preserve generation quality. To enhance robustness, we adopt a frame-wise watermarking strategy with pseudorandom error correction (PRC) codes, using a fixed watermark sequence with randomly selected starting indices for each video. For watermark extraction, we propose a Temporal Matching Module (TMM) that leverages edit distance to align decoded messages with the original watermark sequence, ensuring resilience against temporal attacks. Experimental results show that VideoMark achieves higher decoding accuracy than existing methods while maintaining video quality comparable to watermark-free generation. The watermark remains imperceptible to attackers without the secret key, offering superior invisibility compared to other frameworks. VideoMark provides a practical, training-free solution for content attribution in diffusion-based video generation. Code and data are available at \href{https://github.com/KYRIE-LI11/VideoMark}{https://github.com/KYRIE-LI11/VideoMark}{Project Page}.
Authors:Yimu Wang, Xuye Liu, Wei Pang, Li Ma, Shuai Yuan, Paul Debevec, Ning Yu
Title: Survey of Video Diffusion Models: Foundations, Implementations, and Applications
Abstract:
Recent advances in diffusion models have revolutionized video generation, offering superior temporal consistency and visual quality compared to traditional generative adversarial networks-based approaches. While this emerging field shows tremendous promise in applications, it faces significant challenges in motion consistency, computational efficiency, and ethical considerations. This survey provides a comprehensive review of diffusion-based video generation, examining its evolution, technical foundations, and practical applications. We present a systematic taxonomy of current methodologies, analyze architectural innovations and optimization strategies, and investigate applications across low-level vision tasks such as denoising and super-resolution. Additionally, we explore the synergies between diffusionbased video generation and related domains, including video representation learning, question answering, and retrieval. Compared to the existing surveys (Lei et al., 2024a;b; Melnik et al., 2024; Cao et al., 2023; Xing et al., 2024c) which focus on specific aspects of video generation, such as human video synthesis (Lei et al., 2024a) or long-form content generation (Lei et al., 2024b), our work provides a broader, more updated, and more fine-grained perspective on diffusion-based approaches with a special section for evaluation metrics, industry solutions, and training engineering techniques in video generation. This survey serves as a foundational resource for researchers and practitioners working at the intersection of diffusion models and video generation, providing insights into both the theoretical frameworks and practical implementations that drive this rapidly evolving field. A structured list of related works involved in this survey is also available on https://github.com/Eyeline-Research/Survey-Video-Diffusion.
Authors:Weijie He, Mushui Liu, Yunlong Yu, Zhao Wang, Chao Wu
Title: DyST-XL: Dynamic Layout Planning and Content Control for Compositional Text-to-Video Generation
Abstract:
Compositional text-to-video generation, which requires synthesizing dynamic scenes with multiple interacting entities and precise spatial-temporal relationships, remains a critical challenge for diffusion-based models. Existing methods struggle with layout discontinuity, entity identity drift, and implausible interaction dynamics due to unconstrained cross-attention mechanisms and inadequate physics-aware reasoning. To address these limitations, we propose DyST-XL, a \textbf{training-free} framework that enhances off-the-shelf text-to-video models (e.g., CogVideoX-5B) through frame-aware control. DyST-XL integrates three key innovations: (1) A Dynamic Layout Planner that leverages large language models (LLMs) to parse input prompts into entity-attribute graphs and generates physics-aware keyframe layouts, with intermediate frames interpolated via trajectory optimization; (2) A Dual-Prompt Controlled Attention Mechanism that enforces localized text-video alignment through frame-aware attention masking, achieving precise control over individual entities; and (3) An Entity-Consistency Constraint strategy that propagates first-frame feature embeddings to subsequent frames during denoising, preserving object identity without manual annotation. Experiments demonstrate that DyST-XL excels in compositional text-to-video generation, significantly improving performance on complex prompts and bridging a crucial gap in training-free video synthesis. The code is released in https://github.com/XiaoBuL/DyST-XL.
Authors:Chenjie Cao, Jingkai Zhou, Shikai Li, Jingyun Liang, Chaohui Yu, Fan Wang, Xiangyang Xue, Yanwei Fu
Title: Uni3C: Unifying Precisely 3D-Enhanced Camera and Human Motion Controls for Video Generation
Abstract:
Camera and human motion controls have been extensively studied for video generation, but existing approaches typically address them separately, suffering from limited data with high-quality annotations for both aspects. To overcome this, we present Uni3C, a unified 3D-enhanced framework for precise control of both camera and human motion in video generation. Uni3C includes two key contributions. First, we propose a plug-and-play control module trained with a frozen video generative backbone, PCDController, which utilizes unprojected point clouds from monocular depth to achieve accurate camera control. By leveraging the strong 3D priors of point clouds and the powerful capacities of video foundational models, PCDController shows impressive generalization, performing well regardless of whether the inference backbone is frozen or fine-tuned. This flexibility enables different modules of Uni3C to be trained in specific domains, i.e., either camera control or human motion control, reducing the dependency on jointly annotated data. Second, we propose a jointly aligned 3D world guidance for the inference phase that seamlessly integrates both scenic point clouds and SMPL-X characters to unify the control signals for camera and human motion, respectively. Extensive experiments confirm that PCDController enjoys strong robustness in driving camera motion for fine-tuned backbones of video generation. Uni3C substantially outperforms competitors in both camera controllability and human motion quality. Additionally, we collect tailored validation sets featuring challenging camera movements and human actions to validate the effectiveness of our method.
Authors:Minho Park, Taewoong Kang, Jooyeol Yun, Sungwon Hwang, Jaegul Choo
Title: SphereDiff: Tuning-free Omnidirectional Panoramic Image and Video Generation via Spherical Latent Representation
Abstract:
The increasing demand for AR/VR applications has highlighted the need for high-quality 360-degree panoramic content. However, generating high-quality 360-degree panoramic images and videos remains a challenging task due to the severe distortions introduced by equirectangular projection (ERP). Existing approaches either fine-tune pretrained diffusion models on limited ERP datasets or attempt tuning-free methods that still rely on ERP latent representations, leading to discontinuities near the poles. In this paper, we introduce SphereDiff, a novel approach for seamless 360-degree panoramic image and video generation using state-of-the-art diffusion models without additional tuning. We define a spherical latent representation that ensures uniform distribution across all perspectives, mitigating the distortions inherent in ERP. We extend MultiDiffusion to spherical latent space and propose a spherical latent sampling method to enable direct use of pretrained diffusion models. Moreover, we introduce distortion-aware weighted averaging to further improve the generation quality in the projection process. Our method outperforms existing approaches in generating 360-degree panoramic content while maintaining high fidelity, making it a robust solution for immersive AR/VR applications. The code is available here. https://github.com/pmh9960/SphereDiff
Authors:Guibin Chen, Dixuan Lin, Jiangping Yang, Chunze Lin, Junchen Zhu, Mingyuan Fan, Hao Zhang, Sheng Chen, Zheng Chen, Chengcheng Ma, Weiming Xiong, Wei Wang, Nuo Pang, Kang Kang, Zhiheng Xu, Yuzhe Jin, Yupeng Liang, Yubing Song, Peng Zhao, Boyuan Xu, Di Qiu, Debang Li, Zhengcong Fei, Yang Li, Yahui Zhou
Title: SkyReels-V2: Infinite-length Film Generative Model
Abstract:
Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at https://github.com/SkyworkAI/SkyReels-V2.
Authors:Lvmin Zhang, Maneesh Agrawala
Title: Packing Input Frame Context in Next-Frame Prediction Models for Video Generation
Abstract:
We present a neural network structure, FramePack, to train next-frame (or next-frame-section) prediction models for video generation. The FramePack compresses input frames to make the transformer context length a fixed number regardless of the video length. As a result, we are able to process a large number of frames using video diffusion with computation bottleneck similar to image diffusion. This also makes the training video batch sizes significantly higher (batch sizes become comparable to image diffusion training). We also propose an anti-drifting sampling method that generates frames in inverted temporal order with early-established endpoints to avoid exposure bias (error accumulation over iterations). Finally, we show that existing video diffusion models can be finetuned with FramePack, and their visual quality may be improved because the next-frame prediction supports more balanced diffusion schedulers with less extreme flow shift timesteps.
Authors:Mengshi Qi, Pengfei Zhu, Xiangtai Li, Xiaoyang Bi, Lu Qi, Huadong Ma, Ming-Hsuan Yang
Title: DC-SAM: In-Context Segment Anything in Images and Videos via Dual Consistency
Abstract:
Given a single labeled example, in-context segmentation aims to segment corresponding objects. This setting, known as one-shot segmentation in few-shot learning, explores the segmentation model's generalization ability and has been applied to various vision tasks, including scene understanding and image/video editing. While recent Segment Anything Models have achieved state-of-the-art results in interactive segmentation, these approaches are not directly applicable to in-context segmentation. In this work, we propose the Dual Consistency SAM (DC-SAM) method based on prompt-tuning to adapt SAM and SAM2 for in-context segmentation of both images and videos. Our key insights are to enhance the features of the SAM's prompt encoder in segmentation by providing high-quality visual prompts. When generating a mask prior, we fuse the SAM features to better align the prompt encoder. Then, we design a cycle-consistent cross-attention on fused features and initial visual prompts. Next, a dual-branch design is provided by using the discriminative positive and negative prompts in the prompt encoder. Furthermore, we design a simple mask-tube training strategy to adopt our proposed dual consistency method into the mask tube. Although the proposed DC-SAM is primarily designed for images, it can be seamlessly extended to the video domain with the support of SAM2. Given the absence of in-context segmentation in the video domain, we manually curate and construct the first benchmark from existing video segmentation datasets, named In-Context Video Object Segmentation (IC-VOS), to better assess the in-context capability of the model. Extensive experiments demonstrate that our method achieves 55.5 (+1.4) mIoU on COCO-20i, 73.0 (+1.1) mIoU on PASCAL-5i, and a J&F score of 71.52 on the proposed IC-VOS benchmark. Our source code and benchmark are available at https://github.com/zaplm/DC-SAM.
Authors:Peipei Song, Long Zhang, Long Lan, Weidong Chen, Dan Guo, Xun Yang, Meng Wang
Title: Towards Efficient Partially Relevant Video Retrieval with Active Moment Discovering
Abstract:
Partially relevant video retrieval (PRVR) is a practical yet challenging task in text-to-video retrieval, where videos are untrimmed and contain much background content. The pursuit here is of both effective and efficient solutions to capture the partial correspondence between text queries and untrimmed videos. Existing PRVR methods, which typically focus on modeling multi-scale clip representations, however, suffer from content independence and information redundancy, impairing retrieval performance. To overcome these limitations, we propose a simple yet effective approach with active moment discovering (AMDNet). We are committed to discovering video moments that are semantically consistent with their queries. By using learnable span anchors to capture distinct moments and applying masked multi-moment attention to emphasize salient moments while suppressing redundant backgrounds, we achieve more compact and informative video representations. To further enhance moment modeling, we introduce a moment diversity loss to encourage different moments of distinct regions and a moment relevance loss to promote semantically query-relevant moments, which cooperate with a partially relevant retrieval loss for end-to-end optimization. Extensive experiments on two large-scale video datasets (\ie, TVR and ActivityNet Captions) demonstrate the superiority and efficiency of our AMDNet. In particular, AMDNet is about 15.5 times smaller (\#parameters) while 6.0 points higher (SumR) than the up-to-date method GMMFormer on TVR.
Authors:Bingwen Zhu, Yudong Jiang, Baohan Xu, Siqian Yang, Mingyu Yin, Yidi Wu, Huyang Sun, Zuxuan Wu
Title: Aligning Anime Video Generation with Human Feedback
Abstract:
Anime video generation faces significant challenges due to the scarcity of anime data and unusual motion patterns, leading to issues such as motion distortion and flickering artifacts, which result in misalignment with human preferences. Existing reward models, designed primarily for real-world videos, fail to capture the unique appearance and consistency requirements of anime. In this work, we propose a pipeline to enhance anime video generation by leveraging human feedback for better alignment. Specifically, we construct the first multi-dimensional reward dataset for anime videos, comprising 30k human-annotated samples that incorporating human preferences for both visual appearance and visual consistency. Based on this, we develop AnimeReward, a powerful reward model that employs specialized vision-language models for different evaluation dimensions to guide preference alignment. Furthermore, we introduce Gap-Aware Preference Optimization (GAPO), a novel training method that explicitly incorporates preference gaps into the optimization process, enhancing alignment performance and efficiency. Extensive experiment results show that AnimeReward outperforms existing reward models, and the inclusion of GAPO leads to superior alignment in both quantitative benchmarks and human evaluations, demonstrating the effectiveness of our pipeline in enhancing anime video quality. Our code and dataset are publicly available at https://github.com/bilibili/Index-anisora.
Authors:Guangcong Zheng, Teng Li, Xianpan Zhou, Xi Li
Title: RealCam-Vid: High-resolution Video Dataset with Dynamic Scenes and Metric-scale Camera Movements
Abstract:
Recent advances in camera-controllable video generation have been constrained by the reliance on static-scene datasets with relative-scale camera annotations, such as RealEstate10K. While these datasets enable basic viewpoint control, they fail to capture dynamic scene interactions and lack metric-scale geometric consistency-critical for synthesizing realistic object motions and precise camera trajectories in complex environments. To bridge this gap, we introduce the first fully open-source, high-resolution dynamic-scene dataset with metric-scale camera annotations in https://github.com/ZGCTroy/RealCam-Vid.
Authors:Gene Chou, Wenqi Xian, Guandao Yang, Mohamed Abdelfattah, Bharath Hariharan, Noah Snavely, Ning Yu, Paul Debevec
Title: FlashDepth: Real-time Streaming Video Depth Estimation at 2K Resolution
Abstract:
A versatile video depth estimation model should (1) be accurate and consistent across frames, (2) produce high-resolution depth maps, and (3) support real-time streaming. We propose FlashDepth, a method that satisfies all three requirements, performing depth estimation on a 2044x1148 streaming video at 24 FPS. We show that, with careful modifications to pretrained single-image depth models, these capabilities are enabled with relatively little data and training. We evaluate our approach across multiple unseen datasets against state-of-the-art depth models, and find that ours outperforms them in terms of boundary sharpness and speed by a significant margin, while maintaining competitive accuracy. We hope our model will enable various applications that require high-resolution depth, such as video editing, and online decision-making, such as robotics. We release all code and model weights at https://github.com/Eyeline-Research/FlashDepth
Authors:Elia Peruzzo, Dejia Xu, Xingqian Xu, Humphrey Shi, Nicu Sebe
Title: RAGME: Retrieval Augmented Video Generation for Enhanced Motion Realism
Abstract:
Video generation is experiencing rapid growth, driven by advances in diffusion models and the development of better and larger datasets. However, producing high-quality videos remains challenging due to the high-dimensional data and the complexity of the task. Recent efforts have primarily focused on enhancing visual quality and addressing temporal inconsistencies, such as flickering. Despite progress in these areas, the generated videos often fall short in terms of motion complexity and physical plausibility, with many outputs either appearing static or exhibiting unrealistic motion. In this work, we propose a framework to improve the realism of motion in generated videos, exploring a complementary direction to much of the existing literature. Specifically, we advocate for the incorporation of a retrieval mechanism during the generation phase. The retrieved videos act as grounding signals, providing the model with demonstrations of how the objects move. Our pipeline is designed to apply to any text-to-video diffusion model, conditioning a pretrained model on the retrieved samples with minimal fine-tuning. We demonstrate the superiority of our approach through established metrics, recently proposed benchmarks, and qualitative results, and we highlight additional applications of the framework.
Authors:Ruotian Peng, Haiying He, Yake Wei, Yandong Wen, Di Hu
Title: Patch Matters: Training-free Fine-grained Image Caption Enhancement via Local Perception
Abstract:
High-quality image captions play a crucial role in improving the performance of cross-modal applications such as text-to-image generation, text-to-video generation, and text-image retrieval. To generate long-form, high-quality captions, many recent studies have employed multimodal large language models (MLLMs). However, current MLLMs often produce captions that lack fine-grained details or suffer from hallucinations, a challenge that persists in both open-source and closed-source models. Inspired by Feature-Integration theory, which suggests that attention must focus on specific regions to integrate visual information effectively, we propose a \textbf{divide-then-aggregate} strategy. Our method first divides the image into semantic and spatial patches to extract fine-grained details, enhancing the model's local perception of the image. These local details are then hierarchically aggregated to generate a comprehensive global description. To address hallucinations and inconsistencies in the generated captions, we apply a semantic-level filtering process during hierarchical aggregation. This training-free pipeline can be applied to both open-source models (LLaVA-1.5, LLaVA-1.6, Mini-Gemini) and closed-source models (Claude-3.5-Sonnet, GPT-4o, GLM-4V-Plus). Extensive experiments demonstrate that our method generates more detailed, reliable captions, advancing multimodal description generation without requiring model retraining. The source code are available at https://github.com/GeWu-Lab/Patch-Matters
Authors:Xiaolun Jing, Genke Yang, Jian Chu
Title: TC-MGC: Text-Conditioned Multi-Grained Contrastive Learning for Text-Video Retrieval
Abstract:
Motivated by the success of coarse-grained or fine-grained contrast in text-video retrieval, there emerge multi-grained contrastive learning methods which focus on the integration of contrasts with different granularity. However, due to the wider semantic range of videos, the text-agnostic video representations might encode misleading information not described in texts, thus impeding the model from capturing precise cross-modal semantic correspondence. To this end, we propose a Text-Conditioned Multi-Grained Contrast framework, dubbed TC-MGC. Specifically, our model employs a language-video attention block to generate aggregated frame and video representations conditioned on the word's and text's attention weights over frames. To filter unnecessary similarity interactions and decrease trainable parameters in the Interactive Similarity Aggregation (ISA) module, we design a Similarity Reorganization (SR) module to identify attentive similarities and reorganize cross-modal similarity vectors and matrices. Next, we argue that the imbalance problem among multigrained similarities may result in over- and under-representation issues. We thereby introduce an auxiliary Similarity Decorrelation Regularization (SDR) loss to facilitate cooperative relationship utilization by similarity variance minimization on matching text-video pairs. Finally, we present a Linear Softmax Aggregation (LSA) module to explicitly encourage the interactions between multiple similarities and promote the usage of multi-grained information. Empirically, TC-MGC achieves competitive results on multiple text-video retrieval benchmarks, outperforming X-CLIP model by +2.8% (+1.3%), +2.2% (+1.0%), +1.5% (+0.9%) relative (absolute) improvements in text-to-video retrieval R@1 on MSR-VTT, DiDeMo and VATEX, respectively. Our code is publicly available at https://github.com/JingXiaolun/TC-MGC.
Authors:Yikai Wang, Guangce Liu, Xinzhou Wang, Zilong Chen, Jiafang Li, Xin Liang, Fuchun Sun, Jun Zhu
Title: Video4DGen: Enhancing Video and 4D Generation through Mutual Optimization
Abstract:
The advancement of 4D (i.e., sequential 3D) generation opens up new possibilities for lifelike experiences in various applications, where users can explore dynamic objects or characters from any viewpoint. Meanwhile, video generative models are receiving particular attention given their ability to produce realistic and imaginative frames. These models are also observed to exhibit strong 3D consistency, indicating the potential to act as world simulators. In this work, we present Video4DGen, a novel framework that excels in generating 4D representations from single or multiple generated videos as well as generating 4D-guided videos. This framework is pivotal for creating high-fidelity virtual contents that maintain both spatial and temporal coherence. The 4D outputs generated by Video4DGen are represented using our proposed Dynamic Gaussian Surfels (DGS), which optimizes time-varying warping functions to transform Gaussian surfels (surface elements) from a static state to a dynamically warped state. We design warped-state geometric regularization and refinements on Gaussian surfels, to preserve the structural integrity and fine-grained appearance details. To perform 4D generation from multiple videos and capture representation across spatial, temporal, and pose dimensions, we design multi-video alignment, root pose optimization, and pose-guided frame sampling strategies. The leveraging of continuous warping fields also enables a precise depiction of pose, motion, and deformation over per-video frames. Further, to improve the overall fidelity from the observation of all camera poses, Video4DGen performs novel-view video generation guided by the 4D content, with the proposed confidence-filtered DGS to enhance the quality of generated sequences. With the ability of 4D and video generation, Video4DGen offers a powerful tool for applications in virtual reality, animation, and beyond.
Authors:Jiayi Gao, Zijin Yin, Changcheng Hua, Yuxin Peng, Kongming Liang, Zhanyu Ma, Jun Guo, Yang Liu
Title: ConMo: Controllable Motion Disentanglement and Recomposition for Zero-Shot Motion Transfer
Abstract:
The development of Text-to-Video (T2V) generation has made motion transfer possible, enabling the control of video motion based on existing footage. However, current methods have two limitations: 1) struggle to handle multi-subjects videos, failing to transfer specific subject motion; 2) struggle to preserve the diversity and accuracy of motion as transferring to subjects with varying shapes. To overcome these, we introduce \textbf{ConMo}, a zero-shot framework that disentangle and recompose the motions of subjects and camera movements. ConMo isolates individual subject and background motion cues from complex trajectories in source videos using only subject masks, and reassembles them for target video generation. This approach enables more accurate motion control across diverse subjects and improves performance in multi-subject scenarios. Additionally, we propose soft guidance in the recomposition stage which controls the retention of original motion to adjust shape constraints, aiding subject shape adaptation and semantic transformation. Unlike previous methods, ConMo unlocks a wide range of applications, including subject size and position editing, subject removal, semantic modifications, and camera motion simulation. Extensive experiments demonstrate that ConMo significantly outperforms state-of-the-art methods in motion fidelity and semantic consistency. The code is available at https://github.com/Andyplus1/ConMo.
Authors:Takahiro Shirakawa, Tomoyuki Suzuki, Takuto Narumoto, Daichi Haraguchi
Title: MG-Gen: Single Image to Motion Graphics Generation
Abstract:
We introduce MG-Gen, a framework that generates motion graphics directly from a single raster image. MG-Gen decompose a single raster image into layered structures represented as HTML, generate animation scripts for each layer, and then render them into a video. Experiments confirm MG-Gen generates dynamic motion graphics while preserving text readability and fidelity to the input conditions, whereas state-of-the-art image-to-video generation methods struggle with them. The code is available at https://github.com/CyberAgentAILab/MG-GEN.
Authors:Junhao Cheng, Yuying Ge, Yixiao Ge, Jing Liao, Ying Shan
Title: AnimeGamer: Infinite Anime Life Simulation with Next Game State Prediction
Abstract:
Recent advancements in image and video synthesis have opened up new promise in generative games. One particularly intriguing application is transforming characters from anime films into interactive, playable entities. This allows players to immerse themselves in the dynamic anime world as their favorite characters for life simulation through language instructions. Such games are defined as infinite game since they eliminate predetermined boundaries and fixed gameplay rules, where players can interact with the game world through open-ended language and experience ever-evolving storylines and environments. Recently, a pioneering approach for infinite anime life simulation employs large language models (LLMs) to translate multi-turn text dialogues into language instructions for image generation. However, it neglects historical visual context, leading to inconsistent gameplay. Furthermore, it only generates static images, failing to incorporate the dynamics necessary for an engaging gaming experience. In this work, we propose AnimeGamer, which is built upon Multimodal Large Language Models (MLLMs) to generate each game state, including dynamic animation shots that depict character movements and updates to character states, as illustrated in Figure 1. We introduce novel action-aware multimodal representations to represent animation shots, which can be decoded into high-quality video clips using a video diffusion model. By taking historical animation shot representations as context and predicting subsequent representations, AnimeGamer can generate games with contextual consistency and satisfactory dynamics. Extensive evaluations using both automated metrics and human evaluations demonstrate that AnimeGamer outperforms existing methods in various aspects of the gaming experience. Codes and checkpoints are available at https://github.com/TencentARC/AnimeGamer.
Authors:Bosung Kim, Kyuhwan Lee, Isu Jeong, Jungmin Cheon, Yeojin Lee, Seulki Lee
Title: On-device Sora: Enabling Training-Free Diffusion-based Text-to-Video Generation for Mobile Devices
Abstract:
We present On-device Sora, the first model training-free solution for diffusion-based on-device text-to-video generation that operates efficiently on smartphone-grade devices. To address the challenges of diffusion-based text-to-video generation on computation- and memory-limited mobile devices, the proposed On-device Sora applies three novel techniques to pre-trained video generative models. First, Linear Proportional Leap (LPL) reduces the excessive denoising steps required in video diffusion through an efficient leap-based approach. Second, Temporal Dimension Token Merging (TDTM) minimizes intensive token-processing computation in attention layers by merging consecutive tokens along the temporal dimension. Third, Concurrent Inference with Dynamic Loading (CI-DL) dynamically partitions large models into smaller blocks and loads them into memory for concurrent model inference, effectively addressing the challenges of limited device memory. We implement On-device Sora on the iPhone 15 Pro, and the experimental evaluations show that it is capable of generating high-quality videos on the device, comparable to those produced by high-end GPUs. These results show that On-device Sora enables efficient and high-quality video generation on resource-constrained mobile devices. We envision the proposed On-device Sora as a significant first step toward democratizing state-of-the-art generative technologies, enabling video generation on commodity mobile and embedded devices without resource-intensive re-training for model optimization (compression). The code implementation is available at a GitHub repository(https://github.com/eai-lab/On-device-Sora).
Authors:Tianming Liang, Haichao Jiang, Wei-Shi Zheng, Jian-Fang Hu
Title: ReferDINO-Plus: 2nd Solution for 4th PVUW MeViS Challenge at CVPR 2025
Abstract:
Referring Video Object Segmentation (RVOS) aims to segment target objects throughout a video based on a text description. This task has attracted increasing attention in the field of computer vision due to its promising applications in video editing and human-agent interaction. Recently, ReferDINO has demonstrated promising performance in this task by adapting object-level vision-language knowledge from pretrained foundational image models. In this report, we further enhance its capabilities by incorporating the advantages of SAM2 in mask quality and object consistency. In addition, to effectively balance performance between single-object and multi-object scenarios, we introduce a conditional mask fusion strategy that adaptively fuses the masks from ReferDINO and SAM2. Our solution, termed ReferDINO-Plus, achieves 60.43 \(\mathcal{J}\&\mathcal{F}\) on MeViS test set, securing 2nd place in the MeViS PVUW challenge at CVPR 2025. The code is available at: https://github.com/iSEE-Laboratory/ReferDINO-Plus.
Authors:Yuhang Yang, Ke Fan, Shangkun Sun, Hongxiang Li, Ailing Zeng, FeiLin Han, Wei Zhai, Wei Liu, Yang Cao, Zheng-Jun Zha
Title: VideoGen-Eval: Agent-based System for Video Generation Evaluation
Abstract:
The rapid advancement of video generation has rendered existing evaluation systems inadequate for assessing state-of-the-art models, primarily due to simple prompts that cannot showcase the model's capabilities, fixed evaluation operators struggling with Out-of-Distribution (OOD) cases, and misalignment between computed metrics and human preferences. To bridge the gap, we propose VideoGen-Eval, an agent evaluation system that integrates LLM-based content structuring, MLLM-based content judgment, and patch tools designed for temporal-dense dimensions, to achieve a dynamic, flexible, and expandable video generation evaluation. Additionally, we introduce a video generation benchmark to evaluate existing cutting-edge models and verify the effectiveness of our evaluation system. It comprises 700 structured, content-rich prompts (both T2V and I2V) and over 12,000 videos generated by 20+ models, among them, 8 cutting-edge models are selected as quantitative evaluation for the agent and human. Extensive experiments validate that our proposed agent-based evaluation system demonstrates strong alignment with human preferences and reliably completes the evaluation, as well as the diversity and richness of the benchmark.
Authors:Haitong Liu, Kuofeng Gao, Yang Bai, Jinmin Li, Jinxiao Shan, Tao Dai, Shu-Tao Xia
Title: Protecting Your Video Content: Disrupting Automated Video-based LLM Annotations
Abstract:
Recently, video-based large language models (video-based LLMs) have achieved impressive performance across various video comprehension tasks. However, this rapid advancement raises significant privacy and security concerns, particularly regarding the unauthorized use of personal video data in automated annotation by video-based LLMs. These unauthorized annotated video-text pairs can then be used to improve the performance of downstream tasks, such as text-to-video generation. To safeguard personal videos from unauthorized use, we propose two series of protective video watermarks with imperceptible adversarial perturbations, named Ramblings and Mutes. Concretely, Ramblings aim to mislead video-based LLMs into generating inaccurate captions for the videos, thereby degrading the quality of video annotations through inconsistencies between video content and captions. Mutes, on the other hand, are designed to prompt video-based LLMs to produce exceptionally brief captions, lacking descriptive detail. Extensive experiments demonstrate that our video watermarking methods effectively protect video data by significantly reducing video annotation performance across various video-based LLMs, showcasing both stealthiness and robustness in protecting personal video content. Our code is available at https://github.com/ttthhl/Protecting_Your_Video_Content.
Authors:Minghui Lin, Xiang Wang, Yishan Wang, Shu Wang, Fengqi Dai, Pengxiang Ding, Cunxiang Wang, Zhengrong Zuo, Nong Sang, Siteng Huang, Donglin Wang
Title: Exploring the Evolution of Physics Cognition in Video Generation: A Survey
Abstract:
Recent advancements in video generation have witnessed significant progress, especially with the rapid advancement of diffusion models. Despite this, their deficiencies in physical cognition have gradually received widespread attention - generated content often violates the fundamental laws of physics, falling into the dilemma of ''visual realism but physical absurdity". Researchers began to increasingly recognize the importance of physical fidelity in video generation and attempted to integrate heuristic physical cognition such as motion representations and physical knowledge into generative systems to simulate real-world dynamic scenarios. Considering the lack of a systematic overview in this field, this survey aims to provide a comprehensive summary of architecture designs and their applications to fill this gap. Specifically, we discuss and organize the evolutionary process of physical cognition in video generation from a cognitive science perspective, while proposing a three-tier taxonomy: 1) basic schema perception for generation, 2) passive cognition of physical knowledge for generation, and 3) active cognition for world simulation, encompassing state-of-the-art methods, classical paradigms, and benchmarks. Subsequently, we emphasize the inherent key challenges in this domain and delineate potential pathways for future research, contributing to advancing the frontiers of discussion in both academia and industry. Through structured review and interdisciplinary analysis, this survey aims to provide directional guidance for developing interpretable, controllable, and physically consistent video generation paradigms, thereby propelling generative models from the stage of ''visual mimicry'' towards a new phase of ''human-like physical comprehension''.
Authors:Dian Zheng, Ziqi Huang, Hongbo Liu, Kai Zou, Yinan He, Fan Zhang, Lulu Gu, Yuanhan Zhang, Jingwen He, Wei-Shi Zheng, Yu Qiao, Ziwei Liu
Title: VBench-2.0: Advancing Video Generation Benchmark Suite for Intrinsic Faithfulness
Abstract:
Video generation has advanced significantly, evolving from producing unrealistic outputs to generating videos that appear visually convincing and temporally coherent. To evaluate these video generative models, benchmarks such as VBench have been developed to assess their faithfulness, measuring factors like per-frame aesthetics, temporal consistency, and basic prompt adherence. However, these aspects mainly represent superficial faithfulness, which focus on whether the video appears visually convincing rather than whether it adheres to real-world principles. While recent models perform increasingly well on these metrics, they still struggle to generate videos that are not just visually plausible but fundamentally realistic. To achieve real "world models" through video generation, the next frontier lies in intrinsic faithfulness to ensure that generated videos adhere to physical laws, commonsense reasoning, anatomical correctness, and compositional integrity. Achieving this level of realism is essential for applications such as AI-assisted filmmaking and simulated world modeling. To bridge this gap, we introduce VBench-2.0, a next-generation benchmark designed to automatically evaluate video generative models for their intrinsic faithfulness. VBench-2.0 assesses five key dimensions: Human Fidelity, Controllability, Creativity, Physics, and Commonsense, each further broken down into fine-grained capabilities. Tailored to individual dimensions, our evaluation framework integrates generalists such as SOTA VLMs and LLMs, and specialists, including anomaly detection methods proposed for video generation. We conduct extensive human annotations to ensure evaluation alignment with human judgment. By pushing beyond superficial faithfulness toward intrinsic faithfulness, VBench-2.0 aims to set a new standard for the next generation of video generative models in pursuit of intrinsic faithfulness.
Authors:Masane Fuchi, Tomohiro Takagi
Title: RecTable: Fast Modeling Tabular Data with Rectified Flow
Abstract:
Score-based or diffusion models generate high-quality tabular data, surpassing GAN-based and VAE-based models. However, these methods require substantial training time. In this paper, we introduce RecTable, which uses the rectified flow modeling, applied in such as text-to-image generation and text-to-video generation. RecTable features a simple architecture consisting of a few stacked gated linear unit blocks. Additionally, our training strategies are also simple, incorporating a mixed-type noise distribution and a logit-normal timestep distribution. Our experiments demonstrate that RecTable achieves competitive performance compared to the several state-of-the-art diffusion and score-based models while reducing the required training time. Our code is available at https://github.com/fmp453/rectable.
Authors:Jiale Cheng, Ruiliang Lyu, Xiaotao Gu, Xiao Liu, Jiazheng Xu, Yida Lu, Jiayan Teng, Zhuoyi Yang, Yuxiao Dong, Jie Tang, Hongning Wang, Minlie Huang
Title: VPO: Aligning Text-to-Video Generation Models with Prompt Optimization
Abstract:
Video generation models have achieved remarkable progress in text-to-video tasks. These models are typically trained on text-video pairs with highly detailed and carefully crafted descriptions, while real-world user inputs during inference are often concise, vague, or poorly structured. This gap makes prompt optimization crucial for generating high-quality videos. Current methods often rely on large language models (LLMs) to refine prompts through in-context learning, but suffer from several limitations: they may distort user intent, omit critical details, or introduce safety risks. Moreover, they optimize prompts without considering the impact on the final video quality, which can lead to suboptimal results. To address these issues, we introduce VPO, a principled framework that optimizes prompts based on three core principles: harmlessness, accuracy, and helpfulness. The generated prompts faithfully preserve user intents and, more importantly, enhance the safety and quality of generated videos. To achieve this, VPO employs a two-stage optimization approach. First, we construct and refine a supervised fine-tuning (SFT) dataset based on principles of safety and alignment. Second, we introduce both text-level and video-level feedback to further optimize the SFT model with preference learning. Our extensive experiments demonstrate that VPO significantly improves safety, alignment, and video quality compared to baseline methods. Moreover, VPO shows strong generalization across video generation models. Furthermore, we demonstrate that VPO could outperform and be combined with RLHF methods on video generation models, underscoring the effectiveness of VPO in aligning video generation models. Our code and data are publicly available at https://github.com/thu-coai/VPO.
Authors:Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han, Zhi-Fan Wu, Ziyu Liu
Title: Wan: Open and Advanced Large-Scale Video Generative Models
Abstract:
This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at https://github.com/Wan-Video/Wan2.1.
Authors:Yuhui Wu, Liyi Chen, Ruibin Li, Shihao Wang, Chenxi Xie, Lei Zhang
Title: InsViE-1M: Effective Instruction-based Video Editing with Elaborate Dataset Construction
Abstract:
Instruction-based video editing allows effective and interactive editing of videos using only instructions without extra inputs such as masks or attributes. However, collecting high-quality training triplets (source video, edited video, instruction) is a challenging task. Existing datasets mostly consist of low-resolution, short duration, and limited amount of source videos with unsatisfactory editing quality, limiting the performance of trained editing models. In this work, we present a high-quality Instruction-based Video Editing dataset with 1M triplets, namely InsViE-1M. We first curate high-resolution and high-quality source videos and images, then design an effective editing-filtering pipeline to construct high-quality editing triplets for model training. For a source video, we generate multiple edited samples of its first frame with different intensities of classifier-free guidance, which are automatically filtered by GPT-4o with carefully crafted guidelines. The edited first frame is propagated to subsequent frames to produce the edited video, followed by another round of filtering for frame quality and motion evaluation. We also generate and filter a variety of video editing triplets from high-quality images. With the InsViE-1M dataset, we propose a multi-stage learning strategy to train our InsViE model, progressively enhancing its instruction following and editing ability. Extensive experiments demonstrate the advantages of our InsViE-1M dataset and the trained model over state-of-the-art works. Codes are available at \href{https://github.com/langmanbusi/InsViE}{InsViE}.
Authors:Yufei Cai, Hu Han, Yuxiang Wei, Shiguang Shan, Xilin Chen
Title: EfficientMT: Efficient Temporal Adaptation for Motion Transfer in Text-to-Video Diffusion Models
Abstract:
The progress on generative models has led to significant advances on text-to-video (T2V) generation, yet the motion controllability of generated videos remains limited. Existing motion transfer methods explored the motion representations of reference videos to guide generation. Nevertheless, these methods typically rely on sample-specific optimization strategy, resulting in high computational burdens. In this paper, we propose EfficientMT, a novel and efficient end-to-end framework for video motion transfer. By leveraging a small set of synthetic paired motion transfer samples, EfficientMT effectively adapts a pretrained T2V model into a general motion transfer framework that can accurately capture and reproduce diverse motion patterns. Specifically, we repurpose the backbone of the T2V model to extract temporal information from reference videos, and further propose a scaler module to distill motion-related information. Subsequently, we introduce a temporal integration mechanism that seamlessly incorporates reference motion features into the video generation process. After training on our self-collected synthetic paired samples, EfficientMT enables general video motion transfer without requiring test-time optimization. Extensive experiments demonstrate that our EfficientMT outperforms existing methods in efficiency while maintaining flexible motion controllability. Our code will be available https://github.com/PrototypeNx/EfficientMT.
Authors:Weichen Fan, Amber Yijia Zheng, Raymond A. Yeh, Ziwei Liu
Title: CFG-Zero*: Improved Classifier-Free Guidance for Flow Matching Models
Abstract:
Classifier-Free Guidance (CFG) is a widely adopted technique in diffusion/flow models to improve image fidelity and controllability. In this work, we first analytically study the effect of CFG on flow matching models trained on Gaussian mixtures where the ground-truth flow can be derived. We observe that in the early stages of training, when the flow estimation is inaccurate, CFG directs samples toward incorrect trajectories. Building on this observation, we propose CFG-Zero*, an improved CFG with two contributions: (a) optimized scale, where a scalar is optimized to correct for the inaccuracies in the estimated velocity, hence the * in the name; and (b) zero-init, which involves zeroing out the first few steps of the ODE solver. Experiments on both text-to-image (Lumina-Next, Stable Diffusion 3, and Flux) and text-to-video (Wan-2.1) generation demonstrate that CFG-Zero* consistently outperforms CFG, highlighting its effectiveness in guiding Flow Matching models. (Code is available at github.com/WeichenFan/CFG-Zero-star)
Authors:Takashi Isobe, He Cui, Dong Zhou, Mengmeng Ge, Dong Li, Emad Barsoum
Title: AMD-Hummingbird: Towards an Efficient Text-to-Video Model
Abstract:
Text-to-Video (T2V) generation has attracted significant attention for its ability to synthesize realistic videos from textual descriptions. However, existing models struggle to balance computational efficiency and high visual quality, particularly on resource-limited devices, e.g.,iGPUs and mobile phones. Most prior work prioritizes visual fidelity while overlooking the need for smaller, more efficient models suitable for real-world deployment. To address this challenge, we propose a lightweight T2V framework, termed Hummingbird, which prunes existing models and enhances visual quality through visual feedback learning. Our approach reduces the size of the U-Net from 1.4 billion to 0.7 billion parameters, significantly improving efficiency while preserving high-quality video generation. Additionally, we introduce a novel data processing pipeline that leverages Large Language Models (LLMs) and Video Quality Assessment (VQA) models to enhance the quality of both text prompts and video data. To support user-driven training and style customization, we publicly release the full training code, including data processing and model training. Extensive experiments show that our method achieves a 31X speedup compared to state-of-the-art models such as VideoCrafter2, while also attaining the highest overall score on VBench. Moreover, our method supports the generation of videos with up to 26 frames, addressing the limitations of existing U-Net-based methods in long video generation. Notably, the entire training process requires only four GPUs, yet delivers performance competitive with existing leading methods. Hummingbird presents a practical and efficient solution for T2V generation, combining high performance, scalability, and flexibility for real-world applications.
Authors:Yuzhi Li, Haojun Xu, Feng Tian
Title: Shot Sequence Ordering for Video Editing: Benchmarks, Metrics, and Cinematology-Inspired Computing Methods
Abstract:
With the rising popularity of short video platforms, the demand for video production has increased substantially. However, high-quality video creation continues to rely heavily on professional editing skills and a nuanced understanding of visual language. To address this challenge, the Shot Sequence Ordering (SSO) task in AI-assisted video editing has emerged as a pivotal approach for enhancing video storytelling and the overall viewing experience. Nevertheless, the progress in this field has been impeded by a lack of publicly available benchmark datasets. In response, this paper introduces two novel benchmark datasets, AVE-Order and ActivityNet-Order. Additionally, we employ the Kendall Tau distance as an evaluation metric for the SSO task and propose the Kendall Tau Distance-Cross Entropy Loss. We further introduce the concept of Cinematology Embedding, which incorporates movie metadata and shot labels as prior knowledge into the SSO model, and constructs the AVE-Meta dataset to validate the method's effectiveness. Experimental results indicate that the proposed loss function and method substantially enhance SSO task accuracy. All datasets are publicly accessible at https://github.com/litchiar/ShotSeqBench.
Authors:Xu Zhang, Hao Zhou, Haoming Qin, Xiaobin Lu, Jiaxing Yan, Guanzhong Wang, Zeyu Chen, Yi Liu
Title: Enabling Versatile Controls for Video Diffusion Models
Abstract:
Despite substantial progress in text-to-video generation, achieving precise and flexible control over fine-grained spatiotemporal attributes remains a significant unresolved challenge in video generation research. To address these limitations, we introduce VCtrl (also termed PP-VCtrl), a novel framework designed to enable fine-grained control over pre-trained video diffusion models in a unified manner. VCtrl integrates diverse user-specified control signals-such as Canny edges, segmentation masks, and human keypoints-into pretrained video diffusion models via a generalizable conditional module capable of uniformly encoding multiple types of auxiliary signals without modifying the underlying generator. Additionally, we design a unified control signal encoding pipeline and a sparse residual connection mechanism to efficiently incorporate control representations. Comprehensive experiments and human evaluations demonstrate that VCtrl effectively enhances controllability and generation quality. The source code and pre-trained models are publicly available and implemented using the PaddlePaddle framework at http://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl.
Authors:Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, Song Han
Title: XAttention: Block Sparse Attention with Antidiagonal Scoring
Abstract:
Long-Context Transformer Models (LCTMs) are vital for real-world applications but suffer high computational costs due to attention's quadratic complexity. Block-sparse attention mitigates this by focusing computation on critical regions, yet existing methods struggle with balancing accuracy and efficiency due to costly block importance measurements. In this paper, we introduce XAttention, a plug-and-play framework that dramatically accelerates long-context inference in Transformers models using sparse attention. XAttention's key innovation is the insight that the sum of antidiagonal values (i.e., from the lower-left to upper-right) in the attention matrix provides a powerful proxy for block importance. This allows for precise identification and pruning of non-essential blocks, resulting in high sparsity and dramatically accelerated inference. Across comprehensive evaluations on demanding long-context benchmarks-including RULER and LongBench for language, VideoMME for video understanding, and VBench for video generation. XAttention achieves accuracy comparable to full attention while delivering substantial computational gains. We demonstrate up to 13.5x acceleration in attention computation. These results underscore XAttention's ability to unlock the practical potential of block sparse attention, paving the way for scalable and efficient deployment of LCTMs in real-world applications. Code is available at https://github.com/mit-han-lab/x-attention.
Authors:Haiguang Wang, Daqi Liu, Hongwei Xie, Haisong Liu, Enhui Ma, Kaicheng Yu, Limin Wang, Bing Wang
Title: MiLA: Multi-view Intensive-fidelity Long-term Video Generation World Model for Autonomous Driving
Abstract:
In recent years, data-driven techniques have greatly advanced autonomous driving systems, but the need for rare and diverse training data remains a challenge, requiring significant investment in equipment and labor. World models, which predict and generate future environmental states, offer a promising solution by synthesizing annotated video data for training. However, existing methods struggle to generate long, consistent videos without accumulating errors, especially in dynamic scenes. To address this, we propose MiLA, a novel framework for generating high-fidelity, long-duration videos up to one minute. MiLA utilizes a Coarse-to-Re(fine) approach to both stabilize video generation and correct distortion of dynamic objects. Additionally, we introduce a Temporal Progressive Denoising Scheduler and Joint Denoising and Correcting Flow modules to improve the quality of generated videos. Extensive experiments on the nuScenes dataset show that MiLA achieves state-of-the-art performance in video generation quality. For more information, visit the project website: https://github.com/xiaomi-mlab/mila.github.io.
Authors:Tingxiu Chen, Yilei Shi, Zixuan Zheng, Bingcong Yan, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou
Title: Ultrasound Image-to-Video Synthesis via Latent Dynamic Diffusion Models
Abstract:
Ultrasound video classification enables automated diagnosis and has emerged as an important research area. However, publicly available ultrasound video datasets remain scarce, hindering progress in developing effective video classification models. We propose addressing this shortage by synthesizing plausible ultrasound videos from readily available, abundant ultrasound images. To this end, we introduce a latent dynamic diffusion model (LDDM) to efficiently translate static images to dynamic sequences with realistic video characteristics. We demonstrate strong quantitative results and visually appealing synthesized videos on the BUSV benchmark. Notably, training video classification models on combinations of real and LDDM-synthesized videos substantially improves performance over using real data alone, indicating our method successfully emulates dynamics critical for discrimination. Our image-to-video approach provides an effective data augmentation solution to advance ultrasound video analysis. Code is available at https://github.com/MedAITech/U_I2V.
Authors:Yu Cheng, Fajie Yuan
Title: LeanVAE: An Ultra-Efficient Reconstruction VAE for Video Diffusion Models
Abstract:
Recent advances in Latent Video Diffusion Models (LVDMs) have revolutionized video generation by leveraging Video Variational Autoencoders (Video VAEs) to compress intricate video data into a compact latent space. However, as LVDM training scales, the computational overhead of Video VAEs becomes a critical bottleneck, particularly for encoding high-resolution videos. To address this, we propose LeanVAE, a novel and ultra-efficient Video VAE framework that introduces two key innovations: (1) a lightweight architecture based on a Neighborhood-Aware Feedforward (NAF) module and non-overlapping patch operations, drastically reducing computational cost, and (2) the integration of wavelet transforms and compressed sensing techniques to enhance reconstruction quality. Extensive experiments validate LeanVAE's superiority in video reconstruction and generation, particularly in enhancing efficiency over existing Video VAEs. Our model offers up to 50x fewer FLOPs and 44x faster inference speed while maintaining competitive reconstruction quality, providing insights for scalable, efficient video generation. Our models and code are available at https://github.com/westlake-repl/LeanVAE
Authors:Zheyuan Liu, Junyan Wang, Zicheng Duan, Cristian Rodriguez-Opazo, Anton van den Hengel
Title: Frame-wise Conditioning Adaptation for Fine-Tuning Diffusion Models in Text-to-Video Prediction
Abstract:
Text-video prediction (TVP) is a downstream video generation task that requires a model to produce subsequent video frames given a series of initial video frames and text describing the required motion. In practice TVP methods focus on a particular category of videos depicting manipulations of objects carried out by human beings or robot arms. Previous methods adapt models pre-trained on text-to-image tasks, and thus tend to generate video that lacks the required continuity. A natural progression would be to leverage more recent pre-trained text-to-video (T2V) models. This approach is rendered more challenging by the fact that the most common fine-tuning technique, low-rank adaptation (LoRA), yields undesirable results. In this work, we propose an adaptation-based strategy we label Frame-wise Conditioning Adaptation (FCA). Within the module, we devise a sub-module that produces frame-wise text embeddings from the input text, which acts as an additional text condition to aid generation. We use FCA to fine-tune the T2V model, which incorporates the initial frame(s) as an extra condition. We compare and discuss the more effective strategy for injecting such embeddings into the T2V model. We conduct extensive ablation studies on our design choices with quantitative and qualitative performance analysis. Our approach establishes a new state-of-the-art for the task of TVP. The project page is at https://github.com/Cuberick-Orion/FCA .
Authors:Jianhong Bai, Menghan Xia, Xiao Fu, Xintao Wang, Lianrui Mu, Jinwen Cao, Zuozhu Liu, Haoji Hu, Xiang Bai, Pengfei Wan, Di Zhang
Title: ReCamMaster: Camera-Controlled Generative Rendering from A Single Video
Abstract:
Camera control has been actively studied in text or image conditioned video generation tasks. However, altering camera trajectories of a given video remains under-explored, despite its importance in the field of video creation. It is non-trivial due to the extra constraints of maintaining multiple-frame appearance and dynamic synchronization. To address this, we present ReCamMaster, a camera-controlled generative video re-rendering framework that reproduces the dynamic scene of an input video at novel camera trajectories. The core innovation lies in harnessing the generative capabilities of pre-trained text-to-video models through a simple yet powerful video conditioning mechanism--its capability is often overlooked in current research. To overcome the scarcity of qualified training data, we construct a comprehensive multi-camera synchronized video dataset using Unreal Engine 5, which is carefully curated to follow real-world filming characteristics, covering diverse scenes and camera movements. It helps the model generalize to in-the-wild videos. Lastly, we further improve the robustness to diverse inputs through a meticulously designed training strategy. Extensive experiments show that our method substantially outperforms existing state-of-the-art approaches. Our method also finds promising applications in video stabilization, super-resolution, and outpainting. Our code and dataset are publicly available at: https://github.com/KwaiVGI/ReCamMaster.
Authors:Haoyang Huang, Guoqing Ma, Nan Duan, Xing Chen, Changyi Wan, Ranchen Ming, Tianyu Wang, Bo Wang, Zhiying Lu, Aojie Li, Xianfang Zeng, Xinhao Zhang, Gang Yu, Yuhe Yin, Qiling Wu, Wen Sun, Kang An, Xin Han, Deshan Sun, Wei Ji, Bizhu Huang, Brian Li, Chenfei Wu, Guanzhe Huang, Huixin Xiong, Jiaxin He, Jianchang Wu, Jianlong Yuan, Jie Wu, Jiashuai Liu, Junjing Guo, Kaijun Tan, Liangyu Chen, Qiaohui Chen, Ran Sun, Shanshan Yuan, Shengming Yin, Sitong Liu, Wei Chen, Yaqi Dai, Yuchu Luo, Zheng Ge, Zhisheng Guan, Xiaoniu Song, Yu Zhou, Binxing Jiao, Jiansheng Chen, Jing Li, Shuchang Zhou, Xiangyu Zhang, Yi Xiu, Yibo Zhu, Heung-Yeung Shum, Daxin Jiang
Title: Step-Video-TI2V Technical Report: A State-of-the-Art Text-Driven Image-to-Video Generation Model
Abstract:
We present Step-Video-TI2V, a state-of-the-art text-driven image-to-video generation model with 30B parameters, capable of generating videos up to 102 frames based on both text and image inputs. We build Step-Video-TI2V-Eval as a new benchmark for the text-driven image-to-video task and compare Step-Video-TI2V with open-source and commercial TI2V engines using this dataset. Experimental results demonstrate the state-of-the-art performance of Step-Video-TI2V in the image-to-video generation task. Both Step-Video-TI2V and Step-Video-TI2V-Eval are available at https://github.com/stepfun-ai/Step-Video-TI2V.
Authors:Haonan Wang, Qixiang Zhang, Lehan Wang, Xuanqi Huang, Xiaomeng Li
Title: Neurons: Emulating the Human Visual Cortex Improves Fidelity and Interpretability in fMRI-to-Video Reconstruction
Abstract:
Decoding visual stimuli from neural activity is essential for understanding the human brain. While fMRI methods have successfully reconstructed static images, fMRI-to-video reconstruction faces challenges due to the need for capturing spatiotemporal dynamics like motion and scene transitions. Recent approaches have improved semantic and perceptual alignment but struggle to integrate coarse fMRI data with detailed visual features. Inspired by the hierarchical organization of the visual system, we propose NEURONS, a novel framework that decouples learning into four correlated sub-tasks: key object segmentation, concept recognition, scene description, and blurry video reconstruction. This approach simulates the visual cortex's functional specialization, allowing the model to capture diverse video content. In the inference stage, NEURONS generates robust conditioning signals for a pre-trained text-to-video diffusion model to reconstruct the videos. Extensive experiments demonstrate that NEURONS outperforms state-of-the-art baselines, achieving solid improvements in video consistency (26.6%) and semantic-level accuracy (19.1%). Notably, NEURONS shows a strong functional correlation with the visual cortex, highlighting its potential for brain-computer interfaces and clinical applications. Code and model weights are available at: https://github.com/xmed-lab/NEURONS.
Authors:Yefei He, Yuanyu He, Shaoxuan He, Feng Chen, Hong Zhou, Kaipeng Zhang, Bohan Zhuang
Title: Neighboring Autoregressive Modeling for Efficient Visual Generation
Abstract:
Visual autoregressive models typically adhere to a raster-order ``next-token prediction" paradigm, which overlooks the spatial and temporal locality inherent in visual content. Specifically, visual tokens exhibit significantly stronger correlations with their spatially or temporally adjacent tokens compared to those that are distant. In this paper, we propose Neighboring Autoregressive Modeling (NAR), a novel paradigm that formulates autoregressive visual generation as a progressive outpainting procedure, following a near-to-far ``next-neighbor prediction" mechanism. Starting from an initial token, the remaining tokens are decoded in ascending order of their Manhattan distance from the initial token in the spatial-temporal space, progressively expanding the boundary of the decoded region. To enable parallel prediction of multiple adjacent tokens in the spatial-temporal space, we introduce a set of dimension-oriented decoding heads, each predicting the next token along a mutually orthogonal dimension. During inference, all tokens adjacent to the decoded tokens are processed in parallel, substantially reducing the model forward steps for generation. Experiments on ImageNet$256\times 256$ and UCF101 demonstrate that NAR achieves 2.4$\times$ and 8.6$\times$ higher throughput respectively, while obtaining superior FID/FVD scores for both image and video generation tasks compared to the PAR-4X approach. When evaluating on text-to-image generation benchmark GenEval, NAR with 0.8B parameters outperforms Chameleon-7B while using merely 0.4 of the training data. Code is available at https://github.com/ThisisBillhe/NAR.
Authors:Lehan Yang, Jincen Song, Tianlong Wang, Daiqing Qi, Weili Shi, Yuheng Liu, Sheng Li
Title: VRMDiff: Text-Guided Video Referring Matting Generation of Diffusion
Abstract:
We propose a new task, video referring matting, which obtains the alpha matte of a specified instance by inputting a referring caption. We treat the dense prediction task of matting as video generation, leveraging the text-to-video alignment prior of video diffusion models to generate alpha mattes that are temporally coherent and closely related to the corresponding semantic instances. Moreover, we propose a new Latent-Constructive loss to further distinguish different instances, enabling more controllable interactive matting. Additionally, we introduce a large-scale video referring matting dataset with 10,000 videos. To the best of our knowledge, this is the first dataset that concurrently contains captions, videos, and instance-level alpha mattes. Extensive experiments demonstrate the effectiveness of our method. The dataset and code are available at https://github.com/Hansxsourse/VRMDiff.
Authors:Zecheng Zhao, Zhi Chen, Zi Huang, Shazia Sadiq, Tong Chen
Title: Continual Text-to-Video Retrieval with Frame Fusion and Task-Aware Routing
Abstract:
Text-to-Video Retrieval (TVR) aims to retrieve relevant videos based on textual queries. However, as video content evolves continuously, adapting TVR systems to new data remains a critical yet under-explored challenge. In this paper, we introduce the first benchmark for Continual Text-to-Video Retrieval (CTVR) to address the limitations of existing approaches. Current Pre-Trained Model (PTM)-based TVR methods struggle with maintaining model plasticity when adapting to new tasks, while existing Continual Learning (CL) methods suffer from catastrophic forgetting, leading to semantic misalignment between historical queries and stored video features. To address these two challenges, we propose FrameFusionMoE, a novel CTVR framework that comprises two key components: (1) the Frame Fusion Adapter (FFA), which captures temporal video dynamics while preserving model plasticity, and (2) the Task-Aware Mixture-of-Experts (TAME), which ensures consistent semantic alignment between queries across tasks and the stored video features. Thus, FrameFusionMoE enables effective adaptation to new video content while preserving historical text-video relevance to mitigate catastrophic forgetting. We comprehensively evaluate FrameFusionMoE on two benchmark datasets under various task settings. Results demonstrate that FrameFusionMoE outperforms existing CL and TVR methods, achieving superior retrieval performance with minimal degradation on earlier tasks when handling continuous video streams. Our code is available at: https://github.com/JasonCodeMaker/CTVR.
Authors:Xinran Ling, Chen Zhu, Meiqi Wu, Hangyu Li, Xiaokun Feng, Cundian Yang, Aiming Hao, Jiashu Zhu, Jiahong Wu, Xiangxiang Chu
Title: VMBench: A Benchmark for Perception-Aligned Video Motion Generation
Abstract:
Video generation has advanced rapidly, improving evaluation methods, yet assessing video's motion remains a major challenge. Specifically, there are two key issues: 1) current motion metrics do not fully align with human perceptions; 2) the existing motion prompts are limited. Based on these findings, we introduce VMBench--a comprehensive Video Motion Benchmark that has perception-aligned motion metrics and features the most diverse types of motion. VMBench has several appealing properties: 1) Perception-Driven Motion Evaluation Metrics, we identify five dimensions based on human perception in motion video assessment and develop fine-grained evaluation metrics, providing deeper insights into models' strengths and weaknesses in motion quality. 2) Meta-Guided Motion Prompt Generation, a structured method that extracts meta-information, generates diverse motion prompts with LLMs, and refines them through human-AI validation, resulting in a multi-level prompt library covering six key dynamic scene dimensions. 3) Human-Aligned Validation Mechanism, we provide human preference annotations to validate our benchmarks, with our metrics achieving an average 35.3% improvement in Spearman's correlation over baseline methods. This is the first time that the quality of motion in videos has been evaluated from the perspective of human perception alignment. Additionally, we will soon release VMBench at https://github.com/GD-AIGC/VMBench, setting a new standard for evaluating and advancing motion generation models.
Authors:Xiangyu Peng, Zangwei Zheng, Chenhui Shen, Tom Young, Xinying Guo, Binluo Wang, Hang Xu, Hongxin Liu, Mingyan Jiang, Wenjun Li, Yuhui Wang, Anbang Ye, Gang Ren, Qianran Ma, Wanying Liang, Xiang Lian, Xiwen Wu, Yuting Zhong, Zhuangyan Li, Chaoyu Gong, Guojun Lei, Leijun Cheng, Limin Zhang, Minghao Li, Ruijie Zhang, Silan Hu, Shijie Huang, Xiaokang Wang, Yuanheng Zhao, Yuqi Wang, Ziang Wei, Yang You
Title: Open-Sora 2.0: Training a Commercial-Level Video Generation Model in $200k
Abstract:
Video generation models have achieved remarkable progress in the past year. The quality of AI video continues to improve, but at the cost of larger model size, increased data quantity, and greater demand for training compute. In this report, we present Open-Sora 2.0, a commercial-level video generation model trained for only $200k. With this model, we demonstrate that the cost of training a top-performing video generation model is highly controllable. We detail all techniques that contribute to this efficiency breakthrough, including data curation, model architecture, training strategy, and system optimization. According to human evaluation results and VBench scores, Open-Sora 2.0 is comparable to global leading video generation models including the open-source HunyuanVideo and the closed-source Runway Gen-3 Alpha. By making Open-Sora 2.0 fully open-source, we aim to democratize access to advanced video generation technology, fostering broader innovation and creativity in content creation. All resources are publicly available at: https://github.com/hpcaitech/Open-Sora.
Authors:Yifan Zhou, Zeqi Xiao, Shuai Yang, Xingang Pan
Title: Alias-Free Latent Diffusion Models: Improving Fractional Shift Equivariance of Diffusion Latent Space
Abstract:
Latent Diffusion Models (LDMs) are known to have an unstable generation process, where even small perturbations or shifts in the input noise can lead to significantly different outputs. This hinders their applicability in applications requiring consistent results. In this work, we redesign LDMs to enhance consistency by making them shift-equivariant. While introducing anti-aliasing operations can partially improve shift-equivariance, significant aliasing and inconsistency persist due to the unique challenges in LDMs, including 1) aliasing amplification during VAE training and multiple U-Net inferences, and 2) self-attention modules that inherently lack shift-equivariance. To address these issues, we redesign the attention modules to be shift-equivariant and propose an equivariance loss that effectively suppresses the frequency bandwidth of the features in the continuous domain. The resulting alias-free LDM (AF-LDM) achieves strong shift-equivariance and is also robust to irregular warping. Extensive experiments demonstrate that AF-LDM produces significantly more consistent results than vanilla LDM across various applications, including video editing and image-to-image translation.
Authors:Chengshu Zhao, Yunyang Ge, Xinhua Cheng, Bin Zhu, Yatian Pang, Bin Lin, Fan Yang, Feng Gao, Li Yuan
Title: SwapAnyone: Consistent and Realistic Video Synthesis for Swapping Any Person into Any Video
Abstract:
Video body-swapping aims to replace the body in an existing video with a new body from arbitrary sources, which has garnered more attention in recent years. Existing methods treat video body-swapping as a composite of multiple tasks instead of an independent task and typically rely on various models to achieve video body-swapping sequentially. However, these methods fail to achieve end-to-end optimization for the video body-swapping which causes issues such as variations in luminance among frames, disorganized occlusion relationships, and the noticeable separation between bodies and background. In this work, we define video body-swapping as an independent task and propose three critical consistencies: identity consistency, motion consistency, and environment consistency. We introduce an end-to-end model named SwapAnyone, treating video body-swapping as a video inpainting task with reference fidelity and motion control. To improve the ability to maintain environmental harmony, particularly luminance harmony in the resulting video, we introduce a novel EnvHarmony strategy for training our model progressively. Additionally, we provide a dataset named HumanAction-32K covering various videos about human actions. Extensive experiments demonstrate that our method achieves State-Of-The-Art (SOTA) performance among open-source methods while approaching or surpassing closed-source models across multiple dimensions. All code, model weights, and the HumanAction-32K dataset will be open-sourced at https://github.com/PKU-YuanGroup/SwapAnyone.
Authors:Alex Ergasti, Giuseppe Gabriele Tarollo, Filippo Botti, Tomaso Fontanini, Claudio Ferrari, Massimo Bertozzi, Andrea Prati
Title: $^R$FLAV: Rolling Flow matching for infinite Audio Video generation
Abstract:
Joint audio-video (AV) generation is still a significant challenge in generative AI, primarily due to three critical requirements: quality of the generated samples, seamless multimodal synchronization and temporal coherence, with audio tracks that match the visual data and vice versa, and limitless video duration. In this paper, we present $^R$-FLAV, a novel transformer-based architecture that addresses all the key challenges of AV generation. We explore three distinct cross modality interaction modules, with our lightweight temporal fusion module emerging as the most effective and computationally efficient approach for aligning audio and visual modalities. Our experimental results demonstrate that $^R$-FLAV outperforms existing state-of-the-art models in multimodal AV generation tasks. Our code and checkpoints are available at https://github.com/ErgastiAlex/R-FLAV.
Authors:Weijia Wu, Zeyu Zhu, Mike Zheng Shou
Title: Automated Movie Generation via Multi-Agent CoT Planning
Abstract:
Existing long-form video generation frameworks lack automated planning, requiring manual input for storylines, scenes, cinematography, and character interactions, resulting in high costs and inefficiencies. To address these challenges, we present MovieAgent, an automated movie generation via multi-agent Chain of Thought (CoT) planning. MovieAgent offers two key advantages: 1) We firstly explore and define the paradigm of automated movie/long-video generation. Given a script and character bank, our MovieAgent can generates multi-scene, multi-shot long-form videos with a coherent narrative, while ensuring character consistency, synchronized subtitles, and stable audio throughout the film. 2) MovieAgent introduces a hierarchical CoT-based reasoning process to automatically structure scenes, camera settings, and cinematography, significantly reducing human effort. By employing multiple LLM agents to simulate the roles of a director, screenwriter, storyboard artist, and location manager, MovieAgent streamlines the production pipeline. Experiments demonstrate that MovieAgent achieves new state-of-the-art results in script faithfulness, character consistency, and narrative coherence. Our hierarchical framework takes a step forward and provides new insights into fully automated movie generation. The code and project website are available at: https://github.com/showlab/MovieAgent and https://weijiawu.github.io/MovieAgent.
Authors:Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, Linfeng Zhang
Title: From Reusing to Forecasting: Accelerating Diffusion Models with TaylorSeers
Abstract:
Diffusion Transformers (DiT) have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. To solve this problem, feature caching has been proposed to accelerate diffusion models by caching the features in the previous timesteps and then reusing them in the following timesteps. However, at timesteps with significant intervals, the feature similarity in diffusion models decreases substantially, leading to a pronounced increase in errors introduced by feature caching, significantly harming the generation quality. To solve this problem, we propose TaylorSeer, which firstly shows that features of diffusion models at future timesteps can be predicted based on their values at previous timesteps. Based on the fact that features change slowly and continuously across timesteps, TaylorSeer employs a differential method to approximate the higher-order derivatives of features and predict features in future timesteps with Taylor series expansion. Extensive experiments demonstrate its significant effectiveness in both image and video synthesis, especially in high acceleration ratios. For instance, it achieves an almost lossless acceleration of 4.99$\times$ on FLUX and 5.00$\times$ on HunyuanVideo without additional training. On DiT, it achieves $3.41$ lower FID compared with previous SOTA at $4.53$$\times$ acceleration. %Our code is provided in the supplementary materials and will be made publicly available on GitHub. Our codes have been released in Github:https://github.com/Shenyi-Z/TaylorSeer
Authors:Junyi Wu, Zhiteng Li, Zheng Hui, Yulun Zhang, Linghe Kong, Xiaokang Yang
Title: QuantCache: Adaptive Importance-Guided Quantization with Hierarchical Latent and Layer Caching for Video Generation
Abstract:
Recently, Diffusion Transformers (DiTs) have emerged as a dominant architecture in video generation, surpassing U-Net-based models in terms of performance. However, the enhanced capabilities of DiTs come with significant drawbacks, including increased computational and memory costs, which hinder their deployment on resource-constrained devices. Current acceleration techniques, such as quantization and cache mechanism, offer limited speedup and are often applied in isolation, failing to fully address the complexities of DiT architectures. In this paper, we propose QuantCache, a novel training-free inference acceleration framework that jointly optimizes hierarchical latent caching, adaptive importance-guided quantization, and structural redundancy-aware pruning. QuantCache achieves an end-to-end latency speedup of 6.72$\times$ on Open-Sora with minimal loss in generation quality. Extensive experiments across multiple video generation benchmarks demonstrate the effectiveness of our method, setting a new standard for efficient DiT inference. The code and models will be available at https://github.com/JunyiWuCode/QuantCache.
Authors:Emanuele Bugliarello, Anurag Arnab, Roni Paiss, Pieter-Jan Kindermans, Cordelia Schmid
Title: What Are You Doing? A Closer Look at Controllable Human Video Generation
Abstract:
High-quality benchmarks are crucial for driving progress in machine learning research. However, despite the growing interest in video generation, there is no comprehensive dataset to evaluate human generation. Humans can perform a wide variety of actions and interactions, but existing datasets, like TikTok and TED-Talks, lack the diversity and complexity to fully capture the capabilities of video generation models. We close this gap by introducing `What Are You Doing?' (WYD): a new benchmark for fine-grained evaluation of controllable image-to-video generation of humans. WYD consists of 1{,}544 captioned videos that have been meticulously collected and annotated with 56 fine-grained categories. These allow us to systematically measure performance across 9 aspects of human generation, including actions, interactions and motion. We also propose and validate automatic metrics that leverage our annotations and better capture human evaluations. Equipped with our dataset and metrics, we perform in-depth analyses of seven state-of-the-art models in controllable image-to-video generation, showing how WYD provides novel insights about the capabilities of these models. We release our data and code to drive forward progress in human video generation modeling at https://github.com/google-deepmind/wyd-benchmark.
Authors:Aoxiong Yin, Kai Shen, Yichong Leng, Xu Tan, Xinyu Zhou, Juncheng Li, Siliang Tang
Title: The Best of Both Worlds: Integrating Language Models and Diffusion Models for Video Generation
Abstract:
Recent advancements in text-to-video (T2V) generation have been driven by two competing paradigms: autoregressive language models and diffusion models. However, each paradigm has intrinsic limitations: language models struggle with visual quality and error accumulation, while diffusion models lack semantic understanding and causal modeling. In this work, we propose LanDiff, a hybrid framework that synergizes the strengths of both paradigms through coarse-to-fine generation. Our architecture introduces three key innovations: (1) a semantic tokenizer that compresses 3D visual features into compact 1D discrete representations through efficient semantic compression, achieving a $\sim$14,000$\times$ compression ratio; (2) a language model that generates semantic tokens with high-level semantic relationships; (3) a streaming diffusion model that refines coarse semantics into high-fidelity videos. Experiments show that LanDiff, a 5B model, achieves a score of 85.43 on the VBench T2V benchmark, surpassing the state-of-the-art open-source models Hunyuan Video (13B) and other commercial models such as Sora, Kling, and Hailuo. Furthermore, our model also achieves state-of-the-art performance in long video generation, surpassing other open-source models in this field. Our demo can be viewed at https://landiff.github.io/.
Authors:Nianzu Yang, Pandeng Li, Liming Zhao, Yang Li, Chen-Wei Xie, Yehui Tang, Xudong Lu, Zhihang Liu, Yun Zheng, Yu Liu, Junchi Yan
Title: Rethinking Video Tokenization: A Conditioned Diffusion-based Approach
Abstract:
Existing video tokenizers typically use the traditional Variational Autoencoder (VAE) architecture for video compression and reconstruction. However, to achieve good performance, its training process often relies on complex multi-stage training tricks that go beyond basic reconstruction loss and KL regularization. Among these tricks, the most challenging is the precise tuning of adversarial training with additional Generative Adversarial Networks (GANs) in the final stage, which can hinder stable convergence. In contrast to GANs, diffusion models offer more stable training processes and can generate higher-quality results. Inspired by these advantages, we propose CDT, a novel Conditioned Diffusion-based video Tokenizer, that replaces the GAN-based decoder with a conditional causal diffusion model. The encoder compresses spatio-temporal information into compact latents, while the decoder reconstructs videos through a reverse diffusion process conditioned on these latents. During inference, we incorporate a feature cache mechanism to generate videos of arbitrary length while maintaining temporal continuity and adopt sampling acceleration technique to enhance efficiency. Trained using only a basic MSE diffusion loss for reconstruction, along with KL term and LPIPS perceptual loss from scratch, extensive experiments demonstrate that CDT achieves state-of-the-art performance in video reconstruction tasks with just a single-step sampling. Even a scaled-down version of CDT (3$\times$ inference speedup) still performs comparably with top baselines. Moreover, the latent video generation model trained with CDT also exhibits superior performance. The source code and pretrained weights are available at https://github.com/ali-vilab/CDT.
Authors:Zhao Yang, Zezhong Qian, Xiaofan Li, Weixiang Xu, Gongpeng Zhao, Ruohong Yu, Lingsi Zhu, Longjun Liu
Title: DualDiff+: Dual-Branch Diffusion for High-Fidelity Video Generation with Reward Guidance
Abstract:
Accurate and high-fidelity driving scene reconstruction demands the effective utilization of comprehensive scene information as conditional inputs. Existing methods predominantly rely on 3D bounding boxes and BEV road maps for foreground and background control, which fail to capture the full complexity of driving scenes and adequately integrate multimodal information. In this work, we present DualDiff, a dual-branch conditional diffusion model designed to enhance driving scene generation across multiple views and video sequences. Specifically, we introduce Occupancy Ray-shape Sampling (ORS) as a conditional input, offering rich foreground and background semantics alongside 3D spatial geometry to precisely control the generation of both elements. To improve the synthesis of fine-grained foreground objects, particularly complex and distant ones, we propose a Foreground-Aware Mask (FGM) denoising loss function. Additionally, we develop the Semantic Fusion Attention (SFA) mechanism to dynamically prioritize relevant information and suppress noise, enabling more effective multimodal fusion. Finally, to ensure high-quality image-to-video generation, we introduce the Reward-Guided Diffusion (RGD) framework, which maintains global consistency and semantic coherence in generated videos. Extensive experiments demonstrate that DualDiff achieves state-of-the-art (SOTA) performance across multiple datasets. On the NuScenes dataset, DualDiff reduces the FID score by 4.09% compared to the best baseline. In downstream tasks, such as BEV segmentation, our method improves vehicle mIoU by 4.50% and road mIoU by 1.70%, while in BEV 3D object detection, the foreground mAP increases by 1.46%. Code will be made available at https://github.com/yangzhaojason/DualDiff.
Authors:Zicheng Zhang, Tengchuan Kou, Shushi Wang, Chunyi Li, Wei Sun, Wei Wang, Xiaoyu Li, Zongyu Wang, Xuezhi Cao, Xiongkuo Min, Xiaohong Liu, Guangtao Zhai
Title: Q-Eval-100K: Evaluating Visual Quality and Alignment Level for Text-to-Vision Content
Abstract:
Evaluating text-to-vision content hinges on two crucial aspects: visual quality and alignment. While significant progress has been made in developing objective models to assess these dimensions, the performance of such models heavily relies on the scale and quality of human annotations. According to Scaling Law, increasing the number of human-labeled instances follows a predictable pattern that enhances the performance of evaluation models. Therefore, we introduce a comprehensive dataset designed to Evaluate Visual quality and Alignment Level for text-to-vision content (Q-EVAL-100K), featuring the largest collection of human-labeled Mean Opinion Scores (MOS) for the mentioned two aspects. The Q-EVAL-100K dataset encompasses both text-to-image and text-to-video models, with 960K human annotations specifically focused on visual quality and alignment for 100K instances (60K images and 40K videos). Leveraging this dataset with context prompt, we propose Q-Eval-Score, a unified model capable of evaluating both visual quality and alignment with special improvements for handling long-text prompt alignment. Experimental results indicate that the proposed Q-Eval-Score achieves superior performance on both visual quality and alignment, with strong generalization capabilities across other benchmarks. These findings highlight the significant value of the Q-EVAL-100K dataset. Data and codes will be available at https://github.com/zzc-1998/Q-Eval.
Authors:Wenhao Wang, Yi Yang
Title: VideoUFO: A Million-Scale User-Focused Dataset for Text-to-Video Generation
Abstract:
Text-to-video generative models convert textual prompts into dynamic visual content, offering wide-ranging applications in film production, gaming, and education. However, their real-world performance often falls short of user expectations. One key reason is that these models have not been trained on videos related to some topics users want to create. In this paper, we propose VideoUFO, the first Video dataset specifically curated to align with Users' FOcus in real-world scenarios. Beyond this, our VideoUFO also features: (1) minimal (0.29%) overlap with existing video datasets, and (2) videos searched exclusively via YouTube's official API under the Creative Commons license. These two attributes provide future researchers with greater freedom to broaden their training sources. The VideoUFO comprises over 1.09 million video clips, each paired with both a brief and a detailed caption (description). Specifically, through clustering, we first identify 1,291 user-focused topics from the million-scale real text-to-video prompt dataset, VidProM. Then, we use these topics to retrieve videos from YouTube, split the retrieved videos into clips, and generate both brief and detailed captions for each clip. After verifying the clips with specified topics, we are left with about 1.09 million video clips. Our experiments reveal that (1) current 16 text-to-video models do not achieve consistent performance across all user-focused topics; and (2) a simple model trained on VideoUFO outperforms others on worst-performing topics. The dataset and code are publicly available at https://huggingface.co/datasets/WenhaoWang/VideoUFO and https://github.com/WangWenhao0716/BenchUFO under the CC BY 4.0 License.
Authors:Xiuli Bi, Jianfei Yuan, Bo Liu, Yong Zhang, Xiaodong Cun, Chi-Man Pun, Bin Xiao
Title: Mobius: Text to Seamless Looping Video Generation via Latent Shift
Abstract:
We present Mobius, a novel method to generate seamlessly looping videos from text descriptions directly without any user annotations, thereby creating new visual materials for the multi-media presentation. Our method repurposes the pre-trained video latent diffusion model for generating looping videos from text prompts without any training. During inference, we first construct a latent cycle by connecting the starting and ending noise of the videos. Given that the temporal consistency can be maintained by the context of the video diffusion model, we perform multi-frame latent denoising by gradually shifting the first-frame latent to the end in each step. As a result, the denoising context varies in each step while maintaining consistency throughout the inference process. Moreover, the latent cycle in our method can be of any length. This extends our latent-shifting approach to generate seamless looping videos beyond the scope of the video diffusion model's context. Unlike previous cinemagraphs, the proposed method does not require an image as appearance, which will restrict the motions of the generated results. Instead, our method can produce more dynamic motion and better visual quality. We conduct multiple experiments and comparisons to verify the effectiveness of the proposed method, demonstrating its efficacy in different scenarios. All the code will be made available.
Authors:Yuhao Li, Mirana Claire Angel, Salman Khan, Yu Zhu, Jinqiu Sun, Yanning Zhang, Fahad Shahbaz Khan
Title: C-Drag: Chain-of-Thought Driven Motion Controller for Video Generation
Abstract:
Trajectory-based motion control has emerged as an intuitive and efficient approach for controllable video generation. However, the existing trajectory-based approaches are usually limited to only generating the motion trajectory of the controlled object and ignoring the dynamic interactions between the controlled object and its surroundings. To address this limitation, we propose a Chain-of-Thought-based motion controller for controllable video generation, named C-Drag. Instead of directly generating the motion of some objects, our C-Drag first performs object perception and then reasons the dynamic interactions between different objects according to the given motion control of the objects. Specifically, our method includes an object perception module and a Chain-of-Thought-based motion reasoning module. The object perception module employs visual language models to capture the position and category information of various objects within the image. The Chain-of-Thought-based motion reasoning module takes this information as input and conducts a stage-wise reasoning process to generate motion trajectories for each of the affected objects, which are subsequently fed to the diffusion model for video synthesis. Furthermore, we introduce a new video object interaction (VOI) dataset to evaluate the generation quality of motion controlled video generation methods. Our VOI dataset contains three typical types of interactions and provides the motion trajectories of objects that can be used for accurate performance evaluation. Experimental results show that C-Drag achieves promising performance across multiple metrics, excelling in object motion control. Our benchmark, codes, and models will be available at https://github.com/WesLee88524/C-Drag-Official-Repo.
Authors:Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, Jianfei Chen
Title: SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference
Abstract:
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
Authors:Zhong Li, Qi Huang, Lincen Yang, Jiayang Shi, Zhao Yang, Niki van Stein, Thomas Bäck, Matthijs van Leeuwen
Title: Diffusion Models for Tabular Data: Challenges, Current Progress, and Future Directions
Abstract:
In recent years, generative models have achieved remarkable performance across diverse applications, including image generation, text synthesis, audio creation, video generation, and data augmentation. Diffusion models have emerged as superior alternatives to Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) by addressing their limitations, such as training instability, mode collapse, and poor representation of multimodal distributions. This success has spurred widespread research interest. In the domain of tabular data, diffusion models have begun to showcase similar advantages over GANs and VAEs, achieving significant performance breakthroughs and demonstrating their potential for addressing unique challenges in tabular data modeling. However, while domains like images and time series have numerous surveys summarizing advancements in diffusion models, there remains a notable gap in the literature for tabular data. Despite the increasing interest in diffusion models for tabular data, there has been little effort to systematically review and summarize these developments. This lack of a dedicated survey limits a clear understanding of the challenges, progress, and future directions in this critical area. This survey addresses this gap by providing a comprehensive review of diffusion models for tabular data. Covering works from June 2015, when diffusion models emerged, to December 2024, we analyze nearly all relevant studies, with updates maintained in a \href{https://github.com/Diffusion-Model-Leiden/awesome-diffusion-models-for-tabular-data}{GitHub repository}. Assuming readers possess foundational knowledge of statistics and diffusion models, we employ mathematical formulations to deliver a rigorous and detailed review, aiming to promote developments in this emerging and exciting area.
Authors:Florent Bartoccioni, Elias Ramzi, Victor Besnier, Shashanka Venkataramanan, Tuan-Hung Vu, Yihong Xu, Loick Chambon, Spyros Gidaris, Serkan Odabas, David Hurych, Renaud Marlet, Alexandre Boulch, Mickael Chen, Éloi Zablocki, Andrei Bursuc, Eduardo Valle, Matthieu Cord
Title: VaViM and VaVAM: Autonomous Driving through Video Generative Modeling
Abstract:
We explore the potential of large-scale generative video models for autonomous driving, introducing an open-source auto-regressive video model (VaViM) and its companion video-action model (VaVAM) to investigate how video pre-training transfers to real-world driving. VaViM is a simple auto-regressive video model that predicts frames using spatio-temporal token sequences. We show that it captures the semantics and dynamics of driving scenes. VaVAM, the video-action model, leverages the learned representations of VaViM to generate driving trajectories through imitation learning. Together, the models form a complete perception-to-action pipeline. We evaluate our models in open- and closed-loop driving scenarios, revealing that video-based pre-training holds promise for autonomous driving. Key insights include the semantic richness of the learned representations, the benefits of scaling for video synthesis, and the complex relationship between model size, data, and safety metrics in closed-loop evaluations. We release code and model weights at https://github.com/valeoai/VideoActionModel
Authors:Ivan Skorokhodov, Sharath Girish, Benran Hu, Willi Menapace, Yanyu Li, Rameen Abdal, Sergey Tulyakov, Aliaksandr Siarohin
Title: Improving the Diffusability of Autoencoders
Abstract:
Latent diffusion models have emerged as the leading approach for generating high-quality images and videos, utilizing compressed latent representations to reduce the computational burden of the diffusion process. While recent advancements have primarily focused on scaling diffusion backbones and improving autoencoder reconstruction quality, the interaction between these components has received comparatively less attention. In this work, we perform a spectral analysis of modern autoencoders and identify inordinate high-frequency components in their latent spaces, which are especially pronounced in the autoencoders with a large bottleneck channel size. We hypothesize that this high-frequency component interferes with the coarse-to-fine nature of the diffusion synthesis process and hinders the generation quality. To mitigate the issue, we propose scale equivariance: a simple regularization strategy that aligns latent and RGB spaces across frequencies by enforcing scale equivariance in the decoder. It requires minimal code changes and only up to 20K autoencoder fine-tuning steps, yet significantly improves generation quality, reducing FID by 19% for image generation on ImageNet-1K $256^2$ and FVD by at least 44% for video generation on Kinetics-700 $17 \times 256^2$. The source code is available at https://github.com/snap-research/diffusability.
Authors:Ke Cao, Jing Wang, Ao Ma, Jiasong Feng, Zhanjie Zhang, Xuanhua He, Shanyuan Liu, Bo Cheng, Dawei Leng, Yuhui Yin, Jie Zhang
Title: RelaCtrl: Relevance-Guided Efficient Control for Diffusion Transformers
Abstract:
The Diffusion Transformer plays a pivotal role in advancing text-to-image and text-to-video generation, owing primarily to its inherent scalability. However, existing controlled diffusion transformer methods incur significant parameter and computational overheads and suffer from inefficient resource allocation due to their failure to account for the varying relevance of control information across different transformer layers. To address this, we propose the Relevance-Guided Efficient Controllable Generation framework, RelaCtrl, enabling efficient and resource-optimized integration of control signals into the Diffusion Transformer. First, we evaluate the relevance of each layer in the Diffusion Transformer to the control information by assessing the "ControlNet Relevance Score"-i.e., the impact of skipping each control layer on both the quality of generation and the control effectiveness during inference. Based on the strength of the relevance, we then tailor the positioning, parameter scale, and modeling capacity of the control layers to reduce unnecessary parameters and redundant computations. Additionally, to further improve efficiency, we replace the self-attention and FFN in the commonly used copy block with the carefully designed Two-Dimensional Shuffle Mixer (TDSM), enabling efficient implementation of both the token mixer and channel mixer. Both qualitative and quantitative experimental results demonstrate that our approach achieves superior performance with only 15% of the parameters and computational complexity compared to PixArt-delta.
Authors:Xinlong Chen, Yuanxing Zhang, Chongling Rao, Yushuo Guan, Jiaheng Liu, Fuzheng Zhang, Chengru Song, Qiang Liu, Di Zhang, Tieniu Tan
Title: VidCapBench: A Comprehensive Benchmark of Video Captioning for Controllable Text-to-Video Generation
Abstract:
The training of controllable text-to-video (T2V) models relies heavily on the alignment between videos and captions, yet little existing research connects video caption evaluation with T2V generation assessment. This paper introduces VidCapBench, a video caption evaluation scheme specifically designed for T2V generation, agnostic to any particular caption format. VidCapBench employs a data annotation pipeline, combining expert model labeling and human refinement, to associate each collected video with key information spanning video aesthetics, content, motion, and physical laws. VidCapBench then partitions these key information attributes into automatically assessable and manually assessable subsets, catering to both the rapid evaluation needs of agile development and the accuracy requirements of thorough validation. By evaluating numerous state-of-the-art captioning models, we demonstrate the superior stability and comprehensiveness of VidCapBench compared to existing video captioning evaluation approaches. Verification with off-the-shelf T2V models reveals a significant positive correlation between scores on VidCapBench and the T2V quality evaluation metrics, indicating that VidCapBench can provide valuable guidance for training T2V models. The project is available at https://github.com/VidCapBench/VidCapBench.
Authors:Florian Sestak, Artur Toshev, Andreas Fürst, Günter Klambauer, Andreas Mayr, Johannes Brandstetter
Title: LaM-SLidE: Latent Space Modeling of Spatial Dynamical Systems via Linked Entities
Abstract:
Generative models are spearheading recent progress in deep learning, showcasing strong promise for trajectory sampling in dynamical systems as well. However, whereas latent space modeling paradigms have transformed image and video generation, similar approaches are more difficult for most dynamical systems. Such systems -- from chemical molecule structures to collective human behavior -- are described by interactions of entities, making them inherently linked to connectivity patterns, entity conservation, and the traceability of entities over time. Our approach, LaM-SLidE (Latent Space Modeling of Spatial Dynamical Systems via Linked Entities), bridges the gap between: (1) keeping the traceability of individual entities in a latent system representation, and (2) leveraging the efficiency and scalability of recent advances in image and video generation, where pre-trained encoder and decoder enable generative modeling directly in latent space. The core idea of LaM-SLidE is the introduction of identifier representations (IDs) that enable the retrieval of entity properties and entity composition from latent system representations, thus fostering traceability. Experimentally, across different domains, we show that LaM-SLidE performs favorably in terms of speed, accuracy, and generalizability. Code is available at https://github.com/ml-jku/LaM-SLidE .
Authors:Guoqing Ma, Haoyang Huang, Kun Yan, Liangyu Chen, Nan Duan, Shengming Yin, Changyi Wan, Ranchen Ming, Xiaoniu Song, Xing Chen, Yu Zhou, Deshan Sun, Deyu Zhou, Jian Zhou, Kaijun Tan, Kang An, Mei Chen, Wei Ji, Qiling Wu, Wen Sun, Xin Han, Yanan Wei, Zheng Ge, Aojie Li, Bin Wang, Bizhu Huang, Bo Wang, Brian Li, Changxing Miao, Chen Xu, Chenfei Wu, Chenguang Yu, Dapeng Shi, Dingyuan Hu, Enle Liu, Gang Yu, Ge Yang, Guanzhe Huang, Gulin Yan, Haiyang Feng, Hao Nie, Haonan Jia, Hanpeng Hu, Hanqi Chen, Haolong Yan, Heng Wang, Hongcheng Guo, Huilin Xiong, Huixin Xiong, Jiahao Gong, Jianchang Wu, Jiaoren Wu, Jie Wu, Jie Yang, Jiashuai Liu, Jiashuo Li, Jingyang Zhang, Junjing Guo, Junzhe Lin, Kaixiang Li, Lei Liu, Lei Xia, Liang Zhao, Liguo Tan, Liwen Huang, Liying Shi, Ming Li, Mingliang Li, Muhua Cheng, Na Wang, Qiaohui Chen, Qinglin He, Qiuyan Liang, Quan Sun, Ran Sun, Rui Wang, Shaoliang Pang, Shiliang Yang, Sitong Liu, Siqi Liu, Shuli Gao, Tiancheng Cao, Tianyu Wang, Weipeng Ming, Wenqing He, Xu Zhao, Xuelin Zhang, Xianfang Zeng, Xiaojia Liu, Xuan Yang, Yaqi Dai, Yanbo Yu, Yang Li, Yineng Deng, Yingming Wang, Yilei Wang, Yuanwei Lu, Yu Chen, Yu Luo, Yuchu Luo, Yuhe Yin, Yuheng Feng, Yuxiang Yang, Zecheng Tang, Zekai Zhang, Zidong Yang, Binxing Jiao, Jiansheng Chen, Jing Li, Shuchang Zhou, Xiangyu Zhang, Xinhao Zhang, Yibo Zhu, Heung-Yeung Shum, Daxin Jiang
Title: Step-Video-T2V Technical Report: The Practice, Challenges, and Future of Video Foundation Model
Abstract:
We present Step-Video-T2V, a state-of-the-art text-to-video pre-trained model with 30B parameters and the ability to generate videos up to 204 frames in length. A deep compression Variational Autoencoder, Video-VAE, is designed for video generation tasks, achieving 16x16 spatial and 8x temporal compression ratios, while maintaining exceptional video reconstruction quality. User prompts are encoded using two bilingual text encoders to handle both English and Chinese. A DiT with 3D full attention is trained using Flow Matching and is employed to denoise input noise into latent frames. A video-based DPO approach, Video-DPO, is applied to reduce artifacts and improve the visual quality of the generated videos. We also detail our training strategies and share key observations and insights. Step-Video-T2V's performance is evaluated on a novel video generation benchmark, Step-Video-T2V-Eval, demonstrating its state-of-the-art text-to-video quality when compared with both open-source and commercial engines. Additionally, we discuss the limitations of current diffusion-based model paradigm and outline future directions for video foundation models. We make both Step-Video-T2V and Step-Video-T2V-Eval available at https://github.com/stepfun-ai/Step-Video-T2V. The online version can be accessed from https://yuewen.cn/videos as well. Our goal is to accelerate the innovation of video foundation models and empower video content creators.
Authors:Wonjoon Jin, Qi Dai, Chong Luo, Seung-Hwan Baek, Sunghyun Cho
Title: FloVD: Optical Flow Meets Video Diffusion Model for Enhanced Camera-Controlled Video Synthesis
Abstract:
We present FloVD, a novel video diffusion model for camera-controllable video generation. FloVD leverages optical flow to represent the motions of the camera and moving objects. This approach offers two key benefits. Since optical flow can be directly estimated from videos, our approach allows for the use of arbitrary training videos without ground-truth camera parameters. Moreover, as background optical flow encodes 3D correlation across different viewpoints, our method enables detailed camera control by leveraging the background motion. To synthesize natural object motion while supporting detailed camera control, our framework adopts a two-stage video synthesis pipeline consisting of optical flow generation and flow-conditioned video synthesis. Extensive experiments demonstrate the superiority of our method over previous approaches in terms of accurate camera control and natural object motion synthesis.
Authors:Yilu Wu, Chenhui Zhu, Shuai Wang, Hanlin Wang, Jing Wang, Zhaoxiang Zhang, Limin Wang
Title: Learning Human Skill Generators at Key-Step Levels
Abstract:
We are committed to learning human skill generators at key-step levels. The generation of skills is a challenging endeavor, but its successful implementation could greatly facilitate human skill learning and provide more experience for embodied intelligence. Although current video generation models can synthesis simple and atomic human operations, they struggle with human skills due to their complex procedure process. Human skills involve multi-step, long-duration actions and complex scene transitions, so the existing naive auto-regressive methods for synthesizing long videos cannot generate human skills. To address this, we propose a novel task, the Key-step Skill Generation (KS-Gen), aimed at reducing the complexity of generating human skill videos. Given the initial state and a skill description, the task is to generate video clips of key steps to complete the skill, rather than a full-length video. To support this task, we introduce a carefully curated dataset and define multiple evaluation metrics to assess performance. Considering the complexity of KS-Gen, we propose a new framework for this task. First, a multimodal large language model (MLLM) generates descriptions for key steps using retrieval argument. Subsequently, we use a Key-step Image Generator (KIG) to address the discontinuity between key steps in skill videos. Finally, a video generation model uses these descriptions and key-step images to generate video clips of the key steps with high temporal consistency. We offer a detailed analysis of the results, hoping to provide more insights on human skill generation. All models and data are available at https://github.com/MCG-NJU/KS-Gen.
Authors:Hongwei Yi, Shitong Shao, Tian Ye, Jiantong Zhao, Qingyu Yin, Michael Lingelbach, Li Yuan, Yonghong Tian, Enze Xie, Daquan Zhou
Title: Magic 1-For-1: Generating One Minute Video Clips within One Minute
Abstract:
In this technical report, we present Magic 1-For-1 (Magic141), an efficient video generation model with optimized memory consumption and inference latency. The key idea is simple: factorize the text-to-video generation task into two separate easier tasks for diffusion step distillation, namely text-to-image generation and image-to-video generation. We verify that with the same optimization algorithm, the image-to-video task is indeed easier to converge over the text-to-video task. We also explore a bag of optimization tricks to reduce the computational cost of training the image-to-video (I2V) models from three aspects: 1) model convergence speedup by using a multi-modal prior condition injection; 2) inference latency speed up by applying an adversarial step distillation, and 3) inference memory cost optimization with parameter sparsification. With those techniques, we are able to generate 5-second video clips within 3 seconds. By applying a test time sliding window, we are able to generate a minute-long video within one minute with significantly improved visual quality and motion dynamics, spending less than 1 second for generating 1 second video clips on average. We conduct a series of preliminary explorations to find out the optimal tradeoff between computational cost and video quality during diffusion step distillation and hope this could be a good foundation model for open-source explorations. The code and the model weights are available at https://github.com/DA-Group-PKU/Magic-1-For-1.
Authors:Behzad Hejrati, Soumyanil Banerjee, Carri Glide-Hurst, Ming Dong
Title: Conditional diffusion model with spatial attention and latent embedding for medical image segmentation
Abstract:
Diffusion models have been used extensively for high quality image and video generation tasks. In this paper, we propose a novel conditional diffusion model with spatial attention and latent embedding (cDAL) for medical image segmentation. In cDAL, a convolutional neural network (CNN) based discriminator is used at every time-step of the diffusion process to distinguish between the generated labels and the real ones. A spatial attention map is computed based on the features learned by the discriminator to help cDAL generate more accurate segmentation of discriminative regions in an input image. Additionally, we incorporated a random latent embedding into each layer of our model to significantly reduce the number of training and sampling time-steps, thereby making it much faster than other diffusion models for image segmentation. We applied cDAL on 3 publicly available medical image segmentation datasets (MoNuSeg, Chest X-ray and Hippocampus) and observed significant qualitative and quantitative improvements with higher Dice scores and mIoU over the state-of-the-art algorithms. The source code is publicly available at https://github.com/Hejrati/cDAL/.
Authors:Yongfan Chen, Xiuwen Zhu, Tianyu Li
Title: A Physical Coherence Benchmark for Evaluating Video Generation Models via Optical Flow-guided Frame Prediction
Abstract:
Recent advances in video generation models demonstrate their potential as world simulators, but they often struggle with videos deviating from physical laws, a key concern overlooked by most text-to-video benchmarks. We introduce a benchmark designed specifically to assess the Physical Coherence of generated videos, PhyCoBench. Our benchmark includes 120 prompts covering 7 categories of physical principles, capturing key physical laws observable in video content. We evaluated four state-of-the-art (SoTA) T2V models on PhyCoBench and conducted manual assessments. Additionally, we propose an automated evaluation model: PhyCoPredictor, a diffusion model that generates optical flow and video frames in a cascade manner. Through a consistency evaluation comparing automated and manual sorting, the experimental results show that PhyCoPredictor currently aligns most closely with human evaluation. Therefore, it can effectively evaluate the physical coherence of videos, providing insights for future model optimization. Our benchmark, including physical coherence prompts, the automatic evaluation tool PhyCoPredictor, and the generated video dataset, has been released on GitHub at https://github.com/Jeckinchen/PhyCoBench.
Authors:Shuheng Zhang, Yuqi Liu, Hongbo Zhou, Jun Peng, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji
Title: AdaFlow: Efficient Long Video Editing via Adaptive Attention Slimming And Keyframe Selection
Abstract:
Despite great progress, text-driven long video editing is still notoriously challenging mainly due to excessive memory overhead. Although recent efforts have simplified this task into a two-step process of keyframe translation and interpolation generation, the token-wise keyframe translation still plagues the upper limit of video length. In this paper, we propose a novel and training-free approach towards efficient and effective long video editing, termed AdaFlow. We first reveal that not all tokens of video frames hold equal importance for keyframe translation, based on which we propose an Adaptive Attention Slimming scheme for AdaFlow to squeeze the $KV$ sequence, thus increasing the number of keyframes for translations by an order of magnitude. In addition, an Adaptive Keyframe Selection scheme is also equipped to select the representative frames for joint editing, further improving generation quality. With these innovative designs, AdaFlow achieves high-quality long video editing of minutes in one inference, i.e., more than 1$k$ frames on one A800 GPU, which is about ten times longer than the compared methods, e.g., TokenFlow. To validate AdaFlow, we also build a new benchmark for long video editing with high-quality annotations, termed LongV-EVAL. Our code is released at: https://github.com/jidantang55/AdaFlow.
Authors:Shilong Zhang, Wenbo Li, Shoufa Chen, Chongjian Ge, Peize Sun, Yida Zhang, Yi Jiang, Zehuan Yuan, Binyue Peng, Ping Luo
Title: FlashVideo: Flowing Fidelity to Detail for Efficient High-Resolution Video Generation
Abstract:
DiT diffusion models have achieved great success in text-to-video generation, leveraging their scalability in model capacity and data scale. High content and motion fidelity aligned with text prompts, however, often require large model parameters and a substantial number of function evaluations (NFEs). Realistic and visually appealing details are typically reflected in high resolution outputs, further amplifying computational demands especially for single stage DiT models. To address these challenges, we propose a novel two stage framework, FlashVideo, which strategically allocates model capacity and NFEs across stages to balance generation fidelity and quality. In the first stage, prompt fidelity is prioritized through a low resolution generation process utilizing large parameters and sufficient NFEs to enhance computational efficiency. The second stage establishes flow matching between low and high resolutions, effectively generating fine details with minimal NFEs. Quantitative and visual results demonstrate that FlashVideo achieves state-of-the-art high resolution video generation with superior computational efficiency. Additionally, the two-stage design enables users to preview the initial output and accordingly adjust the prompt before committing to full-resolution generation, thereby significantly reducing computational costs and wait times as well as enhancing commercial viability.
Authors:Peiyuan Zhang, Yongqi Chen, Runlong Su, Hangliang Ding, Ion Stoica, Zhengzhong Liu, Hao Zhang
Title: Fast Video Generation with Sliding Tile Attention
Abstract:
Diffusion Transformers (DiTs) with 3D full attention power state-of-the-art video generation, but suffer from prohibitive compute cost -- when generating just a 5-second 720P video, attention alone takes 800 out of 945 seconds of total inference time. This paper introduces sliding tile attention (STA) to address this challenge. STA leverages the observation that attention scores in pretrained video diffusion models predominantly concentrate within localized 3D windows. By sliding and attending over the local spatial-temporal region, STA eliminates redundancy from full attention. Unlike traditional token-wise sliding window attention (SWA), STA operates tile-by-tile with a novel hardware-aware sliding window design, preserving expressiveness while being hardware-efficient. With careful kernel-level optimizations, STA offers the first efficient 2D/3D sliding-window-like attention implementation, achieving 58.79% MFU. Precisely, STA accelerates attention by 2.8-17x over FlashAttention-2 (FA2) and 1.6-10x over FlashAttention-3 (FA3). On the leading video DiT, HunyuanVideo, STA reduces end-to-end latency from 945s (FA3) to 685s without quality degradation, requiring no training. Enabling finetuning further lowers latency to 268s with only a 0.09% drop on VBench. We make our codebase public at https://github.com/hao-ai-lab/FastVideo.
Authors:Bosung Kim, Kyuhwan Lee, Isu Jeong, Jungmin Cheon, Yeojin Lee, Seulki Lee
Title: On-device Sora: Enabling Training-Free Diffusion-based Text-to-Video Generation for Mobile Devices
Abstract:
We present On-device Sora, the first model training-free solution for diffusion-based on-device text-to-video generation that operates efficiently on smartphone-grade devices. To address the challenges of diffusion-based text-to-video generation on computation- and memory-limited mobile devices, the proposed On-device Sora applies three novel techniques to pre-trained video generative models. First, Linear Proportional Leap (LPL) reduces the excessive denoising steps required in video diffusion through an efficient leap-based approach. Second, Temporal Dimension Token Merging (TDTM) minimizes intensive token-processing computation in attention layers by merging consecutive tokens along the temporal dimension. Third, Concurrent Inference with Dynamic Loading (CI-DL) dynamically partitions large models into smaller blocks and loads them into memory for concurrent model inference, effectively addressing the challenges of limited device memory. We implement On-device Sora on the iPhone 15 Pro, and the experimental evaluations show that it is capable of generating high-quality videos on the device, comparable to those produced by high-end GPUs. These results show that On-device Sora enables efficient and high-quality video generation on resource-constrained mobile devices. We envision the proposed On-device Sora as a significant first step toward democratizing state-of-the-art generative technologies, enabling video generation on commodity mobile and embedded devices without resource-intensive re-training for model optimization (compression). The code implementation is available at a GitHub repository(https://github.com/eai-lab/On-device-Sora).
Authors:Shangkun Sun, Xiaoyu Liang, Bowen Qu, Wei Gao
Title: Content-Rich AIGC Video Quality Assessment via Intricate Text Alignment and Motion-Aware Consistency
Abstract:
The advent of next-generation video generation models like \textit{Sora} poses challenges for AI-generated content (AIGC) video quality assessment (VQA). These models substantially mitigate flickering artifacts prevalent in prior models, enable longer and complex text prompts and generate longer videos with intricate, diverse motion patterns. Conventional VQA methods designed for simple text and basic motion patterns struggle to evaluate these content-rich videos. To this end, we propose \textbf{CRAVE} (\underline{C}ontent-\underline{R}ich \underline{A}IGC \underline{V}ideo \underline{E}valuator), specifically for the evaluation of Sora-era AIGC videos. CRAVE proposes the multi-granularity text-temporal fusion that aligns long-form complex textual semantics with video dynamics. Additionally, CRAVE leverages the hybrid motion-fidelity modeling to assess temporal artifacts. Furthermore, given the straightforward prompts and content in current AIGC VQA datasets, we introduce \textbf{CRAVE-DB}, a benchmark featuring content-rich videos from next-generation models paired with elaborate prompts. Extensive experiments have shown that the proposed CRAVE achieves excellent results on multiple AIGC VQA benchmarks, demonstrating a high degree of alignment with human perception. All data and code will be publicly available at https://github.com/littlespray/CRAVE.
Authors:Zhengtong Xu, Qiang Qiu, Yu She
Title: VILP: Imitation Learning with Latent Video Planning
Abstract:
In the era of generative AI, integrating video generation models into robotics opens new possibilities for the general-purpose robot agent. This paper introduces imitation learning with latent video planning (VILP). We propose a latent video diffusion model to generate predictive robot videos that adhere to temporal consistency to a good degree. Our method is able to generate highly time-aligned videos from multiple views, which is crucial for robot policy learning. Our video generation model is highly time-efficient. For example, it can generate videos from two distinct perspectives, each consisting of six frames with a resolution of 96x160 pixels, at a rate of 5 Hz. In the experiments, we demonstrate that VILP outperforms the existing video generation robot policy across several metrics: training costs, inference speed, temporal consistency of generated videos, and the performance of the policy. We also compared our method with other imitation learning methods. Our findings indicate that VILP can rely less on extensive high-quality task-specific robot action data while still maintaining robust performance. In addition, VILP possesses robust capabilities in representing multi-modal action distributions. Our paper provides a practical example of how to effectively integrate video generation models into robot policies, potentially offering insights for related fields and directions. For more details, please refer to our open-source repository https://github.com/ZhengtongXu/VILP.
Authors:Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai, Jintao Zhang, Dacheng Li, Jianfei Chen, Ion Stoica, Kurt Keutzer, Song Han
Title: Sparse VideoGen: Accelerating Video Diffusion Transformers with Spatial-Temporal Sparsity
Abstract:
Diffusion Transformers (DiTs) dominate video generation but their high computational cost severely limits real-world applicability, usually requiring tens of minutes to generate a few seconds of video even on high-performance GPUs. This inefficiency primarily arises from the quadratic computational complexity of 3D Full Attention with respect to the context length. In this paper, we propose a training-free framework termed Sparse VideoGen (SVG) that leverages the inherent sparsity in 3D Full Attention to boost inference efficiency. We reveal that the attention heads can be dynamically classified into two groups depending on distinct sparse patterns: (1) Spatial Head, where only spatially-related tokens within each frame dominate the attention output, and (2) Temporal Head, where only temporally-related tokens across different frames dominate. Based on this insight, SVG proposes an online profiling strategy to capture the dynamic sparse patterns and predicts the type of attention head. Combined with a novel hardware-efficient tensor layout transformation and customized kernel implementations, SVG achieves up to 2.28x and 2.33x end-to-end speedup on CogVideoX-v1.5 and HunyuanVideo, respectively, while preserving generation quality. Our code is open-sourced and is available at https://github.com/svg-project/Sparse-VideoGen
Authors:Quan Dao, Khanh Doan, Di Liu, Trung Le, Dimitris Metaxas
Title: Improved Training Technique for Latent Consistency Models
Abstract:
Consistency models are a new family of generative models capable of producing high-quality samples in either a single step or multiple steps. Recently, consistency models have demonstrated impressive performance, achieving results on par with diffusion models in the pixel space. However, the success of scaling consistency training to large-scale datasets, particularly for text-to-image and video generation tasks, is determined by performance in the latent space. In this work, we analyze the statistical differences between pixel and latent spaces, discovering that latent data often contains highly impulsive outliers, which significantly degrade the performance of iCT in the latent space. To address this, we replace Pseudo-Huber losses with Cauchy losses, effectively mitigating the impact of outliers. Additionally, we introduce a diffusion loss at early timesteps and employ optimal transport (OT) coupling to further enhance performance. Lastly, we introduce the adaptive scaling-$c$ scheduler to manage the robust training process and adopt Non-scaling LayerNorm in the architecture to better capture the statistics of the features and reduce outlier impact. With these strategies, we successfully train latent consistency models capable of high-quality sampling with one or two steps, significantly narrowing the performance gap between latent consistency and diffusion models. The implementation is released here: https://github.com/quandao10/sLCT/
Authors:Yuta Oshima, Masahiro Suzuki, Yutaka Matsuo, Hiroki Furuta
Title: Inference-Time Text-to-Video Alignment with Diffusion Latent Beam Search
Abstract:
The remarkable progress in text-to-video diffusion models enables photorealistic generations, although the contents of the generated video often include unnatural movement or deformation, reverse playback, and motionless scenes. Recently, an alignment problem has attracted huge attention, where we steer the output of diffusion models based on some quantity on the goodness of the content. Because there is a large room for improvement of perceptual quality along the frame direction, we should address which metrics we should optimize and how we can optimize them in the video generation. In this paper, we propose diffusion latent beam search with lookahead estimator, which can select a better diffusion latent to maximize a given alignment reward, at inference time. We then point out that the improvement of perceptual video quality considering the alignment to prompts requires reward calibration by weighting existing metrics. This is because when humans or vision language models evaluate outputs, many previous metrics to quantify the naturalness of video do not always correlate with evaluation. We demonstrate that our method improves the perceptual quality evaluated on the calibrated reward, VLMs, and human assessment, without model parameter update, and outputs the best generation compared to greedy search and best-of-N sampling under much more efficient computational cost. The experiments highlight that our method is beneficial to many capable generative models, and provide a practical guideline that we should prioritize the inference-time compute allocation into lookahead steps for reward estimation over search budget or denoising steps.
Authors:Wenfeng Lin, Jiangchuan Wei, Boyuan Liu, Yichen Zhang, Shiyue Yan, Mingyu Guo
Title: CascadeV: An Implementation of Wurstchen Architecture for Video Generation
Abstract:
Recently, with the tremendous success of diffusion models in the field of text-to-image (T2I) generation, increasing attention has been directed toward their potential in text-to-video (T2V) applications. However, the computational demands of diffusion models pose significant challenges, particularly in generating high-resolution videos with high frame rates. In this paper, we propose CascadeV, a cascaded latent diffusion model (LDM), that is capable of producing state-of-the-art 2K resolution videos. Experiments demonstrate that our cascaded model achieves a higher compression ratio, substantially reducing the computational challenges associated with high-quality video generation. We also implement a spatiotemporal alternating grid 3D attention mechanism, which effectively integrates spatial and temporal information, ensuring superior consistency across the generated video frames. Furthermore, our model can be cascaded with existing T2V models, theoretically enabling a 4$\times$ increase in resolution or frames per second without any fine-tuning. Our code is available at https://github.com/bytedance/CascadeV.
Authors:Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, Tianwei Zhang
Title: VideoShield: Regulating Diffusion-based Video Generation Models via Watermarking
Abstract:
Artificial Intelligence Generated Content (AIGC) has advanced significantly, particularly with the development of video generation models such as text-to-video (T2V) models and image-to-video (I2V) models. However, like other AIGC types, video generation requires robust content control. A common approach is to embed watermarks, but most research has focused on images, with limited attention given to videos. Traditional methods, which embed watermarks frame-by-frame in a post-processing manner, often degrade video quality. In this paper, we propose VideoShield, a novel watermarking framework specifically designed for popular diffusion-based video generation models. Unlike post-processing methods, VideoShield embeds watermarks directly during video generation, eliminating the need for additional training. To ensure video integrity, we introduce a tamper localization feature that can detect changes both temporally (across frames) and spatially (within individual frames). Our method maps watermark bits to template bits, which are then used to generate watermarked noise during the denoising process. Using DDIM Inversion, we can reverse the video to its original watermarked noise, enabling straightforward watermark extraction. Additionally, template bits allow precise detection for potential temporal and spatial modification. Extensive experiments across various video models (both T2V and I2V models) demonstrate that our method effectively extracts watermarks and detects tamper without compromising video quality. Furthermore, we show that this approach is applicable to image generation models, enabling tamper detection in generated images as well. Codes and models are available at https://github.com/hurunyi/VideoShield.
Authors:Saman Motamed, Laura Culp, Kevin Swersky, Priyank Jaini, Robert Geirhos
Title: Do generative video models understand physical principles?
Abstract:
AI video generation is undergoing a revolution, with quality and realism advancing rapidly. These advances have led to a passionate scientific debate: Do video models learn "world models" that discover laws of physics -- or, alternatively, are they merely sophisticated pixel predictors that achieve visual realism without understanding the physical principles of reality? We address this question by developing Physics-IQ, a comprehensive benchmark dataset that can only be solved by acquiring a deep understanding of various physical principles, like fluid dynamics, optics, solid mechanics, magnetism and thermodynamics. We find that across a range of current models (Sora, Runway, Pika, Lumiere, Stable Video Diffusion, and VideoPoet), physical understanding is severely limited, and unrelated to visual realism. At the same time, some test cases can already be successfully solved. This indicates that acquiring certain physical principles from observation alone may be possible, but significant challenges remain. While we expect rapid advances ahead, our work demonstrates that visual realism does not imply physical understanding. Our project page is at https://physics-iq.github.io; code at https://github.com/google-deepmind/physics-IQ-benchmark.
Authors:Yabo Zhang, Xinpeng Zhou, Yihan Zeng, Hang Xu, Hui Li, Wangmeng Zuo
Title: FramePainter: Endowing Interactive Image Editing with Video Diffusion Priors
Abstract:
Interactive image editing allows users to modify images through visual interaction operations such as drawing, clicking, and dragging. Existing methods construct such supervision signals from videos, as they capture how objects change with various physical interactions. However, these models are usually built upon text-to-image diffusion models, so necessitate (i) massive training samples and (ii) an additional reference encoder to learn real-world dynamics and visual consistency. In this paper, we reformulate this task as an image-to-video generation problem, so that inherit powerful video diffusion priors to reduce training costs and ensure temporal consistency. Specifically, we introduce FramePainter as an efficient instantiation of this formulation. Initialized with Stable Video Diffusion, it only uses a lightweight sparse control encoder to inject editing signals. Considering the limitations of temporal attention in handling large motion between two frames, we further propose matching attention to enlarge the receptive field while encouraging dense correspondence between edited and source image tokens. We highlight the effectiveness and efficiency of FramePainter across various of editing signals: it domainantly outperforms previous state-of-the-art methods with far less training data, achieving highly seamless and coherent editing of images, \eg, automatically adjust the reflection of the cup. Moreover, FramePainter also exhibits exceptional generalization in scenarios not present in real-world videos, \eg, transform the clownfish into shark-like shape. Our code will be available at https://github.com/YBYBZhang/FramePainter.
Authors:Varun Biyyala, Bharat Chanderprakash Kathuria, Jialu Li, Youshan Zhang
Title: SST-EM: Advanced Metrics for Evaluating Semantic, Spatial and Temporal Aspects in Video Editing
Abstract:
Video editing models have advanced significantly, but evaluating their performance remains challenging. Traditional metrics, such as CLIP text and image scores, often fall short: text scores are limited by inadequate training data and hierarchical dependencies, while image scores fail to assess temporal consistency. We present SST-EM (Semantic, Spatial, and Temporal Evaluation Metric), a novel evaluation framework that leverages modern Vision-Language Models (VLMs), Object Detection, and Temporal Consistency checks. SST-EM comprises four components: (1) semantic extraction from frames using a VLM, (2) primary object tracking with Object Detection, (3) focused object refinement via an LLM agent, and (4) temporal consistency assessment using a Vision Transformer (ViT). These components are integrated into a unified metric with weights derived from human evaluations and regression analysis. The name SST-EM reflects its focus on Semantic, Spatial, and Temporal aspects of video evaluation. SST-EM provides a comprehensive evaluation of semantic fidelity and temporal smoothness in video editing. The source code is available in the \textbf{\href{https://github.com/custommetrics-sst/SST_CustomEvaluationMetrics.git}{GitHub Repository}}.
Authors:Yuechen Zhang, Yaoyang Liu, Bin Xia, Bohao Peng, Zexin Yan, Eric Lo, Jiaya Jia
Title: Magic Mirror: ID-Preserved Video Generation in Video Diffusion Transformers
Abstract:
We present Magic Mirror, a framework for generating identity-preserved videos with cinematic-level quality and dynamic motion. While recent advances in video diffusion models have shown impressive capabilities in text-to-video generation, maintaining consistent identity while producing natural motion remains challenging. Previous methods either require person-specific fine-tuning or struggle to balance identity preservation with motion diversity. Built upon Video Diffusion Transformers, our method introduces three key components: (1) a dual-branch facial feature extractor that captures both identity and structural features, (2) a lightweight cross-modal adapter with Conditioned Adaptive Normalization for efficient identity integration, and (3) a two-stage training strategy combining synthetic identity pairs with video data. Extensive experiments demonstrate that Magic Mirror effectively balances identity consistency with natural motion, outperforming existing methods across multiple metrics while requiring minimal parameters added. The code and model will be made publicly available at: https://github.com/dvlab-research/MagicMirror/
Authors:Zekai Gu, Rui Yan, Jiahao Lu, Peng Li, Zhiyang Dou, Chenyang Si, Zhen Dong, Qifeng Liu, Cheng Lin, Ziwei Liu, Wenping Wang, Yuan Liu
Title: Diffusion as Shader: 3D-aware Video Diffusion for Versatile Video Generation Control
Abstract:
Diffusion models have demonstrated impressive performance in generating high-quality videos from text prompts or images. However, precise control over the video generation process, such as camera manipulation or content editing, remains a significant challenge. Existing methods for controlled video generation are typically limited to a single control type, lacking the flexibility to handle diverse control demands. In this paper, we introduce Diffusion as Shader (DaS), a novel approach that supports multiple video control tasks within a unified architecture. Our key insight is that achieving versatile video control necessitates leveraging 3D control signals, as videos are fundamentally 2D renderings of dynamic 3D content. Unlike prior methods limited to 2D control signals, DaS leverages 3D tracking videos as control inputs, making the video diffusion process inherently 3D-aware. This innovation allows DaS to achieve a wide range of video controls by simply manipulating the 3D tracking videos. A further advantage of using 3D tracking videos is their ability to effectively link frames, significantly enhancing the temporal consistency of the generated videos. With just 3 days of fine-tuning on 8 H800 GPUs using less than 10k videos, DaS demonstrates strong control capabilities across diverse tasks, including mesh-to-video generation, camera control, motion transfer, and object manipulation.
Authors:Yifei Huang, Jilan Xu, Baoqi Pei, Yuping He, Guo Chen, Lijin Yang, Xinyuan Chen, Yaohui Wang, Zheng Nie, Jinyao Liu, Guoshun Fan, Dechen Lin, Fang Fang, Kunpeng Li, Chang Yuan, Yali Wang, Yu Qiao, Limin Wang
Title: Vinci: A Real-time Embodied Smart Assistant based on Egocentric Vision-Language Model
Abstract:
We introduce Vinci, a real-time embodied smart assistant built upon an egocentric vision-language model. Designed for deployment on portable devices such as smartphones and wearable cameras, Vinci operates in an "always on" mode, continuously observing the environment to deliver seamless interaction and assistance. Users can wake up the system and engage in natural conversations to ask questions or seek assistance, with responses delivered through audio for hands-free convenience. With its ability to process long video streams in real-time, Vinci can answer user queries about current observations and historical context while also providing task planning based on past interactions. To further enhance usability, Vinci integrates a video generation module that creates step-by-step visual demonstrations for tasks that require detailed guidance. We hope that Vinci can establish a robust framework for portable, real-time egocentric AI systems, empowering users with contextual and actionable insights. We release the complete implementation for the development of the device in conjunction with a demo web platform to test uploaded videos at https://github.com/OpenGVLab/vinci.
Authors:Jiazheng Xu, Yu Huang, Jiale Cheng, Yuanming Yang, Jiajun Xu, Yuan Wang, Wenbo Duan, Shen Yang, Qunlin Jin, Shurun Li, Jiayan Teng, Zhuoyi Yang, Wendi Zheng, Xiao Liu, Ming Ding, Xiaohan Zhang, Xiaotao Gu, Shiyu Huang, Minlie Huang, Jie Tang, Yuxiao Dong
Title: VisionReward: Fine-Grained Multi-Dimensional Human Preference Learning for Image and Video Generation
Abstract:
Visual generative models have achieved remarkable progress in synthesizing photorealistic images and videos, yet aligning their outputs with human preferences across critical dimensions remains a persistent challenge. Though reinforcement learning from human feedback offers promise for preference alignment, existing reward models for visual generation face limitations, including black-box scoring without interpretability and potentially resultant unexpected biases. We present VisionReward, a general framework for learning human visual preferences in both image and video generation. Specifically, we employ a hierarchical visual assessment framework to capture fine-grained human preferences, and leverages linear weighting to enable interpretable preference learning. Furthermore, we propose a multi-dimensional consistent strategy when using VisionReward as a reward model during preference optimization for visual generation. Experiments show that VisionReward can significantly outperform existing image and video reward models on both machine metrics and human evaluation. Notably, VisionReward surpasses VideoScore by 17.2% in preference prediction accuracy, and text-to-video models with VisionReward achieve a 31.6% higher pairwise win rate compared to the same models using VideoScore. All code and datasets are provided at https://github.com/THUDM/VisionReward.
Authors:Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou, Tianyi Li, Yang You
Title: Open-Sora: Democratizing Efficient Video Production for All
Abstract:
Vision and language are the two foundational senses for humans, and they build up our cognitive ability and intelligence. While significant breakthroughs have been made in AI language ability, artificial visual intelligence, especially the ability to generate and simulate the world we see, is far lagging behind. To facilitate the development and accessibility of artificial visual intelligence, we created Open-Sora, an open-source video generation model designed to produce high-fidelity video content. Open-Sora supports a wide spectrum of visual generation tasks, including text-to-image generation, text-to-video generation, and image-to-video generation. The model leverages advanced deep learning architectures and training/inference techniques to enable flexible video synthesis, which could generate video content of up to 15 seconds, up to 720p resolution, and arbitrary aspect ratios. Specifically, we introduce Spatial-Temporal Diffusion Transformer (STDiT), an efficient diffusion framework for videos that decouples spatial and temporal attention. We also introduce a highly compressive 3D autoencoder to make representations compact and further accelerate training with an ad hoc training strategy. Through this initiative, we aim to foster innovation, creativity, and inclusivity within the community of AI content creation. By embracing the open-source principle, Open-Sora democratizes full access to all the training/inference/data preparation codes as well as model weights. All resources are publicly available at: https://github.com/hpcaitech/Open-Sora.
Authors:Xiaomin Li, Yixuan Liu, Takashi Isobe, Xu Jia, Qinpeng Cui, Dong Zhou, Dong Li, You He, Huchuan Lu, Zhongdao Wang, Emad Barsoum
Title: ReNeg: Learning Negative Embedding with Reward Guidance
Abstract:
In text-to-image (T2I) generation applications, negative embeddings have proven to be a simple yet effective approach for enhancing generation quality. Typically, these negative embeddings are derived from user-defined negative prompts, which, while being functional, are not necessarily optimal. In this paper, we introduce ReNeg, an end-to-end method designed to learn improved Negative embeddings guided by a Reward model. We employ a reward feedback learning framework and integrate classifier-free guidance (CFG) into the training process, which was previously utilized only during inference, thus enabling the effective learning of negative embeddings. We also propose two strategies for learning both global and per-sample negative embeddings. Extensive experiments show that the learned negative embedding significantly outperforms null-text and handcrafted counterparts, achieving substantial improvements in human preference alignment. Additionally, the negative embedding learned within the same text embedding space exhibits strong generalization capabilities. For example, using the same CLIP text encoder, the negative embedding learned on SD1.5 can be seamlessly transferred to text-to-image or even text-to-video models such as ControlNet, ZeroScope, and VideoCrafter2, resulting in consistent performance improvements across the board.
Authors:Xiaotao Hu, Wei Yin, Mingkai Jia, Junyuan Deng, Xiaoyang Guo, Qian Zhang, Xiaoxiao Long, Ping Tan
Title: DrivingWorld: Constructing World Model for Autonomous Driving via Video GPT
Abstract:
Recent successes in autoregressive (AR) generation models, such as the GPT series in natural language processing, have motivated efforts to replicate this success in visual tasks. Some works attempt to extend this approach to autonomous driving by building video-based world models capable of generating realistic future video sequences and predicting ego states. However, prior works tend to produce unsatisfactory results, as the classic GPT framework is designed to handle 1D contextual information, such as text, and lacks the inherent ability to model the spatial and temporal dynamics essential for video generation. In this paper, we present DrivingWorld, a GPT-style world model for autonomous driving, featuring several spatial-temporal fusion mechanisms. This design enables effective modeling of both spatial and temporal dynamics, facilitating high-fidelity, long-duration video generation. Specifically, we propose a next-state prediction strategy to model temporal coherence between consecutive frames and apply a next-token prediction strategy to capture spatial information within each frame. To further enhance generalization ability, we propose a novel masking strategy and reweighting strategy for token prediction to mitigate long-term drifting issues and enable precise control. Our work demonstrates the ability to produce high-fidelity and consistent video clips of over 40 seconds in duration, which is over 2 times longer than state-of-the-art driving world models. Experiments show that, in contrast to prior works, our method achieves superior visual quality and significantly more accurate controllable future video generation. Our code is available at https://github.com/YvanYin/DrivingWorld.
Authors:Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, Linfeng Zhang
Title: Accelerating Diffusion Transformers with Dual Feature Caching
Abstract:
Diffusion Transformers (DiT) have become the dominant methods in image and video generation yet still suffer substantial computational costs. As an effective approach for DiT acceleration, feature caching methods are designed to cache the features of DiT in previous timesteps and reuse them in the next timesteps, allowing us to skip the computation in the next timesteps. However, on the one hand, aggressively reusing all the features cached in previous timesteps leads to a severe drop in generation quality. On the other hand, conservatively caching only the features in the redundant layers or tokens but still computing the important ones successfully preserves the generation quality but results in reductions in acceleration ratios. Observing such a tradeoff between generation quality and acceleration performance, this paper begins by quantitatively studying the accumulated error from cached features. Surprisingly, we find that aggressive caching does not introduce significantly more caching errors in the caching step, and the conservative feature caching can fix the error introduced by aggressive caching. Thereby, we propose a dual caching strategy that adopts aggressive and conservative caching iteratively, leading to significant acceleration and high generation quality at the same time. Besides, we further introduce a V-caching strategy for token-wise conservative caching, which is compatible with flash attention and requires no training and calibration data. Our codes have been released in Github: \textbf{Code: \href{https://github.com/Shenyi-Z/DuCa}{\texttt{\textcolor{cyan}{https://github.com/Shenyi-Z/DuCa}}}}
Authors:Minghong Cai, Xiaodong Cun, Xiaoyu Li, Wenze Liu, Zhaoyang Zhang, Yong Zhang, Ying Shan, Xiangyu Yue
Title: DiTCtrl: Exploring Attention Control in Multi-Modal Diffusion Transformer for Tuning-Free Multi-Prompt Longer Video Generation
Abstract:
Sora-like video generation models have achieved remarkable progress with a Multi-Modal Diffusion Transformer MM-DiT architecture. However, the current video generation models predominantly focus on single-prompt, struggling to generate coherent scenes with multiple sequential prompts that better reflect real-world dynamic scenarios. While some pioneering works have explored multi-prompt video generation, they face significant challenges including strict training data requirements, weak prompt following, and unnatural transitions. To address these problems, we propose DiTCtrl, a training-free multi-prompt video generation method under MM-DiT architectures for the first time. Our key idea is to take the multi-prompt video generation task as temporal video editing with smooth transitions. To achieve this goal, we first analyze MM-DiT's attention mechanism, finding that the 3D full attention behaves similarly to that of the cross/self-attention blocks in the UNet-like diffusion models, enabling mask-guided precise semantic control across different prompts with attention sharing for multi-prompt video generation. Based on our careful design, the video generated by DiTCtrl achieves smooth transitions and consistent object motion given multiple sequential prompts without additional training. Besides, we also present MPVBench, a new benchmark specially designed for multi-prompt video generation to evaluate the performance of multi-prompt generation. Extensive experiments demonstrate that our method achieves state-of-the-art performance without additional training.
Authors:Yuchi Wang, Junliang Guo, Xinyi Xie, Tianyu He, Xu Sun, Jiang Bian
Title: VidTwin: Video VAE with Decoupled Structure and Dynamics
Abstract:
Recent advancements in video autoencoders (Video AEs) have significantly improved the quality and efficiency of video generation. In this paper, we propose a novel and compact video autoencoder, VidTwin, that decouples video into two distinct latent spaces: Structure latent vectors, which capture overall content and global movement, and Dynamics latent vectors, which represent fine-grained details and rapid movements. Specifically, our approach leverages an Encoder-Decoder backbone, augmented with two submodules for extracting these latent spaces, respectively. The first submodule employs a Q-Former to extract low-frequency motion trends, followed by downsampling blocks to remove redundant content details. The second averages the latent vectors along the spatial dimension to capture rapid motion. Extensive experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality (PSNR of 28.14 on the MCL-JCV dataset), and performs efficiently and effectively in downstream generative tasks. Moreover, our model demonstrates explainability and scalability, paving the way for future research in video latent representation and generation. Check our project page for more details: https://vidtwin.github.io/.
Authors:Xiuli Bi, Jian Lu, Bo Liu, Xiaodong Cun, Yong Zhang, Weisheng Li, Bin Xiao
Title: CustomTTT: Motion and Appearance Customized Video Generation via Test-Time Training
Abstract:
Benefiting from large-scale pre-training of text-video pairs, current text-to-video (T2V) diffusion models can generate high-quality videos from the text description. Besides, given some reference images or videos, the parameter-efficient fine-tuning method, i.e. LoRA, can generate high-quality customized concepts, e.g., the specific subject or the motions from a reference video. However, combining the trained multiple concepts from different references into a single network shows obvious artifacts. To this end, we propose CustomTTT, where we can joint custom the appearance and the motion of the given video easily. In detail, we first analyze the prompt influence in the current video diffusion model and find the LoRAs are only needed for the specific layers for appearance and motion customization. Besides, since each LoRA is trained individually, we propose a novel test-time training technique to update parameters after combination utilizing the trained customized models. We conduct detailed experiments to verify the effectiveness of the proposed methods. Our method outperforms several state-of-the-art works in both qualitative and quantitative evaluations.
Authors:Vahid Zehtab, David B. Lindell, Marcus A. Brubaker, Michael S. Brown
Title: Efficient Neural Network Encoding for 3D Color Lookup Tables
Abstract:
3D color lookup tables (LUTs) enable precise color manipulation by mapping input RGB values to specific output RGB values. 3D LUTs are instrumental in various applications, including video editing, in-camera processing, photographic filters, computer graphics, and color processing for displays. While an individual LUT does not incur a high memory overhead, software and devices may need to store dozens to hundreds of LUTs that can take over 100 MB. This work aims to develop a neural network architecture that can encode hundreds of LUTs in a single compact representation. To this end, we propose a model with a memory footprint of less than 0.25 MB that can reconstruct 512 LUTs with only minor color distortion ($\barΔE_M$ $\leq$ 2.0) over the entire color gamut. We also show that our network can weight colors to provide further quality gains on natural image colors ($\barΔ{E}_M$ $\leq$ 1.0). Finally, we show that minor modifications to the network architecture enable a bijective encoding that produces LUTs that are invertible, allowing for reverse color processing. Our code is available at https://github.com/vahidzee/ennelut.
Authors:Hanlin Wang, Hao Ouyang, Qiuyu Wang, Wen Wang, Ka Leong Cheng, Qifeng Chen, Yujun Shen, Limin Wang
Title: LeviTor: 3D Trajectory Oriented Image-to-Video Synthesis
Abstract:
The intuitive nature of drag-based interaction has led to its growing adoption for controlling object trajectories in image-to-video synthesis. Still, existing methods that perform dragging in the 2D space usually face ambiguity when handling out-of-plane movements. In this work, we augment the interaction with a new dimension, i.e., the depth dimension, such that users are allowed to assign a relative depth for each point on the trajectory. That way, our new interaction paradigm not only inherits the convenience from 2D dragging, but facilitates trajectory control in the 3D space, broadening the scope of creativity. We propose a pioneering method for 3D trajectory control in image-to-video synthesis by abstracting object masks into a few cluster points. These points, accompanied by the depth information and the instance information, are finally fed into a video diffusion model as the control signal. Extensive experiments validate the effectiveness of our approach, dubbed LeviTor, in precisely manipulating the object movements when producing photo-realistic videos from static images. Our code is available at: https://github.com/ant-research/LeviTor.
Authors:Mingdeng Cao, Chong Mou, Ziyang Yuan, Xintao Wang, Zhaoyang Zhang, Ying Shan, Yinqiang Zheng
Title: Consistent Human Image and Video Generation with Spatially Conditioned Diffusion
Abstract:
Consistent human-centric image and video synthesis aims to generate images or videos with new poses while preserving appearance consistency with a given reference image, which is crucial for low-cost visual content creation. Recent advances based on diffusion models typically rely on separate networks for reference appearance feature extraction and target visual generation, leading to inconsistent domain gaps between references and targets. In this paper, we frame the task as a spatially-conditioned inpainting problem, where the target image is inpainted to maintain appearance consistency with the reference. This approach enables the reference features to guide the generation of pose-compliant targets within a unified denoising network, thereby mitigating domain gaps. Additionally, to better maintain the reference appearance information, we impose a causal feature interaction framework, in which reference features can only query from themselves, while target features can query appearance information from both the reference and the target. To further enhance computational efficiency and flexibility, in practical implementation, we decompose the spatially-conditioned generation process into two stages: reference appearance extraction and conditioned target generation. Both stages share a single denoising network, with interactions restricted to self-attention layers. This proposed method ensures flexible control over the appearance of generated human images and videos. By fine-tuning existing base diffusion models on human video data, our method demonstrates strong generalization to unseen human identities and poses without requiring additional per-instance fine-tuning. Experimental results validate the effectiveness of our approach, showing competitive performance compared to existing methods for consistent human image and video synthesis.
Authors:Haoge Deng, Ting Pan, Haiwen Diao, Zhengxiong Luo, Yufeng Cui, Huchuan Lu, Shiguang Shan, Yonggang Qi, Xinlong Wang
Title: Autoregressive Video Generation without Vector Quantization
Abstract:
This paper presents a novel approach that enables autoregressive video generation with high efficiency. We propose to reformulate the video generation problem as a non-quantized autoregressive modeling of temporal frame-by-frame prediction and spatial set-by-set prediction. Unlike raster-scan prediction in prior autoregressive models or joint distribution modeling of fixed-length tokens in diffusion models, our approach maintains the causal property of GPT-style models for flexible in-context capabilities, while leveraging bidirectional modeling within individual frames for efficiency. With the proposed approach, we train a novel video autoregressive model without vector quantization, termed NOVA. Our results demonstrate that NOVA surpasses prior autoregressive video models in data efficiency, inference speed, visual fidelity, and video fluency, even with a much smaller model capacity, i.e., 0.6B parameters. NOVA also outperforms state-of-the-art image diffusion models in text-to-image generation tasks, with a significantly lower training cost. Additionally, NOVA generalizes well across extended video durations and enables diverse zero-shot applications in one unified model. Code and models are publicly available at https://github.com/baaivision/NOVA.
Authors:Anni Tang, Tianyu He, Junliang Guo, Xinle Cheng, Li Song, Jiang Bian
Title: VidTok: A Versatile and Open-Source Video Tokenizer
Abstract:
Encoding video content into compact latent tokens has become a fundamental step in video generation and understanding, driven by the need to address the inherent redundancy in pixel-level representations. Consequently, there is a growing demand for high-performance, open-source video tokenizers as video-centric research gains prominence. We introduce VidTok, a versatile video tokenizer that delivers state-of-the-art performance in both continuous and discrete tokenizations. VidTok incorporates several key advancements over existing approaches: 1) model architecture such as convolutional layers and up/downsampling modules; 2) to address the training instability and codebook collapse commonly associated with conventional Vector Quantization (VQ), we integrate Finite Scalar Quantization (FSQ) into discrete video tokenization; 3) improved training strategies, including a two-stage training process and the use of reduced frame rates. By integrating these advancements, VidTok achieves substantial improvements over existing methods, demonstrating superior performance across multiple metrics, including PSNR, SSIM, LPIPS, and FVD, under standardized evaluation settings.
Authors:Yuanzhi Wang, Yong Li, Mengyi Liu, Xiaoya Zhang, Xin Liu, Zhen Cui, Antoni B. Chan
Title: Re-Attentional Controllable Video Diffusion Editing
Abstract:
Editing videos with textual guidance has garnered popularity due to its streamlined process which mandates users to solely edit the text prompt corresponding to the source video. Recent studies have explored and exploited large-scale text-to-image diffusion models for text-guided video editing, resulting in remarkable video editing capabilities. However, they may still suffer from some limitations such as mislocated objects, incorrect number of objects. Therefore, the controllability of video editing remains a formidable challenge. In this paper, we aim to challenge the above limitations by proposing a Re-Attentional Controllable Video Diffusion Editing (ReAtCo) method. Specially, to align the spatial placement of the target objects with the edited text prompt in a training-free manner, we propose a Re-Attentional Diffusion (RAD) to refocus the cross-attention activation responses between the edited text prompt and the target video during the denoising stage, resulting in a spatially location-aligned and semantically high-fidelity manipulated video. In particular, to faithfully preserve the invariant region content with less border artifacts, we propose an Invariant Region-guided Joint Sampling (IRJS) strategy to mitigate the intrinsic sampling errors w.r.t the invariant regions at each denoising timestep and constrain the generated content to be harmonized with the invariant region content. Experimental results verify that ReAtCo consistently improves the controllability of video diffusion editing and achieves superior video editing performance.
Authors:Zichen Tang, Hongyu Yang, Hanchen Zhang, Jiaxin Chen, Di Huang
Title: 3D$^2$-Actor: Learning Pose-Conditioned 3D-Aware Denoiser for Realistic Gaussian Avatar Modeling
Abstract:
Advancements in neural implicit representations and differentiable rendering have markedly improved the ability to learn animatable 3D avatars from sparse multi-view RGB videos. However, current methods that map observation space to canonical space often face challenges in capturing pose-dependent details and generalizing to novel poses. While diffusion models have demonstrated remarkable zero-shot capabilities in 2D image generation, their potential for creating animatable 3D avatars from 2D inputs remains underexplored. In this work, we introduce 3D$^2$-Actor, a novel approach featuring a pose-conditioned 3D-aware human modeling pipeline that integrates iterative 2D denoising and 3D rectifying steps. The 2D denoiser, guided by pose cues, generates detailed multi-view images that provide the rich feature set necessary for high-fidelity 3D reconstruction and pose rendering. Complementing this, our Gaussian-based 3D rectifier renders images with enhanced 3D consistency through a two-stage projection strategy and a novel local coordinate representation. Additionally, we propose an innovative sampling strategy to ensure smooth temporal continuity across frames in video synthesis. Our method effectively addresses the limitations of traditional numerical solutions in handling ill-posed mappings, producing realistic and animatable 3D human avatars. Experimental results demonstrate that 3D$^2$-Actor excels in high-fidelity avatar modeling and robustly generalizes to novel poses. Code is available at: https://github.com/silence-tang/GaussianActor.
Authors:Zhengcong Fei, Di Qiu, Debang Li, Changqian Yu, Mingyuan Fan
Title: Video Diffusion Transformers are In-Context Learners
Abstract:
This paper investigates a solution for enabling in-context capabilities of video diffusion transformers, with minimal tuning required for activation. Specifically, we propose a simple pipeline to leverage in-context generation: ($\textbf{i}$) concatenate videos along spacial or time dimension, ($\textbf{ii}$) jointly caption multi-scene video clips from one source, and ($\textbf{iii}$) apply task-specific fine-tuning using carefully curated small datasets. Through a series of diverse controllable tasks, we demonstrate qualitatively that existing advanced text-to-video models can effectively perform in-context generation. Notably, it allows for the creation of consistent multi-scene videos exceeding 30 seconds in duration, without additional computational overhead. Importantly, this method requires no modifications to the original models, results in high-fidelity video outputs that better align with prompt specifications and maintain role consistency. Our framework presents a valuable tool for the research community and offers critical insights for advancing product-level controllable video generation systems. The data, code, and model weights are publicly available at: https://github.com/feizc/Video-In-Context.
Authors:Cong Wan, Xiangyang Luo, Hao Luo, Zijian Cai, Yiren Song, Yunlong Zhao, Yifan Bai, Fan Wang, Yuhang He, Yihong Gong
Title: Grid: Omni Visual Generation
Abstract:
Visual generation has witnessed remarkable progress in single-image tasks, yet extending these capabilities to temporal sequences remains challenging. Current approaches either build specialized video models from scratch with enormous computational costs or add separate motion modules to image generators, both requiring learning temporal dynamics anew. We observe that modern image generation models possess underutilized potential in handling structured layouts with implicit temporal understanding. Building on this insight, we introduce GRID, which reformulates temporal sequences as grid layouts, enabling holistic processing of visual sequences while leveraging existing model capabilities. Through a parallel flow-matching training strategy with coarse-to-fine scheduling, our approach achieves up to 67 faster inference speeds while using <1/1000 of the computational resources compared to specialized models. Extensive experiments demonstrate that GRID not only excels in temporal tasks from Text-to-Video to 3D Editing but also preserves strong performance in image generation, establishing itself as an efficient and versatile omni-solution for visual generation.
Authors:Yudong Jiang, Baohan Xu, Siqian Yang, Mingyu Yin, Jing Liu, Chao Xu, Siqi Wang, Yidi Wu, Bingwen Zhu, Xinwen Zhang, Xingyu Zheng, Jixuan Xu, Yue Zhang, Jinlong Hou, Huyang Sun
Title: AniSora: Exploring the Frontiers of Animation Video Generation in the Sora Era
Abstract:
Animation has gained significant interest in the recent film and TV industry. Despite the success of advanced video generation models like Sora, Kling, and CogVideoX in generating natural videos, they lack the same effectiveness in handling animation videos. Evaluating animation video generation is also a great challenge due to its unique artist styles, violating the laws of physics and exaggerated motions. In this paper, we present a comprehensive system, AniSora, designed for animation video generation, which includes a data processing pipeline, a controllable generation model, and an evaluation benchmark. Supported by the data processing pipeline with over 10M high-quality data, the generation model incorporates a spatiotemporal mask module to facilitate key animation production functions such as image-to-video generation, frame interpolation, and localized image-guided animation. We also collect an evaluation benchmark of 948 various animation videos, with specifically developed metrics for animation video generation. Our entire project is publicly available on https://github.com/bilibili/Index-anisora/tree/main.
Authors:Fan Zhang, Shulin Tian, Ziqi Huang, Yu Qiao, Ziwei Liu
Title: Evaluation Agent: Efficient and Promptable Evaluation Framework for Visual Generative Models
Abstract:
Recent advancements in visual generative models have enabled high-quality image and video generation, opening diverse applications. However, evaluating these models often demands sampling hundreds or thousands of images or videos, making the process computationally expensive, especially for diffusion-based models with inherently slow sampling. Moreover, existing evaluation methods rely on rigid pipelines that overlook specific user needs and provide numerical results without clear explanations. In contrast, humans can quickly form impressions of a model's capabilities by observing only a few samples. To mimic this, we propose the Evaluation Agent framework, which employs human-like strategies for efficient, dynamic, multi-round evaluations using only a few samples per round, while offering detailed, user-tailored analyses. It offers four key advantages: 1) efficiency, 2) promptable evaluation tailored to diverse user needs, 3) explainability beyond single numerical scores, and 4) scalability across various models and tools. Experiments show that Evaluation Agent reduces evaluation time to 10% of traditional methods while delivering comparable results. The Evaluation Agent framework is fully open-sourced to advance research in visual generative models and their efficient evaluation.
Authors:Wenzhao Zheng, Zetian Xia, Yuanhui Huang, Sicheng Zuo, Jie Zhou, Jiwen Lu
Title: Doe-1: Closed-Loop Autonomous Driving with Large World Model
Abstract:
End-to-end autonomous driving has received increasing attention due to its potential to learn from large amounts of data. However, most existing methods are still open-loop and suffer from weak scalability, lack of high-order interactions, and inefficient decision-making. In this paper, we explore a closed-loop framework for autonomous driving and propose a large Driving wOrld modEl (Doe-1) for unified perception, prediction, and planning. We formulate autonomous driving as a next-token generation problem and use multi-modal tokens to accomplish different tasks. Specifically, we use free-form texts (i.e., scene descriptions) for perception and generate future predictions directly in the RGB space with image tokens. For planning, we employ a position-aware tokenizer to effectively encode action into discrete tokens. We train a multi-modal transformer to autoregressively generate perception, prediction, and planning tokens in an end-to-end and unified manner. Experiments on the widely used nuScenes dataset demonstrate the effectiveness of Doe-1 in various tasks including visual question-answering, action-conditioned video generation, and motion planning. Code: https://github.com/wzzheng/Doe.
Authors:Yuanhui Huang, Wenzhao Zheng, Yuan Gao, Xin Tao, Pengfei Wan, Di Zhang, Jie Zhou, Jiwen Lu
Title: Owl-1: Omni World Model for Consistent Long Video Generation
Abstract:
Video generation models (VGMs) have received extensive attention recently and serve as promising candidates for general-purpose large vision models. While they can only generate short videos each time, existing methods achieve long video generation by iteratively calling the VGMs, using the last-frame output as the condition for the next-round generation. However, the last frame only contains short-term fine-grained information about the scene, resulting in inconsistency in the long horizon. To address this, we propose an Omni World modeL (Owl-1) to produce long-term coherent and comprehensive conditions for consistent long video generation. As videos are observations of the underlying evolving world, we propose to model the long-term developments in a latent space and use VGMs to film them into videos. Specifically, we represent the world with a latent state variable which can be decoded into explicit video observations. These observations serve as a basis for anticipating temporal dynamics which in turn update the state variable. The interaction between evolving dynamics and persistent state enhances the diversity and consistency of the long videos. Extensive experiments show that Owl-1 achieves comparable performance with SOTA methods on VBench-I2V and VBench-Long, validating its ability to generate high-quality video observations. Code: https://github.com/huang-yh/Owl.
Authors:Pierre Fernandez, Hady Elsahar, I. Zeki Yalniz, Alexandre Mourachko
Title: Video Seal: Open and Efficient Video Watermarking
Abstract:
The proliferation of AI-generated content and sophisticated video editing tools has made it both important and challenging to moderate digital platforms. Video watermarking addresses these challenges by embedding imperceptible signals into videos, allowing for identification. However, the rare open tools and methods often fall short on efficiency, robustness, and flexibility. To reduce these gaps, this paper introduces Video Seal, a comprehensive framework for neural video watermarking and a competitive open-sourced model. Our approach jointly trains an embedder and an extractor, while ensuring the watermark robustness by applying transformations in-between, e.g., video codecs. This training is multistage and includes image pre-training, hybrid post-training and extractor fine-tuning. We also introduce temporal watermark propagation, a technique to convert any image watermarking model to an efficient video watermarking model without the need to watermark every high-resolution frame. We present experimental results demonstrating the effectiveness of the approach in terms of speed, imperceptibility, and robustness. Video Seal achieves higher robustness compared to strong baselines especially under challenging distortions combining geometric transformations and video compression. Additionally, we provide new insights such as the impact of video compression during training, and how to compare methods operating on different payloads. Contributions in this work - including the codebase, models, and a public demo - are open-sourced under permissive licenses to foster further research and development in the field.
Authors:Delong Liu, Zhaohui Hou, Mingjie Zhan, Shihao Han, Zhicheng Zhao, Fei Su
Title: UFO: Enhancing Diffusion-Based Video Generation with a Uniform Frame Organizer
Abstract:
Recently, diffusion-based video generation models have achieved significant success. However, existing models often suffer from issues like weak consistency and declining image quality over time. To overcome these challenges, inspired by aesthetic principles, we propose a non-invasive plug-in called Uniform Frame Organizer (UFO), which is compatible with any diffusion-based video generation model. The UFO comprises a series of adaptive adapters with adjustable intensities, which can significantly enhance the consistency between the foreground and background of videos and improve image quality without altering the original model parameters when integrated. The training for UFO is simple, efficient, requires minimal resources, and supports stylized training. Its modular design allows for the combination of multiple UFOs, enabling the customization of personalized video generation models. Furthermore, the UFO also supports direct transferability across different models of the same specification without the need for specific retraining. The experimental results indicate that UFO effectively enhances video generation quality and demonstrates its superiority in public video generation benchmarks. The code will be publicly available at https://github.com/Delong-liu-bupt/UFO.
Authors:Lening Wang, Wenzhao Zheng, Dalong Du, Yunpeng Zhang, Yilong Ren, Han Jiang, Zhiyong Cui, Haiyang Yu, Jie Zhou, Jiwen Lu, Shanghang Zhang
Title: Stag-1: Towards Realistic 4D Driving Simulation with Video Generation Model
Abstract:
4D driving simulation is essential for developing realistic autonomous driving simulators. Despite advancements in existing methods for generating driving scenes, significant challenges remain in view transformation and spatial-temporal dynamic modeling. To address these limitations, we propose a Spatial-Temporal simulAtion for drivinG (Stag-1) model to reconstruct real-world scenes and design a controllable generative network to achieve 4D simulation. Stag-1 constructs continuous 4D point cloud scenes using surround-view data from autonomous vehicles. It decouples spatial-temporal relationships and produces coherent keyframe videos. Additionally, Stag-1 leverages video generation models to obtain photo-realistic and controllable 4D driving simulation videos from any perspective. To expand the range of view generation, we train vehicle motion videos based on decomposed camera poses, enhancing modeling capabilities for distant scenes. Furthermore, we reconstruct vehicle camera trajectories to integrate 3D points across consecutive views, enabling comprehensive scene understanding along the temporal dimension. Following extensive multi-level scene training, Stag-1 can simulate from any desired viewpoint and achieve a deep understanding of scene evolution under static spatial-temporal conditions. Compared to existing methods, our approach shows promising performance in multi-view scene consistency, background coherence, and accuracy, and contributes to the ongoing advancements in realistic autonomous driving simulation. Code: https://github.com/wzzheng/Stag.
Authors:Yuying Ge, Yizhuo Li, Yixiao Ge, Ying Shan
Title: Divot: Diffusion Powers Video Tokenizer for Comprehension and Generation
Abstract:
In recent years, there has been a significant surge of interest in unifying image comprehension and generation within Large Language Models (LLMs). This growing interest has prompted us to explore extending this unification to videos. The core challenge lies in developing a versatile video tokenizer that captures both the spatial characteristics and temporal dynamics of videos to obtain representations for LLMs, and the representations can be further decoded into realistic video clips to enable video generation. In this work, we introduce Divot, a Diffusion-Powered Video Tokenizer, which leverages the diffusion process for self-supervised video representation learning. We posit that if a video diffusion model can effectively de-noise video clips by taking the features of a video tokenizer as the condition, then the tokenizer has successfully captured robust spatial and temporal information. Additionally, the video diffusion model inherently functions as a de-tokenizer, decoding videos from their representations. Building upon the Divot tokenizer, we present Divot-Vicuna through video-to-text autoregression and text-to-video generation by modeling the distributions of continuous-valued Divot features with a Gaussian Mixture Model. Experimental results demonstrate that our diffusion-based video tokenizer, when integrated with a pre-trained LLM, achieves competitive performance across various video comprehension and generation benchmarks. The instruction tuned Divot-Vicuna also excels in video storytelling, generating interleaved narratives and corresponding videos.
Authors:Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang, Kathrina Wu, Qin Lin, Junkun Yuan, Yanxin Long, Aladdin Wang, Andong Wang, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song, Jiawang Bai, Jianbing Wu, Jinbao Xue, Joey Wang, Kai Wang, Mengyang Liu, Pengyu Li, Shuai Li, Weiyan Wang, Wenqing Yu, Xinchi Deng, Yang Li, Yi Chen, Yutao Cui, Yuanbo Peng, Zhentao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu Tao, Qinglin Lu, Songtao Liu, Dax Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, Caesar Zhong
Title: HunyuanVideo: A Systematic Framework For Large Video Generative Models
Abstract:
Recent advancements in video generation have significantly impacted daily life for both individuals and industries. However, the leading video generation models remain closed-source, resulting in a notable performance gap between industry capabilities and those available to the public. In this report, we introduce HunyuanVideo, an innovative open-source video foundation model that demonstrates performance in video generation comparable to, or even surpassing, that of leading closed-source models. HunyuanVideo encompasses a comprehensive framework that integrates several key elements, including data curation, advanced architectural design, progressive model scaling and training, and an efficient infrastructure tailored for large-scale model training and inference. As a result, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models. We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion dynamics, text-video alignment, and advanced filming techniques. According to evaluations by professionals, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and three top-performing Chinese video generative models. By releasing the code for the foundation model and its applications, we aim to bridge the gap between closed-source and open-source communities. This initiative will empower individuals within the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem. The code is publicly available at https://github.com/Tencent/HunyuanVideo.
Authors:Mingzhe Zheng, Yongqi Xu, Haojian Huang, Xuran Ma, Yexin Liu, Wenjie Shu, Yatian Pang, Feilong Tang, Qifeng Chen, Harry Yang, Ser-Nam Lim
Title: VideoGen-of-Thought: Step-by-step generating multi-shot video with minimal manual intervention
Abstract:
Current video generation models excel at short clips but fail to produce cohesive multi-shot narratives due to disjointed visual dynamics and fractured storylines. Existing solutions either rely on extensive manual scripting/editing or prioritize single-shot fidelity over cross-scene continuity, limiting their practicality for movie-like content. We introduce VideoGen-of-Thought (VGoT), a step-by-step framework that automates multi-shot video synthesis from a single sentence by systematically addressing three core challenges: (1) Narrative Fragmentation: Existing methods lack structured storytelling. We propose dynamic storyline modeling, which first converts the user prompt into concise shot descriptions, then elaborates them into detailed, cinematic specifications across five domains (character dynamics, background continuity, relationship evolution, camera movements, HDR lighting), ensuring logical narrative progression with self-validation. (2) Visual Inconsistency: Existing approaches struggle with maintaining visual consistency across shots. Our identity-aware cross-shot propagation generates identity-preserving portrait (IPP) tokens that maintain character fidelity while allowing trait variations (expressions, aging) dictated by the storyline. (3) Transition Artifacts: Abrupt shot changes disrupt immersion. Our adjacent latent transition mechanisms implement boundary-aware reset strategies that process adjacent shots' features at transition points, enabling seamless visual flow while preserving narrative continuity. VGoT generates multi-shot videos that outperform state-of-the-art baselines by 20.4% in within-shot face consistency and 17.4% in style consistency, while achieving over 100% better cross-shot consistency and 10x fewer manual adjustments than alternatives.
Authors:Xiaomin Li, Xu Jia, Qinghe Wang, Haiwen Diao, Mengmeng Ge, Pengxiang Li, You He, Huchuan Lu
Title: MoTrans: Customized Motion Transfer with Text-driven Video Diffusion Models
Abstract:
Existing pretrained text-to-video (T2V) models have demonstrated impressive abilities in generating realistic videos with basic motion or camera movement. However, these models exhibit significant limitations when generating intricate, human-centric motions. Current efforts primarily focus on fine-tuning models on a small set of videos containing a specific motion. They often fail to effectively decouple motion and the appearance in the limited reference videos, thereby weakening the modeling capability of motion patterns. To this end, we propose MoTrans, a customized motion transfer method enabling video generation of similar motion in new context. Specifically, we introduce a multimodal large language model (MLLM)-based recaptioner to expand the initial prompt to focus more on appearance and an appearance injection module to adapt appearance prior from video frames to the motion modeling process. These complementary multimodal representations from recaptioned prompt and video frames promote the modeling of appearance and facilitate the decoupling of appearance and motion. In addition, we devise a motion-specific embedding for further enhancing the modeling of the specific motion. Experimental results demonstrate that our method effectively learns specific motion pattern from singular or multiple reference videos, performing favorably against existing methods in customized video generation.
Authors:Mingyu Yang, Junyou Li, Zhongbin Fang, Sheng Chen, Yangbin Yu, Qiang Fu, Wei Yang, Deheng Ye
Title: Playable Game Generation
Abstract:
In recent years, Artificial Intelligence Generated Content (AIGC) has advanced from text-to-image generation to text-to-video and multimodal video synthesis. However, generating playable games presents significant challenges due to the stringent requirements for real-time interaction, high visual quality, and accurate simulation of game mechanics. Existing approaches often fall short, either lacking real-time capabilities or failing to accurately simulate interactive mechanics. To tackle the playability issue, we propose a novel method called \emph{PlayGen}, which encompasses game data generation, an autoregressive DiT-based diffusion model, and a comprehensive playability-based evaluation framework. Validated on well-known 2D and 3D games, PlayGen achieves real-time interaction, ensures sufficient visual quality, and provides accurate interactive mechanics simulation. Notably, these results are sustained even after over 1000 frames of gameplay on an NVIDIA RTX 2060 GPU. Our code is publicly available: https://github.com/GreatX3/Playable-Game-Generation. Our playable demo generated by AI is: http://124.156.151.207.
Authors:Qiyao Xue, Xiangyu Yin, Boyuan Yang, Wei Gao
Title: PhyT2V: LLM-Guided Iterative Self-Refinement for Physics-Grounded Text-to-Video Generation
Abstract:
Text-to-video (T2V) generation has been recently enabled by transformer-based diffusion models, but current T2V models lack capabilities in adhering to the real-world common knowledge and physical rules, due to their limited understanding of physical realism and deficiency in temporal modeling. Existing solutions are either data-driven or require extra model inputs, but cannot be generalizable to out-of-distribution domains. In this paper, we present PhyT2V, a new data-independent T2V technique that expands the current T2V model's capability of video generation to out-of-distribution domains, by enabling chain-of-thought and step-back reasoning in T2V prompting. Our experiments show that PhyT2V improves existing T2V models' adherence to real-world physical rules by 2.3x, and achieves 35% improvement compared to T2V prompt enhancers. The source codes are available at: https://github.com/pittisl/PhyT2V.
Authors:Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye, Shenghai Yuan, Liuhan Chen, Tanghui Jia, Junwu Zhang, Zhenyu Tang, Yatian Pang, Bin She, Cen Yan, Zhiheng Hu, Xiaoyi Dong, Lin Chen, Zhang Pan, Xing Zhou, Shaoling Dong, Yonghong Tian, Li Yuan
Title: Open-Sora Plan: Open-Source Large Video Generation Model
Abstract:
We introduce Open-Sora Plan, an open-source project that aims to contribute a large generation model for generating desired high-resolution videos with long durations based on various user inputs. Our project comprises multiple components for the entire video generation process, including a Wavelet-Flow Variational Autoencoder, a Joint Image-Video Skiparse Denoiser, and various condition controllers. Moreover, many assistant strategies for efficient training and inference are designed, and a multi-dimensional data curation pipeline is proposed for obtaining desired high-quality data. Benefiting from efficient thoughts, our Open-Sora Plan achieves impressive video generation results in both qualitative and quantitative evaluations. We hope our careful design and practical experience can inspire the video generation research community. All our codes and model weights are publicly available at \url{https://github.com/PKU-YuanGroup/Open-Sora-Plan}.
Authors:Xinyu Hou, Zongsheng Yue, Xiaoming Li, Chen Change Loy
Title: Omegance: A Single Parameter for Various Granularities in Diffusion-Based Synthesis
Abstract:
In this work, we show that we only need a single parameter $ω$ to effectively control granularity in diffusion-based synthesis. This parameter is incorporated during the denoising steps of the diffusion model's reverse process. This simple approach does not require model retraining or architectural modifications and incurs negligible computational overhead, yet enables precise control over the level of details in the generated outputs. Moreover, spatial masks or denoising schedules with varying $ω$ values can be applied to achieve region-specific or timestep-specific granularity control. External control signals or reference images can guide the creation of precise $ω$ masks, allowing targeted granularity adjustments. Despite its simplicity, the method demonstrates impressive performance across various image and video synthesis tasks and is adaptable to advanced diffusion models. The code is available at https://github.com/itsmag11/Omegance.
Authors:Guanjie Chen, Xinyu Zhao, Yucheng Zhou, Xiaoye Qu, Tianlong Chen, Yu Cheng
Title: Towards Stabilized and Efficient Diffusion Transformers through Long-Skip-Connections with Spectral Constraints
Abstract:
Diffusion Transformers (DiT) have emerged as a powerful architecture for image and video generation, offering superior quality and scalability. However, their practical application suffers from inherent dynamic feature instability, leading to error amplification during cached inference. Through systematic analysis, we identify the absence of long-range feature preservation mechanisms as the root cause of unstable feature propagation and perturbation sensitivity. To this end, we propose Skip-DiT, an image and video generative DiT variant enhanced with Long-Skip-Connections (LSCs) - the key efficiency component in U-Nets. Theoretical spectral norm and visualization analysis demonstrate how LSCs stabilize feature dynamics. Skip-DiT architecture and its stabilized dynamic feature enable an efficient statical caching mechanism that reuses deep features across timesteps while updating shallow components. Extensive experiments across the image and video generation tasks demonstrate that Skip-DiT achieves: (1) 4.4 times training acceleration and faster convergence, (2) 1.5-2 times inference acceleration with negligible quality loss and high fidelity to the original output, outperforming existing DiT caching methods across various quantitative metrics. Our findings establish Long-Skip-Connections as critical architectural components for stable and efficient diffusion transformers. Codes are provided in the https://github.com/OpenSparseLLMs/Skip-DiT.
Authors:Shenghai Yuan, Jinfa Huang, Xianyi He, Yunyuan Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, Li Yuan
Title: Identity-Preserving Text-to-Video Generation by Frequency Decomposition
Abstract:
Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity. It is an important task in video generation but remains an open problem for generative models. This paper pushes the technical frontier of IPT2V in two directions that have not been resolved in literature: (1) A tuning-free pipeline without tedious case-by-case finetuning, and (2) A frequency-aware heuristic identity-preserving DiT-based control scheme. We propose ConsisID, a tuning-free DiT-based controllable IPT2V model to keep human identity consistent in the generated video. Inspired by prior findings in frequency analysis of diffusion transformers, it employs identity-control signals in the frequency domain, where facial features can be decomposed into low-frequency global features and high-frequency intrinsic features. First, from a low-frequency perspective, we introduce a global facial extractor, which encodes reference images and facial key points into a latent space, generating features enriched with low-frequency information. These features are then integrated into shallow layers of the network to alleviate training challenges associated with DiT. Second, from a high-frequency perspective, we design a local facial extractor to capture high-frequency details and inject them into transformer blocks, enhancing the model's ability to preserve fine-grained features. We propose a hierarchical training strategy to leverage frequency information for identity preservation, transforming a vanilla pre-trained video generation model into an IPT2V model. Extensive experiments demonstrate that our frequency-aware heuristic scheme provides an optimal control solution for DiT-based models. Thanks to this scheme, our ConsisID generates high-quality, identity-preserving videos, making strides towards more effective IPT2V. Code: https://github.com/PKU-YuanGroup/ConsisID.
Authors:Ziyi Xu, Ziyao Huang, Juan Cao, Yong Zhang, Xiaodong Cun, Qing Shuai, Yuchen Wang, Linchao Bao, Jintao Li, Fan Tang
Title: AnchorCrafter: Animate Cyber-Anchors Selling Your Products via Human-Object Interacting Video Generation
Abstract:
The generation of anchor-style product promotion videos presents promising opportunities in e-commerce, advertising, and consumer engagement. Despite advancements in pose-guided human video generation, creating product promotion videos remains challenging. In addressing this challenge, we identify the integration of human-object interactions (HOI) into pose-guided human video generation as a core issue. To this end, we introduce AnchorCrafter, a novel diffusion-based system designed to generate 2D videos featuring a target human and a customized object, achieving high visual fidelity and controllable interactions. Specifically, we propose two key innovations: the HOI-appearance perception, which enhances object appearance recognition from arbitrary multi-view perspectives and disentangles object and human appearance, and the HOI-motion injection, which enables complex human-object interactions by overcoming challenges in object trajectory conditioning and inter-occlusion management. Extensive experiments show that our system improves object appearance preservation by 7.5\% and doubles the object localization accuracy compared to existing state-of-the-art approaches. It also outperforms existing approaches in maintaining human motion consistency and high-quality video generation. Project page including data, code, and Huggingface demo: https://github.com/cangcz/AnchorCrafter.
Authors:Zuhao Liu, Aleksandar Yanev, Ahmad Mahmood, Ivan Nikolov, Saman Motamed, Wei-Shi Zheng, Xi Wang, Luc Van Gool, Danda Pani Paudel
Title: InTraGen: Trajectory-controlled Video Generation for Object Interactions
Abstract:
Advances in video generation have significantly improved the realism and quality of created scenes. This has fueled interest in developing intuitive tools that let users leverage video generation as world simulators. Text-to-video (T2V) generation is one such approach, enabling video creation from text descriptions only. Yet, due to the inherent ambiguity in texts and the limited temporal information offered by text prompts, researchers have explored additional control signals like trajectory-guided systems, for more accurate T2V generation. Nonetheless, methods to evaluate whether T2V models can generate realistic interactions between multiple objects are lacking. We introduce InTraGen, a pipeline for improved trajectory-based generation of object interaction scenarios. We propose 4 new datasets and a novel trajectory quality metric to evaluate the performance of the proposed InTraGen. To achieve object interaction, we introduce a multi-modal interaction encoding pipeline with an object ID injection mechanism that enriches object-environment interactions. Our results demonstrate improvements in both visual fidelity and quantitative performance. Code and datasets are available at https://github.com/insait-institute/InTraGen
Authors:Zhichao Zhang, Wei Sun, Xinyue Li, Yunhao Li, Qihang Ge, Jun Jia, Zicheng Zhang, Zhongpeng Ji, Fengyu Sun, Shangling Jui, Xiongkuo Min, Guangtao Zhai
Title: Human-Activity AGV Quality Assessment: A Benchmark Dataset and an Objective Evaluation Metric
Abstract:
AI-driven video generation techniques have made significant progress in recent years. However, AI-generated videos (AGVs) involving human activities often exhibit substantial visual and semantic distortions, hindering the practical application of video generation technologies in real-world scenarios. To address this challenge, we conduct a pioneering study on human activity AGV quality assessment, focusing on visual quality evaluation and the identification of semantic distortions. First, we construct the AI-Generated Human activity Video Quality Assessment (Human-AGVQA) dataset, consisting of 6,000 AGVs derived from 15 popular text-to-video (T2V) models using 400 text prompts that describe diverse human activities. We conduct a subjective study to evaluate the human appearance quality, action continuity quality, and overall video quality of AGVs, and identify semantic issues of human body parts. Based on Human-AGVQA, we benchmark the performance of T2V models and analyze their strengths and weaknesses in generating different categories of human activities. Second, we develop an objective evaluation metric, named AI-Generated Human activity Video Quality metric (GHVQ), to automatically analyze the quality of human activity AGVs. GHVQ systematically extracts human-focused quality features, AI-generated content-aware quality features, and temporal continuity features, making it a comprehensive and explainable quality metric for human activity AGVs. The extensive experimental results show that GHVQ outperforms existing quality metrics on the Human-AGVQA dataset by a large margin, demonstrating its efficacy in assessing the quality of human activity AGVs. The Human-AGVQA dataset and GHVQ metric will be released at https://github.com/zczhang-sjtu/GHVQ.git.
Authors:Kaifeng Gao, Jiaxin Shi, Hanwang Zhang, Chunping Wang, Jun Xiao, Long Chen
Title: Ca2-VDM: Efficient Autoregressive Video Diffusion Model with Causal Generation and Cache Sharing
Abstract:
With the advance of diffusion models, today's video generation has achieved impressive quality. To extend the generation length and facilitate real-world applications, a majority of video diffusion models (VDMs) generate videos in an autoregressive manner, i.e., generating subsequent clips conditioned on the last frame(s) of the previous clip. However, existing autoregressive VDMs are highly inefficient and redundant: The model must re-compute all the conditional frames that are overlapped between adjacent clips. This issue is exacerbated when the conditional frames are extended autoregressively to provide the model with long-term context. In such cases, the computational demands increase significantly (i.e., with a quadratic complexity w.r.t. the autoregression step). In this paper, we propose Ca2-VDM, an efficient autoregressive VDM with Causal generation and Cache sharing. For causal generation, it introduces unidirectional feature computation, which ensures that the cache of conditional frames can be precomputed in previous autoregression steps and reused in every subsequent step, eliminating redundant computations. For cache sharing, it shares the cache across all denoising steps to avoid the huge cache storage cost. Extensive experiments demonstrated that our Ca2-VDM achieves state-of-the-art quantitative and qualitative video generation results and significantly improves the generation speed. Code is available: https://github.com/Dawn-LX/CausalCache-VDM
Authors:Ryugo Morita, Stanislav Frolov, Brian Bernhard Moser, Takahiro Shirakawa, Ko Watanabe, Andreas Dengel, Jinjia Zhou
Title: TKG-DM: Training-free Chroma Key Content Generation Diffusion Model
Abstract:
Diffusion models have enabled the generation of high-quality images with a strong focus on realism and textual fidelity. Yet, large-scale text-to-image models, such as Stable Diffusion, struggle to generate images where foreground objects are placed over a chroma key background, limiting their ability to separate foreground and background elements without fine-tuning. To address this limitation, we present a novel Training-Free Chroma Key Content Generation Diffusion Model (TKG-DM), which optimizes the initial random noise to produce images with foreground objects on a specifiable color background. Our proposed method is the first to explore the manipulation of the color aspects in initial noise for controlled background generation, enabling precise separation of foreground and background without fine-tuning. Extensive experiments demonstrate that our training-free method outperforms existing methods in both qualitative and quantitative evaluations, matching or surpassing fine-tuned models. Finally, we successfully extend it to other tasks (e.g., consistency models and text-to-video), highlighting its transformative potential across various generative applications where independent control of foreground and background is crucial.
Authors:Weijia Wu, Mingyu Liu, Zeyu Zhu, Xi Xia, Haoen Feng, Wen Wang, Kevin Qinghong Lin, Chunhua Shen, Mike Zheng Shou
Title: MovieBench: A Hierarchical Movie Level Dataset for Long Video Generation
Abstract:
Recent advancements in video generation models, like Stable Video Diffusion, show promising results, but primarily focus on short, single-scene videos. These models struggle with generating long videos that involve multiple scenes, coherent narratives, and consistent characters. Furthermore, there is no publicly available dataset tailored for the analysis, evaluation, and training of long video generation models. In this paper, we present MovieBench: A Hierarchical Movie-Level Dataset for Long Video Generation, which addresses these challenges by providing unique contributions: (1) movie-length videos featuring rich, coherent storylines and multi-scene narratives, (2) consistency of character appearance and audio across scenes, and (3) hierarchical data structure contains high-level movie information and detailed shot-level descriptions. Experiments demonstrate that MovieBench brings some new insights and challenges, such as maintaining character ID consistency across multiple scenes for various characters. The dataset will be public and continuously maintained, aiming to advance the field of long video generation. Data can be found at: https://weijiawu.github.io/MovieBench/.
Authors:Zhonghua Yi, Hao Shi, Qi Jiang, Yao Gao, Ze Wang, Yufan Zhang, Kailun Yang, Kaiwei Wang
Title: Benchmarking the Robustness of Optical Flow Estimation to Corruptions
Abstract:
Optical flow estimation is extensively used in autonomous driving and video editing. While existing models demonstrate state-of-the-art performance across various benchmarks, the robustness of these methods has been infrequently investigated. Despite some research focusing on the robustness of optical flow models against adversarial attacks, there has been a lack of studies investigating their robustness to common corruptions. Taking into account the unique temporal characteristics of optical flow, we introduce 7 temporal corruptions specifically designed for benchmarking the robustness of optical flow models, in addition to 17 classical single-image corruptions, in which advanced PSF Blur simulation method is performed. Two robustness benchmarks, KITTI-FC and GoPro-FC, are subsequently established as the first corruption robustness benchmark for optical flow estimation, with Out-Of-Domain (OOD) and In-Domain (ID) settings to facilitate comprehensive studies. Robustness metrics, Corruption Robustness Error (CRE), Corruption Robustness Error ratio (CREr), and Relative Corruption Robustness Error (RCRE) are further introduced to quantify the optical flow estimation robustness. 29 model variants from 15 optical flow methods are evaluated, yielding 10 intriguing observations, such as 1) the absolute robustness of the model is heavily dependent on the estimation performance; 2) the corruptions that diminish local information are more serious than that reduce visual effects. We also give suggestions for the design and application of optical flow models. We anticipate that our benchmark will serve as a foundational resource for advancing research in robust optical flow estimation. The benchmarks and source code will be released at https://github.com/ZhonghuaYi/optical_flow_robustness_benchmark.
Authors:Jingtao Ding, Yunke Zhang, Yu Shang, Yuheng Zhang, Zefang Zong, Jie Feng, Yuan Yuan, Hongyuan Su, Nian Li, Nicholas Sukiennik, Fengli Xu, Yong Li
Title: Understanding World or Predicting Future? A Comprehensive Survey of World Models
Abstract:
The concept of world models has garnered significant attention due to advancements in multimodal large language models such as GPT-4 and video generation models such as Sora, which are central to the pursuit of artificial general intelligence. This survey offers a comprehensive review of the literature on world models. Generally, world models are regarded as tools for either understanding the present state of the world or predicting its future dynamics. This review presents a systematic categorization of world models, emphasizing two primary functions: (1) constructing internal representations to understand the mechanisms of the world, and (2) predicting future states to simulate and guide decision-making. Initially, we examine the current progress in these two categories. We then explore the application of world models in key domains, including autonomous driving, robotics, and social simulacra, with a focus on how each domain utilizes these aspects. Finally, we outline key challenges and provide insights into potential future research directions. We summarize the representative papers along with their code repositories in https://github.com/tsinghua-fib-lab/World-Model.
Authors:Jian Shi, Qian Wang, Zhenyu Li, Ramzi Idoughi, Peter Wonka
Title: StereoCrafter-Zero: Zero-Shot Stereo Video Generation with Noisy Restart
Abstract:
Generating high-quality stereo videos that mimic human binocular vision requires consistent depth perception and temporal coherence across frames. Despite advances in image and video synthesis using diffusion models, producing high-quality stereo videos remains a challenging task due to the difficulty of maintaining consistent temporal and spatial coherence between left and right views. We introduce StereoCrafter-Zero, a novel framework for zero-shot stereo video generation that leverages video diffusion priors without requiring paired training data. Our key innovations include a noisy restart strategy to initialize stereo-aware latent representations and an iterative refinement process that progressively harmonizes the latent space, addressing issues like temporal flickering and view inconsistencies. In addition, we propose the use of dissolved depth maps to streamline latent space operations by reducing high-frequency depth information. Our comprehensive evaluations, including quantitative metrics and user studies, demonstrate that StereoCrafter-Zero produces high-quality stereo videos with enhanced depth consistency and temporal smoothness, even when depth estimations are imperfect. Our framework is robust and adaptable across various diffusion models, setting a new benchmark for zero-shot stereo video generation and enabling more immersive visual experiences. Our code is in https://github.com/shijianjian/StereoCrafter-Zero.
Authors:Rui Tian, Qi Dai, Jianmin Bao, Kai Qiu, Yifan Yang, Chong Luo, Zuxuan Wu, Yu-Gang Jiang
Title: REDUCIO! Generating 1K Video within 16 Seconds using Extremely Compressed Motion Latents
Abstract:
Commercial video generation models have exhibited realistic, high-fidelity results but are still restricted to limited access. One crucial obstacle for large-scale applications is the expensive training and inference cost. In this paper, we argue that videos contain significantly more redundant information than images, allowing them to be encoded with very few motion latents. Towards this goal, we design an image-conditioned VAE that projects videos into extremely compressed latent space and decode them based on content images. This magic Reducio charm enables 64x reduction of latents compared to a common 2D VAE, without sacrificing the quality. Building upon Reducio-VAE, we can train diffusion models for high-resolution video generation efficiently. Specifically, we adopt a two-stage generation paradigm, first generating a condition image via text-to-image generation, followed by text-image-to-video generation with the proposed Reducio-DiT. Extensive experiments show that our model achieves strong performance in evaluation. More importantly, our method significantly boosts the training and inference efficiency of video LDMs. Reducio-DiT is trained in just 3.2K A100 GPU hours in total and can generate a 16-frame 1024$\times$1024 video clip within 15.5 seconds on a single A100 GPU. Code released at https://github.com/microsoft/Reducio-VAE .
Authors:Ziqi Huang, Fan Zhang, Xiaojie Xu, Yinan He, Jiashuo Yu, Ziyue Dong, Qianli Ma, Nattapol Chanpaisit, Chenyang Si, Yuming Jiang, Yaohui Wang, Xinyuan Chen, Ying-Cong Chen, Limin Wang, Dahua Lin, Yu Qiao, Ziwei Liu
Title: VBench++: Comprehensive and Versatile Benchmark Suite for Video Generative Models
Abstract:
Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human perceptions; 2) An ideal evaluation system should provide insights to inform future developments of video generation. To this end, we present VBench, a comprehensive benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions, each with tailored prompts and evaluation methods. VBench has several appealing properties: 1) Comprehensive Dimensions: VBench comprises 16 dimensions in video generation (e.g., subject identity inconsistency, motion smoothness, temporal flickering, and spatial relationship, etc). The evaluation metrics with fine-grained levels reveal individual models' strengths and weaknesses. 2) Human Alignment: We also provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception, for each evaluation dimension respectively. 3) Valuable Insights: We look into current models' ability across various evaluation dimensions, and various content types. We also investigate the gaps between video and image generation models. 4) Versatile Benchmarking: VBench++ supports evaluating text-to-video and image-to-video. We introduce a high-quality Image Suite with an adaptive aspect ratio to enable fair evaluations across different image-to-video generation settings. Beyond assessing technical quality, VBench++ evaluates the trustworthiness of video generative models, providing a more holistic view of model performance. 5) Full Open-Sourcing: We fully open-source VBench++ and continually add new video generation models to our leaderboard to drive forward the field of video generation.
Authors:David Picard, Nicolas Dufour
Title: PoM: Efficient Image and Video Generation with the Polynomial Mixer
Abstract:
Diffusion models based on Multi-Head Attention (MHA) have become ubiquitous to generate high quality images and videos. However, encoding an image or a video as a sequence of patches results in costly attention patterns, as the requirements both in terms of memory and compute grow quadratically. To alleviate this problem, we propose a drop-in replacement for MHA called the Polynomial Mixer (PoM) that has the benefit of encoding the entire sequence into an explicit state. PoM has a linear complexity with respect to the number of tokens. This explicit state also allows us to generate frames in a sequential fashion, minimizing memory and compute requirement, while still being able to train in parallel. We show the Polynomial Mixer is a universal sequence-to-sequence approximator, just like regular MHA. We adapt several Diffusion Transformers (DiT) for generating images and videos with PoM replacing MHA, and we obtain high quality samples while using less computational resources. The code is available at https://github.com/davidpicard/HoMM.
Authors:Chang Liu, Rui Li, Kaidong Zhang, Yunwei Lan, Dong Liu
Title: StableV2V: Stablizing Shape Consistency in Video-to-Video Editing
Abstract:
Recent advancements of generative AI have significantly promoted content creation and editing, where prevailing studies further extend this exciting progress to video editing. In doing so, these studies mainly transfer the inherent motion patterns from the source videos to the edited ones, where results with inferior consistency to user prompts are often observed, due to the lack of particular alignments between the delivered motions and edited contents. To address this limitation, we present a shape-consistent video editing method, namely StableV2V, in this paper. Our method decomposes the entire editing pipeline into several sequential procedures, where it edits the first video frame, then establishes an alignment between the delivered motions and user prompts, and eventually propagates the edited contents to all other frames based on such alignment. Furthermore, we curate a testing benchmark, namely DAVIS-Edit, for a comprehensive evaluation of video editing, considering various types of prompts and difficulties. Experimental results and analyses illustrate the outperforming performance, visual consistency, and inference efficiency of our method compared to existing state-of-the-art studies.
Authors:Jintao Zhang, Haofeng Huang, Pengle Zhang, Jia Wei, Jun Zhu, Jianfei Chen
Title: SageAttention2: Efficient Attention with Thorough Outlier Smoothing and Per-thread INT4 Quantization
Abstract:
Although quantization for linear layers has been widely used, its application to accelerate the attention process remains limited. To further enhance the efficiency of attention computation compared to SageAttention while maintaining precision, we propose SageAttention2, which utilizes significantly faster 4-bit matrix multiplication (Matmul) alongside additional precision-enhancing techniques. First, we propose to quantize matrices $(Q, K)$ to INT4 in a hardware-friendly thread-level granularity and quantize matrices $(\widetilde P, V)$ to FP8. Second, we propose a method to smooth $Q$, enhancing the accuracy of INT4 $QK^\top$. Third, we propose a two-level accumulation strategy for $\widetilde PV$ to enhance the accuracy of FP8 $\widetilde PV$. The operations per second (OPS) of SageAttention2 surpass FlashAttention2 and xformers by about 3x and 4.5x on RTX4090, respectively. Moreover, SageAttention2 matches the speed of FlashAttention3(fp8) on the Hopper GPUs, while delivering much higher accuracy. Comprehensive experiments confirm that our approach incurs negligible end-to-end metrics loss across diverse models, including those for language, image, and video generation. The code is available at https://github.com/thu-ml/SageAttention.
Authors:Hmrishav Bandyopadhyay, Yi-Zhe Song
Title: FlipSketch: Flipping Static Drawings to Text-Guided Sketch Animations
Abstract:
Sketch animations offer a powerful medium for visual storytelling, from simple flip-book doodles to professional studio productions. While traditional animation requires teams of skilled artists to draw key frames and in-between frames, existing automation attempts still demand significant artistic effort through precise motion paths or keyframe specification. We present FlipSketch, a system that brings back the magic of flip-book animation -- just draw your idea and describe how you want it to move! Our approach harnesses motion priors from text-to-video diffusion models, adapting them to generate sketch animations through three key innovations: (i) fine-tuning for sketch-style frame generation, (ii) a reference frame mechanism that preserves visual integrity of input sketch through noise refinement, and (iii) a dual-attention composition that enables fluid motion without losing visual consistency. Unlike constrained vector animations, our raster frames support dynamic sketch transformations, capturing the expressive freedom of traditional animation. The result is an intuitive system that makes sketch animation as simple as doodling and describing, while maintaining the artistic essence of hand-drawn animation.
Authors:Joseph Liu, Joshua Geddes, Ziyu Guo, Haomiao Jiang, Mahesh Kumar Nandwana
Title: SmoothCache: A Universal Inference Acceleration Technique for Diffusion Transformers
Abstract:
Diffusion Transformers (DiT) have emerged as powerful generative models for various tasks, including image, video, and speech synthesis. However, their inference process remains computationally expensive due to the repeated evaluation of resource-intensive attention and feed-forward modules. To address this, we introduce SmoothCache, a model-agnostic inference acceleration technique for DiT architectures. SmoothCache leverages the observed high similarity between layer outputs across adjacent diffusion timesteps. By analyzing layer-wise representation errors from a small calibration set, SmoothCache adaptively caches and reuses key features during inference. Our experiments demonstrate that SmoothCache achieves 8% to 71% speed up while maintaining or even improving generation quality across diverse modalities. We showcase its effectiveness on DiT-XL for image generation, Open-Sora for text-to-video, and Stable Audio Open for text-to-audio, highlighting its potential to enable real-time applications and broaden the accessibility of powerful DiT models.
Authors:Thanh Tam Nguyen, Zhao Ren, Trinh Pham, Thanh Trung Huynh, Phi Le Nguyen, Hongzhi Yin, Quoc Viet Hung Nguyen
Title: Instruction-Guided Editing Controls for Images and Multimedia: A Survey in LLM era
Abstract:
The rapid advancement of large language models (LLMs) and multimodal learning has transformed digital content creation and manipulation. Traditional visual editing tools require significant expertise, limiting accessibility. Recent strides in instruction-based editing have enabled intuitive interaction with visual content, using natural language as a bridge between user intent and complex editing operations. This survey provides an overview of these techniques, focusing on how LLMs and multimodal models empower users to achieve precise visual modifications without deep technical knowledge. By synthesizing over 100 publications, we explore methods from generative adversarial networks to diffusion models, examining multimodal integration for fine-grained content control. We discuss practical applications across domains such as fashion, 3D scene manipulation, and video synthesis, highlighting increased accessibility and alignment with human intuition. Our survey compares existing literature, emphasizing LLM-empowered editing, and identifies key challenges to stimulate further research. We aim to democratize powerful visual editing across various industries, from entertainment to education. Interested readers are encouraged to access our repository at https://github.com/tamlhp/awesome-instruction-editing.
Authors:Linyuan Li, Jianing Qiu, Anujit Saha, Lin Li, Poyuan Li, Mengxian He, Ziyu Guo, Wu Yuan
Title: Artificial Intelligence for Biomedical Video Generation
Abstract:
As a prominent subfield of Artificial Intelligence Generated Content (AIGC), video generation has achieved notable advancements in recent years. The introduction of Sora-alike models represents a pivotal breakthrough in video generation technologies, significantly enhancing the quality of synthesized videos. Particularly in the realm of biomedicine, video generation technology has shown immense potential such as medical concept explanation, disease simulation, and biomedical data augmentation. In this article, we thoroughly examine the latest developments in video generation models and explore their applications, challenges, and future opportunities in the biomedical sector. We have conducted an extensive review and compiled a comprehensive list of datasets from various sources to facilitate the development and evaluation of video generative models in biomedicine. Given the rapid progress in this field, we have also created a github repository to regularly update the advances of biomedical video generation at: https://github.com/Lee728243228/Biomedical-Video-Generation
Authors:Qiankun Gao, Jiarui Meng, Chengxiang Wen, Jie Chen, Jian Zhang
Title: HiCoM: Hierarchical Coherent Motion for Streamable Dynamic Scene with 3D Gaussian Splatting
Abstract:
The online reconstruction of dynamic scenes from multi-view streaming videos faces significant challenges in training, rendering and storage efficiency. Harnessing superior learning speed and real-time rendering capabilities, 3D Gaussian Splatting (3DGS) has recently demonstrated considerable potential in this field. However, 3DGS can be inefficient in terms of storage and prone to overfitting by excessively growing Gaussians, particularly with limited views. This paper proposes an efficient framework, dubbed HiCoM, with three key components. First, we construct a compact and robust initial 3DGS representation using a perturbation smoothing strategy. Next, we introduce a Hierarchical Coherent Motion mechanism that leverages the inherent non-uniform distribution and local consistency of 3D Gaussians to swiftly and accurately learn motions across frames. Finally, we continually refine the 3DGS with additional Gaussians, which are later merged into the initial 3DGS to maintain consistency with the evolving scene. To preserve a compact representation, an equivalent number of low-opacity Gaussians that minimally impact the representation are removed before processing subsequent frames. Extensive experiments conducted on two widely used datasets show that our framework improves learning efficiency of the state-of-the-art methods by about $20\%$ and reduces the data storage by $85\%$, achieving competitive free-viewpoint video synthesis quality but with higher robustness and stability. Moreover, by parallel learning multiple frames simultaneously, our HiCoM decreases the average training wall time to $<2$ seconds per frame with negligible performance degradation, substantially boosting real-world applicability and responsiveness.
Authors:Jing Xiong, Gongye Liu, Lun Huang, Chengyue Wu, Taiqiang Wu, Yao Mu, Yuan Yao, Hui Shen, Zhongwei Wan, Jinfa Huang, Chaofan Tao, Shen Yan, Huaxiu Yao, Lingpeng Kong, Hongxia Yang, Mi Zhang, Guillermo Sapiro, Jiebo Luo, Ping Luo, Ngai Wong
Title: Autoregressive Models in Vision: A Survey
Abstract:
Autoregressive modeling has been a huge success in the field of natural language processing (NLP). Recently, autoregressive models have emerged as a significant area of focus in computer vision, where they excel in producing high-quality visual content. Autoregressive models in NLP typically operate on subword tokens. However, the representation strategy in computer vision can vary in different levels, i.e., pixel-level, token-level, or scale-level, reflecting the diverse and hierarchical nature of visual data compared to the sequential structure of language. This survey comprehensively examines the literature on autoregressive models applied to vision. To improve readability for researchers from diverse research backgrounds, we start with preliminary sequence representation and modeling in vision. Next, we divide the fundamental frameworks of visual autoregressive models into three general sub-categories, including pixel-based, token-based, and scale-based models based on the representation strategy. We then explore the interconnections between autoregressive models and other generative models. Furthermore, we present a multifaceted categorization of autoregressive models in computer vision, including image generation, video generation, 3D generation, and multimodal generation. We also elaborate on their applications in diverse domains, including emerging domains such as embodied AI and 3D medical AI, with about 250 related references. Finally, we highlight the current challenges to autoregressive models in vision with suggestions about potential research directions. We have also set up a Github repository to organize the papers included in this survey at: https://github.com/ChaofanTao/Autoregressive-Models-in-Vision-Survey.
Authors:Yuedong Chen, Chuanxia Zheng, Haofei Xu, Bohan Zhuang, Andrea Vedaldi, Tat-Jen Cham, Jianfei Cai
Title: MVSplat360: Feed-Forward 360 Scene Synthesis from Sparse Views
Abstract:
We introduce MVSplat360, a feed-forward approach for 360° novel view synthesis (NVS) of diverse real-world scenes, using only sparse observations. This setting is inherently ill-posed due to minimal overlap among input views and insufficient visual information provided, making it challenging for conventional methods to achieve high-quality results. Our MVSplat360 addresses this by effectively combining geometry-aware 3D reconstruction with temporally consistent video generation. Specifically, it refactors a feed-forward 3D Gaussian Splatting (3DGS) model to render features directly into the latent space of a pre-trained Stable Video Diffusion (SVD) model, where these features then act as pose and visual cues to guide the denoising process and produce photorealistic 3D-consistent views. Our model is end-to-end trainable and supports rendering arbitrary views with as few as 5 sparse input views. To evaluate MVSplat360's performance, we introduce a new benchmark using the challenging DL3DV-10K dataset, where MVSplat360 achieves superior visual quality compared to state-of-the-art methods on wide-sweeping or even 360° NVS tasks. Experiments on the existing benchmark RealEstate10K also confirm the effectiveness of our model. The video results are available on our project page: https://donydchen.github.io/mvsplat360.
Authors:Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li, Ying Shan
Title: Taming Rectified Flow for Inversion and Editing
Abstract:
Rectified-flow-based diffusion transformers like FLUX and OpenSora have demonstrated outstanding performance in the field of image and video generation. Despite their robust generative capabilities, these models often struggle with inversion inaccuracies, which could further limit their effectiveness in downstream tasks such as image and video editing. To address this issue, we propose RF-Solver, a novel training-free sampler that effectively enhances inversion precision by mitigating the errors in the ODE-solving process of rectified flow. Specifically, we derive the exact formulation of the rectified flow ODE and apply the high-order Taylor expansion to estimate its nonlinear components, significantly enhancing the precision of ODE solutions at each timestep. Building upon RF-Solver, we further propose RF-Edit, a general feature-sharing-based framework for image and video editing. By incorporating self-attention features from the inversion process into the editing process, RF-Edit effectively preserves the structural information of the source image or video while achieving high-quality editing results. Our approach is compatible with any pre-trained rectified-flow-based models for image and video tasks, requiring no additional training or optimization. Extensive experiments across generation, inversion, and editing tasks in both image and video modalities demonstrate the superiority and versatility of our method. The source code is available at https://github.com/wangjiangshan0725/RF-Solver-Edit.
Authors:Haoxuan Che, Xuanhua He, Quande Liu, Cheng Jin, Hao Chen
Title: GameGen-X: Interactive Open-world Game Video Generation
Abstract:
We introduce GameGen-X, the first diffusion transformer model specifically designed for both generating and interactively controlling open-world game videos. This model facilitates high-quality, open-domain generation by simulating an extensive array of game engine features, such as innovative characters, dynamic environments, complex actions, and diverse events. Additionally, it provides interactive controllability, predicting and altering future content based on the current clip, thus allowing for gameplay simulation. To realize this vision, we first collected and built an Open-World Video Game Dataset from scratch. It is the first and largest dataset for open-world game video generation and control, which comprises over a million diverse gameplay video clips sampling from over 150 games with informative captions from GPT-4o. GameGen-X undergoes a two-stage training process, consisting of foundation model pre-training and instruction tuning. Firstly, the model was pre-trained via text-to-video generation and video continuation, endowing it with the capability for long-sequence, high-quality open-domain game video generation. Further, to achieve interactive controllability, we designed InstructNet to incorporate game-related multi-modal control signal experts. This allows the model to adjust latent representations based on user inputs, unifying character interaction and scene content control for the first time in video generation. During instruction tuning, only the InstructNet is updated while the pre-trained foundation model is frozen, enabling the integration of interactive controllability without loss of diversity and quality of generated video content.
Authors:Penghui Ruan, Pichao Wang, Divya Saxena, Jiannong Cao, Yuhui Shi
Title: Enhancing Motion in Text-to-Video Generation with Decomposed Encoding and Conditioning
Abstract:
Despite advancements in Text-to-Video (T2V) generation, producing videos with realistic motion remains challenging. Current models often yield static or minimally dynamic outputs, failing to capture complex motions described by text. This issue stems from the internal biases in text encoding, which overlooks motions, and inadequate conditioning mechanisms in T2V generation models. To address this, we propose a novel framework called DEcomposed MOtion (DEMO), which enhances motion synthesis in T2V generation by decomposing both text encoding and conditioning into content and motion components. Our method includes a content encoder for static elements and a motion encoder for temporal dynamics, alongside separate content and motion conditioning mechanisms. Crucially, we introduce text-motion and video-motion supervision to improve the model's understanding and generation of motion. Evaluations on benchmarks such as MSR-VTT, UCF-101, WebVid-10M, EvalCrafter, and VBench demonstrate DEMO's superior ability to produce videos with enhanced motion dynamics while maintaining high visual quality. Our approach significantly advances T2V generation by integrating comprehensive motion understanding directly from textual descriptions. Project page: https://PR-Ryan.github.io/DEMO-project/
Authors:Shilin Lu, Zihan Zhou, Jiayou Lu, Yuanzhi Zhu, Adams Wai-Kin Kong
Title: Robust Watermarking Using Generative Priors Against Image Editing: From Benchmarking to Advances
Abstract:
Current image watermarking methods are vulnerable to advanced image editing techniques enabled by large-scale text-to-image models. These models can distort embedded watermarks during editing, posing significant challenges to copyright protection. In this work, we introduce W-Bench, the first comprehensive benchmark designed to evaluate the robustness of watermarking methods against a wide range of image editing techniques, including image regeneration, global editing, local editing, and image-to-video generation. Through extensive evaluations of eleven representative watermarking methods against prevalent editing techniques, we demonstrate that most methods fail to detect watermarks after such edits. To address this limitation, we propose VINE, a watermarking method that significantly enhances robustness against various image editing techniques while maintaining high image quality. Our approach involves two key innovations: (1) we analyze the frequency characteristics of image editing and identify that blurring distortions exhibit similar frequency properties, which allows us to use them as surrogate attacks during training to bolster watermark robustness; (2) we leverage a large-scale pretrained diffusion model SDXL-Turbo, adapting it for the watermarking task to achieve more imperceptible and robust watermark embedding. Experimental results show that our method achieves outstanding watermarking performance under various image editing techniques, outperforming existing methods in both image quality and robustness. Code is available at https://github.com/Shilin-LU/VINE.
Authors:Yuan Zhou, Qiuyue Wang, Yuxuan Cai, Huan Yang
Title: Allegro: Open the Black Box of Commercial-Level Video Generation Model
Abstract:
Significant advancements have been made in the field of video generation, with the open-source community contributing a wealth of research papers and tools for training high-quality models. However, despite these efforts, the available information and resources remain insufficient for achieving commercial-level performance. In this report, we open the black box and introduce $\textbf{Allegro}$, an advanced video generation model that excels in both quality and temporal consistency. We also highlight the current limitations in the field and present a comprehensive methodology for training high-performance, commercial-level video generation models, addressing key aspects such as data, model architecture, training pipeline, and evaluation. Our user study shows that Allegro surpasses existing open-source models and most commercial models, ranking just behind Hailuo and Kling. Code: https://github.com/rhymes-ai/Allegro , Model: https://huggingface.co/rhymes-ai/Allegro , Gallery: https://rhymes.ai/allegro_gallery .
Authors:Hanbo Cheng, Limin Lin, Chenyu Liu, Pengcheng Xia, Pengfei Hu, Jiefeng Ma, Jun Du, Jia Pan
Title: DAWN: Dynamic Frame Avatar with Non-autoregressive Diffusion Framework for Talking Head Video Generation
Abstract:
Talking head generation intends to produce vivid and realistic talking head videos from a single portrait and speech audio clip. Although significant progress has been made in diffusion-based talking head generation, almost all methods rely on autoregressive strategies, which suffer from limited context utilization beyond the current generation step, error accumulation, and slower generation speed. To address these challenges, we present DAWN (Dynamic frame Avatar With Non-autoregressive diffusion), a framework that enables all-at-once generation of dynamic-length video sequences. Specifically, it consists of two main components: (1) audio-driven holistic facial dynamics generation in the latent motion space, and (2) audio-driven head pose and blink generation. Extensive experiments demonstrate that our method generates authentic and vivid videos with precise lip motions, and natural pose/blink movements. Additionally, with a high generation speed, DAWN possesses strong extrapolation capabilities, ensuring the stable production of high-quality long videos. These results highlight the considerable promise and potential impact of DAWN in the field of talking head video generation. Furthermore, we hope that DAWN sparks further exploration of non-autoregressive approaches in diffusion models. Our code will be publicly available at https://github.com/Hanbo-Cheng/DAWN-pytorch.
Authors:Zhiyuan Ma, Yuzhu Zhang, Guoli Jia, Liangliang Zhao, Yichao Ma, Mingjie Ma, Gaofeng Liu, Kaiyan Zhang, Jianjun Li, Bowen Zhou
Title: Efficient Diffusion Models: A Comprehensive Survey from Principles to Practices
Abstract:
As one of the most popular and sought-after generative models in the recent years, diffusion models have sparked the interests of many researchers and steadily shown excellent advantage in various generative tasks such as image synthesis, video generation, molecule design, 3D scene rendering and multimodal generation, relying on their dense theoretical principles and reliable application practices. The remarkable success of these recent efforts on diffusion models comes largely from progressive design principles and efficient architecture, training, inference, and deployment methodologies. However, there has not been a comprehensive and in-depth review to summarize these principles and practices to help the rapid understanding and application of diffusion models. In this survey, we provide a new efficiency-oriented perspective on these existing efforts, which mainly focuses on the profound principles and efficient practices in architecture designs, model training, fast inference and reliable deployment, to guide further theoretical research, algorithm migration and model application for new scenarios in a reader-friendly way. \url{https://github.com/ponyzym/Efficient-DMs-Survey}
Authors:Tianwei Xiong, Yuqing Wang, Daquan Zhou, Zhijie Lin, Jiashi Feng, Xihui Liu
Title: LVD-2M: A Long-take Video Dataset with Temporally Dense Captions
Abstract:
The efficacy of video generation models heavily depends on the quality of their training datasets. Most previous video generation models are trained on short video clips, while recently there has been increasing interest in training long video generation models directly on longer videos. However, the lack of such high-quality long videos impedes the advancement of long video generation. To promote research in long video generation, we desire a new dataset with four key features essential for training long video generation models: (1) long videos covering at least 10 seconds, (2) long-take videos without cuts, (3) large motion and diverse contents, and (4) temporally dense captions. To achieve this, we introduce a new pipeline for selecting high-quality long-take videos and generating temporally dense captions. Specifically, we define a set of metrics to quantitatively assess video quality including scene cuts, dynamic degrees, and semantic-level quality, enabling us to filter high-quality long-take videos from a large amount of source videos. Subsequently, we develop a hierarchical video captioning pipeline to annotate long videos with temporally-dense captions. With this pipeline, we curate the first long-take video dataset, LVD-2M, comprising 2 million long-take videos, each covering more than 10 seconds and annotated with temporally dense captions. We further validate the effectiveness of LVD-2M by fine-tuning video generation models to generate long videos with dynamic motions. We believe our work will significantly contribute to future research in long video generation.
Authors:Bohan Zeng, Ling Yang, Siyu Li, Jiaming Liu, Zixiang Zhang, Juanxi Tian, Kaixin Zhu, Yongzhen Guo, Fu-Yun Wang, Minkai Xu, Stefano Ermon, Wentao Zhang
Title: Trans4D: Realistic Geometry-Aware Transition for Compositional Text-to-4D Synthesis
Abstract:
Recent advances in diffusion models have demonstrated exceptional capabilities in image and video generation, further improving the effectiveness of 4D synthesis. Existing 4D generation methods can generate high-quality 4D objects or scenes based on user-friendly conditions, benefiting the gaming and video industries. However, these methods struggle to synthesize significant object deformation of complex 4D transitions and interactions within scenes. To address this challenge, we propose Trans4D, a novel text-to-4D synthesis framework that enables realistic complex scene transitions. Specifically, we first use multi-modal large language models (MLLMs) to produce a physic-aware scene description for 4D scene initialization and effective transition timing planning. Then we propose a geometry-aware 4D transition network to realize a complex scene-level 4D transition based on the plan, which involves expressive geometrical object deformation. Extensive experiments demonstrate that Trans4D consistently outperforms existing state-of-the-art methods in generating 4D scenes with accurate and high-quality transitions, validating its effectiveness. Code: https://github.com/YangLing0818/Trans4D
Authors:Qi Tang, Yao Zhao, Meiqin Liu, Chao Yao
Title: SeeClear: Semantic Distillation Enhances Pixel Condensation for Video Super-Resolution
Abstract:
Diffusion-based Video Super-Resolution (VSR) is renowned for generating perceptually realistic videos, yet it grapples with maintaining detail consistency across frames due to stochastic fluctuations. The traditional approach of pixel-level alignment is ineffective for diffusion-processed frames because of iterative disruptions. To overcome this, we introduce SeeClear--a novel VSR framework leveraging conditional video generation, orchestrated by instance-centric and channel-wise semantic controls. This framework integrates a Semantic Distiller and a Pixel Condenser, which synergize to extract and upscale semantic details from low-resolution frames. The Instance-Centric Alignment Module (InCAM) utilizes video-clip-wise tokens to dynamically relate pixels within and across frames, enhancing coherency. Additionally, the Channel-wise Texture Aggregation Memory (CaTeGory) infuses extrinsic knowledge, capitalizing on long-standing semantic textures. Our method also innovates the blurring diffusion process with the ResShift mechanism, finely balancing between sharpness and diffusion effects. Comprehensive experiments confirm our framework's advantage over state-of-the-art diffusion-based VSR techniques. The code is available: https://github.com/Tang1705/SeeClear-NeurIPS24.
Authors:Gihyun Kwon, Jong Chul Ye
Title: TweedieMix: Improving Multi-Concept Fusion for Diffusion-based Image/Video Generation
Abstract:
Despite significant advancements in customizing text-to-image and video generation models, generating images and videos that effectively integrate multiple personalized concepts remains a challenging task. To address this, we present TweedieMix, a novel method for composing customized diffusion models during the inference phase. By analyzing the properties of reverse diffusion sampling, our approach divides the sampling process into two stages. During the initial steps, we apply a multiple object-aware sampling technique to ensure the inclusion of the desired target objects. In the later steps, we blend the appearances of the custom concepts in the de-noised image space using Tweedie's formula. Our results demonstrate that TweedieMix can generate multiple personalized concepts with higher fidelity than existing methods. Moreover, our framework can be effortlessly extended to image-to-video diffusion models, enabling the generation of videos that feature multiple personalized concepts. Results and source code are in our anonymous project page.
Authors:Fanqing Meng, Jiaqi Liao, Xinyu Tan, Wenqi Shao, Quanfeng Lu, Kaipeng Zhang, Yu Cheng, Dianqi Li, Yu Qiao, Ping Luo
Title: Towards World Simulator: Crafting Physical Commonsense-Based Benchmark for Video Generation
Abstract:
Text-to-video (T2V) models like Sora have made significant strides in visualizing complex prompts, which is increasingly viewed as a promising path towards constructing the universal world simulator. Cognitive psychologists believe that the foundation for achieving this goal is the ability to understand intuitive physics. However, the capacity of these models to accurately represent intuitive physics remains largely unexplored. To bridge this gap, we introduce PhyGenBench, a comprehensive \textbf{Phy}sics \textbf{Gen}eration \textbf{Ben}chmark designed to evaluate physical commonsense correctness in T2V generation. PhyGenBench comprises 160 carefully crafted prompts across 27 distinct physical laws, spanning four fundamental domains, which could comprehensively assesses models' understanding of physical commonsense. Alongside PhyGenBench, we propose a novel evaluation framework called PhyGenEval. This framework employs a hierarchical evaluation structure utilizing appropriate advanced vision-language models and large language models to assess physical commonsense. Through PhyGenBench and PhyGenEval, we can conduct large-scale automated assessments of T2V models' understanding of physical commonsense, which align closely with human feedback. Our evaluation results and in-depth analysis demonstrate that current models struggle to generate videos that comply with physical commonsense. Moreover, simply scaling up models or employing prompt engineering techniques is insufficient to fully address the challenges presented by PhyGenBench (e.g., dynamic scenarios). We hope this study will inspire the community to prioritize the learning of physical commonsense in these models beyond entertainment applications. We will release the data and codes at https://github.com/OpenGVLab/PhyGenBench
Authors:Yaofang Liu, Yumeng Ren, Xiaodong Cun, Aitor Artola, Yang Liu, Tieyong Zeng, Raymond H. Chan, Jean-michel Morel
Title: Redefining Temporal Modeling in Video Diffusion: The Vectorized Timestep Approach
Abstract:
Diffusion models have revolutionized image generation, and their extension to video generation has shown promise. However, current video diffusion models~(VDMs) rely on a scalar timestep variable applied at the clip level, which limits their ability to model complex temporal dependencies needed for various tasks like image-to-video generation. To address this limitation, we propose a frame-aware video diffusion model~(FVDM), which introduces a novel vectorized timestep variable~(VTV). Unlike conventional VDMs, our approach allows each frame to follow an independent noise schedule, enhancing the model's capacity to capture fine-grained temporal dependencies. FVDM's flexibility is demonstrated across multiple tasks, including standard video generation, image-to-video generation, video interpolation, and long video synthesis. Through a diverse set of VTV configurations, we achieve superior quality in generated videos, overcoming challenges such as catastrophic forgetting during fine-tuning and limited generalizability in zero-shot methods.Our empirical evaluations show that FVDM outperforms state-of-the-art methods in video generation quality, while also excelling in extended tasks. By addressing fundamental shortcomings in existing VDMs, FVDM sets a new paradigm in video synthesis, offering a robust framework with significant implications for generative modeling and multimedia applications.
Authors:Yiwei Li, Sekeun Kim, Zihao Wu, Hanqi Jiang, Yi Pan, Pengfei Jin, Sifan Song, Yucheng Shi, Tianming Liu, Quanzheng Li, Xiang Li
Title: ECHOPulse: ECG controlled echocardio-grams video generation
Abstract:
Echocardiography (ECHO) is essential for cardiac assessments, but its video quality and interpretation heavily relies on manual expertise, leading to inconsistent results from clinical and portable devices. ECHO video generation offers a solution by improving automated monitoring through synthetic data and generating high-quality videos from routine health data. However, existing models often face high computational costs, slow inference, and rely on complex conditional prompts that require experts' annotations. To address these challenges, we propose ECHOPULSE, an ECG-conditioned ECHO video generation model. ECHOPULSE introduces two key advancements: (1) it accelerates ECHO video generation by leveraging VQ-VAE tokenization and masked visual token modeling for fast decoding, and (2) it conditions on readily accessible ECG signals, which are highly coherent with ECHO videos, bypassing complex conditional prompts. To the best of our knowledge, this is the first work to use time-series prompts like ECG signals for ECHO video generation. ECHOPULSE not only enables controllable synthetic ECHO data generation but also provides updated cardiac function information for disease monitoring and prediction beyond ECG alone. Evaluations on three public and private datasets demonstrate state-of-the-art performance in ECHO video generation across both qualitative and quantitative measures. Additionally, ECHOPULSE can be easily generalized to other modality generation tasks, such as cardiac MRI, fMRI, and 3D CT generation. Demo can seen from \url{https://github.com/levyisthebest/ECHOPulse_Prelease}.
Authors:Jintao Zhang, Jia Wei, Haofeng Huang, Pengle Zhang, Jun Zhu, Jianfei Chen
Title: SageAttention: Accurate 8-Bit Attention for Plug-and-play Inference Acceleration
Abstract:
The transformer architecture predominates across various models. As the heart of the transformer, attention has a computational complexity of $O(N^2)$, compared to $O(N)$ for linear transformations. When handling large sequence lengths, attention becomes the primary time-consuming component. Although quantization has proven to be an effective method for accelerating model inference, existing quantization methods primarily focus on optimizing the linear layer. In response, we first analyze the feasibility of quantization in attention detailedly. Following that, we propose SageAttention, a highly efficient and accurate quantization method for attention. The OPS (operations per second) of our approach outperforms FlashAttention2 and xformers by about 2.1 times and 2.7 times, respectively. SageAttention also achieves superior accuracy performance over FlashAttention3. Comprehensive experiments confirm that our approach incurs almost no end-to-end metrics loss across diverse models, including those for large language processing, image generation, and video generation. The codes are available at https://github.com/thu-ml/SageAttention.
Authors:Jie Cheng, Ruixi Qiao, Yingwei Ma, Binhua Li, Gang Xiong, Qinghai Miao, Yongbin Li, Yisheng Lv
Title: Scaling Offline Model-Based RL via Jointly-Optimized World-Action Model Pretraining
Abstract:
A significant aspiration of offline reinforcement learning (RL) is to develop a generalist agent with high capabilities from large and heterogeneous datasets. However, prior approaches that scale offline RL either rely heavily on expert trajectories or struggle to generalize to diverse unseen tasks. Inspired by the excellent generalization of world model in conditional video generation, we explore the potential of image observation-based world model for scaling offline RL and enhancing generalization on novel tasks. In this paper, we introduce JOWA: Jointly-Optimized World-Action model, an offline model-based RL agent pretrained on multiple Atari games with 6 billion tokens data to learn general-purpose representation and decision-making ability. Our method jointly optimizes a world-action model through a shared transformer backbone, which stabilize temporal difference learning with large models during pretraining. Moreover, we propose a provably efficient and parallelizable planning algorithm to compensate for the Q-value estimation error and thus search out better policies. Experimental results indicate that our largest agent, with 150 million parameters, achieves 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange. Furthermore, JOWA scales favorably with model capacity and can sample-efficiently transfer to novel games using only 5k offline fine-tuning data (approximately 4 trajectories) per game, demonstrating superior generalization. We will release codes and model weights at https://github.com/CJReinforce/JOWA
Authors:Xiang Wang, Shiwei Zhang, Haonan Qiu, Ruihang Chu, Zekun Li, Yingya Zhang, Changxin Gao, Yuehuan Wang, Chunhua Shen, Nong Sang
Title: Replace Anyone in Videos
Abstract:
The field of controllable human-centric video generation has witnessed remarkable progress, particularly with the advent of diffusion models. However, achieving precise and localized control over human motion in videos, such as replacing or inserting individuals while preserving desired motion patterns, still remains a formidable challenge. In this work, we present the ReplaceAnyone framework, which focuses on localized human replacement and insertion featuring intricate backgrounds. Specifically, we formulate this task as an image-conditioned video inpainting paradigm with pose guidance, utilizing a unified end-to-end video diffusion architecture that facilitates image-conditioned video inpainting within masked regions. To prevent shape leakage and enable granular local control, we introduce diverse mask forms involving both regular and irregular shapes. Furthermore, we implement an enriched visual guidance mechanism to enhance appearance alignment, a hybrid inpainting encoder to further preserve the detailed background information in the masked video, and a two-phase optimization methodology to simplify the training difficulty. ReplaceAnyone enables seamless replacement or insertion of characters while maintaining the desired pose motion and reference appearance within a single framework. Extensive experimental results demonstrate the effectiveness of our method in generating realistic and coherent video content. The proposed ReplaceAnyone can be seamlessly applied not only to traditional 3D-UNet base models but also to DiT-based video models such as Wan2.1. The code will be available at https://github.com/ali-vilab/UniAnimate-DiT.
Authors:Masato Ishii, Akio Hayakawa, Takashi Shibuya, Yuki Mitsufuji
Title: A Simple but Strong Baseline for Sounding Video Generation: Effective Adaptation of Audio and Video Diffusion Models for Joint Generation
Abstract:
In this work, we build a simple but strong baseline for sounding video generation. Given base diffusion models for audio and video, we integrate them with additional modules into a single model and train it to make the model jointly generate audio and video. To enhance alignment between audio-video pairs, we introduce two novel mechanisms in our model. The first one is timestep adjustment, which provides different timestep information to each base model. It is designed to align how samples are generated along with timesteps across modalities. The second one is a new design of the additional modules, termed Cross-Modal Conditioning as Positional Encoding (CMC-PE). In CMC-PE, cross-modal information is embedded as if it represents temporal position information, and the embeddings are fed into the model like positional encoding. Compared with the popular cross-attention mechanism, CMC-PE provides a better inductive bias for temporal alignment in the generated data. Experimental results validate the effectiveness of the two newly introduced mechanisms and also demonstrate that our method outperforms existing methods.
Authors:Xinyi Ying, Li Liu, Zaipin Lin, Yangsi Shi, Yingqian Wang, Ruojing Li, Xu Cao, Boyang Li, Shilin Zhou, Wei An
Title: Infrared Small Target Detection in Satellite Videos: A New Dataset and A Novel Recurrent Feature Refinement Framework
Abstract:
Multi-frame infrared small target (MIRST) detection in satellite videos is a long-standing, fundamental yet challenging task for decades, and the challenges can be summarized as: First, extremely small target size, highly complex clutters & noises, various satellite motions result in limited feature representation, high false alarms, and difficult motion analyses. Second, the lack of large-scale public available MIRST dataset in satellite videos greatly hinders the algorithm development. To address the aforementioned challenges, in this paper, we first build a large-scale dataset for MIRST detection in satellite videos (namely IRSatVideo-LEO), and then develop a recurrent feature refinement (RFR) framework as the baseline method. Specifically, IRSatVideo-LEO is a semi-simulated dataset with synthesized satellite motion, target appearance, trajectory and intensity, which can provide a standard toolbox for satellite video generation and a reliable evaluation platform to facilitate the algorithm development. For baseline method, RFR is proposed to be equipped with existing powerful CNN-based methods for long-term temporal dependency exploitation and integrated motion compensation & MIRST detection. Specifically, a pyramid deformable alignment (PDA) module and a temporal-spatial-frequency modulation (TSFM) module are proposed to achieve effective and efficient feature alignment, propagation, aggregation and refinement. Extensive experiments have been conducted to demonstrate the effectiveness and superiority of our scheme. The comparative results show that ResUNet equipped with RFR outperforms the state-of-the-art MIRST detection methods. Dataset and code are released at https://github.com/XinyiYing/RFR.
Authors:Haibo Yang, Yang Chen, Yingwei Pan, Ting Yao, Zhineng Chen, Chong-Wah Ngo, Tao Mei
Title: Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models
Abstract:
Despite having tremendous progress in image-to-3D generation, existing methods still struggle to produce multi-view consistent images with high-resolution textures in detail, especially in the paradigm of 2D diffusion that lacks 3D awareness. In this work, we present High-resolution Image-to-3D model (Hi3D), a new video diffusion based paradigm that redefines a single image to multi-view images as 3D-aware sequential image generation (i.e., orbital video generation). This methodology delves into the underlying temporal consistency knowledge in video diffusion model that generalizes well to geometry consistency across multiple views in 3D generation. Technically, Hi3D first empowers the pre-trained video diffusion model with 3D-aware prior (camera pose condition), yielding multi-view images with low-resolution texture details. A 3D-aware video-to-video refiner is learnt to further scale up the multi-view images with high-resolution texture details. Such high-resolution multi-view images are further augmented with novel views through 3D Gaussian Splatting, which are finally leveraged to obtain high-fidelity meshes via 3D reconstruction. Extensive experiments on both novel view synthesis and single view reconstruction demonstrate that our Hi3D manages to produce superior multi-view consistency images with highly-detailed textures. Source code and data are available at \url{https://github.com/yanghb22-fdu/Hi3D-Official}.
Authors:Xiaowei Hu, Zhenghao Xing, Tianyu Wang, Chi-Wing Fu, Pheng-Ann Heng
Title: Unveiling Deep Shadows: A Survey and Benchmark on Image and Video Shadow Detection, Removal, and Generation in the Deep Learning Era
Abstract:
Shadows are created when light encounters obstacles, resulting in regions of reduced illumination. In computer vision, detecting, removing, and generating shadows are critical tasks for improving scene understanding, enhancing image quality, ensuring visual consistency in video editing, and optimizing virtual environments. This paper offers a comprehensive survey and evaluation benchmark on shadow detection, removal, and generation in both images and videos, focusing on the deep learning approaches of the past decade. It covers key aspects such as tasks, deep models, datasets, evaluation metrics, and comparative results under consistent experimental settings. Our main contributions include a thorough survey of shadow analysis, the standardization of experimental comparisons, an exploration of the relationships between model size, speed, and performance, a cross-dataset generalization study, the identification of open challenges and future research directions, and the provision of publicly available resources to support further research in this field.
Authors:Zhangsihao Yang, Mengyi Shan, Mohammad Farazi, Wenhui Zhu, Yanxi Chen, Xuanzhao Dong, Yalin Wang
Title: AMG: Avatar Motion Guided Video Generation
Abstract:
Human video generation task has gained significant attention with the advancement of deep generative models. Generating realistic videos with human movements is challenging in nature, due to the intricacies of human body topology and sensitivity to visual artifacts. The extensively studied 2D media generation methods take advantage of massive human media datasets, but struggle with 3D-aware control; whereas 3D avatar-based approaches, while offering more freedom in control, lack photorealism and cannot be harmonized seamlessly with background scene. We propose AMG, a method that combines the 2D photorealism and 3D controllability by conditioning video diffusion models on controlled rendering of 3D avatars. We additionally introduce a novel data processing pipeline that reconstructs and renders human avatar movements from dynamic camera videos. AMG is the first method that enables multi-person diffusion video generation with precise control over camera positions, human motions, and background style. We also demonstrate through extensive evaluation that it outperforms existing human video generation methods conditioned on pose sequences or driving videos in terms of realism and adaptability.
Authors:Liuhan Chen, Zongjian Li, Bin Lin, Bin Zhu, Qian Wang, Shenghai Yuan, Xing Zhou, Xinhua Cheng, Li Yuan
Title: OD-VAE: An Omni-dimensional Video Compressor for Improving Latent Video Diffusion Model
Abstract:
Variational Autoencoder (VAE), compressing videos into latent representations, is a crucial preceding component of Latent Video Diffusion Models (LVDMs). With the same reconstruction quality, the more sufficient the VAE's compression for videos is, the more efficient the LVDMs are. However, most LVDMs utilize 2D image VAE, whose compression for videos is only in the spatial dimension and often ignored in the temporal dimension. How to conduct temporal compression for videos in a VAE to obtain more concise latent representations while promising accurate reconstruction is seldom explored. To fill this gap, we propose an omni-dimension compression VAE, named OD-VAE, which can temporally and spatially compress videos. Although OD-VAE's more sufficient compression brings a great challenge to video reconstruction, it can still achieve high reconstructed accuracy by our fine design. To obtain a better trade-off between video reconstruction quality and compression speed, four variants of OD-VAE are introduced and analyzed. In addition, a novel tail initialization is designed to train OD-VAE more efficiently, and a novel inference strategy is proposed to enable OD-VAE to handle videos of arbitrary length with limited GPU memory. Comprehensive experiments on video reconstruction and LVDM-based video generation demonstrate the effectiveness and efficiency of our proposed methods.
Authors:Zejia Weng, Xitong Yang, Zhen Xing, Zuxuan Wu, Yu-Gang Jiang
Title: GenRec: Unifying Video Generation and Recognition with Diffusion Models
Abstract:
Video diffusion models are able to generate high-quality videos by learning strong spatial-temporal priors on large-scale datasets. In this paper, we aim to investigate whether such priors derived from a generative process are suitable for video recognition, and eventually joint optimization of generation and recognition. Building upon Stable Video Diffusion, we introduce GenRec, the first unified framework trained with a random-frame conditioning process so as to learn generalized spatial-temporal representations. The resulting framework can naturally supports generation and recognition, and more importantly is robust even when visual inputs contain limited information. Extensive experiments demonstrate the efficacy of GenRec for both recognition and generation. In particular, GenRec achieves competitive recognition performance, offering 75.8% and 87.2% accuracy on SSV2 and K400, respectively. GenRec also performs the best on class-conditioned image-to-video generation, achieving 46.5 and 49.3 FVD scores on SSV2 and EK-100 datasets. Furthermore, GenRec demonstrates extraordinary robustness in scenarios that only limited frames can be observed. Code will be available at https://github.com/wengzejia1/GenRec.
Authors:Weiyi Zhang, Siyu Huang, Jiancheng Yang, Ruoyu Chen, Zongyuan Ge, Yingfeng Zheng, Danli Shi, Mingguang He
Title: Fundus2Video: Cross-Modal Angiography Video Generation from Static Fundus Photography with Clinical Knowledge Guidance
Abstract:
Fundus Fluorescein Angiography (FFA) is a critical tool for assessing retinal vascular dynamics and aiding in the diagnosis of eye diseases. However, its invasive nature and less accessibility compared to Color Fundus (CF) images pose significant challenges. Current CF to FFA translation methods are limited to static generation. In this work, we pioneer dynamic FFA video generation from static CF images. We introduce an autoregressive GAN for smooth, memory-saving frame-by-frame FFA synthesis. To enhance the focus on dynamic lesion changes in FFA regions, we design a knowledge mask based on clinical experience. Leveraging this mask, our approach integrates innovative knowledge mask-guided techniques, including knowledge-boosted attention, knowledge-aware discriminators, and mask-enhanced patchNCE loss, aimed at refining generation in critical areas and addressing the pixel misalignment challenge. Our method achieves the best FVD of 1503.21 and PSNR of 11.81 compared to other common video generation approaches. Human assessment by an ophthalmologist confirms its high generation quality. Notably, our knowledge mask surpasses supervised lesion segmentation masks, offering a promising non-invasive alternative to traditional FFA for research and clinical applications. The code is available at https://github.com/Michi-3000/Fundus2Video.
Authors:Tao Wu, Yong Zhang, Xintao Wang, Xianpan Zhou, Guangcong Zheng, Zhongang Qi, Ying Shan, Xi Li
Title: CustomCrafter: Customized Video Generation with Preserving Motion and Concept Composition Abilities
Abstract:
Customized video generation aims to generate high-quality videos guided by text prompts and subject's reference images. However, since it is only trained on static images, the fine-tuning process of subject learning disrupts abilities of video diffusion models (VDMs) to combine concepts and generate motions. To restore these abilities, some methods use additional video similar to the prompt to fine-tune or guide the model. This requires frequent changes of guiding videos and even re-tuning of the model when generating different motions, which is very inconvenient for users. In this paper, we propose CustomCrafter, a novel framework that preserves the model's motion generation and conceptual combination abilities without additional video and fine-tuning to recovery. For preserving conceptual combination ability, we design a plug-and-play module to update few parameters in VDMs, enhancing the model's ability to capture the appearance details and the ability of concept combinations for new subjects. For motion generation, we observed that VDMs tend to restore the motion of video in the early stage of denoising, while focusing on the recovery of subject details in the later stage. Therefore, we propose Dynamic Weighted Video Sampling Strategy. Using the pluggability of our subject learning modules, we reduce the impact of this module on motion generation in the early stage of denoising, preserving the ability to generate motion of VDMs. In the later stage of denoising, we restore this module to repair the appearance details of the specified subject, thereby ensuring the fidelity of the subject's appearance. Experimental results show that our method has a significant improvement compared to previous methods. Code is available at https://github.com/WuTao-CS/CustomCrafter
Authors:Shangkun Sun, Xiaoyu Liang, Songlin Fan, Wenxu Gao, Wei Gao
Title: VE-Bench: Subjective-Aligned Benchmark Suite for Text-Driven Video Editing Quality Assessment
Abstract:
Text-driven video editing has recently experienced rapid development. Despite this, evaluating edited videos remains a considerable challenge. Current metrics tend to fail to align with human perceptions, and effective quantitative metrics for video editing are still notably absent. To address this, we introduce VE-Bench, a benchmark suite tailored to the assessment of text-driven video editing. This suite includes VE-Bench DB, a video quality assessment (VQA) database for video editing. VE-Bench DB encompasses a diverse set of source videos featuring various motions and subjects, along with multiple distinct editing prompts, editing results from 8 different models, and the corresponding Mean Opinion Scores (MOS) from 24 human annotators. Based on VE-Bench DB, we further propose VE-Bench QA, a quantitative human-aligned measurement for the text-driven video editing task. In addition to the aesthetic, distortion, and other visual quality indicators that traditional VQA methods emphasize, VE-Bench QA focuses on the text-video alignment and the relevance modeling between source and edited videos. It proposes a new assessment network for video editing that attains superior performance in alignment with human preferences. To the best of our knowledge, VE-Bench introduces the first quality assessment dataset for video editing and an effective subjective-aligned quantitative metric for this domain. All data and code will be publicly available at https://github.com/littlespray/VE-Bench.
Authors:Tao Yang, Yangming Shi, Yunwen Huang, Feng Chen, Yin Zheng, Lei Zhang
Title: Factorized-Dreamer: Training A High-Quality Video Generator with Limited and Low-Quality Data
Abstract:
Text-to-video (T2V) generation has gained significant attention due to its wide applications to video generation, editing, enhancement and translation, \etc. However, high-quality (HQ) video synthesis is extremely challenging because of the diverse and complex motions existed in real world. Most existing works struggle to address this problem by collecting large-scale HQ videos, which are inaccessible to the community. In this work, we show that publicly available limited and low-quality (LQ) data are sufficient to train a HQ video generator without recaptioning or finetuning. We factorize the whole T2V generation process into two steps: generating an image conditioned on a highly descriptive caption, and synthesizing the video conditioned on the generated image and a concise caption of motion details. Specifically, we present \emph{Factorized-Dreamer}, a factorized spatiotemporal framework with several critical designs for T2V generation, including an adapter to combine text and image embeddings, a pixel-aware cross attention module to capture pixel-level image information, a T5 text encoder to better understand motion description, and a PredictNet to supervise optical flows. We further present a noise schedule, which plays a key role in ensuring the quality and stability of video generation. Our model lowers the requirements in detailed captions and HQ videos, and can be directly trained on limited LQ datasets with noisy and brief captions such as WebVid-10M, largely alleviating the cost to collect large-scale HQ video-text pairs. Extensive experiments in a variety of T2V and image-to-video generation tasks demonstrate the effectiveness of our proposed Factorized-Dreamer. Our source codes are available at \url{https://github.com/yangxy/Factorized-Dreamer/}.
Authors:Yunxin Li, Haoyuan Shi, Baotian Hu, Longyue Wang, Jiashun Zhu, Jinyi Xu, Zhen Zhao, Min Zhang
Title: Anim-Director: A Large Multimodal Model Powered Agent for Controllable Animation Video Generation
Abstract:
Traditional animation generation methods depend on training generative models with human-labelled data, entailing a sophisticated multi-stage pipeline that demands substantial human effort and incurs high training costs. Due to limited prompting plans, these methods typically produce brief, information-poor, and context-incoherent animations. To overcome these limitations and automate the animation process, we pioneer the introduction of large multimodal models (LMMs) as the core processor to build an autonomous animation-making agent, named Anim-Director. This agent mainly harnesses the advanced understanding and reasoning capabilities of LMMs and generative AI tools to create animated videos from concise narratives or simple instructions. Specifically, it operates in three main stages: Firstly, the Anim-Director generates a coherent storyline from user inputs, followed by a detailed director's script that encompasses settings of character profiles and interior/exterior descriptions, and context-coherent scene descriptions that include appearing characters, interiors or exteriors, and scene events. Secondly, we employ LMMs with the image generation tool to produce visual images of settings and scenes. These images are designed to maintain visual consistency across different scenes using a visual-language prompting method that combines scene descriptions and images of the appearing character and setting. Thirdly, scene images serve as the foundation for producing animated videos, with LMMs generating prompts to guide this process. The whole process is notably autonomous without manual intervention, as the LMMs interact seamlessly with generative tools to generate prompts, evaluate visual quality, and select the best one to optimize the final output.
Authors:Jing Tang, Quanlu Jia, Yuqiang Xie, Zeyu Gong, Xiang Wen, Jiayi Zhang, Yalong Guo, Guibin Chen, Jiangping Yang
Title: SkyScript-100M: 1,000,000,000 Pairs of Scripts and Shooting Scripts for Short Drama
Abstract:
Generating high-quality shooting scripts containing information such as scene and shot language is essential for short drama script generation. We collect 6,660 popular short drama episodes from the Internet, each with an average of 100 short episodes, and the total number of short episodes is about 80,000, with a total duration of about 2,000 hours and totaling 10 terabytes (TB). We perform keyframe extraction and annotation on each episode to obtain about 10,000,000 shooting scripts. We perform 100 script restorations on the extracted shooting scripts based on our self-developed large short drama generation model SkyReels. This leads to a dataset containing 1,000,000,000 pairs of scripts and shooting scripts for short dramas, called SkyScript-100M. We compare SkyScript-100M with the existing dataset in detail and demonstrate some deeper insights that can be achieved based on SkyScript-100M. Based on SkyScript-100M, researchers can achieve several deeper and more far-reaching script optimization goals, which may drive a paradigm shift in the entire field of text-to-video and significantly advance the field of short drama video generation. The data and code are available at https://github.com/vaew/SkyScript-100M.
Authors:Hongqiu Wang, Wei Wang, Haipeng Zhou, Huihui Xu, Shaozhi Wu, Lei Zhu
Title: Language-Driven Interactive Shadow Detection
Abstract:
Traditional shadow detectors often identify all shadow regions of static images or video sequences. This work presents the Referring Video Shadow Detection (RVSD), which is an innovative task that rejuvenates the classic paradigm by facilitating the segmentation of particular shadows in videos based on descriptive natural language prompts. This novel RVSD not only achieves segmentation of arbitrary shadow areas of interest based on descriptions (flexibility) but also allows users to interact with visual content more directly and naturally by using natural language prompts (interactivity), paving the way for abundant applications ranging from advanced video editing to virtual reality experiences. To pioneer the RVSD research, we curated a well-annotated RVSD dataset, which encompasses 86 videos and a rich set of 15,011 paired textual descriptions with corresponding shadows. To the best of our knowledge, this dataset is the first one for addressing RVSD. Based on this dataset, we propose a Referring Shadow-Track Memory Network (RSM-Net) for addressing the RVSD task. In our RSM-Net, we devise a Twin-Track Synergistic Memory (TSM) to store intra-clip memory features and hierarchical inter-clip memory features, and then pass these memory features into a memory read module to refine features of the current video frame for referring shadow detection. We also develop a Mixed-Prior Shadow Attention (MSA) to utilize physical priors to obtain a coarse shadow map for learning more visual features by weighting it with the input video frame. Experimental results show that our RSM-Net achieves state-of-the-art performance for RVSD with a notable Overall IOU increase of 4.4\%. Our code and dataset are available at https://github.com/whq-xxh/RVSD.
Authors:Chunhui Zhang, Yawen Cui, Weilin Lin, Guanjie Huang, Yan Rong, Li Liu, Shiguang Shan
Title: Segment Anything for Videos: A Systematic Survey
Abstract:
The recent wave of foundation models has witnessed tremendous success in computer vision (CV) and beyond, with the segment anything model (SAM) having sparked a passion for exploring task-agnostic visual foundation models. Empowered by its remarkable zero-shot generalization, SAM is currently challenging numerous traditional paradigms in CV, delivering extraordinary performance not only in various image segmentation and multi-modal segmentation (\eg, text-to-mask) tasks, but also in the video domain. Additionally, the latest released SAM 2 is once again sparking research enthusiasm in the realm of promptable visual segmentation for both images and videos. However, existing surveys mainly focus on SAM in various image processing tasks, a comprehensive and in-depth review in the video domain is notably absent. To address this gap, this work conducts a systematic review on SAM for videos in the era of foundation models. As the first to review the progress of SAM for videos, this work focuses on its applications to various tasks by discussing its recent advances, and innovation opportunities of developing foundation models on broad applications. We begin with a brief introduction to the background of SAM and video-related research domains. Subsequently, we present a systematic taxonomy that categorizes existing methods into three key areas: video understanding, video generation, and video editing, analyzing and summarizing their advantages and limitations. Furthermore, comparative results of SAM-based and current state-of-the-art methods on representative benchmarks, as well as insightful analysis are offered. Finally, we discuss the challenges faced by current research and envision several future research directions in the field of SAM for video and beyond.
Authors:Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan Zhang, Weihan Wang, Yean Cheng, Bin Xu, Xiaotao Gu, Yuxiao Dong, Jie Tang
Title: CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer
Abstract:
We present CogVideoX, a large-scale text-to-video generation model based on diffusion transformer, which can generate 10-second continuous videos aligned with text prompt, with a frame rate of 16 fps and resolution of 768 * 1360 pixels. Previous video generation models often had limited movement and short durations, and is difficult to generate videos with coherent narratives based on text. We propose several designs to address these issues. First, we propose a 3D Variational Autoencoder (VAE) to compress videos along both spatial and temporal dimensions, to improve both compression rate and video fidelity. Second, to improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. Third, by employing a progressive training and multi-resolution frame pack technique, CogVideoX is adept at producing coherent, long-duration, different shape videos characterized by significant motions. In addition, we develop an effective text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method, greatly contributing to the generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weight of both 3D Causal VAE, Video caption model and CogVideoX are publicly available at https://github.com/THUDM/CogVideo.
Authors:Van Phi Nguyen, Tri Nhan Luong Ha, Huy Hieu Pham, Quoc Long Tran
Title: Training-Free Condition Video Diffusion Models for single frame Spatial-Semantic Echocardiogram Synthesis
Abstract:
Conditional video diffusion models (CDM) have shown promising results for video synthesis, potentially enabling the generation of realistic echocardiograms to address the problem of data scarcity. However, current CDMs require a paired segmentation map and echocardiogram dataset. We present a new method called Free-Echo for generating realistic echocardiograms from a single end-diastolic segmentation map without additional training data. Our method is based on the 3D-Unet with Temporal Attention Layers model and is conditioned on the segmentation map using a training-free conditioning method based on SDEdit. We evaluate our model on two public echocardiogram datasets, CAMUS and EchoNet-Dynamic. We show that our model can generate plausible echocardiograms that are spatially aligned with the input segmentation map, achieving performance comparable to training-based CDMs. Our work opens up new possibilities for generating echocardiograms from a single segmentation map, which can be used for data augmentation, domain adaptation, and other applications in medical imaging. Our code is available at \url{https://github.com/gungui98/echo-free}
Authors:Zhenghao Zhang, Junchao Liao, Menghao Li, Zuozhuo Dai, Bingxue Qiu, Siyu Zhu, Long Qin, Weizhi Wang
Title: Tora: Trajectory-oriented Diffusion Transformer for Video Generation
Abstract:
Recent advancements in Diffusion Transformer (DiT) have demonstrated remarkable proficiency in producing high-quality video content. Nonetheless, the potential of transformer-based diffusion models for effectively generating videos with controllable motion remains an area of limited exploration. This paper introduces Tora, the first trajectory-oriented DiT framework that concurrently integrates textual, visual, and trajectory conditions, thereby enabling scalable video generation with effective motion guidance. Specifically, Tora consists of a Trajectory Extractor (TE), a Spatial-Temporal DiT, and a Motion-guidance Fuser (MGF). The TE encodes arbitrary trajectories into hierarchical spacetime motion patches with a 3D motion compression network. The MGF integrates the motion patches into the DiT blocks to generate consistent videos that accurately follow designated trajectories. Our design aligns seamlessly with DiT's scalability, allowing precise control of video content's dynamics with diverse durations, aspect ratios, and resolutions. Extensive experiments demonstrate that Tora excels in achieving high motion fidelity compared to the foundational DiT model, while also accurately simulating the complex movements of the physical world. Code is made available at https://github.com/alibaba/Tora .
Authors:Junxuan Yu, Rusi Chen, Yongsong Zhou, Yanlin Chen, Yaofei Duan, Yuhao Huang, Han Zhou, Tan Tao, Xin Yang, Dong Ni
Title: Explainable and Controllable Motion Curve Guided Cardiac Ultrasound Video Generation
Abstract:
Echocardiography video is a primary modality for diagnosing heart diseases, but the limited data poses challenges for both clinical teaching and machine learning training. Recently, video generative models have emerged as a promising strategy to alleviate this issue. However, previous methods often relied on holistic conditions during generation, hindering the flexible movement control over specific cardiac structures. In this context, we propose an explainable and controllable method for echocardiography video generation, taking an initial frame and a motion curve as guidance. Our contributions are three-fold. First, we extract motion information from each heart substructure to construct motion curves, enabling the diffusion model to synthesize customized echocardiography videos by modifying these curves. Second, we propose the structure-to-motion alignment module, which can map semantic features onto motion curves across cardiac structures. Third, The position-aware attention mechanism is designed to enhance video consistency utilizing Gaussian masks with structural position information. Extensive experiments on three echocardiography datasets show that our method outperforms others regarding fidelity and consistency. The full code will be released at https://github.com/mlmi-2024-72/ECM.
Authors:Zhichao Zhang, Wei Sun, Xinyue Li, Jun Jia, Xiongkuo Min, Zicheng Zhang, Chunyi Li, Zijian Chen, Puyi Wang, Fengyu Sun, Shangling Jui, Guangtao Zhai
Title: Benchmarking Multi-dimensional AIGC Video Quality Assessment: A Dataset and Unified Model
Abstract:
In recent years, artificial intelligence (AI)-driven video generation has gained significant attention. Consequently, there is a growing need for accurate video quality assessment (VQA) metrics to evaluate the perceptual quality of AI-generated content (AIGC) videos and optimize video generation models. However, assessing the quality of AIGC videos remains a significant challenge because these videos often exhibit highly complex distortions, such as unnatural actions and irrational objects. To address this challenge, we systematically investigate the AIGC-VQA problem, considering both subjective and objective quality assessment perspectives. For the subjective perspective, we construct the Large-scale Generated Video Quality assessment (LGVQ) dataset, consisting of 2,808 AIGC videos generated by 6 video generation models using 468 carefully curated text prompts. We evaluate the perceptual quality of AIGC videos from three critical dimensions: spatial quality, temporal quality, and text-video alignment. For the objective perspective, we establish a benchmark for evaluating existing quality assessment metrics on the LGVQ dataset. Our findings show that current metrics perform poorly on this dataset, highlighting a gap in effective evaluation tools. To bridge this gap, we propose the Unify Generated Video Quality assessment (UGVQ) model, designed to accurately evaluate the multi-dimensional quality of AIGC videos. The UGVQ model integrates the visual and motion features of videos with the textual features of their corresponding prompts, forming a unified quality-aware feature representation tailored to AIGC videos. Experimental results demonstrate that UGVQ achieves state-of-the-art performance on the LGVQ dataset across all three quality dimensions. Both the LGVQ dataset and the UGVQ model are publicly available on https://github.com/zczhang-sjtu/UGVQ.git.
Authors:Changgu Chen, Libing Yang, Xiaoyan Yang, Lianggangxu Chen, Gaoqi He, CHangbo Wang, Yang Li
Title: FIND: Fine-tuning Initial Noise Distribution with Policy Optimization for Diffusion Models
Abstract:
In recent years, large-scale pre-trained diffusion models have demonstrated their outstanding capabilities in image and video generation tasks. However, existing models tend to produce visual objects commonly found in the training dataset, which diverges from user input prompts. The underlying reason behind the inaccurate generated results lies in the model's difficulty in sampling from specific intervals of the initial noise distribution corresponding to the prompt. Moreover, it is challenging to directly optimize the initial distribution, given that the diffusion process involves multiple denoising steps. In this paper, we introduce a Fine-tuning Initial Noise Distribution (FIND) framework with policy optimization, which unleashes the powerful potential of pre-trained diffusion networks by directly optimizing the initial distribution to align the generated contents with user-input prompts. To this end, we first reformulate the diffusion denoising procedure as a one-step Markov decision process and employ policy optimization to directly optimize the initial distribution. In addition, a dynamic reward calibration module is proposed to ensure training stability during optimization. Furthermore, we introduce a ratio clipping algorithm to utilize historical data for network training and prevent the optimized distribution from deviating too far from the original policy to restrain excessive optimization magnitudes. Extensive experiments demonstrate the effectiveness of our method in both text-to-image and text-to-video tasks, surpassing SOTA methods in achieving consistency between prompts and the generated content. Our method achieves 10 times faster than the SOTA approach. Our homepage is available at \url{https://github.com/vpx-ecnu/FIND-website}.
Authors:Jiahe Liu, Youran Qu, Qi Yan, Xiaohui Zeng, Lele Wang, Renjie Liao
Title: Fréchet Video Motion Distance: A Metric for Evaluating Motion Consistency in Videos
Abstract:
Significant advancements have been made in video generative models recently. Unlike image generation, video generation presents greater challenges, requiring not only generating high-quality frames but also ensuring temporal consistency across these frames. Despite the impressive progress, research on metrics for evaluating the quality of generated videos, especially concerning temporal and motion consistency, remains underexplored. To bridge this research gap, we propose Fréchet Video Motion Distance (FVMD) metric, which focuses on evaluating motion consistency in video generation. Specifically, we design explicit motion features based on key point tracking, and then measure the similarity between these features via the Fréchet distance. We conduct sensitivity analysis by injecting noise into real videos to verify the effectiveness of FVMD. Further, we carry out a large-scale human study, demonstrating that our metric effectively detects temporal noise and aligns better with human perceptions of generated video quality than existing metrics. Additionally, our motion features can consistently improve the performance of Video Quality Assessment (VQA) models, indicating that our approach is also applicable to unary video quality evaluation. Code is available at https://github.com/ljh0v0/FMD-frechet-motion-distance.
Authors:Kaiyue Sun, Kaiyi Huang, Xian Liu, Yue Wu, Zihan Xu, Zhenguo Li, Xihui Liu
Title: T2V-CompBench: A Comprehensive Benchmark for Compositional Text-to-video Generation
Abstract:
Text-to-video (T2V) generative models have advanced significantly, yet their ability to compose different objects, attributes, actions, and motions into a video remains unexplored. Previous text-to-video benchmarks also neglect this important ability for evaluation. In this work, we conduct the first systematic study on compositional text-to-video generation. We propose T2V-CompBench, the first benchmark tailored for compositional text-to-video generation. T2V-CompBench encompasses diverse aspects of compositionality, including consistent attribute binding, dynamic attribute binding, spatial relationships, motion binding, action binding, object interactions, and generative numeracy. We further carefully design evaluation metrics of multimodal large language model (MLLM)-based, detection-based, and tracking-based metrics, which can better reflect the compositional text-to-video generation quality of seven proposed categories with 1400 text prompts. The effectiveness of the proposed metrics is verified by correlation with human evaluations. We also benchmark various text-to-video generative models and conduct in-depth analysis across different models and various compositional categories. We find that compositional text-to-video generation is highly challenging for current models, and we hope our attempt could shed light on future research in this direction.
Authors:Ziwei Zheng, Zechuan Zhang, Yulin Wang, Shiji Song, Gao Huang, Le Yang
Title: Rethinking the Architecture Design for Efficient Generic Event Boundary Detection
Abstract:
Generic event boundary detection (GEBD), inspired by human visual cognitive behaviors of consistently segmenting videos into meaningful temporal chunks, finds utility in various applications such as video editing and. In this paper, we demonstrate that SOTA GEBD models often prioritize final performance over model complexity, resulting in low inference speed and hindering efficient deployment in real-world scenarios. We contribute to addressing this challenge by experimentally reexamining the architecture of GEBD models and uncovering several surprising findings. Firstly, we reveal that a concise GEBD baseline model already achieves promising performance without any sophisticated design. Secondly, we find that the widely applied image-domain backbones in GEBD models can contain plenty of architecture redundancy, motivating us to gradually ``modernize'' each component to enhance efficiency. Thirdly, we show that the GEBD models using image-domain backbones conducting the spatiotemporal learning in a spatial-then-temporal greedy manner can suffer from a distraction issue, which might be the inefficient villain for GEBD. Using a video-domain backbone to jointly conduct spatiotemporal modeling is an effective solution for this issue. The outcome of our exploration is a family of GEBD models, named EfficientGEBD, significantly outperforms the previous SOTA methods by up to 1.7\% performance gain and 280\% speedup under the same backbone. Our research prompts the community to design modern GEBD methods with the consideration of model complexity, particularly in resource-aware applications. The code is available at \url{https://github.com/Ziwei-Zheng/EfficientGEBD}.
Authors:Wenhao Sun, Rong-Cheng Tu, Jingyi Liao, Dacheng Tao
Title: Diffusion Model-Based Video Editing: A Survey
Abstract:
The rapid development of diffusion models (DMs) has significantly advanced image and video applications, making "what you want is what you see" a reality. Among these, video editing has gained substantial attention and seen a swift rise in research activity, necessitating a comprehensive and systematic review of the existing literature. This paper reviews diffusion model-based video editing techniques, including theoretical foundations and practical applications. We begin by overviewing the mathematical formulation and image domain's key methods. Subsequently, we categorize video editing approaches by the inherent connections of their core technologies, depicting evolutionary trajectory. This paper also dives into novel applications, including point-based editing and pose-guided human video editing. Additionally, we present a comprehensive comparison using our newly introduced V2VBench. Building on the progress achieved to date, the paper concludes with ongoing challenges and potential directions for future research.
Authors:Xingyi Yang, Xinchao Wang
Title: Compositional Video Generation as Flow Equalization
Abstract:
Large-scale Text-to-Video (T2V) diffusion models have recently demonstrated unprecedented capability to transform natural language descriptions into stunning and photorealistic videos. Despite the promising results, a significant challenge remains: these models struggle to fully grasp complex compositional interactions between multiple concepts and actions. This issue arises when some words dominantly influence the final video, overshadowing other concepts.To tackle this problem, we introduce \textbf{Vico}, a generic framework for compositional video generation that explicitly ensures all concepts are represented properly. At its core, Vico analyzes how input tokens influence the generated video, and adjusts the model to prevent any single concept from dominating. Specifically, Vico extracts attention weights from all layers to build a spatial-temporal attention graph, and then estimates the influence as the \emph{max-flow} from the source text token to the video target token. Although the direct computation of attention flow in diffusion models is typically infeasible, we devise an efficient approximation based on subgraph flows and employ a fast and vectorized implementation, which in turn makes the flow computation manageable and differentiable. By updating the noisy latent to balance these flows, Vico captures complex interactions and consequently produces videos that closely adhere to textual descriptions. We apply our method to multiple diffusion-based video models for compositional T2V and video editing. Empirical results demonstrate that our framework significantly enhances the compositional richness and accuracy of the generated videos. Visit our website at~\href{https://adamdad.github.io/vico/}{\url{https://adamdad.github.io/vico/}}.
Authors:Peng Wang, Zhihao Guo, Abdul Latheef Sait, Minh Huy Pham
Title: Robot Shape and Location Retention in Video Generation Using Diffusion Models
Abstract:
Diffusion models have marked a significant milestone in the enhancement of image and video generation technologies. However, generating videos that precisely retain the shape and location of moving objects such as robots remains a challenge. This paper presents diffusion models specifically tailored to generate videos that accurately maintain the shape and location of mobile robots. This development offers substantial benefits to those working on detecting dangerous interactions between humans and robots by facilitating the creation of training data for collision detection models, circumventing the need for collecting data from the real world, which often involves legal and ethical issues. Our models incorporate techniques such as embedding accessible robot pose information and applying semantic mask regulation within the ConvNext backbone network. These techniques are designed to refine intermediate outputs, therefore improving the retention performance of shape and location. Through extensive experimentation, our models have demonstrated notable improvements in maintaining the shape and location of different robots, as well as enhancing overall video generation quality, compared to the benchmark diffusion model. Codes will be opensourced at \href{https://github.com/PengPaulWang/diffusion-robots}{Github}.
Authors:Mingxiang Liao, Hannan Lu, Xinyu Zhang, Fang Wan, Tianyu Wang, Yuzhong Zhao, Wangmeng Zuo, Qixiang Ye, Jingdong Wang
Title: Evaluation of Text-to-Video Generation Models: A Dynamics Perspective
Abstract:
Comprehensive and constructive evaluation protocols play an important role in the development of sophisticated text-to-video (T2V) generation models. Existing evaluation protocols primarily focus on temporal consistency and content continuity, yet largely ignore the dynamics of video content. Dynamics are an essential dimension for measuring the visual vividness and the honesty of video content to text prompts. In this study, we propose an effective evaluation protocol, termed DEVIL, which centers on the dynamics dimension to evaluate T2V models. For this purpose, we establish a new benchmark comprising text prompts that fully reflect multiple dynamics grades, and define a set of dynamics scores corresponding to various temporal granularities to comprehensively evaluate the dynamics of each generated video. Based on the new benchmark and the dynamics scores, we assess T2V models with the design of three metrics: dynamics range, dynamics controllability, and dynamics-based quality. Experiments show that DEVIL achieves a Pearson correlation exceeding 90% with human ratings, demonstrating its potential to advance T2V generation models. Code is available at https://github.com/MingXiangL/DEVIL.
Authors:Lei Chen, Yuan Meng, Chen Tang, Xinzhu Ma, Jingyan Jiang, Xin Wang, Zhi Wang, Wenwu Zhu
Title: Q-DiT: Accurate Post-Training Quantization for Diffusion Transformers
Abstract:
Recent advancements in diffusion models, particularly the architectural transformation from UNet-based models to Diffusion Transformers (DiTs), significantly improve the quality and scalability of image and video generation. However, despite their impressive capabilities, the substantial computational costs of these large-scale models pose significant challenges for real-world deployment. Post-Training Quantization (PTQ) emerges as a promising solution, enabling model compression and accelerated inference for pretrained models, without the costly retraining. However, research on DiT quantization remains sparse, and existing PTQ frameworks, primarily designed for traditional diffusion models, tend to suffer from biased quantization, leading to notable performance degradation. In this work, we identify that DiTs typically exhibit significant spatial variance in both weights and activations, along with temporal variance in activations. To address these issues, we propose Q-DiT, a novel approach that seamlessly integrates two key techniques: automatic quantization granularity allocation to handle the significant variance of weights and activations across input channels, and sample-wise dynamic activation quantization to adaptively capture activation changes across both timesteps and samples. Extensive experiments conducted on ImageNet and VBench demonstrate the effectiveness of the proposed Q-DiT. Specifically, when quantizing DiT-XL/2 to W6A8 on ImageNet ($256 \times 256$), Q-DiT achieves a remarkable reduction in FID by 1.09 compared to the baseline. Under the more challenging W4A8 setting, it maintains high fidelity in image and video generation, establishing a new benchmark for efficient, high-quality quantization in DiTs. Code is available at \href{https://github.com/Juanerx/Q-DiT}{https://github.com/Juanerx/Q-DiT}.
Authors:Haonan Qiu, Zhaoxi Chen, Zhouxia Wang, Yingqing He, Menghan Xia, Ziwei Liu
Title: FreeTraj: Tuning-Free Trajectory Control in Video Diffusion Models
Abstract:
Diffusion model has demonstrated remarkable capability in video generation, which further sparks interest in introducing trajectory control into the generation process. While existing works mainly focus on training-based methods (e.g., conditional adapter), we argue that diffusion model itself allows decent control over the generated content without requiring any training. In this study, we introduce a tuning-free framework to achieve trajectory-controllable video generation, by imposing guidance on both noise construction and attention computation. Specifically, 1) we first show several instructive phenomenons and analyze how initial noises influence the motion trajectory of generated content. 2) Subsequently, we propose FreeTraj, a tuning-free approach that enables trajectory control by modifying noise sampling and attention mechanisms. 3) Furthermore, we extend FreeTraj to facilitate longer and larger video generation with controllable trajectories. Equipped with these designs, users have the flexibility to provide trajectories manually or opt for trajectories automatically generated by the LLM trajectory planner. Extensive experiments validate the efficacy of our approach in enhancing the trajectory controllability of video diffusion models.
Authors:Xincheng Shuai, Henghui Ding, Xingjun Ma, Rongcheng Tu, Yu-Gang Jiang, Dacheng Tao
Title: A Survey of Multimodal-Guided Image Editing with Text-to-Image Diffusion Models
Abstract:
Image editing aims to edit the given synthetic or real image to meet the specific requirements from users. It is widely studied in recent years as a promising and challenging field of Artificial Intelligence Generative Content (AIGC). Recent significant advancement in this field is based on the development of text-to-image (T2I) diffusion models, which generate images according to text prompts. These models demonstrate remarkable generative capabilities and have become widely used tools for image editing. T2I-based image editing methods significantly enhance editing performance and offer a user-friendly interface for modifying content guided by multimodal inputs. In this survey, we provide a comprehensive review of multimodal-guided image editing techniques that leverage T2I diffusion models. First, we define the scope of image editing from a holistic perspective and detail various control signals and editing scenarios. We then propose a unified framework to formalize the editing process, categorizing it into two primary algorithm families. This framework offers a design space for users to achieve specific goals. Subsequently, we present an in-depth analysis of each component within this framework, examining the characteristics and applicable scenarios of different combinations. Given that training-based methods learn to directly map the source image to target one under user guidance, we discuss them separately, and introduce injection schemes of source image in different scenarios. Additionally, we review the application of 2D techniques to video editing, highlighting solutions for inter-frame inconsistency. Finally, we discuss open challenges in the field and suggest potential future research directions. We keep tracing related works at https://github.com/xinchengshuai/Awesome-Image-Editing.
Authors:Kaifeng Gao, Jiaxin Shi, Hanwang Zhang, Chunping Wang, Jun Xiao
Title: ViD-GPT: Introducing GPT-style Autoregressive Generation in Video Diffusion Models
Abstract:
With the advance of diffusion models, today's video generation has achieved impressive quality. But generating temporal consistent long videos is still challenging. A majority of video diffusion models (VDMs) generate long videos in an autoregressive manner, i.e., generating subsequent clips conditioned on last frames of previous clip. However, existing approaches all involve bidirectional computations, which restricts the receptive context of each autoregression step, and results in the model lacking long-term dependencies. Inspired from the huge success of large language models (LLMs) and following GPT (generative pre-trained transformer), we bring causal (i.e., unidirectional) generation into VDMs, and use past frames as prompt to generate future frames. For Causal Generation, we introduce causal temporal attention into VDM, which forces each generated frame to depend on its previous frames. For Frame as Prompt, we inject the conditional frames by concatenating them with noisy frames (frames to be generated) along the temporal axis. Consequently, we present Video Diffusion GPT (ViD-GPT). Based on the two key designs, in each autoregression step, it is able to acquire long-term context from prompting frames concatenated by all previously generated frames. Additionally, we bring the kv-cache mechanism to VDMs, which eliminates the redundant computation from overlapped frames, significantly boosting the inference speed. Extensive experiments demonstrate that our ViD-GPT achieves state-of-the-art performance both quantitatively and qualitatively on long video generation. Code will be available at https://github.com/Dawn-LX/Causal-VideoGen.
Authors:Zijia Zhao, Haoyu Lu, Yuqi Huo, Yifan Du, Tongtian Yue, Longteng Guo, Bingning Wang, Weipeng Chen, Jing Liu
Title: Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs
Abstract:
Video understanding is a crucial next step for multimodal large language models (MLLMs). Various benchmarks are introduced for better evaluating the MLLMs. Nevertheless, current video benchmarks are still inefficient for evaluating video models during iterative development due to the high cost of constructing datasets and the difficulty in isolating specific skills. In this paper, we propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation. VideoNIAH decouples video content from their query-responses by inserting unrelated visual 'needles' into original videos. The framework automates the generation of query-response pairs using predefined rules, minimizing manual labor. The queries focus on specific aspects of video understanding, enabling more skill-specific evaluations. The separation between video content and the queries also allow for increased video variety and evaluations across different lengths. Utilizing VideoNIAH, we compile a video benchmark VNBench, which includes tasks such as retrieval, ordering, and counting to evaluate three key aspects of video understanding: temporal perception, chronological ordering, and spatio-temporal coherence. We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities across various tasks. Additionally, we perform an in-depth analysis of the test results and model configurations. Based on these findings, we provide some advice for improving video MLLM training, offering valuable insights to guide future research and model development. The code and data are available at https://github.com/joez17/VideoNIAH.
Authors:Jiangshan Wang, Yue Ma, Jiayi Guo, Yicheng Xiao, Gao Huang, Xiu Li
Title: COVE: Unleashing the Diffusion Feature Correspondence for Consistent Video Editing
Abstract:
Video editing is an emerging task, in which most current methods adopt the pre-trained text-to-image (T2I) diffusion model to edit the source video in a zero-shot manner. Despite extensive efforts, maintaining the temporal consistency of edited videos remains challenging due to the lack of temporal constraints in the regular T2I diffusion model. To address this issue, we propose COrrespondence-guided Video Editing (COVE), leveraging the inherent diffusion feature correspondence to achieve high-quality and consistent video editing. Specifically, we propose an efficient sliding-window-based strategy to calculate the similarity among tokens in the diffusion features of source videos, identifying the tokens with high correspondence across frames. During the inversion and denoising process, we sample the tokens in noisy latent based on the correspondence and then perform self-attention within them. To save GPU memory usage and accelerate the editing process, we further introduce the temporal-dimensional token merging strategy, which can effectively reduce redundancy. COVE can be seamlessly integrated into the pre-trained T2I diffusion model without the need for extra training or optimization. Extensive experiment results demonstrate that COVE achieves the start-of-the-art performance in various video editing scenarios, outperforming existing methods both quantitatively and qualitatively. The code will be release at https://github.com/wangjiangshan0725/COVE.
Authors:Ting-Hsuan Chen, Jiewen Chan, Hau-Shiang Shiu, Shih-Han Yen, Chang-Han Yeh, Yu-Lun Liu
Title: NaRCan: Natural Refined Canonical Image with Integration of Diffusion Prior for Video Editing
Abstract:
We propose a video editing framework, NaRCan, which integrates a hybrid deformation field and diffusion prior to generate high-quality natural canonical images to represent the input video. Our approach utilizes homography to model global motion and employs multi-layer perceptrons (MLPs) to capture local residual deformations, enhancing the model's ability to handle complex video dynamics. By introducing a diffusion prior from the early stages of training, our model ensures that the generated images retain a high-quality natural appearance, making the produced canonical images suitable for various downstream tasks in video editing, a capability not achieved by current canonical-based methods. Furthermore, we incorporate low-rank adaptation (LoRA) fine-tuning and introduce a noise and diffusion prior update scheduling technique that accelerates the training process by 14 times. Extensive experimental results show that our method outperforms existing approaches in various video editing tasks and produces coherent and high-quality edited video sequences. See our project page for video results at https://koi953215.github.io/NaRCan_page/.
Authors:Tanvir Mahmud, Mustafa Munir, Radu Marculescu, Diana Marculescu
Title: Ada-VE: Training-Free Consistent Video Editing Using Adaptive Motion Prior
Abstract:
Video-to-video synthesis poses significant challenges in maintaining character consistency, smooth temporal transitions, and preserving visual quality during fast motion. While recent fully cross-frame self-attention mechanisms have improved character consistency across multiple frames, they come with high computational costs and often include redundant operations, especially for videos with higher frame rates. To address these inefficiencies, we propose an adaptive motion-guided cross-frame attention mechanism that selectively reduces redundant computations. This enables a greater number of cross-frame attentions over more frames within the same computational budget, thereby enhancing both video quality and temporal coherence. Our method leverages optical flow to focus on moving regions while sparsely attending to stationary areas, allowing for the joint editing of more frames without increasing computational demands. Traditional frame interpolation techniques struggle with motion blur and flickering in intermediate frames, which compromises visual fidelity. To mitigate this, we introduce KV-caching for jointly edited frames, reusing keys and values across intermediate frames to preserve visual quality and maintain temporal consistency throughout the video. With our adaptive cross-frame self-attention approach, we achieve a threefold increase in the number of keyframes processed compared to existing methods, all within the same computational budget as fully cross-frame attention baselines. This results in significant improvements in prediction accuracy and temporal consistency, outperforming state-of-the-art approaches. Code will be made publicly available at https://github.com/tanvir-utexas/AdaVE/tree/main
Authors:Ye Tian, Ling Yang, Haotian Yang, Yuan Gao, Yufan Deng, Jingmin Chen, Xintao Wang, Zhaochen Yu, Xin Tao, Pengfei Wan, Di Zhang, Bin Cui
Title: VideoTetris: Towards Compositional Text-to-Video Generation
Abstract:
Diffusion models have demonstrated great success in text-to-video (T2V) generation. However, existing methods may face challenges when handling complex (long) video generation scenarios that involve multiple objects or dynamic changes in object numbers. To address these limitations, we propose VideoTetris, a novel framework that enables compositional T2V generation. Specifically, we propose spatio-temporal compositional diffusion to precisely follow complex textual semantics by manipulating and composing the attention maps of denoising networks spatially and temporally. Moreover, we propose an enhanced video data preprocessing to enhance the training data regarding motion dynamics and prompt understanding, equipped with a new reference frame attention mechanism to improve the consistency of auto-regressive video generation. Extensive experiments demonstrate that our VideoTetris achieves impressive qualitative and quantitative results in compositional T2V generation. Code is available at: https://github.com/YangLing0818/VideoTetris
Authors:Dong Zhao, Jiaying Shi, Wenjun Li, Shudong Wang, Shenghui Xu, Zhaoming Pan
Title: Controllable Talking Face Generation by Implicit Facial Keypoints Editing
Abstract:
Audio-driven talking face generation has garnered significant interest within the domain of digital human research. Existing methods are encumbered by intricate model architectures that are intricately dependent on each other, complicating the process of re-editing image or video inputs. In this work, we present ControlTalk, a talking face generation method to control face expression deformation based on driven audio, which can construct the head pose and facial expression including lip motion for both single image or sequential video inputs in a unified manner. By utilizing a pre-trained video synthesis renderer and proposing the lightweight adaptation, ControlTalk achieves precise and naturalistic lip synchronization while enabling quantitative control over mouth opening shape. Our experiments show that our method is superior to state-of-the-art performance on widely used benchmarks, including HDTF and MEAD. The parameterized adaptation demonstrates remarkable generalization capabilities, effectively handling expression deformation across same-ID and cross-ID scenarios, and extending its utility to out-of-domain portraits, regardless of languages. Code is available at https://github.com/NetEase-Media/ControlTalk.
Authors:Hadrien Reynaud, Qingjie Meng, Mischa Dombrowski, Arijit Ghosh, Thomas Day, Alberto Gomez, Paul Leeson, Bernhard Kainz
Title: EchoNet-Synthetic: Privacy-preserving Video Generation for Safe Medical Data Sharing
Abstract:
To make medical datasets accessible without sharing sensitive patient information, we introduce a novel end-to-end approach for generative de-identification of dynamic medical imaging data. Until now, generative methods have faced constraints in terms of fidelity, spatio-temporal coherence, and the length of generation, failing to capture the complete details of dataset distributions. We present a model designed to produce high-fidelity, long and complete data samples with near-real-time efficiency and explore our approach on a challenging task: generating echocardiogram videos. We develop our generation method based on diffusion models and introduce a protocol for medical video dataset anonymization. As an exemplar, we present EchoNet-Synthetic, a fully synthetic, privacy-compliant echocardiogram dataset with paired ejection fraction labels. As part of our de-identification protocol, we evaluate the quality of the generated dataset and propose to use clinical downstream tasks as a measurement on top of widely used but potentially biased image quality metrics. Experimental outcomes demonstrate that EchoNet-Synthetic achieves comparable dataset fidelity to the actual dataset, effectively supporting the ejection fraction regression task. Code, weights and dataset are available at https://github.com/HReynaud/EchoNet-Synthetic.
Authors:Sangyun Lee, Zinan Lin, Giulia Fanti
Title: Improving the Training of Rectified Flows
Abstract:
Diffusion models have shown great promise for image and video generation, but sampling from state-of-the-art models requires expensive numerical integration of a generative ODE. One approach for tackling this problem is rectified flows, which iteratively learn smooth ODE paths that are less susceptible to truncation error. However, rectified flows still require a relatively large number of function evaluations (NFEs). In this work, we propose improved techniques for training rectified flows, allowing them to compete with \emph{knowledge distillation} methods even in the low NFE setting. Our main insight is that under realistic settings, a single iteration of the Reflow algorithm for training rectified flows is sufficient to learn nearly straight trajectories; hence, the current practice of using multiple Reflow iterations is unnecessary. We thus propose techniques to improve one-round training of rectified flows, including a U-shaped timestep distribution and LPIPS-Huber premetric. With these techniques, we improve the FID of the previous 2-rectified flow by up to 75\% in the 1 NFE setting on CIFAR-10. On ImageNet 64$\times$64, our improved rectified flow outperforms the state-of-the-art distillation methods such as consistency distillation and progressive distillation in both one-step and two-step settings and rivals the performance of improved consistency training (iCT) in FID. Code is available at https://github.com/sangyun884/rfpp.
Authors:Muyao Niu, Xiaodong Cun, Xintao Wang, Yong Zhang, Ying Shan, Yinqiang Zheng
Title: MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model
Abstract:
We present MOFA-Video, an advanced controllable image animation method that generates video from the given image using various additional controllable signals (such as human landmarks reference, manual trajectories, and another even provided video) or their combinations. This is different from previous methods which only can work on a specific motion domain or show weak control abilities with diffusion prior. To achieve our goal, we design several domain-aware motion field adapters (\ie, MOFA-Adapters) to control the generated motions in the video generation pipeline. For MOFA-Adapters, we consider the temporal motion consistency of the video and generate the dense motion flow from the given sparse control conditions first, and then, the multi-scale features of the given image are wrapped as a guided feature for stable video diffusion generation. We naively train two motion adapters for the manual trajectories and the human landmarks individually since they both contain sparse information about the control. After training, the MOFA-Adapters in different domains can also work together for more controllable video generation. Project Page: https://myniuuu.github.io/MOFA_Video/
Authors:Haoxing Chen, Yan Hong, Zizheng Huang, Zhuoer Xu, Zhangxuan Gu, Yaohui Li, Jun Lan, Huijia Zhu, Jianfu Zhang, Weiqiang Wang, Huaxiong Li
Title: DeMamba: AI-Generated Video Detection on Million-Scale GenVideo Benchmark
Abstract:
Recently, video generation techniques have advanced rapidly. Given the popularity of video content on social media platforms, these models intensify concerns about the spread of fake information. Therefore, there is a growing demand for detectors capable of distinguishing between fake AI-generated videos and mitigating the potential harm caused by fake information. However, the lack of large-scale datasets from the most advanced video generators poses a barrier to the development of such detectors. To address this gap, we introduce the first AI-generated video detection dataset, GenVideo. It features the following characteristics: (1) a large volume of videos, including over one million AI-generated and real videos collected; (2) a rich diversity of generated content and methodologies, covering a broad spectrum of video categories and generation techniques. We conducted extensive studies of the dataset and proposed two evaluation methods tailored for real-world-like scenarios to assess the detectors' performance: the cross-generator video classification task assesses the generalizability of trained detectors on generators; the degraded video classification task evaluates the robustness of detectors to handle videos that have degraded in quality during dissemination. Moreover, we introduced a plug-and-play module, named Detail Mamba (DeMamba), designed to enhance the detectors by identifying AI-generated videos through the analysis of inconsistencies in temporal and spatial dimensions. Our extensive experiments demonstrate DeMamba's superior generalizability and robustness on GenVideo compared to existing detectors. We believe that the GenVideo dataset and the DeMamba module will significantly advance the field of AI-generated video detection. Our code and dataset will be aviliable at \url{https://github.com/chenhaoxing/DeMamba}.
Authors:Jiaqi Xu, Xinyi Zou, Kunzhe Huang, Yunkuo Chen, Bo Liu, MengLi Cheng, Xing Shi, Jun Huang
Title: EasyAnimate: A High-Performance Long Video Generation Method based on Transformer Architecture
Abstract:
This paper presents EasyAnimate, an advanced method for video generation that leverages the power of transformer architecture for high-performance outcomes. We have expanded the DiT framework originally designed for 2D image synthesis to accommodate the complexities of 3D video generation by incorporating a motion module block. It is used to capture temporal dynamics, thereby ensuring the production of consistent frames and seamless motion transitions. The motion module can be adapted to various DiT baseline methods to generate video with different styles. It can also generate videos with different frame rates and resolutions during both training and inference phases, suitable for both images and videos. Moreover, we introduce slice VAE, a novel approach to condense the temporal axis, facilitating the generation of long duration videos. Currently, EasyAnimate exhibits the proficiency to generate videos with 144 frames. We provide a holistic ecosystem for video production based on DiT, encompassing aspects such as data pre-processing, VAE training, DiT models training (both the baseline model and LoRA model), and end-to-end video inference. Code is available at: https://github.com/aigc-apps/EasyAnimate. We are continuously working to enhance the performance of our method.
Authors:Fu-Yun Wang, Zhaoyang Huang, Alexander William Bergman, Dazhong Shen, Peng Gao, Michael Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, Xiaogang Wang, Hongsheng Li
Title: Phased Consistency Models
Abstract:
Consistency Models (CMs) have made significant progress in accelerating the generation of diffusion models. However, their application to high-resolution, text-conditioned image generation in the latent space remains unsatisfactory. In this paper, we identify three key flaws in the current design of Latent Consistency Models (LCMs). We investigate the reasons behind these limitations and propose Phased Consistency Models (PCMs), which generalize the design space and address the identified limitations. Our evaluations demonstrate that PCMs outperform LCMs across 1--16 step generation settings. While PCMs are specifically designed for multi-step refinement, they achieve comparable 1-step generation results to previously state-of-the-art specifically designed 1-step methods. Furthermore, we show the methodology of PCMs is versatile and applicable to video generation, enabling us to train the state-of-the-art few-step text-to-video generator. Our code is available at https://github.com/G-U-N/Phased-Consistency-Model.
Authors:Qi Sun, Zhiyang Guo, Ziyu Wan, Jing Nathan Yan, Shengming Yin, Wengang Zhou, Jing Liao, Houqiang Li
Title: EG4D: Explicit Generation of 4D Object without Score Distillation
Abstract:
In recent years, the increasing demand for dynamic 3D assets in design and gaming applications has given rise to powerful generative pipelines capable of synthesizing high-quality 4D objects. Previous methods generally rely on score distillation sampling (SDS) algorithm to infer the unseen views and motion of 4D objects, thus leading to unsatisfactory results with defects like over-saturation and Janus problem. Therefore, inspired by recent progress of video diffusion models, we propose to optimize a 4D representation by explicitly generating multi-view videos from one input image. However, it is far from trivial to handle practical challenges faced by such a pipeline, including dramatic temporal inconsistency, inter-frame geometry and texture diversity, and semantic defects brought by video generation results. To address these issues, we propose DG4D, a novel multi-stage framework that generates high-quality and consistent 4D assets without score distillation. Specifically, collaborative techniques and solutions are developed, including an attention injection strategy to synthesize temporal-consistent multi-view videos, a robust and efficient dynamic reconstruction method based on Gaussian Splatting, and a refinement stage with diffusion prior for semantic restoration. The qualitative results and user preference study demonstrate that our framework outperforms the baselines in generation quality by a considerable margin. Code will be released at \url{https://github.com/jasongzy/EG4D}.
Authors:Akio Hayakawa, Masato Ishii, Takashi Shibuya, Yuki Mitsufuji
Title: MMDisCo: Multi-Modal Discriminator-Guided Cooperative Diffusion for Joint Audio and Video Generation
Abstract:
This study aims to construct an audio-video generative model with minimal computational cost by leveraging pre-trained single-modal generative models for audio and video. To achieve this, we propose a novel method that guides single-modal models to cooperatively generate well-aligned samples across modalities. Specifically, given two pre-trained base diffusion models, we train a lightweight joint guidance module to adjust scores separately estimated by the base models to match the score of joint distribution over audio and video. We show that this guidance can be computed using the gradient of the optimal discriminator, which distinguishes real audio-video pairs from fake ones independently generated by the base models. Based on this analysis, we construct a joint guidance module by training this discriminator. Additionally, we adopt a loss function to stabilize the discriminator's gradient and make it work as a noise estimator, as in standard diffusion models. Empirical evaluations on several benchmark datasets demonstrate that our method improves both single-modal fidelity and multimodal alignment with relatively few parameters. The code is available at: https://github.com/SonyResearch/MMDisCo.
Authors:Boshen Xu, Ziheng Wang, Yang Du, Zhinan Song, Sipeng Zheng, Qin Jin
Title: Do Egocentric Video-Language Models Truly Understand Hand-Object Interactions?
Abstract:
Egocentric video-language pretraining is a crucial step in advancing the understanding of hand-object interactions in first-person scenarios. Despite successes on existing testbeds, we find that current EgoVLMs can be easily misled by simple modifications, such as changing the verbs or nouns in interaction descriptions, with models struggling to distinguish between these changes. This raises the question: Do EgoVLMs truly understand hand-object interactions? To address this question, we introduce a benchmark called EgoHOIBench, revealing the performance limitation of current egocentric models when confronted with such challenges. We attribute this performance gap to insufficient fine-grained supervision and the greater difficulty EgoVLMs experience in recognizing verbs compared to nouns. To tackle these issues, we propose a novel asymmetric contrastive objective named EgoNCE++. For the video-to-text objective, we enhance text supervision by generating negative captions using large language models or leveraging pretrained vocabulary for HOI-related word substitutions. For the text-to-video objective, we focus on preserving an object-centric feature space that clusters video representations based on shared nouns. Extensive experiments demonstrate that EgoNCE++ significantly enhances EgoHOI understanding, leading to improved performance across various EgoVLMs in tasks such as multi-instance retrieval, action recognition, and temporal understanding. Our code is available at https://github.com/xuboshen/EgoNCEpp.
Authors:Jiannan Huang, Jun Hao Liew, Hanshu Yan, Yuyang Yin, Yao Zhao, Humphrey Shi, Yunchao Wei
Title: ClassDiffusion: More Aligned Personalization Tuning with Explicit Class Guidance
Abstract:
Recent text-to-image customization works have proven successful in generating images of given concepts by fine-tuning diffusion models on a few examples. However, tuning-based methods inherently tend to overfit the concepts, resulting in failure to create the concept under multiple conditions (*e.g.*, headphone is missing when generating "a `dog wearing a headphone"). Interestingly, we notice that the base model before fine-tuning exhibits the capability to compose the base concept with other elements (*e.g.*, "a dog wearing a headphone"), implying that the compositional ability only disappears after personalization tuning. We observe a semantic shift in the customized concept after fine-tuning, indicating that the personalized concept is not aligned with the original concept, and further show through theoretical analyses that this semantic shift leads to increased difficulty in sampling the joint conditional probability distribution, resulting in the loss of the compositional ability. Inspired by this finding, we present **ClassDiffusion**, a technique that leverages a **semantic preservation loss** to explicitly regulate the concept space when learning a new concept. Although simple, this approach effectively prevents semantic drift during the fine-tuning process of the target concepts. Extensive qualitative and quantitative experiments demonstrate that the use of semantic preservation loss effectively improves the compositional abilities of fine-tuning models. Lastly, we also extend our ClassDiffusion to personalized video generation, demonstrating its flexibility.
Authors:Divya Kothandaraman, Kihyuk Sohn, Ruben Villegas, Paul Voigtlaender, Dinesh Manocha, Mohammad Babaeizadeh
Title: Text Prompting for Multi-Concept Video Customization by Autoregressive Generation
Abstract:
We present a method for multi-concept customization of pretrained text-to-video (T2V) models. Intuitively, the multi-concept customized video can be derived from the (non-linear) intersection of the video manifolds of the individual concepts, which is not straightforward to find. We hypothesize that sequential and controlled walking towards the intersection of the video manifolds, directed by text prompting, leads to the solution. To do so, we generate the various concepts and their corresponding interactions, sequentially, in an autoregressive manner. Our method can generate videos of multiple custom concepts (subjects, action and background) such as a teddy bear running towards a brown teapot, a dog playing violin and a teddy bear swimming in the ocean. We quantitatively evaluate our method using videoCLIP and DINO scores, in addition to human evaluation. Videos for results presented in this paper can be found at https://github.com/divyakraman/MultiConceptVideo2024.
Authors:Rui Sun, Yumin Zhang, Tejal Shah, Jiahao Sun, Shuoying Zhang, Wenqi Li, Haoran Duan, Bo Wei, Rajiv Ranjan
Title: From Sora What We Can See: A Survey of Text-to-Video Generation
Abstract:
With impressive achievements made, artificial intelligence is on the path forward to artificial general intelligence. Sora, developed by OpenAI, which is capable of minute-level world-simulative abilities can be considered as a milestone on this developmental path. However, despite its notable successes, Sora still encounters various obstacles that need to be resolved. In this survey, we embark from the perspective of disassembling Sora in text-to-video generation, and conducting a comprehensive review of literature, trying to answer the question, \textit{From Sora What We Can See}. Specifically, after basic preliminaries regarding the general algorithms are introduced, the literature is categorized from three mutually perpendicular dimensions: evolutionary generators, excellent pursuit, and realistic panorama. Subsequently, the widely used datasets and metrics are organized in detail. Last but more importantly, we identify several challenges and open problems in this domain and propose potential future directions for research and development.
Authors:Zheng Zhu, Xiaofeng Wang, Wangbo Zhao, Chen Min, Nianchen Deng, Min Dou, Yuqi Wang, Botian Shi, Kai Wang, Chi Zhang, Yang You, Zhaoxiang Zhang, Dawei Zhao, Liang Xiao, Jian Zhao, Jiwen Lu, Guan Huang
Title: Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond
Abstract:
General world models represent a crucial pathway toward achieving Artificial General Intelligence (AGI), serving as the cornerstone for various applications ranging from virtual environments to decision-making systems. Recently, the emergence of the Sora model has attained significant attention due to its remarkable simulation capabilities, which exhibits an incipient comprehension of physical laws. In this survey, we embark on a comprehensive exploration of the latest advancements in world models. Our analysis navigates through the forefront of generative methodologies in video generation, where world models stand as pivotal constructs facilitating the synthesis of highly realistic visual content. Additionally, we scrutinize the burgeoning field of autonomous-driving world models, meticulously delineating their indispensable role in reshaping transportation and urban mobility. Furthermore, we delve into the intricacies inherent in world models deployed within autonomous agents, shedding light on their profound significance in enabling intelligent interactions within dynamic environmental contexts. At last, we examine challenges and limitations of world models, and discuss their potential future directions. We hope this survey can serve as a foundational reference for the research community and inspire continued innovation. This survey will be regularly updated at: https://github.com/GigaAI-research/General-World-Models-Survey.
Authors:Andrew Melnik, Michal Ljubljanac, Cong Lu, Qi Yan, Weiming Ren, Helge Ritter
Title: Video Diffusion Models: A Survey
Abstract:
Diffusion generative models have recently become a powerful technique for creating and modifying high-quality, coherent video content. This survey provides a comprehensive overview of the critical components of diffusion models for video generation, including their applications, architectural design, and temporal dynamics modeling. The paper begins by discussing the core principles and mathematical formulations, then explores various architectural choices and methods for maintaining temporal consistency. A taxonomy of applications is presented, categorizing models based on input modalities such as text prompts, images, videos, and audio signals. Advancements in text-to-video generation are discussed to illustrate the state-of-the-art capabilities and limitations of current approaches. Additionally, the survey summarizes recent developments in training and evaluation practices, including the use of diverse video and image datasets and the adoption of various evaluation metrics to assess model performance. The survey concludes with an examination of ongoing challenges, such as generating longer videos and managing computational costs, and offers insights into potential future directions for the field. By consolidating the latest research and developments, this survey aims to serve as a valuable resource for researchers and practitioners working with video diffusion models. Website: https://github.com/ndrwmlnk/Awesome-Video-Diffusion-Models
Authors:Yupeng Zhou, Daquan Zhou, Ming-Ming Cheng, Jiashi Feng, Qibin Hou
Title: StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation
Abstract:
For recent diffusion-based generative models, maintaining consistent content across a series of generated images, especially those containing subjects and complex details, presents a significant challenge. In this paper, we propose a new way of self-attention calculation, termed Consistent Self-Attention, that significantly boosts the consistency between the generated images and augments prevalent pretrained diffusion-based text-to-image models in a zero-shot manner. To extend our method to long-range video generation, we further introduce a novel semantic space temporal motion prediction module, named Semantic Motion Predictor. It is trained to estimate the motion conditions between two provided images in the semantic spaces. This module converts the generated sequence of images into videos with smooth transitions and consistent subjects that are significantly more stable than the modules based on latent spaces only, especially in the context of long video generation. By merging these two novel components, our framework, referred to as StoryDiffusion, can describe a text-based story with consistent images or videos encompassing a rich variety of contents. The proposed StoryDiffusion encompasses pioneering explorations in visual story generation with the presentation of images and videos, which we hope could inspire more research from the aspect of architectural modifications. Our code is made publicly available at https://github.com/HVision-NKU/StoryDiffusion.
Authors:Xuanhua He, Quande Liu, Shengju Qian, Xin Wang, Tao Hu, Ke Cao, Keyu Yan, Jie Zhang
Title: ID-Animator: Zero-Shot Identity-Preserving Human Video Generation
Abstract:
Generating high-fidelity human video with specified identities has attracted significant attention in the content generation community. However, existing techniques struggle to strike a balance between training efficiency and identity preservation, either requiring tedious case-by-case fine-tuning or usually missing identity details in the video generation process. In this study, we present \textbf{ID-Animator}, a zero-shot human-video generation approach that can perform personalized video generation given a single reference facial image without further training. ID-Animator inherits existing diffusion-based video generation backbones with a face adapter to encode the ID-relevant embeddings from learnable facial latent queries. To facilitate the extraction of identity information in video generation, we introduce an ID-oriented dataset construction pipeline that incorporates unified human attributes and action captioning techniques from a constructed facial image pool. Based on this pipeline, a random reference training strategy is further devised to precisely capture the ID-relevant embeddings with an ID-preserving loss, thus improving the fidelity and generalization capacity of our model for ID-specific video generation. Extensive experiments demonstrate the superiority of ID-Animator to generate personalized human videos over previous models. Moreover, our method is highly compatible with popular pre-trained T2V models like animatediff and various community backbone models, showing high extendability in real-world applications for video generation where identity preservation is highly desired. Our codes and checkpoints are released at https://github.com/ID-Animator/ID-Animator.
Authors:Yuxin Mao, Xuyang Shen, Jing Zhang, Zhen Qin, Jinxing Zhou, Mochu Xiang, Yiran Zhong, Yuchao Dai
Title: TAVGBench: Benchmarking Text to Audible-Video Generation
Abstract:
The Text to Audible-Video Generation (TAVG) task involves generating videos with accompanying audio based on text descriptions. Achieving this requires skillful alignment of both audio and video elements. To support research in this field, we have developed a comprehensive Text to Audible-Video Generation Benchmark (TAVGBench), which contains over 1.7 million clips with a total duration of 11.8 thousand hours. We propose an automatic annotation pipeline to ensure each audible video has detailed descriptions for both its audio and video contents. We also introduce the Audio-Visual Harmoni score (AVHScore) to provide a quantitative measure of the alignment between the generated audio and video modalities. Additionally, we present a baseline model for TAVG called TAVDiffusion, which uses a two-stream latent diffusion model to provide a fundamental starting point for further research in this area. We achieve the alignment of audio and video by employing cross-attention and contrastive learning. Through extensive experiments and evaluations on TAVGBench, we demonstrate the effectiveness of our proposed model under both conventional metrics and our proposed metrics.
Authors:Bowen Qu, Xiaoyu Liang, Shangkun Sun, Wei Gao
Title: Exploring AIGC Video Quality: A Focus on Visual Harmony, Video-Text Consistency and Domain Distribution Gap
Abstract:
The recent advancements in Text-to-Video Artificial Intelligence Generated Content (AIGC) have been remarkable. Compared with traditional videos, the assessment of AIGC videos encounters various challenges: visual inconsistency that defy common sense, discrepancies between content and the textual prompt, and distribution gap between various generative models, etc. Target at these challenges, in this work, we categorize the assessment of AIGC video quality into three dimensions: visual harmony, video-text consistency, and domain distribution gap. For each dimension, we design specific modules to provide a comprehensive quality assessment of AIGC videos. Furthermore, our research identifies significant variations in visual quality, fluidity, and style among videos generated by different text-to-video models. Predicting the source generative model can make the AIGC video features more discriminative, which enhances the quality assessment performance. The proposed method was used in the third-place winner of the NTIRE 2024 Quality Assessment for AI-Generated Content - Track 2 Video, demonstrating its effectiveness. Code will be available at https://github.com/Coobiw/TriVQA.
Authors:Yongquan Qu, Juan Nathaniel, Shuolin Li, Pierre Gentine
Title: Deep Generative Data Assimilation in Multimodal Setting
Abstract:
Robust integration of physical knowledge and data is key to improve computational simulations, such as Earth system models. Data assimilation is crucial for achieving this goal because it provides a systematic framework to calibrate model outputs with observations, which can include remote sensing imagery and ground station measurements, with uncertainty quantification. Conventional methods, including Kalman filters and variational approaches, inherently rely on simplifying linear and Gaussian assumptions, and can be computationally expensive. Nevertheless, with the rapid adoption of data-driven methods in many areas of computational sciences, we see the potential of emulating traditional data assimilation with deep learning, especially generative models. In particular, the diffusion-based probabilistic framework has large overlaps with data assimilation principles: both allows for conditional generation of samples with a Bayesian inverse framework. These models have shown remarkable success in text-conditioned image generation or image-controlled video synthesis. Likewise, one can frame data assimilation as observation-conditioned state calibration. In this work, we propose SLAMS: Score-based Latent Assimilation in Multimodal Setting. Specifically, we assimilate in-situ weather station data and ex-situ satellite imagery to calibrate the vertical temperature profiles, globally. Through extensive ablation, we demonstrate that SLAMS is robust even in low-resolution, noisy, and sparse data settings. To our knowledge, our work is the first to apply deep generative framework for multimodal data assimilation using real-world datasets; an important step for building robust computational simulators, including the next-generation Earth system models. Our code is available at: https://github.com/yongquan-qu/SLAMS
Authors:Shenghai Yuan, Jinfa Huang, Yujun Shi, Yongqi Xu, Ruijie Zhu, Bin Lin, Xinhua Cheng, Li Yuan, Jiebo Luo
Title: MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators
Abstract:
Recent advances in Text-to-Video generation (T2V) have achieved remarkable success in synthesizing high-quality general videos from textual descriptions. A largely overlooked problem in T2V is that existing models have not adequately encoded physical knowledge of the real world, thus generated videos tend to have limited motion and poor variations. In this paper, we propose \textbf{MagicTime}, a metamorphic time-lapse video generation model, which learns real-world physics knowledge from time-lapse videos and implements metamorphic generation. First, we design a MagicAdapter scheme to decouple spatial and temporal training, encode more physical knowledge from metamorphic videos, and transform pre-trained T2V models to generate metamorphic videos. Second, we introduce a Dynamic Frames Extraction strategy to adapt to metamorphic time-lapse videos, which have a wider variation range and cover dramatic object metamorphic processes, thus embodying more physical knowledge than general videos. Finally, we introduce a Magic Text-Encoder to improve the understanding of metamorphic video prompts. Furthermore, we create a time-lapse video-text dataset called \textbf{ChronoMagic}, specifically curated to unlock the metamorphic video generation ability. Extensive experiments demonstrate the superiority and effectiveness of MagicTime for generating high-quality and dynamic metamorphic videos, suggesting time-lapse video generation is a promising path toward building metamorphic simulators of the physical world. Code: https://github.com/PKU-YuanGroup/MagicTime
Authors:Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, Ceyuan Yang
Title: CameraCtrl: Enabling Camera Control for Text-to-Video Generation
Abstract:
Controllability plays a crucial role in video generation, as it allows users to create and edit content more precisely. Existing models, however, lack control of camera pose that serves as a cinematic language to express deeper narrative nuances. To alleviate this issue, we introduce CameraCtrl, enabling accurate camera pose control for video diffusion models. Our approach explores effective camera trajectory parameterization along with a plug-and-play camera pose control module that is trained on top of a video diffusion model, leaving other modules of the base model untouched. Moreover, a comprehensive study on the effect of various training datasets is conducted, suggesting that videos with diverse camera distributions and similar appearance to the base model indeed enhance controllability and generalization. Experimental results demonstrate the effectiveness of CameraCtrl in achieving precise camera control with different video generation models, marking a step forward in the pursuit of dynamic and customized video storytelling from textual and camera pose inputs.
Authors:Xu He, Qiaochu Huang, Zhensong Zhang, Zhiwei Lin, Zhiyong Wu, Sicheng Yang, Minglei Li, Zhiyi Chen, Songcen Xu, Xiaofei Wu
Title: Co-Speech Gesture Video Generation via Motion-Decoupled Diffusion Model
Abstract:
Co-speech gestures, if presented in the lively form of videos, can achieve superior visual effects in human-machine interaction. While previous works mostly generate structural human skeletons, resulting in the omission of appearance information, we focus on the direct generation of audio-driven co-speech gesture videos in this work. There are two main challenges: 1) A suitable motion feature is needed to describe complex human movements with crucial appearance information. 2) Gestures and speech exhibit inherent dependencies and should be temporally aligned even of arbitrary length. To solve these problems, we present a novel motion-decoupled framework to generate co-speech gesture videos. Specifically, we first introduce a well-designed nonlinear TPS transformation to obtain latent motion features preserving essential appearance information. Then a transformer-based diffusion model is proposed to learn the temporal correlation between gestures and speech, and performs generation in the latent motion space, followed by an optimal motion selection module to produce long-term coherent and consistent gesture videos. For better visual perception, we further design a refinement network focusing on missing details of certain areas. Extensive experimental results show that our proposed framework significantly outperforms existing approaches in both motion and video-related evaluations. Our code, demos, and more resources are available at https://github.com/thuhcsi/S2G-MDDiffusion.
Authors:Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, Deva Ramanan
Title: Evaluating Text-to-Visual Generation with Image-to-Text Generation
Abstract:
Despite significant progress in generative AI, comprehensive evaluation remains challenging because of the lack of effective metrics and standardized benchmarks. For instance, the widely-used CLIPScore measures the alignment between a (generated) image and text prompt, but it fails to produce reliable scores for complex prompts involving compositions of objects, attributes, and relations. One reason is that text encoders of CLIP can notoriously act as a "bag of words", conflating prompts such as "the horse is eating the grass" with "the grass is eating the horse". To address this, we introduce the VQAScore, which uses a visual-question-answering (VQA) model to produce an alignment score by computing the probability of a "Yes" answer to a simple "Does this figure show '{text}'?" question. Though simpler than prior art, VQAScore computed with off-the-shelf models produces state-of-the-art results across many (8) image-text alignment benchmarks. We also compute VQAScore with an in-house model that follows best practices in the literature. For example, we use a bidirectional image-question encoder that allows image embeddings to depend on the question being asked (and vice versa). Our in-house model, CLIP-FlanT5, outperforms even the strongest baselines that make use of the proprietary GPT-4V. Interestingly, although we train with only images, VQAScore can also align text with video and 3D models. VQAScore allows researchers to benchmark text-to-visual generation using complex texts that capture the compositional structure of real-world prompts. We introduce GenAI-Bench, a more challenging benchmark with 1,600 compositional text prompts that require parsing scenes, objects, attributes, relationships, and high-order reasoning like comparison and logic. GenAI-Bench also offers over 15,000 human ratings for leading image and video generation models such as Stable Diffusion, DALL-E 3, and Gen2.
Authors:Xin Gu, Libo Zhang, Fan Chen, Longyin Wen, Yufei Wang, Tiejian Luo, Sijie Zhu
Title: Edit3K: Universal Representation Learning for Video Editing Components
Abstract:
This paper focuses on understanding the predominant video creation pipeline, i.e., compositional video editing with six main types of editing components, including video effects, animation, transition, filter, sticker, and text. In contrast to existing visual representation learning of visual materials (i.e., images/videos), we aim to learn visual representations of editing actions/components that are generally applied on raw materials. We start by proposing the first large-scale dataset for editing components of video creation, which covers about $3,094$ editing components with $618,800$ videos. Each video in our dataset is rendered by various image/video materials with a single editing component, which supports atomic visual understanding of different editing components. It can also benefit several downstream tasks, e.g., editing component recommendation, editing component recognition/retrieval, etc. Existing visual representation methods perform poorly because it is difficult to disentangle the visual appearance of editing components from raw materials. To that end, we benchmark popular alternative solutions and propose a novel method that learns to attend to the appearance of editing components regardless of raw materials. Our method achieves favorable results on editing component retrieval/recognition compared to the alternative solutions. A user study is also conducted to show that our representations cluster visually similar editing components better than other alternatives. Furthermore, our learned representations used to transition recommendation tasks achieve state-of-the-art results on the AutoTransition dataset. The code and dataset are available at https://github.com/GX77/Edit3K .
Authors:Luchuan Song, Pinxin Liu, Guojun Yin, Chenliang Xu
Title: Adaptive Super Resolution For One-Shot Talking-Head Generation
Abstract:
The one-shot talking-head generation learns to synthesize a talking-head video with one source portrait image under the driving of same or different identity video. Usually these methods require plane-based pixel transformations via Jacobin matrices or facial image warps for novel poses generation. The constraints of using a single image source and pixel displacements often compromise the clarity of the synthesized images. Some methods try to improve the quality of synthesized videos by introducing additional super-resolution modules, but this will undoubtedly increase computational consumption and destroy the original data distribution. In this work, we propose an adaptive high-quality talking-head video generation method, which synthesizes high-resolution video without additional pre-trained modules. Specifically, inspired by existing super-resolution methods, we down-sample the one-shot source image, and then adaptively reconstruct high-frequency details via an encoder-decoder module, resulting in enhanced video clarity. Our method consistently improves the quality of generated videos through a straightforward yet effective strategy, substantiated by quantitative and qualitative evaluations. The code and demo video are available on: \url{https://github.com/Songluchuan/AdaSR-TalkingHead/}.
Authors:Roberto Henschel, Levon Khachatryan, Hayk Poghosyan, Daniil Hayrapetyan, Vahram Tadevosyan, Zhangyang Wang, Shant Navasardyan, Humphrey Shi
Title: StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text
Abstract:
Text-to-video diffusion models enable the generation of high-quality videos that follow text instructions, making it easy to create diverse and individual content. However, existing approaches mostly focus on high-quality short video generation (typically 16 or 24 frames), ending up with hard-cuts when naively extended to the case of long video synthesis. To overcome these limitations, we introduce StreamingT2V, an autoregressive approach for long video generation of 80, 240, 600, 1200 or more frames with smooth transitions. The key components are:(i) a short-term memory block called conditional attention module (CAM), which conditions the current generation on the features extracted from the previous chunk via an attentional mechanism, leading to consistent chunk transitions, (ii) a long-term memory block called appearance preservation module, which extracts high-level scene and object features from the first video chunk to prevent the model from forgetting the initial scene, and (iii) a randomized blending approach that enables to apply a video enhancer autoregressively for infinitely long videos without inconsistencies between chunks. Experiments show that StreamingT2V generates high motion amount. In contrast, all competing image-to-video methods are prone to video stagnation when applied naively in an autoregressive manner. Thus, we propose with StreamingT2V a high-quality seamless text-to-long video generator that outperforms competitors with consistency and motion. Our code will be available at: https://github.com/Picsart-AI-Research/StreamingT2V
Authors:Yumeng Li, William Beluch, Margret Keuper, Dan Zhang, Anna Khoreva
Title: VSTAR: Generative Temporal Nursing for Longer Dynamic Video Synthesis
Abstract:
Despite tremendous progress in the field of text-to-video (T2V) synthesis, open-sourced T2V diffusion models struggle to generate longer videos with dynamically varying and evolving content. They tend to synthesize quasi-static videos, ignoring the necessary visual change-over-time implied in the text prompt. At the same time, scaling these models to enable longer, more dynamic video synthesis often remains computationally intractable. To address this challenge, we introduce the concept of Generative Temporal Nursing (GTN), where we aim to alter the generative process on the fly during inference to improve control over the temporal dynamics and enable generation of longer videos. We propose a method for GTN, dubbed VSTAR, which consists of two key ingredients: 1) Video Synopsis Prompting (VSP) - automatic generation of a video synopsis based on the original single prompt leveraging LLMs, which gives accurate textual guidance to different visual states of longer videos, and 2) Temporal Attention Regularization (TAR) - a regularization technique to refine the temporal attention units of the pre-trained T2V diffusion models, which enables control over the video dynamics. We experimentally showcase the superiority of the proposed approach in generating longer, visually appealing videos over existing open-sourced T2V models. We additionally analyze the temporal attention maps realized with and without VSTAR, demonstrating the importance of applying our method to mitigate neglect of the desired visual change over time.
Authors:Zhengqing Yuan, Yixin Liu, Yihan Cao, Weixiang Sun, Haolong Jia, Ruoxi Chen, Zhaoxu Li, Bin Lin, Li Yuan, Lifang He, Chi Wang, Yanfang Ye, Lichao Sun
Title: Mora: Enabling Generalist Video Generation via A Multi-Agent Framework
Abstract:
Text-to-video generation has made significant strides, but replicating the capabilities of advanced systems like OpenAI Sora remains challenging due to their closed-source nature. Existing open-source methods struggle to achieve comparable performance, often hindered by ineffective agent collaboration and inadequate training data quality. In this paper, we introduce Mora, a novel multi-agent framework that leverages existing open-source modules to replicate Sora functionalities. We address these fundamental limitations by proposing three key techniques: (1) multi-agent fine-tuning with a self-modulation factor to enhance inter-agent coordination, (2) a data-free training strategy that uses large models to synthesize training data, and (3) a human-in-the-loop mechanism combined with multimodal large language models for data filtering to ensure high-quality training datasets. Our comprehensive experiments on six video generation tasks demonstrate that Mora achieves performance comparable to Sora on VBench, outperforming existing open-source methods across various tasks. Specifically, in the text-to-video generation task, Mora achieved a Video Quality score of 0.800, surpassing Sora 0.797 and outperforming all other baseline models across six key metrics. Additionally, in the image-to-video generation task, Mora achieved a perfect Dynamic Degree score of 1.00, demonstrating exceptional capability in enhancing motion realism and achieving higher Imaging Quality than Sora. These results highlight the potential of collaborative multi-agent systems and human-in-the-loop mechanisms in advancing text-to-video generation. Our code is available at \url{https://github.com/lichao-sun/Mora}.
Authors:Zixin Zhu, Xuelu Feng, Dongdong Chen, Junsong Yuan, Chunming Qiao, Gang Hua
Title: Exploring Pre-trained Text-to-Video Diffusion Models for Referring Video Object Segmentation
Abstract:
In this paper, we explore the visual representations produced from a pre-trained text-to-video (T2V) diffusion model for video understanding tasks. We hypothesize that the latent representation learned from a pretrained generative T2V model encapsulates rich semantics and coherent temporal correspondences, thereby naturally facilitating video understanding. Our hypothesis is validated through the classic referring video object segmentation (R-VOS) task. We introduce a novel framework, termed "VD-IT", tailored with dedicatedly designed components built upon a fixed pretrained T2V model. Specifically, VD-IT uses textual information as a conditional input, ensuring semantic consistency across time for precise temporal instance matching. It further incorporates image tokens as supplementary textual inputs, enriching the feature set to generate detailed and nuanced masks. Besides, instead of using the standard Gaussian noise, we propose to predict the video-specific noise with an extra noise prediction module, which can help preserve the feature fidelity and elevates segmentation quality. Through extensive experiments, we surprisingly observe that fixed generative T2V diffusion models, unlike commonly used video backbones (e.g., Video Swin Transformer) pretrained with discriminative image/video pre-tasks, exhibit better potential to maintain semantic alignment and temporal consistency. On existing standard benchmarks, our VD-IT achieves highly competitive results, surpassing many existing state-of-the-art methods. The code is available at https://github.com/buxiangzhiren/VD-IT.
Authors:Tengchuan Kou, Xiaohong Liu, Zicheng Zhang, Chunyi Li, Haoning Wu, Xiongkuo Min, Guangtao Zhai, Ning Liu
Title: Subjective-Aligned Dataset and Metric for Text-to-Video Quality Assessment
Abstract:
With the rapid development of generative models, Artificial Intelligence-Generated Contents (AIGC) have exponentially increased in daily lives. Among them, Text-to-Video (T2V) generation has received widespread attention. Though many T2V models have been released for generating high perceptual quality videos, there is still lack of a method to evaluate the quality of these videos quantitatively. To solve this issue, we establish the largest-scale Text-to-Video Quality Assessment DataBase (T2VQA-DB) to date. The dataset is composed of 10,000 videos generated by 9 different T2V models. We also conduct a subjective study to obtain each video's corresponding mean opinion score. Based on T2VQA-DB, we propose a novel transformer-based model for subjective-aligned Text-to-Video Quality Assessment (T2VQA). The model extracts features from text-video alignment and video fidelity perspectives, then it leverages the ability of a large language model to give the prediction score. Experimental results show that T2VQA outperforms existing T2V metrics and SOTA video quality assessment models. Quantitative analysis indicates that T2VQA is capable of giving subjective-align predictions, validating its effectiveness. The dataset and code will be released at https://github.com/QMME/T2VQA.
Authors:Zhenghao Zhang, Zuozhuo Dai, Long Qin, Weizhi Wang
Title: EffiVED:Efficient Video Editing via Text-instruction Diffusion Models
Abstract:
Large-scale text-to-video models have shown remarkable abilities, but their direct application in video editing remains challenging due to limited available datasets. Current video editing methods commonly require per-video fine-tuning of diffusion models or specific inversion optimization to ensure high-fidelity edits. In this paper, we introduce EffiVED, an efficient diffusion-based model that directly supports instruction-guided video editing. To achieve this, we present two efficient workflows to gather video editing pairs, utilizing augmentation and fundamental vision-language techniques. These workflows transform vast image editing datasets and open-world videos into a high-quality dataset for training EffiVED. Experimental results reveal that EffiVED not only generates high-quality editing videos but also executes rapidly. Finally, we demonstrate that our data collection method significantly improves editing performance and can potentially tackle the scarcity of video editing data. Code can be found at https://github.com/alibaba/EffiVED.
Authors:Yue Ma, Yingqing He, Hongfa Wang, Andong Wang, Chenyang Qi, Chengfei Cai, Xiu Li, Zhifeng Li, Heung-Yeung Shum, Wei Liu, Qifeng Chen
Title: Follow-Your-Click: Open-domain Regional Image Animation via Short Prompts
Abstract:
Despite recent advances in image-to-video generation, better controllability and local animation are less explored. Most existing image-to-video methods are not locally aware and tend to move the entire scene. However, human artists may need to control the movement of different objects or regions. Additionally, current I2V methods require users not only to describe the target motion but also to provide redundant detailed descriptions of frame contents. These two issues hinder the practical utilization of current I2V tools. In this paper, we propose a practical framework, named Follow-Your-Click, to achieve image animation with a simple user click (for specifying what to move) and a short motion prompt (for specifying how to move). Technically, we propose the first-frame masking strategy, which significantly improves the video generation quality, and a motion-augmented module equipped with a short motion prompt dataset to improve the short prompt following abilities of our model. To further control the motion speed, we propose flow-based motion magnitude control to control the speed of target movement more precisely. Our framework has simpler yet precise user control and better generation performance than previous methods. Extensive experiments compared with 7 baselines, including both commercial tools and research methods on 8 metrics, suggest the superiority of our approach. Project Page: https://follow-your-click.github.io/
Authors:Yuta Oshima, Shohei Taniguchi, Masahiro Suzuki, Yutaka Matsuo
Title: SSM Meets Video Diffusion Models: Efficient Long-Term Video Generation with Structured State Spaces
Abstract:
Given the remarkable achievements in image generation through diffusion models, the research community has shown increasing interest in extending these models to video generation. Recent diffusion models for video generation have predominantly utilized attention layers to extract temporal features. However, attention layers are limited by their computational costs, which increase quadratically with the sequence length. This limitation presents significant challenges when generating longer video sequences using diffusion models. To overcome this challenge, we propose leveraging state-space models (SSMs) as temporal feature extractors. SSMs (e.g., Mamba) have recently gained attention as promising alternatives due to their linear-time memory consumption relative to sequence length. In line with previous research suggesting that using bidirectional SSMs is effective for understanding spatial features in image generation, we found that bidirectionality is also beneficial for capturing temporal features in video data, rather than relying on traditional unidirectional SSMs. We conducted comprehensive evaluations on multiple long-term video datasets, such as MineRL Navigate, across various model sizes. For sequences up to 256 frames, SSM-based models require less memory to achieve the same FVD as attention-based models. Moreover, SSM-based models often deliver better performance with comparable GPU memory usage. Our codes are available at https://github.com/shim0114/SSM-Meets-Video-Diffusion-Models.
Authors:Weijia Wu, Zhuang Li, Yuchao Gu, Rui Zhao, Yefei He, David Junhao Zhang, Mike Zheng Shou, Yan Li, Tingting Gao, Di Zhang
Title: DragAnything: Motion Control for Anything using Entity Representation
Abstract:
We introduce DragAnything, which utilizes a entity representation to achieve motion control for any object in controllable video generation. Comparison to existing motion control methods, DragAnything offers several advantages. Firstly, trajectory-based is more userfriendly for interaction, when acquiring other guidance signals (e.g., masks, depth maps) is labor-intensive. Users only need to draw a line (trajectory) during interaction. Secondly, our entity representation serves as an open-domain embedding capable of representing any object, enabling the control of motion for diverse entities, including background. Lastly, our entity representation allows simultaneous and distinct motion control for multiple objects. Extensive experiments demonstrate that our DragAnything achieves state-of-the-art performance for FVD, FID, and User Study, particularly in terms of object motion control, where our method surpasses the previous methods (e.g., DragNUWA) by 26% in human voting.
Authors:Yabo Zhang, Yuxiang Wei, Xianhui Lin, Zheng Hui, Peiran Ren, Xuansong Xie, Xiangyang Ji, Wangmeng Zuo
Title: VideoElevator: Elevating Video Generation Quality with Versatile Text-to-Image Diffusion Models
Abstract:
Text-to-image diffusion models (T2I) have demonstrated unprecedented capabilities in creating realistic and aesthetic images. On the contrary, text-to-video diffusion models (T2V) still lag far behind in frame quality and text alignment, owing to insufficient quality and quantity of training videos. In this paper, we introduce VideoElevator, a training-free and plug-and-play method, which elevates the performance of T2V using superior capabilities of T2I. Different from conventional T2V sampling (i.e., temporal and spatial modeling), VideoElevator explicitly decomposes each sampling step into temporal motion refining and spatial quality elevating. Specifically, temporal motion refining uses encapsulated T2V to enhance temporal consistency, followed by inverting to the noise distribution required by T2I. Then, spatial quality elevating harnesses inflated T2I to directly predict less noisy latent, adding more photo-realistic details. We have conducted experiments in extensive prompts under the combination of various T2V and T2I. The results show that VideoElevator not only improves the performance of T2V baselines with foundational T2I, but also facilitates stylistic video synthesis with personalized T2I. Our code is available at https://github.com/YBYBZhang/VideoElevator.
Authors:Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang, Hanchi Sun, Jianfeng Gao, Lifang He, Lichao Sun
Title: Sora: A Review on Background, Technology, Limitations, and Opportunities of Large Vision Models
Abstract:
Sora is a text-to-video generative AI model, released by OpenAI in February 2024. The model is trained to generate videos of realistic or imaginative scenes from text instructions and show potential in simulating the physical world. Based on public technical reports and reverse engineering, this paper presents a comprehensive review of the model's background, related technologies, applications, remaining challenges, and future directions of text-to-video AI models. We first trace Sora's development and investigate the underlying technologies used to build this "world simulator". Then, we describe in detail the applications and potential impact of Sora in multiple industries ranging from film-making and education to marketing. We discuss the main challenges and limitations that need to be addressed to widely deploy Sora, such as ensuring safe and unbiased video generation. Lastly, we discuss the future development of Sora and video generation models in general, and how advancements in the field could enable new ways of human-AI interaction, boosting productivity and creativity of video generation.
Authors:Ling Yang, Zhilong Zhang, Zhaochen Yu, Jingwei Liu, Minkai Xu, Stefano Ermon, Bin Cui
Title: Contextualized Diffusion Models for Text-Guided Image and Video Generation
Abstract:
Conditional diffusion models have exhibited superior performance in high-fidelity text-guided visual generation and editing. Nevertheless, prevailing text-guided visual diffusion models primarily focus on incorporating text-visual relationships exclusively into the reverse process, often disregarding their relevance in the forward process. This inconsistency between forward and reverse processes may limit the precise conveyance of textual semantics in visual synthesis results. To address this issue, we propose a novel and general contextualized diffusion model (ContextDiff) by incorporating the cross-modal context encompassing interactions and alignments between text condition and visual sample into forward and reverse processes. We propagate this context to all timesteps in the two processes to adapt their trajectories, thereby facilitating cross-modal conditional modeling. We generalize our contextualized diffusion to both DDPMs and DDIMs with theoretical derivations, and demonstrate the effectiveness of our model in evaluations with two challenging tasks: text-to-image generation, and text-to-video editing. In each task, our ContextDiff achieves new state-of-the-art performance, significantly enhancing the semantic alignment between text condition and generated samples, as evidenced by quantitative and qualitative evaluations. Our code is available at https://github.com/YangLing0818/ContextDiff
Authors:Kai Wang, Dongwen Tang, Boya Zeng, Yida Yin, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, Yang You
Title: Neural Network Diffusion
Abstract:
Diffusion models have achieved remarkable success in image and video generation. In this work, we demonstrate that diffusion models can also \textit{generate high-performing neural network parameters}. Our approach is simple, utilizing an autoencoder and a diffusion model. The autoencoder extracts latent representations of a subset of the trained neural network parameters. Next, a diffusion model is trained to synthesize these latent representations from random noise. This model then generates new representations, which are passed through the autoencoder's decoder to produce new subsets of high-performing network parameters. Across various architectures and datasets, our approach consistently generates models with comparable or improved performance over trained networks, with minimal additional cost. Notably, we empirically find that the generated models are not memorizing the trained ones. Our results encourage more exploration into the versatile use of diffusion models. Our code is available \href{https://github.com/NUS-HPC-AI-Lab/Neural-Network-Diffusion}{here}.
Authors:Ze Ma, Daquan Zhou, Chun-Hsiao Yeh, Xue-She Wang, Xiuyu Li, Huanrui Yang, Zhen Dong, Kurt Keutzer, Jiashi Feng
Title: Magic-Me: Identity-Specific Video Customized Diffusion
Abstract:
Creating content with specified identities (ID) has attracted significant interest in the field of generative models. In the field of text-to-image generation (T2I), subject-driven creation has achieved great progress with the identity controlled via reference images. However, its extension to video generation is not well explored. In this work, we propose a simple yet effective subject identity controllable video generation framework, termed Video Custom Diffusion (VCD). With a specified identity defined by a few images, VCD reinforces the identity characteristics and injects frame-wise correlation at the initialization stage for stable video outputs. To achieve this, we propose three novel components that are essential for high-quality identity preservation and stable video generation: 1) a noise initialization method with 3D Gaussian Noise Prior for better inter-frame stability; 2) an ID module based on extended Textual Inversion trained with the cropped identity to disentangle the ID information from the background 3) Face VCD and Tiled VCD modules to reinforce faces and upscale the video to higher resolution while preserving the identity's features. We conducted extensive experiments to verify that VCD is able to generate stable videos with better ID over the baselines. Besides, with the transferability of the encoded identity in the ID module, VCD is also working well with personalized text-to-image models available publicly. The codes are available at https://github.com/Zhen-Dong/Magic-Me.
Authors:Yiyuan Zhang, Yuhao Kang, Zhixin Zhang, Xiaohan Ding, Sanyuan Zhao, Xiangyu Yue
Title: InteractiveVideo: User-Centric Controllable Video Generation with Synergistic Multimodal Instructions
Abstract:
We introduce $\textit{InteractiveVideo}$, a user-centric framework for video generation. Different from traditional generative approaches that operate based on user-provided images or text, our framework is designed for dynamic interaction, allowing users to instruct the generative model through various intuitive mechanisms during the whole generation process, e.g. text and image prompts, painting, drag-and-drop, etc. We propose a Synergistic Multimodal Instruction mechanism, designed to seamlessly integrate users' multimodal instructions into generative models, thus facilitating a cooperative and responsive interaction between user inputs and the generative process. This approach enables iterative and fine-grained refinement of the generation result through precise and effective user instructions. With $\textit{InteractiveVideo}$, users are given the flexibility to meticulously tailor key aspects of a video. They can paint the reference image, edit semantics, and adjust video motions until their requirements are fully met. Code, models, and demo are available at https://github.com/invictus717/InteractiveVideo
Authors:Weifeng Liu, Tianyi She, Jiawei Liu, Boheng Li, Dongyu Yao, Ziyou Liang, Run Wang
Title: Lips Are Lying: Spotting the Temporal Inconsistency between Audio and Visual in Lip-Syncing DeepFakes
Abstract:
In recent years, DeepFake technology has achieved unprecedented success in high-quality video synthesis, but these methods also pose potential and severe security threats to humanity. DeepFake can be bifurcated into entertainment applications like face swapping and illicit uses such as lip-syncing fraud. However, lip-forgery videos, which neither change identity nor have discernible visual artifacts, present a formidable challenge to existing DeepFake detection methods. Our preliminary experiments have shown that the effectiveness of the existing methods often drastically decrease or even fail when tackling lip-syncing videos. In this paper, for the first time, we propose a novel approach dedicated to lip-forgery identification that exploits the inconsistency between lip movements and audio signals. We also mimic human natural cognition by capturing subtle biological links between lips and head regions to boost accuracy. To better illustrate the effectiveness and advances of our proposed method, we create a high-quality LipSync dataset, AVLips, by employing the state-of-the-art lip generators. We hope this high-quality and diverse dataset could be well served the further research on this challenging and interesting field. Experimental results show that our approach gives an average accuracy of more than 95.3% in spotting lip-syncing videos, significantly outperforming the baselines. Extensive experiments demonstrate the capability to tackle deepfakes and the robustness in surviving diverse input transformations. Our method achieves an accuracy of up to 90.2% in real-world scenarios (e.g., WeChat video call) and shows its powerful capabilities in real scenario deployment. To facilitate the progress of this research community, we release all resources at https://github.com/AaronComo/LipFD.
Authors:Shaobin Zhuang, Kunchang Li, Xinyuan Chen, Yaohui Wang, Ziwei Liu, Yu Qiao, Yali Wang
Title: Vlogger: Make Your Dream A Vlog
Abstract:
In this work, we present Vlogger, a generic AI system for generating a minute-level video blog (i.e., vlog) of user descriptions. Different from short videos with a few seconds, vlog often contains a complex storyline with diversified scenes, which is challenging for most existing video generation approaches. To break through this bottleneck, our Vlogger smartly leverages Large Language Model (LLM) as Director and decomposes a long video generation task of vlog into four key stages, where we invoke various foundation models to play the critical roles of vlog professionals, including (1) Script, (2) Actor, (3) ShowMaker, and (4) Voicer. With such a design of mimicking human beings, our Vlogger can generate vlogs through explainable cooperation of top-down planning and bottom-up shooting. Moreover, we introduce a novel video diffusion model, ShowMaker, which serves as a videographer in our Vlogger for generating the video snippet of each shooting scene. By incorporating Script and Actor attentively as textual and visual prompts, it can effectively enhance spatial-temporal coherence in the snippet. Besides, we design a concise mixed training paradigm for ShowMaker, boosting its capacity for both T2V generation and prediction. Finally, the extensive experiments show that our method achieves state-of-the-art performance on zero-shot T2V generation and prediction tasks. More importantly, Vlogger can generate over 5-minute vlogs from open-world descriptions, without loss of video coherence on script and actor. The code and model is all available at https://github.com/zhuangshaobin/Vlogger.
Authors:Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, Ying Shan
Title: VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models
Abstract:
Text-to-video generation aims to produce a video based on a given prompt. Recently, several commercial video models have been able to generate plausible videos with minimal noise, excellent details, and high aesthetic scores. However, these models rely on large-scale, well-filtered, high-quality videos that are not accessible to the community. Many existing research works, which train models using the low-quality WebVid-10M dataset, struggle to generate high-quality videos because the models are optimized to fit WebVid-10M. In this work, we explore the training scheme of video models extended from Stable Diffusion and investigate the feasibility of leveraging low-quality videos and synthesized high-quality images to obtain a high-quality video model. We first analyze the connection between the spatial and temporal modules of video models and the distribution shift to low-quality videos. We observe that full training of all modules results in a stronger coupling between spatial and temporal modules than only training temporal modules. Based on this stronger coupling, we shift the distribution to higher quality without motion degradation by finetuning spatial modules with high-quality images, resulting in a generic high-quality video model. Evaluations are conducted to demonstrate the superiority of the proposed method, particularly in picture quality, motion, and concept composition.
Authors:Hao Zhang, Yu-Wing Tai, Chi-Keung Tang
Title: FED-NeRF: Achieve High 3D Consistency and Temporal Coherence for Face Video Editing on Dynamic NeRF
Abstract:
The success of the GAN-NeRF structure has enabled face editing on NeRF to maintain 3D view consistency. However, achieving simultaneously multi-view consistency and temporal coherence while editing video sequences remains a formidable challenge. This paper proposes a novel face video editing architecture built upon the dynamic face GAN-NeRF structure, which effectively utilizes video sequences to restore the latent code and 3D face geometry. By editing the latent code, multi-view consistent editing on the face can be ensured, as validated by multiview stereo reconstruction on the resulting edited images in our dynamic NeRF. As the estimation of face geometries occurs on a frame-by-frame basis, this may introduce a jittering issue. We propose a stabilizer that maintains temporal coherence by preserving smooth changes of face expressions in consecutive frames. Quantitative and qualitative analyses reveal that our method, as the pioneering 4D face video editor, achieves state-of-the-art performance in comparison to existing 2D or 3D-based approaches independently addressing identity and motion. Codes will be released.
Authors:David Junhao Zhang, Dongxu Li, Hung Le, Mike Zheng Shou, Caiming Xiong, Doyen Sahoo
Title: Moonshot: Towards Controllable Video Generation and Editing with Multimodal Conditions
Abstract:
Most existing video diffusion models (VDMs) are limited to mere text conditions. Thereby, they are usually lacking in control over visual appearance and geometry structure of the generated videos. This work presents Moonshot, a new video generation model that conditions simultaneously on multimodal inputs of image and text. The model builts upon a core module, called multimodal video block (MVB), which consists of conventional spatialtemporal layers for representing video features, and a decoupled cross-attention layer to address image and text inputs for appearance conditioning. In addition, we carefully design the model architecture such that it can optionally integrate with pre-trained image ControlNet modules for geometry visual conditions, without needing of extra training overhead as opposed to prior methods. Experiments show that with versatile multimodal conditioning mechanisms, Moonshot demonstrates significant improvement on visual quality and temporal consistency compared to existing models. In addition, the model can be easily repurposed for a variety of generative applications, such as personalized video generation, image animation and video editing, unveiling its potential to serve as a fundamental architecture for controllable video generation. Models will be made public on https://github.com/salesforce/LAVIS.
Authors:Fuchen Long, Zhaofan Qiu, Ting Yao, Tao Mei
Title: VideoStudio: Generating Consistent-Content and Multi-Scene Videos
Abstract:
The recent innovations and breakthroughs in diffusion models have significantly expanded the possibilities of generating high-quality videos for the given prompts. Most existing works tackle the single-scene scenario with only one video event occurring in a single background. Extending to generate multi-scene videos nevertheless is not trivial and necessitates to nicely manage the logic in between while preserving the consistent visual appearance of key content across video scenes. In this paper, we propose a novel framework, namely VideoStudio, for consistent-content and multi-scene video generation. Technically, VideoStudio leverages Large Language Models (LLM) to convert the input prompt into comprehensive multi-scene script that benefits from the logical knowledge learnt by LLM. The script for each scene includes a prompt describing the event, the foreground/background entities, as well as camera movement. VideoStudio identifies the common entities throughout the script and asks LLM to detail each entity. The resultant entity description is then fed into a text-to-image model to generate a reference image for each entity. Finally, VideoStudio outputs a multi-scene video by generating each scene video via a diffusion process that takes the reference images, the descriptive prompt of the event and camera movement into account. The diffusion model incorporates the reference images as the condition and alignment to strengthen the content consistency of multi-scene videos. Extensive experiments demonstrate that VideoStudio outperforms the SOTA video generation models in terms of visual quality, content consistency, and user preference. Source code is available at \url{https://github.com/FuchenUSTC/VideoStudio}.
Authors:Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao, Gang Zeng, Ziwei Liu
Title: DreamGaussian4D: Generative 4D Gaussian Splatting
Abstract:
4D content generation has achieved remarkable progress recently. However, existing methods suffer from long optimization times, a lack of motion controllability, and a low quality of details. In this paper, we introduce DreamGaussian4D (DG4D), an efficient 4D generation framework that builds on Gaussian Splatting (GS). Our key insight is that combining explicit modeling of spatial transformations with static GS makes an efficient and powerful representation for 4D generation. Moreover, video generation methods have the potential to offer valuable spatial-temporal priors, enhancing the high-quality 4D generation. Specifically, we propose an integral framework with two major modules: 1) Image-to-4D GS - we initially generate static GS with DreamGaussianHD, followed by HexPlane-based dynamic generation with Gaussian deformation; and 2) Video-to-Video Texture Refinement - we refine the generated UV-space texture maps and meanwhile enhance their temporal consistency by utilizing a pre-trained image-to-video diffusion model. Notably, DG4D reduces the optimization time from several hours to just a few minutes, allows the generated 3D motion to be visually controlled, and produces animated meshes that can be realistically rendered in 3D engines.
Authors:Tianxing Wu, Chenyang Si, Yuming Jiang, Ziqi Huang, Ziwei Liu
Title: FreeInit: Bridging Initialization Gap in Video Diffusion Models
Abstract:
Though diffusion-based video generation has witnessed rapid progress, the inference results of existing models still exhibit unsatisfactory temporal consistency and unnatural dynamics. In this paper, we delve deep into the noise initialization of video diffusion models, and discover an implicit training-inference gap that attributes to the unsatisfactory inference quality.Our key findings are: 1) the spatial-temporal frequency distribution of the initial noise at inference is intrinsically different from that for training, and 2) the denoising process is significantly influenced by the low-frequency components of the initial noise. Motivated by these observations, we propose a concise yet effective inference sampling strategy, FreeInit, which significantly improves temporal consistency of videos generated by diffusion models. Through iteratively refining the spatial-temporal low-frequency components of the initial latent during inference, FreeInit is able to compensate the initialization gap between training and inference, thus effectively improving the subject appearance and temporal consistency of generation results. Extensive experiments demonstrate that FreeInit consistently enhances the generation quality of various text-to-video diffusion models without additional training or fine-tuning.
Authors:Yuxin Zhang, Fan Tang, Nisha Huang, Haibin Huang, Chongyang Ma, Weiming Dong, Changsheng Xu
Title: MotionCrafter: One-Shot Motion Customization of Diffusion Models
Abstract:
The essence of a video lies in its dynamic motions, including character actions, object movements, and camera movements. While text-to-video generative diffusion models have recently advanced in creating diverse contents, controlling specific motions through text prompts remains a significant challenge. A primary issue is the coupling of appearance and motion, often leading to overfitting on appearance. To tackle this challenge, we introduce MotionCrafter, a novel one-shot instance-guided motion customization method. MotionCrafter employs a parallel spatial-temporal architecture that injects the reference motion into the temporal component of the base model, while the spatial module is independently adjusted for character or style control. To enhance the disentanglement of motion and appearance, we propose an innovative dual-branch motion disentanglement approach, comprising a motion disentanglement loss and an appearance prior enhancement strategy. During training, a frozen base model provides appearance normalization, effectively separating appearance from motion and thereby preserving diversity. Comprehensive quantitative and qualitative experiments, along with user preference tests, demonstrate that MotionCrafter can successfully integrate dynamic motions while preserving the coherence and quality of the base model with a wide range of appearance generation capabilities. Project page: https://zyxelsa.github.io/homepage-motioncrafter. Codes are available at https://github.com/zyxElsa/MotionCrafter.
Authors:Ozgur Kara, Bariscan Kurtkaya, Hidir Yesiltepe, James M. Rehg, Pinar Yanardag
Title: RAVE: Randomized Noise Shuffling for Fast and Consistent Video Editing with Diffusion Models
Abstract:
Recent advancements in diffusion-based models have demonstrated significant success in generating images from text. However, video editing models have not yet reached the same level of visual quality and user control. To address this, we introduce RAVE, a zero-shot video editing method that leverages pre-trained text-to-image diffusion models without additional training. RAVE takes an input video and a text prompt to produce high-quality videos while preserving the original motion and semantic structure. It employs a novel noise shuffling strategy, leveraging spatio-temporal interactions between frames, to produce temporally consistent videos faster than existing methods. It is also efficient in terms of memory requirements, allowing it to handle longer videos. RAVE is capable of a wide range of edits, from local attribute modifications to shape transformations. In order to demonstrate the versatility of RAVE, we create a comprehensive video evaluation dataset ranging from object-focused scenes to complex human activities like dancing and typing, and dynamic scenes featuring swimming fish and boats. Our qualitative and quantitative experiments highlight the effectiveness of RAVE in diverse video editing scenarios compared to existing methods. Our code, dataset and videos can be found in https://rave-video.github.io.
Authors:Vladimir Arkhipkin, Andrei Filatov, Viacheslav Vasilev, Anastasia Maltseva, Said Azizov, Igor Pavlov, Julia Agafonova, Andrey Kuznetsov, Denis Dimitrov
Title: Kandinsky 3.0 Technical Report
Abstract:
We present Kandinsky 3.0, a large-scale text-to-image generation model based on latent diffusion, continuing the series of text-to-image Kandinsky models and reflecting our progress to achieve higher quality and realism of image generation. In this report we describe the architecture of the model, the data collection procedure, the training technique, and the production system for user interaction. We focus on the key components that, as we have identified as a result of a large number of experiments, had the most significant impact on improving the quality of our model compared to the others. We also describe extensions and applications of our model, including super resolution, inpainting, image editing, image-to-video generation, and a distilled version of Kandinsky 3.0 - Kandinsky 3.1, which does inference in 4 steps of the reverse process and 20 times faster without visual quality decrease. By side-by-side human preferences comparison, Kandinsky becomes better in text understanding and works better on specific domains. The code is available at https://github.com/ai-forever/Kandinsky-3
Authors:Yue Ma, Xiaodong Cun, Sen Liang, Jinbo Xing, Yingqing He, Chenyang Qi, Siran Chen, Qifeng Chen
Title: MagicStick: Controllable Video Editing via Control Handle Transformations
Abstract:
Text-based video editing has recently attracted considerable interest in changing the style or replacing the objects with a similar structure. Beyond this, we demonstrate that properties such as shape, size, location, motion, etc., can also be edited in videos. Our key insight is that the keyframe transformations of the specific internal feature (e.g., edge maps of objects or human pose), can easily propagate to other frames to provide generation guidance. We thus propose MagicStick, a controllable video editing method that edits the video properties by utilizing the transformation on the extracted internal control signals. In detail, to keep the appearance, we inflate both the pretrained image diffusion model and ControlNet to the temporal dimension and train low-rank adaptions (LORA) layers to fit the specific scenes. Then, in editing, we perform an inversion and editing framework. Differently, finetuned ControlNet is introduced in both inversion and generation for attention guidance with the proposed attention remix between the spatial attention maps of inversion and editing. Yet succinct, our method is the first method to show the ability of video property editing from the pre-trained text-to-image model. We present experiments on numerous examples within our unified framework. We also compare with shape-aware text-based editing and handcrafted motion video generation, demonstrating our superior temporal consistency and editing capability than previous works. The code and models are available on https://github.com/mayuelala/MagicStick.
Authors:Fengyuan Shi, Jiaxi Gu, Hang Xu, Songcen Xu, Wei Zhang, Limin Wang
Title: BIVDiff: A Training-Free Framework for General-Purpose Video Synthesis via Bridging Image and Video Diffusion Models
Abstract:
Diffusion models have made tremendous progress in text-driven image and video generation. Now text-to-image foundation models are widely applied to various downstream image synthesis tasks, such as controllable image generation and image editing, while downstream video synthesis tasks are less explored for several reasons. First, it requires huge memory and computation overhead to train a video generation foundation model. Even with video foundation models, additional costly training is still required for downstream video synthesis tasks. Second, although some works extend image diffusion models into videos in a training-free manner, temporal consistency cannot be well preserved. Finally, these adaption methods are specifically designed for one task and fail to generalize to different tasks. To mitigate these issues, we propose a training-free general-purpose video synthesis framework, coined as {\bf BIVDiff}, via bridging specific image diffusion models and general text-to-video foundation diffusion models. Specifically, we first use a specific image diffusion model (e.g., ControlNet and Instruct Pix2Pix) for frame-wise video generation, then perform Mixed Inversion on the generated video, and finally input the inverted latents into the video diffusion models (e.g., VidRD and ZeroScope) for temporal smoothing. This decoupled framework enables flexible image model selection for different purposes with strong task generalization and high efficiency. To validate the effectiveness and general use of BIVDiff, we perform a wide range of video synthesis tasks, including controllable video generation, video editing, video inpainting, and outpainting.
Authors:Yufan Deng, Ruida Wang, Yuhao Zhang, Yu-Wing Tai, Chi-Keung Tang
Title: DragVideo: Interactive Drag-style Video Editing
Abstract:
Video generation models have shown their superior ability to generate photo-realistic video. However, how to accurately control (or edit) the video remains a formidable challenge. The main issues are: 1) how to perform direct and accurate user control in editing; 2) how to execute editings like changing shape, expression, and layout without unsightly distortion and artifacts to the edited content; and 3) how to maintain spatio-temporal consistency of video after editing. To address the above issues, we propose DragVideo, a general drag-style video editing framework. Inspired by DragGAN, DragVideo addresses issues 1) and 2) by proposing the drag-style video latent optimization method which gives desired control by updating noisy video latent according to drag instructions through video-level drag objective function. We amend issue 3) by integrating the video diffusion model with sample-specific LoRA and Mutual Self-Attention in DragVideo to ensure the edited result is spatio-temporally consistent. We also present a series of testing examples for drag-style video editing and conduct extensive experiments across a wide array of challenging editing tasks, such as motion, skeleton editing, etc, underscoring DragVideo can edit video in an intuitive, faithful to the user's intention manner, with nearly unnoticeable distortion and artifacts, while maintaining spatio-temporal consistency. While traditional prompt-based video editing fails to do the former two and directly applying image drag editing fails in the last, DragVideo's versatility and generality are emphasized. Github link: https://github.com/RickySkywalker/DragVideo-Official.
Authors:Gongye Liu, Menghan Xia, Yong Zhang, Haoxin Chen, Jinbo Xing, Yibo Wang, Xintao Wang, Yujiu Yang, Ying Shan
Title: StyleCrafter: Enhancing Stylized Text-to-Video Generation with Style Adapter
Abstract:
Text-to-video (T2V) models have shown remarkable capabilities in generating diverse videos. However, they struggle to produce user-desired stylized videos due to (i) text's inherent clumsiness in expressing specific styles and (ii) the generally degraded style fidelity. To address these challenges, we introduce StyleCrafter, a generic method that enhances pre-trained T2V models with a style control adapter, enabling video generation in any style by providing a reference image. Considering the scarcity of stylized video datasets, we propose to first train a style control adapter using style-rich image datasets, then transfer the learned stylization ability to video generation through a tailor-made finetuning paradigm. To promote content-style disentanglement, we remove style descriptions from the text prompt and extract style information solely from the reference image using a decoupling learning strategy. Additionally, we design a scale-adaptive fusion module to balance the influences of text-based content features and image-based style features, which helps generalization across various text and style combinations. StyleCrafter efficiently generates high-quality stylized videos that align with the content of the texts and resemble the style of the reference images. Experiments demonstrate that our approach is more flexible and efficient than existing competitors.
Authors:Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin, Yu Qiao, Ziwei Liu
Title: VBench: Comprehensive Benchmark Suite for Video Generative Models
Abstract:
Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human perceptions; 2) An ideal evaluation system should provide insights to inform future developments of video generation. To this end, we present VBench, a comprehensive benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions, each with tailored prompts and evaluation methods. VBench has three appealing properties: 1) Comprehensive Dimensions: VBench comprises 16 dimensions in video generation (e.g., subject identity inconsistency, motion smoothness, temporal flickering, and spatial relationship, etc). The evaluation metrics with fine-grained levels reveal individual models' strengths and weaknesses. 2) Human Alignment: We also provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception, for each evaluation dimension respectively. 3) Valuable Insights: We look into current models' ability across various evaluation dimensions, and various content types. We also investigate the gaps between video and image generation models. We will open-source VBench, including all prompts, evaluation methods, generated videos, and human preference annotations, and also include more video generation models in VBench to drive forward the field of video generation.
Authors:Liang Peng, Haoran Cheng, Zheng Yang, Ruisi Zhao, Linxuan Xia, Chaotian Song, Qinglin Lu, Boxi Wu, Wei Liu
Title: SmoothVideo: Smooth Video Synthesis with Noise Constraints on Diffusion Models for One-shot Video Tuning
Abstract:
Recent one-shot video tuning methods, which fine-tune the network on a specific video based on pre-trained text-to-image models (e.g., Stable Diffusion), are popular in the community because of the flexibility. However, these methods often produce videos marred by incoherence and inconsistency. To address these limitations, this paper introduces a simple yet effective noise constraint across video frames. This constraint aims to regulate noise predictions across their temporal neighbors, resulting in smooth latents. It can be simply included as a loss term during the training phase. By applying the loss to existing one-shot video tuning methods, we significantly improve the overall consistency and smoothness of the generated videos. Furthermore, we argue that current video evaluation metrics inadequately capture smoothness. To address this, we introduce a novel metric that considers detailed features and their temporal dynamics. Experimental results validate the effectiveness of our approach in producing smoother videos on various one-shot video tuning baselines. The source codes and video demos are available at \href{https://github.com/SPengLiang/SmoothVideo}{https://github.com/SPengLiang/SmoothVideo}.
Authors:Yudian Zheng, Xiaodong Cun, Menghan Xia, Chi-Man Pun
Title: Sketch Video Synthesis
Abstract:
Understanding semantic intricacies and high-level concepts is essential in image sketch generation, and this challenge becomes even more formidable when applied to the domain of videos. To address this, we propose a novel optimization-based framework for sketching videos represented by the frame-wise Bézier curve. In detail, we first propose a cross-frame stroke initialization approach to warm up the location and the width of each curve. Then, we optimize the locations of these curves by utilizing a semantic loss based on CLIP features and a newly designed consistency loss using the self-decomposed 2D atlas network. Built upon these design elements, the resulting sketch video showcases impressive visual abstraction and temporal coherence. Furthermore, by transforming a video into SVG lines through the sketching process, our method unlocks applications in sketch-based video editing and video doodling, enabled through video composition, as exemplified in the teaser.
Authors:Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, Robin Rombach
Title: Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets
Abstract:
We present Stable Video Diffusion - a latent video diffusion model for high-resolution, state-of-the-art text-to-video and image-to-video generation. Recently, latent diffusion models trained for 2D image synthesis have been turned into generative video models by inserting temporal layers and finetuning them on small, high-quality video datasets. However, training methods in the literature vary widely, and the field has yet to agree on a unified strategy for curating video data. In this paper, we identify and evaluate three different stages for successful training of video LDMs: text-to-image pretraining, video pretraining, and high-quality video finetuning. Furthermore, we demonstrate the necessity of a well-curated pretraining dataset for generating high-quality videos and present a systematic curation process to train a strong base model, including captioning and filtering strategies. We then explore the impact of finetuning our base model on high-quality data and train a text-to-video model that is competitive with closed-source video generation. We also show that our base model provides a powerful motion representation for downstream tasks such as image-to-video generation and adaptability to camera motion-specific LoRA modules. Finally, we demonstrate that our model provides a strong multi-view 3D-prior and can serve as a base to finetune a multi-view diffusion model that jointly generates multiple views of objects in a feedforward fashion, outperforming image-based methods at a fraction of their compute budget. We release code and model weights at https://github.com/Stability-AI/generative-models .
Authors:Hritik Bansal, Yonatan Bitton, Idan Szpektor, Kai-Wei Chang, Aditya Grover
Title: VideoCon: Robust Video-Language Alignment via Contrast Captions
Abstract:
Despite being (pre)trained on a massive amount of data, state-of-the-art video-language alignment models are not robust to semantically-plausible contrastive changes in the video captions. Our work addresses this by identifying a broad spectrum of contrast misalignments, such as replacing entities, actions, and flipping event order, which alignment models should be robust against. To this end, we introduce the VideoCon, a video-language alignment dataset constructed by a large language model that generates plausible contrast video captions and explanations for differences between original and contrast video captions. Then, a generative video-language model is finetuned with VideoCon to assess video-language entailment and generate explanations. Our VideoCon-based alignment model significantly outperforms current models. It exhibits a 12-point increase in AUC for the video-language alignment task on human-generated contrast captions. Finally, our model sets new state of the art zero-shot performance in temporally-extensive video-language tasks such as text-to-video retrieval (SSv2-Temporal) and video question answering (ATP-Hard). Moreover, our model shows superior performance on novel videos and human-crafted captions and explanations. Our code and data are available at https://github.com/Hritikbansal/videocon.
Authors:Yuanxin Liu, Lei Li, Shuhuai Ren, Rundong Gao, Shicheng Li, Sishuo Chen, Xu Sun, Lu Hou
Title: FETV: A Benchmark for Fine-Grained Evaluation of Open-Domain Text-to-Video Generation
Abstract:
Recently, open-domain text-to-video (T2V) generation models have made remarkable progress. However, the promising results are mainly shown by the qualitative cases of generated videos, while the quantitative evaluation of T2V models still faces two critical problems. Firstly, existing studies lack fine-grained evaluation of T2V models on different categories of text prompts. Although some benchmarks have categorized the prompts, their categorization either only focuses on a single aspect or fails to consider the temporal information in video generation. Secondly, it is unclear whether the automatic evaluation metrics are consistent with human standards. To address these problems, we propose FETV, a benchmark for Fine-grained Evaluation of Text-to-Video generation. FETV is multi-aspect, categorizing the prompts based on three orthogonal aspects: the major content, the attributes to control and the prompt complexity. FETV is also temporal-aware, which introduces several temporal categories tailored for video generation. Based on FETV, we conduct comprehensive manual evaluations of four representative T2V models, revealing their pros and cons on different categories of prompts from different aspects. We also extend FETV as a testbed to evaluate the reliability of automatic T2V metrics. The multi-aspect categorization of FETV enables fine-grained analysis of the metrics' reliability in different scenarios. We find that existing automatic metrics (e.g., CLIPScore and FVD) correlate poorly with human evaluation. To address this problem, we explore several solutions to improve CLIPScore and FVD, and develop two automatic metrics that exhibit significant higher correlation with humans than existing metrics. Benchmark page: https://github.com/llyx97/FETV.
Authors:Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing, Yaofang Liu, Qifeng Chen, Xintao Wang, Chao Weng, Ying Shan
Title: VideoCrafter1: Open Diffusion Models for High-Quality Video Generation
Abstract:
Video generation has increasingly gained interest in both academia and industry. Although commercial tools can generate plausible videos, there is a limited number of open-source models available for researchers and engineers. In this work, we introduce two diffusion models for high-quality video generation, namely text-to-video (T2V) and image-to-video (I2V) models. T2V models synthesize a video based on a given text input, while I2V models incorporate an additional image input. Our proposed T2V model can generate realistic and cinematic-quality videos with a resolution of $1024 \times 576$, outperforming other open-source T2V models in terms of quality. The I2V model is designed to produce videos that strictly adhere to the content of the provided reference image, preserving its content, structure, and style. This model is the first open-source I2V foundation model capable of transforming a given image into a video clip while maintaining content preservation constraints. We believe that these open-source video generation models will contribute significantly to the technological advancements within the community.
Authors:Tianyi Lu, Xing Zhang, Jiaxi Gu, Renjing Pei, Songcen Xu, Xingjun Ma, Hang Xu, Zuxuan Wu
Title: Fuse Your Latents: Video Editing with Multi-source Latent Diffusion Models
Abstract:
Latent Diffusion Models (LDMs) are renowned for their powerful capabilities in image and video synthesis. Yet, compared to text-to-image (T2I) editing, text-to-video (T2V) editing suffers from a lack of decent temporal consistency and structure, due to insufficient pre-training data, limited model editability, or extensive tuning costs. To address this gap, we propose FLDM (Fused Latent Diffusion Model), a training-free framework that achieves high-quality T2V editing by integrating various T2I and T2V LDMs. Specifically, FLDM utilizes a hyper-parameter with an update schedule to effectively fuse image and video latents during the denoising process. This paper is the first to reveal that T2I and T2V LDMs can complement each other in terms of structure and temporal consistency, ultimately generating high-quality videos. It is worth noting that FLDM can serve as a versatile plugin, applicable to off-the-shelf image and video LDMs, to significantly enhance the quality of video editing. Extensive quantitative and qualitative experiments on popular T2I and T2V LDMs demonstrate FLDM's superior editing quality than state-of-the-art T2V editing methods. Our project code is available at https://github.com/lutianyi0603/fuse_your_latents.
Authors:Haonan Qiu, Menghan Xia, Yong Zhang, Yingqing He, Xintao Wang, Ying Shan, Ziwei Liu
Title: FreeNoise: Tuning-Free Longer Video Diffusion via Noise Rescheduling
Abstract:
With the availability of large-scale video datasets and the advances of diffusion models, text-driven video generation has achieved substantial progress. However, existing video generation models are typically trained on a limited number of frames, resulting in the inability to generate high-fidelity long videos during inference. Furthermore, these models only support single-text conditions, whereas real-life scenarios often require multi-text conditions as the video content changes over time. To tackle these challenges, this study explores the potential of extending the text-driven capability to generate longer videos conditioned on multiple texts. 1) We first analyze the impact of initial noise in video diffusion models. Then building upon the observation of noise, we propose FreeNoise, a tuning-free and time-efficient paradigm to enhance the generative capabilities of pretrained video diffusion models while preserving content consistency. Specifically, instead of initializing noises for all frames, we reschedule a sequence of noises for long-range correlation and perform temporal attention over them by window-based function. 2) Additionally, we design a novel motion injection method to support the generation of videos conditioned on multiple text prompts. Extensive experiments validate the superiority of our paradigm in extending the generative capabilities of video diffusion models. It is noteworthy that compared with the previous best-performing method which brought about 255% extra time cost, our method incurs only negligible time cost of approximately 17%. Generated video samples are available at our website: http://haonanqiu.com/projects/FreeNoise.html.
Authors:Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Josh Susskind, Navdeep Jaitly
Title: Matryoshka Diffusion Models
Abstract:
Diffusion models are the de facto approach for generating high-quality images and videos, but learning high-dimensional models remains a formidable task due to computational and optimization challenges. Existing methods often resort to training cascaded models in pixel space or using a downsampled latent space of a separately trained auto-encoder. In this paper, we introduce Matryoshka Diffusion Models(MDM), an end-to-end framework for high-resolution image and video synthesis. We propose a diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small-scale inputs are nested within those of large scales. In addition, MDM enables a progressive training schedule from lower to higher resolutions, which leads to significant improvements in optimization for high-resolution generation. We demonstrate the effectiveness of our approach on various benchmarks, including class-conditioned image generation, high-resolution text-to-image, and text-to-video applications. Remarkably, we can train a single pixel-space model at resolutions of up to 1024x1024 pixels, demonstrating strong zero-shot generalization using the CC12M dataset, which contains only 12 million images. Our code is released at https://github.com/apple/ml-mdm
Authors:Zhen Xing, Qijun Feng, Haoran Chen, Qi Dai, Han Hu, Hang Xu, Zuxuan Wu, Yu-Gang Jiang
Title: A Survey on Video Diffusion Models
Abstract:
The recent wave of AI-generated content (AIGC) has witnessed substantial success in computer vision, with the diffusion model playing a crucial role in this achievement. Due to their impressive generative capabilities, diffusion models are gradually superseding methods based on GANs and auto-regressive Transformers, demonstrating exceptional performance not only in image generation and editing, but also in the realm of video-related research. However, existing surveys mainly focus on diffusion models in the context of image generation, with few up-to-date reviews on their application in the video domain. To address this gap, this paper presents a comprehensive review of video diffusion models in the AIGC era. Specifically, we begin with a concise introduction to the fundamentals and evolution of diffusion models. Subsequently, we present an overview of research on diffusion models in the video domain, categorizing the work into three key areas: video generation, video editing, and other video understanding tasks. We conduct a thorough review of the literature in these three key areas, including further categorization and practical contributions in the field. Finally, we discuss the challenges faced by research in this domain and outline potential future developmental trends. A comprehensive list of video diffusion models studied in this survey is available at https://github.com/ChenHsing/Awesome-Video-Diffusion-Models.
Authors:Zhenyi Liao, Zhijie Deng
Title: LOVECon: Text-driven Training-Free Long Video Editing with ControlNet
Abstract:
Leveraging pre-trained conditional diffusion models for video editing without further tuning has gained increasing attention due to its promise in film production, advertising, etc. Yet, seminal works in this line fall short in generation length, temporal coherence, or fidelity to the source video. This paper aims to bridge the gap, establishing a simple and effective baseline for training-free diffusion model-based long video editing. As suggested by prior arts, we build the pipeline upon ControlNet, which excels at various image editing tasks based on text prompts. To break down the length constraints caused by limited computational memory, we split the long video into consecutive windows and develop a novel cross-window attention mechanism to ensure the consistency of global style and maximize the smoothness among windows. To achieve more accurate control, we extract the information from the source video via DDIM inversion and integrate the outcomes into the latent states of the generations. We also incorporate a video frame interpolation model to mitigate the frame-level flickering issue. Extensive empirical studies verify the superior efficacy of our method over competing baselines across scenarios, including the replacement of the attributes of foreground objects, style transfer, and background replacement. Besides, our method manages to edit videos comprising hundreds of frames according to user requirements. Our project is open-sourced and the project page is at https://github.com/zhijie-group/LOVECon.
Authors:Yingqing He, Shaoshu Yang, Haoxin Chen, Xiaodong Cun, Menghan Xia, Yong Zhang, Xintao Wang, Ran He, Qifeng Chen, Ying Shan
Title: ScaleCrafter: Tuning-free Higher-Resolution Visual Generation with Diffusion Models
Abstract:
In this work, we investigate the capability of generating images from pre-trained diffusion models at much higher resolutions than the training image sizes. In addition, the generated images should have arbitrary image aspect ratios. When generating images directly at a higher resolution, 1024 x 1024, with the pre-trained Stable Diffusion using training images of resolution 512 x 512, we observe persistent problems of object repetition and unreasonable object structures. Existing works for higher-resolution generation, such as attention-based and joint-diffusion approaches, cannot well address these issues. As a new perspective, we examine the structural components of the U-Net in diffusion models and identify the crucial cause as the limited perception field of convolutional kernels. Based on this key observation, we propose a simple yet effective re-dilation that can dynamically adjust the convolutional perception field during inference. We further propose the dispersed convolution and noise-damped classifier-free guidance, which can enable ultra-high-resolution image generation (e.g., 4096 x 4096). Notably, our approach does not require any training or optimization. Extensive experiments demonstrate that our approach can address the repetition issue well and achieve state-of-the-art performance on higher-resolution image synthesis, especially in texture details. Our work also suggests that a pre-trained diffusion model trained on low-resolution images can be directly used for high-resolution visual generation without further tuning, which may provide insights for future research on ultra-high-resolution image and video synthesis.
Authors:Zhaofeng Shi, Qingbo Wu, Fanman Meng, Linfeng Xu, Hongliang Li
Title: Cross-modal Cognitive Consensus guided Audio-Visual Segmentation
Abstract:
Audio-Visual Segmentation (AVS) aims to extract the sounding object from a video frame, which is represented by a pixel-wise segmentation mask for application scenarios such as multi-modal video editing, augmented reality, and intelligent robot systems. The pioneering work conducts this task through dense feature-level audio-visual interaction, which ignores the dimension gap between different modalities. More specifically, the audio clip could only provide a Global semantic label in each sequence, but the video frame covers multiple semantic objects across different Local regions, which leads to mislocalization of the representationally similar but semantically different object. In this paper, we propose a Cross-modal Cognitive Consensus guided Network (C3N) to align the audio-visual semantics from the global dimension and progressively inject them into the local regions via an attention mechanism. Firstly, a Cross-modal Cognitive Consensus Inference Module (C3IM) is developed to extract a unified-modal label by integrating audio/visual classification confidence and similarities of modality-agnostic label embeddings. Then, we feed the unified-modal label back to the visual backbone as the explicit semantic-level guidance via a Cognitive Consensus guided Attention Module (CCAM), which highlights the local features corresponding to the interested object. Extensive experiments on the Single Sound Source Segmentation (S4) setting and Multiple Sound Source Segmentation (MS3) setting of the AVSBench dataset demonstrate the effectiveness of the proposed method, which achieves state-of-the-art performance. Code is available at https://github.com/ZhaofengSHI/AVS-C3N.
Authors:Zuxuan Wu, Zejia Weng, Wujian Peng, Xitong Yang, Ang Li, Larry S. Davis, Yu-Gang Jiang
Title: Building an Open-Vocabulary Video CLIP Model with Better Architectures, Optimization and Data
Abstract:
Despite significant results achieved by Contrastive Language-Image Pretraining (CLIP) in zero-shot image recognition, limited effort has been made exploring its potential for zero-shot video recognition. This paper presents Open-VCLIP++, a simple yet effective framework that adapts CLIP to a strong zero-shot video classifier, capable of identifying novel actions and events during testing. Open-VCLIP++ minimally modifies CLIP to capture spatial-temporal relationships in videos, thereby creating a specialized video classifier while striving for generalization. We formally demonstrate that training Open-VCLIP++ is tantamount to continual learning with zero historical data. To address this problem, we introduce Interpolated Weight Optimization, a technique that leverages the advantages of weight interpolation during both training and testing. Furthermore, we build upon large language models to produce fine-grained video descriptions. These detailed descriptions are further aligned with video features, facilitating a better transfer of CLIP to the video domain. Our approach is evaluated on three widely used action recognition datasets, following a variety of zero-shot evaluation protocols. The results demonstrate that our method surpasses existing state-of-the-art techniques by significant margins. Specifically, we achieve zero-shot accuracy scores of 88.1%, 58.7%, and 81.2% on UCF, HMDB, and Kinetics-600 datasets respectively, outpacing the best-performing alternative methods by 8.5%, 8.2%, and 12.3%. We also evaluate our approach on the MSR-VTT video-text retrieval dataset, where it delivers competitive video-to-text and text-to-video retrieval performance, while utilizing substantially less fine-tuning data compared to other methods. Code is released at https://github.com/wengzejia1/Open-VCLIP.
Authors:Shawn Mathew, Saad Nadeem, Alvin C. Goh, Arie Kaufman
Title: RT-GAN: Recurrent Temporal GAN for Adding Lightweight Temporal Consistency to Frame-Based Domain Translation Approaches
Abstract:
Fourteen million colonoscopies are performed annually just in the U.S. However, the videos from these colonoscopies are not saved due to storage constraints (each video from a high-definition colonoscope camera can be in tens of gigabytes). Instead, a few relevant individual frames are saved for documentation/reporting purposes and these are the frames on which most current colonoscopy AI models are trained on. While developing new unsupervised domain translation methods for colonoscopy (e.g. to translate between real optical and virtual/CT colonoscopy), it is thus typical to start with approaches that initially work for individual frames without temporal consistency. Once an individual-frame model has been finalized, additional contiguous frames are added with a modified deep learning architecture to train a new model from scratch for temporal consistency. This transition to temporally-consistent deep learning models, however, requires significantly more computational and memory resources for training. In this paper, we present a lightweight solution with a tunable temporal parameter, RT-GAN (Recurrent Temporal GAN), for adding temporal consistency to individual frame-based approaches that reduces training requirements by a factor of 5. We demonstrate the effectiveness of our approach on two challenging use cases in colonoscopy: haustral fold segmentation (indicative of missed surface) and realistic colonoscopy simulator video generation. We also release a first-of-its kind temporal dataset for colonoscopy for the above use cases. The datasets, accompanying code, and pretrained models will be made available on our Computational Endoscopy Platform GitHub (https://github.com/nadeemlab/CEP). The supplementary video is available at https://youtu.be/UMVP-uIXwWk.
Authors:David Junhao Zhang, Jay Zhangjie Wu, Jia-Wei Liu, Rui Zhao, Lingmin Ran, Yuchao Gu, Difei Gao, Mike Zheng Shou
Title: Show-1: Marrying Pixel and Latent Diffusion Models for Text-to-Video Generation
Abstract:
Significant advancements have been achieved in the realm of large-scale pre-trained text-to-video Diffusion Models (VDMs). However, previous methods either rely solely on pixel-based VDMs, which come with high computational costs, or on latent-based VDMs, which often struggle with precise text-video alignment. In this paper, we are the first to propose a hybrid model, dubbed as Show-1, which marries pixel-based and latent-based VDMs for text-to-video generation. Our model first uses pixel-based VDMs to produce a low-resolution video of strong text-video correlation. After that, we propose a novel expert translation method that employs the latent-based VDMs to further upsample the low-resolution video to high resolution, which can also remove potential artifacts and corruptions from low-resolution videos. Compared to latent VDMs, Show-1 can produce high-quality videos of precise text-video alignment; Compared to pixel VDMs, Show-1 is much more efficient (GPU memory usage during inference is 15G vs 72G). Furthermore, our Show-1 model can be readily adapted for motion customization and video stylization applications through simple temporal attention layer finetuning. Our model achieves state-of-the-art performance on standard video generation benchmarks. Our code and model weights are publicly available at https://github.com/showlab/Show-1.
Authors:Hanzhuo Huang, Yufan Feng, Cheng Shi, Lan Xu, Jingyi Yu, Sibei Yang
Title: Free-Bloom: Zero-Shot Text-to-Video Generator with LLM Director and LDM Animator
Abstract:
Text-to-video is a rapidly growing research area that aims to generate a semantic, identical, and temporal coherence sequence of frames that accurately align with the input text prompt. This study focuses on zero-shot text-to-video generation considering the data- and cost-efficient. To generate a semantic-coherent video, exhibiting a rich portrayal of temporal semantics such as the whole process of flower blooming rather than a set of "moving images", we propose a novel Free-Bloom pipeline that harnesses large language models (LLMs) as the director to generate a semantic-coherence prompt sequence, while pre-trained latent diffusion models (LDMs) as the animator to generate the high fidelity frames. Furthermore, to ensure temporal and identical coherence while maintaining semantic coherence, we propose a series of annotative modifications to adapting LDMs in the reverse process, including joint noise sampling, step-aware attention shift, and dual-path interpolation. Without any video data and training requirements, Free-Bloom generates vivid and high-quality videos, awe-inspiring in generating complex scenes with semantic meaningful frame sequences. In addition, Free-Bloom is naturally compatible with LDMs-based extensions.
Authors:Ziyang Wang, Yi-Lin Sung, Feng Cheng, Gedas Bertasius, Mohit Bansal
Title: Unified Coarse-to-Fine Alignment for Video-Text Retrieval
Abstract:
The canonical approach to video-text retrieval leverages a coarse-grained or fine-grained alignment between visual and textual information. However, retrieving the correct video according to the text query is often challenging as it requires the ability to reason about both high-level (scene) and low-level (object) visual clues and how they relate to the text query. To this end, we propose a Unified Coarse-to-fine Alignment model, dubbed UCoFiA. Specifically, our model captures the cross-modal similarity information at different granularity levels. To alleviate the effect of irrelevant visual clues, we also apply an Interactive Similarity Aggregation module (ISA) to consider the importance of different visual features while aggregating the cross-modal similarity to obtain a similarity score for each granularity. Finally, we apply the Sinkhorn-Knopp algorithm to normalize the similarities of each level before summing them, alleviating over- and under-representation issues at different levels. By jointly considering the crossmodal similarity of different granularity, UCoFiA allows the effective unification of multi-grained alignments. Empirically, UCoFiA outperforms previous state-of-the-art CLIP-based methods on multiple video-text retrieval benchmarks, achieving 2.4%, 1.4% and 1.3% improvements in text-to-video retrieval R@1 on MSR-VTT, Activity-Net, and DiDeMo, respectively. Our code is publicly available at https://github.com/Ziyang412/UCoFiA.
Authors:Yuhan Wang, Liming Jiang, Chen Change Loy
Title: StyleInV: A Temporal Style Modulated Inversion Network for Unconditional Video Generation
Abstract:
Unconditional video generation is a challenging task that involves synthesizing high-quality videos that are both coherent and of extended duration. To address this challenge, researchers have used pretrained StyleGAN image generators for high-quality frame synthesis and focused on motion generator design. The motion generator is trained in an autoregressive manner using heavy 3D convolutional discriminators to ensure motion coherence during video generation. In this paper, we introduce a novel motion generator design that uses a learning-based inversion network for GAN. The encoder in our method captures rich and smooth priors from encoding images to latents, and given the latent of an initially generated frame as guidance, our method can generate smooth future latent by modulating the inversion encoder temporally. Our method enjoys the advantage of sparse training and naturally constrains the generation space of our motion generator with the inversion network guided by the initial frame, eliminating the need for heavy discriminators. Moreover, our method supports style transfer with simple fine-tuning when the encoder is paired with a pretrained StyleGAN generator. Extensive experiments conducted on various benchmarks demonstrate the superiority of our method in generating long and high-resolution videos with decent single-frame quality and temporal consistency.
Authors:Xudong Wang, Ishan Misra, Ziyun Zeng, Rohit Girdhar, Trevor Darrell
Title: VideoCutLER: Surprisingly Simple Unsupervised Video Instance Segmentation
Abstract:
Existing approaches to unsupervised video instance segmentation typically rely on motion estimates and experience difficulties tracking small or divergent motions. We present VideoCutLER, a simple method for unsupervised multi-instance video segmentation without using motion-based learning signals like optical flow or training on natural videos. Our key insight is that using high-quality pseudo masks and a simple video synthesis method for model training is surprisingly sufficient to enable the resulting video model to effectively segment and track multiple instances across video frames. We show the first competitive unsupervised learning results on the challenging YouTubeVIS-2019 benchmark, achieving 50.7% APvideo^50 , surpassing the previous state-of-the-art by a large margin. VideoCutLER can also serve as a strong pretrained model for supervised video instance segmentation tasks, exceeding DINO by 15.9% on YouTubeVIS-2019 in terms of APvideo.
Authors:Tao Zhang, Xingye Tian, Yikang Zhou, Yu Wu, Shunping Ji, Cilin Yan, Xuebo Wang, Xin Tao, Yuan Zhang, Pengfei Wan
Title: 1st Place Solution for the 5th LSVOS Challenge: Video Instance Segmentation
Abstract:
Video instance segmentation is a challenging task that serves as the cornerstone of numerous downstream applications, including video editing and autonomous driving. In this report, we present further improvements to the SOTA VIS method, DVIS. First, we introduce a denoising training strategy for the trainable tracker, allowing it to achieve more stable and accurate object tracking in complex and long videos. Additionally, we explore the role of visual foundation models in video instance segmentation. By utilizing a frozen VIT-L model pre-trained by DINO v2, DVIS demonstrates remarkable performance improvements. With these enhancements, our method achieves 57.9 AP and 56.0 AP in the development and test phases, respectively, and ultimately ranked 1st in the VIS track of the 5th LSVOS Challenge. The code will be available at https://github.com/zhang-tao-whu/DVIS.
Authors:Gengyuan Zhang, Jisen Ren, Jindong Gu, Volker Tresp
Title: Multi-event Video-Text Retrieval
Abstract:
Video-Text Retrieval (VTR) is a crucial multi-modal task in an era of massive video-text data on the Internet. A plethora of work characterized by using a two-stream Vision-Language model architecture that learns a joint representation of video-text pairs has become a prominent approach for the VTR task. However, these models operate under the assumption of bijective video-text correspondences and neglect a more practical scenario where video content usually encompasses multiple events, while texts like user queries or webpage metadata tend to be specific and correspond to single events. This establishes a gap between the previous training objective and real-world applications, leading to the potential performance degradation of earlier models during inference. In this study, we introduce the Multi-event Video-Text Retrieval (MeVTR) task, addressing scenarios in which each video contains multiple different events, as a niche scenario of the conventional Video-Text Retrieval Task. We present a simple model, Me-Retriever, which incorporates key event video representation and a new MeVTR loss for the MeVTR task. Comprehensive experiments show that this straightforward framework outperforms other models in the Video-to-Text and Text-to-Video tasks, effectively establishing a robust baseline for the MeVTR task. We believe this work serves as a strong foundation for future studies. Code is available at https://github.com/gengyuanmax/MeVTR.
Authors:Wenhao Chai, Xun Guo, Gaoang Wang, Yan Lu
Title: StableVideo: Text-driven Consistency-aware Diffusion Video Editing
Abstract:
Diffusion-based methods can generate realistic images and videos, but they struggle to edit existing objects in a video while preserving their appearance over time. This prevents diffusion models from being applied to natural video editing in practical scenarios. In this paper, we tackle this problem by introducing temporal dependency to existing text-driven diffusion models, which allows them to generate consistent appearance for the edited objects. Specifically, we develop a novel inter-frame propagation mechanism for diffusion video editing, which leverages the concept of layered representations to propagate the appearance information from one frame to the next. We then build up a text-driven video editing framework based on this mechanism, namely StableVideo, which can achieve consistency-aware video editing. Extensive experiments demonstrate the strong editing capability of our approach. Compared with state-of-the-art video editing methods, our approach shows superior qualitative and quantitative results. Our code is available at \href{https://github.com/rese1f/StableVideo}{this https URL}.
Authors:Zhichao Wang, Mengyu Dai, Keld Lundgaard
Title: Text-to-Video: a Two-stage Framework for Zero-shot Identity-agnostic Talking-head Generation
Abstract:
The advent of ChatGPT has introduced innovative methods for information gathering and analysis. However, the information provided by ChatGPT is limited to text, and the visualization of this information remains constrained. Previous research has explored zero-shot text-to-video (TTV) approaches to transform text into videos. However, these methods lacked control over the identity of the generated audio, i.e., not identity-agnostic, hindering their effectiveness. To address this limitation, we propose a novel two-stage framework for person-agnostic video cloning, specifically focusing on TTV generation. In the first stage, we leverage pretrained zero-shot models to achieve text-to-speech (TTS) conversion. In the second stage, an audio-driven talking head generation method is employed to produce compelling videos privided the audio generated in the first stage. This paper presents a comparative analysis of different TTS and audio-driven talking head generation methods, identifying the most promising approach for future research and development. Some audio and videos samples can be found in the following link: https://github.com/ZhichaoWang970201/Text-to-Video/tree/main.
Authors:Mohan Zhou, Yalong Bai, Wei Zhang, Ting Yao, Tiejun Zhao, Tao Mei
Title: Learning and Evaluating Human Preferences for Conversational Head Generation
Abstract:
A reliable and comprehensive evaluation metric that aligns with manual preference assessments is crucial for conversational head video synthesis methods development. Existing quantitative evaluations often fail to capture the full complexity of human preference, as they only consider limited evaluation dimensions. Qualitative evaluations and user studies offer a solution but are time-consuming and labor-intensive. This limitation hinders the advancement of conversational head generation algorithms and systems. In this paper, we propose a novel learning-based evaluation metric named Preference Score (PS) for fitting human preference according to the quantitative evaluations across different dimensions. PS can serve as a quantitative evaluation without the need for human annotation. Experimental results validate the superiority of Preference Score in aligning with human perception, and also demonstrate robustness and generalizability to unseen data, making it a valuable tool for advancing conversation head generation. We expect this metric could facilitate new advances in conversational head generation. Project Page: https://https://github.com/dc3ea9f/PreferenceScore.
Authors:Fa-Ting Hong, Dan Xu
Title: Implicit Identity Representation Conditioned Memory Compensation Network for Talking Head video Generation
Abstract:
Talking head video generation aims to animate a human face in a still image with dynamic poses and expressions using motion information derived from a target-driving video, while maintaining the person's identity in the source image. However, dramatic and complex motions in the driving video cause ambiguous generation, because the still source image cannot provide sufficient appearance information for occluded regions or delicate expression variations, which produces severe artifacts and significantly degrades the generation quality. To tackle this problem, we propose to learn a global facial representation space, and design a novel implicit identity representation conditioned memory compensation network, coined as MCNet, for high-fidelity talking head generation.~Specifically, we devise a network module to learn a unified spatial facial meta-memory bank from all training samples, which can provide rich facial structure and appearance priors to compensate warped source facial features for the generation. Furthermore, we propose an effective query mechanism based on implicit identity representations learned from the discrete keypoints of the source image. It can greatly facilitate the retrieval of more correlated information from the memory bank for the compensation. Extensive experiments demonstrate that MCNet can learn representative and complementary facial memory, and can clearly outperform previous state-of-the-art talking head generation methods on VoxCeleb1 and CelebV datasets. Please check our \href{https://github.com/harlanhong/ICCV2023-MCNET}{Project}.
Authors:Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin Ma, Xinhao Li, Guo Chen, Xinyuan Chen, Yaohui Wang, Conghui He, Ping Luo, Ziwei Liu, Yali Wang, Limin Wang, Yu Qiao
Title: InternVid: A Large-scale Video-Text Dataset for Multimodal Understanding and Generation
Abstract:
This paper introduces InternVid, a large-scale video-centric multimodal dataset that enables learning powerful and transferable video-text representations for multimodal understanding and generation. The InternVid dataset contains over 7 million videos lasting nearly 760K hours, yielding 234M video clips accompanied by detailed descriptions of total 4.1B words. Our core contribution is to develop a scalable approach to autonomously build a high-quality video-text dataset with large language models (LLM), thereby showcasing its efficacy in learning video-language representation at scale. Specifically, we utilize a multi-scale approach to generate video-related descriptions. Furthermore, we introduce ViCLIP, a video-text representation learning model based on ViT-L. Learned on InternVid via contrastive learning, this model demonstrates leading zero-shot action recognition and competitive video retrieval performance. Beyond basic video understanding tasks like recognition and retrieval, our dataset and model have broad applications. They are particularly beneficial for generating interleaved video-text data for learning a video-centric dialogue system, advancing video-to-text and text-to-video generation research. These proposed resources provide a tool for researchers and practitioners interested in multimodal video understanding and generation.
Authors:Yingqing He, Menghan Xia, Haoxin Chen, Xiaodong Cun, Yuan Gong, Jinbo Xing, Yong Zhang, Xintao Wang, Chao Weng, Ying Shan, Qifeng Chen
Title: Animate-A-Story: Storytelling with Retrieval-Augmented Video Generation
Abstract:
Generating videos for visual storytelling can be a tedious and complex process that typically requires either live-action filming or graphics animation rendering. To bypass these challenges, our key idea is to utilize the abundance of existing video clips and synthesize a coherent storytelling video by customizing their appearances. We achieve this by developing a framework comprised of two functional modules: (i) Motion Structure Retrieval, which provides video candidates with desired scene or motion context described by query texts, and (ii) Structure-Guided Text-to-Video Synthesis, which generates plot-aligned videos under the guidance of motion structure and text prompts. For the first module, we leverage an off-the-shelf video retrieval system and extract video depths as motion structure. For the second module, we propose a controllable video generation model that offers flexible controls over structure and characters. The videos are synthesized by following the structural guidance and appearance instruction. To ensure visual consistency across clips, we propose an effective concept personalization approach, which allows the specification of the desired character identities through text prompts. Extensive experiments demonstrate that our approach exhibits significant advantages over various existing baselines.
Authors:Tao Zhang, Xingye Tian, Haoran Wei, Yu Wu, Shunping Ji, Xuebo Wang, Xin Tao, Yuan Zhang, Pengfei Wan
Title: 1st Place Solution for PVUW Challenge 2023: Video Panoptic Segmentation
Abstract:
Video panoptic segmentation is a challenging task that serves as the cornerstone of numerous downstream applications, including video editing and autonomous driving. We believe that the decoupling strategy proposed by DVIS enables more effective utilization of temporal information for both "thing" and "stuff" objects. In this report, we successfully validated the effectiveness of the decoupling strategy in video panoptic segmentation. Finally, our method achieved a VPQ score of 51.4 and 53.7 in the development and test phases, respectively, and ultimately ranked 1st in the VPS track of the 2nd PVUW Challenge. The code is available at https://github.com/zhang-tao-whu/DVIS
Authors:Tao Zhang, Xingye Tian, Yu Wu, Shunping Ji, Xuebo Wang, Yuan Zhang, Pengfei Wan
Title: DVIS: Decoupled Video Instance Segmentation Framework
Abstract:
Video instance segmentation (VIS) is a critical task with diverse applications, including autonomous driving and video editing. Existing methods often underperform on complex and long videos in real world, primarily due to two factors. Firstly, offline methods are limited by the tightly-coupled modeling paradigm, which treats all frames equally and disregards the interdependencies between adjacent frames. Consequently, this leads to the introduction of excessive noise during long-term temporal alignment. Secondly, online methods suffer from inadequate utilization of temporal information. To tackle these challenges, we propose a decoupling strategy for VIS by dividing it into three independent sub-tasks: segmentation, tracking, and refinement. The efficacy of the decoupling strategy relies on two crucial elements: 1) attaining precise long-term alignment outcomes via frame-by-frame association during tracking, and 2) the effective utilization of temporal information predicated on the aforementioned accurate alignment outcomes during refinement. We introduce a novel referring tracker and temporal refiner to construct the \textbf{D}ecoupled \textbf{VIS} framework (\textbf{DVIS}). DVIS achieves new SOTA performance in both VIS and VPS, surpassing the current SOTA methods by 7.3 AP and 9.6 VPQ on the OVIS and VIPSeg datasets, which are the most challenging and realistic benchmarks. Moreover, thanks to the decoupling strategy, the referring tracker and temporal refiner are super light-weight (only 1.69\% of the segmenter FLOPs), allowing for efficient training and inference on a single GPU with 11G memory. The code is available at \href{https://github.com/zhang-tao-whu/DVIS}{https://github.com/zhang-tao-whu/DVIS}.
Authors:Siyuan Yang, Lu Zhang, Yu Liu, Zhizhuo Jiang, You He
Title: Video Diffusion Models with Local-Global Context Guidance
Abstract:
Diffusion models have emerged as a powerful paradigm in video synthesis tasks including prediction, generation, and interpolation. Due to the limitation of the computational budget, existing methods usually implement conditional diffusion models with an autoregressive inference pipeline, in which the future fragment is predicted based on the distribution of adjacent past frames. However, only the conditions from a few previous frames can't capture the global temporal coherence, leading to inconsistent or even outrageous results in long-term video prediction. In this paper, we propose a Local-Global Context guided Video Diffusion model (LGC-VD) to capture multi-perception conditions for producing high-quality videos in both conditional/unconditional settings. In LGC-VD, the UNet is implemented with stacked residual blocks with self-attention units, avoiding the undesirable computational cost in 3D Conv. We construct a local-global context guidance strategy to capture the multi-perceptual embedding of the past fragment to boost the consistency of future prediction. Furthermore, we propose a two-stage training strategy to alleviate the effect of noisy frames for more stable predictions. Our experiments demonstrate that the proposed method achieves favorable performance on video prediction, interpolation, and unconditional video generation. We release code at https://github.com/exisas/LGC-VD.
Authors:Hao Zhang, Yanbo Xu, Tianyuan Dai, Yu-Wing Tai, Chi-Keung Tang
Title: FaceDNeRF: Semantics-Driven Face Reconstruction, Prompt Editing and Relighting with Diffusion Models
Abstract:
The ability to create high-quality 3D faces from a single image has become increasingly important with wide applications in video conferencing, AR/VR, and advanced video editing in movie industries. In this paper, we propose Face Diffusion NeRF (FaceDNeRF), a new generative method to reconstruct high-quality Face NeRFs from single images, complete with semantic editing and relighting capabilities. FaceDNeRF utilizes high-resolution 3D GAN inversion and expertly trained 2D latent-diffusion model, allowing users to manipulate and construct Face NeRFs in zero-shot learning without the need for explicit 3D data. With carefully designed illumination and identity preserving loss, as well as multi-modal pre-training, FaceDNeRF offers users unparalleled control over the editing process enabling them to create and edit face NeRFs using just single-view images, text prompts, and explicit target lighting. The advanced features of FaceDNeRF have been designed to produce more impressive results than existing 2D editing approaches that rely on 2D segmentation maps for editable attributes. Experiments show that our FaceDNeRF achieves exceptionally realistic results and unprecedented flexibility in editing compared with state-of-the-art 3D face reconstruction and editing methods. Our code will be available at https://github.com/BillyXYB/FaceDNeRF.
Authors:Fu-Yun Wang, Wenshuo Chen, Guanglu Song, Han-Jia Ye, Yu Liu, Hongsheng Li
Title: Gen-L-Video: Multi-Text to Long Video Generation via Temporal Co-Denoising
Abstract:
Leveraging large-scale image-text datasets and advancements in diffusion models, text-driven generative models have made remarkable strides in the field of image generation and editing. This study explores the potential of extending the text-driven ability to the generation and editing of multi-text conditioned long videos. Current methodologies for video generation and editing, while innovative, are often confined to extremely short videos (typically less than 24 frames) and are limited to a single text condition. These constraints significantly limit their applications given that real-world videos usually consist of multiple segments, each bearing different semantic information. To address this challenge, we introduce a novel paradigm dubbed as Gen-L-Video, capable of extending off-the-shelf short video diffusion models for generating and editing videos comprising hundreds of frames with diverse semantic segments without introducing additional training, all while preserving content consistency. We have implemented three mainstream text-driven video generation and editing methodologies and extended them to accommodate longer videos imbued with a variety of semantic segments with our proposed paradigm. Our experimental outcomes reveal that our approach significantly broadens the generative and editing capabilities of video diffusion models, offering new possibilities for future research and applications. The code is available at https://github.com/G-U-N/Gen-L-Video.
Authors:Min Zhao, Rongzhen Wang, Fan Bao, Chongxuan Li, Jun Zhu
Title: ControlVideo: Conditional Control for One-shot Text-driven Video Editing and Beyond
Abstract:
This paper presents \emph{ControlVideo} for text-driven video editing -- generating a video that aligns with a given text while preserving the structure of the source video. Building on a pre-trained text-to-image diffusion model, ControlVideo enhances the fidelity and temporal consistency by incorporating additional conditions (such as edge maps), and fine-tuning the key-frame and temporal attention on the source video-text pair via an in-depth exploration of the design space. Extensive experimental results demonstrate that ControlVideo outperforms various competitive baselines by delivering videos that exhibit high fidelity w.r.t. the source content, and temporal consistency, all while aligning with the text. By incorporating Low-rank adaptation layers into the model before training, ControlVideo is further empowered to generate videos that align seamlessly with reference images. More importantly, ControlVideo can be readily extended to the more challenging task of long video editing (e.g., with hundreds of frames), where maintaining long-range temporal consistency is crucial. To achieve this, we propose to construct a fused ControlVideo by applying basic ControlVideo to overlapping short video segments and key frame videos and then merging them by pre-defined weight functions. Empirical results validate its capability to create videos across 140 frames, which is approximately 5.83 to 17.5 times more than what previous works achieved. The code is available at \href{https://github.com/thu-ml/controlvideo}{https://github.com/thu-ml/controlvideo} and the visualization results are available at \href{https://drive.google.com/file/d/1wEgc2io3UwmoC5vTPbkccFvTkwVqsZlK/view?usp=drive_link}{HERE}.
Authors:Susung Hong, Junyoung Seo, Heeseong Shin, Sunghwan Hong, Seungryong Kim
Title: DirecT2V: Large Language Models are Frame-Level Directors for Zero-Shot Text-to-Video Generation
Abstract:
In the paradigm of AI-generated content (AIGC), there has been increasing attention to transferring knowledge from pre-trained text-to-image (T2I) models to text-to-video (T2V) generation. Despite their effectiveness, these frameworks face challenges in maintaining consistent narratives and handling shifts in scene composition or object placement from a single abstract user prompt. Exploring the ability of large language models (LLMs) to generate time-dependent, frame-by-frame prompts, this paper introduces a new framework, dubbed DirecT2V. DirecT2V leverages instruction-tuned LLMs as directors, enabling the inclusion of time-varying content and facilitating consistent video generation. To maintain temporal consistency and prevent mapping the value to a different object, we equip a diffusion model with a novel value mapping method and dual-softmax filtering, which do not require any additional training. The experimental results validate the effectiveness of our framework in producing visually coherent and storyful videos from abstract user prompts, successfully addressing the challenges of zero-shot video generation.
Authors:Yabo Zhang, Yuxiang Wei, Dongsheng Jiang, Xiaopeng Zhang, Wangmeng Zuo, Qi Tian
Title: ControlVideo: Training-free Controllable Text-to-Video Generation
Abstract:
Text-driven diffusion models have unlocked unprecedented abilities in image generation, whereas their video counterpart still lags behind due to the excessive training cost of temporal modeling. Besides the training burden, the generated videos also suffer from appearance inconsistency and structural flickers, especially in long video synthesis. To address these challenges, we design a \emph{training-free} framework called \textbf{ControlVideo} to enable natural and efficient text-to-video generation. ControlVideo, adapted from ControlNet, leverages coarsely structural consistency from input motion sequences, and introduces three modules to improve video generation. Firstly, to ensure appearance coherence between frames, ControlVideo adds fully cross-frame interaction in self-attention modules. Secondly, to mitigate the flicker effect, it introduces an interleaved-frame smoother that employs frame interpolation on alternated frames. Finally, to produce long videos efficiently, it utilizes a hierarchical sampler that separately synthesizes each short clip with holistic coherency. Empowered with these modules, ControlVideo outperforms the state-of-the-arts on extensive motion-prompt pairs quantitatively and qualitatively. Notably, thanks to the efficient designs, it generates both short and long videos within several minutes using one NVIDIA 2080Ti. Code is available at https://github.com/YBYBZhang/ControlVideo.
Authors:Tianyi Wang, Feipeng Ma, Zhenhua Liu, Fengyun Rao
Title: A Dual-level Detection Method for Video Copy Detection
Abstract:
With the development of multimedia technology, Video Copy Detection has been a crucial problem for social media platforms. Meta AI hold Video Similarity Challenge on CVPR 2023 to push the technology forward. In this paper, we share our winner solutions on both tracks to help progress in this area. For Descriptor Track, we propose a dual-level detection method with Video Editing Detection (VED) and Frame Scenes Detection (FSD) to tackle the core challenges on Video Copy Detection. Experimental results demonstrate the effectiveness and efficiency of our proposed method. Code is available at https://github.com/FeipengMa6/VSC22-Submission.
Authors:Fa-Ting Hong, Li Shen, Dan Xu
Title: DaGAN++: Depth-Aware Generative Adversarial Network for Talking Head Video Generation
Abstract:
Predominant techniques on talking head generation largely depend on 2D information, including facial appearances and motions from input face images. Nevertheless, dense 3D facial geometry, such as pixel-wise depth, plays a critical role in constructing accurate 3D facial structures and suppressing complex background noises for generation. However, dense 3D annotations for facial videos is prohibitively costly to obtain. In this work, firstly, we present a novel self-supervised method for learning dense 3D facial geometry (ie, depth) from face videos, without requiring camera parameters and 3D geometry annotations in training. We further propose a strategy to learn pixel-level uncertainties to perceive more reliable rigid-motion pixels for geometry learning. Secondly, we design an effective geometry-guided facial keypoint estimation module, providing accurate keypoints for generating motion fields. Lastly, we develop a 3D-aware cross-modal (ie, appearance and depth) attention mechanism, which can be applied to each generation layer, to capture facial geometries in a coarse-to-fine manner. Extensive experiments are conducted on three challenging benchmarks (ie, VoxCeleb1, VoxCeleb2, and HDTF). The results demonstrate that our proposed framework can generate highly realistic-looking reenacted talking videos, with new state-of-the-art performances established on these benchmarks. The codes and trained models are publicly available on the GitHub project page at https://github.com/harlanhong/CVPR2022-DaGAN
Authors:Nisha Huang, Yuxin Zhang, Weiming Dong
Title: Style-A-Video: Agile Diffusion for Arbitrary Text-based Video Style Transfer
Abstract:
Large-scale text-to-video diffusion models have demonstrated an exceptional ability to synthesize diverse videos. However, due to the lack of extensive text-to-video datasets and the necessary computational resources for training, directly applying these models for video stylization remains difficult. Also, given that the noise addition process on the input content is random and destructive, fulfilling the style transfer task's content preservation criteria is challenging. This paper proposes a zero-shot video stylization method named Style-A-Video, which utilizes a generative pre-trained transformer with an image latent diffusion model to achieve a concise text-controlled video stylization. We improve the guidance condition in the denoising process, establishing a balance between artistic expression and structure preservation. Furthermore, to decrease inter-frame flicker and avoid the formation of additional artifacts, we employ a sampling optimization and a temporal consistency module. Extensive experiments show that we can attain superior content preservation and stylistic performance while incurring less consumption than previous solutions. Code will be available at https://github.com/haha-lisa/Style-A-Video.
Authors:Lizhen Wang, Xiaochen Zhao, Jingxiang Sun, Yuxiang Zhang, Hongwen Zhang, Tao Yu, Yebin Liu
Title: StyleAvatar: Real-time Photo-realistic Portrait Avatar from a Single Video
Abstract:
Face reenactment methods attempt to restore and re-animate portrait videos as realistically as possible. Existing methods face a dilemma in quality versus controllability: 2D GAN-based methods achieve higher image quality but suffer in fine-grained control of facial attributes compared with 3D counterparts. In this work, we propose StyleAvatar, a real-time photo-realistic portrait avatar reconstruction method using StyleGAN-based networks, which can generate high-fidelity portrait avatars with faithful expression control. We expand the capabilities of StyleGAN by introducing a compositional representation and a sliding window augmentation method, which enable faster convergence and improve translation generalization. Specifically, we divide the portrait scenes into three parts for adaptive adjustments: facial region, non-facial foreground region, and the background. Besides, our network leverages the best of UNet, StyleGAN and time coding for video learning, which enables high-quality video generation. Furthermore, a sliding window augmentation method together with a pre-training strategy are proposed to improve translation generalization and training performance, respectively. The proposed network can converge within two hours while ensuring high image quality and a forward rendering time of only 20 milliseconds. Furthermore, we propose a real-time live system, which further pushes research into applications. Results and experiments demonstrate the superiority of our method in terms of image quality, full portrait video generation, and real-time re-animation compared to existing facial reenactment methods. Training and inference code for this paper are at https://github.com/LizhenWangT/StyleAvatar.
Authors:Yuming Jiang, Shuai Yang, Tong Liang Koh, Wayne Wu, Chen Change Loy, Ziwei Liu
Title: Text2Performer: Text-Driven Human Video Generation
Abstract:
Text-driven content creation has evolved to be a transformative technique that revolutionizes creativity. Here we study the task of text-driven human video generation, where a video sequence is synthesized from texts describing the appearance and motions of a target performer. Compared to general text-driven video generation, human-centric video generation requires maintaining the appearance of synthesized human while performing complex motions. In this work, we present Text2Performer to generate vivid human videos with articulated motions from texts. Text2Performer has two novel designs: 1) decomposed human representation and 2) diffusion-based motion sampler. First, we decompose the VQVAE latent space into human appearance and pose representation in an unsupervised manner by utilizing the nature of human videos. In this way, the appearance is well maintained along the generated frames. Then, we propose continuous VQ-diffuser to sample a sequence of pose embeddings. Unlike existing VQ-based methods that operate in the discrete space, continuous VQ-diffuser directly outputs the continuous pose embeddings for better motion modeling. Finally, motion-aware masking strategy is designed to mask the pose embeddings spatial-temporally to enhance the temporal coherence. Moreover, to facilitate the task of text-driven human video generation, we contribute a Fashion-Text2Video dataset with manually annotated action labels and text descriptions. Extensive experiments demonstrate that Text2Performer generates high-quality human videos (up to 512x256 resolution) with diverse appearances and flexible motions.
Authors:Xiaoqian Shen, Xiang Li, Mohamed Elhoseiny
Title: MoStGAN-V: Video Generation with Temporal Motion Styles
Abstract:
Video generation remains a challenging task due to spatiotemporal complexity and the requirement of synthesizing diverse motions with temporal consistency. Previous works attempt to generate videos in arbitrary lengths either in an autoregressive manner or regarding time as a continuous signal. However, they struggle to synthesize detailed and diverse motions with temporal coherence and tend to generate repetitive scenes after a few time steps. In this work, we argue that a single time-agnostic latent vector of style-based generator is insufficient to model various and temporally-consistent motions. Hence, we introduce additional time-dependent motion styles to model diverse motion patterns. In addition, a Motion Style Attention modulation mechanism, dubbed as MoStAtt, is proposed to augment frames with vivid dynamics for each specific scale (i.e., layer), which assigns attention score for each motion style w.r.t deconvolution filter weights in the target synthesis layer and softly attends different motion styles for weight modulation. Experimental results show our model achieves state-of-the-art performance on four unconditional $256^2$ video synthesis benchmarks trained with only 3 frames per clip and produces better qualitative results with respect to dynamic motions. Code and videos have been made available at https://github.com/xiaoqian-shen/MoStGAN-V.
Authors:Yue Ma, Yingqing He, Xiaodong Cun, Xintao Wang, Siran Chen, Ying Shan, Xiu Li, Qifeng Chen
Title: Follow Your Pose: Pose-Guided Text-to-Video Generation using Pose-Free Videos
Abstract:
Generating text-editable and pose-controllable character videos have an imperious demand in creating various digital human. Nevertheless, this task has been restricted by the absence of a comprehensive dataset featuring paired video-pose captions and the generative prior models for videos. In this work, we design a novel two-stage training scheme that can utilize easily obtained datasets (i.e.,image pose pair and pose-free video) and the pre-trained text-to-image (T2I) model to obtain the pose-controllable character videos. Specifically, in the first stage, only the keypoint-image pairs are used only for a controllable text-to-image generation. We learn a zero-initialized convolutional encoder to encode the pose information. In the second stage, we finetune the motion of the above network via a pose-free video dataset by adding the learnable temporal self-attention and reformed cross-frame self-attention blocks. Powered by our new designs, our method successfully generates continuously pose-controllable character videos while keeps the editing and concept composition ability of the pre-trained T2I model. The code and models will be made publicly available.
Authors:Wen Wang, Yan Jiang, Kangyang Xie, Zide Liu, Hao Chen, Yue Cao, Xinlong Wang, Chunhua Shen
Title: Zero-Shot Video Editing Using Off-The-Shelf Image Diffusion Models
Abstract:
Large-scale text-to-image diffusion models achieve unprecedented success in image generation and editing. However, how to extend such success to video editing is unclear. Recent initial attempts at video editing require significant text-to-video data and computation resources for training, which is often not accessible. In this work, we propose vid2vid-zero, a simple yet effective method for zero-shot video editing. Our vid2vid-zero leverages off-the-shelf image diffusion models, and doesn't require training on any video. At the core of our method is a null-text inversion module for text-to-video alignment, a cross-frame modeling module for temporal consistency, and a spatial regularization module for fidelity to the original video. Without any training, we leverage the dynamic nature of the attention mechanism to enable bi-directional temporal modeling at test time. Experiments and analyses show promising results in editing attributes, subjects, places, etc., in real-world videos. Code is made available at \url{https://github.com/baaivision/vid2vid-zero}.
Authors:Haomiao Ni, Changhao Shi, Kai Li, Sharon X. Huang, Martin Renqiang Min
Title: Conditional Image-to-Video Generation with Latent Flow Diffusion Models
Abstract:
Conditional image-to-video (cI2V) generation aims to synthesize a new plausible video starting from an image (e.g., a person's face) and a condition (e.g., an action class label like smile). The key challenge of the cI2V task lies in the simultaneous generation of realistic spatial appearance and temporal dynamics corresponding to the given image and condition. In this paper, we propose an approach for cI2V using novel latent flow diffusion models (LFDM) that synthesize an optical flow sequence in the latent space based on the given condition to warp the given image. Compared to previous direct-synthesis-based works, our proposed LFDM can better synthesize spatial details and temporal motion by fully utilizing the spatial content of the given image and warping it in the latent space according to the generated temporally-coherent flow. The training of LFDM consists of two separate stages: (1) an unsupervised learning stage to train a latent flow auto-encoder for spatial content generation, including a flow predictor to estimate latent flow between pairs of video frames, and (2) a conditional learning stage to train a 3D-UNet-based diffusion model (DM) for temporal latent flow generation. Unlike previous DMs operating in pixel space or latent feature space that couples spatial and temporal information, the DM in our LFDM only needs to learn a low-dimensional latent flow space for motion generation, thus being more computationally efficient. We conduct comprehensive experiments on multiple datasets, where LFDM consistently outperforms prior arts. Furthermore, we show that LFDM can be easily adapted to new domains by simply finetuning the image decoder. Our code is available at https://github.com/nihaomiao/CVPR23_LFDM.
Authors:Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang, Shant Navasardyan, Humphrey Shi
Title: Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators
Abstract:
Recent text-to-video generation approaches rely on computationally heavy training and require large-scale video datasets. In this paper, we introduce a new task of zero-shot text-to-video generation and propose a low-cost approach (without any training or optimization) by leveraging the power of existing text-to-image synthesis methods (e.g., Stable Diffusion), making them suitable for the video domain. Our key modifications include (i) enriching the latent codes of the generated frames with motion dynamics to keep the global scene and the background time consistent; and (ii) reprogramming frame-level self-attention using a new cross-frame attention of each frame on the first frame, to preserve the context, appearance, and identity of the foreground object. Experiments show that this leads to low overhead, yet high-quality and remarkably consistent video generation. Moreover, our approach is not limited to text-to-video synthesis but is also applicable to other tasks such as conditional and content-specialized video generation, and Video Instruct-Pix2Pix, i.e., instruction-guided video editing. As experiments show, our method performs comparably or sometimes better than recent approaches, despite not being trained on additional video data. Our code will be open sourced at: https://github.com/Picsart-AI-Research/Text2Video-Zero .
Authors:Dohwan Ko, Joonmyung Choi, Hyeong Kyu Choi, Kyoung-Woon On, Byungseok Roh, Hyunwoo J. Kim
Title: MELTR: Meta Loss Transformer for Learning to Fine-tune Video Foundation Models
Abstract:
Foundation models have shown outstanding performance and generalization capabilities across domains. Since most studies on foundation models mainly focus on the pretraining phase, a naive strategy to minimize a single task-specific loss is adopted for fine-tuning. However, such fine-tuning methods do not fully leverage other losses that are potentially beneficial for the target task. Therefore, we propose MEta Loss TRansformer (MELTR), a plug-in module that automatically and non-linearly combines various loss functions to aid learning the target task via auxiliary learning. We formulate the auxiliary learning as a bi-level optimization problem and present an efficient optimization algorithm based on Approximate Implicit Differentiation (AID). For evaluation, we apply our framework to various video foundation models (UniVL, Violet and All-in-one), and show significant performance gain on all four downstream tasks: text-to-video retrieval, video question answering, video captioning, and multi-modal sentiment analysis. Our qualitative analyses demonstrate that MELTR adequately `transforms' individual loss functions and `melts' them into an effective unified loss. Code is available at https://github.com/mlvlab/MELTR.
Authors:Hadrien Reynaud, Mengyun Qiao, Mischa Dombrowski, Thomas Day, Reza Razavi, Alberto Gomez, Paul Leeson, Bernhard Kainz
Title: Feature-Conditioned Cascaded Video Diffusion Models for Precise Echocardiogram Synthesis
Abstract:
Image synthesis is expected to provide value for the translation of machine learning methods into clinical practice. Fundamental problems like model robustness, domain transfer, causal modelling, and operator training become approachable through synthetic data. Especially, heavily operator-dependant modalities like Ultrasound imaging require robust frameworks for image and video generation. So far, video generation has only been possible by providing input data that is as rich as the output data, e.g., image sequence plus conditioning in, video out. However, clinical documentation is usually scarce and only single images are reported and stored, thus retrospective patient-specific analysis or the generation of rich training data becomes impossible with current approaches. In this paper, we extend elucidated diffusion models for video modelling to generate plausible video sequences from single images and arbitrary conditioning with clinical parameters. We explore this idea within the context of echocardiograms by looking into the variation of the Left Ventricle Ejection Fraction, the most essential clinical metric gained from these examinations. We use the publicly available EchoNet-Dynamic dataset for all our experiments. Our image to sequence approach achieves an $R^2$ score of 93%, which is 38 points higher than recently proposed sequence to sequence generation methods. Code and models will be available at: https://github.com/HReynaud/EchoDiffusion.
Authors:Sixun Dong, Huazhang Hu, Dongze Lian, Weixin Luo, Yicheng Qian, Shenghua Gao
Title: Weakly Supervised Video Representation Learning with Unaligned Text for Sequential Videos
Abstract:
Sequential video understanding, as an emerging video understanding task, has driven lots of researchers' attention because of its goal-oriented nature. This paper studies weakly supervised sequential video understanding where the accurate time-stamp level text-video alignment is not provided. We solve this task by borrowing ideas from CLIP. Specifically, we use a transformer to aggregate frame-level features for video representation and use a pre-trained text encoder to encode the texts corresponding to each action and the whole video, respectively. To model the correspondence between text and video, we propose a multiple granularity loss, where the video-paragraph contrastive loss enforces matching between the whole video and the complete script, and a fine-grained frame-sentence contrastive loss enforces the matching between each action and its description. As the frame-sentence correspondence is not available, we propose to use the fact that video actions happen sequentially in the temporal domain to generate pseudo frame-sentence correspondence and supervise the network training with the pseudo labels. Extensive experiments on video sequence verification and text-to-video matching show that our method outperforms baselines by a large margin, which validates the effectiveness of our proposed approach. Code is available at https://github.com/svip-lab/WeakSVR
Authors:Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, Qifeng Chen
Title: FateZero: Fusing Attentions for Zero-shot Text-based Video Editing
Abstract:
The diffusion-based generative models have achieved remarkable success in text-based image generation. However, since it contains enormous randomness in generation progress, it is still challenging to apply such models for real-world visual content editing, especially in videos. In this paper, we propose FateZero, a zero-shot text-based editing method on real-world videos without per-prompt training or use-specific mask. To edit videos consistently, we propose several techniques based on the pre-trained models. Firstly, in contrast to the straightforward DDIM inversion technique, our approach captures intermediate attention maps during inversion, which effectively retain both structural and motion information. These maps are directly fused in the editing process rather than generated during denoising. To further minimize semantic leakage of the source video, we then fuse self-attentions with a blending mask obtained by cross-attention features from the source prompt. Furthermore, we have implemented a reform of the self-attention mechanism in denoising UNet by introducing spatial-temporal attention to ensure frame consistency. Yet succinct, our method is the first one to show the ability of zero-shot text-driven video style and local attribute editing from the trained text-to-image model. We also have a better zero-shot shape-aware editing ability based on the text-to-video model. Extensive experiments demonstrate our superior temporal consistency and editing capability than previous works.
Authors:Junhua Liao, Haihan Duan, Kanghui Feng, Wanbing Zhao, Yanbing Yang, Liangyin Chen
Title: A Light Weight Model for Active Speaker Detection
Abstract:
Active speaker detection is a challenging task in audio-visual scenario understanding, which aims to detect who is speaking in one or more speakers scenarios. This task has received extensive attention as it is crucial in applications such as speaker diarization, speaker tracking, and automatic video editing. The existing studies try to improve performance by inputting multiple candidate information and designing complex models. Although these methods achieved outstanding performance, their high consumption of memory and computational power make them difficult to be applied in resource-limited scenarios. Therefore, we construct a lightweight active speaker detection architecture by reducing input candidates, splitting 2D and 3D convolutions for audio-visual feature extraction, and applying gated recurrent unit (GRU) with low computational complexity for cross-modal modeling. Experimental results on the AVA-ActiveSpeaker dataset show that our framework achieves competitive mAP performance (94.1% vs. 94.2%), while the resource costs are significantly lower than the state-of-the-art method, especially in model parameters (1.0M vs. 22.5M, about 23x) and FLOPs (0.6G vs. 2.6G, about 4x). In addition, our framework also performs well on the Columbia dataset showing good robustness. The code and model weights are available at https://github.com/Junhua-Liao/Light-ASD.
Authors:Yuyan Bu, Qiang Sheng, Juan Cao, Peng Qi, Danding Wang, Jintao Li
Title: Combating Online Misinformation Videos: Characterization, Detection, and Future Directions
Abstract:
With information consumption via online video streaming becoming increasingly popular, misinformation video poses a new threat to the health of the online information ecosystem. Though previous studies have made much progress in detecting misinformation in text and image formats, video-based misinformation brings new and unique challenges to automatic detection systems: 1) high information heterogeneity brought by various modalities, 2) blurred distinction between misleading video manipulation and nonmalicious artistic video editing, and 3) new patterns of misinformation propagation due to the dominant role of recommendation systems on online video platforms. To facilitate research on this challenging task, we conduct this survey to present advances in misinformation video detection. We first analyze and characterize the misinformation video from three levels including signals, semantics, and intents. Based on the characterization, we systematically review existing works for detection from features of various modalities to techniques for clue integration. We also introduce existing resources including representative datasets and useful tools. Besides summarizing existing studies, we discuss related areas and outline open issues and future directions to encourage and guide more research on misinformation video detection. The corresponding repository is at https://github.com/ICTMCG/Awesome-Misinfo-Video-Detection.
Authors:Chengyi Liu, Wenqi Fan, Yunqing Liu, Jiatong Li, Hang Li, Hui Liu, Jiliang Tang, Qing Li
Title: Generative Diffusion Models on Graphs: Methods and Applications
Abstract:
Diffusion models, as a novel generative paradigm, have achieved remarkable success in various image generation tasks such as image inpainting, image-to-text translation, and video generation. Graph generation is a crucial computational task on graphs with numerous real-world applications. It aims to learn the distribution of given graphs and then generate new graphs. Given the great success of diffusion models in image generation, increasing efforts have been made to leverage these techniques to advance graph generation in recent years. In this paper, we first provide a comprehensive overview of generative diffusion models on graphs, In particular, we review representative algorithms for three variants of graph diffusion models, i.e., Score Matching with Langevin Dynamics (SMLD), Denoising Diffusion Probabilistic Model (DDPM), and Score-based Generative Model (SGM). Then, we summarize the major applications of generative diffusion models on graphs with a specific focus on molecule and protein modeling. Finally, we discuss promising directions in generative diffusion models on graph-structured data. For this survey, we also created a GitHub project website by collecting the supporting resources for generative diffusion models on graphs, at the link: https://github.com/ChengyiLIU-cs/Generative-Diffusion-Models-on-Graphs
Authors:Wenhao Wu, Xiaohan Wang, Haipeng Luo, Jingdong Wang, Yi Yang, Wanli Ouyang
Title: Bidirectional Cross-Modal Knowledge Exploration for Video Recognition with Pre-trained Vision-Language Models
Abstract:
Vision-language models (VLMs) pre-trained on large-scale image-text pairs have demonstrated impressive transferability on various visual tasks. Transferring knowledge from such powerful VLMs is a promising direction for building effective video recognition models. However, current exploration in this field is still limited. We believe that the greatest value of pre-trained VLMs lies in building a bridge between visual and textual domains. In this paper, we propose a novel framework called BIKE, which utilizes the cross-modal bridge to explore bidirectional knowledge: i) We introduce the Video Attribute Association mechanism, which leverages the Video-to-Text knowledge to generate textual auxiliary attributes for complementing video recognition. ii) We also present a Temporal Concept Spotting mechanism that uses the Text-to-Video expertise to capture temporal saliency in a parameter-free manner, leading to enhanced video representation. Extensive studies on six popular video datasets, including Kinetics-400 & 600, UCF-101, HMDB-51, ActivityNet and Charades, show that our method achieves state-of-the-art performance in various recognition scenarios, such as general, zero-shot, and few-shot video recognition. Our best model achieves a state-of-the-art accuracy of 88.6% on the challenging Kinetics-400 using the released CLIP model. The code is available at https://github.com/whwu95/BIKE .
Authors:Allan Jabri, David Fleet, Ting Chen
Title: Scalable Adaptive Computation for Iterative Generation
Abstract:
Natural data is redundant yet predominant architectures tile computation uniformly across their input and output space. We propose the Recurrent Interface Networks (RINs), an attention-based architecture that decouples its core computation from the dimensionality of the data, enabling adaptive computation for more scalable generation of high-dimensional data. RINs focus the bulk of computation (i.e. global self-attention) on a set of latent tokens, using cross-attention to read and write (i.e. route) information between latent and data tokens. Stacking RIN blocks allows bottom-up (data to latent) and top-down (latent to data) feedback, leading to deeper and more expressive routing. While this routing introduces challenges, this is less problematic in recurrent computation settings where the task (and routing problem) changes gradually, such as iterative generation with diffusion models. We show how to leverage recurrence by conditioning the latent tokens at each forward pass of the reverse diffusion process with those from prior computation, i.e. latent self-conditioning. RINs yield state-of-the-art pixel diffusion models for image and video generation, scaling to 1024X1024 images without cascades or guidance, while being domain-agnostic and up to 10X more efficient than 2D and 3D U-Nets.
Authors:Ludan Ruan, Yiyang Ma, Huan Yang, Huiguo He, Bei Liu, Jianlong Fu, Nicholas Jing Yuan, Qin Jin, Baining Guo
Title: MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and Video Generation
Abstract:
We propose the first joint audio-video generation framework that brings engaging watching and listening experiences simultaneously, towards high-quality realistic videos. To generate joint audio-video pairs, we propose a novel Multi-Modal Diffusion model (i.e., MM-Diffusion), with two-coupled denoising autoencoders. In contrast to existing single-modal diffusion models, MM-Diffusion consists of a sequential multi-modal U-Net for a joint denoising process by design. Two subnets for audio and video learn to gradually generate aligned audio-video pairs from Gaussian noises. To ensure semantic consistency across modalities, we propose a novel random-shift based attention block bridging over the two subnets, which enables efficient cross-modal alignment, and thus reinforces the audio-video fidelity for each other. Extensive experiments show superior results in unconditional audio-video generation, and zero-shot conditional tasks (e.g., video-to-audio). In particular, we achieve the best FVD and FAD on Landscape and AIST++ dancing datasets. Turing tests of 10k votes further demonstrate dominant preferences for our model. The code and pre-trained models can be downloaded at https://github.com/researchmm/MM-Diffusion.
Authors:Feng Cheng, Xizi Wang, Jie Lei, David Crandall, Mohit Bansal, Gedas Bertasius
Title: VindLU: A Recipe for Effective Video-and-Language Pretraining
Abstract:
The last several years have witnessed remarkable progress in video-and-language (VidL) understanding. However, most modern VidL approaches use complex and specialized model architectures and sophisticated pretraining protocols, making the reproducibility, analysis and comparisons of these frameworks difficult. Hence, instead of proposing yet another new VidL model, this paper conducts a thorough empirical study demystifying the most important factors in the VidL model design. Among the factors that we investigate are (i) the spatiotemporal architecture design, (ii) the multimodal fusion schemes, (iii) the pretraining objectives, (iv) the choice of pretraining data, (v) pretraining and finetuning protocols, and (vi) dataset and model scaling. Our empirical study reveals that the most important design factors include: temporal modeling, video-to-text multimodal fusion, masked modeling objectives, and joint training on images and videos. Using these empirical insights, we then develop a step-by-step recipe, dubbed VindLU, for effective VidL pretraining. Our final model trained using our recipe achieves comparable or better than state-of-the-art results on several VidL tasks without relying on external CLIP pretraining. In particular, on the text-to-video retrieval task, our approach obtains 61.2% on DiDeMo, and 55.0% on ActivityNet, outperforming current SOTA by 7.8% and 6.1% respectively. Furthermore, our model also obtains state-of-the-art video question-answering results on ActivityNet-QA, MSRVTT-QA, MSRVTT-MC and TVQA. Our code and pretrained models are publicly available at: https://github.com/klauscc/VindLU.
Authors:Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei Song, Huaping Liu
Title: Mixed Neural Voxels for Fast Multi-view Video Synthesis
Abstract:
Synthesizing high-fidelity videos from real-world multi-view input is challenging because of the complexities of real-world environments and highly dynamic motions. Previous works based on neural radiance fields have demonstrated high-quality reconstructions of dynamic scenes. However, training such models on real-world scenes is time-consuming, usually taking days or weeks. In this paper, we present a novel method named MixVoxels to better represent the dynamic scenes with fast training speed and competitive rendering qualities. The proposed MixVoxels represents the 4D dynamic scenes as a mixture of static and dynamic voxels and processes them with different networks. In this way, the computation of the required modalities for static voxels can be processed by a lightweight model, which essentially reduces the amount of computation, especially for many daily dynamic scenes dominated by the static background. To separate the two kinds of voxels, we propose a novel variation field to estimate the temporal variance of each voxel. For the dynamic voxels, we design an inner-product time query method to efficiently query multiple time steps, which is essential to recover the high-dynamic motions. As a result, with 15 minutes of training for dynamic scenes with inputs of 300-frame videos, MixVoxels achieves better PSNR than previous methods. Codes and trained models are available at https://github.com/fengres/mixvoxels
Authors:Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, Qifeng Chen
Title: Latent Video Diffusion Models for High-Fidelity Long Video Generation
Abstract:
AI-generated content has attracted lots of attention recently, but photo-realistic video synthesis is still challenging. Although many attempts using GANs and autoregressive models have been made in this area, the visual quality and length of generated videos are far from satisfactory. Diffusion models have shown remarkable results recently but require significant computational resources. To address this, we introduce lightweight video diffusion models by leveraging a low-dimensional 3D latent space, significantly outperforming previous pixel-space video diffusion models under a limited computational budget. In addition, we propose hierarchical diffusion in the latent space such that longer videos with more than one thousand frames can be produced. To further overcome the performance degradation issue for long video generation, we propose conditional latent perturbation and unconditional guidance that effectively mitigate the accumulated errors during the extension of video length. Extensive experiments on small domain datasets of different categories suggest that our framework generates more realistic and longer videos than previous strong baselines. We additionally provide an extension to large-scale text-to-video generation to demonstrate the superiority of our work. Our code and models will be made publicly available.
Authors:Tsu-Jui Fu, Linjie Li, Zhe Gan, Kevin Lin, William Yang Wang, Lijuan Wang, Zicheng Liu
Title: An Empirical Study of End-to-End Video-Language Transformers with Masked Visual Modeling
Abstract:
Masked visual modeling (MVM) has been recently proven effective for visual pre-training. While similar reconstructive objectives on video inputs (e.g., masked frame modeling) have been explored in video-language (VidL) pre-training, previous studies fail to find a truly effective MVM strategy that can largely benefit the downstream performance. In this work, we systematically examine the potential of MVM in the context of VidL learning. Specifically, we base our study on a fully end-to-end VIdeO-LanguagE Transformer (VIOLET), where the supervision from MVM training can be backpropagated to the video pixel space. In total, eight different reconstructive targets of MVM are explored, from low-level pixel values and oriented gradients to high-level depth maps, optical flow, discrete visual tokens, and latent visual features. We conduct comprehensive experiments and provide insights into the factors leading to effective MVM training, resulting in an enhanced model VIOLETv2. Empirically, we show VIOLETv2 pre-trained with MVM objective achieves notable improvements on 13 VidL benchmarks, ranging from video question answering, video captioning, to text-to-video retrieval.
Authors:Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, Ming-Hsuan Yang
Title: Diffusion Models: A Comprehensive Survey of Methods and Applications
Abstract:
Diffusion models have emerged as a powerful new family of deep generative models with record-breaking performance in many applications, including image synthesis, video generation, and molecule design. In this survey, we provide an overview of the rapidly expanding body of work on diffusion models, categorizing the research into three key areas: efficient sampling, improved likelihood estimation, and handling data with special structures. We also discuss the potential for combining diffusion models with other generative models for enhanced results. We further review the wide-ranging applications of diffusion models in fields spanning from computer vision, natural language generation, temporal data modeling, to interdisciplinary applications in other scientific disciplines. This survey aims to provide a contextualized, in-depth look at the state of diffusion models, identifying the key areas of focus and pointing to potential areas for further exploration. Github: https://github.com/YangLing0818/Diffusion-Models-Papers-Survey-Taxonomy.
Authors:Weihao Xia, Yujiu Yang, Jing-Hao Xue
Title: Modelling Latent Dynamics of StyleGAN using Neural ODEs
Abstract:
In this paper, we propose to model the video dynamics by learning the trajectory of independently inverted latent codes from GANs. The entire sequence is seen as discrete-time observations of a continuous trajectory of the initial latent code, by considering each latent code as a moving particle and the latent space as a high-dimensional dynamic system. The latent codes representing different frames are therefore reformulated as state transitions of the initial frame, which can be modeled by neural ordinary differential equations. The learned continuous trajectory allows us to perform infinite frame interpolation and consistent video manipulation. The latter task is reintroduced for video editing with the advantage of requiring the core operations to be applied to the first frame only while maintaining temporal consistency across all frames. Extensive experiments demonstrate that our method achieves state-of-the-art performance but with much less computation. Code is available at https://github.com/weihaox/dynode_released.
Authors:Tiankai Hang, Huan Yang, Bei Liu, Jianlong Fu, Xin Geng, Baining Guo
Title: Language-Guided Face Animation by Recurrent StyleGAN-based Generator
Abstract:
Recent works on language-guided image manipulation have shown great power of language in providing rich semantics, especially for face images. However, the other natural information, motions, in language is less explored. In this paper, we leverage the motion information and study a novel task, language-guided face animation, that aims to animate a static face image with the help of languages. To better utilize both semantics and motions from languages, we propose a simple yet effective framework. Specifically, we propose a recurrent motion generator to extract a series of semantic and motion information from the language and feed it along with visual information to a pre-trained StyleGAN to generate high-quality frames. To optimize the proposed framework, three carefully designed loss functions are proposed including a regularization loss to keep the face identity, a path length regularization loss to ensure motion smoothness, and a contrastive loss to enable video synthesis with various language guidance in one single model. Extensive experiments with both qualitative and quantitative evaluations on diverse domains (\textit{e.g.,} human face, anime face, and dog face) demonstrate the superiority of our model in generating high-quality and realistic videos from one still image with the guidance of language. Code will be available at https://github.com/TiankaiHang/language-guided-animation.git.
Authors:Jinyi Hu, Shengding Hu, Yuxuan Song, Yufei Huang, Mingxuan Wang, Hao Zhou, Zhiyuan Liu, Wei-Ying Ma, Maosong Sun
Title: ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer
Abstract:
We present ACDiT, a novel Autoregressive blockwise Conditional Diffusion Transformer, that innovatively combines autoregressive and diffusion paradigms for modeling continuous visual information. By introducing a block-wise autoregressive unit, ACDiT offers a flexible interpolation between token-wise autoregression and full-sequence diffusion, bypassing the limitations of discrete tokenization. The generation of each block is formulated as a conditional diffusion process, conditioned on prior blocks. ACDiT is easy to implement, as simple as creating a Skip-Causal Attention Mask (SCAM) on standard diffusion transformer during training. During inference, the process iterates between diffusion denoising and autoregressive decoding that can make full use of KV-Cache. We show that ACDiT performs best among all autoregressive baselines under similar model scales on image and video generation tasks. We also demonstrate that benefiting from autoregressive modeling, pretrained ACDiT can be transferred in visual understanding tasks despite being trained with the diffusion objective. The analysis of the trade-off between autoregressive modeling and diffusion demonstrates the potential of ACDiT to be used in long-horizon visual generation tasks. We hope that ACDiT offers a novel perspective on visual autoregressive generation and unlocks new avenues for unified models.
Authors:Xiaohong Liu, Xiongkuo Min, Qiang Hu, Xiaoyun Zhang, Jie Guo, Guangtao Zhai, Shushi Wang, Yingjie Zhou, Lu Liu, Jingxin Li, Liu Yang, Farong Wen, Li Xu, Yanwei Jiang, Xilei Zhu, Chunyi Li, Zicheng Zhang, Huiyu Duan, Xiele Wu, Yixuan Gao, Yuqin Cao, Jun Jia, Wei Sun, Jiezhang Cao, Radu Timofte, Baojun Li, Jiamian Huang, Dan Luo, Tao Liu, Weixia Zhang, Bingkun Zheng, Junlin Chen, Ruikai Zhou, Meiya Chen, Yu Wang, Hao Jiang, Xiantao Li, Yuxiang Jiang, Jun Tang, Yimeng Zhao, Bo Hu, Zelu Qi, Chaoyang Zhang, Fei Zhao, Ping Shi, Lingzhi Fu, Heng Cong, Shuai He, Rongyu Zhang, Jiarong He, Zongyao Hu, Wei Luo, Zihao Yu, Fengbin Guan, Yiting Lu, Xin Li, Zhibo Chen, Mengjing Su, Yi Wang, Tuo Chen, Chunxiao Li, Shuaiyu Zhao, Jiaxin Wen, Chuyi Lin, Sitong Liu, Ningxin Chu, Jing Wan, Yu Zhou, Baoying Chen, Jishen Zeng, Jiarui Liu, Xianjin Liu, Xin Chen, Lanzhi Zhou, Hangyu Li, You Han, Bibo Xiang, Zhenjie Liu, Jianzhang Lu, Jialin Gui, Renjie Lu, Shangfei Wang, Donghao Zhou, Jingyu Lin, Quanjian Song, Jiancheng Huang, Yufeng Yang, Changwei Wang, Shupeng Zhong, Yang Yang, Lihuo He, Jia Liu, Yuting Xing, Tida Fang, Yuchun Jin
Title: NTIRE 2025 XGC Quality Assessment Challenge: Methods and Results
Abstract:
This paper reports on the NTIRE 2025 XGC Quality Assessment Challenge, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2025. This challenge is to address a major challenge in the field of video and talking head processing. The challenge is divided into three tracks, including user generated video, AI generated video and talking head. The user-generated video track uses the FineVD-GC, which contains 6,284 user generated videos. The user-generated video track has a total of 125 registered participants. A total of 242 submissions are received in the development phase, and 136 submissions are received in the test phase. Finally, 5 participating teams submitted their models and fact sheets. The AI generated video track uses the Q-Eval-Video, which contains 34,029 AI-Generated Videos (AIGVs) generated by 11 popular Text-to-Video (T2V) models. A total of 133 participants have registered in this track. A total of 396 submissions are received in the development phase, and 226 submissions are received in the test phase. Finally, 6 participating teams submitted their models and fact sheets. The talking head track uses the THQA-NTIRE, which contains 12,247 2D and 3D talking heads. A total of 89 participants have registered in this track. A total of 225 submissions are received in the development phase, and 118 submissions are received in the test phase. Finally, 8 participating teams submitted their models and fact sheets. Each participating team in every track has proposed a method that outperforms the baseline, which has contributed to the development of fields in three tracks.
Authors:Juntong Wang, Jiarui Wang, Huiyu Duan, Guangtao Zhai, Xiongkuo Min
Title: TDVE-Assessor: Benchmarking and Evaluating the Quality of Text-Driven Video Editing with LMMs
Abstract:
Text-driven video editing is rapidly advancing, yet its rigorous evaluation remains challenging due to the absence of dedicated video quality assessment (VQA) models capable of discerning the nuances of editing quality. To address this critical gap, we introduce TDVE-DB, a large-scale benchmark dataset for text-driven video editing. TDVE-DB consists of 3,857 edited videos generated from 12 diverse models across 8 editing categories, and is annotated with 173,565 human subjective ratings along three crucial dimensions, i.e., edited video quality, editing alignment, and structural consistency. Based on TDVE-DB, we first conduct a comprehensive evaluation for the 12 state-of-the-art editing models revealing the strengths and weaknesses of current video techniques, and then benchmark existing VQA methods in the context of text-driven video editing evaluation. Building on these insights, we propose TDVE-Assessor, a novel VQA model specifically designed for text-driven video editing assessment. TDVE-Assessor integrates both spatial and temporal video features into a large language model (LLM) for rich contextual understanding to provide comprehensive quality assessment. Extensive experiments demonstrate that TDVE-Assessor substantially outperforms existing VQA models on TDVE-DB across all three evaluation dimensions, setting a new state-of-the-art. Both TDVE-DB and TDVE-Assessor will be released upon the publication.
Authors:Jiarui Wang, Huiyu Duan, Guangtao Zhai, Juntong Wang, Xiongkuo Min
Title: AIGV-Assessor: Benchmarking and Evaluating the Perceptual Quality of Text-to-Video Generation with LMM
Abstract:
The rapid advancement of large multimodal models (LMMs) has led to the rapid expansion of artificial intelligence generated videos (AIGVs), which highlights the pressing need for effective video quality assessment (VQA) models designed specifically for AIGVs. Current VQA models generally fall short in accurately assessing the perceptual quality of AIGVs due to the presence of unique distortions, such as unrealistic objects, unnatural movements, or inconsistent visual elements. To address this challenge, we first present AIGVQA-DB, a large-scale dataset comprising 36,576 AIGVs generated by 15 advanced text-to-video models using 1,048 diverse prompts. With these AIGVs, a systematic annotation pipeline including scoring and ranking processes is devised, which collects 370k expert ratings to date. Based on AIGVQA-DB, we further introduce AIGV-Assessor, a novel VQA model that leverages spatiotemporal features and LMM frameworks to capture the intricate quality attributes of AIGVs, thereby accurately predicting precise video quality scores and video pair preferences. Through comprehensive experiments on both AIGVQA-DB and existing AIGV databases, AIGV-Assessor demonstrates state-of-the-art performance, significantly surpassing existing scoring or evaluation methods in terms of multiple perceptual quality dimensions.
Authors:Zicheng Zhang, Ziheng Jia, Haoning Wu, Chunyi Li, Zijian Chen, Yingjie Zhou, Wei Sun, Xiaohong Liu, Xiongkuo Min, Weisi Lin, Guangtao Zhai
Title: Q-Bench-Video: Benchmarking the Video Quality Understanding of LMMs
Abstract:
With the rising interest in research on Large Multi-modal Models (LMMs) for video understanding, many studies have emphasized general video comprehension capabilities, neglecting the systematic exploration into video quality understanding. To address this oversight, we introduce Q-Bench-Video in this paper, a new benchmark specifically designed to evaluate LMMs' proficiency in discerning video quality. a) To ensure video source diversity, Q-Bench-Video encompasses videos from natural scenes, AI-generated Content (AIGC), and Computer Graphics (CG). b) Building on the traditional multiple-choice questions format with the Yes-or-No and What-How categories, we include Open-ended questions to better evaluate complex scenarios. Additionally, we incorporate the video pair quality comparison question to enhance comprehensiveness. c) Beyond the traditional Technical, Aesthetic, and Temporal distortions, we have expanded our evaluation aspects to include the dimension of AIGC distortions, which addresses the increasing demand for video generation. Finally, we collect a total of 2,378 question-answer pairs and test them on 12 open-source & 5 proprietary LMMs. Our findings indicate that while LMMs have a foundational understanding of video quality, their performance remains incomplete and imprecise, with a notable discrepancy compared to human performance. Through Q-Bench-Video, we seek to catalyze community interest, stimulate further research, and unlock the untapped potential of LMMs to close the gap in video quality understanding.
Authors:Zijian Chen, Wei Sun, Yuan Tian, Jun Jia, Zicheng Zhang, Jiarui Wang, Ru Huang, Xiongkuo Min, Guangtao Zhai, Wenjun Zhang
Title: GAIA: Rethinking Action Quality Assessment for AI-Generated Videos
Abstract:
Assessing action quality is both imperative and challenging due to its significant impact on the quality of AI-generated videos, further complicated by the inherently ambiguous nature of actions within AI-generated video (AIGV). Current action quality assessment (AQA) algorithms predominantly focus on actions from real specific scenarios and are pre-trained with normative action features, thus rendering them inapplicable in AIGVs. To address these problems, we construct GAIA, a Generic AI-generated Action dataset, by conducting a large-scale subjective evaluation from a novel causal reasoning-based perspective, resulting in 971,244 ratings among 9,180 video-action pairs. Based on GAIA, we evaluate a suite of popular text-to-video (T2V) models on their ability to generate visually rational actions, revealing their pros and cons on different categories of actions. We also extend GAIA as a testbed to benchmark the AQA capacity of existing automatic evaluation methods. Results show that traditional AQA methods, action-related metrics in recent T2V benchmarks, and mainstream video quality methods perform poorly with an average SRCC of 0.454, 0.191, and 0.519, respectively, indicating a sizable gap between current models and human action perception patterns in AIGVs. Our findings underscore the significance of action quality as a unique perspective for studying AIGVs and can catalyze progress towards methods with enhanced capacities for AQA in AIGVs.
Authors:Xiaohong Liu, Xiongkuo Min, Guangtao Zhai, Chunyi Li, Tengchuan Kou, Wei Sun, Haoning Wu, Yixuan Gao, Yuqin Cao, Zicheng Zhang, Xiele Wu, Radu Timofte, Fei Peng, Huiyuan Fu, Anlong Ming, Chuanming Wang, Huadong Ma, Shuai He, Zifei Dou, Shu Chen, Huacong Zhang, Haiyi Xie, Chengwei Wang, Baoying Chen, Jishen Zeng, Jianquan Yang, Weigang Wang, Xi Fang, Xiaoxin Lv, Jun Yan, Tianwu Zhi, Yabin Zhang, Yaohui Li, Yang Li, Jingwen Xu, Jianzhao Liu, Yiting Liao, Junlin Li, Zihao Yu, Yiting Lu, Xin Li, Hossein Motamednia, S. Farhad Hosseini-Benvidi, Fengbin Guan, Ahmad Mahmoudi-Aznaveh, Azadeh Mansouri, Ganzorig Gankhuyag, Kihwan Yoon, Yifang Xu, Haotian Fan, Fangyuan Kong, Shiling Zhao, Weifeng Dong, Haibing Yin, Li Zhu, Zhiling Wang, Bingchen Huang, Avinab Saha, Sandeep Mishra, Shashank Gupta, Rajesh Sureddi, Oindrila Saha, Luigi Celona, Simone Bianco, Paolo Napoletano, Raimondo Schettini, Junfeng Yang, Jing Fu, Wei Zhang, Wenzhi Cao, Limei Liu, Han Peng, Weijun Yuan, Zhan Li, Yihang Cheng, Yifan Deng, Haohui Li, Bowen Qu, Yao Li, Shuqing Luo, Shunzhou Wang, Wei Gao, Zihao Lu, Marcos V. Conde, Xinrui Wang, Zhibo Chen, Ruling Liao, Yan Ye, Qiulin Wang, Bing Li, Zhaokun Zhou, Miao Geng, Rui Chen, Xin Tao, Xiaoyu Liang, Shangkun Sun, Xingyuan Ma, Jiaze Li, Mengduo Yang, Haoran Xu, Jie Zhou, Shiding Zhu, Bohan Yu, Pengfei Chen, Xinrui Xu, Jiabin Shen, Zhichao Duan, Erfan Asadi, Jiahe Liu, Qi Yan, Youran Qu, Xiaohui Zeng, Lele Wang, Renjie Liao
Title: NTIRE 2024 Quality Assessment of AI-Generated Content Challenge
Abstract:
This paper reports on the NTIRE 2024 Quality Assessment of AI-Generated Content Challenge, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2024. This challenge is to address a major challenge in the field of image and video processing, namely, Image Quality Assessment (IQA) and Video Quality Assessment (VQA) for AI-Generated Content (AIGC). The challenge is divided into the image track and the video track. The image track uses the AIGIQA-20K, which contains 20,000 AI-Generated Images (AIGIs) generated by 15 popular generative models. The image track has a total of 318 registered participants. A total of 1,646 submissions are received in the development phase, and 221 submissions are received in the test phase. Finally, 16 participating teams submitted their models and fact sheets. The video track uses the T2VQA-DB, which contains 10,000 AI-Generated Videos (AIGVs) generated by 9 popular Text-to-Video (T2V) models. A total of 196 participants have registered in the video track. A total of 991 submissions are received in the development phase, and 185 submissions are received in the test phase. Finally, 12 participating teams submitted their models and fact sheets. Some methods have achieved better results than baseline methods, and the winning methods in both tracks have demonstrated superior prediction performance on AIGC.
Authors:Rohit Bharadwaj, Hanan Gani, Muzammal Naseer, Fahad Shahbaz Khan, Salman Khan
Title: VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs
Abstract:
The recent developments in Large Multi-modal Video Models (Video-LMMs) have significantly enhanced our ability to interpret and analyze video data. Despite their impressive capabilities, current Video-LMMs have not been evaluated for anomaly detection tasks, which is critical to their deployment in practical scenarios e.g., towards identifying deepfakes, manipulated video content, traffic accidents and crimes. In this paper, we introduce VANE-Bench, a benchmark designed to assess the proficiency of Video-LMMs in detecting and localizing anomalies and inconsistencies in videos. Our dataset comprises an array of videos synthetically generated using existing state-of-the-art text-to-video generation models, encompassing a variety of subtle anomalies and inconsistencies grouped into five categories: unnatural transformations, unnatural appearance, pass-through, disappearance and sudden appearance. Additionally, our benchmark features real-world samples from existing anomaly detection datasets, focusing on crime-related irregularities, atypical pedestrian behavior, and unusual events. The task is structured as a visual question-answering challenge to gauge the models' ability to accurately detect and localize the anomalies within the videos. We evaluate nine existing Video-LMMs, both open and closed sources, on this benchmarking task and find that most of the models encounter difficulties in effectively identifying the subtle anomalies. In conclusion, our research offers significant insights into the current capabilities of Video-LMMs in the realm of anomaly detection, highlighting the importance of our work in evaluating and improving these models for real-world applications. Our code and data is available at https://hananshafi.github.io/vane-benchmark/
Authors:Lin Liu, Quande Liu, Shengju Qian, Yuan Zhou, Wengang Zhou, Houqiang Li, Lingxi Xie, Qi Tian
Title: Text-Animator: Controllable Visual Text Video Generation
Abstract:
Video generation is a challenging yet pivotal task in various industries, such as gaming, e-commerce, and advertising. One significant unresolved aspect within T2V is the effective visualization of text within generated videos. Despite the progress achieved in Text-to-Video~(T2V) generation, current methods still cannot effectively visualize texts in videos directly, as they mainly focus on summarizing semantic scene information, understanding, and depicting actions. While recent advances in image-level visual text generation show promise, transitioning these techniques into the video domain faces problems, notably in preserving textual fidelity and motion coherence. In this paper, we propose an innovative approach termed Text-Animator for visual text video generation. Text-Animator contains a text embedding injection module to precisely depict the structures of visual text in generated videos. Besides, we develop a camera control module and a text refinement module to improve the stability of generated visual text by controlling the camera movement as well as the motion of visualized text. Quantitative and qualitative experimental results demonstrate the superiority of our approach to the accuracy of generated visual text over state-of-the-art video generation methods. The project page can be found at https://laulampaul.github.io/text-animator.html.
Authors:Wanghan Xu, Xiaoyu Yue, Zidong Wang, Yao Teng, Wenlong Zhang, Xihui Liu, Luping Zhou, Wanli Ouyang, Lei Bai
Title: Exploring Representation-Aligned Latent Space for Better Generation
Abstract:
Generative models serve as powerful tools for modeling the real world, with mainstream diffusion models, particularly those based on the latent diffusion model paradigm, achieving remarkable progress across various tasks, such as image and video synthesis. Latent diffusion models are typically trained using Variational Autoencoders (VAEs), interacting with VAE latents rather than the real samples. While this generative paradigm speeds up training and inference, the quality of the generated outputs is limited by the latents' quality. Traditional VAE latents are often seen as spatial compression in pixel space and lack explicit semantic representations, which are essential for modeling the real world. In this paper, we introduce ReaLS (Representation-Aligned Latent Space), which integrates semantic priors to improve generation performance. Extensive experiments show that fundamental DiT and SiT trained on ReaLS can achieve a 15% improvement in FID metric. Furthermore, the enhanced semantic latent space enables more perceptual downstream tasks, such as segmentation and depth estimation.
Authors:Yiran Qin, Zhelun Shi, Jiwen Yu, Xijun Wang, Enshen Zhou, Lijun Li, Zhenfei Yin, Xihui Liu, Lu Sheng, Jing Shao, Lei Bai, Wanli Ouyang, Ruimao Zhang
Title: WorldSimBench: Towards Video Generation Models as World Simulators
Abstract:
Recent advancements in predictive models have demonstrated exceptional capabilities in predicting the future state of objects and scenes. However, the lack of categorization based on inherent characteristics continues to hinder the progress of predictive model development. Additionally, existing benchmarks are unable to effectively evaluate higher-capability, highly embodied predictive models from an embodied perspective. In this work, we classify the functionalities of predictive models into a hierarchy and take the first step in evaluating World Simulators by proposing a dual evaluation framework called WorldSimBench. WorldSimBench includes Explicit Perceptual Evaluation and Implicit Manipulative Evaluation, encompassing human preference assessments from the visual perspective and action-level evaluations in embodied tasks, covering three representative embodied scenarios: Open-Ended Embodied Environment, Autonomous, Driving, and Robot Manipulation. In the Explicit Perceptual Evaluation, we introduce the HF-Embodied Dataset, a video assessment dataset based on fine-grained human feedback, which we use to train a Human Preference Evaluator that aligns with human perception and explicitly assesses the visual fidelity of World Simulators. In the Implicit Manipulative Evaluation, we assess the video-action consistency of World Simulators by evaluating whether the generated situation-aware video can be accurately translated into the correct control signals in dynamic environments. Our comprehensive evaluation offers key insights that can drive further innovation in video generation models, positioning World Simulators as a pivotal advancement toward embodied artificial intelligence.
Authors:Haowen Gao, Liang Pang, Shicheng Xu, Leigang Qu, Tat-Seng Chua, Huawei Shen, Xueqi Cheng
Title: Generative Ghost: Investigating Ranking Bias Hidden in AI-Generated Videos
Abstract:
With the rapid development of AI-generated content (AIGC), the creation of high-quality AI-generated videos has become faster and easier, resulting in the Internet being flooded with all kinds of video content. However, the impact of these videos on the content ecosystem remains largely unexplored. Video information retrieval remains a fundamental approach for accessing video content. Building on the observation that retrieval models often favor AI-generated content in ad-hoc and image retrieval tasks, we investigate whether similar biases emerge in the context of challenging video retrieval, where temporal and visual factors may further influence model behavior. To explore this, we first construct a comprehensive benchmark dataset containing both real and AI-generated videos, along with a set of fair and rigorous metrics to assess bias. This benchmark consists of 13,000 videos generated by two state-of-the-art open-source video generation models. We meticulously design a suite of rigorous metrics to accurately measure this preference, accounting for potential biases arising from the limited frame rate and suboptimal quality of AIGC videos. We then applied three off-the-shelf video retrieval models to perform retrieval tasks on this hybrid dataset. Our findings reveal a clear preference for AI-generated videos in retrieval. Further investigation shows that incorporating AI-generated videos into the training set of retrieval models exacerbates this bias. Unlike the preference observed in image modalities, we find that video retrieval bias arises from both unseen visual and temporal information, making the root causes of video bias a complex interplay of these two factors. To mitigate this bias, we fine-tune the retrieval models using a contrastive learning approach. The results of this study highlight the potential implications of AI-generated videos on retrieval systems.
Authors:Shuyuan Tu, Yueming Pan, Yinming Huang, Xintong Han, Zhen Xing, Qi Dai, Chong Luo, Zuxuan Wu, Yu-Gang Jiang
Title: StableAvatar: Infinite-Length Audio-Driven Avatar Video Generation
Abstract:
Current diffusion models for audio-driven avatar video generation struggle to synthesize long videos with natural audio synchronization and identity consistency. This paper presents StableAvatar, the first end-to-end video diffusion transformer that synthesizes infinite-length high-quality videos without post-processing. Conditioned on a reference image and audio, StableAvatar integrates tailored training and inference modules to enable infinite-length video generation. We observe that the main reason preventing existing models from generating long videos lies in their audio modeling. They typically rely on third-party off-the-shelf extractors to obtain audio embeddings, which are then directly injected into the diffusion model via cross-attention. Since current diffusion backbones lack any audio-related priors, this approach causes severe latent distribution error accumulation across video clips, leading the latent distribution of subsequent segments to drift away from the optimal distribution gradually. To address this, StableAvatar introduces a novel Time-step-aware Audio Adapter that prevents error accumulation via time-step-aware modulation. During inference, we propose a novel Audio Native Guidance Mechanism to further enhance the audio synchronization by leveraging the diffusion's own evolving joint audio-latent prediction as a dynamic guidance signal. To enhance the smoothness of the infinite-length videos, we introduce a Dynamic Weighted Sliding-window Strategy that fuses latent over time. Experiments on benchmarks show the effectiveness of StableAvatar both qualitatively and quantitatively.
Authors:Weiliang Chen, Wenzhao Zheng, Yu Zheng, Lei Chen, Jie Zhou, Jiwen Lu, Yueqi Duan
Title: GenWorld: Towards Detecting AI-generated Real-world Simulation Videos
Abstract:
The flourishing of video generation technologies has endangered the credibility of real-world information and intensified the demand for AI-generated video detectors. Despite some progress, the lack of high-quality real-world datasets hinders the development of trustworthy detectors. In this paper, we propose GenWorld, a large-scale, high-quality, and real-world simulation dataset for AI-generated video detection. GenWorld features the following characteristics: (1) Real-world Simulation: GenWorld focuses on videos that replicate real-world scenarios, which have a significant impact due to their realism and potential influence; (2) High Quality: GenWorld employs multiple state-of-the-art video generation models to provide realistic and high-quality forged videos; (3) Cross-prompt Diversity: GenWorld includes videos generated from diverse generators and various prompt modalities (e.g., text, image, video), offering the potential to learn more generalizable forensic features. We analyze existing methods and find they fail to detect high-quality videos generated by world models (i.e., Cosmos), revealing potential drawbacks of ignoring real-world clues. To address this, we propose a simple yet effective model, SpannDetector, to leverage multi-view consistency as a strong criterion for real-world AI-generated video detection. Experiments show that our method achieves superior results, highlighting a promising direction for explainable AI-generated video detection based on physical plausibility. We believe that GenWorld will advance the field of AI-generated video detection. Project Page: https://chen-wl20.github.io/GenWorld
Authors:Sicheng Xie, Haidong Cao, Zejia Weng, Zhen Xing, Haoran Chen, Shiwei Shen, Jiaqi Leng, Zuxuan Wu, Yu-Gang Jiang
Title: Human2Robot: Learning Robot Actions from Paired Human-Robot Videos
Abstract:
Distilling knowledge from human demonstrations is a promising way for robots to learn and act. Existing methods, which often rely on coarsely-aligned video pairs, are typically constrained to learning global or task-level features. As a result, they tend to neglect the fine-grained frame-level dynamics required for complex manipulation and generalization to novel tasks. We posit that this limitation stems from a vicious circle of inadequate datasets and the methods they inspire. To break this cycle, we propose a paradigm shift that treats fine-grained human-robot alignment as a conditional video generation problem. To this end, we first introduce H&R, a novel third-person dataset containing 2,600 episodes of precisely synchronized human and robot motions, collected using a VR teleoperation system. We then present Human2Robot, a framework designed to leverage this data. Human2Robot employs a Video Prediction Model to learn a rich and implicit representation of robot dynamics by generating robot videos from human input, which in turn guides a decoupled action decoder. Our real-world experiments demonstrate that this approach not only achieves high performance on seen tasks but also exhibits significant one-shot generalization to novel positions, objects, instances, and even new task categories.
Authors:Can Qin, Congying Xia, Krithika Ramakrishnan, Michael Ryoo, Lifu Tu, Yihao Feng, Manli Shu, Honglu Zhou, Anas Awadalla, Jun Wang, Senthil Purushwalkam, Le Xue, Yingbo Zhou, Huan Wang, Silvio Savarese, Juan Carlos Niebles, Zeyuan Chen, Ran Xu, Caiming Xiong
Title: xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations
Abstract:
We present xGen-VideoSyn-1, a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions. Building on recent advancements, such as OpenAI's Sora, we explore the latent diffusion model (LDM) architecture and introduce a video variational autoencoder (VidVAE). VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens and the computational demands associated with generating long-sequence videos. To further address the computational costs, we propose a divide-and-merge strategy that maintains temporal consistency across video segments. Our Diffusion Transformer (DiT) model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios. We have devised a data processing pipeline from the very beginning and collected over 13M high-quality video-text pairs. The pipeline includes multiple steps such as clipping, text detection, motion estimation, aesthetics scoring, and dense captioning based on our in-house video-LLM model. Training the VidVAE and DiT models required approximately 40 and 642 H100 days, respectively. Our model supports over 14-second 720p video generation in an end-to-end way and demonstrates competitive performance against state-of-the-art T2V models.
Authors:Shuyuan Tu, Qi Dai, Zihao Zhang, Sicheng Xie, Zhi-Qi Cheng, Chong Luo, Xintong Han, Zuxuan Wu, Yu-Gang Jiang
Title: MotionFollower: Editing Video Motion via Lightweight Score-Guided Diffusion
Abstract:
Despite impressive advancements in diffusion-based video editing models in altering video attributes, there has been limited exploration into modifying motion information while preserving the original protagonist's appearance and background. In this paper, we propose MotionFollower, a lightweight score-guided diffusion model for video motion editing. To introduce conditional controls to the denoising process, MotionFollower leverages two of our proposed lightweight signal controllers, one for poses and the other for appearances, both of which consist of convolution blocks without involving heavy attention calculations. Further, we design a score guidance principle based on a two-branch architecture, including the reconstruction and editing branches, which significantly enhance the modeling capability of texture details and complicated backgrounds. Concretely, we enforce several consistency regularizers and losses during the score estimation. The resulting gradients thus inject appropriate guidance to the intermediate latents, forcing the model to preserve the original background details and protagonists' appearances without interfering with the motion modification. Experiments demonstrate the competitive motion editing ability of MotionFollower qualitatively and quantitatively. Compared with MotionEditor, the most advanced motion editing model, MotionFollower achieves an approximately 80% reduction in GPU memory while delivering superior motion editing performance and exclusively supporting large camera movements and actions.
Authors:Zhen Xing, Qi Dai, Zihao Zhang, Hui Zhang, Han Hu, Zuxuan Wu, Yu-Gang Jiang
Title: VIDiff: Translating Videos via Multi-Modal Instructions with Diffusion Models
Abstract:
Diffusion models have achieved significant success in image and video generation. This motivates a growing interest in video editing tasks, where videos are edited according to provided text descriptions. However, most existing approaches only focus on video editing for short clips and rely on time-consuming tuning or inference. We are the first to propose Video Instruction Diffusion (VIDiff), a unified foundation model designed for a wide range of video tasks. These tasks encompass both understanding tasks (such as language-guided video object segmentation) and generative tasks (video editing and enhancement). Our model can edit and translate the desired results within seconds based on user instructions. Moreover, we design an iterative auto-regressive method to ensure consistency in editing and enhancing long videos. We provide convincing generative results for diverse input videos and written instructions, both qualitatively and quantitatively. More examples can be found at our website https://ChenHsing.github.io/VIDiff.
Authors:Shuyuan Tu, Qi Dai, Zhi-Qi Cheng, Han Hu, Xintong Han, Zuxuan Wu, Yu-Gang Jiang
Title: MotionEditor: Editing Video Motion via Content-Aware Diffusion
Abstract:
Existing diffusion-based video editing models have made gorgeous advances for editing attributes of a source video over time but struggle to manipulate the motion information while preserving the original protagonist's appearance and background. To address this, we propose MotionEditor, a diffusion model for video motion editing. MotionEditor incorporates a novel content-aware motion adapter into ControlNet to capture temporal motion correspondence. While ControlNet enables direct generation based on skeleton poses, it encounters challenges when modifying the source motion in the inverted noise due to contradictory signals between the noise (source) and the condition (reference). Our adapter complements ControlNet by involving source content to transfer adapted control signals seamlessly. Further, we build up a two-branch architecture (a reconstruction branch and an editing branch) with a high-fidelity attention injection mechanism facilitating branch interaction. This mechanism enables the editing branch to query the key and value from the reconstruction branch in a decoupled manner, making the editing branch retain the original background and protagonist appearance. We also propose a skeleton alignment algorithm to address the discrepancies in pose size and position. Experiments demonstrate the promising motion editing ability of MotionEditor, both qualitatively and quantitatively.
Authors:Haoyu Zhao, Tianyi Lu, Jiaxi Gu, Xing Zhang, Qingping Zheng, Zuxuan Wu, Hang Xu, Yu-Gang Jiang
Title: MagDiff: Multi-Alignment Diffusion for High-Fidelity Video Generation and Editing
Abstract:
The diffusion model is widely leveraged for either video generation or video editing. As each field has its task-specific problems, it is difficult to merely develop a single diffusion for completing both tasks simultaneously. Video diffusion sorely relying on the text prompt can be adapted to unify the two tasks. However, it lacks a high capability of aligning heterogeneous modalities between text and image, leading to various misalignment problems. In this work, we are the first to propose a unified Multi-alignment Diffusion, dubbed as MagDiff, for both tasks of high-fidelity video generation and editing. The proposed MagDiff introduces three types of alignments, including subject-driven alignment, adaptive prompts alignment, and high-fidelity alignment. Particularly, the subject-driven alignment is put forward to trade off the image and text prompts, serving as a unified foundation generative model for both tasks. The adaptive prompts alignment is introduced to emphasize different strengths of homogeneous and heterogeneous alignments by assigning different values of weights to the image and the text prompts. The high-fidelity alignment is developed to further enhance the fidelity of both video generation and editing by taking the subject image as an additional model input. Experimental results on four benchmarks suggest that our method outperforms the previous method on each task.
Authors:Hui Zhang, Zuxuan Wu, Zhen Xing, Jie Shao, Yu-Gang Jiang
Title: AdaDiff: Adaptive Step Selection for Fast Diffusion Models
Abstract:
Diffusion models, as a type of generative model, have achieved impressive results in generating images and videos conditioned on textual conditions. However, the generation process of diffusion models involves denoising dozens of steps to produce photorealistic images/videos, which is computationally expensive. Unlike previous methods that design ``one-size-fits-all'' approaches for speed up, we argue denoising steps should be sample-specific conditioned on the richness of input texts. To this end, we introduce AdaDiff, a lightweight framework designed to learn instance-specific step usage policies, which are then used by the diffusion model for generation. AdaDiff is optimized using a policy gradient method to maximize a carefully designed reward function, balancing inference time and generation quality. We conduct experiments on three image generation and two video generation benchmarks and demonstrate that our approach achieves similar visual quality compared to the baseline using a fixed 50 denoising steps while reducing inference time by at least 33%, going as high as 40%. Furthermore, our method can be used on top of other acceleration methods to provide further speed benefits. Lastly, qualitative analysis shows that AdaDiff allocates more steps to more informative prompts and fewer steps to simpler prompts.
Authors:Jiaxi Gu, Shicong Wang, Haoyu Zhao, Tianyi Lu, Xing Zhang, Zuxuan Wu, Songcen Xu, Wei Zhang, Yu-Gang Jiang, Hang Xu
Title: Reuse and Diffuse: Iterative Denoising for Text-to-Video Generation
Abstract:
Inspired by the remarkable success of Latent Diffusion Models (LDMs) for image synthesis, we study LDM for text-to-video generation, which is a formidable challenge due to the computational and memory constraints during both model training and inference. A single LDM is usually only capable of generating a very limited number of video frames. Some existing works focus on separate prediction models for generating more video frames, which suffer from additional training cost and frame-level jittering, however. In this paper, we propose a framework called "Reuse and Diffuse" dubbed $\textit{VidRD}$ to produce more frames following the frames already generated by an LDM. Conditioned on an initial video clip with a small number of frames, additional frames are iteratively generated by reusing the original latent features and following the previous diffusion process. Besides, for the autoencoder used for translation between pixel space and latent space, we inject temporal layers into its decoder and fine-tune these layers for higher temporal consistency. We also propose a set of strategies for composing video-text data that involve diverse content from multiple existing datasets including video datasets for action recognition and image-text datasets. Extensive experiments show that our method achieves good results in both quantitative and qualitative evaluations. Our project page is available $\href{https://anonymous0x233.github.io/ReuseAndDiffuse/}{here}$.
Authors:Zhen Xing, Qi Dai, Han Hu, Zuxuan Wu, Yu-Gang Jiang
Title: SimDA: Simple Diffusion Adapter for Efficient Video Generation
Abstract:
The recent wave of AI-generated content has witnessed the great development and success of Text-to-Image (T2I) technologies. By contrast, Text-to-Video (T2V) still falls short of expectations though attracting increasing interests. Existing works either train from scratch or adapt large T2I model to videos, both of which are computation and resource expensive. In this work, we propose a Simple Diffusion Adapter (SimDA) that fine-tunes only 24M out of 1.1B parameters of a strong T2I model, adapting it to video generation in a parameter-efficient way. In particular, we turn the T2I model for T2V by designing light-weight spatial and temporal adapters for transfer learning. Besides, we change the original spatial attention to the proposed Latent-Shift Attention (LSA) for temporal consistency. With similar model architecture, we further train a video super-resolution model to generate high-definition (1024x1024) videos. In addition to T2V generation in the wild, SimDA could also be utilized in one-shot video editing with only 2 minutes tuning. Doing so, our method could minimize the training effort with extremely few tunable parameters for model adaptation.
Authors:Kangrui Cen, Baixuan Zhao, Yi Xin, Siqi Luo, Guangtao Zhai, Xiaohong Liu
Title: LayerT2V: Interactive Multi-Object Trajectory Layering for Video Generation
Abstract:
Controlling object motion trajectories in Text-to-Video (T2V) generation is a challenging and relatively under-explored area, particularly in scenarios involving multiple moving objects. Most community models and datasets in the T2V domain are designed for single-object motion, limiting the performance of current generative models in multi-object tasks. Additionally, existing motion control methods in T2V either lack support for multi-object motion scenes or experience severe performance degradation when object trajectories intersect, primarily due to the semantic conflicts in colliding regions. To address these limitations, we introduce LayerT2V, the first approach for generating video by compositing background and foreground objects layer by layer. This layered generation enables flexible integration of multiple independent elements within a video, positioning each element on a distinct "layer" and thus facilitating coherent multi-object synthesis while enhancing control over the generation process. Extensive experiments demonstrate the superiority of LayerT2V in generating complex multi-object scenarios, showcasing 1.4x and 4.5x improvements in mIoU and AP50 metrics over state-of-the-art (SOTA) methods. Project page and code are available at https://kr-panghu.github.io/LayerT2V/ .
Authors:Yuxuan Cai, Jiangning Zhang, Zhenye Gan, Qingdong He, Xiaobin Hu, Junwei Zhu, Yabiao Wang, Chengjie Wang, Zhucun Xue, Xinwei He, Xiang Bai
Title: HV-MMBench: Benchmarking MLLMs for Human-Centric Video Understanding
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated significant advances in visual understanding tasks involving both images and videos. However, their capacity to comprehend human-centric video data remains underexplored, primarily due to the absence of comprehensive and high-quality evaluation benchmarks. Existing human-centric benchmarks predominantly emphasize video generation quality and action recognition, while overlooking essential perceptual and cognitive abilities required in human-centered scenarios. Furthermore, they are often limited by single-question paradigms and overly simplistic evaluation metrics. To address above limitations, we propose a modern HV-MMBench, a rigorously curated benchmark designed to provide a more holistic evaluation of MLLMs in human-centric video understanding. Compared to existing human-centric video benchmarks, our work offers the following key features: (1) Diverse evaluation dimensions: HV-MMBench encompasses 15 tasks, ranging from basic attribute perception (e.g., age estimation, emotion recognition) to advanced cognitive reasoning (e.g., social relationship prediction, intention prediction), enabling comprehensive assessment of model capabilities; (2) Varied data types: The benchmark includes multiple-choice, fill-in-blank, true/false, and open-ended question formats, combined with diverse evaluation metrics, to more accurately and robustly reflect model performance; (3) Multi-domain video coverage: The benchmark spans 50 distinct visual scenarios, enabling comprehensive evaluation across fine-grained scene variations; (4) Temporal coverage: The benchmark covers videos from short-term (10 seconds) to long-term (up to 30min) durations, supporting systematic analysis of models temporal reasoning abilities across diverse contextual lengths.
Authors:Yuji Wang, Moran Li, Xiaobin Hu, Ran Yi, Jiangning Zhang, Han Feng, Weijian Cao, Yabiao Wang, Chengjie Wang, Lizhuang Ma
Title: Identity-Preserving Text-to-Video Generation Guided by Simple yet Effective Spatial-Temporal Decoupled Representations
Abstract:
Identity-preserving text-to-video (IPT2V) generation, which aims to create high-fidelity videos with consistent human identity, has become crucial for downstream applications. However, current end-to-end frameworks suffer a critical spatial-temporal trade-off: optimizing for spatially coherent layouts of key elements (e.g., character identity preservation) often compromises instruction-compliant temporal smoothness, while prioritizing dynamic realism risks disrupting the spatial coherence of visual structures. To tackle this issue, we propose a simple yet effective spatial-temporal decoupled framework that decomposes representations into spatial features for layouts and temporal features for motion dynamics. Specifically, our paper proposes a semantic prompt optimization mechanism and stage-wise decoupled generation paradigm. The former module decouples the prompt into spatial and temporal components. Aligned with the subsequent stage-wise decoupled approach, the spatial prompts guide the text-to-image (T2I) stage to generate coherent spatial features, while the temporal prompts direct the sequential image-to-video (I2V) stage to ensure motion consistency. Experimental results validate that our approach achieves excellent spatiotemporal consistency, demonstrating outstanding performance in identity preservation, text relevance, and video quality. By leveraging this simple yet robust mechanism, our algorithm secures the runner-up position in 2025 ACM MultiMedia Challenge.
Authors:Zhucun Xue, Jiangning Zhang, Teng Hu, Haoyang He, Yinan Chen, Yuxuan Cai, Yabiao Wang, Chengjie Wang, Yong Liu, Xiangtai Li, Dacheng Tao
Title: UltraVideo: High-Quality UHD Video Dataset with Comprehensive Captions
Abstract:
The quality of the video dataset (image quality, resolution, and fine-grained caption) greatly influences the performance of the video generation model. The growing demand for video applications sets higher requirements for high-quality video generation models. For example, the generation of movie-level Ultra-High Definition (UHD) videos and the creation of 4K short video content. However, the existing public datasets cannot support related research and applications. In this paper, we first propose a high-quality open-sourced UHD-4K (22.4\% of which are 8K) text-to-video dataset named UltraVideo, which contains a wide range of topics (more than 100 kinds), and each video has 9 structured captions with one summarized caption (average of 824 words). Specifically, we carefully design a highly automated curation process with four stages to obtain the final high-quality dataset: \textit{i)} collection of diverse and high-quality video clips. \textit{ii)} statistical data filtering. \textit{iii)} model-based data purification. \textit{iv)} generation of comprehensive, structured captions. In addition, we expand Wan to UltraWan-1K/-4K, which can natively generate high-quality 1K/4K videos with more consistent text controllability, demonstrating the effectiveness of our data curation.We believe that this work can make a significant contribution to future research on UHD video generation. UltraVideo dataset and UltraWan models are available at https://xzc-zju.github.io/projects/UltraVideo.
Authors:Lu Qiu, Yizhuo Li, Yuying Ge, Yixiao Ge, Ying Shan, Xihui Liu
Title: AnimeShooter: A Multi-Shot Animation Dataset for Reference-Guided Video Generation
Abstract:
Recent advances in AI-generated content (AIGC) have significantly accelerated animation production. To produce engaging animations, it is essential to generate coherent multi-shot video clips with narrative scripts and character references. However, existing public datasets primarily focus on real-world scenarios with global descriptions, and lack reference images for consistent character guidance. To bridge this gap, we present AnimeShooter, a reference-guided multi-shot animation dataset. AnimeShooter features comprehensive hierarchical annotations and strong visual consistency across shots through an automated pipeline. Story-level annotations provide an overview of the narrative, including the storyline, key scenes, and main character profiles with reference images, while shot-level annotations decompose the story into consecutive shots, each annotated with scene, characters, and both narrative and descriptive visual captions. Additionally, a dedicated subset, AnimeShooter-audio, offers synchronized audio tracks for each shot, along with audio descriptions and sound sources. To demonstrate the effectiveness of AnimeShooter and establish a baseline for the reference-guided multi-shot video generation task, we introduce AnimeShooterGen, which leverages Multimodal Large Language Models (MLLMs) and video diffusion models. The reference image and previously generated shots are first processed by MLLM to produce representations aware of both reference and context, which are then used as the condition for the diffusion model to decode the subsequent shot. Experimental results show that the model trained on AnimeShooter achieves superior cross-shot visual consistency and adherence to reference visual guidance, which highlight the value of our dataset for coherent animated video generation.
Authors:Yizhuo Li, Yuying Ge, Yixiao Ge, Ping Luo, Ying Shan
Title: DiCoDe: Diffusion-Compressed Deep Tokens for Autoregressive Video Generation with Language Models
Abstract:
Videos are inherently temporal sequences by their very nature. In this work, we explore the potential of modeling videos in a chronological and scalable manner with autoregressive (AR) language models, inspired by their success in natural language processing. We introduce DiCoDe, a novel approach that leverages Diffusion-Compressed Deep Tokens to generate videos with a language model in an autoregressive manner. Unlike existing methods that employ low-level representations with limited compression rates, DiCoDe utilizes deep tokens with a considerable compression rate (a 1000x reduction in token count). This significant compression is made possible by a tokenizer trained through leveraging the prior knowledge of video diffusion models. Deep tokens enable DiCoDe to employ vanilla AR language models for video generation, akin to translating one visual "language" into another. By treating videos as temporal sequences, DiCoDe fully harnesses the capabilities of language models for autoregressive generation. DiCoDe is scalable using readily available AR architectures, and is capable of generating videos ranging from a few seconds to one minute using only 4 A100 GPUs for training. We evaluate DiCoDe both quantitatively and qualitatively, demonstrating that it performs comparably to existing methods in terms of quality while ensuring efficient training. To showcase its scalability, we release a series of DiCoDe configurations with varying parameter sizes and observe a consistent improvement in performance as the model size increases from 100M to 3B. We believe that DiCoDe's exploration in academia represents a promising initial step toward scalable video modeling with AR language models, paving the way for the development of larger and more powerful video generation models.
Authors:Jay Zhangjie Wu, Guian Fang, Haoning Wu, Xintao Wang, Yixiao Ge, Xiaodong Cun, David Junhao Zhang, Jia-Wei Liu, Yuchao Gu, Rui Zhao, Weisi Lin, Wynne Hsu, Ying Shan, Mike Zheng Shou
Title: Towards A Better Metric for Text-to-Video Generation
Abstract:
Generative models have demonstrated remarkable capability in synthesizing high-quality text, images, and videos. For video generation, contemporary text-to-video models exhibit impressive capabilities, crafting visually stunning videos. Nonetheless, evaluating such videos poses significant challenges. Current research predominantly employs automated metrics such as FVD, IS, and CLIP Score. However, these metrics provide an incomplete analysis, particularly in the temporal assessment of video content, thus rendering them unreliable indicators of true video quality. Furthermore, while user studies have the potential to reflect human perception accurately, they are hampered by their time-intensive and laborious nature, with outcomes that are often tainted by subjective bias. In this paper, we investigate the limitations inherent in existing metrics and introduce a novel evaluation pipeline, the Text-to-Video Score (T2VScore). This metric integrates two pivotal criteria: (1) Text-Video Alignment, which scrutinizes the fidelity of the video in representing the given text description, and (2) Video Quality, which evaluates the video's overall production caliber with a mixture of experts. Moreover, to evaluate the proposed metrics and facilitate future improvements on them, we present the TVGE dataset, collecting human judgements of 2,543 text-to-video generated videos on the two criteria. Experiments on the TVGE dataset demonstrate the superiority of the proposed T2VScore on offering a better metric for text-to-video generation.
Authors:Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu, Ying Shan, Xiaohu Qie, Mike Zheng Shou
Title: Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
Abstract:
To replicate the success of text-to-image (T2I) generation, recent works employ large-scale video datasets to train a text-to-video (T2V) generator. Despite their promising results, such paradigm is computationally expensive. In this work, we propose a new T2V generation setting$\unicode{x2014}$One-Shot Video Tuning, where only one text-video pair is presented. Our model is built on state-of-the-art T2I diffusion models pre-trained on massive image data. We make two key observations: 1) T2I models can generate still images that represent verb terms; 2) extending T2I models to generate multiple images concurrently exhibits surprisingly good content consistency. To further learn continuous motion, we introduce Tune-A-Video, which involves a tailored spatio-temporal attention mechanism and an efficient one-shot tuning strategy. At inference, we employ DDIM inversion to provide structure guidance for sampling. Extensive qualitative and numerical experiments demonstrate the remarkable ability of our method across various applications.
Authors:Jiazi Bu, Pengyang Ling, Yujie Zhou, Yibin Wang, Yuhang Zang, Tong Wu, Dahua Lin, Jiaqi Wang
Title: DiCache: Let Diffusion Model Determine Its Own Cache
Abstract:
Recent years have witnessed the rapid development of acceleration techniques for diffusion models, especially caching-based acceleration methods. These studies seek to answer two fundamental questions: "When to cache" and "How to use cache", typically relying on predefined empirical laws or dataset-level priors to determine the timing of caching and utilizing handcrafted rules for leveraging multi-step caches. However, given the highly dynamic nature of the diffusion process, they often exhibit limited generalizability and fail on outlier samples. In this paper, a strong correlation is revealed between the variation patterns of the shallow-layer feature differences in the diffusion model and those of final model outputs. Moreover, we have observed that the features from different model layers form similar trajectories. Based on these observations, we present DiCache, a novel training-free adaptive caching strategy for accelerating diffusion models at runtime, answering both when and how to cache within a unified framework. Specifically, DiCache is composed of two principal components: (1) Online Probe Profiling Scheme leverages a shallow-layer online probe to obtain a stable prior for the caching error in real time, enabling the model to autonomously determine caching schedules. (2) Dynamic Cache Trajectory Alignment combines multi-step caches based on shallow-layer probe feature trajectory to better approximate the current feature, facilitating higher visual quality. Extensive experiments validate DiCache's capability in achieving higher efficiency and improved visual fidelity over state-of-the-art methods on various leading diffusion models including WAN 2.1, HunyuanVideo for video generation, and Flux for image generation.
Authors:Jiazi Bu, Pengyang Ling, Pan Zhang, Tong Wu, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Dahua Lin, Jiaqi Wang
Title: ByTheWay: Boost Your Text-to-Video Generation Model to Higher Quality in a Training-free Way
Abstract:
The text-to-video (T2V) generation models, offering convenient visual creation, have recently garnered increasing attention. Despite their substantial potential, the generated videos may present artifacts, including structural implausibility, temporal inconsistency, and a lack of motion, often resulting in near-static video. In this work, we have identified a correlation between the disparity of temporal attention maps across different blocks and the occurrence of temporal inconsistencies. Additionally, we have observed that the energy contained within the temporal attention maps is directly related to the magnitude of motion amplitude in the generated videos. Based on these observations, we present ByTheWay, a training-free method to improve the quality of text-to-video generation without introducing additional parameters, augmenting memory or sampling time. Specifically, ByTheWay is composed of two principal components: 1) Temporal Self-Guidance improves the structural plausibility and temporal consistency of generated videos by reducing the disparity between the temporal attention maps across various decoder blocks. 2) Fourier-based Motion Enhancement enhances the magnitude and richness of motion by amplifying the energy of the map. Extensive experiments demonstrate that ByTheWay significantly improves the quality of text-to-video generation with negligible additional cost.
Authors:Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Bin Lin, Zhenyu Tang, Li Yuan, Yu Qiao, Dahua Lin, Feng Zhao, Jiaqi Wang
Title: ShareGPT4Video: Improving Video Understanding and Generation with Better Captions
Abstract:
We present the ShareGPT4Video series, aiming to facilitate the video understanding of large video-language models (LVLMs) and the video generation of text-to-video models (T2VMs) via dense and precise captions. The series comprises: 1) ShareGPT4Video, 40K GPT4V annotated dense captions of videos with various lengths and sources, developed through carefully designed data filtering and annotating strategy. 2) ShareCaptioner-Video, an efficient and capable captioning model for arbitrary videos, with 4.8M high-quality aesthetic videos annotated by it. 3) ShareGPT4Video-8B, a simple yet superb LVLM that reached SOTA performance on three advancing video benchmarks. To achieve this, taking aside the non-scalable costly human annotators, we find using GPT4V to caption video with a naive multi-frame or frame-concatenation input strategy leads to less detailed and sometimes temporal-confused results. We argue the challenge of designing a high-quality video captioning strategy lies in three aspects: 1) Inter-frame precise temporal change understanding. 2) Intra-frame detailed content description. 3) Frame-number scalability for arbitrary-length videos. To this end, we meticulously designed a differential video captioning strategy, which is stable, scalable, and efficient for generating captions for videos with arbitrary resolution, aspect ratios, and length. Based on it, we construct ShareGPT4Video, which contains 40K high-quality videos spanning a wide range of categories, and the resulting captions encompass rich world knowledge, object attributes, camera movements, and crucially, detailed and precise temporal descriptions of events. Based on ShareGPT4Video, we further develop ShareCaptioner-Video, a superior captioner capable of efficiently generating high-quality captions for arbitrary videos...
Authors:Weiming Ren, Huan Yang, Ge Zhang, Cong Wei, Xinrun Du, Wenhao Huang, Wenhu Chen
Title: ConsistI2V: Enhancing Visual Consistency for Image-to-Video Generation
Abstract:
Image-to-video (I2V) generation aims to use the initial frame (alongside a text prompt) to create a video sequence. A grand challenge in I2V generation is to maintain visual consistency throughout the video: existing methods often struggle to preserve the integrity of the subject, background, and style from the first frame, as well as ensure a fluid and logical progression within the video narrative. To mitigate these issues, we propose ConsistI2V, a diffusion-based method to enhance visual consistency for I2V generation. Specifically, we introduce (1) spatiotemporal attention over the first frame to maintain spatial and motion consistency, (2) noise initialization from the low-frequency band of the first frame to enhance layout consistency. These two approaches enable ConsistI2V to generate highly consistent videos. We also extend the proposed approaches to show their potential to improve consistency in auto-regressive long video generation and camera motion control. To verify the effectiveness of our method, we propose I2V-Bench, a comprehensive evaluation benchmark for I2V generation. Our automatic and human evaluation results demonstrate the superiority of ConsistI2V over existing methods.
Authors:Xuenan Xu, Jiahao Mei, Chenliang Li, Yuning Wu, Ming Yan, Shaopeng Lai, Ji Zhang, Mengyue Wu
Title: MM-StoryAgent: Immersive Narrated Storybook Video Generation with a Multi-Agent Paradigm across Text, Image and Audio
Abstract:
The rapid advancement of large language models (LLMs) and artificial intelligence-generated content (AIGC) has accelerated AI-native applications, such as AI-based storybooks that automate engaging story production for children. However, challenges remain in improving story attractiveness, enriching storytelling expressiveness, and developing open-source evaluation benchmarks and frameworks. Therefore, we propose and opensource MM-StoryAgent, which creates immersive narrated video storybooks with refined plots, role-consistent images, and multi-channel audio. MM-StoryAgent designs a multi-agent framework that employs LLMs and diverse expert tools (generative models and APIs) across several modalities to produce expressive storytelling videos. The framework enhances story attractiveness through a multi-stage writing pipeline. In addition, it improves the immersive storytelling experience by integrating sound effects with visual, music and narrative assets. MM-StoryAgent offers a flexible, open-source platform for further development, where generative modules can be substituted. Both objective and subjective evaluation regarding textual story quality and alignment between modalities validate the effectiveness of our proposed MM-StoryAgent system. The demo and source code are available.
Authors:Xu Yang, Zhangzikang Li, Haiyang Xu, Hanwang Zhang, Qinghao Ye, Chenliang Li, Ming Yan, Yu Zhang, Fei Huang, Songfang Huang
Title: Learning Trajectory-Word Alignments for Video-Language Tasks
Abstract:
In a video, an object usually appears as the trajectory, i.e., it spans over a few spatial but longer temporal patches, that contains abundant spatiotemporal contexts. However, modern Video-Language BERTs (VDL-BERTs) neglect this trajectory characteristic that they usually follow image-language BERTs (IL-BERTs) to deploy the patch-to-word (P2W) attention that may over-exploit trivial spatial contexts and neglect significant temporal contexts. To amend this, we propose a novel TW-BERT to learn Trajectory-Word alignment by a newly designed trajectory-to-word (T2W) attention for solving video-language tasks. Moreover, previous VDL-BERTs usually uniformly sample a few frames into the model while different trajectories have diverse graininess, i.e., some trajectories span longer frames and some span shorter, and using a few frames will lose certain useful temporal contexts. However, simply sampling more frames will also make pre-training infeasible due to the largely increased training burdens. To alleviate the problem, during the fine-tuning stage, we insert a novel Hierarchical Frame-Selector (HFS) module into the video encoder. HFS gradually selects the suitable frames conditioned on the text context for the later cross-modal encoder to learn better trajectory-word alignments. By the proposed T2W attention and HFS, our TW-BERT achieves SOTA performances on text-to-video retrieval tasks, and comparable performances on video question-answering tasks with some VDL-BERTs trained on much more data. The code will be available in the supplementary material.
Authors:Yan-Bo Lin, Kevin Lin, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Chung-Ching Lin, Xiaofei Wang, Gedas Bertasius, Lijuan Wang
Title: Zero-Shot Audio-Visual Editing via Cross-Modal Delta Denoising
Abstract:
In this paper, we introduce zero-shot audio-video editing, a novel task that requires transforming original audio-visual content to align with a specified textual prompt without additional model training. To evaluate this task, we curate a benchmark dataset, AvED-Bench, designed explicitly for zero-shot audio-video editing. AvED-Bench includes 110 videos, each with a 10-second duration, spanning 11 categories from VGGSound. It offers diverse prompts and scenarios that require precise alignment between auditory and visual elements, enabling robust evaluation. We identify limitations in existing zero-shot audio and video editing methods, particularly in synchronization and coherence between modalities, which often result in inconsistent outcomes. To address these challenges, we propose AvED, a zero-shot cross-modal delta denoising framework that leverages audio-video interactions to achieve synchronized and coherent edits. AvED demonstrates superior results on both AvED-Bench and the recent OAVE dataset to validate its generalization capabilities. Results are available at https://genjib.github.io/project_page/AVED/index.html
Authors:Yining Hong, Beide Liu, Maxine Wu, Yuanhao Zhai, Kai-Wei Chang, Linjie Li, Kevin Lin, Chung-Ching Lin, Jianfeng Wang, Zhengyuan Yang, Yingnian Wu, Lijuan Wang
Title: SlowFast-VGen: Slow-Fast Learning for Action-Driven Long Video Generation
Abstract:
Human beings are endowed with a complementary learning system, which bridges the slow learning of general world dynamics with fast storage of episodic memory from a new experience. Previous video generation models, however, primarily focus on slow learning by pre-training on vast amounts of data, overlooking the fast learning phase crucial for episodic memory storage. This oversight leads to inconsistencies across temporally distant frames when generating longer videos, as these frames fall beyond the model's context window. To this end, we introduce SlowFast-VGen, a novel dual-speed learning system for action-driven long video generation. Our approach incorporates a masked conditional video diffusion model for the slow learning of world dynamics, alongside an inference-time fast learning strategy based on a temporal LoRA module. Specifically, the fast learning process updates its temporal LoRA parameters based on local inputs and outputs, thereby efficiently storing episodic memory in its parameters. We further propose a slow-fast learning loop algorithm that seamlessly integrates the inner fast learning loop into the outer slow learning loop, enabling the recall of prior multi-episode experiences for context-aware skill learning. To facilitate the slow learning of an approximate world model, we collect a large-scale dataset of 200k videos with language action annotations, covering a wide range of scenarios. Extensive experiments show that SlowFast-VGen outperforms baselines across various metrics for action-driven video generation, achieving an FVD score of 514 compared to 782, and maintaining consistency in longer videos, with an average of 0.37 scene cuts versus 0.89. The slow-fast learning loop algorithm significantly enhances performances on long-horizon planning tasks as well. Project Website: https://slowfast-vgen.github.io
Authors:Yuanhao Zhai, Kevin Lin, Linjie Li, Chung-Ching Lin, Jianfeng Wang, Zhengyuan Yang, David Doermann, Junsong Yuan, Zicheng Liu, Lijuan Wang
Title: IDOL: Unified Dual-Modal Latent Diffusion for Human-Centric Joint Video-Depth Generation
Abstract:
Significant advances have been made in human-centric video generation, yet the joint video-depth generation problem remains underexplored. Most existing monocular depth estimation methods may not generalize well to synthesized images or videos, and multi-view-based methods have difficulty controlling the human appearance and motion. In this work, we present IDOL (unIfied Dual-mOdal Latent diffusion) for high-quality human-centric joint video-depth generation. Our IDOL consists of two novel designs. First, to enable dual-modal generation and maximize the information exchange between video and depth generation, we propose a unified dual-modal U-Net, a parameter-sharing framework for joint video and depth denoising, wherein a modality label guides the denoising target, and cross-modal attention enables the mutual information flow. Second, to ensure a precise video-depth spatial alignment, we propose a motion consistency loss that enforces consistency between the video and depth feature motion fields, leading to harmonized outputs. Additionally, a cross-attention map consistency loss is applied to align the cross-attention map of the video denoising with that of the depth denoising, further facilitating spatial alignment. Extensive experiments on the TikTok and NTU120 datasets show our superior performance, significantly surpassing existing methods in terms of video FVD and depth accuracy.
Authors:Kevin Qinghong Lin, Linjie Li, Difei Gao, Qinchen WU, Mingyi Yan, Zhengyuan Yang, Lijuan Wang, Mike Zheng Shou
Title: VideoGUI: A Benchmark for GUI Automation from Instructional Videos
Abstract:
Graphical User Interface (GUI) automation holds significant promise for enhancing human productivity by assisting with computer tasks. Existing task formulations primarily focus on simple tasks that can be specified by a single, language-only instruction, such as "Insert a new slide." In this work, we introduce VideoGUI, a novel multi-modal benchmark designed to evaluate GUI assistants on visual-centric GUI tasks. Sourced from high-quality web instructional videos, our benchmark focuses on tasks involving professional and novel software (e.g., Adobe Photoshop or Stable Diffusion WebUI) and complex activities (e.g., video editing). VideoGUI evaluates GUI assistants through a hierarchical process, allowing for identification of the specific levels at which they may fail: (i) high-level planning: reconstruct procedural subtasks from visual conditions without language descriptions; (ii) middle-level planning: generate sequences of precise action narrations based on visual state (i.e., screenshot) and goals; (iii) atomic action execution: perform specific actions such as accurately clicking designated elements. For each level, we design evaluation metrics across individual dimensions to provide clear signals, such as individual performance in clicking, dragging, typing, and scrolling for atomic action execution. Our evaluation on VideoGUI reveals that even the SoTA large multimodal model GPT4o performs poorly on visual-centric GUI tasks, especially for high-level planning.
Authors:Tan Wang, Linjie Li, Kevin Lin, Yuanhao Zhai, Chung-Ching Lin, Zhengyuan Yang, Hanwang Zhang, Zicheng Liu, Lijuan Wang
Title: DisCo: Disentangled Control for Realistic Human Dance Generation
Abstract:
Generative AI has made significant strides in computer vision, particularly in text-driven image/video synthesis (T2I/T2V). Despite the notable advancements, it remains challenging in human-centric content synthesis such as realistic dance generation. Current methodologies, primarily tailored for human motion transfer, encounter difficulties when confronted with real-world dance scenarios (e.g., social media dance), which require to generalize across a wide spectrum of poses and intricate human details. In this paper, we depart from the traditional paradigm of human motion transfer and emphasize two additional critical attributes for the synthesis of human dance content in social media contexts: (i) Generalizability: the model should be able to generalize beyond generic human viewpoints as well as unseen human subjects, backgrounds, and poses; (ii) Compositionality: it should allow for the seamless composition of seen/unseen subjects, backgrounds, and poses from different sources. To address these challenges, we introduce DISCO, which includes a novel model architecture with disentangled control to improve the compositionality of dance synthesis, and an effective human attribute pre-training for better generalizability to unseen humans. Extensive qualitative and quantitative results demonstrate that DisCc can generate high-quality human dance images and videos with diverse appearances and flexible motions. Code is available at https://disco-dance.github.io/.
Authors:Wenjie Wang, Xinyu Lin, Fuli Feng, Xiangnan He, Tat-Seng Chua
Title: Generative Recommendation: Towards Next-generation Recommender Paradigm
Abstract:
Recommender systems typically retrieve items from an item corpus for personalized recommendations. However, such a retrieval-based recommender paradigm faces two limitations: 1) the human-generated items in the corpus might fail to satisfy the users' diverse information needs, and 2) users usually adjust the recommendations via inefficient passive feedback, e.g., clicks. Nowadays, AI-Generated Content (AIGC) has revealed significant success, offering the potential to overcome these limitations: 1) generative AI can produce personalized items to satisfy users' information needs, and 2) the newly emerged large language models significantly reduce the efforts of users to precisely express information needs via natural language instructions. In this light, the boom of AIGC points the way towards the next-generation recommender paradigm with two new objectives: 1) generating personalized content through generative AI, and 2) integrating user instructions to guide content generation. To this end, we propose a novel Generative Recommender paradigm named GeneRec, which adopts an AI generator to personalize content generation and leverages user instructions. Specifically, we pre-process users' instructions and traditional feedback via an instructor to output the generation guidance. Given the guidance, we instantiate the AI generator through an AI editor and an AI creator to repurpose existing items and create new items. Eventually, GeneRec can perform content retrieval, repurposing, and creation to satisfy users' information needs. Besides, to ensure the trustworthiness of the generated items, we emphasize various fidelity checks. Moreover, we provide a roadmap to envision future developments of GeneRec and several domain-specific applications of GeneRec with potential research tasks. Lastly, we study the feasibility of implementing AI editor and AI creator on micro-video generation.
Authors:Shengming Yin, Chenfei Wu, Huan Yang, Jianfeng Wang, Xiaodong Wang, Minheng Ni, Zhengyuan Yang, Linjie Li, Shuguang Liu, Fan Yang, Jianlong Fu, Gong Ming, Lijuan Wang, Zicheng Liu, Houqiang Li, Nan Duan
Title: NUWA-XL: Diffusion over Diffusion for eXtremely Long Video Generation
Abstract:
In this paper, we propose NUWA-XL, a novel Diffusion over Diffusion architecture for eXtremely Long video generation. Most current work generates long videos segment by segment sequentially, which normally leads to the gap between training on short videos and inferring long videos, and the sequential generation is inefficient. Instead, our approach adopts a ``coarse-to-fine'' process, in which the video can be generated in parallel at the same granularity. A global diffusion model is applied to generate the keyframes across the entire time range, and then local diffusion models recursively fill in the content between nearby frames. This simple yet effective strategy allows us to directly train on long videos (3376 frames) to reduce the training-inference gap, and makes it possible to generate all segments in parallel. To evaluate our model, we build FlintstonesHD dataset, a new benchmark for long video generation. Experiments show that our model not only generates high-quality long videos with both global and local coherence, but also decreases the average inference time from 7.55min to 26s (by 94.26\%) at the same hardware setting when generating 1024 frames. The homepage link is \url{https://msra-nuwa.azurewebsites.net/}
Authors:Ke Xing, Hanwen Liang, Dejia Xu, Yuyang Yin, Konstantinos N. Plataniotis, Yao Zhao, Yunchao Wei
Title: TiP4GEN: Text to Immersive Panorama 4D Scene Generation
Abstract:
With the rapid advancement and widespread adoption of VR/AR technologies, there is a growing demand for the creation of high-quality, immersive dynamic scenes. However, existing generation works predominantly concentrate on the creation of static scenes or narrow perspective-view dynamic scenes, falling short of delivering a truly 360-degree immersive experience from any viewpoint. In this paper, we introduce \textbf{TiP4GEN}, an advanced text-to-dynamic panorama scene generation framework that enables fine-grained content control and synthesizes motion-rich, geometry-consistent panoramic 4D scenes. TiP4GEN integrates panorama video generation and dynamic scene reconstruction to create 360-degree immersive virtual environments. For video generation, we introduce a \textbf{Dual-branch Generation Model} consisting of a panorama branch and a perspective branch, responsible for global and local view generation, respectively. A bidirectional cross-attention mechanism facilitates comprehensive information exchange between the branches. For scene reconstruction, we propose a \textbf{Geometry-aligned Reconstruction Model} based on 3D Gaussian Splatting. By aligning spatial-temporal point clouds using metric depth maps and initializing scene cameras with estimated poses, our method ensures geometric consistency and temporal coherence for the reconstructed scenes. Extensive experiments demonstrate the effectiveness of our proposed designs and the superiority of TiP4GEN in generating visually compelling and motion-coherent dynamic panoramic scenes. Our project page is at https://ke-xing.github.io/TiP4GEN/.
Authors:Longfei Li, Zhiwen Fan, Wenyan Cong, Xinhang Liu, Yuyang Yin, Matt Foutter, Panwang Pan, Chenyu You, Yue Wang, Zhangyang Wang, Yao Zhao, Marco Pavone, Yunchao Wei
Title: Martian World Models: Controllable Video Synthesis with Physically Accurate 3D Reconstructions
Abstract:
Synthesizing realistic Martian landscape videos is crucial for mission rehearsal and robotic simulation. However, this task poses unique challenges due to the scarcity of high-quality Martian data and the significant domain gap between Martian and terrestrial imagery. To address these challenges, we propose a holistic solution composed of two key components: 1) A data curation pipeline Multimodal Mars Synthesis (M3arsSynth), which reconstructs 3D Martian environments from real stereo navigation images, sourced from NASA's Planetary Data System (PDS), and renders high-fidelity multiview 3D video sequences. 2) A Martian terrain video generator, MarsGen, which synthesizes novel videos visually realistic and geometrically consistent with the 3D structure encoded in the data. Our M3arsSynth engine spans a wide range of Martian terrains and acquisition dates, enabling the generation of physically accurate 3D surface models at metric-scale resolution. MarsGen, fine-tuned on M3arsSynth data, synthesizes videos conditioned on an initial image frame and, optionally, camera trajectories or textual prompts, allowing for video generation in novel environments. Experimental results show that our approach outperforms video synthesis models trained on terrestrial datasets, achieving superior visual fidelity and 3D structural consistency.
Authors:Zhongwei Ren, Yunchao Wei, Xun Guo, Yao Zhao, Bingyi Kang, Jiashi Feng, Xiaojie Jin
Title: VideoWorld: Exploring Knowledge Learning from Unlabeled Videos
Abstract:
This work explores whether a deep generative model can learn complex knowledge solely from visual input, in contrast to the prevalent focus on text-based models like large language models (LLMs). We develop VideoWorld, an auto-regressive video generation model trained on unlabeled video data, and test its knowledge acquisition abilities in video-based Go and robotic control tasks. Our experiments reveal two key findings: (1) video-only training provides sufficient information for learning knowledge, including rules, reasoning and planning capabilities, and (2) the representation of visual change is crucial for knowledge acquisition. To improve both the efficiency and efficacy of this process, we introduce the Latent Dynamics Model (LDM) as a key component of VideoWorld. Remarkably, VideoWorld reaches a 5-dan professional level in the Video-GoBench with just a 300-million-parameter model, without relying on search algorithms or reward mechanisms typical in reinforcement learning. In robotic tasks, VideoWorld effectively learns diverse control operations and generalizes across environments, approaching the performance of oracle models in CALVIN and RLBench. This study opens new avenues for knowledge acquisition from visual data, with all code, data, and models open-sourced for further research.
Authors:Yatai Ji, Jiacheng Zhang, Jie Wu, Shilong Zhang, Shoufa Chen, Chongjian GE, Peize Sun, Weifeng Chen, Wenqi Shao, Xuefeng Xiao, Weilin Huang, Ping Luo
Title: Prompt-A-Video: Prompt Your Video Diffusion Model via Preference-Aligned LLM
Abstract:
Text-to-video models have made remarkable advancements through optimization on high-quality text-video pairs, where the textual prompts play a pivotal role in determining quality of output videos. However, achieving the desired output often entails multiple revisions and iterative inference to refine user-provided prompts. Current automatic methods for refining prompts encounter challenges such as Modality-Inconsistency, Cost-Discrepancy, and Model-Unaware when applied to text-to-video diffusion models. To address these problem, we introduce an LLM-based prompt adaptation framework, termed as Prompt-A-Video, which excels in crafting Video-Centric, Labor-Free and Preference-Aligned prompts tailored to specific video diffusion model. Our approach involves a meticulously crafted two-stage optimization and alignment system. Initially, we conduct a reward-guided prompt evolution pipeline to automatically create optimal prompts pool and leverage them for supervised fine-tuning (SFT) of the LLM. Then multi-dimensional rewards are employed to generate pairwise data for the SFT model, followed by the direct preference optimization (DPO) algorithm to further facilitate preference alignment. Through extensive experimentation and comparative analyses, we validate the effectiveness of Prompt-A-Video across diverse generation models, highlighting its potential to push the boundaries of video generation.
Authors:Tianle Zhang, Langtian Ma, Yuchen Yan, Yuchen Zhang, Kai Wang, Yue Yang, Ziyao Guo, Wenqi Shao, Yang You, Yu Qiao, Ping Luo, Kaipeng Zhang
Title: Rethinking Human Evaluation Protocol for Text-to-Video Models: Enhancing Reliability,Reproducibility, and Practicality
Abstract:
Recent text-to-video (T2V) technology advancements, as demonstrated by models such as Gen2, Pika, and Sora, have significantly broadened its applicability and popularity. Despite these strides, evaluating these models poses substantial challenges. Primarily, due to the limitations inherent in automatic metrics, manual evaluation is often considered a superior method for assessing T2V generation. However, existing manual evaluation protocols face reproducibility, reliability, and practicality issues. To address these challenges, this paper introduces the Text-to-Video Human Evaluation (T2VHE) protocol, a comprehensive and standardized protocol for T2V models. The T2VHE protocol includes well-defined metrics, thorough annotator training, and an effective dynamic evaluation module. Experimental results demonstrate that this protocol not only ensures high-quality annotations but can also reduce evaluation costs by nearly 50\%. We will open-source the entire setup of the T2VHE protocol, including the complete protocol workflow, the dynamic evaluation component details, and the annotation interface code. This will help communities establish more sophisticated human assessment protocols.
Authors:Yuyang Yin, Dejia Xu, Zhangyang Wang, Yao Zhao, Yunchao Wei
Title: 4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency
Abstract:
Aided by text-to-image and text-to-video diffusion models, existing 4D content creation pipelines utilize score distillation sampling to optimize the entire dynamic 3D scene. However, as these pipelines generate 4D content from text or image inputs directly, they are constrained by limited motion capabilities and depend on unreliable prompt engineering for desired results. To address these problems, this work introduces \textbf{4DGen}, a novel framework for grounded 4D content creation. We identify monocular video sequences as a key component in constructing the 4D content. Our pipeline facilitates controllable 4D generation, enabling users to specify the motion via monocular video or adopt image-to-video generations, thus offering superior control over content creation. Furthermore, we construct our 4D representation using dynamic 3D Gaussians, which permits efficient, high-resolution supervision through rendering during training, thereby facilitating high-quality 4D generation. Additionally, we employ spatial-temporal pseudo labels on anchor frames, along with seamless consistency priors implemented through 3D-aware score distillation sampling and smoothness regularizations. Compared to existing video-to-4D baselines, our approach yields superior results in faithfully reconstructing input signals and realistically inferring renderings from novel viewpoints and timesteps. More importantly, compared to previous image-to-4D and text-to-4D works, 4DGen supports grounded generation, offering users enhanced control and improved motion generation capabilities, a feature difficult to achieve with previous methods. Project page: https://vita-group.github.io/4DGen/
Authors:Weixiang Sun, Xiaocao You, Ruizhe Zheng, Zhengqing Yuan, Xiang Li, Lifang He, Quanzheng Li, Lichao Sun
Title: Bora: Biomedical Generalist Video Generation Model
Abstract:
Generative models hold promise for revolutionizing medical education, robot-assisted surgery, and data augmentation for medical AI development. Diffusion models can now generate realistic images from text prompts, while recent advancements have demonstrated their ability to create diverse, high-quality videos. However, these models often struggle with generating accurate representations of medical procedures and detailed anatomical structures. This paper introduces Bora, the first spatio-temporal diffusion probabilistic model designed for text-guided biomedical video generation. Bora leverages Transformer architecture and is pre-trained on general-purpose video generation tasks. It is fine-tuned through model alignment and instruction tuning using a newly established medical video corpus, which includes paired text-video data from various biomedical fields. To the best of our knowledge, this is the first attempt to establish such a comprehensive annotated biomedical video dataset. Bora is capable of generating high-quality video data across four distinct biomedical domains, adhering to medical expert standards and demonstrating consistency and diversity. This generalist video generative model holds significant potential for enhancing medical consultation and decision-making, particularly in resource-limited settings. Additionally, Bora could pave the way for immersive medical training and procedure planning. Extensive experiments on distinct medical modalities such as endoscopy, ultrasound, MRI, and cell tracking validate the effectiveness of our model in understanding biomedical instructions and its superior performance across subjects compared to state-of-the-art generation models.
Authors:Yanxiao Sun, Jiafu Wu, Yun Cao, Chengming Xu, Yabiao Wang, Weijian Cao, Donghao Luo, Chengjie Wang, Yanwei Fu
Title: SwiftVideo: A Unified Framework for Few-Step Video Generation through Trajectory-Distribution Alignment
Abstract:
Diffusion-based or flow-based models have achieved significant progress in video synthesis but require multiple iterative sampling steps, which incurs substantial computational overhead. While many distillation methods that are solely based on trajectory-preserving or distribution-matching have been developed to accelerate video generation models, these approaches often suffer from performance breakdown or increased artifacts under few-step settings. To address these limitations, we propose \textbf{\emph{SwiftVideo}}, a unified and stable distillation framework that combines the advantages of trajectory-preserving and distribution-matching strategies. Our approach introduces continuous-time consistency distillation to ensure precise preservation of ODE trajectories. Subsequently, we propose a dual-perspective alignment that includes distribution alignment between synthetic and real data along with trajectory alignment across different inference steps. Our method maintains high-quality video generation while substantially reducing the number of inference steps. Quantitative evaluations on the OpenVid-1M benchmark demonstrate that our method significantly outperforms existing approaches in few-step video generation.
Authors:Pengyang Ling, Jiazi Bu, Pan Zhang, Xiaoyi Dong, Yuhang Zang, Tong Wu, Huaian Chen, Jiaqi Wang, Yi Jin
Title: MotionClone: Training-Free Motion Cloning for Controllable Video Generation
Abstract:
Motion-based controllable video generation offers the potential for creating captivating visual content. Existing methods typically necessitate model training to encode particular motion cues or incorporate fine-tuning to inject certain motion patterns, resulting in limited flexibility and generalization. In this work, we propose MotionClone, a training-free framework that enables motion cloning from reference videos to versatile motion-controlled video generation, including text-to-video and image-to-video. Based on the observation that the dominant components in temporal-attention maps drive motion synthesis, while the rest mainly capture noisy or very subtle motions, MotionClone utilizes sparse temporal attention weights as motion representations for motion guidance, facilitating diverse motion transfer across varying scenarios. Meanwhile, MotionClone allows for the direct extraction of motion representation through a single denoising step, bypassing the cumbersome inversion processes and thus promoting both efficiency and flexibility. Extensive experiments demonstrate that MotionClone exhibits proficiency in both global camera motion and local object motion, with notable superiority in terms of motion fidelity, textual alignment, and temporal consistency.
Authors:Kaiyi Huang, Yukun Huang, Xintao Wang, Zinan Lin, Xuefei Ning, Pengfei Wan, Di Zhang, Yu Wang, Xihui Liu
Title: FilMaster: Bridging Cinematic Principles and Generative AI for Automated Film Generation
Abstract:
AI-driven content creation has shown potential in film production. However, existing film generation systems struggle to implement cinematic principles and thus fail to generate professional-quality films, particularly lacking diverse camera language and cinematic rhythm. This results in templated visuals and unengaging narratives. To address this, we introduce FilMaster, an end-to-end AI system that integrates real-world cinematic principles for professional-grade film generation, yielding editable, industry-standard outputs. FilMaster is built on two key principles: (1) learning cinematography from extensive real-world film data and (2) emulating professional, audience-centric post-production workflows. Inspired by these principles, FilMaster incorporates two stages: a Reference-Guided Generation Stage which transforms user input to video clips, and a Generative Post-Production Stage which transforms raw footage into audiovisual outputs by orchestrating visual and auditory elements for cinematic rhythm. Our generation stage highlights a Multi-shot Synergized RAG Camera Language Design module to guide the AI in generating professional camera language by retrieving reference clips from a vast corpus of 440,000 film clips. Our post-production stage emulates professional workflows by designing an Audience-Centric Cinematic Rhythm Control module, including Rough Cut and Fine Cut processes informed by simulated audience feedback, for effective integration of audiovisual elements to achieve engaging content. The system is empowered by generative AI models like (M)LLMs and video generation models. Furthermore, we introduce FilmEval, a comprehensive benchmark for evaluating AI-generated films. Extensive experiments show FilMaster's superior performance in camera language design and cinematic rhythm control, advancing generative AI in professional filmmaking.
Authors:Zixuan Ye, Xuanhua He, Quande Liu, Qiulin Wang, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, Qifeng Chen, Wenhan Luo
Title: UNIC: Unified In-Context Video Editing
Abstract:
Recent advances in text-to-video generation have sparked interest in generative video editing tasks. Previous methods often rely on task-specific architectures (e.g., additional adapter modules) or dedicated customizations (e.g., DDIM inversion), which limit the integration of versatile editing conditions and the unification of various editing tasks. In this paper, we introduce UNified In-Context Video Editing (UNIC), a simple yet effective framework that unifies diverse video editing tasks within a single model in an in-context manner. To achieve this unification, we represent the inputs of various video editing tasks as three types of tokens: the source video tokens, the noisy video latent, and the multi-modal conditioning tokens that vary according to the specific editing task. Based on this formulation, our key insight is to integrate these three types into a single consecutive token sequence and jointly model them using the native attention operations of DiT, thereby eliminating the need for task-specific adapter designs. Nevertheless, direct task unification under this framework is challenging, leading to severe token collisions and task confusion due to the varying video lengths and diverse condition modalities across tasks. To address these, we introduce task-aware RoPE to facilitate consistent temporal positional encoding, and condition bias that enables the model to clearly differentiate different editing tasks. This allows our approach to adaptively perform different video editing tasks by referring the source video and varying condition tokens "in context", and support flexible task composition. To validate our method, we construct a unified video editing benchmark containing six representative video editing tasks. Results demonstrate that our unified approach achieves superior performance on each task and exhibits emergent task composition abilities.
Authors:Xuanhua He, Quande Liu, Zixuan Ye, Weicai Ye, Qiulin Wang, Xintao Wang, Qifeng Chen, Pengfei Wan, Di Zhang, Kun Gai
Title: FullDiT2: Efficient In-Context Conditioning for Video Diffusion Transformers
Abstract:
Fine-grained and efficient controllability on video diffusion transformers has raised increasing desires for the applicability. Recently, In-context Conditioning emerged as a powerful paradigm for unified conditional video generation, which enables diverse controls by concatenating varying context conditioning signals with noisy video latents into a long unified token sequence and jointly processing them via full-attention, e.g., FullDiT. Despite their effectiveness, these methods face quadratic computation overhead as task complexity increases, hindering practical deployment. In this paper, we study the efficiency bottleneck neglected in original in-context conditioning video generation framework. We begin with systematic analysis to identify two key sources of the computation inefficiencies: the inherent redundancy within context condition tokens and the computational redundancy in context-latent interactions throughout the diffusion process. Based on these insights, we propose FullDiT2, an efficient in-context conditioning framework for general controllability in both video generation and editing tasks, which innovates from two key perspectives. Firstly, to address the token redundancy, FullDiT2 leverages a dynamic token selection mechanism to adaptively identify important context tokens, reducing the sequence length for unified full-attention. Additionally, a selective context caching mechanism is devised to minimize redundant interactions between condition tokens and video latents. Extensive experiments on six diverse conditional video editing and generation tasks demonstrate that FullDiT2 achieves significant computation reduction and 2-3 times speedup in averaged time cost per diffusion step, with minimal degradation or even higher performance in video generation quality. The project page is at \href{https://fulldit2.github.io/}{https://fulldit2.github.io/}.
Authors:Jiwen Yu, Jianhong Bai, Yiran Qin, Quande Liu, Xintao Wang, Pengfei Wan, Di Zhang, Xihui Liu
Title: Context as Memory: Scene-Consistent Interactive Long Video Generation with Memory Retrieval
Abstract:
Recent advances in interactive video generation have shown promising results, yet existing approaches struggle with scene-consistent memory capabilities in long video generation due to limited use of historical context. In this work, we propose Context-as-Memory, which utilizes historical context as memory for video generation. It includes two simple yet effective designs: (1) storing context in frame format without additional post-processing; (2) conditioning by concatenating context and frames to be predicted along the frame dimension at the input, requiring no external control modules. Furthermore, considering the enormous computational overhead of incorporating all historical context, we propose the Memory Retrieval module to select truly relevant context frames by determining FOV (Field of View) overlap between camera poses, which significantly reduces the number of candidate frames without substantial information loss. Experiments demonstrate that Context-as-Memory achieves superior memory capabilities in interactive long video generation compared to SOTAs, even generalizing effectively to open-domain scenarios not seen during training. The link of our project page is https://context-as-memory.github.io/.
Authors:Yawen Luo, Jianhong Bai, Xiaoyu Shi, Menghan Xia, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, Tianfan Xue
Title: CamCloneMaster: Enabling Reference-based Camera Control for Video Generation
Abstract:
Camera control is crucial for generating expressive and cinematic videos. Existing methods rely on explicit sequences of camera parameters as control conditions, which can be cumbersome for users to construct, particularly for intricate camera movements. To provide a more intuitive camera control method, we propose CamCloneMaster, a framework that enables users to replicate camera movements from reference videos without requiring camera parameters or test-time fine-tuning. CamCloneMaster seamlessly supports reference-based camera control for both Image-to-Video and Video-to-Video tasks within a unified framework. Furthermore, we present the Camera Clone Dataset, a large-scale synthetic dataset designed for camera clone learning, encompassing diverse scenes, subjects, and camera movements. Extensive experiments and user studies demonstrate that CamCloneMaster outperforms existing methods in terms of both camera controllability and visual quality.
Authors:Haoran He, Jiajun Liang, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, Ling Pan
Title: Scaling Image and Video Generation via Test-Time Evolutionary Search
Abstract:
As the marginal cost of scaling computation (data and parameters) during model pre-training continues to increase substantially, test-time scaling (TTS) has emerged as a promising direction for improving generative model performance by allocating additional computation at inference time. While TTS has demonstrated significant success across multiple language tasks, there remains a notable gap in understanding the test-time scaling behaviors of image and video generative models (diffusion-based or flow-based models). Although recent works have initiated exploration into inference-time strategies for vision tasks, these approaches face critical limitations: being constrained to task-specific domains, exhibiting poor scalability, or falling into reward over-optimization that sacrifices sample diversity. In this paper, we propose \textbf{Evo}lutionary \textbf{Search} (EvoSearch), a novel, generalist, and efficient TTS method that effectively enhances the scalability of both image and video generation across diffusion and flow models, without requiring additional training or model expansion. EvoSearch reformulates test-time scaling for diffusion and flow models as an evolutionary search problem, leveraging principles from biological evolution to efficiently explore and refine the denoising trajectory. By incorporating carefully designed selection and mutation mechanisms tailored to the stochastic differential equation denoising process, EvoSearch iteratively generates higher-quality offspring while preserving population diversity. Through extensive evaluation across both diffusion and flow architectures for image and video generation tasks, we demonstrate that our method consistently outperforms existing approaches, achieves higher diversity, and shows strong generalizability to unseen evaluation metrics. Our project is available at the website https://tinnerhrhe.github.io/evosearch.
Authors:Xuyang Guo, Zekai Huang, Jiayan Huo, Yingyu Liang, Zhenmei Shi, Zhao Song, Jiahao Zhang
Title: Can You Count to Nine? A Human Evaluation Benchmark for Counting Limits in Modern Text-to-Video Models
Abstract:
Generative models have driven significant progress in a variety of AI tasks, including text-to-video generation, where models like Video LDM and Stable Video Diffusion can produce realistic, movie-level videos from textual instructions. Despite these advances, current text-to-video models still face fundamental challenges in reliably following human commands, particularly in adhering to simple numerical constraints. In this work, we present T2VCountBench, a specialized benchmark aiming at evaluating the counting capability of SOTA text-to-video models as of 2025. Our benchmark employs rigorous human evaluations to measure the number of generated objects and covers a diverse range of generators, covering both open-source and commercial models. Extensive experiments reveal that all existing models struggle with basic numerical tasks, almost always failing to generate videos with an object count of 9 or fewer. Furthermore, our comprehensive ablation studies explore how factors like video style, temporal dynamics, and multilingual inputs may influence counting performance. We also explore prompt refinement techniques and demonstrate that decomposing the task into smaller subtasks does not easily alleviate these limitations. Our findings highlight important challenges in current text-to-video generation and provide insights for future research aimed at improving adherence to basic numerical constraints.
Authors:Shengqiong Wu, Weicai Ye, Jiahao Wang, Quande Liu, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, Shuicheng Yan, Hao Fei, Tat-Seng Chua
Title: Any2Caption:Interpreting Any Condition to Caption for Controllable Video Generation
Abstract:
To address the bottleneck of accurate user intent interpretation within the current video generation community, we present Any2Caption, a novel framework for controllable video generation under any condition. The key idea is to decouple various condition interpretation steps from the video synthesis step. By leveraging modern multimodal large language models (MLLMs), Any2Caption interprets diverse inputs--text, images, videos, and specialized cues such as region, motion, and camera poses--into dense, structured captions that offer backbone video generators with better guidance. We also introduce Any2CapIns, a large-scale dataset with 337K instances and 407K conditions for any-condition-to-caption instruction tuning. Comprehensive evaluations demonstrate significant improvements of our system in controllability and video quality across various aspects of existing video generation models. Project Page: https://sqwu.top/Any2Cap/
Authors:Feng-Lin Liu, Hongbo Fu, Xintao Wang, Weicai Ye, Pengfei Wan, Di Zhang, Lin Gao
Title: SketchVideo: Sketch-based Video Generation and Editing
Abstract:
Video generation and editing conditioned on text prompts or images have undergone significant advancements. However, challenges remain in accurately controlling global layout and geometry details solely by texts, and supporting motion control and local modification through images. In this paper, we aim to achieve sketch-based spatial and motion control for video generation and support fine-grained editing of real or synthetic videos. Based on the DiT video generation model, we propose a memory-efficient control structure with sketch control blocks that predict residual features of skipped DiT blocks. Sketches are drawn on one or two keyframes (at arbitrary time points) for easy interaction. To propagate such temporally sparse sketch conditions across all frames, we propose an inter-frame attention mechanism to analyze the relationship between the keyframes and each video frame. For sketch-based video editing, we design an additional video insertion module that maintains consistency between the newly edited content and the original video's spatial feature and dynamic motion. During inference, we use latent fusion for the accurate preservation of unedited regions. Extensive experiments demonstrate that our SketchVideo achieves superior performance in controllable video generation and editing.
Authors:Xuan Ju, Weicai Ye, Quande Liu, Qiulin Wang, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, Qiang Xu
Title: FullDiT: Multi-Task Video Generative Foundation Model with Full Attention
Abstract:
Current video generative foundation models primarily focus on text-to-video tasks, providing limited control for fine-grained video content creation. Although adapter-based approaches (e.g., ControlNet) enable additional controls with minimal fine-tuning, they encounter challenges when integrating multiple conditions, including: branch conflicts between independently trained adapters, parameter redundancy leading to increased computational cost, and suboptimal performance compared to full fine-tuning. To address these challenges, we introduce FullDiT, a unified foundation model for video generation that seamlessly integrates multiple conditions via unified full-attention mechanisms. By fusing multi-task conditions into a unified sequence representation and leveraging the long-context learning ability of full self-attention to capture condition dynamics, FullDiT reduces parameter overhead, avoids conditions conflict, and shows scalability and emergent ability. We further introduce FullBench for multi-task video generation evaluation. Experiments demonstrate that FullDiT achieves state-of-the-art results, highlighting the efficacy of full-attention in complex multi-task video generation.
Authors:Jiwen Yu, Yiran Qin, Haoxuan Che, Quande Liu, Xintao Wang, Pengfei Wan, Di Zhang, Xihui Liu
Title: Position: Interactive Generative Video as Next-Generation Game Engine
Abstract:
Modern game development faces significant challenges in creativity and cost due to predetermined content in traditional game engines. Recent breakthroughs in video generation models, capable of synthesizing realistic and interactive virtual environments, present an opportunity to revolutionize game creation. In this position paper, we propose Interactive Generative Video (IGV) as the foundation for Generative Game Engines (GGE), enabling unlimited novel content generation in next-generation gaming. GGE leverages IGV's unique strengths in unlimited high-quality content synthesis, physics-aware world modeling, user-controlled interactivity, long-term memory capabilities, and causal reasoning. We present a comprehensive framework detailing GGE's core modules and a hierarchical maturity roadmap (L0-L4) to guide its evolution. Our work charts a new course for game development in the AI era, envisioning a future where AI-powered generative systems fundamentally reshape how games are created and experienced.
Authors:Zhen Yang, Guibao Shen, Minyang Li, Liang Hou, Mushui Liu, Luozhou Wang, Xin Tao, Pengfei Wan, Di Zhang, Ying-Cong Chen
Title: Efficient Training-Free High-Resolution Synthesis with Energy Rectification in Diffusion Models
Abstract:
Diffusion models have achieved remarkable progress across various visual generation tasks. However, their performance significantly declines when generating content at resolutions higher than those used during training. Although numerous methods have been proposed to enable high-resolution generation, they all suffer from inefficiency. In this paper, we propose RectifiedHR, a straightforward and efficient solution for training-free high-resolution synthesis. Specifically, we propose a noise refresh strategy that unlocks the model's training-free high-resolution synthesis capability and improves efficiency. Additionally, we are the first to observe the phenomenon of energy decay, which may cause image blurriness during the high-resolution synthesis process. To address this issue, we introduce average latent energy analysis and find that tuning the classifier-free guidance hyperparameter can significantly improve generation performance. Our method is entirely training-free and demonstrates efficient performance. Furthermore, we show that RectifiedHR is compatible with various diffusion model techniques, enabling advanced features such as image editing, customized generation, and video synthesis. Extensive comparisons with numerous baseline methods validate the superior effectiveness and efficiency of RectifiedHR.
Authors:Qinghe Wang, Yawen Luo, Xiaoyu Shi, Xu Jia, Huchuan Lu, Tianfan Xue, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai
Title: CineMaster: A 3D-Aware and Controllable Framework for Cinematic Text-to-Video Generation
Abstract:
In this work, we present CineMaster, a novel framework for 3D-aware and controllable text-to-video generation. Our goal is to empower users with comparable controllability as professional film directors: precise placement of objects within the scene, flexible manipulation of both objects and camera in 3D space, and intuitive layout control over the rendered frames. To achieve this, CineMaster operates in two stages. In the first stage, we design an interactive workflow that allows users to intuitively construct 3D-aware conditional signals by positioning object bounding boxes and defining camera movements within the 3D space. In the second stage, these control signals--comprising rendered depth maps, camera trajectories and object class labels--serve as the guidance for a text-to-video diffusion model, ensuring to generate the user-intended video content. Furthermore, to overcome the scarcity of in-the-wild datasets with 3D object motion and camera pose annotations, we carefully establish an automated data annotation pipeline that extracts 3D bounding boxes and camera trajectories from large-scale video data. Extensive qualitative and quantitative experiments demonstrate that CineMaster significantly outperforms existing methods and implements prominent 3D-aware text-to-video generation. Project page: https://cinemaster-dev.github.io/.
Authors:Jie Liu, Gongye Liu, Jiajun Liang, Ziyang Yuan, Xiaokun Liu, Mingwu Zheng, Xiele Wu, Qiulin Wang, Wenyu Qin, Menghan Xia, Xintao Wang, Xiaohong Liu, Fei Yang, Pengfei Wan, Di Zhang, Kun Gai, Yujiu Yang, Wanli Ouyang
Title: Improving Video Generation with Human Feedback
Abstract:
Video generation has achieved significant advances through rectified flow techniques, but issues like unsmooth motion and misalignment between videos and prompts persist. In this work, we develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model. Specifically, we begin by constructing a large-scale human preference dataset focused on modern video generation models, incorporating pairwise annotations across multi-dimensions. We then introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy. From a unified reinforcement learning perspective aimed at maximizing reward with KL regularization, we introduce three alignment algorithms for flow-based models by extending those from diffusion models. These include two training-time strategies: direct preference optimization for flow (Flow-DPO) and reward weighted regression for flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies reward guidance directly to noisy videos. Experimental results indicate that VideoReward significantly outperforms existing reward models, and Flow-DPO demonstrates superior performance compared to both Flow-RWR and standard supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom weights to multiple objectives during inference, meeting personalized video quality needs. Project page: https://gongyeliu.github.io/videoalign.
Authors:Yuefan Cao, Chengyue Gong, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song
Title: RichSpace: Enriching Text-to-Video Prompt Space via Text Embedding Interpolation
Abstract:
Text-to-video generation models have made impressive progress, but they still struggle with generating videos with complex features. This limitation often arises from the inability of the text encoder to produce accurate embeddings, which hinders the video generation model. In this work, we propose a novel approach to overcome this challenge by selecting the optimal text embedding through interpolation in the embedding space. We demonstrate that this method enables the video generation model to produce the desired videos. Additionally, we introduce a simple algorithm using perpendicular foot embeddings and cosine similarity to identify the optimal interpolation embedding. Our findings highlight the importance of accurate text embeddings and offer a pathway for improving text-to-video generation performance.
Authors:Jiwen Yu, Yiran Qin, Xintao Wang, Pengfei Wan, Di Zhang, Xihui Liu
Title: GameFactory: Creating New Games with Generative Interactive Videos
Abstract:
Generative videos have the potential to revolutionize game development by autonomously creating new content. In this paper, we present GameFactory, a framework for action-controlled scene-generalizable game video generation. We first address the fundamental challenge of action controllability by introducing GF-Minecraft, an action-annotated game video dataset without human bias, and developing an action control module that enables precise control over both keyboard and mouse inputs. We further extend to support autoregressive generation for unlimited-length interactive videos. More importantly, GameFactory tackles the critical challenge of scene-generalizable action control, which most existing methods fail to address. To enable the creation of entirely new and diverse games beyond fixed styles and scenes, we leverage the open-domain generative priors from pre-trained video diffusion models. To bridge the domain gap between open-domain priors and small-scale game datasets, we propose a multi-phase training strategy with a domain adapter that decouples game style learning from action control. This decoupling ensures that action control learning is no longer bound to specific game styles, thereby achieving scene-generalizable action control. Experimental results demonstrate that GameFactory effectively generates open-domain action-controllable game videos, representing a significant step forward in AI-driven game generation.
Authors:Yuzhou Huang, Ziyang Yuan, Quande Liu, Qiulin Wang, Xintao Wang, Ruimao Zhang, Pengfei Wan, Di Zhang, Kun Gai
Title: ConceptMaster: Multi-Concept Video Customization on Diffusion Transformer Models Without Test-Time Tuning
Abstract:
Text-to-video generation has made remarkable advancements through diffusion models. However, Multi-Concept Video Customization (MCVC) remains a significant challenge. We identify two key challenges for this task: 1) the identity decoupling issue, where directly adopting existing customization methods inevitably mix identity attributes when handling multiple concepts simultaneously, and 2) the scarcity of high-quality video-entity pairs, which is crucial for training a model that can well represent and decouple various customized concepts in video generation. To address these challenges, we introduce ConceptMaster, a novel framework that effectively addresses the identity decoupling issues while maintaining concept fidelity in video customization. Specifically, we propose to learn decoupled multi-concept embeddings and inject them into diffusion models in a standalone manner, which effectively guarantees the quality of customized videos with multiple identities, even for highly similar visual concepts. To overcome the scarcity of high-quality MCVC data, we establish a data construction pipeline, which enables collection of high-quality multi-concept video-entity data pairs across diverse scenarios. A multi-concept video evaluation set is further devised to comprehensively validate our method from three dimensions, including concept fidelity, identity decoupling ability, and video generation quality, across six different concept composition scenarios. Extensive experiments demonstrate that ConceptMaster significantly outperforms previous methods for video customization tasks, showing great potential to generate personalized and semantically accurate content for video diffusion models.
Authors:Tong Chen, Shuya Yang, Junyi Wang, Long Bai, Hongliang Ren, Luping Zhou
Title: SurgSora: Object-Aware Diffusion Model for Controllable Surgical Video Generation
Abstract:
Surgical video generation can enhance medical education and research, but existing methods lack fine-grained motion control and realism. We introduce SurgSora, a framework that generates high-fidelity, motion-controllable surgical videos from a single input frame and user-specified motion cues. Unlike prior approaches that treat objects indiscriminately or rely on ground-truth segmentation masks, SurgSora leverages self-predicted object features and depth information to refine RGB appearance and optical flow for precise video synthesis. It consists of three key modules: (1) the Dual Semantic Injector, which extracts object-specific RGB-D features and segmentation cues to enhance spatial representations; (2) the Decoupled Flow Mapper, which fuses multi-scale optical flow with semantic features for realistic motion dynamics; and (3) the Trajectory Controller, which estimates sparse optical flow and enables user-guided object movement. By conditioning these enriched features within the Stable Video Diffusion, SurgSora achieves state-of-the-art visual authenticity and controllability in advancing surgical video synthesis, as demonstrated by extensive quantitative and qualitative comparisons. Our human evaluation in collaboration with expert surgeons further demonstrates the high realism of SurgSora-generated videos, highlighting the potential of our method for surgical training and education. Our project is available at https://surgsora.github.io/surgsora.github.io.
Authors:Jianhong Bai, Menghan Xia, Xintao Wang, Ziyang Yuan, Xiao Fu, Zuozhu Liu, Haoji Hu, Pengfei Wan, Di Zhang
Title: SynCamMaster: Synchronizing Multi-Camera Video Generation from Diverse Viewpoints
Abstract:
Recent advancements in video diffusion models have shown exceptional abilities in simulating real-world dynamics and maintaining 3D consistency. This progress inspires us to investigate the potential of these models to ensure dynamic consistency across various viewpoints, a highly desirable feature for applications such as virtual filming. Unlike existing methods focused on multi-view generation of single objects for 4D reconstruction, our interest lies in generating open-world videos from arbitrary viewpoints, incorporating 6 DoF camera poses. To achieve this, we propose a plug-and-play module that enhances a pre-trained text-to-video model for multi-camera video generation, ensuring consistent content across different viewpoints. Specifically, we introduce a multi-view synchronization module to maintain appearance and geometry consistency across these viewpoints. Given the scarcity of high-quality training data, we design a hybrid training scheme that leverages multi-camera images and monocular videos to supplement Unreal Engine-rendered multi-camera videos. Furthermore, our method enables intriguing extensions, such as re-rendering a video from novel viewpoints. We also release a multi-view synchronized video dataset, named SynCamVideo-Dataset. Project page: https://jianhongbai.github.io/SynCamMaster/.
Authors:Xiao Fu, Xian Liu, Xintao Wang, Sida Peng, Menghan Xia, Xiaoyu Shi, Ziyang Yuan, Pengfei Wan, Di Zhang, Dahua Lin
Title: 3DTrajMaster: Mastering 3D Trajectory for Multi-Entity Motion in Video Generation
Abstract:
This paper aims to manipulate multi-entity 3D motions in video generation. Previous methods on controllable video generation primarily leverage 2D control signals to manipulate object motions and have achieved remarkable synthesis results. However, 2D control signals are inherently limited in expressing the 3D nature of object motions. To overcome this problem, we introduce 3DTrajMaster, a robust controller that regulates multi-entity dynamics in 3D space, given user-desired 6DoF pose (location and rotation) sequences of entities. At the core of our approach is a plug-and-play 3D-motion grounded object injector that fuses multiple input entities with their respective 3D trajectories through a gated self-attention mechanism. In addition, we exploit an injector architecture to preserve the video diffusion prior, which is crucial for generalization ability. To mitigate video quality degradation, we introduce a domain adaptor during training and employ an annealed sampling strategy during inference. To address the lack of suitable training data, we construct a 360-Motion Dataset, which first correlates collected 3D human and animal assets with GPT-generated trajectory and then captures their motion with 12 evenly-surround cameras on diverse 3D UE platforms. Extensive experiments show that 3DTrajMaster sets a new state-of-the-art in both accuracy and generalization for controlling multi-entity 3D motions. Project page: http://fuxiao0719.github.io/projects/3dtrajmaster
Authors:Zixuan Ye, Huijuan Huang, Xintao Wang, Pengfei Wan, Di Zhang, Wenhan Luo
Title: StyleMaster: Stylize Your Video with Artistic Generation and Translation
Abstract:
Style control has been popular in video generation models. Existing methods often generate videos far from the given style, cause content leakage, and struggle to transfer one video to the desired style. Our first observation is that the style extraction stage matters, whereas existing methods emphasize global style but ignore local textures. In order to bring texture features while preventing content leakage, we filter content-related patches while retaining style ones based on prompt-patch similarity; for global style extraction, we generate a paired style dataset through model illusion to facilitate contrastive learning, which greatly enhances the absolute style consistency. Moreover, to fill in the image-to-video gap, we train a lightweight motion adapter on still videos, which implicitly enhances stylization extent, and enables our image-trained model to be seamlessly applied to videos. Benefited from these efforts, our approach, StyleMaster, not only achieves significant improvement in both style resemblance and temporal coherence, but also can easily generalize to video style transfer with a gray tile ControlNet. Extensive experiments and visualizations demonstrate that StyleMaster significantly outperforms competitors, effectively generating high-quality stylized videos that align with textual content and closely resemble the style of reference images. Our project page is at https://zixuan-ye.github.io/stylemaster
Authors:Jiahao Hu, Tianxiong Zhong, Xuebo Wang, Boyuan Jiang, Xingye Tian, Fei Yang, Pengfei Wan, Di Zhang
Title: VIVID-10M: A Dataset and Baseline for Versatile and Interactive Video Local Editing
Abstract:
Diffusion-based image editing models have made remarkable progress in recent years. However, achieving high-quality video editing remains a significant challenge. One major hurdle is the absence of open-source, large-scale video editing datasets based on real-world data, as constructing such datasets is both time-consuming and costly. Moreover, video data requires a significantly larger number of tokens for representation, which substantially increases the training costs for video editing models. Lastly, current video editing models offer limited interactivity, often making it difficult for users to express their editing requirements effectively in a single attempt. To address these challenges, this paper introduces a dataset VIVID-10M and a baseline model VIVID. VIVID-10M is the first large-scale hybrid image-video local editing dataset aimed at reducing data construction and model training costs, which comprises 9.7M samples that encompass a wide range of video editing tasks. VIVID is a Versatile and Interactive VIdeo local eDiting model trained on VIVID-10M, which supports entity addition, modification, and deletion. At its core, a keyframe-guided interactive video editing mechanism is proposed, enabling users to iteratively edit keyframes and propagate it to other frames, thereby reducing latency in achieving desired outcomes. Extensive experimental evaluations show that our approach achieves state-of-the-art performance in video local editing, surpassing baseline methods in both automated metrics and user studies. The VIVID-10M dataset are open-sourced at https://kwaivgi.github.io/VIVID/.
Authors:Qiuheng Wang, Yukai Shi, Jiarong Ou, Rui Chen, Ke Lin, Jiahao Wang, Boyuan Jiang, Haotian Yang, Mingwu Zheng, Xin Tao, Fei Yang, Pengfei Wan, Di Zhang
Title: Koala-36M: A Large-scale Video Dataset Improving Consistency between Fine-grained Conditions and Video Content
Abstract:
With the continuous progress of visual generation technologies, the scale of video datasets has grown exponentially. The quality of these datasets plays a pivotal role in the performance of video generation models. We assert that temporal splitting, detailed captions, and video quality filtering are three crucial determinants of dataset quality. However, existing datasets exhibit various limitations in these areas. To address these challenges, we introduce Koala-36M, a large-scale, high-quality video dataset featuring accurate temporal splitting, detailed captions, and superior video quality. The essence of our approach lies in improving the consistency between fine-grained conditions and video content. Specifically, we employ a linear classifier on probability distributions to enhance the accuracy of transition detection, ensuring better temporal consistency. We then provide structured captions for the splitted videos, with an average length of 200 words, to improve text-video alignment. Additionally, we develop a Video Training Suitability Score (VTSS) that integrates multiple sub-metrics, allowing us to filter high-quality videos from the original corpus. Finally, we incorporate several metrics into the training process of the generation model, further refining the fine-grained conditions. Our experiments demonstrate the effectiveness of our data processing pipeline and the quality of the proposed Koala-36M dataset. Our dataset and code have been released at https://koala36m.github.io/.
Authors:Xiaofeng Mao, Zhengkai Jiang, Fu-Yun Wang, Jiangning Zhang, Hao Chen, Mingmin Chi, Yabiao Wang, Wenhan Luo
Title: OSV: One Step is Enough for High-Quality Image to Video Generation
Abstract:
Video diffusion models have shown great potential in generating high-quality videos, making them an increasingly popular focus. However, their inherent iterative nature leads to substantial computational and time costs. While efforts have been made to accelerate video diffusion by reducing inference steps (through techniques like consistency distillation) and GAN training (these approaches often fall short in either performance or training stability). In this work, we introduce a two-stage training framework that effectively combines consistency distillation with GAN training to address these challenges. Additionally, we propose a novel video discriminator design, which eliminates the need for decoding the video latents and improves the final performance. Our model is capable of producing high-quality videos in merely one-step, with the flexibility to perform multi-step refinement for further performance enhancement. Our quantitative evaluation on the OpenWebVid-1M benchmark shows that our model significantly outperforms existing methods. Notably, our 1-step performance(FVD 171.15) exceeds the 8-step performance of the consistency distillation based method, AnimateLCM (FVD 184.79), and approaches the 25-step performance of advanced Stable Video Diffusion (FVD 156.94).
Authors:Teng Hu, Jiangning Zhang, Ran Yi, Hongrui Huang, Yabiao Wang, Lizhuang Ma
Title: SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation
Abstract:
In recent years, the development of diffusion models has led to significant progress in image and video generation tasks, with pre-trained models like the Stable Diffusion series playing a crucial role. Inspired by model pruning which lightens large pre-trained models by removing unimportant parameters, we propose a novel model fine-tuning method to make full use of these ineffective parameters and enable the pre-trained model with new task-specified capabilities. In this work, we first investigate the importance of parameters in pre-trained diffusion models, and discover that the smallest 10% to 20% of parameters by absolute values do not contribute to the generation process. Based on this observation, we propose a method termed SaRA that re-utilizes these temporarily ineffective parameters, equating to optimizing a sparse weight matrix to learn the task-specific knowledge. To mitigate overfitting, we propose a nuclear-norm-based low-rank sparse training scheme for efficient fine-tuning. Furthermore, we design a new progressive parameter adjustment strategy to make full use of the re-trained/finetuned parameters. Finally, we propose a novel unstructural backpropagation strategy, which significantly reduces memory costs during fine-tuning. Our method enhances the generative capabilities of pre-trained models in downstream applications and outperforms traditional fine-tuning methods like LoRA in maintaining model's generalization ability. We validate our approach through fine-tuning experiments on SD models, demonstrating significant improvements. SaRA also offers a practical advantage that requires only a single line of code modification for efficient implementation and is seamlessly compatible with existing methods.
Authors:Xuan Ju, Yiming Gao, Zhaoyang Zhang, Ziyang Yuan, Xintao Wang, Ailing Zeng, Yu Xiong, Qiang Xu, Ying Shan
Title: MiraData: A Large-Scale Video Dataset with Long Durations and Structured Captions
Abstract:
Sora's high-motion intensity and long consistent videos have significantly impacted the field of video generation, attracting unprecedented attention. However, existing publicly available datasets are inadequate for generating Sora-like videos, as they mainly contain short videos with low motion intensity and brief captions. To address these issues, we propose MiraData, a high-quality video dataset that surpasses previous ones in video duration, caption detail, motion strength, and visual quality. We curate MiraData from diverse, manually selected sources and meticulously process the data to obtain semantically consistent clips. GPT-4V is employed to annotate structured captions, providing detailed descriptions from four different perspectives along with a summarized dense caption. To better assess temporal consistency and motion intensity in video generation, we introduce MiraBench, which enhances existing benchmarks by adding 3D consistency and tracking-based motion strength metrics. MiraBench includes 150 evaluation prompts and 17 metrics covering temporal consistency, motion strength, 3D consistency, visual quality, text-video alignment, and distribution similarity. To demonstrate the utility and effectiveness of MiraData, we conduct experiments using our DiT-based video generation model, MiraDiT. The experimental results on MiraBench demonstrate the superiority of MiraData, especially in motion strength.
Authors:Yaowei Li, Xintao Wang, Zhaoyang Zhang, Zhouxia Wang, Ziyang Yuan, Liangbin Xie, Yuexian Zou, Ying Shan
Title: Image Conductor: Precision Control for Interactive Video Synthesis
Abstract:
Filmmaking and animation production often require sophisticated techniques for coordinating camera transitions and object movements, typically involving labor-intensive real-world capturing. Despite advancements in generative AI for video creation, achieving precise control over motion for interactive video asset generation remains challenging. To this end, we propose Image Conductor, a method for precise control of camera transitions and object movements to generate video assets from a single image. An well-cultivated training strategy is proposed to separate distinct camera and object motion by camera LoRA weights and object LoRA weights. To further address cinematographic variations from ill-posed trajectories, we introduce a camera-free guidance technique during inference, enhancing object movements while eliminating camera transitions. Additionally, we develop a trajectory-oriented video motion data curation pipeline for training. Quantitative and qualitative experiments demonstrate our method's precision and fine-grained control in generating motion-controllable videos from images, advancing the practical application of interactive video synthesis. Project webpage available at https://liyaowei-stu.github.io/project/ImageConductor/
Authors:Chong Mou, Mingdeng Cao, Xintao Wang, Zhaoyang Zhang, Ying Shan, Jian Zhang
Title: ReVideo: Remake a Video with Motion and Content Control
Abstract:
Despite significant advancements in video generation and editing using diffusion models, achieving accurate and localized video editing remains a substantial challenge. Additionally, most existing video editing methods primarily focus on altering visual content, with limited research dedicated to motion editing. In this paper, we present a novel attempt to Remake a Video (ReVideo) which stands out from existing methods by allowing precise video editing in specific areas through the specification of both content and motion. Content editing is facilitated by modifying the first frame, while the trajectory-based motion control offers an intuitive user interaction experience. ReVideo addresses a new task involving the coupling and training imbalance between content and motion control. To tackle this, we develop a three-stage training strategy that progressively decouples these two aspects from coarse to fine. Furthermore, we propose a spatiotemporal adaptive fusion module to integrate content and motion control across various sampling steps and spatial locations. Extensive experiments demonstrate that our ReVideo has promising performance on several accurate video editing applications, i.e., (1) locally changing video content while keeping the motion constant, (2) keeping content unchanged and customizing new motion trajectories, (3) modifying both content and motion trajectories. Our method can also seamlessly extend these applications to multi-area editing without specific training, demonstrating its flexibility and robustness.
Authors:Teng Hu, Jiangning Zhang, Ran Yi, Yating Wang, Hongrui Huang, Jieyu Weng, Yabiao Wang, Lizhuang Ma
Title: MotionMaster: Training-free Camera Motion Transfer For Video Generation
Abstract:
The emergence of diffusion models has greatly propelled the progress in image and video generation. Recently, some efforts have been made in controllable video generation, including text-to-video generation and video motion control, among which camera motion control is an important topic. However, existing camera motion control methods rely on training a temporal camera module, and necessitate substantial computation resources due to the large amount of parameters in video generation models. Moreover, existing methods pre-define camera motion types during training, which limits their flexibility in camera control. Therefore, to reduce training costs and achieve flexible camera control, we propose COMD, a novel training-free video motion transfer model, which disentangles camera motions and object motions in source videos and transfers the extracted camera motions to new videos. We first propose a one-shot camera motion disentanglement method to extract camera motion from a single source video, which separates the moving objects from the background and estimates the camera motion in the moving objects region based on the motion in the background by solving a Poisson equation. Furthermore, we propose a few-shot camera motion disentanglement method to extract the common camera motion from multiple videos with similar camera motions, which employs a window-based clustering technique to extract the common features in temporal attention maps of multiple videos. Finally, we propose a motion combination method to combine different types of camera motions together, enabling our model a more controllable and flexible camera control. Extensive experiments demonstrate that our training-free approach can effectively decouple camera-object motion and apply the decoupled camera motion to a wide range of controllable video generation tasks, achieving flexible and diverse camera motion control.
Authors:Luozhou Wang, Ziyang Mai, Guibao Shen, Yixun Liang, Xin Tao, Pengfei Wan, Di Zhang, Yijun Li, Yingcong Chen
Title: Motion Inversion for Video Customization
Abstract:
In this work, we present a novel approach for motion customization in video generation, addressing the widespread gap in the exploration of motion representation within video generative models. Recognizing the unique challenges posed by the spatiotemporal nature of video, our method introduces Motion Embeddings, a set of explicit, temporally coherent embeddings derived from a given video. These embeddings are designed to integrate seamlessly with the temporal transformer modules of video diffusion models, modulating self-attention computations across frames without compromising spatial integrity. Our approach provides a compact and efficient solution to motion representation, utilizing two types of embeddings: a Motion Query-Key Embedding to modulate the temporal attention map and a Motion Value Embedding to modulate the attention values. Additionally, we introduce an inference strategy that excludes spatial dimensions from the Motion Query-Key Embedding and applies a differential operation to the Motion Value Embedding, both designed to debias appearance and ensure the embeddings focus solely on motion. Our contributions include the introduction of a tailored motion embedding for customization tasks and a demonstration of the practical advantages and effectiveness of our method through extensive experiments.
Authors:Lanqing Guo, Yingqing He, Haoxin Chen, Menghan Xia, Xiaodong Cun, Yufei Wang, Siyu Huang, Yong Zhang, Xintao Wang, Qifeng Chen, Ying Shan, Bihan Wen
Title: Make a Cheap Scaling: A Self-Cascade Diffusion Model for Higher-Resolution Adaptation
Abstract:
Diffusion models have proven to be highly effective in image and video generation; however, they encounter challenges in the correct composition of objects when generating images of varying sizes due to single-scale training data. Adapting large pre-trained diffusion models to higher resolution demands substantial computational and optimization resources, yet achieving generation capabilities comparable to low-resolution models remains challenging. This paper proposes a novel self-cascade diffusion model that leverages the knowledge gained from a well-trained low-resolution image/video generation model, enabling rapid adaptation to higher-resolution generation. Building on this, we employ the pivot replacement strategy to facilitate a tuning-free version by progressively leveraging reliable semantic guidance derived from the low-resolution model. We further propose to integrate a sequence of learnable multi-scale upsampler modules for a tuning version capable of efficiently learning structural details at a new scale from a small amount of newly acquired high-resolution training data. Compared to full fine-tuning, our approach achieves a $5\times$ training speed-up and requires only 0.002M tuning parameters. Extensive experiments demonstrate that our approach can quickly adapt to higher-resolution image and video synthesis by fine-tuning for just $10k$ steps, with virtually no additional inference time.
Authors:Shiyuan Yang, Liang Hou, Haibin Huang, Chongyang Ma, Pengfei Wan, Di Zhang, Xiaodong Chen, Jing Liao
Title: Direct-a-Video: Customized Video Generation with User-Directed Camera Movement and Object Motion
Abstract:
Recent text-to-video diffusion models have achieved impressive progress. In practice, users often desire the ability to control object motion and camera movement independently for customized video creation. However, current methods lack the focus on separately controlling object motion and camera movement in a decoupled manner, which limits the controllability and flexibility of text-to-video models. In this paper, we introduce Direct-a-Video, a system that allows users to independently specify motions for multiple objects as well as camera's pan and zoom movements, as if directing a video. We propose a simple yet effective strategy for the decoupled control of object motion and camera movement. Object motion is controlled through spatial cross-attention modulation using the model's inherent priors, requiring no additional optimization. For camera movement, we introduce new temporal cross-attention layers to interpret quantitative camera movement parameters. We further employ an augmentation-based approach to train these layers in a self-supervised manner on a small-scale dataset, eliminating the need for explicit motion annotation. Both components operate independently, allowing individual or combined control, and can generalize to open-domain scenarios. Extensive experiments demonstrate the superiority and effectiveness of our method. Project page and code are available at https://direct-a-video.github.io/.
Authors:Xun Guo, Mingwu Zheng, Liang Hou, Yuan Gao, Yufan Deng, Pengfei Wan, Di Zhang, Yufan Liu, Weiming Hu, Zhengjun Zha, Haibin Huang, Chongyang Ma
Title: I2V-Adapter: A General Image-to-Video Adapter for Diffusion Models
Abstract:
Text-guided image-to-video (I2V) generation aims to generate a coherent video that preserves the identity of the input image and semantically aligns with the input prompt. Existing methods typically augment pretrained text-to-video (T2V) models by either concatenating the image with noised video frames channel-wise before being fed into the model or injecting the image embedding produced by pretrained image encoders in cross-attention modules. However, the former approach often necessitates altering the fundamental weights of pretrained T2V models, thus restricting the model's compatibility within the open-source communities and disrupting the model's prior knowledge. Meanwhile, the latter typically fails to preserve the identity of the input image. We present I2V-Adapter to overcome such limitations. I2V-Adapter adeptly propagates the unnoised input image to subsequent noised frames through a cross-frame attention mechanism, maintaining the identity of the input image without any changes to the pretrained T2V model. Notably, I2V-Adapter only introduces a few trainable parameters, significantly alleviating the training cost and also ensures compatibility with existing community-driven personalized models and control tools. Moreover, we propose a novel Frame Similarity Prior to balance the motion amplitude and the stability of generated videos through two adjustable control coefficients. Our experimental results demonstrate that I2V-Adapter is capable of producing high-quality videos. This performance, coupled with its agility and adaptability, represents a substantial advancement in the field of I2V, particularly for personalized and controllable applications.
Authors:Jiwen Yu, Xiaodong Cun, Chenyang Qi, Yong Zhang, Xintao Wang, Ying Shan, Jian Zhang
Title: AnimateZero: Video Diffusion Models are Zero-Shot Image Animators
Abstract:
Large-scale text-to-video (T2V) diffusion models have great progress in recent years in terms of visual quality, motion and temporal consistency. However, the generation process is still a black box, where all attributes (e.g., appearance, motion) are learned and generated jointly without precise control ability other than rough text descriptions. Inspired by image animation which decouples the video as one specific appearance with the corresponding motion, we propose AnimateZero to unveil the pre-trained text-to-video diffusion model, i.e., AnimateDiff, and provide more precise appearance and motion control abilities for it. For appearance control, we borrow intermediate latents and their features from the text-to-image (T2I) generation for ensuring the generated first frame is equal to the given generated image. For temporal control, we replace the global temporal attention of the original T2V model with our proposed positional-corrected window attention to ensure other frames align with the first frame well. Empowered by the proposed methods, AnimateZero can successfully control the generating progress without further training. As a zero-shot image animator for given images, AnimateZero also enables multiple new applications, including interactive video generation and real image animation. The detailed experiments demonstrate the effectiveness of the proposed method in both T2V and related applications.
Authors:Zhouxia Wang, Ziyang Yuan, Xintao Wang, Tianshui Chen, Menghan Xia, Ping Luo, Ying Shan
Title: MotionCtrl: A Unified and Flexible Motion Controller for Video Generation
Abstract:
Motions in a video primarily consist of camera motion, induced by camera movement, and object motion, resulting from object movement. Accurate control of both camera and object motion is essential for video generation. However, existing works either mainly focus on one type of motion or do not clearly distinguish between the two, limiting their control capabilities and diversity. Therefore, this paper presents MotionCtrl, a unified and flexible motion controller for video generation designed to effectively and independently control camera and object motion. The architecture and training strategy of MotionCtrl are carefully devised, taking into account the inherent properties of camera motion, object motion, and imperfect training data. Compared to previous methods, MotionCtrl offers three main advantages: 1) It effectively and independently controls camera motion and object motion, enabling more fine-grained motion control and facilitating flexible and diverse combinations of both types of motion. 2) Its motion conditions are determined by camera poses and trajectories, which are appearance-free and minimally impact the appearance or shape of objects in generated videos. 3) It is a relatively generalizable model that can adapt to a wide array of camera poses and trajectories once trained. Extensive qualitative and quantitative experiments have been conducted to demonstrate the superiority of MotionCtrl over existing methods. Project Page: https://wzhouxiff.github.io/projects/MotionCtrl/
Authors:Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Xintao Wang, Tien-Tsin Wong, Ying Shan
Title: DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors
Abstract:
Animating a still image offers an engaging visual experience. Traditional image animation techniques mainly focus on animating natural scenes with stochastic dynamics (e.g. clouds and fluid) or domain-specific motions (e.g. human hair or body motions), and thus limits their applicability to more general visual content. To overcome this limitation, we explore the synthesis of dynamic content for open-domain images, converting them into animated videos. The key idea is to utilize the motion prior of text-to-video diffusion models by incorporating the image into the generative process as guidance. Given an image, we first project it into a text-aligned rich context representation space using a query transformer, which facilitates the video model to digest the image content in a compatible fashion. However, some visual details still struggle to be preserved in the resultant videos. To supplement with more precise image information, we further feed the full image to the diffusion model by concatenating it with the initial noises. Experimental results show that our proposed method can produce visually convincing and more logical & natural motions, as well as higher conformity to the input image. Comparative evaluation demonstrates the notable superiority of our approach over existing competitors.
Authors:Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang, Yong Zhang, Haoxin Chen, Yang Liu, Tieyong Zeng, Raymond Chan, Ying Shan
Title: EvalCrafter: Benchmarking and Evaluating Large Video Generation Models
Abstract:
The vision and language generative models have been overgrown in recent years. For video generation, various open-sourced models and public-available services have been developed to generate high-quality videos. However, these methods often use a few metrics, e.g., FVD or IS, to evaluate the performance. We argue that it is hard to judge the large conditional generative models from the simple metrics since these models are often trained on very large datasets with multi-aspect abilities. Thus, we propose a novel framework and pipeline for exhaustively evaluating the performance of the generated videos. Our approach involves generating a diverse and comprehensive list of 700 prompts for text-to-video generation, which is based on an analysis of real-world user data and generated with the assistance of a large language model. Then, we evaluate the state-of-the-art video generative models on our carefully designed benchmark, in terms of visual qualities, content qualities, motion qualities, and text-video alignment with 17 well-selected objective metrics. To obtain the final leaderboard of the models, we further fit a series of coefficients to align the objective metrics to the users' opinions. Based on the proposed human alignment method, our final score shows a higher correlation than simply averaging the metrics, showing the effectiveness of the proposed evaluation method.
Authors:Jinbo Xing, Menghan Xia, Yuxin Liu, Yuechen Zhang, Yong Zhang, Yingqing He, Hanyuan Liu, Haoxin Chen, Xiaodong Cun, Xintao Wang, Ying Shan, Tien-Tsin Wong
Title: Make-Your-Video: Customized Video Generation Using Textual and Structural Guidance
Abstract:
Creating a vivid video from the event or scenario in our imagination is a truly fascinating experience. Recent advancements in text-to-video synthesis have unveiled the potential to achieve this with prompts only. While text is convenient in conveying the overall scene context, it may be insufficient to control precisely. In this paper, we explore customized video generation by utilizing text as context description and motion structure (e.g. frame-wise depth) as concrete guidance. Our method, dubbed Make-Your-Video, involves joint-conditional video generation using a Latent Diffusion Model that is pre-trained for still image synthesis and then promoted for video generation with the introduction of temporal modules. This two-stage learning scheme not only reduces the computing resources required, but also improves the performance by transferring the rich concepts available in image datasets solely into video generation. Moreover, we use a simple yet effective causal attention mask strategy to enable longer video synthesis, which mitigates the potential quality degradation effectively. Experimental results show the superiority of our method over existing baselines, particularly in terms of temporal coherence and fidelity to users' guidance. In addition, our model enables several intriguing applications that demonstrate potential for practical usage.
Authors:Jiazhi Guan, Kaisiyuan Wang, Zhiliang Xu, Quanwei Yang, Yasheng Sun, Shengyi He, Borong Liang, Yukang Cao, Yingying Li, Haocheng Feng, Errui Ding, Jingdong Wang, Youjian Zhao, Hang Zhou, Ziwei Liu
Title: AudCast: Audio-Driven Human Video Generation by Cascaded Diffusion Transformers
Abstract:
Despite the recent progress of audio-driven video generation, existing methods mostly focus on driving facial movements, leading to non-coherent head and body dynamics. Moving forward, it is desirable yet challenging to generate holistic human videos with both accurate lip-sync and delicate co-speech gestures w.r.t. given audio. In this work, we propose AudCast, a generalized audio-driven human video generation framework adopting a cascade Diffusion-Transformers (DiTs) paradigm, which synthesizes holistic human videos based on a reference image and a given audio. 1) Firstly, an audio-conditioned Holistic Human DiT architecture is proposed to directly drive the movements of any human body with vivid gesture dynamics. 2) Then to enhance hand and face details that are well-knownly difficult to handle, a Regional Refinement DiT leverages regional 3D fitting as the bridge to reform the signals, producing the final results. Extensive experiments demonstrate that our framework generates high-fidelity audio-driven holistic human videos with temporal coherence and fine facial and hand details. Resources can be found at https://guanjz20.github.io/projects/AudCast.
Authors:Yingying Fan, Quanwei Yang, Kaisiyuan Wang, Hang Zhou, Yingying Li, Haocheng Feng, Errui Ding, Yu Wu, Jingdong Wang
Title: Re-HOLD: Video Hand Object Interaction Reenactment via adaptive Layout-instructed Diffusion Model
Abstract:
Current digital human studies focusing on lip-syncing and body movement are no longer sufficient to meet the growing industrial demand, while human video generation techniques that support interacting with real-world environments (e.g., objects) have not been well investigated. Despite human hand synthesis already being an intricate problem, generating objects in contact with hands and their interactions presents an even more challenging task, especially when the objects exhibit obvious variations in size and shape. To tackle these issues, we present a novel video Reenactment framework focusing on Human-Object Interaction (HOI) via an adaptive Layout-instructed Diffusion model (Re-HOLD). Our key insight is to employ specialized layout representation for hands and objects, respectively. Such representations enable effective disentanglement of hand modeling and object adaptation to diverse motion sequences. To further improve the generation quality of HOI, we design an interactive textural enhancement module for both hands and objects by introducing two independent memory banks. We also propose a layout adjustment strategy for the cross-object reenactment scenario to adaptively adjust unreasonable layouts caused by diverse object sizes during inference. Comprehensive qualitative and quantitative evaluations demonstrate that our proposed framework significantly outperforms existing methods. Project page: https://fyycs.github.io/Re-HOLD.
Authors:Haoyu Zheng, Wenqiao Zhang, Zheqi Lv, Yu Zhong, Yang Dai, Jianxiang An, Yongliang Shen, Juncheng Li, Dongping Zhang, Siliang Tang, Yueting Zhuang
Title: MAKIMA: Tuning-free Multi-Attribute Open-domain Video Editing via Mask-Guided Attention Modulation
Abstract:
Diffusion-based text-to-image (T2I) models have demonstrated remarkable results in global video editing tasks. However, their focus is primarily on global video modifications, and achieving desired attribute-specific changes remains a challenging task, specifically in multi-attribute editing (MAE) in video. Contemporary video editing approaches either require extensive fine-tuning or rely on additional networks (such as ControlNet) for modeling multi-object appearances, yet they remain in their infancy, offering only coarse-grained MAE solutions. In this paper, we present MAKIMA, a tuning-free MAE framework built upon pretrained T2I models for open-domain video editing. Our approach preserves video structure and appearance information by incorporating attention maps and features from the inversion process during denoising. To facilitate precise editing of multiple attributes, we introduce mask-guided attention modulation, enhancing correlations between spatially corresponding tokens and suppressing cross-attribute interference in both self-attention and cross-attention layers. To balance video frame generation quality and efficiency, we implement consistent feature propagation, which generates frame sequences by editing keyframes and propagating their features throughout the sequence. Extensive experiments demonstrate that MAKIMA outperforms existing baselines in open-domain multi-attribute video editing tasks, achieving superior results in both editing accuracy and temporal consistency while maintaining computational efficiency.
Authors:Vipula Rawte, Sarthak Jain, Aarush Sinha, Garv Kaushik, Aman Bansal, Prathiksha Rumale Vishwanath, Samyak Rajesh Jain, Aishwarya Naresh Reganti, Vinija Jain, Aman Chadha, Amit P. Sheth, Amitava Das
Title: ViBe: A Text-to-Video Benchmark for Evaluating Hallucination in Large Multimodal Models
Abstract:
Recent advances in Large Multimodal Models (LMMs) have expanded their capabilities to video understanding, with Text-to-Video (T2V) models excelling in generating videos from textual prompts. However, they still frequently produce hallucinated content, revealing AI-generated inconsistencies. We introduce ViBe (https://vibe-t2v-bench.github.io/): a large-scale dataset of hallucinated videos from open-source T2V models. We identify five major hallucination types: Vanishing Subject, Omission Error, Numeric Variability, Subject Dysmorphia, and Visual Incongruity. Using ten T2V models, we generated and manually annotated 3,782 videos from 837 diverse MS COCO captions. Our proposed benchmark includes a dataset of hallucinated videos and a classification framework using video embeddings. ViBe serves as a critical resource for evaluating T2V reliability and advancing hallucination detection. We establish classification as a baseline, with the TimeSFormer + CNN ensemble achieving the best performance (0.345 accuracy, 0.342 F1 score). While initial baselines proposed achieve modest accuracy, this highlights the difficulty of automated hallucination detection and the need for improved methods. Our research aims to drive the development of more robust T2V models and evaluate their outputs based on user preferences.
Authors:Xin Li, Wenqing Chu, Ye Wu, Weihang Yuan, Fanglong Liu, Qi Zhang, Fu Li, Haocheng Feng, Errui Ding, Jingdong Wang
Title: VideoGen: A Reference-Guided Latent Diffusion Approach for High Definition Text-to-Video Generation
Abstract:
In this paper, we present VideoGen, a text-to-video generation approach, which can generate a high-definition video with high frame fidelity and strong temporal consistency using reference-guided latent diffusion. We leverage an off-the-shelf text-to-image generation model, e.g., Stable Diffusion, to generate an image with high content quality from the text prompt, as a reference image to guide video generation. Then, we introduce an efficient cascaded latent diffusion module conditioned on both the reference image and the text prompt, for generating latent video representations, followed by a flow-based temporal upsampling step to improve the temporal resolution. Finally, we map latent video representations into a high-definition video through an enhanced video decoder. During training, we use the first frame of a ground-truth video as the reference image for training the cascaded latent diffusion module. The main characterises of our approach include: the reference image generated by the text-to-image model improves the visual fidelity; using it as the condition makes the diffusion model focus more on learning the video dynamics; and the video decoder is trained over unlabeled video data, thus benefiting from high-quality easily-available videos. VideoGen sets a new state-of-the-art in text-to-video generation in terms of both qualitative and quantitative evaluation. See \url{https://videogen.github.io/VideoGen/} for more samples.
Authors:Bosheng Qin, Juncheng Li, Siliang Tang, Tat-Seng Chua, Yueting Zhuang
Title: InstructVid2Vid: Controllable Video Editing with Natural Language Instructions
Abstract:
We introduce InstructVid2Vid, an end-to-end diffusion-based methodology for video editing guided by human language instructions. Our approach empowers video manipulation guided by natural language directives, eliminating the need for per-example fine-tuning or inversion. The proposed InstructVid2Vid model modifies a pretrained image generation model, Stable Diffusion, to generate a time-dependent sequence of video frames. By harnessing the collective intelligence of disparate models, we engineer a training dataset rich in video-instruction triplets, which is a more cost-efficient alternative to collecting data in real-world scenarios. To enhance the coherence between successive frames within the generated videos, we propose the Inter-Frames Consistency Loss and incorporate it during the training process. With multimodal classifier-free guidance during the inference stage, the generated videos is able to resonate with both the input video and the accompanying instructions. Experimental results demonstrate that InstructVid2Vid is capable of generating high-quality, temporally coherent videos and performing diverse edits, including attribute editing, background changes, and style transfer. These results underscore the versatility and effectiveness of our proposed method.
Authors:Wen Wang, Qiuyu Wang, Kecheng Zheng, Hao Ouyang, Zhekai Chen, Biao Gong, Hao Chen, Yujun Shen, Chunhua Shen
Title: Framer: Interactive Frame Interpolation
Abstract:
We propose Framer for interactive frame interpolation, which targets producing smoothly transitioning frames between two images as per user creativity. Concretely, besides taking the start and end frames as inputs, our approach supports customizing the transition process by tailoring the trajectory of some selected keypoints. Such a design enjoys two clear benefits. First, incorporating human interaction mitigates the issue arising from numerous possibilities of transforming one image to another, and in turn enables finer control of local motions. Second, as the most basic form of interaction, keypoints help establish the correspondence across frames, enhancing the model to handle challenging cases (e.g., objects on the start and end frames are of different shapes and styles). It is noteworthy that our system also offers an "autopilot" mode, where we introduce a module to estimate the keypoints and refine the trajectory automatically, to simplify the usage in practice. Extensive experimental results demonstrate the appealing performance of Framer on various applications, such as image morphing, time-lapse video generation, cartoon interpolation, etc. The code, the model, and the interface will be released to facilitate further research.
Authors:Zhenzhi Wang, Yixuan Li, Yanhong Zeng, Youqing Fang, Yuwei Guo, Wenran Liu, Jing Tan, Kai Chen, Tianfan Xue, Bo Dai, Dahua Lin
Title: HumanVid: Demystifying Training Data for Camera-controllable Human Image Animation
Abstract:
Human image animation involves generating videos from a character photo, allowing user control and unlocking the potential for video and movie production. While recent approaches yield impressive results using high-quality training data, the inaccessibility of these datasets hampers fair and transparent benchmarking. Moreover, these approaches prioritize 2D human motion and overlook the significance of camera motions in videos, leading to limited control and unstable video generation. To demystify the training data, we present HumanVid, the first large-scale high-quality dataset tailored for human image animation, which combines crafted real-world and synthetic data. For the real-world data, we compile a vast collection of real-world videos from the internet. We developed and applied careful filtering rules to ensure video quality, resulting in a curated collection of 20K high-resolution (1080P) human-centric videos. Human and camera motion annotation is accomplished using a 2D pose estimator and a SLAM-based method. To expand our synthetic dataset, we collected 10K 3D avatar assets and leveraged existing assets of body shapes, skin textures and clothings. Notably, we introduce a rule-based camera trajectory generation method, enabling the synthetic pipeline to incorporate diverse and precise camera motion annotation, which can rarely be found in real-world data. To verify the effectiveness of HumanVid, we establish a baseline model named CamAnimate, short for Camera-controllable Human Animation, that considers both human and camera motions as conditions. Through extensive experimentation, we demonstrate that such simple baseline training on our HumanVid achieves state-of-the-art performance in controlling both human pose and camera motions, setting a new benchmark. Demo, data and code could be found in the project website: https://humanvid.github.io/.
Authors:Canyu Zhao, Mingyu Liu, Wen Wang, Weihua Chen, Fan Wang, Hao Chen, Bo Zhang, Chunhua Shen
Title: MovieDreamer: Hierarchical Generation for Coherent Long Visual Sequence
Abstract:
Recent advancements in video generation have primarily leveraged diffusion models for short-duration content. However, these approaches often fall short in modeling complex narratives and maintaining character consistency over extended periods, which is essential for long-form video production like movies. We propose MovieDreamer, a novel hierarchical framework that integrates the strengths of autoregressive models with diffusion-based rendering to pioneer long-duration video generation with intricate plot progressions and high visual fidelity. Our approach utilizes autoregressive models for global narrative coherence, predicting sequences of visual tokens that are subsequently transformed into high-quality video frames through diffusion rendering. This method is akin to traditional movie production processes, where complex stories are factorized down into manageable scene capturing. Further, we employ a multimodal script that enriches scene descriptions with detailed character information and visual style, enhancing continuity and character identity across scenes. We present extensive experiments across various movie genres, demonstrating that our approach not only achieves superior visual and narrative quality but also effectively extends the duration of generated content significantly beyond current capabilities. Homepage: https://aim-uofa.github.io/MovieDreamer/.
Authors:Jianzhi Liu, Junchen Zhu, Lianli Gao, Heng Tao Shen, Jingkuan Song
Title: AICL: Action In-Context Learning for Video Diffusion Model
Abstract:
The open-domain video generation models are constrained by the scale of the training video datasets, and some less common actions still cannot be generated. Some researchers explore video editing methods and achieve action generation by editing the spatial information of the same action video. However, this method mechanically generates identical actions without understanding, which does not align with the characteristics of open-domain scenarios. In this paper, we propose AICL, which empowers the generative model with the ability to understand action information in reference videos, similar to how humans do, through in-context learning. Extensive experiments demonstrate that AICL effectively captures the action and achieves state-of-the-art generation performance across three typical video diffusion models on five metrics when using randomly selected categories from non-training datasets.
Authors:Wen Wang, Kecheng Zheng, Qiuyu Wang, Hao Chen, Zifan Shi, Ceyuan Yang, Yujun Shen, Chunhua Shen
Title: GenDeF: Learning Generative Deformation Field for Video Generation
Abstract:
We offer a new perspective on approaching the task of video generation. Instead of directly synthesizing a sequence of frames, we propose to render a video by warping one static image with a generative deformation field (GenDeF). Such a pipeline enjoys three appealing advantages. First, we can sufficiently reuse a well-trained image generator to synthesize the static image (also called canonical image), alleviating the difficulty in producing a video and thereby resulting in better visual quality. Second, we can easily convert a deformation field to optical flows, making it possible to apply explicit structural regularizations for motion modeling, leading to temporally consistent results. Third, the disentanglement between content and motion allows users to process a synthesized video through processing its corresponding static image without any tuning, facilitating many applications like video editing, keypoint tracking, and video segmentation. Both qualitative and quantitative results on three common video generation benchmarks demonstrate the superiority of our GenDeF method.
Authors:Sitong Su, Jianzhi Liu, Lianli Gao, Jingkuan Song
Title: F3-Pruning: A Training-Free and Generalized Pruning Strategy towards Faster and Finer Text-to-Video Synthesis
Abstract:
Recently Text-to-Video (T2V) synthesis has undergone a breakthrough by training transformers or diffusion models on large-scale datasets. Nevertheless, inferring such large models incurs huge costs.Previous inference acceleration works either require costly retraining or are model-specific.To address this issue, instead of retraining we explore the inference process of two mainstream T2V models using transformers and diffusion models.The exploration reveals the redundancy in temporal attention modules of both models, which are commonly utilized to establish temporal relations among frames.Consequently, we propose a training-free and generalized pruning strategy called F3-Pruning to prune redundant temporal attention weights.Specifically, when aggregate temporal attention values are ranked below a certain ratio, corresponding weights will be pruned.Extensive experiments on three datasets using a classic transformer-based model CogVideo and a typical diffusion-based model Tune-A-Video verify the effectiveness of F3-Pruning in inference acceleration, quality assurance and broad applicability.
Authors:Sitong Su, Litao Guo, Lianli Gao, Hengtao Shen, Jingkuan Song
Title: MotionZero:Exploiting Motion Priors for Zero-shot Text-to-Video Generation
Abstract:
Zero-shot Text-to-Video synthesis generates videos based on prompts without any videos. Without motion information from videos, motion priors implied in prompts are vital guidance. For example, the prompt "airplane landing on the runway" indicates motion priors that the "airplane" moves downwards while the "runway" stays static. Whereas the motion priors are not fully exploited in previous approaches, thus leading to two nontrivial issues: 1) the motion variation pattern remains unaltered and prompt-agnostic for disregarding motion priors; 2) the motion control of different objects is inaccurate and entangled without considering the independent motion priors of different objects. To tackle the two issues, we propose a prompt-adaptive and disentangled motion control strategy coined as MotionZero, which derives motion priors from prompts of different objects by Large-Language-Models and accordingly applies motion control of different objects to corresponding regions in disentanglement. Furthermore, to facilitate videos with varying degrees of motion amplitude, we propose a Motion-Aware Attention scheme which adjusts attention among frames by motion amplitude. Extensive experiments demonstrate that our strategy could correctly control motion of different objects and support versatile applications including zero-shot video edit.
Authors:Junchen Zhu, Huan Yang, Wenjing Wang, Huiguo He, Zixi Tuo, Yongsheng Yu, Wen-Huang Cheng, Lianli Gao, Jingkuan Song, Jianlong Fu, Jiebo Luo
Title: MobileVidFactory: Automatic Diffusion-Based Social Media Video Generation for Mobile Devices from Text
Abstract:
Videos for mobile devices become the most popular access to share and acquire information recently. For the convenience of users' creation, in this paper, we present a system, namely MobileVidFactory, to automatically generate vertical mobile videos where users only need to give simple texts mainly. Our system consists of two parts: basic and customized generation. In the basic generation, we take advantage of the pretrained image diffusion model, and adapt it to a high-quality open-domain vertical video generator for mobile devices. As for the audio, by retrieving from our big database, our system matches a suitable background sound for the video. Additionally to produce customized content, our system allows users to add specified screen texts to the video for enriching visual expression, and specify texts for automatic reading with optional voices as they like.
Authors:Yibin Wang, Yuhang Zang, Hao Li, Cheng Jin, Jiaqi Wang
Title: Unified Reward Model for Multimodal Understanding and Generation
Abstract:
Recent advances in human preference alignment have significantly enhanced multimodal generation and understanding. A key approach is training reward models to guide preference optimization. However, existing models are often task-specific, limiting their adaptability across diverse visual applications. We also argue that jointly learning to assess multiple tasks may foster a synergistic effect, where improved image understanding enhances image generation assessment, and refined image evaluation benefits video assessment through better frame analysis. To this end, this paper proposes UnifiedReward, the first unified reward model for multimodal understanding and generation assessment, enabling both pairwise ranking and pointwise scoring, which can be employed for vision model preference alignment. Specifically, (1) we first develop UnifiedReward on our constructed large-scale human preference dataset, including both image and video generation/understanding tasks. (2) Then, it is utilized to automatically construct high-quality preference pair data based on the vision models, fine-gradually filtering their outputs through pair ranking and point sifting. (3) Finally, these data are used for their preference alignment through Direct Preference Optimization (DPO). Experimental results demonstrate that joint learning to assess diverse visual tasks can lead to substantial mutual benefits and we apply our pipeline to both image and video understanding/generation tasks, significantly improving the performance in each domain.
Authors:Dongyang Liu, Shicheng Li, Yutong Liu, Zhen Li, Kai Wang, Xinyue Li, Qi Qin, Yufei Liu, Yi Xin, Zhongyu Li, Bin Fu, Chenyang Si, Yuewen Cao, Conghui He, Ziwei Liu, Yu Qiao, Qibin Hou, Hongsheng Li, Peng Gao
Title: Lumina-Video: Efficient and Flexible Video Generation with Multi-scale Next-DiT
Abstract:
Recent advancements have established Diffusion Transformers (DiTs) as a dominant framework in generative modeling. Building on this success, Lumina-Next achieves exceptional performance in the generation of photorealistic images with Next-DiT. However, its potential for video generation remains largely untapped, with significant challenges in modeling the spatiotemporal complexity inherent to video data. To address this, we introduce Lumina-Video, a framework that leverages the strengths of Next-DiT while introducing tailored solutions for video synthesis. Lumina-Video incorporates a Multi-scale Next-DiT architecture, which jointly learns multiple patchifications to enhance both efficiency and flexibility. By incorporating the motion score as an explicit condition, Lumina-Video also enables direct control of generated videos' dynamic degree. Combined with a progressive training scheme with increasingly higher resolution and FPS, and a multi-source training scheme with mixed natural and synthetic data, Lumina-Video achieves remarkable aesthetic quality and motion smoothness at high training and inference efficiency. We additionally propose Lumina-V2A, a video-to-audio model based on Next-DiT, to create synchronized sounds for generated videos. Codes are released at https://www.github.com/Alpha-VLLM/Lumina-Video.
Authors:Yubin Chen, Xuyang Guo, Zhenmei Shi, Zhao Song, Jiahao Zhang
Title: T2VWorldBench: A Benchmark for Evaluating World Knowledge in Text-to-Video Generation
Abstract:
Text-to-video (T2V) models have shown remarkable performance in generating visually reasonable scenes, while their capability to leverage world knowledge for ensuring semantic consistency and factual accuracy remains largely understudied. In response to this challenge, we propose T2VWorldBench, the first systematic evaluation framework for evaluating the world knowledge generation abilities of text-to-video models, covering 6 major categories, 60 subcategories, and 1,200 prompts across a wide range of domains, including physics, nature, activity, culture, causality, and object. To address both human preference and scalable evaluation, our benchmark incorporates both human evaluation and automated evaluation using vision-language models (VLMs). We evaluated the 10 most advanced text-to-video models currently available, ranging from open source to commercial models, and found that most models are unable to understand world knowledge and generate truly correct videos. These findings point out a critical gap in the capability of current text-to-video models to leverage world knowledge, providing valuable research opportunities and entry points for constructing models with robust capabilities for commonsense reasoning and factual generation.
Authors:Xuyang Guo, Jiayan Huo, Zhenmei Shi, Zhao Song, Jiahao Zhang, Jiale Zhao
Title: T2VTextBench: A Human Evaluation Benchmark for Textual Control in Video Generation Models
Abstract:
Thanks to recent advancements in scalable deep architectures and large-scale pretraining, text-to-video generation has achieved unprecedented capabilities in producing high-fidelity, instruction-following content across a wide range of styles, enabling applications in advertising, entertainment, and education. However, these models' ability to render precise on-screen text, such as captions or mathematical formulas, remains largely untested, posing significant challenges for applications requiring exact textual accuracy. In this work, we introduce T2VTextBench, the first human-evaluation benchmark dedicated to evaluating on-screen text fidelity and temporal consistency in text-to-video models. Our suite of prompts integrates complex text strings with dynamic scene changes, testing each model's ability to maintain detailed instructions across frames. We evaluate ten state-of-the-art systems, ranging from open-source solutions to commercial offerings, and find that most struggle to generate legible, consistent text. These results highlight a critical gap in current video generators and provide a clear direction for future research aimed at enhancing textual manipulation in video synthesis.
Authors:Xuyang Guo, Jiayan Huo, Zhenmei Shi, Zhao Song, Jiahao Zhang, Jiale Zhao
Title: T2VPhysBench: A First-Principles Benchmark for Physical Consistency in Text-to-Video Generation
Abstract:
Text-to-video generative models have made significant strides in recent years, producing high-quality videos that excel in both aesthetic appeal and accurate instruction following, and have become central to digital art creation and user engagement online. Yet, despite these advancements, their ability to respect fundamental physical laws remains largely untested: many outputs still violate basic constraints such as rigid-body collisions, energy conservation, and gravitational dynamics, resulting in unrealistic or even misleading content. Existing physical-evaluation benchmarks typically rely on automatic, pixel-level metrics applied to simplistic, life-scenario prompts, and thus overlook both human judgment and first-principles physics. To fill this gap, we introduce \textbf{T2VPhysBench}, a first-principled benchmark that systematically evaluates whether state-of-the-art text-to-video systems, both open-source and commercial, obey twelve core physical laws including Newtonian mechanics, conservation principles, and phenomenological effects. Our benchmark employs a rigorous human evaluation protocol and includes three targeted studies: (1) an overall compliance assessment showing that all models score below 0.60 on average in each law category; (2) a prompt-hint ablation revealing that even detailed, law-specific hints fail to remedy physics violations; and (3) a counterfactual robustness test demonstrating that models often generate videos that explicitly break physical rules when so instructed. The results expose persistent limitations in current architectures and offer concrete insights for guiding future research toward truly physics-aware video generation.
Authors:Wangbo Zhao, Yizeng Han, Jiasheng Tang, Kai Wang, Hao Luo, Yibing Song, Gao Huang, Fan Wang, Yang You
Title: DyDiT++: Dynamic Diffusion Transformers for Efficient Visual Generation
Abstract:
Diffusion Transformer (DiT), an emerging diffusion model for visual generation, has demonstrated superior performance but suffers from substantial computational costs. Our investigations reveal that these costs primarily stem from the \emph{static} inference paradigm, which inevitably introduces redundant computation in certain \emph{diffusion timesteps} and \emph{spatial regions}. To overcome this inefficiency, we propose \textbf{Dy}namic \textbf{Di}ffusion \textbf{T}ransformer (DyDiT), an architecture that \emph{dynamically} adjusts its computation along both \emph{timestep} and \emph{spatial} dimensions. Specifically, we introduce a \emph{Timestep-wise Dynamic Width} (TDW) approach that adapts model width conditioned on the generation timesteps. In addition, we design a \emph{Spatial-wise Dynamic Token} (SDT) strategy to avoid redundant computation at unnecessary spatial locations. TDW and SDT can be seamlessly integrated into DiT and significantly accelerates the generation process. Building on these designs, we further enhance DyDiT in three key aspects. First, DyDiT is integrated seamlessly with flow matching-based generation, enhancing its versatility. Furthermore, we enhance DyDiT to tackle more complex visual generation tasks, including video generation and text-to-image generation, thereby broadening its real-world applications. Finally, to address the high cost of full fine-tuning and democratize technology access, we investigate the feasibility of training DyDiT in a parameter-efficient manner and introduce timestep-based dynamic LoRA (TD-LoRA). Extensive experiments on diverse visual generation models, including DiT, SiT, Latte, and FLUX, demonstrate the effectiveness of DyDiT.
Authors:Yang Luo, Xuanlei Zhao, Mengzhao Chen, Kaipeng Zhang, Wenqi Shao, Kai Wang, Zhangyang Wang, Yang You
Title: Enhance-A-Video: Better Generated Video for Free
Abstract:
DiT-based video generation has achieved remarkable results, but research into enhancing existing models remains relatively unexplored. In this work, we introduce a training-free approach to enhance the coherence and quality of DiT-based generated videos, named Enhance-A-Video. The core idea is enhancing the cross-frame correlations based on non-diagonal temporal attention distributions. Thanks to its simple design, our approach can be easily applied to most DiT-based video generation frameworks without any retraining or fine-tuning. Across various DiT-based video generation models, our approach demonstrates promising improvements in both temporal consistency and visual quality. We hope this research can inspire future explorations in video generation enhancement.
Authors:Xuanlei Zhao, Xiaolong Jin, Kai Wang, Yang You
Title: Real-Time Video Generation with Pyramid Attention Broadcast
Abstract:
We present Pyramid Attention Broadcast (PAB), a real-time, high quality and training-free approach for DiT-based video generation. Our method is founded on the observation that attention difference in the diffusion process exhibits a U-shaped pattern, indicating significant redundancy. We mitigate this by broadcasting attention outputs to subsequent steps in a pyramid style. It applies different broadcast strategies to each attention based on their variance for best efficiency. We further introduce broadcast sequence parallel for more efficient distributed inference. PAB demonstrates up to 10.5x speedup across three models compared to baselines, achieving real-time generation for up to 720p videos. We anticipate that our simple yet effective method will serve as a robust baseline and facilitate future research and application for video generation.
Authors:Haoyuan Shi, Yunxin Li, Xinyu Chen, Longyue Wang, Baotian Hu, Min Zhang
Title: AniMaker: Automated Multi-Agent Animated Storytelling with MCTS-Driven Clip Generation
Abstract:
Despite rapid advancements in video generation models, generating coherent storytelling videos that span multiple scenes and characters remains challenging. Current methods often rigidly convert pre-generated keyframes into fixed-length clips, resulting in disjointed narratives and pacing issues. Furthermore, the inherent instability of video generation models means that even a single low-quality clip can significantly degrade the entire output animation's logical coherence and visual continuity. To overcome these obstacles, we introduce AniMaker, a multi-agent framework enabling efficient multi-candidate clip generation and storytelling-aware clip selection, thus creating globally consistent and story-coherent animation solely from text input. The framework is structured around specialized agents, including the Director Agent for storyboard generation, the Photography Agent for video clip generation, the Reviewer Agent for evaluation, and the Post-Production Agent for editing and voiceover. Central to AniMaker's approach are two key technical components: MCTS-Gen in Photography Agent, an efficient Monte Carlo Tree Search (MCTS)-inspired strategy that intelligently navigates the candidate space to generate high-potential clips while optimizing resource usage; and AniEval in Reviewer Agent, the first framework specifically designed for multi-shot animation evaluation, which assesses critical aspects such as story-level consistency, action completion, and animation-specific features by considering each clip in the context of its preceding and succeeding clips. Experiments demonstrate that AniMaker achieves superior quality as measured by popular metrics including VBench and our proposed AniEval framework, while significantly improving the efficiency of multi-candidate generation, pushing AI-generated storytelling animation closer to production standards.
Authors:Jiayang Liu, Siyuan Liang, Shiqian Zhao, Rongcheng Tu, Wenbo Zhou, Aishan Liu, Dacheng Tao, Siew Kei Lam
Title: T2V-OptJail: Discrete Prompt Optimization for Text-to-Video Jailbreak Attacks
Abstract:
In recent years, fueled by the rapid advancement of diffusion models, text-to-video (T2V) generation models have achieved remarkable progress, with notable examples including Pika, Luma, Kling, and Open-Sora. Although these models exhibit impressive generative capabilities, they also expose significant security risks due to their vulnerability to jailbreak attacks, where the models are manipulated to produce unsafe content such as pornography, violence, or discrimination. Existing works such as T2VSafetyBench provide preliminary benchmarks for safety evaluation, but lack systematic methods for thoroughly exploring model vulnerabilities. To address this gap, we are the first to formalize the T2V jailbreak attack as a discrete optimization problem and propose a joint objective-based optimization framework, called T2V-OptJail. This framework consists of two key optimization goals: bypassing the built-in safety filtering mechanisms to increase the attack success rate, preserving semantic consistency between the adversarial prompt and the unsafe input prompt, as well as between the generated video and the unsafe input prompt, to enhance content controllability. In addition, we introduce an iterative optimization strategy guided by prompt variants, where multiple semantically equivalent candidates are generated in each round, and their scores are aggregated to robustly guide the search toward optimal adversarial prompts. We conduct large-scale experiments on several T2V models, covering both open-source models and real commercial closed-source models. The experimental results show that the proposed method improves 11.4% and 10.0% over the existing state-of-the-art method in terms of attack success rate assessed by GPT-4, attack success rate assessed by human accessors, respectively, verifying the significant advantages of the method in terms of attack effectiveness and content control.
Authors:Siyuan Liang, Jiayang Liu, Jiecheng Zhai, Tianmeng Fang, Rongcheng Tu, Aishan Liu, Xiaochun Cao, Dacheng Tao
Title: T2VShield: Model-Agnostic Jailbreak Defense for Text-to-Video Models
Abstract:
The rapid development of generative artificial intelligence has made text to video models essential for building future multimodal world simulators. However, these models remain vulnerable to jailbreak attacks, where specially crafted prompts bypass safety mechanisms and lead to the generation of harmful or unsafe content. Such vulnerabilities undermine the reliability and security of simulation based applications. In this paper, we propose T2VShield, a comprehensive and model agnostic defense framework designed to protect text to video models from jailbreak threats. Our method systematically analyzes the input, model, and output stages to identify the limitations of existing defenses, including semantic ambiguities in prompts, difficulties in detecting malicious content in dynamic video outputs, and inflexible model centric mitigation strategies. T2VShield introduces a prompt rewriting mechanism based on reasoning and multimodal retrieval to sanitize malicious inputs, along with a multi scope detection module that captures local and global inconsistencies across time and modalities. The framework does not require access to internal model parameters and works with both open and closed source systems. Extensive experiments on five platforms show that T2VShield can reduce jailbreak success rates by up to 35 percent compared to strong baselines. We further develop a human centered audiovisual evaluation protocol to assess perceptual safety, emphasizing the importance of visual level defense in enhancing the trustworthiness of next generation multimodal simulators.
Authors:Xinyu Liu, Ailing Zeng, Wei Xue, Harry Yang, Wenhan Luo, Qifeng Liu, Yike Guo
Title: VFX Creator: Animated Visual Effect Generation with Controllable Diffusion Transformer
Abstract:
Crafting magic and illusions is one of the most thrilling aspects of filmmaking, with visual effects (VFX) serving as the powerhouse behind unforgettable cinematic experiences. While recent advances in generative artificial intelligence have driven progress in generic image and video synthesis, the domain of controllable VFX generation remains relatively underexplored. In this work, we propose a novel paradigm for animated VFX generation as image animation, where dynamic effects are generated from user-friendly textual descriptions and static reference images. Our work makes two primary contributions: (i) Open-VFX, the first high-quality VFX video dataset spanning 15 diverse effect categories, annotated with textual descriptions, instance segmentation masks for spatial conditioning, and start-end timestamps for temporal control. (ii) VFX Creator, a simple yet effective controllable VFX generation framework based on a Video Diffusion Transformer. The model incorporates a spatial and temporal controllable LoRA adapter, requiring minimal training videos. Specifically, a plug-and-play mask control module enables instance-level spatial manipulation, while tokenized start-end motion timestamps embedded in the diffusion process, alongside the text encoder, allow precise temporal control over effect timing and pace. Extensive experiments on the Open-VFX test set demonstrate the superiority of the proposed system in generating realistic and dynamic effects, achieving state-of-the-art performance and generalization ability in both spatial and temporal controllability. Furthermore, we introduce a specialized metric to evaluate the precision of temporal control. By bridging traditional VFX techniques with generative approaches, VFX Creator unlocks new possibilities for efficient and high-quality video effect generation, making advanced VFX accessible to a broader audience.
Authors:Zhenran Xu, Longyue Wang, Jifang Wang, Zhouyi Li, Senbao Shi, Xue Yang, Yiyu Wang, Baotian Hu, Jun Yu, Min Zhang
Title: FilmAgent: A Multi-Agent Framework for End-to-End Film Automation in Virtual 3D Spaces
Abstract:
Virtual film production requires intricate decision-making processes, including scriptwriting, virtual cinematography, and precise actor positioning and actions. Motivated by recent advances in automated decision-making with language agent-based societies, this paper introduces FilmAgent, a novel LLM-based multi-agent collaborative framework for end-to-end film automation in our constructed 3D virtual spaces. FilmAgent simulates various crew roles, including directors, screenwriters, actors, and cinematographers, and covers key stages of a film production workflow: (1) idea development transforms brainstormed ideas into structured story outlines; (2) scriptwriting elaborates on dialogue and character actions for each scene; (3) cinematography determines the camera setups for each shot. A team of agents collaborates through iterative feedback and revisions, thereby verifying intermediate scripts and reducing hallucinations. We evaluate the generated videos on 15 ideas and 4 key aspects. Human evaluation shows that FilmAgent outperforms all baselines across all aspects and scores 3.98 out of 5 on average, showing the feasibility of multi-agent collaboration in filmmaking. Further analysis reveals that FilmAgent, despite using the less advanced GPT-4o model, surpasses the single-agent o1, showing the advantage of a well-coordinated multi-agent system. Lastly, we discuss the complementary strengths and weaknesses of OpenAI's text-to-video model Sora and our FilmAgent in filmmaking.
Authors:Tiehan Fan, Kepan Nan, Rui Xie, Penghao Zhou, Zhenheng Yang, Chaoyou Fu, Xiang Li, Jian Yang, Ying Tai
Title: InstanceCap: Improving Text-to-Video Generation via Instance-aware Structured Caption
Abstract:
Text-to-video generation has evolved rapidly in recent years, delivering remarkable results. Training typically relies on video-caption paired data, which plays a crucial role in enhancing generation performance. However, current video captions often suffer from insufficient details, hallucinations and imprecise motion depiction, affecting the fidelity and consistency of generated videos. In this work, we propose a novel instance-aware structured caption framework, termed InstanceCap, to achieve instance-level and fine-grained video caption for the first time. Based on this scheme, we design an auxiliary models cluster to convert original video into instances to enhance instance fidelity. Video instances are further used to refine dense prompts into structured phrases, achieving concise yet precise descriptions. Furthermore, a 22K InstanceVid dataset is curated for training, and an enhancement pipeline that tailored to InstanceCap structure is proposed for inference. Experimental results demonstrate that our proposed InstanceCap significantly outperform previous models, ensuring high fidelity between captions and videos while reducing hallucinations.
Authors:Yan Li, Ziya Zhou, Zhiqiang Wang, Wei Xue, Wenhan Luo, Yike Guo
Title: SINGER: Vivid Audio-driven Singing Video Generation with Multi-scale Spectral Diffusion Model
Abstract:
Recent advancements in generative models have significantly enhanced talking face video generation, yet singing video generation remains underexplored. The differences between human talking and singing limit the performance of existing talking face video generation models when applied to singing. The fundamental differences between talking and singing-specifically in audio characteristics and behavioral expressions-limit the effectiveness of existing models. We observe that the differences between singing and talking audios manifest in terms of frequency and amplitude. To address this, we have designed a multi-scale spectral module to help the model learn singing patterns in the spectral domain. Additionally, we develop a spectral-filtering module that aids the model in learning the human behaviors associated with singing audio. These two modules are integrated into the diffusion model to enhance singing video generation performance, resulting in our proposed model, SINGER. Furthermore, the lack of high-quality real-world singing face videos has hindered the development of the singing video generation community. To address this gap, we have collected an in-the-wild audio-visual singing dataset to facilitate research in this area. Our experiments demonstrate that SINGER is capable of generating vivid singing videos and outperforms state-of-the-art methods in both objective and subjective evaluations.
Authors:Xiaowei Chi, Chun-Kai Fan, Hengyuan Zhang, Xingqun Qi, Rongyu Zhang, Anthony Chen, Chi-min Chan, Wei Xue, Qifeng Liu, Shanghang Zhang, Yike Guo
Title: EVA: An Embodied World Model for Future Video Anticipation
Abstract:
Video generation models have made significant progress in simulating future states, showcasing their potential as world simulators in embodied scenarios. However, existing models often lack robust understanding, limiting their ability to perform multi-step predictions or handle Out-of-Distribution (OOD) scenarios. To address this challenge, we propose the Reflection of Generation (RoG), a set of intermediate reasoning strategies designed to enhance video prediction. It leverages the complementary strengths of pre-trained vision-language and video generation models, enabling them to function as a world model in embodied scenarios. To support RoG, we introduce Embodied Video Anticipation Benchmark(EVA-Bench), a comprehensive benchmark that evaluates embodied world models across diverse tasks and scenarios, utilizing both in-domain and OOD datasets. Building on this foundation, we devise a world model, Embodied Video Anticipator (EVA), that follows a multistage training paradigm to generate high-fidelity video frames and apply an autoregressive strategy to enable adaptive generalization for longer video sequences. Extensive experiments demonstrate the efficacy of EVA in various downstream tasks like video generation and robotics, thereby paving the way for large-scale pre-trained models in real-world video prediction applications. The video demos are available at \hyperlink{https://sites.google.com/view/icml-eva}{https://sites.google.com/view/icml-eva}.
Authors:Daoyuan Chen, Haibin Wang, Yilun Huang, Ce Ge, Yaliang Li, Bolin Ding, Jingren Zhou
Title: Data-Juicer Sandbox: A Feedback-Driven Suite for Multimodal Data-Model Co-development
Abstract:
The emergence of multimodal large models has advanced artificial intelligence, introducing unprecedented levels of performance and functionality. However, optimizing these models remains challenging due to historically isolated paths of model-centric and data-centric developments, leading to suboptimal outcomes and inefficient resource utilization. In response, we present a new sandbox suite tailored for integrated data-model co-development. This sandbox provides a feedback-driven experimental platform, enabling cost-effective iteration and guided refinement of both data and models. Our proposed ``Probe-Analyze-Refine'' workflow, validated through practical use cases on multimodal tasks such as image-text pre-training with CLIP, image-to-text generation with LLaVA-like models, and text-to-video generation with DiT-based models, yields transferable and notable performance boosts, such as topping the VBench leaderboard. A comprehensive set of over 100 experiments demonstrated the suite's usability and extensibility, while also uncovering insights into the interplay between data quality, diversity, model behavior, and computational costs. All codes, datasets, and models are open-sourced to foster future research and applications that would otherwise be infeasible due to the lack of a dedicated co-development infrastructure.
Authors:Kepan Nan, Rui Xie, Penghao Zhou, Tiehan Fan, Zhenheng Yang, Zhijie Chen, Xiang Li, Jian Yang, Ying Tai
Title: OpenVid-1M: A Large-Scale High-Quality Dataset for Text-to-video Generation
Abstract:
Text-to-video (T2V) generation has recently garnered significant attention thanks to the large multi-modality model Sora. However, T2V generation still faces two important challenges: 1) Lacking a precise open sourced high-quality dataset. The previous popular video datasets, e.g. WebVid-10M and Panda-70M, are either with low quality or too large for most research institutions. Therefore, it is challenging but crucial to collect a precise high-quality text-video pairs for T2V generation. 2) Ignoring to fully utilize textual information. Recent T2V methods have focused on vision transformers, using a simple cross attention module for video generation, which falls short of thoroughly extracting semantic information from text prompt. To address these issues, we introduce OpenVid-1M, a precise high-quality dataset with expressive captions. This open-scenario dataset contains over 1 million text-video pairs, facilitating research on T2V generation. Furthermore, we curate 433K 1080p videos from OpenVid-1M to create OpenVidHD-0.4M, advancing high-definition video generation. Additionally, we propose a novel Multi-modal Video Diffusion Transformer (MVDiT) capable of mining both structure information from visual tokens and semantic information from text tokens. Extensive experiments and ablation studies verify the superiority of OpenVid-1M over previous datasets and the effectiveness of our MVDiT.
Authors:Zhaoxi Chen, Tianqi Liu, Long Zhuo, Jiawei Ren, Zeng Tao, He Zhu, Fangzhou Hong, Liang Pan, Ziwei Liu
Title: 4DNeX: Feed-Forward 4D Generative Modeling Made Easy
Abstract:
We present 4DNeX, the first feed-forward framework for generating 4D (i.e., dynamic 3D) scene representations from a single image. In contrast to existing methods that rely on computationally intensive optimization or require multi-frame video inputs, 4DNeX enables efficient, end-to-end image-to-4D generation by fine-tuning a pretrained video diffusion model. Specifically, 1) to alleviate the scarcity of 4D data, we construct 4DNeX-10M, a large-scale dataset with high-quality 4D annotations generated using advanced reconstruction approaches. 2) we introduce a unified 6D video representation that jointly models RGB and XYZ sequences, facilitating structured learning of both appearance and geometry. 3) we propose a set of simple yet effective adaptation strategies to repurpose pretrained video diffusion models for 4D modeling. 4DNeX produces high-quality dynamic point clouds that enable novel-view video synthesis. Extensive experiments demonstrate that 4DNeX outperforms existing 4D generation methods in efficiency and generalizability, offering a scalable solution for image-to-4D modeling and laying the foundation for generative 4D world models that simulate dynamic scene evolution.
Authors:Jingqiao Xiu, Fangzhou Hong, Yicong Li, Mengze Li, Wentao Wang, Sirui Han, Liang Pan, Ziwei Liu
Title: EgoTwin: Dreaming Body and View in First Person
Abstract:
While exocentric video synthesis has achieved great progress, egocentric video generation remains largely underexplored, which requires modeling first-person view content along with camera motion patterns induced by the wearer's body movements. To bridge this gap, we introduce a novel task of joint egocentric video and human motion generation, characterized by two key challenges: 1) Viewpoint Alignment: the camera trajectory in the generated video must accurately align with the head trajectory derived from human motion; 2) Causal Interplay: the synthesized human motion must causally align with the observed visual dynamics across adjacent video frames. To address these challenges, we propose EgoTwin, a joint video-motion generation framework built on the diffusion transformer architecture. Specifically, EgoTwin introduces a head-centric motion representation that anchors the human motion to the head joint and incorporates a cybernetics-inspired interaction mechanism that explicitly captures the causal interplay between video and motion within attention operations. For comprehensive evaluation, we curate a large-scale real-world dataset of synchronized text-video-motion triplets and design novel metrics to assess video-motion consistency. Extensive experiments demonstrate the effectiveness of the EgoTwin framework.
Authors:Quanjian Song, Zhihang Lin, Zhanpeng Zeng, Ziyue Zhang, Liujuan Cao, Rongrong Ji
Title: LightMotion: A Light and Tuning-free Method for Simulating Camera Motion in Video Generation
Abstract:
Existing camera motion-controlled video generation methods face computational bottlenecks in fine-tuning and inference. This paper proposes LightMotion, a light and tuning-free method for simulating camera motion in video generation. Operating in the latent space, it eliminates additional fine-tuning, inpainting, and depth estimation, making it more streamlined than existing methods. The endeavors of this paper comprise: (i) The latent space permutation operation effectively simulates various camera motions like panning, zooming, and rotation. (ii) The latent space resampling strategy combines background-aware sampling and cross-frame alignment to accurately fill new perspectives while maintaining coherence across frames. (iii) Our in-depth analysis shows that the permutation and resampling cause an SNR shift in latent space, leading to poor-quality generation. To address this, we propose latent space correction, which reintroduces noise during denoising to mitigate SNR shift and enhance video generation quality. Exhaustive experiments show that our LightMotion outperforms existing methods, both quantitatively and qualitatively.
Authors:Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin Liu, Xiang Yin, Zhou Zhao
Title: Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion Models
Abstract:
Large-scale multimodal generative modeling has created milestones in text-to-image and text-to-video generation. Its application to audio still lags behind for two main reasons: the lack of large-scale datasets with high-quality text-audio pairs, and the complexity of modeling long continuous audio data. In this work, we propose Make-An-Audio with a prompt-enhanced diffusion model that addresses these gaps by 1) introducing pseudo prompt enhancement with a distill-then-reprogram approach, it alleviates data scarcity with orders of magnitude concept compositions by using language-free audios; 2) leveraging spectrogram autoencoder to predict the self-supervised audio representation instead of waveforms. Together with robust contrastive language-audio pretraining (CLAP) representations, Make-An-Audio achieves state-of-the-art results in both objective and subjective benchmark evaluation. Moreover, we present its controllability and generalization for X-to-Audio with "No Modality Left Behind", for the first time unlocking the ability to generate high-definition, high-fidelity audios given a user-defined modality input. Audio samples are available at https://Text-to-Audio.github.io
Authors:Zirui Pan, Xin Wang, Yipeng Zhang, Hong Chen, Kwan Man Cheng, Yaofei Wu, Wenwu Zhu
Title: Modular-Cam: Modular Dynamic Camera-view Video Generation with LLM
Abstract:
Text-to-Video generation, which utilizes the provided text prompt to generate high-quality videos, has drawn increasing attention and achieved great success due to the development of diffusion models recently. Existing methods mainly rely on a pre-trained text encoder to capture the semantic information and perform cross attention with the encoded text prompt to guide the generation of video. However, when it comes to complex prompts that contain dynamic scenes and multiple camera-view transformations, these methods can not decompose the overall information into separate scenes, as well as fail to smoothly change scenes based on the corresponding camera-views. To solve these problems, we propose a novel method, i.e., Modular-Cam. Specifically, to better understand a given complex prompt, we utilize a large language model to analyze user instructions and decouple them into multiple scenes together with transition actions. To generate a video containing dynamic scenes that match the given camera-views, we incorporate the widely-used temporal transformer into the diffusion model to ensure continuity within a single scene and propose CamOperator, a modular network based module that well controls the camera movements. Moreover, we propose AdaControlNet, which utilizes ControlNet to ensure consistency across scenes and adaptively adjusts the color tone of the generated video. Extensive qualitative and quantitative experiments prove our proposed Modular-Cam's strong capability of generating multi-scene videos together with its ability to achieve fine-grained control of camera movements. Generated results are available at https://modular-cam.github.io.
Authors:Xin Wang, Yuwei Zhou, Bin Huang, Hong Chen, Wenwu Zhu
Title: Multi-modal Generative AI: Multi-modal LLMs, Diffusions and the Unification
Abstract:
Multi-modal generative AI (Artificial Intelligence) has attracted increasing attention from both academia and industry. Particularly, two dominant families of techniques have emerged: i) Multi-modal large language models (LLMs) demonstrate impressive ability for multi-modal understanding; and ii) Diffusion models exhibit remarkable multi-modal powers in terms of multi-modal generation. Therefore, this paper provides a comprehensive overview of multi-modal generative AI, including multi-modal LLMs, diffusions, and the unification for understanding and generation. To lay a solid foundation for unified models, we first provide a detailed review of both multi-modal LLMs and diffusion models respectively, including their probabilistic modeling procedure, multi-modal architecture design, and advanced applications to image/video LLMs as well as text-to-image/video generation. Furthermore, we explore the emerging efforts toward unified models for understanding and generation. To achieve the unification of understanding and generation, we investigate key designs including autoregressive-based and diffusion-based modeling, as well as dense and Mixture-of-Experts (MoE) architectures. We then introduce several strategies for unified models, analyzing their potential advantages and disadvantages. In addition, we summarize the common datasets widely used for multi-modal generative AI pretraining. Last but not least, we present several challenging future research directions which may contribute to the ongoing advancement of multi-modal generative AI.
Authors:Wei Feng, Xin Wang, Hong Chen, Zeyang Zhang, Wenwu Zhu
Title: Multi-sentence Video Grounding for Long Video Generation
Abstract:
Video generation has witnessed great success recently, but their application in generating long videos still remains challenging due to the difficulty in maintaining the temporal consistency of generated videos and the high memory cost during generation. To tackle the problems, in this paper, we propose a brave and new idea of Multi-sentence Video Grounding for Long Video Generation, connecting the massive video moment retrieval to the video generation task for the first time, providing a new paradigm for long video generation. The method of our work can be summarized as three steps: (i) We design sequential scene text prompts as the queries for video grounding, utilizing the massive video moment retrieval to search for video moment segments that meet the text requirements in the video database. (ii) Based on the source frames of retrieved video moment segments, we adopt video editing methods to create new video content while preserving the temporal consistency of the retrieved video. Since the editing can be conducted segment by segment, and even frame by frame, it largely reduces the memory cost. (iii) We also attempt video morphing and personalized generation methods to improve the subject consistency of long video generation, providing ablation experimental results for the subtasks of long video generation. Our approach seamlessly extends the development in image/video editing, video morphing and personalized generation, and video grounding to the long video generation, offering effective solutions for generating long videos at low memory cost.
Authors:Hong Chen, Xin Wang, Yipeng Zhang, Yuwei Zhou, Zeyang Zhang, Siao Tang, Wenwu Zhu
Title: DisenStudio: Customized Multi-subject Text-to-Video Generation with Disentangled Spatial Control
Abstract:
Generating customized content in videos has received increasing attention recently. However, existing works primarily focus on customized text-to-video generation for single subject, suffering from subject-missing and attribute-binding problems when the video is expected to contain multiple subjects. Furthermore, existing models struggle to assign the desired actions to the corresponding subjects (action-binding problem), failing to achieve satisfactory multi-subject generation performance. To tackle the problems, in this paper, we propose DisenStudio, a novel framework that can generate text-guided videos for customized multiple subjects, given few images for each subject. Specifically, DisenStudio enhances a pretrained diffusion-based text-to-video model with our proposed spatial-disentangled cross-attention mechanism to associate each subject with the desired action. Then the model is customized for the multiple subjects with the proposed motion-preserved disentangled finetuning, which involves three tuning strategies: multi-subject co-occurrence tuning, masked single-subject tuning, and multi-subject motion-preserved tuning. The first two strategies guarantee the subject occurrence and preserve their visual attributes, and the third strategy helps the model maintain the temporal motion-generation ability when finetuning on static images. We conduct extensive experiments to demonstrate our proposed DisenStudio significantly outperforms existing methods in various metrics. Additionally, we show that DisenStudio can be used as a powerful tool for various controllable generation applications.
Authors:Hong Chen, Xin Wang, Guanning Zeng, Yipeng Zhang, Yuwei Zhou, Feilin Han, Yaofei Wu, Wenwu Zhu
Title: VideoDreamer: Customized Multi-Subject Text-to-Video Generation with Disen-Mix Finetuning on Language-Video Foundation Models
Abstract:
Customized text-to-video generation aims to generate text-guided videos with user-given subjects, which has gained increasing attention. However, existing works are primarily limited to single-subject oriented text-to-video generation, leaving the more challenging problem of customized multi-subject generation unexplored. In this paper, we fill this gap and propose a novel VideoDreamer framework, which can generate temporally consistent text-guided videos that faithfully preserve the visual features of the given multiple subjects. Specifically, VideoDreamer adopts the pretrained Stable Diffusion with temporal modules as its base video generator, taking the power of the text-to-image model to generate diversified content. The video generator is further customized for multi-subjects, which leverages the proposed Disen-Mix Finetuning and Human-in-the-Loop Re-finetuning strategy, to tackle the attribute binding problem of multi-subject generation. Additionally, we present a disentangled motion customization strategy to finetune the temporal modules so that we can generate videos with both customized subjects and motions. To evaluate the performance of customized multi-subject text-to-video generation, we introduce the MultiStudioBench benchmark. Extensive experiments demonstrate the remarkable ability of VideoDreamer to generate videos with new content such as new events and backgrounds, tailored to the customized multiple subjects.
Authors:Jiajian Xie, Shengyu Zhang, Zhou Zhao, Fan Wu, Fei Wu
Title: EC-Diff: Fast and High-Quality Edge-Cloud Collaborative Inference for Diffusion Models
Abstract:
Diffusion Models have shown remarkable proficiency in image and video synthesis. As model size and latency increase limit user experience, hybrid edge-cloud collaborative framework was recently proposed to realize fast inference and high-quality generation, where the cloud model initiates high-quality semantic planning and the edge model expedites later-stage refinement. However, excessive cloud denoising prolongs inference time, while insufficient steps cause semantic ambiguity, leading to inconsistency in edge model output. To address these challenges, we propose EC-Diff that accelerates cloud inference through gradient-based noise estimation while identifying the optimal point for cloud-edge handoff to maintain generation quality. Specifically, we design a K-step noise approximation strategy to reduce cloud inference frequency by using noise gradients between steps and applying cloud inference periodically to adjust errors. Then we design a two-stage greedy search algorithm to efficiently find the optimal parameters for noise approximation and edge model switching. Extensive experiments demonstrate that our method significantly enhances generation quality compared to edge inference, while achieving up to an average $2\times$ speedup in inference compared to cloud inference. Video samples and source code are available at https://ec-diff.github.io/.
Authors:Xiaowei Chi, Kuangzhi Ge, Jiaming Liu, Siyuan Zhou, Peidong Jia, Zichen He, Yuzhen Liu, Tingguang Li, Lei Han, Sirui Han, Shanghang Zhang, Yike Guo
Title: MinD: Learning A Dual-System World Model for Real-Time Planning and Implicit Risk Analysis
Abstract:
Video Generation Models (VGMs) have become powerful backbones for Vision-Language-Action (VLA) models, leveraging large-scale pretraining for robust dynamics modeling. However, current methods underutilize their distribution modeling capabilities for predicting future states. Two challenges hinder progress: integrating generative processes into feature learning is both technically and conceptually underdeveloped, and naive frame-by-frame video diffusion is computationally inefficient for real-time robotics. To address these, we propose Manipulate in Dream (MinD), a dual-system world model for real-time, risk-aware planning. MinD uses two asynchronous diffusion processes: a low-frequency visual generator (LoDiff) that predicts future scenes and a high-frequency diffusion policy (HiDiff) that outputs actions. Our key insight is that robotic policies do not require fully denoised frames but can rely on low-resolution latents generated in a single denoising step. To connect early predictions to actions, we introduce DiffMatcher, a video-action alignment module with a novel co-training strategy that synchronizes the two diffusion models. MinD achieves a 63% success rate on RL-Bench, 60% on real-world Franka tasks, and operates at 11.3 FPS, demonstrating the efficiency of single-step latent features for control signals. Furthermore, MinD identifies 74% of potential task failures in advance, providing real-time safety signals for monitoring and intervention. This work establishes a new paradigm for efficient and reliable robotic manipulation using generative world models.
Authors:Bingyan Liu, Chengyu Wang, Tongtong Su, Huan Ten, Jun Huang, Kailing Guo, Kui Jia
Title: Understanding Attention Mechanism in Video Diffusion Models
Abstract:
Text-to-video (T2V) synthesis models, such as OpenAI's Sora, have garnered significant attention due to their ability to generate high-quality videos from a text prompt. In diffusion-based T2V models, the attention mechanism is a critical component. However, it remains unclear what intermediate features are learned and how attention blocks in T2V models affect various aspects of video synthesis, such as image quality and temporal consistency. In this paper, we conduct an in-depth perturbation analysis of the spatial and temporal attention blocks of T2V models using an information-theoretic approach. Our results indicate that temporal and spatial attention maps affect not only the timing and layout of the videos but also the complexity of spatiotemporal elements and the aesthetic quality of the synthesized videos. Notably, high-entropy attention maps are often key elements linked to superior video quality, whereas low-entropy attention maps are associated with the video's intra-frame structure. Based on our findings, we propose two novel methods to enhance video quality and enable text-guided video editing. These methods rely entirely on lightweight manipulation of the attention matrices in T2V models. The efficacy and effectiveness of our methods are further validated through experimental evaluation across multiple datasets.
Authors:Zhongjie Duan, Chengyu Wang, Cen Chen, Weining Qian, Jun Huang, Mingyi Jin
Title: FastBlend: a Powerful Model-Free Toolkit Making Video Stylization Easier
Abstract:
With the emergence of diffusion models and rapid development in image processing, it has become effortless to generate fancy images in tasks such as style transfer and image editing. However, these impressive image processing approaches face consistency issues in video processing. In this paper, we propose a powerful model-free toolkit called FastBlend to address the consistency problem for video processing. Based on a patch matching algorithm, we design two inference modes, including blending and interpolation. In the blending mode, FastBlend eliminates video flicker by blending the frames within a sliding window. Moreover, we optimize both computational efficiency and video quality according to different application scenarios. In the interpolation mode, given one or more keyframes rendered by diffusion models, FastBlend can render the whole video. Since FastBlend does not modify the generation process of diffusion models, it exhibits excellent compatibility. Extensive experiments have demonstrated the effectiveness of FastBlend. In the blending mode, FastBlend outperforms existing methods for video deflickering and video synthesis. In the interpolation mode, FastBlend surpasses video interpolation and model-based video processing approaches. The source codes have been released on GitHub.
Authors:Zhongjie Duan, Lizhou You, Chengyu Wang, Cen Chen, Ziheng Wu, Weining Qian, Jun Huang
Title: DiffSynth: Latent In-Iteration Deflickering for Realistic Video Synthesis
Abstract:
In recent years, diffusion models have emerged as the most powerful approach in image synthesis. However, applying these models directly to video synthesis presents challenges, as it often leads to noticeable flickering contents. Although recently proposed zero-shot methods can alleviate flicker to some extent, we still struggle to generate coherent videos. In this paper, we propose DiffSynth, a novel approach that aims to convert image synthesis pipelines to video synthesis pipelines. DiffSynth consists of two key components: a latent in-iteration deflickering framework and a video deflickering algorithm. The latent in-iteration deflickering framework applies video deflickering to the latent space of diffusion models, effectively preventing flicker accumulation in intermediate steps. Additionally, we propose a video deflickering algorithm, named patch blending algorithm, that remaps objects in different frames and blends them together to enhance video consistency. One of the notable advantages of DiffSynth is its general applicability to various video synthesis tasks, including text-guided video stylization, fashion video synthesis, image-guided video stylization, video restoring, and 3D rendering. In the task of text-guided video stylization, we make it possible to synthesize high-quality videos without cherry-picking. The experimental results demonstrate the effectiveness of DiffSynth. All videos can be viewed on our project page. Source codes will also be released.
Authors:Pengtao Chen, Xianfang Zeng, Maosen Zhao, Peng Ye, Mingzhu Shen, Wei Cheng, Gang Yu, Tao Chen
Title: Sparse-vDiT: Unleashing the Power of Sparse Attention to Accelerate Video Diffusion Transformers
Abstract:
While Diffusion Transformers (DiTs) have achieved breakthroughs in video generation, this long sequence generation task remains constrained by the quadratic complexity of attention mechanisms, resulting in significant inference latency. Through detailed analysis of attention maps in Video Diffusion Transformer (vDiT), we identify three recurring sparsity patterns: diagonal, multi-diagonal, and vertical-stripe structures. And even 3-6\% attention heads can be skipped. Crucially, these patterns exhibit strong layer-depth and head-position correlations but show limited dependence on the input content. Leveraging these findings, we propose Sparse-vDiT, a sparsity acceleration framework for vDiT comprising: 1) Pattern-optimized sparse kernels that replace dense attention with computationally efficient implementations for each identified sparsity pattern. 2) An offline sparse diffusion search algorithm that selects the optimal sparse computation strategy per layer and head via hardware-aware cost modeling. After determining the optimal configuration, we fuse heads within the same layer that share the same attention strategy, enhancing inference efficiency. Integrated into state-of-the-art vDiT models (CogVideoX1.5, HunyuanVideo, and Wan2.1), Sparse-vDiT achieves 2.09$\times$, 2.38$\times$, and 1.67$\times$ theoretical FLOP reduction, and actual inference speedups of 1.76$\times$, 1.85$\times$, and 1.58$\times$, respectively, while maintaining high visual fidelity, with PSNR values reaching 24.13, 27.09, and 22.59. Our work demonstrates that latent structural sparsity in vDiTs can be systematically exploited for long video synthesis.
Authors:Dacheng Li, Yunhao Fang, Yukang Chen, Shuo Yang, Shiyi Cao, Justin Wong, Michael Luo, Xiaolong Wang, Hongxu Yin, Joseph E. Gonzalez, Ion Stoica, Song Han, Yao Lu
Title: WorldModelBench: Judging Video Generation Models As World Models
Abstract:
Video generation models have rapidly progressed, positioning themselves as video world models capable of supporting decision-making applications like robotics and autonomous driving. However, current benchmarks fail to rigorously evaluate these claims, focusing only on general video quality, ignoring important factors to world models such as physics adherence. To bridge this gap, we propose WorldModelBench, a benchmark designed to evaluate the world modeling capabilities of video generation models in application-driven domains. WorldModelBench offers two key advantages: (1) Against to nuanced world modeling violations: By incorporating instruction-following and physics-adherence dimensions, WorldModelBench detects subtle violations, such as irregular changes in object size that breach the mass conservation law - issues overlooked by prior benchmarks. (2) Aligned with large-scale human preferences: We crowd-source 67K human labels to accurately measure 14 frontier models. Using our high-quality human labels, we further fine-tune an accurate judger to automate the evaluation procedure, achieving 8.6% higher average accuracy in predicting world modeling violations than GPT-4o with 2B parameters. In addition, we demonstrate that training to align human annotations by maximizing the rewards from the judger noticeably improve the world modeling capability. The website is available at https://worldmodelbench-team.github.io.
Authors:Zhiyu Yin, Kehai Chen, Xuefeng Bai, Ruili Jiang, Juntao Li, Hongdong Li, Jin Liu, Yang Xiang, Jun Yu, Min Zhang
Title: ASurvey: Spatiotemporal Consistency in Video Generation
Abstract:
Video generation, by leveraging a dynamic visual generation method, pushes the boundaries of Artificial Intelligence Generated Content (AIGC). Video generation presents unique challenges beyond static image generation, requiring both high-quality individual frames and temporal coherence to maintain consistency across the spatiotemporal sequence. Recent works have aimed at addressing the spatiotemporal consistency issue in video generation, while few literature review has been organized from this perspective. This gap hinders a deeper understanding of the underlying mechanisms for high-quality video generation. In this survey, we systematically review the recent advances in video generation, covering five key aspects: foundation models, information representations, generation schemes, post-processing techniques, and evaluation metrics. We particularly focus on their contributions to maintaining spatiotemporal consistency. Finally, we discuss the future directions and challenges in this field, hoping to inspire further efforts to advance the development of video generation.
Authors:Jiageng Mao, Boyi Li, Boris Ivanovic, Yuxiao Chen, Yan Wang, Yurong You, Chaowei Xiao, Danfei Xu, Marco Pavone, Yue Wang
Title: DreamDrive: Generative 4D Scene Modeling from Street View Images
Abstract:
Synthesizing photo-realistic visual observations from an ego vehicle's driving trajectory is a critical step towards scalable training of self-driving models. Reconstruction-based methods create 3D scenes from driving logs and synthesize geometry-consistent driving videos through neural rendering, but their dependence on costly object annotations limits their ability to generalize to in-the-wild driving scenarios. On the other hand, generative models can synthesize action-conditioned driving videos in a more generalizable way but often struggle with maintaining 3D visual consistency. In this paper, we present DreamDrive, a 4D spatial-temporal scene generation approach that combines the merits of generation and reconstruction, to synthesize generalizable 4D driving scenes and dynamic driving videos with 3D consistency. Specifically, we leverage the generative power of video diffusion models to synthesize a sequence of visual references and further elevate them to 4D with a novel hybrid Gaussian representation. Given a driving trajectory, we then render 3D-consistent driving videos via Gaussian splatting. The use of generative priors allows our method to produce high-quality 4D scenes from in-the-wild driving data, while neural rendering ensures 3D-consistent video generation from the 4D scenes. Extensive experiments on nuScenes and street view images demonstrate that DreamDrive can generate controllable and generalizable 4D driving scenes, synthesize novel views of driving videos with high fidelity and 3D consistency, decompose static and dynamic elements in a self-supervised manner, and enhance perception and planning tasks for autonomous driving.
Authors:Yuang Wang, Chao Wen, Haoyu Guo, Sida Peng, Minghan Qin, Hujun Bao, Xiaowei Zhou, Ruizhen Hu
Title: Precise Action-to-Video Generation Through Visual Action Prompts
Abstract:
We present visual action prompts, a unified action representation for action-to-video generation of complex high-DoF interactions while maintaining transferable visual dynamics across domains. Action-driven video generation faces a precision-generality trade-off: existing methods using text, primitive actions, or coarse masks offer generality but lack precision, while agent-centric action signals provide precision at the cost of cross-domain transferability. To balance action precision and dynamic transferability, we propose to "render" actions into precise visual prompts as domain-agnostic representations that preserve both geometric precision and cross-domain adaptability for complex actions; specifically, we choose visual skeletons for their generality and accessibility. We propose robust pipelines to construct skeletons from two interaction-rich data sources - human-object interactions (HOI) and dexterous robotic manipulation - enabling cross-domain training of action-driven generative models. By integrating visual skeletons into pretrained video generation models via lightweight fine-tuning, we enable precise action control of complex interaction while preserving the learning of cross-domain dynamics. Experiments on EgoVid, RT-1 and DROID demonstrate the effectiveness of our proposed approach. Project page: https://zju3dv.github.io/VAP/.
Authors:Youpeng Wen, Junfan Lin, Yi Zhu, Jianhua Han, Hang Xu, Shen Zhao, Xiaodan Liang
Title: VidMan: Exploiting Implicit Dynamics from Video Diffusion Model for Effective Robot Manipulation
Abstract:
Recent advancements utilizing large-scale video data for learning video generation models demonstrate significant potential in understanding complex physical dynamics. It suggests the feasibility of leveraging diverse robot trajectory data to develop a unified, dynamics-aware model to enhance robot manipulation. However, given the relatively small amount of available robot data, directly fitting data without considering the relationship between visual observations and actions could lead to suboptimal data utilization. To this end, we propose VidMan (Video Diffusion for Robot Manipulation), a novel framework that employs a two-stage training mechanism inspired by dual-process theory from neuroscience to enhance stability and improve data utilization efficiency. Specifically, in the first stage, VidMan is pre-trained on the Open X-Embodiment dataset (OXE) for predicting future visual trajectories in a video denoising diffusion manner, enabling the model to develop a long horizontal awareness of the environment's dynamics. In the second stage, a flexible yet effective layer-wise self-attention adapter is introduced to transform VidMan into an efficient inverse dynamics model that predicts action modulated by the implicit dynamics knowledge via parameter sharing. Our VidMan framework outperforms state-of-the-art baseline model GR-1 on the CALVIN benchmark, achieving a 11.7% relative improvement, and demonstrates over 9% precision gains on the OXE small-scale dataset. These results provide compelling evidence that world models can significantly enhance the precision of robot action prediction. Codes and models will be public.
Authors:Cong Wang, Jiaxi Gu, Panwen Hu, Haoyu Zhao, Yuanfan Guo, Jianhua Han, Hang Xu, Xiaodan Liang
Title: EasyControl: Transfer ControlNet to Video Diffusion for Controllable Generation and Interpolation
Abstract:
Following the advancements in text-guided image generation technology exemplified by Stable Diffusion, video generation is gaining increased attention in the academic community. However, relying solely on text guidance for video generation has serious limitations, as videos contain much richer content than images, especially in terms of motion. This information can hardly be adequately described with plain text. Fortunately, in computer vision, various visual representations can serve as additional control signals to guide generation. With the help of these signals, video generation can be controlled in finer detail, allowing for greater flexibility for different applications. Integrating various controls, however, is nontrivial. In this paper, we propose a universal framework called EasyControl. By propagating and injecting condition features through condition adapters, our method enables users to control video generation with a single condition map. With our framework, various conditions including raw pixels, depth, HED, etc., can be integrated into different Unet-based pre-trained video diffusion models at a low practical cost. We conduct comprehensive experiments on public datasets, and both quantitative and qualitative results indicate that our method outperforms state-of-the-art methods. EasyControl significantly improves various evaluation metrics across multiple validation datasets compared to previous works. Specifically, for the sketch-to-video generation task, EasyControl achieves an improvement of 152.0 on FVD and 19.9 on IS, respectively, in UCF101 compared with VideoComposer. For fidelity, our model demonstrates powerful image retention ability, resulting in high FVD and IS in UCF101 and MSR-VTT compared to other image-to-video models.
Authors:Xuanyi Li, Daquan Zhou, Chenxu Zhang, Shaodong Wei, Qibin Hou, Ming-Ming Cheng
Title: Sora Generates Videos with Stunning Geometrical Consistency
Abstract:
The recently developed Sora model [1] has exhibited remarkable capabilities in video generation, sparking intense discussions regarding its ability to simulate real-world phenomena. Despite its growing popularity, there is a lack of established metrics to evaluate its fidelity to real-world physics quantitatively. In this paper, we introduce a new benchmark that assesses the quality of the generated videos based on their adherence to real-world physics principles. We employ a method that transforms the generated videos into 3D models, leveraging the premise that the accuracy of 3D reconstruction is heavily contingent on the video quality. From the perspective of 3D reconstruction, we use the fidelity of the geometric constraints satisfied by the constructed 3D models as a proxy to gauge the extent to which the generated videos conform to real-world physics rules. Project page: https://sora-geometrical-consistency.github.io/
Authors:Cong Wang, Jiaxi Gu, Panwen Hu, Songcen Xu, Hang Xu, Xiaodan Liang
Title: DreamVideo: High-Fidelity Image-to-Video Generation with Image Retention and Text Guidance
Abstract:
Image-to-video generation, which aims to generate a video starting from a given reference image, has drawn great attention. Existing methods try to extend pre-trained text-guided image diffusion models to image-guided video generation models. Nevertheless, these methods often result in either low fidelity or flickering over time due to their limitation to shallow image guidance and poor temporal consistency. To tackle these problems, we propose a high-fidelity image-to-video generation method by devising a frame retention branch based on a pre-trained video diffusion model, named DreamVideo. Instead of integrating the reference image into the diffusion process at a semantic level, our DreamVideo perceives the reference image via convolution layers and concatenates the features with the noisy latents as model input. By this means, the details of the reference image can be preserved to the greatest extent. In addition, by incorporating double-condition classifier-free guidance, a single image can be directed to videos of different actions by providing varying prompt texts. This has significant implications for controllable video generation and holds broad application prospects. We conduct comprehensive experiments on the public dataset, and both quantitative and qualitative results indicate that our method outperforms the state-of-the-art method. Especially for fidelity, our model has a powerful image retention ability and delivers the best results in UCF101 compared to other image-to-video models to our best knowledge. Also, precise control can be achieved by giving different text prompts. Further details and comprehensive results of our model will be presented in https://anonymous0769.github.io/DreamVideo/.
Authors:Rameen Abdal, Or Patashnik, Ekaterina Deyneka, Hao Chen, Aliaksandr Siarohin, Sergey Tulyakov, Daniel Cohen-Or, Kfir Aberman
Title: Zero-Shot Dynamic Concept Personalization with Grid-Based LoRA
Abstract:
Recent advances in text-to-video generation have enabled high-quality synthesis from text and image prompts. While the personalization of dynamic concepts, which capture subject-specific appearance and motion from a single video, is now feasible, most existing methods require per-instance fine-tuning, limiting scalability. We introduce a fully zero-shot framework for dynamic concept personalization in text-to-video models. Our method leverages structured 2x2 video grids that spatially organize input and output pairs, enabling the training of lightweight Grid-LoRA adapters for editing and composition within these grids. At inference, a dedicated Grid Fill module completes partially observed layouts, producing temporally coherent and identity preserving outputs. Once trained, the entire system operates in a single forward pass, generalizing to previously unseen dynamic concepts without any test-time optimization. Extensive experiments demonstrate high-quality and consistent results across a wide range of subjects beyond trained concepts and editing scenarios.
Authors:Yushu Wu, Yanyu Li, Anil Kag, Ivan Skorokhodov, Willi Menapace, Ke Ma, Arpit Sahni, Ju Hu, Aliaksandr Siarohin, Dhritiman Sagar, Yanzhi Wang, Sergey Tulyakov
Title: Taming Diffusion Transformer for Real-Time Mobile Video Generation
Abstract:
Diffusion Transformers (DiT) have shown strong performance in video generation tasks, but their high computational cost makes them impractical for resource-constrained devices like smartphones, and real-time generation is even more challenging. In this work, we propose a series of novel optimizations to significantly accelerate video generation and enable real-time performance on mobile platforms. First, we employ a highly compressed variational autoencoder (VAE) to reduce the dimensionality of the input data without sacrificing visual quality. Second, we introduce a KD-guided, sensitivity-aware tri-level pruning strategy to shrink the model size to suit mobile platform while preserving critical performance characteristics. Third, we develop an adversarial step distillation technique tailored for DiT, which allows us to reduce the number of inference steps to four. Combined, these optimizations enable our model to achieve over 10 frames per second (FPS) generation on an iPhone 16 Pro Max, demonstrating the feasibility of real-time, high-quality video generation on mobile devices.
Authors:Jiahao Lin, Weixuan Peng, Bojia Zi, Yifeng Gao, Xianbiao Qi, Xingjun Ma, Yu-Gang Jiang
Title: BrokenVideos: A Benchmark Dataset for Fine-Grained Artifact Localization in AI-Generated Videos
Abstract:
Recent advances in deep generative models have led to significant progress in video generation, yet the fidelity of AI-generated videos remains limited. Synthesized content often exhibits visual artifacts such as temporally inconsistent motion, physically implausible trajectories, unnatural object deformations, and local blurring that undermine realism and user trust. Accurate detection and spatial localization of these artifacts are crucial for both automated quality control and for guiding the development of improved generative models. However, the research community currently lacks a comprehensive benchmark specifically designed for artifact localization in AI generated videos. Existing datasets either restrict themselves to video or frame level detection or lack the fine-grained spatial annotations necessary for evaluating localization methods. To address this gap, we introduce BrokenVideos, a benchmark dataset of 3,254 AI-generated videos with meticulously annotated, pixel-level masks highlighting regions of visual corruption. Each annotation is validated through detailed human inspection to ensure high quality ground truth. Our experiments show that training state of the art artifact detection models and multi modal large language models (MLLMs) on BrokenVideos significantly improves their ability to localize corrupted regions. Through extensive evaluation, we demonstrate that BrokenVideos establishes a critical foundation for benchmarking and advancing research on artifact localization in generative video models. The dataset is available at: https://broken-video-detection-datetsets.github.io/Broken-Video-Detection-Datasets.github.io/.
Authors:Boyu Chen, Siran Chen, Kunchang Li, Qinglin Xu, Yu Qiao, Yali Wang
Title: Super Encoding Network: Recursive Association of Multi-Modal Encoders for Video Understanding
Abstract:
Video understanding has been considered as one critical step towards world modeling, which is an important long-term problem in AI research. Recently, multi-modal foundation models have shown such potential via large-scale pretraining. However, these models simply align encoders of different modalities via contrastive learning, while lacking deeper multi-modal interactions, which is critical for understanding complex target movements with diversified video scenes. To fill this gap, we propose a unified Super Encoding Network (SEN) for video understanding, which builds up such distinct interactions through recursive association of multi-modal encoders in the foundation models. Specifically, we creatively treat those well-trained encoders as "super neurons" in our SEN. Via designing a Recursive Association (RA) block, we progressively fuse multi-modalities with the input video, based on knowledge integrating, distributing, and prompting of super neurons in a recursive manner. In this way, our SEN can effectively encode deeper multi-modal interactions, for prompting various video understanding tasks in downstream. Extensive experiments show that, our SEN can remarkably boost the four most representative video tasks, including tracking, recognition, chatting, and editing, e.g., for pixel-level tracking, the average jaccard index improves 2.7%, temporal coherence(TC) drops 8.8% compared to the popular CaDeX++ approach. For one-shot video editing, textual alignment improves 6.4%, and frame consistency increases 4.1% compared to the popular TuneA-Video approach.
Authors:Ziyi Wu, Anil Kag, Ivan Skorokhodov, Willi Menapace, Ashkan Mirzaei, Igor Gilitschenski, Sergey Tulyakov, Aliaksandr Siarohin
Title: DenseDPO: Fine-Grained Temporal Preference Optimization for Video Diffusion Models
Abstract:
Direct Preference Optimization (DPO) has recently been applied as a post-training technique for text-to-video diffusion models. To obtain training data, annotators are asked to provide preferences between two videos generated from independent noise. However, this approach prohibits fine-grained comparisons, and we point out that it biases the annotators towards low-motion clips as they often contain fewer visual artifacts. In this work, we introduce DenseDPO, a method that addresses these shortcomings by making three contributions. First, we create each video pair for DPO by denoising corrupted copies of a ground truth video. This results in aligned pairs with similar motion structures while differing in local details, effectively neutralizing the motion bias. Second, we leverage the resulting temporal alignment to label preferences on short segments rather than entire clips, yielding a denser and more precise learning signal. With only one-third of the labeled data, DenseDPO greatly improves motion generation over vanilla DPO, while matching it in text alignment, visual quality, and temporal consistency. Finally, we show that DenseDPO unlocks automatic preference annotation using off-the-shelf Vision Language Models (VLMs): GPT accurately predicts segment-level preferences similar to task-specifically fine-tuned video reward models, and DenseDPO trained on these labels achieves performance close to using human labels.
Authors:Yushu Wu, Yanyu Li, Ivan Skorokhodov, Anil Kag, Willi Menapace, Sharath Girish, Aliaksandr Siarohin, Yanzhi Wang, Sergey Tulyakov
Title: H3AE: High Compression, High Speed, and High Quality AutoEncoder for Video Diffusion Models
Abstract:
Autoencoder (AE) is the key to the success of latent diffusion models for image and video generation, reducing the denoising resolution and improving efficiency. However, the power of AE has long been underexplored in terms of network design, compression ratio, and training strategy. In this work, we systematically examine the architecture design choices and optimize the computation distribution to obtain a series of efficient and high-compression video AEs that can decode in real time on mobile devices. We also unify the design of plain Autoencoder and image-conditioned I2V VAE, achieving multifunctionality in a single network. In addition, we find that the widely adopted discriminative losses, i.e., GAN, LPIPS, and DWT losses, provide no significant improvements when training AEs at scale. We propose a novel latent consistency loss that does not require complicated discriminator design or hyperparameter tuning, but provides stable improvements in reconstruction quality. Our AE achieves an ultra-high compression ratio and real-time decoding speed on mobile while outperforming prior art in terms of reconstruction metrics by a large margin. We finally validate our AE by training a DiT on its latent space and demonstrate fast, high-quality text-to-video generation capability.
Authors:Ziqin Zhou, Yifan Yang, Yuqing Yang, Tianyu He, Houwen Peng, Kai Qiu, Qi Dai, Lili Qiu, Chong Luo, Lingqiao Liu
Title: HiTVideo: Hierarchical Tokenizers for Enhancing Text-to-Video Generation with Autoregressive Large Language Models
Abstract:
Text-to-video generation poses significant challenges due to the inherent complexity of video data, which spans both temporal and spatial dimensions. It introduces additional redundancy, abrupt variations, and a domain gap between language and vision tokens while generation. Addressing these challenges requires an effective video tokenizer that can efficiently encode video data while preserving essential semantic and spatiotemporal information, serving as a critical bridge between text and vision. Inspired by the observation in VQ-VAE-2 and workflows of traditional animation, we propose HiTVideo for text-to-video generation with hierarchical tokenizers. It utilizes a 3D causal VAE with a multi-layer discrete token framework, encoding video content into hierarchically structured codebooks. Higher layers capture semantic information with higher compression, while lower layers focus on fine-grained spatiotemporal details, striking a balance between compression efficiency and reconstruction quality. Our approach efficiently encodes longer video sequences (e.g., 8 seconds, 64 frames), reducing bits per pixel (bpp) by approximately 70\% compared to baseline tokenizers, while maintaining competitive reconstruction quality. We explore the trade-offs between compression and reconstruction, while emphasizing the advantages of high-compressed semantic tokens in text-to-video tasks. HiTVideo aims to address the potential limitations of existing video tokenizers in text-to-video generation tasks, striving for higher compression ratios and simplify LLMs modeling under language guidance, offering a scalable and promising framework for advancing text to video generation. Demo page: https://ziqinzhou66.github.io/project/HiTVideo.
Authors:Rameen Abdal, Or Patashnik, Ivan Skorokhodov, Willi Menapace, Aliaksandr Siarohin, Sergey Tulyakov, Daniel Cohen-Or, Kfir Aberman
Title: Dynamic Concepts Personalization from Single Videos
Abstract:
Personalizing generative text-to-image models has seen remarkable progress, but extending this personalization to text-to-video models presents unique challenges. Unlike static concepts, personalizing text-to-video models has the potential to capture dynamic concepts, i.e., entities defined not only by their appearance but also by their motion. In this paper, we introduce Set-and-Sequence, a novel framework for personalizing Diffusion Transformers (DiTs)-based generative video models with dynamic concepts. Our approach imposes a spatio-temporal weight space within an architecture that does not explicitly separate spatial and temporal features. This is achieved in two key stages. First, we fine-tune Low-Rank Adaptation (LoRA) layers using an unordered set of frames from the video to learn an identity LoRA basis that represents the appearance, free from temporal interference. In the second stage, with the identity LoRAs frozen, we augment their coefficients with Motion Residuals and fine-tune them on the full video sequence, capturing motion dynamics. Our Set-and-Sequence framework results in a spatio-temporal weight space that effectively embeds dynamic concepts into the video model's output domain, enabling unprecedented editability and compositionality while setting a new benchmark for personalizing dynamic concepts.
Authors:Zhenliang Ni, Qiangyu Yan, Mouxiao Huang, Tianning Yuan, Yehui Tang, Hailin Hu, Xinghao Chen, Yunhe Wang
Title: GenVidBench: A Challenging Benchmark for Detecting AI-Generated Video
Abstract:
The rapid advancement of video generation models has made it increasingly challenging to distinguish AI-generated videos from real ones. This issue underscores the urgent need for effective AI-generated video detectors to prevent the dissemination of false information through such videos. However, the development of high-performance generative video detectors is currently impeded by the lack of large-scale, high-quality datasets specifically designed for generative video detection. To this end, we introduce GenVidBench, a challenging AI-generated video detection dataset with several key advantages: 1) Cross Source and Cross Generator: The cross-generation source mitigates the interference of video content on the detection. The cross-generator ensures diversity in video attributes between the training and test sets, preventing them from being overly similar. 2) State-of-the-Art Video Generators: The dataset includes videos from 8 state-of-the-art AI video generators, ensuring that it covers the latest advancements in the field of video generation. 3) Rich Semantics: The videos in GenVidBench are analyzed from multiple dimensions and classified into various semantic categories based on their content. This classification ensures that the dataset is not only large but also diverse, aiding in the development of more generalized and effective detection models. We conduct a comprehensive evaluation of different advanced video generators and present a challenging setting. Additionally, we present rich experimental results including advanced video classification models as baselines. With the GenVidBench, researchers can efficiently develop and evaluate AI-generated video detection models. Datasets and code are available at https://genvidbench.github.io.
Authors:Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Yuwei Fang, Kwot Sin Lee, Ivan Skorokhodov, Kfir Aberman, Jun-Yan Zhu, Ming-Hsuan Yang, Sergey Tulyakov
Title: Multi-subject Open-set Personalization in Video Generation
Abstract:
Video personalization methods allow us to synthesize videos with specific concepts such as people, pets, and places. However, existing methods often focus on limited domains, require time-consuming optimization per subject, or support only a single subject. We present Video Alchemist $-$ a video model with built-in multi-subject, open-set personalization capabilities for both foreground objects and background, eliminating the need for time-consuming test-time optimization. Our model is built on a new Diffusion Transformer module that fuses each conditional reference image and its corresponding subject-level text prompt with cross-attention layers. Developing such a large model presents two main challenges: dataset and evaluation. First, as paired datasets of reference images and videos are extremely hard to collect, we sample selected video frames as reference images and synthesize a clip of the target video. However, while models can easily denoise training videos given reference frames, they fail to generalize to new contexts. To mitigate this issue, we design a new automatic data construction pipeline with extensive image augmentations. Second, evaluating open-set video personalization is a challenge in itself. To address this, we introduce a personalization benchmark that focuses on accurate subject fidelity and supports diverse personalization scenarios. Finally, our extensive experiments show that our method significantly outperforms existing personalization methods in both quantitative and qualitative evaluations.
Authors:Moayed Haji-Ali, Willi Menapace, Aliaksandr Siarohin, Ivan Skorokhodov, Alper Canberk, Kwot Sin Lee, Vicente Ordonez, Sergey Tulyakov
Title: AV-Link: Temporally-Aligned Diffusion Features for Cross-Modal Audio-Video Generation
Abstract:
We propose AV-Link, a unified framework for Video-to-Audio (A2V) and Audio-to-Video (A2V) generation that leverages the activations of frozen video and audio diffusion models for temporally-aligned cross-modal conditioning. The key to our framework is a Fusion Block that facilitates bidirectional information exchange between video and audio diffusion models through temporally-aligned self attention operations. Unlike prior work that uses dedicated models for A2V and V2A tasks and relies on pretrained feature extractors, AV-Link achieves both tasks in a single self-contained framework, directly leveraging features obtained by the complementary modality (i.e. video features to generate audio, or audio features to generate video). Extensive automatic and subjective evaluations demonstrate that our method achieves a substantial improvement in audio-video synchronization, outperforming more expensive baselines such as the MovieGen video-to-audio model.
Authors:Ziyi Wu, Aliaksandr Siarohin, Willi Menapace, Ivan Skorokhodov, Yuwei Fang, Varnith Chordia, Igor Gilitschenski, Sergey Tulyakov
Title: Mind the Time: Temporally-Controlled Multi-Event Video Generation
Abstract:
Real-world videos consist of sequences of events. Generating such sequences with precise temporal control is infeasible with existing video generators that rely on a single paragraph of text as input. When tasked with generating multiple events described using a single prompt, such methods often ignore some of the events or fail to arrange them in the correct order. To address this limitation, we present MinT, a multi-event video generator with temporal control. Our key insight is to bind each event to a specific period in the generated video, which allows the model to focus on one event at a time. To enable time-aware interactions between event captions and video tokens, we design a time-based positional encoding method, dubbed ReRoPE. This encoding helps to guide the cross-attention operation. By fine-tuning a pre-trained video diffusion transformer on temporally grounded data, our approach produces coherent videos with smoothly connected events. For the first time in the literature, our model offers control over the timing of events in generated videos. Extensive experiments demonstrate that MinT outperforms existing commercial and open-source models by a large margin.
Authors:Sherwin Bahmani, Ivan Skorokhodov, Guocheng Qian, Aliaksandr Siarohin, Willi Menapace, Andrea Tagliasacchi, David B. Lindell, Sergey Tulyakov
Title: AC3D: Analyzing and Improving 3D Camera Control in Video Diffusion Transformers
Abstract:
Numerous works have recently integrated 3D camera control into foundational text-to-video models, but the resulting camera control is often imprecise, and video generation quality suffers. In this work, we analyze camera motion from a first principles perspective, uncovering insights that enable precise 3D camera manipulation without compromising synthesis quality. First, we determine that motion induced by camera movements in videos is low-frequency in nature. This motivates us to adjust train and test pose conditioning schedules, accelerating training convergence while improving visual and motion quality. Then, by probing the representations of an unconditional video diffusion transformer, we observe that they implicitly perform camera pose estimation under the hood, and only a sub-portion of their layers contain the camera information. This suggested us to limit the injection of camera conditioning to a subset of the architecture to prevent interference with other video features, leading to a 4x reduction of training parameters, improved training speed, and 10% higher visual quality. Finally, we complement the typical dataset for camera control learning with a curated dataset of 20K diverse, dynamic videos with stationary cameras. This helps the model distinguish between camera and scene motion and improves the dynamics of generated pose-conditioned videos. We compound these findings to design the Advanced 3D Camera Control (AC3D) architecture, the new state-of-the-art model for generative video modeling with camera control.
Authors:Sherwin Bahmani, Ivan Skorokhodov, Aliaksandr Siarohin, Willi Menapace, Guocheng Qian, Michael Vasilkovsky, Hsin-Ying Lee, Chaoyang Wang, Jiaxu Zou, Andrea Tagliasacchi, David B. Lindell, Sergey Tulyakov
Title: VD3D: Taming Large Video Diffusion Transformers for 3D Camera Control
Abstract:
Modern text-to-video synthesis models demonstrate coherent, photorealistic generation of complex videos from a text description. However, most existing models lack fine-grained control over camera movement, which is critical for downstream applications related to content creation, visual effects, and 3D vision. Recently, new methods demonstrate the ability to generate videos with controllable camera poses these techniques leverage pre-trained U-Net-based diffusion models that explicitly disentangle spatial and temporal generation. Still, no existing approach enables camera control for new, transformer-based video diffusion models that process spatial and temporal information jointly. Here, we propose to tame video transformers for 3D camera control using a ControlNet-like conditioning mechanism that incorporates spatiotemporal camera embeddings based on Plücker coordinates. The approach demonstrates state-of-the-art performance for controllable video generation after fine-tuning on the RealEstate10K dataset. To the best of our knowledge, our work is the first to enable camera control for transformer-based video diffusion models.
Authors:Yuwei Fang, Willi Menapace, Aliaksandr Siarohin, Tsai-Shien Chen, Kuan-Chien Wang, Ivan Skorokhodov, Graham Neubig, Sergey Tulyakov
Title: VIMI: Grounding Video Generation through Multi-modal Instruction
Abstract:
Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining. This limitation stems from the absence of large-scale multimodal prompt video datasets, resulting in a lack of visual grounding and restricting their versatility and application in multimodal integration. To address this, we construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts and then utilize a two-stage training strategy to enable diverse video generation tasks within the same model. In the first stage, we propose a multimodal conditional video generation framework for pretraining on these augmented datasets, establishing a foundational model for grounded video generation. Secondly, we finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions. This process further refines the model's ability to handle diverse inputs and tasks, ensuring seamless integration of multi-modal information. After this two-stage train-ing process, VIMI demonstrates multimodal understanding capabilities, producing contextually rich and personalized videos grounded in the provided inputs, as shown in Figure 1. Compared to previous visual grounded video generation methods, VIMI can synthesize consistent and temporally coherent videos with large motion while retaining the semantic control. Lastly, VIMI also achieves state-of-the-art text-to-video generation results on UCF101 benchmark.
Authors:Ivan Skorokhodov, Willi Menapace, Aliaksandr Siarohin, Sergey Tulyakov
Title: Hierarchical Patch Diffusion Models for High-Resolution Video Generation
Abstract:
Diffusion models have demonstrated remarkable performance in image and video synthesis. However, scaling them to high-resolution inputs is challenging and requires restructuring the diffusion pipeline into multiple independent components, limiting scalability and complicating downstream applications. This makes it very efficient during training and unlocks end-to-end optimization on high-resolution videos. We improve PDMs in two principled ways. First, to enforce consistency between patches, we develop deep context fusion -- an architectural technique that propagates the context information from low-scale to high-scale patches in a hierarchical manner. Second, to accelerate training and inference, we propose adaptive computation, which allocates more network capacity and computation towards coarse image details. The resulting model sets a new state-of-the-art FVD score of 66.32 and Inception Score of 87.68 in class-conditional video generation on UCF-101 $256^2$, surpassing recent methods by more than 100%. Then, we show that it can be rapidly fine-tuned from a base $36\times 64$ low-resolution generator for high-resolution $64 \times 288 \times 512$ text-to-video synthesis. To the best of our knowledge, our model is the first diffusion-based architecture which is trained on such high resolutions entirely end-to-end. Project webpage: https://snap-research.github.io/hpdm.
Authors:Heng Yu, Chaoyang Wang, Peiye Zhuang, Willi Menapace, Aliaksandr Siarohin, Junli Cao, Laszlo A Jeni, Sergey Tulyakov, Hsin-Ying Lee
Title: 4Real: Towards Photorealistic 4D Scene Generation via Video Diffusion Models
Abstract:
Existing dynamic scene generation methods mostly rely on distilling knowledge from pre-trained 3D generative models, which are typically fine-tuned on synthetic object datasets. As a result, the generated scenes are often object-centric and lack photorealism. To address these limitations, we introduce a novel pipeline designed for photorealistic text-to-4D scene generation, discarding the dependency on multi-view generative models and instead fully utilizing video generative models trained on diverse real-world datasets. Our method begins by generating a reference video using the video generation model. We then learn the canonical 3D representation of the video using a freeze-time video, delicately generated from the reference video. To handle inconsistencies in the freeze-time video, we jointly learn a per-frame deformation to model these imperfections. We then learn the temporal deformation based on the canonical representation to capture dynamic interactions in the reference video. The pipeline facilitates the generation of dynamic scenes with enhanced photorealism and structural integrity, viewable from multiple perspectives, thereby setting a new standard in 4D scene generation.
Authors:Zhixing Zhang, Yanyu Li, Yushu Wu, Yanwu Xu, Anil Kag, Ivan Skorokhodov, Willi Menapace, Aliaksandr Siarohin, Junli Cao, Dimitris Metaxas, Sergey Tulyakov, Jian Ren
Title: SF-V: Single Forward Video Generation Model
Abstract:
Diffusion-based video generation models have demonstrated remarkable success in obtaining high-fidelity videos through the iterative denoising process. However, these models require multiple denoising steps during sampling, resulting in high computational costs. In this work, we propose a novel approach to obtain single-step video generation models by leveraging adversarial training to fine-tune pre-trained video diffusion models. We show that, through the adversarial training, the multi-steps video diffusion model, i.e., Stable Video Diffusion (SVD), can be trained to perform single forward pass to synthesize high-quality videos, capturing both temporal and spatial dependencies in the video data. Extensive experiments demonstrate that our method achieves competitive generation quality of synthesized videos with significantly reduced computational overhead for the denoising process (i.e., around $23\times$ speedup compared with SVD and $6\times$ speedup compared with existing works, with even better generation quality), paving the way for real-time video synthesis and editing. More visualization results are made publicly available at https://snap-research.github.io/SF-V.
Authors:Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Ekaterina Deyneka, Hsiang-wei Chao, Byung Eun Jeon, Yuwei Fang, Hsin-Ying Lee, Jian Ren, Ming-Hsuan Yang, Sergey Tulyakov
Title: Panda-70M: Captioning 70M Videos with Multiple Cross-Modality Teachers
Abstract:
The quality of the data and annotation upper-bounds the quality of a downstream model. While there exist large text corpora and image-text pairs, high-quality video-text data is much harder to collect. First of all, manual labeling is more time-consuming, as it requires an annotator to watch an entire video. Second, videos have a temporal dimension, consisting of several scenes stacked together, and showing multiple actions. Accordingly, to establish a video dataset with high-quality captions, we propose an automatic approach leveraging multimodal inputs, such as textual video description, subtitles, and individual video frames. Specifically, we curate 3.8M high-resolution videos from the publicly available HD-VILA-100M dataset. We then split them into semantically consistent video clips, and apply multiple cross-modality teacher models to obtain captions for each video. Next, we finetune a retrieval model on a small subset where the best caption of each video is manually selected and then employ the model in the whole dataset to select the best caption as the annotation. In this way, we get 70M videos paired with high-quality text captions. We dub the dataset as Panda-70M. We show the value of the proposed dataset on three downstream tasks: video captioning, video and text retrieval, and text-driven video generation. The models trained on the proposed data score substantially better on the majority of metrics across all the tasks.
Authors:Willi Menapace, Aliaksandr Siarohin, Ivan Skorokhodov, Ekaterina Deyneka, Tsai-Shien Chen, Anil Kag, Yuwei Fang, Aleksei Stoliar, Elisa Ricci, Jian Ren, Sergey Tulyakov
Title: Snap Video: Scaled Spatiotemporal Transformers for Text-to-Video Synthesis
Abstract:
Contemporary models for generating images show remarkable quality and versatility. Swayed by these advantages, the research community repurposes them to generate videos. Since video content is highly redundant, we argue that naively bringing advances of image models to the video generation domain reduces motion fidelity, visual quality and impairs scalability. In this work, we build Snap Video, a video-first model that systematically addresses these challenges. To do that, we first extend the EDM framework to take into account spatially and temporally redundant pixels and naturally support video generation. Second, we show that a U-Net - a workhorse behind image generation - scales poorly when generating videos, requiring significant computational overhead. Hence, we propose a new transformer-based architecture that trains 3.31 times faster than U-Nets (and is ~4.5 faster at inference). This allows us to efficiently train a text-to-video model with billions of parameters for the first time, reach state-of-the-art results on a number of benchmarks, and generate videos with substantially higher quality, temporal consistency, and motion complexity. The user studies showed that our model was favored by a large margin over the most recent methods. See our website at https://snap-research.github.io/snapvideo/.
Authors:Xinyuan Chen, Yaohui Wang, Lingjun Zhang, Shaobin Zhuang, Xin Ma, Jiashuo Yu, Yali Wang, Dahua Lin, Yu Qiao, Ziwei Liu
Title: SEINE: Short-to-Long Video Diffusion Model for Generative Transition and Prediction
Abstract:
Recently video generation has achieved substantial progress with realistic results. Nevertheless, existing AI-generated videos are usually very short clips ("shot-level") depicting a single scene. To deliver a coherent long video ("story-level"), it is desirable to have creative transition and prediction effects across different clips. This paper presents a short-to-long video diffusion model, SEINE, that focuses on generative transition and prediction. The goal is to generate high-quality long videos with smooth and creative transitions between scenes and varying lengths of shot-level videos. Specifically, we propose a random-mask video diffusion model to automatically generate transitions based on textual descriptions. By providing the images of different scenes as inputs, combined with text-based control, our model generates transition videos that ensure coherence and visual quality. Furthermore, the model can be readily extended to various tasks such as image-to-video animation and autoregressive video prediction. To conduct a comprehensive evaluation of this new generative task, we propose three assessing criteria for smooth and creative transition: temporal consistency, semantic similarity, and video-text semantic alignment. Extensive experiments validate the effectiveness of our approach over existing methods for generative transition and prediction, enabling the creation of story-level long videos. Project page: https://vchitect.github.io/SEINE-project/ .
Authors:Yubo Huang, Weiqiang Wang, Sirui Zhao, Tong Xu, Lin Liu, Enhong Chen
Title: Bind-Your-Avatar: Multi-Talking-Character Video Generation with Dynamic 3D-mask-based Embedding Router
Abstract:
Recent years have witnessed remarkable advances in audio-driven talking head generation. However, existing approaches predominantly focus on single-character scenarios. While some methods can create separate conversation videos between two individuals, the critical challenge of generating unified conversation videos with multiple physically co-present characters sharing the same spatial environment remains largely unaddressed. This setting presents two key challenges: audio-to-character correspondence control and the lack of suitable datasets featuring multi-character talking videos within the same scene. To address these challenges, we introduce Bind-Your-Avatar, an MM-DiT-based model specifically designed for multi-talking-character video generation in the same scene. Specifically, we propose (1) A novel framework incorporating a fine-grained Embedding Router that binds `who' and `speak what' together to address the audio-to-character correspondence control. (2) Two methods for implementing a 3D-mask embedding router that enables frame-wise, fine-grained control of individual characters, with distinct loss functions based on observed geometric priors and a mask refinement strategy to enhance the accuracy and temporal smoothness of the predicted masks. (3) The first dataset, to the best of our knowledge, specifically constructed for multi-talking-character video generation, and accompanied by an open-source data processing pipeline, and (4) A benchmark for the dual-talking-characters video generation, with extensive experiments demonstrating superior performance over multiple state-of-the-art methods.
Authors:Zhen Li, Chuanhao Li, Xiaofeng Mao, Shaoheng Lin, Ming Li, Shitian Zhao, Zhaopan Xu, Xinyue Li, Yukang Feng, Jianwen Sun, Zizhen Li, Fanrui Zhang, Jiaxin Ai, Zhixiang Wang, Yuwei Wu, Tong He, Jiangmiao Pang, Yu Qiao, Yunde Jia, Kaipeng Zhang
Title: Sekai: A Video Dataset towards World Exploration
Abstract:
Video generation techniques have made remarkable progress, promising to be the foundation of interactive world exploration. However, existing video generation datasets are not well-suited for world exploration training as they suffer from some limitations: limited locations, short duration, static scenes, and a lack of annotations about exploration and the world. In this paper, we introduce Sekai (meaning ``world'' in Japanese), a high-quality first-person view worldwide video dataset with rich annotations for world exploration. It consists of over 5,000 hours of walking or drone view (FPV and UVA) videos from over 100 countries and regions across 750 cities. We develop an efficient and effective toolbox to collect, pre-process and annotate videos with location, scene, weather, crowd density, captions, and camera trajectories. Experiments demonstrate the quality of the dataset. And, we use a subset to train an interactive video world exploration model, named YUME (meaning ``dream'' in Japanese). We believe Sekai will benefit the area of video generation and world exploration, and motivate valuable applications. The project page is https://lixsp11.github.io/sekai-project/.
Authors:Sen Liang, Zhentao Yu, Zhengguang Zhou, Teng Hu, Hongmei Wang, Yi Chen, Qin Lin, Yuan Zhou, Xin Li, Qinglin Lu, Zhibo Chen
Title: OmniV2V: Versatile Video Generation and Editing via Dynamic Content Manipulation
Abstract:
The emergence of Diffusion Transformers (DiT) has brought significant advancements to video generation, especially in text-to-video and image-to-video tasks. Although video generation is widely applied in various fields, most existing models are limited to single scenarios and cannot perform diverse video generation and editing through dynamic content manipulation. We propose OmniV2V, a video model capable of generating and editing videos across different scenarios based on various operations, including: object movement, object addition, mask-guided video edit, try-on, inpainting, outpainting, human animation, and controllable character video synthesis. We explore a unified dynamic content manipulation injection module, which effectively integrates the requirements of the above tasks. In addition, we design a visual-text instruction module based on LLaVA, enabling the model to effectively understand the correspondence between visual content and instructions. Furthermore, we build a comprehensive multi-task data processing system. Since there is data overlap among various tasks, this system can efficiently provide data augmentation. Using this system, we construct a multi-type, multi-scenario OmniV2V dataset and its corresponding OmniV2V-Test benchmark. Extensive experiments show that OmniV2V works as well as, and sometimes better than, the best existing open-source and commercial models for many video generation and editing tasks.
Authors:Zhihang Yuan, Rui Xie, Yuzhang Shang, Hanling Zhang, Siyuan Wang, Shengen Yan, Guohao Dai, Yu Wang
Title: VGDFR: Diffusion-based Video Generation with Dynamic Latent Frame Rate
Abstract:
Diffusion Transformer(DiT)-based generation models have achieved remarkable success in video generation. However, their inherent computational demands pose significant efficiency challenges. In this paper, we exploit the inherent temporal non-uniformity of real-world videos and observe that videos exhibit dynamic information density, with high-motion segments demanding greater detail preservation than static scenes. Inspired by this temporal non-uniformity, we propose VGDFR, a training-free approach for Diffusion-based Video Generation with Dynamic Latent Frame Rate. VGDFR adaptively adjusts the number of elements in latent space based on the motion frequency of the latent space content, using fewer tokens for low-frequency segments while preserving detail in high-frequency segments. Specifically, our key contributions are: (1) A dynamic frame rate scheduler for DiT video generation that adaptively assigns frame rates for video segments. (2) A novel latent-space frame merging method to align latent representations with their denoised counterparts before merging those redundant in low-resolution space. (3) A preference analysis of Rotary Positional Embeddings (RoPE) across DiT layers, informing a tailored RoPE strategy optimized for semantic and local information capture. Experiments show that VGDFR can achieve a speedup up to 3x for video generation with minimal quality degradation.
Authors:Lehan Yang, Lu Qi, Xiangtai Li, Sheng Li, Varun Jampani, Ming-Hsuan Yang
Title: Unified Dense Prediction of Video Diffusion
Abstract:
We present a unified network for simultaneously generating videos and their corresponding entity segmentation and depth maps from text prompts. We utilize colormap to represent entity masks and depth maps, tightly integrating dense prediction with RGB video generation. Introducing dense prediction information improves video generation's consistency and motion smoothness without increasing computational costs. Incorporating learnable task embeddings brings multiple dense prediction tasks into a single model, enhancing flexibility and further boosting performance. We further propose a large-scale dense prediction video dataset~\datasetname, addressing the issue that existing datasets do not concurrently contain captions, videos, segmentation, or depth maps. Comprehensive experiments demonstrate the high efficiency of our method, surpassing the state-of-the-art in terms of video quality, consistency, and motion smoothness.
Authors:Jie Tian, Xiaoye Qu, Zhenyi Lu, Wei Wei, Sichen Liu, Yu Cheng
Title: Extrapolating and Decoupling Image-to-Video Generation Models: Motion Modeling is Easier Than You Think
Abstract:
Image-to-Video (I2V) generation aims to synthesize a video clip according to a given image and condition (e.g., text). The key challenge of this task lies in simultaneously generating natural motions while preserving the original appearance of the images. However, current I2V diffusion models (I2V-DMs) often produce videos with limited motion degrees or exhibit uncontrollable motion that conflicts with the textual condition. To address these limitations, we propose a novel Extrapolating and Decoupling framework, which introduces model merging techniques to the I2V domain for the first time. Specifically, our framework consists of three separate stages: (1) Starting with a base I2V-DM, we explicitly inject the textual condition into the temporal module using a lightweight, learnable adapter and fine-tune the integrated model to improve motion controllability. (2) We introduce a training-free extrapolation strategy to amplify the dynamic range of the motion, effectively reversing the fine-tuning process to enhance the motion degree significantly. (3) With the above two-stage models excelling in motion controllability and degree, we decouple the relevant parameters associated with each type of motion ability and inject them into the base I2V-DM. Since the I2V-DM handles different levels of motion controllability and dynamics at various denoising time steps, we adjust the motion-aware parameters accordingly over time. Extensive qualitative and quantitative experiments have been conducted to demonstrate the superiority of our framework over existing methods.
Authors:Zhihang Yuan, Siyuan Wang, Rui Xie, Hanling Zhang, Tongcheng Fang, Yuzhang Shang, Shengen Yan, Guohao Dai, Yu Wang
Title: DLFR-VAE: Dynamic Latent Frame Rate VAE for Video Generation
Abstract:
In this paper, we propose the Dynamic Latent Frame Rate VAE (DLFR-VAE), a training-free paradigm that can make use of adaptive temporal compression in latent space. While existing video generative models apply fixed compression rates via pretrained VAE, we observe that real-world video content exhibits substantial temporal non-uniformity, with high-motion segments containing more information than static scenes. Based on this insight, DLFR-VAE dynamically adjusts the latent frame rate according to the content complexity. Specifically, DLFR-VAE comprises two core innovations: (1) A Dynamic Latent Frame Rate Scheduler that partitions videos into temporal chunks and adaptively determines optimal frame rates based on information-theoretic content complexity, and (2) A training-free adaptation mechanism that transforms pretrained VAE architectures into a dynamic VAE that can process features with variable frame rates. Our simple but effective DLFR-VAE can function as a plug-and-play module, seamlessly integrating with existing video generation models and accelerating the video generation process.
Authors:Xingrui Wang, Xin Li, Yaosi Hu, Hanxin Zhu, Chen Hou, Cuiling Lan, Zhibo Chen
Title: TIV-Diffusion: Towards Object-Centric Movement for Text-driven Image to Video Generation
Abstract:
Text-driven Image to Video Generation (TI2V) aims to generate controllable video given the first frame and corresponding textual description. The primary challenges of this task lie in two parts: (i) how to identify the target objects and ensure the consistency between the movement trajectory and the textual description. (ii) how to improve the subjective quality of generated videos. To tackle the above challenges, we propose a new diffusion-based TI2V framework, termed TIV-Diffusion, via object-centric textual-visual alignment, intending to achieve precise control and high-quality video generation based on textual-described motion for different objects. Concretely, we enable our TIV-Diffuion model to perceive the textual-described objects and their motion trajectory by incorporating the fused textual and visual knowledge through scale-offset modulation. Moreover, to mitigate the problems of object disappearance and misaligned objects and motion, we introduce an object-centric textual-visual alignment module, which reduces the risk of misaligned objects/motion by decoupling the objects in the reference image and aligning textual features with each object individually. Based on the above innovations, our TIV-Diffusion achieves state-of-the-art high-quality video generation compared with existing TI2V methods.
Authors:Haojie Zhang, Zhihao Liang, Ruibo Fu, Bingyan Liu, Zhengqi Wen, Xuefei Liu, Jianhua Tao, Yaling Liang
Title: Efficient Long-duration Talking Video Synthesis with Linear Diffusion Transformer under Multimodal Guidance
Abstract:
Long-duration talking video synthesis faces persistent challenges in simultaneously achieving high video quality, portrait and temporal consistency, and computational efficiency. As video length increases, issues such as visual degradation, loss of identity consistency, temporal incoherence, and error accumulation become increasingly prominent, severely impacting the realism and reliability of generated results. To address these issues, we present LetsTalk, a diffusion transformer framework that incorporates multimodal guidance and a novel memory bank mechanism, explicitly maintaining contextual continuity and enabling robust, high-quality, and efficient long-duration talking video generation. Specifically, LetsTalk introduces a memory bank combined with a noise-regularized training strategy to mitigate error accumulation and sampling artifacts during long video generation. To further enhance efficiency and spatiotemporal consistency, LetsTalk employs a deep compression autoencoder and a spatiotemporal-aware transformer with linear attention for effective multimodal fusion. Furthermore, we systematically analyze three multimodal fusion schemes, adopting deep (Symbiotic Fusion) for portrait features to ensure visual consistency, and shallow (Direct Fusion) for audio to synchronize animation with speech while preserving motion diversity. Extensive experiments demonstrate that LetsTalk achieves state-of-the-art generation quality, producing temporally coherent and realistic talking videos with enhanced diversity and liveliness, while maintaining remarkable efficiency with 8 fewer parameters than previous approaches.
Authors:Zhihang Yuan, Hanling Zhang, Pu Lu, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan, Guohao Dai, Yu Wang
Title: DiTFastAttn: Attention Compression for Diffusion Transformer Models
Abstract:
Diffusion Transformers (DiT) excel at image and video generation but face computational challenges due to the quadratic complexity of self-attention operators. We propose DiTFastAttn, a post-training compression method to alleviate the computational bottleneck of DiT. We identify three key redundancies in the attention computation during DiT inference: (1) spatial redundancy, where many attention heads focus on local information; (2) temporal redundancy, with high similarity between the attention outputs of neighboring steps; (3) conditional redundancy, where conditional and unconditional inferences exhibit significant similarity. We propose three techniques to reduce these redundancies: (1) Window Attention with Residual Sharing to reduce spatial redundancy; (2) Attention Sharing across Timesteps to exploit the similarity between steps; (3) Attention Sharing across CFG to skip redundant computations during conditional generation. We apply DiTFastAttn to DiT, PixArt-Sigma for image generation tasks, and OpenSora for video generation tasks. Our results show that for image generation, our method reduces up to 76% of the attention FLOPs and achieves up to 1.8x end-to-end speedup at high-resolution (2k x 2k) generation.
Authors:Xingrui Wang, Xin Li, Zhibo Chen
Title: CoNo: Consistency Noise Injection for Tuning-free Long Video Diffusion
Abstract:
Tuning-free long video diffusion has been proposed to generate extended-duration videos with enriched content by reusing the knowledge from pre-trained short video diffusion model without retraining. However, most works overlook the fine-grained long-term video consistency modeling, resulting in limited scene consistency (i.e., unreasonable object or background transitions), especially with multiple text inputs. To mitigate this, we propose the Consistency Noise Injection, dubbed CoNo, which introduces the "look-back" mechanism to enhance the fine-grained scene transition between different video clips, and designs the long-term consistency regularization to eliminate the content shifts when extending video contents through noise prediction. In particular, the "look-back" mechanism breaks the noise scheduling process into three essential parts, where one internal noise prediction part is injected into two video-extending parts, intending to achieve a fine-grained transition between two video clips. The long-term consistency regularization focuses on explicitly minimizing the pixel-wise distance between the predicted noises of the extended video clip and the original one, thereby preventing abrupt scene transitions. Extensive experiments have shown the effectiveness of the above strategies by performing long-video generation under both single- and multi-text prompt conditions. The project has been available in https://wxrui182.github.io/CoNo.github.io/.
Authors:Tianchen Zhao, Tongcheng Fang, Haofeng Huang, Enshu Liu, Rui Wan, Widyadewi Soedarmadji, Shiyao Li, Zinan Lin, Guohao Dai, Shengen Yan, Huazhong Yang, Xuefei Ning, Yu Wang
Title: ViDiT-Q: Efficient and Accurate Quantization of Diffusion Transformers for Image and Video Generation
Abstract:
Diffusion transformers have demonstrated remarkable performance in visual generation tasks, such as generating realistic images or videos based on textual instructions. However, larger model sizes and multi-frame processing for video generation lead to increased computational and memory costs, posing challenges for practical deployment on edge devices. Post-Training Quantization (PTQ) is an effective method for reducing memory costs and computational complexity. When quantizing diffusion transformers, we find that existing quantization methods face challenges when applied to text-to-image and video tasks. To address these challenges, we begin by systematically analyzing the source of quantization error and conclude with the unique challenges posed by DiT quantization. Accordingly, we design an improved quantization scheme: ViDiT-Q (Video & Image Diffusion Transformer Quantization), tailored specifically for DiT models. We validate the effectiveness of ViDiT-Q across a variety of text-to-image and video models, achieving W8A8 and W4A8 with negligible degradation in visual quality and metrics. Additionally, we implement efficient GPU kernels to achieve practical 2-2.5x memory saving and a 1.4-1.7x end-to-end latency speedup.
Authors:Weichen Fan, Chenyang Si, Junhao Song, Zhenyu Yang, Yinan He, Long Zhuo, Ziqi Huang, Ziyue Dong, Jingwen He, Dongwei Pan, Yi Wang, Yuming Jiang, Yaohui Wang, Peng Gao, Xinyuan Chen, Hengjie Li, Dahua Lin, Yu Qiao, Ziwei Liu
Title: Vchitect-2.0: Parallel Transformer for Scaling Up Video Diffusion Models
Abstract:
We present Vchitect-2.0, a parallel transformer architecture designed to scale up video diffusion models for large-scale text-to-video generation. The overall Vchitect-2.0 system has several key designs. (1) By introducing a novel Multimodal Diffusion Block, our approach achieves consistent alignment between text descriptions and generated video frames, while maintaining temporal coherence across sequences. (2) To overcome memory and computational bottlenecks, we propose a Memory-efficient Training framework that incorporates hybrid parallelism and other memory reduction techniques, enabling efficient training of long video sequences on distributed systems. (3) Additionally, our enhanced data processing pipeline ensures the creation of Vchitect T2V DataVerse, a high-quality million-scale training dataset through rigorous annotation and aesthetic evaluation. Extensive benchmarking demonstrates that Vchitect-2.0 outperforms existing methods in video quality, training efficiency, and scalability, serving as a suitable base for high-fidelity video generation.
Authors:Nantheera Anantrasirichai, Fan Zhang, David Bull
Title: Artificial Intelligence in Creative Industries: Advances Prior to 2025
Abstract:
The rapid advancements in artificial intelligence (AI), particularly in generative AI and large language models (LLMs), have profoundly impacted the creative industries, enabling more innovative content creation, enhancing workflows, and democratizing access to creative tools. This paper explores these technological shifts, with particular focus on how those that have emerged since our previous review in 2022 have expanded creative opportunities and improved efficiency. These technological advancements have enhanced the capabilities of text-to-image, text-to-video, and multimodal generation technologies. In particular, key breakthroughs in LLMs have established new benchmarks in conversational AI, while advancements in image generators have revolutionized content creation. We also discuss the integration of AI into post-production workflows, which has significantly accelerated and improved traditional processes. Once content has been created, it must be delivered to its audiences; the media industry is now facing the demands of increased communication traffic due to creative content. We therefore include a discussion of how AI is beginning to transform the way we represent and compress media content. We highlight the trend toward unified AI frameworks capable of addressing and integrating multiple creative tasks, and we underscore the importance of human insight to drive the creative process and oversight to mitigate AI-generated inaccuracies. Finally, we explore AI's future potential in the creative sector, stressing the need to navigate emerging challenges and to maximize its benefits while addressing the associated risks.
Authors:Xiang Wang, Shiwei Zhang, Changxin Gao, Jiayu Wang, Xiaoqiang Zhou, Yingya Zhang, Luxin Yan, Nong Sang
Title: UniAnimate: Taming Unified Video Diffusion Models for Consistent Human Image Animation
Abstract:
Recent diffusion-based human image animation techniques have demonstrated impressive success in synthesizing videos that faithfully follow a given reference identity and a sequence of desired movement poses. Despite this, there are still two limitations: i) an extra reference model is required to align the identity image with the main video branch, which significantly increases the optimization burden and model parameters; ii) the generated video is usually short in time (e.g., 24 frames), hampering practical applications. To address these shortcomings, we present a UniAnimate framework to enable efficient and long-term human video generation. First, to reduce the optimization difficulty and ensure temporal coherence, we map the reference image along with the posture guidance and noise video into a common feature space by incorporating a unified video diffusion model. Second, we propose a unified noise input that supports random noised input as well as first frame conditioned input, which enhances the ability to generate long-term video. Finally, to further efficiently handle long sequences, we explore an alternative temporal modeling architecture based on state space model to replace the original computation-consuming temporal Transformer. Extensive experimental results indicate that UniAnimate achieves superior synthesis results over existing state-of-the-art counterparts in both quantitative and qualitative evaluations. Notably, UniAnimate can even generate highly consistent one-minute videos by iteratively employing the first frame conditioning strategy. Code and models will be publicly available. Project page: https://unianimate.github.io/.
Authors:Xiang Wang, Shiwei Zhang, Hangjie Yuan, Zhiwu Qing, Biao Gong, Yingya Zhang, Yujun Shen, Changxin Gao, Nong Sang
Title: A Recipe for Scaling up Text-to-Video Generation with Text-free Videos
Abstract:
Diffusion-based text-to-video generation has witnessed impressive progress in the past year yet still falls behind text-to-image generation. One of the key reasons is the limited scale of publicly available data (e.g., 10M video-text pairs in WebVid10M vs. 5B image-text pairs in LAION), considering the high cost of video captioning. Instead, it could be far easier to collect unlabeled clips from video platforms like YouTube. Motivated by this, we come up with a novel text-to-video generation framework, termed TF-T2V, which can directly learn with text-free videos. The rationale behind is to separate the process of text decoding from that of temporal modeling. To this end, we employ a content branch and a motion branch, which are jointly optimized with weights shared. Following such a pipeline, we study the effect of doubling the scale of training set (i.e., video-only WebVid10M) with some randomly collected text-free videos and are encouraged to observe the performance improvement (FID from 9.67 to 8.19 and FVD from 484 to 441), demonstrating the scalability of our approach. We also find that our model could enjoy sustainable performance gain (FID from 8.19 to 7.64 and FVD from 441 to 366) after reintroducing some text labels for training. Finally, we validate the effectiveness and generalizability of our ideology on both native text-to-video generation and compositional video synthesis paradigms. Code and models will be publicly available at https://tf-t2v.github.io/.
Authors:Xiang Wang, Shiwei Zhang, Han Zhang, Yu Liu, Yingya Zhang, Changxin Gao, Nong Sang
Title: VideoLCM: Video Latent Consistency Model
Abstract:
Consistency models have demonstrated powerful capability in efficient image generation and allowed synthesis within a few sampling steps, alleviating the high computational cost in diffusion models. However, the consistency model in the more challenging and resource-consuming video generation is still less explored. In this report, we present the VideoLCM framework to fill this gap, which leverages the concept of consistency models from image generation to efficiently synthesize videos with minimal steps while maintaining high quality. VideoLCM builds upon existing latent video diffusion models and incorporates consistency distillation techniques for training the latent consistency model. Experimental results reveal the effectiveness of our VideoLCM in terms of computational efficiency, fidelity and temporal consistency. Notably, VideoLCM achieves high-fidelity and smooth video synthesis with only four sampling steps, showcasing the potential for real-time synthesis. We hope that VideoLCM can serve as a simple yet effective baseline for subsequent research. The source code and models will be publicly available.
Authors:Zhiwu Qing, Shiwei Zhang, Jiayu Wang, Xiang Wang, Yujie Wei, Yingya Zhang, Changxin Gao, Nong Sang
Title: Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation
Abstract:
Despite diffusion models having shown powerful abilities to generate photorealistic images, generating videos that are realistic and diverse still remains in its infancy. One of the key reasons is that current methods intertwine spatial content and temporal dynamics together, leading to a notably increased complexity of text-to-video generation (T2V). In this work, we propose HiGen, a diffusion model-based method that improves performance by decoupling the spatial and temporal factors of videos from two perspectives, i.e., structure level and content level. At the structure level, we decompose the T2V task into two steps, including spatial reasoning and temporal reasoning, using a unified denoiser. Specifically, we generate spatially coherent priors using text during spatial reasoning and then generate temporally coherent motions from these priors during temporal reasoning. At the content level, we extract two subtle cues from the content of the input video that can express motion and appearance changes, respectively. These two cues then guide the model's training for generating videos, enabling flexible content variations and enhancing temporal stability. Through the decoupled paradigm, HiGen can effectively reduce the complexity of this task and generate realistic videos with semantics accuracy and motion stability. Extensive experiments demonstrate the superior performance of HiGen over the state-of-the-art T2V methods.
Authors:Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan He, Jiashuo Yu, Peiqing Yang, Yuwei Guo, Tianxing Wu, Chenyang Si, Yuming Jiang, Cunjian Chen, Chen Change Loy, Bo Dai, Dahua Lin, Yu Qiao, Ziwei Liu
Title: LAVIE: High-Quality Video Generation with Cascaded Latent Diffusion Models
Abstract:
This work aims to learn a high-quality text-to-video (T2V) generative model by leveraging a pre-trained text-to-image (T2I) model as a basis. It is a highly desirable yet challenging task to simultaneously a) accomplish the synthesis of visually realistic and temporally coherent videos while b) preserving the strong creative generation nature of the pre-trained T2I model. To this end, we propose LaVie, an integrated video generation framework that operates on cascaded video latent diffusion models, comprising a base T2V model, a temporal interpolation model, and a video super-resolution model. Our key insights are two-fold: 1) We reveal that the incorporation of simple temporal self-attentions, coupled with rotary positional encoding, adequately captures the temporal correlations inherent in video data. 2) Additionally, we validate that the process of joint image-video fine-tuning plays a pivotal role in producing high-quality and creative outcomes. To enhance the performance of LaVie, we contribute a comprehensive and diverse video dataset named Vimeo25M, consisting of 25 million text-video pairs that prioritize quality, diversity, and aesthetic appeal. Extensive experiments demonstrate that LaVie achieves state-of-the-art performance both quantitatively and qualitatively. Furthermore, we showcase the versatility of pre-trained LaVie models in various long video generation and personalized video synthesis applications.
Authors:Zixun Fang, Kai Zhu, Zhiheng Liu, Yu Liu, Wei Zhai, Yang Cao, Zheng-Jun Zha
Title: ViewPoint: Panoramic Video Generation with Pretrained Diffusion Models
Abstract:
Panoramic video generation aims to synthesize 360-degree immersive videos, holding significant importance in the fields of VR, world models, and spatial intelligence. Existing works fail to synthesize high-quality panoramic videos due to the inherent modality gap between panoramic data and perspective data, which constitutes the majority of the training data for modern diffusion models. In this paper, we propose a novel framework utilizing pretrained perspective video models for generating panoramic videos. Specifically, we design a novel panorama representation named ViewPoint map, which possesses global spatial continuity and fine-grained visual details simultaneously. With our proposed Pano-Perspective attention mechanism, the model benefits from pretrained perspective priors and captures the panoramic spatial correlations of the ViewPoint map effectively. Extensive experiments demonstrate that our method can synthesize highly dynamic and spatially consistent panoramic videos, achieving state-of-the-art performance and surpassing previous methods.
Authors:Xiangpeng Yang, Linchao Zhu, Hehe Fan, Yi Yang
Title: VideoGrain: Modulating Space-Time Attention for Multi-grained Video Editing
Abstract:
Recent advancements in diffusion models have significantly improved video generation and editing capabilities. However, multi-grained video editing, which encompasses class-level, instance-level, and part-level modifications, remains a formidable challenge. The major difficulties in multi-grained editing include semantic misalignment of text-to-region control and feature coupling within the diffusion model. To address these difficulties, we present VideoGrain, a zero-shot approach that modulates space-time (cross- and self-) attention mechanisms to achieve fine-grained control over video content. We enhance text-to-region control by amplifying each local prompt's attention to its corresponding spatial-disentangled region while minimizing interactions with irrelevant areas in cross-attention. Additionally, we improve feature separation by increasing intra-region awareness and reducing inter-region interference in self-attention. Extensive experiments demonstrate our method achieves state-of-the-art performance in real-world scenarios. Our code, data, and demos are available at https://knightyxp.github.io/VideoGrain_project_page/
Authors:Yu Lu, Yuanzhi Liang, Linchao Zhu, Yi Yang
Title: FreeLong: Training-Free Long Video Generation with SpectralBlend Temporal Attention
Abstract:
Video diffusion models have made substantial progress in various video generation applications. However, training models for long video generation tasks require significant computational and data resources, posing a challenge to developing long video diffusion models. This paper investigates a straightforward and training-free approach to extend an existing short video diffusion model (e.g. pre-trained on 16-frame videos) for consistent long video generation (e.g. 128 frames). Our preliminary observation has found that directly applying the short video diffusion model to generate long videos can lead to severe video quality degradation. Further investigation reveals that this degradation is primarily due to the distortion of high-frequency components in long videos, characterized by a decrease in spatial high-frequency components and an increase in temporal high-frequency components. Motivated by this, we propose a novel solution named FreeLong to balance the frequency distribution of long video features during the denoising process. FreeLong blends the low-frequency components of global video features, which encapsulate the entire video sequence, with the high-frequency components of local video features that focus on shorter subsequences of frames. This approach maintains global consistency while incorporating diverse and high-quality spatiotemporal details from local videos, enhancing both the consistency and fidelity of long video generation. We evaluated FreeLong on multiple base video diffusion models and observed significant improvements. Additionally, our method supports coherent multi-prompt generation, ensuring both visual coherence and seamless transitions between scenes.
Authors:Zixun Fang, Wei Zhai, Aimin Su, Hongliang Song, Kai Zhu, Mao Wang, Yu Chen, Zhiheng Liu, Yang Cao, Zheng-Jun Zha
Title: ViViD: Video Virtual Try-on using Diffusion Models
Abstract:
Video virtual try-on aims to transfer a clothing item onto the video of a target person. Directly applying the technique of image-based try-on to the video domain in a frame-wise manner will cause temporal-inconsistent outcomes while previous video-based try-on solutions can only generate low visual quality and blurring results. In this work, we present ViViD, a novel framework employing powerful diffusion models to tackle the task of video virtual try-on. Specifically, we design the Garment Encoder to extract fine-grained clothing semantic features, guiding the model to capture garment details and inject them into the target video through the proposed attention feature fusion mechanism. To ensure spatial-temporal consistency, we introduce a lightweight Pose Encoder to encode pose signals, enabling the model to learn the interactions between clothing and human posture and insert hierarchical Temporal Modules into the text-to-image stable diffusion model for more coherent and lifelike video synthesis. Furthermore, we collect a new dataset, which is the largest, with the most diverse types of garments and the highest resolution for the task of video virtual try-on to date. Extensive experiments demonstrate that our approach is able to yield satisfactory video try-on results. The dataset, codes, and weights will be publicly available. Project page: https://becauseimbatman0.github.io/ViViD.
Authors:Xiangpeng Yang, Linchao Zhu, Hehe Fan, Yi Yang
Title: EVA: Zero-shot Accurate Attributes and Multi-Object Video Editing
Abstract:
Current diffusion-based video editing primarily focuses on local editing (\textit{e.g.,} object/background editing) or global style editing by utilizing various dense correspondences. However, these methods often fail to accurately edit the foreground and background simultaneously while preserving the original layout. We find that the crux of the issue stems from the imprecise distribution of attention weights across designated regions, including inaccurate text-to-attribute control and attention leakage. To tackle this issue, we introduce EVA, a \textbf{zero-shot} and \textbf{multi-attribute} video editing framework tailored for human-centric videos with complex motions. We incorporate a Spatial-Temporal Layout-Guided Attention mechanism that leverages the intrinsic positive and negative correspondences of cross-frame diffusion features. To avoid attention leakage, we utilize these correspondences to boost the attention scores of tokens within the same attribute across all video frames while limiting interactions between tokens of different attributes in the self-attention layer. For precise text-to-attribute manipulation, we use discrete text embeddings focused on specific layout areas within the cross-attention layer. Benefiting from the precise attention weight distribution, EVA can be easily generalized to multi-object editing scenarios and achieves accurate identity mapping. Extensive experiments demonstrate EVA achieves state-of-the-art results in real-world scenarios. Full results are provided at https://knightyxp.github.io/EVA/
Authors:Hongchen Luo, Kai Zhu, Wei Zhai, Yang Cao
Title: Intention-driven Ego-to-Exo Video Generation
Abstract:
Ego-to-exo video generation refers to generating the corresponding exocentric video according to the egocentric video, providing valuable applications in AR/VR and embodied AI. Benefiting from advancements in diffusion model techniques, notable progress has been achieved in video generation. However, existing methods build upon the spatiotemporal consistency assumptions between adjacent frames, which cannot be satisfied in the ego-to-exo scenarios due to drastic changes in views. To this end, this paper proposes an Intention-Driven Ego-to-exo video generation framework (IDE) that leverages action intention consisting of human movement and action description as view-independent representation to guide video generation, preserving the consistency of content and motion. Specifically, the egocentric head trajectory is first estimated through multi-view stereo matching. Then, cross-view feature perception module is introduced to establish correspondences between exo- and ego- views, guiding the trajectory transformation module to infer human full-body movement from the head trajectory. Meanwhile, we present an action description unit that maps the action semantics into the feature space consistent with the exocentric image. Finally, the inferred human movement and high-level action descriptions jointly guide the generation of exocentric motion and interaction content (i.e., corresponding optical flow and occlusion maps) in the backward process of the diffusion model, ultimately warping them into the corresponding exocentric video. We conduct extensive experiments on the relevant dataset with diverse exo-ego video pairs, and our IDE outperforms state-of-the-art models in both subjective and objective assessments, demonstrating its efficacy in ego-to-exo video generation.
Authors:Yu Lu, Linchao Zhu, Hehe Fan, Yi Yang
Title: FlowZero: Zero-Shot Text-to-Video Synthesis with LLM-Driven Dynamic Scene Syntax
Abstract:
Text-to-video (T2V) generation is a rapidly growing research area that aims to translate the scenes, objects, and actions within complex video text into a sequence of coherent visual frames. We present FlowZero, a novel framework that combines Large Language Models (LLMs) with image diffusion models to generate temporally-coherent videos. FlowZero uses LLMs to understand complex spatio-temporal dynamics from text, where LLMs can generate a comprehensive dynamic scene syntax (DSS) containing scene descriptions, object layouts, and background motion patterns. These elements in DSS are then used to guide the image diffusion model for video generation with smooth object motions and frame-to-frame coherence. Moreover, FlowZero incorporates an iterative self-refinement process, enhancing the alignment between the spatio-temporal layouts and the textual prompts for the videos. To enhance global coherence, we propose enriching the initial noise of each frame with motion dynamics to control the background movement and camera motion adaptively. By using spatio-temporal syntaxes to guide the diffusion process, FlowZero achieves improvement in zero-shot video synthesis, generating coherent videos with vivid motion.
Authors:Jingyun Liang, Yuchen Fan, Kai Zhang, Radu Timofte, Luc Van Gool, Rakesh Ranjan
Title: MoVideo: Motion-Aware Video Generation with Diffusion Models
Abstract:
While recent years have witnessed great progress on using diffusion models for video generation, most of them are simple extensions of image generation frameworks, which fail to explicitly consider one of the key differences between videos and images, i.e., motion. In this paper, we propose a novel motion-aware video generation (MoVideo) framework that takes motion into consideration from two aspects: video depth and optical flow. The former regulates motion by per-frame object distances and spatial layouts, while the later describes motion by cross-frame correspondences that help in preserving fine details and improving temporal consistency. More specifically, given a key frame that exists or generated from text prompts, we first design a diffusion model with spatio-temporal modules to generate the video depth and the corresponding optical flows. Then, the video is generated in the latent space by another spatio-temporal diffusion model under the guidance of depth, optical flow-based warped latent video and the calculated occlusion mask. Lastly, we use optical flows again to align and refine different frames for better video decoding from the latent space to the pixel space. In experiments, MoVideo achieves state-of-the-art results in both text-to-video and image-to-video generation, showing promising prompt consistency, frame consistency and visual quality.
Authors:Fan Ma, Xiaojie Jin, Heng Wang, Jingjia Huang, Linchao Zhu, Jiashi Feng, Yi Yang
Title: Temporal Perceiving Video-Language Pre-training
Abstract:
Video-Language Pre-training models have recently significantly improved various multi-modal downstream tasks. Previous dominant works mainly adopt contrastive learning to achieve global feature alignment across modalities. However, the local associations between videos and texts are not modeled, restricting the pre-training models' generality, especially for tasks requiring the temporal video boundary for certain query texts. This work introduces a novel text-video localization pre-text task to enable fine-grained temporal and semantic alignment such that the trained model can accurately perceive temporal boundaries in videos given the text description. Specifically, text-video localization consists of moment retrieval, which predicts start and end boundaries in videos given the text description, and text localization which matches the subset of texts with the video features. To produce temporal boundaries, frame features in several videos are manually merged into a long video sequence that interacts with a text sequence. With the localization task, our method connects the fine-grained frame representations with the word representations and implicitly distinguishes representations of different instances in the single modality. Notably, comprehensive experimental results show that our method significantly improves the state-of-the-art performance on various benchmarks, covering text-to-video retrieval, video question answering, video captioning, temporal action localization and temporal moment retrieval. The code will be released soon.
Authors:Sherwin Bahmani, Jeong Joon Park, Despoina Paschalidou, Hao Tang, Gordon Wetzstein, Leonidas Guibas, Luc Van Gool, Radu Timofte
Title: 3D-Aware Video Generation
Abstract:
Generative models have emerged as an essential building block for many image synthesis and editing tasks. Recent advances in this field have also enabled high-quality 3D or video content to be generated that exhibits either multi-view or temporal consistency. With our work, we explore 4D generative adversarial networks (GANs) that learn unconditional generation of 3D-aware videos. By combining neural implicit representations with time-aware discriminator, we develop a GAN framework that synthesizes 3D video supervised only with monocular videos. We show that our method learns a rich embedding of decomposable 3D structures and motions that enables new visual effects of spatio-temporal renderings while producing imagery with quality comparable to that of existing 3D or video GANs.
Authors:Yushuo Chen, Ruizhi Shao, Youxin Pang, Hongwen Zhang, Xinyi Wu, Rihui Wu, Yebin Liu
Title: DevilSight: Augmenting Monocular Human Avatar Reconstruction through a Virtual Perspective
Abstract:
We present a novel framework to reconstruct human avatars from monocular videos. Recent approaches have struggled either to capture the fine-grained dynamic details from the input or to generate plausible details at novel viewpoints, which mainly stem from the limited representational capacity of the avatar model and insufficient observational data. To overcome these challenges, we propose to leverage the advanced video generative model, Human4DiT, to generate the human motions from alternative perspective as an additional supervision signal. This approach not only enriches the details in previously unseen regions but also effectively regularizes the avatar representation to mitigate artifacts. Furthermore, we introduce two complementary strategies to enhance video generation: To ensure consistent reproduction of human motion, we inject the physical identity into the model through video fine-tuning. For higher-resolution outputs with finer details, a patch-based denoising algorithm is employed. Experimental results demonstrate that our method outperforms recent state-of-the-art approaches and validate the effectiveness of our proposed strategies.
Authors:Kongxin Wang, Jie Zhang, Peigui Qi, Kunsheng Tang, Tianwei Zhang, Wenbo Zhou
Title: PoseGuard: Pose-Guided Generation with Safety Guardrails
Abstract:
Pose-guided video generation has become a powerful tool in creative industries, exemplified by frameworks like Animate Anyone. However, conditioning generation on specific poses introduces serious risks, such as impersonation, privacy violations, and NSFW content creation. To address these challenges, we propose $\textbf{PoseGuard}$, a safety alignment framework for pose-guided generation. PoseGuard is designed to suppress unsafe generations by degrading output quality when encountering malicious poses, while maintaining high-fidelity outputs for benign inputs. We categorize unsafe poses into three representative types: discriminatory gestures such as kneeling or offensive salutes, sexually suggestive poses that lead to NSFW content, and poses imitating copyrighted celebrity movements. PoseGuard employs a dual-objective training strategy combining generation fidelity with safety alignment, and uses LoRA-based fine-tuning for efficient, parameter-light updates. To ensure adaptability to evolving threats, PoseGuard supports pose-specific LoRA fusion, enabling flexible and modular updates when new unsafe poses are identified. We further demonstrate the generalizability of PoseGuard to facial landmark-guided generation. Extensive experiments validate that PoseGuard effectively blocks unsafe generations, maintains generation quality for benign inputs, and remains robust against slight pose variations.
Authors:Youxin Pang, Ruizhi Shao, Jiajun Zhang, Hanzhang Tu, Yun Liu, Boyao Zhou, Hongwen Zhang, Yebin Liu
Title: ManiVideo: Generating Hand-Object Manipulation Video with Dexterous and Generalizable Grasping
Abstract:
In this paper, we introduce ManiVideo, a novel method for generating consistent and temporally coherent bimanual hand-object manipulation videos from given motion sequences of hands and objects. The core idea of ManiVideo is the construction of a multi-layer occlusion (MLO) representation that learns 3D occlusion relationships from occlusion-free normal maps and occlusion confidence maps. By embedding the MLO structure into the UNet in two forms, the model enhances the 3D consistency of dexterous hand-object manipulation. To further achieve the generalizable grasping of objects, we integrate Objaverse, a large-scale 3D object dataset, to address the scarcity of video data, thereby facilitating the learning of extensive object consistency. Additionally, we propose an innovative training strategy that effectively integrates multiple datasets, supporting downstream tasks such as human-centric hand-object manipulation video generation. Through extensive experiments, we demonstrate that our approach not only achieves video generation with plausible hand-object interaction and generalizable objects, but also outperforms existing SOTA methods.
Authors:Xiang Deng, Youxin Pang, Xiaochen Zhao, Chao Xu, Lizhen Wang, Hongjiang Xiao, Shi Yan, Hongwen Zhang, Yebin Liu
Title: Stereo-Talker: Audio-driven 3D Human Synthesis with Prior-Guided Mixture-of-Experts
Abstract:
This paper introduces Stereo-Talker, a novel one-shot audio-driven human video synthesis system that generates 3D talking videos with precise lip synchronization, expressive body gestures, temporally consistent photo-realistic quality, and continuous viewpoint control. The process follows a two-stage approach. In the first stage, the system maps audio input to high-fidelity motion sequences, encompassing upper-body gestures and facial expressions. To enrich motion diversity and authenticity, large language model (LLM) priors are integrated with text-aligned semantic audio features, leveraging LLMs' cross-modal generalization power to enhance motion quality. In the second stage, we improve diffusion-based video generation models by incorporating a prior-guided Mixture-of-Experts (MoE) mechanism: a view-guided MoE focuses on view-specific attributes, while a mask-guided MoE enhances region-based rendering stability. Additionally, a mask prediction module is devised to derive human masks from motion data, enhancing the stability and accuracy of masks and enabling mask guiding during inference. We also introduce a comprehensive human video dataset with 2,203 identities, covering diverse body gestures and detailed annotations, facilitating broad generalization. The code, data, and pre-trained models will be released for research purposes.
Authors:Weizhi Zhong, Junfan Lin, Peixin Chen, Liang Lin, Guanbin Li
Title: High-fidelity and Lip-synced Talking Face Synthesis via Landmark-based Diffusion Model
Abstract:
Audio-driven talking face video generation has attracted increasing attention due to its huge industrial potential. Some previous methods focus on learning a direct mapping from audio to visual content. Despite progress, they often struggle with the ambiguity of the mapping process, leading to flawed results. An alternative strategy involves facial structural representations (e.g., facial landmarks) as intermediaries. This multi-stage approach better preserves the appearance details but suffers from error accumulation due to the independent optimization of different stages. Moreover, most previous methods rely on generative adversarial networks, prone to training instability and mode collapse. To address these challenges, our study proposes a novel landmark-based diffusion model for talking face generation, which leverages facial landmarks as intermediate representations while enabling end-to-end optimization. Specifically, we first establish the less ambiguous mapping from audio to landmark motion of lip and jaw. Then, we introduce an innovative conditioning module called TalkFormer to align the synthesized motion with the motion represented by landmarks via differentiable cross-attention, which enables end-to-end optimization for improved lip synchronization. Besides, TalkFormer employs implicit feature warping to align the reference image features with the target motion for preserving more appearance details. Extensive experiments demonstrate that our approach can synthesize high-fidelity and lip-synced talking face videos, preserving more subject appearance details from the reference image.
Authors:Xuanchen Wang, Heng Wang, Dongnan Liu, Weidong Cai
Title: Dance Any Beat: Blending Beats with Visuals in Dance Video Generation
Abstract:
Generating dance from music is crucial for advancing automated choreography. Current methods typically produce skeleton keypoint sequences instead of dance videos and lack the capability to make specific individuals dance, which reduces their real-world applicability. These methods also require precise keypoint annotations, complicating data collection and limiting the use of self-collected video datasets. To overcome these challenges, we introduce a novel task: generating dance videos directly from images of individuals guided by music. This task enables the dance generation of specific individuals without requiring keypoint annotations, making it more versatile and applicable to various situations. Our solution, the Dance Any Beat Diffusion model (DabFusion), utilizes a reference image and a music piece to generate dance videos featuring various dance types and choreographies. The music is analyzed by our specially designed music encoder, which identifies essential features including dance style, movement, and rhythm. DabFusion excels in generating dance videos not only for individuals in the training dataset but also for any previously unseen person. This versatility stems from its approach of generating latent optical flow, which contains all necessary motion information to animate any person in the image. We evaluate DabFusion's performance using the AIST++ dataset, focusing on video quality, audio-video synchronization, and motion-music alignment. We propose a 2D Motion-Music Alignment Score (2D-MM Align), which builds on the Beat Alignment Score to more effectively evaluate motion-music alignment for this new task. Experiments show that our DabFusion establishes a solid baseline for this innovative task. Video results can be found on our project page: https://DabFusion.github.io.
Authors:Han Zhou, Dong Ni, Ao Chang, Xinrui Zhou, Rusi Chen, Yanlin Chen, Lian Liu, Jiamin Liang, Yuhao Huang, Tong Han, Zhe Liu, Deng-Ping Fan, Xin Yang
Title: OnUVS: Online Feature Decoupling Framework for High-Fidelity Ultrasound Video Synthesis
Abstract:
Ultrasound (US) imaging is indispensable in clinical practice. To diagnose certain diseases, sonographers must observe corresponding dynamic anatomic structures to gather comprehensive information. However, the limited availability of specific US video cases causes teaching difficulties in identifying corresponding diseases, which potentially impacts the detection rate of such cases. The synthesis of US videos may represent a promising solution to this issue. Nevertheless, it is challenging to accurately animate the intricate motion of dynamic anatomic structures while preserving image fidelity. To address this, we present a novel online feature-decoupling framework called OnUVS for high-fidelity US video synthesis. Our highlights can be summarized by four aspects. First, we introduced anatomic information into keypoint learning through a weakly-supervised training strategy, resulting in improved preservation of anatomical integrity and motion while minimizing the labeling burden. Second, to better preserve the integrity and textural information of US images, we implemented a dual-decoder that decouples the content and textural features in the generator. Third, we adopted a multiple-feature discriminator to extract a comprehensive range of visual cues, thereby enhancing the sharpness and fine details of the generated videos. Fourth, we constrained the motion trajectories of keypoints during online learning to enhance the fluidity of generated videos. Our validation and user studies on in-house echocardiographic and pelvic floor US videos showed that OnUVS synthesizes US videos with high fidelity.
Authors:Zhuoyuan Mao, Mengjie Zhao, Qiyu Wu, Zhi Zhong, Wei-Hsiang Liao, Hiromi Wakaki, Yuki Mitsufuji
Title: Cross-Modal Learning for Music-to-Music-Video Description Generation
Abstract:
Music-to-music-video generation is a challenging task due to the intrinsic differences between the music and video modalities. The advent of powerful text-to-video diffusion models has opened a promising pathway for music-video (MV) generation by first addressing the music-to-MV description task and subsequently leveraging these models for video generation. In this study, we focus on the MV description generation task and propose a comprehensive pipeline encompassing training data construction and multimodal model fine-tuning. We fine-tune existing pre-trained multimodal models on our newly constructed music-to-MV description dataset based on the Music4All dataset, which integrates both musical and visual information. Our experimental results demonstrate that music representations can be effectively mapped to textual domains, enabling the generation of meaningful MV description directly from music inputs. We also identify key components in the dataset construction pipeline that critically impact the quality of MV description and highlight specific musical attributes that warrant greater focus for improved MV description generation.
Authors:Yujie Wei, Shiwei Zhang, Hangjie Yuan, Biao Gong, Longxiang Tang, Xiang Wang, Haonan Qiu, Hengjia Li, Shuai Tan, Yingya Zhang, Hongming Shan
Title: DreamRelation: Relation-Centric Video Customization
Abstract:
Relational video customization refers to the creation of personalized videos that depict user-specified relations between two subjects, a crucial task for comprehending real-world visual content. While existing methods can personalize subject appearances and motions, they still struggle with complex relational video customization, where precise relational modeling and high generalization across subject categories are essential. The primary challenge arises from the intricate spatial arrangements, layout variations, and nuanced temporal dynamics inherent in relations; consequently, current models tend to overemphasize irrelevant visual details rather than capturing meaningful interactions. To address these challenges, we propose DreamRelation, a novel approach that personalizes relations through a small set of exemplar videos, leveraging two key components: Relational Decoupling Learning and Relational Dynamics Enhancement. First, in Relational Decoupling Learning, we disentangle relations from subject appearances using relation LoRA triplet and hybrid mask training strategy, ensuring better generalization across diverse relationships. Furthermore, we determine the optimal design of relation LoRA triplet by analyzing the distinct roles of the query, key, and value features within MM-DiT's attention mechanism, making DreamRelation the first relational video generation framework with explainable components. Second, in Relational Dynamics Enhancement, we introduce space-time relational contrastive loss, which prioritizes relational dynamics while minimizing the reliance on detailed subject appearances. Extensive experiments demonstrate that DreamRelation outperforms state-of-the-art methods in relational video customization. Code and models will be made publicly available.
Authors:Junhao Song, Yichao Zhang, Ziqian Bi, Tianyang Wang, Keyu Chen, Ming Li, Qian Niu, Junyu Liu, Benji Peng, Sen Zhang, Ming Liu, Jiawei Xu, Xuanhe Pan, Jinlang Wang, Pohsun Feng, Yizhu Wen, Lawrence K. Q. Yan, Hong-Ming Tseng, Xinyuan Song, Jintao Ren, Silin Chen, Yunze Wang, Weiche Hsieh, Bowen Jing, Junjie Yang, Jun Zhou, Zheyu Yao, Chia Xin Liang
Title: Generative Adversarial Networks Bridging Art and Machine Intelligence
Abstract:
Generative Adversarial Networks (GAN) have greatly influenced the development of computer vision and artificial intelligence in the past decade and also connected art and machine intelligence together. This book begins with a detailed introduction to the fundamental principles and historical development of GANs, contrasting them with traditional generative models and elucidating the core adversarial mechanisms through illustrative Python examples. The text systematically addresses the mathematical and theoretical underpinnings including probability theory, statistics, and game theory providing a solid framework for understanding the objectives, loss functions, and optimisation challenges inherent to GAN training. Subsequent chapters review classic variants such as Conditional GANs, DCGANs, InfoGAN, and LAPGAN before progressing to advanced training methodologies like Wasserstein GANs, GANs with gradient penalty, least squares GANs, and spectral normalisation techniques. The book further examines architectural enhancements and task-specific adaptations in generators and discriminators, showcasing practical implementations in high resolution image generation, artistic style transfer, video synthesis, text to image generation and other multimedia applications. The concluding sections offer insights into emerging research trends, including self-attention mechanisms, transformer-based generative models, and a comparative analysis with diffusion models, thus charting promising directions for future developments in both academic and applied settings.
Authors:Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang, Qixiang Ye, Fang Wan
Title: Timestep Embedding Tells: It's Time to Cache for Video Diffusion Model
Abstract:
As a fundamental backbone for video generation, diffusion models are challenged by low inference speed due to the sequential nature of denoising. Previous methods speed up the models by caching and reusing model outputs at uniformly selected timesteps. However, such a strategy neglects the fact that differences among model outputs are not uniform across timesteps, which hinders selecting the appropriate model outputs to cache, leading to a poor balance between inference efficiency and visual quality. In this study, we introduce Timestep Embedding Aware Cache (TeaCache), a training-free caching approach that estimates and leverages the fluctuating differences among model outputs across timesteps. Rather than directly using the time-consuming model outputs, TeaCache focuses on model inputs, which have a strong correlation with the modeloutputs while incurring negligible computational cost. TeaCache first modulates the noisy inputs using the timestep embeddings to ensure their differences better approximating those of model outputs. TeaCache then introduces a rescaling strategy to refine the estimated differences and utilizes them to indicate output caching. Experiments show that TeaCache achieves up to 4.41x acceleration over Open-Sora-Plan with negligible (-0.07% Vbench score) degradation of visual quality.
Authors:Hengjia Li, Haonan Qiu, Shiwei Zhang, Xiang Wang, Yujie Wei, Zekun Li, Yingya Zhang, Boxi Wu, Deng Cai
Title: PersonalVideo: High ID-Fidelity Video Customization without Dynamic and Semantic Degradation
Abstract:
The current text-to-video (T2V) generation has made significant progress in synthesizing realistic general videos, but it is still under-explored in identity-specific human video generation with customized ID images. The key challenge lies in maintaining high ID fidelity consistently while preserving the original motion dynamic and semantic following after the identity injection. Current video identity customization methods mainly rely on reconstructing given identity images on text-to-image models, which have a divergent distribution with the T2V model. This process introduces a tuning-inference gap, leading to dynamic and semantic degradation. To tackle this problem, we propose a novel framework, dubbed $\textbf{PersonalVideo}$, that applies a mixture of reward supervision on synthesized videos instead of the simple reconstruction objective on images. Specifically, we first incorporate identity consistency reward to effectively inject the reference's identity without the tuning-inference gap. Then we propose a novel semantic consistency reward to align the semantic distribution of the generated videos with the original T2V model, which preserves its dynamic and semantic following capability during the identity injection. With the non-reconstructive reward training, we further employ simulated prompt augmentation to reduce overfitting by supervising generated results in more semantic scenarios, gaining good robustness even with only a single reference image. Extensive experiments demonstrate our method's superiority in delivering high identity faithfulness while preserving the inherent video generation qualities of the original T2V model, outshining prior methods.
Authors:Ruiyuan Gao, Kai Chen, Bo Xiao, Lanqing Hong, Zhenguo Li, Qiang Xu
Title: MagicDrive-V2: High-Resolution Long Video Generation for Autonomous Driving with Adaptive Control
Abstract:
The rapid advancement of diffusion models has greatly improved video synthesis, especially in controllable video generation, which is vital for applications like autonomous driving. Although DiT with 3D VAE has become a standard framework for video generation, it introduces challenges in controllable driving video generation, especially for geometry control, rendering existing control methods ineffective. To address these issues, we propose MagicDrive-V2, a novel approach that integrates the MVDiT block and spatial-temporal conditional encoding to enable multi-view video generation and precise geometric control. Additionally, we introduce an efficient method for obtaining contextual descriptions for videos to support diverse textual control, along with a progressive training strategy using mixed video data to enhance training efficiency and generalizability. Consequently, MagicDrive-V2 enables multi-view driving video synthesis with $3.3\times$ resolution and $4\times$ frame count (compared to current SOTA), rich contextual control, and geometric controls. Extensive experiments demonstrate MagicDrive-V2's ability, unlocking broader applications in autonomous driving.
Authors:Yujie Wei, Shiwei Zhang, Hangjie Yuan, Xiang Wang, Haonan Qiu, Rui Zhao, Yutong Feng, Feng Liu, Zhizhong Huang, Jiaxin Ye, Yingya Zhang, Hongming Shan
Title: DreamVideo-2: Zero-Shot Subject-Driven Video Customization with Precise Motion Control
Abstract:
Recent advances in customized video generation have enabled users to create videos tailored to both specific subjects and motion trajectories. However, existing methods often require complicated test-time fine-tuning and struggle with balancing subject learning and motion control, limiting their real-world applications. In this paper, we present DreamVideo-2, a zero-shot video customization framework capable of generating videos with a specific subject and motion trajectory, guided by a single image and a bounding box sequence, respectively, and without the need for test-time fine-tuning. Specifically, we introduce reference attention, which leverages the model's inherent capabilities for subject learning, and devise a mask-guided motion module to achieve precise motion control by fully utilizing the robust motion signal of box masks derived from bounding boxes. While these two components achieve their intended functions, we empirically observe that motion control tends to dominate over subject learning. To address this, we propose two key designs: 1) the masked reference attention, which integrates a blended latent mask modeling scheme into reference attention to enhance subject representations at the desired positions, and 2) a reweighted diffusion loss, which differentiates the contributions of regions inside and outside the bounding boxes to ensure a balance between subject and motion control. Extensive experimental results on a newly curated dataset demonstrate that DreamVideo-2 outperforms state-of-the-art methods in both subject customization and motion control. The dataset, code, and models will be made publicly available.
Authors:Lingling Cai, Kang Zhao, Hangjie Yuan, Yingya Zhang, Shiwei Zhang, Kejie Huang
Title: FreeMask: Rethinking the Importance of Attention Masks for Zero-Shot Video Editing
Abstract:
Text-to-video diffusion models have made remarkable advancements. Driven by their ability to generate temporally coherent videos, research on zero-shot video editing using these fundamental models has expanded rapidly. To enhance editing quality, structural controls are frequently employed in video editing. Among these techniques, cross-attention mask control stands out for its effectiveness and efficiency. However, when cross-attention masks are naively applied to video editing, they can introduce artifacts such as blurring and flickering. Our experiments uncover a critical factor overlooked in previous video editing research: cross-attention masks are not consistently clear but vary with model structure and denoising timestep. To address this issue, we propose the metric Mask Matching Cost (MMC) that quantifies this variability and propose FreeMask, a method for selecting optimal masks tailored to specific video editing tasks. Using MMC-selected masks, we further improve the masked fusion mechanism within comprehensive attention features, e.g., temp, cross, and self-attention modules. Our approach can be seamlessly integrated into existing zero-shot video editing frameworks with better performance, requiring no control assistance or parameter fine-tuning but enabling adaptive decoupling of unedited semantic layouts with mask precision control. Extensive experiments demonstrate that FreeMask achieves superior semantic fidelity, temporal consistency, and editing quality compared to state-of-the-art methods.
Authors:Ruiyuan Gao, Kai Chen, Zhihao Li, Lanqing Hong, Zhenguo Li, Qiang Xu
Title: MagicDrive3D: Controllable 3D Generation for Any-View Rendering in Street Scenes
Abstract:
Controllable generative models for images and videos have seen significant success, yet 3D scene generation, especially in unbounded scenarios like autonomous driving, remains underdeveloped. Existing methods lack flexible controllability and often rely on dense view data collection in controlled environments, limiting their generalizability across common datasets (e.g., nuScenes). In this paper, we introduce MagicDrive3D, a novel framework for controllable 3D street scene generation that combines video-based view synthesis with 3D representation (3DGS) generation. It supports multi-condition control, including road maps, 3D objects, and text descriptions. Unlike previous approaches that require 3D representation before training, MagicDrive3D first trains a multi-view video generation model to synthesize diverse street views. This method utilizes routinely collected autonomous driving data, reducing data acquisition challenges and enriching 3D scene generation. In the 3DGS generation step, we introduce Fault-Tolerant Gaussian Splatting to address minor errors and use monocular depth for better initialization, alongside appearance modeling to manage exposure discrepancies across viewpoints. Experiments show that MagicDrive3D generates diverse, high-quality 3D driving scenes, supports any-view rendering, and enhances downstream tasks like BEV segmentation, demonstrating its potential for autonomous driving simulation and beyond.
Authors:Hitesh Kandala, Jianfeng Gao, Jianwei Yang
Title: Pix2Gif: Motion-Guided Diffusion for GIF Generation
Abstract:
We present Pix2Gif, a motion-guided diffusion model for image-to-GIF (video) generation. We tackle this problem differently by formulating the task as an image translation problem steered by text and motion magnitude prompts, as shown in teaser fig. To ensure that the model adheres to motion guidance, we propose a new motion-guided warping module to spatially transform the features of the source image conditioned on the two types of prompts. Furthermore, we introduce a perceptual loss to ensure the transformed feature map remains within the same space as the target image, ensuring content consistency and coherence. In preparation for the model training, we meticulously curated data by extracting coherent image frames from the TGIF video-caption dataset, which provides rich information about the temporal changes of subjects. After pretraining, we apply our model in a zero-shot manner to a number of video datasets. Extensive qualitative and quantitative experiments demonstrate the effectiveness of our model -- it not only captures the semantic prompt from text but also the spatial ones from motion guidance. We train all our models using a single node of 16xV100 GPUs. Code, dataset and models are made public at: https://hiteshk03.github.io/Pix2Gif/.
Authors:Xueying Mao, Xiaoxiao Hu, Wanli Peng, Zhenliang Gan, Qichao Ying, Zhenxing Qian, Sheng Li, Xinpeng Zhang
Title: From Covert Hiding to Visual Editing: Robust Generative Video Steganography
Abstract:
Traditional video steganography methods are based on modifying the covert space for embedding, whereas we propose an innovative approach that embeds secret message within semantic feature for steganography during the video editing process. Although existing traditional video steganography methods display a certain level of security and embedding capacity, they lack adequate robustness against common distortions in online social networks (OSNs). In this paper, we introduce an end-to-end robust generative video steganography network (RoGVS), which achieves visual editing by modifying semantic feature of videos to embed secret message. We employ face-swapping scenario to showcase the visual editing effects. We first design a secret message embedding module to adaptively hide secret message into the semantic feature of videos. Extensive experiments display that the proposed RoGVS method applied to facial video datasets demonstrate its superiority over existing video and image steganography techniques in terms of both robustness and capacity.
Authors:Hangjie Yuan, Shiwei Zhang, Xiang Wang, Yujie Wei, Tao Feng, Yining Pan, Yingya Zhang, Ziwei Liu, Samuel Albanie, Dong Ni
Title: InstructVideo: Instructing Video Diffusion Models with Human Feedback
Abstract:
Diffusion models have emerged as the de facto paradigm for video generation. However, their reliance on web-scale data of varied quality often yields results that are visually unappealing and misaligned with the textual prompts. To tackle this problem, we propose InstructVideo to instruct text-to-video diffusion models with human feedback by reward fine-tuning. InstructVideo has two key ingredients: 1) To ameliorate the cost of reward fine-tuning induced by generating through the full DDIM sampling chain, we recast reward fine-tuning as editing. By leveraging the diffusion process to corrupt a sampled video, InstructVideo requires only partial inference of the DDIM sampling chain, reducing fine-tuning cost while improving fine-tuning efficiency. 2) To mitigate the absence of a dedicated video reward model for human preferences, we repurpose established image reward models, e.g., HPSv2. To this end, we propose Segmental Video Reward, a mechanism to provide reward signals based on segmental sparse sampling, and Temporally Attenuated Reward, a method that mitigates temporal modeling degradation during fine-tuning. Extensive experiments, both qualitative and quantitative, validate the practicality and efficacy of using image reward models in InstructVideo, significantly enhancing the visual quality of generated videos without compromising generalization capabilities. Code and models will be made publicly available.
Authors:Yujie Wei, Shiwei Zhang, Zhiwu Qing, Hangjie Yuan, Zhiheng Liu, Yu Liu, Yingya Zhang, Jingren Zhou, Hongming Shan
Title: DreamVideo: Composing Your Dream Videos with Customized Subject and Motion
Abstract:
Customized generation using diffusion models has made impressive progress in image generation, but remains unsatisfactory in the challenging video generation task, as it requires the controllability of both subjects and motions. To that end, we present DreamVideo, a novel approach to generating personalized videos from a few static images of the desired subject and a few videos of target motion. DreamVideo decouples this task into two stages, subject learning and motion learning, by leveraging a pre-trained video diffusion model. The subject learning aims to accurately capture the fine appearance of the subject from provided images, which is achieved by combining textual inversion and fine-tuning of our carefully designed identity adapter. In motion learning, we architect a motion adapter and fine-tune it on the given videos to effectively model the target motion pattern. Combining these two lightweight and efficient adapters allows for flexible customization of any subject with any motion. Extensive experimental results demonstrate the superior performance of our DreamVideo over the state-of-the-art methods for customized video generation. Our project page is at https://dreamvideo-t2v.github.io.
Authors:Shiwei Zhang, Jiayu Wang, Yingya Zhang, Kang Zhao, Hangjie Yuan, Zhiwu Qin, Xiang Wang, Deli Zhao, Jingren Zhou
Title: I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models
Abstract:
Video synthesis has recently made remarkable strides benefiting from the rapid development of diffusion models. However, it still encounters challenges in terms of semantic accuracy, clarity and spatio-temporal continuity. They primarily arise from the scarcity of well-aligned text-video data and the complex inherent structure of videos, making it difficult for the model to simultaneously ensure semantic and qualitative excellence. In this report, we propose a cascaded I2VGen-XL approach that enhances model performance by decoupling these two factors and ensures the alignment of the input data by utilizing static images as a form of crucial guidance. I2VGen-XL consists of two stages: i) the base stage guarantees coherent semantics and preserves content from input images by using two hierarchical encoders, and ii) the refinement stage enhances the video's details by incorporating an additional brief text and improves the resolution to 1280$\times$720. To improve the diversity, we collect around 35 million single-shot text-video pairs and 6 billion text-image pairs to optimize the model. By this means, I2VGen-XL can simultaneously enhance the semantic accuracy, continuity of details and clarity of generated videos. Through extensive experiments, we have investigated the underlying principles of I2VGen-XL and compared it with current top methods, which can demonstrate its effectiveness on diverse data. The source code and models will be publicly available at \url{https://i2vgen-xl.github.io}.
Authors:Ruiyuan Gao, Kai Chen, Enze Xie, Lanqing Hong, Zhenguo Li, Dit-Yan Yeung, Qiang Xu
Title: MagicDrive: Street View Generation with Diverse 3D Geometry Control
Abstract:
Recent advancements in diffusion models have significantly enhanced the data synthesis with 2D control. Yet, precise 3D control in street view generation, crucial for 3D perception tasks, remains elusive. Specifically, utilizing Bird's-Eye View (BEV) as the primary condition often leads to challenges in geometry control (e.g., height), affecting the representation of object shapes, occlusion patterns, and road surface elevations, all of which are essential to perception data synthesis, especially for 3D object detection tasks. In this paper, we introduce MagicDrive, a novel street view generation framework, offering diverse 3D geometry controls including camera poses, road maps, and 3D bounding boxes, together with textual descriptions, achieved through tailored encoding strategies. Besides, our design incorporates a cross-view attention module, ensuring consistency across multiple camera views. With MagicDrive, we achieve high-fidelity street-view image & video synthesis that captures nuanced 3D geometry and various scene descriptions, enhancing tasks like BEV segmentation and 3D object detection.
Authors:Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, Shiwei Zhang
Title: ModelScope Text-to-Video Technical Report
Abstract:
This paper introduces ModelScopeT2V, a text-to-video synthesis model that evolves from a text-to-image synthesis model (i.e., Stable Diffusion). ModelScopeT2V incorporates spatio-temporal blocks to ensure consistent frame generation and smooth movement transitions. The model could adapt to varying frame numbers during training and inference, rendering it suitable for both image-text and video-text datasets. ModelScopeT2V brings together three components (i.e., VQGAN, a text encoder, and a denoising UNet), totally comprising 1.7 billion parameters, in which 0.5 billion parameters are dedicated to temporal capabilities. The model demonstrates superior performance over state-of-the-art methods across three evaluation metrics. The code and an online demo are available at \url{https://modelscope.cn/models/damo/text-to-video-synthesis/summary}.
Authors:Xiang Wang, Hangjie Yuan, Shiwei Zhang, Dayou Chen, Jiuniu Wang, Yingya Zhang, Yujun Shen, Deli Zhao, Jingren Zhou
Title: VideoComposer: Compositional Video Synthesis with Motion Controllability
Abstract:
The pursuit of controllability as a higher standard of visual content creation has yielded remarkable progress in customizable image synthesis. However, achieving controllable video synthesis remains challenging due to the large variation of temporal dynamics and the requirement of cross-frame temporal consistency. Based on the paradigm of compositional generation, this work presents VideoComposer that allows users to flexibly compose a video with textual conditions, spatial conditions, and more importantly temporal conditions. Specifically, considering the characteristic of video data, we introduce the motion vector from compressed videos as an explicit control signal to provide guidance regarding temporal dynamics. In addition, we develop a Spatio-Temporal Condition encoder (STC-encoder) that serves as a unified interface to effectively incorporate the spatial and temporal relations of sequential inputs, with which the model could make better use of temporal conditions and hence achieve higher inter-frame consistency. Extensive experimental results suggest that VideoComposer is able to control the spatial and temporal patterns simultaneously within a synthesized video in various forms, such as text description, sketch sequence, reference video, or even simply hand-crafted motions. The code and models will be publicly available at https://videocomposer.github.io.
Authors:Yuyang Zhao, Enze Xie, Lanqing Hong, Zhenguo Li, Gim Hee Lee
Title: Make-A-Protagonist: Generic Video Editing with An Ensemble of Experts
Abstract:
The text-driven image and video diffusion models have achieved unprecedented success in generating realistic and diverse content. Recently, the editing and variation of existing images and videos in diffusion-based generative models have garnered significant attention. However, previous works are limited to editing content with text or providing coarse personalization using a single visual clue, rendering them unsuitable for indescribable content that requires fine-grained and detailed control. In this regard, we propose a generic video editing framework called Make-A-Protagonist, which utilizes textual and visual clues to edit videos with the goal of empowering individuals to become the protagonists. Specifically, we leverage multiple experts to parse source video, target visual and textual clues, and propose a visual-textual-based video generation model that employs mask-guided denoising sampling to generate the desired output. Extensive results demonstrate the versatile and remarkable editing capabilities of Make-A-Protagonist.
Authors:Zhen Jia, Zhang Zhang, Liang Wang, Tieniu Tan
Title: Human Image Generation: A Comprehensive Survey
Abstract:
Image and video synthesis has become a blooming topic in computer vision and machine learning communities along with the developments of deep generative models, due to its great academic and application value. Many researchers have been devoted to synthesizing high-fidelity human images as one of the most commonly seen object categories in daily lives, where a large number of studies are performed based on various models, task settings and applications. Thus, it is necessary to give a comprehensive overview on these variant methods on human image generation. In this paper, we divide human image generation techniques into three paradigms, i.e., data-driven methods, knowledge-guided methods and hybrid methods. For each paradigm, the most representative models and the corresponding variants are presented, where the advantages and characteristics of different methods are summarized in terms of model architectures. Besides, the main public human image datasets and evaluation metrics in the literature are summarized. Furthermore, due to the wide application potentials, the typical downstream usages of synthesized human images are covered. Finally, the challenges and potential opportunities of human image generation are discussed to shed light on future research.
Authors:Bangxiang Lan, Ruobing Xie, Ruixiang Zhao, Xingwu Sun, Zhanhui Kang, Gang Yang, Xirong Li
Title: Hybrid-Tower: Fine-grained Pseudo-query Interaction and Generation for Text-to-Video Retrieval
Abstract:
The Text-to-Video Retrieval (T2VR) task aims to retrieve unlabeled videos by textual queries with the same semantic meanings. Recent CLIP-based approaches have explored two frameworks: Two-Tower versus Single-Tower framework, yet the former suffers from low effectiveness, while the latter suffers from low efficiency. In this study, we explore a new Hybrid-Tower framework that can hybridize the advantages of the Two-Tower and Single-Tower framework, achieving high effectiveness and efficiency simultaneously. We propose a novel hybrid method, Fine-grained Pseudo-query Interaction and Generation for T2VR, ie, PIG, which includes a new pseudo-query generator designed to generate a pseudo-query for each video. This enables the video feature and the textual features of pseudo-query to interact in a fine-grained manner, similar to the Single-Tower approaches to hold high effectiveness, even before the real textual query is received. Simultaneously, our method introduces no additional storage or computational overhead compared to the Two-Tower framework during the inference stage, thus maintaining high efficiency. Extensive experiments on five commonly used text-video retrieval benchmarks demonstrate that our method achieves a significant improvement over the baseline, with an increase of $1.6\% \sim 3.9\%$ in R@1. Furthermore, our method matches the efficiency of Two-Tower models while achieving near state-of-the-art performance, highlighting the advantages of the Hybrid-Tower framework.
Authors:Yuji Wang, Zehua Chen, Xiaoyu Chen, Yixiang Wei, Jun Zhu, Jianfei Chen
Title: FrameBridge: Improving Image-to-Video Generation with Bridge Models
Abstract:
Diffusion models have achieved remarkable progress on image-to-video (I2V) generation, while their noise-to-data generation process is inherently mismatched with this task, which may lead to suboptimal synthesis quality. In this work, we present FrameBridge. By modeling the frame-to-frames generation process with a bridge model based data-to-data generative process, we are able to fully exploit the information contained in the given image and improve the consistency between the generation process and I2V task. Moreover, we propose two novel techniques toward the two popular settings of training I2V models, respectively. Firstly, we propose SNR-Aligned Fine-tuning (SAF), making the first attempt to fine-tune a diffusion model to a bridge model and, therefore, allowing us to utilize the pre-trained diffusion-based text-to-video (T2V) models. Secondly, we propose neural prior, further improving the synthesis quality of FrameBridge when training from scratch. Experiments conducted on WebVid-2M and UCF-101 demonstrate the superior quality of FrameBridge in comparison with the diffusion counterpart (zero-shot FVD 95 vs. 192 on MSR-VTT and non-zero-shot FVD 122 vs. 171 on UCF-101), and the advantages of our proposed SAF and neural prior for bridge-based I2V models. The project page: https://framebridge-icml.github.io/.
Authors:Chenyu Wang, Shuo Yan, Yixuan Chen, Yujiang Wang, Mingzhi Dong, Xiaochen Yang, Dongsheng Li, Robert P. Dick, Qin Lv, Fan Yang, Tun Lu, Ning Gu, Li Shang
Title: Denoising Reuse: Exploiting Inter-frame Motion Consistency for Efficient Video Latent Generation
Abstract:
Video generation using diffusion-based models is constrained by high computational costs due to the frame-wise iterative diffusion process. This work presents a Diffusion Reuse MOtion (Dr. Mo) network to accelerate latent video generation. Our key discovery is that coarse-grained noises in earlier denoising steps have demonstrated high motion consistency across consecutive video frames. Following this observation, Dr. Mo propagates those coarse-grained noises onto the next frame by incorporating carefully designed, lightweight inter-frame motions, eliminating massive computational redundancy in frame-wise diffusion models. The more sensitive and fine-grained noises are still acquired via later denoising steps, which can be essential to retain visual qualities. As such, deciding which intermediate steps should switch from motion-based propagations to denoising can be a crucial problem and a key tradeoff between efficiency and quality. Dr. Mo employs a meta-network named Denoising Step Selector (DSS) to dynamically determine desirable intermediate steps across video frames. Extensive evaluations on video generation and editing tasks have shown that Dr. Mo can substantially accelerate diffusion models in video tasks with improved visual qualities.
Authors:Jingwen He, Tianfan Xue, Dongyang Liu, Xinqi Lin, Peng Gao, Dahua Lin, Yu Qiao, Wanli Ouyang, Ziwei Liu
Title: VEnhancer: Generative Space-Time Enhancement for Video Generation
Abstract:
We present VEnhancer, a generative space-time enhancement framework that improves the existing text-to-video results by adding more details in spatial domain and synthetic detailed motion in temporal domain. Given a generated low-quality video, our approach can increase its spatial and temporal resolution simultaneously with arbitrary up-sampling space and time scales through a unified video diffusion model. Furthermore, VEnhancer effectively removes generated spatial artifacts and temporal flickering of generated videos. To achieve this, basing on a pretrained video diffusion model, we train a video ControlNet and inject it to the diffusion model as a condition on low frame-rate and low-resolution videos. To effectively train this video ControlNet, we design space-time data augmentation as well as video-aware conditioning. Benefiting from the above designs, VEnhancer yields to be stable during training and shares an elegant end-to-end training manner. Extensive experiments show that VEnhancer surpasses existing state-of-the-art video super-resolution and space-time super-resolution methods in enhancing AI-generated videos. Moreover, with VEnhancer, exisiting open-source state-of-the-art text-to-video method, VideoCrafter-2, reaches the top one in video generation benchmark -- VBench.
Authors:Kafeng Wang, Jianfei Chen, He Li, Zhenpeng Mi, Jun Zhu
Title: SparseDM: Toward Sparse Efficient Diffusion Models
Abstract:
Diffusion models represent a powerful family of generative models widely used for image and video generation. However, the time-consuming deployment, long inference time, and requirements on large memory hinder their applications on resource constrained devices. In this paper, we propose a method based on the improved Straight-Through Estimator to improve the deployment efficiency of diffusion models. Specifically, we add sparse masks to the Convolution and Linear layers in a pre-trained diffusion model, then transfer learn the sparse model during the fine-tuning stage and turn on the sparse masks during inference. Experimental results on a Transformer and UNet-based diffusion models demonstrate that our method reduces MACs by 50% while maintaining FID. Sparse models are accelerated by approximately 1.2x on the GPU. Under other MACs conditions, the FID is also lower than 1 compared to other methods.
Authors:Yuming Li, Yikai Wang, Yuying Zhu, Zhongyu Zhao, Ming Lu, Qi She, Shanghang Zhang
Title: BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Abstract:
Recent progress in aligning image and video generative models with Group Relative Policy Optimization (GRPO) has improved human preference alignment, but existing variants remain inefficient due to sequential rollouts and large numbers of sampling steps, unreliable credit assignment: sparse terminal rewards are uniformly propagated across timesteps, failing to capture the varying criticality of decisions during denoising. In this paper, we present BranchGRPO, a method that restructures the rollout process into a branching tree, where shared prefixes amortize computation and pruning removes low-value paths and redundant depths. BranchGRPO introduces three contributions: (1) a branching scheme that amortizes rollout cost through shared prefixes while preserving exploration diversity; (2) a reward fusion and depth-wise advantage estimator that transforms sparse terminal rewards into dense step-level signals; and (3) pruning strategies that cut gradient computation but leave forward rollouts and exploration unaffected. On HPDv2.1 image alignment, BranchGRPO improves alignment scores by up to \textbf{16\%} over DanceGRPO, while reducing per-iteration training time by nearly \textbf{55\%}. A hybrid variant, BranchGRPO-Mix, further accelerates training to 4.7x faster than DanceGRPO without degrading alignment. On WanX video generation, it further achieves higher Video-Align scores with sharper and temporally consistent frames compared to DanceGRPO. Codes are available at \href{https://fredreic1849.github.io/BranchGRPO-Webpage/}{BranchGRPO}.
Authors:Chengyu Bai, Yuming Li, Zhongyu Zhao, Jintao Chen, Peidong Jia, Qi She, Ming Lu, Shanghang Zhang
Title: FastInit: Fast Noise Initialization for Temporally Consistent Video Generation
Abstract:
Video generation has made significant strides with the development of diffusion models; however, achieving high temporal consistency remains a challenging task. Recently, FreeInit identified a training-inference gap and introduced a method to iteratively refine the initial noise during inference. However, iterative refinement significantly increases the computational cost associated with video generation. In this paper, we introduce FastInit, a fast noise initialization method that eliminates the need for iterative refinement. FastInit learns a Video Noise Prediction Network (VNPNet) that takes random noise and a text prompt as input, generating refined noise in a single forward pass. Therefore, FastInit greatly enhances the efficiency of video generation while achieving high temporal consistency across frames. To train the VNPNet, we create a large-scale dataset consisting of pairs of text prompts, random noise, and refined noise. Extensive experiments with various text-to-video models show that our method consistently improves the quality and temporal consistency of the generated videos. FastInit not only provides a substantial improvement in video generation but also offers a practical solution that can be applied directly during inference. The code and dataset will be released.
Authors:Zhongwei Zhang, Fuchen Long, Zhaofan Qiu, Yingwei Pan, Wu Liu, Ting Yao, Tao Mei
Title: MotionPro: A Precise Motion Controller for Image-to-Video Generation
Abstract:
Animating images with interactive motion control has garnered popularity for image-to-video (I2V) generation. Modern approaches typically rely on large Gaussian kernels to extend motion trajectories as condition without explicitly defining movement region, leading to coarse motion control and failing to disentangle object and camera moving. To alleviate these, we present MotionPro, a precise motion controller that novelly leverages region-wise trajectory and motion mask to regulate fine-grained motion synthesis and identify target motion category (i.e., object or camera moving), respectively. Technically, MotionPro first estimates the flow maps on each training video via a tracking model, and then samples the region-wise trajectories to simulate inference scenario. Instead of extending flow through large Gaussian kernels, our region-wise trajectory approach enables more precise control by directly utilizing trajectories within local regions, thereby effectively characterizing fine-grained movements. A motion mask is simultaneously derived from the predicted flow maps to capture the holistic motion dynamics of the movement regions. To pursue natural motion control, MotionPro further strengthens video denoising by incorporating both region-wise trajectories and motion mask through feature modulation. More remarkably, we meticulously construct a benchmark, i.e., MC-Bench, with 1.1K user-annotated image-trajectory pairs, for the evaluation of both fine-grained and object-level I2V motion control. Extensive experiments conducted on WebVid-10M and MC-Bench demonstrate the effectiveness of MotionPro. Please refer to our project page for more results: https://zhw-zhang.github.io/MotionPro-page/.
Authors:Haiquan Wen, Yiwei He, Zhenglin Huang, Tianxiao Li, Zihan Yu, Xingru Huang, Lu Qi, Baoyuan Wu, Xiangtai Li, Guangliang Cheng
Title: BusterX: MLLM-Powered AI-Generated Video Forgery Detection and Explanation
Abstract:
Advances in AI generative models facilitate super-realistic video synthesis, amplifying misinformation risks via social media and eroding trust in digital content. Several research works have explored new deepfake detection methods on AI-generated images to alleviate these risks. However, with the fast development of video generation models, such as Sora and WanX, there is currently a lack of large-scale, high-quality AI-generated video datasets for forgery detection. In addition, existing detection approaches predominantly treat the task as binary classification, lacking explainability in model decision-making and failing to provide actionable insights or guidance for the public. To address these challenges, we propose \textbf{GenBuster-200K}, a large-scale AI-generated video dataset featuring 200K high-resolution video clips, diverse latest generative techniques, and real-world scenes. We further introduce \textbf{BusterX}, a novel AI-generated video detection and explanation framework leveraging multimodal large language model (MLLM) and reinforcement learning for authenticity determination and explainable rationale. To our knowledge, GenBuster-200K is the {\it \textbf{first}} large-scale, high-quality AI-generated video dataset that incorporates the latest generative techniques for real-world scenarios. BusterX is the {\it \textbf{first}} framework to integrate MLLM with reinforcement learning for explainable AI-generated video detection. Extensive comparisons with state-of-the-art methods and ablation studies validate the effectiveness and generalizability of BusterX. The code, models, and datasets will be released.
Authors:Ying Li, Xiaobao Wei, Xiaowei Chi, Yuming Li, Zhongyu Zhao, Hao Wang, Ningning Ma, Ming Lu, Shanghang Zhang
Title: ManipDreamer: Boosting Robotic Manipulation World Model with Action Tree and Visual Guidance
Abstract:
While recent advancements in robotic manipulation video synthesis have shown promise, significant challenges persist in ensuring effective instruction-following and achieving high visual quality. Recent methods, like RoboDreamer, utilize linguistic decomposition to divide instructions into separate lower-level primitives, conditioning the world model on these primitives to achieve compositional instruction-following. However, these separate primitives do not consider the relationships that exist between them. Furthermore, recent methods neglect valuable visual guidance, including depth and semantic guidance, both crucial for enhancing visual quality. This paper introduces ManipDreamer, an advanced world model based on the action tree and visual guidance. To better learn the relationships between instruction primitives, we represent the instruction as the action tree and assign embeddings to tree nodes, each instruction can acquire its embeddings by navigating through the action tree. The instruction embeddings can be used to guide the world model. To enhance visual quality, we combine depth and semantic guidance by introducing a visual guidance adapter compatible with the world model. This visual adapter enhances both the temporal and physical consistency of video generation. Based on the action tree and visual guidance, ManipDreamer significantly boosts the instruction-following ability and visual quality. Comprehensive evaluations on robotic manipulation benchmarks reveal that ManipDreamer achieves large improvements in video quality metrics in both seen and unseen tasks, with PSNR improved from 19.55 to 21.05, SSIM improved from 0.7474 to 0.7982 and reduced Flow Error from 3.506 to 3.201 in unseen tasks, compared to the recent RoboDreamer model. Additionally, our method increases the success rate of robotic manipulation tasks by 2.5% in 6 RLbench tasks on average.
Authors:Yifan Shen, Peiyuan Zhu, Zijian Li, Shaoan Xie, Zeyu Tang, Namrata Deka, Zongfang Liu, Guangyi Chen, Kun Zhang
Title: Controllable Video Generation with Provable Disentanglement
Abstract:
Controllable video generation remains a significant challenge, despite recent advances in generating high-quality and consistent videos. Most existing methods for controlling video generation treat the video as a whole, neglecting intricate fine-grained spatiotemporal relationships, which limits both control precision and efficiency. In this paper, we propose Controllable Video Generative Adversarial Networks (CoVoGAN) to disentangle the video concepts, thus facilitating efficient and independent control over individual concepts. Specifically, following the minimal change principle, we first disentangle static and dynamic latent variables. We then leverage the sufficient change property to achieve component-wise identifiability of dynamic latent variables, enabling disentangled control of video generation. To establish the theoretical foundation, we provide a rigorous analysis demonstrating the identifiability of our approach. Building on these theoretical insights, we design a Temporal Transition Module to disentangle latent dynamics. To enforce the minimal change principle and sufficient change property, we minimize the dimensionality of latent dynamic variables and impose temporal conditional independence. To validate our approach, we integrate this module as a plug-in for GANs. Extensive qualitative and quantitative experiments on various video generation benchmarks demonstrate that our method significantly improves generation quality and controllability across diverse real-world scenarios.
Authors:Jingyuan Chen, Fuchen Long, Jie An, Zhaofan Qiu, Ting Yao, Jiebo Luo, Tao Mei
Title: Ouroboros-Diffusion: Exploring Consistent Content Generation in Tuning-free Long Video Diffusion
Abstract:
The first-in-first-out (FIFO) video diffusion, built on a pre-trained text-to-video model, has recently emerged as an effective approach for tuning-free long video generation. This technique maintains a queue of video frames with progressively increasing noise, continuously producing clean frames at the queue's head while Gaussian noise is enqueued at the tail. However, FIFO-Diffusion often struggles to keep long-range temporal consistency in the generated videos due to the lack of correspondence modeling across frames. In this paper, we propose Ouroboros-Diffusion, a novel video denoising framework designed to enhance structural and content (subject) consistency, enabling the generation of consistent videos of arbitrary length. Specifically, we introduce a new latent sampling technique at the queue tail to improve structural consistency, ensuring perceptually smooth transitions among frames. To enhance subject consistency, we devise a Subject-Aware Cross-Frame Attention (SACFA) mechanism, which aligns subjects across frames within short segments to achieve better visual coherence. Furthermore, we introduce self-recurrent guidance. This technique leverages information from all previous cleaner frames at the front of the queue to guide the denoising of noisier frames at the end, fostering rich and contextual global information interaction. Extensive experiments of long video generation on the VBench benchmark demonstrate the superiority of our Ouroboros-Diffusion, particularly in terms of subject consistency, motion smoothness, and temporal consistency.
Authors:Tao Wu, Yong Zhang, Xiaodong Cun, Zhongang Qi, Junfu Pu, Huanzhang Dou, Guangcong Zheng, Ying Shan, Xi Li
Title: VideoMaker: Zero-shot Customized Video Generation with the Inherent Force of Video Diffusion Models
Abstract:
Zero-shot customized video generation has gained significant attention due to its substantial application potential. Existing methods rely on additional models to extract and inject reference subject features, assuming that the Video Diffusion Model (VDM) alone is insufficient for zero-shot customized video generation. However, these methods often struggle to maintain consistent subject appearance due to suboptimal feature extraction and injection techniques. In this paper, we reveal that VDM inherently possesses the force to extract and inject subject features. Departing from previous heuristic approaches, we introduce a novel framework that leverages VDM's inherent force to enable high-quality zero-shot customized video generation. Specifically, for feature extraction, we directly input reference images into VDM and use its intrinsic feature extraction process, which not only provides fine-grained features but also significantly aligns with VDM's pre-trained knowledge. For feature injection, we devise an innovative bidirectional interaction between subject features and generated content through spatial self-attention within VDM, ensuring that VDM has better subject fidelity while maintaining the diversity of the generated video. Experiments on both customized human and object video generation validate the effectiveness of our framework.
Authors:Haohe Liu, Gael Le Lan, Xinhao Mei, Zhaoheng Ni, Anurag Kumar, Varun Nagaraja, Wenwu Wang, Mark D. Plumbley, Yangyang Shi, Vikas Chandra
Title: SyncFlow: Toward Temporally Aligned Joint Audio-Video Generation from Text
Abstract:
Video and audio are closely correlated modalities that humans naturally perceive together. While recent advancements have enabled the generation of audio or video from text, producing both modalities simultaneously still typically relies on either a cascaded process or multi-modal contrastive encoders. These approaches, however, often lead to suboptimal results due to inherent information losses during inference and conditioning. In this paper, we introduce SyncFlow, a system that is capable of simultaneously generating temporally synchronized audio and video from text. The core of SyncFlow is the proposed dual-diffusion-transformer (d-DiT) architecture, which enables joint video and audio modelling with proper information fusion. To efficiently manage the computational cost of joint audio and video modelling, SyncFlow utilizes a multi-stage training strategy that separates video and audio learning before joint fine-tuning. Our empirical evaluations demonstrate that SyncFlow produces audio and video outputs that are more correlated than baseline methods with significantly enhanced audio quality and audio-visual correspondence. Moreover, we demonstrate strong zero-shot capabilities of SyncFlow, including zero-shot video-to-audio generation and adaptation to novel video resolutions without further training.
Authors:Zheng Zhan, Yushu Wu, Yifan Gong, Zichong Meng, Zhenglun Kong, Changdi Yang, Geng Yuan, Pu Zhao, Wei Niu, Yanzhi Wang
Title: Fast and Memory-Efficient Video Diffusion Using Streamlined Inference
Abstract:
The rapid progress in artificial intelligence-generated content (AIGC), especially with diffusion models, has significantly advanced development of high-quality video generation. However, current video diffusion models exhibit demanding computational requirements and high peak memory usage, especially for generating longer and higher-resolution videos. These limitations greatly hinder the practical application of video diffusion models on standard hardware platforms. To tackle this issue, we present a novel, training-free framework named Streamlined Inference, which leverages the temporal and spatial properties of video diffusion models. Our approach integrates three core components: Feature Slicer, Operator Grouping, and Step Rehash. Specifically, Feature Slicer effectively partitions input features into sub-features and Operator Grouping processes each sub-feature with a group of consecutive operators, resulting in significant memory reduction without sacrificing the quality or speed. Step Rehash further exploits the similarity between adjacent steps in diffusion, and accelerates inference through skipping unnecessary steps. Extensive experiments demonstrate that our approach significantly reduces peak memory and computational overhead, making it feasible to generate high-quality videos on a single consumer GPU (e.g., reducing peak memory of AnimateDiff from 42GB to 11GB, featuring faster inference on 2080Ti).
Authors:Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong Cun, Yong Zhang, Long Quan, Ying Shan
Title: DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos
Abstract:
Estimating video depth in open-world scenarios is challenging due to the diversity of videos in appearance, content motion, camera movement, and length. We present DepthCrafter, an innovative method for generating temporally consistent long depth sequences with intricate details for open-world videos, without requiring any supplementary information such as camera poses or optical flow. The generalization ability to open-world videos is achieved by training the video-to-depth model from a pre-trained image-to-video diffusion model, through our meticulously designed three-stage training strategy. Our training approach enables the model to generate depth sequences with variable lengths at one time, up to 110 frames, and harvest both precise depth details and rich content diversity from realistic and synthetic datasets. We also propose an inference strategy that can process extremely long videos through segment-wise estimation and seamless stitching. Comprehensive evaluations on multiple datasets reveal that DepthCrafter achieves state-of-the-art performance in open-world video depth estimation under zero-shot settings. Furthermore, DepthCrafter facilitates various downstream applications, including depth-based visual effects and conditional video generation.
Authors:Jingyi Deng, Chenhao Lin, Zhengyu Zhao, Shuai Liu, Qian Wang, Chao Shen
Title: A Survey of Defenses against AI-generated Visual Media: Detection, Disruption, and Authentication
Abstract:
Deep generative models have demonstrated impressive performance in various computer vision applications, including image synthesis, video generation, and medical analysis. Despite their significant advancements, these models may be used for malicious purposes, such as misinformation, deception, and copyright violation. In this paper, we provide a systematic and timely review of research efforts on defenses against AI-generated visual media, covering detection, disruption, and authentication. We review existing methods and summarize the mainstream defense-related tasks within a unified passive and proactive framework. Moreover, we survey the derivative tasks concerning the trustworthiness of defenses, such as their robustness and fairness. For each task, we formulate its general pipeline and propose a taxonomy based on methodological strategies that are uniformly applicable to the primary subtasks. Additionally, we summarize the commonly used evaluation datasets, criteria, and metrics. Finally, by analyzing the reviewed studies, we provide insights into current research challenges and suggest possible directions for future research.
Authors:Josef Dai, Tianle Chen, Xuyao Wang, Ziran Yang, Taiye Chen, Jiaming Ji, Yaodong Yang
Title: SafeSora: Towards Safety Alignment of Text2Video Generation via a Human Preference Dataset
Abstract:
To mitigate the risk of harmful outputs from large vision models (LVMs), we introduce the SafeSora dataset to promote research on aligning text-to-video generation with human values. This dataset encompasses human preferences in text-to-video generation tasks along two primary dimensions: helpfulness and harmlessness. To capture in-depth human preferences and facilitate structured reasoning by crowdworkers, we subdivide helpfulness into 4 sub-dimensions and harmlessness into 12 sub-categories, serving as the basis for pilot annotations. The SafeSora dataset includes 14,711 unique prompts, 57,333 unique videos generated by 4 distinct LVMs, and 51,691 pairs of preference annotations labeled by humans. We further demonstrate the utility of the SafeSora dataset through several applications, including training the text-video moderation model and aligning LVMs with human preference by fine-tuning a prompt augmentation module or the diffusion model. These applications highlight its potential as the foundation for text-to-video alignment research, such as human preference modeling and the development and validation of alignment algorithms.
Authors:Shaoshu Yang, Yong Zhang, Xiaodong Cun, Ying Shan, Ran He
Title: ZeroSmooth: Training-free Diffuser Adaptation for High Frame Rate Video Generation
Abstract:
Video generation has made remarkable progress in recent years, especially since the advent of the video diffusion models. Many video generation models can produce plausible synthetic videos, e.g., Stable Video Diffusion (SVD). However, most video models can only generate low frame rate videos due to the limited GPU memory as well as the difficulty of modeling a large set of frames. The training videos are always uniformly sampled at a specified interval for temporal compression. Previous methods promote the frame rate by either training a video interpolation model in pixel space as a postprocessing stage or training an interpolation model in latent space for a specific base video model. In this paper, we propose a training-free video interpolation method for generative video diffusion models, which is generalizable to different models in a plug-and-play manner. We investigate the non-linearity in the feature space of video diffusion models and transform a video model into a self-cascaded video diffusion model with incorporating the designed hidden state correction modules. The self-cascaded architecture and the correction module are proposed to retain the temporal consistency between key frames and the interpolated frames. Extensive evaluations are preformed on multiple popular video models to demonstrate the effectiveness of the propose method, especially that our training-free method is even comparable to trained interpolation models supported by huge compute resources and large-scale datasets.
Authors:Zhongwei Zhang, Fuchen Long, Yingwei Pan, Zhaofan Qiu, Ting Yao, Yang Cao, Tao Mei
Title: TRIP: Temporal Residual Learning with Image Noise Prior for Image-to-Video Diffusion Models
Abstract:
Recent advances in text-to-video generation have demonstrated the utility of powerful diffusion models. Nevertheless, the problem is not trivial when shaping diffusion models to animate static image (i.e., image-to-video generation). The difficulty originates from the aspect that the diffusion process of subsequent animated frames should not only preserve the faithful alignment with the given image but also pursue temporal coherence among adjacent frames. To alleviate this, we present TRIP, a new recipe of image-to-video diffusion paradigm that pivots on image noise prior derived from static image to jointly trigger inter-frame relational reasoning and ease the coherent temporal modeling via temporal residual learning. Technically, the image noise prior is first attained through one-step backward diffusion process based on both static image and noised video latent codes. Next, TRIP executes a residual-like dual-path scheme for noise prediction: 1) a shortcut path that directly takes image noise prior as the reference noise of each frame to amplify the alignment between the first frame and subsequent frames; 2) a residual path that employs 3D-UNet over noised video and static image latent codes to enable inter-frame relational reasoning, thereby easing the learning of the residual noise for each frame. Furthermore, both reference and residual noise of each frame are dynamically merged via attention mechanism for final video generation. Extensive experiments on WebVid-10M, DTDB and MSR-VTT datasets demonstrate the effectiveness of our TRIP for image-to-video generation. Please see our project page at https://trip-i2v.github.io/TRIP/.
Authors:Fu-Yun Wang, Zhaoyang Huang, Weikang Bian, Xiaoyu Shi, Keqiang Sun, Guanglu Song, Yu Liu, Hongsheng Li
Title: AnimateLCM: Computation-Efficient Personalized Style Video Generation without Personalized Video Data
Abstract:
This paper introduces an effective method for computation-efficient personalized style video generation without requiring access to any personalized video data. It reduces the necessary generation time of similarly sized video diffusion models from 25 seconds to around 1 second while maintaining the same level of performance. The method's effectiveness lies in its dual-level decoupling learning approach: 1) separating the learning of video style from video generation acceleration, which allows for personalized style video generation without any personalized style video data, and 2) separating the acceleration of image generation from the acceleration of video motion generation, enhancing training efficiency and mitigating the negative effects of low-quality video data.
Authors:Yuming Jiang, Tianxing Wu, Shuai Yang, Chenyang Si, Dahua Lin, Yu Qiao, Chen Change Loy, Ziwei Liu
Title: VideoBooth: Diffusion-based Video Generation with Image Prompts
Abstract:
Text-driven video generation witnesses rapid progress. However, merely using text prompts is not enough to depict the desired subject appearance that accurately aligns with users' intents, especially for customized content creation. In this paper, we study the task of video generation with image prompts, which provide more accurate and direct content control beyond the text prompts. Specifically, we propose a feed-forward framework VideoBooth, with two dedicated designs: 1) We propose to embed image prompts in a coarse-to-fine manner. Coarse visual embeddings from image encoder provide high-level encodings of image prompts, while fine visual embeddings from the proposed attention injection module provide multi-scale and detailed encoding of image prompts. These two complementary embeddings can faithfully capture the desired appearance. 2) In the attention injection module at fine level, multi-scale image prompts are fed into different cross-frame attention layers as additional keys and values. This extra spatial information refines the details in the first frame and then it is propagated to the remaining frames, which maintains temporal consistency. Extensive experiments demonstrate that VideoBooth achieves state-of-the-art performance in generating customized high-quality videos with subjects specified in image prompts. Notably, VideoBooth is a generalizable framework where a single model works for a wide range of image prompts with feed-forward pass.
Authors:Zhenhui Ye, Ziyue Jiang, Yi Ren, Jinglin Liu, Chen Zhang, Xiang Yin, Zejun Ma, Zhou Zhao
Title: Ada-TTA: Towards Adaptive High-Quality Text-to-Talking Avatar Synthesis
Abstract:
We are interested in a novel task, namely low-resource text-to-talking avatar. Given only a few-minute-long talking person video with the audio track as the training data and arbitrary texts as the driving input, we aim to synthesize high-quality talking portrait videos corresponding to the input text. This task has broad application prospects in the digital human industry but has not been technically achieved yet due to two challenges: (1) It is challenging to mimic the timbre from out-of-domain audio for a traditional multi-speaker Text-to-Speech system. (2) It is hard to render high-fidelity and lip-synchronized talking avatars with limited training data. In this paper, we introduce Adaptive Text-to-Talking Avatar (Ada-TTA), which (1) designs a generic zero-shot multi-speaker TTS model that well disentangles the text content, timbre, and prosody; and (2) embraces recent advances in neural rendering to achieve realistic audio-driven talking face video generation. With these designs, our method overcomes the aforementioned two challenges and achieves to generate identity-preserving speech and realistic talking person video. Experiments demonstrate that our method could synthesize realistic, identity-preserving, and audio-visual synchronized talking avatar videos.
Authors:Youxin Pang, Yong Zhang, Weize Quan, Yanbo Fan, Xiaodong Cun, Ying Shan, Dong-ming Yan
Title: DPE: Disentanglement of Pose and Expression for General Video Portrait Editing
Abstract:
One-shot video-driven talking face generation aims at producing a synthetic talking video by transferring the facial motion from a video to an arbitrary portrait image. Head pose and facial expression are always entangled in facial motion and transferred simultaneously. However, the entanglement sets up a barrier for these methods to be used in video portrait editing directly, where it may require to modify the expression only while maintaining the pose unchanged. One challenge of decoupling pose and expression is the lack of paired data, such as the same pose but different expressions. Only a few methods attempt to tackle this challenge with the feat of 3D Morphable Models (3DMMs) for explicit disentanglement. But 3DMMs are not accurate enough to capture facial details due to the limited number of Blenshapes, which has side effects on motion transfer. In this paper, we introduce a novel self-supervised disentanglement framework to decouple pose and expression without 3DMMs and paired data, which consists of a motion editing module, a pose generator, and an expression generator. The editing module projects faces into a latent space where pose motion and expression motion can be disentangled, and the pose or expression transfer can be performed in the latent space conveniently via addition. The two generators render the modified latent codes to images, respectively. Moreover, to guarantee the disentanglement, we propose a bidirectional cyclic training strategy with well-designed constraints. Evaluations demonstrate our method can control pose or expression independently and be used for general video editing.
Authors:Tao Feng, Xianbing Zhao, Zhenhua Chen, Tien Tsin Wong, Hamid Rezatofighi, Gholamreza Haffari, Lizhen Qu
Title: Physics-Grounded Motion Forecasting via Equation Discovery for Trajectory-Guided Image-to-Video Generation
Abstract:
Recent advances in diffusion-based and autoregressive video generation models have achieved remarkable visual realism. However, these models typically lack accurate physical alignment, failing to replicate real-world dynamics in object motion. This limitation arises primarily from their reliance on learned statistical correlations rather than capturing mechanisms adhering to physical laws. To address this issue, we introduce a novel framework that integrates symbolic regression (SR) and trajectory-guided image-to-video (I2V) models for physics-grounded video forecasting. Our approach extracts motion trajectories from input videos, uses a retrieval-based pre-training mechanism to enhance symbolic regression, and discovers equations of motion to forecast physically accurate future trajectories. These trajectories then guide video generation without requiring fine-tuning of existing models. Evaluated on scenarios in Classical Mechanics, including spring-mass, pendulums, and projectile motions, our method successfully recovers ground-truth analytical equations and improves the physical alignment of generated videos over baseline methods.
Authors:Jiamin Wang, Yichen Yao, Xiang Feng, Hang Wu, Yaming Wang, Qingqiu Huang, Yuexin Ma, Xinge Zhu
Title: STAGE: A Stream-Centric Generative World Model for Long-Horizon Driving-Scene Simulation
Abstract:
The generation of temporally consistent, high-fidelity driving videos over extended horizons presents a fundamental challenge in autonomous driving world modeling. Existing approaches often suffer from error accumulation and feature misalignment due to inadequate decoupling of spatio-temporal dynamics and limited cross-frame feature propagation mechanisms. To address these limitations, we present STAGE (Streaming Temporal Attention Generative Engine), a novel auto-regressive framework that pioneers hierarchical feature coordination and multi-phase optimization for sustainable video synthesis. To achieve high-quality long-horizon driving video generation, we introduce Hierarchical Temporal Feature Transfer (HTFT) and a novel multi-stage training strategy. HTFT enhances temporal consistency between video frames throughout the video generation process by modeling the temporal and denoising process separately and transferring denoising features between frames. The multi-stage training strategy is to divide the training into three stages, through model decoupling and auto-regressive inference process simulation, thereby accelerating model convergence and reducing error accumulation. Experiments on the Nuscenes dataset show that STAGE has significantly surpassed existing methods in the long-horizon driving video generation task. In addition, we also explored STAGE's ability to generate unlimited-length driving videos. We generated 600 frames of high-quality driving videos on the Nuscenes dataset, which far exceeds the maximum length achievable by existing methods.
Authors:Haoyi Duan, Hong-Xing Yu, Sirui Chen, Li Fei-Fei, Jiajun Wu
Title: WorldScore: A Unified Evaluation Benchmark for World Generation
Abstract:
We introduce the WorldScore benchmark, the first unified benchmark for world generation. We decompose world generation into a sequence of next-scene generation tasks with explicit camera trajectory-based layout specifications, enabling unified evaluation of diverse approaches from 3D and 4D scene generation to video generation models. The WorldScore benchmark encompasses a curated dataset of 3,000 test examples that span diverse worlds: static and dynamic, indoor and outdoor, photorealistic and stylized. The WorldScore metrics evaluate generated worlds through three key aspects: controllability, quality, and dynamics. Through extensive evaluation of 19 representative models, including both open-source and closed-source ones, we reveal key insights and challenges for each category of models. Our dataset, evaluation code, and leaderboard can be found at https://haoyi-duan.github.io/WorldScore/
Authors:Chong Li, Jingyang Huo, Weikang Gong, Yanwei Fu, Xiangyang Xue, Jianfeng Feng
Title: DecoFuse: Decomposing and Fusing the "What", "Where", and "How" for Brain-Inspired fMRI-to-Video Decoding
Abstract:
Decoding visual experiences from brain activity is a significant challenge. Existing fMRI-to-video methods often focus on semantic content while overlooking spatial and motion information. However, these aspects are all essential and are processed through distinct pathways in the brain. Motivated by this, we propose DecoFuse, a novel brain-inspired framework for decoding videos from fMRI signals. It first decomposes the video into three components - semantic, spatial, and motion - then decodes each component separately before fusing them to reconstruct the video. This approach not only simplifies the complex task of video decoding by decomposing it into manageable sub-tasks, but also establishes a clearer connection between learned representations and their biological counterpart, as supported by ablation studies. Further, our experiments show significant improvements over previous state-of-the-art methods, achieving 82.4% accuracy for semantic classification, 70.6% accuracy in spatial consistency, a 0.212 cosine similarity for motion prediction, and 21.9% 50-way accuracy for video generation. Additionally, neural encoding analyses for semantic and spatial information align with the two-streams hypothesis, further validating the distinct roles of the ventral and dorsal pathways. Overall, DecoFuse provides a strong and biologically plausible framework for fMRI-to-video decoding. Project page: https://chongjg.github.io/DecoFuse/.
Authors:Kai Liu, Wei Li, Lai Chen, Shengqiong Wu, Yanhao Zheng, Jiayi Ji, Fan Zhou, Rongxin Jiang, Jiebo Luo, Hao Fei, Tat-Seng Chua
Title: JavisDiT: Joint Audio-Video Diffusion Transformer with Hierarchical Spatio-Temporal Prior Synchronization
Abstract:
This paper introduces JavisDiT, a novel Joint Audio-Video Diffusion Transformer designed for synchronized audio-video generation (JAVG). Built upon the powerful Diffusion Transformer (DiT) architecture, JavisDiT is able to generate high-quality audio and video content simultaneously from open-ended user prompts. To ensure optimal synchronization, we introduce a fine-grained spatio-temporal alignment mechanism through a Hierarchical Spatial-Temporal Synchronized Prior (HiST-Sypo) Estimator. This module extracts both global and fine-grained spatio-temporal priors, guiding the synchronization between the visual and auditory components. Furthermore, we propose a new benchmark, JavisBench, consisting of 10,140 high-quality text-captioned sounding videos spanning diverse scenes and complex real-world scenarios. Further, we specifically devise a robust metric for evaluating the synchronization between generated audio-video pairs in real-world complex content. Experimental results demonstrate that JavisDiT significantly outperforms existing methods by ensuring both high-quality generation and precise synchronization, setting a new standard for JAVG tasks. Our code, model, and dataset will be made publicly available at https://javisdit.github.io/.
Authors:Hongyin Zhang, Pengxiang Ding, Shangke Lyu, Ying Peng, Donglin Wang
Title: GEVRM: Goal-Expressive Video Generation Model For Robust Visual Manipulation
Abstract:
With the rapid development of embodied artificial intelligence, significant progress has been made in vision-language-action (VLA) models for general robot decision-making. However, the majority of existing VLAs fail to account for the inevitable external perturbations encountered during deployment. These perturbations introduce unforeseen state information to the VLA, resulting in inaccurate actions and consequently, a significant decline in generalization performance. The classic internal model control (IMC) principle demonstrates that a closed-loop system with an internal model that includes external input signals can accurately track the reference input and effectively offset the disturbance. We propose a novel closed-loop VLA method GEVRM that integrates the IMC principle to enhance the robustness of robot visual manipulation. The text-guided video generation model in GEVRM can generate highly expressive future visual planning goals. Simultaneously, we evaluate perturbations by simulating responses, which are called internal embeddings and optimized through prototype contrastive learning. This allows the model to implicitly infer and distinguish perturbations from the external environment. The proposed GEVRM achieves state-of-the-art performance on both standard and perturbed CALVIN benchmarks and shows significant improvements in realistic robot tasks.
Authors:Yunuo Chen, Junli Cao, Anil Kag, Vidit Goel, Sergei Korolev, Chenfanfu Jiang, Sergey Tulyakov, Jian Ren
Title: Towards Physical Understanding in Video Generation: A 3D Point Regularization Approach
Abstract:
We present a novel video generation framework that integrates 3-dimensional geometry and dynamic awareness. To achieve this, we augment 2D videos with 3D point trajectories and align them in pixel space. The resulting 3D-aware video dataset, PointVid, is then used to fine-tune a latent diffusion model, enabling it to track 2D objects with 3D Cartesian coordinates. Building on this, we regularize the shape and motion of objects in the video to eliminate undesired artifacts, \eg, nonphysical deformation. Consequently, we enhance the quality of generated RGB videos and alleviate common issues like object morphing, which are prevalent in current video models due to a lack of shape awareness. With our 3D augmentation and regularization, our model is capable of handling contact-rich scenarios such as task-oriented videos. These videos involve complex interactions of solids, where 3D information is essential for perceiving deformation and contact. Furthermore, our model improves the overall quality of video generation by promoting the 3D consistency of moving objects and reducing abrupt changes in shape and motion.
Authors:Deyu Zhou, Quan Sun, Yuang Peng, Kun Yan, Runpei Dong, Duomin Wang, Zheng Ge, Nan Duan, Xiangyu Zhang, Lionel M. Ni, Heung-Yeung Shum
Title: Taming Teacher Forcing for Masked Autoregressive Video Generation
Abstract:
We introduce MAGI, a hybrid video generation framework that combines masked modeling for intra-frame generation with causal modeling for next-frame generation. Our key innovation, Complete Teacher Forcing (CTF), conditions masked frames on complete observation frames rather than masked ones (namely Masked Teacher Forcing, MTF), enabling a smooth transition from token-level (patch-level) to frame-level autoregressive generation. CTF significantly outperforms MTF, achieving a +23% improvement in FVD scores on first-frame conditioned video prediction. To address issues like exposure bias, we employ targeted training strategies, setting a new benchmark in autoregressive video generation. Experiments show that MAGI can generate long, coherent video sequences exceeding 100 frames, even when trained on as few as 16 frames, highlighting its potential for scalable, high-quality video generation.
Authors:Yushu Wu, Zhixing Zhang, Yanyu Li, Yanwu Xu, Anil Kag, Yang Sui, Huseyin Coskun, Ke Ma, Aleksei Lebedev, Ju Hu, Dimitris Metaxas, Yanzhi Wang, Sergey Tulyakov, Jian Ren
Title: SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device
Abstract:
We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality.
Authors:Jing Tan, Shuai Yang, Tong Wu, Jingwen He, Yuwei Guo, Ziwei Liu, Dahua Lin
Title: Imagine360: Immersive 360 Video Generation from Perspective Anchor
Abstract:
$360^\circ$ videos offer a hyper-immersive experience that allows the viewers to explore a dynamic scene from full 360 degrees. To achieve more user-friendly and personalized content creation in $360^\circ$ video format, we seek to lift standard perspective videos into $360^\circ$ equirectangular videos. To this end, we introduce Imagine360, the first perspective-to-$360^\circ$ video generation framework that creates high-quality $360^\circ$ videos with rich and diverse motion patterns from video anchors. Imagine360 learns fine-grained spherical visual and motion patterns from limited $360^\circ$ video data with several key designs. 1) Firstly we adopt the dual-branch design, including a perspective and a panorama video denoising branch to provide local and global constraints for $360^\circ$ video generation, with motion module and spatial LoRA layers fine-tuned on extended web $360^\circ$ videos. 2) Additionally, an antipodal mask is devised to capture long-range motion dependencies, enhancing the reversed camera motion between antipodal pixels across hemispheres. 3) To handle diverse perspective video inputs, we propose elevation-aware designs that adapt to varying video masking due to changing elevations across frames. Extensive experiments show Imagine360 achieves superior graphics quality and motion coherence among state-of-the-art $360^\circ$ video generation methods. We believe Imagine360 holds promise for advancing personalized, immersive $360^\circ$ video creation.
Authors:Zhixuan Chu, Lei Zhang, Yichen Sun, Siqiao Xue, Zhibo Wang, Zhan Qin, Kui Ren
Title: Sora Detector: A Unified Hallucination Detection for Large Text-to-Video Models
Abstract:
The rapid advancement in text-to-video (T2V) generative models has enabled the synthesis of high-fidelity video content guided by textual descriptions. Despite this significant progress, these models are often susceptible to hallucination, generating contents that contradict the input text, which poses a challenge to their reliability and practical deployment. To address this critical issue, we introduce the SoraDetector, a novel unified framework designed to detect hallucinations across diverse large T2V models, including the cutting-edge Sora model. Our framework is built upon a comprehensive analysis of hallucination phenomena, categorizing them based on their manifestation in the video content. Leveraging the state-of-the-art keyframe extraction techniques and multimodal large language models, SoraDetector first evaluates the consistency between extracted video content summary and textual prompts, then constructs static and dynamic knowledge graphs (KGs) from frames to detect hallucination both in single frames and across frames. Sora Detector provides a robust and quantifiable measure of consistency, static and dynamic hallucination. In addition, we have developed the Sora Detector Agent to automate the hallucination detection process and generate a complete video quality report for each input video. Lastly, we present a novel meta-evaluation benchmark, T2VHaluBench, meticulously crafted to facilitate the evaluation of advancements in T2V hallucination detection. Through extensive experiments on videos generated by Sora and other large T2V models, we demonstrate the efficacy of our approach in accurately detecting hallucinations. The code and dataset can be accessed via GitHub.
Authors:Dingming Liu, Shaowei Li, Ruoyan Zhou, Lili Liang, Yongguan Hong, Fei Chao, Rongrong Ji
Title: ConCLVD: Controllable Chinese Landscape Video Generation via Diffusion Model
Abstract:
Chinese landscape painting is a gem of Chinese cultural and artistic heritage that showcases the splendor of nature through the deep observations and imaginations of its painters. Limited by traditional techniques, these artworks were confined to static imagery in ancient times, leaving the dynamism of landscapes and the subtleties of artistic sentiment to the viewer's imagination. Recently, emerging text-to-video (T2V) diffusion methods have shown significant promise in video generation, providing hope for the creation of dynamic Chinese landscape paintings. However, challenges such as the lack of specific datasets, the intricacy of artistic styles, and the creation of extensive, high-quality videos pose difficulties for these models in generating Chinese landscape painting videos. In this paper, we propose CLV-HD (Chinese Landscape Video-High Definition), a novel T2V dataset for Chinese landscape painting videos, and ConCLVD (Controllable Chinese Landscape Video Diffusion), a T2V model that utilizes Stable Diffusion. Specifically, we present a motion module featuring a dual attention mechanism to capture the dynamic transformations of landscape imageries, alongside a noise adapter to leverage unsupervised contrastive learning in the latent space. Following the generation of keyframes, we employ optical flow for frame interpolation to enhance video smoothness. Our method not only retains the essence of the landscape painting imageries but also achieves dynamic transitions, significantly advancing the field of artistic video generation. The source code and dataset are available at https://anonymous.4open.science/r/ConCLVD-EFE3.
Authors:Yanyu Li, Xian Liu, Anil Kag, Ju Hu, Yerlan Idelbayev, Dhritiman Sagar, Yanzhi Wang, Sergey Tulyakov, Jian Ren
Title: TextCraftor: Your Text Encoder Can be Image Quality Controller
Abstract:
Diffusion-based text-to-image generative models, e.g., Stable Diffusion, have revolutionized the field of content generation, enabling significant advancements in areas like image editing and video synthesis. Despite their formidable capabilities, these models are not without their limitations. It is still challenging to synthesize an image that aligns well with the input text, and multiple runs with carefully crafted prompts are required to achieve satisfactory results. To mitigate these limitations, numerous studies have endeavored to fine-tune the pre-trained diffusion models, i.e., UNet, utilizing various technologies. Yet, amidst these efforts, a pivotal question of text-to-image diffusion model training has remained largely unexplored: Is it possible and feasible to fine-tune the text encoder to improve the performance of text-to-image diffusion models? Our findings reveal that, instead of replacing the CLIP text encoder used in Stable Diffusion with other large language models, we can enhance it through our proposed fine-tuning approach, TextCraftor, leading to substantial improvements in quantitative benchmarks and human assessments. Interestingly, our technique also empowers controllable image generation through the interpolation of different text encoders fine-tuned with various rewards. We also demonstrate that TextCraftor is orthogonal to UNet finetuning, and can be combined to further improve generative quality.
Authors:Sijing Wu, Yunhao Li, Weitian Zhang, Jun Jia, Yucheng Zhu, Yichao Yan, Guangtao Zhai, Xiaokang Yang
Title: SingingHead: A Large-scale 4D Dataset for Singing Head Animation
Abstract:
Singing, as a common facial movement second only to talking, can be regarded as a universal language across ethnicities and cultures, plays an important role in emotional communication, art, and entertainment. However, it is often overlooked in the field of audio-driven facial animation due to the lack of singing head datasets and the domain gap between singing and talking in rhythm and amplitude. To this end, we collect a high-quality large-scale singing head dataset, SingingHead, which consists of more than 27 hours of synchronized singing video, 3D facial motion, singing audio, and background music from 76 individuals and 8 types of music. Along with the SingingHead dataset, we benchmark existing audio-driven 3D facial animation methods and 2D talking head methods on the singing task. Furthermore, we argue that 3D and 2D facial animation tasks can be solved together, and propose a unified singing head animation framework named UniSinger to achieve both singing audio-driven 3D singing head animation and 2D singing portrait video synthesis, which achieves competitive results on both 3D and 2D benchmarks. Extensive experiments demonstrate the significance of the proposed singing-specific dataset in promoting the development of singing head animation tasks, as well as the promising performance of our unified facial animation framework.
Authors:Hao Fei, Shengqiong Wu, Wei Ji, Hanwang Zhang, Tat-Seng Chua
Title: Dysen-VDM: Empowering Dynamics-aware Text-to-Video Diffusion with LLMs
Abstract:
Text-to-video (T2V) synthesis has gained increasing attention in the community, in which the recently emerged diffusion models (DMs) have promisingly shown stronger performance than the past approaches. While existing state-of-the-art DMs are competent to achieve high-resolution video generation, they may largely suffer from key limitations (e.g., action occurrence disorders, crude video motions) with respect to the intricate temporal dynamics modeling, one of the crux of video synthesis. In this work, we investigate strengthening the awareness of video dynamics for DMs, for high-quality T2V generation. Inspired by human intuition, we design an innovative dynamic scene manager (dubbed as Dysen) module, which includes (step-1) extracting from input text the key actions with proper time-order arrangement, (step-2) transforming the action schedules into the dynamic scene graph (DSG) representations, and (step-3) enriching the scenes in the DSG with sufficient and reasonable details. Taking advantage of the existing powerful LLMs (e.g., ChatGPT) via in-context learning, Dysen realizes (nearly) human-level temporal dynamics understanding. Finally, the resulting video DSG with rich action scene details is encoded as fine-grained spatio-temporal features, integrated into the backbone T2V DM for video generating. Experiments on popular T2V datasets suggest that our Dysen-VDM consistently outperforms prior arts with significant margins, especially in scenarios with complex actions. Codes at https://haofei.vip/Dysen-VDM
Authors:Jiusi Li, Jackson Jiang, Jinyu Miao, Miao Long, Tuopu Wen, Peijin Jia, Shengxiang Liu, Chunlei Yu, Maolin Liu, Yuzhan Cai, Kun Jiang, Mengmeng Yang, Diange Yang
Title: Realistic and Controllable 3D Gaussian-Guided Object Editing for Driving Video Generation
Abstract:
Corner cases are crucial for training and validating autonomous driving systems, yet collecting them from the real world is often costly and hazardous. Editing objects within captured sensor data offers an effective alternative for generating diverse scenarios, commonly achieved through 3D Gaussian Splatting or image generative models. However, these approaches often suffer from limited visual fidelity or imprecise pose control. To address these issues, we propose G^2Editor, a framework designed for photorealistic and precise object editing in driving videos. Our method leverages a 3D Gaussian representation of the edited object as a dense prior, injected into the denoising process to ensure accurate pose control and spatial consistency. A scene-level 3D bounding box layout is employed to reconstruct occluded areas of non-target objects. Furthermore, to guide the appearance details of the edited object, we incorporate hierarchical fine-grained features as additional conditions during generation. Experiments on the Waymo Open Dataset demonstrate that G^2Editor effectively supports object repositioning, insertion, and deletion within a unified framework, outperforming existing methods in both pose controllability and visual quality, while also benefiting downstream data-driven tasks.
Authors:Christian Simon, Masato Ishii, Akio Hayakawa, Zhi Zhong, Shusuke Takahashi, Takashi Shibuya, Yuki Mitsufuji
Title: TITAN-Guide: Taming Inference-Time AligNment for Guided Text-to-Video Diffusion Models
Abstract:
In the recent development of conditional diffusion models still require heavy supervised fine-tuning for performing control on a category of tasks. Training-free conditioning via guidance with off-the-shelf models is a favorable alternative to avoid further fine-tuning on the base model. However, the existing training-free guidance frameworks either have heavy memory requirements or offer sub-optimal control due to rough estimation. These shortcomings limit the applicability to control diffusion models that require intense computation, such as Text-to-Video (T2V) diffusion models. In this work, we propose Taming Inference Time Alignment for Guided Text-to-Video Diffusion Model, so-called TITAN-Guide, which overcomes memory space issues, and provides more optimal control in the guidance process compared to the counterparts. In particular, we develop an efficient method for optimizing diffusion latents without backpropagation from a discriminative guiding model. In particular, we study forward gradient descents for guided diffusion tasks with various options on directional directives. In our experiments, we demonstrate the effectiveness of our approach in efficiently managing memory during latent optimization, while previous methods fall short. Our proposed approach not only minimizes memory requirements but also significantly enhances T2V performance across a range of diffusion guidance benchmarks. Code, models, and demo are available at https://titanguide.github.io.
Authors:Kui Jiang, Shiyu Liu, Junjun Jiang, Hongxun Yao, Xiaopeng Fan
Title: M2DAO-Talker: Harmonizing Multi-granular Motion Decoupling and Alternating Optimization for Talking-head Generation
Abstract:
Audio-driven talking head generation holds significant potential for film production. While existing 3D methods have advanced motion modeling and content synthesis, they often produce rendering artifacts, such as motion blur, temporal jitter, and local penetration, due to limitations in representing stable, fine-grained motion fields. Through systematic analysis, we reformulate talking head generation into a unified framework comprising three steps: video preprocessing, motion representation, and rendering reconstruction. This framework underpins our proposed M2DAO-Talker, which addresses current limitations via multi-granular motion decoupling and alternating optimization. Specifically, we devise a novel 2D portrait preprocessing pipeline to extract frame-wise deformation control conditions (motion region segmentation masks, and camera parameters) to facilitate motion representation. To ameliorate motion modeling, we elaborate a multi-granular motion decoupling strategy, which independently models non-rigid (oral and facial) and rigid (head) motions for improved reconstruction accuracy. Meanwhile, a motion consistency constraint is developed to ensure head-torso kinematic consistency, thereby mitigating penetration artifacts caused by motion aliasing. In addition, an alternating optimization strategy is designed to iteratively refine facial and oral motion parameters, enabling more realistic video generation. Experiments across multiple datasets show that M2DAO-Talker achieves state-of-the-art performance, with the 2.43 dB PSNR improvement in generation quality and 0.64 gain in user-evaluated video realness versus TalkingGaussian while with 150 FPS inference speed. Our project homepage is https://m2dao-talker.github.io/M2DAO-Talk.github.io.
Authors:Zhiyuan Xu, Bohan Li, Huan-ang Gao, Mingju Gao, Yong Chen, Ming Liu, Chenxu Yan, Hang Zhao, Shuo Feng, Hao Zhao
Title: Challenger: Affordable Adversarial Driving Video Generation
Abstract:
Generating photorealistic driving videos has seen significant progress recently, but current methods largely focus on ordinary, non-adversarial scenarios. Meanwhile, efforts to generate adversarial driving scenarios often operate on abstract trajectory or BEV representations, falling short of delivering realistic sensor data that can truly stress-test autonomous driving (AD) systems. In this work, we introduce Challenger, a framework that produces physically plausible yet photorealistic adversarial driving videos. Generating such videos poses a fundamental challenge: it requires jointly optimizing over the space of traffic interactions and high-fidelity sensor observations. Challenger makes this affordable through two techniques: (1) a physics-aware multi-round trajectory refinement process that narrows down candidate adversarial maneuvers, and (2) a tailored trajectory scoring function that encourages realistic yet adversarial behavior while maintaining compatibility with downstream video synthesis. As tested on the nuScenes dataset, Challenger generates a diverse range of aggressive driving scenarios-including cut-ins, sudden lane changes, tailgating, and blind spot intrusions-and renders them into multiview photorealistic videos. Extensive evaluations show that these scenarios significantly increase the collision rate of state-of-the-art end-to-end AD models (UniAD, VAD, SparseDrive, and DiffusionDrive), and importantly, adversarial behaviors discovered for one model often transfer to others.
Authors:Bu Jin, Weize Li, Baihan Yang, Zhenxin Zhu, Junpeng Jiang, Huan-ang Gao, Haiyang Sun, Kun Zhan, Hengtong Hu, Xueyang Zhang, Peng Jia, Hao Zhao
Title: PosePilot: Steering Camera Pose for Generative World Models with Self-supervised Depth
Abstract:
Recent advancements in autonomous driving (AD) systems have highlighted the potential of world models in achieving robust and generalizable performance across both ordinary and challenging driving conditions. However, a key challenge remains: precise and flexible camera pose control, which is crucial for accurate viewpoint transformation and realistic simulation of scene dynamics. In this paper, we introduce PosePilot, a lightweight yet powerful framework that significantly enhances camera pose controllability in generative world models. Drawing inspiration from self-supervised depth estimation, PosePilot leverages structure-from-motion principles to establish a tight coupling between camera pose and video generation. Specifically, we incorporate self-supervised depth and pose readouts, allowing the model to infer depth and relative camera motion directly from video sequences. These outputs drive pose-aware frame warping, guided by a photometric warping loss that enforces geometric consistency across synthesized frames. To further refine camera pose estimation, we introduce a reverse warping step and a pose regression loss, improving viewpoint precision and adaptability. Extensive experiments on autonomous driving and general-domain video datasets demonstrate that PosePilot significantly enhances structural understanding and motion reasoning in both diffusion-based and auto-regressive world models. By steering camera pose with self-supervised depth, PosePilot sets a new benchmark for pose controllability, enabling physically consistent, reliable viewpoint synthesis in generative world models.
Authors:Shuhuai Ren, Shuming Ma, Xu Sun, Furu Wei
Title: Next Block Prediction: Video Generation via Semi-Autoregressive Modeling
Abstract:
Next-Token Prediction (NTP) is a de facto approach for autoregressive (AR) video generation, but it suffers from suboptimal unidirectional dependencies and slow inference speed. In this work, we propose a semi-autoregressive (semi-AR) framework, called Next-Block Prediction (NBP), for video generation. By uniformly decomposing video content into equal-sized blocks (e.g., rows or frames), we shift the generation unit from individual tokens to blocks, allowing each token in the current block to simultaneously predict the corresponding token in the next block. Unlike traditional AR modeling, our framework employs bidirectional attention within each block, enabling tokens to capture more robust spatial dependencies. By predicting multiple tokens in parallel, NBP models significantly reduce the number of generation steps, leading to faster and more efficient inference. Our model achieves FVD scores of 103.3 on UCF101 and 25.5 on K600, outperforming the vanilla NTP model by an average of 4.4. Furthermore, thanks to the reduced number of inference steps, the NBP model generates 8.89 frames (128x128 resolution) per second, achieving an 11x speedup. We also explored model scales ranging from 700M to 3B parameters, observing significant improvements in generation quality, with FVD scores dropping from 103.3 to 55.3 on UCF101 and from 25.5 to 19.5 on K600, demonstrating the scalability of our approach.
Authors:Kazuki Shimada, Christian Simon, Takashi Shibuya, Shusuke Takahashi, Yuki Mitsufuji
Title: SAVGBench: Benchmarking Spatially Aligned Audio-Video Generation
Abstract:
This work addresses the lack of multimodal generative models capable of producing high-quality videos with spatially aligned audio. While recent advancements in generative models have been successful in video generation, they often overlook the spatial alignment between audio and visuals, which is essential for immersive experiences. To tackle this problem, we establish a new research direction in benchmarking Spatially Aligned Audio-Video Generation (SAVG). We propose three key components for the benchmark: dataset, baseline, and metrics. We introduce a spatially aligned audio-visual dataset, derived from an audio-visual dataset consisting of multichannel audio, video, and spatiotemporal annotations of sound events. We propose a baseline audio-visual diffusion model focused on stereo audio-visual joint learning to accommodate spatial sound. Finally, we present metrics to evaluate video and spatial audio quality, including a new spatial audio-visual alignment metric. Our experimental result demonstrates that gaps exist between the baseline model and ground truth in terms of video and audio quality, and spatial alignment between both modalities.
Authors:Kaiyi Huang, Yukun Huang, Xuefei Ning, Zinan Lin, Yu Wang, Xihui Liu
Title: GenMAC: Compositional Text-to-Video Generation with Multi-Agent Collaboration
Abstract:
Text-to-video generation models have shown significant progress in the recent years. However, they still struggle with generating complex dynamic scenes based on compositional text prompts, such as attribute binding for multiple objects, temporal dynamics associated with different objects, and interactions between objects. Our key motivation is that complex tasks can be decomposed into simpler ones, each handled by a role-specialized MLLM agent. Multiple agents can collaborate together to achieve collective intelligence for complex goals. We propose GenMAC, an iterative, multi-agent framework that enables compositional text-to-video generation. The collaborative workflow includes three stages: Design, Generation, and Redesign, with an iterative loop between the Generation and Redesign stages to progressively verify and refine the generated videos. The Redesign stage is the most challenging stage that aims to verify the generated videos, suggest corrections, and redesign the text prompts, frame-wise layouts, and guidance scales for the next iteration of generation. To avoid hallucination of a single MLLM agent, we decompose this stage to four sequentially-executed MLLM-based agents: verification agent, suggestion agent, correction agent, and output structuring agent. Furthermore, to tackle diverse scenarios of compositional text-to-video generation, we design a self-routing mechanism to adaptively select the proper correction agent from a collection of correction agents each specialized for one scenario. Extensive experiments demonstrate the effectiveness of GenMAC, achieving state-of-the art performance in compositional text-to-video generation.
Authors:Zhenxiong Tan, Xingyi Yang, Songhua Liu, Xinchao Wang
Title: Video-Infinity: Distributed Long Video Generation
Abstract:
Diffusion models have recently achieved remarkable results for video generation. Despite the encouraging performances, the generated videos are typically constrained to a small number of frames, resulting in clips lasting merely a few seconds. The primary challenges in producing longer videos include the substantial memory requirements and the extended processing time required on a single GPU. A straightforward solution would be to split the workload across multiple GPUs, which, however, leads to two issues: (1) ensuring all GPUs communicate effectively to share timing and context information, and (2) modifying existing video diffusion models, which are usually trained on short sequences, to create longer videos without additional training. To tackle these, in this paper we introduce Video-Infinity, a distributed inference pipeline that enables parallel processing across multiple GPUs for long-form video generation. Specifically, we propose two coherent mechanisms: Clip parallelism and Dual-scope attention. Clip parallelism optimizes the gathering and sharing of context information across GPUs which minimizes communication overhead, while Dual-scope attention modulates the temporal self-attention to balance local and global contexts efficiently across the devices. Together, the two mechanisms join forces to distribute the workload and enable the fast generation of long videos. Under an 8 x Nvidia 6000 Ada GPU (48G) setup, our method generates videos up to 2,300 frames in approximately 5 minutes, enabling long video generation at a speed 100 times faster than the prior methods.
Authors:Xuan He, Dongfu Jiang, Ge Zhang, Max Ku, Achint Soni, Sherman Siu, Haonan Chen, Abhranil Chandra, Ziyan Jiang, Aaran Arulraj, Kai Wang, Quy Duc Do, Yuansheng Ni, Bohan Lyu, Yaswanth Narsupalli, Rongqi Fan, Zhiheng Lyu, Yuchen Lin, Wenhu Chen
Title: VideoScore: Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation
Abstract:
The recent years have witnessed great advances in video generation. However, the development of automatic video metrics is lagging significantly behind. None of the existing metric is able to provide reliable scores over generated videos. The main barrier is the lack of large-scale human-annotated dataset. In this paper, we release VideoFeedback, the first large-scale dataset containing human-provided multi-aspect score over 37.6K synthesized videos from 11 existing video generative models. We train VideoScore (initialized from Mantis) based on VideoFeedback to enable automatic video quality assessment. Experiments show that the Spearman correlation between VideoScore and humans can reach 77.1 on VideoFeedback-test, beating the prior best metrics by about 50 points. Further result on other held-out EvalCrafter, GenAI-Bench, and VBench show that VideoScore has consistently much higher correlation with human judges than other metrics. Due to these results, we believe VideoScore can serve as a great proxy for human raters to (1) rate different video models to track progress (2) simulate fine-grained human feedback in Reinforcement Learning with Human Feedback (RLHF) to improve current video generation models.
Authors:Yao Teng, Enze Xie, Yue Wu, Haoyu Han, Zhenguo Li, Xihui Liu
Title: Drag-A-Video: Non-rigid Video Editing with Point-based Interaction
Abstract:
Video editing is a challenging task that requires manipulating videos on both the spatial and temporal dimensions. Existing methods for video editing mainly focus on changing the appearance or style of the objects in the video, while keeping their structures unchanged. However, there is no existing method that allows users to interactively ``drag'' any points of instances on the first frame to precisely reach the target points with other frames consistently deformed. In this paper, we propose a new diffusion-based method for interactive point-based video manipulation, called Drag-A-Video. Our method allows users to click pairs of handle points and target points as well as masks on the first frame of an input video. Then, our method transforms the inputs into point sets and propagates these sets across frames. To precisely modify the contents of the video, we employ a new video-level motion supervision to update the features of the video and introduce the latent offsets to achieve this update at multiple denoising timesteps. We propose a temporal-consistent point tracking module to coordinate the movement of the points in the handle point sets. We demonstrate the effectiveness and flexibility of our method on various videos. The website of our work is available here: https://drag-a-video.github.io/.
Authors:Akshay Paruchuri, Xin Liu, Yulu Pan, Shwetak Patel, Daniel McDuff, Soumyadip Sengupta
Title: Motion Matters: Neural Motion Transfer for Better Camera Physiological Measurement
Abstract:
Machine learning models for camera-based physiological measurement can have weak generalization due to a lack of representative training data. Body motion is one of the most significant sources of noise when attempting to recover the subtle cardiac pulse from a video. We explore motion transfer as a form of data augmentation to introduce motion variation while preserving physiological changes of interest. We adapt a neural video synthesis approach to augment videos for the task of remote photoplethysmography (rPPG) and study the effects of motion augmentation with respect to 1) the magnitude and 2) the type of motion. After training on motion-augmented versions of publicly available datasets, we demonstrate a 47% improvement over existing inter-dataset results using various state-of-the-art methods on the PURE dataset. We also present inter-dataset results on five benchmark datasets to show improvements of up to 79% using TS-CAN, a neural rPPG estimation method. Our findings illustrate the usefulness of motion transfer as a data augmentation technique for improving the generalization of models for camera-based physiological sensing. We release our code for using motion transfer as a data augmentation technique on three publicly available datasets, UBFC-rPPG, PURE, and SCAMPS, and models pre-trained on motion-augmented data here: https://motion-matters.github.io/
Authors:Xiaoxue Wu, Bingjie Gao, Yu Qiao, Yaohui Wang, Xinyuan Chen
Title: CineTrans: Learning to Generate Videos with Cinematic Transitions via Masked Diffusion Models
Abstract:
Despite significant advances in video synthesis, research into multi-shot video generation remains in its infancy. Even with scaled-up models and massive datasets, the shot transition capabilities remain rudimentary and unstable, largely confining generated videos to single-shot sequences. In this work, we introduce CineTrans, a novel framework for generating coherent multi-shot videos with cinematic, film-style transitions. To facilitate insights into the film editing style, we construct a multi-shot video-text dataset Cine250K with detailed shot annotations. Furthermore, our analysis of existing video diffusion models uncovers a correspondence between attention maps in the diffusion model and shot boundaries, which we leverage to design a mask-based control mechanism that enables transitions at arbitrary positions and transfers effectively in a training-free setting. After fine-tuning on our dataset with the mask mechanism, CineTrans produces cinematic multi-shot sequences while adhering to the film editing style, avoiding unstable transitions or naive concatenations. Finally, we propose specialized evaluation metrics for transition control, temporal consistency and overall quality, and demonstrate through extensive experiments that CineTrans significantly outperforms existing baselines across all criteria.
Authors:Yaohui Wang, Di Yang, Xinyuan Chen, Francois Bremond, Yu Qiao, Antitza Dantcheva
Title: LIA-X: Interpretable Latent Portrait Animator
Abstract:
We introduce LIA-X, a novel interpretable portrait animator designed to transfer facial dynamics from a driving video to a source portrait with fine-grained control. LIA-X is an autoencoder that models motion transfer as a linear navigation of motion codes in latent space. Crucially, it incorporates a novel Sparse Motion Dictionary that enables the model to disentangle facial dynamics into interpretable factors. Deviating from previous 'warp-render' approaches, the interpretability of the Sparse Motion Dictionary allows LIA-X to support a highly controllable 'edit-warp-render' strategy, enabling precise manipulation of fine-grained facial semantics in the source portrait. This helps to narrow initial differences with the driving video in terms of pose and expression. Moreover, we demonstrate the scalability of LIA-X by successfully training a large-scale model with approximately 1 billion parameters on extensive datasets. Experimental results show that our proposed method outperforms previous approaches in both self-reenactment and cross-reenactment tasks across several benchmarks. Additionally, the interpretable and controllable nature of LIA-X supports practical applications such as fine-grained, user-guided image and video editing, as well as 3D-aware portrait video manipulation.
Authors:Xin Ma, Yaohui Wang, Genyun Jia, Xinyuan Chen, Tien-Tsin Wong, Cunjian Chen
Title: Consistent and Controllable Image Animation with Motion Linear Diffusion Transformers
Abstract:
Image animation has seen significant progress, driven by the powerful generative capabilities of diffusion models. However, maintaining appearance consistency with static input images and mitigating abrupt motion transitions in generated animations remain persistent challenges. While text-to-video (T2V) generation has demonstrated impressive performance with diffusion transformer models, the image animation field still largely relies on U-Net-based diffusion models, which lag behind the latest T2V approaches. Moreover, the quadratic complexity of vanilla self-attention mechanisms in Transformers imposes heavy computational demands, making image animation particularly resource-intensive. To address these issues, we propose MiraMo, a framework designed to enhance efficiency, appearance consistency, and motion smoothness in image animation. Specifically, MiraMo introduces three key elements: (1) A foundational text-to-video architecture replacing vanilla self-attention with efficient linear attention to reduce computational overhead while preserving generation quality; (2) A novel motion residual learning paradigm that focuses on modeling motion dynamics rather than directly predicting frames, improving temporal consistency; and (3) A DCT-based noise refinement strategy during inference to suppress sudden motion artifacts, complemented by a dynamics control module to balance motion smoothness and expressiveness. Extensive experiments against state-of-the-art methods validate the superiority of MiraMo in generating consistent, smooth, and controllable animations with accelerated inference speed. Additionally, we demonstrate the versatility of MiraMo through applications in motion transfer and video editing tasks.
Authors:Yuanpeng Tu, Hao Luo, Xi Chen, Xiang Bai, Fan Wang, Hengshuang Zhao
Title: PlayerOne: Egocentric World Simulator
Abstract:
We introduce PlayerOne, the first egocentric realistic world simulator, facilitating immersive and unrestricted exploration within vividly dynamic environments. Given an egocentric scene image from the user, PlayerOne can accurately construct the corresponding world and generate egocentric videos that are strictly aligned with the real scene human motion of the user captured by an exocentric camera. PlayerOne is trained in a coarse-to-fine pipeline that first performs pretraining on large-scale egocentric text-video pairs for coarse-level egocentric understanding, followed by finetuning on synchronous motion-video data extracted from egocentric-exocentric video datasets with our automatic construction pipeline. Besides, considering the varying importance of different components, we design a part-disentangled motion injection scheme, enabling precise control of part-level movements. In addition, we devise a joint reconstruction framework that progressively models both the 4D scene and video frames, ensuring scene consistency in the long-form video generation. Experimental results demonstrate its great generalization ability in precise control of varying human movements and worldconsistent modeling of diverse scenarios. It marks the first endeavor into egocentric real-world simulation and can pave the way for the community to delve into fresh frontiers of world modeling and its diverse applications.
Authors:Sihui Ji, Hao Luo, Xi Chen, Yuanpeng Tu, Yiyang Wang, Hengshuang Zhao
Title: LayerFlow: A Unified Model for Layer-aware Video Generation
Abstract:
We present LayerFlow, a unified solution for layer-aware video generation. Given per-layer prompts, LayerFlow generates videos for the transparent foreground, clean background, and blended scene. It also supports versatile variants like decomposing a blended video or generating the background for the given foreground and vice versa. Starting from a text-to-video diffusion transformer, we organize the videos for different layers as sub-clips, and leverage layer embeddings to distinguish each clip and the corresponding layer-wise prompts. In this way, we seamlessly support the aforementioned variants in one unified framework. For the lack of high-quality layer-wise training videos, we design a multi-stage training strategy to accommodate static images with high-quality layer annotations. Specifically, we first train the model with low-quality video data. Then, we tune a motion LoRA to make the model compatible with static frames. Afterward, we train the content LoRA on the mixture of image data with high-quality layered images along with copy-pasted video data. During inference, we remove the motion LoRA thus generating smooth videos with desired layers.
Authors:Bingjie Gao, Xinyu Gao, Xiaoxue Wu, Yujie Zhou, Yu Qiao, Li Niu, Xinyuan Chen, Yaohui Wang
Title: The Devil is in the Prompts: Retrieval-Augmented Prompt Optimization for Text-to-Video Generation
Abstract:
The evolution of Text-to-video (T2V) generative models, trained on large-scale datasets, has been marked by significant progress. However, the sensitivity of T2V generative models to input prompts highlights the critical role of prompt design in influencing generative outcomes. Prior research has predominantly relied on Large Language Models (LLMs) to align user-provided prompts with the distribution of training prompts, albeit without tailored guidance encompassing prompt vocabulary and sentence structure nuances. To this end, we introduce RAPO, a novel Retrieval-Augmented Prompt Optimization framework. In order to address potential inaccuracies and ambiguous details generated by LLM-generated prompts. RAPO refines the naive prompts through dual optimization branches, selecting the superior prompt for T2V generation. The first branch augments user prompts with diverse modifiers extracted from a learned relational graph, refining them to align with the format of training prompts via a fine-tuned LLM. Conversely, the second branch rewrites the naive prompt using a pre-trained LLM following a well-defined instruction set. Extensive experiments demonstrate that RAPO can effectively enhance both the static and dynamic dimensions of generated videos, demonstrating the significance of prompt optimization for user-provided prompts.
Authors:Haiyu Zhang, Xinyuan Chen, Yaohui Wang, Xihui Liu, Yunhong Wang, Yu Qiao
Title: AccVideo: Accelerating Video Diffusion Model with Synthetic Dataset
Abstract:
Diffusion models have achieved remarkable progress in the field of video generation. However, their iterative denoising nature requires a large number of inference steps to generate a video, which is slow and computationally expensive. In this paper, we begin with a detailed analysis of the challenges present in existing diffusion distillation methods and propose a novel efficient method, namely AccVideo, to reduce the inference steps for accelerating video diffusion models with synthetic dataset. We leverage the pretrained video diffusion model to generate multiple valid denoising trajectories as our synthetic dataset, which eliminates the use of useless data points during distillation. Based on the synthetic dataset, we design a trajectory-based few-step guidance that utilizes key data points from the denoising trajectories to learn the noise-to-video mapping, enabling video generation in fewer steps. Furthermore, since the synthetic dataset captures the data distribution at each diffusion timestep, we introduce an adversarial training strategy to align the output distribution of the student model with that of our synthetic dataset, thereby enhancing the video quality. Extensive experiments demonstrate that our model achieves 8.5x improvements in generation speed compared to the teacher model while maintaining comparable performance. Compared to previous accelerating methods, our approach is capable of generating videos with higher quality and resolution, i.e., 5-seconds, 720x1280, 24fps.
Authors:Yuanpeng Tu, Hao Luo, Xi Chen, Sihui Ji, Xiang Bai, Hengshuang Zhao
Title: VideoAnydoor: High-fidelity Video Object Insertion with Precise Motion Control
Abstract:
Despite significant advancements in video generation, inserting a given object into videos remains a challenging task. The difficulty lies in preserving the appearance details of the reference object and accurately modeling coherent motions at the same time. In this paper, we propose VideoAnydoor, a zero-shot video object insertion framework with high-fidelity detail preservation and precise motion control. Starting from a text-to-video model, we utilize an ID extractor to inject the global identity and leverage a box sequence to control the overall motion. To preserve the detailed appearance and meanwhile support fine-grained motion control, we design a pixel warper. It takes the reference image with arbitrary key-points and the corresponding key-point trajectories as inputs. It warps the pixel details according to the trajectories and fuses the warped features with the diffusion U-Net, thus improving detail preservation and supporting users in manipulating the motion trajectories. In addition, we propose a training strategy involving both videos and static images with a weighted loss to enhance insertion quality. VideoAnydoor demonstrates significant superiority over existing methods and naturally supports various downstream applications (e.g., talking head generation, video virtual try-on, multi-region editing) without task-specific fine-tuning.
Authors:Xi Chen, Zhifei Zhang, He Zhang, Yuqian Zhou, Soo Ye Kim, Qing Liu, Yijun Li, Jianming Zhang, Nanxuan Zhao, Yilin Wang, Hui Ding, Zhe Lin, Hengshuang Zhao
Title: UniReal: Universal Image Generation and Editing via Learning Real-world Dynamics
Abstract:
We introduce UniReal, a unified framework designed to address various image generation and editing tasks. Existing solutions often vary by tasks, yet share fundamental principles: preserving consistency between inputs and outputs while capturing visual variations. Inspired by recent video generation models that effectively balance consistency and variation across frames, we propose a unifying approach that treats image-level tasks as discontinuous video generation. Specifically, we treat varying numbers of input and output images as frames, enabling seamless support for tasks such as image generation, editing, customization, composition, etc. Although designed for image-level tasks, we leverage videos as a scalable source for universal supervision. UniReal learns world dynamics from large-scale videos, demonstrating advanced capability in handling shadows, reflections, pose variation, and object interaction, while also exhibiting emergent capability for novel applications.
Authors:Haiyu Zhang, Xinyuan Chen, Yaohui Wang, Xihui Liu, Yunhong Wang, Yu Qiao
Title: 4Diffusion: Multi-view Video Diffusion Model for 4D Generation
Abstract:
Current 4D generation methods have achieved noteworthy efficacy with the aid of advanced diffusion generative models. However, these methods lack multi-view spatial-temporal modeling and encounter challenges in integrating diverse prior knowledge from multiple diffusion models, resulting in inconsistent temporal appearance and flickers. In this paper, we propose a novel 4D generation pipeline, namely 4Diffusion, aimed at generating spatial-temporally consistent 4D content from a monocular video. We first design a unified diffusion model tailored for multi-view video generation by incorporating a learnable motion module into a frozen 3D-aware diffusion model to capture multi-view spatial-temporal correlations. After training on a curated dataset, our diffusion model acquires reasonable temporal consistency and inherently preserves the generalizability and spatial consistency of the 3D-aware diffusion model. Subsequently, we propose 4D-aware Score Distillation Sampling loss, which is based on our multi-view video diffusion model, to optimize 4D representation parameterized by dynamic NeRF. This aims to eliminate discrepancies arising from multiple diffusion models, allowing for generating spatial-temporally consistent 4D content. Moreover, we devise an anchor loss to enhance the appearance details and facilitate the learning of dynamic NeRF. Extensive qualitative and quantitative experiments demonstrate that our method achieves superior performance compared to previous methods.
Authors:Xin Ma, Yaohui Wang, Xinyuan Chen, Gengyun Jia, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, Yu Qiao
Title: Latte: Latent Diffusion Transformer for Video Generation
Abstract:
We propose Latte, a novel Latent Diffusion Transformer for video generation. Latte first extracts spatio-temporal tokens from input videos and then adopts a series of Transformer blocks to model video distribution in the latent space. In order to model a substantial number of tokens extracted from videos, four efficient variants are introduced from the perspective of decomposing the spatial and temporal dimensions of input videos. To improve the quality of generated videos, we determine the best practices of Latte through rigorous experimental analysis, including video clip patch embedding, model variants, timestep-class information injection, temporal positional embedding, and learning strategies. Our comprehensive evaluation demonstrates that Latte achieves state-of-the-art performance across four standard video generation datasets, i.e., FaceForensics, SkyTimelapse, UCF101, and Taichi-HD. In addition, we extend Latte to the text-to-video generation (T2V) task, where Latte achieves results that are competitive with recent T2V models. We strongly believe that Latte provides valuable insights for future research on incorporating Transformers into diffusion models for video generation.
Authors:Xi Chen, Zhiheng Liu, Mengting Chen, Yutong Feng, Yu Liu, Yujun Shen, Hengshuang Zhao
Title: LivePhoto: Real Image Animation with Text-guided Motion Control
Abstract:
Despite the recent progress in text-to-video generation, existing studies usually overlook the issue that only spatial contents but not temporal motions in synthesized videos are under the control of text. Towards such a challenge, this work presents a practical system, named LivePhoto, which allows users to animate an image of their interest with text descriptions. We first establish a strong baseline that helps a well-learned text-to-image generator (i.e., Stable Diffusion) take an image as a further input. We then equip the improved generator with a motion module for temporal modeling and propose a carefully designed training pipeline to better link texts and motions. In particular, considering the facts that (1) text can only describe motions roughly (e.g., regardless of the moving speed) and (2) text may include both content and motion descriptions, we introduce a motion intensity estimation module as well as a text re-weighting module to reduce the ambiguity of text-to-motion mapping. Empirical evidence suggests that our approach is capable of well decoding motion-related textual instructions into videos, such as actions, camera movements, or even conjuring new contents from thin air (e.g., pouring water into an empty glass). Interestingly, thanks to the proposed intensity learning mechanism, our system offers users an additional control signal (i.e., the motion intensity) besides text for video customization.
Authors:Bo Peng, Xinyuan Chen, Yaohui Wang, Chaochao Lu, Yu Qiao
Title: ConditionVideo: Training-Free Condition-Guided Text-to-Video Generation
Abstract:
Recent works have successfully extended large-scale text-to-image models to the video domain, producing promising results but at a high computational cost and requiring a large amount of video data. In this work, we introduce ConditionVideo, a training-free approach to text-to-video generation based on the provided condition, video, and input text, by leveraging the power of off-the-shelf text-to-image generation methods (e.g., Stable Diffusion). ConditionVideo generates realistic dynamic videos from random noise or given scene videos. Our method explicitly disentangles the motion representation into condition-guided and scenery motion components. To this end, the ConditionVideo model is designed with a UNet branch and a control branch. To improve temporal coherence, we introduce sparse bi-directional spatial-temporal attention (sBiST-Attn). The 3D control network extends the conventional 2D controlnet model, aiming to strengthen conditional generation accuracy by additionally leveraging the bi-directional frames in the temporal domain. Our method exhibits superior performance in terms of frame consistency, clip score, and conditional accuracy, outperforming other compared methods.
Authors:Yaohui Wang, Xin Ma, Xinyuan Chen, Cunjian Chen, Antitza Dantcheva, Bo Dai, Yu Qiao
Title: LEO: Generative Latent Image Animator for Human Video Synthesis
Abstract:
Spatio-temporal coherency is a major challenge in synthesizing high quality videos, particularly in synthesizing human videos that contain rich global and local deformations. To resolve this challenge, previous approaches have resorted to different features in the generation process aimed at representing appearance and motion. However, in the absence of strict mechanisms to guarantee such disentanglement, a separation of motion from appearance has remained challenging, resulting in spatial distortions and temporal jittering that break the spatio-temporal coherency. Motivated by this, we here propose LEO, a novel framework for human video synthesis, placing emphasis on spatio-temporal coherency. Our key idea is to represent motion as a sequence of flow maps in the generation process, which inherently isolate motion from appearance. We implement this idea via a flow-based image animator and a Latent Motion Diffusion Model (LMDM). The former bridges a space of motion codes with the space of flow maps, and synthesizes video frames in a warp-and-inpaint manner. LMDM learns to capture motion prior in the training data by synthesizing sequences of motion codes. Extensive quantitative and qualitative analysis suggests that LEO significantly improves coherent synthesis of human videos over previous methods on the datasets TaichiHD, FaceForensics and CelebV-HQ. In addition, the effective disentanglement of appearance and motion in LEO allows for two additional tasks, namely infinite-length human video synthesis, as well as content-preserving video editing.
Authors:Yuqing Chen, Junjie Wang, Lin Liu, Ruihang Chu, Xiaopeng Zhang, Qi Tian, Yujiu Yang
Title: O-DisCo-Edit: Object Distortion Control for Unified Realistic Video Editing
Abstract:
Diffusion models have recently advanced video editing, yet controllable editing remains challenging due to the need for precise manipulation of diverse object properties. Current methods require different control signal for diverse editing tasks, which complicates model design and demands significant training resources. To address this, we propose O-DisCo-Edit, a unified framework that incorporates a novel object distortion control (O-DisCo). This signal, based on random and adaptive noise, flexibly encapsulates a wide range of editing cues within a single representation. Paired with a "copy-form" preservation module for preserving non-edited regions, O-DisCo-Edit enables efficient, high-fidelity editing through an effective training paradigm. Extensive experiments and comprehensive human evaluations consistently demonstrate that O-DisCo-Edit surpasses both specialized and multitask state-of-the-art methods across various video editing tasks. https://cyqii.github.io/O-DisCo-Edit.github.io/
Authors:Mohamed Elmoghany, Ryan Rossi, Seunghyun Yoon, Subhojyoti Mukherjee, Eslam Bakr, Puneet Mathur, Gang Wu, Viet Dac Lai, Nedim Lipka, Ruiyi Zhang, Varun Manjunatha, Chien Nguyen, Daksh Dangi, Abel Salinas, Mohammad Taesiri, Hongjie Chen, Xiaolei Huang, Joe Barrow, Nesreen Ahmed, Hoda Eldardiry, Namyong Park, Yu Wang, Jaemin Cho, Anh Totti Nguyen, Zhengzhong Tu, Thien Nguyen, Dinesh Manocha, Mohamed Elhoseiny, Franck Dernoncourt
Title: A Survey on Long-Video Storytelling Generation: Architectures, Consistency, and Cinematic Quality
Abstract:
Despite the significant progress that has been made in video generative models, existing state-of-the-art methods can only produce videos lasting 5-16 seconds, often labeled "long-form videos". Furthermore, videos exceeding 16 seconds struggle to maintain consistent character appearances and scene layouts throughout the narrative. In particular, multi-subject long videos still fail to preserve character consistency and motion coherence. While some methods can generate videos up to 150 seconds long, they often suffer from frame redundancy and low temporal diversity. Recent work has attempted to produce long-form videos featuring multiple characters, narrative coherence, and high-fidelity detail. We comprehensively studied 32 papers on video generation to identify key architectural components and training strategies that consistently yield these qualities. We also construct a comprehensive novel taxonomy of existing methods and present comparative tables that categorize papers by their architectural designs and performance characteristics.
Authors:Hongbo Liu, Jingwen He, Yi Jin, Dian Zheng, Yuhao Dong, Fan Zhang, Ziqi Huang, Yinan He, Yangguang Li, Weichao Chen, Yu Qiao, Wanli Ouyang, Shengjie Zhao, Ziwei Liu
Title: ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models
Abstract:
Cinematography, the fundamental visual language of film, is essential for conveying narrative, emotion, and aesthetic quality. While recent Vision-Language Models (VLMs) demonstrate strong general visual understanding, their proficiency in comprehending the nuanced cinematic grammar embedded within individual shots remains largely unexplored and lacks robust evaluation. This critical gap limits both fine-grained visual comprehension and the precision of AI-assisted video generation. To address this, we introduce ShotBench, a comprehensive benchmark specifically designed for cinematic language understanding. It features over 3.5k expert-annotated QA pairs from images and video clips, meticulously curated from over 200 acclaimed (predominantly Oscar-nominated) films and spanning eight key cinematography dimensions. Our evaluation of 24 leading VLMs on ShotBench reveals their substantial limitations: even the top-performing model achieves less than 60% average accuracy, particularly struggling with fine-grained visual cues and complex spatial reasoning. To catalyze advancement in this domain, we construct ShotQA, a large-scale multimodal dataset comprising approximately 70k cinematic QA pairs. Leveraging ShotQA, we develop ShotVL through supervised fine-tuning and Group Relative Policy Optimization. ShotVL significantly outperforms all existing open-source and proprietary models on ShotBench, establishing new state-of-the-art performance. We open-source our models, data, and code to foster rapid progress in this crucial area of AI-driven cinematic understanding and generation.
Authors:Jiancheng Huang, Gengwei Zhang, Zequn Jie, Siyu Jiao, Yinlong Qian, Ling Chen, Yunchao Wei, Lin Ma
Title: M4V: Multi-Modal Mamba for Text-to-Video Generation
Abstract:
Text-to-video generation has significantly enriched content creation and holds the potential to evolve into powerful world simulators. However, modeling the vast spatiotemporal space remains computationally demanding, particularly when employing Transformers, which incur quadratic complexity in sequence processing and thus limit practical applications. Recent advancements in linear-time sequence modeling, particularly the Mamba architecture, offer a more efficient alternative. Nevertheless, its plain design limits its direct applicability to multi-modal and spatiotemporal video generation tasks. To address these challenges, we introduce M4V, a Multi-Modal Mamba framework for text-to-video generation. Specifically, we propose a multi-modal diffusion Mamba (MM-DiM) block that enables seamless integration of multi-modal information and spatiotemporal modeling through a multi-modal token re-composition design. As a result, the Mamba blocks in M4V reduce FLOPs by 45% compared to the attention-based alternative when generating videos at 768$\times$1280 resolution. Additionally, to mitigate the visual quality degradation in long-context autoregressive generation processes, we introduce a reward learning strategy that further enhances per-frame visual realism. Extensive experiments on text-to-video benchmarks demonstrate M4V's ability to produce high-quality videos while significantly lowering computational costs. Code and models will be publicly available at https://huangjch526.github.io/M4V_project.
Authors:Haosong Liu, Yuge Cheng, Zihan Liu, Aiyue Chen, Jing Lin, Yiwu Yao, Chen Chen, Jingwen Leng, Yu Feng, Minyi Guo
Title: Astraea: A GPU-Oriented Token-wise Acceleration Framework for Video Diffusion Transformers
Abstract:
Video diffusion transformers (vDiTs) have made impressive progress in text-to-video generation, but their high computational demands present major challenges for practical deployment. While existing acceleration methods reduce workload at various granularities, they often rely on heuristics, limiting their applicability. We introduce ASTRAEA, an automatic framework that searches for near-optimal configurations for vDiT-based video generation. At its core, ASTRAEA proposes a lightweight token selection mechanism and a memory-efficient, GPU-parallel sparse attention strategy, enabling linear reductions in execution time with minimal impact on generation quality. To determine optimal token reduction for different timesteps, we further design a search framework that leverages a classic evolutionary algorithm to automatically determine the distribution of the token budget effectively. Together, ASTRAEA achieves up to 2.4x inference speedup on a single GPU with great scalability (up to 13.2x speedup on 8 GPUs) while retaining better video quality compared to the state-of-the-art methods (<0.5% loss on the VBench score compared to the baseline vDiT models).
Authors:Tianrui Pan, Lin Liu, Jie Liu, Xiaopeng Zhang, Jie Tang, Gangshan Wu, Qi Tian
Title: RASA: Replace Anyone, Say Anything -- A Training-Free Framework for Audio-Driven and Universal Portrait Video Editing
Abstract:
Portrait video editing focuses on modifying specific attributes of portrait videos, guided by audio or video streams. Previous methods typically either concentrate on lip-region reenactment or require training specialized models to extract keypoints for motion transfer to a new identity. In this paper, we introduce a training-free universal portrait video editing framework that provides a versatile and adaptable editing strategy. This framework supports portrait appearance editing conditioned on the changed first reference frame, as well as lip editing conditioned on varied speech, or a combination of both. It is based on a Unified Animation Control (UAC) mechanism with source inversion latents to edit the entire portrait, including visual-driven shape control, audio-driven speaking control, and inter-frame temporal control. Furthermore, our method can be adapted to different scenarios by adjusting the initial reference frame, enabling detailed editing of portrait videos with specific head rotations and facial expressions. This comprehensive approach ensures a holistic and flexible solution for portrait video editing. The experimental results show that our model can achieve more accurate and synchronized lip movements for the lip editing task, as well as more flexible motion transfer for the appearance editing task. Demo is available at https://alice01010101.github.io/RASA/.
Authors:Liyuan Cui, Xiaogang Xu, Wenqi Dong, Zesong Yang, Hujun Bao, Zhaopeng Cui
Title: CFSynthesis: Controllable and Free-view 3D Human Video Synthesis
Abstract:
Human video synthesis aims to create lifelike characters in various environments, with wide applications in VR, storytelling, and content creation. While 2D diffusion-based methods have made significant progress, they struggle to generalize to complex 3D poses and varying scene backgrounds. To address these limitations, we introduce CFSynthesis, a novel framework for generating high-quality human videos with customizable attributes, including identity, motion, and scene configurations. Our method leverages a texture-SMPL-based representation to ensure consistent and stable character appearances across free viewpoints. Additionally, we introduce a novel foreground-background separation strategy that effectively decomposes the scene as foreground and background, enabling seamless integration of user-defined backgrounds. Experimental results on multiple datasets show that CFSynthesis not only achieves state-of-the-art performance in complex human animations but also adapts effectively to 3D motions in free-view and user-specified scenarios.
Authors:Yabo Chen, Chen Yang, Jiemin Fang, Xiaopeng Zhang, Lingxi Xie, Wei Shen, Wenrui Dai, Hongkai Xiong, Qi Tian
Title: LiftImage3D: Lifting Any Single Image to 3D Gaussians with Video Generation Priors
Abstract:
Single-image 3D reconstruction remains a fundamental challenge in computer vision due to inherent geometric ambiguities and limited viewpoint information. Recent advances in Latent Video Diffusion Models (LVDMs) offer promising 3D priors learned from large-scale video data. However, leveraging these priors effectively faces three key challenges: (1) degradation in quality across large camera motions, (2) difficulties in achieving precise camera control, and (3) geometric distortions inherent to the diffusion process that damage 3D consistency. We address these challenges by proposing LiftImage3D, a framework that effectively releases LVDMs' generative priors while ensuring 3D consistency. Specifically, we design an articulated trajectory strategy to generate video frames, which decomposes video sequences with large camera motions into ones with controllable small motions. Then we use robust neural matching models, i.e. MASt3R, to calibrate the camera poses of generated frames and produce corresponding point clouds. Finally, we propose a distortion-aware 3D Gaussian splatting representation, which can learn independent distortions between frames and output undistorted canonical Gaussians. Extensive experiments demonstrate that LiftImage3D achieves state-of-the-art performance on two challenging datasets, i.e. LLFF, DL3DV, and Tanks and Temples, and generalizes well to diverse in-the-wild images, from cartoon illustrations to complex real-world scenes.
Authors:Zongyi Li, Shujie Hu, Shujie Liu, Long Zhou, Jeongsoo Choi, Lingwei Meng, Xun Guo, Jinyu Li, Hefei Ling, Furu Wei
Title: ARLON: Boosting Diffusion Transformers with Autoregressive Models for Long Video Generation
Abstract:
Text-to-video models have recently undergone rapid and substantial advancements. Nevertheless, due to limitations in data and computational resources, achieving efficient generation of long videos with rich motion dynamics remains a significant challenge. To generate high-quality, dynamic, and temporally consistent long videos, this paper presents ARLON, a novel framework that boosts diffusion Transformers with autoregressive models for long video generation, by integrating the coarse spatial and long-range temporal information provided by the AR model to guide the DiT model. Specifically, ARLON incorporates several key innovations: 1) A latent Vector Quantized Variational Autoencoder (VQ-VAE) compresses the input latent space of the DiT model into compact visual tokens, bridging the AR and DiT models and balancing the learning complexity and information density; 2) An adaptive norm-based semantic injection module integrates the coarse discrete visual units from the AR model into the DiT model, ensuring effective guidance during video generation; 3) To enhance the tolerance capability of noise introduced from the AR inference, the DiT model is trained with coarser visual latent tokens incorporated with an uncertainty sampling module. Experimental results demonstrate that ARLON significantly outperforms the baseline OpenSora-V1.2 on eight out of eleven metrics selected from VBench, with notable improvements in dynamic degree and aesthetic quality, while delivering competitive results on the remaining three and simultaneously accelerating the generation process. In addition, ARLON achieves state-of-the-art performance in long video generation. Detailed analyses of the improvements in inference efficiency are presented, alongside a practical application that demonstrates the generation of long videos using progressive text prompts. See demos of ARLON at http://aka.ms/arlon.
Authors:Jinming Chai, Qin Ma, Junpei Zhang, Licheng Jiao, Fang Liu
Title: CSS-Segment: 2nd Place Report of LSVOS Challenge VOS Track
Abstract:
Video object segmentation is a challenging task that serves as the cornerstone of numerous downstream applications, including video editing and autonomous driving. In this technical report, we briefly introduce the solution of our team "yuanjie" for video object segmentation in the 6-th LSVOS Challenge VOS Track at ECCV 2024. We believe that our proposed CSS-Segment will perform better in videos of complex object motion and long-term presentation. In this report, we successfully validated the effectiveness of the CSS-Segment in video object segmentation. Finally, our method achieved a J\&F score of 80.84 in and test phases, and ultimately ranked 2nd in the 6-th LSVOS Challenge VOS Track at ECCV 2024.
Authors:Yu Gao, Jiancheng Huang, Xiaopeng Sun, Zequn Jie, Yujie Zhong, Lin Ma
Title: Matten: Video Generation with Mamba-Attention
Abstract:
In this paper, we introduce Matten, a cutting-edge latent diffusion model with Mamba-Attention architecture for video generation. With minimal computational cost, Matten employs spatial-temporal attention for local video content modeling and bidirectional Mamba for global video content modeling. Our comprehensive experimental evaluation demonstrates that Matten has competitive performance with the current Transformer-based and GAN-based models in benchmark performance, achieving superior FVD scores and efficiency. Additionally, we observe a direct positive correlation between the complexity of our designed model and the improvement in video quality, indicating the excellent scalability of Matten.
Authors:Yichao Yan, Zanwei Zhou, Zi Wang, Jingnan Gao, Xiaokang Yang
Title: DialogueNeRF: Towards Realistic Avatar Face-to-Face Conversation Video Generation
Abstract:
Conversation is an essential component of virtual avatar activities in the metaverse. With the development of natural language processing, textual and vocal conversation generation has achieved a significant breakthrough. However, face-to-face conversations account for the vast majority of daily conversations, while most existing methods focused on single-person talking head generation. In this work, we take a step further and consider generating realistic face-to-face conversation videos. Conversation generation is more challenging than single-person talking head generation, since it not only requires generating photo-realistic individual talking heads but also demands the listener to respond to the speaker. In this paper, we propose a novel unified framework based on neural radiance field (NeRF) to address this task. Specifically, we model both the speaker and listener with a NeRF framework, with different conditions to control individual expressions. The speaker is driven by the audio signal, while the response of the listener depends on both visual and acoustic information. In this way, face-to-face conversation videos are generated between human avatars, with all the interlocutors modeled within the same network. Moreover, to facilitate future research on this task, we collect a new human conversation dataset containing 34 clips of videos. Quantitative and qualitative experiments evaluate our method in different aspects, e.g., image quality, pose sequence trend, and naturalness of the rendering videos. Experimental results demonstrate that the avatars in the resulting videos are able to perform a realistic conversation, and maintain individual styles. All the code, data, and models will be made publicly available.
Authors:Jianxiong Gao, Zhaoxi Chen, Xian Liu, Jianfeng Feng, Chenyang Si, Yanwei Fu, Yu Qiao, Ziwei Liu
Title: LongVie: Multimodal-Guided Controllable Ultra-Long Video Generation
Abstract:
Controllable ultra-long video generation is a fundamental yet challenging task. Although existing methods are effective for short clips, they struggle to scale due to issues such as temporal inconsistency and visual degradation. In this paper, we initially investigate and identify three key factors: separate noise initialization, independent control signal normalization, and the limitations of single-modality guidance. To address these issues, we propose LongVie, an end-to-end autoregressive framework for controllable long video generation. LongVie introduces two core designs to ensure temporal consistency: 1) a unified noise initialization strategy that maintains consistent generation across clips, and 2) global control signal normalization that enforces alignment in the control space throughout the entire video. To mitigate visual degradation, LongVie employs 3) a multi-modal control framework that integrates both dense (e.g., depth maps) and sparse (e.g., keypoints) control signals, complemented by 4) a degradation-aware training strategy that adaptively balances modality contributions over time to preserve visual quality. We also introduce LongVGenBench, a comprehensive benchmark consisting of 100 high-resolution videos spanning diverse real-world and synthetic environments, each lasting over one minute. Extensive experiments show that LongVie achieves state-of-the-art performance in long-range controllability, consistency, and quality.
Authors:Angtian Wang, Haibin Huang, Jacob Zhiyuan Fang, Yiding Yang, Chongyang Ma
Title: ATI: Any Trajectory Instruction for Controllable Video Generation
Abstract:
We propose a unified framework for motion control in video generation that seamlessly integrates camera movement, object-level translation, and fine-grained local motion using trajectory-based inputs. In contrast to prior methods that address these motion types through separate modules or task-specific designs, our approach offers a cohesive solution by projecting user-defined trajectories into the latent space of pre-trained image-to-video generation models via a lightweight motion injector. Users can specify keypoints and their motion paths to control localized deformations, entire object motion, virtual camera dynamics, or combinations of these. The injected trajectory signals guide the generative process to produce temporally consistent and semantically aligned motion sequences. Our framework demonstrates superior performance across multiple video motion control tasks, including stylized motion effects (e.g., motion brushes), dynamic viewpoint changes, and precise local motion manipulation. Experiments show that our method provides significantly better controllability and visual quality compared to prior approaches and commercial solutions, while remaining broadly compatible with various state-of-the-art video generation backbones. Project page: https://anytraj.github.io/.
Authors:Zizhang Li, Hong-Xing Yu, Wei Liu, Yin Yang, Charles Herrmann, Gordon Wetzstein, Jiajun Wu
Title: WonderPlay: Dynamic 3D Scene Generation from a Single Image and Actions
Abstract:
WonderPlay is a novel framework integrating physics simulation with video generation for generating action-conditioned dynamic 3D scenes from a single image. While prior works are restricted to rigid body or simple elastic dynamics, WonderPlay features a hybrid generative simulator to synthesize a wide range of 3D dynamics. The hybrid generative simulator first uses a physics solver to simulate coarse 3D dynamics, which subsequently conditions a video generator to produce a video with finer, more realistic motion. The generated video is then used to update the simulated dynamic 3D scene, closing the loop between the physics solver and the video generator. This approach enables intuitive user control to be combined with the accurate dynamics of physics-based simulators and the expressivity of diffusion-based video generators. Experimental results demonstrate that WonderPlay enables users to interact with various scenes of diverse content, including cloth, sand, snow, liquid, smoke, elastic, and rigid bodies -- all using a single image input. Code will be made public. Project website: https://kyleleey.github.io/WonderPlay/
Authors:Jialu Li, Shoubin Yu, Han Lin, Jaemin Cho, Jaehong Yoon, Mohit Bansal
Title: Training-free Guidance in Text-to-Video Generation via Multimodal Planning and Structured Noise Initialization
Abstract:
Recent advancements in text-to-video (T2V) diffusion models have significantly enhanced the visual quality of the generated videos. However, even recent T2V models find it challenging to follow text descriptions accurately, especially when the prompt requires accurate control of spatial layouts or object trajectories. A recent line of research uses layout guidance for T2V models that require fine-tuning or iterative manipulation of the attention map during inference time. This significantly increases the memory requirement, making it difficult to adopt a large T2V model as a backbone. To address this, we introduce Video-MSG, a training-free Guidance method for T2V generation based on Multimodal planning and Structured noise initialization. Video-MSG consists of three steps, where in the first two steps, Video-MSG creates Video Sketch, a fine-grained spatio-temporal plan for the final video, specifying background, foreground, and object trajectories, in the form of draft video frames. In the last step, Video-MSG guides a downstream T2V diffusion model with Video Sketch through noise inversion and denoising. Notably, Video-MSG does not need fine-tuning or attention manipulation with additional memory during inference time, making it easier to adopt large T2V models. Video-MSG demonstrates its effectiveness in enhancing text alignment with multiple T2V backbones (VideoCrafter2 and CogVideoX-5B) on popular T2V generation benchmarks (T2VCompBench and VBench). We provide comprehensive ablation studies about noise inversion ratio, different background generators, background object detection, and foreground object segmentation.
Authors:Yufan Deng, Xun Guo, Yizhi Wang, Jacob Zhiyuan Fang, Angtian Wang, Shenghai Yuan, Yiding Yang, Bo Liu, Haibin Huang, Chongyang Ma
Title: CINEMA: Coherent Multi-Subject Video Generation via MLLM-Based Guidance
Abstract:
Video generation has witnessed remarkable progress with the advent of deep generative models, particularly diffusion models. While existing methods excel in generating high-quality videos from text prompts or single images, personalized multi-subject video generation remains a largely unexplored challenge. This task involves synthesizing videos that incorporate multiple distinct subjects, each defined by separate reference images, while ensuring temporal and spatial consistency. Current approaches primarily rely on mapping subject images to keywords in text prompts, which introduces ambiguity and limits their ability to model subject relationships effectively. In this paper, we propose CINEMA, a novel framework for coherent multi-subject video generation by leveraging Multimodal Large Language Model (MLLM). Our approach eliminates the need for explicit correspondences between subject images and text entities, mitigating ambiguity and reducing annotation effort. By leveraging MLLM to interpret subject relationships, our method facilitates scalability, enabling the use of large and diverse datasets for training. Furthermore, our framework can be conditioned on varying numbers of subjects, offering greater flexibility in personalized content creation. Through extensive evaluations, we demonstrate that our approach significantly improves subject consistency, and overall video coherence, paving the way for advanced applications in storytelling, interactive media, and personalized video generation.
Authors:Yue Gao, Hong-Xing Yu, Bo Zhu, Jiajun Wu
Title: FluidNexus: 3D Fluid Reconstruction and Prediction from a Single Video
Abstract:
We study reconstructing and predicting 3D fluid appearance and velocity from a single video. Current methods require multi-view videos for fluid reconstruction. We present FluidNexus, a novel framework that bridges video generation and physics simulation to tackle this task. Our key insight is to synthesize multiple novel-view videos as references for reconstruction. FluidNexus consists of two key components: (1) a novel-view video synthesizer that combines frame-wise view synthesis with video diffusion refinement for generating realistic videos, and (2) a physics-integrated particle representation coupling differentiable simulation and rendering to simultaneously facilitate 3D fluid reconstruction and prediction. To evaluate our approach, we collect two new real-world fluid datasets featuring textured backgrounds and object interactions. Our method enables dynamic novel view synthesis, future prediction, and interaction simulation from a single fluid video. Project website: https://yuegao.me/FluidNexus.
Authors:Yifei Xia, Suhan Ling, Fangcheng Fu, Yujie Wang, Huixia Li, Xuefeng Xiao, Bin Cui
Title: Training-free and Adaptive Sparse Attention for Efficient Long Video Generation
Abstract:
Generating high-fidelity long videos with Diffusion Transformers (DiTs) is often hindered by significant latency, primarily due to the computational demands of attention mechanisms. For instance, generating an 8-second 720p video (110K tokens) with HunyuanVideo takes about 600 PFLOPs, with around 500 PFLOPs consumed by attention computations. To address this issue, we propose AdaSpa, the first Dynamic Pattern and Online Precise Search sparse attention method. Firstly, to realize the Dynamic Pattern, we introduce a blockified pattern to efficiently capture the hierarchical sparsity inherent in DiTs. This is based on our observation that sparse characteristics of DiTs exhibit hierarchical and blockified structures between and within different modalities. This blockified approach significantly reduces the complexity of attention computation while maintaining high fidelity in the generated videos. Secondly, to enable Online Precise Search, we propose the Fused LSE-Cached Search with Head-adaptive Hierarchical Block Sparse Attention. This method is motivated by our finding that DiTs' sparse pattern and LSE vary w.r.t. inputs, layers, and heads, but remain invariant across denoising steps. By leveraging this invariance across denoising steps, it adapts to the dynamic nature of DiTs and allows for precise, real-time identification of sparse indices with minimal overhead. AdaSpa is implemented as an adaptive, plug-and-play solution and can be integrated seamlessly with existing DiTs, requiring neither additional fine-tuning nor a dataset-dependent profiling. Extensive experiments validate that AdaSpa delivers substantial acceleration across various models while preserving video quality, establishing itself as a robust and scalable approach to efficient video generation.
Authors:Hongjie Li, Hong-Xing Yu, Jiaman Li, Jiajun Wu
Title: ZeroHSI: Zero-Shot 4D Human-Scene Interaction by Video Generation
Abstract:
Human-scene interaction (HSI) generation is crucial for applications in embodied AI, virtual reality, and robotics. Yet, existing methods cannot synthesize interactions in unseen environments such as in-the-wild scenes or reconstructed scenes, as they rely on paired 3D scenes and captured human motion data for training, which are unavailable for unseen environments. We present ZeroHSI, a novel approach that enables zero-shot 4D human-scene interaction synthesis, eliminating the need for training on any MoCap data. Our key insight is to distill human-scene interactions from state-of-the-art video generation models, which have been trained on vast amounts of natural human movements and interactions, and use differentiable rendering to reconstruct human-scene interactions. ZeroHSI can synthesize realistic human motions in both static scenes and environments with dynamic objects, without requiring any ground-truth motion data. We evaluate ZeroHSI on a curated dataset of different types of various indoor and outdoor scenes with different interaction prompts, demonstrating its ability to generate diverse and contextually appropriate human-scene interactions.
Authors:Daeun Lee, Jaehong Yoon, Jaemin Cho, Mohit Bansal
Title: VideoRepair: Improving Text-to-Video Generation via Misalignment Evaluation and Localized Refinement
Abstract:
Recent text-to-video (T2V) diffusion models have demonstrated impressive generation capabilities across various domains. However, these models often generate videos that have misalignments with text prompts, especially when the prompts describe complex scenes with multiple objects and attributes. To address this, we introduce VideoRepair, a novel model-agnostic, training-free video refinement framework that automatically identifies fine-grained text-video misalignments and generates explicit spatial and textual feedback, enabling a T2V diffusion model to perform targeted, localized refinements. VideoRepair consists of two stages: In (1) video refinement planning, we first detect misalignments by generating fine-grained evaluation questions and answering them using an MLLM. Based on video evaluation outputs, we identify accurately generated objects and construct localized prompts to precisely refine misaligned regions. In (2) localized refinement, we enhance video alignment by 'repairing' the misaligned regions from the original video while preserving the correctly generated areas. This is achieved by frame-wise region decomposition using our Region-Preserving Segmentation (RPS) module. On two popular video generation benchmarks (EvalCrafter and T2V-CompBench), VideoRepair substantially outperforms recent baselines across various text-video alignment metrics. We provide a comprehensive analysis of VideoRepair components and qualitative examples.
Authors:Jianzong Wu, Xiangtai Li, Yanhong Zeng, Jiangning Zhang, Qianyu Zhou, Yining Li, Yunhai Tong, Kai Chen
Title: MotionBooth: Motion-Aware Customized Text-to-Video Generation
Abstract:
In this work, we present MotionBooth, an innovative framework designed for animating customized subjects with precise control over both object and camera movements. By leveraging a few images of a specific object, we efficiently fine-tune a text-to-video model to capture the object's shape and attributes accurately. Our approach presents subject region loss and video preservation loss to enhance the subject's learning performance, along with a subject token cross-attention loss to integrate the customized subject with motion control signals. Additionally, we propose training-free techniques for managing subject and camera motions during inference. In particular, we utilize cross-attention map manipulation to govern subject motion and introduce a novel latent shift module for camera movement control as well. MotionBooth excels in preserving the appearance of subjects while simultaneously controlling the motions in generated videos. Extensive quantitative and qualitative evaluations demonstrate the superiority and effectiveness of our method. Our project page is at https://jianzongwu.github.io/projects/motionbooth
Authors:Lianghan Zhu, Yanqi Bao, Jing Huo, Jing Wu, Yu-Kun Lai, Wenbin Li, Yang Gao
Title: Zero-Shot Video Editing through Adaptive Sliding Score Distillation
Abstract:
The rapidly evolving field of Text-to-Video generation (T2V) has catalyzed renewed interest in controllable video editing research. While the application of editing prompts to guide diffusion model denoising has gained prominence, mirroring advancements in image editing, this noise-based inference process inherently compromises the original video's integrity, resulting in unintended over-editing and temporal discontinuities. To address these challenges, this study proposes a novel paradigm of video-based score distillation, facilitating direct manipulation of original video content. Specifically, distinguishing it from image-based score distillation, we propose an Adaptive Sliding Score Distillation strategy, which incorporates both global and local video guidance to reduce the impact of editing errors. Combined with our proposed Image-based Joint Guidance mechanism, it has the ability to mitigate the inherent instability of the T2V model and single-step sampling. Additionally, we design a Weighted Attention Fusion module to further preserve the key features of the original video and avoid over-editing. Extensive experiments demonstrate that these strategies effectively address existing challenges, achieving superior performance compared to current state-of-the-art methods.
Authors:Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y. Feng, Changxi Zheng, Noah Snavely, Jiajun Wu, William T. Freeman
Title: PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation
Abstract:
Realistic object interactions are crucial for creating immersive virtual experiences, yet synthesizing realistic 3D object dynamics in response to novel interactions remains a significant challenge. Unlike unconditional or text-conditioned dynamics generation, action-conditioned dynamics requires perceiving the physical material properties of objects and grounding the 3D motion prediction on these properties, such as object stiffness. However, estimating physical material properties is an open problem due to the lack of material ground-truth data, as measuring these properties for real objects is highly difficult. We present PhysDreamer, a physics-based approach that endows static 3D objects with interactive dynamics by leveraging the object dynamics priors learned by video generation models. By distilling these priors, PhysDreamer enables the synthesis of realistic object responses to novel interactions, such as external forces or agent manipulations. We demonstrate our approach on diverse examples of elastic objects and evaluate the realism of the synthesized interactions through a user study. PhysDreamer takes a step towards more engaging and realistic virtual experiences by enabling static 3D objects to dynamically respond to interactive stimuli in a physically plausible manner. See our project page at https://physdreamer.github.io/.
Authors:Han Lin, Jaemin Cho, Abhay Zala, Mohit Bansal
Title: Ctrl-Adapter: An Efficient and Versatile Framework for Adapting Diverse Controls to Any Diffusion Model
Abstract:
ControlNets are widely used for adding spatial control to text-to-image diffusion models with different conditions, such as depth maps, scribbles/sketches, and human poses. However, when it comes to controllable video generation, ControlNets cannot be directly integrated into new backbones due to feature space mismatches, and training ControlNets for new backbones can be a significant burden for many users. Furthermore, applying ControlNets independently to different frames cannot effectively maintain object temporal consistency. To address these challenges, we introduce Ctrl-Adapter, an efficient and versatile framework that adds diverse controls to any image/video diffusion model through the adaptation of pretrained ControlNets. Ctrl-Adapter offers strong and diverse capabilities, including image and video control, sparse-frame video control, fine-grained patch-level multi-condition control (via an MoE router), zero-shot adaptation to unseen conditions, and supports a variety of downstream tasks beyond spatial control, including video editing, video style transfer, and text-guided motion control. With six diverse U-Net/DiT-based image/video diffusion models (SDXL, PixArt-$α$, I2VGen-XL, SVD, Latte, Hotshot-XL), Ctrl-Adapter matches the performance of pretrained ControlNets on COCO and achieves the state-of-the-art on DAVIS 2017 with significantly lower computation (< 10 GPU hours).
Authors:Sergio Calvo-Ordonez, Chun-Wun Cheng, Jiahao Huang, Lipei Zhang, Guang Yang, Carola-Bibiane Schonlieb, Angelica I Aviles-Rivero
Title: The Missing U for Efficient Diffusion Models
Abstract:
Diffusion Probabilistic Models stand as a critical tool in generative modelling, enabling the generation of complex data distributions. This family of generative models yields record-breaking performance in tasks such as image synthesis, video generation, and molecule design. Despite their capabilities, their efficiency, especially in the reverse process, remains a challenge due to slow convergence rates and high computational costs. In this paper, we introduce an approach that leverages continuous dynamical systems to design a novel denoising network for diffusion models that is more parameter-efficient, exhibits faster convergence, and demonstrates increased noise robustness. Experimenting with Denoising Diffusion Probabilistic Models (DDPMs), our framework operates with approximately a quarter of the parameters, and $\sim$ 30\% of the Floating Point Operations (FLOPs) compared to standard U-Nets in DDPMs. Furthermore, our model is notably faster in inference than the baseline when measured in fair and equal conditions. We also provide a mathematical intuition as to why our proposed reverse process is faster as well as a mathematical discussion of the empirical tradeoffs in the denoising downstream task. Finally, we argue that our method is compatible with existing performance enhancement techniques, enabling further improvements in efficiency, quality, and speed.
Authors:Han Lin, Abhay Zala, Jaemin Cho, Mohit Bansal
Title: VideoDirectorGPT: Consistent Multi-scene Video Generation via LLM-Guided Planning
Abstract:
Recent text-to-video (T2V) generation methods have seen significant advancements. However, the majority of these works focus on producing short video clips of a single event (i.e., single-scene videos). Meanwhile, recent large language models (LLMs) have demonstrated their capability in generating layouts and programs to control downstream visual modules. This prompts an important question: can we leverage the knowledge embedded in these LLMs for temporally consistent long video generation? In this paper, we propose VideoDirectorGPT, a novel framework for consistent multi-scene video generation that uses the knowledge of LLMs for video content planning and grounded video generation. Specifically, given a single text prompt, we first ask our video planner LLM (GPT-4) to expand it into a 'video plan', which includes the scene descriptions, the entities with their respective layouts, the background for each scene, and consistency groupings of the entities. Next, guided by this video plan, our video generator, named Layout2Vid, has explicit control over spatial layouts and can maintain temporal consistency of entities across multiple scenes, while being trained only with image-level annotations. Our experiments demonstrate that our proposed VideoDirectorGPT framework substantially improves layout and movement control in both single- and multi-scene video generation and can generate multi-scene videos with consistency, while achieving competitive performance with SOTAs in open-domain single-scene T2V generation. Detailed ablation studies, including dynamic adjustment of layout control strength with an LLM and video generation with user-provided images, confirm the effectiveness of each component of our framework and its future potential.
Authors:Enes Sanli, Baris Sarper Tezcan, Aykut Erdem, Erkut Erdem
Title: Can Your Model Separate Yolks with a Water Bottle? Benchmarking Physical Commonsense Understanding in Video Generation Models
Abstract:
Recent progress in text-to-video (T2V) generation has enabled the synthesis of visually compelling and temporally coherent videos from natural language. However, these models often fall short in basic physical commonsense, producing outputs that violate intuitive expectations around causality, object behavior, and tool use. Addressing this gap, we present PhysVidBench, a benchmark designed to evaluate the physical reasoning capabilities of T2V systems. The benchmark includes 383 carefully curated prompts, emphasizing tool use, material properties, and procedural interactions, and domains where physical plausibility is crucial. For each prompt, we generate videos using diverse state-of-the-art models and adopt a three-stage evaluation pipeline: (1) formulate grounded physics questions from the prompt, (2) caption the generated video with a vision-language model, and (3) task a language model to answer several physics-involved questions using only the caption. This indirect strategy circumvents common hallucination issues in direct video-based evaluation. By highlighting affordances and tool-mediated actions, areas overlooked in current T2V evaluations, PhysVidBench provides a structured, interpretable framework for assessing physical commonsense in generative video models.
Authors:Jiahui Zhang, Yuelei Li, Anpei Chen, Muyu Xu, Kunhao Liu, Jianyuan Wang, Xiao-Xiao Long, Hanxue Liang, Zexiang Xu, Hao Su, Christian Theobalt, Christian Rupprecht, Andrea Vedaldi, Hanspeter Pfister, Shijian Lu, Fangneng Zhan
Title: Advances in Feed-Forward 3D Reconstruction and View Synthesis: A Survey
Abstract:
3D reconstruction and view synthesis are foundational problems in computer vision, graphics, and immersive technologies such as augmented reality (AR), virtual reality (VR), and digital twins. Traditional methods rely on computationally intensive iterative optimization in a complex chain, limiting their applicability in real-world scenarios. Recent advances in feed-forward approaches, driven by deep learning, have revolutionized this field by enabling fast and generalizable 3D reconstruction and view synthesis. This survey offers a comprehensive review of feed-forward techniques for 3D reconstruction and view synthesis, with a taxonomy according to the underlying representation architectures including point cloud, 3D Gaussian Splatting (3DGS), Neural Radiance Fields (NeRF), etc. We examine key tasks such as pose-free reconstruction, dynamic 3D reconstruction, and 3D-aware image and video synthesis, highlighting their applications in digital humans, SLAM, robotics, and beyond. In addition, we review commonly used datasets with detailed statistics, along with evaluation protocols for various downstream tasks. We conclude by discussing open research challenges and promising directions for future work, emphasizing the potential of feed-forward approaches to advance the state of the art in 3D vision.
Authors:Yanchen Guan, Haicheng Liao, Chengyue Wang, Xingcheng Liu, Jiaxun Zhang, Zhenning Li
Title: World Model-Based End-to-End Scene Generation for Accident Anticipation in Autonomous Driving
Abstract:
Reliable anticipation of traffic accidents is essential for advancing autonomous driving systems. However, this objective is limited by two fundamental challenges: the scarcity of diverse, high-quality training data and the frequent absence of crucial object-level cues due to environmental disruptions or sensor deficiencies. To tackle these issues, we propose a comprehensive framework combining generative scene augmentation with adaptive temporal reasoning. Specifically, we develop a video generation pipeline that utilizes a world model guided by domain-informed prompts to create high-resolution, statistically consistent driving scenarios, particularly enriching the coverage of edge cases and complex interactions. In parallel, we construct a dynamic prediction model that encodes spatio-temporal relationships through strengthened graph convolutions and dilated temporal operators, effectively addressing data incompleteness and transient visual noise. Furthermore, we release a new benchmark dataset designed to better capture diverse real-world driving risks. Extensive experiments on public and newly released datasets confirm that our framework enhances both the accuracy and lead time of accident anticipation, offering a robust solution to current data and modeling limitations in safety-critical autonomous driving applications.
Authors:Shuolin Xu, Siming Zheng, Ziyi Wang, HC Yu, Jinwei Chen, Huaqi Zhang, Bo Li, Peng-Tao Jiang
Title: HyperMotion: DiT-Based Pose-Guided Human Image Animation of Complex Motions
Abstract:
Recent advances in diffusion models have significantly improved conditional video generation, particularly in the pose-guided human image animation task. Although existing methods are capable of generating high-fidelity and time-consistent animation sequences in regular motions and static scenes, there are still obvious limitations when facing complex human body motions (Hypermotion) that contain highly dynamic, non-standard motions, and the lack of a high-quality benchmark for evaluation of complex human motion animations. To address this challenge, we introduce the \textbf{Open-HyperMotionX Dataset} and \textbf{HyperMotionX Bench}, which provide high-quality human pose annotations and curated video clips for evaluating and improving pose-guided human image animation models under complex human motion conditions. Furthermore, we propose a simple yet powerful DiT-based video generation baseline and design spatial low-frequency enhanced RoPE, a novel module that selectively enhances low-frequency spatial feature modeling by introducing learnable frequency scaling. Our method significantly improves structural stability and appearance consistency in highly dynamic human motion sequences. Extensive experiments demonstrate the effectiveness of our dataset and proposed approach in advancing the generation quality of complex human motion image animations. Code and dataset will be made publicly available.
Authors:Yang Yang, Siming Zheng, Jinwei Chen, Boxi Wu, Xiaofei He, Deng Cai, Bo Li, Peng-Tao Jiang
Title: Any-to-Bokeh: One-Step Video Bokeh via Multi-Plane Image Guided Diffusion
Abstract:
Recent advances in diffusion based editing models have enabled realistic camera simulation and image-based bokeh, but video bokeh remains largely unexplored. Existing video editing models cannot explicitly control focus planes or adjust bokeh intensity, limiting their applicability for controllable optical effects. Moreover, naively extending image-based bokeh methods to video often results in temporal flickering and unsatisfactory edge blur transitions due to the lack of temporal modeling and generalization capability. To address these challenges, we propose a novel one-step video bokeh framework that converts arbitrary input videos into temporally coherent, depth-aware bokeh effects. Our method leverages a multi-plane image (MPI) representation constructed through a progressively widening depth sampling function, providing explicit geometric guidance for depth-dependent blur synthesis. By conditioning a single-step video diffusion model on MPI layers and utilizing the strong 3D priors from pre-trained models such as Stable Video Diffusion, our approach achieves realistic and consistent bokeh effects across diverse scenes. Additionally, we introduce a progressive training strategy to enhance temporal consistency, depth robustness, and detail preservation. Extensive experiments demonstrate that our method produces high-quality, controllable bokeh effects and achieves state-of-the-art performance on multiple evaluation benchmarks.
Authors:Lujian Yao, Siming Zheng, Xinbin Yuan, Zhuoxuan Cai, Pu Wu, Jinwei Chen, Bo Li, Peng-Tao Jiang
Title: Photography Perspective Composition: Towards Aesthetic Perspective Recommendation
Abstract:
Traditional photography composition approaches are dominated by 2D cropping-based methods. However, these methods fall short when scenes contain poorly arranged subjects. Professional photographers often employ perspective adjustment as a form of 3D recomposition, modifying the projected 2D relationships between subjects while maintaining their actual spatial positions to achieve better compositional balance. Inspired by this artistic practice, we propose photography perspective composition (PPC), extending beyond traditional cropping-based methods. However, implementing the PPC faces significant challenges: the scarcity of perspective transformation datasets and undefined assessment criteria for perspective quality. To address these challenges, we present three key contributions: (1) An automated framework for building PPC datasets through expert photographs. (2) A video generation approach that demonstrates the transformation process from suboptimal to optimal perspectives. (3) A perspective quality assessment (PQA) model constructed based on human performance. Our approach is concise and requires no additional prompt instructions or camera trajectories, helping and guiding ordinary users to enhance their composition skills.
Authors:Ziqi Ding, Qian Fu, Junchen Ding, Gelei Deng, Yi Liu, Yuekang Li
Title: A Rusty Link in the AI Supply Chain: Detecting Evil Configurations in Model Repositories
Abstract:
Recent advancements in large language models (LLMs) have spurred the development of diverse AI applications from code generation and video editing to text generation; however, AI supply chains such as Hugging Face, which host pretrained models and their associated configuration files contributed by the public, face significant security challenges; in particular, configuration files originally intended to set up models by specifying parameters and initial settings can be exploited to execute unauthorized code, yet research has largely overlooked their security compared to that of the models themselves; in this work, we present the first comprehensive study of malicious configurations on Hugging Face, identifying three attack scenarios (file, website, and repository operations) that expose inherent risks; to address these threats, we introduce CONFIGSCAN, an LLM-based tool that analyzes configuration files in the context of their associated runtime code and critical libraries, effectively detecting suspicious elements with low false positive rates and high accuracy; our extensive evaluation uncovers thousands of suspicious repositories and configuration files, underscoring the urgent need for enhanced security validation in AI model hosting platforms.
Authors:Zhi-Lin Huang, Yixuan Liu, Chujun Qin, Zhongdao Wang, Dong Zhou, Dong Li, Emad Barsoum
Title: Edit as You See: Image-guided Video Editing via Masked Motion Modeling
Abstract:
Recent advancements in diffusion models have significantly facilitated text-guided video editing. However, there is a relative scarcity of research on image-guided video editing, a method that empowers users to edit videos by merely indicating a target object in the initial frame and providing an RGB image as reference, without relying on the text prompts. In this paper, we propose a novel Image-guided Video Editing Diffusion model, termed IVEDiff for the image-guided video editing. IVEDiff is built on top of image editing models, and is equipped with learnable motion modules to maintain the temporal consistency of edited video. Inspired by self-supervised learning concepts, we introduce a masked motion modeling fine-tuning strategy that empowers the motion module's capabilities for capturing inter-frame motion dynamics, while preserving the capabilities for intra-frame semantic correlations modeling of the base image editing model. Moreover, an optical-flow-guided motion reference network is proposed to ensure the accurate propagation of information between edited video frames, alleviating the misleading effects of invalid information. We also construct a benchmark to facilitate further research. The comprehensive experiments demonstrate that our method is able to generate temporally smooth edited videos while robustly dealing with various editing objects with high quality.
Authors:Ruining Li, Chuanxia Zheng, Christian Rupprecht, Andrea Vedaldi
Title: Puppet-Master: Scaling Interactive Video Generation as a Motion Prior for Part-Level Dynamics
Abstract:
We introduce Puppet-Master, an interactive video generator that captures the internal, part-level motion of objects, serving as a proxy for modeling object dynamics universally. Given an image of an object and a set of "drags" specifying the trajectory of a few points on the object, the model synthesizes a video where the object's parts move accordingly. To build Puppet-Master, we extend a pre-trained image-to-video generator to encode the input drags. We also propose all-to-first attention, an alternative to conventional spatial attention that mitigates artifacts caused by fine-tuning a video generator on out-of-domain data. The model is fine-tuned on Objaverse-Animation-HQ, a new dataset of curated part-level motion clips obtained by rendering synthetic 3D animations. Unlike real videos, these synthetic clips avoid confounding part-level motion with overall object and camera motion. We extensively filter sub-optimal animations and augment the synthetic renderings with meaningful drags that emphasize the internal dynamics of objects. We demonstrate that Puppet-Master learns to generate part-level motions, unlike other motion-conditioned video generators that primarily move the object as a whole. Moreover, Puppet-Master generalizes well to out-of-domain real images, outperforming existing methods on real-world benchmarks in a zero-shot manner.
Authors:Zongyang Ma, Ziqi Zhang, Yuxin Chen, Zhongang Qi, Chunfeng Yuan, Bing Li, Yingmin Luo, Xu Li, Xiaojuan Qi, Ying Shan, Weiming Hu
Title: EA-VTR: Event-Aware Video-Text Retrieval
Abstract:
Understanding the content of events occurring in the video and their inherent temporal logic is crucial for video-text retrieval. However, web-crawled pre-training datasets often lack sufficient event information, and the widely adopted video-level cross-modal contrastive learning also struggles to capture detailed and complex video-text event alignment. To address these challenges, we make improvements from both data and model perspectives. In terms of pre-training data, we focus on supplementing the missing specific event content and event temporal transitions with the proposed event augmentation strategies. Based on the event-augmented data, we construct a novel Event-Aware Video-Text Retrieval model, ie, EA-VTR, which achieves powerful video-text retrieval ability through superior video event awareness. EA-VTR can efficiently encode frame-level and video-level visual representations simultaneously, enabling detailed event content and complex event temporal cross-modal alignment, ultimately enhancing the comprehensive understanding of video events. Our method not only significantly outperforms existing approaches on multiple datasets for Text-to-Video Retrieval and Video Action Recognition tasks, but also demonstrates superior event content perceive ability on Multi-event Video-Text Retrieval and Video Moment Retrieval tasks, as well as outstanding event temporal logic understanding ability on Test of Time task.
Authors:Yibo Miao, Yifan Zhu, Yinpeng Dong, Lijia Yu, Jun Zhu, Xiao-Shan Gao
Title: T2VSafetyBench: Evaluating the Safety of Text-to-Video Generative Models
Abstract:
The recent development of Sora leads to a new era in text-to-video (T2V) generation. Along with this comes the rising concern about its security risks. The generated videos may contain illegal or unethical content, and there is a lack of comprehensive quantitative understanding of their safety, posing a challenge to their reliability and practical deployment. Previous evaluations primarily focus on the quality of video generation. While some evaluations of text-to-image models have considered safety, they cover fewer aspects and do not address the unique temporal risk inherent in video generation. To bridge this research gap, we introduce T2VSafetyBench, a new benchmark designed for conducting safety-critical assessments of text-to-video models. We define 12 critical aspects of video generation safety and construct a malicious prompt dataset including real-world prompts, LLM-generated prompts and jailbreak attack-based prompts. Based on our evaluation results, we draw several important findings, including: 1) no single model excels in all aspects, with different models showing various strengths; 2) the correlation between GPT-4 assessments and manual reviews is generally high; 3) there is a trade-off between the usability and safety of text-to-video generative models. This indicates that as the field of video generation rapidly advances, safety risks are set to surge, highlighting the urgency of prioritizing video safety. We hope that T2VSafetyBench can provide insights for better understanding the safety of video generation in the era of generative AI.
Authors:Luxi He, Yangsibo Huang, Weijia Shi, Tinghao Xie, Haotian Liu, Yue Wang, Luke Zettlemoyer, Chiyuan Zhang, Danqi Chen, Peter Henderson
Title: Fantastic Copyrighted Beasts and How (Not) to Generate Them
Abstract:
Recent studies show that image and video generation models can be prompted to reproduce copyrighted content from their training data, raising serious legal concerns about copyright infringement. Copyrighted characters (e.g., Mario, Batman) present a significant challenge: at least one lawsuit has already awarded damages based on the generation of such characters. Consequently, commercial services like DALL-E have started deploying interventions. However, little research has systematically examined these problems: (1) Can users easily prompt models to generate copyrighted characters, even if it is unintentional?; (2) How effective are the existing mitigation strategies? To address these questions, we introduce a novel evaluation framework with metrics that assess both the generated image's similarity to copyrighted characters and its consistency with user intent, grounded in a set of popular copyrighted characters from diverse studios and regions. We show that state-of-the-art image and video generation models can still generate characters even if characters' names are not explicitly mentioned, sometimes with only two generic keywords (e.g., prompting with "videogame, plumber" consistently generates Nintendo's Mario character). We also introduce semi-automatic techniques to identify such keywords or descriptions that trigger character generation. Using this framework, we evaluate mitigation strategies, including prompt rewriting and new approaches we propose. Our findings reveal that common methods, such as DALL-E's prompt rewriting, are insufficient alone and require supplementary strategies like negative prompting. Our work provides empirical grounding for discussions on copyright mitigation strategies and offers actionable insights for model deployers implementing these safeguards.
Authors:Jing Gu, Yuwei Fang, Ivan Skorokhodov, Peter Wonka, Xinya Du, Sergey Tulyakov, Xin Eric Wang
Title: VIA: Unified Spatiotemporal Video Adaptation Framework for Global and Local Video Editing
Abstract:
Video editing serves as a fundamental pillar of digital media, spanning applications in entertainment, education, and professional communication. However, previous methods often overlook the necessity of comprehensively understanding both global and local contexts, leading to inaccurate and inconsistent edits in the spatiotemporal dimension, especially for long videos. In this paper, we introduce VIA, a unified spatiotemporal Video Adaptation framework for global and local video editing, pushing the limits of consistently editing minute-long videos. First, to ensure local consistency within individual frames, we designed test-time editing adaptation to adapt a pre-trained image editing model for improving consistency between potential editing directions and the text instruction, and adapts masked latent variables for precise local control. Furthermore, to maintain global consistency over the video sequence, we introduce spatiotemporal adaptation that recursively gather consistent attention variables in key frames and strategically applies them across the whole sequence to realize the editing effects. Extensive experiments demonstrate that, compared to baseline methods, our VIA approach produces edits that are more faithful to the source videos, more coherent in the spatiotemporal context, and more precise in local control. More importantly, we show that VIA can achieve consistent long video editing in minutes, unlocking the potential for advanced video editing tasks over long video sequences.
Authors:Sherwin Bahmani, Xian Liu, Wang Yifan, Ivan Skorokhodov, Victor Rong, Ziwei Liu, Xihui Liu, Jeong Joon Park, Sergey Tulyakov, Gordon Wetzstein, Andrea Tagliasacchi, David B. Lindell
Title: TC4D: Trajectory-Conditioned Text-to-4D Generation
Abstract:
Recent techniques for text-to-4D generation synthesize dynamic 3D scenes using supervision from pre-trained text-to-video models. However, existing representations for motion, such as deformation models or time-dependent neural representations, are limited in the amount of motion they can generate-they cannot synthesize motion extending far beyond the bounding box used for volume rendering. The lack of a more flexible motion model contributes to the gap in realism between 4D generation methods and recent, near-photorealistic video generation models. Here, we propose TC4D: trajectory-conditioned text-to-4D generation, which factors motion into global and local components. We represent the global motion of a scene's bounding box using rigid transformation along a trajectory parameterized by a spline. We learn local deformations that conform to the global trajectory using supervision from a text-to-video model. Our approach enables the synthesis of scenes animated along arbitrary trajectories, compositional scene generation, and significant improvements to the realism and amount of generated motion, which we evaluate qualitatively and through a user study. Video results can be viewed on our website: https://sherwinbahmani.github.io/tc4d.
Authors:Sherwin Bahmani, Ivan Skorokhodov, Victor Rong, Gordon Wetzstein, Leonidas Guibas, Peter Wonka, Sergey Tulyakov, Jeong Joon Park, Andrea Tagliasacchi, David B. Lindell
Title: 4D-fy: Text-to-4D Generation Using Hybrid Score Distillation Sampling
Abstract:
Recent breakthroughs in text-to-4D generation rely on pre-trained text-to-image and text-to-video models to generate dynamic 3D scenes. However, current text-to-4D methods face a three-way tradeoff between the quality of scene appearance, 3D structure, and motion. For example, text-to-image models and their 3D-aware variants are trained on internet-scale image datasets and can be used to produce scenes with realistic appearance and 3D structure -- but no motion. Text-to-video models are trained on relatively smaller video datasets and can produce scenes with motion, but poorer appearance and 3D structure. While these models have complementary strengths, they also have opposing weaknesses, making it difficult to combine them in a way that alleviates this three-way tradeoff. Here, we introduce hybrid score distillation sampling, an alternating optimization procedure that blends supervision signals from multiple pre-trained diffusion models and incorporates benefits of each for high-fidelity text-to-4D generation. Using hybrid SDS, we demonstrate synthesis of 4D scenes with compelling appearance, 3D structure, and motion.
Authors:Jia-Wei Liu, Yan-Pei Cao, Jay Zhangjie Wu, Weijia Mao, Yuchao Gu, Rui Zhao, Jussi Keppo, Ying Shan, Mike Zheng Shou
Title: DynVideo-E: Harnessing Dynamic NeRF for Large-Scale Motion- and View-Change Human-Centric Video Editing
Abstract:
Despite recent progress in diffusion-based video editing, existing methods are limited to short-length videos due to the contradiction between long-range consistency and frame-wise editing. Prior attempts to address this challenge by introducing video-2D representations encounter significant difficulties with large-scale motion- and view-change videos, especially in human-centric scenarios. To overcome this, we propose to introduce the dynamic Neural Radiance Fields (NeRF) as the innovative video representation, where the editing can be performed in the 3D spaces and propagated to the entire video via the deformation field. To provide consistent and controllable editing, we propose the image-based video-NeRF editing pipeline with a set of innovative designs, including multi-view multi-pose Score Distillation Sampling (SDS) from both the 2D personalized diffusion prior and 3D diffusion prior, reconstruction losses, text-guided local parts super-resolution, and style transfer. Extensive experiments demonstrate that our method, dubbed as DynVideo-E, significantly outperforms SOTA approaches on two challenging datasets by a large margin of 50% ~ 95% for human preference. Code will be released at https://showlab.github.io/DynVideo-E/.
Authors:Moayed Haji Ali, Andrew Bond, Tolga Birdal, Duygu Ceylan, Levent Karacan, Erkut Erdem, Aykut Erdem
Title: VidStyleODE: Disentangled Video Editing via StyleGAN and NeuralODEs
Abstract:
We propose $\textbf{VidStyleODE}$, a spatiotemporally continuous disentangled $\textbf{Vid}$eo representation based upon $\textbf{Style}$GAN and Neural-$\textbf{ODE}$s. Effective traversal of the latent space learned by Generative Adversarial Networks (GANs) has been the basis for recent breakthroughs in image editing. However, the applicability of such advancements to the video domain has been hindered by the difficulty of representing and controlling videos in the latent space of GANs. In particular, videos are composed of content (i.e., appearance) and complex motion components that require a special mechanism to disentangle and control. To achieve this, VidStyleODE encodes the video content in a pre-trained StyleGAN $\mathcal{W}_+$ space and benefits from a latent ODE component to summarize the spatiotemporal dynamics of the input video. Our novel continuous video generation process then combines the two to generate high-quality and temporally consistent videos with varying frame rates. We show that our proposed method enables a variety of applications on real videos: text-guided appearance manipulation, motion manipulation, image animation, and video interpolation and extrapolation. Project website: https://cyberiada.github.io/VidStyleODE
Authors:Artem Lykov, Jeffrin Sam, Hung Khang Nguyen, Vladislav Kozlovskiy, Yara Mahmoud, Valerii Serpiva, Miguel Altamirano Cabrera, Mikhail Konenkov, Dzmitry Tsetserukou
Title: PhysicalAgent: Towards General Cognitive Robotics with Foundation World Models
Abstract:
We introduce PhysicalAgent, an agentic framework for robotic manipulation that integrates iterative reasoning, diffusion-based video generation, and closed-loop execution. Given a textual instruction, our method generates short video demonstrations of candidate trajectories, executes them on the robot, and iteratively re-plans in response to failures. This approach enables robust recovery from execution errors. We evaluate PhysicalAgent across multiple perceptual modalities (egocentric, third-person, and simulated) and robotic embodiments (bimanual UR3, Unitree G1 humanoid, simulated GR1), comparing against state-of-the-art task-specific baselines. Experiments demonstrate that our method consistently outperforms prior approaches, achieving up to 83% success on human-familiar tasks. Physical trials reveal that first-attempt success is limited (20-30%), yet iterative correction increases overall success to 80% across platforms. These results highlight the potential of video-based generative reasoning for general-purpose robotic manipulation and underscore the importance of iterative execution for recovering from initial failures. Our framework paves the way for scalable, adaptable, and robust robot control.
Authors:Jiahao Luo, Chaoyang Wang, Michael Vasilkovsky, Vladislav Shakhrai, Di Liu, Peiye Zhuang, Sergey Tulyakov, Peter Wonka, Hsin-Ying Lee, James Davis, Jian Wang
Title: T2Bs: Text-to-Character Blendshapes via Video Generation
Abstract:
We present T2Bs, a framework for generating high-quality, animatable character head morphable models from text by combining static text-to-3D generation with video diffusion. Text-to-3D models produce detailed static geometry but lack motion synthesis, while video diffusion models generate motion with temporal and multi-view geometric inconsistencies. T2Bs bridges this gap by leveraging deformable 3D Gaussian splatting to align static 3D assets with video outputs. By constraining motion with static geometry and employing a view-dependent deformation MLP, T2Bs (i) outperforms existing 4D generation methods in accuracy and expressiveness while reducing video artifacts and view inconsistencies, and (ii) reconstructs smooth, coherent, fully registered 3D geometries designed to scale for building morphable models with diverse, realistic facial motions. This enables synthesizing expressive, animatable character heads that surpass current 4D generation techniques.
Authors:Lingling Cai, Kang Zhao, Hangjie Yuan, Xiang Wang, Yingya Zhang, Kejie Huang
Title: DFVEdit: Conditional Delta Flow Vector for Zero-shot Video Editing
Abstract:
The advent of Video Diffusion Transformers (Video DiTs) marks a milestone in video generation. However, directly applying existing video editing methods to Video DiTs often incurs substantial computational overhead, due to resource-intensive attention modification or finetuning. To alleviate this problem, we present DFVEdit, an efficient zero-shot video editing method tailored for Video DiTs. DFVEdit eliminates the need for both attention modification and fine-tuning by directly operating on clean latents via flow transformation. To be more specific, we observe that editing and sampling can be unified under the continuous flow perspective. Building upon this foundation, we propose the Conditional Delta Flow Vector (CDFV) -- a theoretically unbiased estimation of DFV -- and integrate Implicit Cross Attention (ICA) guidance as well as Embedding Reinforcement (ER) to further enhance editing quality. DFVEdit excels in practical efficiency, offering at least 20x inference speed-up and 85% memory reduction on Video DiTs compared to attention-engineering-based editing methods. Extensive quantitative and qualitative experiments demonstrate that DFVEdit can be seamlessly applied to popular Video DiTs (e.g., CogVideoX and Wan2.1), attaining state-of-the-art performance on structural fidelity, spatial-temporal consistency, and editing quality.
Authors:Liangbin Xie, Yu Li, Shian Du, Menghan Xia, Xintao Wang, Fanghua Yu, Ziyan Chen, Pengfei Wan, Jiantao Zhou, Chao Dong
Title: SimpleGVR: A Simple Baseline for Latent-Cascaded Video Super-Resolution
Abstract:
Latent diffusion models have emerged as a leading paradigm for efficient video generation. However, as user expectations shift toward higher-resolution outputs, relying solely on latent computation becomes inadequate. A promising approach involves decoupling the process into two stages: semantic content generation and detail synthesis. The former employs a computationally intensive base model at lower resolutions, while the latter leverages a lightweight cascaded video super-resolution (VSR) model to achieve high-resolution output. In this work, we focus on studying key design principles for latter cascaded VSR models, which are underexplored currently. First, we propose two degradation strategies to generate training pairs that better mimic the output characteristics of the base model, ensuring alignment between the VSR model and its upstream generator. Second, we provide critical insights into VSR model behavior through systematic analysis of (1) timestep sampling strategies, (2) noise augmentation effects on low-resolution (LR) inputs. These findings directly inform our architectural and training innovations. Finally, we introduce interleaving temporal unit and sparse local attention to achieve efficient training and inference, drastically reducing computational overhead. Extensive experiments demonstrate the superiority of our framework over existing methods, with ablation studies confirming the efficacy of each design choice. Our work establishes a simple yet effective baseline for cascaded video super-resolution generation, offering practical insights to guide future advancements in efficient cascaded synthesis systems.
Authors:Weiming Zhi, Ziyong Ma, Tianyi Zhang, Matthew Johnson-Roberson
Title: From Single Images to Motion Policies via Video-Generation Environment Representations
Abstract:
Autonomous robots typically need to construct representations of their surroundings and adapt their motions to the geometry of their environment. Here, we tackle the problem of constructing a policy model for collision-free motion generation, consistent with the environment, from a single input RGB image. Extracting 3D structures from a single image often involves monocular depth estimation. Developments in depth estimation have given rise to large pre-trained models such as DepthAnything. However, using outputs of these models for downstream motion generation is challenging due to frustum-shaped errors that arise. Instead, we propose a framework known as Video-Generation Environment Representation (VGER), which leverages the advances of large-scale video generation models to generate a moving camera video conditioned on the input image. Frames of this video, which form a multiview dataset, are then input into a pre-trained 3D foundation model to produce a dense point cloud. We then introduce a multi-scale noise approach to train an implicit representation of the environment structure and build a motion generation model that complies with the geometry of the representation. We extensively evaluate VGER over a diverse set of indoor and outdoor environments. We demonstrate its ability to produce smooth motions that account for the captured geometry of a scene, all from a single RGB input image.
Authors:Zhenzhi Wang, Yixuan Li, Yanhong Zeng, Yuwei Guo, Dahua Lin, Tianfan Xue, Bo Dai
Title: Multi-identity Human Image Animation with Structural Video Diffusion
Abstract:
Generating human videos from a single image while ensuring high visual quality and precise control is a challenging task, especially in complex scenarios involving multiple individuals and interactions with objects. Existing methods, while effective for single-human cases, often fail to handle the intricacies of multi-identity interactions because they struggle to associate the correct pairs of human appearance and pose condition and model the distribution of 3D-aware dynamics. To address these limitations, we present Structural Video Diffusion, a novel framework designed for generating realistic multi-human videos. Our approach introduces two core innovations: identity-specific embeddings to maintain consistent appearances across individuals and a structural learning mechanism that incorporates depth and surface-normal cues to model human-object interactions. Additionally, we expand existing human video dataset with 25K new videos featuring diverse multi-human and object interaction scenarios, providing a robust foundation for training. Experimental results demonstrate that Structural Video Diffusion achieves superior performance in generating lifelike, coherent videos for multiple subjects with dynamic and rich interactions, advancing the state of human-centric video generation.
Authors:Luca Zanella, Massimiliano Mancini, Willi Menapace, Sergey Tulyakov, Yiming Wang, Elisa Ricci
Title: Can Text-to-Video Generation help Video-Language Alignment?
Abstract:
Recent video-language alignment models are trained on sets of videos, each with an associated positive caption and a negative caption generated by large language models. A problem with this procedure is that negative captions may introduce linguistic biases, i.e., concepts are seen only as negatives and never associated with a video. While a solution would be to collect videos for the negative captions, existing databases lack the fine-grained variations needed to cover all possible negatives. In this work, we study whether synthetic videos can help to overcome this issue. Our preliminary analysis with multiple generators shows that, while promising on some tasks, synthetic videos harm the performance of the model on others. We hypothesize this issue is linked to noise (semantic and visual) in the generated videos and develop a method, SynViTA, that accounts for those. SynViTA dynamically weights the contribution of each synthetic video based on how similar its target caption is w.r.t. the real counterpart. Moreover, a semantic consistency loss makes the model focus on fine-grained differences across captions, rather than differences in video appearance. Experiments show that, on average, SynViTA improves over existing methods on VideoCon test sets and SSv2-Temporal, SSv2-Events, and ATP-Hard benchmarks, being a first promising step for using synthetic videos when learning video-language models.
Authors:Bin Xie, Yingfei Liu, Tiancai Wang, Jiale Cao, Xiangyu Zhang
Title: Glad: A Streaming Scene Generator for Autonomous Driving
Abstract:
The generation and simulation of diverse real-world scenes have significant application value in the field of autonomous driving, especially for the corner cases. Recently, researchers have explored employing neural radiance fields or diffusion models to generate novel views or synthetic data under driving scenes. However, these approaches suffer from unseen scenes or restricted video length, thus lacking sufficient adaptability for data generation and simulation. To address these issues, we propose a simple yet effective framework, named Glad, to generate video data in a frame-by-frame style. To ensure the temporal consistency of synthetic video, we introduce a latent variable propagation module, which views the latent features of previous frame as noise prior and injects it into the latent features of current frame. In addition, we design a streaming data sampler to orderly sample the original image in a video clip at continuous iterations. Given the reference frame, our Glad can be viewed as a streaming simulator by generating the videos for specific scenes. Extensive experiments are performed on the widely-used nuScenes dataset. Experimental results demonstrate that our proposed Glad achieves promising performance, serving as a strong baseline for online video generation. We will release the source code and models publicly.
Authors:Yunlong Yuan, Yuanfan Guo, Chunwei Wang, Wei Zhang, Hang Xu, Li Zhang
Title: FreqPrior: Improving Video Diffusion Models with Frequency Filtering Gaussian Noise
Abstract:
Text-driven video generation has advanced significantly due to developments in diffusion models. Beyond the training and sampling phases, recent studies have investigated noise priors of diffusion models, as improved noise priors yield better generation results. One recent approach employs the Fourier transform to manipulate noise, marking the initial exploration of frequency operations in this context. However, it often generates videos that lack motion dynamics and imaging details. In this work, we provide a comprehensive theoretical analysis of the variance decay issue present in existing methods, contributing to the loss of details and motion dynamics. Recognizing the critical impact of noise distribution on generation quality, we introduce FreqPrior, a novel noise initialization strategy that refines noise in the frequency domain. Our method features a novel filtering technique designed to address different frequency signals while maintaining the noise prior distribution that closely approximates a standard Gaussian distribution. Additionally, we propose a partial sampling process by perturbing the latent at an intermediate timestep during finding the noise prior, significantly reducing inference time without compromising quality. Extensive experiments on VBench demonstrate that our method achieves the highest scores in both quality and semantic assessments, resulting in the best overall total score. These results highlight the superiority of our proposed noise prior.
Authors:Rui Xie, Yinhong Liu, Penghao Zhou, Chen Zhao, Jun Zhou, Kai Zhang, Zhenyu Zhang, Jian Yang, Zhenheng Yang, Ying Tai
Title: STAR: Spatial-Temporal Augmentation with Text-to-Video Models for Real-World Video Super-Resolution
Abstract:
Image diffusion models have been adapted for real-world video super-resolution to tackle over-smoothing issues in GAN-based methods. However, these models struggle to maintain temporal consistency, as they are trained on static images, limiting their ability to capture temporal dynamics effectively. Integrating text-to-video (T2V) models into video super-resolution for improved temporal modeling is straightforward. However, two key challenges remain: artifacts introduced by complex degradations in real-world scenarios, and compromised fidelity due to the strong generative capacity of powerful T2V models (\textit{e.g.}, CogVideoX-5B). To enhance the spatio-temporal quality of restored videos, we introduce\textbf{~\name} (\textbf{S}patial-\textbf{T}emporal \textbf{A}ugmentation with T2V models for \textbf{R}eal-world video super-resolution), a novel approach that leverages T2V models for real-world video super-resolution, achieving realistic spatial details and robust temporal consistency. Specifically, we introduce a Local Information Enhancement Module (LIEM) before the global attention block to enrich local details and mitigate degradation artifacts. Moreover, we propose a Dynamic Frequency (DF) Loss to reinforce fidelity, guiding the model to focus on different frequency components across diffusion steps. Extensive experiments demonstrate\textbf{~\name}~outperforms state-of-the-art methods on both synthetic and real-world datasets.
Authors:Lingteng Qiu, Shenhao Zhu, Qi Zuo, Xiaodong Gu, Yuan Dong, Junfei Zhang, Chao Xu, Zhe Li, Weihao Yuan, Liefeng Bo, Guanying Chen, Zilong Dong
Title: AniGS: Animatable Gaussian Avatar from a Single Image with Inconsistent Gaussian Reconstruction
Abstract:
Generating animatable human avatars from a single image is essential for various digital human modeling applications. Existing 3D reconstruction methods often struggle to capture fine details in animatable models, while generative approaches for controllable animation, though avoiding explicit 3D modeling, suffer from viewpoint inconsistencies in extreme poses and computational inefficiencies. In this paper, we address these challenges by leveraging the power of generative models to produce detailed multi-view canonical pose images, which help resolve ambiguities in animatable human reconstruction. We then propose a robust method for 3D reconstruction of inconsistent images, enabling real-time rendering during inference. Specifically, we adapt a transformer-based video generation model to generate multi-view canonical pose images and normal maps, pretraining on a large-scale video dataset to improve generalization. To handle view inconsistencies, we recast the reconstruction problem as a 4D task and introduce an efficient 3D modeling approach using 4D Gaussian Splatting. Experiments demonstrate that our method achieves photorealistic, real-time animation of 3D human avatars from in-the-wild images, showcasing its effectiveness and generalization capability.
Authors:Dejia Xu, Yifan Jiang, Chen Huang, Liangchen Song, Thorsten Gernoth, Liangliang Cao, Zhangyang Wang, Hao Tang
Title: Cavia: Camera-controllable Multi-view Video Diffusion with View-Integrated Attention
Abstract:
In recent years there have been remarkable breakthroughs in image-to-video generation. However, the 3D consistency and camera controllability of generated frames have remained unsolved. Recent studies have attempted to incorporate camera control into the generation process, but their results are often limited to simple trajectories or lack the ability to generate consistent videos from multiple distinct camera paths for the same scene. To address these limitations, we introduce Cavia, a novel framework for camera-controllable, multi-view video generation, capable of converting an input image into multiple spatiotemporally consistent videos. Our framework extends the spatial and temporal attention modules into view-integrated attention modules, improving both viewpoint and temporal consistency. This flexible design allows for joint training with diverse curated data sources, including scene-level static videos, object-level synthetic multi-view dynamic videos, and real-world monocular dynamic videos. To our best knowledge, Cavia is the first of its kind that allows the user to precisely specify camera motion while obtaining object motion. Extensive experiments demonstrate that Cavia surpasses state-of-the-art methods in terms of geometric consistency and perceptual quality. Project Page: https://ir1d.github.io/Cavia/
Authors:Yuqing Wen, Yucheng Zhao, Yingfei Liu, Binyuan Huang, Fan Jia, Yanhui Wang, Chi Zhang, Tiancai Wang, Xiaoyan Sun, Xiangyu Zhang
Title: Panacea+: Panoramic and Controllable Video Generation for Autonomous Driving
Abstract:
The field of autonomous driving increasingly demands high-quality annotated video training data. In this paper, we propose Panacea+, a powerful and universally applicable framework for generating video data in driving scenes. Built upon the foundation of our previous work, Panacea, Panacea+ adopts a multi-view appearance noise prior mechanism and a super-resolution module for enhanced consistency and increased resolution. Extensive experiments show that the generated video samples from Panacea+ greatly benefit a wide range of tasks on different datasets, including 3D object tracking, 3D object detection, and lane detection tasks on the nuScenes and Argoverse 2 dataset. These results strongly prove Panacea+ to be a valuable data generation framework for autonomous driving.
Authors:Dejia Xu, Weili Nie, Chao Liu, Sifei Liu, Jan Kautz, Zhangyang Wang, Arash Vahdat
Title: CamCo: Camera-Controllable 3D-Consistent Image-to-Video Generation
Abstract:
Recently video diffusion models have emerged as expressive generative tools for high-quality video content creation readily available to general users. However, these models often do not offer precise control over camera poses for video generation, limiting the expression of cinematic language and user control. To address this issue, we introduce CamCo, which allows fine-grained Camera pose Control for image-to-video generation. We equip a pre-trained image-to-video generator with accurately parameterized camera pose input using Plücker coordinates. To enhance 3D consistency in the videos produced, we integrate an epipolar attention module in each attention block that enforces epipolar constraints to the feature maps. Additionally, we fine-tune CamCo on real-world videos with camera poses estimated through structure-from-motion algorithms to better synthesize object motion. Our experiments show that CamCo significantly improves 3D consistency and camera control capabilities compared to previous models while effectively generating plausible object motion. Project page: https://ir1d.github.io/CamCo/
Authors:Dejia Xu, Hanwen Liang, Neel P. Bhatt, Hezhen Hu, Hanxue Liang, Konstantinos N. Plataniotis, Zhangyang Wang
Title: Comp4D: LLM-Guided Compositional 4D Scene Generation
Abstract:
Recent advancements in diffusion models for 2D and 3D content creation have sparked a surge of interest in generating 4D content. However, the scarcity of 3D scene datasets constrains current methodologies to primarily object-centric generation. To overcome this limitation, we present Comp4D, a novel framework for Compositional 4D Generation. Unlike conventional methods that generate a singular 4D representation of the entire scene, Comp4D innovatively constructs each 4D object within the scene separately. Utilizing Large Language Models (LLMs), the framework begins by decomposing an input text prompt into distinct entities and maps out their trajectories. It then constructs the compositional 4D scene by accurately positioning these objects along their designated paths. To refine the scene, our method employs a compositional score distillation technique guided by the pre-defined trajectories, utilizing pre-trained diffusion models across text-to-image, text-to-video, and text-to-3D domains. Extensive experiments demonstrate our outstanding 4D content creation capability compared to prior arts, showcasing superior visual quality, motion fidelity, and enhanced object interactions.
Authors:Elia Peruzzo, Vidit Goel, Dejia Xu, Xingqian Xu, Yifan Jiang, Zhangyang Wang, Humphrey Shi, Nicu Sebe
Title: VASE: Object-Centric Appearance and Shape Manipulation of Real Videos
Abstract:
Recently, several works tackled the video editing task fostered by the success of large-scale text-to-image generative models. However, most of these methods holistically edit the frame using the text, exploiting the prior given by foundation diffusion models and focusing on improving the temporal consistency across frames. In this work, we introduce a framework that is object-centric and is designed to control both the object's appearance and, notably, to execute precise and explicit structural modifications on the object. We build our framework on a pre-trained image-conditioned diffusion model, integrate layers to handle the temporal dimension, and propose training strategies and architectural modifications to enable shape control. We evaluate our method on the image-driven video editing task showing similar performance to the state-of-the-art, and showcasing novel shape-editing capabilities. Further details, code and examples are available on our project page: https://helia95.github.io/vase-website/
Authors:Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, Bo Dai
Title: SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models
Abstract:
The development of text-to-video (T2V), i.e., generating videos with a given text prompt, has been significantly advanced in recent years. However, relying solely on text prompts often results in ambiguous frame composition due to spatial uncertainty. The research community thus leverages the dense structure signals, e.g., per-frame depth/edge sequences, to enhance controllability, whose collection accordingly increases the burden of inference. In this work, we present SparseCtrl to enable flexible structure control with temporally sparse signals, requiring only one or a few inputs, as shown in Figure 1. It incorporates an additional condition encoder to process these sparse signals while leaving the pre-trained T2V model untouched. The proposed approach is compatible with various modalities, including sketches, depth maps, and RGB images, providing more practical control for video generation and promoting applications such as storyboarding, depth rendering, keyframe animation, and interpolation. Extensive experiments demonstrate the generalization of SparseCtrl on both original and personalized T2V generators. Codes and models will be publicly available at https://guoyww.github.io/projects/SparseCtrl .
Authors:Yuqing Wen, Yucheng Zhao, Yingfei Liu, Fan Jia, Yanhui Wang, Chong Luo, Chi Zhang, Tiancai Wang, Xiaoyan Sun, Xiangyu Zhang
Title: Panacea: Panoramic and Controllable Video Generation for Autonomous Driving
Abstract:
The field of autonomous driving increasingly demands high-quality annotated training data. In this paper, we propose Panacea, an innovative approach to generate panoramic and controllable videos in driving scenarios, capable of yielding an unlimited numbers of diverse, annotated samples pivotal for autonomous driving advancements. Panacea addresses two critical challenges: 'Consistency' and 'Controllability.' Consistency ensures temporal and cross-view coherence, while Controllability ensures the alignment of generated content with corresponding annotations. Our approach integrates a novel 4D attention and a two-stage generation pipeline to maintain coherence, supplemented by the ControlNet framework for meticulous control by the Bird's-Eye-View (BEV) layouts. Extensive qualitative and quantitative evaluations of Panacea on the nuScenes dataset prove its effectiveness in generating high-quality multi-view driving-scene videos. This work notably propels the field of autonomous driving by effectively augmenting the training dataset used for advanced BEV perception techniques.
Authors:Cheng Zou, Senlin Cheng, Bolei Xu, Dandan Zheng, Xiaobo Li, Jingdong Chen, Ming Yang
Title: Video Virtual Try-on with Conditional Diffusion Transformer Inpainter
Abstract:
Video virtual try-on aims to naturally fit a garment to a target person in consecutive video frames. It is a challenging task, on the one hand, the output video should be in good spatial-temporal consistency, on the other hand, the details of the given garment need to be preserved well in all the frames. Naively using image-based try-on methods frame by frame can get poor results due to severe inconsistency. Recent diffusion-based video try-on methods, though very few, happen to coincide with a similar solution: inserting temporal attention into image-based try-on model to adapt it for video try-on task, which have shown improvements but there still exist inconsistency problems. In this paper, we propose ViTI (Video Try-on Inpainter), formulate and implement video virtual try-on as a conditional video inpainting task, which is different from previous methods. In this way, we start with a video generation problem instead of an image-based try-on problem, which from the beginning has a better spatial-temporal consistency. Specifically, at first we build a video inpainting framework based on Diffusion Transformer with full 3D spatial-temporal attention, and then we progressively adapt it for video garment inpainting, with a collection of masking strategies and multi-stage training. After these steps, the model can inpaint the masked garment area with appropriate garment pixels according to the prompt with good spatial-temporal consistency. Finally, as other try-on methods, garment condition is added to the model to make sure the inpainted garment appearance and details are as expected. Both quantitative and qualitative experimental results show that ViTI is superior to previous works.
Authors:Sucheng Ren, Qihang Yu, Ju He, Alan Yuille, Liang-Chieh Chen
Title: Grouping First, Attending Smartly: Training-Free Acceleration for Diffusion Transformers
Abstract:
Diffusion-based Transformers have demonstrated impressive generative capabilities, but their high computational costs hinder practical deployment, for example, generating an $8192\times 8192$ image can take over an hour on an A100 GPU. In this work, we propose GRAT (\textbf{GR}ouping first, \textbf{AT}tending smartly), a training-free attention acceleration strategy for fast image and video generation without compromising output quality. The key insight is to exploit the inherent sparsity in learned attention maps (which tend to be locally focused) in pretrained Diffusion Transformers and leverage better GPU parallelism. Specifically, GRAT first partitions contiguous tokens into non-overlapping groups, aligning both with GPU execution patterns and the local attention structures learned in pretrained generative Transformers. It then accelerates attention by having all query tokens within the same group share a common set of attendable key and value tokens. These key and value tokens are further restricted to structured regions, such as surrounding blocks or criss-cross regions, significantly reducing computational overhead (e.g., attaining a \textbf{35.8$\times$} speedup over full attention when generating $8192\times 8192$ images) while preserving essential attention patterns and long-range context. We validate GRAT on pretrained Flux and HunyuanVideo for image and video generation, respectively. In both cases, GRAT achieves substantially faster inference without any fine-tuning, while maintaining the performance of full attention. We hope GRAT will inspire future research on accelerating Diffusion Transformers for scalable visual generation.
Authors:Tianxiong Zhong, Xingye Tian, Boyuan Jiang, Xuebo Wang, Xin Tao, Pengfei Wan, Zhiwei Zhang
Title: VFRTok: Variable Frame Rates Video Tokenizer with Duration-Proportional Information Assumption
Abstract:
Modern video generation frameworks based on Latent Diffusion Models suffer from inefficiencies in tokenization due to the Frame-Proportional Information Assumption. Existing tokenizers provide fixed temporal compression rates, causing the computational cost of the diffusion model to scale linearly with the frame rate. The paper proposes the Duration-Proportional Information Assumption: the upper bound on the information capacity of a video is proportional to the duration rather than the number of frames. Based on this insight, the paper introduces VFRTok, a Transformer-based video tokenizer, that enables variable frame rate encoding and decoding through asymmetric frame rate training between the encoder and decoder. Furthermore, the paper proposes Partial Rotary Position Embeddings (RoPE) to decouple position and content modeling, which groups correlated patches into unified tokens. The Partial RoPE effectively improves content-awareness, enhancing the video generation capability. Benefiting from the compact and continuous spatio-temporal representation, VFRTok achieves competitive reconstruction quality and state-of-the-art generation fidelity while using only 1/8 tokens compared to existing tokenizers.
Authors:Qihao Liu, Ju He, Qihang Yu, Liang-Chieh Chen, Alan Yuille
Title: ReVision: High-Quality, Low-Cost Video Generation with Explicit 3D Physics Modeling for Complex Motion and Interaction
Abstract:
In recent years, video generation has seen significant advancements. However, challenges still persist in generating complex motions and interactions. To address these challenges, we introduce ReVision, a plug-and-play framework that explicitly integrates parameterized 3D physical knowledge into a pretrained conditional video generation model, significantly enhancing its ability to generate high-quality videos with complex motion and interactions. Specifically, ReVision consists of three stages. First, a video diffusion model is used to generate a coarse video. Next, we extract a set of 2D and 3D features from the coarse video to construct a 3D object-centric representation, which is then refined by our proposed parameterized physical prior model to produce an accurate 3D motion sequence. Finally, this refined motion sequence is fed back into the same video diffusion model as additional conditioning, enabling the generation of motion-consistent videos, even in scenarios involving complex actions and interactions. We validate the effectiveness of our approach on Stable Video Diffusion, where ReVision significantly improves motion fidelity and coherence. Remarkably, with only 1.5B parameters, it even outperforms a state-of-the-art video generation model with over 13B parameters on complex video generation by a substantial margin. Our results suggest that, by incorporating 3D physical knowledge, even a relatively small video diffusion model can generate complex motions and interactions with greater realism and controllability, offering a promising solution for physically plausible video generation.
Authors:Junpeng Jiang, Gangyi Hong, Miao Zhang, Hengtong Hu, Kun Zhan, Rui Shao, Liqiang Nie
Title: DiVE: Efficient Multi-View Driving Scenes Generation Based on Video Diffusion Transformer
Abstract:
Collecting multi-view driving scenario videos to enhance the performance of 3D visual perception tasks presents significant challenges and incurs substantial costs, making generative models for realistic data an appealing alternative. Yet, the videos generated by recent works suffer from poor quality and spatiotemporal consistency, undermining their utility in advancing perception tasks under driving scenarios. To address this gap, we propose DiVE, a diffusion transformer-based generative framework meticulously engineered to produce high-fidelity, temporally coherent, and cross-view consistent multi-view videos, aligning seamlessly with bird's-eye view layouts and textual descriptions. DiVE leverages a unified cross-attention and a SketchFormer to exert precise control over multimodal data, while incorporating a view-inflated attention mechanism that adds no extra parameters, thereby guaranteeing consistency across views. Despite these advancements, synthesizing high-resolution videos under multimodal constraints introduces dual challenges: investigating the optimal classifier-free guidance coniguration under intricate multi-condition inputs and mitigating excessive computational latency in high-resolution rendering--both of which remain underexplored in prior researches. To resolve these limitations, we introduce two innovations: Multi-Control Auxiliary Branch Distillation, which streamlines multi-condition CFG selection while circumventing high computational overhead, and Resolution Progressive Sampling, a training-free acceleration strategy that staggers resolution scaling to reduce high latency due to high resolution. These innovations collectively achieve a 2.62x speedup with minimal quality degradation. Evaluated on the nuScenes dataset, DiVE achieves SOTA performance in multi-view video generation, yielding photorealistic outputs with exceptional temporal and cross-view coherence.
Authors:Ruotong Wang, Mingli Zhu, Jiarong Ou, Rui Chen, Xin Tao, Pengfei Wan, Baoyuan Wu
Title: BadVideo: Stealthy Backdoor Attack against Text-to-Video Generation
Abstract:
Text-to-video (T2V) generative models have rapidly advanced and found widespread applications across fields like entertainment, education, and marketing. However, the adversarial vulnerabilities of these models remain rarely explored. We observe that in T2V generation tasks, the generated videos often contain substantial redundant information not explicitly specified in the text prompts, such as environmental elements, secondary objects, and additional details, providing opportunities for malicious attackers to embed hidden harmful content. Exploiting this inherent redundancy, we introduce BadVideo, the first backdoor attack framework tailored for T2V generation. Our attack focuses on designing target adversarial outputs through two key strategies: (1) Spatio-Temporal Composition, which combines different spatiotemporal features to encode malicious information; (2) Dynamic Element Transformation, which introduces transformations in redundant elements over time to convey malicious information. Based on these strategies, the attacker's malicious target seamlessly integrates with the user's textual instructions, providing high stealthiness. Moreover, by exploiting the temporal dimension of videos, our attack successfully evades traditional content moderation systems that primarily analyze spatial information within individual frames. Extensive experiments demonstrate that BadVideo achieves high attack success rates while preserving original semantics and maintaining excellent performance on clean inputs. Overall, our work reveals the adversarial vulnerability of T2V models, calling attention to potential risks and misuse. Our project page is at https://wrt2000.github.io/BadVideo2025/.
Authors:Ye Tian, Xin Xia, Yuxi Ren, Shanchuan Lin, Xing Wang, Xuefeng Xiao, Yunhai Tong, Ling Yang, Bin Cui
Title: Training-free Diffusion Acceleration with Bottleneck Sampling
Abstract:
Diffusion models have demonstrated remarkable capabilities in visual content generation but remain challenging to deploy due to their high computational cost during inference. This computational burden primarily arises from the quadratic complexity of self-attention with respect to image or video resolution. While existing acceleration methods often compromise output quality or necessitate costly retraining, we observe that most diffusion models are pre-trained at lower resolutions, presenting an opportunity to exploit these low-resolution priors for more efficient inference without degrading performance. In this work, we introduce Bottleneck Sampling, a training-free framework that leverages low-resolution priors to reduce computational overhead while preserving output fidelity. Bottleneck Sampling follows a high-low-high denoising workflow: it performs high-resolution denoising in the initial and final stages while operating at lower resolutions in intermediate steps. To mitigate aliasing and blurring artifacts, we further refine the resolution transition points and adaptively shift the denoising timesteps at each stage. We evaluate Bottleneck Sampling on both image and video generation tasks, where extensive experiments demonstrate that it accelerates inference by up to 3$\times$ for image generation and 2.5$\times$ for video generation, all while maintaining output quality comparable to the standard full-resolution sampling process across multiple evaluation metrics.
Authors:Haolin Yang, Feilong Tang, Ming Hu, Qingyu Yin, Yulong Li, Yexin Liu, Zelin Peng, Peng Gao, Junjun He, Zongyuan Ge, Imran Razzak
Title: ScalingNoise: Scaling Inference-Time Search for Generating Infinite Videos
Abstract:
Video diffusion models (VDMs) facilitate the generation of high-quality videos, with current research predominantly concentrated on scaling efforts during training through improvements in data quality, computational resources, and model complexity. However, inference-time scaling has received less attention, with most approaches restricting models to a single generation attempt. Recent studies have uncovered the existence of "golden noises" that can enhance video quality during generation. Building on this, we find that guiding the scaling inference-time search of VDMs to identify better noise candidates not only evaluates the quality of the frames generated in the current step but also preserves the high-level object features by referencing the anchor frame from previous multi-chunks, thereby delivering long-term value. Our analysis reveals that diffusion models inherently possess flexible adjustments of computation by varying denoising steps, and even a one-step denoising approach, when guided by a reward signal, yields significant long-term benefits. Based on the observation, we proposeScalingNoise, a plug-and-play inference-time search strategy that identifies golden initial noises for the diffusion sampling process to improve global content consistency and visual diversity. Specifically, we perform one-step denoising to convert initial noises into a clip and subsequently evaluate its long-term value, leveraging a reward model anchored by previously generated content. Moreover, to preserve diversity, we sample candidates from a tilted noise distribution that up-weights promising noises. In this way, ScalingNoise significantly reduces noise-induced errors, ensuring more coherent and spatiotemporally consistent video generation. Extensive experiments on benchmark datasets demonstrate that the proposed ScalingNoise effectively improves long video generation.
Authors:Shiyuan Yang, Zheng Gu, Liang Hou, Xin Tao, Pengfei Wan, Xiaodong Chen, Jing Liao
Title: MTV-Inpaint: Multi-Task Long Video Inpainting
Abstract:
Video inpainting involves modifying local regions within a video, ensuring spatial and temporal consistency. Most existing methods focus primarily on scene completion (i.e., filling missing regions) and lack the capability to insert new objects into a scene in a controllable manner. Fortunately, recent advancements in text-to-video (T2V) diffusion models pave the way for text-guided video inpainting. However, directly adapting T2V models for inpainting remains limited in unifying completion and insertion tasks, lacks input controllability, and struggles with long videos, thereby restricting their applicability and flexibility. To address these challenges, we propose MTV-Inpaint, a unified multi-task video inpainting framework capable of handling both traditional scene completion and novel object insertion tasks. To unify these distinct tasks, we design a dual-branch spatial attention mechanism in the T2V diffusion U-Net, enabling seamless integration of scene completion and object insertion within a single framework. In addition to textual guidance, MTV-Inpaint supports multimodal control by integrating various image inpainting models through our proposed image-to-video (I2V) inpainting mode. Additionally, we propose a two-stage pipeline that combines keyframe inpainting with in-between frame propagation, enabling MTV-Inpaint to effectively handle long videos with hundreds of frames. Extensive experiments demonstrate that MTV-Inpaint achieves state-of-the-art performance in both scene completion and object insertion tasks. Furthermore, it demonstrates versatility in derived applications such as multi-modal inpainting, object editing, removal, image object brush, and the ability to handle long videos. Project page: https://mtv-inpaint.github.io/.
Authors:Qijun Gan, Yi Ren, Chen Zhang, Zhenhui Ye, Pan Xie, Xiang Yin, Zehuan Yuan, Bingyue Peng, Jianke Zhu
Title: HumanDiT: Pose-Guided Diffusion Transformer for Long-form Human Motion Video Generation
Abstract:
Human motion video generation has advanced significantly, while existing methods still struggle with accurately rendering detailed body parts like hands and faces, especially in long sequences and intricate motions. Current approaches also rely on fixed resolution and struggle to maintain visual consistency. To address these limitations, we propose HumanDiT, a pose-guided Diffusion Transformer (DiT)-based framework trained on a large and wild dataset containing 14,000 hours of high-quality video to produce high-fidelity videos with fine-grained body rendering. Specifically, (i) HumanDiT, built on DiT, supports numerous video resolutions and variable sequence lengths, facilitating learning for long-sequence video generation; (ii) we introduce a prefix-latent reference strategy to maintain personalized characteristics across extended sequences. Furthermore, during inference, HumanDiT leverages Keypoint-DiT to generate subsequent pose sequences, facilitating video continuation from static images or existing videos. It also utilizes a Pose Adapter to enable pose transfer with given sequences. Extensive experiments demonstrate its superior performance in generating long-form, pose-accurate videos across diverse scenarios.
Authors:Haibo Tong, Zhaoyang Wang, Zhaorun Chen, Haonian Ji, Shi Qiu, Siwei Han, Kexin Geng, Zhongkai Xue, Yiyang Zhou, Peng Xia, Mingyu Ding, Rafael Rafailov, Chelsea Finn, Huaxiu Yao
Title: MJ-VIDEO: Fine-Grained Benchmarking and Rewarding Video Preferences in Video Generation
Abstract:
Recent advancements in video generation have significantly improved the ability to synthesize videos from text instructions. However, existing models still struggle with key challenges such as instruction misalignment, content hallucination, safety concerns, and bias. Addressing these limitations, we introduce MJ-BENCH-VIDEO, a large-scale video preference benchmark designed to evaluate video generation across five critical aspects: Alignment, Safety, Fineness, Coherence & Consistency, and Bias & Fairness. This benchmark incorporates 28 fine-grained criteria to provide a comprehensive evaluation of video preference. Building upon this dataset, we propose MJ-VIDEO, a Mixture-of-Experts (MoE)-based video reward model designed to deliver fine-grained reward. MJ-VIDEO can dynamically select relevant experts to accurately judge the preference based on the input text-video pair. This architecture enables more precise and adaptable preference judgments. Through extensive benchmarking on MJ-BENCH-VIDEO, we analyze the limitations of existing video reward models and demonstrate the superior performance of MJ-VIDEO in video preference assessment, achieving 17.58% and 15.87% improvements in overall and fine-grained preference judgments, respectively. Additionally, introducing MJ-VIDEO for preference tuning in video generation enhances the alignment performance. All our code, data, and models are available at https://aiming-lab.github.io/MJ-VIDEO.github.io/.
Authors:Chenyang Si, Weichen Fan, Zhengyao Lv, Ziqi Huang, Yu Qiao, Ziwei Liu
Title: RepVideo: Rethinking Cross-Layer Representation for Video Generation
Abstract:
Video generation has achieved remarkable progress with the introduction of diffusion models, which have significantly improved the quality of generated videos. However, recent research has primarily focused on scaling up model training, while offering limited insights into the direct impact of representations on the video generation process. In this paper, we initially investigate the characteristics of features in intermediate layers, finding substantial variations in attention maps across different layers. These variations lead to unstable semantic representations and contribute to cumulative differences between features, which ultimately reduce the similarity between adjacent frames and negatively affect temporal coherence. To address this, we propose RepVideo, an enhanced representation framework for text-to-video diffusion models. By accumulating features from neighboring layers to form enriched representations, this approach captures more stable semantic information. These enhanced representations are then used as inputs to the attention mechanism, thereby improving semantic expressiveness while ensuring feature consistency across adjacent frames. Extensive experiments demonstrate that our RepVideo not only significantly enhances the ability to generate accurate spatial appearances, such as capturing complex spatial relationships between multiple objects, but also improves temporal consistency in video generation.
Authors:Shuwei Shi, Biao Gong, Xi Chen, Dandan Zheng, Shuai Tan, Zizheng Yang, Yuyuan Li, Jingwen He, Kecheng Zheng, Jingdong Chen, Ming Yang, Yinqiang Zheng
Title: MotionStone: Decoupled Motion Intensity Modulation with Diffusion Transformer for Image-to-Video Generation
Abstract:
The image-to-video (I2V) generation is conditioned on the static image, which has been enhanced recently by the motion intensity as an additional control signal. These motion-aware models are appealing to generate diverse motion patterns, yet there lacks a reliable motion estimator for training such models on large-scale video set in the wild. Traditional metrics, e.g., SSIM or optical flow, are hard to generalize to arbitrary videos, while, it is very tough for human annotators to label the abstract motion intensity neither. Furthermore, the motion intensity shall reveal both local object motion and global camera movement, which has not been studied before. This paper addresses the challenge with a new motion estimator, capable of measuring the decoupled motion intensities of objects and cameras in video. We leverage the contrastive learning on randomly paired videos and distinguish the video with greater motion intensity. Such a paradigm is friendly for annotation and easy to scale up to achieve stable performance on motion estimation. We then present a new I2V model, named MotionStone, developed with the decoupled motion estimator. Experimental results demonstrate the stability of the proposed motion estimator and the state-of-the-art performance of MotionStone on I2V generation. These advantages warrant the decoupled motion estimator to serve as a general plug-in enhancer for both data processing and video generation training.
Authors:Shuai Tan, Biao Gong, Yutong Feng, Kecheng Zheng, Dandan Zheng, Shuwei Shi, Yujun Shen, Jingdong Chen, Ming Yang
Title: Mimir: Improving Video Diffusion Models for Precise Text Understanding
Abstract:
Text serves as the key control signal in video generation due to its narrative nature. To render text descriptions into video clips, current video diffusion models borrow features from text encoders yet struggle with limited text comprehension. The recent success of large language models (LLMs) showcases the power of decoder-only transformers, which offers three clear benefits for text-to-video (T2V) generation, namely, precise text understanding resulting from the superior scalability, imagination beyond the input text enabled by next token prediction, and flexibility to prioritize user interests through instruction tuning. Nevertheless, the feature distribution gap emerging from the two different text modeling paradigms hinders the direct use of LLMs in established T2V models. This work addresses this challenge with Mimir, an end-to-end training framework featuring a carefully tailored token fuser to harmonize the outputs from text encoders and LLMs. Such a design allows the T2V model to fully leverage learned video priors while capitalizing on the text-related capability of LLMs. Extensive quantitative and qualitative results demonstrate the effectiveness of Mimir in generating high-quality videos with excellent text comprehension, especially when processing short captions and managing shifting motions. Project page: https://lucaria-academy.github.io/Mimir/
Authors:Xiyang Tan, Ying Jiang, Xuan Li, Zeshun Zong, Tianyi Xie, Yin Yang, Chenfanfu Jiang
Title: PhysMotion: Physics-Grounded Dynamics From a Single Image
Abstract:
We introduce PhysMotion, a novel framework that leverages principled physics-based simulations to guide intermediate 3D representations generated from a single image and input conditions (e.g., applied force and torque), producing high-quality, physically plausible video generation. By utilizing continuum mechanics-based simulations as a prior knowledge, our approach addresses the limitations of traditional data-driven generative models and result in more consistent physically plausible motions. Our framework begins by reconstructing a feed-forward 3D Gaussian from a single image through geometry optimization. This representation is then time-stepped using a differentiable Material Point Method (MPM) with continuum mechanics-based elastoplasticity models, which provides a strong foundation for realistic dynamics, albeit at a coarse level of detail. To enhance the geometry, appearance and ensure spatiotemporal consistency, we refine the initial simulation using a text-to-image (T2I) diffusion model with cross-frame attention, resulting in a physically plausible video that retains intricate details comparable to the input image. We conduct comprehensive qualitative and quantitative evaluations to validate the efficacy of our method. Our project page is available at: https://supertan0204.github.io/physmotion_website/.
Authors:Yuxin Zhang, Dandan Zheng, Biao Gong, Shiwen Wang, Jingdong Chen, Ming Yang, Weiming Dong, Changsheng Xu
Title: LumiSculpt: Enabling Consistent Portrait Lighting in Video Generation
Abstract:
Lighting plays a pivotal role in ensuring the naturalness and aesthetic quality of video generation. However, the impact of lighting is deeply coupled with other factors of videos, e.g., objects and scenes. Thus, it remains challenging to disentangle and model coherent lighting conditions independently, limiting the flexibility to control lighting in video generation. In this paper, inspired by the established controllable T2I models, we propose LumiSculpt, which enables precise and consistent lighting control in T2V generation models. LumiSculpt equips the video generation with new interactive capabilities, allowing the input of reference image sequences with customized lighting conditions. Furthermore, the core learnable plug-and-play module of LumiSculpt facilitates direct control over the intensity, position and trajectory of an assumed light source in video diffusion models. To effectively train LumiSculpt and address the issue of insufficient lighting data, we construct LumiHuman, a new lightweight and flexible dataset for portrait lighting of images and videos. Experimental results demonstrate that LumiSculpt achieves precise and high-quality lighting control in video generation. The analysis demonstrates the flexibility of LumiHuman.
Authors:Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, Kwan-Yee K. Wong
Title: FasterCache: Training-Free Video Diffusion Model Acceleration with High Quality
Abstract:
In this paper, we present \textbf{\textit{FasterCache}}, a novel training-free strategy designed to accelerate the inference of video diffusion models with high-quality generation. By analyzing existing cache-based methods, we observe that \textit{directly reusing adjacent-step features degrades video quality due to the loss of subtle variations}. We further perform a pioneering investigation of the acceleration potential of classifier-free guidance (CFG) and reveal significant redundancy between conditional and unconditional features within the same timestep. Capitalizing on these observations, we introduce FasterCache to substantially accelerate diffusion-based video generation. Our key contributions include a dynamic feature reuse strategy that preserves both feature distinction and temporal continuity, and CFG-Cache which optimizes the reuse of conditional and unconditional outputs to further enhance inference speed without compromising video quality. We empirically evaluate FasterCache on recent video diffusion models. Experimental results show that FasterCache can significantly accelerate video generation (\eg 1.67$\times$ speedup on Vchitect-2.0) while keeping video quality comparable to the baseline, and consistently outperform existing methods in both inference speed and video quality.
Authors:Mingzhen Sun, Weining Wang, Yanyuan Qiao, Jiahui Sun, Zihan Qin, Longteng Guo, Xinxin Zhu, Jing Liu
Title: MM-LDM: Multi-Modal Latent Diffusion Model for Sounding Video Generation
Abstract:
Sounding Video Generation (SVG) is an audio-video joint generation task challenged by high-dimensional signal spaces, distinct data formats, and different patterns of content information. To address these issues, we introduce a novel multi-modal latent diffusion model (MM-LDM) for the SVG task. We first unify the representation of audio and video data by converting them into a single or a couple of images. Then, we introduce a hierarchical multi-modal autoencoder that constructs a low-level perceptual latent space for each modality and a shared high-level semantic feature space. The former space is perceptually equivalent to the raw signal space of each modality but drastically reduces signal dimensions. The latter space serves to bridge the information gap between modalities and provides more insightful cross-modal guidance. Our proposed method achieves new state-of-the-art results with significant quality and efficiency gains. Specifically, our method achieves a comprehensive improvement on all evaluation metrics and a faster training and sampling speed on Landscape and AIST++ datasets. Moreover, we explore its performance on open-domain sounding video generation, long sounding video generation, audio continuation, video continuation, and conditional single-modal generation tasks for a comprehensive evaluation, where our MM-LDM demonstrates exciting adaptability and generalization ability.
Authors:Xinrui Zhou, Yuhao Huang, Wufeng Xue, Haoran Dou, Jun Cheng, Han Zhou, Dong Ni
Title: HeartBeat: Towards Controllable Echocardiography Video Synthesis with Multimodal Conditions-Guided Diffusion Models
Abstract:
Echocardiography (ECHO) video is widely used for cardiac examination. In clinical, this procedure heavily relies on operator experience, which needs years of training and maybe the assistance of deep learning-based systems for enhanced accuracy and efficiency. However, it is challenging since acquiring sufficient customized data (e.g., abnormal cases) for novice training and deep model development is clinically unrealistic. Hence, controllable ECHO video synthesis is highly desirable. In this paper, we propose a novel diffusion-based framework named HeartBeat towards controllable and high-fidelity ECHO video synthesis. Our highlight is three-fold. First, HeartBeat serves as a unified framework that enables perceiving multimodal conditions simultaneously to guide controllable generation. Second, we factorize the multimodal conditions into local and global ones, with two insertion strategies separately provided fine- and coarse-grained controls in a composable and flexible manner. In this way, users can synthesize ECHO videos that conform to their mental imagery by combining multimodal control signals. Third, we propose to decouple the visual concepts and temporal dynamics learning using a two-stage training scheme for simplifying the model training. One more interesting thing is that HeartBeat can easily generalize to mask-guided cardiac MRI synthesis in a few shots, showcasing its scalability to broader applications. Extensive experiments on two public datasets show the efficacy of the proposed HeartBeat.
Authors:Inkyu Shin, Qihang Yu, Xiaohui Shen, In So Kweon, Kuk-Jin Yoon, Liang-Chieh Chen
Title: Enhancing Temporal Consistency in Video Editing by Reconstructing Videos with 3D Gaussian Splatting
Abstract:
Recent advancements in zero-shot video diffusion models have shown promise for text-driven video editing, but challenges remain in achieving high temporal consistency. To address this, we introduce Video-3DGS, a 3D Gaussian Splatting (3DGS)-based video refiner designed to enhance temporal consistency in zero-shot video editors. Our approach utilizes a two-stage 3D Gaussian optimizing process tailored for editing dynamic monocular videos. In the first stage, Video-3DGS employs an improved version of COLMAP, referred to as MC-COLMAP, which processes original videos using a Masked and Clipped approach. For each video clip, MC-COLMAP generates the point clouds for dynamic foreground objects and complex backgrounds. These point clouds are utilized to initialize two sets of 3D Gaussians (Frg-3DGS and Bkg-3DGS) aiming to represent foreground and background views. Both foreground and background views are then merged with a 2D learnable parameter map to reconstruct full views. In the second stage, we leverage the reconstruction ability developed in the first stage to impose the temporal constraints on the video diffusion model. To demonstrate the efficacy of Video-3DGS on both stages, we conduct extensive experiments across two related tasks: Video Reconstruction and Video Editing. Video-3DGS trained with 3k iterations significantly improves video reconstruction quality (+3 PSNR, +7 PSNR increase) and training efficiency (x1.9, x4.5 times faster) over NeRF-based and 3DGS-based state-of-art methods on DAVIS dataset, respectively. Moreover, it enhances video editing by ensuring temporal consistency across 58 dynamic monocular videos.
Authors:Fengxiang Bie, Yibo Yang, Zhongzhu Zhou, Adam Ghanem, Minjia Zhang, Zhewei Yao, Xiaoxia Wu, Connor Holmes, Pareesa Golnari, David A. Clifton, Yuxiong He, Dacheng Tao, Shuaiwen Leon Song
Title: RenAIssance: A Survey into AI Text-to-Image Generation in the Era of Large Model
Abstract:
Text-to-image generation (TTI) refers to the usage of models that could process text input and generate high fidelity images based on text descriptions. Text-to-image generation using neural networks could be traced back to the emergence of Generative Adversial Network (GAN), followed by the autoregressive Transformer. Diffusion models are one prominent type of generative model used for the generation of images through the systematic introduction of noises with repeating steps. As an effect of the impressive results of diffusion models on image synthesis, it has been cemented as the major image decoder used by text-to-image models and brought text-to-image generation to the forefront of machine-learning (ML) research. In the era of large models, scaling up model size and the integration with large language models have further improved the performance of TTI models, resulting the generation result nearly indistinguishable from real-world images, revolutionizing the way we retrieval images. Our explorative study has incentivised us to think that there are further ways of scaling text-to-image models with the combination of innovative model architectures and prediction enhancement techniques. We have divided the work of this survey into five main sections wherein we detail the frameworks of major literature in order to delve into the different types of text-to-image generation methods. Following this we provide a detailed comparison and critique of these methods and offer possible pathways of improvement for future work. In the future work, we argue that TTI development could yield impressive productivity improvements for creation, particularly in the context of the AIGC era, and could be extended to more complex tasks such as video generation and 3D generation.
Authors:Xuyang Shen, Dong Li, Jinxing Zhou, Zhen Qin, Bowen He, Xiaodong Han, Aixuan Li, Yuchao Dai, Lingpeng Kong, Meng Wang, Yu Qiao, Yiran Zhong
Title: Fine-grained Audible Video Description
Abstract:
We explore a new task for audio-visual-language modeling called fine-grained audible video description (FAVD). It aims to provide detailed textual descriptions for the given audible videos, including the appearance and spatial locations of each object, the actions of moving objects, and the sounds in videos. Existing visual-language modeling tasks often concentrate on visual cues in videos while undervaluing the language and audio modalities. On the other hand, FAVD requires not only audio-visual-language modeling skills but also paragraph-level language generation abilities. We construct the first fine-grained audible video description benchmark (FAVDBench) to facilitate this research. For each video clip, we first provide a one-sentence summary of the video, ie, the caption, followed by 4-6 sentences describing the visual details and 1-2 audio-related descriptions at the end. The descriptions are provided in both English and Chinese. We create two new metrics for this task: an EntityScore to gauge the completeness of entities in the visual descriptions, and an AudioScore to assess the audio descriptions. As a preliminary approach to this task, we propose an audio-visual-language transformer that extends existing video captioning model with an additional audio branch. We combine the masked language modeling and auto-regressive language modeling losses to optimize our model so that it can produce paragraph-level descriptions. We illustrate the efficiency of our model in audio-visual-language modeling by evaluating it against the proposed benchmark using both conventional captioning metrics and our proposed metrics. We further put our benchmark to the test in video generation models, demonstrating that employing fine-grained video descriptions can create more intricate videos than using captions.
Authors:Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun Shen, Deli Zhao, Jingren Zhou, Tieniu Tan
Title: VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation
Abstract:
A diffusion probabilistic model (DPM), which constructs a forward diffusion process by gradually adding noise to data points and learns the reverse denoising process to generate new samples, has been shown to handle complex data distribution. Despite its recent success in image synthesis, applying DPMs to video generation is still challenging due to high-dimensional data spaces. Previous methods usually adopt a standard diffusion process, where frames in the same video clip are destroyed with independent noises, ignoring the content redundancy and temporal correlation. This work presents a decomposed diffusion process via resolving the per-frame noise into a base noise that is shared among all frames and a residual noise that varies along the time axis. The denoising pipeline employs two jointly-learned networks to match the noise decomposition accordingly. Experiments on various datasets confirm that our approach, termed as VideoFusion, surpasses both GAN-based and diffusion-based alternatives in high-quality video generation. We further show that our decomposed formulation can benefit from pre-trained image diffusion models and well-support text-conditioned video creation.
Authors:Xu Tan, Tao Qin, Jiang Bian, Tie-Yan Liu, Yoshua Bengio
Title: Regeneration Learning: A Learning Paradigm for Data Generation
Abstract:
Machine learning methods for conditional data generation usually build a mapping from source conditional data X to target data Y. The target Y (e.g., text, speech, music, image, video) is usually high-dimensional and complex, and contains information that does not exist in source data, which hinders effective and efficient learning on the source-target mapping. In this paper, we present a learning paradigm called regeneration learning for data generation, which first generates Y' (an abstraction/representation of Y) from X and then generates Y from Y'. During training, Y' is obtained from Y through either handcrafted rules or self-supervised learning and is used to learn X-->Y' and Y'-->Y. Regeneration learning extends the concept of representation learning to data generation tasks, and can be regarded as a counterpart of traditional representation learning, since 1) regeneration learning handles the abstraction (Y') of the target data Y for data generation while traditional representation learning handles the abstraction (X') of source data X for data understanding; 2) both the processes of Y'-->Y in regeneration learning and X-->X' in representation learning can be learned in a self-supervised way (e.g., pre-training); 3) both the mappings from X to Y' in regeneration learning and from X' to Y in representation learning are simpler than the direct mapping from X to Y. We show that regeneration learning can be a widely-used paradigm for data generation (e.g., text generation, speech recognition, speech synthesis, music composition, image generation, and video generation) and can provide valuable insights into developing data generation methods.
Authors:Michał Stypułkowski, Konstantinos Vougioukas, Sen He, Maciej Zięba, Stavros Petridis, Maja Pantic
Title: Diffused Heads: Diffusion Models Beat GANs on Talking-Face Generation
Abstract:
Talking face generation has historically struggled to produce head movements and natural facial expressions without guidance from additional reference videos. Recent developments in diffusion-based generative models allow for more realistic and stable data synthesis and their performance on image and video generation has surpassed that of other generative models. In this work, we present an autoregressive diffusion model that requires only one identity image and audio sequence to generate a video of a realistic talking human head. Our solution is capable of hallucinating head movements, facial expressions, such as blinks, and preserving a given background. We evaluate our model on two different datasets, achieving state-of-the-art results on both of them.
Authors:Shiyu Liu, Kui Jiang, Xianming Liu, Hongxun Yao, Xiaocheng Feng
Title: HM-Talker: Hybrid Motion Modeling for High-Fidelity Talking Head Synthesis
Abstract:
Audio-driven talking head video generation enhances user engagement in human-computer interaction. However, current methods frequently produce videos with motion blur and lip jitter, primarily due to their reliance on implicit modeling of audio-facial motion correlations--an approach lacking explicit articulatory priors (i.e., anatomical guidance for speech-related facial movements). To overcome this limitation, we propose HM-Talker, a novel framework for generating high-fidelity, temporally coherent talking heads. HM-Talker leverages a hybrid motion representation combining both implicit and explicit motion cues. Explicit cues use Action Units (AUs), anatomically defined facial muscle movements, alongside implicit features to minimize phoneme-viseme misalignment. Specifically, our Cross-Modal Disentanglement Module (CMDM) extracts complementary implicit/explicit motion features while predicting AUs directly from audio input aligned to visual cues. To mitigate identity-dependent biases in explicit features and enhance cross-subject generalization, we introduce the Hybrid Motion Modeling Module (HMMM). This module dynamically merges randomly paired implicit/explicit features, enforcing identity-agnostic learning. Together, these components enable robust lip synchronization across diverse identities, advancing personalized talking head synthesis. Extensive experiments demonstrate HM-Talker's superiority over state-of-the-art methods in visual quality and lip-sync accuracy.
Authors:Liqiang Jing, Viet Lai, Seunghyun Yoon, Trung Bui, Xinya Du
Title: FIFA: Unified Faithfulness Evaluation Framework for Text-to-Video and Video-to-Text Generation
Abstract:
Video Multimodal Large Language Models (VideoMLLMs) have achieved remarkable progress in both Video-to-Text and Text-to-Video tasks. However, they often suffer fro hallucinations, generating content that contradicts the visual input. Existing evaluation methods are limited to one task (e.g., V2T) and also fail to assess hallucinations in open-ended, free-form responses. To address this gap, we propose FIFA, a unified FaIthFulness evAluation framework that extracts comprehensive descriptive facts, models their semantic dependencies via a Spatio-Temporal Semantic Dependency Graph, and verifies them using VideoQA models. We further introduce Post-Correction, a tool-based correction framework that revises hallucinated content. Extensive experiments demonstrate that FIFA aligns more closely with human judgment than existing evaluation methods, and that Post-Correction effectively improves factual consistency in both text and video generation.
Authors:Zhelun Shen, Chenming Wu, Junsheng Zhou, Chen Zhao, Kaisiyuan Wang, Hang Zhou, Yingying Li, Haocheng Feng, Wei He, Jingdong Wang
Title: iDiT-HOI: Inpainting-based Hand Object Interaction Reenactment via Video Diffusion Transformer
Abstract:
Digital human video generation is gaining traction in fields like education and e-commerce, driven by advancements in head-body animation and lip-syncing technologies. However, realistic Hand-Object Interaction (HOI) - the complex dynamics between human hands and objects - continues to pose challenges. Generating natural and believable HOI reenactments is difficult due to issues such as occlusion between hands and objects, variations in object shapes and orientations, and the necessity for precise physical interactions, and importantly, the ability to generalize to unseen humans and objects. This paper presents a novel framework iDiT-HOI that enables in-the-wild HOI reenactment generation. Specifically, we propose a unified inpainting-based token process method, called Inp-TPU, with a two-stage video diffusion transformer (DiT) model. The first stage generates a key frame by inserting the designated object into the hand region, providing a reference for subsequent frames. The second stage ensures temporal coherence and fluidity in hand-object interactions. The key contribution of our method is to reuse the pretrained model's context perception capabilities without introducing additional parameters, enabling strong generalization to unseen objects and scenarios, and our proposed paradigm naturally supports long video generation. Comprehensive evaluations demonstrate that our approach outperforms existing methods, particularly in challenging real-world scenes, offering enhanced realism and more seamless hand-object interactions.
Authors:Yu Gao, Haoyuan Guo, Tuyen Hoang, Weilin Huang, Lu Jiang, Fangyuan Kong, Huixia Li, Jiashi Li, Liang Li, Xiaojie Li, Xunsong Li, Yifu Li, Shanchuan Lin, Zhijie Lin, Jiawei Liu, Shu Liu, Xiaonan Nie, Zhiwu Qing, Yuxi Ren, Li Sun, Zhi Tian, Rui Wang, Sen Wang, Guoqiang Wei, Guohong Wu, Jie Wu, Ruiqi Xia, Fei Xiao, Xuefeng Xiao, Jiangqiao Yan, Ceyuan Yang, Jianchao Yang, Runkai Yang, Tao Yang, Yihang Yang, Zilyu Ye, Xuejiao Zeng, Yan Zeng, Heng Zhang, Yang Zhao, Xiaozheng Zheng, Peihao Zhu, Jiaxin Zou, Feilong Zuo
Title: Seedance 1.0: Exploring the Boundaries of Video Generation Models
Abstract:
Notable breakthroughs in diffusion modeling have propelled rapid improvements in video generation, yet current foundational model still face critical challenges in simultaneously balancing prompt following, motion plausibility, and visual quality. In this report, we introduce Seedance 1.0, a high-performance and inference-efficient video foundation generation model that integrates several core technical improvements: (i) multi-source data curation augmented with precision and meaningful video captioning, enabling comprehensive learning across diverse scenarios; (ii) an efficient architecture design with proposed training paradigm, which allows for natively supporting multi-shot generation and jointly learning of both text-to-video and image-to-video tasks. (iii) carefully-optimized post-training approaches leveraging fine-grained supervised fine-tuning, and video-specific RLHF with multi-dimensional reward mechanisms for comprehensive performance improvements; (iv) excellent model acceleration achieving ~10x inference speedup through multi-stage distillation strategies and system-level optimizations. Seedance 1.0 can generate a 5-second video at 1080p resolution only with 41.4 seconds (NVIDIA-L20). Compared to state-of-the-art video generation models, Seedance 1.0 stands out with high-quality and fast video generation having superior spatiotemporal fluidity with structural stability, precise instruction adherence in complex multi-subject contexts, native multi-shot narrative coherence with consistent subject representation.
Authors:Chenyou Fan, Fangzheng Yan, Chenjia Bai, Jiepeng Wang, Chi Zhang, Zhen Wang, Xuelong Li
Title: Towards a Generalizable Bimanual Foundation Policy via Flow-based Video Prediction
Abstract:
Learning a generalizable bimanual manipulation policy is extremely challenging for embodied agents due to the large action space and the need for coordinated arm movements. Existing approaches rely on Vision-Language-Action (VLA) models to acquire bimanual policies. However, transferring knowledge from single-arm datasets or pre-trained VLA models often fails to generalize effectively, primarily due to the scarcity of bimanual data and the fundamental differences between single-arm and bimanual manipulation. In this paper, we propose a novel bimanual foundation policy by fine-tuning the leading text-to-video models to predict robot trajectories and training a lightweight diffusion policy for action generation. Given the lack of embodied knowledge in text-to-video models, we introduce a two-stage paradigm that fine-tunes independent text-to-flow and flow-to-video models derived from a pre-trained text-to-video model. Specifically, optical flow serves as an intermediate variable, providing a concise representation of subtle movements between images. The text-to-flow model predicts optical flow to concretize the intent of language instructions, and the flow-to-video model leverages this flow for fine-grained video prediction. Our method mitigates the ambiguity of language in single-stage text-to-video prediction and significantly reduces the robot-data requirement by avoiding direct use of low-level actions. In experiments, we collect high-quality manipulation data for real dual-arm robot, and the results of simulation and real-world experiments demonstrate the effectiveness of our method.
Authors:Chao Huang, Susan Liang, Yunlong Tang, Jing Bi, Li Ma, Yapeng Tian, Chenliang Xu
Title: FreSca: Scaling in Frequency Space Enhances Diffusion Models
Abstract:
Latent diffusion models (LDMs) have achieved remarkable success in a variety of image tasks, yet achieving fine-grained, disentangled control over global structures versus fine details remains challenging. This paper explores frequency-based control within latent diffusion models. We first systematically analyze frequency characteristics across pixel space, VAE latent space, and internal LDM representations. This reveals that the "noise difference" term, derived from classifier-free guidance at each step t, is a uniquely effective and semantically rich target for manipulation. Building on this insight, we introduce FreSca, a novel and plug-and-play framework that decomposes noise difference into low- and high-frequency components and applies independent scaling factors to them via spatial or energy-based cutoffs. Essentially, FreSca operates without any model retraining or architectural change, offering model- and task-agnostic control. We demonstrate its versatility and effectiveness in improving generation quality and structural emphasis on multiple architectures (e.g., SD3, SDXL) and across applications including image generation, editing, depth estimation, and video synthesis, thereby unlocking a new dimension of expressive control within LDMs.
Authors:Xindi Yang, Baolu Li, Yiming Zhang, Zhenfei Yin, Lei Bai, Liqian Ma, Zhiyong Wang, Jianfei Cai, Tien-Tsin Wong, Huchuan Lu, Xu Jia
Title: VLIPP: Towards Physically Plausible Video Generation with Vision and Language Informed Physical Prior
Abstract:
Video diffusion models (VDMs) have advanced significantly in recent years, enabling the generation of highly realistic videos and drawing the attention of the community in their potential as world simulators. However, despite their capabilities, VDMs often fail to produce physically plausible videos due to an inherent lack of understanding of physics, resulting in incorrect dynamics and event sequences. To address this limitation, we propose a novel two-stage image-to-video generation framework that explicitly incorporates physics with vision and language informed physical prior. In the first stage, we employ a Vision Language Model (VLM) as a coarse-grained motion planner, integrating chain-of-thought and physics-aware reasoning to predict a rough motion trajectories/changes that approximate real-world physical dynamics while ensuring the inter-frame consistency. In the second stage, we use the predicted motion trajectories/changes to guide the video generation of a VDM. As the predicted motion trajectories/changes are rough, noise is added during inference to provide freedom to the VDM in generating motion with more fine details. Extensive experimental results demonstrate that our framework can produce physically plausible motion, and comparative evaluations highlight the notable superiority of our approach over existing methods. More video results are available on our Project Page: https://madaoer.github.io/projects/physically_plausible_video_generation.
Authors:Yasheng Sun, Zhiliang Xu, Hang Zhou, Jiazhi Guan, Quanwei Yang, Kaisiyuan Wang, Borong Liang, Yingying Li, Haocheng Feng, Jingdong Wang, Ziwei Liu, Koike Hideki
Title: Cosh-DiT: Co-Speech Gesture Video Synthesis via Hybrid Audio-Visual Diffusion Transformers
Abstract:
Co-speech gesture video synthesis is a challenging task that requires both probabilistic modeling of human gestures and the synthesis of realistic images that align with the rhythmic nuances of speech. To address these challenges, we propose Cosh-DiT, a Co-speech gesture video system with hybrid Diffusion Transformers that perform audio-to-motion and motion-to-video synthesis using discrete and continuous diffusion modeling, respectively. First, we introduce an audio Diffusion Transformer (Cosh-DiT-A) to synthesize expressive gesture dynamics synchronized with speech rhythms. To capture upper body, facial, and hand movement priors, we employ vector-quantized variational autoencoders (VQ-VAEs) to jointly learn their dependencies within a discrete latent space. Then, for realistic video synthesis conditioned on the generated speech-driven motion, we design a visual Diffusion Transformer (Cosh-DiT-V) that effectively integrates spatial and temporal contexts. Extensive experiments demonstrate that our framework consistently generates lifelike videos with expressive facial expressions and natural, smooth gestures that align seamlessly with speech.
Authors:Shoufa Chen, Chongjian Ge, Yuqi Zhang, Yida Zhang, Fengda Zhu, Hao Yang, Hongxiang Hao, Hui Wu, Zhichao Lai, Yifei Hu, Ting-Che Lin, Shilong Zhang, Fu Li, Chuan Li, Xing Wang, Yanghua Peng, Peize Sun, Ping Luo, Yi Jiang, Zehuan Yuan, Bingyue Peng, Xiaobing Liu
Title: Goku: Flow Based Video Generative Foundation Models
Abstract:
This paper introduces Goku, a state-of-the-art family of joint image-and-video generation models leveraging rectified flow Transformers to achieve industry-leading performance. We detail the foundational elements enabling high-quality visual generation, including the data curation pipeline, model architecture design, flow formulation, and advanced infrastructure for efficient and robust large-scale training. The Goku models demonstrate superior performance in both qualitative and quantitative evaluations, setting new benchmarks across major tasks. Specifically, Goku achieves 0.76 on GenEval and 83.65 on DPG-Bench for text-to-image generation, and 84.85 on VBench for text-to-video tasks. We believe that this work provides valuable insights and practical advancements for the research community in developing joint image-and-video generation models.
Authors:Yuntao Chen, Yuqi Wang, Zhaoxiang Zhang
Title: DrivingGPT: Unifying Driving World Modeling and Planning with Multi-modal Autoregressive Transformers
Abstract:
World model-based searching and planning are widely recognized as a promising path toward human-level physical intelligence. However, current driving world models primarily rely on video diffusion models, which specialize in visual generation but lack the flexibility to incorporate other modalities like action. In contrast, autoregressive transformers have demonstrated exceptional capability in modeling multimodal data. Our work aims to unify both driving model simulation and trajectory planning into a single sequence modeling problem. We introduce a multimodal driving language based on interleaved image and action tokens, and develop DrivingGPT to learn joint world modeling and planning through standard next-token prediction. Our DrivingGPT demonstrates strong performance in both action-conditioned video generation and end-to-end planning, outperforming strong baselines on large-scale nuPlan and NAVSIM benchmarks.
Authors:Jiacheng Zhang, Jie Wu, Weifeng Chen, Yatai Ji, Xuefeng Xiao, Weilin Huang, Kai Han
Title: OnlineVPO: Align Video Diffusion Model with Online Video-Centric Preference Optimization
Abstract:
In recent years, the field of text-to-video (T2V) generation has made significant strides. Despite this progress, there is still a gap between theoretical advancements and practical application, amplified by issues like degraded image quality and flickering artifacts. Recent advancements in enhancing the video diffusion model (VDM) through feedback learning have shown promising results. However, these methods still exhibit notable limitations, such as misaligned feedback and inferior scalability. To tackle these issues, we introduce OnlineVPO, a more efficient preference learning approach tailored specifically for video diffusion models. Our method features two novel designs, firstly, instead of directly using image-based reward feedback, we leverage the video quality assessment (VQA) model trained on synthetic data as the reward model to provide distribution and modality-aligned feedback on the video diffusion model. Additionally, we introduce an online DPO algorithm to address the off-policy optimization and scalability issue in existing video preference learning frameworks. By employing the video reward model to offer concise video feedback on the fly, OnlineVPO offers effective and efficient preference guidance. Extensive experiments on the open-source video-diffusion model demonstrate OnlineVPO as a simple yet effective and more importantly scalable preference learning algorithm for video diffusion models, offering valuable insights for future advancements in this domain.
Authors:Yuelei Wang, Jian Zhang, Pengtao Jiang, Hao Zhang, Jinwei Chen, Bo Li
Title: CPA: Camera-pose-awareness Diffusion Transformer for Video Generation
Abstract:
Despite the significant advancements made by Diffusion Transformer (DiT)-based methods in video generation, there remains a notable gap with controllable camera pose perspectives. Existing works such as OpenSora do NOT adhere precisely to anticipated trajectories and physical interactions, thereby limiting the flexibility in downstream applications. To alleviate this issue, we introduce CPA, a unified camera-pose-awareness text-to-video generation approach that elaborates the camera movement and integrates the textual, visual, and spatial conditions. Specifically, we deploy the Sparse Motion Encoding (SME) module to transform camera pose information into a spatial-temporal embedding and activate the Temporal Attention Injection (TAI) module to inject motion patches into each ST-DiT block. Our plug-in architecture accommodates the original DiT parameters, facilitating diverse types of camera poses and flexible object movement. Extensive qualitative and quantitative experiments demonstrate that our method outperforms LDM-based methods for long video generation while achieving optimal performance in trajectory consistency and object consistency.
Authors:Zun Wang, Jialu Li, Han Lin, Jaehong Yoon, Mohit Bansal
Title: DreamRunner: Fine-Grained Compositional Story-to-Video Generation with Retrieval-Augmented Motion Adaptation
Abstract:
Storytelling video generation (SVG) aims to produce coherent and visually rich multi-scene videos that follow a structured narrative. Existing methods primarily employ LLM for high-level planning to decompose a story into scene-level descriptions, which are then independently generated and stitched together. However, these approaches struggle with generating high-quality videos aligned with the complex single-scene description, as visualizing such complex description involves coherent composition of multiple characters and events, complex motion synthesis and muti-character customization. To address these challenges, we propose DreamRunner, a novel story-to-video generation method: First, we structure the input script using a large language model (LLM) to facilitate both coarse-grained scene planning as well as fine-grained object-level layout and motion planning. Next, DreamRunner presents retrieval-augmented test-time adaptation to capture target motion priors for objects in each scene, supporting diverse motion customization based on retrieved videos, thus facilitating the generation of new videos with complex, scripted motions. Lastly, we propose a novel spatial-temporal region-based 3D attention and prior injection module SR3AI for fine-grained object-motion binding and frame-by-frame semantic control. We compare DreamRunner with various SVG baselines, demonstrating state-of-the-art performance in character consistency, text alignment, and smooth transitions. Additionally, DreamRunner exhibits strong fine-grained condition-following ability in compositional text-to-video generation, significantly outperforming baselines on T2V-ComBench. Finally, we validate DreamRunner's robust ability to generate multi-object interactions with qualitative examples.
Authors:Jaehong Yoon, Shoubin Yu, Vaidehi Patil, Huaxiu Yao, Mohit Bansal
Title: SAFREE: Training-Free and Adaptive Guard for Safe Text-to-Image And Video Generation
Abstract:
Recent advances in diffusion models have significantly enhanced their ability to generate high-quality images and videos, but they have also increased the risk of producing unsafe content. Existing unlearning/editing-based methods for safe generation remove harmful concepts from models but face several challenges: (1) They cannot instantly remove harmful concepts without training. (2) Their safe generation capabilities depend on collected training data. (3) They alter model weights, risking degradation in quality for content unrelated to toxic concepts. To address these, we propose SAFREE, a novel, training-free approach for safe T2I and T2V, that does not alter the model's weights. Specifically, we detect a subspace corresponding to a set of toxic concepts in the text embedding space and steer prompt embeddings away from this subspace, thereby filtering out harmful content while preserving intended semantics. To balance the trade-off between filtering toxicity and preserving safe concepts, SAFREE incorporates a novel self-validating filtering mechanism that dynamically adjusts the denoising steps when applying the filtered embeddings. Additionally, we incorporate adaptive re-attention mechanisms within the diffusion latent space to selectively diminish the influence of features related to toxic concepts at the pixel level. In the end, SAFREE ensures coherent safety checking, preserving the fidelity, quality, and safety of the output. SAFREE achieves SOTA performance in suppressing unsafe content in T2I generation compared to training-free baselines and effectively filters targeted concepts while maintaining high-quality images. It also shows competitive results against training-based methods. We extend SAFREE to various T2I backbones and T2V tasks, showcasing its flexibility and generalization. SAFREE provides a robust and adaptable safeguard for ensuring safe visual generation.
Authors:Xiaoli Wei, Zhaoqing Wang, Yandong Guo, Chunxia Zhang, Tongliang Liu, Mingming Gong
Title: Training-Free Robust Interactive Video Object Segmentation
Abstract:
Interactive video object segmentation is a crucial video task, having various applications from video editing to data annotating. However, current approaches struggle to accurately segment objects across diverse domains. Recently, Segment Anything Model (SAM) introduces interactive visual prompts and demonstrates impressive performance across different domains. In this paper, we propose a training-free prompt tracking framework for interactive video object segmentation (I-PT), leveraging the powerful generalization of SAM. Although point tracking efficiently captures the pixel-wise information of objects in a video, points tend to be unstable when tracked over a long period, resulting in incorrect segmentation. Towards fast and robust interaction, we jointly adopt sparse points and boxes tracking, filtering out unstable points and capturing object-wise information. To better integrate reference information from multiple interactions, we introduce a cross-round space-time module (CRSTM), which adaptively aggregates mask features from previous rounds and frames, enhancing the segmentation stability. Our framework has demonstrated robust zero-shot video segmentation results on popular VOS datasets with interaction types, including DAVIS 2017, YouTube-VOS 2018, and MOSE 2023, maintaining a good tradeoff between performance and interaction time.
Authors:Jaehong Yoon, Shoubin Yu, Mohit Bansal
Title: RACCooN: A Versatile Instructional Video Editing Framework with Auto-Generated Narratives
Abstract:
Recent video generative models primarily rely on carefully written text prompts for specific tasks, like inpainting or style editing. They require labor-intensive textual descriptions for input videos, hindering their flexibility to adapt personal/raw videos to user specifications. This paper proposes RACCooN, a versatile and user-friendly video-to-paragraph-to-video generative framework that supports multiple video editing capabilities such as removal, addition, and modification, through a unified pipeline. RACCooN consists of two principal stages: Video-to-Paragraph (V2P) and Paragraph-to-Video (P2V). In the V2P stage, we automatically describe video scenes in well-structured natural language, capturing both the holistic context and focused object details. Subsequently, in the P2V stage, users can optionally refine these descriptions to guide the video diffusion model, enabling various modifications to the input video, such as removing, changing subjects, and/or adding new objects. The proposed approach stands out from other methods through several significant contributions: (1) RACCooN suggests a multi-granular spatiotemporal pooling strategy to generate well-structured video descriptions, capturing both the broad context and object details without requiring complex human annotations, simplifying precise video content editing based on text for users. (2) Our video generative model incorporates auto-generated narratives or instructions to enhance the quality and accuracy of the generated content. (3) RACCooN also plans to imagine new objects in a given video, so users simply prompt the model to receive a detailed video editing plan for complex video editing. The proposed framework demonstrates impressive versatile capabilities in video-to-paragraph generation, video content editing, and can be incorporated into other SoTA video generative models for further enhancement.
Authors:Zhoujie Fu, Jiacheng Wei, Wenhao Shen, Chaoyue Song, Xiaofeng Yang, Fayao Liu, Xulei Yang, Guosheng Lin
Title: Sync4D: Video Guided Controllable Dynamics for Physics-Based 4D Generation
Abstract:
In this work, we introduce a novel approach for creating controllable dynamics in 3D-generated Gaussians using casually captured reference videos. Our method transfers the motion of objects from reference videos to a variety of generated 3D Gaussians across different categories, ensuring precise and customizable motion transfer. We achieve this by employing blend skinning-based non-parametric shape reconstruction to extract the shape and motion of reference objects. This process involves segmenting the reference objects into motion-related parts based on skinning weights and establishing shape correspondences with generated target shapes. To address shape and temporal inconsistencies prevalent in existing methods, we integrate physical simulation, driving the target shapes with matched motion. This integration is optimized through a displacement loss to ensure reliable and genuine dynamics. Our approach supports diverse reference inputs, including humans, quadrupeds, and articulated objects, and can generate dynamics of arbitrary length, providing enhanced fidelity and applicability. Unlike methods heavily reliant on diffusion video generation models, our technique offers specific and high-quality motion transfer, maintaining both shape integrity and temporal consistency.
Authors:Haomiao Ni, Bernhard Egger, Suhas Lohit, Anoop Cherian, Ye Wang, Toshiaki Koike-Akino, Sharon X. Huang, Tim K. Marks
Title: TI2V-Zero: Zero-Shot Image Conditioning for Text-to-Video Diffusion Models
Abstract:
Text-conditioned image-to-video generation (TI2V) aims to synthesize a realistic video starting from a given image (e.g., a woman's photo) and a text description (e.g., "a woman is drinking water."). Existing TI2V frameworks often require costly training on video-text datasets and specific model designs for text and image conditioning. In this paper, we propose TI2V-Zero, a zero-shot, tuning-free method that empowers a pretrained text-to-video (T2V) diffusion model to be conditioned on a provided image, enabling TI2V generation without any optimization, fine-tuning, or introducing external modules. Our approach leverages a pretrained T2V diffusion foundation model as the generative prior. To guide video generation with the additional image input, we propose a "repeat-and-slide" strategy that modulates the reverse denoising process, allowing the frozen diffusion model to synthesize a video frame-by-frame starting from the provided image. To ensure temporal continuity, we employ a DDPM inversion strategy to initialize Gaussian noise for each newly synthesized frame and a resampling technique to help preserve visual details. We conduct comprehensive experiments on both domain-specific and open-domain datasets, where TI2V-Zero consistently outperforms a recent open-domain TI2V model. Furthermore, we show that TI2V-Zero can seamlessly extend to other tasks such as video infilling and prediction when provided with more images. Its autoregressive design also supports long video generation.
Authors:Alicia Golden, Samuel Hsia, Fei Sun, Bilge Acun, Basil Hosmer, Yejin Lee, Zachary DeVito, Jeff Johnson, Gu-Yeon Wei, David Brooks, Carole-Jean Wu
Title: Generative AI Beyond LLMs: System Implications of Multi-Modal Generation
Abstract:
As the development of large-scale Generative AI models evolve beyond text (1D) generation to include image (2D) and video (3D) generation, processing spatial and temporal information presents unique challenges to quality, performance, and efficiency. We present the first work towards understanding this new system design space for multi-modal text-to-image (TTI) and text-to-video (TTV) generation models. Current model architecture designs are bifurcated into 2 categories: Diffusion- and Transformer-based models. Our systematic performance characterization on a suite of eight representative TTI/TTV models shows that after state-of-the-art optimization techniques such as Flash Attention are applied, Convolution accounts for up to 44% of execution time for Diffusion-based TTI models, while Linear layers consume up to 49% of execution time for Transformer-based models. We additionally observe that Diffusion-based TTI models resemble the Prefill stage of LLM inference, and benefit from 1.1-2.5x greater speedup from Flash Attention than Transformer-based TTI models that resemble the Decode phase. Since optimizations designed for LLMs do not map directly onto TTI/TTV models, we must conduct a thorough characterization of these workloads to gain insights for new optimization opportunities. In doing so, we define sequence length in the context of TTI/TTV models and observe sequence length can vary up to 4x in Diffusion model inference. We additionally observe temporal aspects of TTV workloads pose unique system bottlenecks, with Temporal Attention accounting for over 60% of total Attention time. Overall, our in-depth system performance characterization is a critical first step towards designing efficient and deployable systems for emerging TTI/TTV workloads.
Authors:Pengxiang Li, Kai Chen, Zhili Liu, Ruiyuan Gao, Lanqing Hong, Guo Zhou, Hua Yao, Dit-Yan Yeung, Huchuan Lu, Xu Jia
Title: TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models
Abstract:
Despite remarkable achievements in video synthesis, achieving granular control over complex dynamics, such as nuanced movement among multiple interacting objects, still presents a significant hurdle for dynamic world modeling, compounded by the necessity to manage appearance and disappearance, drastic scale changes, and ensure consistency for instances across frames. These challenges hinder the development of video generation that can faithfully mimic real-world complexity, limiting utility for applications requiring high-level realism and controllability, including advanced scene simulation and training of perception systems. To address that, we propose TrackDiffusion, a novel video generation framework affording fine-grained trajectory-conditioned motion control via diffusion models, which facilitates the precise manipulation of the object trajectories and interactions, overcoming the prevalent limitation of scale and continuity disruptions. A pivotal component of TrackDiffusion is the instance enhancer, which explicitly ensures inter-frame consistency of multiple objects, a critical factor overlooked in the current literature. Moreover, we demonstrate that generated video sequences by our TrackDiffusion can be used as training data for visual perception models. To the best of our knowledge, this is the first work to apply video diffusion models with tracklet conditions and demonstrate that generated frames can be beneficial for improving the performance of object trackers.
Authors:Zhanyu Wang, Longyue Wang, Zhen Zhao, Minghao Wu, Chenyang Lyu, Huayang Li, Deng Cai, Luping Zhou, Shuming Shi, Zhaopeng Tu
Title: GPT4Video: A Unified Multimodal Large Language Model for lnstruction-Followed Understanding and Safety-Aware Generation
Abstract:
While the recent advances in Multimodal Large Language Models (MLLMs) constitute a significant leap forward in the field, these models are predominantly confined to the realm of input-side multimodal comprehension, lacking the capacity for multimodal content generation. To fill this gap, we present GPT4Video, a unified multi-model framework that empowers Large Language Models (LLMs) with the capability of both video understanding and generation. Specifically, we develop an instruction-following-based approach integrated with the stable diffusion generative model, which has demonstrated to effectively and securely handle video generation scenarios. GPT4Video offers the following benefits: 1) It exhibits impressive capabilities in both video understanding and generation scenarios. For example, GPT4Video outperforms Valley by 11.8\% on the Video Question Answering task, and surpasses NExt-GPT by 2.3\% on the Text to Video generation task. 2) it endows the LLM/MLLM with video generation capabilities without requiring additional training parameters and can flexibly interface with a wide range of models to perform video generation. 3) it maintains a safe and healthy conversation not only in output-side but also the input side in an end-to-end manner. Qualitative and qualitative experiments demonstrate that GPT4Video holds the potential to function as a effective, safe and Humanoid-like video assistant that can handle both video understanding and generation scenarios.
Authors:Łukasz Struski, Tomasz Urbańczyk, Krzysztof Bucki, Bartłomiej Cupiał, Aneta Kaczyńska, Przemysław Spurek, Jacek Tabor
Title: MeVGAN: GAN-based Plugin Model for Video Generation with Applications in Colonoscopy
Abstract:
Video generation is important, especially in medicine, as much data is given in this form. However, video generation of high-resolution data is a very demanding task for generative models, due to the large need for memory. In this paper, we propose Memory Efficient Video GAN (MeVGAN) - a Generative Adversarial Network (GAN) which uses plugin-type architecture. We use a pre-trained 2D-image GAN and only add a simple neural network to construct respective trajectories in the noise space, so that the trajectory forwarded through the GAN model constructs a real-life video. We apply MeVGAN in the task of generating colonoscopy videos. Colonoscopy is an important medical procedure, especially beneficial in screening and managing colorectal cancer. However, because colonoscopy is difficult and time-consuming to learn, colonoscopy simulators are widely used in educating young colonoscopists. We show that MeVGAN can produce good quality synthetic colonoscopy videos, which can be potentially used in virtual simulators.
Authors:Weifeng Chen, Yatai Ji, Jie Wu, Hefeng Wu, Pan Xie, Jiashi Li, Xin Xia, Xuefeng Xiao, Liang Lin
Title: Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Reward Feedback Learning
Abstract:
Recent advances in text-to-image (T2I) diffusion models have enabled impressive image generation capabilities guided by text prompts. However, extending these techniques to video generation remains challenging, with existing text-to-video (T2V) methods often struggling to produce high-quality and motion-consistent videos. In this work, we introduce Control-A-Video, a controllable T2V diffusion model that can generate videos conditioned on text prompts and reference control maps like edge and depth maps. To tackle video quality and motion consistency issues, we propose novel strategies to incorporate content prior and motion prior into the diffusion-based generation process. Specifically, we employ a first-frame condition scheme to transfer video generation from the image domain. Additionally, we introduce residual-based and optical flow-based noise initialization to infuse motion priors from reference videos, promoting relevance among frame latents for reduced flickering. Furthermore, we present a Spatio-Temporal Reward Feedback Learning (ST-ReFL) algorithm that optimizes the video diffusion model using multiple reward models for video quality and motion consistency, leading to superior outputs. Comprehensive experiments demonstrate that our framework generates higher-quality, more consistent videos compared to existing state-of-the-art methods in controllable text-to-video generation
Authors:Roman Macháček, Leila Mozaffari, Zahra Sepasdar, Sravanthi Parasa, Pål Halvorsen, Michael A. Riegler, Vajira Thambawita
Title: Mask-conditioned latent diffusion for generating gastrointestinal polyp images
Abstract:
In order to take advantage of AI solutions in endoscopy diagnostics, we must overcome the issue of limited annotations. These limitations are caused by the high privacy concerns in the medical field and the requirement of getting aid from experts for the time-consuming and costly medical data annotation process. In computer vision, image synthesis has made a significant contribution in recent years as a result of the progress of generative adversarial networks (GANs) and diffusion probabilistic models (DPM). Novel DPMs have outperformed GANs in text, image, and video generation tasks. Therefore, this study proposes a conditional DPM framework to generate synthetic GI polyp images conditioned on given generated segmentation masks. Our experimental results show that our system can generate an unlimited number of high-fidelity synthetic polyp images with the corresponding ground truth masks of polyps. To test the usefulness of the generated data, we trained binary image segmentation models to study the effect of using synthetic data. Results show that the best micro-imagewise IOU of 0.7751 was achieved from DeepLabv3+ when the training data consists of both real data and synthetic data. However, the results reflect that achieving good segmentation performance with synthetic data heavily depends on model architectures.
Authors:Shengqu Cai, Ceyuan Yang, Lvmin Zhang, Yuwei Guo, Junfei Xiao, Ziyan Yang, Yinghao Xu, Zhenheng Yang, Alan Yuille, Leonidas Guibas, Maneesh Agrawala, Lu Jiang, Gordon Wetzstein
Title: Mixture of Contexts for Long Video Generation
Abstract:
Long video generation is fundamentally a long context memory problem: models must retain and retrieve salient events across a long range without collapsing or drifting. However, scaling diffusion transformers to generate long-context videos is fundamentally limited by the quadratic cost of self-attention, which makes memory and computation intractable and difficult to optimize for long sequences. We recast long-context video generation as an internal information retrieval task and propose a simple, learnable sparse attention routing module, Mixture of Contexts (MoC), as an effective long-term memory retrieval engine. In MoC, each query dynamically selects a few informative chunks plus mandatory anchors (caption, local windows) to attend to, with causal routing that prevents loop closures. As we scale the data and gradually sparsify the routing, the model allocates compute to salient history, preserving identities, actions, and scenes over minutes of content. Efficiency follows as a byproduct of retrieval (near-linear scaling), which enables practical training and synthesis, and the emergence of memory and consistency at the scale of minutes.
Authors:Haoyu Wang, Hao Tang, Donglin Di, Zhilu Zhang, Wangmeng Zuo, Feng Gao, Siwei Ma, Shiliang Zhang
Title: MoCo: Motion-Consistent Human Video Generation via Structure-Appearance Decoupling
Abstract:
Generating human videos with consistent motion from text prompts remains a significant challenge, particularly for whole-body or long-range motion. Existing video generation models prioritize appearance fidelity, resulting in unrealistic or physically implausible human movements with poor structural coherence. Additionally, most existing human video datasets primarily focus on facial or upper-body motions, or consist of vertically oriented dance videos, limiting the scope of corresponding generation methods to simple movements. To overcome these challenges, we propose MoCo, which decouples the process of human video generation into two components: structure generation and appearance generation. Specifically, our method first employs an efficient 3D structure generator to produce a human motion sequence from a text prompt. The remaining video appearance is then synthesized under the guidance of the generated structural sequence. To improve fine-grained control over sparse human structures, we introduce Human-Aware Dynamic Control modules and integrate dense tracking constraints during training. Furthermore, recognizing the limitations of existing datasets, we construct a large-scale whole-body human video dataset featuring complex and diverse motions. Extensive experiments demonstrate that MoCo outperforms existing approaches in generating realistic and structurally coherent human videos.
Authors:Xunzhi Xiang, Yabo Chen, Guiyu Zhang, Zhongyu Wang, Zhe Gao, Quanming Xiang, Gonghu Shang, Junqi Liu, Haibin Huang, Yang Gao, Chi Zhang, Qi Fan, Xuelong Li
Title: Macro-from-Micro Planning for High-Quality and Parallelized Autoregressive Long Video Generation
Abstract:
Current autoregressive diffusion models excel at video generation but are generally limited to short temporal durations. Our theoretical analysis indicates that the autoregressive modeling typically suffers from temporal drift caused by error accumulation and hinders parallelization in long video synthesis. To address these limitations, we propose a novel planning-then-populating framework centered on Macro-from-Micro Planning (MMPL) for long video generation. MMPL sketches a global storyline for the entire video through two hierarchical stages: Micro Planning and Macro Planning. Specifically, Micro Planning predicts a sparse set of future keyframes within each short video segment, offering motion and appearance priors to guide high-quality video segment generation. Macro Planning extends the in-segment keyframes planning across the entire video through an autoregressive chain of micro plans, ensuring long-term consistency across video segments. Subsequently, MMPL-based Content Populating generates all intermediate frames in parallel across segments, enabling efficient parallelization of autoregressive generation. The parallelization is further optimized by Adaptive Workload Scheduling for balanced GPU execution and accelerated autoregressive video generation. Extensive experiments confirm that our method outperforms existing long video generation models in quality and stability. Generated videos and comparison results are in our project page.
Authors:Fangqiu Yi, Jingyu Xu, Jiawei Shao, Chi Zhang, Xuelong Li
Title: Conditional Video Generation for High-Efficiency Video Compression
Abstract:
Perceptual studies demonstrate that conditional diffusion models excel at reconstructing video content aligned with human visual perception. Building on this insight, we propose a video compression framework that leverages conditional diffusion models for perceptually optimized reconstruction. Specifically, we reframe video compression as a conditional generation task, where a generative model synthesizes video from sparse, yet informative signals. Our approach introduces three key modules: (1) Multi-granular conditioning that captures both static scene structure and dynamic spatio-temporal cues; (2) Compact representations designed for efficient transmission without sacrificing semantic richness; (3) Multi-condition training with modality dropout and role-aware embeddings, which prevent over-reliance on any single modality and enhance robustness. Extensive experiments show that our method significantly outperforms both traditional and neural codecs on perceptual quality metrics such as Fréchet Video Distance (FVD) and LPIPS, especially under high compression ratios.
Authors:Haoyu Wu, Diankun Wu, Tianyu He, Junliang Guo, Yang Ye, Yueqi Duan, Jiang Bian
Title: Geometry Forcing: Marrying Video Diffusion and 3D Representation for Consistent World Modeling
Abstract:
Videos inherently represent 2D projections of a dynamic 3D world. However, our analysis suggests that video diffusion models trained solely on raw video data often fail to capture meaningful geometric-aware structure in their learned representations. To bridge this gap between video diffusion models and the underlying 3D nature of the physical world, we propose Geometry Forcing, a simple yet effective method that encourages video diffusion models to internalize latent 3D representations. Our key insight is to guide the model's intermediate representations toward geometry-aware structure by aligning them with features from a pretrained geometric foundation model. To this end, we introduce two complementary alignment objectives: Angular Alignment, which enforces directional consistency via cosine similarity, and Scale Alignment, which preserves scale-related information by regressing unnormalized geometric features from normalized diffusion representation. We evaluate Geometry Forcing on both camera view-conditioned and action-conditioned video generation tasks. Experimental results demonstrate that our method substantially improves visual quality and 3D consistency over the baseline methods. Project page: https://GeometryForcing.github.io.
Authors:Xinle Cheng, Tianyu He, Jiayi Xu, Junliang Guo, Di He, Jiang Bian
Title: Playing with Transformer at 30+ FPS via Next-Frame Diffusion
Abstract:
Autoregressive video models offer distinct advantages over bidirectional diffusion models in creating interactive video content and supporting streaming applications with arbitrary duration. In this work, we present Next-Frame Diffusion (NFD), an autoregressive diffusion transformer that incorporates block-wise causal attention, enabling iterative sampling and efficient inference via parallel token generation within each frame. Nonetheless, achieving real-time video generation remains a significant challenge for such models, primarily due to the high computational cost associated with diffusion sampling and the hardware inefficiencies inherent to autoregressive generation. To address this, we introduce two innovations: (1) We extend consistency distillation to the video domain and adapt it specifically for video models, enabling efficient inference with few sampling steps; (2) To fully leverage parallel computation, motivated by the observation that adjacent frames often share the identical action input, we propose speculative sampling. In this approach, the model generates next few frames using current action input, and discard speculatively generated frames if the input action differs. Experiments on a large-scale action-conditioned video generation benchmark demonstrate that NFD beats autoregressive baselines in terms of both visual quality and sampling efficiency. We, for the first time, achieves autoregressive video generation at over 30 Frames Per Second (FPS) on an A100 GPU using a 310M model.
Authors:Yukang Lin, Yan Hong, Zunnan Xu, Xindi Li, Chao Xu, Chuanbiao Song, Ronghui Li, Haoxing Chen, Jun Lan, Huijia Zhu, Weiqiang Wang, Jianfu Zhang, Xiu Li
Title: InterAnimate: Taming Region-aware Diffusion Model for Realistic Human Interaction Animation
Abstract:
Recent video generation research has focused heavily on isolated actions, leaving interactive motions-such as hand-face interactions-largely unexamined. These interactions are essential for emerging biometric authentication systems, which rely on interactive motion-based anti-spoofing approaches. From a security perspective, there is a growing need for large-scale, high-quality interactive videos to train and strengthen authentication models. In this work, we introduce a novel paradigm for animating realistic hand-face interactions. Our approach simultaneously learns spatio-temporal contact dynamics and biomechanically plausible deformation effects, enabling natural interactions where hand movements induce anatomically accurate facial deformations while maintaining collision-free contact. To facilitate this research, we present InterHF, a large-scale hand-face interaction dataset featuring 18 interaction patterns and 90,000 annotated videos. Additionally, we propose InterAnimate, a region-aware diffusion model designed specifically for interaction animation. InterAnimate leverages learnable spatial and temporal latents to effectively capture dynamic interaction priors and integrates a region-aware interaction mechanism that injects these priors into the denoising process. To the best of our knowledge, this work represents the first large-scale effort to systematically study human hand-face interactions. Qualitative and quantitative results show InterAnimate produces highly realistic animations, setting a new benchmark. Code and data will be made public to advance research.
Authors:Dianbing Xi, Jiepeng Wang, Yuanzhi Liang, Xi Qiu, Yuchi Huo, Rui Wang, Chi Zhang, Xuelong Li
Title: OmniVDiff: Omni Controllable Video Diffusion for Generation and Understanding
Abstract:
In this paper, we propose a novel framework for controllable video diffusion, OmniVDiff, aiming to synthesize and comprehend multiple video visual content in a single diffusion model. To achieve this, OmniVDiff treats all video visual modalities in the color space to learn a joint distribution, while employing an adaptive control strategy that dynamically adjusts the role of each visual modality during the diffusion process, either as a generation modality or a conditioning modality. This allows flexible manipulation of each modality's role, enabling support for a wide range of tasks. Consequently, our model supports three key functionalities: (1) Text-conditioned video generation: multi-modal visual video sequences (i.e., rgb, depth, canny, segmentaion) are generated based on the text conditions in one diffusion process; (2) Video understanding: OmniVDiff can estimate the depth, canny map, and semantic segmentation across the input rgb frames while ensuring coherence with the rgb input; and (3) X-conditioned video generation: OmniVDiff generates videos conditioned on fine-grained attributes (e.g., depth maps or segmentation maps). By integrating these diverse tasks into a unified video diffusion framework, OmniVDiff enhances the flexibility and scalability for controllable video diffusion, making it an effective tool for a variety of downstream applications, such as video-to-video translation. Extensive experiments demonstrate the effectiveness of our approach, highlighting its potential for various video-related applications.
Authors:Yang Ye, Junliang Guo, Haoyu Wu, Tianyu He, Tim Pearce, Tabish Rashid, Katja Hofmann, Jiang Bian
Title: Fast Autoregressive Video Generation with Diagonal Decoding
Abstract:
Autoregressive Transformer models have demonstrated impressive performance in video generation, but their sequential token-by-token decoding process poses a major bottleneck, particularly for long videos represented by tens of thousands of tokens. In this paper, we propose Diagonal Decoding (DiagD), a training-free inference acceleration algorithm for autoregressively pre-trained models that exploits spatial and temporal correlations in videos. Our method generates tokens along diagonal paths in the spatial-temporal token grid, enabling parallel decoding within each frame as well as partially overlapping across consecutive frames. The proposed algorithm is versatile and adaptive to various generative models and tasks, while providing flexible control over the trade-off between inference speed and visual quality. Furthermore, we propose a cost-effective finetuning strategy that aligns the attention patterns of the model with our decoding order, further mitigating the training-inference gap on small-scale models. Experiments on multiple autoregressive video generation models and datasets demonstrate that DiagD achieves up to $10\times$ speedup compared to naive sequential decoding, while maintaining comparable visual fidelity.
Authors:Xiao Wang, Jingyun Hua, Weihong Lin, Yuanxing Zhang, Fuzheng Zhang, Jianlong Wu, Di Zhang, Liqiang Nie
Title: HAIC: Improving Human Action Understanding and Generation with Better Captions for Multi-modal Large Language Models
Abstract:
Recent Multi-modal Large Language Models (MLLMs) have made great progress in video understanding. However, their performance on videos involving human actions is still limited by the lack of high-quality data. To address this, we introduce a two-stage data annotation pipeline. First, we design strategies to accumulate videos featuring clear human actions from the Internet. Second, videos are annotated in a standardized caption format that uses human attributes to distinguish individuals and chronologically details their actions and interactions. Through this pipeline, we curate two datasets, namely HAICTrain and HAICBench. \textbf{HAICTrain} comprises 126K video-caption pairs generated by Gemini-Pro and verified for training purposes. Meanwhile, \textbf{HAICBench} includes 412 manually annotated video-caption pairs and 2,000 QA pairs, for a comprehensive evaluation of human action understanding. Experimental results demonstrate that training with HAICTrain not only significantly enhances human understanding abilities across 4 benchmarks, but can also improve text-to-video generation results. Both the HAICTrain and HAICBench are released at https://huggingface.co/datasets/KuaishouHAIC/HAIC.
Authors:Lei Zhao, Linfeng Feng, Dongxu Ge, Rujin Chen, Fangqiu Yi, Chi Zhang, Xiao-Lei Zhang, Xuelong Li
Title: UniForm: A Unified Multi-Task Diffusion Transformer for Audio-Video Generation
Abstract:
With the rise of diffusion models, audio-video generation has been revolutionized. However, most existing methods rely on separate modules for each modality, with limited exploration of unified generative architectures. In addition, many are confined to a single task and small-scale datasets. To overcome these limitations, we introduce UniForm, a unified multi-task diffusion transformer that generates both audio and visual modalities in a shared latent space. By using a unified denoising network, UniForm captures the inherent correlations between sound and vision. Additionally, we propose task-specific noise schemes and task tokens, enabling the model to support multiple tasks with a single set of parameters, including video-to-audio, audio-to-video and text-to-audio-video generation. Furthermore, by leveraging large language models and a large-scale text-audio-video combined dataset, UniForm achieves greater generative diversity than prior approaches. Experiments show that UniForm achieves performance close to the state-of-the-art single-task models across three generation tasks, with generated content that is not only highly aligned with real-world data distributions but also enables more diverse and fine-grained generation.
Authors:Chi Zhang, Yuanzhi Liang, Xi Qiu, Fangqiu Yi, Xuelong Li
Title: VAST 1.0: A Unified Framework for Controllable and Consistent Video Generation
Abstract:
Generating high-quality videos from textual descriptions poses challenges in maintaining temporal coherence and control over subject motion. We propose VAST (Video As Storyboard from Text), a two-stage framework to address these challenges and enable high-quality video generation. In the first stage, StoryForge transforms textual descriptions into detailed storyboards, capturing human poses and object layouts to represent the structural essence of the scene. In the second stage, VisionForge generates videos from these storyboards, producing high-quality videos with smooth motion, temporal consistency, and spatial coherence. By decoupling text understanding from video generation, VAST enables precise control over subject dynamics and scene composition. Experiments on the VBench benchmark demonstrate that VAST outperforms existing methods in both visual quality and semantic expression, setting a new standard for dynamic and coherent video generation.
Authors:Jianbiao Mei, Tao Hu, Xuemeng Yang, Licheng Wen, Yu Yang, Tiantian Wei, Yukai Ma, Min Dou, Botian Shi, Yong Liu
Title: DreamForge: Motion-Aware Autoregressive Video Generation for Multi-View Driving Scenes
Abstract:
Recent advances in diffusion models have improved controllable streetscape generation and supported downstream perception and planning tasks. However, challenges remain in accurately modeling driving scenes and generating long videos. To alleviate these issues, we propose DreamForge, an advanced diffusion-based autoregressive video generation model tailored for 3D-controllable long-term generation. To enhance the lane and foreground generation, we introduce perspective guidance and integrate object-wise position encoding to incorporate local 3D correlation and improve foreground object modeling. We also propose motion-aware temporal attention to capture motion cues and appearance changes in videos. By leveraging motion frames and an autoregressive generation paradigm,we can autoregressively generate long videos (over 200 frames) using a model trained in short sequences, achieving superior quality compared to the baseline in 16-frame video evaluations. Finally, we integrate our method with the realistic simulator DriveArena to provide more reliable open-loop and closed-loop evaluations for vision-based driving agents. Project Page: https://pjlab-adg.github.io/DriveArena/dreamforge.
Authors:Hanxin Zhu, Tianyu He, Anni Tang, Junliang Guo, Zhibo Chen, Jiang Bian
Title: Compositional 3D-aware Video Generation with LLM Director
Abstract:
Significant progress has been made in text-to-video generation through the use of powerful generative models and large-scale internet data. However, substantial challenges remain in precisely controlling individual concepts within the generated video, such as the motion and appearance of specific characters and the movement of viewpoints. In this work, we propose a novel paradigm that generates each concept in 3D representation separately and then composes them with priors from Large Language Models (LLM) and 2D diffusion models. Specifically, given an input textual prompt, our scheme consists of three stages: 1) We leverage LLM as the director to first decompose the complex query into several sub-prompts that indicate individual concepts within the video~(\textit{e.g.}, scene, objects, motions), then we let LLM to invoke pre-trained expert models to obtain corresponding 3D representations of concepts. 2) To compose these representations, we prompt multi-modal LLM to produce coarse guidance on the scales and coordinates of trajectories for the objects. 3) To make the generated frames adhere to natural image distribution, we further leverage 2D diffusion priors and use Score Distillation Sampling to refine the composition. Extensive experiments demonstrate that our method can generate high-fidelity videos from text with diverse motion and flexible control over each concept. Project page: \url{https://aka.ms/c3v}.
Authors:Boyang Deng, Richard Tucker, Zhengqi Li, Leonidas Guibas, Noah Snavely, Gordon Wetzstein
Title: Streetscapes: Large-scale Consistent Street View Generation Using Autoregressive Video Diffusion
Abstract:
We present a method for generating Streetscapes-long sequences of views through an on-the-fly synthesized city-scale scene. Our generation is conditioned by language input (e.g., city name, weather), as well as an underlying map/layout hosting the desired trajectory. Compared to recent models for video generation or 3D view synthesis, our method can scale to much longer-range camera trajectories, spanning several city blocks, while maintaining visual quality and consistency. To achieve this goal, we build on recent work on video diffusion, used within an autoregressive framework that can easily scale to long sequences. In particular, we introduce a new temporal imputation method that prevents our autoregressive approach from drifting from the distribution of realistic city imagery. We train our Streetscapes system on a compelling source of data-posed imagery from Google Street View, along with contextual map data-which allows users to generate city views conditioned on any desired city layout, with controllable camera poses. Please see more results at our project page at https://boyangdeng.com/streetscapes.
Authors:Shuaiyi Huang, Mara Levy, Zhenyu Jiang, Anima Anandkumar, Yuke Zhu, Linxi Fan, De-An Huang, Abhinav Shrivastava
Title: ARDuP: Active Region Video Diffusion for Universal Policies
Abstract:
Sequential decision-making can be formulated as a text-conditioned video generation problem, where a video planner, guided by a text-defined goal, generates future frames visualizing planned actions, from which control actions are subsequently derived. In this work, we introduce Active Region Video Diffusion for Universal Policies (ARDuP), a novel framework for video-based policy learning that emphasizes the generation of active regions, i.e. potential interaction areas, enhancing the conditional policy's focus on interactive areas critical for task execution. This innovative framework integrates active region conditioning with latent diffusion models for video planning and employs latent representations for direct action decoding during inverse dynamic modeling. By utilizing motion cues in videos for automatic active region discovery, our method eliminates the need for manual annotations of active regions. We validate ARDuP's efficacy via extensive experiments on simulator CLIPort and the real-world dataset BridgeData v2, achieving notable improvements in success rates and generating convincingly realistic video plans.
Authors:Zhengfei Kuang, Shengqu Cai, Hao He, Yinghao Xu, Hongsheng Li, Leonidas Guibas, Gordon Wetzstein
Title: Collaborative Video Diffusion: Consistent Multi-video Generation with Camera Control
Abstract:
Research on video generation has recently made tremendous progress, enabling high-quality videos to be generated from text prompts or images. Adding control to the video generation process is an important goal moving forward and recent approaches that condition video generation models on camera trajectories make strides towards it. Yet, it remains challenging to generate a video of the same scene from multiple different camera trajectories. Solutions to this multi-video generation problem could enable large-scale 3D scene generation with editable camera trajectories, among other applications. We introduce collaborative video diffusion (CVD) as an important step towards this vision. The CVD framework includes a novel cross-video synchronization module that promotes consistency between corresponding frames of the same video rendered from different camera poses using an epipolar attention mechanism. Trained on top of a state-of-the-art camera-control module for video generation, CVD generates multiple videos rendered from different camera trajectories with significantly better consistency than baselines, as shown in extensive experiments. Project page: https://collaborativevideodiffusion.github.io/.
Authors:Xinmin Qiu, Congying Han, Zicheng Zhang, Bonan Li, Tiande Guo, Pingyu Wang, Xuecheng Nie
Title: BlazeBVD: Make Scale-Time Equalization Great Again for Blind Video Deflickering
Abstract:
Developing blind video deflickering (BVD) algorithms to enhance video temporal consistency, is gaining importance amid the flourish of image processing and video generation. However, the intricate nature of video data complicates the training of deep learning methods, leading to high resource consumption and instability, notably under severe lighting flicker. This underscores the critical need for a compact representation beyond pixel values to advance BVD research and applications. Inspired by the classic scale-time equalization (STE), our work introduces the histogram-assisted solution, called BlazeBVD, for high-fidelity and rapid BVD. Compared with STE, which directly corrects pixel values by temporally smoothing color histograms, BlazeBVD leverages smoothed illumination histograms within STE filtering to ease the challenge of learning temporal data using neural networks. In technique, BlazeBVD begins by condensing pixel values into illumination histograms that precisely capture flickering and local exposure variations. These histograms are then smoothed to produce singular frames set, filtered illumination maps, and exposure maps. Resorting to these deflickering priors, BlazeBVD utilizes a 2D network to restore faithful and consistent texture impacted by lighting changes or localized exposure issues. BlazeBVD also incorporates a lightweight 3D network to amend slight temporal inconsistencies, avoiding the resource consumption issue. Comprehensive experiments on synthetic, real-world and generated videos, showcase the superior qualitative and quantitative results of BlazeBVD, achieving inference speeds up to 10x faster than state-of-the-arts.
Authors:Jianhong Bai, Tianyu He, Yuchi Wang, Junliang Guo, Haoji Hu, Zuozhu Liu, Jiang Bian
Title: UniEdit: A Unified Tuning-Free Framework for Video Motion and Appearance Editing
Abstract:
Recent advances in text-guided video editing have showcased promising results in appearance editing (e.g., stylization). However, video motion editing in the temporal dimension (e.g., from eating to waving), which distinguishes video editing from image editing, is underexplored. In this work, we present UniEdit, a tuning-free framework that supports both video motion and appearance editing by harnessing the power of a pre-trained text-to-video generator within an inversion-then-generation framework. To realize motion editing while preserving source video content, based on the insights that temporal and spatial self-attention layers encode inter-frame and intra-frame dependency respectively, we introduce auxiliary motion-reference and reconstruction branches to produce text-guided motion and source features respectively. The obtained features are then injected into the main editing path via temporal and spatial self-attention layers. Extensive experiments demonstrate that UniEdit covers video motion editing and various appearance editing scenarios, and surpasses the state-of-the-art methods. Our code will be publicly available.
Authors:Weimin Wang, Jiawei Liu, Zhijie Lin, Jiangqiao Yan, Shuo Chen, Chetwin Low, Tuyen Hoang, Jie Wu, Jun Hao Liew, Hanshu Yan, Daquan Zhou, Jiashi Feng
Title: MagicVideo-V2: Multi-Stage High-Aesthetic Video Generation
Abstract:
The growing demand for high-fidelity video generation from textual descriptions has catalyzed significant research in this field. In this work, we introduce MagicVideo-V2 that integrates the text-to-image model, video motion generator, reference image embedding module and frame interpolation module into an end-to-end video generation pipeline. Benefiting from these architecture designs, MagicVideo-V2 can generate an aesthetically pleasing, high-resolution video with remarkable fidelity and smoothness. It demonstrates superior performance over leading Text-to-Video systems such as Runway, Pika 1.0, Morph, Moon Valley and Stable Video Diffusion model via user evaluation at large scale.
Authors:Jiachun Pan, Hanshu Yan, Jun Hao Liew, Jiashi Feng, Vincent Y. F. Tan
Title: Towards Accurate Guided Diffusion Sampling through Symplectic Adjoint Method
Abstract:
Training-free guided sampling in diffusion models leverages off-the-shelf pre-trained networks, such as an aesthetic evaluation model, to guide the generation process. Current training-free guided sampling algorithms obtain the guidance energy function based on a one-step estimate of the clean image. However, since the off-the-shelf pre-trained networks are trained on clean images, the one-step estimation procedure of the clean image may be inaccurate, especially in the early stages of the generation process in diffusion models. This causes the guidance in the early time steps to be inaccurate. To overcome this problem, we propose Symplectic Adjoint Guidance (SAG), which calculates the gradient guidance in two inner stages. Firstly, SAG estimates the clean image via $n$ function calls, where $n$ serves as a flexible hyperparameter that can be tailored to meet specific image quality requirements. Secondly, SAG uses the symplectic adjoint method to obtain the gradients accurately and efficiently in terms of the memory requirements. Extensive experiments demonstrate that SAG generates images with higher qualities compared to the baselines in both guided image and video generation tasks.
Authors:Jay Zhangjie Wu, Xiuyu Li, Difei Gao, Zhen Dong, Jinbin Bai, Aishani Singh, Xiaoyu Xiang, Youzeng Li, Zuwei Huang, Yuanxi Sun, Rui He, Feng Hu, Junhua Hu, Hai Huang, Hanyu Zhu, Xu Cheng, Jie Tang, Mike Zheng Shou, Kurt Keutzer, Forrest Iandola
Title: CVPR 2023 Text Guided Video Editing Competition
Abstract:
Humans watch more than a billion hours of video per day. Most of this video was edited manually, which is a tedious process. However, AI-enabled video-generation and video-editing is on the rise. Building on text-to-image models like Stable Diffusion and Imagen, generative AI has improved dramatically on video tasks. But it's hard to evaluate progress in these video tasks because there is no standard benchmark. So, we propose a new dataset for text-guided video editing (TGVE), and we run a competition at CVPR to evaluate models on our TGVE dataset. In this paper we present a retrospective on the competition and describe the winning method. The competition dataset is available at https://sites.google.com/view/loveucvpr23/track4.
Authors:Hanshu Yan, Jun Hao Liew, Long Mai, Shanchuan Lin, Jiashi Feng
Title: MagicProp: Diffusion-based Video Editing via Motion-aware Appearance Propagation
Abstract:
This paper addresses the issue of modifying the visual appearance of videos while preserving their motion. A novel framework, named MagicProp, is proposed, which disentangles the video editing process into two stages: appearance editing and motion-aware appearance propagation. In the first stage, MagicProp selects a single frame from the input video and applies image-editing techniques to modify the content and/or style of the frame. The flexibility of these techniques enables the editing of arbitrary regions within the frame. In the second stage, MagicProp employs the edited frame as an appearance reference and generates the remaining frames using an autoregressive rendering approach. To achieve this, a diffusion-based conditional generation model, called PropDPM, is developed, which synthesizes the target frame by conditioning on the reference appearance, the target motion, and its previous appearance. The autoregressive editing approach ensures temporal consistency in the resulting videos. Overall, MagicProp combines the flexibility of image-editing techniques with the superior temporal consistency of autoregressive modeling, enabling flexible editing of object types and aesthetic styles in arbitrary regions of input videos while maintaining good temporal consistency across frames. Extensive experiments in various video editing scenarios demonstrate the effectiveness of MagicProp.
Authors:Jun Hao Liew, Hanshu Yan, Jianfeng Zhang, Zhongcong Xu, Jiashi Feng
Title: MagicEdit: High-Fidelity and Temporally Coherent Video Editing
Abstract:
In this report, we present MagicEdit, a surprisingly simple yet effective solution to the text-guided video editing task. We found that high-fidelity and temporally coherent video-to-video translation can be achieved by explicitly disentangling the learning of content, structure and motion signals during training. This is in contradict to most existing methods which attempt to jointly model both the appearance and temporal representation within a single framework, which we argue, would lead to degradation in per-frame quality. Despite its simplicity, we show that MagicEdit supports various downstream video editing tasks, including video stylization, local editing, video-MagicMix and video outpainting.
Authors:Jianfeng Zhang, Hanshu Yan, Zhongcong Xu, Jiashi Feng, Jun Hao Liew
Title: MagicAvatar: Multimodal Avatar Generation and Animation
Abstract:
This report presents MagicAvatar, a framework for multimodal video generation and animation of human avatars. Unlike most existing methods that generate avatar-centric videos directly from multimodal inputs (e.g., text prompts), MagicAvatar explicitly disentangles avatar video generation into two stages: (1) multimodal-to-motion and (2) motion-to-video generation. The first stage translates the multimodal inputs into motion/ control signals (e.g., human pose, depth, DensePose); while the second stage generates avatar-centric video guided by these motion signals. Additionally, MagicAvatar supports avatar animation by simply providing a few images of the target person. This capability enables the animation of the provided human identity according to the specific motion derived from the first stage. We demonstrate the flexibility of MagicAvatar through various applications, including text-guided and video-guided avatar generation, as well as multimodal avatar animation.
Authors:Songlin Yang, Wei Wang, Jun Ling, Bo Peng, Xu Tan, Jing Dong
Title: Context-Aware Talking-Head Video Editing
Abstract:
Talking-head video editing aims to efficiently insert, delete, and substitute the word of a pre-recorded video through a text transcript editor. The key challenge for this task is obtaining an editing model that generates new talking-head video clips which simultaneously have accurate lip synchronization and motion smoothness. Previous approaches, including 3DMM-based (3D Morphable Model) methods and NeRF-based (Neural Radiance Field) methods, are sub-optimal in that they either require minutes of source videos and days of training time or lack the disentangled control of verbal (e.g., lip motion) and non-verbal (e.g., head pose and expression) representations for video clip insertion. In this work, we fully utilize the video context to design a novel framework for talking-head video editing, which achieves efficiency, disentangled motion control, and sequential smoothness. Specifically, we decompose this framework to motion prediction and motion-conditioned rendering: (1) We first design an animation prediction module that efficiently obtains smooth and lip-sync motion sequences conditioned on the driven speech. This module adopts a non-autoregressive network to obtain context prior and improve the prediction efficiency, and it learns a speech-animation mapping prior with better generalization to novel speech from a multi-identity video dataset. (2) We then introduce a neural rendering module to synthesize the photo-realistic and full-head video frames given the predicted motion sequence. This module adopts a pre-trained head topology and uses only few frames for efficient fine-tuning to obtain a person-specific rendering model. Extensive experiments demonstrate that our method efficiently achieves smoother editing results with higher image quality and lip accuracy using less data than previous methods.
Authors:Zicheng Zhang, Bonan Li, Xuecheng Nie, Congying Han, Tiande Guo, Luoqi Liu
Title: Towards Consistent Video Editing with Text-to-Image Diffusion Models
Abstract:
Existing works have advanced Text-to-Image (TTI) diffusion models for video editing in a one-shot learning manner. Despite their low requirements of data and computation, these methods might produce results of unsatisfied consistency with text prompt as well as temporal sequence, limiting their applications in the real world. In this paper, we propose to address the above issues with a novel EI$^2$ model towards \textbf{E}nhancing v\textbf{I}deo \textbf{E}diting cons\textbf{I}stency of TTI-based frameworks. Specifically, we analyze and find that the inconsistent problem is caused by newly added modules into TTI models for learning temporal information. These modules lead to covariate shift in the feature space, which harms the editing capability. Thus, we design EI$^2$ to tackle the above drawbacks with two classical modules: Shift-restricted Temporal Attention Module (STAM) and Fine-coarse Frame Attention Module (FFAM). First, through theoretical analysis, we demonstrate that covariate shift is highly related to Layer Normalization, thus STAM employs a \textit{Instance Centering} layer replacing it to preserve the distribution of temporal features. In addition, {STAM} employs an attention layer with normalized mapping to transform temporal features while constraining the variance shift. As the second part, we incorporate {STAM} with a novel {FFAM}, which efficiently leverages fine-coarse spatial information of overall frames to further enhance temporal consistency. Extensive experiments demonstrate the superiority of the proposed EI$^2$ model for text-driven video editing.
Authors:Songlin Yang, Wei Wang, Bo Peng, Jing Dong
Title: Designing a 3D-Aware StyleNeRF Encoder for Face Editing
Abstract:
GAN inversion has been exploited in many face manipulation tasks, but 2D GANs often fail to generate multi-view 3D consistent images. The encoders designed for 2D GANs are not able to provide sufficient 3D information for the inversion and editing. Therefore, 3D-aware GAN inversion is proposed to increase the 3D editing capability of GANs. However, the 3D-aware GAN inversion remains under-explored. To tackle this problem, we propose a 3D-aware (3Da) encoder for GAN inversion and face editing based on the powerful StyleNeRF model. Our proposed 3Da encoder combines a parametric 3D face model with a learnable detail representation model to generate geometry, texture and view direction codes. For more flexible face manipulation, we then design a dual-branch StyleFlow module to transfer the StyleNeRF codes with disentangled geometry and texture flows. Extensive experiments demonstrate that we realize 3D consistent face manipulation in both facial attribute editing and texture transfer. Furthermore, for video editing, we make the sequence of frame codes share a common canonical manifold, which improves the temporal consistency of the edited attributes.
Authors:Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang, Songfang Huang
Title: SeqDiffuSeq: Text Diffusion with Encoder-Decoder Transformers
Abstract:
Diffusion model, a new generative modelling paradigm, has achieved great success in image, audio, and video generation. However, considering the discrete categorical nature of text, it is not trivial to extend continuous diffusion models to natural language, and text diffusion models are less studied. Sequence-to-sequence text generation is one of the essential natural language processing topics. In this work, we apply diffusion models to approach sequence-to-sequence text generation, and explore whether the superiority generation performance of diffusion model can transfer to natural language domain. We propose SeqDiffuSeq, a text diffusion model for sequence-to-sequence generation. SeqDiffuSeq uses an encoder-decoder Transformers architecture to model denoising function. In order to improve generation quality, SeqDiffuSeq combines the self-conditioning technique and a newly proposed adaptive noise schedule technique. The adaptive noise schedule has the difficulty of denoising evenly distributed across time steps, and considers exclusive noise schedules for tokens at different positional order. Experiment results illustrate the good performance on sequence-to-sequence generation in terms of text quality and inference time.
Authors:Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Wenqing Zhang, Song Bai, Jiashi Feng, Mike Zheng Shou
Title: PV3D: A 3D Generative Model for Portrait Video Generation
Abstract:
Recent advances in generative adversarial networks (GANs) have demonstrated the capabilities of generating stunning photo-realistic portrait images. While some prior works have applied such image GANs to unconditional 2D portrait video generation and static 3D portrait synthesis, there are few works successfully extending GANs for generating 3D-aware portrait videos. In this work, we propose PV3D, the first generative framework that can synthesize multi-view consistent portrait videos. Specifically, our method extends the recent static 3D-aware image GAN to the video domain by generalizing the 3D implicit neural representation to model the spatio-temporal space. To introduce motion dynamics to the generation process, we develop a motion generator by stacking multiple motion layers to generate motion features via modulated convolution. To alleviate motion ambiguities caused by camera/human motions, we propose a simple yet effective camera condition strategy for PV3D, enabling both temporal and multi-view consistent video generation. Moreover, PV3D introduces two discriminators for regularizing the spatial and temporal domains to ensure the plausibility of the generated portrait videos. These elaborated designs enable PV3D to generate 3D-aware motion-plausible portrait videos with high-quality appearance and geometry, significantly outperforming prior works. As a result, PV3D is able to support many downstream applications such as animating static portraits and view-consistent video motion editing. Code and models are released at https://showlab.github.io/pv3d.
Authors:Chenhao Ji, Chaohui Yu, Junyao Gao, Fan Wang, Cairong Zhao
Title: CamPVG: Camera-Controlled Panoramic Video Generation with Epipolar-Aware Diffusion
Abstract:
Recently, camera-controlled video generation has seen rapid development, offering more precise control over video generation. However, existing methods predominantly focus on camera control in perspective projection video generation, while geometrically consistent panoramic video generation remains challenging. This limitation is primarily due to the inherent complexities in panoramic pose representation and spherical projection. To address this issue, we propose CamPVG, the first diffusion-based framework for panoramic video generation guided by precise camera poses. We achieve camera position encoding for panoramic images and cross-view feature aggregation based on spherical projection. Specifically, we propose a panoramic Plücker embedding that encodes camera extrinsic parameters through spherical coordinate transformation. This pose encoder effectively captures panoramic geometry, overcoming the limitations of traditional methods when applied to equirectangular projections. Additionally, we introduce a spherical epipolar module that enforces geometric constraints through adaptive attention masking along epipolar lines. This module enables fine-grained cross-view feature aggregation, substantially enhancing the quality and consistency of generated panoramic videos. Extensive experiments demonstrate that our method generates high-quality panoramic videos consistent with camera trajectories, far surpassing existing methods in panoramic video generation.
Authors:Tianyi Yan, Wencheng Han, Xia Zhou, Xueyang Zhang, Kun Zhan, Cheng-zhong Xu, Jianbing Shen
Title: RLGF: Reinforcement Learning with Geometric Feedback for Autonomous Driving Video Generation
Abstract:
Synthetic data is crucial for advancing autonomous driving (AD) systems, yet current state-of-the-art video generation models, despite their visual realism, suffer from subtle geometric distortions that limit their utility for downstream perception tasks. We identify and quantify this critical issue, demonstrating a significant performance gap in 3D object detection when using synthetic versus real data. To address this, we introduce Reinforcement Learning with Geometric Feedback (RLGF), RLGF uniquely refines video diffusion models by incorporating rewards from specialized latent-space AD perception models. Its core components include an efficient Latent-Space Windowing Optimization technique for targeted feedback during diffusion, and a Hierarchical Geometric Reward (HGR) system providing multi-level rewards for point-line-plane alignment, and scene occupancy coherence. To quantify these distortions, we propose GeoScores. Applied to models like DiVE on nuScenes, RLGF substantially reduces geometric errors (e.g., VP error by 21\%, Depth error by 57\%) and dramatically improves 3D object detection mAP by 12.7\%, narrowing the gap to real-data performance. RLGF offers a plug-and-play solution for generating geometrically sound and reliable synthetic videos for AD development.
Authors:Kien T. Pham, Yingqing He, Yazhou Xing, Qifeng Chen, Long Chen
Title: SpA2V: Harnessing Spatial Auditory Cues for Audio-driven Spatially-aware Video Generation
Abstract:
Audio-driven video generation aims to synthesize realistic videos that align with input audio recordings, akin to the human ability to visualize scenes from auditory input. However, existing approaches predominantly focus on exploring semantic information, such as the classes of sounding sources present in the audio, limiting their ability to generate videos with accurate content and spatial composition. In contrast, we humans can not only naturally identify the semantic categories of sounding sources but also determine their deeply encoded spatial attributes, including locations and movement directions. This useful information can be elucidated by considering specific spatial indicators derived from the inherent physical properties of sound, such as loudness or frequency. As prior methods largely ignore this factor, we present SpA2V, the first framework explicitly exploits these spatial auditory cues from audios to generate videos with high semantic and spatial correspondence. SpA2V decomposes the generation process into two stages: 1) Audio-guided Video Planning: We meticulously adapt a state-of-the-art MLLM for a novel task of harnessing spatial and semantic cues from input audio to construct Video Scene Layouts (VSLs). This serves as an intermediate representation to bridge the gap between the audio and video modalities. 2) Layout-grounded Video Generation: We develop an efficient and effective approach to seamlessly integrate VSLs as conditional guidance into pre-trained diffusion models, enabling VSL-grounded video generation in a training-free manner. Extensive experiments demonstrate that SpA2V excels in generating realistic videos with semantic and spatial alignment to the input audios.
Authors:Jiaxiu Jiang, Wenbo Li, Jingjing Ren, Yuping Qiu, Yong Guo, Xiaogang Xu, Han Wu, Wangmeng Zuo
Title: LoViC: Efficient Long Video Generation with Context Compression
Abstract:
Despite recent advances in diffusion transformers (DiTs) for text-to-video generation, scaling to long-duration content remains challenging due to the quadratic complexity of self-attention. While prior efforts -- such as sparse attention and temporally autoregressive models -- offer partial relief, they often compromise temporal coherence or scalability. We introduce LoViC, a DiT-based framework trained on million-scale open-domain videos, designed to produce long, coherent videos through a segment-wise generation process. At the core of our approach is FlexFormer, an expressive autoencoder that jointly compresses video and text into unified latent representations. It supports variable-length inputs with linearly adjustable compression rates, enabled by a single query token design based on the Q-Former architecture. Additionally, by encoding temporal context through position-aware mechanisms, our model seamlessly supports prediction, retradiction, interpolation, and multi-shot generation within a unified paradigm. Extensive experiments across diverse tasks validate the effectiveness and versatility of our approach.
Authors:Xiaoyi Bao, Jindi Lv, Xiaofeng Wang, Zheng Zhu, Xinze Chen, YuKun Zhou, Jiancheng Lv, Xingang Wang, Guan Huang
Title: GigaVideo-1: Advancing Video Generation via Automatic Feedback with 4 GPU-Hours Fine-Tuning
Abstract:
Recent progress in diffusion models has greatly enhanced video generation quality, yet these models still require fine-tuning to improve specific dimensions like instance preservation, motion rationality, composition, and physical plausibility. Existing fine-tuning approaches often rely on human annotations and large-scale computational resources, limiting their practicality. In this work, we propose GigaVideo-1, an efficient fine-tuning framework that advances video generation without additional human supervision. Rather than injecting large volumes of high-quality data from external sources, GigaVideo-1 unlocks the latent potential of pre-trained video diffusion models through automatic feedback. Specifically, we focus on two key aspects of the fine-tuning process: data and optimization. To improve fine-tuning data, we design a prompt-driven data engine that constructs diverse, weakness-oriented training samples. On the optimization side, we introduce a reward-guided training strategy, which adaptively weights samples using feedback from pre-trained vision-language models with a realism constraint. We evaluate GigaVideo-1 on the VBench-2.0 benchmark using Wan2.1 as the baseline across 17 evaluation dimensions. Experiments show that GigaVideo-1 consistently improves performance on almost all the dimensions with an average gain of about 4% using only 4 GPU-hours. Requiring no manual annotations and minimal real data, GigaVideo-1 demonstrates both effectiveness and efficiency. Code, model, and data will be publicly available.
Authors:Jiaxu Zhang, Xianfang Zeng, Xin Chen, Wei Zuo, Gang Yu, Guosheng Lin, Zhigang Tu
Title: DreamDance: Animating Character Art via Inpainting Stable Gaussian Worlds
Abstract:
This paper presents DreamDance, a novel character art animation framework capable of producing stable, consistent character and scene motion conditioned on precise camera trajectories. To achieve this, we re-formulate the animation task as two inpainting-based steps: Camera-aware Scene Inpainting and Pose-aware Video Inpainting. The first step leverages a pre-trained image inpainting model to generate multi-view scene images from the reference art and optimizes a stable large-scale Gaussian field, which enables coarse background video rendering with camera trajectories. However, the rendered video is rough and only conveys scene motion. To resolve this, the second step trains a pose-aware video inpainting model that injects the dynamic character into the scene video while enhancing background quality. Specifically, this model is a DiT-based video generation model with a gating strategy that adaptively integrates the character's appearance and pose information into the base background video. Through extensive experiments, we demonstrate the effectiveness and generalizability of DreamDance, producing high-quality and consistent character animations with remarkable camera dynamics.
Authors:Liu Liu, Xiaofeng Wang, Guosheng Zhao, Keyu Li, Wenkang Qin, Jiaxiong Qiu, Zheng Zhu, Guan Huang, Zhizhong Su
Title: RoboTransfer: Geometry-Consistent Video Diffusion for Robotic Visual Policy Transfer
Abstract:
Imitation Learning has become a fundamental approach in robotic manipulation. However, collecting large-scale real-world robot demonstrations is prohibitively expensive. Simulators offer a cost-effective alternative, but the sim-to-real gap make it extremely challenging to scale. Therefore, we introduce RoboTransfer, a diffusion-based video generation framework for robotic data synthesis. Unlike previous methods, RoboTransfer integrates multi-view geometry with explicit control over scene components, such as background and object attributes. By incorporating cross-view feature interactions and global depth/normal conditions, RoboTransfer ensures geometry consistency across views. This framework allows fine-grained control, including background edits and object swaps. Experiments demonstrate that RoboTransfer is capable of generating multi-view videos with enhanced geometric consistency and visual fidelity. In addition, policies trained on the data generated by RoboTransfer achieve a 33.3% relative improvement in the success rate in the DIFF-OBJ setting and a substantial 251% relative improvement in the more challenging DIFF-ALL scenario. Explore more demos on our project page: https://horizonrobotics.github.io/robot_lab/robotransfer
Authors:Shuo Yang, Haocheng Xi, Yilong Zhao, Muyang Li, Jintao Zhang, Han Cai, Yujun Lin, Xiuyu Li, Chenfeng Xu, Kelly Peng, Jianfei Chen, Song Han, Kurt Keutzer, Ion Stoica
Title: Sparse VideoGen2: Accelerate Video Generation with Sparse Attention via Semantic-Aware Permutation
Abstract:
Diffusion Transformers (DiTs) are essential for video generation but suffer from significant latency due to the quadratic complexity of attention. By computing only critical tokens, sparse attention reduces computational costs and offers a promising acceleration approach. However, we identify that existing methods fail to approach optimal generation quality under the same computation budget for two reasons: (1) Inaccurate critical token identification: current methods cluster tokens based on position rather than semantics, leading to imprecise aggregated representations. (2) Excessive computation waste: critical tokens are scattered among non-critical ones, leading to wasted computation on GPUs, which are optimized for processing contiguous tokens. In this paper, we propose SVG2, a training-free framework that maximizes identification accuracy and minimizes computation waste, achieving a Pareto frontier trade-off between generation quality and efficiency. The core of SVG2 is semantic-aware permutation, which clusters and reorders tokens based on semantic similarity using k-means. This approach ensures both a precise cluster representation, improving identification accuracy, and a densified layout of critical tokens, enabling efficient computation without padding. Additionally, SVG2 integrates top-p dynamic budget control and customized kernel implementations, achieving up to 2.30x and 1.89x speedup while maintaining a PSNR of up to 30 and 26 on HunyuanVideo and Wan 2.1, respectively.
Authors:Jingjing Ren, Wenbo Li, Zhongdao Wang, Haoze Sun, Bangzhen Liu, Haoyu Chen, Jiaqi Xu, Aoxue Li, Shifeng Zhang, Bin Shao, Yong Guo, Lei Zhu
Title: Turbo2K: Towards Ultra-Efficient and High-Quality 2K Video Synthesis
Abstract:
Demand for 2K video synthesis is rising with increasing consumer expectations for ultra-clear visuals. While diffusion transformers (DiTs) have demonstrated remarkable capabilities in high-quality video generation, scaling them to 2K resolution remains computationally prohibitive due to quadratic growth in memory and processing costs. In this work, we propose Turbo2K, an efficient and practical framework for generating detail-rich 2K videos while significantly improving training and inference efficiency. First, Turbo2K operates in a highly compressed latent space, reducing computational complexity and memory footprint, making high-resolution video synthesis feasible. However, the high compression ratio of the VAE and limited model size impose constraints on generative quality. To mitigate this, we introduce a knowledge distillation strategy that enables a smaller student model to inherit the generative capacity of a larger, more powerful teacher model. Our analysis reveals that, despite differences in latent spaces and architectures, DiTs exhibit structural similarities in their internal representations, facilitating effective knowledge transfer. Second, we design a hierarchical two-stage synthesis framework that first generates multi-level feature at lower resolutions before guiding high-resolution video generation. This approach ensures structural coherence and fine-grained detail refinement while eliminating redundant encoding-decoding overhead, further enhancing computational efficiency.Turbo2K achieves state-of-the-art efficiency, generating 5-second, 24fps, 2K videos with significantly reduced computational cost. Compared to existing methods, Turbo2K is up to 20$\times$ faster for inference, making high-resolution video generation more scalable and practical for real-world applications.
Authors:Yuxin Wen, Jim Wu, Ajay Jain, Tom Goldstein, Ashwinee Panda
Title: Analysis of Attention in Video Diffusion Transformers
Abstract:
We conduct an in-depth analysis of attention in video diffusion transformers (VDiTs) and report a number of novel findings. We identify three key properties of attention in VDiTs: Structure, Sparsity, and Sinks. Structure: We observe that attention patterns across different VDiTs exhibit similar structure across different prompts, and that we can make use of the similarity of attention patterns to unlock video editing via self-attention map transfer. Sparse: We study attention sparsity in VDiTs, finding that proposed sparsity methods do not work for all VDiTs, because some layers that are seemingly sparse cannot be sparsified. Sinks: We make the first study of attention sinks in VDiTs, comparing and contrasting them to attention sinks in language models. We propose a number of future directions that can make use of our insights to improve the efficiency-quality Pareto frontier for VDiTs.
Authors:Boyuan Wang, Xiaofeng Wang, Chaojun Ni, Guosheng Zhao, Zhiqin Yang, Zheng Zhu, Muyang Zhang, Yukun Zhou, Xinze Chen, Guan Huang, Lihong Liu, Xingang Wang
Title: HumanDreamer: Generating Controllable Human-Motion Videos via Decoupled Generation
Abstract:
Human-motion video generation has been a challenging task, primarily due to the difficulty inherent in learning human body movements. While some approaches have attempted to drive human-centric video generation explicitly through pose control, these methods typically rely on poses derived from existing videos, thereby lacking flexibility. To address this, we propose HumanDreamer, a decoupled human video generation framework that first generates diverse poses from text prompts and then leverages these poses to generate human-motion videos. Specifically, we propose MotionVid, the largest dataset for human-motion pose generation. Based on the dataset, we present MotionDiT, which is trained to generate structured human-motion poses from text prompts. Besides, a novel LAMA loss is introduced, which together contribute to a significant improvement in FID by 62.4%, along with respective enhancements in R-precision for top1, top2, and top3 by 41.8%, 26.3%, and 18.3%, thereby advancing both the Text-to-Pose control accuracy and FID metrics. Our experiments across various Pose-to-Video baselines demonstrate that the poses generated by our method can produce diverse and high-quality human-motion videos. Furthermore, our model can facilitate other downstream tasks, such as pose sequence prediction and 2D-3D motion lifting.
Authors:Zhuoling Li, Hossein Rahmani, Qiuhong Ke, Jun Liu
Title: LongDiff: Training-Free Long Video Generation in One Go
Abstract:
Video diffusion models have recently achieved remarkable results in video generation. Despite their encouraging performance, most of these models are mainly designed and trained for short video generation, leading to challenges in maintaining temporal consistency and visual details in long video generation. In this paper, we propose LongDiff, a novel training-free method consisting of carefully designed components \ -- Position Mapping (PM) and Informative Frame Selection (IFS) \ -- to tackle two key challenges that hinder short-to-long video generation generalization: temporal position ambiguity and information dilution. Our LongDiff unlocks the potential of off-the-shelf video diffusion models to achieve high-quality long video generation in one go. Extensive experiments demonstrate the efficacy of our method.
Authors:Hongyu Zhang, Yufan Deng, Shenghai Yuan, Peng Jin, Zesen Cheng, Yian Zhao, Chang Liu, Jie Chen
Title: MagicComp: Training-free Dual-Phase Refinement for Compositional Video Generation
Abstract:
Text-to-video (T2V) generation has made significant strides with diffusion models. However, existing methods still struggle with accurately binding attributes, determining spatial relationships, and capturing complex action interactions between multiple subjects. To address these limitations, we propose MagicComp, a training-free method that enhances compositional T2V generation through dual-phase refinement. Specifically, (1) During the Conditioning Stage: We introduce the Semantic Anchor Disambiguation to reinforces subject-specific semantics and resolve inter-subject ambiguity by progressively injecting the directional vectors of semantic anchors into original text embedding; (2) During the Denoising Stage: We propose Dynamic Layout Fusion Attention, which integrates grounding priors and model-adaptive spatial perception to flexibly bind subjects to their spatiotemporal regions through masked attention modulation. Furthermore, MagicComp is a model-agnostic and versatile approach, which can be seamlessly integrated into existing T2V architectures. Extensive experiments on T2V-CompBench and VBench demonstrate that MagicComp outperforms state-of-the-art methods, highlighting its potential for applications such as complex prompt-based and trajectory-controllable video generation. Project page: https://hong-yu-zhang.github.io/MagicComp-Page/.
Authors:Bojia Zi, Penghui Ruan, Marco Chen, Xianbiao Qi, Shaozhe Hao, Shihao Zhao, Youze Huang, Bin Liang, Rong Xiao, Kam-Fai Wong
Title: Señorita-2M: A High-Quality Instruction-based Dataset for General Video Editing by Video Specialists
Abstract:
Recent advancements in video generation have spurred the development of video editing techniques, which can be divided into inversion-based and end-to-end methods. However, current video editing methods still suffer from several challenges. Inversion-based methods, though training-free and flexible, are time-consuming during inference, struggle with fine-grained editing instructions, and produce artifacts and jitter. On the other hand, end-to-end methods, which rely on edited video pairs for training, offer faster inference speeds but often produce poor editing results due to a lack of high-quality training video pairs. In this paper, to close the gap in end-to-end methods, we introduce Señorita-2M, a high-quality video editing dataset. Señorita-2M consists of approximately 2 millions of video editing pairs. It is built by crafting four high-quality, specialized video editing models, each crafted and trained by our team to achieve state-of-the-art editing results. We also propose a filtering pipeline to eliminate poorly edited video pairs. Furthermore, we explore common video editing architectures to identify the most effective structure based on current pre-trained generative model. Extensive experiments show that our dataset can help to yield remarkably high-quality video editing results. More details are available at https://senorita-2m-dataset.github.io.
Authors:Hangliang Ding, Dacheng Li, Runlong Su, Peiyuan Zhang, Zhijie Deng, Ion Stoica, Hao Zhang
Title: Efficient-vDiT: Efficient Video Diffusion Transformers With Attention Tile
Abstract:
Despite the promise of synthesizing high-fidelity videos, Diffusion Transformers (DiTs) with 3D full attention suffer from expensive inference due to the complexity of attention computation and numerous sampling steps. For example, the popular Open-Sora-Plan model consumes more than 9 minutes for generating a single video of 29 frames. This paper addresses the inefficiency issue from two aspects: 1) Prune the 3D full attention based on the redundancy within video data; We identify a prevalent tile-style repetitive pattern in the 3D attention maps for video data, and advocate a new family of sparse 3D attention that holds a linear complexity w.r.t. the number of video frames. 2) Shorten the sampling process by adopting existing multi-step consistency distillation; We split the entire sampling trajectory into several segments and perform consistency distillation within each one to activate few-step generation capacities. We further devise a three-stage training pipeline to conjoin the low-complexity attention and few-step generation capacities. Notably, with 0.1% pretraining data, we turn the Open-Sora-Plan-1.2 model into an efficient one that is 7.4x -7.8x faster for 29 and 93 frames 720p video generation with a marginal performance trade-off in VBench. In addition, we demonstrate that our approach is amenable to distributed inference, achieving an additional 3.91x speedup when running on 4 GPUs with sequence parallelism.
Authors:Xinyao Liao, Xianfang Zeng, Liao Wang, Gang Yu, Guosheng Lin, Chi Zhang
Title: MotionAgent: Fine-grained Controllable Video Generation via Motion Field Agent
Abstract:
We propose MotionAgent, enabling fine-grained motion control for text-guided image-to-video generation. The key technique is the motion field agent that converts motion information in text prompts into explicit motion fields, providing flexible and precise motion guidance. Specifically, the agent extracts the object movement and camera motion described in the text and converts them into object trajectories and camera extrinsics, respectively. An analytical optical flow composition module integrates these motion representations in 3D space and projects them into a unified optical flow. An optical flow adapter takes the flow to control the base image-to-video diffusion model for generating fine-grained controlled videos. The significant improvement in the Video-Text Camera Motion metrics on VBench indicates that our method achieves precise control over camera motion. We construct a subset of VBench to evaluate the alignment of motion information in the text and the generated video, outperforming other advanced models on motion generation accuracy.
Authors:Yulong Li, Yuxuan Zhang, Feilong Tang, Ming Hu, Zhixiang Lu, Haochen Xue, Jianghao Wu, Mian Zhou, Kang Dang, Chong Li, Yifang Wang, Imran Razzak, Jionglong Su
Title: Beyond Words: AuralLLM and SignMST-C for Sign Language Production and Bidirectional Accessibility
Abstract:
Sign language is the primary communication mode for 72 million hearing-impaired individuals worldwide, necessitating effective bidirectional Sign Language Production and Sign Language Translation systems. However, functional bidirectional systems require a unified linguistic environment, hindered by the lack of suitable unified datasets, particularly those providing the necessary pose information for accurate Sign Language Production (SLP) evaluation. Concurrently, current SLP evaluation methods like back-translation ignore pose accuracy, and high-quality coordinated generation remains challenging. To create this crucial environment and overcome these challenges, we introduce CNText2Sign and CNSign, which together constitute the first unified dataset aimed at supporting bidirectional accessibility systems for Chinese sign language; CNText2Sign provides 15,000 natural language-to-sign mappings and standardized skeletal keypoints for 8,643 vocabulary items supporting pose assessment. Building upon this foundation, we propose the AuraLLM model, which leverages a decoupled architecture with CNText2Sign's pose data for novel direct gesture accuracy assessment. The model employs retrieval augmentation and Cascading Vocabulary Resolution to handle semantic mapping and out-of-vocabulary words and achieves all-scenario production with controllable coordination of gestures and facial expressions via pose-conditioned video synthesis. Concurrently, our Sign Language Translation model SignMST-C employs targeted self-supervised pretraining for dynamic feature capture, achieving new SOTA results on PHOENIX2014-T with BLEU-4 scores up to 32.08. AuraLLM establishes a strong performance baseline on CNText2Sign with a BLEU-4 score of 50.41 under direct evaluation.
Authors:Zhefan Rao, Liya Ji, Yazhou Xing, Runtao Liu, Zhaoyang Liu, Jiaxin Xie, Ziqiao Peng, Yingqing He, Qifeng Chen
Title: ModelGrow: Continual Text-to-Video Pre-training with Model Expansion and Language Understanding Enhancement
Abstract:
Text-to-video (T2V) generation has gained significant attention recently. However, the costs of training a T2V model from scratch remain persistently high, and there is considerable room for improving the generation performance, especially under limited computation resources. This work explores the continual general pre-training of text-to-video models, enabling the model to "grow" its abilities based on a pre-trained foundation, analogous to how humans acquire new knowledge based on past experiences. There is a lack of extensive study of the continual pre-training techniques in T2V generation. In this work, we take the initial step toward exploring this task systematically and propose ModelGrow. Specifically, we break this task into two key aspects: increasing model capacity and improving semantic understanding. For model capacity, we introduce several novel techniques to expand the model size, enabling it to store new knowledge and improve generation performance. For semantic understanding, we propose a method that leverages large language models as advanced text encoders, integrating them into T2V models to enhance language comprehension and guide generation results according to detailed prompts. This approach enables the model to achieve better semantic alignment, particularly in response to complex user prompts. Extensive experiments demonstrate the effectiveness of our method across various metrics. The source code and the model of ModelGrow will be publicly available.
Authors:Yazhou Xing, Yang Fei, Yingqing He, Jingye Chen, Jiaxin Xie, Xiaowei Chi, Qifeng Chen
Title: Large Motion Video Autoencoding with Cross-modal Video VAE
Abstract:
Learning a robust video Variational Autoencoder (VAE) is essential for reducing video redundancy and facilitating efficient video generation. Directly applying image VAEs to individual frames in isolation can result in temporal inconsistencies and suboptimal compression rates due to a lack of temporal compression. Existing Video VAEs have begun to address temporal compression; however, they often suffer from inadequate reconstruction performance. In this paper, we present a novel and powerful video autoencoder capable of high-fidelity video encoding. First, we observe that entangling spatial and temporal compression by merely extending the image VAE to a 3D VAE can introduce motion blur and detail distortion artifacts. Thus, we propose temporal-aware spatial compression to better encode and decode the spatial information. Additionally, we integrate a lightweight motion compression model for further temporal compression. Second, we propose to leverage the textual information inherent in text-to-video datasets and incorporate text guidance into our model. This significantly enhances reconstruction quality, particularly in terms of detail preservation and temporal stability. Third, we further improve the versatility of our model through joint training on both images and videos, which not only enhances reconstruction quality but also enables the model to perform both image and video autoencoding. Extensive evaluations against strong recent baselines demonstrate the superior performance of our method. The project website can be found at~\href{https://yzxing87.github.io/vae/}{https://yzxing87.github.io/vae/}.
Authors:Runtao Liu, Haoyu Wu, Zheng Ziqiang, Chen Wei, Yingqing He, Renjie Pi, Qifeng Chen
Title: VideoDPO: Omni-Preference Alignment for Video Diffusion Generation
Abstract:
Recent progress in generative diffusion models has greatly advanced text-to-video generation. While text-to-video models trained on large-scale, diverse datasets can produce varied outputs, these generations often deviate from user preferences, highlighting the need for preference alignment on pre-trained models. Although Direct Preference Optimization (DPO) has demonstrated significant improvements in language and image generation, we pioneer its adaptation to video diffusion models and propose a VideoDPO pipeline by making several key adjustments. Unlike previous image alignment methods that focus solely on either (i) visual quality or (ii) semantic alignment between text and videos, we comprehensively consider both dimensions and construct a preference score accordingly, which we term the OmniScore. We design a pipeline to automatically collect preference pair data based on the proposed OmniScore and discover that re-weighting these pairs based on the score significantly impacts overall preference alignment. Our experiments demonstrate substantial improvements in both visual quality and semantic alignment, ensuring that no preference aspect is neglected. Code and data will be shared at https://videodpo.github.io/.
Authors:Yukun Wang, Longguang Wang, Zhiyuan Ma, Qibin Hu, Kai Xu, Yulan Guo
Title: VideoDirector: Precise Video Editing via Text-to-Video Models
Abstract:
Despite the typical inversion-then-editing paradigm using text-to-image (T2I) models has demonstrated promising results, directly extending it to text-to-video (T2V) models still suffers severe artifacts such as color flickering and content distortion. Consequently, current video editing methods primarily rely on T2I models, which inherently lack temporal-coherence generative ability, often resulting in inferior editing results. In this paper, we attribute the failure of the typical editing paradigm to: 1) Tightly Spatial-temporal Coupling. The vanilla pivotal-based inversion strategy struggles to disentangle spatial-temporal information in the video diffusion model; 2) Complicated Spatial-temporal Layout. The vanilla cross-attention control is deficient in preserving the unedited content. To address these limitations, we propose a spatial-temporal decoupled guidance (STDG) and multi-frame null-text optimization strategy to provide pivotal temporal cues for more precise pivotal inversion. Furthermore, we introduce a self-attention control strategy to maintain higher fidelity for precise partial content editing. Experimental results demonstrate that our method (termed VideoDirector) effectively harnesses the powerful temporal generation capabilities of T2V models, producing edited videos with state-of-the-art performance in accuracy, motion smoothness, realism, and fidelity to unedited content.
Authors:Xiaofeng Wang, Kang Zhao, Feng Liu, Jiayu Wang, Guosheng Zhao, Xiaoyi Bao, Zheng Zhu, Yingya Zhang, Xingang Wang
Title: EgoVid-5M: A Large-Scale Video-Action Dataset for Egocentric Video Generation
Abstract:
Video generation has emerged as a promising tool for world simulation, leveraging visual data to replicate real-world environments. Within this context, egocentric video generation, which centers on the human perspective, holds significant potential for enhancing applications in virtual reality, augmented reality, and gaming. However, the generation of egocentric videos presents substantial challenges due to the dynamic nature of egocentric viewpoints, the intricate diversity of actions, and the complex variety of scenes encountered. Existing datasets are inadequate for addressing these challenges effectively. To bridge this gap, we present EgoVid-5M, the first high-quality dataset specifically curated for egocentric video generation. EgoVid-5M encompasses 5 million egocentric video clips and is enriched with detailed action annotations, including fine-grained kinematic control and high-level textual descriptions. To ensure the integrity and usability of the dataset, we implement a sophisticated data cleaning pipeline designed to maintain frame consistency, action coherence, and motion smoothness under egocentric conditions. Furthermore, we introduce EgoDreamer, which is capable of generating egocentric videos driven simultaneously by action descriptions and kinematic control signals. The EgoVid-5M dataset, associated action annotations, and all data cleansing metadata will be released for the advancement of research in egocentric video generation.
Authors:Bingyi Kang, Yang Yue, Rui Lu, Zhijie Lin, Yang Zhao, Kaixin Wang, Gao Huang, Jiashi Feng
Title: How Far is Video Generation from World Model: A Physical Law Perspective
Abstract:
OpenAI's Sora highlights the potential of video generation for developing world models that adhere to fundamental physical laws. However, the ability of video generation models to discover such laws purely from visual data without human priors can be questioned. A world model learning the true law should give predictions robust to nuances and correctly extrapolate on unseen scenarios. In this work, we evaluate across three key scenarios: in-distribution, out-of-distribution, and combinatorial generalization. We developed a 2D simulation testbed for object movement and collisions to generate videos deterministically governed by one or more classical mechanics laws. This provides an unlimited supply of data for large-scale experimentation and enables quantitative evaluation of whether the generated videos adhere to physical laws. We trained diffusion-based video generation models to predict object movements based on initial frames. Our scaling experiments show perfect generalization within the distribution, measurable scaling behavior for combinatorial generalization, but failure in out-of-distribution scenarios. Further experiments reveal two key insights about the generalization mechanisms of these models: (1) the models fail to abstract general physical rules and instead exhibit "case-based" generalization behavior, i.e., mimicking the closest training example; (2) when generalizing to new cases, models are observed to prioritize different factors when referencing training data: color > size > velocity > shape. Our study suggests that scaling alone is insufficient for video generation models to uncover fundamental physical laws, despite its role in Sora's broader success. See our project page at https://phyworld.github.io
Authors:Guosheng Zhao, Chaojun Ni, Xiaofeng Wang, Zheng Zhu, Xueyang Zhang, Yida Wang, Guan Huang, Xinze Chen, Boyuan Wang, Youyi Zhang, Wenjun Mei, Xingang Wang
Title: DriveDreamer4D: World Models Are Effective Data Machines for 4D Driving Scene Representation
Abstract:
Closed-loop simulation is essential for advancing end-to-end autonomous driving systems. Contemporary sensor simulation methods, such as NeRF and 3DGS, rely predominantly on conditions closely aligned with training data distributions, which are largely confined to forward-driving scenarios. Consequently, these methods face limitations when rendering complex maneuvers (e.g., lane change, acceleration, deceleration). Recent advancements in autonomous-driving world models have demonstrated the potential to generate diverse driving videos. However, these approaches remain constrained to 2D video generation, inherently lacking the spatiotemporal coherence required to capture intricacies of dynamic driving environments. In this paper, we introduce DriveDreamer4D, which enhances 4D driving scene representation leveraging world model priors. Specifically, we utilize the world model as a data machine to synthesize novel trajectory videos, where structured conditions are explicitly leveraged to control the spatial-temporal consistency of traffic elements. Besides, the cousin data training strategy is proposed to facilitate merging real and synthetic data for optimizing 4DGS. To our knowledge, DriveDreamer4D is the first to utilize video generation models for improving 4D reconstruction in driving scenarios. Experimental results reveal that DriveDreamer4D significantly enhances generation quality under novel trajectory views, achieving a relative improvement in FID by 32.1%, 46.4%, and 16.3% compared to PVG, S3Gaussian, and Deformable-GS. Moreover, DriveDreamer4D markedly enhances the spatiotemporal coherence of driving agents, which is verified by a comprehensive user study and the relative increases of 22.6%, 43.5%, and 15.6% in the NTA-IoU metric.
Authors:Hyungjin Chung, Dohun Lee, Jong Chul Ye
Title: ACDC: Autoregressive Coherent Multimodal Generation using Diffusion Correction
Abstract:
Autoregressive models (ARMs) and diffusion models (DMs) represent two leading paradigms in generative modeling, each excelling in distinct areas: ARMs in global context modeling and long-sequence generation, and DMs in generating high-quality local contexts, especially for continuous data such as images and short videos. However, ARMs often suffer from exponential error accumulation over long sequences, leading to physically implausible results, while DMs are limited by their local context generation capabilities. In this work, we introduce Autoregressive Coherent multimodal generation with Diffusion Correction (ACDC), a zero-shot approach that combines the strengths of both ARMs and DMs at the inference stage without the need for additional fine-tuning. ACDC leverages ARMs for global context generation and memory-conditioned DMs for local correction, ensuring high-quality outputs by correcting artifacts in generated multimodal tokens. In particular, we propose a memory module based on large language models (LLMs) that dynamically adjusts the conditioning texts for the DMs, preserving crucial global context information. Our experiments on multimodal tasks, including coherent multi-frame story generation and autoregressive video generation, demonstrate that ACDC effectively mitigates the accumulation of errors and significantly enhances the quality of generated outputs, achieving superior performance while remaining agnostic to specific ARM and DM architectures. Project page: https://acdc2025.github.io/
Authors:Yuchen Hu, Yu Gu, Chenxing Li, Rilin Chen, Dong Yu
Title: Video-to-Audio Generation with Fine-grained Temporal Semantics
Abstract:
With recent advances of AIGC, video generation have gained a surge of research interest in both academia and industry (e.g., Sora). However, it remains a challenge to produce temporally aligned audio to synchronize the generated video, considering the complicated semantic information included in the latter. In this work, inspired by the recent success of text-to-audio (TTA) generation, we first investigate the video-to-audio (VTA) generation framework based on latent diffusion model (LDM). Similar to latest pioneering exploration in VTA, our preliminary results also show great potentials of LDM in VTA task, but it still suffers from sub-optimal temporal alignment. To this end, we propose to enhance the temporal alignment of VTA with frame-level semantic information. With the recently popular grounding segment anything model (Grounding SAM), we can extract the fine-grained semantics in video frames to enable VTA to produce better-aligned audio signal. Extensive experiments demonstrate the effectiveness of our system on both objective and subjective evaluation metrics, which shows both better audio quality and fine-grained temporal alignment.
Authors:Yong Ren, Chenxing Li, Manjie Xu, Wei Liang, Yu Gu, Rilin Chen, Dong Yu
Title: STA-V2A: Video-to-Audio Generation with Semantic and Temporal Alignment
Abstract:
Visual and auditory perception are two crucial ways humans experience the world. Text-to-video generation has made remarkable progress over the past year, but the absence of harmonious audio in generated video limits its broader applications. In this paper, we propose Semantic and Temporal Aligned Video-to-Audio (STA-V2A), an approach that enhances audio generation from videos by extracting both local temporal and global semantic video features and combining these refined video features with text as cross-modal guidance. To address the issue of information redundancy in videos, we propose an onset prediction pretext task for local temporal feature extraction and an attentive pooling module for global semantic feature extraction. To supplement the insufficient semantic information in videos, we propose a Latent Diffusion Model with Text-to-Audio priors initialization and cross-modal guidance. We also introduce Audio-Audio Align, a new metric to assess audio-temporal alignment. Subjective and objective metrics demonstrate that our method surpasses existing Video-to-Audio models in generating audio with better quality, semantic consistency, and temporal alignment. The ablation experiment validated the effectiveness of each module. Audio samples are available at https://y-ren16.github.io/STAV2A.
Authors:Manjie Xu, Chenxing Li, Xinyi Tu, Yong Ren, Rilin Chen, Yu Gu, Wei Liang, Dong Yu
Title: Video-to-Audio Generation with Hidden Alignment
Abstract:
Generating semantically and temporally aligned audio content in accordance with video input has become a focal point for researchers, particularly following the remarkable breakthrough in text-to-video generation. In this work, we aim to offer insights into the video-to-audio generation paradigm, focusing on three crucial aspects: vision encoders, auxiliary embeddings, and data augmentation techniques. Beginning with a foundational model built on a simple yet surprisingly effective intuition, we explore various vision encoders and auxiliary embeddings through ablation studies. Employing a comprehensive evaluation pipeline that emphasizes generation quality and video-audio synchronization alignment, we demonstrate that our model exhibits state-of-the-art video-to-audio generation capabilities. Furthermore, we provide critical insights into the impact of different data augmentation methods on enhancing the generation framework's overall capacity. We showcase possibilities to advance the challenge of generating synchronized audio from semantic and temporal perspectives. We hope these insights will serve as a stepping stone toward developing more realistic and accurate audio-visual generation models.
Authors:Bojia Zi, Shihao Zhao, Xianbiao Qi, Jianan Wang, Yukai Shi, Qianyu Chen, Bin Liang, Kam-Fai Wong, Lei Zhang
Title: CoCoCo: Improving Text-Guided Video Inpainting for Better Consistency, Controllability and Compatibility
Abstract:
Recent advancements in video generation have been remarkable, yet many existing methods struggle with issues of consistency and poor text-video alignment. Moreover, the field lacks effective techniques for text-guided video inpainting, a stark contrast to the well-explored domain of text-guided image inpainting. To this end, this paper proposes a novel text-guided video inpainting model that achieves better consistency, controllability and compatibility. Specifically, we introduce a simple but efficient motion capture module to preserve motion consistency, and design an instance-aware region selection instead of a random region selection to obtain better textual controllability, and utilize a novel strategy to inject some personalized models into our CoCoCo model and thus obtain better model compatibility. Extensive experiments show that our model can generate high-quality video clips. Meanwhile, our model shows better motion consistency, textual controllability and model compatibility. More details are shown in [cococozibojia.github.io](cococozibojia.github.io).
Authors:Guosheng Zhao, Xiaofeng Wang, Zheng Zhu, Xinze Chen, Guan Huang, Xiaoyi Bao, Xingang Wang
Title: DriveDreamer-2: LLM-Enhanced World Models for Diverse Driving Video Generation
Abstract:
World models have demonstrated superiority in autonomous driving, particularly in the generation of multi-view driving videos. However, significant challenges still exist in generating customized driving videos. In this paper, we propose DriveDreamer-2, which builds upon the framework of DriveDreamer and incorporates a Large Language Model (LLM) to generate user-defined driving videos. Specifically, an LLM interface is initially incorporated to convert a user's query into agent trajectories. Subsequently, a HDMap, adhering to traffic regulations, is generated based on the trajectories. Ultimately, we propose the Unified Multi-View Model to enhance temporal and spatial coherence in the generated driving videos. DriveDreamer-2 is the first world model to generate customized driving videos, it can generate uncommon driving videos (e.g., vehicles abruptly cut in) in a user-friendly manner. Besides, experimental results demonstrate that the generated videos enhance the training of driving perception methods (e.g., 3D detection and tracking). Furthermore, video generation quality of DriveDreamer-2 surpasses other state-of-the-art methods, showcasing FID and FVD scores of 11.2 and 55.7, representing relative improvements of 30% and 50%.
Authors:Joseph Cho, Fachrina Dewi Puspitasari, Sheng Zheng, Jingyao Zheng, Lik-Hang Lee, Tae-Ho Kim, Choong Seon Hong, Chaoning Zhang
Title: Sora as an AGI World Model? A Complete Survey on Text-to-Video Generation
Abstract:
The evolution of video generation from text, starting with animating MNIST numbers to simulating the physical world with Sora, has progressed at a breakneck speed over the past seven years. While often seen as a superficial expansion of the predecessor text-to-image generation model, text-to-video generation models are developed upon carefully engineered constituents. Here, we systematically discuss these elements consisting of but not limited to core building blocks (vision, language, and temporal) and supporting features from the perspective of their contributions to achieving a world model. We employ the PRISMA framework to curate 97 impactful research articles from renowned scientific databases primarily studying video synthesis using text conditions. Upon minute exploration of these manuscripts, we observe that text-to-video generation involves more intricate technologies beyond the plain extension of text-to-image generation. Our additional review into the shortcomings of Sora-generated videos pinpoints the call for more in-depth studies in various enabling aspects of video generation such as dataset, evaluation metric, efficient architecture, and human-controlled generation. Finally, we conclude that the study of the text-to-video generation may still be in its infancy, requiring contribution from the cross-discipline research community towards its advancement as the first step to realize artificial general intelligence (AGI).
Authors:Xiaoyu Shi, Zhaoyang Huang, Fu-Yun Wang, Weikang Bian, Dasong Li, Yi Zhang, Manyuan Zhang, Ka Chun Cheung, Simon See, Hongwei Qin, Jifeng Dai, Hongsheng Li
Title: Motion-I2V: Consistent and Controllable Image-to-Video Generation with Explicit Motion Modeling
Abstract:
We introduce Motion-I2V, a novel framework for consistent and controllable image-to-video generation (I2V). In contrast to previous methods that directly learn the complicated image-to-video mapping, Motion-I2V factorizes I2V into two stages with explicit motion modeling. For the first stage, we propose a diffusion-based motion field predictor, which focuses on deducing the trajectories of the reference image's pixels. For the second stage, we propose motion-augmented temporal attention to enhance the limited 1-D temporal attention in video latent diffusion models. This module can effectively propagate reference image's feature to synthesized frames with the guidance of predicted trajectories from the first stage. Compared with existing methods, Motion-I2V can generate more consistent videos even at the presence of large motion and viewpoint variation. By training a sparse trajectory ControlNet for the first stage, Motion-I2V can support users to precisely control motion trajectories and motion regions with sparse trajectory and region annotations. This offers more controllability of the I2V process than solely relying on textual instructions. Additionally, Motion-I2V's second stage naturally supports zero-shot video-to-video translation. Both qualitative and quantitative comparisons demonstrate the advantages of Motion-I2V over prior approaches in consistent and controllable image-to-video generation. Please see our project page at https://xiaoyushi97.github.io/Motion-I2V/.
Authors:Xiaofeng Wang, Zheng Zhu, Guan Huang, Boyuan Wang, Xinze Chen, Jiwen Lu
Title: WorldDreamer: Towards General World Models for Video Generation via Predicting Masked Tokens
Abstract:
World models play a crucial role in understanding and predicting the dynamics of the world, which is essential for video generation. However, existing world models are confined to specific scenarios such as gaming or driving, limiting their ability to capture the complexity of general world dynamic environments. Therefore, we introduce WorldDreamer, a pioneering world model to foster a comprehensive comprehension of general world physics and motions, which significantly enhances the capabilities of video generation. Drawing inspiration from the success of large language models, WorldDreamer frames world modeling as an unsupervised visual sequence modeling challenge. This is achieved by mapping visual inputs to discrete tokens and predicting the masked ones. During this process, we incorporate multi-modal prompts to facilitate interaction within the world model. Our experiments show that WorldDreamer excels in generating videos across different scenarios, including natural scenes and driving environments. WorldDreamer showcases versatility in executing tasks such as text-to-video conversion, image-tovideo synthesis, and video editing. These results underscore WorldDreamer's effectiveness in capturing dynamic elements within diverse general world environments.
Authors:Senmao Li, Taihang Hu, Joost van de Weijer, Fahad Shahbaz Khan, Tao Liu, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming Cheng, Jian Yang
Title: Faster Diffusion: Rethinking the Role of the Encoder for Diffusion Model Inference
Abstract:
One of the main drawback of diffusion models is the slow inference time for image generation. Among the most successful approaches to addressing this problem are distillation methods. However, these methods require considerable computational resources. In this paper, we take another approach to diffusion model acceleration. We conduct a comprehensive study of the UNet encoder and empirically analyze the encoder features. This provides insights regarding their changes during the inference process. In particular, we find that encoder features change minimally, whereas the decoder features exhibit substantial variations across different time-steps. This insight motivates us to omit encoder computation at certain adjacent time-steps and reuse encoder features of previous time-steps as input to the decoder in multiple time-steps. Importantly, this allows us to perform decoder computation in parallel, further accelerating the denoising process. Additionally, we introduce a prior noise injection method to improve the texture details in the generated image. Besides the standard text-to-image task, we also validate our approach on other tasks: text-to-video, personalized generation and reference-guided generation. Without utilizing any knowledge distillation technique, our approach accelerates both the Stable Diffusion (SD) and DeepFloyd-IF model sampling by 41$\%$ and 24$\%$ respectively, and DiT model sampling by 34$\%$, while maintaining high-quality generation performance.
Authors:Yilun Du, Mengjiao Yang, Pete Florence, Fei Xia, Ayzaan Wahid, Brian Ichter, Pierre Sermanet, Tianhe Yu, Pieter Abbeel, Joshua B. Tenenbaum, Leslie Kaelbling, Andy Zeng, Jonathan Tompson
Title: Video Language Planning
Abstract:
We are interested in enabling visual planning for complex long-horizon tasks in the space of generated videos and language, leveraging recent advances in large generative models pretrained on Internet-scale data. To this end, we present video language planning (VLP), an algorithm that consists of a tree search procedure, where we train (i) vision-language models to serve as both policies and value functions, and (ii) text-to-video models as dynamics models. VLP takes as input a long-horizon task instruction and current image observation, and outputs a long video plan that provides detailed multimodal (video and language) specifications that describe how to complete the final task. VLP scales with increasing computation budget where more computation time results in improved video plans, and is able to synthesize long-horizon video plans across different robotics domains: from multi-object rearrangement, to multi-camera bi-arm dexterous manipulation. Generated video plans can be translated into real robot actions via goal-conditioned policies, conditioned on each intermediate frame of the generated video. Experiments show that VLP substantially improves long-horizon task success rates compared to prior methods on both simulated and real robots (across 3 hardware platforms).
Authors:Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen, Jiagang Zhu, Jiwen Lu
Title: DriveDreamer: Towards Real-world-driven World Models for Autonomous Driving
Abstract:
World models, especially in autonomous driving, are trending and drawing extensive attention due to their capacity for comprehending driving environments. The established world model holds immense potential for the generation of high-quality driving videos, and driving policies for safe maneuvering. However, a critical limitation in relevant research lies in its predominant focus on gaming environments or simulated settings, thereby lacking the representation of real-world driving scenarios. Therefore, we introduce DriveDreamer, a pioneering world model entirely derived from real-world driving scenarios. Regarding that modeling the world in intricate driving scenes entails an overwhelming search space, we propose harnessing the powerful diffusion model to construct a comprehensive representation of the complex environment. Furthermore, we introduce a two-stage training pipeline. In the initial phase, DriveDreamer acquires a deep understanding of structured traffic constraints, while the subsequent stage equips it with the ability to anticipate future states. The proposed DriveDreamer is the first world model established from real-world driving scenarios. We instantiate DriveDreamer on the challenging nuScenes benchmark, and extensive experiments verify that DriveDreamer empowers precise, controllable video generation that faithfully captures the structural constraints of real-world traffic scenarios. Additionally, DriveDreamer enables the generation of realistic and reasonable driving policies, opening avenues for interaction and practical applications.
Authors:Shengming Yin, Chenfei Wu, Jian Liang, Jie Shi, Houqiang Li, Gong Ming, Nan Duan
Title: DragNUWA: Fine-grained Control in Video Generation by Integrating Text, Image, and Trajectory
Abstract:
Controllable video generation has gained significant attention in recent years. However, two main limitations persist: Firstly, most existing works focus on either text, image, or trajectory-based control, leading to an inability to achieve fine-grained control in videos. Secondly, trajectory control research is still in its early stages, with most experiments being conducted on simple datasets like Human3.6M. This constraint limits the models' capability to process open-domain images and effectively handle complex curved trajectories. In this paper, we propose DragNUWA, an open-domain diffusion-based video generation model. To tackle the issue of insufficient control granularity in existing works, we simultaneously introduce text, image, and trajectory information to provide fine-grained control over video content from semantic, spatial, and temporal perspectives. To resolve the problem of limited open-domain trajectory control in current research, We propose trajectory modeling with three aspects: a Trajectory Sampler (TS) to enable open-domain control of arbitrary trajectories, a Multiscale Fusion (MF) to control trajectories in different granularities, and an Adaptive Training (AT) strategy to generate consistent videos following trajectories. Our experiments validate the effectiveness of DragNUWA, demonstrating its superior performance in fine-grained control in video generation. The homepage link is \url{https://www.microsoft.com/en-us/research/project/dragnuwa/}
Authors:Mengjiao Yang, Yilun Du, Bo Dai, Dale Schuurmans, Joshua B. Tenenbaum, Pieter Abbeel
Title: Probabilistic Adaptation of Text-to-Video Models
Abstract:
Large text-to-video models trained on internet-scale data have demonstrated exceptional capabilities in generating high-fidelity videos from arbitrary textual descriptions. However, adapting these models to tasks with limited domain-specific data, such as animation or robotics videos, poses a significant computational challenge, since finetuning a pretrained large model can be prohibitively expensive. Inspired by how a small modifiable component (e.g., prompts, prefix-tuning) can adapt a large language model to perform new tasks without requiring access to the model weights, we investigate how to adapt a large pretrained text-to-video model to a variety of downstream domains and tasks without finetuning. In answering this question, we propose Video Adapter, which leverages the score function of a large pretrained video diffusion model as a probabilistic prior to guide the generation of a task-specific small video model. Our experiments show that Video Adapter is capable of incorporating the broad knowledge and preserving the high fidelity of a large pretrained video model in a task-specific small video model that is able to generate high-quality yet specialized videos on a variety of tasks such as animation, egocentric modeling, and modeling of simulated and real-world robotics data. More videos can be found on the website https://video-adapter.github.io/.
Authors:Minsu Kim, Chae Won Kim, Yong Man Ro
Title: Deep Visual Forced Alignment: Learning to Align Transcription with Talking Face Video
Abstract:
Forced alignment refers to a technology that time-aligns a given transcription with a corresponding speech. However, as the forced alignment technologies have developed using speech audio, they might fail in alignment when the input speech audio is noise-corrupted or is not accessible. We focus on that there is another component that the speech can be inferred from, the speech video (i.e., talking face video). Since the drawbacks of audio-based forced alignment can be complemented using the visual information when the audio signal is under poor condition, we try to develop a novel video-based forced alignment method. However, different from audio forced alignment, it is challenging to develop a reliable visual forced alignment technology for the following two reasons: 1) Visual Speech Recognition (VSR) has a much lower performance compared to audio-based Automatic Speech Recognition (ASR), and 2) the translation from text to video is not reliable, so the method typically used for building audio forced alignment cannot be utilized in developing visual forced alignment. In order to alleviate these challenges, in this paper, we propose a new method that is appropriate for visual forced alignment, namely Deep Visual Forced Alignment (DVFA). The proposed DVFA can align the input transcription (i.e., sentence) with the talking face video without accessing the speech audio. Moreover, by augmenting the alignment task with anomaly case detection, DVFA can detect mismatches between the input transcription and the input video while performing the alignment. Therefore, we can robustly align the text with the talking face video even if there exist error words in the text. Through extensive experiments, we show the effectiveness of the proposed DVFA not only in the alignment task but also in interpreting the outputs of VSR models.
Authors:Yilun Du, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Joshua B. Tenenbaum, Dale Schuurmans, Pieter Abbeel
Title: Learning Universal Policies via Text-Guided Video Generation
Abstract:
A goal of artificial intelligence is to construct an agent that can solve a wide variety of tasks. Recent progress in text-guided image synthesis has yielded models with an impressive ability to generate complex novel images, exhibiting combinatorial generalization across domains. Motivated by this success, we investigate whether such tools can be used to construct more general-purpose agents. Specifically, we cast the sequential decision making problem as a text-conditioned video generation problem, where, given a text-encoded specification of a desired goal, a planner synthesizes a set of future frames depicting its planned actions in the future, after which control actions are extracted from the generated video. By leveraging text as the underlying goal specification, we are able to naturally and combinatorially generalize to novel goals. The proposed policy-as-video formulation can further represent environments with different state and action spaces in a unified space of images, which, for example, enables learning and generalization across a variety of robot manipulation tasks. Finally, by leveraging pretrained language embeddings and widely available videos from the internet, the approach enables knowledge transfer through predicting highly realistic video plans for real robots.
Authors:Lin Zhang, Zefan Cai, Yufan Zhou, Shentong Mo, Jinhong Lin, Cheng-En Wu, Yibing Wei, Yijing Zhang, Ruiyi Zhang, Wen Xiao, Tong Sun, Junjie Hu, Pedro Morgado
Title: Scaling Up Audio-Synchronized Visual Animation: An Efficient Training Paradigm
Abstract:
Recent advances in audio-synchronized visual animation enable control of video content using audios from specific classes. However, existing methods rely heavily on expensive manual curation of high-quality, class-specific training videos, posing challenges to scaling up to diverse audio-video classes in the open world. In this work, we propose an efficient two-stage training paradigm to scale up audio-synchronized visual animation using abundant but noisy videos. In stage one, we automatically curate large-scale videos for pretraining, allowing the model to learn diverse but imperfect audio-video alignments. In stage two, we finetune the model on manually curated high-quality examples, but only at a small scale, significantly reducing the required human effort. We further enhance synchronization by allowing each frame to access rich audio context via multi-feature conditioning and window attention. To efficiently train the model, we leverage pretrained text-to-video generator and audio encoders, introducing only 1.9\% additional trainable parameters to learn audio-conditioning capability without compromising the generator's prior knowledge. For evaluation, we introduce AVSync48, a benchmark with videos from 48 classes, which is 3$\times$ more diverse than previous benchmarks. Extensive experiments show that our method significantly reduces reliance on manual curation by over 10$\times$, while generalizing to many open classes.
Authors:Hao Tang, Ling Shao, Zhenyu Zhang, Luc Van Gool, Nicu Sebe
Title: Spatial-Temporal Graph Mamba for Music-Guided Dance Video Synthesis
Abstract:
We propose a novel spatial-temporal graph Mamba (STG-Mamba) for the music-guided dance video synthesis task, i.e., to translate the input music to a dance video. STG-Mamba consists of two translation mappings: music-to-skeleton translation and skeleton-to-video translation. In the music-to-skeleton translation, we introduce a novel spatial-temporal graph Mamba (STGM) block to effectively construct skeleton sequences from the input music, capturing dependencies between joints in both the spatial and temporal dimensions. For the skeleton-to-video translation, we propose a novel self-supervised regularization network to translate the generated skeletons, along with a conditional image, into a dance video. Lastly, we collect a new skeleton-to-video translation dataset from the Internet, containing 54,944 video clips. Extensive experiments demonstrate that STG-Mamba achieves significantly better results than existing methods.
Authors:Zhiyu Tan, Hao Yang, Luozheng Qin, Jia Gong, Mengping Yang, Hao Li
Title: Omni-Video: Democratizing Unified Video Understanding and Generation
Abstract:
Notable breakthroughs in unified understanding and generation modeling have led to remarkable advancements in image understanding, reasoning, production and editing, yet current foundational models predominantly focus on processing images, creating a gap in the development of unified models for video understanding and generation. This report presents Omni-Video, an efficient and effective unified framework for video understanding, generation, as well as instruction-based editing. Our key insight is to teach existing multimodal large language models (MLLMs) to produce continuous visual clues that are used as the input of diffusion decoders, which produce high-quality videos conditioned on these visual clues. To fully unlock the potential of our system for unified video modeling, we integrate several technical improvements: 1) a lightweight architectural design that respectively attaches a vision head on the top of MLLMs and a adapter before the input of diffusion decoders, the former produce visual tokens for the latter, which adapts these visual tokens to the conditional space of diffusion decoders; and 2) an efficient multi-stage training scheme that facilitates a fast connection between MLLMs and diffusion decoders with limited data and computational resources. We empirically demonstrate that our model exhibits satisfactory generalization abilities across video generation, editing and understanding tasks.
Authors:Wenxu Qian, Chaoyue Wang, Hou Peng, Zhiyu Tan, Hao Li, Anxiang Zeng
Title: RDPO: Real Data Preference Optimization for Physics Consistency Video Generation
Abstract:
Video generation techniques have achieved remarkable advancements in visual quality, yet faithfully reproducing real-world physics remains elusive. Preference-based model post-training may improve physical consistency, but requires costly human-annotated datasets or reward models that are not yet feasible. To address these challenges, we present Real Data Preference Optimisation (RDPO), an annotation-free framework that distills physical priors directly from real-world videos. Specifically, the proposed RDPO reverse-samples real video sequences with a pre-trained generator to automatically build preference pairs that are statistically distinguishable in terms of physical correctness. A multi-stage iterative training schedule then guides the generator to obey physical laws increasingly well. Benefiting from the dynamic information explored from real videos, our proposed RDPO significantly improves the action coherence and physical realism of the generated videos. Evaluations on multiple benchmarks and human evaluations have demonstrated that RDPO achieves improvements across multiple dimensions. The source code and demonstration of this paper are available at: https://wwenxu.github.io/RDPO/
Authors:Chi Zhang, Chengjian Feng, Feng Yan, Qiming Zhang, Mingjin Zhang, Yujie Zhong, Jing Zhang, Lin Ma
Title: InstructVEdit: A Holistic Approach for Instructional Video Editing
Abstract:
Video editing according to instructions is a highly challenging task due to the difficulty in collecting large-scale, high-quality edited video pair data. This scarcity not only limits the availability of training data but also hinders the systematic exploration of model architectures and training strategies. While prior work has improved specific aspects of video editing (e.g., synthesizing a video dataset using image editing techniques or decomposed video editing training), a holistic framework addressing the above challenges remains underexplored. In this study, we introduce InstructVEdit, a full-cycle instructional video editing approach that: (1) establishes a reliable dataset curation workflow to initialize training, (2) incorporates two model architectural improvements to enhance edit quality while preserving temporal consistency, and (3) proposes an iterative refinement strategy leveraging real-world data to enhance generalization and minimize train-test discrepancies. Extensive experiments show that InstructVEdit achieves state-of-the-art performance in instruction-based video editing, demonstrating robust adaptability to diverse real-world scenarios. Project page: https://o937-blip.github.io/InstructVEdit.
Authors:Shoubin Yu, Difan Liu, Ziqiao Ma, Yicong Hong, Yang Zhou, Hao Tan, Joyce Chai, Mohit Bansal
Title: VEGGIE: Instructional Editing and Reasoning of Video Concepts with Grounded Generation
Abstract:
Recent video diffusion models have enhanced video editing, but it remains challenging to handle instructional editing and diverse tasks (e.g., adding, removing, changing) within a unified framework. In this paper, we introduce VEGGIE, a Video Editor with Grounded Generation from Instructions, a simple end-to-end framework that unifies video concept editing, grounding, and reasoning based on diverse user instructions. Specifically, given a video and text query, VEGGIE first utilizes an MLLM to interpret user intentions in instructions and ground them to the video contexts, generating frame-specific grounded task queries for pixel-space responses. A diffusion model then renders these plans and generates edited videos that align with user intent. To support diverse tasks and complex instructions, we employ a curriculum learning strategy: first aligning the MLLM and video diffusion model with large-scale instructional image editing data, followed by end-to-end fine-tuning on high-quality multitask video data. Additionally, we introduce a novel data synthesis pipeline to generate paired instructional video editing data for model training. It transforms static image data into diverse, high-quality video editing samples by leveraging Image-to-Video models to inject dynamics. VEGGIE shows strong performance in instructional video editing with different editing skills, outperforming the best instructional baseline as a versatile model, while other models struggle with multi-tasking. VEGGIE also excels in video object grounding and reasoning segmentation, where other baselines fail. We further reveal how the multiple tasks help each other and highlight promising applications like zero-shot multimodal instructional and in-context video editing.
Authors:Zhiyu Tan, Junyan Wang, Hao Yang, Luozheng Qin, Hesen Chen, Qiang Zhou, Hao Li
Title: Raccoon: Multi-stage Diffusion Training with Coarse-to-Fine Curating Videos
Abstract:
Text-to-video generation has demonstrated promising progress with the advent of diffusion models, yet existing approaches are limited by dataset quality and computational resources. To address these limitations, this paper presents a comprehensive approach that advances both data curation and model design. We introduce CFC-VIDS-1M, a high-quality video dataset constructed through a systematic coarse-to-fine curation pipeline. The pipeline first evaluates video quality across multiple dimensions, followed by a fine-grained stage that leverages vision-language models to enhance text-video alignment and semantic richness. Building upon the curated dataset's emphasis on visual quality and temporal coherence, we develop RACCOON, a transformer-based architecture with decoupled spatial-temporal attention mechanisms. The model is trained through a progressive four-stage strategy designed to efficiently handle the complexities of video generation. Extensive experiments demonstrate that our integrated approach of high-quality data curation and efficient training strategy generates visually appealing and temporally coherent videos while maintaining computational efficiency. We will release our dataset, code, and models.
Authors:Xiaomeng Yang, Zhiyu Tan, Hao Li
Title: IPO: Iterative Preference Optimization for Text-to-Video Generation
Abstract:
Video foundation models have achieved significant advancement with the help of network upgrade as well as model scale-up. However, they are still hard to meet requirements of applications due to unsatisfied generation quality. To solve this problem, we propose to align video foundation models with human preferences from the perspective of post-training in this paper. Consequently, we introduce an Iterative Preference Optimization strategy to enhance generated video quality by incorporating human feedback. Specifically, IPO exploits a critic model to justify video generations for pairwise ranking as in Direct Preference Optimization or point-wise scoring as in Kahneman-Tversky Optimization. Given this, IPO optimizes video foundation models with guidance of signals from preference feedback, which helps improve generated video quality in subject consistency, motion smoothness and aesthetic quality, etc. In addition, IPO incorporates the critic model with the multi-modality large language model, which enables it to automatically assign preference labels without need of retraining or relabeling. In this way, IPO can efficiently perform multi-round preference optimization in an iterative manner, without the need of tediously manual labeling. Comprehensive experiments demonstrate that the proposed IPO can effectively improve the video generation quality of a pretrained model and help a model with only 2B parameters surpass the one with 5B parameters. Besides, IPO achieves new state-of-the-art performance on VBench benchmark.
Authors:Zhiyu Tan, WenXu Qian, Hesen Chen, Mengping Yang, Lei Chen, Hao Li
Title: E2ED^2:Direct Mapping from Noise to Data for Enhanced Diffusion Models
Abstract:
Diffusion models have established themselves as the de facto primary paradigm in visual generative modeling, revolutionizing the field through remarkable success across various diverse applications ranging from high-quality image synthesis to temporal aware video generation. Despite these advancements, three fundamental limitations persist, including 1) discrepancy between training and inference processes, 2) progressive information leakage throughout the noise corruption procedures, and 3) inherent constraints preventing effective integration of modern optimization criteria like perceptual and adversarial loss. To mitigate these critical challenges, we in this paper present a novel end-to-end learning paradigm that establishes direct optimization from the final generated samples to initial noises. Our proposed End-to-End Differentiable Diffusion, dubbed E2ED^2, introduces several key improvements: it eliminates the sequential training-sampling mismatch and intermediate information leakage via conceptualizing training as a direct transformation from isotropic Gaussian noise to the target data distribution. Additionally, such training framework enables seamless incorporation of adversarial and perceptual losses into the core optimization objective. Comprehensive evaluation across standard benchmarks including COCO30K and HW30K reveals that our method achieves substantial performance gains in terms of Fréchet Inception Distance (FID) and CLIP score, even with fewer sampling steps (less than 4). Our findings highlight that the end-to-end mechanism might pave the way for more robust and efficient solutions, \emph{i.e.,} combining diffusion stability with GAN-like discriminative optimization in an end-to-end manner.
Authors:Xinyuan Wu, Lili Wang, Ruoyu Chen, Bowen Liu, Weiyi Zhang, Xi Yang, Yifan Feng, Mingguang He, Danli Shi
Title: FFA Sora, video generation as fundus fluorescein angiography simulator
Abstract:
Fundus fluorescein angiography (FFA) is critical for diagnosing retinal vascular diseases, but beginners often struggle with image interpretation. This study develops FFA Sora, a text-to-video model that converts FFA reports into dynamic videos via a Wavelet-Flow Variational Autoencoder (WF-VAE) and a diffusion transformer (DiT). Trained on an anonymized dataset, FFA Sora accurately simulates disease features from the input text, as confirmed by objective metrics: Frechet Video Distance (FVD) = 329.78, Learned Perceptual Image Patch Similarity (LPIPS) = 0.48, and Visual-question-answering Score (VQAScore) = 0.61. Specific evaluations showed acceptable alignment between the generated videos and textual prompts, with BERTScore of 0.35. Additionally, the model demonstrated strong privacy-preserving performance in retrieval evaluations, achieving an average Recall@K of 0.073. Human assessments indicated satisfactory visual quality, with an average score of 1.570(scale: 1 = best, 5 = worst). This model addresses privacy concerns associated with sharing large-scale FFA data and enhances medical education.
Authors:Tianwei Yin, Qiang Zhang, Richard Zhang, William T. Freeman, Fredo Durand, Eli Shechtman, Xun Huang
Title: From Slow Bidirectional to Fast Autoregressive Video Diffusion Models
Abstract:
Current video diffusion models achieve impressive generation quality but struggle in interactive applications due to bidirectional attention dependencies. The generation of a single frame requires the model to process the entire sequence, including the future. We address this limitation by adapting a pretrained bidirectional diffusion transformer to an autoregressive transformer that generates frames on-the-fly. To further reduce latency, we extend distribution matching distillation (DMD) to videos, distilling 50-step diffusion model into a 4-step generator. To enable stable and high-quality distillation, we introduce a student initialization scheme based on teacher's ODE trajectories, as well as an asymmetric distillation strategy that supervises a causal student model with a bidirectional teacher. This approach effectively mitigates error accumulation in autoregressive generation, allowing long-duration video synthesis despite training on short clips. Our model achieves a total score of 84.27 on the VBench-Long benchmark, surpassing all previous video generation models. It enables fast streaming generation of high-quality videos at 9.4 FPS on a single GPU thanks to KV caching. Our approach also enables streaming video-to-video translation, image-to-video, and dynamic prompting in a zero-shot manner.
Authors:Zongyu Lin, Wei Liu, Chen Chen, Jiasen Lu, Wenze Hu, Tsu-Jui Fu, Jesse Allardice, Zhengfeng Lai, Liangchen Song, Bowen Zhang, Cha Chen, Yiran Fei, Yifan Jiang, Lezhi Li, Yizhou Sun, Kai-Wei Chang, Yinfei Yang
Title: STIV: Scalable Text and Image Conditioned Video Generation
Abstract:
The field of video generation has made remarkable advancements, yet there remains a pressing need for a clear, systematic recipe that can guide the development of robust and scalable models. In this work, we present a comprehensive study that systematically explores the interplay of model architectures, training recipes, and data curation strategies, culminating in a simple and scalable text-image-conditioned video generation method, named STIV. Our framework integrates image condition into a Diffusion Transformer (DiT) through frame replacement, while incorporating text conditioning via a joint image-text conditional classifier-free guidance. This design enables STIV to perform both text-to-video (T2V) and text-image-to-video (TI2V) tasks simultaneously. Additionally, STIV can be easily extended to various applications, such as video prediction, frame interpolation, multi-view generation, and long video generation, etc. With comprehensive ablation studies on T2I, T2V, and TI2V, STIV demonstrate strong performance, despite its simple design. An 8.7B model with 512 resolution achieves 83.1 on VBench T2V, surpassing both leading open and closed-source models like CogVideoX-5B, Pika, Kling, and Gen-3. The same-sized model also achieves a state-of-the-art result of 90.1 on VBench I2V task at 512 resolution. By providing a transparent and extensible recipe for building cutting-edge video generation models, we aim to empower future research and accelerate progress toward more versatile and reliable video generation solutions.
Authors:Yibin Wang, Zhiyu Tan, Junyan Wang, Xiaomeng Yang, Cheng Jin, Hao Li
Title: LiFT: Leveraging Human Feedback for Text-to-Video Model Alignment
Abstract:
Recent advances in text-to-video (T2V) generative models have shown impressive capabilities. However, these models are still inadequate in aligning synthesized videos with human preferences (e.g., accurately reflecting text descriptions), which is particularly difficult to address, as human preferences are subjective and challenging to formalize as objective functions. Existing studies train video quality assessment models that rely on human-annotated ratings for video evaluation but overlook the reasoning behind evaluations, limiting their ability to capture nuanced human criteria. Moreover, aligning T2V model using video-based human feedback remains unexplored. Therefore, this paper proposes LiFT, the first method designed to leverage human feedback for T2V model alignment. Specifically, we first construct a Human Rating Annotation dataset, LiFT-HRA, consisting of approximately 10k human annotations, each including a score and its corresponding rationale. Based on this, we train a reward model LiFT-Critic to learn reward function effectively, which serves as a proxy for human judgment, measuring the alignment between given videos and human expectations. Lastly, we leverage the learned reward function to align the T2V model by maximizing the reward-weighted likelihood. As a case study, we apply our pipeline to CogVideoX-2B, showing that the fine-tuned model outperforms the CogVideoX-5B across all 16 metrics, highlighting the potential of human feedback in improving the alignment and quality of synthesized videos.
Authors:Ao Fu, Yi Zhou, Tao Zhou, Yi Yang, Bojun Gao, Qun Li, Guobin Wu, Ling Shao
Title: Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey
Abstract:
World models and video generation are pivotal technologies in the domain of autonomous driving, each playing a critical role in enhancing the robustness and reliability of autonomous systems. World models, which simulate the dynamics of real-world environments, and video generation models, which produce realistic video sequences, are increasingly being integrated to improve situational awareness and decision-making capabilities in autonomous vehicles. This paper investigates the relationship between these two technologies, focusing on how their structural parallels, particularly in diffusion-based models, contribute to more accurate and coherent simulations of driving scenarios. We examine leading works such as JEPA, Genie, and Sora, which exemplify different approaches to world model design, thereby highlighting the lack of a universally accepted definition of world models. These diverse interpretations underscore the field's evolving understanding of how world models can be optimized for various autonomous driving tasks. Furthermore, this paper discusses the key evaluation metrics employed in this domain, such as Chamfer distance for 3D scene reconstruction and Fréchet Inception Distance (FID) for assessing the quality of generated video content. By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions, emphasizing the potential of these technologies to jointly advance the performance of autonomous driving systems. The findings presented in this paper aim to provide a comprehensive understanding of how the integration of video generation and world models can drive innovation in the development of safer and more reliable autonomous vehicles.
Authors:Weiyi Zhang, Jiancheng Yang, Ruoyu Chen, Siyu Huang, Pusheng Xu, Xiaolan Chen, Shanfu Lu, Hongyu Cao, Mingguang He, Danli Shi
Title: Fundus to Fluorescein Angiography Video Generation as a Retinal Generative Foundation Model
Abstract:
Fundus fluorescein angiography (FFA) is crucial for diagnosing and monitoring retinal vascular issues but is limited by its invasive nature and restricted accessibility compared to color fundus (CF) imaging. Existing methods that convert CF images to FFA are confined to static image generation, missing the dynamic lesional changes. We introduce Fundus2Video, an autoregressive generative adversarial network (GAN) model that generates dynamic FFA videos from single CF images. Fundus2Video excels in video generation, achieving an FVD of 1497.12 and a PSNR of 11.77. Clinical experts have validated the fidelity of the generated videos. Additionally, the model's generator demonstrates remarkable downstream transferability across ten external public datasets, including blood vessel segmentation, retinal disease diagnosis, systemic disease prediction, and multimodal retrieval, showcasing impressive zero-shot and few-shot capabilities. These findings position Fundus2Video as a powerful, non-invasive alternative to FFA exams and a versatile retinal generative foundation model that captures both static and temporal retinal features, enabling the representation of complex inter-modality relationships.
Authors:Lei Li, Yuanxin Liu, Linli Yao, Peiyuan Zhang, Chenxin An, Lean Wang, Xu Sun, Lingpeng Kong, Qi Liu
Title: Temporal Reasoning Transfer from Text to Video
Abstract:
Video Large Language Models (Video LLMs) have shown promising capabilities in video comprehension, yet they struggle with tracking temporal changes and reasoning about temporal relationships. While previous research attributed this limitation to the ineffective temporal encoding of visual inputs, our diagnostic study reveals that video representations contain sufficient information for even small probing classifiers to achieve perfect accuracy. Surprisingly, we find that the key bottleneck in Video LLMs' temporal reasoning capability stems from the underlying LLM's inherent difficulty with temporal concepts, as evidenced by poor performance on textual temporal question-answering tasks. Building on this discovery, we introduce the Textual Temporal reasoning Transfer (T3). T3 synthesizes diverse temporal reasoning tasks in pure text format from existing image-text datasets, addressing the scarcity of video samples with complex temporal scenarios. Remarkably, without using any video data, T3 enhances LongVA-7B's temporal understanding, yielding a 5.3 absolute accuracy improvement on the challenging TempCompass benchmark, which enables our model to outperform ShareGPT4Video-8B trained on 28,000 video samples. Additionally, the enhanced LongVA-7B model achieves competitive performance on comprehensive video benchmarks. For example, it achieves a 49.7 accuracy on the Temporal Reasoning task of Video-MME, surpassing powerful large-scale models such as InternVL-Chat-V1.5-20B and VILA1.5-40B. Further analysis reveals a strong correlation between textual and video temporal task performance, validating the efficacy of transferring temporal reasoning abilities from text to video domains.
Authors:Zhikai Li, Xuewen Liu, Dongrong Joe Fu, Jianquan Li, Qingyi Gu, Kurt Keutzer, Zhen Dong
Title: K-Sort Arena: Efficient and Reliable Benchmarking for Generative Models via K-wise Human Preferences
Abstract:
The rapid advancement of visual generative models necessitates efficient and reliable evaluation methods. Arena platform, which gathers user votes on model comparisons, can rank models with human preferences. However, traditional Arena methods, while established, require an excessive number of comparisons for ranking to converge and are vulnerable to preference noise in voting, suggesting the need for better approaches tailored to contemporary evaluation challenges. In this paper, we introduce K-Sort Arena, an efficient and reliable platform based on a key insight: images and videos possess higher perceptual intuitiveness than texts, enabling rapid evaluation of multiple samples simultaneously. Consequently, K-Sort Arena employs K-wise comparisons, allowing K models to engage in free-for-all competitions, which yield much richer information than pairwise comparisons. To enhance the robustness of the system, we leverage probabilistic modeling and Bayesian updating techniques. We propose an exploration-exploitation-based matchmaking strategy to facilitate more informative comparisons. In our experiments, K-Sort Arena exhibits 16.3x faster convergence compared to the widely used ELO algorithm. To further validate the superiority and obtain a comprehensive leaderboard, we collect human feedback via crowdsourced evaluations of numerous cutting-edge text-to-image and text-to-video models. Thanks to its high efficiency, K-Sort Arena can continuously incorporate emerging models and update the leaderboard with minimal votes. Our project has undergone several months of internal testing and is now available at https://huggingface.co/spaces/ksort/K-Sort-Arena
Authors:Yiying Yang, Fukun Yin, Jiayuan Fan, Xin Chen, Wanzhang Li, Gang Yu
Title: Scene123: One Prompt to 3D Scene Generation via Video-Assisted and Consistency-Enhanced MAE
Abstract:
As Artificial Intelligence Generated Content (AIGC) advances, a variety of methods have been developed to generate text, images, videos, and 3D objects from single or multimodal inputs, contributing efforts to emulate human-like cognitive content creation. However, generating realistic large-scale scenes from a single input presents a challenge due to the complexities involved in ensuring consistency across extrapolated views generated by models. Benefiting from recent video generation models and implicit neural representations, we propose Scene123, a 3D scene generation model, that not only ensures realism and diversity through the video generation framework but also uses implicit neural fields combined with Masked Autoencoders (MAE) to effectively ensures the consistency of unseen areas across views. Specifically, we initially warp the input image (or an image generated from text) to simulate adjacent views, filling the invisible areas with the MAE model. However, these filled images usually fail to maintain view consistency, thus we utilize the produced views to optimize a neural radiance field, enhancing geometric consistency. Moreover, to further enhance the details and texture fidelity of generated views, we employ a GAN-based Loss against images derived from the input image through the video generation model. Extensive experiments demonstrate that our method can generate realistic and consistent scenes from a single prompt. Both qualitative and quantitative results indicate that our approach surpasses existing state-of-the-art methods. We show encourage video examples at https://yiyingyang12.github.io/Scene123.github.io/.
Authors:Zhiyu Tan, Xiaomeng Yang, Luozheng Qin, Hao Li
Title: VidGen-1M: A Large-Scale Dataset for Text-to-video Generation
Abstract:
The quality of video-text pairs fundamentally determines the upper bound of text-to-video models. Currently, the datasets used for training these models suffer from significant shortcomings, including low temporal consistency, poor-quality captions, substandard video quality, and imbalanced data distribution. The prevailing video curation process, which depends on image models for tagging and manual rule-based curation, leads to a high computational load and leaves behind unclean data. As a result, there is a lack of appropriate training datasets for text-to-video models. To address this problem, we present VidGen-1M, a superior training dataset for text-to-video models. Produced through a coarse-to-fine curation strategy, this dataset guarantees high-quality videos and detailed captions with excellent temporal consistency. When used to train the video generation model, this dataset has led to experimental results that surpass those obtained with other models.
Authors:Chen Xu, Tianhui Song, Weixin Feng, Xubin Li, Tiezheng Ge, Bo Zheng, Limin Wang
Title: Accelerating Image Generation with Sub-path Linear Approximation Model
Abstract:
Diffusion models have significantly advanced the state of the art in image, audio, and video generation tasks. However, their applications in practical scenarios are hindered by slow inference speed. Drawing inspiration from the approximation strategies utilized in consistency models, we propose the Sub-path Linear Approximation Model (SLAM), which accelerates diffusion models while maintaining high-quality image generation. SLAM treats the PF-ODE trajectory as a series of PF-ODE sub-paths divided by sampled points, and harnesses sub-path linear (SL) ODEs to form a progressive and continuous error estimation along each individual PF-ODE sub-path. The optimization on such SL-ODEs allows SLAM to construct denoising mappings with smaller cumulative approximated errors. An efficient distillation method is also developed to facilitate the incorporation of more advanced diffusion models, such as latent diffusion models. Our extensive experimental results demonstrate that SLAM achieves an efficient training regimen, requiring only 6 A100 GPU days to produce a high-quality generative model capable of 2 to 4-step generation with high performance. Comprehensive evaluations on LAION, MS COCO 2014, and MS COCO 2017 datasets also illustrate that SLAM surpasses existing acceleration methods in few-step generation tasks, achieving state-of-the-art performance both on FID and the quality of the generated images.
Authors:Weijie Li, Litong Gong, Yiran Zhu, Fanda Fan, Biao Wang, Tiezheng Ge, Bo Zheng
Title: Tuning-Free Noise Rectification for High Fidelity Image-to-Video Generation
Abstract:
Image-to-video (I2V) generation tasks always suffer from keeping high fidelity in the open domains. Traditional image animation techniques primarily focus on specific domains such as faces or human poses, making them difficult to generalize to open domains. Several recent I2V frameworks based on diffusion models can generate dynamic content for open domain images but fail to maintain fidelity. We found that two main factors of low fidelity are the loss of image details and the noise prediction biases during the denoising process. To this end, we propose an effective method that can be applied to mainstream video diffusion models. This method achieves high fidelity based on supplementing more precise image information and noise rectification. Specifically, given a specified image, our method first adds noise to the input image latent to keep more details, then denoises the noisy latent with proper rectification to alleviate the noise prediction biases. Our method is tuning-free and plug-and-play. The experimental results demonstrate the effectiveness of our approach in improving the fidelity of generated videos. For more image-to-video generated results, please refer to the project website: https://noise-rectification.github.io.
Authors:Litong Gong, Yiran Zhu, Weijie Li, Xiaoyang Kang, Biao Wang, Tiezheng Ge, Bo Zheng
Title: AtomoVideo: High Fidelity Image-to-Video Generation
Abstract:
Recently, video generation has achieved significant rapid development based on superior text-to-image generation techniques. In this work, we propose a high fidelity framework for image-to-video generation, named AtomoVideo. Based on multi-granularity image injection, we achieve higher fidelity of the generated video to the given image. In addition, thanks to high quality datasets and training strategies, we achieve greater motion intensity while maintaining superior temporal consistency and stability. Our architecture extends flexibly to the video frame prediction task, enabling long sequence prediction through iterative generation. Furthermore, due to the design of adapter training, our approach can be well combined with existing personalized models and controllable modules. By quantitatively and qualitatively evaluation, AtomoVideo achieves superior results compared to popular methods, more examples can be found on our project website: https://atomo-video.github.io/.
Authors:Long Ma, Zhiyuan Yan, Qinglang Guo, Yong Liao, Haiyang Yu, Pengyuan Zhou
Title: Detecting AI-Generated Video via Frame Consistency
Abstract:
The escalating quality of video generated by advanced video generation methods results in new security challenges, while there have been few relevant research efforts: 1) There is no open-source dataset for generated video detection, 2) No generated video detection method has been proposed so far. To this end, we propose an open-source dataset and a detection method for generated video for the first time. First, we propose a scalable dataset consisting of 964 prompts, covering various forgery targets, scenes, behaviors, and actions, as well as various generation models with different architectures and generation methods, including the most popular commercial models like OpenAI's Sora and Google's Veo. Second, we found via probing experiments that spatial artifact-based detectors lack generalizability. Hence, we propose a simple yet effective \textbf{de}tection model based on \textbf{f}rame \textbf{co}nsistency (\textbf{DeCoF}), which focuses on temporal artifacts by eliminating the impact of spatial artifacts during feature learning. Extensive experiments demonstrate the efficacy of DeCoF in detecting videos generated by unseen video generation models and confirm its powerful generalizability across several commercially proprietary models.
Authors:Joanna Materzynska, Josef Sivic, Eli Shechtman, Antonio Torralba, Richard Zhang, Bryan Russell
Title: NewMove: Customizing text-to-video models with novel motions
Abstract:
We introduce an approach for augmenting text-to-video generation models with customized motions, extending their capabilities beyond the motions depicted in the original training data. By leveraging a few video samples demonstrating specific movements as input, our method learns and generalizes the input motion patterns for diverse, text-specified scenarios. Our contributions are threefold. First, to achieve our results, we finetune an existing text-to-video model to learn a novel mapping between the depicted motion in the input examples to a new unique token. To avoid overfitting to the new custom motion, we introduce an approach for regularization over videos. Second, by leveraging the motion priors in a pretrained model, our method can produce novel videos featuring multiple people doing the custom motion, and can invoke the motion in combination with other motions. Furthermore, our approach extends to the multimodal customization of motion and appearance of individualized subjects, enabling the generation of videos featuring unique characters and distinct motions. Third, to validate our method, we introduce an approach for quantitatively evaluating the learned custom motion and perform a systematic ablation study. We show that our method significantly outperforms prior appearance-based customization approaches when extended to the motion customization task.
Authors:Haoyu Lu, Guoxing Yang, Nanyi Fei, Yuqi Huo, Zhiwu Lu, Ping Luo, Mingyu Ding
Title: VDT: General-purpose Video Diffusion Transformers via Mask Modeling
Abstract:
This work introduces Video Diffusion Transformer (VDT), which pioneers the use of transformers in diffusion-based video generation. It features transformer blocks with modularized temporal and spatial attention modules to leverage the rich spatial-temporal representation inherited in transformers. We also propose a unified spatial-temporal mask modeling mechanism, seamlessly integrated with the model, to cater to diverse video generation scenarios. VDT offers several appealing benefits. 1) It excels at capturing temporal dependencies to produce temporally consistent video frames and even simulate the physics and dynamics of 3D objects over time. 2) It facilitates flexible conditioning information, \eg, simple concatenation in the token space, effectively unifying different token lengths and modalities. 3) Pairing with our proposed spatial-temporal mask modeling mechanism, it becomes a general-purpose video diffuser for harnessing a range of tasks, including unconditional generation, video prediction, interpolation, animation, and completion, etc. Extensive experiments on these tasks spanning various scenarios, including autonomous driving, natural weather, human action, and physics-based simulation, demonstrate the effectiveness of VDT. Additionally, we present comprehensive studies on how \model handles conditioning information with the mask modeling mechanism, which we believe will benefit future research and advance the field. Project page: https:VDT-2023.github.io
Authors:Jingyuan Zhu, Huimin Ma, Jiansheng Chen, Jian Yuan
Title: MotionVideoGAN: A Novel Video Generator Based on the Motion Space Learned from Image Pairs
Abstract:
Video generation has achieved rapid progress benefiting from high-quality renderings provided by powerful image generators. We regard the video synthesis task as generating a sequence of images sharing the same contents but varying in motions. However, most previous video synthesis frameworks based on pre-trained image generators treat content and motion generation separately, leading to unrealistic generated videos. Therefore, we design a novel framework to build the motion space, aiming to achieve content consistency and fast convergence for video generation. We present MotionVideoGAN, a novel video generator synthesizing videos based on the motion space learned by pre-trained image pair generators. Firstly, we propose an image pair generator named MotionStyleGAN to generate image pairs sharing the same contents and producing various motions. Then we manage to acquire motion codes to edit one image in the generated image pairs and keep the other unchanged. The motion codes help us edit images within the motion space since the edited image shares the same contents with the other unchanged one in image pairs. Finally, we introduce a latent code generator to produce latent code sequences using motion codes for video generation. Our approach achieves state-of-the-art performance on the most complex video dataset ever used for unconditional video generation evaluation, UCF101.
Authors:Yanzuo Lu, Yuxi Ren, Xin Xia, Shanchuan Lin, Xing Wang, Xuefeng Xiao, Andy J. Ma, Xiaohua Xie, Jian-Huang Lai
Title: Adversarial Distribution Matching for Diffusion Distillation Towards Efficient Image and Video Synthesis
Abstract:
Distribution Matching Distillation (DMD) is a promising score distillation technique that compresses pre-trained teacher diffusion models into efficient one-step or multi-step student generators. Nevertheless, its reliance on the reverse Kullback-Leibler (KL) divergence minimization potentially induces mode collapse (or mode-seeking) in certain applications. To circumvent this inherent drawback, we propose Adversarial Distribution Matching (ADM), a novel framework that leverages diffusion-based discriminators to align the latent predictions between real and fake score estimators for score distillation in an adversarial manner. In the context of extremely challenging one-step distillation, we further improve the pre-trained generator by adversarial distillation with hybrid discriminators in both latent and pixel spaces. Different from the mean squared error used in DMD2 pre-training, our method incorporates the distributional loss on ODE pairs collected from the teacher model, and thus providing a better initialization for score distillation fine-tuning in the next stage. By combining the adversarial distillation pre-training with ADM fine-tuning into a unified pipeline termed DMDX, our proposed method achieves superior one-step performance on SDXL compared to DMD2 while consuming less GPU time. Additional experiments that apply multi-step ADM distillation on SD3-Medium, SD3.5-Large, and CogVideoX set a new benchmark towards efficient image and video synthesis.
Authors:Xuanyu Zhang, Weiqi Li, Shijie Zhao, Junlin Li, Li Zhang, Jian Zhang
Title: VQ-Insight: Teaching VLMs for AI-Generated Video Quality Understanding via Progressive Visual Reinforcement Learning
Abstract:
Recent advances in AI-generated content (AIGC) have led to the emergence of powerful text-to-video generation models. Despite these successes, evaluating the quality of AIGC-generated videos remains challenging due to limited generalization, lack of temporal awareness, heavy reliance on large-scale annotated datasets, and the lack of effective interaction with generation models. Most current approaches rely on supervised finetuning of vision-language models (VLMs), which often require large-scale annotated datasets and tend to decouple understanding and generation. To address these shortcomings, we propose VQ-Insight, a novel reasoning-style VLM framework for AIGC video quality assessment. Our approach features: (1) a progressive video quality learning scheme that combines image quality warm-up, general task-specific temporal learning, and joint optimization with the video generation model; (2) the design of multi-dimension scoring rewards, preference comparison rewards, and temporal modeling rewards to enhance both generalization and specialization in video quality evaluation. Extensive experiments demonstrate that VQ-Insight consistently outperforms state-of-the-art baselines in preference comparison, multi-dimension scoring, and natural video scoring, bringing significant improvements for video generation tasks.
Authors:Amazon AGI, Aaron Langford, Aayush Shah, Abhanshu Gupta, Abhimanyu Bhatter, Abhinav Goyal, Abhinav Mathur, Abhinav Mohanty, Abhishek Kumar, Abhishek Sethi, Abi Komma, Abner Pena, Achin Jain, Adam Kunysz, Adam Opyrchal, Adarsh Singh, Aditya Rawal, Adok Achar Budihal Prasad, Adrià de Gispert, Agnika Kumar, Aishwarya Aryamane, Ajay Nair, Akilan M, Akshaya Iyengar, Akshaya Vishnu Kudlu Shanbhogue, Alan He, Alessandra Cervone, Alex Loeb, Alex Zhang, Alexander Fu, Alexander Lisnichenko, Alexander Zhipa, Alexandros Potamianos, Ali Kebarighotbi, Aliakbar Daronkolaei, Alok Parmesh, Amanjot Kaur Samra, Ameen Khan, Amer Rez, Amir Saffari, Amit Agarwalla, Amit Jhindal, Amith Mamidala, Ammar Asmro, Amulya Ballakur, Anand Mishra, Anand Sridharan, Anastasiia Dubinina, Andre Lenz, Andreas Doerr, Andrew Keating, Andrew Leaver, Andrew Smith, Andrew Wirth, Andy Davey, Andy Rosenbaum, Andy Sohn, Angela Chan, Aniket Chakrabarti, Anil Ramakrishna, Anirban Roy, Anita Iyer, Anjali Narayan-Chen, Ankith Yennu, Anna Dabrowska, Anna Gawlowska, Anna Rumshisky, Anna Turek, Anoop Deoras, Anton Bezruchkin, Anup Prasad, Anupam Dewan, Anwith Kiran, Apoorv Gupta, Aram Galstyan, Aravind Manoharan, Arijit Biswas, Arindam Mandal, Arpit Gupta, Arsamkhan Pathan, Arun Nagarajan, Arushan Rajasekaram, Arvind Sundararajan, Ashwin Ganesan, Ashwin Swaminathan, Athanasios Mouchtaris, Audrey Champeau, Avik Ray, Ayush Jaiswal, Ayush Sharma, Bailey Keefer, Balamurugan Muthiah, Beatriz Leon-Millan, Ben Koopman, Ben Li, Benjamin Biggs, Benjamin Ott, Bhanu Vinzamuri, Bharath Venkatesh, Bhavana Ganesh, Bhoomit Vasani, Bill Byrne, Bill Hsu, Bincheng Wang, Blake King, Blazej Gorny, Bo Feng, Bo Zheng, Bodhisattwa Paul, Bofan Sun, Bofeng Luo, Bowen Chen, Bowen Xie, Boya Yu, Brendan Jugan, Brett Panosh, Brian Collins, Brian Thompson, Can Karakus, Can Liu, Carl Lambrecht, Carly Lin, Carolyn Wang, Carrie Yuan, Casey Loyda, Cezary Walczak, Chalapathi Choppa, Chandana Satya Prakash, Chankrisna Richy Meas, Charith Peris, Charles Recaido, Charlie Xu, Charul Sharma, Chase Kernan, Chayut Thanapirom, Chengwei Su, Chenhao Xu, Chenhao Yin, Chentao Ye, Chenyang Tao, Chethan Parameshwara, Ching-Yun Chang, Chong Li, Chris Hench, Chris Tran, Christophe Dupuy, Christopher Davis, Christopher DiPersio, Christos Christodoulopoulos, Christy Li, Chun Chen, Claudio Delli Bovi, Clement Chung, Cole Hawkins, Connor Harris, Corey Ropell, Cynthia He, DK Joo, Dae Yon Hwang, Dan Rosen, Daniel Elkind, Daniel Pressel, Daniel Zhang, Danielle Kimball, Daniil Sorokin, Dave Goodell, Davide Modolo, Dawei Zhu, Deepikaa Suresh, Deepti Ragha, Denis Filimonov, Denis Foo Kune, Denis Romasanta Rodriguez, Devamanyu Hazarika, Dhananjay Ram, Dhawal Parkar, Dhawal Patel, Dhwanil Desai, Dinesh Singh Rajput, Disha Sule, Diwakar Singh, Dmitriy Genzel, Dolly Goldenberg, Dongyi He, Dumitru Hanciu, Dushan Tharmal, Dzmitry Siankovich, Edi Cikovic, Edwin Abraham, Ekraam Sabir, Elliott Olson, Emmett Steven, Emre Barut, Eric Jackson, Ethan Wu, Evelyn Chen, Ezhilan Mahalingam, Fabian Triefenbach, Fan Yang, Fangyu Liu, Fanzi Wu, Faraz Tavakoli, Farhad Khozeimeh, Feiyang Niu, Felix Hieber, Feng Li, Firat Elbey, Florian Krebs, Florian Saupe, Florian Sprünken, Frank Fan, Furqan Khan, Gabriela De Vincenzo, Gagandeep Kang, George Ding, George He, George Yeung, Ghada Qaddoumi, Giannis Karamanolakis, Goeric Huybrechts, Gokul Maddali, Gonzalo Iglesias, Gordon McShane, Gozde Sahin, Guangtai Huang, Gukyeong Kwon, Gunnar A. Sigurdsson, Gurpreet Chadha, Gururaj Kosuru, Hagen Fuerstenau, Hah Hah, Haja Maideen, Hajime Hosokawa, Han Liu, Han-Kai Hsu, Hann Wang, Hao Li, Hao Yang, Haofeng Zhu, Haozheng Fan, Harman Singh, Harshavardhan Kaluvala, Hashim Saeed, He Xie, Helian Feng, Hendrix Luo, Hengzhi Pei, Henrik Nielsen, Hesam Ilati, Himanshu Patel, Hongshan Li, Hongzhou Lin, Hussain Raza, Ian Cullinan, Imre Kiss, Inbarasan Thangamani, Indrayani Fadnavis, Ionut Teodor Sorodoc, Irem Ertuerk, Iryna Yemialyanava, Ishan Soni, Ismail Jelal, Ivan Tse, Jack FitzGerald, Jack Zhao, Jackson Rothgeb, Jacky Lee, Jake Jung, Jakub Debski, Jakub Tomczak, James Jeun, James Sanders, Jason Crowley, Jay Lee, Jayakrishna Anvesh Paidy, Jayant Tiwari, Jean Farmer, Jeff Solinsky, Jenna Lau, Jeremy Savareese, Jerzy Zagorski, Ji Dai, Jiacheng, Gu, Jiahui Li, Jian, Zheng, Jianhua Lu, Jianhua Wang, Jiawei Dai, Jiawei Mo, Jiaxi Xu, Jie Liang, Jie Yang, Jim Logan, Jimit Majmudar, Jing Liu, Jinghong Miao, Jingru Yi, Jingyang Jin, Jiun-Yu Kao, Jixuan Wang, Jiyang Wang, Joe Pemberton, Joel Carlson, Joey Blundell, John Chin-Jew, John He, Jonathan Ho, Jonathan Hueser, Jonathan Lunt, Jooyoung Lee, Joshua Tan, Joyjit Chatterjee, Judith Gaspers, Jue Wang, Jun Fang, Jun Tang, Jun Wan, Jun Wu, Junlei Wang, Junyi Shi, Justin Chiu, Justin Satriano, Justin Yee, Jwala Dhamala, Jyoti Bansal, Kai Zhen, Kai-Wei Chang, Kaixiang Lin, Kalyan Raman, Kanthashree Mysore Sathyendra, Karabo Moroe, Karan Bhandarkar, Karan Kothari, Karolina Owczarzak, Karthick Gopalswamy, Karthick Ravi, Karthik Ramakrishnan, Karthika Arumugam, Kartik Mehta, Katarzyna Konczalska, Kavya Ravikumar, Ke Tran, Kechen Qin, Kelin Li, Kelvin Li, Ketan Kulkarni, Kevin Angelo Rodrigues, Keyur Patel, Khadige Abboud, Kiana Hajebi, Klaus Reiter, Kris Schultz, Krishna Anisetty, Krishna Kotnana, Kristen Li, Kruthi Channamallikarjuna, Krzysztof Jakubczyk, Kuba Pierewoj, Kunal Pal, Kunwar Srivastav, Kyle Bannerman, Lahari Poddar, Lakshmi Prasad, Larry Tseng, Laxmikant Naik, Leena Chennuru Vankadara, Lenon Minorics, Leo Liu, Leonard Lausen, Leonardo F. R. Ribeiro, Li Zhang, Lili Gehorsam, Ling Qi, Lisa Bauer, Lori Knapp, Lu Zeng, Lucas Tong, Lulu Wong, Luoxin Chen, Maciej Rudnicki, Mahdi Namazifar, Mahesh Jaliminche, Maira Ladeira Tanke, Manasi Gupta, Mandeep Ahlawat, Mani Khanuja, Mani Sundaram, Marcin Leyk, Mariusz Momotko, Markus Boese, Markus Dreyer, Markus Mueller, Mason Fu, Mateusz Górski, Mateusz Mastalerczyk, Matias Mora, Matt Johnson, Matt Scott, Matthew Wen, Max Barysau, Maya Boumerdassi, Maya Krishnan, Mayank Gupta, Mayank Hirani, Mayank Kulkarni, Meganathan Narayanasamy, Melanie Bradford, Melanie Gens, Melissa Burke, Meng Jin, Miao Chen, Michael Denkowski, Michael Heymel, Michael Krestyaninov, Michal Obirek, Michalina Wichorowska, Michał Miotk, Milosz Watroba, Mingyi Hong, Mingzhi Yu, Miranda Liu, Mohamed Gouda, Mohammad El-Shabani, Mohammad Ghavamzadeh, Mohit Bansal, Morteza Ziyadi, Nan Xia, Nathan Susanj, Nav Bhasin, Neha Goswami, Nehal Belgamwar, Nicolas Anastassacos, Nicolas Bergeron, Nidhi Jain, Nihal Jain, Niharika Chopparapu, Nik Xu, Nikko Strom, Nikolaos Malandrakis, Nimisha Mishra, Ninad Parkhi, Ninareh Mehrabi, Nishita Sant, Nishtha Gupta, Nitesh Sekhar, Nithin Rajeev, Nithish Raja Chidambaram, Nitish Dhar, Noor Bhagwagar, Noy Konforty, Omar Babu, Omid Razavi, Orchid Majumder, Osama Dar, Oscar Hsu, Pablo Kvitca, Pallavi Pandey, Parker Seegmiller, Patrick Lange, Paul Ferraro, Payal Motwani, Pegah Kharazmi, Pei Wang, Pengfei Liu, Peter Bradtke, Peter Götz, Peter Zhou, Pichao Wang, Piotr Poskart, Pooja Sonawane, Pradeep Natarajan, Pradyun Ramadorai, Pralam Shah, Prasad Nirantar, Prasanthi Chavali, Prashan Wanigasekara, Prashant Saraf, Prashun Dey, Pratyush Pant, Prerak Pradhan, Preyaa Patel, Priyanka Dadlani, Prudhvee Narasimha Sadha, Qi Dong, Qian Hu, Qiaozi, Gao, Qing Liu, Quinn Lam, Quynh Do, R. Manmatha, Rachel Willis, Rafael Liu, Rafal Ellert, Rafal Kalinski, Rafi Al Attrach, Ragha Prasad, Ragini Prasad, Raguvir Kunani, Rahul Gupta, Rahul Sharma, Rahul Tewari, Rajaganesh Baskaran, Rajan Singh, Rajiv Gupta, Rajiv Reddy, Rajshekhar Das, Rakesh Chada, Rakesh Vaideeswaran Mahesh, Ram Chandrasekaran, Ramesh Nallapati, Ran Xue, Rashmi Gangadharaiah, Ravi Rachakonda, Renxian Zhang, Rexhina Blloshmi, Rishabh Agrawal, Robert Enyedi, Robert Lowe, Robik Shrestha, Robinson Piramuthu, Rohail Asad, Rohan Khanna, Rohan Mukherjee, Rohit Mittal, Rohit Prasad, Rohith Mysore Vijaya Kumar, Ron Diamant, Ruchita Gupta, Ruiwen Li, Ruoying Li, Rushabh Fegade, Ruxu Zhang, Ryan Arbow, Ryan Chen, Ryan Gabbard, Ryan Hoium, Ryan King, Sabarishkumar Iyer, Sachal Malick, Sahar Movaghati, Sai Balakavi, Sai Jakka, Sai Kashyap Paruvelli, Sai Muralidhar Jayanthi, Saicharan Shriram Mujumdar, Sainyam Kapoor, Sajjad Beygi, Saket Dingliwal, Saleh Soltan, Sam Ricklin, Sam Tucker, Sameer Sinha, Samridhi Choudhary, Samson Tan, Samuel Broscheit, Samuel Schulter, Sanchit Agarwal, Sandeep Atluri, Sander Valstar, Sanjana Shankar, Sanyukta Sanyukta, Sarthak Khanna, Sarvpriye Khetrapal, Satish Janakiraman, Saumil Shah, Saurabh Akolkar, Saurabh Giri, Saurabh Khandelwal, Saurabh Pawar, Saurabh Sahu, Sean Huang, Sejun Ra, Senthilkumar Gopal, Sergei Dobroshinsky, Shadi Saba, Shamik Roy, Shamit Lal, Shankar Ananthakrishnan, Sharon Li, Shashwat Srijan, Shekhar Bhide, Sheng Long Tang, Sheng Zha, Shereen Oraby, Sherif Mostafa, Shiqi Li, Shishir Bharathi, Shivam Prakash, Shiyuan Huang, Shreya Yembarwar, Shreyas Pansare, Shreyas Subramanian, Shrijeet Joshi, Shuai Liu, Shuai Tang, Shubham Chandak, Shubham Garg, Shubham Katiyar, Shubham Mehta, Shubham Srivastav, Shuo Yang, Siddalingesha D S, Siddharth Choudhary, Siddharth Singh Senger, Simon Babb, Sina Moeini, Siqi Deng, Siva Loganathan, Slawomir Domagala, Sneha Narkar, Sneha Wadhwa, Songyang Zhang, Songyao Jiang, Sony Trenous, Soumajyoti Sarkar, Soumya Saha, Sourabh Reddy, Sourav Dokania, Spurthideepika Sandiri, Spyros Matsoukas, Sravan Bodapati, Sri Harsha Reddy Wdaru, Sridevi Yagati Venkateshdatta, Srikanth Ronanki, Srinivasan R Veeravanallur, Sriram Venkatapathy, Sriramprabhu Sankaraguru, Sruthi Gorantla, Sruthi Karuturi, Stefan Schroedl, Subendhu Rongali, Subhasis Kundu, Suhaila Shakiah, Sukriti Tiwari, Sumit Bharti, Sumita Sami, Sumith Mathew, Sunny Yu, Sunwoo Kim, Suraj Bajirao Malode, Susana Cumplido Riel, Swapnil Palod, Swastik Roy, Syed Furqhan, Tagyoung Chung, Takuma Yoshitani, Taojiannan Yang, Tejaswi Chillakura, Tejwant Bajwa, Temi Lajumoke, Thanh Tran, Thomas Gueudre, Thomas Jung, Tianhui Li, Tim Seemman, Timothy Leffel, Tingting Xiang, Tirth Patel, Tobias Domhan, Tobias Falke, Toby Guo, Tom Li, Tomasz Horszczaruk, Tomasz Jedynak, Tushar Kulkarni, Tyst Marin, Tytus Metrycki, Tzu-Yen Wang, Umang Jain, Upendra Singh, Utkarsh Chirimar, Vaibhav Gupta, Vanshil Shah, Varad Deshpande, Varad Gunjal, Varsha Srikeshava, Varsha Vivek, Varun Bharadwaj, Varun Gangal, Varun Kumar, Venkatesh Elango, Vicente Ordonez, Victor Soto, Vignesh Radhakrishnan, Vihang Patel, Vikram Singh, Vinay Varma Kolanuvada, Vinayshekhar Bannihatti Kumar, Vincent Auvray, Vincent Cartillier, Vincent Ponzo, Violet Peng, Vishal Khandelwal, Vishal Naik, Vishvesh Sahasrabudhe, Vitaliy Korolev, Vivek Gokuladas, Vivek Madan, Vivek Subramanian, Volkan Cevher, Vrinda Gupta, Wael Hamza, Wei Zhang, Weitong Ruan, Weiwei Cheng, Wen Zhang, Wenbo Zhao, Wenyan Yao, Wenzhuo Ouyang, Wesley Dashner, William Campbell, William Lin, Willian Martin, Wyatt Pearson, Xiang Jiang, Xiangxing Lu, Xiangyang Shi, Xianwen Peng, Xiaofeng Gao, Xiaoge Jiang, Xiaohan Fei, Xiaohui Wang, Xiaozhou Joey Zhou, Xin Feng, Xinyan Zhao, Xinyao Wang, Xinyu Li, Xu Zhang, Xuan Wang, Xuandi Fu, Xueling Yuan, Xuning Wang, Yadunandana Rao, Yair Tavizon, Yan Rossiytsev, Yanbei Chen, Yang Liu, Yang Zou, Yangsook Park, Yannick Versley, Yanyan Zhang, Yash Patel, Yen-Cheng Lu, Yi Pan, Yi-Hsiang, Lai, Yichen Hu, Yida Wang, Yiheng Zhou, Yilin Xiang, Ying Shi, Ying Wang, Yishai Galatzer, Yongxin Wang, Yorick Shen, Yuchen Sun, Yudi Purwatama, Yue, Wu, Yue Gu, Yuechun Wang, Yujun Zeng, Yuncong Chen, Yunke Zhou, Yusheng Xie, Yvon Guy, Zbigniew Ambrozinski, Zhaowei Cai, Zhen Zhang, Zheng Wang, Zhenghui Jin, Zhewei Zhao, Zhiheng Li, Zhiheng Luo, Zhikang Zhang, Zhilin Fang, Zhiqi Bu, Zhiyuan Wang, Zhizhong Li, Zijian Wang, Zimeng, Qiu, Zishi Li
Title: The Amazon Nova Family of Models: Technical Report and Model Card
Abstract:
We present Amazon Nova, a new generation of state-of-the-art foundation models that deliver frontier intelligence and industry-leading price performance. Amazon Nova Pro is a highly-capable multimodal model with the best combination of accuracy, speed, and cost for a wide range of tasks. Amazon Nova Lite is a low-cost multimodal model that is lightning fast for processing images, video, documents and text. Amazon Nova Micro is a text-only model that delivers our lowest-latency responses at very low cost. Amazon Nova Canvas is an image generation model that creates professional grade images with rich customization controls. Amazon Nova Reel is a video generation model offering high-quality outputs, customization, and motion control. Our models were built responsibly and with a commitment to customer trust, security, and reliability. We report benchmarking results for core capabilities, agentic performance, long context, functional adaptation, runtime performance, and human evaluation.
Authors:Shanchuan Lin, Ceyuan Yang, Hao He, Jianwen Jiang, Yuxi Ren, Xin Xia, Yang Zhao, Xuefeng Xiao, Lu Jiang
Title: Autoregressive Adversarial Post-Training for Real-Time Interactive Video Generation
Abstract:
Existing large-scale video generation models are computationally intensive, preventing adoption in real-time and interactive applications. In this work, we propose autoregressive adversarial post-training (AAPT) to transform a pre-trained latent video diffusion model into a real-time, interactive video generator. Our model autoregressively generates a latent frame at a time using a single neural function evaluation (1NFE). The model can stream the result to the user in real time and receive interactive responses as controls to generate the next latent frame. Unlike existing approaches, our method explores adversarial training as an effective paradigm for autoregressive generation. This not only allows us to design an architecture that is more efficient for one-step generation while fully utilizing the KV cache, but also enables training the model in a student-forcing manner that proves to be effective in reducing error accumulation during long video generation. Our experiments demonstrate that our 8B model achieves real-time, 24fps, streaming video generation at 736x416 resolution on a single H100, or 1280x720 on 8xH100 up to a minute long (1440 frames). Visit our research website at https://seaweed-apt.com/2
Authors:Teng Hu, Zhentao Yu, Zhengguang Zhou, Jiangning Zhang, Yuan Zhou, Qinglin Lu, Ran Yi
Title: PolyVivid: Vivid Multi-Subject Video Generation with Cross-Modal Interaction and Enhancement
Abstract:
Despite recent advances in video generation, existing models still lack fine-grained controllability, especially for multi-subject customization with consistent identity and interaction. In this paper, we propose PolyVivid, a multi-subject video customization framework that enables flexible and identity-consistent generation. To establish accurate correspondences between subject images and textual entities, we design a VLLM-based text-image fusion module that embeds visual identities into the textual space for precise grounding. To further enhance identity preservation and subject interaction, we propose a 3D-RoPE-based enhancement module that enables structured bidirectional fusion between text and image embeddings. Moreover, we develop an attention-inherited identity injection module to effectively inject fused identity features into the video generation process, mitigating identity drift. Finally, we construct an MLLM-based data pipeline that combines MLLM-based grounding, segmentation, and a clique-based subject consolidation strategy to produce high-quality multi-subject data, effectively enhancing subject distinction and reducing ambiguity in downstream video generation. Extensive experiments demonstrate that PolyVivid achieves superior performance in identity fidelity, video realism, and subject alignment, outperforming existing open-source and commercial baselines.
Authors:Yue Ma, Kunyu Feng, Xinhua Zhang, Hongyu Liu, David Junhao Zhang, Jinbo Xing, Yinhan Zhang, Ayden Yang, Zeyu Wang, Qifeng Chen
Title: Follow-Your-Creation: Empowering 4D Creation through Video Inpainting
Abstract:
We introduce Follow-Your-Creation, a novel 4D video creation framework capable of both generating and editing 4D content from a single monocular video input. By leveraging a powerful video inpainting foundation model as a generative prior, we reformulate 4D video creation as a video inpainting task, enabling the model to fill in missing content caused by camera trajectory changes or user edits. To facilitate this, we generate composite masked inpainting video data to effectively fine-tune the model for 4D video generation. Given an input video and its associated camera trajectory, we first perform depth-based point cloud rendering to obtain invisibility masks that indicate the regions that should be completed. Simultaneously, editing masks are introduced to specify user-defined modifications, and these are combined with the invisibility masks to create a composite masks dataset. During training, we randomly sample different types of masks to construct diverse and challenging inpainting scenarios, enhancing the model's generalization and robustness in various 4D editing and generation tasks. To handle temporal consistency under large camera motion, we design a self-iterative tuning strategy that gradually increases the viewing angles during training, where the model is used to generate the next-stage training data after each fine-tuning iteration. Moreover, we introduce a temporal packaging module during inference to enhance generation quality. Our method effectively leverages the prior knowledge of the base model without degrading its original performance, enabling the generation of 4D videos with consistent multi-view coherence. In addition, our approach supports prompt-based content editing, demonstrating strong flexibility and significantly outperforming state-of-the-art methods in both quality and versatility.
Authors:Nate Gillman, Charles Herrmann, Michael Freeman, Daksh Aggarwal, Evan Luo, Deqing Sun, Chen Sun
Title: Force Prompting: Video Generation Models Can Learn and Generalize Physics-based Control Signals
Abstract:
Recent advances in video generation models have sparked interest in world models capable of simulating realistic environments. While navigation has been well-explored, physically meaningful interactions that mimic real-world forces remain largely understudied. In this work, we investigate using physical forces as a control signal for video generation and propose force prompts which enable users to interact with images through both localized point forces, such as poking a plant, and global wind force fields, such as wind blowing on fabric. We demonstrate that these force prompts can enable videos to respond realistically to physical control signals by leveraging the visual and motion prior in the original pretrained model, without using any 3D asset or physics simulator at inference. The primary challenge of force prompting is the difficulty in obtaining high quality paired force-video training data, both in the real world due to the difficulty of obtaining force signals, and in synthetic data due to limitations in the visual quality and domain diversity of physics simulators. Our key finding is that video generation models can generalize remarkably well when adapted to follow physical force conditioning from videos synthesized by Blender, even with limited demonstrations of few objects. Our method can generate videos which simulate forces across diverse geometries, settings, and materials. We also try to understand the source of this generalization and perform ablations that reveal two key elements: visual diversity and the use of specific text keywords during training. Our approach is trained on only around 15k training examples for a single day on four A100 GPUs, and outperforms existing methods on force adherence and physics realism, bringing world models closer to real-world physics interactions. We release all datasets, code, weights, and interactive video demos at our project page.
Authors:Ruizhi Shao, Yinghao Xu, Yujun Shen, Ceyuan Yang, Yang Zheng, Changan Chen, Yebin Liu, Gordon Wetzstein
Title: Interspatial Attention for Efficient 4D Human Video Generation
Abstract:
Generating photorealistic videos of digital humans in a controllable manner is crucial for a plethora of applications. Existing approaches either build on methods that employ template-based 3D representations or emerging video generation models but suffer from poor quality or limited consistency and identity preservation when generating individual or multiple digital humans. In this paper, we introduce a new interspatial attention (ISA) mechanism as a scalable building block for modern diffusion transformer (DiT)--based video generation models. ISA is a new type of cross attention that uses relative positional encodings tailored for the generation of human videos. Leveraging a custom-developed video variation autoencoder, we train a latent ISA-based diffusion model on a large corpus of video data. Our model achieves state-of-the-art performance for 4D human video synthesis, demonstrating remarkable motion consistency and identity preservation while providing precise control of the camera and body poses. Our code and model are publicly released at https://dsaurus.github.io/isa4d/.
Authors:Chih-Hao Lin, Zian Wang, Ruofan Liang, Yuxuan Zhang, Sanja Fidler, Shenlong Wang, Zan Gojcic
Title: Controllable Weather Synthesis and Removal with Video Diffusion Models
Abstract:
Generating realistic and controllable weather effects in videos is valuable for many applications. Physics-based weather simulation requires precise reconstructions that are hard to scale to in-the-wild videos, while current video editing often lacks realism and control. In this work, we introduce WeatherWeaver, a video diffusion model that synthesizes diverse weather effects -- including rain, snow, fog, and clouds -- directly into any input video without the need for 3D modeling. Our model provides precise control over weather effect intensity and supports blending various weather types, ensuring both realism and adaptability. To overcome the scarcity of paired training data, we propose a novel data strategy combining synthetic videos, generative image editing, and auto-labeled real-world videos. Extensive evaluations show that our method outperforms state-of-the-art methods in weather simulation and removal, providing high-quality, physically plausible, and scene-identity-preserving results over various real-world videos.
Authors:Haoyu Zhen, Qiao Sun, Hongxin Zhang, Junyan Li, Siyuan Zhou, Yilun Du, Chuang Gan
Title: TesserAct: Learning 4D Embodied World Models
Abstract:
This paper presents an effective approach for learning novel 4D embodied world models, which predict the dynamic evolution of 3D scenes over time in response to an embodied agent's actions, providing both spatial and temporal consistency. We propose to learn a 4D world model by training on RGB-DN (RGB, Depth, and Normal) videos. This not only surpasses traditional 2D models by incorporating detailed shape, configuration, and temporal changes into their predictions, but also allows us to effectively learn accurate inverse dynamic models for an embodied agent. Specifically, we first extend existing robotic manipulation video datasets with depth and normal information leveraging off-the-shelf models. Next, we fine-tune a video generation model on this annotated dataset, which jointly predicts RGB-DN (RGB, Depth, and Normal) for each frame. We then present an algorithm to directly convert generated RGB, Depth, and Normal videos into a high-quality 4D scene of the world. Our method ensures temporal and spatial coherence in 4D scene predictions from embodied scenarios, enables novel view synthesis for embodied environments, and facilitates policy learning that significantly outperforms those derived from prior video-based world models.
Authors:Team Seawead, Ceyuan Yang, Zhijie Lin, Yang Zhao, Shanchuan Lin, Zhibei Ma, Haoyuan Guo, Hao Chen, Lu Qi, Sen Wang, Feng Cheng, Feilong Zuo, Xuejiao Zeng, Ziyan Yang, Fangyuan Kong, Meng Wei, Zhiwu Qing, Fei Xiao, Tuyen Hoang, Siyu Zhang, Peihao Zhu, Qi Zhao, Jiangqiao Yan, Liangke Gui, Sheng Bi, Jiashi Li, Yuxi Ren, Rui Wang, Huixia Li, Xuefeng Xiao, Shu Liu, Feng Ling, Heng Zhang, Houmin Wei, Huafeng Kuang, Jerry Duncan, Junda Zhang, Junru Zheng, Li Sun, Manlin Zhang, Renfei Sun, Xiaobin Zhuang, Xiaojie Li, Xin Xia, Xuyan Chi, Yanghua Peng, Yuping Wang, Yuxuan Wang, Zhongkai Zhao, Zhuo Chen, Zuquan Song, Zhenheng Yang, Jiashi Feng, Jianchao Yang, Lu Jiang
Title: Seaweed-7B: Cost-Effective Training of Video Generation Foundation Model
Abstract:
This technical report presents a cost-efficient strategy for training a video generation foundation model. We present a mid-sized research model with approximately 7 billion parameters (7B) called Seaweed-7B trained from scratch using 665,000 H100 GPU hours. Despite being trained with moderate computational resources, Seaweed-7B demonstrates highly competitive performance compared to contemporary video generation models of much larger size. Design choices are especially crucial in a resource-constrained setting. This technical report highlights the key design decisions that enhance the performance of the medium-sized diffusion model. Empirically, we make two observations: (1) Seaweed-7B achieves performance comparable to, or even surpasses, larger models trained on substantially greater GPU resources, and (2) our model, which exhibits strong generalization ability, can be effectively adapted across a wide range of downstream applications either by lightweight fine-tuning or continue training. See the project page at https://seaweed.video/
Authors:Hadrien Reynaud, Alberto Gomez, Paul Leeson, Qingjie Meng, Bernhard Kainz
Title: EchoFlow: A Foundation Model for Cardiac Ultrasound Image and Video Generation
Abstract:
Advances in deep learning have significantly enhanced medical image analysis, yet the availability of large-scale medical datasets remains constrained by patient privacy concerns. We present EchoFlow, a novel framework designed to generate high-quality, privacy-preserving synthetic echocardiogram images and videos. EchoFlow comprises four key components: an adversarial variational autoencoder for defining an efficient latent representation of cardiac ultrasound images, a latent image flow matching model for generating accurate latent echocardiogram images, a latent re-identification model to ensure privacy by filtering images anatomically, and a latent video flow matching model for animating latent images into realistic echocardiogram videos conditioned on ejection fraction. We rigorously evaluate our synthetic datasets on the clinically relevant task of ejection fraction regression and demonstrate, for the first time, that downstream models trained exclusively on EchoFlow-generated synthetic datasets achieve performance parity with models trained on real datasets. We release our models and synthetic datasets, enabling broader, privacy-compliant research in medical ultrasound imaging at https://huggingface.co/spaces/HReynaud/EchoFlow.
Authors:Yuchao Gu, Weijia Mao, Mike Zheng Shou
Title: Long-Context Autoregressive Video Modeling with Next-Frame Prediction
Abstract:
Long-context video modeling is essential for enabling generative models to function as world simulators, as they must maintain temporal coherence over extended time spans. However, most existing models are trained on short clips, limiting their ability to capture long-range dependencies, even with test-time extrapolation. While training directly on long videos is a natural solution, the rapid growth of vision tokens makes it computationally prohibitive. To support exploring efficient long-context video modeling, we first establish a strong autoregressive baseline called Frame AutoRegressive (FAR). FAR models temporal dependencies between continuous frames, converges faster than video diffusion transformers, and outperforms token-level autoregressive models. Based on this baseline, we observe context redundancy in video autoregression. Nearby frames are critical for maintaining temporal consistency, whereas distant frames primarily serve as context memory. To eliminate this redundancy, we propose the long short-term context modeling using asymmetric patchify kernels, which apply large kernels to distant frames to reduce redundant tokens, and standard kernels to local frames to preserve fine-grained detail. This significantly reduces the training cost of long videos. Our method achieves state-of-the-art results on both short and long video generation, providing an effective baseline for long-context autoregressive video modeling.
Authors:Junjie Hu, Shuyong Gao, Qianyu Guo, Yan Wang, Qishan Wang, Yuang Feng, Wenqiang Zhang
Title: AnimatePainter: A Self-Supervised Rendering Framework for Reconstructing Painting Process
Abstract:
Humans can intuitively decompose an image into a sequence of strokes to create a painting, yet existing methods for generating drawing processes are limited to specific data types and often rely on expensive human-annotated datasets. We propose a novel self-supervised framework for generating drawing processes from any type of image, treating the task as a video generation problem. Our approach reverses the drawing process by progressively removing strokes from a reference image, simulating a human-like creation sequence. Crucially, our method does not require costly datasets of real human drawing processes; instead, we leverage depth estimation and stroke rendering to construct a self-supervised dataset. We model human drawings as "refinement" and "layering" processes and introduce depth fusion layers to enable video generation models to learn and replicate human drawing behavior. Extensive experiments validate the effectiveness of our approach, demonstrating its ability to generate realistic drawings without the need for real drawing process data.
Authors:Shanchuan Lin, Xin Xia, Yuxi Ren, Ceyuan Yang, Xuefeng Xiao, Lu Jiang
Title: Diffusion Adversarial Post-Training for One-Step Video Generation
Abstract:
The diffusion models are widely used for image and video generation, but their iterative generation process is slow and expansive. While existing distillation approaches have demonstrated the potential for one-step generation in the image domain, they still suffer from significant quality degradation. In this work, we propose Adversarial Post-Training (APT) against real data following diffusion pre-training for one-step video generation. To improve the training stability and quality, we introduce several improvements to the model architecture and training procedures, along with an approximated R1 regularization objective. Empirically, our experiments show that our adversarial post-trained model, Seaweed-APT, can generate 2-second, 1280x720, 24fps videos in real time using a single forward evaluation step. Additionally, our model is capable of generating 1024px images in a single step, achieving quality comparable to state-of-the-art methods.
Authors:Weixi Feng, Chao Liu, Sifei Liu, William Yang Wang, Arash Vahdat, Weili Nie
Title: BlobGEN-Vid: Compositional Text-to-Video Generation with Blob Video Representations
Abstract:
Existing video generation models struggle to follow complex text prompts and synthesize multiple objects, raising the need for additional grounding input for improved controllability. In this work, we propose to decompose videos into visual primitives - blob video representation, a general representation for controllable video generation. Based on blob conditions, we develop a blob-grounded video diffusion model named BlobGEN-Vid that allows users to control object motions and fine-grained object appearance. In particular, we introduce a masked 3D attention module that effectively improves regional consistency across frames. In addition, we introduce a learnable module to interpolate text embeddings so that users can control semantics in specific frames and obtain smooth object transitions. We show that our framework is model-agnostic and build BlobGEN-Vid based on both U-Net and DiT-based video diffusion models. Extensive experimental results show that BlobGEN-Vid achieves superior zero-shot video generation ability and state-of-the-art layout controllability on multiple benchmarks. When combined with an LLM for layout planning, our framework even outperforms proprietary text-to-video generators in terms of compositional accuracy.
Authors:Weikang Bian, Zhaoyang Huang, Xiaoyu Shi, Yijin Li, Fu-Yun Wang, Hongsheng Li
Title: GS-DiT: Advancing Video Generation with Pseudo 4D Gaussian Fields through Efficient Dense 3D Point Tracking
Abstract:
4D video control is essential in video generation as it enables the use of sophisticated lens techniques, such as multi-camera shooting and dolly zoom, which are currently unsupported by existing methods. Training a video Diffusion Transformer (DiT) directly to control 4D content requires expensive multi-view videos. Inspired by Monocular Dynamic novel View Synthesis (MDVS) that optimizes a 4D representation and renders videos according to different 4D elements, such as camera pose and object motion editing, we bring pseudo 4D Gaussian fields to video generation. Specifically, we propose a novel framework that constructs a pseudo 4D Gaussian field with dense 3D point tracking and renders the Gaussian field for all video frames. Then we finetune a pretrained DiT to generate videos following the guidance of the rendered video, dubbed as GS-DiT. To boost the training of the GS-DiT, we also propose an efficient Dense 3D Point Tracking (D3D-PT) method for the pseudo 4D Gaussian field construction. Our D3D-PT outperforms SpatialTracker, the state-of-the-art sparse 3D point tracking method, in accuracy and accelerates the inference speed by two orders of magnitude. During the inference stage, GS-DiT can generate videos with the same dynamic content while adhering to different camera parameters, addressing a significant limitation of current video generation models. GS-DiT demonstrates strong generalization capabilities and extends the 4D controllability of Gaussian splatting to video generation beyond just camera poses. It supports advanced cinematic effects through the manipulation of the Gaussian field and camera intrinsics, making it a powerful tool for creative video production. Demos are available at https://wkbian.github.io/Projects/GS-DiT/.
Authors:Kunpeng Song, Tingbo Hou, Zecheng He, Haoyu Ma, Jialiang Wang, Animesh Sinha, Sam Tsai, Yaqiao Luo, Xiaoliang Dai, Li Chen, Xide Xia, Peizhao Zhang, Peter Vajda, Ahmed Elgammal, Felix Juefei-Xu
Title: Llama Learns to Direct: DirectorLLM for Human-Centric Video Generation
Abstract:
In this paper, we introduce DirectorLLM, a novel video generation model that employs a large language model (LLM) to orchestrate human poses within videos. As foundational text-to-video models rapidly evolve, the demand for high-quality human motion and interaction grows. To address this need and enhance the authenticity of human motions, we extend the LLM from a text generator to a video director and human motion simulator. Utilizing open-source resources from Llama 3, we train the DirectorLLM to generate detailed instructional signals, such as human poses, to guide video generation. This approach offloads the simulation of human motion from the video generator to the LLM, effectively creating informative outlines for human-centric scenes. These signals are used as conditions by the video renderer, facilitating more realistic and prompt-following video generation. As an independent LLM module, it can be applied to different video renderers, including UNet and DiT, with minimal effort. Experiments on automatic evaluation benchmarks and human evaluations show that our model outperforms existing ones in generating videos with higher human motion fidelity, improved prompt faithfulness, and enhanced rendered subject naturalness.
Authors:Hongjie Wang, Chih-Yao Ma, Yen-Cheng Liu, Ji Hou, Tao Xu, Jialiang Wang, Felix Juefei-Xu, Yaqiao Luo, Peizhao Zhang, Tingbo Hou, Peter Vajda, Niraj K. Jha, Xiaoliang Dai
Title: LinGen: Towards High-Resolution Minute-Length Text-to-Video Generation with Linear Computational Complexity
Abstract:
Text-to-video generation enhances content creation but is highly computationally intensive: The computational cost of Diffusion Transformers (DiTs) scales quadratically in the number of pixels. This makes minute-length video generation extremely expensive, limiting most existing models to generating videos of only 10-20 seconds length. We propose a Linear-complexity text-to-video Generation (LinGen) framework whose cost scales linearly in the number of pixels. For the first time, LinGen enables high-resolution minute-length video generation on a single GPU without compromising quality. It replaces the computationally-dominant and quadratic-complexity block, self-attention, with a linear-complexity block called MATE, which consists of an MA-branch and a TE-branch. The MA-branch targets short-to-long-range correlations, combining a bidirectional Mamba2 block with our token rearrangement method, Rotary Major Scan, and our review tokens developed for long video generation. The TE-branch is a novel TEmporal Swin Attention block that focuses on temporal correlations between adjacent tokens and medium-range tokens. The MATE block addresses the adjacency preservation issue of Mamba and improves the consistency of generated videos significantly. Experimental results show that LinGen outperforms DiT (with a 75.6% win rate) in video quality with up to 15$\times$ (11.5$\times$) FLOPs (latency) reduction. Furthermore, both automatic metrics and human evaluation demonstrate our LinGen-4B yields comparable video quality to state-of-the-art models (with a 50.5%, 52.1%, 49.1% win rate with respect to Gen-3, LumaLabs, and Kling, respectively). This paves the way to hour-length movie generation and real-time interactive video generation. We provide 68s video generation results and more examples in our project website: https://lineargen.github.io/.
Authors:Weiqi Li, Shijie Zhao, Chong Mou, Xuhan Sheng, Zhenyu Zhang, Qian Wang, Junlin Li, Li Zhang, Jian Zhang
Title: OmniDrag: Enabling Motion Control for Omnidirectional Image-to-Video Generation
Abstract:
As virtual reality gains popularity, the demand for controllable creation of immersive and dynamic omnidirectional videos (ODVs) is increasing. While previous text-to-ODV generation methods achieve impressive results, they struggle with content inaccuracies and inconsistencies due to reliance solely on textual inputs. Although recent motion control techniques provide fine-grained control for video generation, directly applying these methods to ODVs often results in spatial distortion and unsatisfactory performance, especially with complex spherical motions. To tackle these challenges, we propose OmniDrag, the first approach enabling both scene- and object-level motion control for accurate, high-quality omnidirectional image-to-video generation. Building on pretrained video diffusion models, we introduce an omnidirectional control module, which is jointly fine-tuned with temporal attention layers to effectively handle complex spherical motion. In addition, we develop a novel spherical motion estimator that accurately extracts motion-control signals and allows users to perform drag-style ODV generation by simply drawing handle and target points. We also present a new dataset, named Move360, addressing the scarcity of ODV data with large scene and object motions. Experiments demonstrate the significant superiority of OmniDrag in achieving holistic scene-level and fine-grained object-level control for ODV generation. The project page is available at https://lwq20020127.github.io/OmniDrag.
Authors:Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester Cole, Serena Zhang, Tobias Pfaff, Tatiana Lopez-Guevara, Carl Doersch, Yusuf Aytar, Michael Rubinstein, Chen Sun, Oliver Wang, Andrew Owens, Deqing Sun
Title: Motion Prompting: Controlling Video Generation with Motion Trajectories
Abstract:
Motion control is crucial for generating expressive and compelling video content; however, most existing video generation models rely mainly on text prompts for control, which struggle to capture the nuances of dynamic actions and temporal compositions. To this end, we train a video generation model conditioned on spatio-temporally sparse or dense motion trajectories. In contrast to prior motion conditioning work, this flexible representation can encode any number of trajectories, object-specific or global scene motion, and temporally sparse motion; due to its flexibility we refer to this conditioning as motion prompts. While users may directly specify sparse trajectories, we also show how to translate high-level user requests into detailed, semi-dense motion prompts, a process we term motion prompt expansion. We demonstrate the versatility of our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing. Our results showcase emergent behaviors, such as realistic physics, suggesting the potential of motion prompts for probing video models and interacting with future generative world models. Finally, we evaluate quantitatively, conduct a human study, and demonstrate strong performance. Video results are available on our webpage: https://motion-prompting.github.io/
Authors:Boyao Zhou, Shunyuan Zheng, Hanzhang Tu, Ruizhi Shao, Boning Liu, Shengping Zhang, Liqiang Nie, Yebin Liu
Title: GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views
Abstract:
Differentiable rendering techniques have recently shown promising results for free-viewpoint video synthesis of characters. However, such methods, either Gaussian Splatting or neural implicit rendering, typically necessitate per-subject optimization which does not meet the requirement of real-time rendering in an interactive application. We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting. To this end, we introduce Gaussian parameter maps defined on the source views and directly regress Gaussian properties for instant novel view synthesis without any fine-tuning or optimization. We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space. The proposed framework is fully differentiable with both depth and rendering supervision or with only rendering supervision. We further introduce a regularization term and an epipolar attention mechanism to preserve geometry consistency between two source views, especially when neglecting depth supervision. Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
Authors:Panwen Hu, Jin Jiang, Jianqi Chen, Mingfei Han, Shengcai Liao, Xiaojun Chang, Xiaodan Liang
Title: StoryAgent: Customized Storytelling Video Generation via Multi-Agent Collaboration
Abstract:
The advent of AI-Generated Content (AIGC) has spurred research into automated video generation to streamline conventional processes. However, automating storytelling video production, particularly for customized narratives, remains challenging due to the complexity of maintaining subject consistency across shots. While existing approaches like Mora and AesopAgent integrate multiple agents for Story-to-Video (S2V) generation, they fall short in preserving protagonist consistency and supporting Customized Storytelling Video Generation (CSVG). To address these limitations, we propose StoryAgent, a multi-agent framework designed for CSVG. StoryAgent decomposes CSVG into distinct subtasks assigned to specialized agents, mirroring the professional production process. Notably, our framework includes agents for story design, storyboard generation, video creation, agent coordination, and result evaluation. Leveraging the strengths of different models, StoryAgent enhances control over the generation process, significantly improving character consistency. Specifically, we introduce a customized Image-to-Video (I2V) method, LoRA-BE, to enhance intra-shot temporal consistency, while a novel storyboard generation pipeline is proposed to maintain subject consistency across shots. Extensive experiments demonstrate the effectiveness of our approach in synthesizing highly consistent storytelling videos, outperforming state-of-the-art methods. Our contributions include the introduction of StoryAgent, a versatile framework for video generation tasks, and novel techniques for preserving protagonist consistency.
Authors:Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Jagadeesh, Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu, Mitesh Kumar Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sumbaly, Sai Saketh Rambhatla, Sam Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell, Sharadh Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe Li, Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Carleigh Wood, Ce Liu, Cen Peng, Dimitry Vengertsev, Edgar Schonfeld, Elliot Blanchard, Felix Juefei-Xu, Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar, Lawrence Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K. Sampson, Shikai Li, Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, Yuming Du
Title: Movie Gen: A Cast of Media Foundation Models
Abstract:
We present Movie Gen, a cast of foundation models that generates high-quality, 1080p HD videos with different aspect ratios and synchronized audio. We also show additional capabilities such as precise instruction-based video editing and generation of personalized videos based on a user's image. Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video personalization, video editing, video-to-audio generation, and text-to-audio generation. Our largest video generation model is a 30B parameter transformer trained with a maximum context length of 73K video tokens, corresponding to a generated video of 16 seconds at 16 frames-per-second. We show multiple technical innovations and simplifications on the architecture, latent spaces, training objectives and recipes, data curation, evaluation protocols, parallelization techniques, and inference optimizations that allow us to reap the benefits of scaling pre-training data, model size, and training compute for training large scale media generation models. We hope this paper helps the research community to accelerate progress and innovation in media generation models. All videos from this paper are available at https://go.fb.me/MovieGenResearchVideos.
Authors:Muhammad Haaris Khan, Hadrien Reynaud, Bernhard Kainz
Title: Noise Crystallization and Liquid Noise: Zero-shot Video Generation using Image Diffusion Models
Abstract:
Although powerful for image generation, consistent and controllable video is a longstanding problem for diffusion models. Video models require extensive training and computational resources, leading to high costs and large environmental impacts. Moreover, video models currently offer limited control of the output motion. This paper introduces a novel approach to video generation by augmenting image diffusion models to create sequential animation frames while maintaining fine detail. These techniques can be applied to existing image models without training any video parameters (zero-shot) by altering the input noise in a latent diffusion model. Two complementary methods are presented. Noise crystallization ensures consistency but is limited to large movements due to reduced latent embedding sizes. Liquid noise trades consistency for greater flexibility without resolution limitations. The core concepts also allow other applications such as relighting, seamless upscaling, and improved video style transfer. Furthermore, an exploration of the VAE embedding used for latent diffusion models is performed, resulting in interesting theoretical insights such as a method for human-interpretable latent spaces.
Authors:Homanga Bharadhwaj, Debidatta Dwibedi, Abhinav Gupta, Shubham Tulsiani, Carl Doersch, Ted Xiao, Dhruv Shah, Fei Xia, Dorsa Sadigh, Sean Kirmani
Title: Gen2Act: Human Video Generation in Novel Scenarios enables Generalizable Robot Manipulation
Abstract:
How can robot manipulation policies generalize to novel tasks involving unseen object types and new motions? In this paper, we provide a solution in terms of predicting motion information from web data through human video generation and conditioning a robot policy on the generated video. Instead of attempting to scale robot data collection which is expensive, we show how we can leverage video generation models trained on easily available web data, for enabling generalization. Our approach Gen2Act casts language-conditioned manipulation as zero-shot human video generation followed by execution with a single policy conditioned on the generated video. To train the policy, we use an order of magnitude less robot interaction data compared to what the video prediction model was trained on. Gen2Act doesn't require fine-tuning the video model at all and we directly use a pre-trained model for generating human videos. Our results on diverse real-world scenarios show how Gen2Act enables manipulating unseen object types and performing novel motions for tasks not present in the robot data. Videos are at https://homangab.github.io/gen2act/
Authors:Hadrien Reynaud, Matthew Baugh, Mischa Dombrowski, Sarah Cechnicka, Qingjie Meng, Bernhard Kainz
Title: JVID: Joint Video-Image Diffusion for Visual-Quality and Temporal-Consistency in Video Generation
Abstract:
We introduce the Joint Video-Image Diffusion model (JVID), a novel approach to generating high-quality and temporally coherent videos. We achieve this by integrating two diffusion models: a Latent Image Diffusion Model (LIDM) trained on images and a Latent Video Diffusion Model (LVDM) trained on video data. Our method combines these models in the reverse diffusion process, where the LIDM enhances image quality and the LVDM ensures temporal consistency. This unique combination allows us to effectively handle the complex spatio-temporal dynamics in video generation. Our results demonstrate quantitative and qualitative improvements in producing realistic and coherent videos.
Authors:Ruizhi Shao, Youxin Pang, Zerong Zheng, Jingxiang Sun, Yebin Liu
Title: Human4DiT: 360-degree Human Video Generation with 4D Diffusion Transformer
Abstract:
We present a novel approach for generating 360-degree high-quality, spatio-temporally coherent human videos from a single image. Our framework combines the strengths of diffusion transformers for capturing global correlations across viewpoints and time, and CNNs for accurate condition injection. The core is a hierarchical 4D transformer architecture that factorizes self-attention across views, time steps, and spatial dimensions, enabling efficient modeling of the 4D space. Precise conditioning is achieved by injecting human identity, camera parameters, and temporal signals into the respective transformers. To train this model, we collect a multi-dimensional dataset spanning images, videos, multi-view data, and limited 4D footage, along with a tailored multi-dimensional training strategy. Our approach overcomes the limitations of previous methods based on generative adversarial networks or vanilla diffusion models, which struggle with complex motions, viewpoint changes, and generalization. Through extensive experiments, we demonstrate our method's ability to synthesize 360-degree realistic, coherent human motion videos, paving the way for advanced multimedia applications in areas such as virtual reality and animation.
Authors:Siyuan Zhou, Yilun Du, Jiaben Chen, Yandong Li, Dit-Yan Yeung, Chuang Gan
Title: RoboDreamer: Learning Compositional World Models for Robot Imagination
Abstract:
Text-to-video models have demonstrated substantial potential in robotic decision-making, enabling the imagination of realistic plans of future actions as well as accurate environment simulation. However, one major issue in such models is generalization -- models are limited to synthesizing videos subject to language instructions similar to those seen at training time. This is heavily limiting in decision-making, where we seek a powerful world model to synthesize plans of unseen combinations of objects and actions in order to solve previously unseen tasks in new environments. To resolve this issue, we introduce RoboDreamer, an innovative approach for learning a compositional world model by factorizing the video generation. We leverage the natural compositionality of language to parse instructions into a set of lower-level primitives, which we condition a set of models on to generate videos. We illustrate how this factorization naturally enables compositional generalization, by allowing us to formulate a new natural language instruction as a combination of previously seen components. We further show how such a factorization enables us to add additional multimodal goals, allowing us to specify a video we wish to generate given both natural language instructions and a goal image. Our approach can successfully synthesize video plans on unseen goals in the RT-X, enables successful robot execution in simulation, and substantially outperforms monolithic baseline approaches to video generation.
Authors:Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat, Junhwa Hur, Guanghui Liu, Amit Raj, Yuanzhen Li, Michael Rubinstein, Tomer Michaeli, Oliver Wang, Deqing Sun, Tali Dekel, Inbar Mosseri
Title: Lumiere: A Space-Time Diffusion Model for Video Generation
Abstract:
We introduce Lumiere -- a text-to-video diffusion model designed for synthesizing videos that portray realistic, diverse and coherent motion -- a pivotal challenge in video synthesis. To this end, we introduce a Space-Time U-Net architecture that generates the entire temporal duration of the video at once, through a single pass in the model. This is in contrast to existing video models which synthesize distant keyframes followed by temporal super-resolution -- an approach that inherently makes global temporal consistency difficult to achieve. By deploying both spatial and (importantly) temporal down- and up-sampling and leveraging a pre-trained text-to-image diffusion model, our model learns to directly generate a full-frame-rate, low-resolution video by processing it in multiple space-time scales. We demonstrate state-of-the-art text-to-video generation results, and show that our design easily facilitates a wide range of content creation tasks and video editing applications, including image-to-video, video inpainting, and stylized generation.
Authors:Feng Liang, Bichen Wu, Jialiang Wang, Licheng Yu, Kunpeng Li, Yinan Zhao, Ishan Misra, Jia-Bin Huang, Peizhao Zhang, Peter Vajda, Diana Marculescu
Title: FlowVid: Taming Imperfect Optical Flows for Consistent Video-to-Video Synthesis
Abstract:
Diffusion models have transformed the image-to-image (I2I) synthesis and are now permeating into videos. However, the advancement of video-to-video (V2V) synthesis has been hampered by the challenge of maintaining temporal consistency across video frames. This paper proposes a consistent V2V synthesis framework by jointly leveraging spatial conditions and temporal optical flow clues within the source video. Contrary to prior methods that strictly adhere to optical flow, our approach harnesses its benefits while handling the imperfection in flow estimation. We encode the optical flow via warping from the first frame and serve it as a supplementary reference in the diffusion model. This enables our model for video synthesis by editing the first frame with any prevalent I2I models and then propagating edits to successive frames. Our V2V model, FlowVid, demonstrates remarkable properties: (1) Flexibility: FlowVid works seamlessly with existing I2I models, facilitating various modifications, including stylization, object swaps, and local edits. (2) Efficiency: Generation of a 4-second video with 30 FPS and 512x512 resolution takes only 1.5 minutes, which is 3.1x, 7.2x, and 10.5x faster than CoDeF, Rerender, and TokenFlow, respectively. (3) High-quality: In user studies, our FlowVid is preferred 45.7% of the time, outperforming CoDeF (3.5%), Rerender (10.2%), and TokenFlow (40.4%).
Authors:Yuchao Gu, Yipin Zhou, Bichen Wu, Licheng Yu, Jia-Wei Liu, Rui Zhao, Jay Zhangjie Wu, David Junhao Zhang, Mike Zheng Shou, Kevin Tang
Title: VideoSwap: Customized Video Subject Swapping with Interactive Semantic Point Correspondence
Abstract:
Current diffusion-based video editing primarily focuses on structure-preserved editing by utilizing various dense correspondences to ensure temporal consistency and motion alignment. However, these approaches are often ineffective when the target edit involves a shape change. To embark on video editing with shape change, we explore customized video subject swapping in this work, where we aim to replace the main subject in a source video with a target subject having a distinct identity and potentially different shape. In contrast to previous methods that rely on dense correspondences, we introduce the VideoSwap framework that exploits semantic point correspondences, inspired by our observation that only a small number of semantic points are necessary to align the subject's motion trajectory and modify its shape. We also introduce various user-point interactions (\eg, removing points and dragging points) to address various semantic point correspondence. Extensive experiments demonstrate state-of-the-art video subject swapping results across a variety of real-world videos.
Authors:Hadrien Reynaud, Bernhard Kainz
Title: Exploring the Hyperparameter Space of Image Diffusion Models for Echocardiogram Generation
Abstract:
This work presents an extensive hyperparameter search on Image Diffusion Models for Echocardiogram generation. The objective is to establish foundational benchmarks and provide guidelines within the realm of ultrasound image and video generation. This study builds over the latest advancements, including cutting-edge model architectures and training methodologies. We also examine the distribution shift between real and generated samples and consider potential solutions, crucial to train efficient models on generated data. We determine an Optimal FID score of $0.88$ for our research problem and achieve an FID of $2.60$. This work is aimed at contributing valuable insights and serving as a reference for further developments in the specialized field of ultrasound image and video generation.
Authors:Rui Zhao, Yuchao Gu, Jay Zhangjie Wu, David Junhao Zhang, Jiawei Liu, Weijia Wu, Jussi Keppo, Mike Zheng Shou
Title: MotionDirector: Motion Customization of Text-to-Video Diffusion Models
Abstract:
Large-scale pre-trained diffusion models have exhibited remarkable capabilities in diverse video generations. Given a set of video clips of the same motion concept, the task of Motion Customization is to adapt existing text-to-video diffusion models to generate videos with this motion. For example, generating a video with a car moving in a prescribed manner under specific camera movements to make a movie, or a video illustrating how a bear would lift weights to inspire creators. Adaptation methods have been developed for customizing appearance like subject or style, yet unexplored for motion. It is straightforward to extend mainstream adaption methods for motion customization, including full model tuning, parameter-efficient tuning of additional layers, and Low-Rank Adaptions (LoRAs). However, the motion concept learned by these methods is often coupled with the limited appearances in the training videos, making it difficult to generalize the customized motion to other appearances. To overcome this challenge, we propose MotionDirector, with a dual-path LoRAs architecture to decouple the learning of appearance and motion. Further, we design a novel appearance-debiased temporal loss to mitigate the influence of appearance on the temporal training objective. Experimental results show the proposed method can generate videos of diverse appearances for the customized motions. Our method also supports various downstream applications, such as the mixing of different videos with their appearance and motion respectively, and animating a single image with customized motions. Our code and model weights will be released.
Authors:Yijun Liu, Yuwei Liu, Yuan Meng, Jieheng Zhang, Yuwei Zhou, Ye Li, Jiacheng Jiang, Kangye Ji, Shijia Ge, Zhi Wang, Wenwu Zhu
Title: Spatial Policy: Guiding Visuomotor Robotic Manipulation with Spatial-Aware Modeling and Reasoning
Abstract:
Vision-centric hierarchical embodied models have demonstrated strong potential for long-horizon robotic control. However, existing methods lack spatial awareness capabilities, limiting their effectiveness in bridging visual plans to actionable control in complex environments. To address this problem, we propose Spatial Policy (SP), a unified spatial-aware visuomotor robotic manipulation framework via explicit spatial modeling and reasoning. Specifically, we first design a spatial-conditioned embodied video generation module to model spatially guided predictions through a spatial plan table. Then, we propose a spatial-based action prediction module to infer executable actions with coordination. Finally, we propose a spatial reasoning feedback policy to refine the spatial plan table via dual-stage replanning. Extensive experiments show that SP significantly outperforms state-of-the-art baselines, achieving a 33.0% average improvement over the best baseline. With an 86.7% average success rate across 11 diverse tasks, SP substantially enhances the practicality of embodied models for robotic control applications. Code and checkpoints are maintained at https://plantpotatoonmoon.github.io/SpatialPolicy/.
Authors:Zijian Song, Sihan Qin, Tianshui Chen, Liang Lin, Guangrun Wang
Title: Physical Autoregressive Model for Robotic Manipulation without Action Pretraining
Abstract:
The scarcity of manipulation data has motivated the use of pretrained large models from other modalities in robotics. In this work, we build upon autoregressive video generation models to propose a Physical Autoregressive Model (PAR), where physical tokens combine frames and actions to represent the joint evolution of the robot and its environment. PAR leverages the world knowledge embedded in video pretraining to understand physical dynamics without requiring action pretraining, enabling accurate video prediction and consistent action trajectories. It also adopts a DiT-based de-tokenizer to model frames and actions as continuous tokens, mitigating quantization errors and facilitating mutual enhancement. Furthermore, we incorporate a causal mask with inverse kinematics, parallel training, and the KV-cache mechanism to further improve performance and efficiency. Experiments on the ManiSkill benchmark show that PAR achieves a 100\% success rate on the PushCube task, matches the performance of action-pretrained baselines on other tasks, and accurately predicts future videos with tightly aligned action trajectories. These findings underscore a promising direction for robotic manipulation by transferring world knowledge from autoregressive video pretraining. The project page is here: https://hcplab-sysu.github.io/PhysicalAutoregressiveModel/
Authors:Jingyun Liang, Jingkai Zhou, Shikai Li, Chenjie Cao, Lei Sun, Yichen Qian, Weihua Chen, Fan Wang
Title: RealisMotion: Decomposed Human Motion Control and Video Generation in the World Space
Abstract:
Generating human videos with realistic and controllable motions is a challenging task. While existing methods can generate visually compelling videos, they lack separate control over four key video elements: foreground subject, background video, human trajectory and action patterns. In this paper, we propose a decomposed human motion control and video generation framework that explicitly decouples motion from appearance, subject from background, and action from trajectory, enabling flexible mix-and-match composition of these elements. Concretely, we first build a ground-aware 3D world coordinate system and perform motion editing directly in the 3D space. Trajectory control is implemented by unprojecting edited 2D trajectories into 3D with focal-length calibration and coordinate transformation, followed by speed alignment and orientation adjustment; actions are supplied by a motion bank or generated via text-to-motion methods. Then, based on modern text-to-video diffusion transformer models, we inject the subject as tokens for full attention, concatenate the background along the channel dimension, and add motion (trajectory and action) control signals by addition. Such a design opens up the possibility for us to generate realistic videos of anyone doing anything anywhere. Extensive experiments on benchmark datasets and real-world cases demonstrate that our method achieves state-of-the-art performance on both element-wise controllability and overall video quality.
Authors:Shuai Tan, Biao Gong, Yujie Wei, Shiwei Zhang, Zhuoxin Liu, Dandan Zheng, Jingdong Chen, Yan Wang, Hao Ouyang, Kecheng Zheng, Yujun Shen
Title: SynMotion: Semantic-Visual Adaptation for Motion Customized Video Generation
Abstract:
Diffusion-based video motion customization facilitates the acquisition of human motion representations from a few video samples, while achieving arbitrary subjects transfer through precise textual conditioning. Existing approaches often rely on semantic-level alignment, expecting the model to learn new motion concepts and combine them with other entities (e.g., ''cats'' or ''dogs'') to produce visually appealing results. However, video data involve complex spatio-temporal patterns, and focusing solely on semantics cause the model to overlook the visual complexity of motion. Conversely, tuning only the visual representation leads to semantic confusion in representing the intended action. To address these limitations, we propose SynMotion, a new motion-customized video generation model that jointly leverages semantic guidance and visual adaptation. At the semantic level, we introduce the dual-embedding semantic comprehension mechanism which disentangles subject and motion representations, allowing the model to learn customized motion features while preserving its generative capabilities for diverse subjects. At the visual level, we integrate parameter-efficient motion adapters into a pre-trained video generation model to enhance motion fidelity and temporal coherence. Furthermore, we introduce a new embedding-specific training strategy which \textbf{alternately optimizes} subject and motion embeddings, supported by the manually constructed Subject Prior Video (SPV) training dataset. This strategy promotes motion specificity while preserving generalization across diverse subjects. Lastly, we introduce MotionBench, a newly curated benchmark with diverse motion patterns. Experimental results across both T2V and I2V settings demonstrate that \method outperforms existing baselines. Project page: https://lucaria-academy.github.io/SynMotion/
Authors:Xuanchi Ren, Yifan Lu, Tianshi Cao, Ruiyuan Gao, Shengyu Huang, Amirmojtaba Sabour, Tianchang Shen, Tobias Pfaff, Jay Zhangjie Wu, Runjian Chen, Seung Wook Kim, Jun Gao, Laura Leal-Taixe, Mike Chen, Sanja Fidler, Huan Ling
Title: Cosmos-Drive-Dreams: Scalable Synthetic Driving Data Generation with World Foundation Models
Abstract:
Collecting and annotating real-world data for safety-critical physical AI systems, such as Autonomous Vehicle (AV), is time-consuming and costly. It is especially challenging to capture rare edge cases, which play a critical role in training and testing of an AV system. To address this challenge, we introduce the Cosmos-Drive-Dreams - a synthetic data generation (SDG) pipeline that aims to generate challenging scenarios to facilitate downstream tasks such as perception and driving policy training. Powering this pipeline is Cosmos-Drive, a suite of models specialized from NVIDIA Cosmos world foundation model for the driving domain and are capable of controllable, high-fidelity, multi-view, and spatiotemporally consistent driving video generation. We showcase the utility of these models by applying Cosmos-Drive-Dreams to scale the quantity and diversity of driving datasets with high-fidelity and challenging scenarios. Experimentally, we demonstrate that our generated data helps in mitigating long-tail distribution problems and enhances generalization in downstream tasks such as 3D lane detection, 3D object detection and driving policy learning. We open source our pipeline toolkit, dataset and model weights through the NVIDIA's Cosmos platform. Project page: https://research.nvidia.com/labs/toronto-ai/cosmos_drive_dreams
Authors:Akide Liu, Zeyu Zhang, Zhexin Li, Xuehai Bai, Yizeng Han, Jiasheng Tang, Yuanjie Xing, Jichao Wu, Mingyang Yang, Weihua Chen, Jiahao He, Yuanyu He, Fan Wang, Gholamreza Haffari, Bohan Zhuang
Title: FPSAttention: Training-Aware FP8 and Sparsity Co-Design for Fast Video Diffusion
Abstract:
Diffusion generative models have become the standard for producing high-quality, coherent video content, yet their slow inference speeds and high computational demands hinder practical deployment. Although both quantization and sparsity can independently accelerate inference while maintaining generation quality, naively combining these techniques in existing training-free approaches leads to significant performance degradation due to the lack of joint optimization. We introduce FPSAttention, a novel training-aware co-design of FP8 quantization and sparsity for video generation, with a focus on the 3D bi-directional attention mechanism. Our approach features three key innovations: 1) A unified 3D tile-wise granularity that simultaneously supports both quantization and sparsity; 2) A denoising step-aware strategy that adapts to the noise schedule, addressing the strong correlation between quantization/sparsity errors and denoising steps; 3) A native, hardware-friendly kernel that leverages FlashAttention and is implemented with optimized Hopper architecture features for highly efficient execution. Trained on Wan2.1's 1.3B and 14B models and evaluated on the VBench benchmark, FPSAttention achieves a 7.09x kernel speedup for attention operations and a 4.96x end-to-end speedup for video generation compared to the BF16 baseline at 720p resolution-without sacrificing generation quality.
Authors:Jiahao Chen, Hangjie Yuan, Yichen Qian, Jingyun Liang, Jiazheng Xing, Pengwei Liu, Weihua Chen, Fan Wang, Bing Su
Title: LumosFlow: Motion-Guided Long Video Generation
Abstract:
Long video generation has gained increasing attention due to its widespread applications in fields such as entertainment and simulation. Despite advances, synthesizing temporally coherent and visually compelling long sequences remains a formidable challenge. Conventional approaches often synthesize long videos by sequentially generating and concatenating short clips, or generating key frames and then interpolate the intermediate frames in a hierarchical manner. However, both of them still remain significant challenges, leading to issues such as temporal repetition or unnatural transitions. In this paper, we revisit the hierarchical long video generation pipeline and introduce LumosFlow, a framework introduce motion guidance explicitly. Specifically, we first employ the Large Motion Text-to-Video Diffusion Model (LMTV-DM) to generate key frames with larger motion intervals, thereby ensuring content diversity in the generated long videos. Given the complexity of interpolating contextual transitions between key frames, we further decompose the intermediate frame interpolation into motion generation and post-hoc refinement. For each pair of key frames, the Latent Optical Flow Diffusion Model (LOF-DM) synthesizes complex and large-motion optical flows, while MotionControlNet subsequently refines the warped results to enhance quality and guide intermediate frame generation. Compared with traditional video frame interpolation, we achieve 15x interpolation, ensuring reasonable and continuous motion between adjacent frames. Experiments show that our method can generate long videos with consistent motion and appearance. Code and models will be made publicly available upon acceptance. Our project page: https://jiahaochen1.github.io/LumosFlow/
Authors:Zhipei Xu, Xuanyu Zhang, Qing Huang, Xing Zhou, Jian Zhang
Title: AvatarShield: Visual Reinforcement Learning for Human-Centric Synthetic Video Detection
Abstract:
Recent advances in Artificial Intelligence Generated Content have led to highly realistic synthetic videos, particularly in human-centric scenarios involving speech, gestures, and full-body motion, posing serious threats to information authenticity and public trust. Unlike DeepFake techniques that focus on localized facial manipulation, human-centric video generation methods can synthesize entire human bodies with controllable movements, enabling complex interactions with environments, objects, and even other people. However, existing detection methods largely overlook the growing risks posed by such full-body synthetic content. Meanwhile, a growing body of research has explored leveraging LLMs for interpretable fake detection, aiming to explain decisions in natural language. Yet these approaches heavily depend on supervised fine-tuning, which introduces limitations such as annotation bias, hallucinated supervision, and weakened generalization. To address these challenges, we propose AvatarShield, a novel multimodal human-centric synthetic video detection framework that eliminates the need for dense textual supervision by adopting Group Relative Policy Optimization, enabling LLMs to develop reasoning capabilities from simple binary labels. Our architecture combines a discrete vision tower for high-level semantic inconsistencies and a residual extractor for fine-grained artifact analysis. We further introduce FakeHumanVid, a large-scale benchmark containing 15K real and synthetic videos across nine state-of-the-art human generation methods driven by text, pose, or audio. Extensive experiments demonstrate that AvatarShield outperforms existing methods in both in-domain and cross-domain settings.
Authors:Jian Zhu, Zhengyu Jia, Tian Gao, Jiaxin Deng, Shidi Li, Lang Zhang, Fu Liu, Peng Jia, Xianpeng Lang
Title: Other Vehicle Trajectories Are Also Needed: A Driving World Model Unifies Ego-Other Vehicle Trajectories in Video Latent Space
Abstract:
Advanced end-to-end autonomous driving systems predict other vehicles' motions and plan ego vehicle's trajectory. The world model that can foresee the outcome of the trajectory has been used to evaluate the autonomous driving system. However, existing world models predominantly emphasize the trajectory of the ego vehicle and leave other vehicles uncontrollable. This limitation hinders their ability to realistically simulate the interaction between the ego vehicle and the driving scenario. In this paper, we propose a driving World Model named EOT-WM, unifying Ego-Other vehicle Trajectories in videos for driving simulation. Specifically, it remains a challenge to match multiple trajectories in the BEV space with each vehicle in the video to control the video generation. We first project ego-other vehicle trajectories in the BEV space into the image coordinate for vehicle-trajectory match via pixel positions. Then, trajectory videos are encoded by the Spatial-Temporal Variational Auto Encoder to align with driving video latents spatially and temporally in the unified visual space. A trajectory-injected diffusion Transformer is further designed to denoise the noisy video latents for video generation with the guidance of ego-other vehicle trajectories. In addition, we propose a metric based on control latent similarity to evaluate the controllability of trajectories. Extensive experiments are conducted on the nuScenes dataset, and the proposed model outperforms the state-of-the-art method by 30% in FID and 55% in FVD. The model can also predict unseen driving scenes with self-produced trajectories.
Authors:Xuanchi Ren, Tianchang Shen, Jiahui Huang, Huan Ling, Yifan Lu, Merlin Nimier-David, Thomas Müller, Alexander Keller, Sanja Fidler, Jun Gao
Title: GEN3C: 3D-Informed World-Consistent Video Generation with Precise Camera Control
Abstract:
We present GEN3C, a generative video model with precise Camera Control and temporal 3D Consistency. Prior video models already generate realistic videos, but they tend to leverage little 3D information, leading to inconsistencies, such as objects popping in and out of existence. Camera control, if implemented at all, is imprecise, because camera parameters are mere inputs to the neural network which must then infer how the video depends on the camera. In contrast, GEN3C is guided by a 3D cache: point clouds obtained by predicting the pixel-wise depth of seed images or previously generated frames. When generating the next frames, GEN3C is conditioned on the 2D renderings of the 3D cache with the new camera trajectory provided by the user. Crucially, this means that GEN3C neither has to remember what it previously generated nor does it have to infer the image structure from the camera pose. The model, instead, can focus all its generative power on previously unobserved regions, as well as advancing the scene state to the next frame. Our results demonstrate more precise camera control than prior work, as well as state-of-the-art results in sparse-view novel view synthesis, even in challenging settings such as driving scenes and monocular dynamic video. Results are best viewed in videos. Check out our webpage! https://research.nvidia.com/labs/toronto-ai/GEN3C/
Authors:Qingyuan Liu, Yun-Yun Tsai, Ruijian Zha, Victoria Li, Pengyuan Shi, Chengzhi Mao, Junfeng Yang
Title: LAVID: An Agentic LVLM Framework for Diffusion-Generated Video Detection
Abstract:
The impressive achievements of generative models in creating high-quality videos have raised concerns about digital integrity and privacy vulnerabilities. Recent works of AI-generated content detection have been widely studied in the image field (e.g., deepfake), yet the video field has been unexplored. Large Vision Language Model (LVLM) has become an emerging tool for AI-generated content detection for its strong reasoning and multimodal capabilities. It breaks the limitations of traditional deep learning based methods faced with like lack of transparency and inability to recognize new artifacts. Motivated by this, we propose LAVID, a novel LVLMs-based ai-generated video detection with explicit knowledge enhancement. Our insight list as follows: (1) The leading LVLMs can call external tools to extract useful information to facilitate its own video detection task; (2) Structuring the prompt can affect LVLM's reasoning ability to interpret information in video content. Our proposed pipeline automatically selects a set of explicit knowledge tools for detection, and then adaptively adjusts the structure prompt by self-rewriting. Different from prior SOTA that trains additional detectors, our method is fully training-free and only requires inference of the LVLM for detection. To facilitate our research, we also create a new benchmark \vidfor with high-quality videos generated from multiple sources of video generation tools. Evaluation results show that LAVID improves F1 scores by 6.2 to 30.2% over the top baselines on our datasets across four SOTA LVLMs.
Authors:Qihang Zhang, Shuangfei Zhai, Miguel Angel Bautista, Kevin Miao, Alexander Toshev, Joshua Susskind, Jiatao Gu
Title: World-consistent Video Diffusion with Explicit 3D Modeling
Abstract:
Recent advancements in diffusion models have set new benchmarks in image and video generation, enabling realistic visual synthesis across single- and multi-frame contexts. However, these models still struggle with efficiently and explicitly generating 3D-consistent content. To address this, we propose World-consistent Video Diffusion (WVD), a novel framework that incorporates explicit 3D supervision using XYZ images, which encode global 3D coordinates for each image pixel. More specifically, we train a diffusion transformer to learn the joint distribution of RGB and XYZ frames. This approach supports multi-task adaptability via a flexible inpainting strategy. For example, WVD can estimate XYZ frames from ground-truth RGB or generate novel RGB frames using XYZ projections along a specified camera trajectory. In doing so, WVD unifies tasks like single-image-to-3D generation, multi-view stereo, and camera-controlled video generation. Our approach demonstrates competitive performance across multiple benchmarks, providing a scalable solution for 3D-consistent video and image generation with a single pretrained model.
Authors:Xu Cao, Kaizhao Liang, Kuei-Da Liao, Tianren Gao, Wenqian Ye, Jintai Chen, Zhiguang Ding, Jianguo Cao, James M. Rehg, Jimeng Sun
Title: Medical Video Generation for Disease Progression Simulation
Abstract:
Modeling disease progression is crucial for improving the quality and efficacy of clinical diagnosis and prognosis, but it is often hindered by a lack of longitudinal medical image monitoring for individual patients. To address this challenge, we propose the first Medical Video Generation (MVG) framework that enables controlled manipulation of disease-related image and video features, allowing precise, realistic, and personalized simulations of disease progression. Our approach begins by leveraging large language models (LLMs) to recaption prompt for disease trajectory. Next, a controllable multi-round diffusion model simulates the disease progression state for each patient, creating realistic intermediate disease state sequence. Finally, a diffusion-based video transition generation model interpolates disease progression between these states. We validate our framework across three medical imaging domains: chest X-ray, fundus photography, and skin image. Our results demonstrate that MVG significantly outperforms baseline models in generating coherent and clinically plausible disease trajectories. Two user studies by veteran physicians, provide further validation and insights into the clinical utility of the generated sequences. MVG has the potential to assist healthcare providers in modeling disease trajectories, interpolating missing medical image data, and enhancing medical education through realistic, dynamic visualizations of disease progression.
Authors:Qian Tao, Wenyuan Yu, Jingren Zhou
Title: AsymKV: Enabling 1-Bit Quantization of KV Cache with Layer-Wise Asymmetric Quantization Configurations
Abstract:
Large language models have shown exceptional capabilities in a wide range of tasks, such as text generation and video generation, among others. However, due to their massive parameter count, these models often require substantial storage space, imposing significant constraints on the machines deploying LLMs. To overcome this limitation, one research direction proposes to compress the models using integer replacements for floating-point numbers, in a process known as Quantization. Some recent studies suggest quantizing the key and value cache (KV Cache) of LLMs, and designing quantization techniques that treat the key and value matrices equivalently. This work delves deeper into the asymmetric structural roles of KV Cache, a phenomenon where the transformer's output loss is more sensitive to the quantization of key matrices. We conduct a systematic examination of the attention output error resulting from key and value quantization. The phenomenon inspires us to propose an asymmetric quantization strategy. Our approach allows for 1-bit quantization of the KV cache by implementing distinct configurations for key and value matrices. We carry out experiments across a variety of datasets, demonstrating that our proposed model allows for the quantization of up to 75% decoder layers with 1 bit, while simultaneously maintaining performance levels comparable to those of the models with floating parameters.
Authors:Yuqing Wang, Tianwei Xiong, Daquan Zhou, Zhijie Lin, Yang Zhao, Bingyi Kang, Jiashi Feng, Xihui Liu
Title: Loong: Generating Minute-level Long Videos with Autoregressive Language Models
Abstract:
It is desirable but challenging to generate content-rich long videos in the scale of minutes. Autoregressive large language models (LLMs) have achieved great success in generating coherent and long sequences of tokens in the domain of natural language processing, while the exploration of autoregressive LLMs for video generation is limited to generating short videos of several seconds. In this work, we conduct a deep analysis of the challenges that prevent autoregressive LLM-based video generators from generating long videos. Based on the observations and analysis, we propose Loong, a new autoregressive LLM-based video generator that can generate minute-long videos. Specifically, we model the text tokens and video tokens as a unified sequence for autoregressive LLMs and train the model from scratch. We propose progressive short-to-long training with a loss re-weighting scheme to mitigate the loss imbalance problem for long video training. We further investigate inference strategies, including video token re-encoding and sampling strategies, to diminish error accumulation during inference. Our proposed Loong can be trained on 10-second videos and be extended to generate minute-level long videos conditioned on text prompts, as demonstrated by the results. More samples are available at: https://yuqingwang1029.github.io/Loong-video.
Authors:Hengyu Fu, Zehao Dou, Jiawei Guo, Mengdi Wang, Minshuo Chen
Title: Diffusion Transformer Captures Spatial-Temporal Dependencies: A Theory for Gaussian Process Data
Abstract:
Diffusion Transformer, the backbone of Sora for video generation, successfully scales the capacity of diffusion models, pioneering new avenues for high-fidelity sequential data generation. Unlike static data such as images, sequential data consists of consecutive data frames indexed by time, exhibiting rich spatial and temporal dependencies. These dependencies represent the underlying dynamic model and are critical to validate the generated data. In this paper, we make the first theoretical step towards bridging diffusion transformers for capturing spatial-temporal dependencies. Specifically, we establish score approximation and distribution estimation guarantees of diffusion transformers for learning Gaussian process data with covariance functions of various decay patterns. We highlight how the spatial-temporal dependencies are captured and affect learning efficiency. Our study proposes a novel transformer approximation theory, where the transformer acts to unroll an algorithm. We support our theoretical results by numerical experiments, providing strong evidence that spatial-temporal dependencies are captured within attention layers, aligning with our approximation theory.
Authors:Weixi Feng, Jiachen Li, Michael Saxon, Tsu-jui Fu, Wenhu Chen, William Yang Wang
Title: TC-Bench: Benchmarking Temporal Compositionality in Text-to-Video and Image-to-Video Generation
Abstract:
Video generation has many unique challenges beyond those of image generation. The temporal dimension introduces extensive possible variations across frames, over which consistency and continuity may be violated. In this study, we move beyond evaluating simple actions and argue that generated videos should incorporate the emergence of new concepts and their relation transitions like in real-world videos as time progresses. To assess the Temporal Compositionality of video generation models, we propose TC-Bench, a benchmark of meticulously crafted text prompts, corresponding ground truth videos, and robust evaluation metrics. The prompts articulate the initial and final states of scenes, effectively reducing ambiguities for frame development and simplifying the assessment of transition completion. In addition, by collecting aligned real-world videos corresponding to the prompts, we expand TC-Bench's applicability from text-conditional models to image-conditional ones that can perform generative frame interpolation. We also develop new metrics to measure the completeness of component transitions in generated videos, which demonstrate significantly higher correlations with human judgments than existing metrics. Our comprehensive experimental results reveal that most video generators achieve less than 20% of the compositional changes, highlighting enormous space for future improvement. Our analysis indicates that current video generation models struggle to interpret descriptions of compositional changes and synthesize various components across different time steps.
Authors:Enhui Ma, Lijun Zhou, Tao Tang, Zhan Zhang, Dong Han, Junpeng Jiang, Kun Zhan, Peng Jia, Xianpeng Lang, Haiyang Sun, Di Lin, Kaicheng Yu
Title: Unleashing Generalization of End-to-End Autonomous Driving with Controllable Long Video Generation
Abstract:
Using generative models to synthesize new data has become a de-facto standard in autonomous driving to address the data scarcity issue. Though existing approaches are able to boost perception models, we discover that these approaches fail to improve the performance of planning of end-to-end autonomous driving models as the generated videos are usually less than 8 frames and the spatial and temporal inconsistencies are not negligible. To this end, we propose Delphi, a novel diffusion-based long video generation method with a shared noise modeling mechanism across the multi-views to increase spatial consistency, and a feature-aligned module to achieves both precise controllability and temporal consistency. Our method can generate up to 40 frames of video without loss of consistency which is about 5 times longer compared with state-of-the-art methods. Instead of randomly generating new data, we further design a sampling policy to let Delphi generate new data that are similar to those failure cases to improve the sample efficiency. This is achieved by building a failure-case driven framework with the help of pre-trained visual language models. Our extensive experiment demonstrates that our Delphi generates a higher quality of long videos surpassing previous state-of-the-art methods. Consequentially, with only generating 4% of the training dataset size, our framework is able to go beyond perception and prediction tasks, for the first time to the best of our knowledge, boost the planning performance of the end-to-end autonomous driving model by a margin of 25%.
Authors:Jiachen Li, Weixi Feng, Tsu-Jui Fu, Xinyi Wang, Sugato Basu, Wenhu Chen, William Yang Wang
Title: T2V-Turbo: Breaking the Quality Bottleneck of Video Consistency Model with Mixed Reward Feedback
Abstract:
Diffusion-based text-to-video (T2V) models have achieved significant success but continue to be hampered by the slow sampling speed of their iterative sampling processes. To address the challenge, consistency models have been proposed to facilitate fast inference, albeit at the cost of sample quality. In this work, we aim to break the quality bottleneck of a video consistency model (VCM) to achieve $\textbf{both fast and high-quality video generation}$. We introduce T2V-Turbo, which integrates feedback from a mixture of differentiable reward models into the consistency distillation (CD) process of a pre-trained T2V model. Notably, we directly optimize rewards associated with single-step generations that arise naturally from computing the CD loss, effectively bypassing the memory constraints imposed by backpropagating gradients through an iterative sampling process. Remarkably, the 4-step generations from our T2V-Turbo achieve the highest total score on VBench, even surpassing Gen-2 and Pika. We further conduct human evaluations to corroborate the results, validating that the 4-step generations from our T2V-Turbo are preferred over the 50-step DDIM samples from their teacher models, representing more than a tenfold acceleration while improving video generation quality.
Authors:Xuanyu Zhang, Youmin Xu, Runyi Li, Jiwen Yu, Weiqi Li, Zhipei Xu, Jian Zhang
Title: V2A-Mark: Versatile Deep Visual-Audio Watermarking for Manipulation Localization and Copyright Protection
Abstract:
AI-generated video has revolutionized short video production, filmmaking, and personalized media, making video local editing an essential tool. However, this progress also blurs the line between reality and fiction, posing challenges in multimedia forensics. To solve this urgent issue, V2A-Mark is proposed to address the limitations of current video tampering forensics, such as poor generalizability, singular function, and single modality focus. Combining the fragility of video-into-video steganography with deep robust watermarking, our method can embed invisible visual-audio localization watermarks and copyright watermarks into the original video frames and audio, enabling precise manipulation localization and copyright protection. We also design a temporal alignment and fusion module and degradation prompt learning to enhance the localization accuracy and decoding robustness. Meanwhile, we introduce a sample-level audio localization method and a cross-modal copyright extraction mechanism to couple the information of audio and video frames. The effectiveness of V2A-Mark has been verified on a visual-audio tampering dataset, emphasizing its superiority in localization precision and copyright accuracy, crucial for the sustainable development of video editing in the AIGC video era.
Authors:Ruiqi Wu, Liangyu Chen, Tong Yang, Chunle Guo, Chongyi Li, Xiangyu Zhang
Title: LAMP: Learn A Motion Pattern for Few-Shot-Based Video Generation
Abstract:
With the impressive progress in diffusion-based text-to-image generation, extending such powerful generative ability to text-to-video raises enormous attention. Existing methods either require large-scale text-video pairs and a large number of training resources or learn motions that are precisely aligned with template videos. It is non-trivial to balance a trade-off between the degree of generation freedom and the resource costs for video generation. In our study, we present a few-shot-based tuning framework, LAMP, which enables text-to-image diffusion model Learn A specific Motion Pattern with 8~16 videos on a single GPU. Specifically, we design a first-frame-conditioned pipeline that uses an off-the-shelf text-to-image model for content generation so that our tuned video diffusion model mainly focuses on motion learning. The well-developed text-to-image techniques can provide visually pleasing and diverse content as generation conditions, which highly improves video quality and generation freedom. To capture the features of temporal dimension, we expand the pretrained 2D convolution layers of the T2I model to our novel temporal-spatial motion learning layers and modify the attention blocks to the temporal level. Additionally, we develop an effective inference trick, shared-noise sampling, which can improve the stability of videos with computational costs. Our method can also be flexibly applied to other tasks, e.g. real-world image animation and video editing. Extensive experiments demonstrate that LAMP can effectively learn the motion pattern on limited data and generate high-quality videos. The code and models are available at https://rq-wu.github.io/projects/LAMP.
Authors:Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv, Yizhe Zhu, Jiashi Feng
Title: MagicVideo: Efficient Video Generation With Latent Diffusion Models
Abstract:
We present an efficient text-to-video generation framework based on latent diffusion models, termed MagicVideo. MagicVideo can generate smooth video clips that are concordant with the given text descriptions. Due to a novel and efficient 3D U-Net design and modeling video distributions in a low-dimensional space, MagicVideo can synthesize video clips with 256x256 spatial resolution on a single GPU card, which takes around 64x fewer computations than the Video Diffusion Models (VDM) in terms of FLOPs. In specific, unlike existing works that directly train video models in the RGB space, we use a pre-trained VAE to map video clips into a low-dimensional latent space and learn the distribution of videos' latent codes via a diffusion model. Besides, we introduce two new designs to adapt the U-Net denoiser trained on image tasks to video data: a frame-wise lightweight adaptor for the image-to-video distribution adjustment and a directed temporal attention module to capture temporal dependencies across frames. Thus, we can exploit the informative weights of convolution operators from a text-to-image model for accelerating video training. To ameliorate the pixel dithering in the generated videos, we also propose a novel VideoVAE auto-encoder for better RGB reconstruction. We conduct extensive experiments and demonstrate that MagicVideo can generate high-quality video clips with either realistic or imaginary content. Refer to \url{https://magicvideo.github.io/#} for more examples.
Authors:Chen Wang, Chuhao Chen, Yiming Huang, Zhiyang Dou, Yuan Liu, Jiatao Gu, Lingjie Liu
Title: PhysCtrl: Generative Physics for Controllable and Physics-Grounded Video Generation
Abstract:
Existing video generation models excel at producing photo-realistic videos from text or images, but often lack physical plausibility and 3D controllability. To overcome these limitations, we introduce PhysCtrl, a novel framework for physics-grounded image-to-video generation with physical parameters and force control. At its core is a generative physics network that learns the distribution of physical dynamics across four materials (elastic, sand, plasticine, and rigid) via a diffusion model conditioned on physics parameters and applied forces. We represent physical dynamics as 3D point trajectories and train on a large-scale synthetic dataset of 550K animations generated by physics simulators. We enhance the diffusion model with a novel spatiotemporal attention block that emulates particle interactions and incorporates physics-based constraints during training to enforce physical plausibility. Experiments show that PhysCtrl generates realistic, physics-grounded motion trajectories which, when used to drive image-to-video models, yield high-fidelity, controllable videos that outperform existing methods in both visual quality and physical plausibility. Project Page: https://cwchenwang.github.io/physctrl
Authors:Naen Xu, Jinghuai Zhang, Changjiang Li, Zhi Chen, Chunyi Zhou, Qingming Li, Tianyu Du, Shouling Ji
Title: VideoEraser: Concept Erasure in Text-to-Video Diffusion Models
Abstract:
The rapid growth of text-to-video (T2V) diffusion models has raised concerns about privacy, copyright, and safety due to their potential misuse in generating harmful or misleading content. These models are often trained on numerous datasets, including unauthorized personal identities, artistic creations, and harmful materials, which can lead to uncontrolled production and distribution of such content. To address this, we propose VideoEraser, a training-free framework that prevents T2V diffusion models from generating videos with undesirable concepts, even when explicitly prompted with those concepts. Designed as a plug-and-play module, VideoEraser can seamlessly integrate with representative T2V diffusion models via a two-stage process: Selective Prompt Embedding Adjustment (SPEA) and Adversarial-Resilient Noise Guidance (ARNG). We conduct extensive evaluations across four tasks, including object erasure, artistic style erasure, celebrity erasure, and explicit content erasure. Experimental results show that VideoEraser consistently outperforms prior methods regarding efficacy, integrity, fidelity, robustness, and generalizability. Notably, VideoEraser achieves state-of-the-art performance in suppressing undesirable content during T2V generation, reducing it by 46% on average across four tasks compared to baselines.
Authors:Xianglong He, Chunli Peng, Zexiang Liu, Boyang Wang, Yifan Zhang, Qi Cui, Fei Kang, Biao Jiang, Mengyin An, Yangyang Ren, Baixin Xu, Hao-Xiang Guo, Kaixiong Gong, Cyrus Wu, Wei Li, Xuchen Song, Yang Liu, Eric Li, Yahui Zhou
Title: Matrix-Game 2.0: An Open-Source, Real-Time, and Streaming Interactive World Model
Abstract:
Recent advances in interactive video generations have demonstrated diffusion model's potential as world models by capturing complex physical dynamics and interactive behaviors. However, existing interactive world models depend on bidirectional attention and lengthy inference steps, severely limiting real-time performance. Consequently, they are hard to simulate real-world dynamics, where outcomes must update instantaneously based on historical context and current actions. To address this, we present Matrix-Game 2.0, an interactive world model generates long videos on-the-fly via few-step auto-regressive diffusion. Our framework consists of three key components: (1) A scalable data production pipeline for Unreal Engine and GTA5 environments to effectively produce massive amounts (about 1200 hours) of video data with diverse interaction annotations; (2) An action injection module that enables frame-level mouse and keyboard inputs as interactive conditions; (3) A few-step distillation based on the casual architecture for real-time and streaming video generation. Matrix Game 2.0 can generate high-quality minute-level videos across diverse scenes at an ultra-fast speed of 25 FPS. We open-source our model weights and codebase to advance research in interactive world modeling.
Authors:Zhongqi Yang, Wenhang Ge, Yuqi Li, Jiaqi Chen, Haoyuan Li, Mengyin An, Fei Kang, Hua Xue, Baixin Xu, Yuyang Yin, Eric Li, Yang Liu, Yikai Wang, Hao-Xiang Guo, Yahui Zhou
Title: Matrix-3D: Omnidirectional Explorable 3D World Generation
Abstract:
Explorable 3D world generation from a single image or text prompt forms a cornerstone of spatial intelligence. Recent works utilize video model to achieve wide-scope and generalizable 3D world generation. However, existing approaches often suffer from a limited scope in the generated scenes. In this work, we propose Matrix-3D, a framework that utilize panoramic representation for wide-coverage omnidirectional explorable 3D world generation that combines conditional video generation and panoramic 3D reconstruction. We first train a trajectory-guided panoramic video diffusion model that employs scene mesh renders as condition, to enable high-quality and geometrically consistent scene video generation. To lift the panorama scene video to 3D world, we propose two separate methods: (1) a feed-forward large panorama reconstruction model for rapid 3D scene reconstruction and (2) an optimization-based pipeline for accurate and detailed 3D scene reconstruction. To facilitate effective training, we also introduce the Matrix-Pano dataset, the first large-scale synthetic collection comprising 116K high-quality static panoramic video sequences with depth and trajectory annotations. Extensive experiments demonstrate that our proposed framework achieves state-of-the-art performance in panoramic video generation and 3D world generation. See more in https://matrix-3d.github.io.
Authors:Jianhui Wang, Yinda Chen, Yangfan He, Xinyuan Song, Yi Xin, Dapeng Zhang, Zhongwei Wan, Bin Li, Rongchao Zhang
Title: Low-Cost Test-Time Adaptation for Robust Video Editing
Abstract:
Video editing is a critical component of content creation that transforms raw footage into coherent works aligned with specific visual and narrative objectives. Existing approaches face two major challenges: temporal inconsistencies due to failure in capturing complex motion patterns, and overfitting to simple prompts arising from limitations in UNet backbone architectures. While learning-based methods can enhance editing quality, they typically demand substantial computational resources and are constrained by the scarcity of high-quality annotated data. In this paper, we present Vid-TTA, a lightweight test-time adaptation framework that personalizes optimization for each test video during inference through self-supervised auxiliary tasks. Our approach incorporates a motion-aware frame reconstruction mechanism that identifies and preserves crucial movement regions, alongside a prompt perturbation and reconstruction strategy that strengthens model robustness to diverse textual descriptions. These innovations are orchestrated by a meta-learning driven dynamic loss balancing mechanism that adaptively adjusts the optimization process based on video characteristics. Extensive experiments demonstrate that Vid-TTA significantly improves video temporal consistency and mitigates prompt overfitting while maintaining low computational overhead, offering a plug-and-play performance boost for existing video editing models.
Authors:Chong Xia, Shengjun Zhang, Fangfu Liu, Chang Liu, Khodchaphun Hirunyaratsameewong, Yueqi Duan
Title: ScenePainter: Semantically Consistent Perpetual 3D Scene Generation with Concept Relation Alignment
Abstract:
Perpetual 3D scene generation aims to produce long-range and coherent 3D view sequences, which is applicable for long-term video synthesis and 3D scene reconstruction. Existing methods follow a "navigate-and-imagine" fashion and rely on outpainting for successive view expansion. However, the generated view sequences suffer from semantic drift issue derived from the accumulated deviation of the outpainting module. To tackle this challenge, we propose ScenePainter, a new framework for semantically consistent 3D scene generation, which aligns the outpainter's scene-specific prior with the comprehension of the current scene. To be specific, we introduce a hierarchical graph structure dubbed SceneConceptGraph to construct relations among multi-level scene concepts, which directs the outpainter for consistent novel views and can be dynamically refined to enhance diversity. Extensive experiments demonstrate that our framework overcomes the semantic drift issue and generates more consistent and immersive 3D view sequences. Project Page: https://xiac20.github.io/ScenePainter/.
Authors:Rui Huang, Guangyao Zhai, Zuria Bauer, Marc Pollefeys, Federico Tombari, Leonidas Guibas, Gao Huang, Francis Engelmann
Title: Video Perception Models for 3D Scene Synthesis
Abstract:
Traditionally, 3D scene synthesis requires expert knowledge and significant manual effort. Automating this process could greatly benefit fields such as architectural design, robotics simulation, virtual reality, and gaming. Recent approaches to 3D scene synthesis often rely on the commonsense reasoning of large language models (LLMs) or strong visual priors of modern image generation models. However, current LLMs demonstrate limited 3D spatial reasoning ability, which restricts their ability to generate realistic and coherent 3D scenes. Meanwhile, image generation-based methods often suffer from constraints in viewpoint selection and multi-view inconsistencies. In this work, we present Video Perception models for 3D Scene synthesis (VIPScene), a novel framework that exploits the encoded commonsense knowledge of the 3D physical world in video generation models to ensure coherent scene layouts and consistent object placements across views. VIPScene accepts both text and image prompts and seamlessly integrates video generation, feedforward 3D reconstruction, and open-vocabulary perception models to semantically and geometrically analyze each object in a scene. This enables flexible scene synthesis with high realism and structural consistency. For more precise analysis, we further introduce First-Person View Score (FPVScore) for coherence and plausibility evaluation, utilizing continuous first-person perspective to capitalize on the reasoning ability of multimodal large language models. Extensive experiments show that VIPScene significantly outperforms existing methods and generalizes well across diverse scenarios. The code will be released.
Authors:Zehong Ma, Longhui Wei, Feng Wang, Shiliang Zhang, Qi Tian
Title: MagCache: Fast Video Generation with Magnitude-Aware Cache
Abstract:
Existing acceleration techniques for video diffusion models often rely on uniform heuristics or time-embedding variants to skip timesteps and reuse cached features. These approaches typically require extensive calibration with curated prompts and risk inconsistent outputs due to prompt-specific overfitting. In this paper, we introduce a novel and robust discovery: a unified magnitude law observed across different models and prompts. Specifically, the magnitude ratio of successive residual outputs decreases monotonically and steadily in most timesteps while rapidly in the last several steps. Leveraging this insight, we introduce a Magnitude-aware Cache (MagCache) that adaptively skips unimportant timesteps using an error modeling mechanism and adaptive caching strategy. Unlike existing methods requiring dozens of curated samples for calibration, MagCache only requires a single sample for calibration. Experimental results show that MagCache achieves 2.1x and 2.68x speedups on Open-Sora and Wan 2.1, respectively, while preserving superior visual fidelity. It significantly outperforms existing methods in LPIPS, SSIM, and PSNR, under comparable computational budgets.
Authors:Ruoxuan Zhang, Jidong Gao, Bin Wen, Hongxia Xie, Chenming Zhang, Hong-Han Shuai, Wen-Huang Cheng
Title: RecipeGen: A Step-Aligned Multimodal Benchmark for Real-World Recipe Generation
Abstract:
Creating recipe images is a key challenge in food computing, with applications in culinary education and multimodal recipe assistants. However, existing datasets lack fine-grained alignment between recipe goals, step-wise instructions, and visual content. We present RecipeGen, the first large-scale, real-world benchmark for recipe-based Text-to-Image (T2I), Image-to-Video (I2V), and Text-to-Video (T2V) generation. RecipeGen contains 26,453 recipes, 196,724 images, and 4,491 videos, covering diverse ingredients, cooking procedures, styles, and dish types. We further propose domain-specific evaluation metrics to assess ingredient fidelity and interaction modeling, benchmark representative T2I, I2V, and T2V models, and provide insights for future recipe generation models. Project page is available now.
Authors:Yuhui Chen, Haoran Li, Zhennan Jiang, Haowei Wen, Dongbin Zhao
Title: TeViR: Text-to-Video Reward with Diffusion Models for Efficient Reinforcement Learning
Abstract:
Developing scalable and generalizable reward engineering for reinforcement learning (RL) is crucial for creating general-purpose agents, especially in the challenging domain of robotic manipulation. While recent advances in reward engineering with Vision-Language Models (VLMs) have shown promise, their sparse reward nature significantly limits sample efficiency. This paper introduces TeViR, a novel method that leverages a pre-trained text-to-video diffusion model to generate dense rewards by comparing the predicted image sequence with current observations. Experimental results across 11 complex robotic tasks demonstrate that TeViR outperforms traditional methods leveraging sparse rewards and other state-of-the-art (SOTA) methods, achieving better sample efficiency and performance without ground truth environmental rewards. TeViR's ability to efficiently guide agents in complex environments highlights its potential to advance reinforcement learning applications in robotic manipulation.
Authors:Daneul Kim, Jingxu Zhang, Wonjoon Jin, Sunghyun Cho, Qi Dai, Jaesik Park, Chong Luo
Title: Subject-driven Video Generation via Disentangled Identity and Motion
Abstract:
We propose to train a subject-driven customized video generation model through decoupling the subject-specific learning from temporal dynamics in zero-shot without additional tuning. A traditional method for video customization that is tuning-free often relies on large, annotated video datasets, which are computationally expensive and require extensive annotation. In contrast to the previous approach, we introduce the use of an image customization dataset directly on training video customization models, factorizing the video customization into two folds: (1) identity injection through image customization dataset and (2) temporal modeling preservation with a small set of unannotated videos through the image-to-video training method. Additionally, we employ random image token dropping with randomized image initialization during image-to-video fine-tuning to mitigate the copy-and-paste issue. To further enhance learning, we introduce stochastic switching during joint optimization of subject-specific and temporal features, mitigating catastrophic forgetting. Our method achieves strong subject consistency and scalability, outperforming existing video customization models in zero-shot settings, demonstrating the effectiveness of our framework.
Authors:Xinyuan Song, Yangfan He, Sida Li, Jianhui Wang, Hongyang He, Xinhang Yuan, Ruoyu Wang, Jiaqi Chen, Keqin Li, Kuan Lu, Menghao Huo, Binxu Li, Pei Liu
Title: Efficient Temporal Consistency in Diffusion-Based Video Editing with Adaptor Modules: A Theoretical Framework
Abstract:
Adapter-based methods are commonly used to enhance model performance with minimal additional complexity, especially in video editing tasks that require frame-to-frame consistency. By inserting small, learnable modules into pretrained diffusion models, these adapters can maintain temporal coherence without extensive retraining. Approaches that incorporate prompt learning with both shared and frame-specific tokens are particularly effective in preserving continuity across frames at low training cost. In this work, we want to provide a general theoretical framework for adapters that maintain frame consistency in DDIM-based models under a temporal consistency loss. First, we prove that the temporal consistency objective is differentiable under bounded feature norms, and we establish a Lipschitz bound on its gradient. Second, we show that gradient descent on this objective decreases the loss monotonically and converges to a local minimum if the learning rate is within an appropriate range. Finally, we analyze the stability of modules in the DDIM inversion procedure, showing that the associated error remains controlled. These theoretical findings will reinforce the reliability of diffusion-based video editing methods that rely on adapter strategies and provide theoretical insights in video generation tasks.
Authors:Zhengcong Fei, Debang Li, Di Qiu, Jiahua Wang, Yikun Dou, Rui Wang, Jingtao Xu, Mingyuan Fan, Guibin Chen, Yang Li, Yahui Zhou
Title: SkyReels-A2: Compose Anything in Video Diffusion Transformers
Abstract:
This paper presents SkyReels-A2, a controllable video generation framework capable of assembling arbitrary visual elements (e.g., characters, objects, backgrounds) into synthesized videos based on textual prompts while maintaining strict consistency with reference images for each element. We term this task elements-to-video (E2V), whose primary challenges lie in preserving the fidelity of each reference element, ensuring coherent composition of the scene, and achieving natural outputs. To address these, we first design a comprehensive data pipeline to construct prompt-reference-video triplets for model training. Next, we propose a novel image-text joint embedding model to inject multi-element representations into the generative process, balancing element-specific consistency with global coherence and text alignment. We also optimize the inference pipeline for both speed and output stability. Moreover, we introduce a carefully curated benchmark for systematic evaluation, i.e, A2 Bench. Experiments demonstrate that our framework can generate diverse, high-quality videos with precise element control. SkyReels-A2 is the first open-source commercial grade model for the generation of E2V, performing favorably against advanced closed-source commercial models. We anticipate SkyReels-A2 will advance creative applications such as drama and virtual e-commerce, pushing the boundaries of controllable video generation.
Authors:Zhongjian Wang, Peng Zhang, Jinwei Qi, Guangyuan Wang, Chaonan Ji, Sheng Xu, Bang Zhang, Liefeng Bo
Title: OmniTalker: One-shot Real-time Text-Driven Talking Audio-Video Generation With Multimodal Style Mimicking
Abstract:
Although significant progress has been made in audio-driven talking head generation, text-driven methods remain underexplored. In this work, we present OmniTalker, a unified framework that jointly generates synchronized talking audio-video content from input text while emulating the speaking and facial movement styles of the target identity, including speech characteristics, head motion, and facial dynamics. Our framework adopts a dual-branch diffusion transformer (DiT) architecture, with one branch dedicated to audio generation and the other to video synthesis. At the shallow layers, cross-modal fusion modules are introduced to integrate information between the two modalities. In deeper layers, each modality is processed independently, with the generated audio decoded by a vocoder and the video rendered using a GAN-based high-quality visual renderer. Leveraging the in-context learning capability of DiT through a masked-infilling strategy, our model can simultaneously capture both audio and visual styles without requiring explicit style extraction modules. Thanks to the efficiency of the DiT backbone and the optimized visual renderer, OmniTalker achieves real-time inference at 25 FPS. To the best of our knowledge, OmniTalker is the first one-shot framework capable of jointly modeling speech and facial styles in real time. Extensive experiments demonstrate its superiority over existing methods in terms of generation quality, particularly in preserving style consistency and ensuring precise audio-video synchronization, all while maintaining efficient inference.
Authors:Jinwei Qi, Chaonan Ji, Sheng Xu, Peng Zhang, Bang Zhang, Liefeng Bo
Title: ChatAnyone: Stylized Real-time Portrait Video Generation with Hierarchical Motion Diffusion Model
Abstract:
Real-time interactive video-chat portraits have been increasingly recognized as the future trend, particularly due to the remarkable progress made in text and voice chat technologies. However, existing methods primarily focus on real-time generation of head movements, but struggle to produce synchronized body motions that match these head actions. Additionally, achieving fine-grained control over the speaking style and nuances of facial expressions remains a challenge. To address these limitations, we introduce a novel framework for stylized real-time portrait video generation, enabling expressive and flexible video chat that extends from talking head to upper-body interaction. Our approach consists of the following two stages. The first stage involves efficient hierarchical motion diffusion models, that take both explicit and implicit motion representations into account based on audio inputs, which can generate a diverse range of facial expressions with stylistic control and synchronization between head and body movements. The second stage aims to generate portrait video featuring upper-body movements, including hand gestures. We inject explicit hand control signals into the generator to produce more detailed hand movements, and further perform face refinement to enhance the overall realism and expressiveness of the portrait video. Additionally, our approach supports efficient and continuous generation of upper-body portrait video in maximum 512 * 768 resolution at up to 30fps on 4090 GPU, supporting interactive video-chat in real-time. Experimental results demonstrate the capability of our approach to produce portrait videos with rich expressiveness and natural upper-body movements.
Authors:Fangfu Liu, Hanyang Wang, Yimo Cai, Kaiyan Zhang, Xiaohang Zhan, Yueqi Duan
Title: Video-T1: Test-Time Scaling for Video Generation
Abstract:
With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
Authors:Katja Schwarz, Denys Rozumnyi, Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder
Title: A Recipe for Generating 3D Worlds From a Single Image
Abstract:
We introduce a recipe for generating immersive 3D worlds from a single image by framing the task as an in-context learning problem for 2D inpainting models. This approach requires minimal training and uses existing generative models. Our process involves two steps: generating coherent panoramas using a pre-trained diffusion model and lifting these into 3D with a metric depth estimator. We then fill unobserved regions by conditioning the inpainting model on rendered point clouds, requiring minimal fine-tuning. Tested on both synthetic and real images, our method produces high-quality 3D environments suitable for VR display. By explicitly modeling the 3D structure of the generated environment from the start, our approach consistently outperforms state-of-the-art, video synthesis-based methods along multiple quantitative image quality metrics. Project Page: https://katjaschwarz.github.io/worlds/
Authors:Quanhao Li, Zhen Xing, Rui Wang, Hui Zhang, Qi Dai, Zuxuan Wu
Title: MagicMotion: Controllable Video Generation with Dense-to-Sparse Trajectory Guidance
Abstract:
Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.
Authors:Hritik Bansal, Clark Peng, Yonatan Bitton, Roman Goldenberg, Aditya Grover, Kai-Wei Chang
Title: VideoPhy-2: A Challenging Action-Centric Physical Commonsense Evaluation in Video Generation
Abstract:
Large-scale video generative models, capable of creating realistic videos of diverse visual concepts, are strong candidates for general-purpose physical world simulators. However, their adherence to physical commonsense across real-world actions remains unclear (e.g., playing tennis, backflip). Existing benchmarks suffer from limitations such as limited size, lack of human evaluation, sim-to-real gaps, and absence of fine-grained physical rule analysis. To address this, we introduce VideoPhy-2, an action-centric dataset for evaluating physical commonsense in generated videos. We curate 200 diverse actions and detailed prompts for video synthesis from modern generative models. We perform human evaluation that assesses semantic adherence, physical commonsense, and grounding of physical rules in the generated videos. Our findings reveal major shortcomings, with even the best model achieving only 22% joint performance (i.e., high semantic and physical commonsense adherence) on the hard subset of VideoPhy-2. We find that the models particularly struggle with conservation laws like mass and momentum. Finally, we also train VideoPhy-AutoEval, an automatic evaluator for fast, reliable assessment on our dataset. Overall, VideoPhy-2 serves as a rigorous benchmark, exposing critical gaps in video generative models and guiding future research in physically-grounded video generation. The data and code is available at https://videophy2.github.io/.
Authors:Yuxuan Bian, Zhaoyang Zhang, Xuan Ju, Mingdeng Cao, Liangbin Xie, Ying Shan, Qiang Xu
Title: VideoPainter: Any-length Video Inpainting and Editing with Plug-and-Play Context Control
Abstract:
Video inpainting, which aims to restore corrupted video content, has experienced substantial progress. Despite these advances, existing methods, whether propagating unmasked region pixels through optical flow and receptive field priors, or extending image-inpainting models temporally, face challenges in generating fully masked objects or balancing the competing objectives of background context preservation and foreground generation in one model, respectively. To address these limitations, we propose a novel dual-stream paradigm VideoPainter that incorporates an efficient context encoder (comprising only 6% of the backbone parameters) to process masked videos and inject backbone-aware background contextual cues to any pre-trained video DiT, producing semantically consistent content in a plug-and-play manner. This architectural separation significantly reduces the model's learning complexity while enabling nuanced integration of crucial background context. We also introduce a novel target region ID resampling technique that enables any-length video inpainting, greatly enhancing our practical applicability. Additionally, we establish a scalable dataset pipeline leveraging current vision understanding models, contributing VPData and VPBench to facilitate segmentation-based inpainting training and assessment, the largest video inpainting dataset and benchmark to date with over 390K diverse clips. Using inpainting as a pipeline basis, we also explore downstream applications including video editing and video editing pair data generation, demonstrating competitive performance and significant practical potential. Extensive experiments demonstrate VideoPainter's superior performance in both any-length video inpainting and editing, across eight key metrics, including video quality, mask region preservation, and textual coherence.
Authors:Min Zhao, Guande He, Yixiao Chen, Hongzhou Zhu, Chongxuan Li, Jun Zhu
Title: RIFLEx: A Free Lunch for Length Extrapolation in Video Diffusion Transformers
Abstract:
Recent advancements in video generation have enabled models to synthesize high-quality, minute-long videos. However, generating even longer videos with temporal coherence remains a major challenge and existing length extrapolation methods lead to temporal repetition or motion deceleration. In this work, we systematically analyze the role of frequency components in positional embeddings and identify an intrinsic frequency that primarily governs extrapolation behavior. Based on this insight, we propose RIFLEx, a minimal yet effective approach that reduces the intrinsic frequency to suppress repetition while preserving motion consistency, without requiring any additional modifications. RIFLEx offers a true free lunch--achieving high-quality 2x extrapolation on state-of-the-art video diffusion transformers in a completely training-free manner. Moreover, it enhances quality and enables 3x extrapolation by minimal fine-tuning without long videos. Project page and codes: https://riflex-video.github.io/.
Authors:Di Qiu, Zhengcong Fei, Rui Wang, Jialin Bai, Changqian Yu, Mingyuan Fan, Guibin Chen, Xiang Wen
Title: SkyReels-A1: Expressive Portrait Animation in Video Diffusion Transformers
Abstract:
We present SkyReels-A1, a simple yet effective framework built upon video diffusion Transformer to facilitate portrait image animation. Existing methodologies still encounter issues, including identity distortion, background instability, and unrealistic facial dynamics, particularly in head-only animation scenarios. Besides, extending to accommodate diverse body proportions usually leads to visual inconsistencies or unnatural articulations. To address these challenges, SkyReels-A1 capitalizes on the strong generative capabilities of video DiT, enhancing facial motion transfer precision, identity retention, and temporal coherence. The system incorporates an expression-aware conditioning module that enables seamless video synthesis driven by expression-guided landmark inputs. Integrating the facial image-text alignment module strengthens the fusion of facial attributes with motion trajectories, reinforcing identity preservation. Additionally, SkyReels-A1 incorporates a multi-stage training paradigm to incrementally refine the correlation between expressions and motion while ensuring stable identity reproduction. Extensive empirical evaluations highlight the model's ability to produce visually coherent and compositionally diverse results, making it highly applicable to domains such as virtual avatars, remote communication, and digital media generation.
Authors:Linrui Tian, Siqi Hu, Qi Wang, Bang Zhang, Liefeng Bo
Title: EMO2: End-Effector Guided Audio-Driven Avatar Video Generation
Abstract:
In this paper, we propose a novel audio-driven talking head method capable of simultaneously generating highly expressive facial expressions and hand gestures. Unlike existing methods that focus on generating full-body or half-body poses, we investigate the challenges of co-speech gesture generation and identify the weak correspondence between audio features and full-body gestures as a key limitation. To address this, we redefine the task as a two-stage process. In the first stage, we generate hand poses directly from audio input, leveraging the strong correlation between audio signals and hand movements. In the second stage, we employ a diffusion model to synthesize video frames, incorporating the hand poses generated in the first stage to produce realistic facial expressions and body movements. Our experimental results demonstrate that the proposed method outperforms state-of-the-art approaches, such as CyberHost and Vlogger, in terms of both visual quality and synchronization accuracy. This work provides a new perspective on audio-driven gesture generation and a robust framework for creating expressive and natural talking head animations.
Authors:Yangfan He, Sida Li, Jianhui Wang, Kun Li, Xinyuan Song, Xinhang Yuan, Keqin Li, Kuan Lu, Menghao Huo, Jingqun Tang, Yi Xin, Jiaqi Chen, Miao Zhang, Xueqian Wang
Title: Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Abstract:
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
Authors:Xuehai He, Shuohang Wang, Jianwei Yang, Xiaoxia Wu, Yiping Wang, Kuan Wang, Zheng Zhan, Olatunji Ruwase, Yelong Shen, Xin Eric Wang
Title: Mojito: Motion Trajectory and Intensity Control for Video Generation
Abstract:
Recent advancements in diffusion models have shown great promise in producing high-quality video content. However, efficiently training video diffusion models capable of integrating directional guidance and controllable motion intensity remains a challenging and under-explored area. To tackle these challenges, this paper introduces Mojito, a diffusion model that incorporates both motion trajectory and intensity control for text-to-video generation. Specifically, Mojito features a Directional Motion Control (DMC) module that leverages cross-attention to efficiently direct the generated object's motion without training, alongside a Motion Intensity Modulator (MIM) that uses optical flow maps generated from videos to guide varying levels of motion intensity. Extensive experiments demonstrate Mojito's effectiveness in achieving precise trajectory and intensity control with high computational efficiency, generating motion patterns that closely match specified directions and intensities, providing realistic dynamics that align well with natural motion in real-world scenarios.
Authors:Ziqi Gao, Weikai Huang, Jieyu Zhang, Aniruddha Kembhavi, Ranjay Krishna
Title: Generate Any Scene: Evaluating and Improving Text-to-Vision Generation with Scene Graph Programming
Abstract:
DALL-E and Sora have gained attention by producing implausible images, such as "astronauts riding a horse in space." Despite the proliferation of text-to-vision models that have inundated the internet with synthetic visuals, from images to 3D assets, current benchmarks predominantly evaluate these models on real-world scenes paired with captions. We introduce Generate Any Scene, a framework that systematically enumerates scene graphs representing a vast array of visual scenes, spanning realistic to imaginative compositions. Generate Any Scene leverages 'scene graph programming', a method for dynamically constructing scene graphs of varying complexity from a structured taxonomy of visual elements. This taxonomy includes numerous objects, attributes, and relations, enabling the synthesis of an almost infinite variety of scene graphs. Using these structured representations, Generate Any Scene translates each scene graph into a caption, enabling scalable evaluation of text-to-vision models through standard metrics. We conduct extensive evaluations across multiple text-to-image, text-to-video, and text-to-3D models, presenting key findings on model performance. We find that DiT-backbone text-to-image models align more closely with input captions than UNet-backbone models. Text-to-video models struggle with balancing dynamics and consistency, while both text-to-video and text-to-3D models show notable gaps in human preference alignment. We demonstrate the effectiveness of Generate Any Scene by conducting three practical applications leveraging captions generated by Generate Any Scene: 1) a self-improving framework where models iteratively enhance their performance using generated data, 2) a distillation process to transfer specific strengths from proprietary models to open-source counterparts, and 3) improvements in content moderation by identifying and generating challenging synthetic data.
Authors:Wenqiang Sun, Shuo Chen, Fangfu Liu, Zilong Chen, Yueqi Duan, Jun Zhang, Yikai Wang
Title: DimensionX: Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion
Abstract:
In this paper, we introduce \textbf{DimensionX}, a framework designed to generate photorealistic 3D and 4D scenes from just a single image with video diffusion. Our approach begins with the insight that both the spatial structure of a 3D scene and the temporal evolution of a 4D scene can be effectively represented through sequences of video frames. While recent video diffusion models have shown remarkable success in producing vivid visuals, they face limitations in directly recovering 3D/4D scenes due to limited spatial and temporal controllability during generation. To overcome this, we propose ST-Director, which decouples spatial and temporal factors in video diffusion by learning dimension-aware LoRAs from dimension-variant data. This controllable video diffusion approach enables precise manipulation of spatial structure and temporal dynamics, allowing us to reconstruct both 3D and 4D representations from sequential frames with the combination of spatial and temporal dimensions. Additionally, to bridge the gap between generated videos and real-world scenes, we introduce a trajectory-aware mechanism for 3D generation and an identity-preserving denoising strategy for 4D generation. Extensive experiments on various real-world and synthetic datasets demonstrate that DimensionX achieves superior results in controllable video generation, as well as in 3D and 4D scene generation, compared with previous methods.
Authors:Chen Chen, Enhuai Liu, Daochang Liu, Mubarak Shah, Chang Xu
Title: Investigating Memorization in Video Diffusion Models
Abstract:
Diffusion models, widely used for image and video generation, face a significant limitation: the risk of memorizing and reproducing training data during inference, potentially generating unauthorized copyrighted content. While prior research has focused on image diffusion models (IDMs), video diffusion models (VDMs) remain underexplored. To address this gap, we first formally define the two types of memorization in VDMs (content memorization and motion memorization) in a practical way that focuses on privacy preservation and applies to all generation types. We then introduce new metrics specifically designed to separately assess content and motion memorization in VDMs. Additionally, we curate a dataset of text prompts that are most prone to triggering memorization when used as conditioning in VDMs. By leveraging these prompts, we generate diverse videos from various open-source VDMs, successfully extracting numerous training videos from each tested model. Through the application of our proposed metrics, we systematically analyze memorization across various pretrained VDMs, including text-conditional and unconditional models, on a variety of datasets. Our comprehensive study reveals that memorization is widespread across all tested VDMs, indicating that VDMs can also memorize image training data in addition to video datasets. Finally, we propose efficient and effective detection strategies for both content and motion memorization, offering a foundational approach for improving privacy in VDMs.
Authors:Huan Yang, Jiahui Chen, Chaofan Ding, Runhua Shi, Siyu Xiong, Qingqi Hong, Xiaoqi Mo, Xinhan Di
Title: Self-Supervised Learning of Deviation in Latent Representation for Co-speech Gesture Video Generation
Abstract:
Gestures are pivotal in enhancing co-speech communication. While recent works have mostly focused on point-level motion transformation or fully supervised motion representations through data-driven approaches, we explore the representation of gestures in co-speech, with a focus on self-supervised representation and pixel-level motion deviation, utilizing a diffusion model which incorporates latent motion features. Our approach leverages self-supervised deviation in latent representation to facilitate hand gestures generation, which are crucial for generating realistic gesture videos. Results of our first experiment demonstrate that our method enhances the quality of generated videos, with an improvement from 2.7 to 4.5% for FGD, DIV, and FVD, and 8.1% for PSNR, 2.5% for SSIM over the current state-of-the-art methods.
Authors:Junpeng Jiang, Gangyi Hong, Lijun Zhou, Enhui Ma, Hengtong Hu, Xia Zhou, Jie Xiang, Fan Liu, Kaicheng Yu, Haiyang Sun, Kun Zhan, Peng Jia, Miao Zhang
Title: DiVE: DiT-based Video Generation with Enhanced Control
Abstract:
Generating high-fidelity, temporally consistent videos in autonomous driving scenarios faces a significant challenge, e.g. problematic maneuvers in corner cases. Despite recent video generation works are proposed to tackcle the mentioned problem, i.e. models built on top of Diffusion Transformers (DiT), works are still missing which are targeted on exploring the potential for multi-view videos generation scenarios. Noticeably, we propose the first DiT-based framework specifically designed for generating temporally and multi-view consistent videos which precisely match the given bird's-eye view layouts control. Specifically, the proposed framework leverages a parameter-free spatial view-inflated attention mechanism to guarantee the cross-view consistency, where joint cross-attention modules and ControlNet-Transformer are integrated to further improve the precision of control. To demonstrate our advantages, we extensively investigate the qualitative comparisons on nuScenes dataset, particularly in some most challenging corner cases. In summary, the effectiveness of our proposed method in producing long, controllable, and highly consistent videos under difficult conditions is proven to be effective.
Authors:Wenhao Li, Yichao Cao, Xiu Su, Xi Lin, Shan You, Mingkai Zheng, Yi Chen, Chang Xu
Title: Decoupled Video Generation with Chain of Training-free Diffusion Model Experts
Abstract:
Video generation models hold substantial potential in areas such as filmmaking. However, current video diffusion models need high computational costs and produce suboptimal results due to extreme complexity of video generation task. In this paper, we propose \textbf{ConFiner}, an efficient video generation framework that decouples video generation into easier subtasks: structure \textbf{con}trol and spatial-temporal re\textbf{fine}ment. It can generate high-quality videos with chain of off-the-shelf diffusion model experts, each expert responsible for a decoupled subtask. During the refinement, we introduce coordinated denoising, which can merge multiple diffusion experts' capabilities into a single sampling. Furthermore, we design ConFiner-Long framework, which can generate long coherent video with three constraint strategies on ConFiner. Experimental results indicate that with only 10\% of the inference cost, our ConFiner surpasses representative models like Lavie and Modelscope across all objective and subjective metrics. And ConFiner-Long can generate high-quality and coherent videos with up to 600 frames.
Authors:Weiliang Chen, Fangfu Liu, Diankun Wu, Haowen Sun, Jiwen Lu, Yueqi Duan
Title: DreamCinema: Cinematic Transfer with Free Camera and 3D Character
Abstract:
We are living in a flourishing era of digital media, where everyone has the potential to become a personal filmmaker. Current research on video generation suggests a promising avenue for controllable film creation in pixel space using Diffusion models. However, the reliance on overly verbose prompts and insufficient focus on cinematic elements (e.g., camera movement) results in videos that lack cinematic quality. Furthermore, the absence of 3D modeling often leads to failures in video generation, such as inconsistent character models at different frames, ultimately hindering the immersive experience for viewers. In this paper, we propose a new framework for film creation, Dream-Cinema, which is designed for user-friendly, 3D space-based film creation with generative models. Specifically, we decompose 3D film creation into four key elements: 3D character, driven motion, camera movement, and environment. We extract the latter three elements from user-specified film shots and generate the 3D character using a generative model based on a provided image. To seamlessly recombine these elements and ensure smooth film creation, we propose structure-guided character animation, shape-aware camera movement optimization, and environment-aware generative refinement. Extensive experiments demonstrate the effectiveness of our method in generating high-quality films with free camera and 3D characters.
Authors:Shenghai Yuan, Jinfa Huang, Yongqi Xu, Yaoyang Liu, Shaofeng Zhang, Yujun Shi, Ruijie Zhu, Xinhua Cheng, Jiebo Luo, Li Yuan
Title: ChronoMagic-Bench: A Benchmark for Metamorphic Evaluation of Text-to-Time-lapse Video Generation
Abstract:
We propose a novel text-to-video (T2V) generation benchmark, ChronoMagic-Bench, to evaluate the temporal and metamorphic capabilities of the T2V models (e.g. Sora and Lumiere) in time-lapse video generation. In contrast to existing benchmarks that focus on visual quality and textual relevance of generated videos, ChronoMagic-Bench focuses on the model's ability to generate time-lapse videos with significant metamorphic amplitude and temporal coherence. The benchmark probes T2V models for their physics, biology, and chemistry capabilities, in a free-form text query. For these purposes, ChronoMagic-Bench introduces 1,649 prompts and real-world videos as references, categorized into four major types of time-lapse videos: biological, human-created, meteorological, and physical phenomena, which are further divided into 75 subcategories. This categorization comprehensively evaluates the model's capacity to handle diverse and complex transformations. To accurately align human preference with the benchmark, we introduce two new automatic metrics, MTScore and CHScore, to evaluate the videos' metamorphic attributes and temporal coherence. MTScore measures the metamorphic amplitude, reflecting the degree of change over time, while CHScore assesses the temporal coherence, ensuring the generated videos maintain logical progression and continuity. Based on ChronoMagic-Bench, we conduct comprehensive manual evaluations of ten representative T2V models, revealing their strengths and weaknesses across different categories of prompts, and providing a thorough evaluation framework that addresses current gaps in video generation research. Moreover, we create a large-scale ChronoMagic-Pro dataset, containing 460k high-quality pairs of 720p time-lapse videos and detailed captions ensuring high physical pertinence and large metamorphic amplitude. [Homepage](https://pku-yuangroup.github.io/ChronoMagic-Bench/).
Authors:Min Zhao, Hongzhou Zhu, Chendong Xiang, Kaiwen Zheng, Chongxuan Li, Jun Zhu
Title: Identifying and Solving Conditional Image Leakage in Image-to-Video Diffusion Model
Abstract:
Diffusion models have obtained substantial progress in image-to-video generation. However, in this paper, we find that these models tend to generate videos with less motion than expected. We attribute this to the issue called conditional image leakage, where the image-to-video diffusion models (I2V-DMs) tend to over-rely on the conditional image at large time steps. We further address this challenge from both inference and training aspects. First, we propose to start the generation process from an earlier time step to avoid the unreliable large-time steps of I2V-DMs, as well as an initial noise distribution with optimal analytic expressions (Analytic-Init) by minimizing the KL divergence between it and the actual marginal distribution to bridge the training-inference gap. Second, we design a time-dependent noise distribution (TimeNoise) for the conditional image during training, applying higher noise levels at larger time steps to disrupt it and reduce the model's dependency on it. We validate these general strategies on various I2V-DMs on our collected open-domain image benchmark and the UCF101 dataset. Extensive results show that our methods outperform baselines by producing higher motion scores with lower errors while maintaining image alignment and temporal consistency, thereby yielding superior overall performance and enabling more accurate motion control. The project page: \url{https://cond-image-leak.github.io/}.
Authors:Hritik Bansal, Zongyu Lin, Tianyi Xie, Zeshun Zong, Michal Yarom, Yonatan Bitton, Chenfanfu Jiang, Yizhou Sun, Kai-Wei Chang, Aditya Grover
Title: VideoPhy: Evaluating Physical Commonsense for Video Generation
Abstract:
Recent advances in internet-scale video data pretraining have led to the development of text-to-video generative models that can create high-quality videos across a broad range of visual concepts, synthesize realistic motions and render complex objects. Hence, these generative models have the potential to become general-purpose simulators of the physical world. However, it is unclear how far we are from this goal with the existing text-to-video generative models. To this end, we present VideoPhy, a benchmark designed to assess whether the generated videos follow physical commonsense for real-world activities (e.g. marbles will roll down when placed on a slanted surface). Specifically, we curate diverse prompts that involve interactions between various material types in the physical world (e.g., solid-solid, solid-fluid, fluid-fluid). We then generate videos conditioned on these captions from diverse state-of-the-art text-to-video generative models, including open models (e.g., CogVideoX) and closed models (e.g., Lumiere, Dream Machine). Our human evaluation reveals that the existing models severely lack the ability to generate videos adhering to the given text prompts, while also lack physical commonsense. Specifically, the best performing model, CogVideoX-5B, generates videos that adhere to the caption and physical laws for 39.6% of the instances. VideoPhy thus highlights that the video generative models are far from accurately simulating the physical world. Finally, we propose an auto-evaluator, VideoCon-Physics, to assess the performance reliably for the newly released models.
Authors:Zexi Li, Lingzhi Gao, Chao Wu
Title: Text-to-Model: Text-Conditioned Neural Network Diffusion for Train-Once-for-All Personalization
Abstract:
Generative artificial intelligence (GenAI) has made significant progress in understanding world knowledge and generating content from human languages across various modalities, like text-to-text large language models, text-to-image stable diffusion, and text-to-video Sora. While in this paper, we investigate the capability of GenAI for text-to-model generation, to see whether GenAI can comprehend hyper-level knowledge embedded within AI itself parameters. Specifically, we study a practical scenario termed train-once-for-all personalization, aiming to generate personalized models for diverse end-users and tasks using text prompts. Inspired by the recent emergence of neural network diffusion, we present Tina, a text-conditioned neural network diffusion for train-once-for-all personalization. Tina leverages a diffusion transformer model conditioned on task descriptions embedded using a CLIP model. Despite the astronomical number of potential personalized tasks (e.g., $1.73\times10^{13}$), by our design, Tina demonstrates remarkable in-distribution and out-of-distribution generalization even trained on small datasets ($\sim 1000$). We further verify whether and how \Tina understands world knowledge by analyzing its capabilities under zero-shot/few-shot image prompts, different numbers of personalized classes, prompts of natural language descriptions, and predicting unseen entities.
Authors:Hritik Bansal, Yonatan Bitton, Michal Yarom, Idan Szpektor, Aditya Grover, Kai-Wei Chang
Title: TALC: Time-Aligned Captions for Multi-Scene Text-to-Video Generation
Abstract:
Most of these text-to-video (T2V) generative models often produce single-scene video clips that depict an entity performing a particular action (e.g., 'a red panda climbing a tree'). However, it is pertinent to generate multi-scene videos since they are ubiquitous in the real-world (e.g., 'a red panda climbing a tree' followed by 'the red panda sleeps on the top of the tree'). To generate multi-scene videos from the pretrained T2V model, we introduce a simple and effective Time-Aligned Captions (TALC) framework. Specifically, we enhance the text-conditioning mechanism in the T2V architecture to recognize the temporal alignment between the video scenes and scene descriptions. For instance, we condition the visual features of the earlier and later scenes of the generated video with the representations of the first scene description (e.g., 'a red panda climbing a tree') and second scene description (e.g., 'the red panda sleeps on the top of the tree'), respectively. As a result, we show that the T2V model can generate multi-scene videos that adhere to the multi-scene text descriptions and be visually consistent (e.g., entity and background). Further, we finetune the pretrained T2V model with multi-scene video-text data using the TALC framework. We show that the TALC-finetuned model outperforms the baseline by achieving a relative gain of 29% in the overall score, which averages visual consistency and text adherence using human evaluation.
Authors:Fan Bao, Chendong Xiang, Gang Yue, Guande He, Hongzhou Zhu, Kaiwen Zheng, Min Zhao, Shilong Liu, Yaole Wang, Jun Zhu
Title: Vidu: a Highly Consistent, Dynamic and Skilled Text-to-Video Generator with Diffusion Models
Abstract:
We introduce Vidu, a high-performance text-to-video generator that is capable of producing 1080p videos up to 16 seconds in a single generation. Vidu is a diffusion model with U-ViT as its backbone, which unlocks the scalability and the capability for handling long videos. Vidu exhibits strong coherence and dynamism, and is capable of generating both realistic and imaginative videos, as well as understanding some professional photography techniques, on par with Sora -- the most powerful reported text-to-video generator. Finally, we perform initial experiments on other controllable video generation, including canny-to-video generation, video prediction and subject-driven generation, which demonstrate promising results.
Authors:Zhengcong Fei, Mingyuan Fan, Junshi Huang
Title: Music Consistency Models
Abstract:
Consistency models have exhibited remarkable capabilities in facilitating efficient image/video generation, enabling synthesis with minimal sampling steps. It has proven to be advantageous in mitigating the computational burdens associated with diffusion models. Nevertheless, the application of consistency models in music generation remains largely unexplored. To address this gap, we present Music Consistency Models (\texttt{MusicCM}), which leverages the concept of consistency models to efficiently synthesize mel-spectrogram for music clips, maintaining high quality while minimizing the number of sampling steps. Building upon existing text-to-music diffusion models, the \texttt{MusicCM} model incorporates consistency distillation and adversarial discriminator training. Moreover, we find it beneficial to generate extended coherent music by incorporating multiple diffusion processes with shared constraints. Experimental results reveal the effectiveness of our model in terms of computational efficiency, fidelity, and naturalness. Notable, \texttt{MusicCM} achieves seamless music synthesis with a mere four sampling steps, e.g., only one second per minute of the music clip, showcasing the potential for real-time application.
Authors:Guangzhi Wang, Tianyi Chen, Kamran Ghasedi, HsiangTao Wu, Tianyu Ding, Chris Nuesmeyer, Ilya Zharkov, Mohan Kankanhalli, Luming Liang
Title: S3Editor: A Sparse Semantic-Disentangled Self-Training Framework for Face Video Editing
Abstract:
Face attribute editing plays a pivotal role in various applications. However, existing methods encounter challenges in achieving high-quality results while preserving identity, editing faithfulness, and temporal consistency. These challenges are rooted in issues related to the training pipeline, including limited supervision, architecture design, and optimization strategy. In this work, we introduce S3Editor, a Sparse Semantic-disentangled Self-training framework for face video editing. S3Editor is a generic solution that comprehensively addresses these challenges with three key contributions. Firstly, S3Editor adopts a self-training paradigm to enhance the training process through semi-supervision. Secondly, we propose a semantic disentangled architecture with a dynamic routing mechanism that accommodates diverse editing requirements. Thirdly, we present a structured sparse optimization schema that identifies and deactivates malicious neurons to further disentangle impacts from untarget attributes. S3Editor is model-agnostic and compatible with various editing approaches. Our extensive qualitative and quantitative results affirm that our approach significantly enhances identity preservation, editing fidelity, as well as temporal consistency.
Authors:Chenxin Li, Hengyu Liu, Yifan Liu, Brandon Y. Feng, Wuyang Li, Xinyu Liu, Zhen Chen, Jing Shao, Yixuan Yuan
Title: Endora: Video Generation Models as Endoscopy Simulators
Abstract:
Generative models hold promise for revolutionizing medical education, robot-assisted surgery, and data augmentation for machine learning. Despite progress in generating 2D medical images, the complex domain of clinical video generation has largely remained untapped.This paper introduces \model, an innovative approach to generate medical videos that simulate clinical endoscopy scenes. We present a novel generative model design that integrates a meticulously crafted spatial-temporal video transformer with advanced 2D vision foundation model priors, explicitly modeling spatial-temporal dynamics during video generation. We also pioneer the first public benchmark for endoscopy simulation with video generation models, adapting existing state-of-the-art methods for this endeavor.Endora demonstrates exceptional visual quality in generating endoscopy videos, surpassing state-of-the-art methods in extensive testing. Moreover, we explore how this endoscopy simulator can empower downstream video analysis tasks and even generate 3D medical scenes with multi-view consistency. In a nutshell, Endora marks a notable breakthrough in the deployment of generative AI for clinical endoscopy research, setting a substantial stage for further advances in medical content generation. For more details, please visit our project page: https://endora-medvidgen.github.io/.
Authors:Linrui Tian, Qi Wang, Bang Zhang, Liefeng Bo
Title: EMO: Emote Portrait Alive -- Generating Expressive Portrait Videos with Audio2Video Diffusion Model under Weak Conditions
Abstract:
In this work, we tackle the challenge of enhancing the realism and expressiveness in talking head video generation by focusing on the dynamic and nuanced relationship between audio cues and facial movements. We identify the limitations of traditional techniques that often fail to capture the full spectrum of human expressions and the uniqueness of individual facial styles. To address these issues, we propose EMO, a novel framework that utilizes a direct audio-to-video synthesis approach, bypassing the need for intermediate 3D models or facial landmarks. Our method ensures seamless frame transitions and consistent identity preservation throughout the video, resulting in highly expressive and lifelike animations. Experimental results demonsrate that EMO is able to produce not only convincing speaking videos but also singing videos in various styles, significantly outperforming existing state-of-the-art methodologies in terms of expressiveness and realism.
Authors:Fanda Fan, Chunjie Luo, Wanling Gao, Jianfeng Zhan
Title: AIGCBench: Comprehensive Evaluation of Image-to-Video Content Generated by AI
Abstract:
The burgeoning field of Artificial Intelligence Generated Content (AIGC) is witnessing rapid advancements, particularly in video generation. This paper introduces AIGCBench, a pioneering comprehensive and scalable benchmark designed to evaluate a variety of video generation tasks, with a primary focus on Image-to-Video (I2V) generation. AIGCBench tackles the limitations of existing benchmarks, which suffer from a lack of diverse datasets, by including a varied and open-domain image-text dataset that evaluates different state-of-the-art algorithms under equivalent conditions. We employ a novel text combiner and GPT-4 to create rich text prompts, which are then used to generate images via advanced Text-to-Image models. To establish a unified evaluation framework for video generation tasks, our benchmark includes 11 metrics spanning four dimensions to assess algorithm performance. These dimensions are control-video alignment, motion effects, temporal consistency, and video quality. These metrics are both reference video-dependent and video-free, ensuring a comprehensive evaluation strategy. The evaluation standard proposed correlates well with human judgment, providing insights into the strengths and weaknesses of current I2V algorithms. The findings from our extensive experiments aim to stimulate further research and development in the I2V field. AIGCBench represents a significant step toward creating standardized benchmarks for the broader AIGC landscape, proposing an adaptable and equitable framework for future assessments of video generation tasks. We have open-sourced the dataset and evaluation code on the project website: https://www.benchcouncil.org/AIGCBench.
Authors:Wenming Weng, Ruoyu Feng, Yanhui Wang, Qi Dai, Chunyu Wang, Dacheng Yin, Zhiyuan Zhao, Kai Qiu, Jianmin Bao, Yuhui Yuan, Chong Luo, Yueyi Zhang, Zhiwei Xiong
Title: ART$\boldsymbol{\cdot}$V: Auto-Regressive Text-to-Video Generation with Diffusion Models
Abstract:
We present ART$\boldsymbol{\cdot}$V, an efficient framework for auto-regressive video generation with diffusion models. Unlike existing methods that generate entire videos in one-shot, ART$\boldsymbol{\cdot}$V generates a single frame at a time, conditioned on the previous ones. The framework offers three distinct advantages. First, it only learns simple continual motions between adjacent frames, therefore avoiding modeling complex long-range motions that require huge training data. Second, it preserves the high-fidelity generation ability of the pre-trained image diffusion models by making only minimal network modifications. Third, it can generate arbitrarily long videos conditioned on a variety of prompts such as text, image or their combinations, making it highly versatile and flexible. To combat the common drifting issue in AR models, we propose masked diffusion model which implicitly learns which information can be drawn from reference images rather than network predictions, in order to reduce the risk of generating inconsistent appearances that cause drifting. Moreover, we further enhance generation coherence by conditioning it on the initial frame, which typically contains minimal noise. This is particularly useful for long video generation. When trained for only two weeks on four GPUs, ART$\boldsymbol{\cdot}$V already can generate videos with natural motions, rich details and a high level of aesthetic quality. Besides, it enables various appealing applications, e.g., composing a long video from multiple text prompts.
Authors:Li Hu, Xin Gao, Peng Zhang, Ke Sun, Bang Zhang, Liefeng Bo
Title: Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation
Abstract:
Character Animation aims to generating character videos from still images through driving signals. Currently, diffusion models have become the mainstream in visual generation research, owing to their robust generative capabilities. However, challenges persist in the realm of image-to-video, especially in character animation, where temporally maintaining consistency with detailed information from character remains a formidable problem. In this paper, we leverage the power of diffusion models and propose a novel framework tailored for character animation. To preserve consistency of intricate appearance features from reference image, we design ReferenceNet to merge detail features via spatial attention. To ensure controllability and continuity, we introduce an efficient pose guider to direct character's movements and employ an effective temporal modeling approach to ensure smooth inter-frame transitions between video frames. By expanding the training data, our approach can animate arbitrary characters, yielding superior results in character animation compared to other image-to-video methods. Furthermore, we evaluate our method on benchmarks for fashion video and human dance synthesis, achieving state-of-the-art results.
Authors:Jin Liu, Xi Wang, Xiaomeng Fu, Yesheng Chai, Cai Yu, Jiao Dai, Jizhong Han
Title: OSM-Net: One-to-Many One-shot Talking Head Generation with Spontaneous Head Motions
Abstract:
One-shot talking head generation has no explicit head movement reference, thus it is difficult to generate talking heads with head motions. Some existing works only edit the mouth area and generate still talking heads, leading to unreal talking head performance. Other works construct one-to-one mapping between audio signal and head motion sequences, introducing ambiguity correspondences into the mapping since people can behave differently in head motions when speaking the same content. This unreasonable mapping form fails to model the diversity and produces either nearly static or even exaggerated head motions, which are unnatural and strange. Therefore, the one-shot talking head generation task is actually a one-to-many ill-posed problem and people present diverse head motions when speaking. Based on the above observation, we propose OSM-Net, a \textit{one-to-many} one-shot talking head generation network with natural head motions. OSM-Net constructs a motion space that contains rich and various clip-level head motion features. Each basis of the space represents a feature of meaningful head motion in a clip rather than just a frame, thus providing more coherent and natural motion changes in talking heads. The driving audio is mapped into the motion space, around which various motion features can be sampled within a reasonable range to achieve the one-to-many mapping. Besides, the landmark constraint and time window feature input improve the accurate expression feature extraction and video generation. Extensive experiments show that OSM-Net generates more natural realistic head motions under reasonable one-to-many mapping paradigm compared with other methods.
Authors:Chenyang Si, Ziqi Huang, Yuming Jiang, Ziwei Liu
Title: FreeU: Free Lunch in Diffusion U-Net
Abstract:
In this paper, we uncover the untapped potential of diffusion U-Net, which serves as a "free lunch" that substantially improves the generation quality on the fly. We initially investigate the key contributions of the U-Net architecture to the denoising process and identify that its main backbone primarily contributes to denoising, whereas its skip connections mainly introduce high-frequency features into the decoder module, causing the network to overlook the backbone semantics. Capitalizing on this discovery, we propose a simple yet effective method-termed "FreeU" - that enhances generation quality without additional training or finetuning. Our key insight is to strategically re-weight the contributions sourced from the U-Net's skip connections and backbone feature maps, to leverage the strengths of both components of the U-Net architecture. Promising results on image and video generation tasks demonstrate that our FreeU can be readily integrated to existing diffusion models, e.g., Stable Diffusion, DreamBooth, ModelScope, Rerender and ReVersion, to improve the generation quality with only a few lines of code. All you need is to adjust two scaling factors during inference. Project page: https://chenyangsi.top/FreeU/.
Authors:Ceyuan Yang, Qihang Zhang, Yinghao Xu, Jiapeng Zhu, Yujun Shen, Bo Dai
Title: Learning Modulated Transformation in GANs
Abstract:
The success of style-based generators largely benefits from style modulation, which helps take care of the cross-instance variation within data. However, the instance-wise stochasticity is typically introduced via regular convolution, where kernels interact with features at some fixed locations, limiting its capacity for modeling geometric variation. To alleviate this problem, we equip the generator in generative adversarial networks (GANs) with a plug-and-play module, termed as modulated transformation module (MTM). This module predicts spatial offsets under the control of latent codes, based on which the convolution operation can be applied at variable locations for different instances, and hence offers the model an additional degree of freedom to handle geometry deformation. Extensive experiments suggest that our approach can be faithfully generalized to various generative tasks, including image generation, 3D-aware image synthesis, and video generation, and get compatible with state-of-the-art frameworks without any hyper-parameter tuning. It is noteworthy that, towards human generation on the challenging TaiChi dataset, we improve the FID of StyleGAN3 from 21.36 to 13.60, demonstrating the efficacy of learning modulated geometry transformation.
Authors:Yang Wu, Zhibin Liu, Hefeng Wu, Liang Lin
Title: Multi-object Video Generation from Single Frame Layouts
Abstract:
In this paper, we study video synthesis with emphasis on simplifying the generation conditions. Most existing video synthesis models or datasets are designed to address complex motions of a single object, lacking the ability of comprehensively understanding the spatio-temporal relationships among multiple objects. Besides, current methods are usually conditioned on intricate annotations (e.g. video segmentations) to generate new videos, being fundamentally less practical. These motivate us to generate multi-object videos conditioning exclusively on object layouts from a single frame. To solve above challenges and inspired by recent research on image generation from layouts, we have proposed a novel video generative framework capable of synthesizing global scenes with local objects, via implicit neural representations and layout motion self-inference. Our framework is a non-trivial adaptation from image generation methods, and is new to this field. In addition, our model has been evaluated on two widely-used video recognition benchmarks, demonstrating effectiveness compared to the baseline model.
Authors:Ruicheng Zhang, Jun Zhou, Zunnan Xu, Zihao Liu, Jiehui Huang, Mingyang Zhang, Yu Sun, Xiu Li
Title: Zero-shot 3D-Aware Trajectory-Guided image-to-video generation via Test-Time Training
Abstract:
Trajectory-Guided image-to-video (I2V) generation aims to synthesize videos that adhere to user-specified motion instructions. Existing methods typically rely on computationally expensive fine-tuning on scarce annotated datasets. Although some zero-shot methods attempt to trajectory control in the latent space, they may yield unrealistic motion by neglecting 3D perspective and creating a misalignment between the manipulated latents and the network's noise predictions. To address these challenges, we introduce Zo3T, a novel zero-shot test-time-training framework for trajectory-guided generation with three core innovations: First, we incorporate a 3D-Aware Kinematic Projection, leveraging inferring scene depth to derive perspective-correct affine transformations for target regions. Second, we introduce Trajectory-Guided Test-Time LoRA, a mechanism that dynamically injects and optimizes ephemeral LoRA adapters into the denoising network alongside the latent state. Driven by a regional feature consistency loss, this co-adaptation effectively enforces motion constraints while allowing the pre-trained model to locally adapt its internal representations to the manipulated latent, thereby ensuring generative fidelity and on-manifold adherence. Finally, we develop Guidance Field Rectification, which refines the denoising evolutionary path by optimizing the conditional guidance field through a one-step lookahead strategy, ensuring efficient generative progression towards the target trajectory. Zo3T significantly enhances 3D realism and motion accuracy in trajectory-controlled I2V generation, demonstrating superior performance over existing training-based and zero-shot approaches.
Authors:Guotao Liang, Juncheng Hu, Ximing Xing, Jing Zhang, Qian Yu
Title: Multi-Object Sketch Animation with Grouping and Motion Trajectory Priors
Abstract:
We introduce GroupSketch, a novel method for vector sketch animation that effectively handles multi-object interactions and complex motions. Existing approaches struggle with these scenarios, either being limited to single-object cases or suffering from temporal inconsistency and poor generalization. To address these limitations, our method adopts a two-stage pipeline comprising Motion Initialization and Motion Refinement. In the first stage, the input sketch is interactively divided into semantic groups and key frames are defined, enabling the generation of a coarse animation via interpolation. In the second stage, we propose a Group-based Displacement Network (GDN), which refines the coarse animation by predicting group-specific displacement fields, leveraging priors from a text-to-video model. GDN further incorporates specialized modules, such as Context-conditioned Feature Enhancement (CCFE), to improve temporal consistency. Extensive experiments demonstrate that our approach significantly outperforms existing methods in generating high-quality, temporally consistent animations for complex, multi-object sketches, thus expanding the practical applications of sketch animation.
Authors:Jiayi He, Xu Wang, Shengeng Tang, Yaxiong Wang, Lechao Cheng, Dan Guo
Title: Motion is the Choreographer: Learning Latent Pose Dynamics for Seamless Sign Language Generation
Abstract:
Sign language video generation requires producing natural signing motions with realistic appearances under precise semantic control, yet faces two critical challenges: excessive signer-specific data requirements and poor generalization. We propose a new paradigm for sign language video generation that decouples motion semantics from signer identity through a two-phase synthesis framework. First, we construct a signer-independent multimodal motion lexicon, where each gloss is stored as identity-agnostic pose, gesture, and 3D mesh sequences, requiring only one recording per sign. This compact representation enables our second key innovation: a discrete-to-continuous motion synthesis stage that transforms retrieved gloss sequences into temporally coherent motion trajectories, followed by identity-aware neural rendering to produce photorealistic videos of arbitrary signers. Unlike prior work constrained by signer-specific datasets, our method treats motion as a first-class citizen: the learned latent pose dynamics serve as a portable "choreography layer" that can be visually realized through different human appearances. Extensive experiments demonstrate that disentangling motion from identity is not just viable but advantageous - enabling both high-quality synthesis and unprecedented flexibility in signer personalization.
Authors:Xu Wang, Shengeng Tang, Lechao Cheng, Feng Li, Shuo Wang, Richang Hong
Title: SignAligner: Harmonizing Complementary Pose Modalities for Coherent Sign Language Generation
Abstract:
Sign language generation aims to produce diverse sign representations based on spoken language. However, achieving realistic and naturalistic generation remains a significant challenge due to the complexity of sign language, which encompasses intricate hand gestures, facial expressions, and body movements. In this work, we introduce PHOENIX14T+, an extended version of the widely-used RWTH-PHOENIX-Weather 2014T dataset, featuring three new sign representations: Pose, Hamer and Smplerx. We also propose a novel method, SignAligner, for realistic sign language generation, consisting of three stages: text-driven pose modalities co-generation, online collaborative correction of multimodality, and realistic sign video synthesis. First, by incorporating text semantics, we design a joint sign language generator to simultaneously produce posture coordinates, gesture actions, and body movements. The text encoder, based on a Transformer architecture, extracts semantic features, while a cross-modal attention mechanism integrates these features to generate diverse sign language representations, ensuring accurate mapping and controlling the diversity of modal features. Next, online collaborative correction is introduced to refine the generated pose modalities using a dynamic loss weighting strategy and cross-modal attention, facilitating the complementarity of information across modalities, eliminating spatiotemporal conflicts, and ensuring semantic coherence and action consistency. Finally, the corrected pose modalities are fed into a pre-trained video generation network to produce high-fidelity sign language videos. Extensive experiments demonstrate that SignAligner significantly improves both the accuracy and expressiveness of the generated sign videos.
Authors:Yunzhi Zhang, Carson Murtuza-Lanier, Zizhang Li, Yilun Du, Jiajun Wu
Title: Product of Experts for Visual Generation
Abstract:
Modern neural models capture rich priors and have complementary knowledge over shared data domains, e.g., images and videos. Integrating diverse knowledge from multiple sources -- including visual generative models, visual language models, and sources with human-crafted knowledge such as graphics engines and physics simulators -- remains under-explored. We propose a Product of Experts (PoE) framework that performs inference-time knowledge composition from heterogeneous models. This training-free approach samples from the product distribution across experts via Annealed Importance Sampling (AIS). Our framework shows practical benefits in image and video synthesis tasks, yielding better controllability than monolithic methods and additionally providing flexible user interfaces for specifying visual generation goals.
Authors:Yang-Tian Sun, Xin Yu, Zehuan Huang, Yi-Hua Huang, Yuan-Chen Guo, Ziyi Yang, Yan-Pei Cao, Xiaojuan Qi
Title: UniGeo: Taming Video Diffusion for Unified Consistent Geometry Estimation
Abstract:
Recently, methods leveraging diffusion model priors to assist monocular geometric estimation (e.g., depth and normal) have gained significant attention due to their strong generalization ability. However, most existing works focus on estimating geometric properties within the camera coordinate system of individual video frames, neglecting the inherent ability of diffusion models to determine inter-frame correspondence. In this work, we demonstrate that, through appropriate design and fine-tuning, the intrinsic consistency of video generation models can be effectively harnessed for consistent geometric estimation. Specifically, we 1) select geometric attributes in the global coordinate system that share the same correspondence with video frames as the prediction targets, 2) introduce a novel and efficient conditioning method by reusing positional encodings, and 3) enhance performance through joint training on multiple geometric attributes that share the same correspondence. Our results achieve superior performance in predicting global geometric attributes in videos and can be directly applied to reconstruction tasks. Even when trained solely on static video data, our approach exhibits the potential to generalize to dynamic video scenes.
Authors:Ashkan Taghipour, Morteza Ghahremani, Mohammed Bennamoun, Farid Boussaid, Aref Miri Rekavandi, Zinuo Li, Qiuhong Ke, Hamid Laga
Title: LatentMove: Towards Complex Human Movement Video Generation
Abstract:
Image-to-video (I2V) generation seeks to produce realistic motion sequences from a single reference image. Although recent methods exhibit strong temporal consistency, they often struggle when dealing with complex, non-repetitive human movements, leading to unnatural deformations. To tackle this issue, we present LatentMove, a DiT-based framework specifically tailored for highly dynamic human animation. Our architecture incorporates a conditional control branch and learnable face/body tokens to preserve consistency as well as fine-grained details across frames. We introduce Complex-Human-Videos (CHV), a dataset featuring diverse, challenging human motions designed to benchmark the robustness of I2V systems. We also introduce two metrics to assess the flow and silhouette consistency of generated videos with their ground truth. Experimental results indicate that LatentMove substantially improves human animation quality--particularly when handling rapid, intricate movements--thereby pushing the boundaries of I2V generation. The code, the CHV dataset, and the evaluation metrics will be available at https://github.com/ --.
Authors:Ruihuang Li, Caijin Zhou, Shoujian Zheng, Jianxiang Lu, Jiabin Huang, Comi Chen, Junshu Tang, Guangzheng Xu, Jiale Tao, Hongmei Wang, Donghao Li, Wenqing Yu, Senbo Wang, Zhimin Li, Yetshuan Shi, Haoyu Yang, Yukun Wang, Wenxun Dai, Jiaqi Li, Linqing Wang, Qixun Wang, Zhiyong Xu, Yingfang Zhang, Jiangfeng Xiong, Weijie Kong, Chao Zhang, Hongxin Zhang, Qiaoling Zheng, Weiting Guo, Xinchi Deng, Yixuan Li, Renjia Wei, Yulin Jian, Duojun Huang, Xuhua Ren, Junkun Yuan, Zhengguang Zhou, Jiaxiang Cheng, Bing Ma, Shirui Huang, Jiawang Bai, Chao Li, Sihuan Lin, Yifu Sun, Yuan Zhou, Joey Wang, Qin Lin, Tianxiang Zheng, Jingmiao Yu, Jihong Zhang, Caesar Zhong, Di Wang, Yuhong Liu, Linus, Jie Jiang, Longhuang Wu, Shuai Shao, Qinglin Lu
Title: Hunyuan-Game: Industrial-grade Intelligent Game Creation Model
Abstract:
Intelligent game creation represents a transformative advancement in game development, utilizing generative artificial intelligence to dynamically generate and enhance game content. Despite notable progress in generative models, the comprehensive synthesis of high-quality game assets, including both images and videos, remains a challenging frontier. To create high-fidelity game content that simultaneously aligns with player preferences and significantly boosts designer efficiency, we present Hunyuan-Game, an innovative project designed to revolutionize intelligent game production. Hunyuan-Game encompasses two primary branches: image generation and video generation. The image generation component is built upon a vast dataset comprising billions of game images, leading to the development of a group of customized image generation models tailored for game scenarios: (1) General Text-to-Image Generation. (2) Game Visual Effects Generation, involving text-to-effect and reference image-based game visual effect generation. (3) Transparent Image Generation for characters, scenes, and game visual effects. (4) Game Character Generation based on sketches, black-and-white images, and white models. The video generation component is built upon a comprehensive dataset of millions of game and anime videos, leading to the development of five core algorithmic models, each targeting critical pain points in game development and having robust adaptation to diverse game video scenarios: (1) Image-to-Video Generation. (2) 360 A/T Pose Avatar Video Synthesis. (3) Dynamic Illustration Generation. (4) Generative Video Super-Resolution. (5) Interactive Game Video Generation. These image and video generation models not only exhibit high-level aesthetic expression but also deeply integrate domain-specific knowledge, establishing a systematic understanding of diverse game and anime art styles.
Authors:Fa-Ting Hong, Zunnan Xu, Zixiang Zhou, Jun Zhou, Xiu Li, Qin Lin, Qinglin Lu, Dan Xu
Title: Audio-visual Controlled Video Diffusion with Masked Selective State Spaces Modeling for Natural Talking Head Generation
Abstract:
Talking head synthesis is vital for virtual avatars and human-computer interaction. However, most existing methods are typically limited to accepting control from a single primary modality, restricting their practical utility. To this end, we introduce \textbf{ACTalker}, an end-to-end video diffusion framework that supports both multi-signals control and single-signal control for talking head video generation. For multiple control, we design a parallel mamba structure with multiple branches, each utilizing a separate driving signal to control specific facial regions. A gate mechanism is applied across all branches, providing flexible control over video generation. To ensure natural coordination of the controlled video both temporally and spatially, we employ the mamba structure, which enables driving signals to manipulate feature tokens across both dimensions in each branch. Additionally, we introduce a mask-drop strategy that allows each driving signal to independently control its corresponding facial region within the mamba structure, preventing control conflicts. Experimental results demonstrate that our method produces natural-looking facial videos driven by diverse signals and that the mamba layer seamlessly integrates multiple driving modalities without conflict. The project website can be found at https://harlanhong.github.io/publications/actalker/index.html.
Authors:Qiusheng Huang, Xiaohui Zhong, Xu Fan, Lei Chen, Hao Li
Title: FuXi-RTM: A Physics-Guided Prediction Framework with Radiative Transfer Modeling
Abstract:
Similar to conventional video generation, current deep learning-based weather prediction frameworks often lack explicit physical constraints, leading to unphysical outputs that limit their reliability for operational forecasting. Among various physical processes requiring proper representation, radiation plays a fundamental role as it drives Earth's weather and climate systems. However, accurate simulation of radiative transfer processes remains challenging for traditional numerical weather prediction (NWP) models due to their inherent complexity and high computational costs. Here, we propose FuXi-RTM, a hybrid physics-guided deep learning framework designed to enhance weather forecast accuracy while enforcing physical consistency. FuXi-RTM integrates a primary forecasting model (FuXi) with a fixed deep learning-based radiative transfer model (DLRTM) surrogate that efficiently replaces conventional radiation parameterization schemes. This represents the first deep learning-based weather forecasting framework to explicitly incorporate physical process modeling. Evaluated over a comprehensive 5-year dataset, FuXi-RTM outperforms its unconstrained counterpart in 88.51% of 3320 variable and lead time combinations, with improvements in radiative flux predictions. By incorporating additional physical processes, FuXi-RTM paves the way for next-generation weather forecasting systems that are both accurate and physically consistent.
Authors:Yongjia Ma, Donglin Di, Xuan Liu, Xiaokai Chen, Lei Fan, Wei Chen, Tonghua Su
Title: Adams Bashforth Moulton Solver for Inversion and Editing in Rectified Flow
Abstract:
Rectified flow models have achieved remarkable performance in image and video generation tasks. However, existing numerical solvers face a trade-off between fast sampling and high-accuracy solutions, limiting their effectiveness in downstream applications such as reconstruction and editing. To address this challenge, we propose leveraging the Adams-Bashforth-Moulton (ABM) predictor-corrector method to enhance the accuracy of ODE solving in rectified flow models. Specifically, we introduce ABM-Solver, which integrates a multi step predictor corrector approach to reduce local truncation errors and employs Adaptive Step Size Adjustment to improve sampling speed. Furthermore, to effectively preserve non edited regions while facilitating semantic modifications, we introduce a Mask Guided Feature Injection module. We estimate self-similarity to generate a spatial mask that differentiates preserved regions from those available for editing. Extensive experiments on multiple high-resolution image datasets validate that ABM-Solver significantly improves inversion precision and editing quality, outperforming existing solvers without requiring additional training or optimization.
Authors:Paula Andrea Pérez-Toro, Tomás Arias-Vergara, Fangxu Xing, Xiaofeng Liu, Maureen Stone, Jiachen Zhuo, Juan Rafael Orozco-Arroyave, Elmar Nöth, Jana Hutter, Jerry L. Prince, Andreas Maier, Jonghye Woo
Title: A Speech-to-Video Synthesis Approach Using Spatio-Temporal Diffusion for Vocal Tract MRI
Abstract:
Understanding the relationship between vocal tract motion during speech and the resulting acoustic signal is crucial for aided clinical assessment and developing personalized treatment and rehabilitation strategies. Toward this goal, we introduce an audio-to-video generation framework for creating Real Time/cine-Magnetic Resonance Imaging (RT-/cine-MRI) visuals of the vocal tract from speech signals. Our framework first preprocesses RT-/cine-MRI sequences and speech samples to achieve temporal alignment, ensuring synchronization between visual and audio data. We then employ a modified stable diffusion model, integrating structural and temporal blocks, to effectively capture movement characteristics and temporal dynamics in the synchronized data. This process enables the generation of MRI sequences from new speech inputs, improving the conversion of audio into visual data. We evaluated our framework on healthy controls and tongue cancer patients by analyzing and comparing the vocal tract movements in synthesized videos. Our framework demonstrated adaptability to new speech inputs and effective generalization. In addition, positive human evaluations confirmed its effectiveness, with realistic and accurate visualizations, suggesting its potential for outpatient therapy and personalized simulation of vocal tract visualizations.
Authors:Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu, Yuan-Chen Guo, Ding Liang, Wanli Ouyang, Yan-Pei Cao
Title: TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models
Abstract:
Recent advancements in diffusion techniques have propelled image and video generation to unprecedented levels of quality, significantly accelerating the deployment and application of generative AI. However, 3D shape generation technology has so far lagged behind, constrained by limitations in 3D data scale, complexity of 3D data processing, and insufficient exploration of advanced techniques in the 3D domain. Current approaches to 3D shape generation face substantial challenges in terms of output quality, generalization capability, and alignment with input conditions. We present TripoSG, a new streamlined shape diffusion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images. Specifically, we propose: 1) A large-scale rectified flow transformer for 3D shape generation, achieving state-of-the-art fidelity through training on extensive, high-quality data. 2) A hybrid supervised training strategy combining SDF, normal, and eikonal losses for 3D VAE, achieving high-quality 3D reconstruction performance. 3) A data processing pipeline to generate 2 million high-quality 3D samples, highlighting the crucial rules for data quality and quantity in training 3D generative models. Through comprehensive experiments, we have validated the effectiveness of each component in our new framework. The seamless integration of these parts has enabled TripoSG to achieve state-of-the-art performance in 3D shape generation. The resulting 3D shapes exhibit enhanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input images. Moreover, TripoSG demonstrates improved versatility in generating 3D models from diverse image styles and contents, showcasing strong generalization capabilities. To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
Authors:Sili Chen, Hengkai Guo, Shengnan Zhu, Feihu Zhang, Zilong Huang, Jiashi Feng, Bingyi Kang
Title: Video Depth Anything: Consistent Depth Estimation for Super-Long Videos
Abstract:
Depth Anything has achieved remarkable success in monocular depth estimation with strong generalization ability. However, it suffers from temporal inconsistency in videos, hindering its practical applications. Various methods have been proposed to alleviate this issue by leveraging video generation models or introducing priors from optical flow and camera poses. Nonetheless, these methods are only applicable to short videos (< 10 seconds) and require a trade-off between quality and computational efficiency. We propose Video Depth Anything for high-quality, consistent depth estimation in super-long videos (over several minutes) without sacrificing efficiency. We base our model on Depth Anything V2 and replace its head with an efficient spatial-temporal head. We design a straightforward yet effective temporal consistency loss by constraining the temporal depth gradient, eliminating the need for additional geometric priors. The model is trained on a joint dataset of video depth and unlabeled images, similar to Depth Anything V2. Moreover, a novel key-frame-based strategy is developed for long video inference. Experiments show that our model can be applied to arbitrarily long videos without compromising quality, consistency, or generalization ability. Comprehensive evaluations on multiple video benchmarks demonstrate that our approach sets a new state-of-the-art in zero-shot video depth estimation. We offer models of different scales to support a range of scenarios, with our smallest model capable of real-time performance at 30 FPS.
Authors:Yongjia Ma, Junlin Chen, Donglin Di, Qi Xie, Lei Fan, Wei Chen, Xiaofei Gou, Na Zhao, Xun Yang
Title: Tuning-Free Long Video Generation via Global-Local Collaborative Diffusion
Abstract:
Creating high-fidelity, coherent long videos is a sought-after aspiration. While recent video diffusion models have shown promising potential, they still grapple with spatiotemporal inconsistencies and high computational resource demands. We propose GLC-Diffusion, a tuning-free method for long video generation. It models the long video denoising process by establishing denoising trajectories through Global-Local Collaborative Denoising to ensure overall content consistency and temporal coherence between frames. Additionally, we introduce a Noise Reinitialization strategy which combines local noise shuffling with frequency fusion to improve global content consistency and visual diversity. Further, we propose a Video Motion Consistency Refinement (VMCR) module that computes the gradient of pixel-wise and frequency-wise losses to enhance visual consistency and temporal smoothness. Extensive experiments, including quantitative and qualitative evaluations on videos of varying lengths (\textit{e.g.}, 3\times and 6\times longer), demonstrate that our method effectively integrates with existing video diffusion models, producing coherent, high-fidelity long videos superior to previous approaches.
Authors:Minghao Shao, Abdul Basit, Ramesh Karri, Muhammad Shafique
Title: Survey of different Large Language Model Architectures: Trends, Benchmarks, and Challenges
Abstract:
Large Language Models (LLMs) represent a class of deep learning models adept at understanding natural language and generating coherent responses to various prompts or queries. These models far exceed the complexity of conventional neural networks, often encompassing dozens of neural network layers and containing billions to trillions of parameters. They are typically trained on vast datasets, utilizing architectures based on transformer blocks. Present-day LLMs are multi-functional, capable of performing a range of tasks from text generation and language translation to question answering, as well as code generation and analysis. An advanced subset of these models, known as Multimodal Large Language Models (MLLMs), extends LLM capabilities to process and interpret multiple data modalities, including images, audio, and video. This enhancement empowers MLLMs with capabilities like video editing, image comprehension, and captioning for visual content. This survey provides a comprehensive overview of the recent advancements in LLMs. We begin by tracing the evolution of LLMs and subsequently delve into the advent and nuances of MLLMs. We analyze emerging state-of-the-art MLLMs, exploring their technical features, strengths, and limitations. Additionally, we present a comparative analysis of these models and discuss their challenges, potential limitations, and prospects for future development.
Authors:Mingce Guo, Jingxuan He, Shengeng Tang, Zhangye Wang, Lechao Cheng
Title: Shaping a Stabilized Video by Mitigating Unintended Changes for Concept-Augmented Video Editing
Abstract:
Text-driven video editing utilizing generative diffusion models has garnered significant attention due to their potential applications. However, existing approaches are constrained by the limited word embeddings provided in pre-training, which hinders nuanced editing targeting open concepts with specific attributes. Directly altering the keywords in target prompts often results in unintended disruptions to the attention mechanisms. To achieve more flexible editing easily, this work proposes an improved concept-augmented video editing approach that generates diverse and stable target videos flexibly by devising abstract conceptual pairs. Specifically, the framework involves concept-augmented textual inversion and a dual prior supervision mechanism. The former enables plug-and-play guidance of stable diffusion for video editing, effectively capturing target attributes for more stylized results. The dual prior supervision mechanism significantly enhances video stability and fidelity. Comprehensive evaluations demonstrate that our approach generates more stable and lifelike videos, outperforming state-of-the-art methods.
Authors:Donglin Di, He Feng, Wenzhang Sun, Yongjia Ma, Hao Li, Wei Chen, Lei Fan, Tonghua Su, Xun Yang
Title: DH-FaceVid-1K: A Large-Scale High-Quality Dataset for Face Video Generation
Abstract:
Human-centric generative models are becoming increasingly popular, giving rise to various innovative tools and applications, such as talking face videos conditioned on text or audio prompts. The core of these capabilities lies in powerful pre-trained foundation models, trained on large-scale, high-quality datasets. However, many advanced methods rely on in-house data subject to various constraints, and other current studies fail to generate high-resolution face videos, which is mainly attributed to the significant lack of large-scale, high-quality face video datasets. In this paper, we introduce a human face video dataset, \textbf{DH-FaceVid-1K}. Our collection spans 1,200 hours in total, encompassing 270,043 video clips from over 20,000 individuals. Each sample includes corresponding speech audio, facial keypoints, and text annotations. Compared to other publicly available datasets, ours distinguishes itself through its multi-ethnic coverage and high-quality, comprehensive individual attributes. We establish multiple face video generation models supporting tasks such as text-to-video and image-to-video generation. In addition, we develop comprehensive benchmarks to validate the scaling law when using different proportions of proposed dataset. Our primary aim is to contribute a face video dataset, particularly addressing the underrepresentation of Asian faces in existing curated datasets and thereby enriching the global spectrum of face-centric data and mitigating demographic biases. \textbf{Project Page:} https://luna-ai-lab.github.io/DH-FaceVid-1K/
Authors:Sunjae Yoon, Gwanhyeong Koo, Ji Woo Hong, Chang D. Yoo
Title: DNI: Dilutional Noise Initialization for Diffusion Video Editing
Abstract:
Text-based diffusion video editing systems have been successful in performing edits with high fidelity and textual alignment. However, this success is limited to rigid-type editing such as style transfer and object overlay, while preserving the original structure of the input video. This limitation stems from an initial latent noise employed in diffusion video editing systems. The diffusion video editing systems prepare initial latent noise to edit by gradually infusing Gaussian noise onto the input video. However, we observed that the visual structure of the input video still persists within this initial latent noise, thereby restricting non-rigid editing such as motion change necessitating structural modifications. To this end, this paper proposes Dilutional Noise Initialization (DNI) framework which enables editing systems to perform precise and dynamic modification including non-rigid editing. DNI introduces a concept of `noise dilution' which adds further noise to the latent noise in the region to be edited to soften the structural rigidity imposed by input video, resulting in more effective edits closer to the target prompt. Extensive experiments demonstrate the effectiveness of the DNI framework.
Authors:Jiaxin Cheng, Zixu Zhao, Tong He, Tianjun Xiao, Yicong Zhou, Zheng Zhang
Title: Rethinking The Training And Evaluation of Rich-Context Layout-to-Image Generation
Abstract:
Recent advancements in generative models have significantly enhanced their capacity for image generation, enabling a wide range of applications such as image editing, completion and video editing. A specialized area within generative modeling is layout-to-image (L2I) generation, where predefined layouts of objects guide the generative process. In this study, we introduce a novel regional cross-attention module tailored to enrich layout-to-image generation. This module notably improves the representation of layout regions, particularly in scenarios where existing methods struggle with highly complex and detailed textual descriptions. Moreover, while current open-vocabulary L2I methods are trained in an open-set setting, their evaluations often occur in closed-set environments. To bridge this gap, we propose two metrics to assess L2I performance in open-vocabulary scenarios. Additionally, we conduct a comprehensive user study to validate the consistency of these metrics with human preferences.
Authors:Xiaojing Zhong, Xinyi Huang, Xiaofeng Yang, Guosheng Lin, Qingyao Wu
Title: DeCo: Decoupled Human-Centered Diffusion Video Editing with Motion Consistency
Abstract:
Diffusion models usher a new era of video editing, flexibly manipulating the video contents with text prompts. Despite the widespread application demand in editing human-centered videos, these models face significant challenges in handling complex objects like humans. In this paper, we introduce DeCo, a novel video editing framework specifically designed to treat humans and the background as separate editable targets, ensuring global spatial-temporal consistency by maintaining the coherence of each individual component. Specifically, we propose a decoupled dynamic human representation that utilizes a parametric human body prior to generate tailored humans while preserving the consistent motions as the original video. In addition, we consider the background as a layered atlas to apply text-guided image editing approaches on it. To further enhance the geometry and texture of humans during the optimization, we extend the calculation of score distillation sampling into normal space and image space. Moreover, we tackle inconsistent lighting between the edited targets by leveraging a lighting-aware video harmonizer, a problem previously overlooked in decompose-edit-combine approaches. Extensive qualitative and numerical experiments demonstrate that DeCo outperforms prior video editing methods in human-centered videos, especially in longer videos.
Authors:Ashkan Taghipour, Morteza Ghahremani, Mohammed Bennamoun, Aref Miri Rekavandi, Zinuo Li, Hamid Laga, Farid Boussaid
Title: Faster Image2Video Generation: A Closer Look at CLIP Image Embedding's Impact on Spatio-Temporal Cross-Attentions
Abstract:
This paper investigates the role of CLIP image embeddings within the Stable Video Diffusion (SVD) framework, focusing on their impact on video generation quality and computational efficiency. Our findings indicate that CLIP embeddings, while crucial for aesthetic quality, do not significantly contribute towards the subject and background consistency of video outputs. Moreover, the computationally expensive cross-attention mechanism can be effectively replaced by a simpler linear layer. This layer is computed only once at the first diffusion inference step, and its output is then cached and reused throughout the inference process, thereby enhancing efficiency while maintaining high-quality outputs. Building on these insights, we introduce the VCUT, a training-free approach optimized for efficiency within the SVD architecture. VCUT eliminates temporal cross-attention and replaces spatial cross-attention with a one-time computed linear layer, significantly reducing computational load. The implementation of VCUT leads to a reduction of up to 322T Multiple-Accumulate Operations (MACs) per video and a decrease in model parameters by up to 50M, achieving a 20% reduction in latency compared to the baseline. Our approach demonstrates that conditioning during the Semantic Binding stage is sufficient, eliminating the need for continuous computation across all inference steps and setting a new standard for efficient video generation.
Authors:Bing Li, Cheng Zheng, Wenxuan Zhu, Jinjie Mai, Biao Zhang, Peter Wonka, Bernard Ghanem
Title: Vivid-ZOO: Multi-View Video Generation with Diffusion Model
Abstract:
While diffusion models have shown impressive performance in 2D image/video generation, diffusion-based Text-to-Multi-view-Video (T2MVid) generation remains underexplored. The new challenges posed by T2MVid generation lie in the lack of massive captioned multi-view videos and the complexity of modeling such multi-dimensional distribution. To this end, we propose a novel diffusion-based pipeline that generates high-quality multi-view videos centered around a dynamic 3D object from text. Specifically, we factor the T2MVid problem into viewpoint-space and time components. Such factorization allows us to combine and reuse layers of advanced pre-trained multi-view image and 2D video diffusion models to ensure multi-view consistency as well as temporal coherence for the generated multi-view videos, largely reducing the training cost. We further introduce alignment modules to align the latent spaces of layers from the pre-trained multi-view and the 2D video diffusion models, addressing the reused layers' incompatibility that arises from the domain gap between 2D and multi-view data. In support of this and future research, we further contribute a captioned multi-view video dataset. Experimental results demonstrate that our method generates high-quality multi-view videos, exhibiting vivid motions, temporal coherence, and multi-view consistency, given a variety of text prompts.
Authors:Sunjae Yoon, Gwanhyeong Koo, Geonwoo Kim, Chang D. Yoo
Title: FRAG: Frequency Adapting Group for Diffusion Video Editing
Abstract:
In video editing, the hallmark of a quality edit lies in its consistent and unobtrusive adjustment. Modification, when integrated, must be smooth and subtle, preserving the natural flow and aligning seamlessly with the original vision. Therefore, our primary focus is on overcoming the current challenges in high quality edit to ensure that each edit enhances the final product without disrupting its intended essence. However, quality deterioration such as blurring and flickering is routinely observed in recent diffusion video editing systems. We confirm that this deterioration often stems from high-frequency leak: the diffusion model fails to accurately synthesize high-frequency components during denoising process. To this end, we devise Frequency Adapting Group (FRAG) which enhances the video quality in terms of consistency and fidelity by introducing a novel receptive field branch to preserve high-frequency components during the denoising process. FRAG is performed in a model-agnostic manner without additional training and validates the effectiveness on video editing benchmarks (i.e., TGVE, DAVIS).
Authors:Qian Wang, Weiqi Li, Chong Mou, Xinhua Cheng, Jian Zhang
Title: 360DVD: Controllable Panorama Video Generation with 360-Degree Video Diffusion Model
Abstract:
Panorama video recently attracts more interest in both study and application, courtesy of its immersive experience. Due to the expensive cost of capturing 360-degree panoramic videos, generating desirable panorama videos by prompts is urgently required. Lately, the emerging text-to-video (T2V) diffusion methods demonstrate notable effectiveness in standard video generation. However, due to the significant gap in content and motion patterns between panoramic and standard videos, these methods encounter challenges in yielding satisfactory 360-degree panoramic videos. In this paper, we propose a pipeline named 360-Degree Video Diffusion model (360DVD) for generating 360-degree panoramic videos based on the given prompts and motion conditions. Specifically, we introduce a lightweight 360-Adapter accompanied by 360 Enhancement Techniques to transform pre-trained T2V models for panorama video generation. We further propose a new panorama dataset named WEB360 consisting of panoramic video-text pairs for training 360DVD, addressing the absence of captioned panoramic video datasets. Extensive experiments demonstrate the superiority and effectiveness of 360DVD for panorama video generation. Our project page is at https://akaneqwq.github.io/360DVD/.
Authors:Huan Ling, Seung Wook Kim, Antonio Torralba, Sanja Fidler, Karsten Kreis
Title: Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed Diffusion Models
Abstract:
Text-guided diffusion models have revolutionized image and video generation and have also been successfully used for optimization-based 3D object synthesis. Here, we instead focus on the underexplored text-to-4D setting and synthesize dynamic, animated 3D objects using score distillation methods with an additional temporal dimension. Compared to previous work, we pursue a novel compositional generation-based approach, and combine text-to-image, text-to-video, and 3D-aware multiview diffusion models to provide feedback during 4D object optimization, thereby simultaneously enforcing temporal consistency, high-quality visual appearance and realistic geometry. Our method, called Align Your Gaussians (AYG), leverages dynamic 3D Gaussian Splatting with deformation fields as 4D representation. Crucial to AYG is a novel method to regularize the distribution of the moving 3D Gaussians and thereby stabilize the optimization and induce motion. We also propose a motion amplification mechanism as well as a new autoregressive synthesis scheme to generate and combine multiple 4D sequences for longer generation. These techniques allow us to synthesize vivid dynamic scenes, outperform previous work qualitatively and quantitatively and achieve state-of-the-art text-to-4D performance. Due to the Gaussian 4D representation, different 4D animations can be seamlessly combined, as we demonstrate. AYG opens up promising avenues for animation, simulation and digital content creation as well as synthetic data generation.
Authors:Sunjae Yoon, Gwanhyeong Koo, Ji Woo Hong, Chang D. Yoo
Title: Neutral Editing Framework for Diffusion-based Video Editing
Abstract:
Text-conditioned image editing has succeeded in various types of editing based on a diffusion framework. Unfortunately, this success did not carry over to a video, which continues to be challenging. Existing video editing systems are still limited to rigid-type editing such as style transfer and object overlay. To this end, this paper proposes Neutral Editing (NeuEdit) framework to enable complex non-rigid editing by changing the motion of a person/object in a video, which has never been attempted before. NeuEdit introduces a concept of `neutralization' that enhances a tuning-editing process of diffusion-based editing systems in a model-agnostic manner by leveraging input video and text without any other auxiliary aids (e.g., visual masks, video captions). Extensive experiments on numerous videos demonstrate adaptability and effectiveness of the NeuEdit framework. The website of our work is available here: https://neuedit.github.io
Authors:Mengxia Wu, Min Cao, Yang Bai, Ziyin Zeng, Chen Chen, Liqiang Nie, Min Zhang
Title: An Empirical Study of Frame Selection for Text-to-Video Retrieval
Abstract:
Text-to-video retrieval (TVR) aims to find the most relevant video in a large video gallery given a query text. The intricate and abundant context of the video challenges the performance and efficiency of TVR. To handle the serialized video contexts, existing methods typically select a subset of frames within a video to represent the video content for TVR. How to select the most representative frames is a crucial issue, whereby the selected frames are required to not only retain the semantic information of the video but also promote retrieval efficiency by excluding temporally redundant frames. In this paper, we make the first empirical study of frame selection for TVR. We systemically classify existing frame selection methods into text-free and text-guided ones, under which we detailedly analyze six different frame selections in terms of effectiveness and efficiency. Among them, two frame selections are first developed in this paper. According to the comprehensive analysis on multiple TVR benchmarks, we empirically conclude that the TVR with proper frame selections can significantly improve the retrieval efficiency without sacrificing the retrieval performance.
Authors:Mischa Dombrowski, Bernhard Kainz
Title: Quantifying Sample Anonymity in Score-Based Generative Models with Adversarial Fingerprinting
Abstract:
Recent advances in score-based generative models have led to a huge spike in the development of downstream applications using generative models ranging from data augmentation over image and video generation to anomaly detection. Despite publicly available trained models, their potential to be used for privacy preserving data sharing has not been fully explored yet. Training diffusion models on private data and disseminating the models and weights rather than the raw dataset paves the way for innovative large-scale data-sharing strategies, particularly in healthcare, where safeguarding patients' personal health information is paramount. However, publishing such models without individual consent of, e.g., the patients from whom the data was acquired, necessitates guarantees that identifiable training samples will never be reproduced, thus protecting personal health data and satisfying the requirements of policymakers and regulatory bodies. This paper introduces a method for estimating the upper bound of the probability of reproducing identifiable training images during the sampling process. This is achieved by designing an adversarial approach that searches for anatomic fingerprints, such as medical devices or dermal art, which could potentially be employed to re-identify training images. Our method harnesses the learned score-based model to estimate the probability of the entire subspace of the score function that may be utilized for one-to-one reproduction of training samples. To validate our estimates, we generate anomalies containing a fingerprint and investigate whether generated samples from trained generative models can be uniquely mapped to the original training samples. Overall our results show that privacy-breaching images are reproduced at sampling time if the models were trained without care.
Authors:Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, Karsten Kreis
Title: Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models
Abstract:
Latent Diffusion Models (LDMs) enable high-quality image synthesis while avoiding excessive compute demands by training a diffusion model in a compressed lower-dimensional latent space. Here, we apply the LDM paradigm to high-resolution video generation, a particularly resource-intensive task. We first pre-train an LDM on images only; then, we turn the image generator into a video generator by introducing a temporal dimension to the latent space diffusion model and fine-tuning on encoded image sequences, i.e., videos. Similarly, we temporally align diffusion model upsamplers, turning them into temporally consistent video super resolution models. We focus on two relevant real-world applications: Simulation of in-the-wild driving data and creative content creation with text-to-video modeling. In particular, we validate our Video LDM on real driving videos of resolution 512 x 1024, achieving state-of-the-art performance. Furthermore, our approach can easily leverage off-the-shelf pre-trained image LDMs, as we only need to train a temporal alignment model in that case. Doing so, we turn the publicly available, state-of-the-art text-to-image LDM Stable Diffusion into an efficient and expressive text-to-video model with resolution up to 1280 x 2048. We show that the temporal layers trained in this way generalize to different fine-tuned text-to-image LDMs. Utilizing this property, we show the first results for personalized text-to-video generation, opening exciting directions for future content creation. Project page: https://research.nvidia.com/labs/toronto-ai/VideoLDM/
Authors:Gang Li, Heliang Zheng, Chaoyue Wang, Chang Li, Changwen Zheng, Dacheng Tao
Title: 3DDesigner: Towards Photorealistic 3D Object Generation and Editing with Text-guided Diffusion Models
Abstract:
Text-guided diffusion models have shown superior performance in image/video generation and editing. While few explorations have been performed in 3D scenarios. In this paper, we discuss three fundamental and interesting problems on this topic. First, we equip text-guided diffusion models to achieve 3D-consistent generation. Specifically, we integrate a NeRF-like neural field to generate low-resolution coarse results for a given camera view. Such results can provide 3D priors as condition information for the following diffusion process. During denoising diffusion, we further enhance the 3D consistency by modeling cross-view correspondences with a novel two-stream (corresponding to two different views) asynchronous diffusion process. Second, we study 3D local editing and propose a two-step solution that can generate 360-degree manipulated results by editing an object from a single view. Step 1, we propose to perform 2D local editing by blending the predicted noises. Step 2, we conduct a noise-to-text inversion process that maps 2D blended noises into the view-independent text embedding space. Once the corresponding text embedding is obtained, 360-degree images can be generated. Last but not least, we extend our model to perform one-shot novel view synthesis by fine-tuning on a single image, firstly showing the potential of leveraging text guidance for novel view synthesis. Extensive experiments and various applications show the prowess of our 3DDesigner. The project page is available at https://3ddesigner-diffusion.github.io/.
Authors:Xuan Ju, Tianyu Wang, Yuqian Zhou, He Zhang, Qing Liu, Nanxuan Zhao, Zhifei Zhang, Yijun Li, Yuanhao Cai, Shaoteng Liu, Daniil Pakhomov, Zhe Lin, Soo Ye Kim, Qiang Xu
Title: EditVerse: Unifying Image and Video Editing and Generation with In-Context Learning
Abstract:
Recent advances in foundation models highlight a clear trend toward unification and scaling, showing emergent capabilities across diverse domains. While image generation and editing have rapidly transitioned from task-specific to unified frameworks, video generation and editing remain fragmented due to architectural limitations and data scarcity. In this work, we introduce EditVerse, a unified framework for image and video generation and editing within a single model. By representing all modalities, i.e., text, image, and video, as a unified token sequence, EditVerse leverages self-attention to achieve robust in-context learning, natural cross-modal knowledge transfer, and flexible handling of inputs and outputs with arbitrary resolutions and durations. To address the lack of video editing training data, we design a scalable data pipeline that curates 232K video editing samples and combines them with large-scale image and video datasets for joint training. Furthermore, we present EditVerseBench, the first benchmark for instruction-based video editing covering diverse tasks and resolutions. Extensive experiments and user studies demonstrate that EditVerse achieves state-of-the-art performance, surpassing existing open-source and commercial models, while exhibiting emergent editing and generation abilities across modalities.
Authors:Hao Lu, Zhuang Ma, Guangfeng Jiang, Wenhang Ge, Bohan Li, Yuzhan Cai, Wenzhao Zheng, Yunpeng Zhang, Yingcong Chen
Title: 4D Driving Scene Generation With Stereo Forcing
Abstract:
Current generative models struggle to synthesize dynamic 4D driving scenes that simultaneously support temporal extrapolation and spatial novel view synthesis (NVS) without per-scene optimization. Bridging generation and novel view synthesis remains a major challenge. We present PhiGenesis, a unified framework for 4D scene generation that extends video generation techniques with geometric and temporal consistency. Given multi-view image sequences and camera parameters, PhiGenesis produces temporally continuous 4D Gaussian splatting representations along target 3D trajectories. In its first stage, PhiGenesis leverages a pre-trained video VAE with a novel range-view adapter to enable feed-forward 4D reconstruction from multi-view images. This architecture supports single-frame or video inputs and outputs complete 4D scenes including geometry, semantics, and motion. In the second stage, PhiGenesis introduces a geometric-guided video diffusion model, using rendered historical 4D scenes as priors to generate future views conditioned on trajectories. To address geometric exposure bias in novel views, we propose Stereo Forcing, a novel conditioning strategy that integrates geometric uncertainty during denoising. This method enhances temporal coherence by dynamically adjusting generative influence based on uncertainty-aware perturbations. Our experimental results demonstrate that our method achieves state-of-the-art performance in both appearance and geometric reconstruction, temporal generation and novel view synthesis (NVS) tasks, while simultaneously delivering competitive performance in downstream evaluations. Homepage is at \href{https://jiangxb98.github.io/PhiGensis}{PhiGensis}.
Authors:Jiasen Lu, Liangchen Song, Mingze Xu, Byeongjoo Ahn, Yanjun Wang, Chen Chen, Afshin Dehghan, Yinfei Yang
Title: AToken: A Unified Tokenizer for Vision
Abstract:
We present AToken, the first unified visual tokenizer that achieves both high-fidelity reconstruction and semantic understanding across images, videos, and 3D assets. Unlike existing tokenizers that specialize in either reconstruction or understanding for single modalities, AToken encodes these diverse visual inputs into a shared 4D latent space, unifying both tasks and modalities in a single framework. Specifically, we introduce a pure transformer architecture with 4D rotary position embeddings to process visual inputs of arbitrary resolutions and temporal durations. To ensure stable training, we introduce an adversarial-free training objective that combines perceptual and Gram matrix losses, achieving state-of-the-art reconstruction quality. By employing a progressive training curriculum, AToken gradually expands from single images, videos, and 3D, and supports both continuous and discrete latent tokens. AToken achieves 0.21 rFID with 82.2% ImageNet accuracy for images, 3.01 rFVD with 40.2% MSRVTT retrieval for videos, and 28.28 PSNR with 90.9% classification accuracy for 3D.. In downstream applications, AToken enables both visual generation tasks (e.g., image generation with continuous and discrete tokens, text-to-video generation, image-to-3D synthesis) and understanding tasks (e.g., multimodal LLMs), achieving competitive performance across all benchmarks. These results shed light on the next-generation multimodal AI systems built upon unified visual tokenization.
Authors:Yang Zhou, Yifan Wang, Jianjun Zhou, Wenzheng Chang, Haoyu Guo, Zizun Li, Kaijing Ma, Xinyue Li, Yating Wang, Haoyi Zhu, Mingyu Liu, Dingning Liu, Jiange Yang, Zhoujie Fu, Junyi Chen, Chunhua Shen, Jiangmiao Pang, Kaipeng Zhang, Tong He
Title: OmniWorld: A Multi-Domain and Multi-Modal Dataset for 4D World Modeling
Abstract:
The field of 4D world modeling - aiming to jointly capture spatial geometry and temporal dynamics - has witnessed remarkable progress in recent years, driven by advances in large-scale generative models and multimodal learning. However, the development of truly general 4D world models remains fundamentally constrained by the availability of high-quality data. Existing datasets and benchmarks often lack the dynamic complexity, multi-domain diversity, and spatial-temporal annotations required to support key tasks such as 4D geometric reconstruction, future prediction, and camera-control video generation. To address this gap, we introduce OmniWorld, a large-scale, multi-domain, multi-modal dataset specifically designed for 4D world modeling. OmniWorld consists of a newly collected OmniWorld-Game dataset and several curated public datasets spanning diverse domains. Compared with existing synthetic datasets, OmniWorld-Game provides richer modality coverage, larger scale, and more realistic dynamic interactions. Based on this dataset, we establish a challenging benchmark that exposes the limitations of current state-of-the-art (SOTA) approaches in modeling complex 4D environments. Moreover, fine-tuning existing SOTA methods on OmniWorld leads to significant performance gains across 4D reconstruction and video generation tasks, strongly validating OmniWorld as a powerful resource for training and evaluation. We envision OmniWorld as a catalyst for accelerating the development of general-purpose 4D world models, ultimately advancing machines' holistic understanding of the physical world.
Authors:Qiao Sun, Liujia Yang, Wei Tang, Wei Huang, Kaixin Xu, Yongchao Chen, Mingyu Liu, Jiange Yang, Haoyi Zhu, Yating Wang, Tong He, Yilun Chen, Xili Dai, Nanyang Ye, Qinying Gu
Title: Learning Primitive Embodied World Models: Towards Scalable Robotic Learning
Abstract:
While video-generation-based embodied world models have gained increasing attention, their reliance on large-scale embodied interaction data remains a key bottleneck. The scarcity, difficulty of collection, and high dimensionality of embodied data fundamentally limit the alignment granularity between language and actions and exacerbate the challenge of long-horizon video generation--hindering generative models from achieving a "GPT moment" in the embodied domain. There is a naive observation: the diversity of embodied data far exceeds the relatively small space of possible primitive motions. Based on this insight, we propose a novel paradigm for world modeling--Primitive Embodied World Models (PEWM). By restricting video generation to fixed short horizons, our approach 1) enables fine-grained alignment between linguistic concepts and visual representations of robotic actions, 2) reduces learning complexity, 3) improves data efficiency in embodied data collection, and 4) decreases inference latency. By equipping with a modular Vision-Language Model (VLM) planner and a Start-Goal heatmap Guidance mechanism (SGG), PEWM further enables flexible closed-loop control and supports compositional generalization of primitive-level policies over extended, complex tasks. Our framework leverages the spatiotemporal vision priors in video models and the semantic awareness of VLMs to bridge the gap between fine-grained physical interaction and high-level reasoning, paving the way toward scalable, interpretable, and general-purpose embodied intelligence.
Authors:Harold Haodong Chen, Haojian Huang, Qifeng Chen, Harry Yang, Ser-Nam Lim
Title: Hierarchical Fine-grained Preference Optimization for Physically Plausible Video Generation
Abstract:
Recent advancements in video generation have enabled the creation of high-quality, visually compelling videos. However, generating videos that adhere to the laws of physics remains a critical challenge for applications requiring realism and accuracy. In this work, we propose PhysHPO, a novel framework for Hierarchical Cross-Modal Direct Preference Optimization, to tackle this challenge by enabling fine-grained preference alignment for physically plausible video generation. PhysHPO optimizes video alignment across four hierarchical granularities: a) Instance Level, aligning the overall video content with the input prompt; b) State Level, ensuring temporal consistency using boundary frames as anchors; c) Motion Level, modeling motion trajectories for realistic dynamics; and d) Semantic Level, maintaining logical consistency between narrative and visuals. Recognizing that real-world videos are the best reflections of physical phenomena, we further introduce an automated data selection pipeline to efficiently identify and utilize "good data" from existing large-scale text-video datasets, thereby eliminating the need for costly and time-intensive dataset construction. Extensive experiments on both physics-focused and general capability benchmarks demonstrate that PhysHPO significantly improves physical plausibility and overall video generation quality of advanced models. To the best of our knowledge, this is the first work to explore fine-grained preference alignment and data selection for video generation, paving the way for more realistic and human-preferred video generation paradigms.
Authors:Deheng Ye, Fangyun Zhou, Jiacheng Lv, Jianqi Ma, Jun Zhang, Junyan Lv, Junyou Li, Minwen Deng, Mingyu Yang, Qiang Fu, Wei Yang, Wenkai Lv, Yangbin Yu, Yewen Wang, Yonghang Guan, Zhihao Hu, Zhongbin Fang, Zhongqian Sun
Title: Yan: Foundational Interactive Video Generation
Abstract:
We present Yan, a foundational framework for interactive video generation, covering the entire pipeline from simulation and generation to editing. Specifically, Yan comprises three core modules. AAA-level Simulation: We design a highly-compressed, low-latency 3D-VAE coupled with a KV-cache-based shift-window denoising inference process, achieving real-time 1080P/60FPS interactive simulation. Multi-Modal Generation: We introduce a hierarchical autoregressive caption method that injects game-specific knowledge into open-domain multi-modal video diffusion models (VDMs), then transforming the VDM into a frame-wise, action-controllable, real-time infinite interactive video generator. Notably, when the textual and visual prompts are sourced from different domains, the model demonstrates strong generalization, allowing it to blend and compose the style and mechanics across domains flexibly according to user prompts. Multi-Granularity Editing: We propose a hybrid model that explicitly disentangles interactive mechanics simulation from visual rendering, enabling multi-granularity video content editing during interaction through text. Collectively, Yan offers an integration of these modules, pushing interactive video generation beyond isolated capabilities toward a comprehensive AI-driven interactive creation paradigm, paving the way for the next generation of creative tools, media, and entertainment. The project page is: https://greatx3.github.io/Yan/.
Authors:Bin Xia, Jiyang Liu, Yuechen Zhang, Bohao Peng, Ruihang Chu, Yitong Wang, Xinglong Wu, Bei Yu, Jiaya Jia
Title: DreamVE: Unified Instruction-based Image and Video Editing
Abstract:
Instruction-based editing holds vast potential due to its simple and efficient interactive editing format. However, instruction-based editing, particularly for video, has been constrained by limited training data, hindering its practical application. To this end, we introduce DreamVE, a unified model for instruction-based image and video editing. Specifically, We propose a two-stage training strategy: first image editing, then video editing. This offers two main benefits: (1) Image data scales more easily, and models are more efficient to train, providing useful priors for faster and better video editing training. (2) Unifying image and video generation is natural and aligns with current trends. Moreover, we present comprehensive training data synthesis pipelines, including collage-based and generative model-based data synthesis. The collage-based data synthesis combines foreground objects and backgrounds to generate diverse editing data, such as object manipulation, background changes, and text modifications. It can easily generate billions of accurate, consistent, realistic, and diverse editing pairs. We pretrain DreamVE on extensive collage-based data to achieve strong performance in key editing types and enhance generalization and transfer capabilities. However, collage-based data lacks some attribute editing cases, leading to a relative drop in performance. In contrast, the generative model-based pipeline, despite being hard to scale up, offers flexibility in handling attribute editing cases. Therefore, we use generative model-based data to further fine-tune DreamVE. Besides, we design an efficient and powerful editing framework for DreamVE. We build on the SOTA T2V model and use a token concatenation with early drop approach to inject source image guidance, ensuring strong consistency and editability. The codes and models will be released.
Authors:Chenxu Zhang, Zenan Li, Hongyi Xu, You Xie, Xiaochen Zhao, Tianpei Gu, Guoxian Song, Xin Chen, Chao Liang, Jianwen Jiang, Linjie Luo
Title: X-Actor: Emotional and Expressive Long-Range Portrait Acting from Audio
Abstract:
We present X-Actor, a novel audio-driven portrait animation framework that generates lifelike, emotionally expressive talking head videos from a single reference image and an input audio clip. Unlike prior methods that emphasize lip synchronization and short-range visual fidelity in constrained speaking scenarios, X-Actor enables actor-quality, long-form portrait performance capturing nuanced, dynamically evolving emotions that flow coherently with the rhythm and content of speech. Central to our approach is a two-stage decoupled generation pipeline: an audio-conditioned autoregressive diffusion model that predicts expressive yet identity-agnostic facial motion latent tokens within a long temporal context window, followed by a diffusion-based video synthesis module that translates these motions into high-fidelity video animations. By operating in a compact facial motion latent space decoupled from visual and identity cues, our autoregressive diffusion model effectively captures long-range correlations between audio and facial dynamics through a diffusion-forcing training paradigm, enabling infinite-length emotionally-rich motion prediction without error accumulation. Extensive experiments demonstrate that X-Actor produces compelling, cinematic-style performances that go beyond standard talking head animations and achieves state-of-the-art results in long-range, audio-driven emotional portrait acting.
Authors:Zuhao Yang, Jiahui Zhang, Yingchen Yu, Shijian Lu, Song Bai
Title: Versatile Transition Generation with Image-to-Video Diffusion
Abstract:
Leveraging text, images, structure maps, or motion trajectories as conditional guidance, diffusion models have achieved great success in automated and high-quality video generation. However, generating smooth and rational transition videos given the first and last video frames as well as descriptive text prompts is far underexplored. We present VTG, a Versatile Transition video Generation framework that can generate smooth, high-fidelity, and semantically coherent video transitions. VTG introduces interpolation-based initialization that helps preserve object identity and handle abrupt content changes effectively. In addition, it incorporates dual-directional motion fine-tuning and representation alignment regularization to mitigate the limitations of pre-trained image-to-video diffusion models in motion smoothness and generation fidelity, respectively. To evaluate VTG and facilitate future studies on unified transition generation, we collected TransitBench, a comprehensive benchmark for transition generation covering two representative transition tasks: concept blending and scene transition. Extensive experiments show that VTG achieves superior transition performance consistently across all four tasks.
Authors:Junbang Liang, Pavel Tokmakov, Ruoshi Liu, Sruthi Sudhakar, Paarth Shah, Rares Ambrus, Carl Vondrick
Title: Video Generators are Robot Policies
Abstract:
Despite tremendous progress in dexterous manipulation, current visuomotor policies remain fundamentally limited by two challenges: they struggle to generalize under perceptual or behavioral distribution shifts, and their performance is constrained by the size of human demonstration data. In this paper, we use video generation as a proxy for robot policy learning to address both limitations simultaneously. We propose Video Policy, a modular framework that combines video and action generation that can be trained end-to-end. Our results demonstrate that learning to generate videos of robot behavior allows for the extraction of policies with minimal demonstration data, significantly improving robustness and sample efficiency. Our method shows strong generalization to unseen objects, backgrounds, and tasks, both in simulation and the real world. We further highlight that task success is closely tied to the generated video, with action-free video data providing critical benefits for generalizing to novel tasks. By leveraging large-scale video generative models, we achieve superior performance compared to traditional behavior cloning, paving the way for more scalable and data-efficient robot policy learning.
Authors:Bingqing Zhang, Zhuo Cao, Heming Du, Yang Li, Xue Li, Jiajun Liu, Sen Wang
Title: Quantifying and Narrowing the Unknown: Interactive Text-to-Video Retrieval via Uncertainty Minimization
Abstract:
Despite recent advances, Text-to-video retrieval (TVR) is still hindered by multiple inherent uncertainties, such as ambiguous textual queries, indistinct text-video mappings, and low-quality video frames. Although interactive systems have emerged to address these challenges by refining user intent through clarifying questions, current methods typically rely on heuristic or ad-hoc strategies without explicitly quantifying these uncertainties, limiting their effectiveness. Motivated by this gap, we propose UMIVR, an Uncertainty-Minimizing Interactive Text-to-Video Retrieval framework that explicitly quantifies three critical uncertainties-text ambiguity, mapping uncertainty, and frame uncertainty-via principled, training-free metrics: semantic entropy-based Text Ambiguity Score (TAS), Jensen-Shannon divergence-based Mapping Uncertainty Score (MUS), and a Temporal Quality-based Frame Sampler (TQFS). By adaptively generating targeted clarifying questions guided by these uncertainty measures, UMIVR iteratively refines user queries, significantly reducing retrieval ambiguity. Extensive experiments on multiple benchmarks validate UMIVR's effectiveness, achieving notable gains in Recall@1 (69.2\% after 10 interactive rounds) on the MSR-VTT-1k dataset, thereby establishing an uncertainty-minimizing foundation for interactive TVR.
Authors:Zhitao Wang, Hengyu Man, Wenrui Li, Xingtao Wang, Xiaopeng Fan, Debin Zhao
Title: T-GVC: Trajectory-Guided Generative Video Coding at Ultra-Low Bitrates
Abstract:
Recent advances in video generation techniques have given rise to an emerging paradigm of generative video coding for Ultra-Low Bitrate (ULB) scenarios by leveraging powerful generative priors. However, most existing methods are limited by domain specificity (e.g., facial or human videos) or excessive dependence on high-level text guidance, which tend to inadequately capture fine-grained motion details, leading to unrealistic or incoherent reconstructions. To address these challenges, we propose Trajectory-Guided Generative Video Coding (dubbed T-GVC), a novel framework that bridges low-level motion tracking with high-level semantic understanding. T-GVC features a semantic-aware sparse motion sampling pipeline that extracts pixel-wise motion as sparse trajectory points based on their semantic importance, significantly reducing the bitrate while preserving critical temporal semantic information. In addition, by integrating trajectory-aligned loss constraints into diffusion processes, we introduce a training-free guidance mechanism in latent space to ensure physically plausible motion patterns without sacrificing the inherent capabilities of generative models. Experimental results demonstrate that T-GVC outperforms both traditional and neural video codecs under ULB conditions. Furthermore, additional experiments confirm that our framework achieves more precise motion control than existing text-guided methods, paving the way for a novel direction of generative video coding guided by geometric motion modeling.
Authors:Qianyu Zhang, Bolun Zheng, Lingyu Zhu, Hangjia Pan, Zunjie Zhu, Zongpeng Li, Shiqi Wang
Title: Capturing Stable HDR Videos Using a Dual-Camera System
Abstract:
High Dynamic Range (HDR) video acquisition using the alternating exposure (AE) paradigm has garnered significant attention due to its cost-effectiveness with a single consumer camera. However, despite progress driven by deep neural networks, these methods remain prone to temporal flicker in real-world applications due to inter-frame exposure inconsistencies. To address this challenge while maintaining the cost-effectiveness of the AE paradigm, we propose a novel learning-based HDR video generation solution. Specifically, we propose a dual-stream HDR video generation paradigm that decouples temporal luminance anchoring from exposure-variant detail reconstruction, overcoming the inherent limitations of the AE paradigm. To support this, we design an asynchronous dual-camera system (DCS), which enables independent exposure control across two cameras, eliminating the need for synchronization typically required in traditional multi-camera setups. Furthermore, an exposure-adaptive fusion network (EAFNet) is formulated for the DCS system. EAFNet integrates a pre-alignment subnetwork that aligns features across varying exposures, ensuring robust feature extraction for subsequent fusion, an asymmetric cross-feature fusion subnetwork that emphasizes reference-based attention to effectively merge these features across exposures, and a reconstruction subnetwork to mitigate ghosting artifacts and preserve fine details. Extensive experimental evaluations demonstrate that the proposed method achieves state-of-the-art performance across various datasets, showing the remarkable potential of our solution in HDR video reconstruction. The codes and data captured by DCS will be available at https://zqqqyu.github.io/DCS-HDR/.
Authors:Jaewan Park, Farid Ahmed, Kazuma Kobayashi, Seid Koric, Syed Bahauddin Alam, Iwona Jasiuk, Diab Abueidda
Title: Bridging Sequential Deep Operator Network and Video Diffusion: Residual Refinement of Spatio-Temporal PDE Solutions
Abstract:
Video-diffusion models have recently set the standard in video generation, inpainting, and domain translation thanks to their training stability and high perceptual fidelity. Building on these strengths, we repurpose conditional video diffusion as a physics surrogate for spatio-temporal fields governed by partial differential equations (PDEs). Our two-stage surrogate first applies a Sequential Deep Operator Network (S-DeepONet) to produce a coarse, physics-consistent prior from the prescribed boundary or loading conditions. The prior is then passed to a conditional video diffusion model that learns only the residual: the point-wise difference between the ground truth and the S-DeepONet prediction. By shifting the learning burden from the full solution to its much smaller residual space, diffusion can focus on sharpening high-frequency structures without sacrificing global coherence. The framework is assessed on two disparate benchmarks: (i) vortex-dominated lid-driven cavity flow and (ii) tensile plastic deformation of dogbone specimens. Across these data sets the hybrid surrogate consistently outperforms its single-stage counterpart, cutting the mean relative L2 error from 4.57% to 0.83% for the flow problem and from 4.42% to 2.94% for plasticity, a relative improvements of 81.8% and 33.5% respectively. The hybrid approach not only lowers quantitative errors but also improves visual quality, visibly recovering fine spatial details. These results show that (i) conditioning diffusion on a physics-aware prior enables faithful reconstruction of localized features, (ii) residual learning reduces the problem, accelerating convergence and enhancing accuracy, and (iii) the same architecture transfers seamlessly from incompressible flow to nonlinear elasto-plasticity without problem-specific architectural modifications, highlighting its broad applicability to nonlinear, time-dependent continua.
Authors:Nan Chen, Mengqi Huang, Yihao Meng, Zhendong Mao
Title: LongAnimation: Long Animation Generation with Dynamic Global-Local Memory
Abstract:
Animation colorization is a crucial part of real animation industry production. Long animation colorization has high labor costs. Therefore, automated long animation colorization based on the video generation model has significant research value. Existing studies are limited to short-term colorization. These studies adopt a local paradigm, fusing overlapping features to achieve smooth transitions between local segments. However, the local paradigm neglects global information, failing to maintain long-term color consistency. In this study, we argue that ideal long-term color consistency can be achieved through a dynamic global-local paradigm, i.e., dynamically extracting global color-consistent features relevant to the current generation. Specifically, we propose LongAnimation, a novel framework, which mainly includes a SketchDiT, a Dynamic Global-Local Memory (DGLM), and a Color Consistency Reward. The SketchDiT captures hybrid reference features to support the DGLM module. The DGLM module employs a long video understanding model to dynamically compress global historical features and adaptively fuse them with the current generation features. To refine the color consistency, we introduce a Color Consistency Reward. During inference, we propose a color consistency fusion to smooth the video segment transition. Extensive experiments on both short-term (14 frames) and long-term (average 500 frames) animations show the effectiveness of LongAnimation in maintaining short-term and long-term color consistency for open-domain animation colorization task. The code can be found at https://cn-makers.github.io/long_animation_web/.
Authors:Lei-lei Li, Jianwu Fang, Junbin Xiao, Shanmin Pang, Hongkai Yu, Chen Lv, Jianru Xue, Tat-Seng Chua
Title: Causal-Entity Reflected Egocentric Traffic Accident Video Synthesis
Abstract:
Egocentricly comprehending the causes and effects of car accidents is crucial for the safety of self-driving cars, and synthesizing causal-entity reflected accident videos can facilitate the capability test to respond to unaffordable accidents in reality. However, incorporating causal relations as seen in real-world videos into synthetic videos remains challenging. This work argues that precisely identifying the accident participants and capturing their related behaviors are of critical importance. In this regard, we propose a novel diffusion model, Causal-VidSyn, for synthesizing egocentric traffic accident videos. To enable causal entity grounding in video diffusion, Causal-VidSyn leverages the cause descriptions and driver fixations to identify the accident participants and behaviors, facilitated by accident reason answering and gaze-conditioned selection modules. To support Causal-VidSyn, we further construct Drive-Gaze, the largest driver gaze dataset (with 1.54M frames of fixations) in driving accident scenarios. Extensive experiments show that Causal-VidSyn surpasses state-of-the-art video diffusion models in terms of frame quality and causal sensitivity in various tasks, including accident video editing, normal-to-accident video diffusion, and text-to-video generation.
Authors:Diego Biagini, Nassir Navab, Azade Farshad
Title: HieraSurg: Hierarchy-Aware Diffusion Model for Surgical Video Generation
Abstract:
Surgical Video Synthesis has emerged as a promising research direction following the success of diffusion models in general-domain video generation. Although existing approaches achieve high-quality video generation, most are unconditional and fail to maintain consistency with surgical actions and phases, lacking the surgical understanding and fine-grained guidance necessary for factual simulation. We address these challenges by proposing HieraSurg, a hierarchy-aware surgical video generation framework consisting of two specialized diffusion models. Given a surgical phase and an initial frame, HieraSurg first predicts future coarse-grained semantic changes through a segmentation prediction model. The final video is then generated by a second-stage model that augments these temporal segmentation maps with fine-grained visual features, leading to effective texture rendering and integration of semantic information in the video space. Our approach leverages surgical information at multiple levels of abstraction, including surgical phase, action triplets, and panoptic segmentation maps. The experimental results on Cholecystectomy Surgical Video Generation demonstrate that the model significantly outperforms prior work both quantitatively and qualitatively, showing strong generalization capabilities and the ability to generate higher frame-rate videos. The model exhibits particularly fine-grained adherence when provided with existing segmentation maps, suggesting its potential for practical surgical applications.
Authors:Jianwu Fang, Lei-Lei Li, Zhedong Zheng, Hongkai Yu, Jianru Xue, Zhengguo Li, Tat-Seng Chua
Title: EQ-TAA: Equivariant Traffic Accident Anticipation via Diffusion-Based Accident Video Synthesis
Abstract:
Traffic Accident Anticipation (TAA) in traffic scenes is a challenging problem for achieving zero fatalities in the future. Current approaches typically treat TAA as a supervised learning task needing the laborious annotation of accident occurrence duration. However, the inherent long-tailed, uncertain, and fast-evolving nature of traffic scenes has the problem that real causal parts of accidents are difficult to identify and are easily dominated by data bias, resulting in a background confounding issue. Thus, we propose an Attentive Video Diffusion (AVD) model that synthesizes additional accident video clips by generating the causal part in dashcam videos, i.e., from normal clips to accident clips. AVD aims to generate causal video frames based on accident or accident-free text prompts while preserving the style and content of frames for TAA after video generation. This approach can be trained using datasets collected from various driving scenes without any extra annotations. Additionally, AVD facilitates an Equivariant TAA (EQ-TAA) with an equivariant triple loss for an anchor accident-free video clip, along with the generated pair of contrastive pseudo-normal and pseudo-accident clips. Extensive experiments have been conducted to evaluate the performance of AVD and EQ-TAA, and competitive performance compared to state-of-the-art methods has been obtained.
Authors:Ziyao Huang, Zixiang Zhou, Juan Cao, Yifeng Ma, Yi Chen, Zejing Rao, Zhiyong Xu, Hongmei Wang, Qin Lin, Yuan Zhou, Qinglin Lu, Fan Tang
Title: HunyuanVideo-HOMA: Generic Human-Object Interaction in Multimodal Driven Human Animation
Abstract:
To address key limitations in human-object interaction (HOI) video generation -- specifically the reliance on curated motion data, limited generalization to novel objects/scenarios, and restricted accessibility -- we introduce HunyuanVideo-HOMA, a weakly conditioned multimodal-driven framework. HunyuanVideo-HOMA enhances controllability and reduces dependency on precise inputs through sparse, decoupled motion guidance. It encodes appearance and motion signals into the dual input space of a multimodal diffusion transformer (MMDiT), fusing them within a shared context space to synthesize temporally consistent and physically plausible interactions. To optimize training, we integrate a parameter-space HOI adapter initialized from pretrained MMDiT weights, preserving prior knowledge while enabling efficient adaptation, and a facial cross-attention adapter for anatomically accurate audio-driven lip synchronization. Extensive experiments confirm state-of-the-art performance in interaction naturalness and generalization under weak supervision. Finally, HunyuanVideo-HOMA demonstrates versatility in text-conditioned generation and interactive object manipulation, supported by a user-friendly demo interface. The project page is at https://anonymous.4open.science/w/homa-page-0FBE/.
Authors:Junyi Chen, Haoyi Zhu, Xianglong He, Yifan Wang, Jianjun Zhou, Wenzheng Chang, Yang Zhou, Zizun Li, Zhoujie Fu, Jiangmiao Pang, Tong He
Title: DeepVerse: 4D Autoregressive Video Generation as a World Model
Abstract:
World models serve as essential building blocks toward Artificial General Intelligence (AGI), enabling intelligent agents to predict future states and plan actions by simulating complex physical interactions. However, existing interactive models primarily predict visual observations, thereby neglecting crucial hidden states like geometric structures and spatial coherence. This leads to rapid error accumulation and temporal inconsistency. To address these limitations, we introduce DeepVerse, a novel 4D interactive world model explicitly incorporating geometric predictions from previous timesteps into current predictions conditioned on actions. Experiments demonstrate that by incorporating explicit geometric constraints, DeepVerse captures richer spatio-temporal relationships and underlying physical dynamics. This capability significantly reduces drift and enhances temporal consistency, enabling the model to reliably generate extended future sequences and achieve substantial improvements in prediction accuracy, visual realism, and scene rationality. Furthermore, our method provides an effective solution for geometry-aware memory retrieval, effectively preserving long-term spatial consistency. We validate the effectiveness of DeepVerse across diverse scenarios, establishing its capacity for high-fidelity, long-horizon predictions grounded in geometry-aware dynamics.
Authors:Weihan Xu, Yimeng Ma, Jingyue Huang, Yang Li, Wenye Ma, Taylor Berg-Kirkpatrick, Julian McAuley, Paul Pu Liang, Hao-Wen Dong
Title: REGen: Multimodal Retrieval-Embedded Generation for Long-to-Short Video Editing
Abstract:
Short videos are an effective tool for promoting contents and improving knowledge accessibility. While existing extractive video summarization methods struggle to produce a coherent narrative, existing abstractive methods cannot `quote' from the input videos, i.e., inserting short video clips in their outputs. In this work, we explore novel video editing models for generating shorts that feature a coherent narrative with embedded video insertions extracted from a long input video. We propose a novel retrieval-embedded generation framework that allows a large language model to quote multimodal resources while maintaining a coherent narrative. Our proposed REGen system first generates the output story script with quote placeholders using a finetuned large language model, and then uses a novel retrieval model to replace the quote placeholders by selecting a video clip that best supports the narrative from a pool of candidate quotable video clips. We examine the proposed method on the task of documentary teaser generation, where short interview insertions are commonly used to support the narrative of a documentary. Our objective evaluations show that the proposed method can effectively insert short video clips while maintaining a coherent narrative. In a subjective survey, we show that our proposed method outperforms existing abstractive and extractive approaches in terms of coherence, alignment, and realism in teaser generation.
Authors:Noor B. Tayfor, Tarik A. Rashid, Shko M. Qader, Bryar A. Hassan, Mohammed H. Abdalla, Jafar Majidpour, Aram M. Ahmed, Hussein M. Ali, Aso M. Aladdin, Abdulhady A. Abdullah, Ahmed S. Shamsaldin, Haval M. Sidqi, Abdulrahman Salih, Zaher M. Yaseen, Azad A. Ameen, Janmenjoy Nayak, Mahmood Yashar Hamza
Title: Video Forgery Detection for Surveillance Cameras: A Review
Abstract:
The widespread availability of video recording through smartphones and digital devices has made video-based evidence more accessible than ever. Surveillance footage plays a crucial role in security, law enforcement, and judicial processes. However, with the rise of advanced video editing tools, tampering with digital recordings has become increasingly easy, raising concerns about their authenticity. Ensuring the integrity of surveillance videos is essential, as manipulated footage can lead to misinformation and undermine judicial decisions. This paper provides a comprehensive review of existing forensic techniques used to detect video forgery, focusing on their effectiveness in verifying the authenticity of surveillance recordings. Various methods, including compression-based analysis, frame duplication detection, and machine learning-based approaches, are explored. The findings highlight the growing necessity for more robust forensic techniques to counteract evolving forgery methods. Strengthening video forensic capabilities will ensure that surveillance recordings remain credible and admissible as legal evidence.
Authors:Wenchuan Wang, Mengqi Huang, Yijing Tu, Zhendong Mao
Title: DualReal: Adaptive Joint Training for Lossless Identity-Motion Fusion in Video Customization
Abstract:
Customized text-to-video generation with pre-trained large-scale models has recently garnered significant attention by focusing on identity and motion consistency. Existing works typically follow the isolated customized paradigm, where the subject identity or motion dynamics are customized exclusively. However, this paradigm completely ignores the intrinsic mutual constraints and synergistic interdependencies between identity and motion, resulting in identity-motion conflicts throughout the generation process that systematically degrade. To address this, we introduce DualReal, a novel framework that employs adaptive joint training to construct interdependencies between dimensions collaboratively. Specifically, DualReal is composed of two units: (1) Dual-aware Adaptation dynamically switches the training step (i.e., identity or motion), learns the current information guided by the frozen dimension prior, and employs a regularization strategy to avoid knowledge leakage; (2) StageBlender Controller leverages the denoising stages and Diffusion Transformer depths to guide different dimensions with adaptive granularity, avoiding conflicts at various stages and ultimately achieving lossless fusion of identity and motion patterns. We constructed a more comprehensive evaluation benchmark than existing methods. The experimental results show that DualReal improves CLIP-I and DINO-I metrics by 21.7% and 31.8% on average, and achieves top performance on nearly all motion metrics. Page: https://wenc-k.github.io/dualreal-customization
Authors:Chris Rockwell, Joseph Tung, Tsung-Yi Lin, Ming-Yu Liu, David F. Fouhey, Chen-Hsuan Lin
Title: Dynamic Camera Poses and Where to Find Them
Abstract:
Annotating camera poses on dynamic Internet videos at scale is critical for advancing fields like realistic video generation and simulation. However, collecting such a dataset is difficult, as most Internet videos are unsuitable for pose estimation. Furthermore, annotating dynamic Internet videos present significant challenges even for state-of-theart methods. In this paper, we introduce DynPose-100K, a large-scale dataset of dynamic Internet videos annotated with camera poses. Our collection pipeline addresses filtering using a carefully combined set of task-specific and generalist models. For pose estimation, we combine the latest techniques of point tracking, dynamic masking, and structure-from-motion to achieve improvements over the state-of-the-art approaches. Our analysis and experiments demonstrate that DynPose-100K is both large-scale and diverse across several key attributes, opening up avenues for advancements in various downstream applications.
Authors:Xuran Ma, Yexin Liu, Yaofu Liu, Xianfeng Wu, Mingzhe Zheng, Zihao Wang, Ser-Nam Lim, Harry Yang
Title: Model Reveals What to Cache: Profiling-Based Feature Reuse for Video Diffusion Models
Abstract:
Recent advances in diffusion models have demonstrated remarkable capabilities in video generation. However, the computational intensity remains a significant challenge for practical applications. While feature caching has been proposed to reduce the computational burden of diffusion models, existing methods typically overlook the heterogeneous significance of individual blocks, resulting in suboptimal reuse and degraded output quality. To this end, we address this gap by introducing ProfilingDiT, a novel adaptive caching strategy that explicitly disentangles foreground and background-focused blocks. Through a systematic analysis of attention distributions in diffusion models, we reveal a key observation: 1) Most layers exhibit a consistent preference for either foreground or background regions. 2) Predicted noise shows low inter-step similarity initially, which stabilizes as denoising progresses. This finding inspires us to formulate a selective caching strategy that preserves full computation for dynamic foreground elements while efficiently caching static background features. Our approach substantially reduces computational overhead while preserving visual fidelity. Extensive experiments demonstrate that our framework achieves significant acceleration (e.g., 2.01 times speedup for Wan2.1) while maintaining visual fidelity across comprehensive quality metrics, establishing a viable method for efficient video generation.
Authors:Aether Team, Haoyi Zhu, Yifan Wang, Jianjun Zhou, Wenzheng Chang, Yang Zhou, Zizun Li, Junyi Chen, Chunhua Shen, Jiangmiao Pang, Tong He
Title: Aether: Geometric-Aware Unified World Modeling
Abstract:
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates zero-shot synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Notably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
Authors:Harold Haodong Chen, Haojian Huang, Xianfeng Wu, Yexin Liu, Yajing Bai, Wen-Jie Shu, Harry Yang, Ser-Nam Lim
Title: Temporal Regularization Makes Your Video Generator Stronger
Abstract:
Temporal quality is a critical aspect of video generation, as it ensures consistent motion and realistic dynamics across frames. However, achieving high temporal coherence and diversity remains challenging. In this work, we explore temporal augmentation in video generation for the first time, and introduce FluxFlow for initial investigation, a strategy designed to enhance temporal quality. Operating at the data level, FluxFlow applies controlled temporal perturbations without requiring architectural modifications. Extensive experiments on UCF-101 and VBench benchmarks demonstrate that FluxFlow significantly improves temporal coherence and diversity across various video generation models, including U-Net, DiT, and AR-based architectures, while preserving spatial fidelity. These findings highlight the potential of temporal augmentation as a simple yet effective approach to advancing video generation quality.
Authors:Mingzhe Zheng, Yongqi Xu, Haojian Huang, Xuran Ma, Yexin Liu, Wenjie Shu, Yatian Pang, Feilong Tang, Qifeng Chen, Harry Yang, Ser-Nam Lim
Title: VideoGen-of-Thought: Step-by-step generating multi-shot video with minimal manual intervention
Abstract:
Current video generation models excel at short clips but fail to produce cohesive multi-shot narratives due to disjointed visual dynamics and fractured storylines. Existing solutions either rely on extensive manual scripting/editing or prioritize single-shot fidelity over cross-scene continuity, limiting their practicality for movie-like content. We introduce VideoGen-of-Thought (VGoT), a step-by-step framework that automates multi-shot video synthesis from a single sentence by systematically addressing three core challenges: (1) Narrative Fragmentation: Existing methods lack structured storytelling. We propose dynamic storyline modeling, which first converts the user prompt into concise shot descriptions, then elaborates them into detailed, cinematic specifications across five domains (character dynamics, background continuity, relationship evolution, camera movements, HDR lighting), ensuring logical narrative progression with self-validation. (2) Visual Inconsistency: Existing approaches struggle with maintaining visual consistency across shots. Our identity-aware cross-shot propagation generates identity-preserving portrait (IPP) tokens that maintain character fidelity while allowing trait variations (expressions, aging) dictated by the storyline. (3) Transition Artifacts: Abrupt shot changes disrupt immersion. Our adjacent latent transition mechanisms implement boundary-aware reset strategies that process adjacent shots' features at transition points, enabling seamless visual flow while preserving narrative continuity. VGoT generates multi-shot videos that outperform state-of-the-art baselines by 20.4% in within-shot face consistency and 17.4% in style consistency, while achieving over 100% better cross-shot consistency and 10x fewer manual adjustments than alternatives.
Authors:Qiaowei Miao, Kehan Li, Jinsheng Quan, Zhiyuan Min, Shaojie Ma, Yichao Xu, Yi Yang, Ping Liu, Yawei Luo
Title: Advances in 4D Generation: A Survey
Abstract:
Generative artificial intelligence has recently progressed from static image and video synthesis to 3D content generation, culminating in the emergence of 4D generation-the task of synthesizing temporally coherent dynamic 3D assets guided by user input. As a burgeoning research frontier, 4D generation enables richer interactive and immersive experiences, with applications ranging from digital humans to autonomous driving. Despite rapid progress, the field lacks a unified understanding of 4D representations, generative frameworks, basic paradigms, and the core technical challenges it faces. This survey provides a systematic and in-depth review of the 4D generation landscape. To comprehensively characterize 4D generation, we first categorize fundamental 4D representations and outline associated techniques for 4D generation. We then present an in-depth analysis of representative generative pipelines based on conditions and representation methods. Subsequently, we discuss how motion and geometry priors are integrated into 4D outputs to ensure spatio-temporal consistency under various control schemes. From an application perspective, this paper summarizes 4D generation tasks in areas such as dynamic object/scene generation, digital human synthesis, editable 4D content, and embodied AI. Furthermore, we summarize and multi-dimensionally compare four basic paradigms for 4D generation: End-to-End, Generated-Data-Based, Implicit-Distillation-Based, and Explicit-Supervision-Based. Concluding our analysis, we highlight five key challenges-consistency, controllability, diversity, efficiency, and fidelity-and contextualize these with current approaches.By distilling recent advances and outlining open problems, this work offers a comprehensive and forward-looking perspective to guide future research in 4D generation.
Authors:Siyang Zhang, Harry Yang, Ser-Nam Lim
Title: VideoMerge: Towards Training-free Long Video Generation
Abstract:
Long video generation remains a challenging and compelling topic in computer vision. Diffusion based models, among the various approaches to video generation, have achieved state of the art quality with their iterative denoising procedures. However, the intrinsic complexity of the video domain renders the training of such diffusion models exceedingly expensive in terms of both data curation and computational resources. Moreover, these models typically operate on a fixed noise tensor that represents the video, resulting in predetermined spatial and temporal dimensions. Although several high quality open-source pretrained video diffusion models, jointly trained on images and videos of varying lengths and resolutions, are available, it is generally not recommended to specify a video length at inference that was not included in the training set. Consequently, these models are not readily adaptable to the direct generation of longer videos by merely increasing the specified video length. In addition to feasibility challenges, long-video generation also encounters quality issues. The domain of long videos is inherently more complex than that of short videos: extended durations introduce greater variability and necessitate long-range temporal consistency, thereby increasing the overall difficulty of the task. We propose VideoMerge, a training-free method that can be seamlessly adapted to merge short videos generated by pretrained text-to-video diffusion model. Our approach preserves the model's original expressiveness and consistency while allowing for extended duration and dynamic variation as specified by the user. By leveraging the strengths of pretrained models, our method addresses challenges related to smoothness, consistency, and dynamic content through orthogonal strategies that operate collaboratively to achieve superior quality.
Authors:Jianqi Chen, Biao Zhang, Xiangjun Tang, Peter Wonka
Title: V2M4: 4D Mesh Animation Reconstruction from a Single Monocular Video
Abstract:
We present V2M4, a novel 4D reconstruction method that directly generates a usable 4D mesh animation asset from a single monocular video. Unlike existing approaches that rely on priors from multi-view image and video generation models, our method is based on native 3D mesh generation models. Naively applying 3D mesh generation models to generate a mesh for each frame in a 4D task can lead to issues such as incorrect mesh poses, misalignment of mesh appearance, and inconsistencies in mesh geometry and texture maps. To address these problems, we propose a structured workflow that includes camera search and mesh reposing, condition embedding optimization for mesh appearance refinement, pairwise mesh registration for topology consistency, and global texture map optimization for texture consistency. Our method outputs high-quality 4D animated assets that are compatible with mainstream graphics and game software. Experimental results across a variety of animation types and motion amplitudes demonstrate the generalization and effectiveness of our method. Project page: https://windvchen.github.io/V2M4/.
Authors:Jing Wang, Ao Ma, Ke Cao, Jun Zheng, Zhanjie Zhang, Jiasong Feng, Shanyuan Liu, Yuhang Ma, Bo Cheng, Dawei Leng, Yuhui Yin, Xiaodan Liang
Title: WISA: World Simulator Assistant for Physics-Aware Text-to-Video Generation
Abstract:
Recent rapid advancements in text-to-video (T2V) generation, such as SoRA and Kling, have shown great potential for building world simulators. However, current T2V models struggle to grasp abstract physical principles and generate videos that adhere to physical laws. This challenge arises primarily from a lack of clear guidance on physical information due to a significant gap between abstract physical principles and generation models. To this end, we introduce the World Simulator Assistant (WISA), an effective framework for decomposing and incorporating physical principles into T2V models. Specifically, WISA decomposes physical principles into textual physical descriptions, qualitative physical categories, and quantitative physical properties. To effectively embed these physical attributes into the generation process, WISA incorporates several key designs, including Mixture-of-Physical-Experts Attention (MoPA) and a Physical Classifier, enhancing the model's physics awareness. Furthermore, most existing datasets feature videos where physical phenomena are either weakly represented or entangled with multiple co-occurring processes, limiting their suitability as dedicated resources for learning explicit physical principles. We propose a novel video dataset, WISA-32K, collected based on qualitative physical categories. It consists of 32,000 videos, representing 17 physical laws across three domains of physics: dynamics, thermodynamics, and optics. Experimental results demonstrate that WISA can effectively enhance the compatibility of T2V models with real-world physical laws, achieving a considerable improvement on the VideoPhy benchmark. The visual exhibitions of WISA and WISA-32K are available in the https://360cvgroup.github.io/WISA/.
Authors:Zhun Mou, Bin Xia, Zhengchao Huang, Wenming Yang, Jiaya Jia
Title: GRADEO: Towards Human-Like Evaluation for Text-to-Video Generation via Multi-Step Reasoning
Abstract:
Recent great advances in video generation models have demonstrated their potential to produce high-quality videos, bringing challenges to effective evaluation. Unlike human evaluation, existing automated evaluation metrics lack high-level semantic understanding and reasoning capabilities for video, thus making them infeasible and unexplainable. To fill this gap, we curate GRADEO-Instruct, a multi-dimensional T2V evaluation instruction tuning dataset, including 3.3k videos from over 10 existing video generation models and multi-step reasoning assessments converted by 16k human annotations. We then introduce GRADEO, one of the first specifically designed video evaluation models, which grades AI-generated videos for explainable scores and assessments through multi-step reasoning. Experiments show that our method aligns better with human evaluations than existing methods. Furthermore, our benchmarking reveals that current video generation models struggle to produce content that aligns with human reasoning and complex real-world scenarios. The models, datasets, and codes will be released soon.
Authors:Sotiris Anagnostidis, Gregor Bachmann, Yeongmin Kim, Jonas Kohler, Markos Georgopoulos, Artsiom Sanakoyeu, Yuming Du, Albert Pumarola, Ali Thabet, Edgar Schönfeld
Title: FlexiDiT: Your Diffusion Transformer Can Easily Generate High-Quality Samples with Less Compute
Abstract:
Despite their remarkable performance, modern Diffusion Transformers are hindered by substantial resource requirements during inference, stemming from the fixed and large amount of compute needed for each denoising step. In this work, we revisit the conventional static paradigm that allocates a fixed compute budget per denoising iteration and propose a dynamic strategy instead. Our simple and sample-efficient framework enables pre-trained DiT models to be converted into \emph{flexible} ones -- dubbed FlexiDiT -- allowing them to process inputs at varying compute budgets. We demonstrate how a single \emph{flexible} model can generate images without any drop in quality, while reducing the required FLOPs by more than $40$\% compared to their static counterparts, for both class-conditioned and text-conditioned image generation. Our method is general and agnostic to input and conditioning modalities. We show how our approach can be readily extended for video generation, where FlexiDiT models generate samples with up to $75$\% less compute without compromising performance.
Authors:Zeyuan Chen, Hongyi Xu, Guoxian Song, You Xie, Chenxu Zhang, Xin Chen, Chao Wang, Di Chang, Linjie Luo
Title: X-Dancer: Expressive Music to Human Dance Video Generation
Abstract:
We present X-Dancer, a novel zero-shot music-driven image animation pipeline that creates diverse and long-range lifelike human dance videos from a single static image. As its core, we introduce a unified transformer-diffusion framework, featuring an autoregressive transformer model that synthesize extended and music-synchronized token sequences for 2D body, head and hands poses, which then guide a diffusion model to produce coherent and realistic dance video frames. Unlike traditional methods that primarily generate human motion in 3D, X-Dancer addresses data limitations and enhances scalability by modeling a wide spectrum of 2D dance motions, capturing their nuanced alignment with musical beats through readily available monocular videos. To achieve this, we first build a spatially compositional token representation from 2D human pose labels associated with keypoint confidences, encoding both large articulated body movements (e.g., upper and lower body) and fine-grained motions (e.g., head and hands). We then design a music-to-motion transformer model that autoregressively generates music-aligned dance pose token sequences, incorporating global attention to both musical style and prior motion context. Finally we leverage a diffusion backbone to animate the reference image with these synthesized pose tokens through AdaIN, forming a fully differentiable end-to-end framework. Experimental results demonstrate that X-Dancer is able to produce both diverse and characterized dance videos, substantially outperforming state-of-the-art methods in term of diversity, expressiveness and realism. Code and model will be available for research purposes.
Authors:Xinyang Zhou, Fanyue Wei, Lixin Duan, Angela Yao, Wen Li
Title: The Devil is in the Spurious Correlations: Boosting Moment Retrieval with Dynamic Learning
Abstract:
Given a textual query along with a corresponding video, the objective of moment retrieval aims to localize the moments relevant to the query within the video. While commendable results have been demonstrated by existing transformer-based approaches, predicting the accurate temporal span of the target moment is still a major challenge. This paper reveals that a crucial reason stems from the spurious correlation between the text query and the moment context. Namely, the model makes predictions by overly associating queries with background frames rather than distinguishing target moments. To address this issue, we propose a dynamic learning approach for moment retrieval, where two strategies are designed to mitigate the spurious correlation. First, we introduce a novel video synthesis approach to construct a dynamic context for the queried moment, enabling the model to attend to the target moment of the corresponding query across dynamic backgrounds. Second, to alleviate the over-association with backgrounds, we enhance representations temporally by incorporating text-dynamics interaction, which encourages the model to align text with target moments through complementary dynamic representations. With the proposed method, our model significantly alleviates the spurious correlation issue in moment retrieval and establishes new state-of-the-art performance on two popular benchmarks, \ie, QVHighlights and Charades-STA. In addition, detailed ablation studies and evaluations across different architectures demonstrate the generalization and effectiveness of the proposed strategies. Our code will be publicly available.
Authors:Luozhou Wang, Yijun Li, Zhifei Chen, Jui-Hsien Wang, Zhifei Zhang, He Zhang, Zhe Lin, Yingcong Chen
Title: TransPixeler: Advancing Text-to-Video Generation with Transparency
Abstract:
Text-to-video generative models have made significant strides, enabling diverse applications in entertainment, advertising, and education. However, generating RGBA video, which includes alpha channels for transparency, remains a challenge due to limited datasets and the difficulty of adapting existing models. Alpha channels are crucial for visual effects (VFX), allowing transparent elements like smoke and reflections to blend seamlessly into scenes. We introduce TransPixeler, a method to extend pretrained video models for RGBA generation while retaining the original RGB capabilities. TransPixar leverages a diffusion transformer (DiT) architecture, incorporating alpha-specific tokens and using LoRA-based fine-tuning to jointly generate RGB and alpha channels with high consistency. By optimizing attention mechanisms, TransPixar preserves the strengths of the original RGB model and achieves strong alignment between RGB and alpha channels despite limited training data. Our approach effectively generates diverse and consistent RGBA videos, advancing the possibilities for VFX and interactive content creation.
Authors:Yunlong Yuan, Yuanfan Guo, Chunwei Wang, Hang Xu, Li Zhang
Title: Brick-Diffusion: Generating Long Videos with Brick-to-Wall Denoising
Abstract:
Recent advances in diffusion models have greatly improved text-driven video generation. However, training models for long video generation demands significant computational power and extensive data, leading most video diffusion models to be limited to a small number of frames. Existing training-free methods that attempt to generate long videos using pre-trained short video diffusion models often struggle with issues such as insufficient motion dynamics and degraded video fidelity. In this paper, we present Brick-Diffusion, a novel, training-free approach capable of generating long videos of arbitrary length. Our method introduces a brick-to-wall denoising strategy, where the latent is denoised in segments, with a stride applied in subsequent iterations. This process mimics the construction of a staggered brick wall, where each brick represents a denoised segment, enabling communication between frames and improving overall video quality. Through quantitative and qualitative evaluations, we demonstrate that Brick-Diffusion outperforms existing baseline methods in generating high-fidelity videos.
Authors:Shaoteng Liu, Tianyu Wang, Jui-Hsien Wang, Qing Liu, Zhifei Zhang, Joon-Young Lee, Yijun Li, Bei Yu, Zhe Lin, Soo Ye Kim, Jiaya Jia
Title: Generative Video Propagation
Abstract:
Large-scale video generation models have the inherent ability to realistically model natural scenes. In this paper, we demonstrate that through a careful design of a generative video propagation framework, various video tasks can be addressed in a unified way by leveraging the generative power of such models. Specifically, our framework, GenProp, encodes the original video with a selective content encoder and propagates the changes made to the first frame using an image-to-video generation model. We propose a data generation scheme to cover multiple video tasks based on instance-level video segmentation datasets. Our model is trained by incorporating a mask prediction decoder head and optimizing a region-aware loss to aid the encoder to preserve the original content while the generation model propagates the modified region. This novel design opens up new possibilities: In editing scenarios, GenProp allows substantial changes to an object's shape; for insertion, the inserted objects can exhibit independent motion; for removal, GenProp effectively removes effects like shadows and reflections from the whole video; for tracking, GenProp is capable of tracking objects and their associated effects together. Experiment results demonstrate the leading performance of our model in various video tasks, and we further provide in-depth analyses of the proposed framework.
Authors:Yiping Wang, Xuehai He, Kuan Wang, Luyao Ma, Jianwei Yang, Shuohang Wang, Simon Shaolei Du, Yelong Shen
Title: Is Your World Simulator a Good Story Presenter? A Consecutive Events-Based Benchmark for Future Long Video Generation
Abstract:
The current state-of-the-art video generative models can produce commercial-grade videos with highly realistic details. However, they still struggle to coherently present multiple sequential events in the stories specified by the prompts, which is foreseeable an essential capability for future long video generation scenarios. For example, top T2V generative models still fail to generate a video of the short simple story 'how to put an elephant into a refrigerator.' While existing detail-oriented benchmarks primarily focus on fine-grained metrics like aesthetic quality and spatial-temporal consistency, they fall short of evaluating models' abilities to handle event-level story presentation. To address this gap, we introduce StoryEval, a story-oriented benchmark specifically designed to assess text-to-video (T2V) models' story-completion capabilities. StoryEval features 423 prompts spanning 7 classes, each representing short stories composed of 2-4 consecutive events. We employ advanced vision-language models, such as GPT-4V and LLaVA-OV-Chat-72B, to verify the completion of each event in the generated videos, applying a unanimous voting method to enhance reliability. Our methods ensure high alignment with human evaluations, and the evaluation of 11 models reveals its challenge, with none exceeding an average story-completion rate of 50%. StoryEval provides a new benchmark for advancing T2V models and highlights the challenges and opportunities in developing next-generation solutions for coherent story-driven video generation.
Authors:Harold Haodong Chen, Harry Yang, Ser-Nam Lim
Title: Beyond Generation: Unlocking Universal Editing via Self-Supervised Fine-Tuning
Abstract:
Recent advances in video generation have outpaced progress in video editing, which remains constrained by several limiting factors, namely: (a) the task's dependency on supervision severely limits generality, (b) an unnecessary artificial separation between the generation and editing task, and (c) the high computational costs of training a video model. In this work, we propose UES (Unlocking Universal Editing via Self-Supervision), a lightweight self-supervised fine-tuning strategy that transforms generation models into unified generation-editing systems through self-supervised semantic alignment. Our approach establishes a dual-conditioning mechanism where original video-text pairs jointly provide visual and textual semantics, enabling structured learning of intrinsic spatiotemporal correspondences. Key advantages include: (i) Universality through supervision-free adaptation to diverse editing tasks, (ii) Unification of generation and editing applicable to most text(+image)-to-video model, and (iii) Efficiency via lightweight fine-tune that reduces tunable parameters by 92.67%. To enable systematic evaluation, we introduce OmniBench-99, a comprehensive benchmark spanning 99 videos across humans/animals, environments, and objects, comprising 4 editing types and 8 scenarios. Extensive experiments show UES enables models without inherent editing capability to perform powerful and universal editing while preserving or even enhancing their original generation performance.
Authors:Tianshuo Xu, Zhifei Chen, Leyi Wu, Hao Lu, Yuying Chen, Lihui Jiang, Bingbing Liu, Yingcong Chen
Title: Motion Dreamer: Boundary Conditional Motion Reasoning for Physically Coherent Video Generation
Abstract:
Recent advances in video generation have shown promise for generating future scenarios, critical for planning and control in autonomous driving and embodied intelligence. However, real-world applications demand more than visually plausible predictions; they require reasoning about object motions based on explicitly defined boundary conditions, such as initial scene image and partial object motion. We term this capability Boundary Conditional Motion Reasoning. Current approaches either neglect explicit user-defined motion constraints, producing physically inconsistent motions, or conversely demand complete motion inputs, which are rarely available in practice. Here we introduce Motion Dreamer, a two-stage framework that explicitly separates motion reasoning from visual synthesis, addressing these limitations. Our approach introduces instance flow, a sparse-to-dense motion representation enabling effective integration of partial user-defined motions, and the motion inpainting strategy to robustly enable reasoning motions of other objects. Extensive experiments demonstrate that Motion Dreamer significantly outperforms existing methods, achieving superior motion plausibility and visual realism, thus bridging the gap towards practical boundary conditional motion reasoning. Our webpage is available: https://envision-research.github.io/MotionDreamer/.
Authors:Haoyu Wu, Jingyi Xu, Hieu Le, Dimitris Samaras
Title: Importance-Based Token Merging for Efficient Image and Video Generation
Abstract:
Token merging can effectively accelerate various vision systems by processing groups of similar tokens only once and sharing the results across them. However, existing token grouping methods are often ad hoc and random, disregarding the actual content of the samples. We show that preserving high-information tokens during merging - those essential for semantic fidelity and structural details - significantly improves sample quality, producing finer details and more coherent, realistic generations. Despite being simple and intuitive, this approach remains underexplored. To do so, we propose an importance-based token merging method that prioritizes the most critical tokens in computational resource allocation, leveraging readily available importance scores, such as those from classifier-free guidance in diffusion models. Experiments show that our approach significantly outperforms baseline methods across multiple applications, including text-to-image synthesis, multi-view image generation, and video generation with various model architectures such as Stable Diffusion, Zero123++, AnimateDiff, or PixArt-$α$.
Authors:Yousef Yeganeh, Rachmadio Lazuardi, Amir Shamseddin, Emine Dari, Yash Thirani, Nassir Navab, Azade Farshad
Title: VISAGE: Video Synthesis using Action Graphs for Surgery
Abstract:
Surgical data science (SDS) is a field that analyzes patient data before, during, and after surgery to improve surgical outcomes and skills. However, surgical data is scarce, heterogeneous, and complex, which limits the applicability of existing machine learning methods. In this work, we introduce the novel task of future video generation in laparoscopic surgery. This task can augment and enrich the existing surgical data and enable various applications, such as simulation, analysis, and robot-aided surgery. Ultimately, it involves not only understanding the current state of the operation but also accurately predicting the dynamic and often unpredictable nature of surgical procedures. Our proposed method, VISAGE (VIdeo Synthesis using Action Graphs for Surgery), leverages the power of action scene graphs to capture the sequential nature of laparoscopic procedures and utilizes diffusion models to synthesize temporally coherent video sequences. VISAGE predicts the future frames given only a single initial frame, and the action graph triplets. By incorporating domain-specific knowledge through the action graph, VISAGE ensures the generated videos adhere to the expected visual and motion patterns observed in real laparoscopic procedures. The results of our experiments demonstrate high-fidelity video generation for laparoscopy procedures, which enables various applications in SDS.
Authors:Jiahao Cui, Hui Li, Yao Yao, Hao Zhu, Hanlin Shang, Kaihui Cheng, Hang Zhou, Siyu Zhu, Jingdong Wang
Title: Hallo2: Long-Duration and High-Resolution Audio-Driven Portrait Image Animation
Abstract:
Recent advances in latent diffusion-based generative models for portrait image animation, such as Hallo, have achieved impressive results in short-duration video synthesis. In this paper, we present updates to Hallo, introducing several design enhancements to extend its capabilities. First, we extend the method to produce long-duration videos. To address substantial challenges such as appearance drift and temporal artifacts, we investigate augmentation strategies within the image space of conditional motion frames. Specifically, we introduce a patch-drop technique augmented with Gaussian noise to enhance visual consistency and temporal coherence over long duration. Second, we achieve 4K resolution portrait video generation. To accomplish this, we implement vector quantization of latent codes and apply temporal alignment techniques to maintain coherence across the temporal dimension. By integrating a high-quality decoder, we realize visual synthesis at 4K resolution. Third, we incorporate adjustable semantic textual labels for portrait expressions as conditional inputs. This extends beyond traditional audio cues to improve controllability and increase the diversity of the generated content. To the best of our knowledge, Hallo2, proposed in this paper, is the first method to achieve 4K resolution and generate hour-long, audio-driven portrait image animations enhanced with textual prompts. We have conducted extensive experiments to evaluate our method on publicly available datasets, including HDTF, CelebV, and our introduced "Wild" dataset. The experimental results demonstrate that our approach achieves state-of-the-art performance in long-duration portrait video animation, successfully generating rich and controllable content at 4K resolution for duration extending up to tens of minutes. Project page https://fudan-generative-vision.github.io/hallo2
Authors:Jing Wang, Ao Ma, Jiasong Feng, Dawei Leng, Yuhui Yin, Xiaodan Liang
Title: Qihoo-T2X: An Efficient Proxy-Tokenized Diffusion Transformer for Text-to-Any-Task
Abstract:
The global self-attention mechanism in diffusion transformers involves redundant computation due to the sparse and redundant nature of visual information, and the attention map of tokens within a spatial window shows significant similarity. To address this redundancy, we propose the Proxy-Tokenized Diffusion Transformer (PT-DiT), which employs sparse representative token attention (where the number of representative tokens is much smaller than the total number of tokens) to model global visual information efficiently. Specifically, within each transformer block, we compute an averaging token from each spatial-temporal window to serve as a proxy token for that region. The global semantics are captured through the self-attention of these proxy tokens and then injected into all latent tokens via cross-attention. Simultaneously, we introduce window and shift window attention to address the limitations in detail modeling caused by the sparse attention mechanism. Building on the well-designed PT-DiT, we further develop the Qihoo-T2X family, which includes a variety of models for T2I, T2V, and T2MV tasks. Experimental results show that PT-DiT achieves competitive performance while reducing the computational complexity in both image and video generation tasks (e.g., a 49% reduction compared to DiT and a 34% reduction compared to PixArt-$α$). The visual exhibition and source code of Qihoo-T2X is available at https://360cvgroup.github.io/Qihoo-T2X/.
Authors:Pingping Zhang, Jinlong Li, Kecheng Chen, Meng Wang, Long Xu, Haoliang Li, Nicu Sebe, Sam Kwong, Shiqi Wang
Title: When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding
Abstract:
Existing codecs are designed to eliminate intrinsic redundancies to create a compact representation for compression. However, strong external priors from Multimodal Large Language Models (MLLMs) have not been explicitly explored in video compression. Herein, we introduce a unified paradigm for Cross-Modality Video Coding (CMVC), which is a pioneering approach to explore multimodality representation and video generative models in video coding. Specifically, on the encoder side, we disentangle a video into spatial content and motion components, which are subsequently transformed into distinct modalities to achieve very compact representation by leveraging MLLMs. During decoding, previously encoded components and video generation models are leveraged to create multiple encoding-decoding modes that optimize video reconstruction quality for specific decoding requirements, including Text-Text-to-Video (TT2V) mode to ensure high-quality semantic information and Image-Text-to-Video (IT2V) mode to achieve superb perceptual consistency. In addition, we propose an efficient frame interpolation model for IT2V mode via Low-Rank Adaption (LoRA) tuning to guarantee perceptual quality, which allows the generated motion cues to behave smoothly. Experiments on benchmarks indicate that TT2V achieves effective semantic reconstruction, while IT2V exhibits competitive perceptual consistency. These results highlight potential directions for future research in video coding.
Authors:Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, Jiaya Jia
Title: ControlNeXt: Powerful and Efficient Control for Image and Video Generation
Abstract:
Diffusion models have demonstrated remarkable and robust abilities in both image and video generation. To achieve greater control over generated results, researchers introduce additional architectures, such as ControlNet, Adapters and ReferenceNet, to integrate conditioning controls. However, current controllable generation methods often require substantial additional computational resources, especially for video generation, and face challenges in training or exhibit weak control. In this paper, we propose ControlNeXt: a powerful and efficient method for controllable image and video generation. We first design a more straightforward and efficient architecture, replacing heavy additional branches with minimal additional cost compared to the base model. Such a concise structure also allows our method to seamlessly integrate with other LoRA weights, enabling style alteration without the need for additional training. As for training, we reduce up to 90% of learnable parameters compared to the alternatives. Furthermore, we propose another method called Cross Normalization (CN) as a replacement for Zero-Convolution' to achieve fast and stable training convergence. We have conducted various experiments with different base models across images and videos, demonstrating the robustness of our method.
Authors:Vasco Ramos, Yonatan Bitton, Michal Yarom, Idan Szpektor, Joao Magalhaes
Title: Contrastive Sequential-Diffusion Learning: Non-linear and Multi-Scene Instructional Video Synthesis
Abstract:
Generated video scenes for action-centric sequence descriptions, such as recipe instructions and do-it-yourself projects, often include non-linear patterns, where the next video may need to be visually consistent not with the immediately preceding video but with earlier ones. Current multi-scene video synthesis approaches fail to meet these consistency requirements. To address this, we propose a contrastive sequential video diffusion method that selects the most suitable previously generated scene to guide and condition the denoising process of the next scene. The result is a multi-scene video that is grounded in the scene descriptions and coherent w.r.t. the scenes that require visual consistency. Experiments with action-centered data from the real world demonstrate the practicality and improved consistency of our model compared to previous work.
Authors:Chirui Chang, Zhengzhe Liu, Xiaoyang Lyu, Xiaojuan Qi
Title: What Matters in Detecting AI-Generated Videos like Sora?
Abstract:
Recent advancements in diffusion-based video generation have showcased remarkable results, yet the gap between synthetic and real-world videos remains under-explored. In this study, we examine this gap from three fundamental perspectives: appearance, motion, and geometry, comparing real-world videos with those generated by a state-of-the-art AI model, Stable Video Diffusion. To achieve this, we train three classifiers using 3D convolutional networks, each targeting distinct aspects: vision foundation model features for appearance, optical flow for motion, and monocular depth for geometry. Each classifier exhibits strong performance in fake video detection, both qualitatively and quantitatively. This indicates that AI-generated videos are still easily detectable, and a significant gap between real and fake videos persists. Furthermore, utilizing the Grad-CAM, we pinpoint systematic failures of AI-generated videos in appearance, motion, and geometry. Finally, we propose an Ensemble-of-Experts model that integrates appearance, optical flow, and depth information for fake video detection, resulting in enhanced robustness and generalization ability. Our model is capable of detecting videos generated by Sora with high accuracy, even without exposure to any Sora videos during training. This suggests that the gap between real and fake videos can be generalized across various video generative models. Project page: https://justin-crchang.github.io/3DCNNDetection.github.io/
Authors:Junbang Liang, Ruoshi Liu, Ege Ozguroglu, Sruthi Sudhakar, Achal Dave, Pavel Tokmakov, Shuran Song, Carl Vondrick
Title: Dreamitate: Real-World Visuomotor Policy Learning via Video Generation
Abstract:
A key challenge in manipulation is learning a policy that can robustly generalize to diverse visual environments. A promising mechanism for learning robust policies is to leverage video generative models, which are pretrained on large-scale datasets of internet videos. In this paper, we propose a visuomotor policy learning framework that fine-tunes a video diffusion model on human demonstrations of a given task. At test time, we generate an example of an execution of the task conditioned on images of a novel scene, and use this synthesized execution directly to control the robot. Our key insight is that using common tools allows us to effortlessly bridge the embodiment gap between the human hand and the robot manipulator. We evaluate our approach on four tasks of increasing complexity and demonstrate that harnessing internet-scale generative models allows the learned policy to achieve a significantly higher degree of generalization than existing behavior cloning approaches.
Authors:Yang-Tian Sun, Yi-Hua Huang, Lin Ma, Xiaoyang Lyu, Yan-Pei Cao, Xiaojuan Qi
Title: Splatter a Video: Video Gaussian Representation for Versatile Processing
Abstract:
Video representation is a long-standing problem that is crucial for various down-stream tasks, such as tracking,depth prediction,segmentation,view synthesis,and editing. However, current methods either struggle to model complex motions due to the absence of 3D structure or rely on implicit 3D representations that are ill-suited for manipulation tasks. To address these challenges, we introduce a novel explicit 3D representation-video Gaussian representation -- that embeds a video into 3D Gaussians. Our proposed representation models video appearance in a 3D canonical space using explicit Gaussians as proxies and associates each Gaussian with 3D motions for video motion. This approach offers a more intrinsic and explicit representation than layered atlas or volumetric pixel matrices. To obtain such a representation, we distill 2D priors, such as optical flow and depth, from foundation models to regularize learning in this ill-posed setting. Extensive applications demonstrate the versatility of our new video representation. It has been proven effective in numerous video processing tasks, including tracking, consistent video depth and feature refinement, motion and appearance editing, and stereoscopic video generation. Project page: https://sunyangtian.github.io/spatter_a_video_web/
Authors:Cong Wang, Kuan Tian, Jun Zhang, Yonghang Guan, Feng Luo, Fei Shen, Zhiwei Jiang, Qing Gu, Xiao Han, Wei Yang
Title: V-Express: Conditional Dropout for Progressive Training of Portrait Video Generation
Abstract:
In the field of portrait video generation, the use of single images to generate portrait videos has become increasingly prevalent. A common approach involves leveraging generative models to enhance adapters for controlled generation. However, control signals (e.g., text, audio, reference image, pose, depth map, etc.) can vary in strength. Among these, weaker conditions often struggle to be effective due to interference from stronger conditions, posing a challenge in balancing these conditions. In our work on portrait video generation, we identified audio signals as particularly weak, often overshadowed by stronger signals such as facial pose and reference image. However, direct training with weak signals often leads to difficulties in convergence. To address this, we propose V-Express, a simple method that balances different control signals through the progressive training and the conditional dropout operation. Our method gradually enables effective control by weak conditions, thereby achieving generation capabilities that simultaneously take into account the facial pose, reference image, and audio. The experimental results demonstrate that our method can effectively generate portrait videos controlled by audio. Furthermore, a potential solution is provided for the simultaneous and effective use of conditions of varying strengths.
Authors:Bowen Zhang, Xiaofei Xie, Haotian Lu, Na Ma, Tianlin Li, Qing Guo
Title: MAVIN: Multi-Action Video Generation with Diffusion Models via Transition Video Infilling
Abstract:
Diffusion-based video generation has achieved significant progress, yet generating multiple actions that occur sequentially remains a formidable task. Directly generating a video with sequential actions can be extremely challenging due to the scarcity of fine-grained action annotations and the difficulty in establishing temporal semantic correspondences and maintaining long-term consistency. To tackle this, we propose an intuitive and straightforward solution: splicing multiple single-action video segments sequentially. The core challenge lies in generating smooth and natural transitions between these segments given the inherent complexity and variability of action transitions. We introduce MAVIN (Multi-Action Video INfilling model), designed to generate transition videos that seamlessly connect two given videos, forming a cohesive integrated sequence. MAVIN incorporates several innovative techniques to address challenges in the transition video infilling task. Firstly, a consecutive noising strategy coupled with variable-length sampling is employed to handle large infilling gaps and varied generation lengths. Secondly, boundary frame guidance (BFG) is proposed to address the lack of semantic guidance during transition generation. Lastly, a Gaussian filter mixer (GFM) dynamically manages noise initialization during inference, mitigating train-test discrepancy while preserving generation flexibility. Additionally, we introduce a new metric, CLIP-RS (CLIP Relative Smoothness), to evaluate temporal coherence and smoothness, complementing traditional quality-based metrics. Experimental results on horse and tiger scenarios demonstrate MAVIN's superior performance in generating smooth and coherent video transitions compared to existing methods.
Authors:Peisong He, Leyao Zhu, Jiaxing Li, Shiqi Wang, Haoliang Li
Title: Exposing AI-generated Videos: A Benchmark Dataset and a Local-and-Global Temporal Defect Based Detection Method
Abstract:
The generative model has made significant advancements in the creation of realistic videos, which causes security issues. However, this emerging risk has not been adequately addressed due to the absence of a benchmark dataset for AI-generated videos. In this paper, we first construct a video dataset using advanced diffusion-based video generation algorithms with various semantic contents. Besides, typical video lossy operations over network transmission are adopted to generate degraded samples. Then, by analyzing local and global temporal defects of current AI-generated videos, a novel detection framework by adaptively learning local motion information and global appearance variation is constructed to expose fake videos. Finally, experiments are conducted to evaluate the generalization and robustness of different spatial and temporal domain detection methods, where the results can serve as the baseline and demonstrate the research challenge for future studies.
Authors:Yizhuo Lu, Changde Du, Chong Wang, Xuanliu Zhu, Liuyun Jiang, Xujin Li, Huiguang He
Title: Animate Your Thoughts: Decoupled Reconstruction of Dynamic Natural Vision from Slow Brain Activity
Abstract:
Reconstructing human dynamic vision from brain activity is a challenging task with great scientific significance. Although prior video reconstruction methods have made substantial progress, they still suffer from several limitations, including: (1) difficulty in simultaneously reconciling semantic (e.g. categorical descriptions), structure (e.g. size and color), and consistent motion information (e.g. order of frames); (2) low temporal resolution of fMRI, which poses a challenge in decoding multiple frames of video dynamics from a single fMRI frame; (3) reliance on video generation models, which introduces ambiguity regarding whether the dynamics observed in the reconstructed videos are genuinely derived from fMRI data or are hallucinations from generative model. To overcome these limitations, we propose a two-stage model named Mind-Animator. During the fMRI-to-feature stage, we decouple semantic, structure, and motion features from fMRI. Specifically, we employ fMRI-vision-language tri-modal contrastive learning to decode semantic feature from fMRI and design a sparse causal attention mechanism for decoding multi-frame video motion features through a next-frame-prediction task. In the feature-to-video stage, these features are integrated into videos using an inflated Stable Diffusion, effectively eliminating external video data interference. Extensive experiments on multiple video-fMRI datasets demonstrate that our model achieves state-of-the-art performance. Comprehensive visualization analyses further elucidate the interpretability of our model from a neurobiological perspective. Project page: https://mind-animator-design.github.io/.
Authors:Liangrui Pan, Zhenyu Zhao, Ying Lu, Kewei Tang, Liyong Fu, Qingchun Liang, Shaoliang Peng
Title: Opportunities and challenges in the application of large artificial intelligence models in radiology
Abstract:
Influenced by ChatGPT, artificial intelligence (AI) large models have witnessed a global upsurge in large model research and development. As people enjoy the convenience by this AI large model, more and more large models in subdivided fields are gradually being proposed, especially large models in radiology imaging field. This article first introduces the development history of large models, technical details, workflow, working principles of multimodal large models and working principles of video generation large models. Secondly, we summarize the latest research progress of AI large models in radiology education, radiology report generation, applications of unimodal and multimodal radiology. Finally, this paper also summarizes some of the challenges of large AI models in radiology, with the aim of better promoting the rapid revolution in the field of radiography.
Authors:Jianwu Fang, Lei-lei Li, Junfei Zhou, Junbin Xiao, Hongkai Yu, Chen Lv, Jianru Xue, Tat-Seng Chua
Title: Abductive Ego-View Accident Video Understanding for Safe Driving Perception
Abstract:
We present MM-AU, a novel dataset for Multi-Modal Accident video Understanding. MM-AU contains 11,727 in-the-wild ego-view accident videos, each with temporally aligned text descriptions. We annotate over 2.23 million object boxes and 58,650 pairs of video-based accident reasons, covering 58 accident categories. MM-AU supports various accident understanding tasks, particularly multimodal video diffusion to understand accident cause-effect chains for safe driving. With MM-AU, we present an Abductive accident Video understanding framework for Safe Driving perception (AdVersa-SD). AdVersa-SD performs video diffusion via an Object-Centric Video Diffusion (OAVD) method which is driven by an abductive CLIP model. This model involves a contrastive interaction loss to learn the pair co-occurrence of normal, near-accident, accident frames with the corresponding text descriptions, such as accident reasons, prevention advice, and accident categories. OAVD enforces the causal region learning while fixing the content of the original frame background in video generation, to find the dominant cause-effect chain for certain accidents. Extensive experiments verify the abductive ability of AdVersa-SD and the superiority of OAVD against the state-of-the-art diffusion models. Additionally, we provide careful benchmark evaluations for object detection and accident reason answering since AdVersa-SD relies on precise object and accident reason information.
Authors:Bichen Wu, Ching-Yao Chuang, Xiaoyan Wang, Yichen Jia, Kapil Krishnakumar, Tong Xiao, Feng Liang, Licheng Yu, Peter Vajda
Title: Fairy: Fast Parallelized Instruction-Guided Video-to-Video Synthesis
Abstract:
In this paper, we introduce Fairy, a minimalist yet robust adaptation of image-editing diffusion models, enhancing them for video editing applications. Our approach centers on the concept of anchor-based cross-frame attention, a mechanism that implicitly propagates diffusion features across frames, ensuring superior temporal coherence and high-fidelity synthesis. Fairy not only addresses limitations of previous models, including memory and processing speed. It also improves temporal consistency through a unique data augmentation strategy. This strategy renders the model equivariant to affine transformations in both source and target images. Remarkably efficient, Fairy generates 120-frame 512x384 videos (4-second duration at 30 FPS) in just 14 seconds, outpacing prior works by at least 44x. A comprehensive user study, involving 1000 generated samples, confirms that our approach delivers superior quality, decisively outperforming established methods.
Authors:Zhihang Zhong, Yiming Zhang, Wei Wang, Xiao Sun, Yu Qiao, Gurunandan Krishnan, Sizhuo Ma, Jian Wang
Title: Disambiguation for Video Frame Interpolation
Abstract:
Existing video frame interpolation (VFI) methods blindly predict where each object is at a specific timestep t ("time indexing"), which struggles to predict precise object movements. Given two images of a baseball, there are infinitely many possible trajectories: accelerating or decelerating, straight or curved. This often results in blurry frames as the method averages out these possibilities. Instead of forcing the network to learn this complicated time-to-location mapping implicitly, we provide the network with an explicit hint on how far the object has traveled between start and end frames, a novel approach termed "distance indexing". This method offers a clearer learning goal for models, reducing the uncertainty tied to object speeds. Moreover, even with this extra guidance, objects can still be blurry especially when they are equally far from both input frames, due to the directional ambiguity in long-range motion. To solve this, we propose an iterative reference-based estimation strategy that breaks down a long-range prediction into several short-range steps. When integrating our plug-and-play strategies into state-of-the-art learning-based models, they exhibit markedly superior perceptual quality in arbitrary time interpolations, using a uniform distance indexing map in the same format as time indexing without requiring extra computation. Furthermore, we demonstrate that if additional latency is acceptable, a continuous map estimator can be employed to compute a pixel-wise dense distance indexing using multiple nearby frames. Combined with efficient multi-frame refinement, this extension can further disambiguate complex motion, thus enhancing performance both qualitatively and quantitatively. Additionally, the ability to manually specify distance indexing allows for independent temporal manipulation of each object, providing a novel tool for video editing tasks such as re-timing.
Authors:Yutao Chen, Xingning Dong, Tian Gan, Chunluan Zhou, Ming Yang, Qingpei Guo
Title: EVE: Efficient zero-shot text-based Video Editing with Depth Map Guidance and Temporal Consistency Constraints
Abstract:
Motivated by the superior performance of image diffusion models, more and more researchers strive to extend these models to the text-based video editing task. Nevertheless, current video editing tasks mainly suffer from the dilemma between the high fine-tuning cost and the limited generation capacity. Compared with images, we conjecture that videos necessitate more constraints to preserve the temporal consistency during editing. Towards this end, we propose EVE, a robust and efficient zero-shot video editing method. Under the guidance of depth maps and temporal consistency constraints, EVE derives satisfactory video editing results with an affordable computational and time cost. Moreover, recognizing the absence of a publicly available video editing dataset for fair comparisons, we construct a new benchmark ZVE-50 dataset. Through comprehensive experimentation, we validate that EVE could achieve a satisfactory trade-off between performance and efficiency. We will release our dataset and codebase to facilitate future researchers.
Authors:Wenjing Wang, Huan Yang, Zixi Tuo, Huiguo He, Junchen Zhu, Jianlong Fu, Jiaying Liu
Title: Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation
Abstract:
With the explosive popularity of AI-generated content (AIGC), video generation has recently received a lot of attention. Generating videos guided by text instructions poses significant challenges, such as modeling the complex relationship between space and time, and the lack of large-scale text-video paired data. Existing text-video datasets suffer from limitations in both content quality and scale, or they are not open-source, rendering them inaccessible for study and use. For model design, previous approaches extend pretrained text-to-image generation models by adding temporal 1D convolution/attention modules for video generation. However, these approaches overlook the importance of jointly modeling space and time, inevitably leading to temporal distortions and misalignment between texts and videos. In this paper, we propose a novel approach that strengthens the interaction between spatial and temporal perceptions. In particular, we utilize a swapped cross-attention mechanism in 3D windows that alternates the "query" role between spatial and temporal blocks, enabling mutual reinforcement for each other. Moreover, to fully unlock model capabilities for high-quality video generation and promote the development of the field, we curate a large-scale and open-source video dataset called HD-VG-130M. This dataset comprises 130 million text-video pairs from the open-domain, ensuring high-definition, widescreen and watermark-free characters. A smaller-scale yet more meticulously cleaned subset further enhances the data quality, aiding models in achieving superior performance. Experimental quantitative and qualitative results demonstrate the superiority of our approach in terms of per-frame quality, temporal correlation, and text-video alignment, with clear margins.
Authors:Xiaojie Jin, Bowen Zhang, Weibo Gong, Kai Xu, XueQing Deng, Peng Wang, Zhao Zhang, Xiaohui Shen, Jiashi Feng
Title: MV-Adapter: Multimodal Video Transfer Learning for Video Text Retrieval
Abstract:
State-of-the-art video-text retrieval (VTR) methods typically involve fully fine-tuning a pre-trained model (e.g. CLIP) on specific datasets. However, this can result in significant storage costs in practical applications as a separate model per task must be stored. To address this issue, we present our pioneering work that enables parameter-efficient VTR using a pre-trained model, with only a small number of tunable parameters during training. Towards this goal, we propose a new method dubbed Multimodal Video Adapter (MV-Adapter) for efficiently transferring the knowledge in the pre-trained CLIP from image-text to video-text. Specifically, MV-Adapter utilizes bottleneck structures in both video and text branches, along with two novel components. The first is a Temporal Adaptation Module that is incorporated in the video branch to introduce global and local temporal contexts. We also train weights calibrations to adjust to dynamic variations across frames. The second is Cross Modality Tying that generates weights for video/text branches through sharing cross modality factors, for better aligning between modalities. Thanks to above innovations, MV-Adapter can achieve comparable or better performance than standard full fine-tuning with negligible parameters overhead. Notably, MV-Adapter consistently outperforms various competing methods in V2T/T2V tasks with large margins on five widely used VTR benchmarks (MSR-VTT, MSVD, LSMDC, DiDemo, and ActivityNet).
Authors:Xin Gao, Li Hu, Siqi Hu, Mingyang Huang, Chaonan Ji, Dechao Meng, Jinwei Qi, Penchong Qiao, Zhen Shen, Yafei Song, Ke Sun, Linrui Tian, Guangyuan Wang, Qi Wang, Zhongjian Wang, Jiayu Xiao, Sheng Xu, Bang Zhang, Peng Zhang, Xindi Zhang, Zhe Zhang, Jingren Zhou, Lian Zhuo
Title: Wan-S2V: Audio-Driven Cinematic Video Generation
Abstract:
Current state-of-the-art (SOTA) methods for audio-driven character animation demonstrate promising performance for scenarios primarily involving speech and singing. However, they often fall short in more complex film and television productions, which demand sophisticated elements such as nuanced character interactions, realistic body movements, and dynamic camera work. To address this long-standing challenge of achieving film-level character animation, we propose an audio-driven model, which we refere to as Wan-S2V, built upon Wan. Our model achieves significantly enhanced expressiveness and fidelity in cinematic contexts compared to existing approaches. We conducted extensive experiments, benchmarking our method against cutting-edge models such as Hunyuan-Avatar and Omnihuman. The experimental results consistently demonstrate that our approach significantly outperforms these existing solutions. Additionally, we explore the versatility of our method through its applications in long-form video generation and precise video lip-sync editing.
Authors:Fanjiang Ye, Zepeng Zhao, Yi Mu, Jucheng Shen, Renjie Li, Kaijian Wang, Desen Sun, Saurabh Agarwal, Myungjin Lee, Triston Cao, Aditya Akella, Arvind Krishnamurthy, T. S. Eugene Ng, Zhengzhong Tu, Yuke Wang
Title: SuperGen: An Efficient Ultra-high-resolution Video Generation System with Sketching and Tiling
Abstract:
Diffusion models have recently achieved remarkable success in generative tasks (e.g., image and video generation), and the demand for high-quality content (e.g., 2K/4K videos) is rapidly increasing across various domains. However, generating ultra-high-resolution videos on existing standard-resolution (e.g., 720p) platforms remains challenging due to the excessive re-training requirements and prohibitively high computational and memory costs. To this end, we introduce SuperGen, an efficient tile-based framework for ultra-high-resolution video generation. SuperGen features a novel training-free algorithmic innovation with tiling to successfully support a wide range of resolutions without additional training efforts while significantly reducing both memory footprint and computational complexity. Moreover, SuperGen incorporates a tile-tailored, adaptive, region-aware caching strategy that accelerates video generation by exploiting redundancy across denoising steps and spatial regions. SuperGen also integrates cache-guided, communication-minimized tile parallelism for enhanced throughput and minimized latency. Evaluations demonstrate that SuperGen harvests the maximum performance gains while achieving high output quality across various benchmarks.
Authors:Zhiheng Liu, Xueqing Deng, Shoufa Chen, Angtian Wang, Qiushan Guo, Mingfei Han, Zeyue Xue, Mengzhao Chen, Ping Luo, Linjie Yang
Title: WorldWeaver: Generating Long-Horizon Video Worlds via Rich Perception
Abstract:
Generative video modeling has made significant strides, yet ensuring structural and temporal consistency over long sequences remains a challenge. Current methods predominantly rely on RGB signals, leading to accumulated errors in object structure and motion over extended durations. To address these issues, we introduce WorldWeaver, a robust framework for long video generation that jointly models RGB frames and perceptual conditions within a unified long-horizon modeling scheme. Our training framework offers three key advantages. First, by jointly predicting perceptual conditions and color information from a unified representation, it significantly enhances temporal consistency and motion dynamics. Second, by leveraging depth cues, which we observe to be more resistant to drift than RGB, we construct a memory bank that preserves clearer contextual information, improving quality in long-horizon video generation. Third, we employ segmented noise scheduling for training prediction groups, which further mitigates drift and reduces computational cost. Extensive experiments on both diffusion- and rectified flow-based models demonstrate the effectiveness of WorldWeaver in reducing temporal drift and improving the fidelity of generated videos.
Authors:Riccardo Corvi, Davide Cozzolino, Ekta Prashnani, Shalini De Mello, Koki Nagano, Luisa Verdoliva
Title: Seeing What Matters: Generalizable AI-generated Video Detection with Forensic-Oriented Augmentation
Abstract:
Synthetic video generation is progressing very rapidly. The latest models can produce very realistic high-resolution videos that are virtually indistinguishable from real ones. Although several video forensic detectors have been recently proposed, they often exhibit poor generalization, which limits their applicability in a real-world scenario. Our key insight to overcome this issue is to guide the detector towards seeing what really matters. In fact, a well-designed forensic classifier should focus on identifying intrinsic low-level artifacts introduced by a generative architecture rather than relying on high-level semantic flaws that characterize a specific model. In this work, first, we study different generative architectures, searching and identifying discriminative features that are unbiased, robust to impairments, and shared across models. Then, we introduce a novel forensic-oriented data augmentation strategy based on the wavelet decomposition and replace specific frequency-related bands to drive the model to exploit more relevant forensic cues. Our novel training paradigm improves the generalizability of AI-generated video detectors, without the need for complex algorithms and large datasets that include multiple synthetic generators. To evaluate our approach, we train the detector using data from a single generative model and test it against videos produced by a wide range of other models. Despite its simplicity, our method achieves a significant accuracy improvement over state-of-the-art detectors and obtains excellent results even on very recent generative models, such as NOVA and FLUX. Code and data will be made publicly available.
Authors:Ge Wang, Songlin Fan, Hangxu Liu, Quanjian Song, Hewei Wang, Jinfeng Xu
Title: Consistent Video Editing as Flow-Driven Image-to-Video Generation
Abstract:
With the prosper of video diffusion models, down-stream applications like video editing have been significantly promoted without consuming much computational cost. One particular challenge in this task lies at the motion transfer process from the source video to the edited one, where it requires the consideration of the shape deformation in between, meanwhile maintaining the temporal consistency in the generated video sequence. However, existing methods fail to model complicated motion patterns for video editing, and are fundamentally limited to object replacement, where tasks with non-rigid object motions like multi-object and portrait editing are largely neglected. In this paper, we observe that optical flows offer a promising alternative in complex motion modeling, and present FlowV2V to re-investigate video editing as a task of flow-driven Image-to-Video (I2V) generation. Specifically, FlowV2V decomposes the entire pipeline into first-frame editing and conditional I2V generation, and simulates pseudo flow sequence that aligns with the deformed shape, thus ensuring the consistency during editing. Experimental results on DAVIS-EDIT with improvements of 13.67% and 50.66% on DOVER and warping error illustrate the superior temporal consistency and sample quality of FlowV2V compared to existing state-of-the-art ones. Furthermore, we conduct comprehensive ablation studies to analyze the internal functionalities of the first-frame paradigm and flow alignment in the proposed method.
Authors:Sangwon Jang, Taekyung Ki, Jaehyeong Jo, Jaehong Yoon, Soo Ye Kim, Zhe Lin, Sung Ju Hwang
Title: Frame Guidance: Training-Free Guidance for Frame-Level Control in Video Diffusion Models
Abstract:
Advancements in diffusion models have significantly improved video quality, directing attention to fine-grained controllability. However, many existing methods depend on fine-tuning large-scale video models for specific tasks, which becomes increasingly impractical as model sizes continue to grow. In this work, we present Frame Guidance, a training-free guidance for controllable video generation based on frame-level signals, such as keyframes, style reference images, sketches, or depth maps. For practical training-free guidance, we propose a simple latent processing method that dramatically reduces memory usage, and apply a novel latent optimization strategy designed for globally coherent video generation. Frame Guidance enables effective control across diverse tasks, including keyframe guidance, stylization, and looping, without any training, compatible with any video models. Experimental results show that Frame Guidance can produce high-quality controlled videos for a wide range of tasks and input signals.
Authors:Aimon Rahman, Jiang Liu, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Yusheng Su, Vishal M. Patel, Zicheng Liu, Emad Barsoum
Title: MOVi: Training-free Text-conditioned Multi-Object Video Generation
Abstract:
Recent advances in diffusion-based text-to-video (T2V) models have demonstrated remarkable progress, but these models still face challenges in generating videos with multiple objects. Most models struggle with accurately capturing complex object interactions, often treating some objects as static background elements and limiting their movement. In addition, they often fail to generate multiple distinct objects as specified in the prompt, resulting in incorrect generations or mixed features across objects. In this paper, we present a novel training-free approach for multi-object video generation that leverages the open world knowledge of diffusion models and large language models (LLMs). We use an LLM as the ``director'' of object trajectories, and apply the trajectories through noise re-initialization to achieve precise control of realistic movements. We further refine the generation process by manipulating the attention mechanism to better capture object-specific features and motion patterns, and prevent cross-object feature interference. Extensive experiments validate the effectiveness of our training free approach in significantly enhancing the multi-object generation capabilities of existing video diffusion models, resulting in 42% absolute improvement in motion dynamics and object generation accuracy, while also maintaining high fidelity and motion smoothness.
Authors:Bolin Lai, Sangmin Lee, Xu Cao, Xiang Li, James M. Rehg
Title: Incorporating Flexible Image Conditioning into Text-to-Video Diffusion Models without Training
Abstract:
Text-image-to-video (TI2V) generation is a critical problem for controllable video generation using both semantic and visual conditions. Most existing methods typically add visual conditions to text-to-video (T2V) foundation models by finetuning, which is costly in resources and only limited to a few predefined conditioning settings. To tackle this issue, we introduce a unified formulation for TI2V generation with flexible visual conditioning. Furthermore, we propose an innovative training-free approach, dubbed FlexTI2V, that can condition T2V foundation models on an arbitrary amount of images at arbitrary positions. Specifically, we firstly invert the condition images to noisy representation in a latent space. Then, in the denoising process of T2V models, our method uses a novel random patch swapping strategy to incorporate visual features into video representations through local image patches. To balance creativity and fidelity, we use a dynamic control mechanism to adjust the strength of visual conditioning to each video frame. Extensive experiments validate that our method surpasses previous training-free image conditioning methods by a notable margin. We also show more insights of our method by detailed ablation study and analysis.
Authors:Yaxuan Li, Yichen Zhu, Junjie Wen, Chaomin Shen, Yi Xu
Title: WorldEval: World Model as Real-World Robot Policies Evaluator
Abstract:
The field of robotics has made significant strides toward developing generalist robot manipulation policies. However, evaluating these policies in real-world scenarios remains time-consuming and challenging, particularly as the number of tasks scales and environmental conditions change. In this work, we demonstrate that world models can serve as a scalable, reproducible, and reliable proxy for real-world robot policy evaluation. A key challenge is generating accurate policy videos from world models that faithfully reflect the robot actions. We observe that directly inputting robot actions or using high-dimensional encoding methods often fails to generate action-following videos. To address this, we propose Policy2Vec, a simple yet effective approach to turn a video generation model into a world simulator that follows latent action to generate the robot video. We then introduce WorldEval, an automated pipeline designed to evaluate real-world robot policies entirely online. WorldEval effectively ranks various robot policies and individual checkpoints within a single policy, and functions as a safety detector to prevent dangerous actions by newly developed robot models. Through comprehensive paired evaluations of manipulation policies in real-world environments, we demonstrate a strong correlation between policy performance in WorldEval and real-world scenarios. Furthermore, our method significantly outperforms popular methods such as real-to-sim approach.
Authors:Pooja Guhan, Divya Kothandaraman, Tsung-Wei Huang, Guan-Ming Su, Dinesh Manocha
Title: CamMimic: Zero-Shot Image To Camera Motion Personalized Video Generation Using Diffusion Models
Abstract:
We introduce CamMimic, an innovative algorithm tailored for dynamic video editing needs. It is designed to seamlessly transfer the camera motion observed in a given reference video onto any scene of the user's choice in a zero-shot manner without requiring any additional data. Our algorithm achieves this using a two-phase strategy by leveraging a text-to-video diffusion model. In the first phase, we develop a multi-concept learning method using a combination of LoRA layers and an orthogonality loss to capture and understand the underlying spatial-temporal characteristics of the reference video as well as the spatial features of the user's desired scene. The second phase proposes a unique homography-based refinement strategy to enhance the temporal and spatial alignment of the generated video. We demonstrate the efficacy of our method through experiments conducted on a dataset containing combinations of diverse scenes and reference videos containing a variety of camera motions. In the absence of an established metric for assessing camera motion transfer between unrelated scenes, we propose CameraScore, a novel metric that utilizes homography representations to measure camera motion similarity between the reference and generated videos. Extensive quantitative and qualitative evaluations demonstrate that our approach generates high-quality, motion-enhanced videos. Additionally, a user study reveals that 70.31% of participants preferred our method for scene preservation, while 90.45% favored it for motion transfer. We hope this work lays the foundation for future advancements in camera motion transfer across different scenes.
Authors:Cong Wei, Bo Sun, Haoyu Ma, Ji Hou, Felix Juefei-Xu, Zecheng He, Xiaoliang Dai, Luxin Zhang, Kunpeng Li, Tingbo Hou, Animesh Sinha, Peter Vajda, Wenhu Chen
Title: MoCha: Towards Movie-Grade Talking Character Synthesis
Abstract:
Recent advancements in video generation have achieved impressive motion realism, yet they often overlook character-driven storytelling, a crucial task for automated film, animation generation. We introduce Talking Characters, a more realistic task to generate talking character animations directly from speech and text. Unlike talking head, Talking Characters aims at generating the full portrait of one or more characters beyond the facial region. In this paper, we propose MoCha, the first of its kind to generate talking characters. To ensure precise synchronization between video and speech, we propose a speech-video window attention mechanism that effectively aligns speech and video tokens. To address the scarcity of large-scale speech-labeled video datasets, we introduce a joint training strategy that leverages both speech-labeled and text-labeled video data, significantly improving generalization across diverse character actions. We also design structured prompt templates with character tags, enabling, for the first time, multi-character conversation with turn-based dialogue-allowing AI-generated characters to engage in context-aware conversations with cinematic coherence. Extensive qualitative and quantitative evaluations, including human preference studies and benchmark comparisons, demonstrate that MoCha sets a new standard for AI-generated cinematic storytelling, achieving superior realism, expressiveness, controllability and generalization.
Authors:Tianhao Qi, Jianlong Yuan, Wanquan Feng, Shancheng Fang, Jiawei Liu, SiYu Zhou, Qian He, Hongtao Xie, Yongdong Zhang
Title: Mask$^2$DiT: Dual Mask-based Diffusion Transformer for Multi-Scene Long Video Generation
Abstract:
Sora has unveiled the immense potential of the Diffusion Transformer (DiT) architecture in single-scene video generation. However, the more challenging task of multi-scene video generation, which offers broader applications, remains relatively underexplored. To bridge this gap, we propose Mask$^2$DiT, a novel approach that establishes fine-grained, one-to-one alignment between video segments and their corresponding text annotations. Specifically, we introduce a symmetric binary mask at each attention layer within the DiT architecture, ensuring that each text annotation applies exclusively to its respective video segment while preserving temporal coherence across visual tokens. This attention mechanism enables precise segment-level textual-to-visual alignment, allowing the DiT architecture to effectively handle video generation tasks with a fixed number of scenes. To further equip the DiT architecture with the ability to generate additional scenes based on existing ones, we incorporate a segment-level conditional mask, which conditions each newly generated segment on the preceding video segments, thereby enabling auto-regressive scene extension. Both qualitative and quantitative experiments confirm that Mask$^2$DiT excels in maintaining visual consistency across segments while ensuring semantic alignment between each segment and its corresponding text description. Our project page is https://tianhao-qi.github.io/Mask2DiTProject.
Authors:Qiyuan Zhang, Chenyu Wu, Wenzhang Sun, Huaize Liu, Donglin Di, Wei Chen, Changqing Zou
Title: A Self-supervised Motion Representation for Portrait Video Generation
Abstract:
Recent advancements in portrait video generation have been noteworthy. However, existing methods rely heavily on human priors and pre-trained generative models, Motion representations based on human priors may introduce unrealistic motion, while methods relying on pre-trained generative models often suffer from inefficient inference. To address these challenges, we propose Semantic Latent Motion (SeMo), a compact and expressive motion representation. Leveraging this representation, our approach achieve both high-quality visual results and efficient inference. SeMo follows an effective three-step framework: Abstraction, Reasoning, and Generation. First, in the Abstraction step, we use a carefully designed Masked Motion Encoder, which leverages a self-supervised learning paradigm to compress the subject's motion state into a compact and abstract latent motion (1D token). Second, in the Reasoning step, we efficiently generate motion sequences based on the driving audio signal. Finally, in the Generation step, the motion dynamics serve as conditional information to guide the motion decoder in synthesizing realistic transitions from reference frame to target video. Thanks to the compact and expressive nature of Semantic Latent Motion, our method achieves efficient motion representation and high-quality video generation. User studies demonstrate that our approach surpasses state-of-the-art models with an 81% win rate in realism. Extensive experiments further highlight its strong compression capability, reconstruction quality, and generative potential.
Authors:Xin Yu, Tianyu Wang, Soo Ye Kim, Paul Guerrero, Xi Chen, Qing Liu, Zhe Lin, Xiaojuan Qi
Title: ObjectMover: Generative Object Movement with Video Prior
Abstract:
Simple as it seems, moving an object to another location within an image is, in fact, a challenging image-editing task that requires re-harmonizing the lighting, adjusting the pose based on perspective, accurately filling occluded regions, and ensuring coherent synchronization of shadows and reflections while maintaining the object identity. In this paper, we present ObjectMover, a generative model that can perform object movement in highly challenging scenes. Our key insight is that we model this task as a sequence-to-sequence problem and fine-tune a video generation model to leverage its knowledge of consistent object generation across video frames. We show that with this approach, our model is able to adjust to complex real-world scenarios, handling extreme lighting harmonization and object effect movement. As large-scale data for object movement are unavailable, we construct a data generation pipeline using a modern game engine to synthesize high-quality data pairs. We further propose a multi-task learning strategy that enables training on real-world video data to improve the model generalization. Through extensive experiments, we demonstrate that ObjectMover achieves outstanding results and adapts well to real-world scenarios.
Authors:Yang Cao, Zhao Song, Chiwun Yang
Title: Video Latent Flow Matching: Optimal Polynomial Projections for Video Interpolation and Extrapolation
Abstract:
This paper considers an efficient video modeling process called Video Latent Flow Matching (VLFM). Unlike prior works, which randomly sampled latent patches for video generation, our method relies on current strong pre-trained image generation models, modeling a certain caption-guided flow of latent patches that can be decoded to time-dependent video frames. We first speculate multiple images of a video are differentiable with respect to time in some latent space. Based on this conjecture, we introduce the HiPPO framework to approximate the optimal projection for polynomials to generate the probability path. Our approach gains the theoretical benefits of the bounded universal approximation error and timescale robustness. Moreover, VLFM processes the interpolation and extrapolation abilities for video generation with arbitrary frame rates. We conduct experiments on several text-to-video datasets to showcase the effectiveness of our method.
Authors:Philippe Hansen-Estruch, David Yan, Ching-Yao Chung, Orr Zohar, Jialiang Wang, Tingbo Hou, Tao Xu, Sriram Vishwanath, Peter Vajda, Xinlei Chen
Title: Learnings from Scaling Visual Tokenizers for Reconstruction and Generation
Abstract:
Visual tokenization via auto-encoding empowers state-of-the-art image and video generative models by compressing pixels into a latent space. Although scaling Transformer-based generators has been central to recent advances, the tokenizer component itself is rarely scaled, leaving open questions about how auto-encoder design choices influence both its objective of reconstruction and downstream generative performance. Our work aims to conduct an exploration of scaling in auto-encoders to fill in this blank. To facilitate this exploration, we replace the typical convolutional backbone with an enhanced Vision Transformer architecture for Tokenization (ViTok). We train ViTok on large-scale image and video datasets far exceeding ImageNet-1K, removing data constraints on tokenizer scaling. We first study how scaling the auto-encoder bottleneck affects both reconstruction and generation -- and find that while it is highly correlated with reconstruction, its relationship with generation is more complex. We next explored the effect of separately scaling the auto-encoders' encoder and decoder on reconstruction and generation performance. Crucially, we find that scaling the encoder yields minimal gains for either reconstruction or generation, while scaling the decoder boosts reconstruction but the benefits for generation are mixed. Building on our exploration, we design ViTok as a lightweight auto-encoder that achieves competitive performance with state-of-the-art auto-encoders on ImageNet-1K and COCO reconstruction tasks (256p and 512p) while outperforming existing auto-encoders on 16-frame 128p video reconstruction for UCF-101, all with 2-5x fewer FLOPs. When integrated with Diffusion Transformers, ViTok demonstrates competitive performance on image generation for ImageNet-1K and sets new state-of-the-art benchmarks for class-conditional video generation on UCF-101.
Authors:Maomao Li, Lijian Lin, Yunfei Liu, Ye Zhu, Yu Li
Title: Qffusion: Controllable Portrait Video Editing via Quadrant-Grid Attention Learning
Abstract:
This paper presents Qffusion, a dual-frame-guided framework for portrait video editing. Specifically, we consider a design principle of ``animation for editing'', and train Qffusion as a general animation framework from two still reference images while we can use it for portrait video editing easily by applying modified start and end frames as references during inference. Leveraging the powerful generative power of Stable Diffusion, we propose a Quadrant-grid Arrangement (QGA) scheme for latent re-arrangement, which arranges the latent codes of two reference images and that of four facial conditions into a four-grid fashion, separately. Then, we fuse features of these two modalities and use self-attention for both appearance and temporal learning, where representations at different times are jointly modeled under QGA. Our Qffusion can achieve stable video editing without additional networks or complex training stages, where only the input format of Stable Diffusion is modified. Further, we propose a Quadrant-grid Propagation (QGP) inference strategy, which enjoys a unique advantage on stable arbitrary-length video generation by processing reference and condition frames recursively. Through extensive experiments, Qffusion consistently outperforms state-of-the-art techniques on portrait video editing. Project page: https://qffusion.github.io/page/.
Authors:Rick Akkerman, Haiwen Feng, Michael J. Black, Dimitrios Tzionas, Victoria Fernández Abrevaya
Title: InterDyn: Controllable Interactive Dynamics with Video Diffusion Models
Abstract:
Predicting the dynamics of interacting objects is essential for both humans and intelligent systems. However, existing approaches are limited to simplified, toy settings and lack generalizability to complex, real-world environments. Recent advances in generative models have enabled the prediction of state transitions based on interventions, but focus on generating a single future state which neglects the continuous dynamics resulting from the interaction. To address this gap, we propose InterDyn, a novel framework that generates videos of interactive dynamics given an initial frame and a control signal encoding the motion of a driving object or actor. Our key insight is that large video generation models can act as both neural renderers and implicit physics ``simulators'', having learned interactive dynamics from large-scale video data. To effectively harness this capability, we introduce an interactive control mechanism that conditions the video generation process on the motion of the driving entity. Qualitative results demonstrate that InterDyn generates plausible, temporally consistent videos of complex object interactions while generalizing to unseen objects. Quantitative evaluations show that InterDyn outperforms baselines that focus on static state transitions. This work highlights the potential of leveraging video generative models as implicit physics engines. Project page: https://interdyn.is.tue.mpg.de/
Authors:Abul Ehtesham, Saket Kumar, Aditi Singh, Tala Talaei Khoei
Title: Movie Gen: SWOT Analysis of Meta's Generative AI Foundation Model for Transforming Media Generation, Advertising, and Entertainment Industries
Abstract:
Generative AI is reshaping the media landscape, enabling unprecedented capabilities in video creation, personalization, and scalability. This paper presents a comprehensive SWOT analysis of Metas Movie Gen, a cutting-edge generative AI foundation model designed to produce 1080p HD videos with synchronized audio from simple text prompts. We explore its strengths, including high-resolution video generation, precise editing, and seamless audio integration, which make it a transformative tool across industries such as filmmaking, advertising, and education. However, the analysis also addresses limitations, such as constraints on video length and potential biases in generated content, which pose challenges for broader adoption. In addition, we examine the evolving regulatory and ethical considerations surrounding generative AI, focusing on issues like content authenticity, cultural representation, and responsible use. Through comparative insights with leading models like DALL-E and Google Imagen, this paper highlights Movie Gens unique features, such as video personalization and multimodal synthesis, while identifying opportunities for innovation and areas requiring further research. Our findings provide actionable insights for stakeholders, emphasizing both the opportunities and challenges of deploying generative AI in media production. This work aims to guide future advancements in generative AI, ensuring scalability, quality, and ethical integrity in this rapidly evolving field.
Authors:Hiroki Furuta, Heiga Zen, Dale Schuurmans, Aleksandra Faust, Yutaka Matsuo, Percy Liang, Sherry Yang
Title: Improving Dynamic Object Interactions in Text-to-Video Generation with AI Feedback
Abstract:
Large text-to-video models hold immense potential for a wide range of downstream applications. However, these models struggle to accurately depict dynamic object interactions, often resulting in unrealistic movements and frequent violations of real-world physics. One solution inspired by large language models is to align generated outputs with desired outcomes using external feedback. This enables the model to refine its responses autonomously, eliminating extensive manual data collection. In this work, we investigate the use of feedback to enhance the object dynamics in text-to-video models. We aim to answer a critical question: what types of feedback, paired with which specific self-improvement algorithms, can most effectively improve text-video alignment and realistic object interactions? We begin by deriving a unified probabilistic objective for offline RL finetuning of text-to-video models. This perspective highlights how design elements in existing algorithms like KL regularization and policy projection emerge as specific choices within a unified framework. We then use derived methods to optimize a set of text-video alignment metrics (e.g., CLIP scores, optical flow), but notice that they often fail to align with human perceptions of generation quality. To address this limitation, we propose leveraging vision-language models to provide more nuanced feedback specifically tailored to object dynamics in videos. Our experiments demonstrate that our method can effectively optimize a wide variety of rewards, with binary AI feedback driving the most significant improvements in video quality for dynamic interactions, as confirmed by both AI and human evaluations. Notably, we observe substantial gains when using reward signals derived from AI feedback, particularly in scenarios involving complex interactions between multiple objects and realistic depictions of objects falling.
Authors:Rong-Cheng Tu, Wenhao Sun, Zhao Jin, Jingyi Liao, Jiaxing Huang, Dacheng Tao
Title: SPAgent: Adaptive Task Decomposition and Model Selection for General Video Generation and Editing
Abstract:
While open-source video generation and editing models have made significant progress, individual models are typically limited to specific tasks, failing to meet the diverse needs of users. Effectively coordinating these models can unlock a wide range of video generation and editing capabilities. However, manual coordination is complex and time-consuming, requiring users to deeply understand task requirements and possess comprehensive knowledge of each model's performance, applicability, and limitations, thereby increasing the barrier to entry. To address these challenges, we propose a novel video generation and editing system powered by our Semantic Planning Agent (SPAgent). SPAgent bridges the gap between diverse user intents and the effective utilization of existing generative models, enhancing the adaptability, efficiency, and overall quality of video generation and editing. Specifically, the SPAgent assembles a tool library integrating state-of-the-art open-source image and video generation and editing models as tools. After fine-tuning on our manually annotated dataset, SPAgent can automatically coordinate the tools for video generation and editing, through our novelly designed three-step framework: (1) decoupled intent recognition, (2) principle-guided route planning, and (3) capability-based execution model selection. Additionally, we enhance the SPAgent's video quality evaluation capability, enabling it to autonomously assess and incorporate new video generation and editing models into its tool library without human intervention. Experimental results demonstrate that the SPAgent effectively coordinates models to generate or edit videos, highlighting its versatility and adaptability across various video tasks.
Authors:Qinglong Cao, Ding Wang, Xirui Li, Yuntian Chen, Chao Ma, Xiaokang Yang
Title: Teaching Video Diffusion Model with Latent Physical Phenomenon Knowledge
Abstract:
Video diffusion models have exhibited tremendous progress in various video generation tasks. However, existing models struggle to capture latent physical knowledge, failing to infer physical phenomena that are challenging to articulate with natural language. Generating videos following the fundamental physical laws is still an opening challenge. To address this challenge, we propose a novel method to teach video diffusion models with latent physical phenomenon knowledge, enabling the accurate generation of physically informed phenomena. Specifically, we first pretrain Masked Autoencoders (MAE) to reconstruct the physical phenomena, resulting in output embeddings that encapsulate latent physical phenomenon knowledge. Leveraging these embeddings, we could generate the pseudo-language prompt features based on the aligned spatial relationships between CLIP vision and language encoders. Particularly, given that diffusion models typically use CLIP's language encoder for text prompt embeddings, our approach integrates the CLIP visual features informed by latent physical knowledge into a quaternion hidden space. This enables the modeling of spatial relationships to produce physical knowledge-informed pseudo-language prompts. By incorporating these prompt features and fine-tuning the video diffusion model in a parameter-efficient manner, the physical knowledge-informed videos are successfully generated. We validate our method extensively through both numerical simulations and real-world observations of physical phenomena, demonstrating its remarkable performance across diverse scenarios.
Authors:Tongkai Shi, Lianyu Hu, Fanhua Shang, Jichao Feng, Peidong Liu, Wei Feng
Title: Pose-Guided Fine-Grained Sign Language Video Generation
Abstract:
Sign language videos are an important medium for spreading and learning sign language. However, most existing human image synthesis methods produce sign language images with details that are distorted, blurred, or structurally incorrect. They also produce sign language video frames with poor temporal consistency, with anomalies such as flickering and abrupt detail changes between the previous and next frames. To address these limitations, we propose a novel Pose-Guided Motion Model (PGMM) for generating fine-grained and motion-consistent sign language videos. Firstly, we propose a new Coarse Motion Module (CMM), which completes the deformation of features by optical flow warping, thus transfering the motion of coarse-grained structures without changing the appearance; Secondly, we propose a new Pose Fusion Module (PFM), which guides the modal fusion of RGB and pose features, thus completing the fine-grained generation. Finally, we design a new metric, Temporal Consistency Difference (TCD) to quantitatively assess the degree of temporal consistency of a video by comparing the difference between the frames of the reconstructed video and the previous and next frames of the target video. Extensive qualitative and quantitative experiments show that our method outperforms state-of-the-art methods in most benchmark tests, with visible improvements in details and temporal consistency.
Authors:Jiachen Zhou, Mingsi Wang, Tianlin Li, Guozhu Meng, Kai Chen
Title: Dormant: Defending against Pose-driven Human Image Animation
Abstract:
Pose-driven human image animation has achieved tremendous progress, enabling the generation of vivid and realistic human videos from just one single photo. However, it conversely exacerbates the risk of image misuse, as attackers may use one available image to create videos involving politics, violence, and other illegal content. To counter this threat, we propose Dormant, a novel protection approach tailored to defend against pose-driven human image animation techniques. Dormant applies protective perturbation to one human image, preserving the visual similarity to the original but resulting in poor-quality video generation. The protective perturbation is optimized to induce misextraction of appearance features from the image and create incoherence among the generated video frames. Our extensive evaluation across 8 animation methods and 4 datasets demonstrates the superiority of Dormant over 6 baseline protection methods, leading to misaligned identities, visual distortions, noticeable artifacts, and inconsistent frames in the generated videos. Moreover, Dormant shows effectiveness on 6 real-world commercial services, even with fully black-box access.
Authors:Xiaochuang Han, Marjan Ghazvininejad, Pang Wei Koh, Yulia Tsvetkov
Title: JPEG-LM: LLMs as Image Generators with Canonical Codec Representations
Abstract:
Recent work in image and video generation has been adopting the autoregressive LLM architecture due to its generality and potentially easy integration into multi-modal systems. The crux of applying autoregressive training in language generation to visual generation is discretization -- representing continuous data like images and videos as discrete tokens. Common methods of discretizing images and videos include modeling raw pixel values, which are prohibitively lengthy, or vector quantization, which requires convoluted pre-hoc training. In this work, we propose to directly model images and videos as compressed files saved on computers via canonical codecs (e.g., JPEG, AVC/H.264). Using the default Llama architecture without any vision-specific modifications, we pretrain JPEG-LM from scratch to generate images (and AVC-LM to generate videos as a proof of concept), by directly outputting compressed file bytes in JPEG and AVC formats. Evaluation of image generation shows that this simple and straightforward approach is more effective than pixel-based modeling and sophisticated vector quantization baselines (on which our method yields a 31% reduction in FID). Our analysis shows that JPEG-LM has an especial advantage over vector quantization models in generating long-tail visual elements. Overall, we show that using canonical codec representations can help lower the barriers between language generation and visual generation, facilitating future research on multi-modal language/image/video LLMs.
Authors:Xiaokai Chen, Xuan Liu, Donglin Di, Yongjia Ma, Wei Chen, Tonghua Su
Title: Real Face Video Animation Platform
Abstract:
In recent years, facial video generation models have gained popularity. However, these models often lack expressive power when dealing with exaggerated anime-style faces due to the absence of high-quality anime-style face training sets. We propose a facial animation platform that enables real-time conversion from real human faces to cartoon-style faces, supporting multiple models. Built on the Gradio framework, our platform ensures excellent interactivity and user-friendliness. Users can input a real face video or image and select their desired cartoon style. The system will then automatically analyze facial features, execute necessary preprocessing, and invoke appropriate models to generate expressive anime-style faces. We employ a variety of models within our system to process the HDTF dataset, thereby creating an animated facial video dataset.
Authors:Zhensong Xu, Jiangtao Yao, Chengjing Wu, Ting Liu, Luoqi Liu
Title: 2nd Place Solution for MOSE Track in CVPR 2024 PVUW workshop: Complex Video Object Segmentation
Abstract:
Complex video object segmentation serves as a fundamental task for a wide range of downstream applications such as video editing and automatic data annotation. Here we present the 2nd place solution in the MOSE track of PVUW 2024. To mitigate problems caused by tiny objects, similar objects and fast movements in MOSE. We use instance segmentation to generate extra pretraining data from the valid and test set of MOSE. The segmented instances are combined with objects extracted from COCO to augment the training data and enhance semantic representation of the baseline model. Besides, motion blur is added during training to increase robustness against image blur induced by motion. Finally, we apply test time augmentation (TTA) and memory strategy to the inference stage. Our method ranked 2nd in the MOSE track of PVUW 2024, with a $\mathcal{J}$ of 0.8007, a $\mathcal{F}$ of 0.8683 and a $\mathcal{J}$\&$\mathcal{F}$ of 0.8345.
Authors:Zihui Xue, Mi Luo, Changan Chen, Kristen Grauman
Title: HOI-Swap: Swapping Objects in Videos with Hand-Object Interaction Awareness
Abstract:
We study the problem of precisely swapping objects in videos, with a focus on those interacted with by hands, given one user-provided reference object image. Despite the great advancements that diffusion models have made in video editing recently, these models often fall short in handling the intricacies of hand-object interactions (HOI), failing to produce realistic edits -- especially when object swapping results in object shape or functionality changes. To bridge this gap, we present HOI-Swap, a novel diffusion-based video editing framework trained in a self-supervised manner. Designed in two stages, the first stage focuses on object swapping in a single frame with HOI awareness; the model learns to adjust the interaction patterns, such as the hand grasp, based on changes in the object's properties. The second stage extends the single-frame edit across the entire sequence; we achieve controllable motion alignment with the original video by: (1) warping a new sequence from the stage-I edited frame based on sampled motion points and (2) conditioning video generation on the warped sequence. Comprehensive qualitative and quantitative evaluations demonstrate that HOI-Swap significantly outperforms existing methods, delivering high-quality video edits with realistic HOIs.
Authors:Dongfu Jiang, Max Ku, Tianle Li, Yuansheng Ni, Shizhuo Sun, Rongqi Fan, Wenhu Chen
Title: GenAI Arena: An Open Evaluation Platform for Generative Models
Abstract:
Generative AI has made remarkable strides to revolutionize fields such as image and video generation. These advancements are driven by innovative algorithms, architecture, and data. However, the rapid proliferation of generative models has highlighted a critical gap: the absence of trustworthy evaluation metrics. Current automatic assessments such as FID, CLIP, FVD, etc often fail to capture the nuanced quality and user satisfaction associated with generative outputs. This paper proposes an open platform GenAI-Arena to evaluate different image and video generative models, where users can actively participate in evaluating these models. By leveraging collective user feedback and votes, GenAI-Arena aims to provide a more democratic and accurate measure of model performance. It covers three tasks of text-to-image generation, text-to-video generation, and image editing respectively. Currently, we cover a total of 35 open-source generative models. GenAI-Arena has been operating for seven months, amassing over 9000 votes from the community. We describe our platform, analyze the data, and explain the statistical methods for ranking the models. To further promote the research in building model-based evaluation metrics, we release a cleaned version of our preference data for the three tasks, namely GenAI-Bench. We prompt the existing multi-modal models like Gemini, and GPT-4o to mimic human voting. We compute the accuracy by comparing the model voting with the human voting to understand their judging abilities. Our results show existing multimodal models are still lagging in assessing the generated visual content, even the best model GPT-4o only achieves an average accuracy of 49.19 across the three generative tasks. Open-source MLLMs perform even worse due to the lack of instruction-following and reasoning ability in complex vision scenarios.
Authors:Yuanfeng Xu, Yuhao Chen, Zhongzhan Huang, Zijian He, Guangrun Wang, Philip Torr, Liang Lin
Title: AnimateZoo: Zero-shot Video Generation of Cross-Species Animation via Subject Alignment
Abstract:
Recent video editing advancements rely on accurate pose sequences to animate subjects. However, these efforts are not suitable for cross-species animation due to pose misalignment between species (for example, the poses of a cat differs greatly from that of a pig due to differences in body structure). In this paper, we present AnimateZoo, a zero-shot diffusion-based video generator to address this challenging cross-species animation issue, aiming to accurately produce animal animations while preserving the background. The key technique used in our AnimateZoo is subject alignment, which includes two steps. First, we improve appearance feature extraction by integrating a Laplacian detail booster and a prompt-tuning identity extractor. These components are specifically designed to capture essential appearance information, including identity and fine details. Second, we align shape features and address conflicts from differing subjects by introducing a scale-information remover. This ensures accurate cross-species animation. Moreover, we introduce two high-quality animal video datasets featuring a wide variety of species. Trained on these extensive datasets, our model is capable of generating videos characterized by accurate movements, consistent appearance, and high-fidelity frames, without the need for the pre-inference fine-tuning that prior arts required. Extensive experiments showcase the outstanding performance of our method in cross-species action following tasks, demonstrating exceptional shape adaptation capability. The project page is available at https://justinxu0.github.io/AnimateZoo/.
Authors:Zuoyue Li, Zhenqiang Li, Zhaopeng Cui, Marc Pollefeys, Martin R. Oswald
Title: Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion
Abstract:
Directly generating scenes from satellite imagery offers exciting possibilities for integration into applications like games and map services. However, challenges arise from significant view changes and scene scale. Previous efforts mainly focused on image or video generation, lacking exploration into the adaptability of scene generation for arbitrary views. Existing 3D generation works either operate at the object level or are difficult to utilize the geometry obtained from satellite imagery. To overcome these limitations, we propose a novel architecture for direct 3D scene generation by introducing diffusion models into 3D sparse representations and combining them with neural rendering techniques. Specifically, our approach generates texture colors at the point level for a given geometry using a 3D diffusion model first, which is then transformed into a scene representation in a feed-forward manner. The representation can be utilized to render arbitrary views which would excel in both single-frame quality and inter-frame consistency. Experiments in two city-scale datasets show that our model demonstrates proficiency in generating photo-realistic street-view image sequences and cross-view urban scenes from satellite imagery.
Authors:Xirui Li, Chao Ma, Xiaokang Yang, Ming-Hsuan Yang
Title: VidToMe: Video Token Merging for Zero-Shot Video Editing
Abstract:
Diffusion models have made significant advances in generating high-quality images, but their application to video generation has remained challenging due to the complexity of temporal motion. Zero-shot video editing offers a solution by utilizing pre-trained image diffusion models to translate source videos into new ones. Nevertheless, existing methods struggle to maintain strict temporal consistency and efficient memory consumption. In this work, we propose a novel approach to enhance temporal consistency in generated videos by merging self-attention tokens across frames. By aligning and compressing temporally redundant tokens across frames, our method improves temporal coherence and reduces memory consumption in self-attention computations. The merging strategy matches and aligns tokens according to the temporal correspondence between frames, facilitating natural temporal consistency in generated video frames. To manage the complexity of video processing, we divide videos into chunks and develop intra-chunk local token merging and inter-chunk global token merging, ensuring both short-term video continuity and long-term content consistency. Our video editing approach seamlessly extends the advancements in image editing to video editing, rendering favorable results in temporal consistency over state-of-the-art methods.
Authors:Maomao Li, Yu Li, Tianyu Yang, Yunfei Liu, Dongxu Yue, Zhihui Lin, Dong Xu
Title: A Video is Worth 256 Bases: Spatial-Temporal Expectation-Maximization Inversion for Zero-Shot Video Editing
Abstract:
This paper presents a video inversion approach for zero-shot video editing, which models the input video with low-rank representation during the inversion process. The existing video editing methods usually apply the typical 2D DDIM inversion or naive spatial-temporal DDIM inversion before editing, which leverages time-varying representation for each frame to derive noisy latent. Unlike most existing approaches, we propose a Spatial-Temporal Expectation-Maximization (STEM) inversion, which formulates the dense video feature under an expectation-maximization manner and iteratively estimates a more compact basis set to represent the whole video. Each frame applies the fixed and global representation for inversion, which is more friendly for temporal consistency during reconstruction and editing. Extensive qualitative and quantitative experiments demonstrate that our STEM inversion can achieve consistent improvement on two state-of-the-art video editing methods. Project page: https://stem-inv.github.io/page/.
Authors:Shoufa Chen, Mengmeng Xu, Jiawei Ren, Yuren Cong, Sen He, Yanping Xie, Animesh Sinha, Ping Luo, Tao Xiang, Juan-Manuel Perez-Rua
Title: GenTron: Diffusion Transformers for Image and Video Generation
Abstract:
In this study, we explore Transformer-based diffusion models for image and video generation. Despite the dominance of Transformer architectures in various fields due to their flexibility and scalability, the visual generative domain primarily utilizes CNN-based U-Net architectures, particularly in diffusion-based models. We introduce GenTron, a family of Generative models employing Transformer-based diffusion, to address this gap. Our initial step was to adapt Diffusion Transformers (DiTs) from class to text conditioning, a process involving thorough empirical exploration of the conditioning mechanism. We then scale GenTron from approximately 900M to over 3B parameters, observing significant improvements in visual quality. Furthermore, we extend GenTron to text-to-video generation, incorporating novel motion-free guidance to enhance video quality. In human evaluations against SDXL, GenTron achieves a 51.1% win rate in visual quality (with a 19.8% draw rate), and a 42.3% win rate in text alignment (with a 42.9% draw rate). GenTron also excels in the T2I-CompBench, underscoring its strengths in compositional generation. We believe this work will provide meaningful insights and serve as a valuable reference for future research.
Authors:Jiaxi Lv, Yi Huang, Mingfu Yan, Jiancheng Huang, Jianzhuang Liu, Yifan Liu, Yafei Wen, Xiaoxin Chen, Shifeng Chen
Title: GPT4Motion: Scripting Physical Motions in Text-to-Video Generation via Blender-Oriented GPT Planning
Abstract:
Recent advances in text-to-video generation have harnessed the power of diffusion models to create visually compelling content conditioned on text prompts. However, they usually encounter high computational costs and often struggle to produce videos with coherent physical motions. To tackle these issues, we propose GPT4Motion, a training-free framework that leverages the planning capability of large language models such as GPT, the physical simulation strength of Blender, and the excellent image generation ability of text-to-image diffusion models to enhance the quality of video synthesis. Specifically, GPT4Motion employs GPT-4 to generate a Blender script based on a user textual prompt, which commands Blender's built-in physics engine to craft fundamental scene components that encapsulate coherent physical motions across frames. Then these components are inputted into Stable Diffusion to generate a video aligned with the textual prompt. Experimental results on three basic physical motion scenarios, including rigid object drop and collision, cloth draping and swinging, and liquid flow, demonstrate that GPT4Motion can generate high-quality videos efficiently in maintaining motion coherency and entity consistency. GPT4Motion offers new insights in text-to-video research, enhancing its quality and broadening its horizon for further explorations.
Authors:Jiaxin Cheng, Tianjun Xiao, Tong He
Title: Consistent Video-to-Video Transfer Using Synthetic Dataset
Abstract:
We introduce a novel and efficient approach for text-based video-to-video editing that eliminates the need for resource-intensive per-video-per-model finetuning. At the core of our approach is a synthetic paired video dataset tailored for video-to-video transfer tasks. Inspired by Instruct Pix2Pix's image transfer via editing instruction, we adapt this paradigm to the video domain. Extending the Prompt-to-Prompt to videos, we efficiently generate paired samples, each with an input video and its edited counterpart. Alongside this, we introduce the Long Video Sampling Correction during sampling, ensuring consistent long videos across batches. Our method surpasses current methods like Tune-A-Video, heralding substantial progress in text-based video-to-video editing and suggesting exciting avenues for further exploration and deployment.
Authors:Songwei Ge, Seungjun Nah, Guilin Liu, Tyler Poon, Andrew Tao, Bryan Catanzaro, David Jacobs, Jia-Bin Huang, Ming-Yu Liu, Yogesh Balaji
Title: Preserve Your Own Correlation: A Noise Prior for Video Diffusion Models
Abstract:
Despite tremendous progress in generating high-quality images using diffusion models, synthesizing a sequence of animated frames that are both photorealistic and temporally coherent is still in its infancy. While off-the-shelf billion-scale datasets for image generation are available, collecting similar video data of the same scale is still challenging. Also, training a video diffusion model is computationally much more expensive than its image counterpart. In this work, we explore finetuning a pretrained image diffusion model with video data as a practical solution for the video synthesis task. We find that naively extending the image noise prior to video noise prior in video diffusion leads to sub-optimal performance. Our carefully designed video noise prior leads to substantially better performance. Extensive experimental validation shows that our model, Preserve Your Own Correlation (PYoCo), attains SOTA zero-shot text-to-video results on the UCF-101 and MSR-VTT benchmarks. It also achieves SOTA video generation quality on the small-scale UCF-101 benchmark with a $10\times$ smaller model using significantly less computation than the prior art.
Authors:Tsu-Jui Fu, Licheng Yu, Ning Zhang, Cheng-Yang Fu, Jong-Chyi Su, William Yang Wang, Sean Bell
Title: Tell Me What Happened: Unifying Text-guided Video Completion via Multimodal Masked Video Generation
Abstract:
Generating a video given the first several static frames is challenging as it anticipates reasonable future frames with temporal coherence. Besides video prediction, the ability to rewind from the last frame or infilling between the head and tail is also crucial, but they have rarely been explored for video completion. Since there could be different outcomes from the hints of just a few frames, a system that can follow natural language to perform video completion may significantly improve controllability. Inspired by this, we introduce a novel task, text-guided video completion (TVC), which requests the model to generate a video from partial frames guided by an instruction. We then propose Multimodal Masked Video Generation (MMVG) to address this TVC task. During training, MMVG discretizes the video frames into visual tokens and masks most of them to perform video completion from any time point. At inference time, a single MMVG model can address all 3 cases of TVC, including video prediction, rewind, and infilling, by applying corresponding masking conditions. We evaluate MMVG in various video scenarios, including egocentric, animation, and gaming. Extensive experimental results indicate that MMVG is effective in generating high-quality visual appearances with text guidance for TVC.
Authors:Liang Feng, Shikang Zheng, Jiacheng Liu, Yuqi Lin, Qinming Zhou, Peiliang Cai, Xinyu Wang, Junjie Chen, Chang Zou, Yue Ma, Linfeng Zhang
Title: HiCache: Training-free Acceleration of Diffusion Models via Hermite Polynomial-based Feature Caching
Abstract:
Diffusion models have achieved remarkable success in content generation but suffer from prohibitive computational costs due to iterative sampling. While recent feature caching methods tend to accelerate inference through temporal extrapolation, these methods still suffer from server quality loss due to the failure in modeling the complex dynamics of feature evolution. To solve this problem, this paper presents HiCache, a training-free acceleration framework that fundamentally improves feature prediction by aligning mathematical tools with empirical properties. Our key insight is that feature derivative approximations in Diffusion Transformers exhibit multivariate Gaussian characteristics, motivating the use of Hermite polynomials-the potentially theoretically optimal basis for Gaussian-correlated processes. Besides, We further introduce a dual-scaling mechanism that ensures numerical stability while preserving predictive accuracy. Extensive experiments demonstrate HiCache's superiority: achieving 6.24x speedup on FLUX.1-dev while exceeding baseline quality, maintaining strong performance across text-to-image, video generation, and super-resolution tasks. Core implementation is provided in the appendix, with complete code to be released upon acceptance.
Authors:Shikang Zheng, Liang Feng, Xinyu Wang, Qinming Zhou, Peiliang Cai, Chang Zou, Jiacheng Liu, Yuqi Lin, Junjie Chen, Yue Ma, Linfeng Zhang
Title: Forecast then Calibrate: Feature Caching as ODE for Efficient Diffusion Transformers
Abstract:
Diffusion Transformers (DiTs) have demonstrated exceptional performance in high-fidelity image and video generation. To reduce their substantial computational costs, feature caching techniques have been proposed to accelerate inference by reusing hidden representations from previous timesteps. However, current methods often struggle to maintain generation quality at high acceleration ratios, where prediction errors increase sharply due to the inherent instability of long-step forecasting. In this work, we adopt an ordinary differential equation (ODE) perspective on the hidden-feature sequence, modeling layer representations along the trajectory as a feature-ODE. We attribute the degradation of existing caching strategies to their inability to robustly integrate historical features under large skipping intervals. To address this, we propose FoCa (Forecast-then-Calibrate), which treats feature caching as a feature-ODE solving problem. Extensive experiments on image synthesis, video generation, and super-resolution tasks demonstrate the effectiveness of FoCa, especially under aggressive acceleration. Without additional training, FoCa achieves near-lossless speedups of 5.50 times on FLUX, 6.45 times on HunyuanVideo, 3.17 times on Inf-DiT, and maintains high quality with a 4.53 times speedup on DiT.
Authors:Junfei Xiao, Ceyuan Yang, Lvmin Zhang, Shengqu Cai, Yang Zhao, Yuwei Guo, Gordon Wetzstein, Maneesh Agrawala, Alan Yuille, Lu Jiang
Title: Captain Cinema: Towards Short Movie Generation
Abstract:
We present Captain Cinema, a generation framework for short movie generation. Given a detailed textual description of a movie storyline, our approach firstly generates a sequence of keyframes that outline the entire narrative, which ensures long-range coherence in both the storyline and visual appearance (e.g., scenes and characters). We refer to this step as top-down keyframe planning. These keyframes then serve as conditioning signals for a video synthesis model, which supports long context learning, to produce the spatio-temporal dynamics between them. This step is referred to as bottom-up video synthesis. To support stable and efficient generation of multi-scene long narrative cinematic works, we introduce an interleaved training strategy for Multimodal Diffusion Transformers (MM-DiT), specifically adapted for long-context video data. Our model is trained on a specially curated cinematic dataset consisting of interleaved data pairs. Our experiments demonstrate that Captain Cinema performs favorably in the automated creation of visually coherent and narrative consistent short movies in high quality and efficiency. Project page: https://thecinema.ai
Authors:Jintao Rong, Xin Xie, Xinyi Yu, Linlin Ou, Xinyu Zhang, Chunhua Shen, Dong Gong
Title: Training-Free Motion Customization for Distilled Video Generators with Adaptive Test-Time Distillation
Abstract:
Distilled video generation models offer fast and efficient synthesis but struggle with motion customization when guided by reference videos, especially under training-free settings. Existing training-free methods, originally designed for standard diffusion models, fail to generalize due to the accelerated generative process and large denoising steps in distilled models. To address this, we propose MotionEcho, a novel training-free test-time distillation framework that enables motion customization by leveraging diffusion teacher forcing. Our approach uses high-quality, slow teacher models to guide the inference of fast student models through endpoint prediction and interpolation. To maintain efficiency, we dynamically allocate computation across timesteps according to guidance needs. Extensive experiments across various distilled video generation models and benchmark datasets demonstrate that our method significantly improves motion fidelity and generation quality while preserving high efficiency. Project page: https://euminds.github.io/motionecho/
Authors:June Suk Choi, Kyungmin Lee, Sihyun Yu, Yisol Choi, Jinwoo Shin, Kimin Lee
Title: Enhancing Motion Dynamics of Image-to-Video Models via Adaptive Low-Pass Guidance
Abstract:
Recent text-to-video (T2V) models have demonstrated strong capabilities in producing high-quality, dynamic videos. To improve the visual controllability, recent works have considered fine-tuning pre-trained T2V models to support image-to-video (I2V) generation. However, such adaptation frequently suppresses motion dynamics of generated outputs, resulting in more static videos compared to their T2V counterparts. In this work, we analyze this phenomenon and identify that it stems from the premature exposure to high-frequency details in the input image, which biases the sampling process toward a shortcut trajectory that overfits to the static appearance of the reference image. To address this, we propose adaptive low-pass guidance (ALG), a simple fix to the I2V model sampling procedure to generate more dynamic videos without compromising per-frame image quality. Specifically, ALG adaptively modulates the frequency content of the conditioning image by applying low-pass filtering at the early stage of denoising. Extensive experiments demonstrate that ALG significantly improves the temporal dynamics of generated videos, while preserving image fidelity and text alignment. Especially, under VBench-I2V test suite, ALG achieves an average improvement of 36% in dynamic degree without a significant drop in video quality or image fidelity.
Authors:Wei Li, Dezhao Luo, Dongbao Yang, Zhenhang Li, Weiping Wang, Yu Zhou
Title: The Role of Video Generation in Enhancing Data-Limited Action Understanding
Abstract:
Video action understanding tasks in real-world scenarios always suffer data limitations. In this paper, we address the data-limited action understanding problem by bridging data scarcity. We propose a novel method that employs a text-to-video diffusion transformer to generate annotated data for model training. This paradigm enables the generation of realistic annotated data on an infinite scale without human intervention. We proposed the information enhancement strategy and the uncertainty-based label smoothing tailored to generate sample training. Through quantitative and qualitative analysis, we observed that real samples generally contain a richer level of information than generated samples. Based on this observation, the information enhancement strategy is proposed to enhance the informative content of the generated samples from two aspects: the environments and the characters. Furthermore, we observed that some low-quality generated samples might negatively affect model training. To address this, we devised the uncertainty-based label smoothing strategy to increase the smoothing of these samples, thus reducing their impact. We demonstrate the effectiveness of the proposed method on four datasets across five tasks and achieve state-of-the-art performance for zero-shot action recognition.
Authors:Shenggan Cheng, Yuanxin Wei, Lansong Diao, Yong Liu, Bujiao Chen, Lianghua Huang, Yu Liu, Wenyuan Yu, Jiangsu Du, Wei Lin, Yang You
Title: SRDiffusion: Accelerate Video Diffusion Inference via Sketching-Rendering Cooperation
Abstract:
Leveraging the diffusion transformer (DiT) architecture, models like Sora, CogVideoX and Wan have achieved remarkable progress in text-to-video, image-to-video, and video editing tasks. Despite these advances, diffusion-based video generation remains computationally intensive, especially for high-resolution, long-duration videos. Prior work accelerates its inference by skipping computation, usually at the cost of severe quality degradation. In this paper, we propose SRDiffusion, a novel framework that leverages collaboration between large and small models to reduce inference cost. The large model handles high-noise steps to ensure semantic and motion fidelity (Sketching), while the smaller model refines visual details in low-noise steps (Rendering). Experimental results demonstrate that our method outperforms existing approaches, over 3$\times$ speedup for Wan with nearly no quality loss for VBench, and 2$\times$ speedup for CogVideoX. Our method is introduced as a new direction orthogonal to existing acceleration strategies, offering a practical solution for scalable video generation.
Authors:Teng Hu, Zhentao Yu, Zhengguang Zhou, Sen Liang, Yuan Zhou, Qin Lin, Qinglin Lu
Title: HunyuanCustom: A Multimodal-Driven Architecture for Customized Video Generation
Abstract:
Customized video generation aims to produce videos featuring specific subjects under flexible user-defined conditions, yet existing methods often struggle with identity consistency and limited input modalities. In this paper, we propose HunyuanCustom, a multi-modal customized video generation framework that emphasizes subject consistency while supporting image, audio, video, and text conditions. Built upon HunyuanVideo, our model first addresses the image-text conditioned generation task by introducing a text-image fusion module based on LLaVA for enhanced multi-modal understanding, along with an image ID enhancement module that leverages temporal concatenation to reinforce identity features across frames. To enable audio- and video-conditioned generation, we further propose modality-specific condition injection mechanisms: an AudioNet module that achieves hierarchical alignment via spatial cross-attention, and a video-driven injection module that integrates latent-compressed conditional video through a patchify-based feature-alignment network. Extensive experiments on single- and multi-subject scenarios demonstrate that HunyuanCustom significantly outperforms state-of-the-art open- and closed-source methods in terms of ID consistency, realism, and text-video alignment. Moreover, we validate its robustness across downstream tasks, including audio and video-driven customized video generation. Our results highlight the effectiveness of multi-modal conditioning and identity-preserving strategies in advancing controllable video generation. All the code and models are available at https://hunyuancustom.github.io.
Authors:Kevin Xie, Amirmojtaba Sabour, Jiahui Huang, Despoina Paschalidou, Greg Klar, Umar Iqbal, Sanja Fidler, Xiaohui Zeng
Title: VideoPanda: Video Panoramic Diffusion with Multi-view Attention
Abstract:
High resolution panoramic video content is paramount for immersive experiences in Virtual Reality, but is non-trivial to collect as it requires specialized equipment and intricate camera setups. In this work, we introduce VideoPanda, a novel approach for synthesizing 360$^\circ$ videos conditioned on text or single-view video data. VideoPanda leverages multi-view attention layers to augment a video diffusion model, enabling it to generate consistent multi-view videos that can be combined into immersive panoramic content. VideoPanda is trained jointly using two conditions: text-only and single-view video, and supports autoregressive generation of long-videos. To overcome the computational burden of multi-view video generation, we randomly subsample the duration and camera views used during training and show that the model is able to gracefully generalize to generating more frames during inference. Extensive evaluations on both real-world and synthetic video datasets demonstrate that VideoPanda generates more realistic and coherent 360$^\circ$ panoramas across all input conditions compared to existing methods. Visit the project website at https://research.nvidia.com/labs/toronto-ai/VideoPanda/ for results.
Authors:Xiaoda Yang, Jiayang Xu, Kaixuan Luan, Xinyu Zhan, Hongshun Qiu, Shijun Shi, Hao Li, Shuai Yang, Li Zhang, Checheng Yu, Cewu Lu, Lixin Yang
Title: OmniCam: Unified Multimodal Video Generation via Camera Control
Abstract:
Camera control, which achieves diverse visual effects by changing camera position and pose, has attracted widespread attention. However, existing methods face challenges such as complex interaction and limited control capabilities. To address these issues, we present OmniCam, a unified multimodal camera control framework. Leveraging large language models and video diffusion models, OmniCam generates spatio-temporally consistent videos. It supports various combinations of input modalities: the user can provide text or video with expected trajectory as camera path guidance, and image or video as content reference, enabling precise control over camera motion. To facilitate the training of OmniCam, we introduce the OmniTr dataset, which contains a large collection of high-quality long-sequence trajectories, videos, and corresponding descriptions. Experimental results demonstrate that our model achieves state-of-the-art performance in high-quality camera-controlled video generation across various metrics.
Authors:Haoyu Zhao, Zhongang Qi, Cong Wang, Qingping Zheng, Guansong Lu, Fei Chen, Hang Xu, Zuxuan Wu
Title: DynamiCtrl: Rethinking the Basic Structure and the Role of Text for High-quality Human Image Animation
Abstract:
With diffusion transformer (DiT) excelling in video generation, its use in specific tasks has drawn increasing attention. However, adapting DiT for pose-guided human image animation faces two core challenges: (a) existing U-Net-based pose control methods may be suboptimal for the DiT backbone; and (b) removing text guidance, as in previous approaches, often leads to semantic loss and model degradation. To address these issues, we propose DynamiCtrl, a novel framework for human animation in video DiT architecture. Specifically, we use a shared VAE encoder for human images and driving poses, unifying them into a common latent space, maintaining pose fidelity, and eliminating the need for an expert pose encoder during video denoising. To integrate pose control into the DiT backbone effectively, we propose a novel Pose-adaptive Layer Norm model. It injects normalized pose features into the denoising process via conditioning on visual tokens, enabling seamless and scalable pose control across DiT blocks. Furthermore, to overcome the shortcomings of text removal, we introduce the "Joint-text" paradigm, which preserves the role of text embeddings to provide global semantic context. Through full-attention blocks, image and pose features are aligned with text features, enhancing semantic consistency, leveraging pretrained knowledge, and enabling multi-level control. Experiments verify the superiority of DynamiCtrl on benchmark and self-collected data (e.g., achieving the best LPIPS of 0.166), demonstrating strong character control and high-quality synthesis. The project page is available at https://gulucaptain.github.io/DynamiCtrl/.
Authors:Xiangwen Zhang, Qian Zhang, Longfei Han, Qiang Qu, Xiaoming Chen
Title: AccidentSim: Generating Physically Realistic Vehicle Collision Videos from Real-World Accident Reports
Abstract:
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
Authors:Arun Reddy, Alexander Martin, Eugene Yang, Andrew Yates, Kate Sanders, Kenton Murray, Reno Kriz, Celso M. de Melo, Benjamin Van Durme, Rama Chellappa
Title: Video-ColBERT: Contextualized Late Interaction for Text-to-Video Retrieval
Abstract:
In this work, we tackle the problem of text-to-video retrieval (T2VR). Inspired by the success of late interaction techniques in text-document, text-image, and text-video retrieval, our approach, Video-ColBERT, introduces a simple and efficient mechanism for fine-grained similarity assessment between queries and videos. Video-ColBERT is built upon 3 main components: a fine-grained spatial and temporal token-wise interaction, query and visual expansions, and a dual sigmoid loss during training. We find that this interaction and training paradigm leads to strong individual, yet compatible, representations for encoding video content. These representations lead to increases in performance on common text-to-video retrieval benchmarks compared to other bi-encoder methods.
Authors:Qiang Qu, Ming Li, Xiaoming Chen, Tongliang Liu
Title: EvAnimate: Event-conditioned Image-to-Video Generation for Human Animation
Abstract:
Conditional human animation traditionally animates static reference images using pose-based motion cues extracted from video data. However, these video-derived cues often suffer from low temporal resolution, motion blur, and unreliable performance under challenging lighting conditions. In contrast, event cameras inherently provide robust and high temporal-resolution motion information, offering resilience to motion blur, low-light environments, and exposure variations. In this paper, we propose EvAnimate, the first method leveraging event streams as robust and precise motion cues for conditional human image animation. Our approach is fully compatible with diffusion-based generative models, enabled by encoding asynchronous event data into a specialized three-channel representation with adaptive slicing rates and densities. High-quality and temporally coherent animations are achieved through a dual-branch architecture explicitly designed to exploit event-driven dynamics, significantly enhancing performance under challenging real-world conditions. Enhanced cross-subject generalization is further achieved using specialized augmentation strategies. To facilitate future research, we establish a new benchmarking, including simulated event data for training and validation, and a real-world event dataset capturing human actions under normal and challenging scenarios. The experiment results demonstrate that EvAnimate achieves high temporal fidelity and robust performance in scenarios where traditional video-derived cues fall short.
Authors:Zhiqiang Yuan, Ting Zhang, Ying Deng, Jiapei Zhang, Yeshuang Zhu, Zexi Jia, Jie Zhou, Jinchao Zhang
Title: RDTF: Resource-efficient Dual-mask Training Framework for Multi-frame Animated Sticker Generation
Abstract:
Recently, great progress has been made in video generation technology, attracting the widespread attention of scholars. To apply this technology to downstream applications under resource-constrained conditions, researchers usually fine-tune the pre-trained models based on parameter-efficient tuning methods such as Adapter or Lora. Although these methods can transfer the knowledge from the source domain to the target domain, fewer training parameters lead to poor fitting ability, and the knowledge from the source domain may lead to the inference process deviating from the target domain. In this paper, we argue that under constrained resources, training a smaller video generation model from scratch using only million-level samples can outperform parameter-efficient tuning on larger models in downstream applications: the core lies in the effective utilization of data and curriculum strategy. Take animated sticker generation (ASG) as a case study, we first construct a discrete frame generation network for stickers with low frame rates, ensuring that its parameters meet the requirements of model training under constrained resources. In order to provide data support for models trained from scratch, we come up with a dual-mask based data utilization strategy, which manages to improve the availability and expand the diversity of limited data. To facilitate convergence under dual-mask situation, we propose a difficulty-adaptive curriculum learning method, which decomposes the sample entropy into static and adaptive components so as to obtain samples from easy to difficult. The experiment demonstrates that our resource-efficient dual-mask training framework is quantitatively and qualitatively superior to efficient-parameter tuning methods such as I2V-Adapter and SimDA, verifying the feasibility of our method on downstream tasks under constrained resources. Code will be available.
Authors:Zechen Bai, Hai Ci, Mike Zheng Shou
Title: Impossible Videos
Abstract:
Synthetic videos nowadays is widely used to complement data scarcity and diversity of real-world videos. Current synthetic datasets primarily replicate real-world scenarios, leaving impossible, counterfactual and anti-reality video concepts underexplored. This work aims to answer two questions: 1) Can today's video generation models effectively follow prompts to create impossible video content? 2) Are today's video understanding models good enough for understanding impossible videos? To this end, we introduce IPV-Bench, a novel benchmark designed to evaluate and foster progress in video understanding and generation. IPV-Bench is underpinned by a comprehensive taxonomy, encompassing 4 domains, 14 categories. It features diverse scenes that defy physical, biological, geographical, or social laws. Based on the taxonomy, a prompt suite is constructed to evaluate video generation models, challenging their prompt following and creativity capabilities. In addition, a video benchmark is curated to assess Video-LLMs on their ability of understanding impossible videos, which particularly requires reasoning on temporal dynamics and world knowledge. Comprehensive evaluations reveal limitations and insights for future directions of video models, paving the way for next-generation video models.
Authors:Quang Trung Truong, Wong Yuk Kwan, Duc Thanh Nguyen, Binh-Son Hua, Sai-Kit Yeung
Title: AUTV: Creating Underwater Video Datasets with Pixel-wise Annotations
Abstract:
Underwater video analysis, hampered by the dynamic marine environment and camera motion, remains a challenging task in computer vision. Existing training-free video generation techniques, learning motion dynamics on the frame-by-frame basis, often produce poor results with noticeable motion interruptions and misaligments. To address these issues, we propose AUTV, a framework for synthesizing marine video data with pixel-wise annotations. We demonstrate the effectiveness of this framework by constructing two video datasets, namely UTV, a real-world dataset comprising 2,000 video-text pairs, and SUTV, a synthetic video dataset including 10,000 videos with segmentation masks for marine objects. UTV provides diverse underwater videos with comprehensive annotations including appearance, texture, camera intrinsics, lighting, and animal behavior. SUTV can be used to improve underwater downstream tasks, which are demonstrated in video inpainting and video object segmentation.
Authors:Xiaowen Qiu, Yian Wang, Jiting Cai, Zhehuan Chen, Chunru Lin, Tsun-Hsuan Wang, Chuang Gan
Title: LuciBot: Automated Robot Policy Learning from Generated Videos
Abstract:
Automatically generating training supervision for embodied tasks is crucial, as manual designing is tedious and not scalable. While prior works use large language models (LLMs) or vision-language models (VLMs) to generate rewards, these approaches are largely limited to simple tasks with well-defined rewards, such as pick-and-place. This limitation arises because LLMs struggle to interpret complex scenes compressed into text or code due to their restricted input modality, while VLM-based rewards, though better at visual perception, remain limited by their less expressive output modality. To address these challenges, we leverage the imagination capability of general-purpose video generation models. Given an initial simulation frame and a textual task description, the video generation model produces a video demonstrating task completion with correct semantics. We then extract rich supervisory signals from the generated video, including 6D object pose sequences, 2D segmentations, and estimated depth, to facilitate task learning in simulation. Our approach significantly improves supervision quality for complex embodied tasks, enabling large-scale training in simulators.
Authors:Hongwei Yi, Tian Ye, Shitong Shao, Xuancheng Yang, Jiantong Zhao, Hanzhong Guo, Terrance Wang, Qingyu Yin, Zeke Xie, Lei Zhu, Wei Li, Michael Lingelbach, Daquan Zhou
Title: MagicInfinite: Generating Infinite Talking Videos with Your Words and Voice
Abstract:
We present MagicInfinite, a novel diffusion Transformer (DiT) framework that overcomes traditional portrait animation limitations, delivering high-fidelity results across diverse character types-realistic humans, full-body figures, and stylized anime characters. It supports varied facial poses, including back-facing views, and animates single or multiple characters with input masks for precise speaker designation in multi-character scenes. Our approach tackles key challenges with three innovations: (1) 3D full-attention mechanisms with a sliding window denoising strategy, enabling infinite video generation with temporal coherence and visual quality across diverse character styles; (2) a two-stage curriculum learning scheme, integrating audio for lip sync, text for expressive dynamics, and reference images for identity preservation, enabling flexible multi-modal control over long sequences; and (3) region-specific masks with adaptive loss functions to balance global textual control and local audio guidance, supporting speaker-specific animations. Efficiency is enhanced via our innovative unified step and cfg distillation techniques, achieving a 20x inference speed boost over the basemodel: generating a 10 second 540x540p video in 10 seconds or 720x720p in 30 seconds on 8 H100 GPUs, without quality loss. Evaluations on our new benchmark demonstrate MagicInfinite's superiority in audio-lip synchronization, identity preservation, and motion naturalness across diverse scenarios. It is publicly available at https://www.hedra.com/, with examples at https://magicinfinite.github.io/.
Authors:Junchen Fu, Xuri Ge, Kaiwen Zheng, Ioannis Arapakis, Xin Xin, Joemon M. Jose
Title: LLMPopcorn: An Empirical Study of LLMs as Assistants for Popular Micro-video Generation
Abstract:
Popular Micro-videos, dominant on platforms like TikTok and YouTube, hold significant commercial value. The rise of high-quality AI-generated content has spurred interest in AI-driven micro-video creation. However, despite the advanced capabilities of large language models (LLMs) like ChatGPT and DeepSeek in text generation and reasoning, their potential to assist the creation of popular micro-videos remains largely unexplored. In this paper, we conduct an empirical study on LLM-assisted popular micro-video generation (LLMPopcorn). Specifically, we investigate the following research questions: (i) How can LLMs be effectively utilized to assist popular micro-video generation? (ii) To what extent can prompt-based enhancements optimize the LLM-generated content for higher popularity? (iii) How well do various LLMs and video generators perform in the popular micro-video generation task? By exploring these questions, we show that advanced LLMs like DeepSeek-V3 enable micro-video generation to achieve popularity comparable to human-created content. Prompt enhancements further boost popularity, and benchmarking highlights DeepSeek-V3 and DeepSeek-R1 among LLMs, while LTX-Video and HunyuanVideo lead in video generation. This pioneering work advances AI-assisted micro-video creation, uncovering new research opportunities. We will release the code and datasets to support future studies.
Authors:Michael Fuest, Vincent Tao Hu, Björn Ommer
Title: MaskFlow: Discrete Flows For Flexible and Efficient Long Video Generation
Abstract:
Generating long, high-quality videos remains a challenge due to the complex interplay of spatial and temporal dynamics and hardware limitations. In this work, we introduce MaskFlow, a unified video generation framework that combines discrete representations with flow-matching to enable efficient generation of high-quality long videos. By leveraging a frame-level masking strategy during training, MaskFlow conditions on previously generated unmasked frames to generate videos with lengths ten times beyond that of the training sequences. MaskFlow does so very efficiently by enabling the use of fast Masked Generative Model (MGM)-style sampling and can be deployed in both fully autoregressive as well as full-sequence generation modes. We validate the quality of our method on the FaceForensics (FFS) and Deepmind Lab (DMLab) datasets and report Frechet Video Distance (FVD) competitive with state-of-the-art approaches. We also provide a detailed analysis on the sampling efficiency of our method and demonstrate that MaskFlow can be applied to both timestep-dependent and timestep-independent models in a training-free manner.
Authors:D. She, Mushui Liu, Jingxuan Pang, Jin Wang, Zhen Yang, Wanggui He, Guanghao Zhang, Yi Wang, Qihan Huang, Haobin Tang, Yunlong Yu, Siming Fu
Title: CustomVideoX: 3D Reference Attention Driven Dynamic Adaptation for Zero-Shot Customized Video Diffusion Transformers
Abstract:
Customized generation has achieved significant progress in image synthesis, yet personalized video generation remains challenging due to temporal inconsistencies and quality degradation. In this paper, we introduce CustomVideoX, an innovative framework leveraging the video diffusion transformer for personalized video generation from a reference image. CustomVideoX capitalizes on pre-trained video networks by exclusively training the LoRA parameters to extract reference features, ensuring both efficiency and adaptability. To facilitate seamless interaction between the reference image and video content, we propose 3D Reference Attention, which enables direct and simultaneous engagement of reference image features with all video frames across spatial and temporal dimensions. To mitigate the excessive influence of reference image features and textual guidance on generated video content during inference, we implement the Time-Aware Reference Attention Bias (TAB) strategy, dynamically modulating reference bias over different time steps. Additionally, we introduce the Entity Region-Aware Enhancement (ERAE) module, aligning highly activated regions of key entity tokens with reference feature injection by adjusting attention bias. To thoroughly evaluate personalized video generation, we establish a new benchmark, VideoBench, comprising over 50 objects and 100 prompts for extensive assessment. Experimental results show that CustomVideoX significantly outperforms existing methods in terms of video consistency and quality.
Authors:Huijie Liu, Jingyun Wang, Shuai Ma, Jie Hu, Xiaoming Wei, Guoliang Kang
Title: Separate Motion from Appearance: Customizing Motion via Customizing Text-to-Video Diffusion Models
Abstract:
Motion customization aims to adapt the diffusion model (DM) to generate videos with the motion specified by a set of video clips with the same motion concept. To realize this goal, the adaptation of DM should be possible to model the specified motion concept, without compromising the ability to generate diverse appearances. Thus, the key to solving this problem lies in how to separate the motion concept from the appearance in the adaptation process of DM. Typical previous works explore different ways to represent and insert a motion concept into large-scale pretrained text-to-video diffusion models, e.g., learning a motion LoRA, using latent noise residuals, etc. While those methods can encode the motion concept, they also inevitably encode the appearance in the reference videos, resulting in weakened appearance generation capability. In this paper, we follow the typical way to learn a motion LoRA to encode the motion concept, but propose two novel strategies to enhance motion-appearance separation, including temporal attention purification (TAP) and appearance highway (AH). Specifically, we assume that in the temporal attention module, the pretrained Value embeddings are sufficient to serve as basic components needed by producing a new motion. Thus, in TAP, we choose only to reshape the temporal attention with motion LoRAs so that Value embeddings can be reorganized to produce a new motion. Further, in AH, we alter the starting point of each skip connection in U-Net from the output of each temporal attention module to the output of each spatial attention module. Extensive experiments demonstrate that compared to previous works, our method can generate videos with appearance more aligned with the text descriptions and motion more consistent with the reference videos.
Authors:Inès Hyeonsu Kim, Seokju Cho, Jiahui Huang, Jung Yi, Joon-Young Lee, Seungryong Kim
Title: Exploring Temporally-Aware Features for Point Tracking
Abstract:
Point tracking in videos is a fundamental task with applications in robotics, video editing, and more. While many vision tasks benefit from pre-trained feature backbones to improve generalizability, point tracking has primarily relied on simpler backbones trained from scratch on synthetic data, which may limit robustness in real-world scenarios. Additionally, point tracking requires temporal awareness to ensure coherence across frames, but using temporally-aware features is still underexplored. Most current methods often employ a two-stage process: an initial coarse prediction followed by a refinement stage to inject temporal information and correct errors from the coarse stage. These approach, however, is computationally expensive and potentially redundant if the feature backbone itself captures sufficient temporal information. In this work, we introduce Chrono, a feature backbone specifically designed for point tracking with built-in temporal awareness. Leveraging pre-trained representations from self-supervised learner DINOv2 and enhanced with a temporal adapter, Chrono effectively captures long-term temporal context, enabling precise prediction even without the refinement stage. Experimental results demonstrate that Chrono achieves state-of-the-art performance in a refiner-free setting on the TAP-Vid-DAVIS and TAP-Vid-Kinetics datasets, among common feature backbones used in point tracking as well as DINOv2, with exceptional efficiency. Project page: https://cvlab-kaist.github.io/Chrono/
Authors:Junfei Xiao, Feng Cheng, Lu Qi, Liangke Gui, Jiepeng Cen, Zhibei Ma, Alan Yuille, Lu Jiang
Title: VideoAuteur: Towards Long Narrative Video Generation
Abstract:
Recent video generation models have shown promising results in producing high-quality video clips lasting several seconds. However, these models face challenges in generating long sequences that convey clear and informative events, limiting their ability to support coherent narrations. In this paper, we present a large-scale cooking video dataset designed to advance long-form narrative generation in the cooking domain. We validate the quality of our proposed dataset in terms of visual fidelity and textual caption accuracy using state-of-the-art Vision-Language Models (VLMs) and video generation models, respectively. We further introduce a Long Narrative Video Director to enhance both visual and semantic coherence in generated videos and emphasize the role of aligning visual embeddings to achieve improved overall video quality. Our method demonstrates substantial improvements in generating visually detailed and semantically aligned keyframes, supported by finetuning techniques that integrate text and image embeddings within the video generation process. Project page: https://videoauteur.github.io/
Authors:Bowen Hao, Dongliang Zhou, Xiaojie Li, Xingyu Zhang, Liang Xie, Jianlong Wu, Erwei Yin
Title: LipGen: Viseme-Guided Lip Video Generation for Enhancing Visual Speech Recognition
Abstract:
Visual speech recognition (VSR), commonly known as lip reading, has garnered significant attention due to its wide-ranging practical applications. The advent of deep learning techniques and advancements in hardware capabilities have significantly enhanced the performance of lip reading models. Despite these advancements, existing datasets predominantly feature stable video recordings with limited variability in lip movements. This limitation results in models that are highly sensitive to variations encountered in real-world scenarios. To address this issue, we propose a novel framework, LipGen, which aims to improve model robustness by leveraging speech-driven synthetic visual data, thereby mitigating the constraints of current datasets. Additionally, we introduce an auxiliary task that incorporates viseme classification alongside attention mechanisms. This approach facilitates the efficient integration of temporal information, directing the model's focus toward the relevant segments of speech, thereby enhancing discriminative capabilities. Our method demonstrates superior performance compared to the current state-of-the-art on the lip reading in the wild (LRW) dataset and exhibits even more pronounced advantages under challenging conditions.
Authors:Tianyi Zhu, Dongwei Ren, Qilong Wang, Xiaohe Wu, Wangmeng Zuo
Title: Generative Inbetweening through Frame-wise Conditions-Driven Video Generation
Abstract:
Generative inbetweening aims to generate intermediate frame sequences by utilizing two key frames as input. Although remarkable progress has been made in video generation models, generative inbetweening still faces challenges in maintaining temporal stability due to the ambiguous interpolation path between two key frames. This issue becomes particularly severe when there is a large motion gap between input frames. In this paper, we propose a straightforward yet highly effective Frame-wise Conditions-driven Video Generation (FCVG) method that significantly enhances the temporal stability of interpolated video frames. Specifically, our FCVG provides an explicit condition for each frame, making it much easier to identify the interpolation path between two input frames and thus ensuring temporally stable production of visually plausible video frames. To achieve this, we suggest extracting matched lines from two input frames that can then be easily interpolated frame by frame, serving as frame-wise conditions seamlessly integrated into existing video generation models. In extensive evaluations covering diverse scenarios such as natural landscapes, complex human poses, camera movements and animations, existing methods often exhibit incoherent transitions across frames. In contrast, our FCVG demonstrates the capability to generate temporally stable videos using both linear and non-linear interpolation curves. Our project page and code are available at \url{https://fcvg-inbetween.github.io/}.
Authors:Yihong Sun, Hao Zhou, Liangzhe Yuan, Jennifer J. Sun, Yandong Li, Xuhui Jia, Hartwig Adam, Bharath Hariharan, Long Zhao, Ting Liu
Title: Video Creation by Demonstration
Abstract:
We explore a novel video creation experience, namely Video Creation by Demonstration. Given a demonstration video and a context image from a different scene, we generate a physically plausible video that continues naturally from the context image and carries out the action concepts from the demonstration. To enable this capability, we present $δ$-Diffusion, a self-supervised training approach that learns from unlabeled videos by conditional future frame prediction. Unlike most existing video generation controls that are based on explicit signals, we adopts the form of implicit latent control for maximal flexibility and expressiveness required by general videos. By leveraging a video foundation model with an appearance bottleneck design on top, we extract action latents from demonstration videos for conditioning the generation process with minimal appearance leakage. Empirically, $δ$-Diffusion outperforms related baselines in terms of both human preference and large-scale machine evaluations, and demonstrates potentials towards interactive world simulation. Sampled video generation results are available at https://delta-diffusion.github.io/.
Authors:Zhiqiang Yuan, Jiapei Zhang, Ying Deng, Yeshuang Zhu, Jie Zhou, Jinchao Zhang
Title: VSD2M: A Large-scale Vision-language Sticker Dataset for Multi-frame Animated Sticker Generation
Abstract:
As a common form of communication in social media,stickers win users' love in the internet scenarios, for their ability to convey emotions in a vivid, cute, and interesting way. People prefer to get an appropriate sticker through retrieval rather than creation for the reason that creating a sticker is time-consuming and relies on rule-based creative tools with limited capabilities. Nowadays, advanced text-to-video algorithms have spawned numerous general video generation systems that allow users to customize high-quality, photo-realistic videos by only providing simple text prompts. However, creating customized animated stickers, which have lower frame rates and more abstract semantics than videos, is greatly hindered by difficulties in data acquisition and incomplete benchmarks. To facilitate the exploration of researchers in animated sticker generation (ASG) field, we firstly construct the currently largest vision-language sticker dataset named VSD2M at a two-million scale that contains static and animated stickers. Secondly, to improve the performance of traditional video generation methods on ASG tasks with discrete characteristics, we propose a Spatial Temporal Interaction (STI) layer that utilizes semantic interaction and detail preservation to address the issue of insufficient information utilization. Moreover, we train baselines with several video generation methods (e.g., transformer-based, diffusion-based methods) on VSD2M and conduct a detailed analysis to establish systemic supervision on ASG task. To the best of our knowledge, this is the most comprehensive large-scale benchmark for multi-frame animated sticker generation, and we hope this work can provide valuable inspiration for other scholars in intelligent creation.
Authors:Yuval Atzmon, Rinon Gal, Yoad Tewel, Yoni Kasten, Gal Chechik
Title: Motion by Queries: Identity-Motion Trade-offs in Text-to-Video Generation
Abstract:
Text-to-video diffusion models have shown remarkable progress in generating coherent video clips from textual descriptions. However, the interplay between motion, structure, and identity representations in these models remains under-explored. Here, we investigate how self-attention query (Q) features simultaneously govern motion, structure, and identity and examine the challenges arising when these representations interact. Our analysis reveals that Q affects not only layout, but that during denoising Q also has a strong effect on subject identity, making it hard to transfer motion without the side-effect of transferring identity. Understanding this dual role enabled us to control query feature injection (Q injection) and demonstrate two applications: (1) a zero-shot motion transfer method - implemented with VideoCrafter2 and WAN 2.1 - that is 10 times more efficient than existing approaches, and (2) a training-free technique for consistent multi-shot video generation, where characters maintain identity across multiple video shots while Q injection enhances motion fidelity.
Authors:Zhenghong Zhou, Jie An, Jiebo Luo
Title: Latent-Reframe: Enabling Camera Control for Video Diffusion Model without Training
Abstract:
Precise camera pose control is crucial for video generation with diffusion models. Existing methods require fine-tuning with additional datasets containing paired videos and camera pose annotations, which are both data-intensive and computationally costly, and can disrupt the pre-trained model distribution. We introduce Latent-Reframe, which enables camera control in a pre-trained video diffusion model without fine-tuning. Unlike existing methods, Latent-Reframe operates during the sampling stage, maintaining efficiency while preserving the original model distribution. Our approach reframes the latent code of video frames to align with the input camera trajectory through time-aware point clouds. Latent code inpainting and harmonization then refine the model latent space, ensuring high-quality video generation. Experimental results demonstrate that Latent-Reframe achieves comparable or superior camera control precision and video quality to training-based methods, without the need for fine-tuning on additional datasets.
Authors:Alejandro Pardo, Fabio Pizzati, Tong Zhang, Alexander Pondaven, Philip Torr, Juan Camilo Perez, Bernard Ghanem
Title: MatchDiffusion: Training-free Generation of Match-cuts
Abstract:
Match-cuts are powerful cinematic tools that create seamless transitions between scenes, delivering strong visual and metaphorical connections. However, crafting match-cuts is a challenging, resource-intensive process requiring deliberate artistic planning. In MatchDiffusion, we present the first training-free method for match-cut generation using text-to-video diffusion models. MatchDiffusion leverages a key property of diffusion models: early denoising steps define the scene's broad structure, while later steps add details. Guided by this insight, MatchDiffusion employs "Joint Diffusion" to initialize generation for two prompts from shared noise, aligning structure and motion. It then applies "Disjoint Diffusion", allowing the videos to diverge and introduce unique details. This approach produces visually coherent videos suited for match-cuts. User studies and metrics demonstrate MatchDiffusion's effectiveness and potential to democratize match-cut creation.
Authors:Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, Linfeng Zhang
Title: Accelerating Diffusion Transformers with Token-wise Feature Caching
Abstract:
Diffusion transformers have shown significant effectiveness in both image and video synthesis at the expense of huge computation costs. To address this problem, feature caching methods have been introduced to accelerate diffusion transformers by caching the features in previous timesteps and reusing them in the following timesteps. However, previous caching methods ignore that different tokens exhibit different sensitivities to feature caching, and feature caching on some tokens may lead to 10$\times$ more destruction to the overall generation quality compared with other tokens. In this paper, we introduce token-wise feature caching, allowing us to adaptively select the most suitable tokens for caching, and further enable us to apply different caching ratios to neural layers in different types and depths. Extensive experiments on PixArt-$α$, OpenSora, and DiT demonstrate our effectiveness in both image and video generation with no requirements for training. For instance, 2.36$\times$ and 1.93$\times$ acceleration are achieved on OpenSora and PixArt-$α$ with almost no drop in generation quality.
Authors:Dohun Lee, Bryan S Kim, Geon Yeong Park, Jong Chul Ye
Title: VideoGuide: Improving Video Diffusion Models without Training Through a Teacher's Guide
Abstract:
Text-to-image (T2I) diffusion models have revolutionized visual content creation, but extending these capabilities to text-to-video (T2V) generation remains a challenge, particularly in preserving temporal consistency. Existing methods that aim to improve consistency often cause trade-offs such as reduced imaging quality and impractical computational time. To address these issues we introduce VideoGuide, a novel framework that enhances the temporal consistency of pretrained T2V models without the need for additional training or fine-tuning. Instead, VideoGuide leverages any pretrained video diffusion model (VDM) or itself as a guide during the early stages of inference, improving temporal quality by interpolating the guiding model's denoised samples into the sampling model's denoising process. The proposed method brings about significant improvement in temporal consistency and image fidelity, providing a cost-effective and practical solution that synergizes the strengths of various video diffusion models. Furthermore, we demonstrate prior distillation, revealing that base models can achieve enhanced text coherence by utilizing the superior data prior of the guiding model through the proposed method. Project Page: https://dohunlee1.github.io/videoguide.github.io/
Authors:Dengsheng Chen, Jie Hu, Xiaoming Wei, Enhua Wu
Title: Fine-gained Zero-shot Video Sampling
Abstract:
Incorporating a temporal dimension into pretrained image diffusion models for video generation is a prevalent approach. However, this method is computationally demanding and necessitates large-scale video datasets. More critically, the heterogeneity between image and video datasets often results in catastrophic forgetting of the image expertise. Recent attempts to directly extract video snippets from image diffusion models have somewhat mitigated these problems. Nevertheless, these methods can only generate brief video clips with simple movements and fail to capture fine-grained motion or non-grid deformation. In this paper, we propose a novel Zero-Shot video Sampling algorithm, denoted as $\mathcal{ZS}^2$, capable of directly sampling high-quality video clips from existing image synthesis methods, such as Stable Diffusion, without any training or optimization. Specifically, $\mathcal{ZS}^2$ utilizes the dependency noise model and temporal momentum attention to ensure content consistency and animation coherence, respectively. This ability enables it to excel in related tasks, such as conditional and context-specialized video generation and instruction-guided video editing. Experimental results demonstrate that $\mathcal{ZS}^2$ achieves state-of-the-art performance in zero-shot video generation, occasionally outperforming recent supervised methods. Homepage: \url{https://densechen.github.io/zss/}.
Authors:Yuxuan Bian, Ailing Zeng, Xuan Ju, Xian Liu, Zhaoyang Zhang, Wei Liu, Qiang Xu
Title: MotionCraft: Crafting Whole-Body Motion with Plug-and-Play Multimodal Controls
Abstract:
Whole-body multimodal motion generation, controlled by text, speech, or music, has numerous applications including video generation and character animation. However, employing a unified model to achieve various generation tasks with different condition modalities presents two main challenges: motion distribution drifts across different tasks (e.g., co-speech gestures and text-driven daily actions) and the complex optimization of mixed conditions with varying granularities (e.g., text and audio). Additionally, inconsistent motion formats across different tasks and datasets hinder effective training toward multimodal motion generation. In this paper, we propose MotionCraft, a unified diffusion transformer that crafts whole-body motion with plug-and-play multimodal control. Our framework employs a coarse-to-fine training strategy, starting with the first stage of text-to-motion semantic pre-training, followed by the second stage of multimodal low-level control adaptation to handle conditions of varying granularities. To effectively learn and transfer motion knowledge across different distributions, we design MC-Attn for parallel modeling of static and dynamic human topology graphs. To overcome the motion format inconsistency of existing benchmarks, we introduce MC-Bench, the first available multimodal whole-body motion generation benchmark based on the unified SMPL-X format. Extensive experiments show that MotionCraft achieves state-of-the-art performance on various standard motion generation tasks.
Authors:Yiran Yang, Jinchao Zhang, Ying Deng, Jie Zhou
Title: Mobius: A High Efficient Spatial-Temporal Parallel Training Paradigm for Text-to-Video Generation Task
Abstract:
Inspired by the success of the text-to-image (T2I) generation task, many researchers are devoting themselves to the text-to-video (T2V) generation task. Most of the T2V frameworks usually inherit from the T2I model and add extra-temporal layers of training to generate dynamic videos, which can be viewed as a fine-tuning task. However, the traditional 3D-Unet is a serial mode and the temporal layers follow the spatial layers, which will result in high GPU memory and training time consumption according to its serial feature flow. We believe that this serial mode will bring more training costs with the large diffusion model and massive datasets, which are not environmentally friendly and not suitable for the development of the T2V. Therefore, we propose a highly efficient spatial-temporal parallel training paradigm for T2V tasks, named Mobius. In our 3D-Unet, the temporal layers and spatial layers are parallel, which optimizes the feature flow and backpropagation. The Mobius will save 24% GPU memory and 12% training time, which can greatly improve the T2V fine-tuning task and provide a novel insight for the AIGC community. We will release our codes in the future.
Authors:Baiqi Li, Zhiqiu Lin, Deepak Pathak, Jiayao Li, Yixin Fei, Kewen Wu, Tiffany Ling, Xide Xia, Pengchuan Zhang, Graham Neubig, Deva Ramanan
Title: GenAI-Bench: Evaluating and Improving Compositional Text-to-Visual Generation
Abstract:
While text-to-visual models now produce photo-realistic images and videos, they struggle with compositional text prompts involving attributes, relationships, and higher-order reasoning such as logic and comparison. In this work, we conduct an extensive human study on GenAI-Bench to evaluate the performance of leading image and video generation models in various aspects of compositional text-to-visual generation. We also compare automated evaluation metrics against our collected human ratings and find that VQAScore -- a metric measuring the likelihood that a VQA model views an image as accurately depicting the prompt -- significantly outperforms previous metrics such as CLIPScore. In addition, VQAScore can improve generation in a black-box manner (without finetuning) via simply ranking a few (3 to 9) candidate images. Ranking by VQAScore is 2x to 3x more effective than other scoring methods like PickScore, HPSv2, and ImageReward at improving human alignment ratings for DALL-E 3 and Stable Diffusion, especially on compositional prompts that require advanced visio-linguistic reasoning. We release a new GenAI-Rank benchmark with over 40,000 human ratings to evaluate scoring metrics on ranking images generated from the same prompt. Lastly, we discuss promising areas for improvement in VQAScore, such as addressing fine-grained visual details. We will release all human ratings (over 80,000) to facilitate scientific benchmarking of both generative models and automated metrics.
Authors:Yiren Song, Shijie Huang, Chen Yao, Xiaojun Ye, Hai Ci, Jiaming Liu, Yuxuan Zhang, Mike Zheng Shou
Title: ProcessPainter: Learn Painting Process from Sequence Data
Abstract:
The painting process of artists is inherently stepwise and varies significantly among different painters and styles. Generating detailed, step-by-step painting processes is essential for art education and research, yet remains largely underexplored. Traditional stroke-based rendering methods break down images into sequences of brushstrokes, yet they fall short of replicating the authentic processes of artists, with limitations confined to basic brushstroke modifications. Text-to-image models utilizing diffusion processes generate images through iterative denoising, also diverge substantially from artists' painting process. To address these challenges, we introduce ProcessPainter, a text-to-video model that is initially pre-trained on synthetic data and subsequently fine-tuned with a select set of artists' painting sequences using the LoRA model. This approach successfully generates painting processes from text prompts for the first time. Furthermore, we introduce an Artwork Replication Network capable of accepting arbitrary-frame input, which facilitates the controlled generation of painting processes, decomposing images into painting sequences, and completing semi-finished artworks. This paper offers new perspectives and tools for advancing art education and image generation technology.
Authors:Geon Yeong Park, Hyeonho Jeong, Sang Wan Lee, Jong Chul Ye
Title: Spectral Motion Alignment for Video Motion Transfer using Diffusion Models
Abstract:
The evolution of diffusion models has greatly impacted video generation and understanding. Particularly, text-to-video diffusion models (VDMs) have significantly facilitated the customization of input video with target appearance, motion, etc. Despite these advances, challenges persist in accurately distilling motion information from video frames. While existing works leverage the consecutive frame residual as the target motion vector, they inherently lack global motion context and are vulnerable to frame-wise distortions. To address this, we present Spectral Motion Alignment (SMA), a novel framework that refines and aligns motion vectors using Fourier and wavelet transforms. SMA learns motion patterns by incorporating frequency-domain regularization, facilitating the learning of whole-frame global motion dynamics, and mitigating spatial artifacts. Extensive experiments demonstrate SMA's efficacy in improving motion transfer while maintaining computational efficiency and compatibility across various video customization frameworks.
Authors:Sihyun Yu, Weili Nie, De-An Huang, Boyi Li, Jinwoo Shin, Anima Anandkumar
Title: Efficient Video Diffusion Models via Content-Frame Motion-Latent Decomposition
Abstract:
Video diffusion models have recently made great progress in generation quality, but are still limited by the high memory and computational requirements. This is because current video diffusion models often attempt to process high-dimensional videos directly. To tackle this issue, we propose content-motion latent diffusion model (CMD), a novel efficient extension of pretrained image diffusion models for video generation. Specifically, we propose an autoencoder that succinctly encodes a video as a combination of a content frame (like an image) and a low-dimensional motion latent representation. The former represents the common content, and the latter represents the underlying motion in the video, respectively. We generate the content frame by fine-tuning a pretrained image diffusion model, and we generate the motion latent representation by training a new lightweight diffusion model. A key innovation here is the design of a compact latent space that can directly utilizes a pretrained image diffusion model, which has not been done in previous latent video diffusion models. This leads to considerably better quality generation and reduced computational costs. For instance, CMD can sample a video 7.7$\times$ faster than prior approaches by generating a video of 512$\times$1024 resolution and length 16 in 3.1 seconds. Moreover, CMD achieves an FVD score of 212.7 on WebVid-10M, 27.3% better than the previous state-of-the-art of 292.4.
Authors:Hyeonho Jeong, Jinho Chang, Geon Yeong Park, Jong Chul Ye
Title: DreamMotion: Space-Time Self-Similar Score Distillation for Zero-Shot Video Editing
Abstract:
Text-driven diffusion-based video editing presents a unique challenge not encountered in image editing literature: establishing real-world motion. Unlike existing video editing approaches, here we focus on score distillation sampling to circumvent the standard reverse diffusion process and initiate optimization from videos that already exhibit natural motion. Our analysis reveals that while video score distillation can effectively introduce new content indicated by target text, it can also cause significant structure and motion deviation. To counteract this, we propose to match space-time self-similarities of the original video and the edited video during the score distillation. Thanks to the use of score distillation, our approach is model-agnostic, which can be applied for both cascaded and non-cascaded video diffusion frameworks. Through extensive comparisons with leading methods, our approach demonstrates its superiority in altering appearances while accurately preserving the original structure and motion.
Authors:Mingxiao Li, Bo Wan, Marie-Francine Moens, Tinne Tuytelaars
Title: Animate Your Motion: Turning Still Images into Dynamic Videos
Abstract:
In recent years, diffusion models have made remarkable strides in text-to-video generation, sparking a quest for enhanced control over video outputs to more accurately reflect user intentions. Traditional efforts predominantly focus on employing either semantic cues, like images or depth maps, or motion-based conditions, like moving sketches or object bounding boxes. Semantic inputs offer a rich scene context but lack detailed motion specificity; conversely, motion inputs provide precise trajectory information but miss the broader semantic narrative. For the first time, we integrate both semantic and motion cues within a diffusion model for video generation, as demonstrated in Fig 1. To this end, we introduce the Scene and Motion Conditional Diffusion (SMCD), a novel methodology for managing multimodal inputs. It incorporates a recognized motion conditioning module and investigates various approaches to integrate scene conditions, promoting synergy between different modalities. For model training, we separate the conditions for the two modalities, introducing a two-stage training pipeline. Experimental results demonstrate that our design significantly enhances video quality, motion precision, and semantic coherence.
Authors:Jingyuan Sun, Mingxiao Li, Zijiao Chen, Marie-Francine Moens
Title: NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties
Abstract:
In the pursuit to understand the intricacies of human brain's visual processing, reconstructing dynamic visual experiences from brain activities emerges as a challenging yet fascinating endeavor. While recent advancements have achieved success in reconstructing static images from non-invasive brain recordings, the domain of translating continuous brain activities into video format remains underexplored. In this work, we introduce NeuroCine, a novel dual-phase framework to targeting the inherent challenges of decoding fMRI data, such as noises, spatial redundancy and temporal lags. This framework proposes spatial masking and temporal interpolation-based augmentation for contrastive learning fMRI representations and a diffusion model enhanced by dependent prior noise for video generation. Tested on a publicly available fMRI dataset, our method shows promising results, outperforming the previous state-of-the-art models by a notable margin of ${20.97\%}$, ${31.00\%}$ and ${12.30\%}$ respectively on decoding the brain activities of three subjects in the fMRI dataset, as measured by SSIM. Additionally, our attention analysis suggests that the model aligns with existing brain structures and functions, indicating its biological plausibility and interpretability.
Authors:Qiang Qu, Yiran Shen, Xiaoming Chen, Yuk Ying Chung, Tongliang Liu
Title: E2HQV: High-Quality Video Generation from Event Camera via Theory-Inspired Model-Aided Deep Learning
Abstract:
The bio-inspired event cameras or dynamic vision sensors are capable of asynchronously capturing per-pixel brightness changes (called event-streams) in high temporal resolution and high dynamic range. However, the non-structural spatial-temporal event-streams make it challenging for providing intuitive visualization with rich semantic information for human vision. It calls for events-to-video (E2V) solutions which take event-streams as input and generate high quality video frames for intuitive visualization. However, current solutions are predominantly data-driven without considering the prior knowledge of the underlying statistics relating event-streams and video frames. It highly relies on the non-linearity and generalization capability of the deep neural networks, thus, is struggling on reconstructing detailed textures when the scenes are complex. In this work, we propose \textbf{E2HQV}, a novel E2V paradigm designed to produce high-quality video frames from events. This approach leverages a model-aided deep learning framework, underpinned by a theory-inspired E2V model, which is meticulously derived from the fundamental imaging principles of event cameras. To deal with the issue of state-reset in the recurrent components of E2HQV, we also design a temporal shift embedding module to further improve the quality of the video frames. Comprehensive evaluations on the real world event camera datasets validate our approach, with E2HQV, notably outperforming state-of-the-art approaches, e.g., surpassing the second best by over 40\% for some evaluation metrics.
Authors:Yue Zhao, Long Zhao, Xingyi Zhou, Jialin Wu, Chun-Te Chu, Hui Miao, Florian Schroff, Hartwig Adam, Ting Liu, Boqing Gong, Philipp Krähenbühl, Liangzhe Yuan
Title: Distilling Vision-Language Models on Millions of Videos
Abstract:
The recent advance in vision-language models is largely attributed to the abundance of image-text data. We aim to replicate this success for video-language models, but there simply is not enough human-curated video-text data available. We thus resort to fine-tuning a video-language model from a strong image-language baseline with synthesized instructional data. The resulting video model by video-instruction-tuning (VIIT) is then used to auto-label millions of videos to generate high-quality captions. We show the adapted video-language model performs well on a wide range of video-language benchmarks. For instance, it surpasses the best prior result on open-ended NExT-QA by 2.8%. Besides, our model generates detailed descriptions for previously unseen videos, which provide better textual supervision than existing methods. Experiments show that a video-language dual-encoder model contrastively trained on these auto-generated captions is 3.8% better than the strongest baseline that also leverages vision-language models. Our best model outperforms state-of-the-art methods on MSR-VTT zero-shot text-to-video retrieval by 6%. As a side product, we generate the largest video caption dataset to date.
Authors:Hsin-Ping Huang, Yu-Chuan Su, Deqing Sun, Lu Jiang, Xuhui Jia, Yukun Zhu, Ming-Hsuan Yang
Title: Fine-grained Controllable Video Generation via Object Appearance and Context
Abstract:
Text-to-video generation has shown promising results. However, by taking only natural languages as input, users often face difficulties in providing detailed information to precisely control the model's output. In this work, we propose fine-grained controllable video generation (FACTOR) to achieve detailed control. Specifically, FACTOR aims to control objects' appearances and context, including their location and category, in conjunction with the text prompt. To achieve detailed control, we propose a unified framework to jointly inject control signals into the existing text-to-video model. Our model consists of a joint encoder and adaptive cross-attention layers. By optimizing the encoder and the inserted layer, we adapt the model to generate videos that are aligned with both text prompts and fine-grained control. Compared to existing methods relying on dense control signals such as edge maps, we provide a more intuitive and user-friendly interface to allow object-level fine-grained control. Our method achieves controllability of object appearances without finetuning, which reduces the per-subject optimization efforts for the users. Extensive experiments on standard benchmark datasets and user-provided inputs validate that our model obtains a 70% improvement in controllability metrics over competitive baselines.
Authors:Hyeonho Jeong, Geon Yeong Park, Jong Chul Ye
Title: VMC: Video Motion Customization using Temporal Attention Adaption for Text-to-Video Diffusion Models
Abstract:
Text-to-video diffusion models have advanced video generation significantly. However, customizing these models to generate videos with tailored motions presents a substantial challenge. In specific, they encounter hurdles in (a) accurately reproducing motion from a target video, and (b) creating diverse visual variations. For example, straightforward extensions of static image customization methods to video often lead to intricate entanglements of appearance and motion data. To tackle this, here we present the Video Motion Customization (VMC) framework, a novel one-shot tuning approach crafted to adapt temporal attention layers within video diffusion models. Our approach introduces a novel motion distillation objective using residual vectors between consecutive frames as a motion reference. The diffusion process then preserves low-frequency motion trajectories while mitigating high-frequency motion-unrelated noise in image space. We validate our method against state-of-the-art video generative models across diverse real-world motions and contexts. Our codes, data and the project demo can be found at https://video-motion-customization.github.io
Authors:Rinon Gal, Yael Vinker, Yuval Alaluf, Amit H. Bermano, Daniel Cohen-Or, Ariel Shamir, Gal Chechik
Title: Breathing Life Into Sketches Using Text-to-Video Priors
Abstract:
A sketch is one of the most intuitive and versatile tools humans use to convey their ideas visually. An animated sketch opens another dimension to the expression of ideas and is widely used by designers for a variety of purposes. Animating sketches is a laborious process, requiring extensive experience and professional design skills. In this work, we present a method that automatically adds motion to a single-subject sketch (hence, "breathing life into it"), merely by providing a text prompt indicating the desired motion. The output is a short animation provided in vector representation, which can be easily edited. Our method does not require extensive training, but instead leverages the motion prior of a large pretrained text-to-video diffusion model using a score-distillation loss to guide the placement of strokes. To promote natural and smooth motion and to better preserve the sketch's appearance, we model the learned motion through two components. The first governs small local deformations and the second controls global affine transformations. Surprisingly, we find that even models that struggle to generate sketch videos on their own can still serve as a useful backbone for animating abstract representations.
Authors:Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Sai Saketh Rambhatla, Akbar Shah, Xi Yin, Devi Parikh, Ishan Misra
Title: Emu Video: Factorizing Text-to-Video Generation by Explicit Image Conditioning
Abstract:
We present Emu Video, a text-to-video generation model that factorizes the generation into two steps: first generating an image conditioned on the text, and then generating a video conditioned on the text and the generated image. We identify critical design decisions--adjusted noise schedules for diffusion, and multi-stage training that enable us to directly generate high quality and high resolution videos, without requiring a deep cascade of models as in prior work. In human evaluations, our generated videos are strongly preferred in quality compared to all prior work--81% vs. Google's Imagen Video, 90% vs. Nvidia's PYOCO, and 96% vs. Meta's Make-A-Video. Our model outperforms commercial solutions such as RunwayML's Gen2 and Pika Labs. Finally, our factorizing approach naturally lends itself to animating images based on a user's text prompt, where our generations are preferred 96% over prior work.
Authors:Guy Yariv, Itai Gat, Sagie Benaim, Lior Wolf, Idan Schwartz, Yossi Adi
Title: Diverse and Aligned Audio-to-Video Generation via Text-to-Video Model Adaptation
Abstract:
We consider the task of generating diverse and realistic videos guided by natural audio samples from a wide variety of semantic classes. For this task, the videos are required to be aligned both globally and temporally with the input audio: globally, the input audio is semantically associated with the entire output video, and temporally, each segment of the input audio is associated with a corresponding segment of that video. We utilize an existing text-conditioned video generation model and a pre-trained audio encoder model. The proposed method is based on a lightweight adaptor network, which learns to map the audio-based representation to the input representation expected by the text-to-video generation model. As such, it also enables video generation conditioned on text, audio, and, for the first time as far as we can ascertain, on both text and audio. We validate our method extensively on three datasets demonstrating significant semantic diversity of audio-video samples and further propose a novel evaluation metric (AV-Align) to assess the alignment of generated videos with input audio samples. AV-Align is based on the detection and comparison of energy peaks in both modalities. In comparison to recent state-of-the-art approaches, our method generates videos that are better aligned with the input sound, both with respect to content and temporal axis. We also show that videos produced by our method present higher visual quality and are more diverse.
Authors:Mingzhen Sun, Weining Wang, Zihan Qin, Jiahui Sun, Sihan Chen, Jing Liu
Title: GLOBER: Coherent Non-autoregressive Video Generation via GLOBal Guided Video DecodER
Abstract:
Video generation necessitates both global coherence and local realism. This work presents a novel non-autoregressive method GLOBER, which first generates global features to obtain comprehensive global guidance and then synthesizes video frames based on the global features to generate coherent videos. Specifically, we propose a video auto-encoder, where a video encoder encodes videos into global features, and a video decoder, built on a diffusion model, decodes the global features and synthesizes video frames in a non-autoregressive manner. To achieve maximum flexibility, our video decoder perceives temporal information through normalized frame indexes, which enables it to synthesize arbitrary sub video clips with predetermined starting and ending frame indexes. Moreover, a novel adversarial loss is introduced to improve the global coherence and local realism between the synthesized video frames. Finally, we employ a diffusion-based video generator to fit the global features outputted by the video encoder for video generation. Extensive experimental results demonstrate the effectiveness and efficiency of our proposed method, and new state-of-the-art results have been achieved on multiple benchmarks.
Authors:Jie An, Songyang Zhang, Harry Yang, Sonal Gupta, Jia-Bin Huang, Jiebo Luo, Xi Yin
Title: Latent-Shift: Latent Diffusion with Temporal Shift for Efficient Text-to-Video Generation
Abstract:
We propose Latent-Shift -- an efficient text-to-video generation method based on a pretrained text-to-image generation model that consists of an autoencoder and a U-Net diffusion model. Learning a video diffusion model in the latent space is much more efficient than in the pixel space. The latter is often limited to first generating a low-resolution video followed by a sequence of frame interpolation and super-resolution models, which makes the entire pipeline very complex and computationally expensive. To extend a U-Net from image generation to video generation, prior work proposes to add additional modules like 1D temporal convolution and/or temporal attention layers. In contrast, we propose a parameter-free temporal shift module that can leverage the spatial U-Net as is for video generation. We achieve this by shifting two portions of the feature map channels forward and backward along the temporal dimension. The shifted features of the current frame thus receive the features from the previous and the subsequent frames, enabling motion learning without additional parameters. We show that Latent-Shift achieves comparable or better results while being significantly more efficient. Moreover, Latent-Shift can generate images despite being finetuned for T2V generation.
Authors:Jiawei Liu, Weining Wang, Sihan Chen, Xinxin Zhu, Jing Liu
Title: Sounding Video Generator: A Unified Framework for Text-guided Sounding Video Generation
Abstract:
As a combination of visual and audio signals, video is inherently multi-modal. However, existing video generation methods are primarily intended for the synthesis of visual frames, whereas audio signals in realistic videos are disregarded. In this work, we concentrate on a rarely investigated problem of text guided sounding video generation and propose the Sounding Video Generator (SVG), a unified framework for generating realistic videos along with audio signals. Specifically, we present the SVG-VQGAN to transform visual frames and audio melspectrograms into discrete tokens. SVG-VQGAN applies a novel hybrid contrastive learning method to model inter-modal and intra-modal consistency and improve the quantized representations. A cross-modal attention module is employed to extract associated features of visual frames and audio signals for contrastive learning. Then, a Transformer-based decoder is used to model associations between texts, visual frames, and audio signals at token level for auto-regressive sounding video generation. AudioSetCap, a human annotated text-video-audio paired dataset, is produced for training SVG. Experimental results demonstrate the superiority of our method when compared with existing textto-video generation methods as well as audio generation methods on Kinetics and VAS datasets.
Authors:Shaoteng Liu, Yuechen Zhang, Wenbo Li, Zhe Lin, Jiaya Jia
Title: Video-P2P: Video Editing with Cross-attention Control
Abstract:
This paper presents Video-P2P, a novel framework for real-world video editing with cross-attention control. While attention control has proven effective for image editing with pre-trained image generation models, there are currently no large-scale video generation models publicly available. Video-P2P addresses this limitation by adapting an image generation diffusion model to complete various video editing tasks. Specifically, we propose to first tune a Text-to-Set (T2S) model to complete an approximate inversion and then optimize a shared unconditional embedding to achieve accurate video inversion with a small memory cost. For attention control, we introduce a novel decoupled-guidance strategy, which uses different guidance strategies for the source and target prompts. The optimized unconditional embedding for the source prompt improves reconstruction ability, while an initialized unconditional embedding for the target prompt enhances editability. Incorporating the attention maps of these two branches enables detailed editing. These technical designs enable various text-driven editing applications, including word swap, prompt refinement, and attention re-weighting. Video-P2P works well on real-world videos for generating new characters while optimally preserving their original poses and scenes. It significantly outperforms previous approaches.
Authors:Hanshuai Cui, Zhiqing Tang, Zhifei Xu, Zhi Yao, Wenyi Zeng, Weijia Jia
Title: BWCache: Accelerating Video Diffusion Transformers through Block-Wise Caching
Abstract:
Recent advancements in Diffusion Transformers (DiTs) have established them as the state-of-the-art method for video generation. However, their inherently sequential denoising process results in inevitable latency, limiting real-world applicability. Existing acceleration methods either compromise visual quality due to architectural modifications or fail to reuse intermediate features at proper granularity. Our analysis reveals that DiT blocks are the primary contributors to inference latency. Across diffusion timesteps, the feature variations of DiT blocks exhibit a U-shaped pattern with high similarity during intermediate timesteps, which suggests substantial computational redundancy. In this paper, we propose Block-Wise Caching (BWCache), a training-free method to accelerate DiT-based video generation. BWCache dynamically caches and reuses features from DiT blocks across diffusion timesteps. Furthermore, we introduce a similarity indicator that triggers feature reuse only when the differences between block features at adjacent timesteps fall below a threshold, thereby minimizing redundant computations while maintaining visual fidelity. Extensive experiments on several video diffusion models demonstrate that BWCache achieves up to 2.24$\times$ speedup with comparable visual quality.
Authors:Guile Wu, David Huang, Dongfeng Bai, Bingbing Liu
Title: MoVieDrive: Multi-Modal Multi-View Urban Scene Video Generation
Abstract:
Video generation has recently shown superiority in urban scene synthesis for autonomous driving. Existing video generation approaches to autonomous driving primarily focus on RGB video generation and lack the ability to support multi-modal video generation. However, multi-modal data, such as depth maps and semantic maps, are crucial for holistic urban scene understanding in autonomous driving. Although it is feasible to use multiple models to generate different modalities, this increases the difficulty of model deployment and does not leverage complementary cues for multi-modal data generation. To address this problem, in this work, we propose a novel multi-modal multi-view video generation approach to autonomous driving. Specifically, we construct a unified diffusion transformer model composed of modal-shared components and modal-specific components. Then, we leverage diverse conditioning inputs to encode controllable scene structure and content cues into the unified diffusion model for multi-modal multi-view video generation. In this way, our approach is capable of generating multi-modal multi-view driving scene videos in a unified framework. Our experiments on the challenging real-world autonomous driving dataset, nuScenes, show that our approach can generate multi-modal multi-view urban scene videos with high fidelity and controllability, surpassing the state-of-the-art methods.
Authors:Peng Dai, Feitong Tan, Qiangeng Xu, Yihua Huang, David Futschik, Ruofei Du, Sean Fanello, Yinda Zhang, Xiaojuan Qi
Title: S^2VG: 3D Stereoscopic and Spatial Video Generation via Denoising Frame Matrix
Abstract:
While video generation models excel at producing high-quality monocular videos, generating 3D stereoscopic and spatial videos for immersive applications remains an underexplored challenge. We present a pose-free and training-free method that leverages an off-the-shelf monocular video generation model to produce immersive 3D videos. Our approach first warps the generated monocular video into pre-defined camera viewpoints using estimated depth information, then applies a novel \textit{frame matrix} inpainting framework. This framework utilizes the original video generation model to synthesize missing content across different viewpoints and timestamps, ensuring spatial and temporal consistency without requiring additional model fine-tuning. Moreover, we develop a \dualupdate~scheme that further improves the quality of video inpainting by alleviating the negative effects propagated from disoccluded areas in the latent space. The resulting multi-view videos are then adapted into stereoscopic pairs or optimized into 4D Gaussians for spatial video synthesis. We validate the efficacy of our proposed method by conducting experiments on videos from various generative models, such as Sora, Lumiere, WALT, and Zeroscope. The experiments demonstrate that our method has a significant improvement over previous methods. Project page at: https://daipengwa.github.io/S-2VG_ProjectPage/
Authors:Qi Xie, Yongjia Ma, Donglin Di, Xuehao Gao, Xun Yang
Title: MoCA: Identity-Preserving Text-to-Video Generation via Mixture of Cross Attention
Abstract:
Achieving ID-preserving text-to-video (T2V) generation remains challenging despite recent advances in diffusion-based models. Existing approaches often fail to capture fine-grained facial dynamics or maintain temporal identity coherence. To address these limitations, we propose MoCA, a novel Video Diffusion Model built on a Diffusion Transformer (DiT) backbone, incorporating a Mixture of Cross-Attention mechanism inspired by the Mixture-of-Experts paradigm. Our framework improves inter-frame identity consistency by embedding MoCA layers into each DiT block, where Hierarchical Temporal Pooling captures identity features over varying timescales, and Temporal-Aware Cross-Attention Experts dynamically model spatiotemporal relationships. We further incorporate a Latent Video Perceptual Loss to enhance identity coherence and fine-grained details across video frames. To train this model, we collect CelebIPVid, a dataset of 10,000 high-resolution videos from 1,000 diverse individuals, promoting cross-ethnicity generalization. Extensive experiments on CelebIPVid show that MoCA outperforms existing T2V methods by over 5% across Face similarity.
Authors:Tongchun Zuo, Zaiyu Huang, Shuliang Ning, Ente Lin, Chao Liang, Zerong Zheng, Jianwen Jiang, Yuan Zhang, Mingyuan Gao, Xin Dong
Title: DreamVVT: Mastering Realistic Video Virtual Try-On in the Wild via a Stage-Wise Diffusion Transformer Framework
Abstract:
Video virtual try-on (VVT) technology has garnered considerable academic interest owing to its promising applications in e-commerce advertising and entertainment. However, most existing end-to-end methods rely heavily on scarce paired garment-centric datasets and fail to effectively leverage priors of advanced visual models and test-time inputs, making it challenging to accurately preserve fine-grained garment details and maintain temporal consistency in unconstrained scenarios. To address these challenges, we propose DreamVVT, a carefully designed two-stage framework built upon Diffusion Transformers (DiTs), which is inherently capable of leveraging diverse unpaired human-centric data to enhance adaptability in real-world scenarios. To further leverage prior knowledge from pretrained models and test-time inputs, in the first stage, we sample representative frames from the input video and utilize a multi-frame try-on model integrated with a vision-language model (VLM), to synthesize high-fidelity and semantically consistent keyframe try-on images. These images serve as complementary appearance guidance for subsequent video generation. \textbf{In the second stage}, skeleton maps together with fine-grained motion and appearance descriptions are extracted from the input content, and these along with the keyframe try-on images are then fed into a pretrained video generation model enhanced with LoRA adapters. This ensures long-term temporal coherence for unseen regions and enables highly plausible dynamic motions. Extensive quantitative and qualitative experiments demonstrate that DreamVVT surpasses existing methods in preserving detailed garment content and temporal stability in real-world scenarios. Our project page https://virtu-lab.github.io/
Authors:Xinyu Liu, Hengyu Liu, Cheng Wang, Tianming Liu, Yixuan Yuan
Title: EndoGen: Conditional Autoregressive Endoscopic Video Generation
Abstract:
Endoscopic video generation is crucial for advancing medical imaging and enhancing diagnostic capabilities. However, prior efforts in this field have either focused on static images, lacking the dynamic context required for practical applications, or have relied on unconditional generation that fails to provide meaningful references for clinicians. Therefore, in this paper, we propose the first conditional endoscopic video generation framework, namely EndoGen. Specifically, we build an autoregressive model with a tailored Spatiotemporal Grid-Frame Patterning (SGP) strategy. It reformulates the learning of generating multiple frames as a grid-based image generation pattern, which effectively capitalizes the inherent global dependency modeling capabilities of autoregressive architectures. Furthermore, we propose a Semantic-Aware Token Masking (SAT) mechanism, which enhances the model's ability to produce rich and diverse content by selectively focusing on semantically meaningful regions during the generation process. Through extensive experiments, we demonstrate the effectiveness of our framework in generating high-quality, conditionally guided endoscopic content, and improves the performance of downstream task of polyp segmentation. Code released at https://www.github.com/CUHK-AIM-Group/EndoGen.
Authors:Jing Gu, Xian Liu, Yu Zeng, Ashwin Nagarajan, Fangrui Zhu, Daniel Hong, Yue Fan, Qianqi Yan, Kaiwen Zhou, Ming-Yu Liu, Xin Eric Wang
Title: "PhyWorldBench": A Comprehensive Evaluation of Physical Realism in Text-to-Video Models
Abstract:
Video generation models have achieved remarkable progress in creating high-quality, photorealistic content. However, their ability to accurately simulate physical phenomena remains a critical and unresolved challenge. This paper presents PhyWorldBench, a comprehensive benchmark designed to evaluate video generation models based on their adherence to the laws of physics. The benchmark covers multiple levels of physical phenomena, ranging from fundamental principles like object motion and energy conservation to more complex scenarios involving rigid body interactions and human or animal motion. Additionally, we introduce a novel ""Anti-Physics"" category, where prompts intentionally violate real-world physics, enabling the assessment of whether models can follow such instructions while maintaining logical consistency. Besides large-scale human evaluation, we also design a simple yet effective method that could utilize current MLLM to evaluate the physics realism in a zero-shot fashion. We evaluate 12 state-of-the-art text-to-video generation models, including five open-source and five proprietary models, with a detailed comparison and analysis. we identify pivotal challenges models face in adhering to real-world physics. Through systematic testing of their outputs across 1,050 curated prompts-spanning fundamental, composite, and anti-physics scenarios-we identify pivotal challenges these models face in adhering to real-world physics. We then rigorously examine their performance on diverse physical phenomena with varying prompt types, deriving targeted recommendations for crafting prompts that enhance fidelity to physical principles.
Authors:Xinyu Zhang, Dong Gong, Zicheng Duan, Anton van den Hengel, Lingqiao Liu
Title: Let Your Video Listen to Your Music!
Abstract:
Aligning the rhythm of visual motion in a video with a given music track is a practical need in multimedia production, yet remains an underexplored task in autonomous video editing. Effective alignment between motion and musical beats enhances viewer engagement and visual appeal, particularly in music videos, promotional content, and cinematic editing. Existing methods typically depend on labor-intensive manual cutting, speed adjustments, or heuristic-based editing techniques to achieve synchronization. While some generative models handle joint video and music generation, they often entangle the two modalities, limiting flexibility in aligning video to music beats while preserving the full visual content. In this paper, we propose a novel and efficient framework, termed MVAA (Music-Video Auto-Alignment), that automatically edits video to align with the rhythm of a given music track while preserving the original visual content. To enhance flexibility, we modularize the task into a two-step process in our MVAA: aligning motion keyframes with audio beats, followed by rhythm-aware video inpainting. Specifically, we first insert keyframes at timestamps aligned with musical beats, then use a frame-conditioned diffusion model to generate coherent intermediate frames, preserving the original video's semantic content. Since comprehensive test-time training can be time-consuming, we adopt a two-stage strategy: pretraining the inpainting module on a small video set to learn general motion priors, followed by rapid inference-time fine-tuning for video-specific adaptation. This hybrid approach enables adaptation within 10 minutes with one epoch on a single NVIDIA 4090 GPU using CogVideoX-5b-I2V as the backbone. Extensive experiments show that our approach can achieve high-quality beat alignment and visual smoothness.
Authors:Tianchen Zhao, Ke Hong, Xinhao Yang, Xuefeng Xiao, Huixia Li, Feng Ling, Ruiqi Xie, Siqi Chen, Hongyu Zhu, Yichong Zhang, Yu Wang
Title: PAROAttention: Pattern-Aware ReOrdering for Efficient Sparse and Quantized Attention in Visual Generation Models
Abstract:
In visual generation, the quadratic complexity of attention mechanisms results in high memory and computational costs, especially for longer token sequences required in high-resolution image or multi-frame video generation. To address this, prior research has explored techniques such as sparsification and quantization. However, these techniques face significant challenges under low density and reduced bitwidths. Through systematic analysis, we identify that the core difficulty stems from the dispersed and irregular characteristics of visual attention patterns. Therefore, instead of introducing specialized sparsification and quantization design to accommodate such patterns, we propose an alternative strategy: *reorganizing* the attention pattern to alleviate the challenges. Inspired by the local aggregation nature of visual feature extraction, we design a novel **Pattern-Aware token ReOrdering (PARO)** technique, which unifies the diverse attention patterns into a hardware-friendly block-wise pattern. This unification substantially simplifies and enhances both sparsification and quantization. We evaluate the performance-efficiency trade-offs of various design choices and finalize a methodology tailored for the unified pattern. Our approach, **PAROAttention**, achieves video and image generation with lossless metrics, and nearly identical results from full-precision (FP) baselines, while operating at notably lower density (~20%-30%) and bitwidth (**INT8/INT4**), achieving a **1.9x** to **2.7x** end-to-end latency speedup.
Authors:Chao Liang, Jianwen Jiang, Wang Liao, Jiaqi Yang, Zerong zheng, Weihong Zeng, Han Liang
Title: AlignHuman: Improving Motion and Fidelity via Timestep-Segment Preference Optimization for Audio-Driven Human Animation
Abstract:
Recent advancements in human video generation and animation tasks, driven by diffusion models, have achieved significant progress. However, expressive and realistic human animation remains challenging due to the trade-off between motion naturalness and visual fidelity. To address this, we propose \textbf{AlignHuman}, a framework that combines Preference Optimization as a post-training technique with a divide-and-conquer training strategy to jointly optimize these competing objectives. Our key insight stems from an analysis of the denoising process across timesteps: (1) early denoising timesteps primarily control motion dynamics, while (2) fidelity and human structure can be effectively managed by later timesteps, even if early steps are skipped. Building on this observation, we propose timestep-segment preference optimization (TPO) and introduce two specialized LoRAs as expert alignment modules, each targeting a specific dimension in its corresponding timestep interval. The LoRAs are trained using their respective preference data and activated in the corresponding intervals during inference to enhance motion naturalness and fidelity. Extensive experiments demonstrate that AlignHuman improves strong baselines and reduces NFEs during inference, achieving a 3.3$\times$ speedup (from 100 NFEs to 30 NFEs) with minimal impact on generation quality. Homepage: \href{https://alignhuman.github.io/}{https://alignhuman.github.io/}
Authors:Huixuan Zhang, Junzhe Zhang, Xiaojun Wan
Title: How Much To Guide: Revisiting Adaptive Guidance in Classifier-Free Guidance Text-to-Vision Diffusion Models
Abstract:
With the rapid development of text-to-vision generation diffusion models, classifier-free guidance has emerged as the most prevalent method for conditioning. However, this approach inherently requires twice as many steps for model forwarding compared to unconditional generation, resulting in significantly higher costs. While previous study has introduced the concept of adaptive guidance, it lacks solid analysis and empirical results, making previous method unable to be applied to general diffusion models. In this work, we present another perspective of applying adaptive guidance and propose Step AG, which is a simple, universally applicable adaptive guidance strategy. Our evaluations focus on both image quality and image-text alignment. whose results indicate that restricting classifier-free guidance to the first several denoising steps is sufficient for generating high-quality, well-conditioned images, achieving an average speedup of 20% to 30%. Such improvement is consistent across different settings such as inference steps, and various models including video generation models, highlighting the superiority of our method.
Authors:Shuo Cao, Yihao Liu, Xiaohui Li, Yuanting Gao, Yu Zhou, Chao Dong
Title: DualX-VSR: Dual Axial Spatial$\times$Temporal Transformer for Real-World Video Super-Resolution without Motion Compensation
Abstract:
Transformer-based models like ViViT and TimeSformer have advanced video understanding by effectively modeling spatiotemporal dependencies. Recent video generation models, such as Sora and Vidu, further highlight the power of transformers in long-range feature extraction and holistic spatiotemporal modeling. However, directly applying these models to real-world video super-resolution (VSR) is challenging, as VSR demands pixel-level precision, which can be compromised by tokenization and sequential attention mechanisms. While recent transformer-based VSR models attempt to address these issues using smaller patches and local attention, they still face limitations such as restricted receptive fields and dependence on optical flow-based alignment, which can introduce inaccuracies in real-world settings. To overcome these issues, we propose Dual Axial Spatial$\times$Temporal Transformer for Real-World Video Super-Resolution (DualX-VSR), which introduces a novel dual axial spatial$\times$temporal attention mechanism that integrates spatial and temporal information along orthogonal directions. DualX-VSR eliminates the need for motion compensation, offering a simplified structure that provides a cohesive representation of spatiotemporal information. As a result, DualX-VSR achieves high fidelity and superior performance in real-world VSR task.
Authors:Yuanze Lin, Yi-Wen Chen, Yi-Hsuan Tsai, Ronald Clark, Ming-Hsuan Yang
Title: IllumiCraft: Unified Geometry and Illumination Diffusion for Controllable Video Generation
Abstract:
Although diffusion-based models can generate high-quality and high-resolution video sequences from textual or image inputs, they lack explicit integration of geometric cues when controlling scene lighting and visual appearance across frames. To address this limitation, we propose IllumiCraft, an end-to-end diffusion framework accepting three complementary inputs: (1) high-dynamic-range (HDR) video maps for detailed lighting control; (2) synthetically relit frames with randomized illumination changes (optionally paired with a static background reference image) to provide appearance cues; and (3) 3D point tracks that capture precise 3D geometry information. By integrating the lighting, appearance, and geometry cues within a unified diffusion architecture, IllumiCraft generates temporally coherent videos aligned with user-defined prompts. It supports background-conditioned and text-conditioned video relighting and provides better fidelity than existing controllable video generation methods. Project Page: https://yuanze-lin.me/IllumiCraft_page
Authors:Kinam Kim, Junha Hyung, Jaegul Choo
Title: Temporal In-Context Fine-Tuning for Versatile Control of Video Diffusion Models
Abstract:
Recent advances in text-to-video diffusion models have enabled high-quality video synthesis, but controllable generation remains challenging, particularly under limited data and compute. Existing fine-tuning methods for conditional generation often rely on external encoders or architectural modifications, which demand large datasets and are typically restricted to spatially aligned conditioning, limiting flexibility and scalability. In this work, we introduce Temporal In-Context Fine-Tuning (TIC-FT), an efficient and versatile approach for adapting pretrained video diffusion models to diverse conditional generation tasks. Our key idea is to concatenate condition and target frames along the temporal axis and insert intermediate buffer frames with progressively increasing noise levels. These buffer frames enable smooth transitions, aligning the fine-tuning process with the pretrained model's temporal dynamics. TIC-FT requires no architectural changes and achieves strong performance with as few as 10-30 training samples. We validate our method across a range of tasks, including image-to-video and video-to-video generation, using large-scale base models such as CogVideoX-5B and Wan-14B. Extensive experiments show that TIC-FT outperforms existing baselines in both condition fidelity and visual quality, while remaining highly efficient in both training and inference. For additional results, visit https://kinam0252.github.io/TIC-FT/
Authors:Bojia Zi, Weixuan Peng, Xianbiao Qi, Jianan Wang, Shihao Zhao, Rong Xiao, Kam-Fai Wong
Title: MiniMax-Remover: Taming Bad Noise Helps Video Object Removal
Abstract:
Recent advances in video diffusion models have driven rapid progress in video editing techniques. However, video object removal, a critical subtask of video editing, remains challenging due to issues such as hallucinated objects and visual artifacts. Furthermore, existing methods often rely on computationally expensive sampling procedures and classifier-free guidance (CFG), resulting in slow inference. To address these limitations, we propose MiniMax-Remover, a novel two-stage video object removal approach. Motivated by the observation that text condition is not best suited for this task, we simplify the pretrained video generation model by removing textual input and cross-attention layers, resulting in a more lightweight and efficient model architecture in the first stage. In the second stage, we distilled our remover on successful videos produced by the stage-1 model and curated by human annotators, using a minimax optimization strategy to further improve editing quality and inference speed. Specifically, the inner maximization identifies adversarial input noise ("bad noise") that makes failure removals, while the outer minimization step trains the model to generate high-quality removal results even under such challenging conditions. As a result, our method achieves a state-of-the-art video object removal results with as few as 6 sampling steps and doesn't rely on CFG, significantly improving inference efficiency. Extensive experiments demonstrate the effectiveness and superiority of MiniMax-Remover compared to existing methods. Codes and Videos are available at: https://minimax-remover.github.io.
Authors:Gwanghyun Kim, Xueting Li, Ye Yuan, Koki Nagano, Tianye Li, Jan Kautz, Se Young Chun, Umar Iqbal
Title: GeoMan: Temporally Consistent Human Geometry Estimation using Image-to-Video Diffusion
Abstract:
Estimating accurate and temporally consistent 3D human geometry from videos is a challenging problem in computer vision. Existing methods, primarily optimized for single images, often suffer from temporal inconsistencies and fail to capture fine-grained dynamic details. To address these limitations, we present GeoMan, a novel architecture designed to produce accurate and temporally consistent depth and normal estimations from monocular human videos. GeoMan addresses two key challenges: the scarcity of high-quality 4D training data and the need for metric depth estimation to accurately model human size. To overcome the first challenge, GeoMan employs an image-based model to estimate depth and normals for the first frame of a video, which then conditions a video diffusion model, reframing video geometry estimation task as an image-to-video generation problem. This design offloads the heavy lifting of geometric estimation to the image model and simplifies the video model's role to focus on intricate details while using priors learned from large-scale video datasets. Consequently, GeoMan improves temporal consistency and generalizability while requiring minimal 4D training data. To address the challenge of accurate human size estimation, we introduce a root-relative depth representation that retains critical human-scale details and is easier to be estimated from monocular inputs, overcoming the limitations of traditional affine-invariant and metric depth representations. GeoMan achieves state-of-the-art performance in both qualitative and quantitative evaluations, demonstrating its effectiveness in overcoming longstanding challenges in 3D human geometry estimation from videos.
Authors:Peng Liu, Xiaoming Ren, Fengkai Liu, Qingsong Xie, Quanlong Zheng, Yanhao Zhang, Haonan Lu, Yujiu Yang
Title: Dynamic-I2V: Exploring Image-to-Video Generation Models via Multimodal LLM
Abstract:
Recent advancements in image-to-video (I2V) generation have shown promising performance in conventional scenarios. However, these methods still encounter significant challenges when dealing with complex scenes that require a deep understanding of nuanced motion and intricate object-action relationships. To address these challenges, we present Dynamic-I2V, an innovative framework that integrates Multimodal Large Language Models (MLLMs) to jointly encode visual and textual conditions for a diffusion transformer (DiT) architecture. By leveraging the advanced multimodal understanding capabilities of MLLMs, our model significantly improves motion controllability and temporal coherence in synthesized videos. The inherent multimodality of Dynamic-I2V further enables flexible support for diverse conditional inputs, extending its applicability to various downstream generation tasks. Through systematic analysis, we identify a critical limitation in current I2V benchmarks: a significant bias towards favoring low-dynamic videos, stemming from an inadequate balance between motion complexity and visual quality metrics. To resolve this evaluation gap, we propose DIVE - a novel assessment benchmark specifically designed for comprehensive dynamic quality measurement in I2V generation. In conclusion, extensive quantitative and qualitative experiments confirm that Dynamic-I2V attains state-of-the-art performance in image-to-video generation, particularly revealing significant improvements of 42.5%, 7.9%, and 11.8% in dynamic range, controllability, and quality, respectively, as assessed by the DIVE metric in comparison to existing methods.
Authors:Junhao Chen, Mingjin Chen, Jianjin Xu, Xiang Li, Junting Dong, Mingze Sun, Puhua Jiang, Hongxiang Li, Yuhang Yang, Hao Zhao, Xiaoxiao Long, Ruqi Huang
Title: DanceTogether! Identity-Preserving Multi-Person Interactive Video Generation
Abstract:
Controllable video generation (CVG) has advanced rapidly, yet current systems falter when more than one actor must move, interact, and exchange positions under noisy control signals. We address this gap with DanceTogether, the first end-to-end diffusion framework that turns a single reference image plus independent pose-mask streams into long, photorealistic videos while strictly preserving every identity. A novel MaskPoseAdapter binds "who" and "how" at every denoising step by fusing robust tracking masks with semantically rich-but noisy-pose heat-maps, eliminating the identity drift and appearance bleeding that plague frame-wise pipelines. To train and evaluate at scale, we introduce (i) PairFS-4K, 26 hours of dual-skater footage with 7,000+ distinct IDs, (ii) HumanRob-300, a one-hour humanoid-robot interaction set for rapid cross-domain transfer, and (iii) TogetherVideoBench, a three-track benchmark centered on the DanceTogEval-100 test suite covering dance, boxing, wrestling, yoga, and figure skating. On TogetherVideoBench, DanceTogether outperforms the prior arts by a significant margin. Moreover, we show that a one-hour fine-tune yields convincing human-robot videos, underscoring broad generalization to embodied-AI and HRI tasks. Extensive ablations confirm that persistent identity-action binding is critical to these gains. Together, our model, datasets, and benchmark lift CVG from single-subject choreography to compositionally controllable, multi-actor interaction, opening new avenues for digital production, simulation, and embodied intelligence. Our video demos and code are available at https://DanceTog.github.io/.
Authors:Xin You, Minghui Zhang, Hanxiao Zhang, Jie Yang, Nassir Navab
Title: Temporal Differential Fields for 4D Motion Modeling via Image-to-Video Synthesis
Abstract:
Temporal modeling on regular respiration-induced motions is crucial to image-guided clinical applications. Existing methods cannot simulate temporal motions unless high-dose imaging scans including starting and ending frames exist simultaneously. However, in the preoperative data acquisition stage, the slight movement of patients may result in dynamic backgrounds between the first and last frames in a respiratory period. This additional deviation can hardly be removed by image registration, thus affecting the temporal modeling. To address that limitation, we pioneeringly simulate the regular motion process via the image-to-video (I2V) synthesis framework, which animates with the first frame to forecast future frames of a given length. Besides, to promote the temporal consistency of animated videos, we devise the Temporal Differential Diffusion Model to generate temporal differential fields, which measure the relative differential representations between adjacent frames. The prompt attention layer is devised for fine-grained differential fields, and the field augmented layer is adopted to better interact these fields with the I2V framework, promoting more accurate temporal variation of synthesized videos. Extensive results on ACDC cardiac and 4D Lung datasets reveal that our approach simulates 4D videos along the intrinsic motion trajectory, rivaling other competitive methods on perceptual similarity and temporal consistency. Codes will be available soon.
Authors:Yifan Xie, Fei Ma, Yi Bin, Ying He, Fei Yu
Title: Audio-Driven Talking Face Video Generation with Joint Uncertainty Learning
Abstract:
Talking face video generation with arbitrary speech audio is a significant challenge within the realm of digital human technology. The previous studies have emphasized the significance of audio-lip synchronization and visual quality. Currently, limited attention has been given to the learning of visual uncertainty, which creates several issues in existing systems, including inconsistent visual quality and unreliable performance across different input conditions. To address the problem, we propose a Joint Uncertainty Learning Network (JULNet) for high-quality talking face video generation, which incorporates a representation of uncertainty that is directly related to visual error. Specifically, we first design an uncertainty module to individually predict the error map and uncertainty map after obtaining the generated image. The error map represents the difference between the generated image and the ground truth image, while the uncertainty map is used to predict the probability of incorrect estimates. Furthermore, to match the uncertainty distribution with the error distribution through a KL divergence term, we introduce a histogram technique to approximate the distributions. By jointly optimizing error and uncertainty, the performance and robustness of our model can be enhanced. Extensive experiments demonstrate that our method achieves superior high-fidelity and audio-lip synchronization in talking face video generation compared to previous methods.
Authors:Bozheng Li, Yongliang Wu, Yi Lu, Jiashuo Yu, Licheng Tang, Jiawang Cao, Wenqing Zhu, Yuyang Sun, Jay Wu, Wenbo Zhu
Title: VEU-Bench: Towards Comprehensive Understanding of Video Editing
Abstract:
Widely shared videos on the internet are often edited. Recently, although Video Large Language Models (Vid-LLMs) have made great progress in general video understanding tasks, their capabilities in video editing understanding (VEU) tasks remain unexplored. To address this gap, in this paper, we introduce VEU-Bench (Video Editing Understanding Benchmark), a comprehensive benchmark that categorizes video editing components across various dimensions, from intra-frame features like shot size to inter-shot attributes such as cut types and transitions. Unlike previous video editing understanding benchmarks that focus mainly on editing element classification, VEU-Bench encompasses 19 fine-grained tasks across three stages: recognition, reasoning, and judging. To enhance the annotation of VEU automatically, we built an annotation pipeline integrated with an ontology-based knowledge base. Through extensive experiments with 11 state-of-the-art Vid-LLMs, our findings reveal that current Vid-LLMs face significant challenges in VEU tasks, with some performing worse than random choice. To alleviate this issue, we develop Oscars, a VEU expert model fine-tuned on the curated VEU-Bench dataset. It outperforms existing open-source Vid-LLMs on VEU-Bench by over 28.3% in accuracy and achieves performance comparable to commercial models like GPT-4o. We also demonstrate that incorporating VEU data significantly enhances the performance of Vid-LLMs on general video understanding benchmarks, with an average improvement of 8.3% across nine reasoning tasks.
Authors:Wang Lin, Liyu Jia, Wentao Hu, Kaihang Pan, Zhongqi Yue, Wei Zhao, Jingyuan Chen, Fei Wu, Hanwang Zhang
Title: Reasoning Physical Video Generation with Diffusion Timestep Tokens via Reinforcement Learning
Abstract:
Despite recent progress in video generation, producing videos that adhere to physical laws remains a significant challenge. Traditional diffusion-based methods struggle to extrapolate to unseen physical conditions (eg, velocity) due to their reliance on data-driven approximations. To address this, we propose to integrate symbolic reasoning and reinforcement learning to enforce physical consistency in video generation. We first introduce the Diffusion Timestep Tokenizer (DDT), which learns discrete, recursive visual tokens by recovering visual attributes lost during the diffusion process. The recursive visual tokens enable symbolic reasoning by a large language model. Based on it, we propose the Phys-AR framework, which consists of two stages: The first stage uses supervised fine-tuning to transfer symbolic knowledge, while the second stage applies reinforcement learning to optimize the model's reasoning abilities through reward functions based on physical conditions. Our approach allows the model to dynamically adjust and improve the physical properties of generated videos, ensuring adherence to physical laws. Experimental results demonstrate that PhysAR can generate videos that are physically consistent.
Authors:Yishen Ji, Ziyue Zhu, Zhenxin Zhu, Kaixin Xiong, Ming Lu, Zhiqi Li, Lijun Zhou, Haiyang Sun, Bing Wang, Tong Lu
Title: CoGen: 3D Consistent Video Generation via Adaptive Conditioning for Autonomous Driving
Abstract:
Recent progress in driving video generation has shown significant potential for enhancing self-driving systems by providing scalable and controllable training data. Although pretrained state-of-the-art generation models, guided by 2D layout conditions (e.g., HD maps and bounding boxes), can produce photorealistic driving videos, achieving controllable multi-view videos with high 3D consistency remains a major challenge. To tackle this, we introduce a novel spatial adaptive generation framework, CoGen, which leverages advances in 3D generation to improve performance in two key aspects: (i) To ensure 3D consistency, we first generate high-quality, controllable 3D conditions that capture the geometry of driving scenes. By replacing coarse 2D conditions with these fine-grained 3D representations, our approach significantly enhances the spatial consistency of the generated videos. (ii) Additionally, we introduce a consistency adapter module to strengthen the robustness of the model to multi-condition control. The results demonstrate that this method excels in preserving geometric fidelity and visual realism, offering a reliable video generation solution for autonomous driving.
Authors:Chun-Han Yao, Yiming Xie, Vikram Voleti, Huaizu Jiang, Varun Jampani
Title: SV4D 2.0: Enhancing Spatio-Temporal Consistency in Multi-View Video Diffusion for High-Quality 4D Generation
Abstract:
We present Stable Video 4D 2.0 (SV4D 2.0), a multi-view video diffusion model for dynamic 3D asset generation. Compared to its predecessor SV4D, SV4D 2.0 is more robust to occlusions and large motion, generalizes better to real-world videos, and produces higher-quality outputs in terms of detail sharpness and spatio-temporal consistency. We achieve this by introducing key improvements in multiple aspects: 1) network architecture: eliminating the dependency of reference multi-views and designing blending mechanism for 3D and frame attention, 2) data: enhancing quality and quantity of training data, 3) training strategy: adopting progressive 3D-4D training for better generalization, and 4) 4D optimization: handling 3D inconsistency and large motion via 2-stage refinement and progressive frame sampling. Extensive experiments demonstrate significant performance gain by SV4D 2.0 both visually and quantitatively, achieving better detail (-14\% LPIPS) and 4D consistency (-44\% FV4D) in novel-view video synthesis and 4D optimization (-12\% LPIPS and -24\% FV4D) compared to SV4D. Project page: https://sv4d20.github.io.
Authors:Zeyinzi Jiang, Zhen Han, Chaojie Mao, Jingfeng Zhang, Yulin Pan, Yu Liu
Title: VACE: All-in-One Video Creation and Editing
Abstract:
Diffusion Transformer has demonstrated powerful capability and scalability in generating high-quality images and videos. Further pursuing the unification of generation and editing tasks has yielded significant progress in the domain of image content creation. However, due to the intrinsic demands for consistency across both temporal and spatial dynamics, achieving a unified approach for video synthesis remains challenging. We introduce VACE, which enables users to perform Video tasks within an All-in-one framework for Creation and Editing. These tasks include reference-to-video generation, video-to-video editing, and masked video-to-video editing. Specifically, we effectively integrate the requirements of various tasks by organizing video task inputs, such as editing, reference, and masking, into a unified interface referred to as the Video Condition Unit (VCU). Furthermore, by utilizing a Context Adapter structure, we inject different task concepts into the model using formalized representations of temporal and spatial dimensions, allowing it to handle arbitrary video synthesis tasks flexibly. Extensive experiments demonstrate that the unified model of VACE achieves performance on par with task-specific models across various subtasks. Simultaneously, it enables diverse applications through versatile task combinations. Project page: https://ali-vilab.github.io/VACE-Page/.
Authors:Wenzhang Sun, Qirui Hou, Donglin Di, Jiahui Yang, Yongjia Ma, Jianxun Cui
Title: UniCP: A Unified Caching and Pruning Framework for Efficient Video Generation
Abstract:
Diffusion Transformers (DiT) excel in video generation but encounter significant computational challenges due to the quadratic complexity of attention. Notably, attention differences between adjacent diffusion steps follow a U-shaped pattern. Current methods leverage this property by caching attention blocks, however, they still struggle with sudden error spikes and large discrepancies. To address these issues, we propose UniCP a unified caching and pruning framework for efficient video generation. UniCP optimizes both temporal and spatial dimensions through. Error Aware Dynamic Cache Window (EDCW): Dynamically adjusts cache window sizes for different blocks at various timesteps, adapting to abrupt error changes. PCA based Slicing (PCAS) and Dynamic Weight Shift (DWS): PCAS prunes redundant attention components, and DWS integrates caching and pruning by enabling dynamic switching between pruned and cached outputs. By adjusting cache windows and pruning redundant components, UniCP enhances computational efficiency and maintains video detail fidelity. Experimental results show that UniCP outperforms existing methods in both performance and efficiency.
Authors:Gaojie Lin, Jianwen Jiang, Jiaqi Yang, Zerong Zheng, Chao Liang
Title: OmniHuman-1: Rethinking the Scaling-Up of One-Stage Conditioned Human Animation Models
Abstract:
End-to-end human animation, such as audio-driven talking human generation, has undergone notable advancements in the recent few years. However, existing methods still struggle to scale up as large general video generation models, limiting their potential in real applications. In this paper, we propose OmniHuman, a Diffusion Transformer-based framework that scales up data by mixing motion-related conditions into the training phase. To this end, we introduce two training principles for these mixed conditions, along with the corresponding model architecture and inference strategy. These designs enable OmniHuman to fully leverage data-driven motion generation, ultimately achieving highly realistic human video generation. More importantly, OmniHuman supports various portrait contents (face close-up, portrait, half-body, full-body), supports both talking and singing, handles human-object interactions and challenging body poses, and accommodates different image styles. Compared to existing end-to-end audio-driven methods, OmniHuman not only produces more realistic videos, but also offers greater flexibility in inputs. It also supports multiple driving modalities (audio-driven, video-driven and combined driving signals). Video samples are provided on the ttfamily project page (https://omnihuman-lab.github.io)
Authors:Ting Zhang, Zhiqiang Yuan, Yeshuang Zhu, Jinchao Zhang
Title: ILDiff: Generate Transparent Animated Stickers by Implicit Layout Distillation
Abstract:
High-quality animated stickers usually contain transparent channels, which are often ignored by current video generation models. To generate fine-grained animated transparency channels, existing methods can be roughly divided into video matting algorithms and diffusion-based algorithms. The methods based on video matting have poor performance in dealing with semi-open areas in stickers, while diffusion-based methods are often used to model a single image, which will lead to local flicker when modeling animated stickers. In this paper, we firstly propose an ILDiff method to generate animated transparent channels through implicit layout distillation, which solves the problems of semi-open area collapse and no consideration of temporal information in existing methods. Secondly, we create the Transparent Animated Sticker Dataset (TASD), which contains 0.32M high-quality samples with transparent channel, to provide data support for related fields. Extensive experiments demonstrate that ILDiff can produce finer and smoother transparent channels compared to other methods such as Matting Anything and Layer Diffusion. Our code and dataset will be released at link https://xiaoyuan1996.github.io.
Authors:Yuqing Wang, Shuhuai Ren, Zhijie Lin, Yujin Han, Haoyuan Guo, Zhenheng Yang, Difan Zou, Jiashi Feng, Xihui Liu
Title: Parallelized Autoregressive Visual Generation
Abstract:
Autoregressive models have emerged as a powerful approach for visual generation but suffer from slow inference speed due to their sequential token-by-token prediction process. In this paper, we propose a simple yet effective approach for parallelized autoregressive visual generation that improves generation efficiency while preserving the advantages of autoregressive modeling. Our key insight is that parallel generation depends on visual token dependencies-tokens with weak dependencies can be generated in parallel, while strongly dependent adjacent tokens are difficult to generate together, as their independent sampling may lead to inconsistencies. Based on this observation, we develop a parallel generation strategy that generates distant tokens with weak dependencies in parallel while maintaining sequential generation for strongly dependent local tokens. Our approach can be seamlessly integrated into standard autoregressive models without modifying the architecture or tokenizer. Experiments on ImageNet and UCF-101 demonstrate that our method achieves a 3.6x speedup with comparable quality and up to 9.5x speedup with minimal quality degradation across both image and video generation tasks. We hope this work will inspire future research in efficient visual generation and unified autoregressive modeling. Project page: https://yuqingwang1029.github.io/PAR-project.
Authors:Zhentao Tan, Ben Xue, Jian Jia, Junhao Wang, Wencai Ye, Shaoyun Shi, Mingjie Sun, Wenjin Wu, Quan Chen, Peng Jiang
Title: SweetTok: Semantic-Aware Spatial-Temporal Tokenizer for Compact Video Discretization
Abstract:
This paper presents the \textbf{S}emantic-a\textbf{W}ar\textbf{E} spatial-t\textbf{E}mporal \textbf{T}okenizer (SweetTok), a novel video tokenizer to overcome the limitations in current video tokenization methods for compacted yet effective discretization. Unlike previous approaches that process flattened local visual patches via direct discretization or adaptive query tokenization, SweetTok proposes a decoupling framework, compressing visual inputs through distinct spatial and temporal queries via \textbf{D}ecoupled \textbf{Q}uery \textbf{A}uto\textbf{E}ncoder (DQAE). This design allows SweetTok to efficiently compress video token count while achieving superior fidelity by capturing essential information across spatial and temporal dimensions. Furthermore, we design a \textbf{M}otion-enhanced \textbf{L}anguage \textbf{C}odebook (MLC) tailored for spatial and temporal compression to address the differences in semantic representation between appearance and motion information. SweetTok significantly improves video reconstruction results by \textbf{42.8\%} w.r.t rFVD on UCF-101 dataset. With a better token compression strategy, it also boosts downstream video generation results by \textbf{15.1\%} w.r.t gFVD. Additionally, the compressed decoupled tokens are imbued with semantic information, enabling few-shot recognition capabilities powered by LLMs in downstream applications.
Authors:Zhihui Yin, Ye Ma, Xipeng Cao, Bo Wang, Quan Chen, Peng Jiang
Title: Text-Video Multi-Grained Integration for Video Moment Montage
Abstract:
The proliferation of online short video platforms has driven a surge in user demand for short video editing. However, manually selecting, cropping, and assembling raw footage into a coherent, high-quality video remains laborious and time-consuming. To accelerate this process, we focus on a user-friendly new task called Video Moment Montage (VMM), which aims to accurately locate the corresponding video segments based on a pre-provided narration text and then arrange these video clips to create a complete video that aligns with the corresponding descriptions. The challenge lies in extracting precise temporal segments while ensuring intra-sentence and inter-sentence context consistency, as a single script sentence may require trimming and assembling multiple video clips. To address this problem, we present a novel \textit{Text-Video Multi-Grained Integration} method (TV-MGI) that efficiently fuses text features from the script with both shot-level and frame-level video features, which enables the global and fine-grained alignment between the video content and the corresponding textual descriptions in the script. To facilitate further research in this area, we introduce the Multiple Sentences with Shots Dataset (MSSD), a large-scale dataset designed explicitly for the VMM task. We conduct extensive experiments on the MSSD dataset to demonstrate the effectiveness of our framework compared to baseline methods.
Authors:Hannan Lu, Xiaohe Wu, Shudong Wang, Xiameng Qin, Xinyu Zhang, Junyu Han, Wangmeng Zuo, Ji Tao
Title: Seeing Beyond Views: Multi-View Driving Scene Video Generation with Holistic Attention
Abstract:
Generating multi-view videos for autonomous driving training has recently gained much attention, with the challenge of addressing both cross-view and cross-frame consistency. Existing methods typically apply decoupled attention mechanisms for spatial, temporal, and view dimensions. However, these approaches often struggle to maintain consistency across dimensions, particularly when handling fast-moving objects that appear at different times and viewpoints. In this paper, we present CogDriving, a novel network designed for synthesizing high-quality multi-view driving videos. CogDriving leverages a Diffusion Transformer architecture with holistic-4D attention modules, enabling simultaneous associations across the spatial, temporal, and viewpoint dimensions. We also propose a lightweight controller tailored for CogDriving, i.e., Micro-Controller, which uses only 1.1% of the parameters of the standard ControlNet, enabling precise control over Bird's-Eye-View layouts. To enhance the generation of object instances crucial for autonomous driving, we propose a re-weighted learning objective, dynamically adjusting the learning weights for object instances during training. CogDriving demonstrates strong performance on the nuScenes validation set, achieving an FVD score of 37.8, highlighting its ability to generate realistic driving videos. The project can be found at https://luhannan.github.io/CogDrivingPage/.
Authors:Yi Huang, Wei Xiong, He Zhang, Chaoqi Chen, Jianzhuang Liu, Mingfu Yan, Shifeng Chen
Title: DIVE: Taming DINO for Subject-Driven Video Editing
Abstract:
Building on the success of diffusion models in image generation and editing, video editing has recently gained substantial attention. However, maintaining temporal consistency and motion alignment still remains challenging. To address these issues, this paper proposes DINO-guided Video Editing (DIVE), a framework designed to facilitate subject-driven editing in source videos conditioned on either target text prompts or reference images with specific identities. The core of DIVE lies in leveraging the powerful semantic features extracted from a pretrained DINOv2 model as implicit correspondences to guide the editing process. Specifically, to ensure temporal motion consistency, DIVE employs DINO features to align with the motion trajectory of the source video. For precise subject editing, DIVE incorporates the DINO features of reference images into a pretrained text-to-image model to learn Low-Rank Adaptations (LoRAs), effectively registering the target subject's identity. Extensive experiments on diverse real-world videos demonstrate that our framework can achieve high-quality editing results with robust motion consistency, highlighting the potential of DINO to contribute to video editing. Project page: https://dino-video-editing.github.io
Authors:Kumara Kahatapitiya, Haozhe Liu, Sen He, Ding Liu, Menglin Jia, Chenyang Zhang, Michael S. Ryoo, Tian Xie
Title: Adaptive Caching for Faster Video Generation with Diffusion Transformers
Abstract:
Generating temporally-consistent high-fidelity videos can be computationally expensive, especially over longer temporal spans. More-recent Diffusion Transformers (DiTs) -- despite making significant headway in this context -- have only heightened such challenges as they rely on larger models and heavier attention mechanisms, resulting in slower inference speeds. In this paper, we introduce a training-free method to accelerate video DiTs, termed Adaptive Caching (AdaCache), which is motivated by the fact that "not all videos are created equal": meaning, some videos require fewer denoising steps to attain a reasonable quality than others. Building on this, we not only cache computations through the diffusion process, but also devise a caching schedule tailored to each video generation, maximizing the quality-latency trade-off. We further introduce a Motion Regularization (MoReg) scheme to utilize video information within AdaCache, essentially controlling the compute allocation based on motion content. Altogether, our plug-and-play contributions grant significant inference speedups (e.g. up to 4.7x on Open-Sora 720p - 2s video generation) without sacrificing the generation quality, across multiple video DiT baselines.
Authors:Vladimir Arkhipkin, Viacheslav Vasilev, Andrei Filatov, Igor Pavlov, Julia Agafonova, Nikolai Gerasimenko, Anna Averchenkova, Evelina Mironova, Anton Bukashkin, Konstantin Kulikov, Andrey Kuznetsov, Denis Dimitrov
Title: Kandinsky 3: Text-to-Image Synthesis for Multifunctional Generative Framework
Abstract:
Text-to-image (T2I) diffusion models are popular for introducing image manipulation methods, such as editing, image fusion, inpainting, etc. At the same time, image-to-video (I2V) and text-to-video (T2V) models are also built on top of T2I models. We present Kandinsky 3, a novel T2I model based on latent diffusion, achieving a high level of quality and photorealism. The key feature of the new architecture is the simplicity and efficiency of its adaptation for many types of generation tasks. We extend the base T2I model for various applications and create a multifunctional generation system that includes text-guided inpainting/outpainting, image fusion, text-image fusion, image variations generation, I2V and T2V generation. We also present a distilled version of the T2I model, evaluating inference in 4 steps of the reverse process without reducing image quality and 3 times faster than the base model. We deployed a user-friendly demo system in which all the features can be tested in the public domain. Additionally, we released the source code and checkpoints for the Kandinsky 3 and extended models. Human evaluations show that Kandinsky 3 demonstrates one of the highest quality scores among open source generation systems.
Authors:Di Qiu, Zheng Chen, Rui Wang, Mingyuan Fan, Changqian Yu, Junshi Huang, Xiang Wen
Title: MovieCharacter: A Tuning-Free Framework for Controllable Character Video Synthesis
Abstract:
Recent advancements in character video synthesis still depend on extensive fine-tuning or complex 3D modeling processes, which can restrict accessibility and hinder real-time applicability. To address these challenges, we propose a simple yet effective tuning-free framework for character video synthesis, named MovieCharacter, designed to streamline the synthesis process while ensuring high-quality outcomes. Our framework decomposes the synthesis task into distinct, manageable modules: character segmentation and tracking, video object removal, character motion imitation, and video composition. This modular design not only facilitates flexible customization but also ensures that each component operates collaboratively to effectively meet user needs. By leveraging existing open-source models and integrating well-established techniques, MovieCharacter achieves impressive synthesis results without necessitating substantial resources or proprietary datasets. Experimental results demonstrate that our framework enhances the efficiency, accessibility, and adaptability of character video synthesis, paving the way for broader creative and interactive applications.
Authors:Toby Perrett, Tengda Han, Dima Damen, Andrew Zisserman
Title: It's Just Another Day: Unique Video Captioning by Discriminative Prompting
Abstract:
Long videos contain many repeating actions, events and shots. These repetitions are frequently given identical captions, which makes it difficult to retrieve the exact desired clip using a text search. In this paper, we formulate the problem of unique captioning: Given multiple clips with the same caption, we generate a new caption for each clip that uniquely identifies it. We propose Captioning by Discriminative Prompting (CDP), which predicts a property that can separate identically captioned clips, and use it to generate unique captions. We introduce two benchmarks for unique captioning, based on egocentric footage and timeloop movies - where repeating actions are common. We demonstrate that captions generated by CDP improve text-to-video R@1 by 15% for egocentric videos and 10% in timeloop movies.
Authors:Daoan Zhang, Guangchen Lan, Dong-Jun Han, Wenlin Yao, Xiaoman Pan, Hongming Zhang, Mingxiao Li, Pengcheng Chen, Yu Dong, Christopher Brinton, Jiebo Luo
Title: Bridging SFT and DPO for Diffusion Model Alignment with Self-Sampling Preference Optimization
Abstract:
Existing post-training techniques are broadly categorized into supervised fine-tuning (SFT) and reinforcement learning (RL) methods; the former is stable during training but suffers from limited generalization, while the latter, despite its stronger generalization capability, relies on additional preference data or reward models and carries the risk of reward exploitation. In order to preserve the advantages of both SFT and RL -- namely, eliminating the need for paired data and reward models while retaining the training stability of SFT and the generalization ability of RL -- a new alignment method, Self-Sampling Preference Optimization (SSPO), is proposed in this paper. SSPO introduces a Random Checkpoint Replay (RCR) strategy that utilizes historical checkpoints to construct paired data, thereby effectively mitigating overfitting. Simultaneously, a Self-Sampling Regularization (SSR) strategy is employed to dynamically evaluate the quality of generated samples; when the generated samples are more likely to be winning samples, the approach automatically switches from DPO (Direct Preference Optimization) to SFT, ensuring that the training process accurately reflects the quality of the samples. Experimental results demonstrate that SSPO not only outperforms existing methods on text-to-image benchmarks, but its effectiveness has also been validated in text-to-video tasks. We validate SSPO across both text-to-image and text-to-video benchmarks. SSPO surpasses all previous approaches on the text-to-image benchmarks and demonstrates outstanding performance on the text-to-video benchmarks.
Authors:Shitong Shao, Zikai Zhou, Lichen Bai, Haoyi Xiong, Zeke Xie
Title: IV-Mixed Sampler: Leveraging Image Diffusion Models for Enhanced Video Synthesis
Abstract:
The multi-step sampling mechanism, a key feature of visual diffusion models, has significant potential to replicate the success of OpenAI's Strawberry in enhancing performance by increasing the inference computational cost. Sufficient prior studies have demonstrated that correctly scaling up computation in the sampling process can successfully lead to improved generation quality, enhanced image editing, and compositional generalization. While there have been rapid advancements in developing inference-heavy algorithms for improved image generation, relatively little work has explored inference scaling laws in video diffusion models (VDMs). Furthermore, existing research shows only minimal performance gains that are perceptible to the naked eye. To address this, we design a novel training-free algorithm IV-Mixed Sampler that leverages the strengths of image diffusion models (IDMs) to assist VDMs surpass their current capabilities. The core of IV-Mixed Sampler is to use IDMs to significantly enhance the quality of each video frame and VDMs ensure the temporal coherence of the video during the sampling process. Our experiments have demonstrated that IV-Mixed Sampler achieves state-of-the-art performance on 4 benchmarks including UCF-101-FVD, MSR-VTT-FVD, Chronomagic-Bench-150, and Chronomagic-Bench-1649. For example, the open-source Animatediff with IV-Mixed Sampler reduces the UMT-FVD score from 275.2 to 228.6, closing to 223.1 from the closed-source Pika-2.0.
Authors:Jianwen Jiang, Chao Liang, Jiaqi Yang, Gaojie Lin, Tianyun Zhong, Yanbo Zheng
Title: Loopy: Taming Audio-Driven Portrait Avatar with Long-Term Motion Dependency
Abstract:
With the introduction of diffusion-based video generation techniques, audio-conditioned human video generation has recently achieved significant breakthroughs in both the naturalness of motion and the synthesis of portrait details. Due to the limited control of audio signals in driving human motion, existing methods often add auxiliary spatial signals to stabilize movements, which may compromise the naturalness and freedom of motion. In this paper, we propose an end-to-end audio-only conditioned video diffusion model named Loopy. Specifically, we designed an inter- and intra-clip temporal module and an audio-to-latents module, enabling the model to leverage long-term motion information from the data to learn natural motion patterns and improving audio-portrait movement correlation. This method removes the need for manually specified spatial motion templates used in existing methods to constrain motion during inference. Extensive experiments show that Loopy outperforms recent audio-driven portrait diffusion models, delivering more lifelike and high-quality results across various scenarios.
Authors:Gaojie Lin, Jianwen Jiang, Chao Liang, Tianyun Zhong, Jiaqi Yang, Yanbo Zheng
Title: CyberHost: Taming Audio-driven Avatar Diffusion Model with Region Codebook Attention
Abstract:
Diffusion-based video generation technology has advanced significantly, catalyzing a proliferation of research in human animation. However, the majority of these studies are confined to same-modality driving settings, with cross-modality human body animation remaining relatively underexplored. In this paper, we introduce, an end-to-end audio-driven human animation framework that ensures hand integrity, identity consistency, and natural motion. The key design of CyberHost is the Region Codebook Attention mechanism, which improves the generation quality of facial and hand animations by integrating fine-grained local features with learned motion pattern priors. Furthermore, we have developed a suite of human-prior-guided training strategies, including body movement map, hand clarity score, pose-aligned reference feature, and local enhancement supervision, to improve synthesis results. To our knowledge, CyberHost is the first end-to-end audio-driven human diffusion model capable of facilitating zero-shot video generation within the scope of human body. Extensive experiments demonstrate that CyberHost surpasses previous works in both quantitative and qualitative aspects.
Authors:Ishan Rajendrakumar Dave, Fabian Caba Heilbron, Mubarak Shah, Simon Jenni
Title: Sync from the Sea: Retrieving Alignable Videos from Large-Scale Datasets
Abstract:
Temporal video alignment aims to synchronize the key events like object interactions or action phase transitions in two videos. Such methods could benefit various video editing, processing, and understanding tasks. However, existing approaches operate under the restrictive assumption that a suitable video pair for alignment is given, significantly limiting their broader applicability. To address this, we re-pose temporal alignment as a search problem and introduce the task of Alignable Video Retrieval (AVR). Given a query video, our approach can identify well-alignable videos from a large collection of clips and temporally synchronize them to the query. To achieve this, we make three key contributions: 1) we introduce DRAQ, a video alignability indicator to identify and re-rank the best alignable video from a set of candidates; 2) we propose an effective and generalizable frame-level video feature design to improve the alignment performance of several off-the-shelf feature representations, and 3) we propose a novel benchmark and evaluation protocol for AVR using cycle-consistency metrics. Our experiments on 3 datasets, including large-scale Kinetics700, demonstrate the effectiveness of our approach in identifying alignable video pairs from diverse datasets. Project Page: https://daveishan.github.io/avr-webpage/.
Authors:Zhifei Xie, Daniel Tang, Dingwei Tan, Jacques Klein, Tegawend F. Bissyand, Saad Ezzini
Title: DreamFactory: Pioneering Multi-Scene Long Video Generation with a Multi-Agent Framework
Abstract:
Current video generation models excel at creating short, realistic clips, but struggle with longer, multi-scene videos. We introduce \texttt{DreamFactory}, an LLM-based framework that tackles this challenge. \texttt{DreamFactory} leverages multi-agent collaboration principles and a Key Frames Iteration Design Method to ensure consistency and style across long videos. It utilizes Chain of Thought (COT) to address uncertainties inherent in large language models. \texttt{DreamFactory} generates long, stylistically coherent, and complex videos. Evaluating these long-form videos presents a challenge. We propose novel metrics such as Cross-Scene Face Distance Score and Cross-Scene Style Consistency Score. To further research in this area, we contribute the Multi-Scene Videos Dataset containing over 150 human-rated videos.
Authors:Yiming Xie, Chun-Han Yao, Vikram Voleti, Huaizu Jiang, Varun Jampani
Title: SV4D: Dynamic 3D Content Generation with Multi-Frame and Multi-View Consistency
Abstract:
We present Stable Video 4D (SV4D), a latent video diffusion model for multi-frame and multi-view consistent dynamic 3D content generation. Unlike previous methods that rely on separately trained generative models for video generation and novel view synthesis, we design a unified diffusion model to generate novel view videos of dynamic 3D objects. Specifically, given a monocular reference video, SV4D generates novel views for each video frame that are temporally consistent. We then use the generated novel view videos to optimize an implicit 4D representation (dynamic NeRF) efficiently, without the need for cumbersome SDS-based optimization used in most prior works. To train our unified novel view video generation model, we curate a dynamic 3D object dataset from the existing Objaverse dataset. Extensive experimental results on multiple datasets and user studies demonstrate SV4D's state-of-the-art performance on novel-view video synthesis as well as 4D generation compared to prior works.
Authors:Yu-Jie Yuan, Leif Kobbelt, Jiwen Liu, Yuan Zhang, Pengfei Wan, Yu-Kun Lai, Lin Gao
Title: 4Dynamic: Text-to-4D Generation with Hybrid Priors
Abstract:
Due to the fascinating generative performance of text-to-image diffusion models, growing text-to-3D generation works explore distilling the 2D generative priors into 3D, using the score distillation sampling (SDS) loss, to bypass the data scarcity problem. The existing text-to-3D methods have achieved promising results in realism and 3D consistency, but text-to-4D generation still faces challenges, including lack of realism and insufficient dynamic motions. In this paper, we propose a novel method for text-to-4D generation, which ensures the dynamic amplitude and authenticity through direct supervision provided by a video prior. Specifically, we adopt a text-to-video diffusion model to generate a reference video and divide 4D generation into two stages: static generation and dynamic generation. The static 3D generation is achieved under the guidance of the input text and the first frame of the reference video, while in the dynamic generation stage, we introduce a customized SDS loss to ensure multi-view consistency, a video-based SDS loss to improve temporal consistency, and most importantly, direct priors from the reference video to ensure the quality of geometry and texture. Moreover, we design a prior-switching training strategy to avoid conflicts between different priors and fully leverage the benefits of each prior. In addition, to enrich the generated motion, we further introduce a dynamic modeling representation composed of a deformation network and a topology network, which ensures dynamic continuity while modeling topological changes. Our method not only supports text-to-4D generation but also enables 4D generation from monocular videos. The comparison experiments demonstrate the superiority of our method compared to existing methods.
Authors:Peng Dai, Feitong Tan, Qiangeng Xu, David Futschik, Ruofei Du, Sean Fanello, Xiaojuan Qi, Yinda Zhang
Title: SVG: 3D Stereoscopic Video Generation via Denoising Frame Matrix
Abstract:
Video generation models have demonstrated great capabilities of producing impressive monocular videos, however, the generation of 3D stereoscopic video remains under-explored. We propose a pose-free and training-free approach for generating 3D stereoscopic videos using an off-the-shelf monocular video generation model. Our method warps a generated monocular video into camera views on stereoscopic baseline using estimated video depth, and employs a novel frame matrix video inpainting framework. The framework leverages the video generation model to inpaint frames observed from different timestamps and views. This effective approach generates consistent and semantically coherent stereoscopic videos without scene optimization or model fine-tuning. Moreover, we develop a disocclusion boundary re-injection scheme that further improves the quality of video inpainting by alleviating the negative effects propagated from disoccluded areas in the latent space. We validate the efficacy of our proposed method by conducting experiments on videos from various generative models, including Sora [4 ], Lumiere [2], WALT [8 ], and Zeroscope [ 42]. The experiments demonstrate that our method has a significant improvement over previous methods. The code will be released at \url{https://daipengwa.github.io/SVG_ProjectPage}.
Authors:Gihyun Kwon, Jangho Park, Jong Chul Ye
Title: Unified Editing of Panorama, 3D Scenes, and Videos Through Disentangled Self-Attention Injection
Abstract:
While text-to-image models have achieved impressive capabilities in image generation and editing, their application across various modalities often necessitates training separate models. Inspired by existing method of single image editing with self attention injection and video editing with shared attention, we propose a novel unified editing framework that combines the strengths of both approaches by utilizing only a basic 2D image text-to-image (T2I) diffusion model. Specifically, we design a sampling method that facilitates editing consecutive images while maintaining semantic consistency utilizing shared self-attention features during both reference and consecutive image sampling processes. Experimental results confirm that our method enables editing across diverse modalities including 3D scenes, videos, and panorama images.
Authors:Shentong Mo, Yapeng Tian
Title: Scaling Diffusion Mamba with Bidirectional SSMs for Efficient Image and Video Generation
Abstract:
In recent developments, the Mamba architecture, known for its selective state space approach, has shown potential in the efficient modeling of long sequences. However, its application in image generation remains underexplored. Traditional diffusion transformers (DiT), which utilize self-attention blocks, are effective but their computational complexity scales quadratically with the input length, limiting their use for high-resolution images. To address this challenge, we introduce a novel diffusion architecture, Diffusion Mamba (DiM), which foregoes traditional attention mechanisms in favor of a scalable alternative. By harnessing the inherent efficiency of the Mamba architecture, DiM achieves rapid inference times and reduced computational load, maintaining linear complexity with respect to sequence length. Our architecture not only scales effectively but also outperforms existing diffusion transformers in both image and video generation tasks. The results affirm the scalability and efficiency of DiM, establishing a new benchmark for image and video generation techniques. This work advances the field of generative models and paves the way for further applications of scalable architectures.
Authors:Gehui Chen, Guan'an Wang, Xiaowen Huang, Jitao Sang
Title: Semantically consistent Video-to-Audio Generation using Multimodal Language Large Model
Abstract:
Existing works have made strides in video generation, but the lack of sound effects (SFX) and background music (BGM) hinders a complete and immersive viewer experience. We introduce a novel semantically consistent v ideo-to-audio generation framework, namely SVA, which automatically generates audio semantically consistent with the given video content. The framework harnesses the power of multimodal large language model (MLLM) to understand video semantics from a key frame and generate creative audio schemes, which are then utilized as prompts for text-to-audio models, resulting in video-to-audio generation with natural language as an interface. We show the satisfactory performance of SVA through case study and discuss the limitations along with the future research direction. The project page is available at https://huiz-a.github.io/audio4video.github.io/.
Authors:Max Ku, Cong Wei, Weiming Ren, Harry Yang, Wenhu Chen
Title: AnyV2V: A Tuning-Free Framework For Any Video-to-Video Editing Tasks
Abstract:
In the dynamic field of digital content creation using generative models, state-of-the-art video editing models still do not offer the level of quality and control that users desire. Previous works on video editing either extended from image-based generative models in a zero-shot manner or necessitated extensive fine-tuning, which can hinder the production of fluid video edits. Furthermore, these methods frequently rely on textual input as the editing guidance, leading to ambiguities and limiting the types of edits they can perform. Recognizing these challenges, we introduce AnyV2V, a novel tuning-free paradigm designed to simplify video editing into two primary steps: (1) employing an off-the-shelf image editing model to modify the first frame, (2) utilizing an existing image-to-video generation model to generate the edited video through temporal feature injection. AnyV2V can leverage any existing image editing tools to support an extensive array of video editing tasks, including prompt-based editing, reference-based style transfer, subject-driven editing, and identity manipulation, which were unattainable by previous methods. AnyV2V can also support any video length. Our evaluation shows that AnyV2V achieved CLIP-scores comparable to other baseline methods. Furthermore, AnyV2V significantly outperformed these baselines in human evaluations, demonstrating notable improvements in visual consistency with the source video while producing high-quality edits across all editing tasks.
Authors:Deshun Yang, Luhui Hu, Yu Tian, Zihao Li, Chris Kelly, Bang Yang, Cindy Yang, Yuexian Zou
Title: WorldGPT: A Sora-Inspired Video AI Agent as Rich World Models from Text and Image Inputs
Abstract:
Several text-to-video diffusion models have demonstrated commendable capabilities in synthesizing high-quality video content. However, it remains a formidable challenge pertaining to maintaining temporal consistency and ensuring action smoothness throughout the generated sequences. In this paper, we present an innovative video generation AI agent that harnesses the power of Sora-inspired multimodal learning to build skilled world models framework based on textual prompts and accompanying images. The framework includes two parts: prompt enhancer and full video translation. The first part employs the capabilities of ChatGPT to meticulously distill and proactively construct precise prompts for each subsequent step, thereby guaranteeing the utmost accuracy in prompt communication and accurate execution in following model operations. The second part employ compatible with existing advanced diffusion techniques to expansively generate and refine the key frame at the conclusion of a video. Then we can expertly harness the power of leading and trailing key frames to craft videos with enhanced temporal consistency and action smoothness. The experimental results confirm that our method has strong effectiveness and novelty in constructing world models from text and image inputs over the other methods.
Authors:Jiawang Cao, Yongliang Wu, Weiheng Chi, Wenbo Zhu, Ziyue Su, Jay Wu
Title: Reframe Anything: LLM Agent for Open World Video Reframing
Abstract:
The proliferation of mobile devices and social media has revolutionized content dissemination, with short-form video becoming increasingly prevalent. This shift has introduced the challenge of video reframing to fit various screen aspect ratios, a process that highlights the most compelling parts of a video. Traditionally, video reframing is a manual, time-consuming task requiring professional expertise, which incurs high production costs. A potential solution is to adopt some machine learning models, such as video salient object detection, to automate the process. However, these methods often lack generalizability due to their reliance on specific training data. The advent of powerful large language models (LLMs) open new avenues for AI capabilities. Building on this, we introduce Reframe Any Video Agent (RAVA), a LLM-based agent that leverages visual foundation models and human instructions to restructure visual content for video reframing. RAVA operates in three stages: perception, where it interprets user instructions and video content; planning, where it determines aspect ratios and reframing strategies; and execution, where it invokes the editing tools to produce the final video. Our experiments validate the effectiveness of RAVA in video salient object detection and real-world reframing tasks, demonstrating its potential as a tool for AI-powered video editing.
Authors:Bin Lei, le Chen, Caiwen Ding
Title: FlashVideo: A Framework for Swift Inference in Text-to-Video Generation
Abstract:
In the evolving field of machine learning, video generation has witnessed significant advancements with autoregressive-based transformer models and diffusion models, known for synthesizing dynamic and realistic scenes. However, these models often face challenges with prolonged inference times, even for generating short video clips such as GIFs. This paper introduces FlashVideo, a novel framework tailored for swift Text-to-Video generation. FlashVideo represents the first successful adaptation of the RetNet architecture for video generation, bringing a unique approach to the field. Leveraging the RetNet-based architecture, FlashVideo reduces the time complexity of inference from $\mathcal{O}(L^2)$ to $\mathcal{O}(L)$ for a sequence of length $L$, significantly accelerating inference speed. Additionally, we adopt a redundant-free frame interpolation method, enhancing the efficiency of frame interpolation. Our comprehensive experiments demonstrate that FlashVideo achieves a $\times9.17$ efficiency improvement over a traditional autoregressive-based transformer model, and its inference speed is of the same order of magnitude as that of BERT-based transformer models.
Authors:Shuzhou Yang, Chong Mou, Jiwen Yu, Yuhan Wang, Xiandong Meng, Jian Zhang
Title: Neural Video Fields Editing
Abstract:
Diffusion models have revolutionized text-driven video editing. However, applying these methods to real-world editing encounters two significant challenges: (1) the rapid increase in GPU memory demand as the number of frames grows, and (2) the inter-frame inconsistency in edited videos. To this end, we propose NVEdit, a novel text-driven video editing framework designed to mitigate memory overhead and improve consistent editing for real-world long videos. Specifically, we construct a neural video field, powered by tri-plane and sparse grid, to enable encoding long videos with hundreds of frames in a memory-efficient manner. Next, we update the video field through off-the-shelf Text-to-Image (T2I) models to impart text-driven editing effects. A progressive optimization strategy is developed to preserve original temporal priors. Importantly, both the neural video field and T2I model are adaptable and replaceable, thus inspiring future research. Experiments demonstrate the ability of our approach to edit hundreds of frames with impressive inter-frame consistency. Our project is available at: https://nvedit.github.io/.
Authors:Gyeongrok Oh, Jaehwan Jeong, Sieun Kim, Wonmin Byeon, Jinkyu Kim, Sungwoong Kim, Sangpil Kim
Title: MEVG: Multi-event Video Generation with Text-to-Video Models
Abstract:
We introduce a novel diffusion-based video generation method, generating a video showing multiple events given multiple individual sentences from the user. Our method does not require a large-scale video dataset since our method uses a pre-trained diffusion-based text-to-video generative model without a fine-tuning process. Specifically, we propose a last frame-aware diffusion process to preserve visual coherence between consecutive videos where each video consists of different events by initializing the latent and simultaneously adjusting noise in the latent to enhance the motion dynamic in a generated video. Furthermore, we find that the iterative update of latent vectors by referring to all the preceding frames maintains the global appearance across the frames in a video clip. To handle dynamic text input for video generation, we utilize a novel prompt generator that transfers course text messages from the user into the multiple optimal prompts for the text-to-video diffusion model. Extensive experiments and user studies show that our proposed method is superior to other video-generative models in terms of temporal coherency of content and semantics. Video examples are available on our project page: https://kuai-lab.github.io/eccv2024mevg.
Authors:Jiachen Lu, Ze Huang, Zeyu Yang, Jiahui Zhang, Li Zhang
Title: WoVoGen: World Volume-aware Diffusion for Controllable Multi-camera Driving Scene Generation
Abstract:
Generating multi-camera street-view videos is critical for augmenting autonomous driving datasets, addressing the urgent demand for extensive and varied data. Due to the limitations in diversity and challenges in handling lighting conditions, traditional rendering-based methods are increasingly being supplanted by diffusion-based methods. However, a significant challenge in diffusion-based methods is ensuring that the generated sensor data preserve both intra-world consistency and inter-sensor coherence. To address these challenges, we combine an additional explicit world volume and propose the World Volume-aware Multi-camera Driving Scene Generator (WoVoGen). This system is specifically designed to leverage 4D world volume as a foundational element for video generation. Our model operates in two distinct phases: (i) envisioning the future 4D temporal world volume based on vehicle control sequences, and (ii) generating multi-camera videos, informed by this envisioned 4D temporal world volume and sensor interconnectivity. The incorporation of the 4D world volume empowers WoVoGen not only to generate high-quality street-view videos in response to vehicle control inputs but also to facilitate scene editing tasks.
Authors:Shengqu Cai, Duygu Ceylan, Matheus Gadelha, Chun-Hao Paul Huang, Tuanfeng Yang Wang, Gordon Wetzstein
Title: Generative Rendering: Controllable 4D-Guided Video Generation with 2D Diffusion Models
Abstract:
Traditional 3D content creation tools empower users to bring their imagination to life by giving them direct control over a scene's geometry, appearance, motion, and camera path. Creating computer-generated videos, however, is a tedious manual process, which can be automated by emerging text-to-video diffusion models. Despite great promise, video diffusion models are difficult to control, hindering a user to apply their own creativity rather than amplifying it. To address this challenge, we present a novel approach that combines the controllability of dynamic 3D meshes with the expressivity and editability of emerging diffusion models. For this purpose, our approach takes an animated, low-fidelity rendered mesh as input and injects the ground truth correspondence information obtained from the dynamic mesh into various stages of a pre-trained text-to-image generation model to output high-quality and temporally consistent frames. We demonstrate our approach on various examples where motion can be obtained by animating rigged assets or changing the camera path.
Authors:Vladimir Arkhipkin, Zein Shaheen, Viacheslav Vasilev, Elizaveta Dakhova, Andrey Kuznetsov, Denis Dimitrov
Title: FusionFrames: Efficient Architectural Aspects for Text-to-Video Generation Pipeline
Abstract:
Multimedia generation approaches occupy a prominent place in artificial intelligence research. Text-to-image models achieved high-quality results over the last few years. However, video synthesis methods recently started to develop. This paper presents a new two-stage latent diffusion text-to-video generation architecture based on the text-to-image diffusion model. The first stage concerns keyframes synthesis to figure the storyline of a video, while the second one is devoted to interpolation frames generation to make movements of the scene and objects smooth. We compare several temporal conditioning approaches for keyframes generation. The results show the advantage of using separate temporal blocks over temporal layers in terms of metrics reflecting video generation quality aspects and human preference. The design of our interpolation model significantly reduces computational costs compared to other masked frame interpolation approaches. Furthermore, we evaluate different configurations of MoVQ-based video decoding scheme to improve consistency and achieve higher PSNR, SSIM, MSE, and LPIPS scores. Finally, we compare our pipeline with existing solutions and achieve top-2 scores overall and top-1 among open-source solutions: CLIPSIM = 0.2976 and FVD = 433.054. Project page: https://ai-forever.github.io/kandinsky-video/
Authors:Yujin Jeong, Wonjeong Ryoo, Seunghyun Lee, Dabin Seo, Wonmin Byeon, Sangpil Kim, Jinkyu Kim
Title: The Power of Sound (TPoS): Audio Reactive Video Generation with Stable Diffusion
Abstract:
In recent years, video generation has become a prominent generative tool and has drawn significant attention. However, there is little consideration in audio-to-video generation, though audio contains unique qualities like temporal semantics and magnitude. Hence, we propose The Power of Sound (TPoS) model to incorporate audio input that includes both changeable temporal semantics and magnitude. To generate video frames, TPoS utilizes a latent stable diffusion model with textual semantic information, which is then guided by the sequential audio embedding from our pretrained Audio Encoder. As a result, this method produces audio reactive video contents. We demonstrate the effectiveness of TPoS across various tasks and compare its results with current state-of-the-art techniques in the field of audio-to-video generation. More examples are available at https://ku-vai.github.io/TPoS/
Authors:Jiawei Wu, Changqing Zhang, Zuoyong Li, Huazhu Fu, Xi Peng, Joey Tianyi Zhou
Title: dugMatting: Decomposed-Uncertainty-Guided Matting
Abstract:
Cutting out an object and estimating its opacity mask, known as image matting, is a key task in image and video editing. Due to the highly ill-posed issue, additional inputs, typically user-defined trimaps or scribbles, are usually needed to reduce the uncertainty. Although effective, it is either time consuming or only suitable for experienced users who know where to place the strokes. In this work, we propose a decomposed-uncertainty-guided matting (dugMatting) algorithm, which explores the explicitly decomposed uncertainties to efficiently and effectively improve the results. Basing on the characteristic of these uncertainties, the epistemic uncertainty is reduced in the process of guiding interaction (which introduces prior knowledge), while the aleatoric uncertainty is reduced in modeling data distribution (which introduces statistics for both data and possible noise). The proposed matting framework relieves the requirement for users to determine the interaction areas by using simple and efficient labeling. Extensively quantitative and qualitative results validate that the proposed method significantly improves the original matting algorithms in terms of both efficiency and efficacy.
Authors:Yue Gao, Yuan Zhou, Jinglu Wang, Xiao Li, Xiang Ming, Yan Lu
Title: High-Fidelity and Freely Controllable Talking Head Video Generation
Abstract:
Talking head generation is to generate video based on a given source identity and target motion. However, current methods face several challenges that limit the quality and controllability of the generated videos. First, the generated face often has unexpected deformation and severe distortions. Second, the driving image does not explicitly disentangle movement-relevant information, such as poses and expressions, which restricts the manipulation of different attributes during generation. Third, the generated videos tend to have flickering artifacts due to the inconsistency of the extracted landmarks between adjacent frames. In this paper, we propose a novel model that produces high-fidelity talking head videos with free control over head pose and expression. Our method leverages both self-supervised learned landmarks and 3D face model-based landmarks to model the motion. We also introduce a novel motion-aware multi-scale feature alignment module to effectively transfer the motion without face distortion. Furthermore, we enhance the smoothness of the synthesized talking head videos with a feature context adaptation and propagation module. We evaluate our model on challenging datasets and demonstrate its state-of-the-art performance.
Authors:Seung Hyun Lee, Sieun Kim, Innfarn Yoo, Feng Yang, Donghyeon Cho, Youngseo Kim, Huiwen Chang, Jinkyu Kim, Sangpil Kim
Title: Soundini: Sound-Guided Diffusion for Natural Video Editing
Abstract:
We propose a method for adding sound-guided visual effects to specific regions of videos with a zero-shot setting. Animating the appearance of the visual effect is challenging because each frame of the edited video should have visual changes while maintaining temporal consistency. Moreover, existing video editing solutions focus on temporal consistency across frames, ignoring the visual style variations over time, e.g., thunderstorm, wave, fire crackling. To overcome this limitation, we utilize temporal sound features for the dynamic style. Specifically, we guide denoising diffusion probabilistic models with an audio latent representation in the audio-visual latent space. To the best of our knowledge, our work is the first to explore sound-guided natural video editing from various sound sources with sound-specialized properties, such as intensity, timbre, and volume. Additionally, we design optical flow-based guidance to generate temporally consistent video frames, capturing the pixel-wise relationship between adjacent frames. Experimental results show that our method outperforms existing video editing techniques, producing more realistic visual effects that reflect the properties of sound. Please visit our page: https://kuai-lab.github.io/soundini-gallery/.
Authors:Zhiyao Sun, Yu-Hui Wen, Tian Lv, Yanan Sun, Ziyang Zhang, Yaoyuan Wang, Yong-Jin Liu
Title: Continuously Controllable Facial Expression Editing in Talking Face Videos
Abstract:
Recently audio-driven talking face video generation has attracted considerable attention. However, very few researches address the issue of emotional editing of these talking face videos with continuously controllable expressions, which is a strong demand in the industry. The challenge is that speech-related expressions and emotion-related expressions are often highly coupled. Meanwhile, traditional image-to-image translation methods cannot work well in our application due to the coupling of expressions with other attributes such as poses, i.e., translating the expression of the character in each frame may simultaneously change the head pose due to the bias of the training data distribution. In this paper, we propose a high-quality facial expression editing method for talking face videos, allowing the user to control the target emotion in the edited video continuously. We present a new perspective for this task as a special case of motion information editing, where we use a 3DMM to capture major facial movements and an associated texture map modeled by a StyleGAN to capture appearance details. Both representations (3DMM and texture map) contain emotional information and can be continuously modified by neural networks and easily smoothed by averaging in coefficient/latent spaces, making our method simple yet effective. We also introduce a mouth shape preservation loss to control the trade-off between lip synchronization and the degree of exaggeration of the edited expression. Extensive experiments and a user study show that our method achieves state-of-the-art performance across various evaluation criteria.
Authors:Yuanzhi Li, Lebin Zhou, Nam Ling, Zhenghao Chen, Wei Wang, Wei Jiang
Title: $\mathtt{M^3VIR}$: A Large-Scale Multi-Modality Multi-View Synthesized Benchmark Dataset for Image Restoration and Content Creation
Abstract:
The gaming and entertainment industry is rapidly evolving, driven by immersive experiences and the integration of generative AI (GAI) technologies. Training such models effectively requires large-scale datasets that capture the diversity and context of gaming environments. However, existing datasets are often limited to specific domains or rely on artificial degradations, which do not accurately capture the unique characteristics of gaming content. Moreover, benchmarks for controllable video generation remain absent. To address these limitations, we introduce $\mathtt{M^3VIR}$, a large-scale, multi-modal, multi-view dataset specifically designed to overcome the shortcomings of current resources. Unlike existing datasets, $\mathtt{M^3VIR}$ provides diverse, high-fidelity gaming content rendered with Unreal Engine 5, offering authentic ground-truth LR-HR paired and multi-view frames across 80 scenes in 8 categories. It includes $\mathtt{M^3VIR\_MR}$ for super-resolution (SR), novel view synthesis (NVS), and combined NVS+SR tasks, and $\mathtt{M^3VIR\_{MS}}$, the first multi-style, object-level ground-truth set enabling research on controlled video generation. Additionally, we benchmark several state-of-the-art SR and NVS methods to establish performance baselines. While no existing approaches directly handle controlled video generation, $\mathtt{M^3VIR}$ provides a benchmark for advancing this area. By releasing the dataset, we aim to facilitate research in AI-powered restoration, compression, and controllable content generation for next-generation cloud gaming and entertainment.
Authors:Xiao Liang, Bangxin Li, Zixuan Chen, Hanyue Zheng, Zhi Ma, Di Wang, Cong Tian, Quan Wang
Title: VideoAgent: Personalized Synthesis of Scientific Videos
Abstract:
Automating the generation of scientific videos is a crucial yet challenging task for effective knowledge dissemination. However, existing works on document automation primarily focus on static media such as posters and slides, lacking mechanisms for personalized dynamic orchestration and multimodal content synchronization. To address these challenges, we introduce VideoAgent, a novel multi-agent framework that synthesizes personalized scientific videos through a conversational interface. VideoAgent parses a source paper into a fine-grained asset library and, guided by user requirements, orchestrates a narrative flow that synthesizes both static slides and dynamic animations to explain complex concepts. To enable rigorous evaluation, we also propose SciVidEval, the first comprehensive suite for this task, which combines automated metrics for multimodal content quality and synchronization with a Video-Quiz-based human evaluation to measure knowledge transfer. Extensive experiments demonstrate that our method significantly outperforms existing commercial scientific video generation services and approaches human-level quality in scientific communication.
Authors:Jie Wu, Yu Gao, Zilyu Ye, Ming Li, Liang Li, Hanzhong Guo, Jie Liu, Zeyue Xue, Xiaoxia Hou, Wei Liu, Yan Zeng, Weilin Huang
Title: RewardDance: Reward Scaling in Visual Generation
Abstract:
Reward Models (RMs) are critical for improving generation models via Reinforcement Learning (RL), yet the RM scaling paradigm in visual generation remains largely unexplored. It primarily due to fundamental limitations in existing approaches: CLIP-based RMs suffer from architectural and input modality constraints, while prevalent Bradley-Terry losses are fundamentally misaligned with the next-token prediction mechanism of Vision-Language Models (VLMs), hindering effective scaling. More critically, the RLHF optimization process is plagued by Reward Hacking issue, where models exploit flaws in the reward signal without improving true quality. To address these challenges, we introduce RewardDance, a scalable reward modeling framework that overcomes these barriers through a novel generative reward paradigm. By reformulating the reward score as the model's probability of predicting a "yes" token, indicating that the generated image outperforms a reference image according to specific criteria, RewardDance intrinsically aligns reward objectives with VLM architectures. This alignment unlocks scaling across two dimensions: (1) Model Scaling: Systematic scaling of RMs up to 26 billion parameters; (2) Context Scaling: Integration of task-specific instructions, reference examples, and chain-of-thought (CoT) reasoning. Extensive experiments demonstrate that RewardDance significantly surpasses state-of-the-art methods in text-to-image, text-to-video, and image-to-video generation. Crucially, we resolve the persistent challenge of "reward hacking": Our large-scale RMs exhibit and maintain high reward variance during RL fine-tuning, proving their resistance to hacking and ability to produce diverse, high-quality outputs. It greatly relieves the mode collapse problem that plagues smaller models.
Authors:Qirui Li, Guangcong Zheng, Qi Zhao, Jie Li, Bin Dong, Yiwu Yao, Xi Li
Title: Compact Attention: Exploiting Structured Spatio-Temporal Sparsity for Fast Video Generation
Abstract:
The computational demands of self-attention mechanisms pose a critical challenge for transformer-based video generation, particularly in synthesizing ultra-long sequences. Current approaches, such as factorized attention and fixed sparse patterns, fail to fully exploit the inherent spatio-temporal redundancies in video data. Through systematic analysis of video diffusion transformers (DiT), we uncover a key insight: Attention matrices exhibit structured, yet heterogeneous sparsity patterns, where specialized heads dynamically attend to distinct spatiotemporal regions (e.g., local pattern, cross-shaped pattern, or global pattern). Existing sparse attention methods either impose rigid constraints or introduce significant overhead, limiting their effectiveness. To address this, we propose Compact Attention, a hardware-aware acceleration framework featuring three innovations: 1) Adaptive tiling strategies that approximate diverse spatial interaction patterns via dynamic tile grouping, 2) Temporally varying windows that adjust sparsity levels based on frame proximity, and 3) An automated configuration search algorithm that optimizes sparse patterns while preserving critical attention pathways. Our method achieves 1.6~2.5x acceleration in attention computation on single-GPU setups while maintaining comparable visual quality with full-attention baselines. This work provides a principled approach to unlocking efficient long-form video generation through structured sparsity exploitation. Project Page: https://yo-ava.github.io/Compact-Attention.github.io/
Authors:Lianwei Yang, Haokun Lin, Tianchen Zhao, Yichen Wu, Hongyu Zhu, Ruiqi Xie, Zhenan Sun, Yu Wang, Qingyi Gu
Title: LRQ-DiT: Log-Rotation Post-Training Quantization of Diffusion Transformers for Image and Video Generation
Abstract:
Diffusion Transformers (DiTs) have achieved impressive performance in text-to-image and text-to-video generation. However, their high computational cost and large parameter sizes pose significant challenges for usage in resource-constrained scenarios. Effective compression of models has become a crucial issue that urgently needs to be addressed. Post-training quantization (PTQ) is a promising solution to reduce memory usage and accelerate inference, but existing PTQ methods suffer from severe performance degradation under extreme low-bit settings. After experiments and analysis, we identify two key obstacles to low-bit PTQ for DiTs: (1) the weights of DiT models follow a Gaussian-like distribution with long tails, causing uniform quantization to poorly allocate intervals and leading to significant quantization errors. This issue has been observed in the linear layer weights of different DiT models, which deeply limits the performance. (2) two types of activation outliers in DiT models: (i) Mild Outliers with slightly elevated values, and (ii) Salient Outliers with large magnitudes concentrated in specific channels, which disrupt activation quantization. To address these issues, we propose LRQ-DiT, an efficient and accurate post-training quantization framework for image and video generation. First, we introduce Twin-Log Quantization (TLQ), a log-based method that allocates more quantization intervals to the intermediate dense regions, effectively achieving alignment with the weight distribution and reducing quantization errors. Second, we propose an Adaptive Rotation Scheme (ARS) that dynamically applies Hadamard or outlier-aware rotations based on activation fluctuation, effectively mitigating the impact of both types of outliers. Extensive experiments on various text-to-image and text-to-video DiT models demonstrate that LRQ-DiT preserves high generation quality.
Authors:Xuanchen Wang, Heng Wang, Weidong Cai
Title: ChoreoMuse: Robust Music-to-Dance Video Generation with Style Transfer and Beat-Adherent Motion
Abstract:
Modern artistic productions increasingly demand automated choreography generation that adapts to diverse musical styles and individual dancer characteristics. Existing approaches often fail to produce high-quality dance videos that harmonize with both musical rhythm and user-defined choreography styles, limiting their applicability in real-world creative contexts. To address this gap, we introduce ChoreoMuse, a diffusion-based framework that uses SMPL format parameters and their variation version as intermediaries between music and video generation, thereby overcoming the usual constraints imposed by video resolution. Critically, ChoreoMuse supports style-controllable, high-fidelity dance video generation across diverse musical genres and individual dancer characteristics, including the flexibility to handle any reference individual at any resolution. Our method employs a novel music encoder MotionTune to capture motion cues from audio, ensuring that the generated choreography closely follows the beat and expressive qualities of the input music. To quantitatively evaluate how well the generated dances match both musical and choreographic styles, we introduce two new metrics that measure alignment with the intended stylistic cues. Extensive experiments confirm that ChoreoMuse achieves state-of-the-art performance across multiple dimensions, including video quality, beat alignment, dance diversity, and style adherence, demonstrating its potential as a robust solution for a wide range of creative applications. Video results can be found on our project page: https://choreomuse.github.io.
Authors:Jaechul Roh, Zachary Novack, Yuefeng Peng, Niloofar Mireshghallah, Taylor Berg-Kirkpatrick, Amir Houmansadr
Title: Bob's Confetti: Phonetic Memorization Attacks in Music and Video Generation
Abstract:
Memorization in generative models extends far beyond verbatim text reproduction--it manifests through non-literal patterns, semantic associations, and surprisingly, across modalities in transcript-conditioned generation tasks such as Lyrics-to-Song (L2S) and Text-to-Video (T2V) models. We reveal a new class of cross-modality memorization where models trained on these tasks leak copyrighted content through indirect, phonetic pathways invisible to traditional text-based analysis. In this work, we introduce Adversarial PhoneTic Prompting (APT), an attack that replaces iconic phrases with homophonic alternatives--e.g., "mom's spaghetti" becomes "Bob's confetti"--preserving the acoustic form while largely changing semantic content. We demonstrate that models can be prompted to regurgitate memorized songs using phonetically similar but semantically unrelated lyrics. Despite the semantic drift, black-box models like SUNO and open-source models like YuE generate outputs that are strikingly similar to the original songs--melodically, rhythmically, and vocally--achieving high scores on AudioJudge, CLAP, and CoverID. These effects persist across genres and languages. More surprisingly, we find that phonetic prompts alone can trigger visual memorization in text-to-video models: when given altered lyrics from Lose Yourself, Veo 3 generates scenes that mirror the original music video--complete with a hooded rapper and dim urban settings--despite no explicit visual cues in the prompt. This cross-modality leakage represents an unprecedented threat: models memorize deep, structural patterns that transcend their training modality, making traditional safety measures like copyright filters ineffective. Our findings reveal a fundamental vulnerability in transcript-conditioned generative models and raise urgent concerns around copyright, provenance, and secure deployment of multimodal generation systems.
Authors:Mustafa Chasmai, Gauri Jagatap, Gouthaman KV, Grant Van Horn, Subhransu Maji, Andrea Fanelli
Title: Moment Sampling in Video LLMs for Long-Form Video QA
Abstract:
Recent advancements in video large language models (Video LLMs) have significantly advanced the field of video question answering (VideoQA). While existing methods perform well on short videos, they often struggle with long-range reasoning in longer videos. To scale Video LLMs for longer video content, frame sub-sampling (selecting frames at regular intervals) is commonly used. However, this approach is suboptimal, often leading to the loss of crucial frames or the inclusion of redundant information from multiple similar frames. Missing key frames impairs the model's ability to answer questions accurately, while redundant frames lead the model to focus on irrelevant video segments and increase computational resource consumption. In this paper, we investigate the use of a general-purpose text-to-video moment retrieval model to guide the frame sampling process. We propose "moment sampling", a novel, model-agnostic approach that enables the model to select the most relevant frames according to the context of the question. Specifically, we employ a lightweight moment retrieval model to prioritize frame selection. By focusing on the frames most pertinent to the given question, our method enhances long-form VideoQA performance in Video LLMs. Through extensive experiments on four long-form VideoQA datasets, using four state-of-the-art Video LLMs, we demonstrate the effectiveness of the proposed approach.
Authors:Hu Yu, Biao Gong, Hangjie Yuan, DanDan Zheng, Weilong Chai, Jingdong Chen, Kecheng Zheng, Feng Zhao
Title: VideoMAR: Autoregressive Video Generatio with Continuous Tokens
Abstract:
Masked-based autoregressive models have demonstrated promising image generation capability in continuous space. However, their potential for video generation remains under-explored. In this paper, we propose \textbf{VideoMAR}, a concise and efficient decoder-only autoregressive image-to-video model with continuous tokens, composing temporal frame-by-frame and spatial masked generation. We first identify temporal causality and spatial bi-directionality as the first principle of video AR models, and propose the next-frame diffusion loss for the integration of mask and video generation. Besides, the huge cost and difficulty of long sequence autoregressive modeling is a basic but crucial issue. To this end, we propose the temporal short-to-long curriculum learning and spatial progressive resolution training, and employ progressive temperature strategy at inference time to mitigate the accumulation error. Furthermore, VideoMAR replicates several unique capacities of language models to video generation. It inherently bears high efficiency due to simultaneous temporal-wise KV cache and spatial-wise parallel generation, and presents the capacity of spatial and temporal extrapolation via 3D rotary embeddings. On the VBench-I2V benchmark, VideoMAR surpasses the previous state-of-the-art (Cosmos I2V) while requiring significantly fewer parameters ($9.3\%$), training data ($0.5\%$), and GPU resources ($0.2\%$).
Authors:Adriano Fragomeni, Dima Damen, Michael Wray
Title: Leveraging Auxiliary Information in Text-to-Video Retrieval: A Review
Abstract:
Text-to-Video (T2V) retrieval aims to identify the most relevant item from a gallery of videos based on a user's text query. Traditional methods rely solely on aligning video and text modalities to compute the similarity and retrieve relevant items. However, recent advancements emphasise incorporating auxiliary information extracted from video and text modalities to improve retrieval performance and bridge the semantic gap between these modalities. Auxiliary information can include visual attributes, such as objects; temporal and spatial context; and textual descriptions, such as speech and rephrased captions. This survey comprehensively reviews 81 research papers on Text-to-Video retrieval that utilise such auxiliary information. It provides a detailed analysis of their methodologies; highlights state-of-the-art results on benchmark datasets; and discusses available datasets and their auxiliary information. Additionally, it proposes promising directions for future research, focusing on different ways to further enhance retrieval performance using this information.
Authors:Shaobin Zhuang, Zhipeng Huang, Ying Zhang, Fangyikang Wang, Canmiao Fu, Binxin Yang, Chong Sun, Chen Li, Yali Wang
Title: Video-GPT via Next Clip Diffusion
Abstract:
GPT has shown its remarkable success in natural language processing. However, the language sequence is not sufficient to describe spatial-temporal details in the visual world. Alternatively, the video sequence is good at capturing such details. Motivated by this fact, we propose a concise Video-GPT in this paper by treating video as new language for visual world modeling. By analogy to next token prediction in GPT, we introduce a novel next clip diffusion paradigm for pretraining Video-GPT. Different from the previous works, this distinct paradigm allows Video-GPT to tackle both short-term generation and long-term prediction, by autoregressively denoising the noisy clip according to the clean clips in the history. Extensive experiments show our Video-GPT achieves the state-of-the-art performance on video prediction, which is the key factor towards world modeling (Physics-IQ Benchmark: Video-GPT 34.97 vs. Kling 23.64 vs. Wan 20.89). Moreover, it can be well adapted on 6 mainstream video tasks in both video generation and understanding, showing its great generalization capacity in downstream. The project page is at https://zhuangshaobin.github.io/Video-GPT.github.io/.
Authors:Wenyan Yang, Ahmet Tikna, Yi Zhao, Yuying Zhang, Luigi Palopoli, Marco Roveri, Joni Pajarinen
Title: Extracting Visual Plans from Unlabeled Videos via Symbolic Guidance
Abstract:
Visual planning, by offering a sequence of intermediate visual subgoals to a goal-conditioned low-level policy, achieves promising performance on long-horizon manipulation tasks. To obtain the subgoals, existing methods typically resort to video generation models but suffer from model hallucination and computational cost. We present Vis2Plan, an efficient, explainable and white-box visual planning framework powered by symbolic guidance. From raw, unlabeled play data, Vis2Plan harnesses vision foundation models to automatically extract a compact set of task symbols, which allows building a high-level symbolic transition graph for multi-goal, multi-stage planning. At test time, given a desired task goal, our planner conducts planning at the symbolic level and assembles a sequence of physically consistent intermediate sub-goal images grounded by the underlying symbolic representation. Our Vis2Plan outperforms strong diffusion video generation-based visual planners by delivering 53\% higher aggregate success rate in real robot settings while generating visual plans 35$\times$ faster. The results indicate that Vis2Plan is able to generate physically consistent image goals while offering fully inspectable reasoning steps.
Authors:Haotian Dong, Xin Wang, Di Lin, Yipeng Wu, Qin Chen, Ruonan Liu, Kairui Yang, Ping Li, Qing Guo
Title: NoiseController: Towards Consistent Multi-view Video Generation via Noise Decomposition and Collaboration
Abstract:
High-quality video generation is crucial for many fields, including the film industry and autonomous driving. However, generating videos with spatiotemporal consistencies remains challenging. Current methods typically utilize attention mechanisms or modify noise to achieve consistent videos, neglecting global spatiotemporal information that could help ensure spatial and temporal consistency during video generation. In this paper, we propose the NoiseController, consisting of Multi-Level Noise Decomposition, Multi-Frame Noise Collaboration, and Joint Denoising, to enhance spatiotemporal consistencies in video generation. In multi-level noise decomposition, we first decompose initial noises into scene-level foreground/background noises, capturing distinct motion properties to model multi-view foreground/background variations. Furthermore, each scene-level noise is further decomposed into individual-level shared and residual components. The shared noise preserves consistency, while the residual component maintains diversity. In multi-frame noise collaboration, we introduce an inter-view spatiotemporal collaboration matrix and an intra-view impact collaboration matrix , which captures mutual cross-view effects and historical cross-frame impacts to enhance video quality. The joint denoising contains two parallel denoising U-Nets to remove each scene-level noise, mutually enhancing video generation. We evaluate our NoiseController on public datasets focusing on video generation and downstream tasks, demonstrating its state-of-the-art performance.
Authors:Vidi Team, Celong Liu, Chia-Wen Kuo, Dawei Du, Fan Chen, Guang Chen, Jiamin Yuan, Lingxi Zhang, Lu Guo, Lusha Li, Longyin Wen, Qingyu Chen, Rachel Deng, Sijie Zhu, Stuart Siew, Tong Jin, Wei Lu, Wen Zhong, Xiaohui Shen, Xin Gu, Xing Mei, Xueqiong Qu, Zhenfang Chen
Title: Vidi: Large Multimodal Models for Video Understanding and Editing
Abstract:
Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than videos of existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
Authors:Artem Zholus, Carl Doersch, Yi Yang, Skanda Koppula, Viorica Patraucean, Xu Owen He, Ignacio Rocco, Mehdi S. M. Sajjadi, Sarath Chandar, Ross Goroshin
Title: TAPNext: Tracking Any Point (TAP) as Next Token Prediction
Abstract:
Tracking Any Point (TAP) in a video is a challenging computer vision problem with many demonstrated applications in robotics, video editing, and 3D reconstruction. Existing methods for TAP rely heavily on complex tracking-specific inductive biases and heuristics, limiting their generality and potential for scaling. To address these challenges, we present TAPNext, a new approach that casts TAP as sequential masked token decoding. Our model is causal, tracks in a purely online fashion, and removes tracking-specific inductive biases. This enables TAPNext to run with minimal latency, and removes the temporal windowing required by many existing state of art trackers. Despite its simplicity, TAPNext achieves a new state-of-the-art tracking performance among both online and offline trackers. Finally, we present evidence that many widely used tracking heuristics emerge naturally in TAPNext through end-to-end training. The TAPNext model and code can be found at https://tap-next.github.io/.
Authors:Karan Dalal, Daniel Koceja, Gashon Hussein, Jiarui Xu, Yue Zhao, Youjin Song, Shihao Han, Ka Chun Cheung, Jan Kautz, Carlos Guestrin, Tatsunori Hashimoto, Sanmi Koyejo, Yejin Choi, Yu Sun, Xiaolong Wang
Title: One-Minute Video Generation with Test-Time Training
Abstract:
Transformers today still struggle to generate one-minute videos because self-attention layers are inefficient for long context. Alternatives such as Mamba layers struggle with complex multi-scene stories because their hidden states are less expressive. We experiment with Test-Time Training (TTT) layers, whose hidden states themselves can be neural networks, therefore more expressive. Adding TTT layers into a pre-trained Transformer enables it to generate one-minute videos from text storyboards. For proof of concept, we curate a dataset based on Tom and Jerry cartoons. Compared to baselines such as Mamba~2, Gated DeltaNet, and sliding-window attention layers, TTT layers generate much more coherent videos that tell complex stories, leading by 34 Elo points in a human evaluation of 100 videos per method. Although promising, results still contain artifacts, likely due to the limited capability of the pre-trained 5B model. The efficiency of our implementation can also be improved. We have only experimented with one-minute videos due to resource constraints, but the approach can be extended to longer videos and more complex stories. Sample videos, code and annotations are available at: https://test-time-training.github.io/video-dit
Authors:Chi-Pin Huang, Yen-Siang Wu, Hung-Kai Chung, Kai-Po Chang, Fu-En Yang, Yu-Chiang Frank Wang
Title: VideoMage: Multi-Subject and Motion Customization of Text-to-Video Diffusion Models
Abstract:
Customized text-to-video generation aims to produce high-quality videos that incorporate user-specified subject identities or motion patterns. However, existing methods mainly focus on personalizing a single concept, either subject identity or motion pattern, limiting their effectiveness for multiple subjects with the desired motion patterns. To tackle this challenge, we propose a unified framework VideoMage for video customization over both multiple subjects and their interactive motions. VideoMage employs subject and motion LoRAs to capture personalized content from user-provided images and videos, along with an appearance-agnostic motion learning approach to disentangle motion patterns from visual appearance. Furthermore, we develop a spatial-temporal composition scheme to guide interactions among subjects within the desired motion patterns. Extensive experiments demonstrate that VideoMage outperforms existing methods, generating coherent, user-controlled videos with consistent subject identities and interactions.
Authors:Hyojun Go, Byeongjun Park, Hyelin Nam, Byung-Hoon Kim, Hyungjin Chung, Changick Kim
Title: VideoRFSplat: Direct Scene-Level Text-to-3D Gaussian Splatting Generation with Flexible Pose and Multi-View Joint Modeling
Abstract:
We propose VideoRFSplat, a direct text-to-3D model leveraging a video generation model to generate realistic 3D Gaussian Splatting (3DGS) for unbounded real-world scenes. To generate diverse camera poses and unbounded spatial extent of real-world scenes, while ensuring generalization to arbitrary text prompts, previous methods fine-tune 2D generative models to jointly model camera poses and multi-view images. However, these methods suffer from instability when extending 2D generative models to joint modeling due to the modality gap, which necessitates additional models to stabilize training and inference. In this work, we propose an architecture and a sampling strategy to jointly model multi-view images and camera poses when fine-tuning a video generation model. Our core idea is a dual-stream architecture that attaches a dedicated pose generation model alongside a pre-trained video generation model via communication blocks, generating multi-view images and camera poses through separate streams. This design reduces interference between the pose and image modalities. Additionally, we propose an asynchronous sampling strategy that denoises camera poses faster than multi-view images, allowing rapidly denoised poses to condition multi-view generation, reducing mutual ambiguity and enhancing cross-modal consistency. Trained on multiple large-scale real-world datasets (RealEstate10K, MVImgNet, DL3DV-10K, ACID), VideoRFSplat outperforms existing text-to-3D direct generation methods that heavily depend on post-hoc refinement via score distillation sampling, achieving superior results without such refinement.
Authors:Susung Hong, Ira Kemelmacher-Shlizerman, Brian Curless, Steven M. Seitz
Title: MusicInfuser: Making Video Diffusion Listen and Dance
Abstract:
We introduce MusicInfuser, an approach for generating high-quality dance videos that are synchronized to a specified music track. Rather than attempting to design and train a new multimodal audio-video model, we show how existing video diffusion models can be adapted to align with musical inputs by introducing lightweight music-video cross-attention and a low-rank adapter. Unlike prior work requiring motion capture data, our approach fine-tunes only on dance videos. MusicInfuser achieves high-quality music-driven video generation while preserving the flexibility and generative capabilities of the underlying models. We introduce an evaluation framework using Video-LLMs to assess multiple dimensions of dance generation quality. The project page and code are available at https://susunghong.github.io/MusicInfuser.
Authors:Minghan Li, Chenxi Xie, Yichen Wu, Lei Zhang, Mengyu Wang
Title: FiVE: A Fine-grained Video Editing Benchmark for Evaluating Emerging Diffusion and Rectified Flow Models
Abstract:
Numerous text-to-video (T2V) editing methods have emerged recently, but the lack of a standardized benchmark for fair evaluation has led to inconsistent claims and an inability to assess model sensitivity to hyperparameters. Fine-grained video editing is crucial for enabling precise, object-level modifications while maintaining context and temporal consistency. To address this, we introduce FiVE, a Fine-grained Video Editing Benchmark for evaluating emerging diffusion and rectified flow models. Our benchmark includes 74 real-world videos and 26 generated videos, featuring 6 fine-grained editing types, 420 object-level editing prompt pairs, and their corresponding masks. Additionally, we adapt the latest rectified flow (RF) T2V generation models, Pyramid-Flow and Wan2.1, by introducing FlowEdit, resulting in training-free and inversion-free video editing models Pyramid-Edit and Wan-Edit. We evaluate five diffusion-based and two RF-based editing methods on our FiVE benchmark using 15 metrics, covering background preservation, text-video similarity, temporal consistency, video quality, and runtime. To further enhance object-level evaluation, we introduce FiVE-Acc, a novel metric leveraging Vision-Language Models (VLMs) to assess the success of fine-grained video editing. Experimental results demonstrate that RF-based editing significantly outperforms diffusion-based methods, with Wan-Edit achieving the best overall performance and exhibiting the least sensitivity to hyperparameters. More video demo available on the anonymous website: https://sites.google.com/view/five-benchmark
Authors:Jianzheng Huang, Xianyu Mo, Ziling Liu, Jinyu Yang, Feng Zheng
Title: GIFT: Generated Indoor video frames for Texture-less point tracking
Abstract:
Point tracking is becoming a powerful solver for motion estimation and video editing. Compared to classical feature matching, point tracking methods have the key advantage of robustly tracking points under complex camera motion trajectories and over extended periods. However, despite certain improvements in methodologies, current point tracking methods still struggle to track any position in video frames, especially in areas that are texture-less or weakly textured. In this work, we first introduce metrics for evaluating the texture intensity of a 3D object. Using these metrics, we classify the 3D models in ShapeNet into three levels of texture intensity and create GIFT, a challenging synthetic benchmark comprising 1800 indoor video sequences with rich annotations. Unlike existing datasets that assign ground truth points arbitrarily, GIFT precisely anchors ground truth on classified target objects, ensuring that each video corresponds to a specific texture intensity level. Furthermore, we comprehensively evaluate current methods on GIFT to assess their performance across different texture intensity levels and analyze the impact of texture on point tracking.
Authors:Byeongjun Park, Hyojun Go, Hyelin Nam, Byung-Hoon Kim, Hyungjin Chung, Changick Kim
Title: SteerX: Creating Any Camera-Free 3D and 4D Scenes with Geometric Steering
Abstract:
Recent progress in 3D/4D scene generation emphasizes the importance of physical alignment throughout video generation and scene reconstruction. However, existing methods improve the alignment separately at each stage, making it difficult to manage subtle misalignments arising from another stage. Here, we present SteerX, a zero-shot inference-time steering method that unifies scene reconstruction into the generation process, tilting data distributions toward better geometric alignment. To this end, we introduce two geometric reward functions for 3D/4D scene generation by using pose-free feed-forward scene reconstruction models. Through extensive experiments, we demonstrate the effectiveness of SteerX in improving 3D/4D scene generation.
Authors:Hongxiang Zhao, Xingchen Liu, Mutian Xu, Yiming Hao, Weikai Chen, Xiaoguang Han
Title: TASTE-Rob: Advancing Video Generation of Task-Oriented Hand-Object Interaction for Generalizable Robotic Manipulation
Abstract:
We address key limitations in existing datasets and models for task-oriented hand-object interaction video generation, a critical approach of generating video demonstrations for robotic imitation learning. Current datasets, such as Ego4D, often suffer from inconsistent view perspectives and misaligned interactions, leading to reduced video quality and limiting their applicability for precise imitation learning tasks. Towards this end, we introduce TASTE-Rob -- a pioneering large-scale dataset of 100,856 ego-centric hand-object interaction videos. Each video is meticulously aligned with language instructions and recorded from a consistent camera viewpoint to ensure interaction clarity. By fine-tuning a Video Diffusion Model (VDM) on TASTE-Rob, we achieve realistic object interactions, though we observed occasional inconsistencies in hand grasping postures. To enhance realism, we introduce a three-stage pose-refinement pipeline that improves hand posture accuracy in generated videos. Our curated dataset, coupled with the specialized pose-refinement framework, provides notable performance gains in generating high-quality, task-oriented hand-object interaction videos, resulting in achieving superior generalizable robotic manipulation. The TASTE-Rob dataset is publicly available to foster further advancements in the field, TASTE-Rob dataset and source code will be made publicly available on our website https://taste-rob.github.io.
Authors:Yuwei Guo, Ceyuan Yang, Ziyan Yang, Zhibei Ma, Zhijie Lin, Zhenheng Yang, Dahua Lin, Lu Jiang
Title: Long Context Tuning for Video Generation
Abstract:
Recent advances in video generation can produce realistic, minute-long single-shot videos with scalable diffusion transformers. However, real-world narrative videos require multi-shot scenes with visual and dynamic consistency across shots. In this work, we introduce Long Context Tuning (LCT), a training paradigm that expands the context window of pre-trained single-shot video diffusion models to learn scene-level consistency directly from data. Our method expands full attention mechanisms from individual shots to encompass all shots within a scene, incorporating interleaved 3D position embedding and an asynchronous noise strategy, enabling both joint and auto-regressive shot generation without additional parameters. Models with bidirectional attention after LCT can further be fine-tuned with context-causal attention, facilitating auto-regressive generation with efficient KV-cache. Experiments demonstrate single-shot models after LCT can produce coherent multi-shot scenes and exhibit emerging capabilities, including compositional generation and interactive shot extension, paving the way for more practical visual content creation. See https://guoyww.github.io/projects/long-context-video/ for more details.
Authors:Unggi Lee, Yeil Jeong, Seungha Kim, Yoorim Son, Gyuri Byun, Hyeoncheol Kim, Cheolil Lim
Title: How Can Video Generative AI Transform K-12 Education? Examining Teachers' Perspectives through TPACK and TAM
Abstract:
The rapid advancement of generative AI technology, particularly video generative AI (Video GenAI), has opened new possibilities for K-12 education by enabling the creation of dynamic, customized, and high-quality visual content. Despite its potential, there is limited research on how this emerging technology can be effectively integrated into educational practices. This study explores the perspectives of leading K-12 teachers on the educational applications of Video GenAI, using the TPACK (Technological Pedagogical Content Knowledge) and TAM (Technology Acceptance Model) frameworks as analytical lenses. Through interviews and hands-on experimentation with video generation tools, the research identifies opportunities for enhancing teaching strategies, fostering student engagement, and supporting authentic task design. It also highlights challenges such as technical limitations, ethical considerations, and the need for institutional support. The findings provide actionable insights into how Video GenAI can transform teaching and learning, offering practical implications for policy, teacher training, and the future development of educational technology.
Authors:Shaobin Zhuang, Zhipeng Huang, Binxin Yang, Ying Zhang, Fangyikang Wang, Canmiao Fu, Chong Sun, Zheng-Jun Zha, Chen Li, Yali Wang
Title: Get In Video: Add Anything You Want to the Video
Abstract:
Video editing increasingly demands the ability to incorporate specific real-world instances into existing footage, yet current approaches fundamentally fail to capture the unique visual characteristics of particular subjects and ensure natural instance/scene interactions. We formalize this overlooked yet critical editing paradigm as "Get-In-Video Editing", where users provide reference images to precisely specify visual elements they wish to incorporate into videos. Addressing this task's dual challenges, severe training data scarcity and technical challenges in maintaining spatiotemporal coherence, we introduce three key contributions. First, we develop GetIn-1M dataset created through our automated Recognize-Track-Erase pipeline, which sequentially performs video captioning, salient instance identification, object detection, temporal tracking, and instance removal to generate high-quality video editing pairs with comprehensive annotations (reference image, tracking mask, instance prompt). Second, we present GetInVideo, a novel end-to-end framework that leverages a diffusion transformer architecture with 3D full attention to process reference images, condition videos, and masks simultaneously, maintaining temporal coherence, preserving visual identity, and ensuring natural scene interactions when integrating reference objects into videos. Finally, we establish GetInBench, the first comprehensive benchmark for Get-In-Video Editing scenario, demonstrating our approach's superior performance through extensive evaluations. Our work enables accessible, high-quality incorporation of specific real-world subjects into videos, significantly advancing personalized video editing capabilities.
Authors:Haotong Yang, Qingyuan Zheng, Yunjian Gao, Yongkun Yang, Yangbo He, Zhouchen Lin, Muhan Zhang
Title: VACT: A Video Automatic Causal Testing System and a Benchmark
Abstract:
With the rapid advancement of text-conditioned Video Generation Models (VGMs), the quality of generated videos has significantly improved, bringing these models closer to functioning as ``*world simulators*'' and making real-world-level video generation more accessible and cost-effective. However, the generated videos often contain factual inaccuracies and lack understanding of fundamental physical laws. While some previous studies have highlighted this issue in limited domains through manual analysis, a comprehensive solution has not yet been established, primarily due to the absence of a generalized, automated approach for modeling and assessing the causal reasoning of these models across diverse scenarios. To address this gap, we propose VACT: an **automated** framework for modeling, evaluating, and measuring the causal understanding of VGMs in real-world scenarios. By combining causal analysis techniques with a carefully designed large language model assistant, our system can assess the causal behavior of models in various contexts without human annotation, which offers strong generalization and scalability. Additionally, we introduce multi-level causal evaluation metrics to provide a detailed analysis of the causal performance of VGMs. As a demonstration, we use our framework to benchmark several prevailing VGMs, offering insight into their causal reasoning capabilities. Our work lays the foundation for systematically addressing the causal understanding deficiencies in VGMs and contributes to advancing their reliability and real-world applicability.
Authors:Yen-Siang Wu, Chi-Pin Huang, Fu-En Yang, Yu-Chiang Frank Wang
Title: MotionMatcher: Motion Customization of Text-to-Video Diffusion Models via Motion Feature Matching
Abstract:
Text-to-video (T2V) diffusion models have shown promising capabilities in synthesizing realistic videos from input text prompts. However, the input text description alone provides limited control over the precise objects movements and camera framing. In this work, we tackle the motion customization problem, where a reference video is provided as motion guidance. While most existing methods choose to fine-tune pre-trained diffusion models to reconstruct the frame differences of the reference video, we observe that such strategy suffer from content leakage from the reference video, and they cannot capture complex motion accurately. To address this issue, we propose MotionMatcher, a motion customization framework that fine-tunes the pre-trained T2V diffusion model at the feature level. Instead of using pixel-level objectives, MotionMatcher compares high-level, spatio-temporal motion features to fine-tune diffusion models, ensuring precise motion learning. For the sake of memory efficiency and accessibility, we utilize a pre-trained T2V diffusion model, which contains considerable prior knowledge about video motion, to compute these motion features. In our experiments, we demonstrate state-of-the-art motion customization performances, validating the design of our framework.
Authors:Sihyun Yu, Meera Hahn, Dan Kondratyuk, Jinwoo Shin, Agrim Gupta, José Lezama, Irfan Essa, David Ross, Jonathan Huang
Title: MALT Diffusion: Memory-Augmented Latent Transformers for Any-Length Video Generation
Abstract:
Diffusion models are successful for synthesizing high-quality videos but are limited to generating short clips (e.g., 2-10 seconds). Synthesizing sustained footage (e.g. over minutes) still remains an open research question. In this paper, we propose MALT Diffusion (using Memory-Augmented Latent Transformers), a new diffusion model specialized for long video generation. MALT Diffusion (or just MALT) handles long videos by subdividing them into short segments and doing segment-level autoregressive generation. To achieve this, we first propose recurrent attention layers that encode multiple segments into a compact memory latent vector; by maintaining this memory vector over time, MALT is able to condition on it and continuously generate new footage based on a long temporal context. We also present several training techniques that enable the model to generate frames over a long horizon with consistent quality and minimal degradation. We validate the effectiveness of MALT through experiments on long video benchmarks. We first perform extensive analysis of MALT in long-contextual understanding capability and stability using popular long video benchmarks. For example, MALT achieves an FVD score of 220.4 on 128-frame video generation on UCF-101, outperforming the previous state-of-the-art of 648.4. Finally, we explore MALT's capabilities in a text-to-video generation setting and show that it can produce long videos compared with recent techniques for long text-to-video generation.
Authors:Teng Li, Guangcong Zheng, Rui Jiang, Shuigen Zhan, Tao Wu, Yehao Lu, Yining Lin, Chuanyun Deng, Yepan Xiong, Min Chen, Lin Cheng, Xi Li
Title: RealCam-I2V: Real-World Image-to-Video Generation with Interactive Complex Camera Control
Abstract:
Recent advancements in camera-trajectory-guided image-to-video generation offer higher precision and better support for complex camera control compared to text-based approaches. However, they also introduce significant usability challenges, as users often struggle to provide precise camera parameters when working with arbitrary real-world images without knowledge of their depth nor scene scale. To address these real-world application issues, we propose RealCam-I2V, a novel diffusion-based video generation framework that integrates monocular metric depth estimation to establish 3D scene reconstruction in a preprocessing step. During training, the reconstructed 3D scene enables scaling camera parameters from relative to metric scales, ensuring compatibility and scale consistency across diverse real-world images. In inference, RealCam-I2V offers an intuitive interface where users can precisely draw camera trajectories by dragging within the 3D scene. To further enhance precise camera control and scene consistency, we propose scene-constrained noise shaping, which shapes high-level noise and also allows the framework to maintain dynamic and coherent video generation in lower noise stages. RealCam-I2V achieves significant improvements in controllability and video quality on the RealEstate10K and out-of-domain images. We further enables applications like camera-controlled looping video generation and generative frame interpolation. Project page: https://zgctroy.github.io/RealCam-I2V.
Authors:Le Chen, Dahu Feng, Erhu Feng, Rong Zhao, Yingrui Wang, Yubin Xia, Haibo Chen, Pinjie Xu
Title: HeteroLLM: Accelerating Large Language Model Inference on Mobile SoCs platform with Heterogeneous AI Accelerators
Abstract:
With the rapid advancement of artificial intelligence technologies such as ChatGPT, AI agents and video generation,contemporary mobile systems have begun integrating these AI capabilities on local devices to enhance privacy and reduce response latency. To meet the computational demands of AI tasks, current mobile SoCs are equipped with diverse AI accelerators, including GPUs and Neural Processing Units (NPUs). However, there has not been a comprehensive characterization of these heterogeneous processors, and existing designs typically only leverage a single AI accelerator for LLM inference, leading to suboptimal use of computational resources and memory bandwidth. In this paper, we first summarize key performance characteristics of mobile SoC, including heterogeneous processors, unified memory, synchronization, etc. Drawing on these observations, we propose different tensor partition strategies to fulfill the distinct requirements of the prefill and decoding phases. We further design a fast synchronization mechanism that leverages the unified memory address provided by mobile SoCs. By employing these techniques, we present HeteroLLM, the fastest LLM inference engine in mobile devices which supports both layer-level and tensor-level heterogeneous execution. Evaluation results show that HeteroLLM achieves 9.99 and 4.36 performance improvement over other mobile-side LLM inference engines: MLC and MNN.
Authors:Mohammad Asim, Christopher Wewer, Thomas Wimmer, Bernt Schiele, Jan Eric Lenssen
Title: MEt3R: Measuring Multi-View Consistency in Generated Images
Abstract:
We introduce MEt3R, a metric for multi-view consistency in generated images. Large-scale generative models for multi-view image generation are rapidly advancing the field of 3D inference from sparse observations. However, due to the nature of generative modeling, traditional reconstruction metrics are not suitable to measure the quality of generated outputs and metrics that are independent of the sampling procedure are desperately needed. In this work, we specifically address the aspect of consistency between generated multi-view images, which can be evaluated independently of the specific scene. Our approach uses DUSt3R to obtain dense 3D reconstructions from image pairs in a feed-forward manner, which are used to warp image contents from one view into the other. Then, feature maps of these images are compared to obtain a similarity score that is invariant to view-dependent effects. Using MEt3R, we evaluate the consistency of a large set of previous methods for novel view and video generation, including our open, multi-view latent diffusion model.
Authors:Guozhen Zhang, Yuhan Zhu, Yutao Cui, Xiaotong Zhao, Kai Ma, Limin Wang
Title: Motion-Aware Generative Frame Interpolation
Abstract:
Flow-based frame interpolation methods ensure motion stability through estimated intermediate flow but often introduce severe artifacts in complex motion regions. Recent generative approaches, boosted by large-scale pre-trained video generation models, show promise in handling intricate scenes. However, they frequently produce unstable motion and content inconsistencies due to the absence of explicit motion trajectory constraints. To address these challenges, we propose Motion-aware Generative frame interpolation (MoG) that synergizes intermediate flow guidance with generative capacities to enhance interpolation fidelity. Our key insight is to simultaneously enforce motion smoothness through flow constraints while adaptively correcting flow estimation errors through generative refinement. Specifically, we first introduce a dual guidance injection that propagates condition information using intermediate flow at both latent and feature levels, aligning the generated motion with flow-derived motion trajectories. Meanwhile, we implemented two critical designs, encoder-only guidance injection and selective parameter fine-tuning, which enable dynamic artifact correction in the complex motion regions. Extensive experiments on both real-world and animation benchmarks demonstrate that MoG outperforms state-of-the-art methods in terms of video quality and visual fidelity. Our work bridges the gap between flow-based stability and generative flexibility, offering a versatile solution for frame interpolation across diverse scenarios.
Authors:Mohammad Nadeem, Shahab Saquib Sohail, Erik Cambria, Björn W. Schuller, Amir Hussain
Title: Gender Bias in Text-to-Video Generation Models: A case study of Sora
Abstract:
The advent of text-to-video generation models has revolutionized content creation as it produces high-quality videos from textual prompts. However, concerns regarding inherent biases in such models have prompted scrutiny, particularly regarding gender representation. Our study investigates the presence of gender bias in OpenAI's Sora, a state-of-the-art text-to-video generation model. We uncover significant evidence of bias by analyzing the generated videos from a diverse set of gender-neutral and stereotypical prompts. The results indicate that Sora disproportionately associates specific genders with stereotypical behaviors and professions, which reflects societal prejudices embedded in its training data.
Authors:Yiyuan Liang, Zhiying Yan, Liqun Chen, Jiahuan Zhou, Luxin Yan, Sheng Zhong, Xu Zou
Title: DriveEditor: A Unified 3D Information-Guided Framework for Controllable Object Editing in Driving Scenes
Abstract:
Vision-centric autonomous driving systems require diverse data for robust training and evaluation, which can be augmented by manipulating object positions and appearances within existing scene captures. While recent advancements in diffusion models have shown promise in video editing, their application to object manipulation in driving scenarios remains challenging due to imprecise positional control and difficulties in preserving high-fidelity object appearances. To address these challenges in position and appearance control, we introduce DriveEditor, a diffusion-based framework for object editing in driving videos. DriveEditor offers a unified framework for comprehensive object editing operations, including repositioning, replacement, deletion, and insertion. These diverse manipulations are all achieved through a shared set of varying inputs, processed by identical position control and appearance maintenance modules. The position control module projects the given 3D bounding box while preserving depth information and hierarchically injects it into the diffusion process, enabling precise control over object position and orientation. The appearance maintenance module preserves consistent attributes with a single reference image by employing a three-tiered approach: low-level detail preservation, high-level semantic maintenance, and the integration of 3D priors from a novel view synthesis model. Extensive qualitative and quantitative evaluations on the nuScenes dataset demonstrate DriveEditor's exceptional fidelity and controllability in generating diverse driving scene edits, as well as its remarkable ability to facilitate downstream tasks. Project page: https://yvanliang.github.io/DriveEditor.
Authors:Priyaranjan Pattnayak, Hitesh Laxmichand Patel, Bhargava Kumar, Amit Agarwal, Ishan Banerjee, Srikant Panda, Tejaswini Kumar
Title: Survey of Large Multimodal Model Datasets, Application Categories and Taxonomy
Abstract:
Multimodal learning, a rapidly evolving field in artificial intelligence, seeks to construct more versatile and robust systems by integrating and analyzing diverse types of data, including text, images, audio, and video. Inspired by the human ability to assimilate information through many senses, this method enables applications such as text-to-video conversion, visual question answering, and image captioning. Recent developments in datasets that support multimodal language models (MLLMs) are highlighted in this overview. Large-scale multimodal datasets are essential because they allow for thorough testing and training of these models. With an emphasis on their contributions to the discipline, the study examines a variety of datasets, including those for training, domain-specific tasks, and real-world applications. It also emphasizes how crucial benchmark datasets are for assessing models' performance in a range of scenarios, scalability, and applicability. Since multimodal learning is always changing, overcoming these obstacles will help AI research and applications reach new heights.
Authors:Shrisha Bharadwaj, Haiwen Feng, Giorgio Becherini, Victoria Fernandez Abrevaya, Michael J. Black
Title: GenLit: Reformulating Single-Image Relighting as Video Generation
Abstract:
Manipulating the illumination of a 3D scene within a single image represents a fundamental challenge in computer vision and graphics. This problem has traditionally been addressed using inverse rendering techniques, which involve explicit 3D asset reconstruction and costly ray-tracing simulations. Meanwhile, recent advancements in visual foundation models suggest that a new paradigm could soon be possible -- one that replaces explicit physical models with networks that are trained on large amounts of image and video data. In this paper, we exploit the physical world understanding of a video diffusion model, particularly Stable Video Diffusion, to relight a single image. We introduce GenLit, a framework that distills the ability of a graphics engine to perform light manipulation into a video-generation model, enabling users to directly insert and manipulate a point light in the 3D world within a given image, and generate results directly as a video sequence. We find that a model fine-tuned on only a small synthetic dataset generalizes to real-world scenes, enabling single-image relighting with plausible and convincing shadows. Our results highlight the ability of video foundation models to capture rich information about lighting, material, and, shape and our findings indicate that such models, with minimal training, can be used to perform relighting without explicit asset reconstruction or complex ray tracing. Project page: https://genlit.is.tue.mpg.de/.
Authors:Shuning Chang, Pichao Wang, Jiasheng Tang, Fan Wang, Yi Yang
Title: SparseDiT: Token Sparsification for Efficient Diffusion Transformer
Abstract:
Diffusion Transformers (DiT) are renowned for their impressive generative performance; however, they are significantly constrained by considerable computational costs due to the quadratic complexity in self-attention and the extensive sampling steps required. While advancements have been made in expediting the sampling process, the underlying architectural inefficiencies within DiT remain underexplored. We introduce SparseDiT, a novel framework that implements token sparsification across spatial and temporal dimensions to enhance computational efficiency while preserving generative quality. Spatially, SparseDiT employs a tri-segment architecture that allocates token density based on feature requirements at each layer: Poolingformer in the bottom layers for efficient global feature extraction, Sparse-Dense Token Modules (SDTM) in the middle layers to balance global context with local detail, and dense tokens in the top layers to refine high-frequency details. Temporally, SparseDiT dynamically modulates token density across denoising stages, progressively increasing token count as finer details emerge in later timesteps. This synergy between SparseDiT spatially adaptive architecture and its temporal pruning strategy enables a unified framework that balances efficiency and fidelity throughout the generation process. Our experiments demonstrate SparseDiT effectiveness, achieving a 55% reduction in FLOPs and a 175% improvement in inference speed on DiT-XL with similar FID score on 512x512 ImageNet, a 56% reduction in FLOPs across video generation datasets, and a 69% improvement in inference speed on PixArt-$α$ on text-to-image generation task with a 0.24 FID score decrease. SparseDiT provides a scalable solution for high-quality diffusion-based generation compatible with sampling optimization techniques.
Authors:Vinayak Gupta, Yunze Man, Yu-Xiong Wang
Title: PaintScene4D: Consistent 4D Scene Generation from Text Prompts
Abstract:
Recent advances in diffusion models have revolutionized 2D and 3D content creation, yet generating photorealistic dynamic 4D scenes remains a significant challenge. Existing dynamic 4D generation methods typically rely on distilling knowledge from pre-trained 3D generative models, often fine-tuned on synthetic object datasets. Consequently, the resulting scenes tend to be object-centric and lack photorealism. While text-to-video models can generate more realistic scenes with motion, they often struggle with spatial understanding and provide limited control over camera viewpoints during rendering. To address these limitations, we present PaintScene4D, a novel text-to-4D scene generation framework that departs from conventional multi-view generative models in favor of a streamlined architecture that harnesses video generative models trained on diverse real-world datasets. Our method first generates a reference video using a video generation model, and then employs a strategic camera array selection for rendering. We apply a progressive warping and inpainting technique to ensure both spatial and temporal consistency across multiple viewpoints. Finally, we optimize multi-view images using a dynamic renderer, enabling flexible camera control based on user preferences. Adopting a training-free architecture, our PaintScene4D efficiently produces realistic 4D scenes that can be viewed from arbitrary trajectories. The code will be made publicly available. Our project page is at https://paintscene4d.github.io/
Authors:Longtao Zheng, Yifan Zhang, Hanzhong Guo, Jiachun Pan, Zhenxiong Tan, Jiahao Lu, Chuanxin Tang, Bo An, Shuicheng Yan
Title: MEMO: Memory-Guided Diffusion for Expressive Talking Video Generation
Abstract:
Recent advances in video diffusion models have unlocked new potential for realistic audio-driven talking video generation. However, achieving seamless audio-lip synchronization, maintaining long-term identity consistency, and producing natural, audio-aligned expressions in generated talking videos remain significant challenges. To address these challenges, we propose Memory-guided EMOtion-aware diffusion (MEMO), an end-to-end audio-driven portrait animation approach to generate identity-consistent and expressive talking videos. Our approach is built around two key modules: (1) a memory-guided temporal module, which enhances long-term identity consistency and motion smoothness by developing memory states to store information from a longer past context to guide temporal modeling via linear attention; and (2) an emotion-aware audio module, which replaces traditional cross attention with multi-modal attention to enhance audio-video interaction, while detecting emotions from audio to refine facial expressions via emotion adaptive layer norm. Extensive quantitative and qualitative results demonstrate that MEMO generates more realistic talking videos across diverse image and audio types, outperforming state-of-the-art methods in overall quality, audio-lip synchronization, identity consistency, and expression-emotion alignment.
Authors:Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, Yann LeCun
Title: Navigation World Models
Abstract:
Navigation is a fundamental skill of agents with visual-motor capabilities. We introduce a Navigation World Model (NWM), a controllable video generation model that predicts future visual observations based on past observations and navigation actions. To capture complex environment dynamics, NWM employs a Conditional Diffusion Transformer (CDiT), trained on a diverse collection of egocentric videos of both human and robotic agents, and scaled up to 1 billion parameters. In familiar environments, NWM can plan navigation trajectories by simulating them and evaluating whether they achieve the desired goal. Unlike supervised navigation policies with fixed behavior, NWM can dynamically incorporate constraints during planning. Experiments demonstrate its effectiveness in planning trajectories from scratch or by ranking trajectories sampled from an external policy. Furthermore, NWM leverages its learned visual priors to imagine trajectories in unfamiliar environments from a single input image, making it a flexible and powerful tool for next-generation navigation systems.
Authors:Yiming Wu, Zhenghao Chen, Huan Wang, Dong Xu
Title: Individual Content and Motion Dynamics Preserved Pruning for Video Diffusion Models
Abstract:
The high computational cost and slow inference time are major obstacles to deploying Video Diffusion Models (VDMs). To overcome this, we introduce a new Video Diffusion Model Compression approach using individual content and motion dynamics preserved pruning and consistency loss. First, we empirically observe that deeper VDM layers are crucial for maintaining the quality of \textbf{motion dynamics} (\textit{e.g.,} coherence of the entire video), while shallower layers are more focused on \textbf{individual content} (\textit{e.g.,} individual frames). Therefore, we prune redundant blocks from the shallower layers while preserving more of the deeper layers, resulting in a lightweight VDM variant called VDMini. Moreover, we propose an \textbf{Individual Content and Motion Dynamics (ICMD)} Consistency Loss to gain comparable generation performance as larger VDM to VDMini. In particular, we first use the Individual Content Distillation (ICD) Loss to preserve the consistency in the features of each generated frame between the teacher and student models. Next, we introduce a Multi-frame Content Adversarial (MCA) Loss to enhance the motion dynamics across the generated video as a whole. This method significantly accelerates inference time while maintaining high-quality video generation. Extensive experiments demonstrate the effectiveness of our VDMini on two important video generation tasks, Text-to-Video (T2V) and Image-to-Video (I2V), where we respectively achieve an average 2.5 $\times$, 1.4 $\times$, and 1.25 $\times$ speed up for the I2V method SF-V, the T2V method T2V-Turbo-v2, and the T2V method HunyuanVideo, while maintaining the quality of the generated videos on several benchmarks including UCF101, VBench-T2V, and VBench-I2V.
Authors:Kui Ren, Ziqi Yang, Li Lu, Jian Liu, Yiming Li, Jie Wan, Xiaodi Zhao, Xianheng Feng, Shuo Shao
Title: SoK: On the Role and Future of AIGC Watermarking in the Era of Gen-AI
Abstract:
The rapid advancement of AI technology, particularly in generating AI-generated content (AIGC), has transformed numerous fields, e.g., art video generation, but also brings new risks, including the misuse of AI for misinformation and intellectual property theft. To address these concerns, AIGC watermarks offer an effective solution to mitigate malicious activities. However, existing watermarking surveys focus more on traditional watermarks, overlooking AIGC-specific challenges. In this work, we propose a systematic investigation into AIGC watermarking and provide the first formal definition of AIGC watermarking. Different from previous surveys, we provide a taxonomy based on the core properties of the watermark which are summarized through comprehensive literature from various AIGC modalities. Derived from the properties, we discuss the functionality and security threats of AIGC watermarking. In the end, we thoroughly investigate the AIGC governance of different countries and practitioners. We believe this taxonomy better aligns with the practical demands for watermarking in the era of GenAI, thus providing a clearer summary of existing work and uncovering potential future research directions for the community.
Authors:Koichi Namekata, Sherwin Bahmani, Ziyi Wu, Yash Kant, Igor Gilitschenski, David B. Lindell
Title: SG-I2V: Self-Guided Trajectory Control in Image-to-Video Generation
Abstract:
Methods for image-to-video generation have achieved impressive, photo-realistic quality. However, adjusting specific elements in generated videos, such as object motion or camera movement, is often a tedious process of trial and error, e.g., involving re-generating videos with different random seeds. Recent techniques address this issue by fine-tuning a pre-trained model to follow conditioning signals, such as bounding boxes or point trajectories. Yet, this fine-tuning procedure can be computationally expensive, and it requires datasets with annotated object motion, which can be difficult to procure. In this work, we introduce SG-I2V, a framework for controllable image-to-video generation that is self-guided$\unicode{x2013}$offering zero-shot control by relying solely on the knowledge present in a pre-trained image-to-video diffusion model without the need for fine-tuning or external knowledge. Our zero-shot method outperforms unsupervised baselines while significantly narrowing down the performance gap with supervised models in terms of visual quality and motion fidelity. Additional details and video results are available on our project page: https://kmcode1.github.io/Projects/SG-I2V
Authors:Wenhao Wang, Yi Yang
Title: TIP-I2V: A Million-Scale Real Text and Image Prompt Dataset for Image-to-Video Generation
Abstract:
Video generation models are revolutionizing content creation, with image-to-video models drawing increasing attention due to their enhanced controllability, visual consistency, and practical applications. However, despite their popularity, these models rely on user-provided text and image prompts, and there is currently no dedicated dataset for studying these prompts. In this paper, we introduce TIP-I2V, the first large-scale dataset of over 1.70 million unique user-provided Text and Image Prompts specifically for Image-to-Video generation. Additionally, we provide the corresponding generated videos from five state-of-the-art image-to-video models. We begin by outlining the time-consuming and costly process of curating this large-scale dataset. Next, we compare TIP-I2V to two popular prompt datasets, VidProM (text-to-video) and DiffusionDB (text-to-image), highlighting differences in both basic and semantic information. This dataset enables advancements in image-to-video research. For instance, to develop better models, researchers can use the prompts in TIP-I2V to analyze user preferences and evaluate the multi-dimensional performance of their trained models; and to enhance model safety, they may focus on addressing the misinformation issue caused by image-to-video models. The new research inspired by TIP-I2V and the differences with existing datasets emphasize the importance of a specialized image-to-video prompt dataset. The project is available at https://tip-i2v.github.io.
Authors:Yintai Ma, Diego Klabjan, Jean Utke
Title: Video to Video Generative Adversarial Network for Few-shot Learning Based on Policy Gradient
Abstract:
The development of sophisticated models for video-to-video synthesis has been facilitated by recent advances in deep reinforcement learning and generative adversarial networks (GANs). In this paper, we propose RL-V2V-GAN, a new deep neural network approach based on reinforcement learning for unsupervised conditional video-to-video synthesis. While preserving the unique style of the source video domain, our approach aims to learn a mapping from a source video domain to a target video domain. We train the model using policy gradient and employ ConvLSTM layers to capture the spatial and temporal information by designing a fine-grained GAN architecture and incorporating spatio-temporal adversarial goals. The adversarial losses aid in content translation while preserving style. Unlike traditional video-to-video synthesis methods requiring paired inputs, our proposed approach is more general because it does not require paired inputs. Thus, when dealing with limited videos in the target domain, i.e., few-shot learning, it is particularly effective. Our experiments show that RL-V2V-GAN can produce temporally coherent video results. These results highlight the potential of our approach for further advances in video-to-video synthesis.
Authors:Chi-Lam Cheang, Guangzeng Chen, Ya Jing, Tao Kong, Hang Li, Yifeng Li, Yuxiao Liu, Hongtao Wu, Jiafeng Xu, Yichu Yang, Hanbo Zhang, Minzhao Zhu
Title: GR-2: A Generative Video-Language-Action Model with Web-Scale Knowledge for Robot Manipulation
Abstract:
We present GR-2, a state-of-the-art generalist robot agent for versatile and generalizable robot manipulation. GR-2 is first pre-trained on a vast number of Internet videos to capture the dynamics of the world. This large-scale pre-training, involving 38 million video clips and over 50 billion tokens, equips GR-2 with the ability to generalize across a wide range of robotic tasks and environments during subsequent policy learning. Following this, GR-2 is fine-tuned for both video generation and action prediction using robot trajectories. It exhibits impressive multi-task learning capabilities, achieving an average success rate of 97.7% across more than 100 tasks. Moreover, GR-2 demonstrates exceptional generalization to new, previously unseen scenarios, including novel backgrounds, environments, objects, and tasks. Notably, GR-2 scales effectively with model size, underscoring its potential for continued growth and application. Project page: \url{https://gr2-manipulation.github.io}.
Authors:Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song, Yadong Mu, Zhouchen Lin
Title: Pyramidal Flow Matching for Efficient Video Generative Modeling
Abstract:
Video generation requires modeling a vast spatiotemporal space, which demands significant computational resources and data usage. To reduce the complexity, the prevailing approaches employ a cascaded architecture to avoid direct training with full resolution latent. Despite reducing computational demands, the separate optimization of each sub-stage hinders knowledge sharing and sacrifices flexibility. This work introduces a unified pyramidal flow matching algorithm. It reinterprets the original denoising trajectory as a series of pyramid stages, where only the final stage operates at the full resolution, thereby enabling more efficient video generative modeling. Through our sophisticated design, the flows of different pyramid stages can be interlinked to maintain continuity. Moreover, we craft autoregressive video generation with a temporal pyramid to compress the full-resolution history. The entire framework can be optimized in an end-to-end manner and with a single unified Diffusion Transformer (DiT). Extensive experiments demonstrate that our method supports generating high-quality 5-second (up to 10-second) videos at 768p resolution and 24 FPS within 20.7k A100 GPU training hours. All code and models are open-sourced at https://pyramid-flow.github.io.
Authors:Jiachen Li, Qian Long, Jian Zheng, Xiaofeng Gao, Robinson Piramuthu, Wenhu Chen, William Yang Wang
Title: T2V-Turbo-v2: Enhancing Video Generation Model Post-Training through Data, Reward, and Conditional Guidance Design
Abstract:
In this paper, we focus on enhancing a diffusion-based text-to-video (T2V) model during the post-training phase by distilling a highly capable consistency model from a pretrained T2V model. Our proposed method, T2V-Turbo-v2, introduces a significant advancement by integrating various supervision signals, including high-quality training data, reward model feedback, and conditional guidance, into the consistency distillation process. Through comprehensive ablation studies, we highlight the crucial importance of tailoring datasets to specific learning objectives and the effectiveness of learning from diverse reward models for enhancing both the visual quality and text-video alignment. Additionally, we highlight the vast design space of conditional guidance strategies, which centers on designing an effective energy function to augment the teacher ODE solver. We demonstrate the potential of this approach by extracting motion guidance from the training datasets and incorporating it into the ODE solver, showcasing its effectiveness in improving the motion quality of the generated videos with the improved motion-related metrics from VBench and T2V-CompBench. Empirically, our T2V-Turbo-v2 establishes a new state-of-the-art result on VBench, with a Total score of 85.13, surpassing proprietary systems such as Gen-3 and Kling.
Authors:Liu He, Yizhi Song, Hejun Huang, Pinxin Liu, Yunlong Tang, Daniel Aliaga, Xin Zhou
Title: Kubrick: Multimodal Agent Collaborations for Synthetic Video Generation
Abstract:
Text-to-video generation has been dominated by diffusion-based or autoregressive models. These novel models provide plausible versatility, but are criticized for improper physical motion, shading and illumination, camera motion, and temporal consistency. The film industry relies on manually-edited Computer-Generated Imagery (CGI) using 3D modeling software. Human-directed 3D synthetic videos address these shortcomings, but require tight collaboration between movie makers and 3D rendering experts. We introduce an automatic synthetic video generation pipeline based on Vision Large Language Model (VLM) agent collaborations. Given a language description of a video, multiple VLM agents direct various processes of the generation pipeline. They cooperate to create Blender scripts which render a video following the given description. Augmented with Blender-based movie making knowledge, the Director agent decomposes the text-based video description into sub-processes. For each sub-process, the Programmer agent produces Python-based Blender scripts based on function composing and API calling. The Reviewer agent, with knowledge of video reviewing, character motion coordinates, and intermediate screenshots, provides feedback to the Programmer agent. The Programmer agent iteratively improves scripts to yield the best video outcome. Our generated videos show better quality than commercial video generation models in five metrics on video quality and instruction-following performance. Our framework outperforms other approaches in a user study on quality, consistency, and rationality.
Authors:Jiaxin Wu, Chong-Wah Ngo, Wing-Kwong Chan, Sheng-Hua Zhong, Xiong-Yong Wei, Qing Li
Title: Multimodal LLM-based Query Paraphrasing for Video Search
Abstract:
Text-to-video retrieval answers user queries through searches based on concepts and embeddings. However, due to limitations in the size of the concept bank and the amount of training data, answering queries in the wild is not always effective because of the out-of-vocabulary problem. Furthermore, neither concept-based nor embedding-based search can perform reasoning to consolidate search results for complex queries that include logical and spatial constraints. To address these challenges, we leverage large language models (LLMs) to paraphrase queries using text-to-text (T2T), text-to-image (T2I), and image-to-text (I2T) transformations. These transformations rephrase abstract concepts into simpler terms to mitigate the out-of-vocabulary problem. Additionally, complex relationships within a query can be decomposed into simpler sub-queries, improving retrieval performance by effectively fusing the search results of these sub-queries. To mitigate the issue of LLM hallucination, this paper also proposes a novel consistency-based verification strategy to filter out factually incorrect paraphrased queries. Extensive experiments are conducted for ad-hoc video search and known-item search on the TRECVid datasets. We provide empirical insights into how traditionally difficult-to-answer queries can be effectively resolved through query paraphrasing.
Authors:Huanzhang Dou, Ruixiang Li, Wei Su, Xi Li
Title: GVDIFF: Grounded Text-to-Video Generation with Diffusion Models
Abstract:
In text-to-video (T2V) generation, significant attention has been directed toward its development, yet unifying discrete and continuous grounding conditions in T2V generation remains under-explored. This paper proposes a Grounded text-to-Video generation framework, termed GVDIFF. First, we inject the grounding condition into the self-attention through an uncertainty-based representation to explicitly guide the focus of the network. Second, we introduce a spatial-temporal grounding layer that connects the grounding condition with target objects and enables the model with the grounded generation capacity in the spatial-temporal domain. Third, our dynamic gate network adaptively skips the redundant grounding process to selectively extract grounding information and semantics while improving efficiency. We extensively evaluate the grounded generation capacity of GVDIFF and demonstrate its versatility in applications, including long-range video generation, sequential prompts, and object-specific editing.
Authors:Zhongjie Duan, Wenmeng Zhou, Cen Chen, Yaliang Li, Weining Qian
Title: ExVideo: Extending Video Diffusion Models via Parameter-Efficient Post-Tuning
Abstract:
Recently, advancements in video synthesis have attracted significant attention. Video synthesis models such as AnimateDiff and Stable Video Diffusion have demonstrated the practical applicability of diffusion models in creating dynamic visual content. The emergence of SORA has further spotlighted the potential of video generation technologies. Nonetheless, the extension of video lengths has been constrained by the limitations in computational resources. Most existing video synthesis models can only generate short video clips. In this paper, we propose a novel post-tuning methodology for video synthesis models, called ExVideo. This approach is designed to enhance the capability of current video synthesis models, allowing them to produce content over extended temporal durations while incurring lower training expenditures. In particular, we design extension strategies across common temporal model architectures respectively, including 3D convolution, temporal attention, and positional embedding. To evaluate the efficacy of our proposed post-tuning approach, we conduct extension training on the Stable Video Diffusion model. Our approach augments the model's capacity to generate up to $5\times$ its original number of frames, requiring only 1.5k GPU hours of training on a dataset comprising 40k videos. Importantly, the substantial increase in video length doesn't compromise the model's innate generalization capabilities, and the model showcases its advantages in generating videos of diverse styles and resolutions. We will release the source code and the enhanced model publicly.
Authors:Haoran Cheng, Liang Peng, Linxuan Xia, Yuepeng Hu, Hengjia Li, Qinglin Lu, Xiaofei He, Boxi Wu
Title: Searching Priors Makes Text-to-Video Synthesis Better
Abstract:
Significant advancements in video diffusion models have brought substantial progress to the field of text-to-video (T2V) synthesis. However, existing T2V synthesis model struggle to accurately generate complex motion dynamics, leading to a reduction in video realism. One possible solution is to collect massive data and train the model on it, but this would be extremely expensive. To alleviate this problem, in this paper, we reformulate the typical T2V generation process as a search-based generation pipeline. Instead of scaling up the model training, we employ existing videos as the motion prior database. Specifically, we divide T2V generation process into two steps: (i) For a given prompt input, we search existing text-video datasets to find videos with text labels that closely match the prompt motions. We propose a tailored search algorithm that emphasizes object motion features. (ii) Retrieved videos are processed and distilled into motion priors to fine-tune a pre-trained base T2V model, followed by generating desired videos using input prompt. By utilizing the priors gleaned from the searched videos, we enhance the realism of the generated videos' motion. All operations can be finished on a single NVIDIA RTX 4090 GPU. We validate our method against state-of-the-art T2V models across diverse prompt inputs. The code will be public.
Authors:Luca Savant Aira, Antonio Montanaro, Emanuele Aiello, Diego Valsesia, Enrico Magli
Title: MotionCraft: Physics-based Zero-Shot Video Generation
Abstract:
Generating videos with realistic and physically plausible motion is one of the main recent challenges in computer vision. While diffusion models are achieving compelling results in image generation, video diffusion models are limited by heavy training and huge models, resulting in videos that are still biased to the training dataset. In this work we propose MotionCraft, a new zero-shot video generator to craft physics-based and realistic videos. MotionCraft is able to warp the noise latent space of an image diffusion model, such as Stable Diffusion, by applying an optical flow derived from a physics simulation. We show that warping the noise latent space results in coherent application of the desired motion while allowing the model to generate missing elements consistent with the scene evolution, which would otherwise result in artefacts or missing content if the flow was applied in the pixel space. We compare our method with the state-of-the-art Text2Video-Zero reporting qualitative and quantitative improvements, demonstrating the effectiveness of our approach to generate videos with finely-prescribed complex motion dynamics. Project page: https://mezzelfo.github.io/MotionCraft/
Authors:Reza Hadi Mogavi, Derrick Wang, Joseph Tu, Hilda Hadan, Sabrina A. Sgandurra, Pan Hui, Lennart E. Nacke
Title: Sora OpenAI's Prelude: Social Media Perspectives on Sora OpenAI and the Future of AI Video Generation
Abstract:
The rapid advancement of Generative AI (Gen-AI) is transforming Human-Computer Interaction (HCI), with significant implications across various sectors. This study investigates the public's perception of Sora OpenAI, a pioneering Gen-AI video generation tool, via social media discussions on Reddit before its release. It centers on two main questions: the envisioned applications and the concerns related to Sora's integration. The analysis forecasts positive shifts in content creation, predicting that Sora will democratize video marketing and innovate game development by making video production more accessible and economical. Conversely, there are concerns about deepfakes and the potential for disinformation, underscoring the need for strategies to address disinformation and bias. This paper contributes to the Gen-AI discourse by fostering discussion on current and future capabilities, enriching the understanding of public expectations, and establishing a temporal benchmark for user anticipation. This research underscores the necessity for informed, ethical approaches to AI development and integration, ensuring that technological advancements align with societal values and user needs.
Authors:Haiwen Feng, Zheng Ding, Zhihao Xia, Simon Niklaus, Victoria Abrevaya, Michael J. Black, Xuaner Zhang
Title: Explorative Inbetweening of Time and Space
Abstract:
We introduce bounded generation as a generalized task to control video generation to synthesize arbitrary camera and subject motion based only on a given start and end frame. Our objective is to fully leverage the inherent generalization capability of an image-to-video model without additional training or fine-tuning of the original model. This is achieved through the proposed new sampling strategy, which we call Time Reversal Fusion, that fuses the temporally forward and backward denoising paths conditioned on the start and end frame, respectively. The fused path results in a video that smoothly connects the two frames, generating inbetweening of faithful subject motion, novel views of static scenes, and seamless video looping when the two bounding frames are identical. We curate a diverse evaluation dataset of image pairs and compare against the closest existing methods. We find that Time Reversal Fusion outperforms related work on all subtasks, exhibiting the ability to generate complex motions and 3D-consistent views guided by bounded frames. See project page at https://time-reversal.github.io.
Authors:Wenhao Wang, Yi Yang
Title: VidProM: A Million-scale Real Prompt-Gallery Dataset for Text-to-Video Diffusion Models
Abstract:
The arrival of Sora marks a new era for text-to-video diffusion models, bringing significant advancements in video generation and potential applications. However, Sora, along with other text-to-video diffusion models, is highly reliant on prompts, and there is no publicly available dataset that features a study of text-to-video prompts. In this paper, we introduce VidProM, the first large-scale dataset comprising 1.67 Million unique text-to-Video Prompts from real users. Additionally, this dataset includes 6.69 million videos generated by four state-of-the-art diffusion models, alongside some related data. We initially discuss the curation of this large-scale dataset, a process that is both time-consuming and costly. Subsequently, we underscore the need for a new prompt dataset specifically designed for text-to-video generation by illustrating how VidProM differs from DiffusionDB, a large-scale prompt-gallery dataset for image generation. Our extensive and diverse dataset also opens up many exciting new research areas. For instance, we suggest exploring text-to-video prompt engineering, efficient video generation, and video copy detection for diffusion models to develop better, more efficient, and safer models. The project (including the collected dataset VidProM and related code) is publicly available at https://vidprom.github.io under the CC-BY-NC 4.0 License.
Authors:Ziling Liu, Jinyu Yang, Mingqi Gao, Feng Zheng
Title: Place Anything into Any Video
Abstract:
Controllable video editing has demonstrated remarkable potential across diverse applications, particularly in scenarios where capturing or re-capturing real-world videos is either impractical or costly. This paper introduces a novel and efficient system named Place-Anything, which facilitates the insertion of any object into any video solely based on a picture or text description of the target object or element. The system comprises three modules: 3D generation, video reconstruction, and 3D target insertion. This integrated approach offers an efficient and effective solution for producing and editing high-quality videos by seamlessly inserting realistic objects. Through a user study, we demonstrate that our system can effortlessly place any object into any video using just a photograph of the object. Our demo video can be found at https://youtu.be/afXqgLLRnTE. Please also visit our project page https://place-anything.github.io to get access.
Authors:Bin Zhu, Kevin Flanagan, Adriano Fragomeni, Michael Wray, Dima Damen
Title: Video Editing for Video Retrieval
Abstract:
Though pre-training vision-language models have demonstrated significant benefits in boosting video-text retrieval performance from large-scale web videos, fine-tuning still plays a critical role with manually annotated clips with start and end times, which requires considerable human effort. To address this issue, we explore an alternative cheaper source of annotations, single timestamps, for video-text retrieval. We initialise clips from timestamps in a heuristic way to warm up a retrieval model. Then a video clip editing method is proposed to refine the initial rough boundaries to improve retrieval performance. A student-teacher network is introduced for video clip editing. The teacher model is employed to edit the clips in the training set whereas the student model trains on the edited clips. The teacher weights are updated from the student's after the student's performance increases. Our method is model agnostic and applicable to any retrieval models. We conduct experiments based on three state-of-the-art retrieval models, COOT, VideoCLIP and CLIP4Clip. Experiments conducted on three video retrieval datasets, YouCook2, DiDeMo and ActivityNet-Captions show that our edited clips consistently improve retrieval performance over initial clips across all the three retrieval models.
Authors:Zhao Wang, Aoxue Li, Lingting Zhu, Yong Guo, Qi Dou, Zhenguo Li
Title: CustomVideo: Customizing Text-to-Video Generation with Multiple Subjects
Abstract:
Customized text-to-video generation aims to generate high-quality videos guided by text prompts and subject references. Current approaches for personalizing text-to-video generation suffer from tackling multiple subjects, which is a more challenging and practical scenario. In this work, our aim is to promote multi-subject guided text-to-video customization. We propose CustomVideo, a novel framework that can generate identity-preserving videos with the guidance of multiple subjects. To be specific, firstly, we encourage the co-occurrence of multiple subjects via composing them in a single image. Further, upon a basic text-to-video diffusion model, we design a simple yet effective attention control strategy to disentangle different subjects in the latent space of diffusion model. Moreover, to help the model focus on the specific area of the object, we segment the object from given reference images and provide a corresponding object mask for attention learning. Also, we collect a multi-subject text-to-video generation dataset as a comprehensive benchmark, with 63 individual subjects from 13 different categories and 68 meaningful pairs. Extensive qualitative, quantitative, and user study results demonstrate the superiority of our method compared to previous state-of-the-art approaches. The project page is https://kyfafyd.wang/projects/customvideo.
Authors:Abdelrahman Eldesokey, Peter Wonka
Title: LatentMan: Generating Consistent Animated Characters using Image Diffusion Models
Abstract:
We propose a zero-shot approach for generating consistent videos of animated characters based on Text-to-Image (T2I) diffusion models. Existing Text-to-Video (T2V) methods are expensive to train and require large-scale video datasets to produce diverse characters and motions. At the same time, their zero-shot alternatives fail to produce temporally consistent videos with continuous motion. We strive to bridge this gap, and we introduce LatentMan, which leverages existing text-based motion diffusion models to generate diverse continuous motions to guide the T2I model. To boost the temporal consistency, we introduce the Spatial Latent Alignment module that exploits cross-frame dense correspondences that we compute to align the latents of the video frames. Furthermore, we propose Pixel-Wise Guidance to steer the diffusion process in a direction that minimizes visual discrepancies between frames. Our proposed approach outperforms existing zero-shot T2V approaches in generating videos of animated characters in terms of pixel-wise consistency and user preference. Project page https://abdo-eldesokey.github.io/latentman/.
Authors:Lijun Yu, José Lezama, Nitesh B. Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, Alexander G. Hauptmann, Boqing Gong, Ming-Hsuan Yang, Irfan Essa, David A. Ross, Lu Jiang
Title: Language Model Beats Diffusion -- Tokenizer is Key to Visual Generation
Abstract:
While Large Language Models (LLMs) are the dominant models for generative tasks in language, they do not perform as well as diffusion models on image and video generation. To effectively use LLMs for visual generation, one crucial component is the visual tokenizer that maps pixel-space inputs to discrete tokens appropriate for LLM learning. In this paper, we introduce MAGVIT-v2, a video tokenizer designed to generate concise and expressive tokens for both videos and images using a common token vocabulary. Equipped with this new tokenizer, we show that LLMs outperform diffusion models on standard image and video generation benchmarks including ImageNet and Kinetics. In addition, we demonstrate that our tokenizer surpasses the previously top-performing video tokenizer on two more tasks: (1) video compression comparable to the next-generation video codec (VCC) according to human evaluations, and (2) learning effective representations for action recognition tasks.
Authors:Long Lian, Baifeng Shi, Adam Yala, Trevor Darrell, Boyi Li
Title: LLM-grounded Video Diffusion Models
Abstract:
Text-conditioned diffusion models have emerged as a promising tool for neural video generation. However, current models still struggle with intricate spatiotemporal prompts and often generate restricted or incorrect motion. To address these limitations, we introduce LLM-grounded Video Diffusion (LVD). Instead of directly generating videos from the text inputs, LVD first leverages a large language model (LLM) to generate dynamic scene layouts based on the text inputs and subsequently uses the generated layouts to guide a diffusion model for video generation. We show that LLMs are able to understand complex spatiotemporal dynamics from text alone and generate layouts that align closely with both the prompts and the object motion patterns typically observed in the real world. We then propose to guide video diffusion models with these layouts by adjusting the attention maps. Our approach is training-free and can be integrated into any video diffusion model that admits classifier guidance. Our results demonstrate that LVD significantly outperforms its base video diffusion model and several strong baseline methods in faithfully generating videos with the desired attributes and motion patterns.
Authors:Chaehun Shin, Heeseung Kim, Che Hyun Lee, Sang-gil Lee, Sungroh Yoon
Title: Edit-A-Video: Single Video Editing with Object-Aware Consistency
Abstract:
Despite the fact that text-to-video (TTV) model has recently achieved remarkable success, there have been few approaches on TTV for its extension to video editing. Motivated by approaches on TTV models adapting from diffusion-based text-to-image (TTI) models, we suggest the video editing framework given only a pretrained TTI model and a single pair, which we term Edit-A-Video. The framework consists of two stages: (1) inflating the 2D model into the 3D model by appending temporal modules and tuning on the source video (2) inverting the source video into the noise and editing with target text prompt and attention map injection. Each stage enables the temporal modeling and preservation of semantic attributes of the source video. One of the key challenges for video editing include a background inconsistency problem, where the regions not included for the edit suffer from undesirable and inconsistent temporal alterations. To mitigate this issue, we also introduce a novel mask blending method, termed as sparse-causal blending (SC Blending). We improve previous mask blending methods to reflect the temporal consistency so that the area where the editing is applied exhibits smooth transition while also achieving spatio-temporal consistency of the unedited regions. We present extensive experimental results over various types of text and videos, and demonstrate the superiority of the proposed method compared to baselines in terms of background consistency, text alignment, and video editing quality.
Authors:Sihyun Yu, Kihyuk Sohn, Subin Kim, Jinwoo Shin
Title: Video Probabilistic Diffusion Models in Projected Latent Space
Abstract:
Despite the remarkable progress in deep generative models, synthesizing high-resolution and temporally coherent videos still remains a challenge due to their high-dimensionality and complex temporal dynamics along with large spatial variations. Recent works on diffusion models have shown their potential to solve this challenge, yet they suffer from severe computation- and memory-inefficiency that limit the scalability. To handle this issue, we propose a novel generative model for videos, coined projected latent video diffusion models (PVDM), a probabilistic diffusion model which learns a video distribution in a low-dimensional latent space and thus can be efficiently trained with high-resolution videos under limited resources. Specifically, PVDM is composed of two components: (a) an autoencoder that projects a given video as 2D-shaped latent vectors that factorize the complex cubic structure of video pixels and (b) a diffusion model architecture specialized for our new factorized latent space and the training/sampling procedure to synthesize videos of arbitrary length with a single model. Experiments on popular video generation datasets demonstrate the superiority of PVDM compared with previous video synthesis methods; e.g., PVDM obtains the FVD score of 639.7 on the UCF-101 long video (128 frames) generation benchmark, which improves 1773.4 of the prior state-of-the-art.
Authors:Eyal Molad, Eliahu Horwitz, Dani Valevski, Alex Rav Acha, Yossi Matias, Yael Pritch, Yaniv Leviathan, Yedid Hoshen
Title: Dreamix: Video Diffusion Models are General Video Editors
Abstract:
Text-driven image and video diffusion models have recently achieved unprecedented generation realism. While diffusion models have been successfully applied for image editing, very few works have done so for video editing. We present the first diffusion-based method that is able to perform text-based motion and appearance editing of general videos. Our approach uses a video diffusion model to combine, at inference time, the low-resolution spatio-temporal information from the original video with new, high resolution information that it synthesized to align with the guiding text prompt. As obtaining high-fidelity to the original video requires retaining some of its high-resolution information, we add a preliminary stage of finetuning the model on the original video, significantly boosting fidelity. We propose to improve motion editability by a new, mixed objective that jointly finetunes with full temporal attention and with temporal attention masking. We further introduce a new framework for image animation. We first transform the image into a coarse video by simple image processing operations such as replication and perspective geometric projections, and then use our general video editor to animate it. As a further application, we can use our method for subject-driven video generation. Extensive qualitative and numerical experiments showcase the remarkable editing ability of our method and establish its superior performance compared to baseline methods.
Authors:Luca Zanchetta, Lorenzo Papa, Luca Maiano, Irene Amerini
Title: VidCLearn: A Continual Learning Approach for Text-to-Video Generation
Abstract:
Text-to-video generation is an emerging field in generative AI, enabling the creation of realistic, semantically accurate videos from text prompts. While current models achieve impressive visual quality and alignment with input text, they typically rely on static knowledge, making it difficult to incorporate new data without retraining from scratch. To address this limitation, we propose VidCLearn, a continual learning framework for diffusion-based text-to-video generation. VidCLearn features a student-teacher architecture where the student model is incrementally updated with new text-video pairs, and the teacher model helps preserve previously learned knowledge through generative replay. Additionally, we introduce a novel temporal consistency loss to enhance motion smoothness and a video retrieval module to provide structural guidance at inference. Our architecture is also designed to be more computationally efficient than existing models while retaining satisfactory generation performance. Experimental results show VidCLearn's superiority over baseline methods in terms of visual quality, semantic alignment, and temporal coherence.
Authors:Marcelo Sandoval-Castaneda, Bryan Russell, Josef Sivic, Gregory Shakhnarovich, Fabian Caba Heilbron
Title: EditDuet: A Multi-Agent System for Video Non-Linear Editing
Abstract:
Automated tools for video editing and assembly have applications ranging from filmmaking and advertisement to content creation for social media. Previous video editing work has mainly focused on either retrieval or user interfaces, leaving actual editing to the user. In contrast, we propose to automate the core task of video editing, formulating it as sequential decision making process. Ours is a multi-agent approach. We design an Editor agent and a Critic agent. The Editor takes as input a collection of video clips together with natural language instructions and uses tools commonly found in video editing software to produce an edited sequence. On the other hand, the Critic gives natural language feedback to the editor based on the produced sequence or renders it if it is satisfactory. We introduce a learning-based approach for enabling effective communication across specialized agents to address the language-driven video editing task. Finally, we explore an LLM-as-a-judge metric for evaluating the quality of video editing system and compare it with general human preference. We evaluate our system's output video sequences qualitatively and quantitatively through a user study and find that our system vastly outperforms existing approaches in terms of coverage, time constraint satisfaction, and human preference.
Authors:Hao Zhang, Chun-Han Yao, Simon Donné, Narendra Ahuja, Varun Jampani
Title: Stable Part Diffusion 4D: Multi-View RGB and Kinematic Parts Video Generation
Abstract:
We present Stable Part Diffusion 4D (SP4D), a framework for generating paired RGB and kinematic part videos from monocular inputs. Unlike conventional part segmentation methods that rely on appearance-based semantic cues, SP4D learns to produce kinematic parts - structural components aligned with object articulation and consistent across views and time. SP4D adopts a dual-branch diffusion model that jointly synthesizes RGB frames and corresponding part segmentation maps. To simplify the architecture and flexibly enable different part counts, we introduce a spatial color encoding scheme that maps part masks to continuous RGB-like images. This encoding allows the segmentation branch to share the latent VAE from the RGB branch, while enabling part segmentation to be recovered via straightforward post-processing. A Bidirectional Diffusion Fusion (BiDiFuse) module enhances cross-branch consistency, supported by a contrastive part consistency loss to promote spatial and temporal alignment of part predictions. We demonstrate that the generated 2D part maps can be lifted to 3D to derive skeletal structures and harmonic skinning weights with few manual adjustments. To train and evaluate SP4D, we construct KinematicParts20K, a curated dataset of over 20K rigged objects selected and processed from Objaverse XL (Deitke et al., 2023), each paired with multi-view RGB and part video sequences. Experiments show that SP4D generalizes strongly to diverse scenarios, including real-world videos, novel generated objects, and rare articulated poses, producing kinematic-aware outputs suitable for downstream animation and motion-related tasks.
Authors:Yikang Ding, Jiwen Liu, Wenyuan Zhang, Zekun Wang, Wentao Hu, Liyuan Cui, Mingming Lao, Yingchao Shao, Hui Liu, Xiaohan Li, Ming Chen, Xiaoqiang Liu, Yu-Shen Liu, Pengfei Wan
Title: Kling-Avatar: Grounding Multimodal Instructions for Cascaded Long-Duration Avatar Animation Synthesis
Abstract:
Recent advances in audio-driven avatar video generation have significantly enhanced audio-visual realism. However, existing methods treat instruction conditioning merely as low-level tracking driven by acoustic or visual cues, without modeling the communicative purpose conveyed by the instructions. This limitation compromises their narrative coherence and character expressiveness. To bridge this gap, we introduce Kling-Avatar, a novel cascaded framework that unifies multimodal instruction understanding with photorealistic portrait generation. Our approach adopts a two-stage pipeline. In the first stage, we design a multimodal large language model (MLLM) director that produces a blueprint video conditioned on diverse instruction signals, thereby governing high-level semantics such as character motion and emotions. In the second stage, guided by blueprint keyframes, we generate multiple sub-clips in parallel using a first-last frame strategy. This global-to-local framework preserves fine-grained details while faithfully encoding the high-level intent behind multimodal instructions. Our parallel architecture also enables fast and stable generation of long-duration videos, making it suitable for real-world applications such as digital human livestreaming and vlogging. To comprehensively evaluate our method, we construct a benchmark of 375 curated samples covering diverse instructions and challenging scenarios. Extensive experiments demonstrate that Kling-Avatar is capable of generating vivid, fluent, long-duration videos at up to 1080p and 48 fps, achieving superior performance in lip synchronization accuracy, emotion and dynamic expressiveness, instruction controllability, identity preservation, and cross-domain generalization. These results establish Kling-Avatar as a new benchmark for semantically grounded, high-fidelity audio-driven avatar synthesis.
Authors:Liyang Chen, Tianxiang Ma, Jiawei Liu, Bingchuan Li, Zhuowei Chen, Lijie Liu, Xu He, Gen Li, Qian He, Zhiyong Wu
Title: HuMo: Human-Centric Video Generation via Collaborative Multi-Modal Conditioning
Abstract:
Human-Centric Video Generation (HCVG) methods seek to synthesize human videos from multimodal inputs, including text, image, and audio. Existing methods struggle to effectively coordinate these heterogeneous modalities due to two challenges: the scarcity of training data with paired triplet conditions and the difficulty of collaborating the sub-tasks of subject preservation and audio-visual sync with multimodal inputs. In this work, we present HuMo, a unified HCVG framework for collaborative multimodal control. For the first challenge, we construct a high-quality dataset with diverse and paired text, reference images, and audio. For the second challenge, we propose a two-stage progressive multimodal training paradigm with task-specific strategies. For the subject preservation task, to maintain the prompt following and visual generation abilities of the foundation model, we adopt the minimal-invasive image injection strategy. For the audio-visual sync task, besides the commonly adopted audio cross-attention layer, we propose a focus-by-predicting strategy that implicitly guides the model to associate audio with facial regions. For joint learning of controllabilities across multimodal inputs, building on previously acquired capabilities, we progressively incorporate the audio-visual sync task. During inference, for flexible and fine-grained multimodal control, we design a time-adaptive Classifier-Free Guidance strategy that dynamically adjusts guidance weights across denoising steps. Extensive experimental results demonstrate that HuMo surpasses specialized state-of-the-art methods in sub-tasks, establishing a unified framework for collaborative multimodal-conditioned HCVG. Project Page: https://phantom-video.github.io/HuMo.
Authors:Shangwen Zhu, Qianyu Peng, Yuting Hu, Zhantao Yang, Han Zhang, Zhao Pu, Ruili Feng, Fan Cheng
Title: RAAG: Ratio Aware Adaptive Guidance
Abstract:
Flow-based generative models have recently achieved remarkable progress in image and video synthesis, with classifier-free guidance (CFG) becoming the standard tool for high-fidelity, controllable generation. However, despite their practical success, little is known about how guidance interacts with different stages of the sampling process-especially in the fast, low-step regimes typical of modern flow-based pipelines. In this work, we uncover and analyze a fundamental instability: the earliest reverse steps are acutely sensitive to the guidance scale, owing to a pronounced spike in the relative strength (RATIO) of conditional to unconditional predictions. Through rigorous theoretical analysis and empirical validation, we show that this RATIO spike is intrinsic to the data distribution, independent of the model architecture, and causes exponential error amplification when paired with strong guidance. To address this, we propose a simple, theoretically grounded, RATIO-aware adaptive guidance schedule that automatically dampens the guidance scale at early steps based on the evolving RATIO, using a closed-form exponential decay. Our method is lightweight, requires no additional inference overhead, and is compatible with standard flow frameworks. Experiments across state-of-the-art image (SD3.5, Lumina) and video (WAN2.1) models demonstrate that our approach enables up to 3x faster sampling while maintaining or improving generation quality, robustness, and semantic alignment. Extensive ablation studies further confirm the generality and stability of our schedule across models, datasets, and hyperparameters. Our findings highlight the critical role of stepwise guidance adaptation in unlocking the full potential of fast flow-based generative models.
Authors:Wenqi Ouyang, Zeqi Xiao, Danni Yang, Yifan Zhou, Shuai Yang, Lei Yang, Jianlou Si, Xingang Pan
Title: TokensGen: Harnessing Condensed Tokens for Long Video Generation
Abstract:
Generating consistent long videos is a complex challenge: while diffusion-based generative models generate visually impressive short clips, extending them to longer durations often leads to memory bottlenecks and long-term inconsistency. In this paper, we propose TokensGen, a novel two-stage framework that leverages condensed tokens to address these issues. Our method decomposes long video generation into three core tasks: (1) inner-clip semantic control, (2) long-term consistency control, and (3) inter-clip smooth transition. First, we train To2V (Token-to-Video), a short video diffusion model guided by text and video tokens, with a Video Tokenizer that condenses short clips into semantically rich tokens. Second, we introduce T2To (Text-to-Token), a video token diffusion transformer that generates all tokens at once, ensuring global consistency across clips. Finally, during inference, an adaptive FIFO-Diffusion strategy seamlessly connects adjacent clips, reducing boundary artifacts and enhancing smooth transitions. Experimental results demonstrate that our approach significantly enhances long-term temporal and content coherence without incurring prohibitive computational overhead. By leveraging condensed tokens and pre-trained short video models, our method provides a scalable, modular solution for long video generation, opening new possibilities for storytelling, cinematic production, and immersive simulations. Please see our project page at https://vicky0522.github.io/tokensgen-webpage/ .
Authors:Xiao Liu, Jiawei Zhang
Title: AIGVE-MACS: Unified Multi-Aspect Commenting and Scoring Model for AI-Generated Video Evaluation
Abstract:
The rapid advancement of AI-generated video models has created a pressing need for robust and interpretable evaluation frameworks. Existing metrics are limited to producing numerical scores without explanatory comments, resulting in low interpretability and human evaluation alignment. To address those challenges, we introduce AIGVE-MACS, a unified model for AI-Generated Video Evaluation(AIGVE), which can provide not only numerical scores but also multi-aspect language comment feedback in evaluating these generated videos. Central to our approach is AIGVE-BENCH 2, a large-scale benchmark comprising 2,500 AI-generated videos and 22,500 human-annotated detailed comments and numerical scores across nine critical evaluation aspects. Leveraging AIGVE-BENCH 2, AIGVE-MACS incorporates recent Vision-Language Models with a novel token-wise weighted loss and a dynamic frame sampling strategy to better align with human evaluators. Comprehensive experiments across supervised and zero-shot benchmarks demonstrate that AIGVE-MACS achieves state-of-the-art performance in both scoring correlation and comment quality, significantly outperforming prior baselines including GPT-4o and VideoScore. In addition, we further showcase a multi-agent refinement framework where feedback from AIGVE-MACS drives iterative improvements in video generation, leading to 53.5% quality enhancement. This work establishes a new paradigm for comprehensive, human-aligned evaluation of AI-generated videos. We release the AIGVE-BENCH 2 and AIGVE-MACS at https://huggingface.co/xiaoliux/AIGVE-MACS.
Authors:Zeyi Liu, Shuang Li, Eric Cousineau, Siyuan Feng, Benjamin Burchfiel, Shuran Song
Title: Geometry-aware 4D Video Generation for Robot Manipulation
Abstract:
Understanding and predicting the dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of videos by supervising the model with cross-view pointmap alignment during training. This geometric supervision enables the model to learn a shared 3D representation of the scene, allowing it to predict future video sequences from novel viewpoints based solely on the given RGB-D observations, without requiring camera poses as inputs. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, supporting robust robot manipulation and generalization to novel camera viewpoints.
Authors:Alexander Gambashidze, Li Pengyi, Matvey Skripkin, Andrey Galichin, Anton Gusarov, Konstantin Sobolev, Andrey Kuznetsov, Ivan Oseledets
Title: Listener-Rewarded Thinking in VLMs for Image Preferences
Abstract:
Training robust and generalizable reward models for human visual preferences is essential for aligning text-to-image and text-to-video generative models with human intent. However, current reward models often fail to generalize, and supervised fine-tuning leads to memorization, demanding complex annotation pipelines. While reinforcement learning (RL), specifically Group Relative Policy Optimization (GRPO), improves generalization, we uncover a key failure mode: a significant drop in reasoning accuracy occurs when a model's reasoning trace contradicts that of an independent, frozen vision-language model ("listener") evaluating the same output. To address this, we introduce a listener-augmented GRPO framework. Here, the listener re-evaluates the reasoner's chain-of-thought to provide a dense, calibrated confidence score, shaping the RL reward signal. This encourages the reasoner not only to answer correctly, but to produce explanations that are persuasive to an independent model. Our listener-shaped reward scheme achieves best accuracy on the ImageReward benchmark (67.4%), significantly improves out-of-distribution (OOD) performance on a large-scale human preference dataset (1.2M votes, up to +6% over naive reasoner), and reduces reasoning contradictions compared to strong GRPO and SFT baselines. These results demonstrate that listener-based rewards provide a scalable, data-efficient path to aligning vision-language models with nuanced human preferences. We will release our reasoning model here: https://huggingface.co/alexgambashidze/qwen2.5vl_image_preference_reasoner.
Authors:Yuhao Liu, Tengfei Wang, Fang Liu, Zhenwei Wang, Rynson W. H. Lau
Title: Shape-for-Motion: Precise and Consistent Video Editing with 3D Proxy
Abstract:
Recent advances in deep generative modeling have unlocked unprecedented opportunities for video synthesis. In real-world applications, however, users often seek tools to faithfully realize their creative editing intentions with precise and consistent control. Despite the progress achieved by existing methods, ensuring fine-grained alignment with user intentions remains an open and challenging problem. In this work, we present Shape-for-Motion, a novel framework that incorporates a 3D proxy for precise and consistent video editing. Shape-for-Motion achieves this by converting the target object in the input video to a time-consistent mesh, i.e., a 3D proxy, allowing edits to be performed directly on the proxy and then inferred back to the video frames. To simplify the editing process, we design a novel Dual-Propagation Strategy that allows users to perform edits on the 3D mesh of a single frame, and the edits are then automatically propagated to the 3D meshes of the other frames. The 3D meshes for different frames are further projected onto the 2D space to produce the edited geometry and texture renderings, which serve as inputs to a decoupled video diffusion model for generating edited results. Our framework supports various precise and physically-consistent manipulations across the video frames, including pose editing, rotation, scaling, translation, texture modification, and object composition. Our approach marks a key step toward high-quality, controllable video editing workflows. Extensive experiments demonstrate the superiority and effectiveness of our approach. Project page: https://shapeformotion.github.io/
Authors:Zhuowei Chen, Bingchuan Li, Tianxiang Ma, Lijie Liu, Mingcong Liu, Yi Zhang, Gen Li, Xinghui Li, Siyu Zhou, Qian He, Xinglong Wu
Title: Phantom-Data : Towards a General Subject-Consistent Video Generation Dataset
Abstract:
Subject-to-video generation has witnessed substantial progress in recent years. However, existing models still face significant challenges in faithfully following textual instructions. This limitation, commonly known as the copy-paste problem, arises from the widely used in-pair training paradigm. This approach inherently entangles subject identity with background and contextual attributes by sampling reference images from the same scene as the target video. To address this issue, we introduce \textbf{Phantom-Data, the first general-purpose cross-pair subject-to-video consistency dataset}, containing approximately one million identity-consistent pairs across diverse categories. Our dataset is constructed via a three-stage pipeline: (1) a general and input-aligned subject detection module, (2) large-scale cross-context subject retrieval from more than 53 million videos and 3 billion images, and (3) prior-guided identity verification to ensure visual consistency under contextual variation. Comprehensive experiments show that training with Phantom-Data significantly improves prompt alignment and visual quality while preserving identity consistency on par with in-pair baselines.
Authors:Wenfeng Lin, Renjie Chen, Boyuan Liu, Shiyue Yan, Ruoyu Feng, Jiangchuan Wei, Yichen Zhang, Yimeng Zhou, Chao Feng, Jiao Ran, Qi Wu, Zuotao Liu, Mingyu Guo
Title: ContentV: Efficient Training of Video Generation Models with Limited Compute
Abstract:
Recent advances in video generation demand increasingly efficient training recipes to mitigate escalating computational costs. In this report, we present ContentV, an 8B-parameter text-to-video model that achieves state-of-the-art performance (85.14 on VBench) after training on 256 x 64GB Neural Processing Units (NPUs) for merely four weeks. ContentV generates diverse, high-quality videos across multiple resolutions and durations from text prompts, enabled by three key innovations: (1) A minimalist architecture that maximizes reuse of pre-trained image generation models for video generation; (2) A systematic multi-stage training strategy leveraging flow matching for enhanced efficiency; and (3) A cost-effective reinforcement learning with human feedback framework that improves generation quality without requiring additional human annotations. All the code and models are available at: https://contentv.github.io.
Authors:Xiangdong Zhang, Jiaqi Liao, Shaofeng Zhang, Fanqing Meng, Xiangpeng Wan, Junchi Yan, Yu Cheng
Title: VideoREPA: Learning Physics for Video Generation through Relational Alignment with Foundation Models
Abstract:
Recent advancements in text-to-video (T2V) diffusion models have enabled high-fidelity and realistic video synthesis. However, current T2V models often struggle to generate physically plausible content due to their limited inherent ability to accurately understand physics. We found that while the representations within T2V models possess some capacity for physics understanding, they lag significantly behind those from recent video self-supervised learning methods. To this end, we propose a novel framework called VideoREPA, which distills physics understanding capability from video understanding foundation models into T2V models by aligning token-level relations. This closes the physics understanding gap and enable more physics-plausible generation. Specifically, we introduce the Token Relation Distillation (TRD) loss, leveraging spatio-temporal alignment to provide soft guidance suitable for finetuning powerful pre-trained T2V models, a critical departure from prior representation alignment (REPA) methods. To our knowledge, VideoREPA is the first REPA method designed for finetuning T2V models and specifically for injecting physical knowledge. Empirical evaluations show that VideoREPA substantially enhances the physics commonsense of baseline method, CogVideoX, achieving significant improvement on relevant benchmarks and demonstrating a strong capacity for generating videos consistent with intuitive physics. More video results are available at https://videorepa.github.io/.
Authors:Taiye Chen, Xun Hu, Zihan Ding, Chi Jin
Title: Learning World Models for Interactive Video Generation
Abstract:
Foundational world models must be both interactive and preserve spatiotemporal coherence for effective future planning with action choices. However, present models for long video generation have limited inherent world modeling capabilities due to two main challenges: compounding errors and insufficient memory mechanisms. We enhance image-to-video models with interactive capabilities through additional action conditioning and autoregressive framework, and reveal that compounding error is inherently irreducible in autoregressive video generation, while insufficient memory mechanism leads to incoherence of world models. We propose video retrieval augmented generation (VRAG) with explicit global state conditioning, which significantly reduces long-term compounding errors and increases spatiotemporal consistency of world models. In contrast, naive autoregressive generation with extended context windows and retrieval-augmented generation prove less effective for video generation, primarily due to the limited in-context learning capabilities of current video models. Our work illuminates the fundamental challenges in video world models and establishes a comprehensive benchmark for improving video generation models with internal world modeling capabilities.
Authors:Prajwal Singh, Anupam Sharma, Pankaj Pandey, Krishna Miyapuram, Shanmuganathan Raman
Title: Dynamic Vision from EEG Brain Recordings, How much does EEG know?
Abstract:
Reconstructing dynamic visual stimuli from brain EEG recordings is challenging due to the non-stationary and noisy nature of EEG signals and the limited availability of EEG-video datasets. Prior work has largely focused on static image reconstruction, leaving the open question of whether EEG carries sufficient information for dynamic video decoding. In this work, we present EEGVid, a framework that reconstructs dynamic video stimuli from EEG signals while systematically probing the information they encode. Our approach first learns the EEG representation and then uses these features for video synthesis with a temporally conditioned StyleGAN-ADA that maps EEG embeddings to specific frame positions. Through experiments on three datasets (SEED, EEG-Video Action, SEED-DV), we demonstrate that EEG supports semantically meaningful reconstruction of dynamic visual content, and we quantify \emph{how much EEG knows}: (i) hemispheric asymmetry, with the left hemisphere more predictive of visual content and the right hemisphere of emotional content, (ii) the temporal lobe as the most informative region, and (iii) EEG timesteps 100--300 as the most critical for dynamic visual encoding. Importantly, while generative priors contribute fine spatial detail, EEG provides the semantic and temporal guidance necessary for reconstructing videos that align with the observed stimuli. This positions video generation not as a standalone generative benchmark, but as a means to visualize and validate the representational content of EEG in the context of dynamic vision.
Authors:Bo Wang, Haoyang Huang, Zhiying Lu, Fengyuan Liu, Guoqing Ma, Jianlong Yuan, Yuan Zhang, Nan Duan, Daxin Jiang
Title: STORYANCHORS: Generating Consistent Multi-Scene Story Frames for Long-Form Narratives
Abstract:
This paper introduces StoryAnchors, a unified framework for generating high-quality, multi-scene story frames with strong temporal consistency. The framework employs a bidirectional story generator that integrates both past and future contexts to ensure temporal consistency, character continuity, and smooth scene transitions throughout the narrative. Specific conditions are introduced to distinguish story frame generation from standard video synthesis, facilitating greater scene diversity and enhancing narrative richness. To further improve generation quality, StoryAnchors integrates Multi-Event Story Frame Labeling and Progressive Story Frame Training, enabling the model to capture both overarching narrative flow and event-level dynamics. This approach supports the creation of editable and expandable story frames, allowing for manual modifications and the generation of longer, more complex sequences. Extensive experiments show that StoryAnchors outperforms existing open-source models in key areas such as consistency, narrative coherence, and scene diversity. Its performance in narrative consistency and story richness is also on par with GPT-4o. Ultimately, StoryAnchors pushes the boundaries of story-driven frame generation, offering a scalable, flexible, and highly editable foundation for future research.
Authors:Maksim Siniukov, Di Chang, Minh Tran, Hongkun Gong, Ashutosh Chaubey, Mohammad Soleymani
Title: DiTaiListener: Controllable High Fidelity Listener Video Generation with Diffusion
Abstract:
Generating naturalistic and nuanced listener motions for extended interactions remains an open problem. Existing methods often rely on low-dimensional motion codes for facial behavior generation followed by photorealistic rendering, limiting both visual fidelity and expressive richness. To address these challenges, we introduce DiTaiListener, powered by a video diffusion model with multimodal conditions. Our approach first generates short segments of listener responses conditioned on the speaker's speech and facial motions with DiTaiListener-Gen. It then refines the transitional frames via DiTaiListener-Edit for a seamless transition. Specifically, DiTaiListener-Gen adapts a Diffusion Transformer (DiT) for the task of listener head portrait generation by introducing a Causal Temporal Multimodal Adapter (CTM-Adapter) to process speakers' auditory and visual cues. CTM-Adapter integrates speakers' input in a causal manner into the video generation process to ensure temporally coherent listener responses. For long-form video generation, we introduce DiTaiListener-Edit, a transition refinement video-to-video diffusion model. The model fuses video segments into smooth and continuous videos, ensuring temporal consistency in facial expressions and image quality when merging short video segments produced by DiTaiListener-Gen. Quantitatively, DiTaiListener achieves the state-of-the-art performance on benchmark datasets in both photorealism (+73.8% in FID on RealTalk) and motion representation (+6.1% in FD metric on VICO) spaces. User studies confirm the superior performance of DiTaiListener, with the model being the clear preference in terms of feedback, diversity, and smoothness, outperforming competitors by a significant margin.
Authors:Xinhao Xiang, Xiao Liu, Zizhong Li, Zhuosheng Liu, Jiawei Zhang
Title: AIGVE-Tool: AI-Generated Video Evaluation Toolkit with Multifaceted Benchmark
Abstract:
The rapid advancement in AI-generated video synthesis has led to a growth demand for standardized and effective evaluation metrics. Existing metrics lack a unified framework for systematically categorizing methodologies, limiting a holistic understanding of the evaluation landscape. Additionally, fragmented implementations and the absence of standardized interfaces lead to redundant processing overhead. Furthermore, many prior approaches are constrained by dataset-specific dependencies, limiting their applicability across diverse video domains. To address these challenges, we introduce AIGVE-Tool (AI-Generated Video Evaluation Toolkit), a unified framework that provides a structured and extensible evaluation pipeline for a comprehensive AI-generated video evaluation. Organized within a novel five-category taxonomy, AIGVE-Tool integrates multiple evaluation methodologies while allowing flexible customization through a modular configuration system. Additionally, we propose AIGVE-Bench, a large-scale benchmark dataset created with five SOTA video generation models based on hand-crafted instructions and prompts. This dataset systematically evaluates various video generation models across nine critical quality dimensions. Extensive experiments demonstrate the effectiveness of AIGVE-Tool in providing standardized and reliable evaluation results, highlighting specific strengths and limitations of current models and facilitating the advancements of next-generation AI-generated video techniques.
Authors:Shitong Shao, Hongwei Yi, Hanzhong Guo, Tian Ye, Daquan Zhou, Michael Lingelbach, Zhiqiang Xu, Zeke Xie
Title: MagicDistillation: Weak-to-Strong Video Distillation for Large-Scale Few-Step Synthesis
Abstract:
Recently, open-source video diffusion models (VDMs), such as WanX, Magic141 and HunyuanVideo, have been scaled to over 10 billion parameters. These large-scale VDMs have demonstrated significant improvements over smaller-scale VDMs across multiple dimensions, including enhanced visual quality and more natural motion dynamics. However, these models face two major limitations: (1) High inference overhead: Large-scale VDMs require approximately 10 minutes to synthesize a 28-step video on a single H100 GPU. (2) Limited in portrait video synthesis: Models like WanX-I2V and HunyuanVideo-I2V often produce unnatural facial expressions and movements in portrait videos. To address these challenges, we propose MagicDistillation, a novel framework designed to reduce inference overhead while ensuring the generalization of VDMs for portrait video synthesis. Specifically, we primarily use sufficiently high-quality talking video to fine-tune Magic141, which is dedicated to portrait video synthesis. We then employ LoRA to effectively and efficiently fine-tune the fake DiT within the step distillation framework known as distribution matching distillation (DMD). Following this, we apply weak-to-strong (W2S) distribution matching and minimize the discrepancy between the fake data distribution and the ground truth distribution, thereby improving the visual fidelity and motion dynamics of the synthesized videos. Experimental results on portrait video synthesis demonstrate the effectiveness of MagicDistillation, as our method surpasses Euler, LCM, and DMD baselines in both FID/FVD metrics and VBench. Moreover, MagicDistillation, requiring only 4 steps, also outperforms WanX-I2V (14B) and HunyuanVideo-I2V (13B) on visualization and VBench. Our project page is https://magicdistillation.github.io/MagicDistillation/.
Authors:Hasan Iqbal, Nazmul Karim, Umar Khalid, Azib Farooq, Zichun Zhong, Chen Chen, Jing Hua
Title: PSF-4D: A Progressive Sampling Framework for View Consistent 4D Editing
Abstract:
Instruction-guided generative models, especially those using text-to-image (T2I) and text-to-video (T2V) diffusion frameworks, have advanced the field of content editing in recent years. To extend these capabilities to 4D scene, we introduce a progressive sampling framework for 4D editing (PSF-4D) that ensures temporal and multi-view consistency by intuitively controlling the noise initialization during forward diffusion. For temporal coherence, we design a correlated Gaussian noise structure that links frames over time, allowing each frame to depend meaningfully on prior frames. Additionally, to ensure spatial consistency across views, we implement a cross-view noise model, which uses shared and independent noise components to balance commonalities and distinct details among different views. To further enhance spatial coherence, PSF-4D incorporates view-consistent iterative refinement, embedding view-aware information into the denoising process to ensure aligned edits across frames and views. Our approach enables high-quality 4D editing without relying on external models, addressing key challenges in previous methods. Through extensive evaluation on multiple benchmarks and multiple editing aspects (e.g., style transfer, multi-attribute editing, object removal, local editing, etc.), we show the effectiveness of our proposed method. Experimental results demonstrate that our proposed method outperforms state-of-the-art 4D editing methods in diverse benchmarks.
Authors:Shangwen Zhu, Han Zhang, Zhantao Yang, Qianyu Peng, Zhao Pu, Huangji Wang, Fan Cheng
Title: Accelerating Diffusion Sampling via Exploiting Local Transition Coherence
Abstract:
Text-based diffusion models have made significant breakthroughs in generating high-quality images and videos from textual descriptions. However, the lengthy sampling time of the denoising process remains a significant bottleneck in practical applications. Previous methods either ignore the statistical relationships between adjacent steps or rely on attention or feature similarity between them, which often only works with specific network structures. To address this issue, we discover a new statistical relationship in the transition operator between adjacent steps, focusing on the relationship of the outputs from the network. This relationship does not impose any requirements on the network structure. Based on this observation, we propose a novel training-free acceleration method called LTC-Accel, which uses the identified relationship to estimate the current transition operator based on adjacent steps. Due to no specific assumptions regarding the network structure, LTC-Accel is applicable to almost all diffusion-based methods and orthogonal to almost all existing acceleration techniques, making it easy to combine with them. Experimental results demonstrate that LTC-Accel significantly speeds up sampling in text-to-image and text-to-video synthesis while maintaining competitive sample quality. Specifically, LTC-Accel achieves a speedup of 1.67-fold in Stable Diffusion v2 and a speedup of 1.55-fold in video generation models. When combined with distillation models, LTC-Accel achieves a remarkable 10-fold speedup in video generation, allowing real-time generation of more than 16FPS.
Authors:Yitian Zhang, Long Mai, Aniruddha Mahapatra, David Bourgin, Yicong Hong, Jonah Casebeer, Feng Liu, Yun Fu
Title: REGEN: Learning Compact Video Embedding with (Re-)Generative Decoder
Abstract:
We present a novel perspective on learning video embedders for generative modeling: rather than requiring an exact reproduction of an input video, an effective embedder should focus on synthesizing visually plausible reconstructions. This relaxed criterion enables substantial improvements in compression ratios without compromising the quality of downstream generative models. Specifically, we propose replacing the conventional encoder-decoder video embedder with an encoder-generator framework that employs a diffusion transformer (DiT) to synthesize missing details from a compact latent space. Therein, we develop a dedicated latent conditioning module to condition the DiT decoder on the encoded video latent embedding. Our experiments demonstrate that our approach enables superior encoding-decoding performance compared to state-of-the-art methods, particularly as the compression ratio increases. To demonstrate the efficacy of our approach, we report results from our video embedders achieving a temporal compression ratio of up to 32x (8x higher than leading video embedders) and validate the robustness of this ultra-compact latent space for text-to-video generation, providing a significant efficiency boost in latent diffusion model training and inference.
Authors:Yihong Luo, Tianyang Hu, Jiacheng Sun, Yujun Cai, Jing Tang
Title: Learning Few-Step Diffusion Models by Trajectory Distribution Matching
Abstract:
Accelerating diffusion model sampling is crucial for efficient AIGC deployment. While diffusion distillation methods -- based on distribution matching and trajectory matching -- reduce sampling to as few as one step, they fall short on complex tasks like text-to-image generation. Few-step generation offers a better balance between speed and quality, but existing approaches face a persistent trade-off: distribution matching lacks flexibility for multi-step sampling, while trajectory matching often yields suboptimal image quality. To bridge this gap, we propose learning few-step diffusion models by Trajectory Distribution Matching (TDM), a unified distillation paradigm that combines the strengths of distribution and trajectory matching. Our method introduces a data-free score distillation objective, aligning the student's trajectory with the teacher's at the distribution level. Further, we develop a sampling-steps-aware objective that decouples learning targets across different steps, enabling more adjustable sampling. This approach supports both deterministic sampling for superior image quality and flexible multi-step adaptation, achieving state-of-the-art performance with remarkable efficiency. Our model, TDM, outperforms existing methods on various backbones, such as SDXL and PixArt-$α$, delivering superior quality and significantly reduced training costs. In particular, our method distills PixArt-$α$ into a 4-step generator that outperforms its teacher on real user preference at 1024 resolution. This is accomplished with 500 iterations and 2 A800 hours -- a mere 0.01% of the teacher's training cost. In addition, our proposed TDM can be extended to accelerate text-to-video diffusion. Notably, TDM can outperform its teacher model (CogVideoX-2B) by using only 4 NFE on VBench, improving the total score from 80.91 to 81.65. Project page: https://tdm-t2x.github.io/
Authors:Yihua Shao, Deyang Lin, Fanhu Zeng, Minxi Yan, Muyang Zhang, Siyu Chen, Yuxuan Fan, Ziyang Yan, Haozhe Wang, Jingcai Guo, Yan Wang, Haotong Qin, Hao Tang
Title: TR-DQ: Time-Rotation Diffusion Quantization
Abstract:
Diffusion models have been widely adopted in image and video generation. However, their complex network architecture leads to high inference overhead for its generation process. Existing diffusion quantization methods primarily focus on the quantization of the model structure while ignoring the impact of time-steps variation during sampling. At the same time, most current approaches fail to account for significant activations that cannot be eliminated, resulting in substantial performance degradation after quantization. To address these issues, we propose Time-Rotation Diffusion Quantization (TR-DQ), a novel quantization method incorporating time-step and rotation-based optimization. TR-DQ first divides the sampling process based on time-steps and applies a rotation matrix to smooth activations and weights dynamically. For different time-steps, a dedicated hyperparameter is introduced for adaptive timing modeling, which enables dynamic quantization across different time steps. Additionally, we also explore the compression potential of Classifier-Free Guidance (CFG-wise) to establish a foundation for subsequent work. TR-DQ achieves state-of-the-art (SOTA) performance on image generation and video generation tasks and a 1.38-1.89x speedup and 1.97-2.58x memory reduction in inference compared to existing quantization methods.
Authors:Lijie Liu, Tianxiang Ma, Bingchuan Li, Zhuowei Chen, Jiawei Liu, Gen Li, Siyu Zhou, Qian He, Xinglong Wu
Title: Phantom: Subject-consistent video generation via cross-modal alignment
Abstract:
The continuous development of foundational models for video generation is evolving into various applications, with subject-consistent video generation still in the exploratory stage. We refer to this as Subject-to-Video, which extracts subject elements from reference images and generates subject-consistent videos following textual instructions. We believe that the essence of subject-to-video lies in balancing the dual-modal prompts of text and image, thereby deeply and simultaneously aligning both text and visual content. To this end, we propose Phantom, a unified video generation framework for both single- and multi-subject references. Building on existing text-to-video and image-to-video architectures, we redesign the joint text-image injection model and drive it to learn cross-modal alignment via text-image-video triplet data. The proposed method achieves high-fidelity subject-consistent video generation while addressing issues of image content leakage and multi-subject confusion. Evaluation results indicate that our method outperforms other state-of-the-art closed-source commercial solutions. In particular, we emphasize subject consistency in human generation, covering existing ID-preserving video generation while offering enhanced advantages.
Authors:Sixiao Zheng, Zimian Peng, Yanpeng Zhou, Yi Zhu, Hang Xu, Xiangru Huang, Yanwei Fu
Title: VidCRAFT3: Camera, Object, and Lighting Control for Image-to-Video Generation
Abstract:
Recent image-to-video generation methods have demonstrated success in enabling control over one or two visual elements, such as camera motion or object motion. However, these methods are unable to offer control over multiple visual elements due to limitations in data and network efficacy. In this paper, we introduce VidCRAFT3, a novel framework for precise image-to-video generation that enables control over camera motion, object motion, and lighting direction simultaneously. VidCRAFT3 integrates three core components: Image2Cloud generates 3D point cloud from a reference image; ObjMotionNet encodes sparse object trajectories using multi-scale optical flow features; and Spatial Triple-Attention Transformer incorporates lighting direction embeddings via parallel cross-attention modules. Additionally, we introduce the VideoLightingDirection dataset, providing synthetic yet realistic video clips with accurate per-frame lighting direction annotations, effectively mitigating the lack of annotated real-world datasets. We further adopt a three-stage training strategy, ensuring robust learning even without joint multi-element annotations. Extensive experiments show that VidCRAFT3 produces high-quality video content, outperforming state-of-the-art methods in control granularity and visual coherence. Code and data will be publicly available.
Authors:Zihan Ding, Chi Jin, Difan Liu, Haitian Zheng, Krishna Kumar Singh, Qiang Zhang, Yan Kang, Zhe Lin, Yuchen Liu
Title: DOLLAR: Few-Step Video Generation via Distillation and Latent Reward Optimization
Abstract:
Diffusion probabilistic models have shown significant progress in video generation; however, their computational efficiency is limited by the large number of sampling steps required. Reducing sampling steps often compromises video quality or generation diversity. In this work, we introduce a distillation method that combines variational score distillation and consistency distillation to achieve few-step video generation, maintaining both high quality and diversity. We also propose a latent reward model fine-tuning approach to further enhance video generation performance according to any specified reward metric. This approach reduces memory usage and does not require the reward to be differentiable. Our method demonstrates state-of-the-art performance in few-step generation for 10-second videos (128 frames at 12 FPS). The distilled student model achieves a score of 82.57 on VBench, surpassing the teacher model as well as baseline models Gen-3, T2V-Turbo, and Kling. One-step distillation accelerates the teacher model's diffusion sampling by up to 278.6 times, enabling near real-time generation. Human evaluations further validate the superior performance of our 4-step student models compared to teacher model using 50-step DDIM sampling.
Authors:Hsin-Ping Huang, Yang Zhou, Jui-Hsien Wang, Difan Liu, Feng Liu, Ming-Hsuan Yang, Zhan Xu
Title: Move-in-2D: 2D-Conditioned Human Motion Generation
Abstract:
Generating realistic human videos remains a challenging task, with the most effective methods currently relying on a human motion sequence as a control signal. Existing approaches often use existing motion extracted from other videos, which restricts applications to specific motion types and global scene matching. We propose Move-in-2D, a novel approach to generate human motion sequences conditioned on a scene image, allowing for diverse motion that adapts to different scenes. Our approach utilizes a diffusion model that accepts both a scene image and text prompt as inputs, producing a motion sequence tailored to the scene. To train this model, we collect a large-scale video dataset featuring single-human activities, annotating each video with the corresponding human motion as the target output. Experiments demonstrate that our method effectively predicts human motion that aligns with the scene image after projection. Furthermore, we show that the generated motion sequence improves human motion quality in video synthesis tasks.
Authors:Zhaorun Chen, Francesco Pinto, Minzhou Pan, Bo Li
Title: SafeWatch: An Efficient Safety-Policy Following Video Guardrail Model with Transparent Explanations
Abstract:
With the rise of generative AI and rapid growth of high-quality video generation, video guardrails have become more crucial than ever to ensure safety and security across platforms. Current video guardrails, however, are either overly simplistic, relying on pure classification models trained on simple policies with limited unsafe categories, which lack detailed explanations, or prompting multimodal large language models (MLLMs) with long safety guidelines, which are inefficient and impractical for guardrailing real-world content. To bridge this gap, we propose SafeWatch, an efficient MLLM-based video guardrail model designed to follow customized safety policies and provide multi-label video guardrail outputs with content-specific explanations in a zero-shot manner. In particular, unlike traditional MLLM-based guardrails that encode all safety policies autoregressively, causing inefficiency and bias, SafeWatch uniquely encodes each policy chunk in parallel and eliminates their position bias such that all policies are attended simultaneously with equal importance. In addition, to improve efficiency and accuracy, SafeWatch incorporates a policy-aware visual token pruning algorithm that adaptively selects the most relevant video tokens for each policy, discarding noisy or irrelevant information. This allows for more focused, policy-compliant guardrail with significantly reduced computational overhead. Considering the limitations of existing video guardrail benchmarks, we propose SafeWatch-Bench, a large-scale video guardrail benchmark comprising over 2M videos spanning six safety categories which covers over 30 tasks to ensure a comprehensive coverage of all potential safety scenarios. SafeWatch outperforms SOTA by 28.2% on SafeWatch-Bench, 13.6% on benchmarks, cuts costs by 10%, and delivers top-tier explanations validated by LLM and human reviews.
Authors:Tuna Han Salih Meral, Hidir Yesiltepe, Connor Dunlop, Pinar Yanardag
Title: MotionFlow: Attention-Driven Motion Transfer in Video Diffusion Models
Abstract:
Text-to-video models have demonstrated impressive capabilities in producing diverse and captivating video content, showcasing a notable advancement in generative AI. However, these models generally lack fine-grained control over motion patterns, limiting their practical applicability. We introduce MotionFlow, a novel framework designed for motion transfer in video diffusion models. Our method utilizes cross-attention maps to accurately capture and manipulate spatial and temporal dynamics, enabling seamless motion transfers across various contexts. Our approach does not require training and works on test-time by leveraging the inherent capabilities of pre-trained video diffusion models. In contrast to traditional approaches, which struggle with comprehensive scene changes while maintaining consistent motion, MotionFlow successfully handles such complex transformations through its attention-based mechanism. Our qualitative and quantitative experiments demonstrate that MotionFlow significantly outperforms existing models in both fidelity and versatility even during drastic scene alterations.
Authors:Zeqi Xiao, Wenqi Ouyang, Yifan Zhou, Shuai Yang, Lei Yang, Jianlou Si, Xingang Pan
Title: Trajectory Attention for Fine-grained Video Motion Control
Abstract:
Recent advancements in video generation have been greatly driven by video diffusion models, with camera motion control emerging as a crucial challenge in creating view-customized visual content. This paper introduces trajectory attention, a novel approach that performs attention along available pixel trajectories for fine-grained camera motion control. Unlike existing methods that often yield imprecise outputs or neglect temporal correlations, our approach possesses a stronger inductive bias that seamlessly injects trajectory information into the video generation process. Importantly, our approach models trajectory attention as an auxiliary branch alongside traditional temporal attention. This design enables the original temporal attention and the trajectory attention to work in synergy, ensuring both precise motion control and new content generation capability, which is critical when the trajectory is only partially available. Experiments on camera motion control for images and videos demonstrate significant improvements in precision and long-range consistency while maintaining high-quality generation. Furthermore, we show that our approach can be extended to other video motion control tasks, such as first-frame-guided video editing, where it excels in maintaining content consistency over large spatial and temporal ranges.
Authors:Wanquan Feng, Tianhao Qi, Jiawei Liu, Mingzhen Sun, Pengqi Tu, Tianxiang Ma, Fei Dai, Songtao Zhao, Siyu Zhou, Qian He
Title: I2VControl: Disentangled and Unified Video Motion Synthesis Control
Abstract:
Motion controllability is crucial in video synthesis. However, most previous methods are limited to single control types, and combining them often results in logical conflicts. In this paper, we propose a disentangled and unified framework, namely I2VControl, to overcome the logical conflicts. We rethink camera control, object dragging, and motion brush, reformulating all tasks into a consistent representation based on point trajectories, each managed by a dedicated formulation. Accordingly, we propose a spatial partitioning strategy, where each unit is assigned to a concomitant control category, enabling diverse control types to be dynamically orchestrated within a single synthesis pipeline without conflicts. Furthermore, we design an adapter structure that functions as a plug-in for pre-trained models and is agnostic to specific model architectures. We conduct extensive experiments, achieving excellent performance on various control tasks, and our method further facilitates user-driven creative combinations, enhancing innovation and creativity. Project page: https://wanquanf.github.io/I2VControl .
Authors:Wanquan Feng, Jiawei Liu, Pengqi Tu, Tianhao Qi, Mingzhen Sun, Tianxiang Ma, Songtao Zhao, Siyu Zhou, Qian He
Title: I2VControl-Camera: Precise Video Camera Control with Adjustable Motion Strength
Abstract:
Video generation technologies are developing rapidly and have broad potential applications. Among these technologies, camera control is crucial for generating professional-quality videos that accurately meet user expectations. However, existing camera control methods still suffer from several limitations, including control precision and the neglect of the control for subject motion dynamics. In this work, we propose I2VControl-Camera, a novel camera control method that significantly enhances controllability while providing adjustability over the strength of subject motion. To improve control precision, we employ point trajectory in the camera coordinate system instead of only extrinsic matrix information as our control signal. To accurately control and adjust the strength of subject motion, we explicitly model the higher-order components of the video trajectory expansion, not merely the linear terms, and design an operator that effectively represents the motion strength. We use an adapter architecture that is independent of the base model structure. Experiments on static and dynamic scenes show that our framework outperformances previous methods both quantitatively and qualitatively. The project page is: https://wanquanf.github.io/I2VControlCamera .
Authors:Haozhe Liu, Shikun Liu, Zijian Zhou, Mengmeng Xu, Yanping Xie, Xiao Han, Juan C. Pérez, Ding Liu, Kumara Kahatapitiya, Menglin Jia, Jui-Chieh Wu, Sen He, Tao Xiang, Jürgen Schmidhuber, Juan-Manuel Pérez-Rúa
Title: MarDini: Masked Autoregressive Diffusion for Video Generation at Scale
Abstract:
We introduce MarDini, a new family of video diffusion models that integrate the advantages of masked auto-regression (MAR) into a unified diffusion model (DM) framework. Here, MAR handles temporal planning, while DM focuses on spatial generation in an asymmetric network design: i) a MAR-based planning model containing most of the parameters generates planning signals for each masked frame using low-resolution input; ii) a lightweight generation model uses these signals to produce high-resolution frames via diffusion de-noising. MarDini's MAR enables video generation conditioned on any number of masked frames at any frame positions: a single model can handle video interpolation (e.g., masking middle frames), image-to-video generation (e.g., masking from the second frame onward), and video expansion (e.g., masking half the frames). The efficient design allocates most of the computational resources to the low-resolution planning model, making computationally expensive but important spatio-temporal attention feasible at scale. MarDini sets a new state-of-the-art for video interpolation; meanwhile, within few inference steps, it efficiently generates videos on par with those of much more expensive advanced image-to-video models.
Authors:Jingzhi Bao, Xueting Li, Ming-Hsuan Yang
Title: Tex4D: Zero-shot 4D Scene Texturing with Video Diffusion Models
Abstract:
3D meshes are widely used in computer vision and graphics for their efficiency in animation and minimal memory use, playing a crucial role in movies, games, AR, and VR. However, creating temporally consistent and realistic textures for mesh sequences remains labor-intensive for professional artists. On the other hand, while video diffusion models excel at text-driven video generation, they often lack 3D geometry awareness and struggle with achieving multi-view consistent texturing for 3D meshes. In this work, we present Tex4D, a zero-shot approach that integrates inherent 3D geometry knowledge from mesh sequences with the expressiveness of video diffusion models to produce multi-view and temporally consistent 4D textures. Given an untextured mesh sequence and a text prompt as inputs, our method enhances multi-view consistency by synchronizing the diffusion process across different views through latent aggregation in the UV space. To ensure temporal consistency, we leverage prior knowledge from a conditional video generation model for texture synthesis. However, straightforwardly combining the video diffusion model and the UV texture aggregation leads to blurry results. We analyze the underlying causes and propose a simple yet effective modification to the DDIM sampling process to address this issue. Additionally, we introduce a reference latent texture to strengthen the correlation between frames during the denoising process. To the best of our knowledge, Tex4D is the first method specifically designed for 4D scene texturing. Extensive experiments demonstrate its superiority in producing multi-view and multi-frame consistent videos based on untextured mesh sequences.
Authors:Zhengyang Liang, Hao He, Ceyuan Yang, Bo Dai
Title: Scaling Laws For Diffusion Transformers
Abstract:
Diffusion transformers (DiT) have already achieved appealing synthesis and scaling properties in content recreation, e.g., image and video generation. However, scaling laws of DiT are less explored, which usually offer precise predictions regarding optimal model size and data requirements given a specific compute budget. Therefore, experiments across a broad range of compute budgets, from 1e17 to 6e18 FLOPs are conducted to confirm the existence of scaling laws in DiT for the first time. Concretely, the loss of pretraining DiT also follows a power-law relationship with the involved compute. Based on the scaling law, we can not only determine the optimal model size and required data but also accurately predict the text-to-image generation loss given a model with 1B parameters and a compute budget of 1e21 FLOPs. Additionally, we also demonstrate that the trend of pre-training loss matches the generation performances (e.g., FID), even across various datasets, which complements the mapping from compute to synthesis quality and thus provides a predictable benchmark that assesses model performance and data quality at a reduced cost.
Authors:Desai Xie, Zhan Xu, Yicong Hong, Hao Tan, Difan Liu, Feng Liu, Arie Kaufman, Yang Zhou
Title: Progressive Autoregressive Video Diffusion Models
Abstract:
Current frontier video diffusion models have demonstrated remarkable results at generating high-quality videos. However, they can only generate short video clips, normally around 10 seconds or 240 frames, due to computation limitations during training. Existing methods naively achieve autoregressive long video generation by directly placing the ending of the previous clip at the front of the attention window as conditioning, which leads to abrupt scene changes, unnatural motion, and error accumulation. In this work, we introduce a more natural formulation of autoregressive long video generation by revisiting the noise level assumption in video diffusion models. Our key idea is to 1. assign the frames with per-frame, progressively increasing noise levels rather than a single noise level and 2. denoise and shift the frames in small intervals rather than all at once. This allows for smoother attention correspondence among frames with adjacent noise levels, larger overlaps between the attention windows, and better propagation of information from the earlier to the later frames. Video diffusion models equipped with our progressive noise schedule can autoregressively generate long videos with much improved fidelity compared to the baselines and minimal quality degradation over time. We present the first results on text-conditioned 60-second (1440 frames) long video generation at a quality close to frontier models. Code and video results are available at https://desaixie.github.io/pa-vdm/.
Authors:Mingi Kwon, Seoung Wug Oh, Yang Zhou, Difan Liu, Joon-Young Lee, Haoran Cai, Baqiao Liu, Feng Liu, Youngjung Uh
Title: HARIVO: Harnessing Text-to-Image Models for Video Generation
Abstract:
We present a method to create diffusion-based video models from pretrained Text-to-Image (T2I) models. Recently, AnimateDiff proposed freezing the T2I model while only training temporal layers. We advance this method by proposing a unique architecture, incorporating a mapping network and frame-wise tokens, tailored for video generation while maintaining the diversity and creativity of the original T2I model. Key innovations include novel loss functions for temporal smoothness and a mitigating gradient sampling technique, ensuring realistic and temporally consistent video generation despite limited public video data. We have successfully integrated video-specific inductive biases into the architecture and loss functions. Our method, built on the frozen StableDiffusion model, simplifies training processes and allows for seamless integration with off-the-shelf models like ControlNet and DreamBooth. project page: https://kwonminki.github.io/HARIVO
Authors:Jian Shi, Zhenyu Li, Peter Wonka
Title: ImmersePro: End-to-End Stereo Video Synthesis Via Implicit Disparity Learning
Abstract:
We introduce \textit{ImmersePro}, an innovative framework specifically designed to transform single-view videos into stereo videos. This framework utilizes a novel dual-branch architecture comprising a disparity branch and a context branch on video data by leveraging spatial-temporal attention mechanisms. \textit{ImmersePro} employs implicit disparity guidance, enabling the generation of stereo pairs from video sequences without the need for explicit disparity maps, thus reducing potential errors associated with disparity estimation models. In addition to the technical advancements, we introduce the YouTube-SBS dataset, a comprehensive collection of 423 stereo videos sourced from YouTube. This dataset is unprecedented in its scale, featuring over 7 million stereo pairs, and is designed to facilitate training and benchmarking of stereo video generation models. Our experiments demonstrate the effectiveness of \textit{ImmersePro} in producing high-quality stereo videos, offering significant improvements over existing methods. Compared to the best competitor stereo-from-mono we quantitatively improve the results by 11.76\% (L1), 6.39\% (SSIM), and 5.10\% (PSNR).
Authors:Huiwon Jang, Dongyoung Kim, Junsu Kim, Jinwoo Shin, Pieter Abbeel, Younggyo Seo
Title: Visual Representation Learning with Stochastic Frame Prediction
Abstract:
Self-supervised learning of image representations by predicting future frames is a promising direction but still remains a challenge. This is because of the under-determined nature of frame prediction; multiple potential futures can arise from a single current frame. To tackle this challenge, in this paper, we revisit the idea of stochastic video generation that learns to capture uncertainty in frame prediction and explore its effectiveness for representation learning. Specifically, we design a framework that trains a stochastic frame prediction model to learn temporal information between frames. Moreover, to learn dense information within each frame, we introduce an auxiliary masked image modeling objective along with a shared decoder architecture. We find this architecture allows for combining both objectives in a synergistic and compute-efficient manner. We demonstrate the effectiveness of our framework on a variety of tasks from video label propagation and vision-based robot learning domains, such as video segmentation, pose tracking, vision-based robotic locomotion, and manipulation tasks. Code is available on the project webpage: https://sites.google.com/view/2024rsp.
Authors:Hidir Yesiltepe, Yusuf Dalva, Pinar Yanardag
Title: The Curious Case of End Token: A Zero-Shot Disentangled Image Editing using CLIP
Abstract:
Diffusion models have become prominent in creating high-quality images. However, unlike GAN models celebrated for their ability to edit images in a disentangled manner, diffusion-based text-to-image models struggle to achieve the same level of precise attribute manipulation without compromising image coherence. In this paper, CLIP which is often used in popular text-to-image diffusion models such as Stable Diffusion is capable of performing disentangled editing in a zero-shot manner. Through both qualitative and quantitative comparisons with state-of-the-art editing methods, we show that our approach yields competitive results. This insight may open opportunities for applying this method to various tasks, including image and video editing, providing a lightweight and efficient approach for disentangled editing.
Authors:Zhengang Li, Yan Kang, Yuchen Liu, Difan Liu, Tobias Hinz, Feng Liu, Yanzhi Wang
Title: SNED: Superposition Network Architecture Search for Efficient Video Diffusion Model
Abstract:
While AI-generated content has garnered significant attention, achieving photo-realistic video synthesis remains a formidable challenge. Despite the promising advances in diffusion models for video generation quality, the complex model architecture and substantial computational demands for both training and inference create a significant gap between these models and real-world applications. This paper presents SNED, a superposition network architecture search method for efficient video diffusion model. Our method employs a supernet training paradigm that targets various model cost and resolution options using a weight-sharing method. Moreover, we propose the supernet training sampling warm-up for fast training optimization. To showcase the flexibility of our method, we conduct experiments involving both pixel-space and latent-space video diffusion models. The results demonstrate that our framework consistently produces comparable results across different model options with high efficiency. According to the experiment for the pixel-space video diffusion model, we can achieve consistent video generation results simultaneously across 64 x 64 to 256 x 256 resolutions with a large range of model sizes from 640M to 1.6B number of parameters for pixel-space video diffusion models.
Authors:Feng Chen, Zhen Yang, Bohan Zhuang, Qi Wu
Title: Streaming Video Diffusion: Online Video Editing with Diffusion Models
Abstract:
We present a novel task called online video editing, which is designed to edit \textbf{streaming} frames while maintaining temporal consistency. Unlike existing offline video editing assuming all frames are pre-established and accessible, online video editing is tailored to real-life applications such as live streaming and online chat, requiring (1) fast continual step inference, (2) long-term temporal modeling, and (3) zero-shot video editing capability. To solve these issues, we propose Streaming Video Diffusion (SVDiff), which incorporates the compact spatial-aware temporal recurrence into off-the-shelf Stable Diffusion and is trained with the segment-level scheme on large-scale long videos. This simple yet effective setup allows us to obtain a single model that is capable of executing a broad range of videos and editing each streaming frame with temporal coherence. Our experiments indicate that our model can edit long, high-quality videos with remarkable results, achieving a real-time inference speed of 15.2 FPS at a resolution of 512x512.
Authors:Jiaojiao Fan, Haotian Xue, Qinsheng Zhang, Yongxin Chen
Title: RefDrop: Controllable Consistency in Image or Video Generation via Reference Feature Guidance
Abstract:
There is a rapidly growing interest in controlling consistency across multiple generated images using diffusion models. Among various methods, recent works have found that simply manipulating attention modules by concatenating features from multiple reference images provides an efficient approach to enhancing consistency without fine-tuning. Despite its popularity and success, few studies have elucidated the underlying mechanisms that contribute to its effectiveness. In this work, we reveal that the popular approach is a linear interpolation of image self-attention and cross-attention between synthesized content and reference features, with a constant rank-1 coefficient. Motivated by this observation, we find that a rank-1 coefficient is not necessary and simplifies the controllable generation mechanism. The resulting algorithm, which we coin as RefDrop, allows users to control the influence of reference context in a direct and precise manner. Besides further enhancing consistency in single-subject image generation, our method also enables more interesting applications, such as the consistent generation of multiple subjects, suppressing specific features to encourage more diverse content, and high-quality personalized video generation by boosting temporal consistency. Even compared with state-of-the-art image-prompt-based generators, such as IP-Adapter, RefDrop is competitive in terms of controllability and quality while avoiding the need to train a separate image encoder for feature injection from reference images, making it a versatile plug-and-play solution for any image or video diffusion model.
Authors:Zeqi Xiao, Yifan Zhou, Shuai Yang, Xingang Pan
Title: Video Diffusion Models are Training-free Motion Interpreter and Controller
Abstract:
Video generation primarily aims to model authentic and customized motion across frames, making understanding and controlling the motion a crucial topic. Most diffusion-based studies on video motion focus on motion customization with training-based paradigms, which, however, demands substantial training resources and necessitates retraining for diverse models. Crucially, these approaches do not explore how video diffusion models encode cross-frame motion information in their features, lacking interpretability and transparency in their effectiveness. To answer this question, this paper introduces a novel perspective to understand, localize, and manipulate motion-aware features in video diffusion models. Through analysis using Principal Component Analysis (PCA), our work discloses that robust motion-aware feature already exists in video diffusion models. We present a new MOtion FeaTure (MOFT) by eliminating content correlation information and filtering motion channels. MOFT provides a distinct set of benefits, including the ability to encode comprehensive motion information with clear interpretability, extraction without the need for training, and generalizability across diverse architectures. Leveraging MOFT, we propose a novel training-free video motion control framework. Our method demonstrates competitive performance in generating natural and faithful motion, providing architecture-agnostic insights and applicability in a variety of downstream tasks.
Authors:Zhilin Huang, Yijie Yu, Ling Yang, Chujun Qin, Bing Zheng, Xiawu Zheng, Zikun Zhou, Yaowei Wang, Wenming Yang
Title: Motion-aware Latent Diffusion Models for Video Frame Interpolation
Abstract:
With the advancement of AIGC, video frame interpolation (VFI) has become a crucial component in existing video generation frameworks, attracting widespread research interest. For the VFI task, the motion estimation between neighboring frames plays a crucial role in avoiding motion ambiguity. However, existing VFI methods always struggle to accurately predict the motion information between consecutive frames, and this imprecise estimation leads to blurred and visually incoherent interpolated frames. In this paper, we propose a novel diffusion framework, motion-aware latent diffusion models (MADiff), which is specifically designed for the VFI task. By incorporating motion priors between the conditional neighboring frames with the target interpolated frame predicted throughout the diffusion sampling procedure, MADiff progressively refines the intermediate outcomes, culminating in generating both visually smooth and realistic results. Extensive experiments conducted on benchmark datasets demonstrate that our method achieves state-of-the-art performance significantly outperforming existing approaches, especially under challenging scenarios involving dynamic textures with complex motion.
Authors:Anagh Malik, Noah Juravsky, Ryan Po, Gordon Wetzstein, Kiriakos N. Kutulakos, David B. Lindell
Title: Flying with Photons: Rendering Novel Views of Propagating Light
Abstract:
We present an imaging and neural rendering technique that seeks to synthesize videos of light propagating through a scene from novel, moving camera viewpoints. Our approach relies on a new ultrafast imaging setup to capture a first-of-its kind, multi-viewpoint video dataset with picosecond-level temporal resolution. Combined with this dataset, we introduce an efficient neural volume rendering framework based on the transient field. This field is defined as a mapping from a 3D point and 2D direction to a high-dimensional, discrete-time signal that represents time-varying radiance at ultrafast timescales. Rendering with transient fields naturally accounts for effects due to the finite speed of light, including viewpoint-dependent appearance changes caused by light propagation delays to the camera. We render a range of complex effects, including scattering, specular reflection, refraction, and diffraction. Additionally, we demonstrate removing viewpoint-dependent propagation delays using a time warping procedure, rendering of relativistic effects, and video synthesis of direct and global components of light transport.
Authors:Yixuan Ren, Yang Zhou, Jimei Yang, Jing Shi, Difan Liu, Feng Liu, Mingi Kwon, Abhinav Shrivastava
Title: Customize-A-Video: One-Shot Motion Customization of Text-to-Video Diffusion Models
Abstract:
Image customization has been extensively studied in text-to-image (T2I) diffusion models, leading to impressive outcomes and applications. With the emergence of text-to-video (T2V) diffusion models, its temporal counterpart, motion customization, has not yet been well investigated. To address the challenge of one-shot video motion customization, we propose Customize-A-Video that models the motion from a single reference video and adapts it to new subjects and scenes with both spatial and temporal varieties. It leverages low-rank adaptation (LoRA) on temporal attention layers to tailor the pre-trained T2V diffusion model for specific motion modeling. To disentangle the spatial and temporal information during training, we introduce a novel concept of appearance absorbers that detach the original appearance from the reference video prior to motion learning. The proposed modules are trained in a staged pipeline and inferred in a plug-and-play fashion, enabling easy extensions to various downstream tasks such as custom video generation and editing, video appearance customization and multiple motion combination. Our project page can be found at https://customize-a-video.github.io.
Authors:Haiming Zhu, Yangyang Xu, Shengfeng He
Title: Human Video Translation via Query Warping
Abstract:
In this paper, we present QueryWarp, a novel framework for temporally coherent human motion video translation. Existing diffusion-based video editing approaches that rely solely on key and value tokens to ensure temporal consistency, which scarifies the preservation of local and structural regions. In contrast, we aim to consider complementary query priors by constructing the temporal correlations among query tokens from different frames. Initially, we extract appearance flows from source poses to capture continuous human foreground motion. Subsequently, during the denoising process of the diffusion model, we employ appearance flows to warp the previous frame's query token, aligning it with the current frame's query. This query warping imposes explicit constraints on the outputs of self-attention layers, effectively guaranteeing temporally coherent translation. We perform experiments on various human motion video translation tasks, and the results demonstrate that our QueryWarp framework surpasses state-of-the-art methods both qualitatively and quantitatively.
Authors:Yanhui Wang, Jianmin Bao, Wenming Weng, Ruoyu Feng, Dacheng Yin, Tao Yang, Jingxu Zhang, Qi Dai Zhiyuan Zhao, Chunyu Wang, Kai Qiu, Yuhui Yuan, Chuanxin Tang, Xiaoyan Sun, Chong Luo, Baining Guo
Title: MicroCinema: A Divide-and-Conquer Approach for Text-to-Video Generation
Abstract:
We present MicroCinema, a straightforward yet effective framework for high-quality and coherent text-to-video generation. Unlike existing approaches that align text prompts with video directly, MicroCinema introduces a Divide-and-Conquer strategy which divides the text-to-video into a two-stage process: text-to-image generation and image\&text-to-video generation. This strategy offers two significant advantages. a) It allows us to take full advantage of the recent advances in text-to-image models, such as Stable Diffusion, Midjourney, and DALLE, to generate photorealistic and highly detailed images. b) Leveraging the generated image, the model can allocate less focus to fine-grained appearance details, prioritizing the efficient learning of motion dynamics. To implement this strategy effectively, we introduce two core designs. First, we propose the Appearance Injection Network, enhancing the preservation of the appearance of the given image. Second, we introduce the Appearance Noise Prior, a novel mechanism aimed at maintaining the capabilities of pre-trained 2D diffusion models. These design elements empower MicroCinema to generate high-quality videos with precise motion, guided by the provided text prompts. Extensive experiments demonstrate the superiority of the proposed framework. Concretely, MicroCinema achieves SOTA zero-shot FVD of 342.86 on UCF-101 and 377.40 on MSR-VTT. See https://wangyanhui666.github.io/MicroCinema.github.io/ for video samples.
Authors:Yuren Cong, Mengmeng Xu, Christian Simon, Shoufa Chen, Jiawei Ren, Yanping Xie, Juan-Manuel Perez-Rua, Bodo Rosenhahn, Tao Xiang, Sen He
Title: FLATTEN: optical FLow-guided ATTENtion for consistent text-to-video editing
Abstract:
Text-to-video editing aims to edit the visual appearance of a source video conditional on textual prompts. A major challenge in this task is to ensure that all frames in the edited video are visually consistent. Most recent works apply advanced text-to-image diffusion models to this task by inflating 2D spatial attention in the U-Net into spatio-temporal attention. Although temporal context can be added through spatio-temporal attention, it may introduce some irrelevant information for each patch and therefore cause inconsistency in the edited video. In this paper, for the first time, we introduce optical flow into the attention module in the diffusion model's U-Net to address the inconsistency issue for text-to-video editing. Our method, FLATTEN, enforces the patches on the same flow path across different frames to attend to each other in the attention module, thus improving the visual consistency in the edited videos. Additionally, our method is training-free and can be seamlessly integrated into any diffusion-based text-to-video editing methods and improve their visual consistency. Experiment results on existing text-to-video editing benchmarks show that our proposed method achieves the new state-of-the-art performance. In particular, our method excels in maintaining the visual consistency in the edited videos.
Authors:Ruoyu Feng, Wenming Weng, Yanhui Wang, Yuhui Yuan, Jianmin Bao, Chong Luo, Zhibo Chen, Baining Guo
Title: CCEdit: Creative and Controllable Video Editing via Diffusion Models
Abstract:
In this paper, we present CCEdit, a versatile generative video editing framework based on diffusion models. Our approach employs a novel trident network structure that separates structure and appearance control, ensuring precise and creative editing capabilities. Utilizing the foundational ControlNet architecture, we maintain the structural integrity of the video during editing. The incorporation of an additional appearance branch enables users to exert fine-grained control over the edited key frame. These two side branches seamlessly integrate into the main branch, which is constructed upon existing text-to-image (T2I) generation models, through learnable temporal layers. The versatility of our framework is demonstrated through a diverse range of choices in both structure representations and personalized T2I models, as well as the option to provide the edited key frame. To facilitate comprehensive evaluation, we introduce the BalanceCC benchmark dataset, comprising 100 videos and 4 target prompts for each video. Our extensive user studies compare CCEdit with eight state-of-the-art video editing methods. The outcomes demonstrate CCEdit's substantial superiority over all other methods.
Authors:Kaibin Tian, Ruixiang Zhao, Hu Hu, Runquan Xie, Fengzong Lian, Zhanhui Kang, Xirong Li
Title: TeachCLIP: Multi-Grained Teaching for Efficient Text-to-Video Retrieval
Abstract:
For text-to-video retrieval (T2VR), which aims to retrieve unlabeled videos by ad-hoc textual queries, CLIP-based methods are dominating. Compared to CLIP4Clip which is efficient and compact, the state-of-the-art models tend to compute video-text similarity by fine-grained cross-modal feature interaction and matching, putting their scalability for large-scale T2VR into doubt. For efficient T2VR, we propose TeachCLIP with multi-grained teaching to let a CLIP4Clip based student network learn from more advanced yet computationally heavy models such as X-CLIP, TS2-Net and X-Pool . To improve the student's learning capability, we add an Attentional frame-Feature Aggregation (AFA) block, which by design adds no extra storage/computation overhead at the retrieval stage. While attentive weights produced by AFA are commonly used for combining frame-level features, we propose a novel use of the weights to let them imitate frame-text relevance estimated by the teacher network. As such, AFA provides a fine-grained learning (teaching) channel for the student (teacher). Extensive experiments on multiple public datasets justify the viability of the proposed method.
Authors:Chen Zhu-Tian, Shuainan Ye, Xiangtong Chu, Haijun Xia, Hui Zhang, Huamin Qu, Yingcai Wu
Title: Augmenting Sports Videos with VisCommentator
Abstract:
Visualizing data in sports videos is gaining traction in sports analytics, given its ability to communicate insights and explicate player strategies engagingly. However, augmenting sports videos with such data visualizations is challenging, especially for sports analysts, as it requires considerable expertise in video editing. To ease the creation process, we present a design space that characterizes augmented sports videos at an element-level (what the constituents are) and clip-level (how those constituents are organized). We do so by systematically reviewing 233 examples of augmented sports videos collected from TV channels, teams, and leagues. The design space guides selection of data insights and visualizations for various purposes. Informed by the design space and close collaboration with domain experts, we design VisCommentator, a fast prototyping tool, to eases the creation of augmented table tennis videos by leveraging machine learning-based data extractors and design space-based visualization recommendations. With VisCommentator, sports analysts can create an augmented video by selecting the data to visualize instead of manually drawing the graphical marks. Our system can be generalized to other racket sports (e.g., tennis, badminton) once the underlying datasets and models are available. A user study with seven domain experts shows high satisfaction with our system, confirms that the participants can reproduce augmented sports videos in a short period, and provides insightful implications into future improvements and opportunities.
Authors:Nazmul Karim, Umar Khalid, Mohsen Joneidi, Chen Chen, Nazanin Rahnavard
Title: SAVE: Spectral-Shift-Aware Adaptation of Image Diffusion Models for Text-driven Video Editing
Abstract:
Text-to-Image (T2I) diffusion models have achieved remarkable success in synthesizing high-quality images conditioned on text prompts. Recent methods have tried to replicate the success by either training text-to-video (T2V) models on a very large number of text-video pairs or adapting T2I models on text-video pairs independently. Although the latter is computationally less expensive, it still takes a significant amount of time for per-video adaption. To address this issue, we propose SAVE, a novel spectral-shift-aware adaptation framework, in which we fine-tune the spectral shift of the parameter space instead of the parameters themselves. Specifically, we take the spectral decomposition of the pre-trained T2I weights and only update the singular values while freezing the corresponding singular vectors. In addition, we introduce a spectral shift regularizer aimed at placing tighter constraints on larger singular values compared to smaller ones. This form of regularization enables the model to grasp finer details within the video that align with the provided textual descriptions. We also offer theoretical justification for our proposed regularization technique. Since we are only dealing with spectral shifts, the proposed method reduces the adaptation time significantly (approx. 10 times) and has fewer resource constraints for training. Such attributes posit SAVE to be more suitable for real-world applications, e.g. editing undesirable content during video streaming. We validate the effectiveness of SAVE with an extensive experimental evaluation under different settings, e.g. style transfer, object replacement, privacy preservation, etc.
Authors:Chenyang Lei, Xuanchi Ren, Zhaoxiang Zhang, Qifeng Chen
Title: Blind Video Deflickering by Neural Filtering with a Flawed Atlas
Abstract:
Many videos contain flickering artifacts. Common causes of flicker include video processing algorithms, video generation algorithms, and capturing videos under specific situations. Prior work usually requires specific guidance such as the flickering frequency, manual annotations, or extra consistent videos to remove the flicker. In this work, we propose a general flicker removal framework that only receives a single flickering video as input without additional guidance. Since it is blind to a specific flickering type or guidance, we name this "blind deflickering." The core of our approach is utilizing the neural atlas in cooperation with a neural filtering strategy. The neural atlas is a unified representation for all frames in a video that provides temporal consistency guidance but is flawed in many cases. To this end, a neural network is trained to mimic a filter to learn the consistent features (e.g., color, brightness) and avoid introducing the artifacts in the atlas. To validate our method, we construct a dataset that contains diverse real-world flickering videos. Extensive experiments show that our method achieves satisfying deflickering performance and even outperforms baselines that use extra guidance on a public benchmark.
Authors:Guojun Lei, Chi Wang, Yikai Wang, Hong Li, Ying Song, Weiwei Xu
Title: MotionFlow:Learning Implicit Motion Flow for Complex Camera Trajectory Control in Video Generation
Abstract:
Generating videos guided by camera trajectories poses significant challenges in achieving consistency and generalizability, particularly when both camera and object motions are present. Existing approaches often attempt to learn these motions separately, which may lead to confusion regarding the relative motion between the camera and the objects. To address this challenge, we propose a novel approach that integrates both camera and object motions by converting them into the motion of corresponding pixels. Utilizing a stable diffusion network, we effectively learn reference motion maps in relation to the specified camera trajectory. These maps, along with an extracted semantic object prior, are then fed into an image-to-video network to generate the desired video that can accurately follow the designated camera trajectory while maintaining consistent object motions. Extensive experiments verify that our model outperforms SOTA methods by a large margin.
Authors:Kai Ye, Yuhang Wu, Shuyuan Hu, Junliang Li, Meng Liu, Yongquan Chen, Rui Huang
Title: \textsc{Gen2Real}: Towards Demo-Free Dexterous Manipulation by Harnessing Generated Video
Abstract:
Dexterous manipulation remains a challenging robotics problem, largely due to the difficulty of collecting extensive human demonstrations for learning. In this paper, we introduce \textsc{Gen2Real}, which replaces costly human demos with one generated video and drives robot skill from it: it combines demonstration generation that leverages video generation with pose and depth estimation to yield hand-object trajectories, trajectory optimization that uses Physics-aware Interaction Optimization Model (PIOM) to impose physics consistency, and demonstration learning that retargets human motions to a robot hand and stabilizes control with an anchor-based residual Proximal Policy Optimization (PPO) policy. Using only generated videos, the learned policy achieves a 77.3\% success rate on grasping tasks in simulation and demonstrates coherent executions on a real robot. We also conduct ablation studies to validate the contribution of each component and demonstrate the ability to directly specify tasks using natural language, highlighting the flexibility and robustness of \textsc{Gen2Real} in generalizing grasping skills from imagined videos to real-world execution.
Authors:Dohun Lee, Hyeonho Jeong, Jiwook Kim, Duygu Ceylan, Jong Chul Ye
Title: Improving Video Diffusion Transformer Training by Multi-Feature Fusion and Alignment from Self-Supervised Vision Encoders
Abstract:
Video diffusion models have advanced rapidly in the recent years as a result of series of architectural innovations (e.g., diffusion transformers) and use of novel training objectives (e.g., flow matching). In contrast, less attention has been paid to improving the feature representation power of such models. In this work, we show that training video diffusion models can benefit from aligning the intermediate features of the video generator with feature representations of pre-trained vision encoders. We propose a new metric and conduct an in-depth analysis of various vision encoders to evaluate their discriminability and temporal consistency, thereby assessing their suitability for video feature alignment. Based on the analysis, we present Align4Gen which provides a novel multi-feature fusion and alignment method integrated into video diffusion model training. We evaluate Align4Gen both for unconditional and class-conditional video generation tasks and show that it results in improved video generation as quantified by various metrics. Full video results are available on our project page: https://align4gen.github.io/align4gen/
Authors:Jun-Kun Chen, Aayush Bansal, Minh Phuoc Vo, Yu-Xiong Wang
Title: Virtual Fitting Room: Generating Arbitrarily Long Videos of Virtual Try-On from a Single Image -- Technical Preview
Abstract:
We introduce the Virtual Fitting Room (VFR), a novel video generative model that produces arbitrarily long virtual try-on videos. Our VFR models long video generation tasks as an auto-regressive, segment-by-segment generation process, eliminating the need for resource-intensive generation and lengthy video data, while providing the flexibility to generate videos of arbitrary length. The key challenges of this task are twofold: ensuring local smoothness between adjacent segments and maintaining global temporal consistency across different segments. To address these challenges, we propose our VFR framework, which ensures smoothness through a prefix video condition and enforces consistency with the anchor video -- a 360-degree video that comprehensively captures the human's wholebody appearance. Our VFR generates minute-scale virtual try-on videos with both local smoothness and global temporal consistency under various motions, making it a pioneering work in long virtual try-on video generation.
Authors:Jiaxiang Cheng, Bing Ma, Xuhua Ren, Hongyi Jin, Kai Yu, Peng Zhang, Wenyue Li, Yuan Zhou, Tianxiang Zheng, Qinglin Lu
Title: POSE: Phased One-Step Adversarial Equilibrium for Video Diffusion Models
Abstract:
The field of video diffusion generation faces critical bottlenecks in sampling efficiency, especially for large-scale models and long sequences. Existing video acceleration methods adopt image-based techniques but suffer from fundamental limitations: they neither model the temporal coherence of video frames nor provide single-step distillation for large-scale video models. To bridge this gap, we propose POSE (Phased One-Step Equilibrium), a distillation framework that reduces the sampling steps of large-scale video diffusion models, enabling the generation of high-quality videos in a single step. POSE employs a carefully designed two-phase process to distill video models:(i) stability priming: a warm-up mechanism to stabilize adversarial distillation that adapts the high-quality trajectory of the one-step generator from high to low signal-to-noise ratio regimes, optimizing the video quality of single-step mappings near the endpoints of flow trajectories. (ii) unified adversarial equilibrium: a flexible self-adversarial distillation mechanism that promotes stable single-step adversarial training towards a Nash equilibrium within the Gaussian noise space, generating realistic single-step videos close to real videos. For conditional video generation, we propose (iii) conditional adversarial consistency, a method to improve both semantic consistency and frame consistency between conditional frames and generated frames. Comprehensive experiments demonstrate that POSE outperforms other acceleration methods on VBench-I2V by average 7.15% in semantic alignment, temporal conference and frame quality, reducing the latency of the pre-trained model by 100$\times$, from 1000 seconds to 10 seconds, while maintaining competitive performance.
Authors:Ming Chen, Liyuan Cui, Wenyuan Zhang, Haoxian Zhang, Yan Zhou, Xiaohan Li, Songlin Tang, Jiwen Liu, Borui Liao, Hejia Chen, Xiaoqiang Liu, Pengfei Wan
Title: MIDAS: Multimodal Interactive Digital-humAn Synthesis via Real-time Autoregressive Video Generation
Abstract:
Recently, interactive digital human video generation has attracted widespread attention and achieved remarkable progress. However, building such a practical system that can interact with diverse input signals in real time remains challenging to existing methods, which often struggle with heavy computational cost and limited controllability. In this work, we introduce an autoregressive video generation framework that enables interactive multimodal control and low-latency extrapolation in a streaming manner. With minimal modifications to a standard large language model (LLM), our framework accepts multimodal condition encodings including audio, pose, and text, and outputs spatially and semantically coherent representations to guide the denoising process of a diffusion head. To support this, we construct a large-scale dialogue dataset of approximately 20,000 hours from multiple sources, providing rich conversational scenarios for training. We further introduce a deep compression autoencoder with up to 64$\times$ reduction ratio, which effectively alleviates the long-horizon inference burden of the autoregressive model. Extensive experiments on duplex conversation, multilingual human synthesis, and interactive world model highlight the advantages of our approach in low latency, high efficiency, and fine-grained multimodal controllability.
Authors:Zixiang Yang, Yue Ma, Yinhan Zhang, Shanhui Mo, Dongrui Liu, Linfeng Zhang
Title: EVCtrl: Efficient Control Adapter for Visual Generation
Abstract:
Visual generation includes both image and video generation, training probabilistic models to create coherent, diverse, and semantically faithful content from scratch. While early research focused on unconditional sampling, practitioners now demand controllable generation that allows precise specification of layout, pose, motion, or style. While ControlNet grants precise spatial-temporal control, its auxiliary branch markedly increases latency and introduces redundant computation in both uncontrolled regions and denoising steps, especially for video. To address this problem, we introduce EVCtrl, a lightweight, plug-and-play control adapter that slashes overhead without retraining the model. Specifically, we propose a spatio-temporal dual caching strategy for sparse control information. For spatial redundancy, we first profile how each layer of DiT-ControlNet responds to fine-grained control, then partition the network into global and local functional zones. A locality-aware cache focuses computation on the local zones that truly need the control signal, skipping the bulk of redundant computation in global regions. For temporal redundancy, we selectively omit unnecessary denoising steps to improve efficiency. Extensive experiments on CogVideo-Controlnet, Wan2.1-Controlnet, and Flux demonstrate that our method is effective in image and video control generation without the need for training. For example, it achieves 2.16 and 2.05 times speedups on CogVideo-Controlnet and Wan2.1-Controlnet, respectively, with almost no degradation in generation quality.Codes are available in the supplementary materials.
Authors:Quang-Trung Truong, Yuk-Kwan Wong, Vo Hoang Kim Tuyen Dang, Rinaldi Gotama, Duc Thanh Nguyen, Sai-Kit Yeung
Title: MSC: A Marine Wildlife Video Dataset with Grounded Segmentation and Clip-Level Captioning
Abstract:
Marine videos present significant challenges for video understanding due to the dynamics of marine objects and the surrounding environment, camera motion, and the complexity of underwater scenes. Existing video captioning datasets, typically focused on generic or human-centric domains, often fail to generalize to the complexities of the marine environment and gain insights about marine life. To address these limitations, we propose a two-stage marine object-oriented video captioning pipeline. We introduce a comprehensive video understanding benchmark that leverages the triplets of video, text, and segmentation masks to facilitate visual grounding and captioning, leading to improved marine video understanding and analysis, and marine video generation. Additionally, we highlight the effectiveness of video splitting in order to detect salient object transitions in scene changes, which significantly enrich the semantics of captioning content. Our dataset and code have been released at https://msc.hkustvgd.com.
Authors:Chenjian Gao, Lihe Ding, Rui Han, Zhanpeng Huang, Zibin Wang, Tianfan Xue
Title: From Gallery to Wrist: Realistic 3D Bracelet Insertion in Videos
Abstract:
Inserting 3D objects into videos is a longstanding challenge in computer graphics with applications in augmented reality, virtual try-on, and video composition. Achieving both temporal consistency, or realistic lighting remains difficult, particularly in dynamic scenarios with complex object motion, perspective changes, and varying illumination. While 2D diffusion models have shown promise for producing photorealistic edits, they often struggle with maintaining temporal coherence across frames. Conversely, traditional 3D rendering methods excel in spatial and temporal consistency but fall short in achieving photorealistic lighting. In this work, we propose a hybrid object insertion pipeline that combines the strengths of both paradigms. Specifically, we focus on inserting bracelets into dynamic wrist scenes, leveraging the high temporal consistency of 3D Gaussian Splatting (3DGS) for initial rendering and refining the results using a 2D diffusion-based enhancement model to ensure realistic lighting interactions. Our method introduces a shading-driven pipeline that separates intrinsic object properties (albedo, shading, reflectance) and refines both shading and sRGB images for photorealism. To maintain temporal coherence, we optimize the 3DGS model with multi-frame weighted adjustments. This is the first approach to synergize 3D rendering and 2D diffusion for video object insertion, offering a robust solution for realistic and consistent video editing. Project Page: https://cjeen.github.io/BraceletPaper/
Authors:Wongi Jeong, Kyungryeol Lee, Hoigi Seo, Se Young Chun
Title: Upsample What Matters: Region-Adaptive Latent Sampling for Accelerated Diffusion Transformers
Abstract:
Diffusion transformers have emerged as an alternative to U-net-based diffusion models for high-fidelity image and video generation, offering superior scalability. However, their heavy computation remains a major obstacle to real-world deployment. Existing acceleration methods primarily exploit the temporal dimension such as reusing cached features across diffusion timesteps. Here, we propose Region-Adaptive Latent Upsampling (RALU), a training-free framework that accelerates inference along spatial dimension. RALU performs mixed-resolution sampling across three stages: 1) low-resolution denoising latent diffusion to efficiently capture global semantic structure, 2) region-adaptive upsampling on specific regions prone to artifacts at full-resolution, and 3) all latent upsampling at full-resolution for detail refinement. To stabilize generations across resolution transitions, we leverage noise-timestep rescheduling to adapt the noise level across varying resolutions. Our method significantly reduces computation while preserving image quality by achieving up to 7.0$\times$ speed-up on FLUX and 3.0$\times$ on Stable Diffusion 3 with minimal degradation. Furthermore, RALU is complementary to existing temporal accelerations such as caching methods, thus can be seamlessly integrated to further reduce inference latency without compromising generation quality.
Authors:Zhenghao Zhang, Junchao Liao, Xiangyu Meng, Long Qin, Weizhi Wang
Title: Tora2: Motion and Appearance Customized Diffusion Transformer for Multi-Entity Video Generation
Abstract:
Recent advances in diffusion transformer models for motion-guided video generation, such as Tora, have shown significant progress. In this paper, we present Tora2, an enhanced version of Tora, which introduces several design improvements to expand its capabilities in both appearance and motion customization. Specifically, we introduce a decoupled personalization extractor that generates comprehensive personalization embeddings for multiple open-set entities, better preserving fine-grained visual details compared to previous methods. Building on this, we design a gated self-attention mechanism to integrate trajectory, textual description, and visual information for each entity. This innovation significantly reduces misalignment in multimodal conditioning during training. Moreover, we introduce a contrastive loss that jointly optimizes trajectory dynamics and entity consistency through explicit mapping between motion and personalization embeddings. Tora2 is, to our best knowledge, the first method to achieve simultaneous multi-entity customization of appearance and motion for video generation. Experimental results demonstrate that Tora2 achieves competitive performance with state-of-the-art customization methods while providing advanced motion control capabilities, which marks a critical advancement in multi-condition video generation. Project page: https://ali-videoai.github.io/Tora2_page/.
Authors:Jiaqi Li, Junshu Tang, Zhiyong Xu, Longhuang Wu, Yuan Zhou, Shuai Shao, Tianbao Yu, Zhiguo Cao, Qinglin Lu
Title: Hunyuan-GameCraft: High-dynamic Interactive Game Video Generation with Hybrid History Condition
Abstract:
Recent advances in diffusion-based and controllable video generation have enabled high-quality and temporally coherent video synthesis, laying the groundwork for immersive interactive gaming experiences. However, current methods face limitations in dynamics, generality, long-term consistency, and efficiency, which limit the ability to create various gameplay videos. To address these gaps, we introduce Hunyuan-GameCraft, a novel framework for high-dynamic interactive video generation in game environments. To achieve fine-grained action control, we unify standard keyboard and mouse inputs into a shared camera representation space, facilitating smooth interpolation between various camera and movement operations. Then we propose a hybrid history-conditioned training strategy that extends video sequences autoregressively while preserving game scene information. Additionally, to enhance inference efficiency and playability, we achieve model distillation to reduce computational overhead while maintaining consistency across long temporal sequences, making it suitable for real-time deployment in complex interactive environments. The model is trained on a large-scale dataset comprising over one million gameplay recordings across over 100 AAA games, ensuring broad coverage and diversity, then fine-tuned on a carefully annotated synthetic dataset to enhance precision and control. The curated game scene data significantly improves the visual fidelity, realism and action controllability. Extensive experiments demonstrate that Hunyuan-GameCraft significantly outperforms existing models, advancing the realism and playability of interactive game video generation.
Authors:Chenjian Gao, Lihe Ding, Xin Cai, Zhanpeng Huang, Zibin Wang, Tianfan Xue
Title: LoRA-Edit: Controllable First-Frame-Guided Video Editing via Mask-Aware LoRA Fine-Tuning
Abstract:
Video editing using diffusion models has achieved remarkable results in generating high-quality edits for videos. However, current methods often rely on large-scale pretraining, limiting flexibility for specific edits. First-frame-guided editing provides control over the first frame, but lacks flexibility over subsequent frames. To address this, we propose a mask-based LoRA (Low-Rank Adaptation) tuning method that adapts pretrained Image-to-Video (I2V) models for flexible video editing. Our key innovation is using a spatiotemporal mask to strategically guide the LoRA fine-tuning process. This teaches the model two distinct skills: first, to interpret the mask as a command to either preserve content from the source video or generate new content in designated regions. Second, for these generated regions, LoRA learns to synthesize either temporally consistent motion inherited from the video or novel appearances guided by user-provided reference frames. This dual-capability LoRA grants users control over the edit's entire temporal evolution, allowing complex transformations like an object rotating or a flower blooming. Experimental results show our method achieves superior video editing performance compared to baseline methods. Project Page: https://cjeen.github.io/LoRAEdit
Authors:Shuchen Weng, Haojie Zheng, Zheng Chang, Si Li, Boxin Shi, Xinlong Wang
Title: Audio-Sync Video Generation with Multi-Stream Temporal Control
Abstract:
Audio is inherently temporal and closely synchronized with the visual world, making it a naturally aligned and expressive control signal for controllable video generation (e.g., movies). Beyond control, directly translating audio into video is essential for understanding and visualizing rich audio narratives (e.g., Podcasts or historical recordings). However, existing approaches fall short in generating high-quality videos with precise audio-visual synchronization, especially across diverse and complex audio types. In this work, we introduce MTV, a versatile framework for audio-sync video generation. MTV explicitly separates audios into speech, effects, and music tracks, enabling disentangled control over lip motion, event timing, and visual mood, respectively -- resulting in fine-grained and semantically aligned video generation. To support the framework, we additionally present DEMIX, a dataset comprising high-quality cinematic videos and demixed audio tracks. DEMIX is structured into five overlapped subsets, enabling scalable multi-stage training for diverse generation scenarios. Extensive experiments demonstrate that MTV achieves state-of-the-art performance across six standard metrics spanning video quality, text-video consistency, and audio-video alignment. Project page: https://hjzheng.net/projects/MTV/.
Authors:Pablo Acuaviva, Aram Davtyan, Mariam Hassan, Sebastian Stapf, Ahmad Rahimi, Alexandre Alahi, Paolo Favaro
Title: From Generation to Generalization: Emergent Few-Shot Learning in Video Diffusion Models
Abstract:
Video Diffusion Models (VDMs) have emerged as powerful generative tools, capable of synthesizing high-quality spatiotemporal content. Yet, their potential goes far beyond mere video generation. We argue that the training dynamics of VDMs, driven by the need to model coherent sequences, naturally pushes them to internalize structured representations and an implicit understanding of the visual world. To probe the extent of this internal knowledge, we introduce a few-shot fine-tuning framework that repurposes VDMs for new tasks using only a handful of examples. Our method transforms each task into a visual transition, enabling the training of LoRA weights on short input-output sequences without altering the generative interface of a frozen VDM. Despite minimal supervision, the model exhibits strong generalization across diverse tasks, from low-level vision (for example, segmentation and pose estimation) to high-level reasoning (for example, on ARC-AGI). These results reframe VDMs as more than generative engines. They are adaptable visual learners with the potential to serve as the backbone for future foundation models in vision.
Authors:Huaize Liu, Wenzhang Sun, Qiyuan Zhang, Donglin Di, Biao Gong, Hao Li, Chen Wei, Changqing Zou
Title: Hi-VAE: Efficient Video Autoencoding with Global and Detailed Motion
Abstract:
Recent breakthroughs in video autoencoders (Video AEs) have advanced video generation, but existing methods fail to efficiently model spatio-temporal redundancies in dynamics, resulting in suboptimal compression factors. This shortfall leads to excessive training costs for downstream tasks. To address this, we introduce Hi-VAE, an efficient video autoencoding framework that hierarchically encode coarse-to-fine motion representations of video dynamics and formulate the decoding process as a conditional generation task. Specifically, Hi-VAE decomposes video dynamics into two latent spaces: Global Motion, capturing overarching motion patterns, and Detailed Motion, encoding high-frequency spatial details. Using separate self-supervised motion encoders, we compress video latents into compact motion representations to reduce redundancy significantly. A conditional diffusion decoder then reconstructs videos by combining hierarchical global and detailed motions, enabling high-fidelity video reconstructions. Extensive experiments demonstrate that Hi-VAE achieves a high compression factor of 1428$\times$, almost 30$\times$ higher than baseline methods (e.g., Cosmos-VAE at 48$\times$), validating the efficiency of our approach. Meanwhile, Hi-VAE maintains high reconstruction quality at such high compression rates and performs effectively in downstream generative tasks. Moreover, Hi-VAE exhibits interpretability and scalability, providing new perspectives for future exploration in video latent representation and generation.
Authors:Ariel Shaulov, Itay Hazan, Lior Wolf, Hila Chefer
Title: FlowMo: Variance-Based Flow Guidance for Coherent Motion in Video Generation
Abstract:
Text-to-video diffusion models are notoriously limited in their ability to model temporal aspects such as motion, physics, and dynamic interactions. Existing approaches address this limitation by retraining the model or introducing external conditioning signals to enforce temporal consistency. In this work, we explore whether a meaningful temporal representation can be extracted directly from the predictions of a pre-trained model without any additional training or auxiliary inputs. We introduce FlowMo, a novel training-free guidance method that enhances motion coherence using only the model's own predictions in each diffusion step. FlowMo first derives an appearance-debiased temporal representation by measuring the distance between latents corresponding to consecutive frames. This highlights the implicit temporal structure predicted by the model. It then estimates motion coherence by measuring the patch-wise variance across the temporal dimension and guides the model to reduce this variance dynamically during sampling. Extensive experiments across multiple text-to-video models demonstrate that FlowMo significantly improves motion coherence without sacrificing visual quality or prompt alignment, offering an effective plug-and-play solution for enhancing the temporal fidelity of pre-trained video diffusion models.
Authors:Guanwen Feng, Zhiyuan Ma, Yunan Li, Jiahao Yang, Junwei Jing, Qiguang Miao
Title: FaceEditTalker: Controllable Talking Head Generation with Facial Attribute Editing
Abstract:
Recent advances in audio-driven talking head generation have achieved impressive results in lip synchronization and emotional expression. However, they largely overlook the crucial task of facial attribute editing. This capability is indispensable for achieving deep personalization and expanding the range of practical applications, including user-tailored digital avatars, engaging online education content, and brand-specific digital customer service. In these key domains, flexible adjustment of visual attributes, such as hairstyle, accessories, and subtle facial features, is essential for aligning with user preferences, reflecting diverse brand identities and adapting to varying contextual demands. In this paper, we present FaceEditTalker, a unified framework that enables controllable facial attribute manipulation while generating high-quality, audio-synchronized talking head videos. Our method consists of two key components: an image feature space editing module, which extracts semantic and detail features and allows flexible control over attributes like expression, hairstyle, and accessories; and an audio-driven video generation module, which fuses these edited features with audio-guided facial landmarks to drive a diffusion-based generator. This design ensures temporal coherence, visual fidelity, and identity preservation across frames. Extensive experiments on public datasets demonstrate that our method achieves comparable or superior performance to representative baseline methods in lip-sync accuracy, video quality, and attribute controllability. Project page: https://peterfanfan.github.io/FaceEditTalker/
Authors:Yifei Xia, Shuchen Weng, Siqi Yang, Jingqi Liu, Chengxuan Zhu, Minggui Teng, Zijian Jia, Han Jiang, Boxin Shi
Title: PanoWan: Lifting Diffusion Video Generation Models to 360° with Latitude/Longitude-aware Mechanisms
Abstract:
Panoramic video generation enables immersive 360° content creation, valuable in applications that demand scene-consistent world exploration. However, existing panoramic video generation models struggle to leverage pre-trained generative priors from conventional text-to-video models for high-quality and diverse panoramic videos generation, due to limited dataset scale and the gap in spatial feature representations. In this paper, we introduce PanoWan to effectively lift pre-trained text-to-video models to the panoramic domain, equipped with minimal modules. PanoWan employs latitude-aware sampling to avoid latitudinal distortion, while its rotated semantic denoising and padded pixel-wise decoding ensure seamless transitions at longitude boundaries. To provide sufficient panoramic videos for learning these lifted representations, we contribute PanoVid, a high-quality panoramic video dataset with captions and diverse scenarios. Consequently, PanoWan achieves state-of-the-art performance in panoramic video generation and demonstrates robustness for zero-shot downstream tasks. Our project page is available at https://panowan.variantconst.com.
Authors:Hao Tang, Kevin Ellis, Suhas Lohit, Michael J. Jones, Moitreya Chatterjee
Title: Programmatic Video Prediction Using Large Language Models
Abstract:
The task of estimating the world model describing the dynamics of a real world process assumes immense importance for anticipating and preparing for future outcomes. For applications such as video surveillance, robotics applications, autonomous driving, etc. this objective entails synthesizing plausible visual futures, given a few frames of a video to set the visual context. Towards this end, we propose ProgGen, which undertakes the task of video frame prediction by representing the dynamics of the video using a set of neuro-symbolic, human-interpretable set of states (one per frame) by leveraging the inductive biases of Large (Vision) Language Models (LLM/VLM). In particular, ProgGen utilizes LLM/VLM to synthesize programs: (i) to estimate the states of the video, given the visual context (i.e. the frames); (ii) to predict the states corresponding to future time steps by estimating the transition dynamics; (iii) to render the predicted states as visual RGB-frames. Empirical evaluations reveal that our proposed method outperforms competing techniques at the task of video frame prediction in two challenging environments: (i) PhyWorld (ii) Cart Pole. Additionally, ProgGen permits counter-factual reasoning and interpretable video generation attesting to its effectiveness and generalizability for video generation tasks.
Authors:Xunpeng Huang, Yujin Han, Difan Zou, Yian Ma, Tong Zhang
Title: Capturing Conditional Dependence via Auto-regressive Diffusion Models
Abstract:
Diffusion models have demonstrated appealing performance in both image and video generation. However, many works discover that they struggle to capture important, high-level relationships that are present in the real world. For example, they fail to learn physical laws from data, and even fail to understand that the objects in the world exist in a stable fashion. This is due to the fact that important conditional dependence structures are not adequately captured in the vanilla diffusion models. In this work, we initiate an in-depth study on strengthening the diffusion model to capture the conditional dependence structures in the data. In particular, we examine the efficacy of the auto-regressive (AR) diffusion models for such purpose and develop the first theoretical results on the sampling error of AR diffusion models under (possibly) the mildest data assumption. Our theoretical findings indicate that, compared with typical diffusion models, the AR variant produces samples with a reduced gap in approximating the data conditional distribution. On the other hand, the overall inference time of the AR-diffusion models is only moderately larger than that for the vanilla diffusion models, making them still practical for large scale applications. We also provide empirical results showing that when there is clear conditional dependence structure in the data, the AR diffusion models captures such structure, whereas vanilla DDPM fails to do so. On the other hand, when there is no obvious conditional dependence across patches of the data, AR diffusion does not outperform DDPM.
Authors:Rui Chen, Lei Sun, Jing Tang, Geng Li, Xiangxiang Chu
Title: FingER: Content Aware Fine-grained Evaluation with Reasoning for AI-Generated Videos
Abstract:
Recent advances in video generation have posed great challenges in the assessment of AI-generated content, particularly with the emergence of increasingly sophisticated models. The various inconsistencies and defects observed in such videos are inherently complex, making overall scoring notoriously difficult. In this paper, we emphasize the critical importance of integrating fine-grained reasoning into video evaluation, and we propose $\textbf{F}$ing$\textbf{ER}$, a novel entity-level reasoning evaluation framework that first automatically generates $\textbf{F}$ine-grained $\textbf{E}$ntity-level questions, and then answers those questions by a $\textbf{R}$easoning model with scores, which can be subsequently weighted summed to an overall score for different applications. Specifically, we leverage LLMs to derive entity-level questions across five distinct perspectives, which (i) often focus on some specific entities of the content, thereby making answering or scoring much easier by MLLMs, and (ii) are more interpretable. Then we construct a FingER dataset, consisting of approximately 3.3k videos and corresponding 60k fine-grained QA annotations, each with detailed reasons. Based on that, we further investigate various training protocols to best incentivize the reasoning capability of MLLMs for correct answer prediction. Extensive experiments demonstrate that a reasoning model trained using Group Relative Policy Optimization (GRPO) with a cold-start strategy achieves the best performance. Notably, our model surpasses existing methods by a relative margin of $11.8\%$ on GenAI-Bench and $5.5\%$ on MonetBench with only 3.3k training videos, which is at most one-tenth of the training samples utilized by other methods. Our code and dataset will be released soon.
Authors:Rundong Luo, Matthew Wallingford, Ali Farhadi, Noah Snavely, Wei-Chiu Ma
Title: Beyond the Frame: Generating 360° Panoramic Videos from Perspective Videos
Abstract:
360° videos have emerged as a promising medium to represent our dynamic visual world. Compared to the "tunnel vision" of standard cameras, their borderless field of view offers a more complete perspective of our surroundings. While existing video models excel at producing standard videos, their ability to generate full panoramic videos remains elusive. In this paper, we investigate the task of video-to-360° generation: given a perspective video as input, our goal is to generate a full panoramic video that is consistent with the original video. Unlike conventional video generation tasks, the output's field of view is significantly larger, and the model is required to have a deep understanding of both the spatial layout of the scene and the dynamics of objects to maintain spatio-temporal consistency. To address these challenges, we first leverage the abundant 360° videos available online and develop a high-quality data filtering pipeline to curate pairwise training data. We then carefully design a series of geometry- and motion-aware operations to facilitate the learning process and improve the quality of 360° video generation. Experimental results demonstrate that our model can generate realistic and coherent 360° videos from in-the-wild perspective video. In addition, we showcase its potential applications, including video stabilization, camera viewpoint control, and interactive visual question answering.
Authors:Hui Han, Siyuan Li, Jiaqi Chen, Yiwen Yuan, Yuling Wu, Chak Tou Leong, Hanwen Du, Junchen Fu, Youhua Li, Jie Zhang, Chi Zhang, Li-jia Li, Yongxin Ni
Title: Video-Bench: Human-Aligned Video Generation Benchmark
Abstract:
Video generation assessment is essential for ensuring that generative models produce visually realistic, high-quality videos while aligning with human expectations. Current video generation benchmarks fall into two main categories: traditional benchmarks, which use metrics and embeddings to evaluate generated video quality across multiple dimensions but often lack alignment with human judgments; and large language model (LLM)-based benchmarks, though capable of human-like reasoning, are constrained by a limited understanding of video quality metrics and cross-modal consistency. To address these challenges and establish a benchmark that better aligns with human preferences, this paper introduces Video-Bench, a comprehensive benchmark featuring a rich prompt suite and extensive evaluation dimensions. This benchmark represents the first attempt to systematically leverage MLLMs across all dimensions relevant to video generation assessment in generative models. By incorporating few-shot scoring and chain-of-query techniques, Video-Bench provides a structured, scalable approach to generated video evaluation. Experiments on advanced models including Sora demonstrate that Video-Bench achieves superior alignment with human preferences across all dimensions. Moreover, in instances where our framework's assessments diverge from human evaluations, it consistently offers more objective and accurate insights, suggesting an even greater potential advantage over traditional human judgment.
Authors:Haiyang Liu, Zhan Xu, Fa-Ting Hong, Hsin-Ping Huang, Yi Zhou, Yang Zhou
Title: Video Motion Graphs
Abstract:
We present Video Motion Graphs, a system designed to generate realistic human motion videos. Using a reference video and conditional signals such as music or motion tags, the system synthesizes new videos by first retrieving video clips with gestures matching the conditions and then generating interpolation frames to seamlessly connect clip boundaries. The core of our approach is HMInterp, a robust Video Frame Interpolation (VFI) model that enables seamless interpolation of discontinuous frames, even for complex motion scenarios like dancing. HMInterp i) employs a dual-branch interpolation approach, combining a Motion Diffusion Model for human skeleton motion interpolation with a diffusion-based video frame interpolation model for final frame generation. ii) adopts condition progressive training to effectively leverage identity strong and weak conditions, such as images and pose. These designs ensure both high video texture quality and accurate motion trajectory. Results show that our Video Motion Graphs outperforms existing generative- and retrieval-based methods for multi-modal conditioned human motion video generation. Project page can be found at https://h-liu1997.github.io/Video-Motion-Graphs/
Authors:Yuke Lou, Yiming Wang, Zhen Wu, Rui Zhao, Wenjia Wang, Mingyi Shi, Taku Komura
Title: Zero-Shot Human-Object Interaction Synthesis with Multimodal Priors
Abstract:
Human-object interaction (HOI) synthesis is important for various applications, ranging from virtual reality to robotics. However, acquiring 3D HOI data is challenging due to its complexity and high cost, limiting existing methods to the narrow diversity of object types and interaction patterns in training datasets. This paper proposes a novel zero-shot HOI synthesis framework without relying on end-to-end training on currently limited 3D HOI datasets. The core idea of our method lies in leveraging extensive HOI knowledge from pre-trained Multimodal Models. Given a text description, our system first obtains temporally consistent 2D HOI image sequences using image or video generation models, which are then uplifted to 3D HOI milestones of human and object poses. We employ pre-trained human pose estimation models to extract human poses and introduce a generalizable category-level 6-DoF estimation method to obtain the object poses from 2D HOI images. Our estimation method is adaptive to various object templates obtained from text-to-3D models or online retrieval. A physics-based tracking of the 3D HOI kinematic milestone is further applied to refine both body motions and object poses, yielding more physically plausible HOI generation results. The experimental results demonstrate that our method is capable of generating open-vocabulary HOIs with physical realism and semantic diversity.
Authors:Kaisi Guan, Zhengfeng Lai, Yuchong Sun, Peng Zhang, Wei Liu, Kieran Liu, Meng Cao, Ruihua Song
Title: ETVA: Evaluation of Text-to-Video Alignment via Fine-grained Question Generation and Answering
Abstract:
Precisely evaluating semantic alignment between text prompts and generated videos remains a challenge in Text-to-Video (T2V) Generation. Existing text-to-video alignment metrics like CLIPScore only generate coarse-grained scores without fine-grained alignment details, failing to align with human preference. To address this limitation, we propose ETVA, a novel Evaluation method of Text-to-Video Alignment via fine-grained question generation and answering. First, a multi-agent system parses prompts into semantic scene graphs to generate atomic questions. Then we design a knowledge-augmented multi-stage reasoning framework for question answering, where an auxiliary LLM first retrieves relevant common-sense knowledge (e.g., physical laws), and then video LLM answers the generated questions through a multi-stage reasoning mechanism. Extensive experiments demonstrate that ETVA achieves a Spearman's correlation coefficient of 58.47, showing a much higher correlation with human judgment than existing metrics which attain only 31.0. We also construct a comprehensive benchmark specifically designed for text-to-video alignment evaluation, featuring 2k diverse prompts and 12k atomic questions spanning 10 categories. Through a systematic evaluation of 15 existing text-to-video models, we identify their key capabilities and limitations, paving the way for next-generation T2V generation.
Authors:Yanming Zhang, Jun-Kun Chen, Jipeng Lyu, Yu-Xiong Wang
Title: V2Edit: Versatile Video Diffusion Editor for Videos and 3D Scenes
Abstract:
This paper introduces V$^2$Edit, a novel training-free framework for instruction-guided video and 3D scene editing. Addressing the critical challenge of balancing original content preservation with editing task fulfillment, our approach employs a progressive strategy that decomposes complex editing tasks into a sequence of simpler subtasks. Each subtask is controlled through three key synergistic mechanisms: the initial noise, noise added at each denoising step, and cross-attention maps between text prompts and video content. This ensures robust preservation of original video elements while effectively applying the desired edits. Beyond its native video editing capability, we extend V$^2$Edit to 3D scene editing via a "render-edit-reconstruct" process, enabling high-quality, 3D-consistent edits even for tasks involving substantial geometric changes such as object insertion. Extensive experiments demonstrate that our V$^2$Edit achieves high-quality and successful edits across various challenging video editing tasks and complex 3D scene editing tasks, thereby establishing state-of-the-art performance in both domains.
Authors:Hyeonho Jeong, Suhyeon Lee, Jong Chul Ye
Title: Reangle-A-Video: 4D Video Generation as Video-to-Video Translation
Abstract:
We introduce Reangle-A-Video, a unified framework for generating synchronized multi-view videos from a single input video. Unlike mainstream approaches that train multi-view video diffusion models on large-scale 4D datasets, our method reframes the multi-view video generation task as video-to-videos translation, leveraging publicly available image and video diffusion priors. In essence, Reangle-A-Video operates in two stages. (1) Multi-View Motion Learning: An image-to-video diffusion transformer is synchronously fine-tuned in a self-supervised manner to distill view-invariant motion from a set of warped videos. (2) Multi-View Consistent Image-to-Images Translation: The first frame of the input video is warped and inpainted into various camera perspectives under an inference-time cross-view consistency guidance using DUSt3R, generating multi-view consistent starting images. Extensive experiments on static view transport and dynamic camera control show that Reangle-A-Video surpasses existing methods, establishing a new solution for multi-view video generation. We will publicly release our code and data. Project page: https://hyeonho99.github.io/reangle-a-video/
Authors:Subin Kim, Seoung Wug Oh, Jui-Hsien Wang, Joon-Young Lee, Jinwoo Shin
Title: Tuning-Free Multi-Event Long Video Generation via Synchronized Coupled Sampling
Abstract:
While recent advancements in text-to-video diffusion models enable high-quality short video generation from a single prompt, generating real-world long videos in a single pass remains challenging due to limited data and high computational costs. To address this, several works propose tuning-free approaches, i.e., extending existing models for long video generation, specifically using multiple prompts to allow for dynamic and controlled content changes. However, these methods primarily focus on ensuring smooth transitions between adjacent frames, often leading to content drift and a gradual loss of semantic coherence over longer sequences. To tackle such an issue, we propose Synchronized Coupled Sampling (SynCoS), a novel inference framework that synchronizes denoising paths across the entire video, ensuring long-range consistency across both adjacent and distant frames. Our approach combines two complementary sampling strategies: reverse and optimization-based sampling, which ensure seamless local transitions and enforce global coherence, respectively. However, directly alternating between these samplings misaligns denoising trajectories, disrupting prompt guidance and introducing unintended content changes as they operate independently. To resolve this, SynCoS synchronizes them through a grounded timestep and a fixed baseline noise, ensuring fully coupled sampling with aligned denoising paths. Extensive experiments show that SynCoS significantly improves multi-event long video generation, achieving smoother transitions and superior long-range coherence, outperforming previous approaches both quantitatively and qualitatively.
Authors:Mingzhen Sun, Weining Wang, Gen Li, Jiawei Liu, Jiahui Sun, Wanquan Feng, Shanshan Lao, SiYu Zhou, Qian He, Jing Liu
Title: AR-Diffusion: Asynchronous Video Generation with Auto-Regressive Diffusion
Abstract:
The task of video generation requires synthesizing visually realistic and temporally coherent video frames. Existing methods primarily use asynchronous auto-regressive models or synchronous diffusion models to address this challenge. However, asynchronous auto-regressive models often suffer from inconsistencies between training and inference, leading to issues such as error accumulation, while synchronous diffusion models are limited by their reliance on rigid sequence length. To address these issues, we introduce Auto-Regressive Diffusion (AR-Diffusion), a novel model that combines the strengths of auto-regressive and diffusion models for flexible, asynchronous video generation. Specifically, our approach leverages diffusion to gradually corrupt video frames in both training and inference, reducing the discrepancy between these phases. Inspired by auto-regressive generation, we incorporate a non-decreasing constraint on the corruption timesteps of individual frames, ensuring that earlier frames remain clearer than subsequent ones. This setup, together with temporal causal attention, enables flexible generation of videos with varying lengths while preserving temporal coherence. In addition, we design two specialized timestep schedulers: the FoPP scheduler for balanced timestep sampling during training, and the AD scheduler for flexible timestep differences during inference, supporting both synchronous and asynchronous generation. Extensive experiments demonstrate the superiority of our proposed method, which achieves competitive and state-of-the-art results across four challenging benchmarks.
Authors:Lei Ke, Haohang Xu, Xuefei Ning, Yu Li, Jiajun Li, Haoling Li, Yuxuan Lin, Dongsheng Jiang, Yujiu Yang, Linfeng Zhang
Title: ProReflow: Progressive Reflow with Decomposed Velocity
Abstract:
Diffusion models have achieved significant progress in both image and video generation while still suffering from huge computation costs. As an effective solution, flow matching aims to reflow the diffusion process of diffusion models into a straight line for a few-step and even one-step generation. However, in this paper, we suggest that the original training pipeline of flow matching is not optimal and introduce two techniques to improve it. Firstly, we introduce progressive reflow, which progressively reflows the diffusion models in local timesteps until the whole diffusion progresses, reducing the difficulty of flow matching. Second, we introduce aligned v-prediction, which highlights the importance of direction matching in flow matching over magnitude matching. Experimental results on SDv1.5 and SDXL demonstrate the effectiveness of our method, for example, conducting on SDv1.5 achieves an FID of 10.70 on MSCOCO2014 validation set with only 4 sampling steps, close to our teacher model (32 DDIM steps, FID = 10.05).
Authors:Juil Koo, Paul Guerrero, Chun-Hao Paul Huang, Duygu Ceylan, Minhyuk Sung
Title: VideoHandles: Editing 3D Object Compositions in Videos Using Video Generative Priors
Abstract:
Generative methods for image and video editing use generative models as priors to perform edits despite incomplete information, such as changing the composition of 3D objects shown in a single image. Recent methods have shown promising composition editing results in the image setting, but in the video setting, editing methods have focused on editing object's appearance and motion, or camera motion, and as a result, methods to edit object composition in videos are still missing. We propose \name as a method for editing 3D object compositions in videos of static scenes with camera motion. Our approach allows editing the 3D position of a 3D object across all frames of a video in a temporally consistent manner. This is achieved by lifting intermediate features of a generative model to a 3D reconstruction that is shared between all frames, editing the reconstruction, and projecting the features on the edited reconstruction back to each frame. To the best of our knowledge, this is the first generative approach to edit object compositions in videos. Our approach is simple and training-free, while outperforming state-of-the-art image editing baselines.
Authors:Menghao Li, Zhenghao Zhang, Junchao Liao, Long Qin, Weizhi Wang
Title: TransVDM: Motion-Constrained Video Diffusion Model for Transparent Video Synthesis
Abstract:
Recent developments in Video Diffusion Models (VDMs) have demonstrated remarkable capability to generate high-quality video content. Nonetheless, the potential of VDMs for creating transparent videos remains largely uncharted. In this paper, we introduce TransVDM, the first diffusion-based model specifically designed for transparent video generation. TransVDM integrates a Transparent Variational Autoencoder (TVAE) and a pretrained UNet-based VDM, along with a novel Alpha Motion Constraint Module (AMCM). The TVAE captures the alpha channel transparency of video frames and encodes it into the latent space of the VDMs, facilitating a seamless transition to transparent video diffusion models. To improve the detection of transparent areas, the AMCM integrates motion constraints from the foreground within the VDM, helping to reduce undesirable artifacts. Moreover, we curate a dataset containing 250K transparent frames for training. Experimental results demonstrate the effectiveness of our approach across various benchmarks.
Authors:Mina Huh, Dingzeyu Li, Kim Pimmel, Hijung Valentina Shin, Amy Pavel, Mira Dontcheva
Title: VideoDiff: Human-AI Video Co-Creation with Alternatives
Abstract:
To make an engaging video, people sequence interesting moments and add visuals such as B-rolls or text. While video editing requires time and effort, AI has recently shown strong potential to make editing easier through suggestions and automation. A key strength of generative models is their ability to quickly generate multiple variations, but when provided with many alternatives, creators struggle to compare them to find the best fit. We propose VideoDiff, an AI video editing tool designed for editing with alternatives. With VideoDiff, creators can generate and review multiple AI recommendations for each editing process: creating a rough cut, inserting B-rolls, and adding text effects. VideoDiff simplifies comparisons by aligning videos and highlighting differences through timelines, transcripts, and video previews. Creators have the flexibility to regenerate and refine AI suggestions as they compare alternatives. Our study participants (N=12) could easily compare and customize alternatives, creating more satisfying results.
Authors:Tica Lin, Ruxun Xiang, Gardenia Liu, Divyanshu Tiwari, Meng-Chia Chiang, Chenjiayi Ye, Hanspeter Pfister, Chen Zhu-Tian
Title: SportsBuddy: Designing and Evaluating an AI-Powered Sports Video Storytelling Tool Through Real-World Deployment
Abstract:
Video storytelling is essential for sports performance analysis and fan engagement, enabling sports professionals and fans to effectively communicate and interpret the spatial and temporal dynamics of gameplay. Traditional methods rely on manual annotation and verbal explanations, placing significant demands on creators for video editing skills and on viewers for cognitive focus. However, these approaches are time-consuming and often struggle to accommodate individual needs. SportsBuddy addresses this gap with an intuitive, interactive video authoring tool. It combines player tracking, embedded interaction design, and timeline visualizations to seamlessly integrate narratives and visual cues within game contexts. This empowers users to effortlessly create context-driven video stories. Since its launch, over 150 sports users, including coaches, athletes, content creators, parents and fans, have utilized SportsBuddy to produce compelling game highlights for diverse use cases. User feedback highlights its accessibility and ease of use, making video storytelling and insight communication more attainable for diverse audiences. Case studies with collegiate teams and sports creators further demonstrate SportsBuddy's impact on enhancing coaching communication, game analysis, and fan engagement.
Authors:Zhao Wang, Hao Wen, Lingting Zhu, Chenming Shang, Yujiu Yang, Qi Dou
Title: AnyCharV: Bootstrap Controllable Character Video Generation with Fine-to-Coarse Guidance
Abstract:
Character video generation is a significant real-world application focused on producing high-quality videos featuring specific characters. Recent advancements have introduced various control signals to animate static characters, successfully enhancing control over the generation process. However, these methods often lack flexibility, limiting their applicability and making it challenging for users to synthesize a source character into a desired target scene. To address this issue, we propose a novel framework, AnyCharV, that flexibly generates character videos using arbitrary source characters and target scenes, guided by pose information. Our approach involves a two-stage training process. In the first stage, we develop a base model capable of integrating the source character with the target scene using pose guidance. The second stage further bootstraps controllable generation through a self-boosting mechanism, where we use the generated video in the first stage and replace the fine mask with the coarse one, enabling training outcomes with better preservation of character details. Extensive experimental results demonstrate the superiority of our method compared with previous state-of-the-art methods.
Authors:Kiwhan Song, Boyuan Chen, Max Simchowitz, Yilun Du, Russ Tedrake, Vincent Sitzmann
Title: History-Guided Video Diffusion
Abstract:
Classifier-free guidance (CFG) is a key technique for improving conditional generation in diffusion models, enabling more accurate control while enhancing sample quality. It is natural to extend this technique to video diffusion, which generates video conditioned on a variable number of context frames, collectively referred to as history. However, we find two key challenges to guiding with variable-length history: architectures that only support fixed-size conditioning, and the empirical observation that CFG-style history dropout performs poorly. To address this, we propose the Diffusion Forcing Transformer (DFoT), a video diffusion architecture and theoretically grounded training objective that jointly enable conditioning on a flexible number of history frames. We then introduce History Guidance, a family of guidance methods uniquely enabled by DFoT. We show that its simplest form, vanilla history guidance, already significantly improves video generation quality and temporal consistency. A more advanced method, history guidance across time and frequency further enhances motion dynamics, enables compositional generalization to out-of-distribution history, and can stably roll out extremely long videos. Project website: https://boyuan.space/history-guidance
Authors:Alec Helbling, Tuna Han Salih Meral, Ben Hoover, Pinar Yanardag, Duen Horng Chau
Title: ConceptAttention: Diffusion Transformers Learn Highly Interpretable Features
Abstract:
Do the rich representations of multi-modal diffusion transformers (DiTs) exhibit unique properties that enhance their interpretability? We introduce ConceptAttention, a novel method that leverages the expressive power of DiT attention layers to generate high-quality saliency maps that precisely locate textual concepts within images. Without requiring additional training, ConceptAttention repurposes the parameters of DiT attention layers to produce highly contextualized concept embeddings, contributing the major discovery that performing linear projections in the output space of DiT attention layers yields significantly sharper saliency maps compared to commonly used cross-attention maps. ConceptAttention even achieves state-of-the-art performance on zero-shot image segmentation benchmarks, outperforming 15 other zero-shot interpretability methods on the ImageNet-Segmentation dataset. ConceptAttention works for popular image models and even seamlessly generalizes to video generation. Our work contributes the first evidence that the representations of multi-modal DiTs are highly transferable to vision tasks like segmentation.
Authors:Jinbo Xing, Long Mai, Cusuh Ham, Jiahui Huang, Aniruddha Mahapatra, Chi-Wing Fu, Tien-Tsin Wong, Feng Liu
Title: MotionCanvas: Cinematic Shot Design with Controllable Image-to-Video Generation
Abstract:
This paper presents a method that allows users to design cinematic video shots in the context of image-to-video generation. Shot design, a critical aspect of filmmaking, involves meticulously planning both camera movements and object motions in a scene. However, enabling intuitive shot design in modern image-to-video generation systems presents two main challenges: first, effectively capturing user intentions on the motion design, where both camera movements and scene-space object motions must be specified jointly; and second, representing motion information that can be effectively utilized by a video diffusion model to synthesize the image animations. To address these challenges, we introduce MotionCanvas, a method that integrates user-driven controls into image-to-video (I2V) generation models, allowing users to control both object and camera motions in a scene-aware manner. By connecting insights from classical computer graphics and contemporary video generation techniques, we demonstrate the ability to achieve 3D-aware motion control in I2V synthesis without requiring costly 3D-related training data. MotionCanvas enables users to intuitively depict scene-space motion intentions, and translates them into spatiotemporal motion-conditioning signals for video diffusion models. We demonstrate the effectiveness of our method on a wide range of real-world image content and shot-design scenarios, highlighting its potential to enhance the creative workflows in digital content creation and adapt to various image and video editing applications.
Authors:Hila Chefer, Uriel Singer, Amit Zohar, Yuval Kirstain, Adam Polyak, Yaniv Taigman, Lior Wolf, Shelly Sheynin
Title: VideoJAM: Joint Appearance-Motion Representations for Enhanced Motion Generation in Video Models
Abstract:
Despite tremendous recent progress, generative video models still struggle to capture real-world motion, dynamics, and physics. We show that this limitation arises from the conventional pixel reconstruction objective, which biases models toward appearance fidelity at the expense of motion coherence. To address this, we introduce VideoJAM, a novel framework that instills an effective motion prior to video generators, by encouraging the model to learn a joint appearance-motion representation. VideoJAM is composed of two complementary units. During training, we extend the objective to predict both the generated pixels and their corresponding motion from a single learned representation. During inference, we introduce Inner-Guidance, a mechanism that steers the generation toward coherent motion by leveraging the model's own evolving motion prediction as a dynamic guidance signal. Notably, our framework can be applied to any video model with minimal adaptations, requiring no modifications to the training data or scaling of the model. VideoJAM achieves state-of-the-art performance in motion coherence, surpassing highly competitive proprietary models while also enhancing the perceived visual quality of the generations. These findings emphasize that appearance and motion can be complementary and, when effectively integrated, enhance both the visual quality and the coherence of video generation. Project website: https://hila-chefer.github.io/videojam-paper.github.io/
Authors:Zheng Chong, Wenqing Zhang, Shiyue Zhang, Jun Zheng, Xiao Dong, Haoxiang Li, Yiling Wu, Dongmei Jiang, Xiaodan Liang
Title: CatV2TON: Taming Diffusion Transformers for Vision-Based Virtual Try-On with Temporal Concatenation
Abstract:
Virtual try-on (VTON) technology has gained attention due to its potential to transform online retail by enabling realistic clothing visualization of images and videos. However, most existing methods struggle to achieve high-quality results across image and video try-on tasks, especially in long video scenarios. In this work, we introduce CatV2TON, a simple and effective vision-based virtual try-on (V2TON) method that supports both image and video try-on tasks with a single diffusion transformer model. By temporally concatenating garment and person inputs and training on a mix of image and video datasets, CatV2TON achieves robust try-on performance across static and dynamic settings. For efficient long-video generation, we propose an overlapping clip-based inference strategy that uses sequential frame guidance and Adaptive Clip Normalization (AdaCN) to maintain temporal consistency with reduced resource demands. We also present ViViD-S, a refined video try-on dataset, achieved by filtering back-facing frames and applying 3D mask smoothing for enhanced temporal consistency. Comprehensive experiments demonstrate that CatV2TON outperforms existing methods in both image and video try-on tasks, offering a versatile and reliable solution for realistic virtual try-ons across diverse scenarios.
Authors:Guy Yariv, Yuval Kirstain, Amit Zohar, Shelly Sheynin, Yaniv Taigman, Yossi Adi, Sagie Benaim, Adam Polyak
Title: Through-The-Mask: Mask-based Motion Trajectories for Image-to-Video Generation
Abstract:
We consider the task of Image-to-Video (I2V) generation, which involves transforming static images into realistic video sequences based on a textual description. While recent advancements produce photorealistic outputs, they frequently struggle to create videos with accurate and consistent object motion, especially in multi-object scenarios. To address these limitations, we propose a two-stage compositional framework that decomposes I2V generation into: (i) An explicit intermediate representation generation stage, followed by (ii) A video generation stage that is conditioned on this representation. Our key innovation is the introduction of a mask-based motion trajectory as an intermediate representation, that captures both semantic object information and motion, enabling an expressive but compact representation of motion and semantics. To incorporate the learned representation in the second stage, we utilize object-level attention objectives. Specifically, we consider a spatial, per-object, masked-cross attention objective, integrating object-specific prompts into corresponding latent space regions and a masked spatio-temporal self-attention objective, ensuring frame-to-frame consistency for each object. We evaluate our method on challenging benchmarks with multi-object and high-motion scenarios and empirically demonstrate that the proposed method achieves state-of-the-art results in temporal coherence, motion realism, and text-prompt faithfulness. Additionally, we introduce \benchmark, a new challenging benchmark for single-object and multi-object I2V generation, and demonstrate our method's superiority on this benchmark. Project page is available at https://guyyariv.github.io/TTM/.
Authors:Chun-Hao Paul Huang, Niloy Mitra, Hyeonho Jeong, Jae Shin Yoon, Duygu Ceylan
Title: JOG3R: Towards 3D-Consistent Video Generators
Abstract:
Emergent capabilities of image generators have led to many impactful zero- or few-shot applications. Inspired by this success, we investigate whether video generators similarly exhibit 3D-awareness. Using structure-from-motion as a 3D-aware task, we test if intermediate features of a video generator - OpenSora in our case - can support camera pose estimation. Surprisingly, at first, we only find a weak correlation between the two tasks. Deeper investigation reveals that although the video generator produces plausible video frames, the frames themselves are not truly 3D-consistent. Instead, we propose to jointly train for the two tasks, using photometric generation and 3D aware errors. Specifically, we find that SoTA video generation and camera pose estimation (i.e.,DUSt3R [79]) networks share common structures, and propose an architecture that unifies the two. The proposed unified model, named \nameMethod, produces camera pose estimates with competitive quality while producing 3D-consistent videos. In summary, we propose the first unified video generator that is 3D-consistent, generates realistic video frames, and can potentially be repurposed for other 3D-aware tasks.
Authors:Xingyao Li, Fengzhuo Zhang, Jiachun Pan, Yunlong Hou, Vincent Y. F. Tan, Zhuoran Yang
Title: Enhancing Long Video Generation Consistency without Tuning
Abstract:
Despite the considerable progress achieved in the long video generation problem, there is still significant room to improve the consistency of the generated videos, particularly in terms of their smoothness and transitions between scenes. We address these issues to enhance the consistency and coherence of videos generated with either single or multiple prompts. We propose the Time-frequency based temporal Attention Reweighting Algorithm (TiARA), which judiciously edits the attention score matrix based on the Discrete Short-Time Fourier Transform. This method is supported by a frequency-based analysis, ensuring that the edited attention score matrix achieves improved consistency across frames. It represents the first-of-its-kind for frequency-based methods in video diffusion models. For videos generated by multiple prompts, we further uncover key factors such as the alignment of the prompts affecting prompt interpolation quality. Inspired by our analyses, we propose PromptBlend, an advanced prompt interpolation pipeline that systematically aligns the prompts. Extensive experimental results validate the efficacy of our proposed method, demonstrating consistent and substantial improvements over multiple baselines.
Authors:Xi Wang, Robin Courant, Marc Christie, Vicky Kalogeiton
Title: AKiRa: Augmentation Kit on Rays for optical video generation
Abstract:
Recent advances in text-conditioned video diffusion have greatly improved video quality. However, these methods offer limited or sometimes no control to users on camera aspects, including dynamic camera motion, zoom, distorted lens and focus shifts. These motion and optical aspects are crucial for adding controllability and cinematic elements to generation frameworks, ultimately resulting in visual content that draws focus, enhances mood, and guides emotions according to filmmakers' controls. In this paper, we aim to close the gap between controllable video generation and camera optics. To achieve this, we propose AKiRa (Augmentation Kit on Rays), a novel augmentation framework that builds and trains a camera adapter with a complex camera model over an existing video generation backbone. It enables fine-tuned control over camera motion as well as complex optical parameters (focal length, distortion, aperture) to achieve cinematic effects such as zoom, fisheye effect, and bokeh. Extensive experiments demonstrate AKiRa's effectiveness in combining and composing camera optics while outperforming all state-of-the-art methods. This work sets a new landmark in controlled and optically enhanced video generation, paving the way for future optical video generation methods.
Authors:Lianrui Mu, Xingze Zhou, Wenjie Zheng, Jiangnan Ye, Haoji Hu
Title: Identity-Preserving Pose-Guided Character Animation via Facial Landmarks Transformation
Abstract:
Creating realistic pose-guided image-to-video character animations while preserving facial identity remains challenging, especially in complex and dynamic scenarios such as dancing, where precise identity consistency is crucial. Existing methods frequently encounter difficulties maintaining facial coherence due to misalignments between facial landmarks extracted from driving videos that provide head pose and expression cues and the facial geometry of the reference images. To address this limitation, we introduce the Facial Landmarks Transformation (FLT) method, which leverages a 3D Morphable Model to address this limitation. FLT converts 2D landmarks into a 3D face model, adjusts the 3D face model to align with the reference identity, and then transforms them back into 2D landmarks to guide the image-to-video generation process. This approach ensures accurate alignment with the reference facial geometry, enhancing the consistency between generated videos and reference images. Experimental results demonstrate that FLT effectively preserves facial identity, significantly improving pose-guided character animation models.
Authors:Chongkai Gao, Haozhuo Zhang, Zhixuan Xu, Zhehao Cai, Lin Shao
Title: FLIP: Flow-Centric Generative Planning as General-Purpose Manipulation World Model
Abstract:
We aim to develop a model-based planning framework for world models that can be scaled with increasing model and data budgets for general-purpose manipulation tasks with only language and vision inputs. To this end, we present FLow-centric generative Planning (FLIP), a model-based planning algorithm on visual space that features three key modules: 1. a multi-modal flow generation model as the general-purpose action proposal module; 2. a flow-conditioned video generation model as the dynamics module; and 3. a vision-language representation learning model as the value module. Given an initial image and language instruction as the goal, FLIP can progressively search for long-horizon flow and video plans that maximize the discounted return to accomplish the task. FLIP is able to synthesize long-horizon plans across objects, robots, and tasks with image flows as the general action representation, and the dense flow information also provides rich guidance for long-horizon video generation. In addition, the synthesized flow and video plans can guide the training of low-level control policies for robot execution. Experiments on diverse benchmarks demonstrate that FLIP can improve both the success rates and quality of long-horizon video plan synthesis and has the interactive world model property, opening up wider applications for future works.Video demos are on our website: https://nus-lins-lab.github.io/flipweb/.
Authors:Hyeonho Jeong, Chun-Hao Paul Huang, Jong Chul Ye, Niloy Mitra, Duygu Ceylan
Title: Track4Gen: Teaching Video Diffusion Models to Track Points Improves Video Generation
Abstract:
While recent foundational video generators produce visually rich output, they still struggle with appearance drift, where objects gradually degrade or change inconsistently across frames, breaking visual coherence. We hypothesize that this is because there is no explicit supervision in terms of spatial tracking at the feature level. We propose Track4Gen, a spatially aware video generator that combines video diffusion loss with point tracking across frames, providing enhanced spatial supervision on the diffusion features. Track4Gen merges the video generation and point tracking tasks into a single network by making minimal changes to existing video generation architectures. Using Stable Video Diffusion as a backbone, Track4Gen demonstrates that it is possible to unify video generation and point tracking, which are typically handled as separate tasks. Our extensive evaluations show that Track4Gen effectively reduces appearance drift, resulting in temporally stable and visually coherent video generation. Project page: hyeonho99.github.io/track4gen
Authors:Gaurav Shrivastava, Ser-Nam Lim, Abhinav Shrivastava
Title: Video Decomposition Prior: A Methodology to Decompose Videos into Layers
Abstract:
In the evolving landscape of video enhancement and editing methodologies, a majority of deep learning techniques often rely on extensive datasets of observed input and ground truth sequence pairs for optimal performance. Such reliance often falters when acquiring data becomes challenging, especially in tasks like video dehazing and relighting, where replicating identical motions and camera angles in both corrupted and ground truth sequences is complicated. Moreover, these conventional methodologies perform best when the test distribution closely mirrors the training distribution. Recognizing these challenges, this paper introduces a novel video decomposition prior `VDP' framework which derives inspiration from professional video editing practices. Our methodology does not mandate task-specific external data corpus collection, instead pivots to utilizing the motion and appearance of the input video. VDP framework decomposes a video sequence into a set of multiple RGB layers and associated opacity levels. These set of layers are then manipulated individually to obtain the desired results. We addresses tasks such as video object segmentation, dehazing, and relighting. Moreover, we introduce a novel logarithmic video decomposition formulation for video relighting tasks, setting a new benchmark over the existing methodologies. We observe the property of relighting emerge as we optimize for our novel relighting decomposition formulation. We evaluate our approach on standard video datasets like DAVIS, REVIDE, & SDSD and show qualitative results on a diverse array of internet videos. Project Page - https://www.cs.umd.edu/~gauravsh/video_decomposition/index.html for video results.
Authors:Ruibo Ming, Jingwei Wu, Zhewei Huang, Zhuoxuan Ju, Jianming HU, Lihui Peng, Shuchang Zhou
Title: ARCON: Advancing Auto-Regressive Continuation for Driving Videos
Abstract:
Recent advancements in auto-regressive large language models (LLMs) have led to their application in video generation. This paper explores the use of Large Vision Models (LVMs) for video continuation, a task essential for building world models and predicting future frames. We introduce ARCON, a scheme that alternates between generating semantic and RGB tokens, allowing the LVM to explicitly learn high-level structural video information. We find high consistency in the RGB images and semantic maps generated without special design. Moreover, we employ an optical flow-based texture stitching method to enhance visual quality. Experiments in autonomous driving scenarios show that our model can consistently generate long videos.
Authors:Karran Pandey, Matheus Gadelha, Yannick Hold-Geoffroy, Karan Singh, Niloy J. Mitra, Paul Guerrero
Title: Motion Modes: What Could Happen Next?
Abstract:
Predicting diverse object motions from a single static image remains challenging, as current video generation models often entangle object movement with camera motion and other scene changes. While recent methods can predict specific motions from motion arrow input, they rely on synthetic data and predefined motions, limiting their application to complex scenes. We introduce Motion Modes, a training-free approach that explores a pre-trained image-to-video generator's latent distribution to discover various distinct and plausible motions focused on selected objects in static images. We achieve this by employing a flow generator guided by energy functions designed to disentangle object and camera motion. Additionally, we use an energy inspired by particle guidance to diversify the generated motions, without requiring explicit training data. Experimental results demonstrate that Motion Modes generates realistic and varied object animations, surpassing previous methods and even human predictions regarding plausibility and diversity. Project Webpage: https://motionmodes.github.io/
Authors:Shuchen Weng, Haojie Zheng, Peixuan Zhang, Yuchen Hong, Han Jiang, Si Li, Boxin Shi
Title: VIRES: Video Instance Repainting via Sketch and Text Guided Generation
Abstract:
We introduce VIRES, a video instance repainting method with sketch and text guidance, enabling video instance repainting, replacement, generation, and removal. Existing approaches struggle with temporal consistency and accurate alignment with the provided sketch sequence. VIRES leverages the generative priors of text-to-video models to maintain temporal consistency and produce visually pleasing results. We propose the Sequential ControlNet with the standardized self-scaling, which effectively extracts structure layouts and adaptively captures high-contrast sketch details. We further augment the diffusion transformer backbone with the sketch attention to interpret and inject fine-grained sketch semantics. A sketch-aware encoder ensures that repainted results are aligned with the provided sketch sequence. Additionally, we contribute the VireSet, a dataset with detailed annotations tailored for training and evaluating video instance editing methods. Experimental results demonstrate the effectiveness of VIRES, which outperforms state-of-the-art methods in visual quality, temporal consistency, condition alignment, and human ratings. Project page: https://hjzheng.net/projects/VIRES/
Authors:Guojun Lei, Chi Wang, Hong Li, Rong Zhang, Yikai Wang, Weiwei Xu
Title: AnimateAnything: Consistent and Controllable Animation for Video Generation
Abstract:
We present a unified controllable video generation approach AnimateAnything that facilitates precise and consistent video manipulation across various conditions, including camera trajectories, text prompts, and user motion annotations. Specifically, we carefully design a multi-scale control feature fusion network to construct a common motion representation for different conditions. It explicitly converts all control information into frame-by-frame optical flows. Then we incorporate the optical flows as motion priors to guide final video generation. In addition, to reduce the flickering issues caused by large-scale motion, we propose a frequency-based stabilization module. It can enhance temporal coherence by ensuring the video's frequency domain consistency. Experiments demonstrate that our method outperforms the state-of-the-art approaches. For more details and videos, please refer to the webpage: https://yu-shaonian.github.io/Animate_Anything/.
Authors:Panwen Hu, Nan Xiao, Feifei Li, Yongquan Chen, Rui Huang
Title: A Reinforcement Learning-Based Automatic Video Editing Method Using Pre-trained Vision-Language Model
Abstract:
In this era of videos, automatic video editing techniques attract more and more attention from industry and academia since they can reduce workloads and lower the requirements for human editors. Existing automatic editing systems are mainly scene- or event-specific, e.g., soccer game broadcasting, yet the automatic systems for general editing, e.g., movie or vlog editing which covers various scenes and events, were rarely studied before, and converting the event-driven editing method to a general scene is nontrivial. In this paper, we propose a two-stage scheme for general editing. Firstly, unlike previous works that extract scene-specific features, we leverage the pre-trained Vision-Language Model (VLM) to extract the editing-relevant representations as editing context. Moreover, to close the gap between the professional-looking videos and the automatic productions generated with simple guidelines, we propose a Reinforcement Learning (RL)-based editing framework to formulate the editing problem and train the virtual editor to make better sequential editing decisions. Finally, we evaluate the proposed method on a more general editing task with a real movie dataset. Experimental results demonstrate the effectiveness and benefits of the proposed context representation and the learning ability of our RL-based editing framework.
Authors:Hanyu Wang, Saksham Suri, Yixuan Ren, Hao Chen, Abhinav Shrivastava
Title: LARP: Tokenizing Videos with a Learned Autoregressive Generative Prior
Abstract:
We present LARP, a novel video tokenizer designed to overcome limitations in current video tokenization methods for autoregressive (AR) generative models. Unlike traditional patchwise tokenizers that directly encode local visual patches into discrete tokens, LARP introduces a holistic tokenization scheme that gathers information from the visual content using a set of learned holistic queries. This design allows LARP to capture more global and semantic representations, rather than being limited to local patch-level information. Furthermore, it offers flexibility by supporting an arbitrary number of discrete tokens, enabling adaptive and efficient tokenization based on the specific requirements of the task. To align the discrete token space with downstream AR generation tasks, LARP integrates a lightweight AR transformer as a training-time prior model that predicts the next token on its discrete latent space. By incorporating the prior model during training, LARP learns a latent space that is not only optimized for video reconstruction but is also structured in a way that is more conducive to autoregressive generation. Moreover, this process defines a sequential order for the discrete tokens, progressively pushing them toward an optimal configuration during training, ensuring smoother and more accurate AR generation at inference time. Comprehensive experiments demonstrate LARP's strong performance, achieving state-of-the-art FVD on the UCF101 class-conditional video generation benchmark. LARP enhances the compatibility of AR models with videos and opens up the potential to build unified high-fidelity multimodal large language models (MLLMs).
Authors:Soon Yau Cheong, Duygu Ceylan, Armin Mustafa, Andrew Gilbert, Chun-Hao Paul Huang
Title: Boosting Camera Motion Control for Video Diffusion Transformers
Abstract:
Recent advancements in diffusion models have significantly enhanced the quality of video generation. However, fine-grained control over camera pose remains a challenge. While U-Net-based models have shown promising results for camera control, transformer-based diffusion models (DiT)-the preferred architecture for large-scale video generation - suffer from severe degradation in camera motion accuracy. In this paper, we investigate the underlying causes of this issue and propose solutions tailored to DiT architectures. Our study reveals that camera control performance depends heavily on the choice of conditioning methods rather than camera pose representations that is commonly believed. To address the persistent motion degradation in DiT, we introduce Camera Motion Guidance (CMG), based on classifier-free guidance, which boosts camera control by over 400%. Additionally, we present a sparse camera control pipeline, significantly simplifying the process of specifying camera poses for long videos. Our method universally applies to both U-Net and DiT models, offering improved camera control for video generation tasks.
Authors:Abhijay Ghildyal, Yuanhan Chen, Saman Zadtootaghaj, Nabajeet Barman, Alan C. Bovik
Title: Quality Prediction of AI Generated Images and Videos: Emerging Trends and Opportunities
Abstract:
The advent of AI has influenced many aspects of human life, from self-driving cars and intelligent chatbots to text-based image and video generation models capable of creating realistic images and videos based on user prompts (text-to-image, image-to-image, and image-to-video). AI-based methods for image and video super resolution, video frame interpolation, denoising, and compression have already gathered significant attention and interest in the industry and some solutions are already being implemented in real-world products and services. However, to achieve widespread integration and acceptance, AI-generated and enhanced content must be visually accurate, adhere to intended use, and maintain high visual quality to avoid degrading the end user's quality of experience (QoE). One way to monitor and control the visual "quality" of AI-generated and -enhanced content is by deploying Image Quality Assessment (IQA) and Video Quality Assessment (VQA) models. However, most existing IQA and VQA models measure visual fidelity in terms of "reconstruction" quality against a pristine reference content and were not designed to assess the quality of "generative" artifacts. To address this, newer metrics and models have recently been proposed, but their performance evaluation and overall efficacy have been limited by datasets that were too small or otherwise lack representative content and/or distortion capacity; and by performance measures that can accurately report the success of an IQA/VQA model for "GenAI". This paper examines the current shortcomings and possibilities presented by AI-generated and enhanced image and video content, with a particular focus on end-user perceived quality. Finally, we discuss open questions and make recommendations for future work on the "GenAI" quality assessment problems, towards further progressing on this interesting and relevant field of research.
Authors:Mingzhen Sun, Weining Wang, Xinxin Zhu, Jing Liu
Title: COMUNI: Decomposing Common and Unique Video Signals for Diffusion-based Video Generation
Abstract:
Since videos record objects moving coherently, adjacent video frames have commonness (similar object appearances) and uniqueness (slightly changed postures). To prevent redundant modeling of common video signals, we propose a novel diffusion-based framework, named COMUNI, which decomposes the COMmon and UNIque video signals to enable efficient video generation. Our approach separates the decomposition of video signals from the task of video generation, thus reducing the computation complexity of generative models. In particular, we introduce CU-VAE to decompose video signals and encode them into latent features. To train CU-VAE in a self-supervised manner, we employ a cascading merge module to reconstitute video signals and a time-agnostic video decoder to reconstruct video frames. Then we propose CU-LDM to model latent features for video generation, which adopts two specific diffusion streams to simultaneously model the common and unique latent features. We further utilize additional joint modules for cross modeling of the common and unique latent features, and a novel position embedding method to ensure the content consistency and motion coherence of generated videos. The position embedding method incorporates spatial and temporal absolute position information into the joint modules. Extensive experiments demonstrate the necessity of decomposing common and unique video signals for video generation and the effectiveness and efficiency of our proposed method.
Authors:Xin Cheng, Xihua Wang, Yihan Wu, Yuyue Wang, Ruihua Song
Title: LoVA: Long-form Video-to-Audio Generation
Abstract:
Video-to-audio (V2A) generation is important for video editing and post-processing, enabling the creation of semantics-aligned audio for silent video. However, most existing methods focus on generating short-form audio for short video segment (less than 10 seconds), while giving little attention to the scenario of long-form video inputs. For current UNet-based diffusion V2A models, an inevitable problem when handling long-form audio generation is the inconsistencies within the final concatenated audio. In this paper, we first highlight the importance of long-form V2A problem. Besides, we propose LoVA, a novel model for Long-form Video-to-Audio generation. Based on the Diffusion Transformer (DiT) architecture, LoVA proves to be more effective at generating long-form audio compared to existing autoregressive models and UNet-based diffusion models. Extensive objective and subjective experiments demonstrate that LoVA achieves comparable performance on 10-second V2A benchmark and outperforms all other baselines on a benchmark with long-form video input.
Authors:Xinli Yue, Jianhui Sun, Han Kong, Liangchao Yao, Tianyi Wang, Lei Li, Fengyun Rao, Jing Lv, Fan Xia, Yuetang Deng, Qian Wang, Lingchen Zhao
Title: Advancing Video Quality Assessment for AIGC
Abstract:
In recent years, AI generative models have made remarkable progress across various domains, including text generation, image generation, and video generation. However, assessing the quality of text-to-video generation is still in its infancy, and existing evaluation frameworks fall short when compared to those for natural videos. Current video quality assessment (VQA) methods primarily focus on evaluating the overall quality of natural videos and fail to adequately account for the substantial quality discrepancies between frames in generated videos. To address this issue, we propose a novel loss function that combines mean absolute error with cross-entropy loss to mitigate inter-frame quality inconsistencies. Additionally, we introduce the innovative S2CNet technique to retain critical content, while leveraging adversarial training to enhance the model's generalization capabilities. Experimental results demonstrate that our method outperforms existing VQA techniques on the AIGC Video dataset, surpassing the previous state-of-the-art by 3.1% in terms of PLCC.
Authors:Yongjie Fu, Anmol Jain, Xuan Di, Xu Chen, Zhaobin Mo
Title: DriveGenVLM: Real-world Video Generation for Vision Language Model based Autonomous Driving
Abstract:
The advancement of autonomous driving technologies necessitates increasingly sophisticated methods for understanding and predicting real-world scenarios. Vision language models (VLMs) are emerging as revolutionary tools with significant potential to influence autonomous driving. In this paper, we propose the DriveGenVLM framework to generate driving videos and use VLMs to understand them. To achieve this, we employ a video generation framework grounded in denoising diffusion probabilistic models (DDPM) aimed at predicting real-world video sequences. We then explore the adequacy of our generated videos for use in VLMs by employing a pre-trained model known as Efficient In-context Learning on Egocentric Videos (EILEV). The diffusion model is trained with the Waymo open dataset and evaluated using the Fréchet Video Distance (FVD) score to ensure the quality and realism of the generated videos. Corresponding narrations are provided by EILEV for these generated videos, which may be beneficial in the autonomous driving domain. These narrations can enhance traffic scene understanding, aid in navigation, and improve planning capabilities. The integration of video generation with VLMs in the DriveGenVLM framework represents a significant step forward in leveraging advanced AI models to address complex challenges in autonomous driving.
Authors:Dennis Fedorishin, Lie Lu, Srirangaraj Setlur, Venu Govindaraju
Title: Audio Match Cutting: Finding and Creating Matching Audio Transitions in Movies and Videos
Abstract:
A "match cut" is a common video editing technique where a pair of shots that have a similar composition transition fluidly from one to another. Although match cuts are often visual, certain match cuts involve the fluid transition of audio, where sounds from different sources merge into one indistinguishable transition between two shots. In this paper, we explore the ability to automatically find and create "audio match cuts" within videos and movies. We create a self-supervised audio representation for audio match cutting and develop a coarse-to-fine audio match pipeline that recommends matching shots and creates the blended audio. We further annotate a dataset for the proposed audio match cut task and compare the ability of multiple audio representations to find audio match cut candidates. Finally, we evaluate multiple methods to blend two matching audio candidates with the goal of creating a smooth transition. Project page and examples are available at: https://denfed.github.io/audiomatchcut/
Authors:Hila Chefer, Shiran Zada, Roni Paiss, Ariel Ephrat, Omer Tov, Michael Rubinstein, Lior Wolf, Tali Dekel, Tomer Michaeli, Inbar Mosseri
Title: Still-Moving: Customized Video Generation without Customized Video Data
Abstract:
Customizing text-to-image (T2I) models has seen tremendous progress recently, particularly in areas such as personalization, stylization, and conditional generation. However, expanding this progress to video generation is still in its infancy, primarily due to the lack of customized video data. In this work, we introduce Still-Moving, a novel generic framework for customizing a text-to-video (T2V) model, without requiring any customized video data. The framework applies to the prominent T2V design where the video model is built over a text-to-image (T2I) model (e.g., via inflation). We assume access to a customized version of the T2I model, trained only on still image data (e.g., using DreamBooth or StyleDrop). Naively plugging in the weights of the customized T2I model into the T2V model often leads to significant artifacts or insufficient adherence to the customization data. To overcome this issue, we train lightweight $\textit{Spatial Adapters}$ that adjust the features produced by the injected T2I layers. Importantly, our adapters are trained on $\textit{"frozen videos"}$ (i.e., repeated images), constructed from image samples generated by the customized T2I model. This training is facilitated by a novel $\textit{Motion Adapter}$ module, which allows us to train on such static videos while preserving the motion prior of the video model. At test time, we remove the Motion Adapter modules and leave in only the trained Spatial Adapters. This restores the motion prior of the T2V model while adhering to the spatial prior of the customized T2I model. We demonstrate the effectiveness of our approach on diverse tasks including personalized, stylized, and conditional generation. In all evaluated scenarios, our method seamlessly integrates the spatial prior of the customized T2I model with a motion prior supplied by the T2V model.
Authors:Wentao Lei, Jinting Wang, Fengji Ma, Guanjie Huang, Li Liu
Title: A Comprehensive Survey on Human Video Generation: Challenges, Methods, and Insights
Abstract:
Human video generation is a dynamic and rapidly evolving task that aims to synthesize 2D human body video sequences with generative models given control conditions such as text, audio, and pose. With the potential for wide-ranging applications in film, gaming, and virtual communication, the ability to generate natural and realistic human video is critical. Recent advancements in generative models have laid a solid foundation for the growing interest in this area. Despite the significant progress, the task of human video generation remains challenging due to the consistency of characters, the complexity of human motion, and difficulties in their relationship with the environment. This survey provides a comprehensive review of the current state of human video generation, marking, to the best of our knowledge, the first extensive literature review in this domain. We start with an introduction to the fundamentals of human video generation and the evolution of generative models that have facilitated the field's growth. We then examine the main methods employed for three key sub-tasks within human video generation: text-driven, audio-driven, and pose-driven motion generation. These areas are explored concerning the conditions that guide the generation process. Furthermore, we offer a collection of the most commonly utilized datasets and the evaluation metrics that are crucial in assessing the quality and realism of generated videos. The survey concludes with a discussion of the current challenges in the field and suggests possible directions for future research. The goal of this survey is to offer the research community a clear and holistic view of the advancements in human video generation, highlighting the milestones achieved and the challenges that lie ahead.
Authors:Linzhan Mou, Jun-Kun Chen, Yu-Xiong Wang
Title: Instruct 4D-to-4D: Editing 4D Scenes as Pseudo-3D Scenes Using 2D Diffusion
Abstract:
This paper proposes Instruct 4D-to-4D that achieves 4D awareness and spatial-temporal consistency for 2D diffusion models to generate high-quality instruction-guided dynamic scene editing results. Traditional applications of 2D diffusion models in dynamic scene editing often result in inconsistency, primarily due to their inherent frame-by-frame editing methodology. Addressing the complexities of extending instruction-guided editing to 4D, our key insight is to treat a 4D scene as a pseudo-3D scene, decoupled into two sub-problems: achieving temporal consistency in video editing and applying these edits to the pseudo-3D scene. Following this, we first enhance the Instruct-Pix2Pix (IP2P) model with an anchor-aware attention module for batch processing and consistent editing. Additionally, we integrate optical flow-guided appearance propagation in a sliding window fashion for more precise frame-to-frame editing and incorporate depth-based projection to manage the extensive data of pseudo-3D scenes, followed by iterative editing to achieve convergence. We extensively evaluate our approach in various scenes and editing instructions, and demonstrate that it achieves spatially and temporally consistent editing results, with significantly enhanced detail and sharpness over the prior art. Notably, Instruct 4D-to-4D is general and applicable to both monocular and challenging multi-camera scenes. Code and more results are available at immortalco.github.io/Instruct-4D-to-4D.
Authors:Kai Wang, Shijian Deng, Jing Shi, Dimitrios Hatzinakos, Yapeng Tian
Title: AV-DiT: Efficient Audio-Visual Diffusion Transformer for Joint Audio and Video Generation
Abstract:
Recent Diffusion Transformers (DiTs) have shown impressive capabilities in generating high-quality single-modality content, including images, videos, and audio. However, it is still under-explored whether the transformer-based diffuser can efficiently denoise the Gaussian noises towards superb multimodal content creation. To bridge this gap, we introduce AV-DiT, a novel and efficient audio-visual diffusion transformer designed to generate high-quality, realistic videos with both visual and audio tracks. To minimize model complexity and computational costs, AV-DiT utilizes a shared DiT backbone pre-trained on image-only data, with only lightweight, newly inserted adapters being trainable. This shared backbone facilitates both audio and video generation. Specifically, the video branch incorporates a trainable temporal attention layer into a frozen pre-trained DiT block for temporal consistency. Additionally, a small number of trainable parameters adapt the image-based DiT block for audio generation. An extra shared DiT block, equipped with lightweight parameters, facilitates feature interaction between audio and visual modalities, ensuring alignment. Extensive experiments on the AIST++ and Landscape datasets demonstrate that AV-DiT achieves state-of-the-art performance in joint audio-visual generation with significantly fewer tunable parameters. Furthermore, our results highlight that a single shared image generative backbone with modality-specific adaptations is sufficient for constructing a joint audio-video generator. Our source code and pre-trained models will be released.
Authors:Pengyuan Zhou, Lin Wang, Zhi Liu, Yanbin Hao, Pan Hui, Sasu Tarkoma, Jussi Kangasharju
Title: A Survey on Generative AI and LLM for Video Generation, Understanding, and Streaming
Abstract:
This paper offers an insightful examination of how currently top-trending AI technologies, i.e., generative artificial intelligence (Generative AI) and large language models (LLMs), are reshaping the field of video technology, including video generation, understanding, and streaming. It highlights the innovative use of these technologies in producing highly realistic videos, a significant leap in bridging the gap between real-world dynamics and digital creation. The study also delves into the advanced capabilities of LLMs in video understanding, demonstrating their effectiveness in extracting meaningful information from visual content, thereby enhancing our interaction with videos. In the realm of video streaming, the paper discusses how LLMs contribute to more efficient and user-centric streaming experiences, adapting content delivery to individual viewer preferences. This comprehensive review navigates through the current achievements, ongoing challenges, and future possibilities of applying Generative AI and LLMs to video-related tasks, underscoring the immense potential these technologies hold for advancing the field of video technology related to multimedia, networking, and AI communities.
Authors:Songwei Ge, Aniruddha Mahapatra, Gaurav Parmar, Jun-Yan Zhu, Jia-Bin Huang
Title: On the Content Bias in Fréchet Video Distance
Abstract:
Fréchet Video Distance (FVD), a prominent metric for evaluating video generation models, is known to conflict with human perception occasionally. In this paper, we aim to explore the extent of FVD's bias toward per-frame quality over temporal realism and identify its sources. We first quantify the FVD's sensitivity to the temporal axis by decoupling the frame and motion quality and find that the FVD increases only slightly with large temporal corruption. We then analyze the generated videos and show that via careful sampling from a large set of generated videos that do not contain motions, one can drastically decrease FVD without improving the temporal quality. Both studies suggest FVD's bias towards the quality of individual frames. We further observe that the bias can be attributed to the features extracted from a supervised video classifier trained on the content-biased dataset. We show that FVD with features extracted from the recent large-scale self-supervised video models is less biased toward image quality. Finally, we revisit a few real-world examples to validate our hypothesis.
Authors:John J. Han, Ayberk Acar, Nicholas Kavoussi, Jie Ying Wu
Title: MeshBrush: Painting the Anatomical Mesh with Neural Stylization for Endoscopy
Abstract:
Style transfer is a promising approach to close the sim-to-real gap in medical endoscopy. Rendering synthetic endoscopic videos by traversing pre-operative scans (such as MRI or CT) can generate structurally accurate simulations as well as ground truth camera poses and depth maps. Although image-to-image (I2I) translation models such as CycleGAN can imitate realistic endoscopic images from these simulations, they are unsuitable for video-to-video synthesis due to the lack of temporal consistency, resulting in artifacts between frames. We propose MeshBrush, a neural mesh stylization method to synthesize temporally consistent videos with differentiable rendering. MeshBrush uses the underlying geometry of patient imaging data while leveraging existing I2I methods. With learned per-vertex textures, the stylized mesh guarantees consistency while producing high-fidelity outputs. We demonstrate that mesh stylization is a promising approach for creating realistic simulations for downstream tasks such as training networks and preoperative planning. Although our method is tested and designed for ureteroscopy, its components are transferable to general endoscopic and laparoscopic procedures. The code will be made public on GitHub.
Authors:Zizhao Hu, Shaochong Jia, Mohammad Rostami
Title: An Intermediate Fusion ViT Enables Efficient Text-Image Alignment in Diffusion Models
Abstract:
Diffusion models have been widely used for conditional data cross-modal generation tasks such as text-to-image and text-to-video. However, state-of-the-art models still fail to align the generated visual concepts with high-level semantics in a language such as object count, spatial relationship, etc. We approach this problem from a multimodal data fusion perspective and investigate how different fusion strategies can affect vision-language alignment. We discover that compared to the widely used early fusion of conditioning text in a pretrained image feature space, a specially designed intermediate fusion can: (i) boost text-to-image alignment with improved generation quality and (ii) improve training and inference efficiency by reducing low-rank text-to-image attention calculations. We perform experiments using a text-to-image generation task on the MS-COCO dataset. We compare our intermediate fusion mechanism with the classic early fusion mechanism on two common conditioning methods on a U-shaped ViT backbone. Our intermediate fusion model achieves a higher CLIP Score and lower FID, with 20% reduced FLOPs, and 50% increased training speed compared to a strong U-ViT baseline with an early fusion.
Authors:Chengxuan Li, Di Huang, Zeyu Lu, Yang Xiao, Qingqi Pei, Lei Bai
Title: A Survey on Long Video Generation: Challenges, Methods, and Prospects
Abstract:
Video generation is a rapidly advancing research area, garnering significant attention due to its broad range of applications. One critical aspect of this field is the generation of long-duration videos, which presents unique challenges and opportunities. This paper presents the first survey of recent advancements in long video generation and summarises them into two key paradigms: divide and conquer temporal autoregressive. We delve into the common models employed in each paradigm, including aspects of network design and conditioning techniques. Furthermore, we offer a comprehensive overview and classification of the datasets and evaluation metrics which are crucial for advancing long video generation research. Concluding with a summary of existing studies, we also discuss the emerging challenges and future directions in this dynamic field. We hope that this survey will serve as an essential reference for researchers and practitioners in the realm of long video generation.
Authors:Aram Davtyan, Sepehr Sameni, Björn Ommer, Paolo Favaro
Title: CAGE: Unsupervised Visual Composition and Animation for Controllable Video Generation
Abstract:
The field of video generation has expanded significantly in recent years, with controllable and compositional video generation garnering considerable interest. Most methods rely on leveraging annotations such as text, objects' bounding boxes, and motion cues, which require substantial human effort and thus limit their scalability. In contrast, we address the challenge of controllable and compositional video generation without any annotations by introducing a novel unsupervised approach. Our model is trained from scratch on a dataset of unannotated videos. At inference time, it can compose plausible novel scenes and animate objects by placing object parts at the desired locations in space and time. The core innovation of our method lies in the unified control format and the training process, where video generation is conditioned on a randomly selected subset of pre-trained self-supervised local features. This conditioning compels the model to learn how to inpaint the missing information in the video both spatially and temporally, thereby learning the inherent compositionality of a scene and the dynamics of moving objects. The abstraction level and the imposed invariance of the conditioning input to minor visual perturbations enable control over object motion by simply using the same features at all the desired future locations. We call our model CAGE, which stands for visual Composition and Animation for video GEneration. We conduct extensive experiments to validate the effectiveness of CAGE across various scenarios, demonstrating its capability to accurately follow the control and to generate high-quality videos that exhibit coherent scene composition and realistic animation.
Authors:Uriel Singer, Amit Zohar, Yuval Kirstain, Shelly Sheynin, Adam Polyak, Devi Parikh, Yaniv Taigman
Title: Video Editing via Factorized Diffusion Distillation
Abstract:
We introduce Emu Video Edit (EVE), a model that establishes a new state-of-the art in video editing without relying on any supervised video editing data. To develop EVE we separately train an image editing adapter and a video generation adapter, and attach both to the same text-to-image model. Then, to align the adapters towards video editing we introduce a new unsupervised distillation procedure, Factorized Diffusion Distillation. This procedure distills knowledge from one or more teachers simultaneously, without any supervised data. We utilize this procedure to teach EVE to edit videos by jointly distilling knowledge to (i) precisely edit each individual frame from the image editing adapter, and (ii) ensure temporal consistency among the edited frames using the video generation adapter. Finally, to demonstrate the potential of our approach in unlocking other capabilities, we align additional combinations of adapters
Authors:Enric Corona, Andrei Zanfir, Eduard Gabriel Bazavan, Nikos Kolotouros, Thiemo Alldieck, Cristian Sminchisescu
Title: VLOGGER: Multimodal Diffusion for Embodied Avatar Synthesis
Abstract:
We propose VLOGGER, a method for audio-driven human video generation from a single input image of a person, which builds on the success of recent generative diffusion models. Our method consists of 1) a stochastic human-to-3d-motion diffusion model, and 2) a novel diffusion-based architecture that augments text-to-image models with both spatial and temporal controls. This supports the generation of high quality video of variable length, easily controllable through high-level representations of human faces and bodies. In contrast to previous work, our method does not require training for each person, does not rely on face detection and cropping, generates the complete image (not just the face or the lips), and considers a broad spectrum of scenarios (e.g. visible torso or diverse subject identities) that are critical to correctly synthesize humans who communicate. We also curate MENTOR, a new and diverse dataset with 3d pose and expression annotations, one order of magnitude larger than previous ones (800,000 identities) and with dynamic gestures, on which we train and ablate our main technical contributions. VLOGGER outperforms state-of-the-art methods in three public benchmarks, considering image quality, identity preservation and temporal consistency while also generating upper-body gestures. We analyze the performance of VLOGGER with respect to multiple diversity metrics, showing that our architectural choices and the use of MENTOR benefit training a fair and unbiased model at scale. Finally we show applications in video editing and personalization.
Authors:Sherry Yang, Jacob Walker, Jack Parker-Holder, Yilun Du, Jake Bruce, Andre Barreto, Pieter Abbeel, Dale Schuurmans
Title: Video as the New Language for Real-World Decision Making
Abstract:
Both text and video data are abundant on the internet and support large-scale self-supervised learning through next token or frame prediction. However, they have not been equally leveraged: language models have had significant real-world impact, whereas video generation has remained largely limited to media entertainment. Yet video data captures important information about the physical world that is difficult to express in language. To address this gap, we discuss an under-appreciated opportunity to extend video generation to solve tasks in the real world. We observe how, akin to language, video can serve as a unified interface that can absorb internet knowledge and represent diverse tasks. Moreover, we demonstrate how, like language models, video generation can serve as planners, agents, compute engines, and environment simulators through techniques such as in-context learning, planning and reinforcement learning. We identify major impact opportunities in domains such as robotics, self-driving, and science, supported by recent work that demonstrates how such advanced capabilities in video generation are plausibly within reach. Lastly, we identify key challenges in video generation that mitigate progress. Addressing these challenges will enable video generation models to demonstrate unique value alongside language models in a wider array of AI applications.
Authors:Kaibin Tian, Yanhua Cheng, Yi Liu, Xinglin Hou, Quan Chen, Han Li
Title: Towards Efficient and Effective Text-to-Video Retrieval with Coarse-to-Fine Visual Representation Learning
Abstract:
In recent years, text-to-video retrieval methods based on CLIP have experienced rapid development. The primary direction of evolution is to exploit the much wider gamut of visual and textual cues to achieve alignment. Concretely, those methods with impressive performance often design a heavy fusion block for sentence (words)-video (frames) interaction, regardless of the prohibitive computation complexity. Nevertheless, these approaches are not optimal in terms of feature utilization and retrieval efficiency. To address this issue, we adopt multi-granularity visual feature learning, ensuring the model's comprehensiveness in capturing visual content features spanning from abstract to detailed levels during the training phase. To better leverage the multi-granularity features, we devise a two-stage retrieval architecture in the retrieval phase. This solution ingeniously balances the coarse and fine granularity of retrieval content. Moreover, it also strikes a harmonious equilibrium between retrieval effectiveness and efficiency. Specifically, in training phase, we design a parameter-free text-gated interaction block (TIB) for fine-grained video representation learning and embed an extra Pearson Constraint to optimize cross-modal representation learning. In retrieval phase, we use coarse-grained video representations for fast recall of top-k candidates, which are then reranked by fine-grained video representations. Extensive experiments on four benchmarks demonstrate the efficiency and effectiveness. Notably, our method achieves comparable performance with the current state-of-the-art methods while being nearly 50 times faster.
Authors:Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Grant Schindler, Rachel Hornung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, Krishna Somandepalli, Hassan Akbari, Yair Alon, Yong Cheng, Josh Dillon, Agrim Gupta, Meera Hahn, Anja Hauth, David Hendon, Alonso Martinez, David Minnen, Mikhail Sirotenko, Kihyuk Sohn, Xuan Yang, Hartwig Adam, Ming-Hsuan Yang, Irfan Essa, Huisheng Wang, David A. Ross, Bryan Seybold, Lu Jiang
Title: VideoPoet: A Large Language Model for Zero-Shot Video Generation
Abstract:
We present VideoPoet, a language model capable of synthesizing high-quality video, with matching audio, from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting VideoPoet's ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/
Authors:Mengyang Feng, Jinlin Liu, Kai Yu, Yuan Yao, Zheng Hui, Xiefan Guo, Xianhui Lin, Haolan Xue, Chen Shi, Xiaowen Li, Aojie Li, Xiaoyang Kang, Biwen Lei, Miaomiao Cui, Peiran Ren, Xuansong Xie
Title: DreaMoving: A Human Video Generation Framework based on Diffusion Models
Abstract:
In this paper, we present DreaMoving, a diffusion-based controllable video generation framework to produce high-quality customized human videos. Specifically, given target identity and posture sequences, DreaMoving can generate a video of the target identity moving or dancing anywhere driven by the posture sequences. To this end, we propose a Video ControlNet for motion-controlling and a Content Guider for identity preserving. The proposed model is easy to use and can be adapted to most stylized diffusion models to generate diverse results. The project page is available at https://dreamoving.github.io/dreamoving
Authors:Linze Li, Sunqi Fan, Hengjun Pu, Zhaodong Bing, Yao Tang, Tianzhu Ye, Tong Yang, Liangyu Chen, Jiajun Liang
Title: FAAC: Facial Animation Generation with Anchor Frame and Conditional Control for Superior Fidelity and Editability
Abstract:
Over recent years, diffusion models have facilitated significant advancements in video generation. Yet, the creation of face-related videos still confronts issues such as low facial fidelity, lack of frame consistency, limited editability and uncontrollable human poses. To address these challenges, we introduce a facial animation generation method that enhances both face identity fidelity and editing capabilities while ensuring frame consistency. This approach incorporates the concept of an anchor frame to counteract the degradation of generative ability in original text-to-image models when incorporating a motion module. We propose two strategies towards this objective: training-free and training-based anchor frame methods. Our method's efficacy has been validated on multiple representative DreamBooth and LoRA models, delivering substantial improvements over the original outcomes in terms of facial fidelity, text-to-image editability, and video motion. Moreover, we introduce conditional control using a 3D parametric face model to capture accurate facial movements and expressions. This solution augments the creative possibilities for facial animation generation through the integration of multiple control signals. For additional samples, please visit https://paper-faac.github.io/.
Authors:Shijie Ma, Huayi Xu, Mengjian Li, Weidong Geng, Yaxiong Wang, Meng Wang
Title: POS: A Prompts Optimization Suite for Augmenting Text-to-Video Generation
Abstract:
This paper targets to enhance the diffusion-based text-to-video generation by improving the two input prompts, including the noise and the text. Accommodated with this goal, we propose POS, a training-free Prompt Optimization Suite to boost text-to-video models. POS is motivated by two observations: (1) Video generation shows instability in terms of noise. Given the same text, different noises lead to videos that differ significantly in terms of both frame quality and temporal consistency. This observation implies that there exists an optimal noise matched to each textual input; To capture the potential noise, we propose an optimal noise approximator to approach the potential optimal noise. Particularly, the optimal noise approximator initially searches a video that closely relates to the text prompt and then inverts it into the noise space to serve as an improved noise prompt for the textual input. (2) Improving the text prompt via LLMs often causes semantic deviation. Many existing text-to-vision works have utilized LLMs to improve the text prompts for generation enhancement. However, existing methods often neglect the semantic alignment between the original text and the rewritten one. In response to this issue, we design a semantic-preserving rewriter to impose contraints in both rewritng and denoising phrases to preserve the semantic consistency. Extensive experiments on popular benchmarks show that our POS can improve the text-to-video models with a clear margin. The code will be open-sourced.
Authors:Hyeonho Jeong, Jong Chul Ye
Title: Ground-A-Video: Zero-shot Grounded Video Editing using Text-to-image Diffusion Models
Abstract:
Recent endeavors in video editing have showcased promising results in single-attribute editing or style transfer tasks, either by training text-to-video (T2V) models on text-video data or adopting training-free methods. However, when confronted with the complexities of multi-attribute editing scenarios, they exhibit shortcomings such as omitting or overlooking intended attribute changes, modifying the wrong elements of the input video, and failing to preserve regions of the input video that should remain intact. To address this, here we present a novel grounding-guided video-to-video translation framework called Ground-A-Video for multi-attribute video editing. Ground-A-Video attains temporally consistent multi-attribute editing of input videos in a training-free manner without aforementioned shortcomings. Central to our method is the introduction of Cross-Frame Gated Attention which incorporates groundings information into the latent representations in a temporally consistent fashion, along with Modulated Cross-Attention and optical flow guided inverted latents smoothing. Extensive experiments and applications demonstrate that Ground-A-Video's zero-shot capacity outperforms other baseline methods in terms of edit-accuracy and frame consistency. Further results and code are available at our project page (http://ground-a-video.github.io).
Authors:Ping Li, Yu Zhang, Li Yuan, Jian Zhao, Xianghua Xu, Xiaoqin Zhang
Title: Adversarial Attacks on Video Object Segmentation with Hard Region Discovery
Abstract:
Video object segmentation has been applied to various computer vision tasks, such as video editing, autonomous driving, and human-robot interaction. However, the methods based on deep neural networks are vulnerable to adversarial examples, which are the inputs attacked by almost human-imperceptible perturbations, and the adversary (i.e., attacker) will fool the segmentation model to make incorrect pixel-level predictions. This will rise the security issues in highly-demanding tasks because small perturbations to the input video will result in potential attack risks. Though adversarial examples have been extensively used for classification, it is rarely studied in video object segmentation. Existing related methods in computer vision either require prior knowledge of categories or cannot be directly applied due to the special design for certain tasks, failing to consider the pixel-wise region attack. Hence, this work develops an object-agnostic adversary that has adversarial impacts on VOS by first-frame attacking via hard region discovery. Particularly, the gradients from the segmentation model are exploited to discover the easily confused region, in which it is difficult to identify the pixel-wise objects from the background in a frame. This provides a hardness map that helps to generate perturbations with a stronger adversarial power for attacking the first frame. Empirical studies on three benchmarks indicate that our attacker significantly degrades the performance of several state-of-the-art video object segmentation models.
Authors:Yuanzhi Wang, Yong Li, Xiaoya Zhang, Xin Liu, Anbo Dai, Antoni B. Chan, Zhen Cui
Title: Edit Temporal-Consistent Videos with Image Diffusion Model
Abstract:
Large-scale text-to-image (T2I) diffusion models have been extended for text-guided video editing, yielding impressive zero-shot video editing performance. Nonetheless, the generated videos usually show spatial irregularities and temporal inconsistencies as the temporal characteristics of videos have not been faithfully modeled. In this paper, we propose an elegant yet effective Temporal-Consistent Video Editing (TCVE) method to mitigate the temporal inconsistency challenge for robust text-guided video editing. In addition to the utilization of a pretrained T2I 2D Unet for spatial content manipulation, we establish a dedicated temporal Unet architecture to faithfully capture the temporal coherence of the input video sequences. Furthermore, to establish coherence and interrelation between the spatial-focused and temporal-focused components, a cohesive spatial-temporal modeling unit is formulated. This unit effectively interconnects the temporal Unet with the pretrained 2D Unet, thereby enhancing the temporal consistency of the generated videos while preserving the capacity for video content manipulation. Quantitative experimental results and visualization results demonstrate that TCVE achieves state-of-the-art performance in both video temporal consistency and video editing capability, surpassing existing benchmarks in the field.
Authors:Binhui Liu, Xin Liu, Anbo Dai, Zhiyong Zeng, Dan Wang, Zhen Cui, Jian Yang
Title: Dual-Stream Diffusion Net for Text-to-Video Generation
Abstract:
With the emerging diffusion models, recently, text-to-video generation has aroused increasing attention. But an important bottleneck therein is that generative videos often tend to carry some flickers and artifacts. In this work, we propose a dual-stream diffusion net (DSDN) to improve the consistency of content variations in generating videos. In particular, the designed two diffusion streams, video content and motion branches, could not only run separately in their private spaces for producing personalized video variations as well as content, but also be well-aligned between the content and motion domains through leveraging our designed cross-transformer interaction module, which would benefit the smoothness of generated videos. Besides, we also introduce motion decomposer and combiner to faciliate the operation on video motion. Qualitative and quantitative experiments demonstrate that our method could produce amazing continuous videos with fewer flickers.
Authors:Aram Davtyan, Paolo Favaro
Title: Learn the Force We Can: Enabling Sparse Motion Control in Multi-Object Video Generation
Abstract:
We propose a novel unsupervised method to autoregressively generate videos from a single frame and a sparse motion input. Our trained model can generate unseen realistic object-to-object interactions. Although our model has never been given the explicit segmentation and motion of each object in the scene during training, it is able to implicitly separate their dynamics and extents. Key components in our method are the randomized conditioning scheme, the encoding of the input motion control, and the randomized and sparse sampling to enable generalization to out of distribution but realistic correlations. Our model, which we call YODA, has therefore the ability to move objects without physically touching them. Through extensive qualitative and quantitative evaluations on several datasets, we show that YODA is on par with or better than state of the art video generation prior work in terms of both controllability and video quality.
Authors:Kangning Liu, Yu-Chuan Su, Wei, Hong, Ruijin Cang, Xuhui Jia
Title: Controllable One-Shot Face Video Synthesis With Semantic Aware Prior
Abstract:
The one-shot talking-head synthesis task aims to animate a source image to another pose and expression, which is dictated by a driving frame. Recent methods rely on warping the appearance feature extracted from the source, by using motion fields estimated from the sparse keypoints, that are learned in an unsupervised manner. Due to their lightweight formulation, they are suitable for video conferencing with reduced bandwidth. However, based on our study, current methods suffer from two major limitations: 1) unsatisfactory generation quality in the case of large head poses and the existence of observable pose misalignment between the source and the first frame in driving videos. 2) fail to capture fine yet critical face motion details due to the lack of semantic understanding and appropriate face geometry regularization. To address these shortcomings, we propose a novel method that leverages the rich face prior information, the proposed model can generate face videos with improved semantic consistency (improve baseline by $7\%$ in average keypoint distance) and expression-preserving (outperform baseline by $15 \%$ in average emotion embedding distance) under equivalent bandwidth. Additionally, incorporating such prior information provides us with a convenient interface to achieve highly controllable generation in terms of both pose and expression.
Authors:Tsai-Shien Chen, Chieh Hubert Lin, Hung-Yu Tseng, Tsung-Yi Lin, Ming-Hsuan Yang
Title: Motion-Conditioned Diffusion Model for Controllable Video Synthesis
Abstract:
Recent advancements in diffusion models have greatly improved the quality and diversity of synthesized content. To harness the expressive power of diffusion models, researchers have explored various controllable mechanisms that allow users to intuitively guide the content synthesis process. Although the latest efforts have primarily focused on video synthesis, there has been a lack of effective methods for controlling and describing desired content and motion. In response to this gap, we introduce MCDiff, a conditional diffusion model that generates a video from a starting image frame and a set of strokes, which allow users to specify the intended content and dynamics for synthesis. To tackle the ambiguity of sparse motion inputs and achieve better synthesis quality, MCDiff first utilizes a flow completion model to predict the dense video motion based on the semantic understanding of the video frame and the sparse motion control. Then, the diffusion model synthesizes high-quality future frames to form the output video. We qualitatively and quantitatively show that MCDiff achieves the state-the-of-art visual quality in stroke-guided controllable video synthesis. Additional experiments on MPII Human Pose further exhibit the capability of our model on diverse content and motion synthesis.
Authors:Duygu Ceylan, Chun-Hao Paul Huang, Niloy J. Mitra
Title: Pix2Video: Video Editing using Image Diffusion
Abstract:
Image diffusion models, trained on massive image collections, have emerged as the most versatile image generator model in terms of quality and diversity. They support inverting real images and conditional (e.g., text) generation, making them attractive for high-quality image editing applications. We investigate how to use such pre-trained image models for text-guided video editing. The critical challenge is to achieve the target edits while still preserving the content of the source video. Our method works in two simple steps: first, we use a pre-trained structure-guided (e.g., depth) image diffusion model to perform text-guided edits on an anchor frame; then, in the key step, we progressively propagate the changes to the future frames via self-attention feature injection to adapt the core denoising step of the diffusion model. We then consolidate the changes by adjusting the latent code for the frame before continuing the process. Our approach is training-free and generalizes to a wide range of edits. We demonstrate the effectiveness of the approach by extensive experimentation and compare it against four different prior and parallel efforts (on ArXiv). We demonstrate that realistic text-guided video edits are possible, without any compute-intensive preprocessing or video-specific finetuning.
Authors:Mingzhen Sun, Weining Wang, Xinxin Zhu, Jing Liu
Title: MOSO: Decomposing MOtion, Scene and Object for Video Prediction
Abstract:
Motion, scene and object are three primary visual components of a video. In particular, objects represent the foreground, scenes represent the background, and motion traces their dynamics. Based on this insight, we propose a two-stage MOtion, Scene and Object decomposition framework (MOSO) for video prediction, consisting of MOSO-VQVAE and MOSO-Transformer. In the first stage, MOSO-VQVAE decomposes a previous video clip into the motion, scene and object components, and represents them as distinct groups of discrete tokens. Then, in the second stage, MOSO-Transformer predicts the object and scene tokens of the subsequent video clip based on the previous tokens and adds dynamic motion at the token level to the generated object and scene tokens. Our framework can be easily extended to unconditional video generation and video frame interpolation tasks. Experimental results demonstrate that our method achieves new state-of-the-art performance on five challenging benchmarks for video prediction and unconditional video generation: BAIR, RoboNet, KTH, KITTI and UCF101. In addition, MOSO can produce realistic videos by combining objects and scenes from different videos.
Authors:Mina Huh, Saelyne Yang, Yi-Hao Peng, Xiang 'Anthony' Chen, Young-Ho Kim, Amy Pavel
Title: AVscript: Accessible Video Editing with Audio-Visual Scripts
Abstract:
Sighted and blind and low vision (BLV) creators alike use videos to communicate with broad audiences. Yet, video editing remains inaccessible to BLV creators. Our formative study revealed that current video editing tools make it difficult to access the visual content, assess the visual quality, and efficiently navigate the timeline. We present AVscript, an accessible text-based video editor. AVscript enables BLV creators to edit their video using a script that embeds the video's visual content, visual errors (e.g., dark or blurred footage), and speech. BLV creators can use AVscript to efficiently navigate between scenes and visual errors or to locate objects in the frame or spoken words of interest. A comparison study (N=12) showed that AVscript significantly lowered BLV creators' mental demands while increasing confidence and independence in video editing. We further demonstrate the potential of AVscript through an exploratory study (N=3) where BLV creators edited their own footage.
Authors:Uriel Singer, Shelly Sheynin, Adam Polyak, Oron Ashual, Iurii Makarov, Filippos Kokkinos, Naman Goyal, Andrea Vedaldi, Devi Parikh, Justin Johnson, Yaniv Taigman
Title: Text-To-4D Dynamic Scene Generation
Abstract:
We present MAV3D (Make-A-Video3D), a method for generating three-dimensional dynamic scenes from text descriptions. Our approach uses a 4D dynamic Neural Radiance Field (NeRF), which is optimized for scene appearance, density, and motion consistency by querying a Text-to-Video (T2V) diffusion-based model. The dynamic video output generated from the provided text can be viewed from any camera location and angle, and can be composited into any 3D environment. MAV3D does not require any 3D or 4D data and the T2V model is trained only on Text-Image pairs and unlabeled videos. We demonstrate the effectiveness of our approach using comprehensive quantitative and qualitative experiments and show an improvement over previously established internal baselines. To the best of our knowledge, our method is the first to generate 3D dynamic scenes given a text description.
Authors:Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G. Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, Lu Jiang
Title: MAGVIT: Masked Generative Video Transformer
Abstract:
We introduce the MAsked Generative VIdeo Transformer, MAGVIT, to tackle various video synthesis tasks with a single model. We introduce a 3D tokenizer to quantize a video into spatial-temporal visual tokens and propose an embedding method for masked video token modeling to facilitate multi-task learning. We conduct extensive experiments to demonstrate the quality, efficiency, and flexibility of MAGVIT. Our experiments show that (i) MAGVIT performs favorably against state-of-the-art approaches and establishes the best-published FVD on three video generation benchmarks, including the challenging Kinetics-600. (ii) MAGVIT outperforms existing methods in inference time by two orders of magnitude against diffusion models and by 60x against autoregressive models. (iii) A single MAGVIT model supports ten diverse generation tasks and generalizes across videos from different visual domains. The source code and trained models will be released to the public at https://magvit.cs.cmu.edu.
Authors:Zihan Ding, Junlong Chen, Per Ola Kristensson, Junxiao Shen, Xinyi Wang
Title: Prompt-Driven Agentic Video Editing System: Autonomous Comprehension of Long-Form, Story-Driven Media
Abstract:
Creators struggle to edit long-form, narrative-rich videos not because of UI complexity, but due to the cognitive demands of searching, storyboarding, and sequencing hours of footage. Existing transcript- or embedding-based methods fall short for creative workflows, as models struggle to track characters, infer motivations, and connect dispersed events. We present a prompt-driven, modular editing system that helps creators restructure multi-hour content through free-form prompts rather than timelines. At its core is a semantic indexing pipeline that builds a global narrative via temporal segmentation, guided memory compression, and cross-granularity fusion, producing interpretable traces of plot, dialogue, emotion, and context. Users receive cinematic edits while optionally refining transparent intermediate outputs. Evaluated on 400+ videos with expert ratings, QA, and preference studies, our system scales prompt-driven editing, preserves narrative coherence, and balances automation with creator control.
Authors:Shen Sang, Tiancheng Zhi, Tianpei Gu, Jing Liu, Linjie Luo
Title: Lynx: Towards High-Fidelity Personalized Video Generation
Abstract:
We present Lynx, a high-fidelity model for personalized video synthesis from a single input image. Built on an open-source Diffusion Transformer (DiT) foundation model, Lynx introduces two lightweight adapters to ensure identity fidelity. The ID-adapter employs a Perceiver Resampler to convert ArcFace-derived facial embeddings into compact identity tokens for conditioning, while the Ref-adapter integrates dense VAE features from a frozen reference pathway, injecting fine-grained details across all transformer layers through cross-attention. These modules collectively enable robust identity preservation while maintaining temporal coherence and visual realism. Through evaluation on a curated benchmark of 40 subjects and 20 unbiased prompts, which yielded 800 test cases, Lynx has demonstrated superior face resemblance, competitive prompt following, and strong video quality, thereby advancing the state of personalized video generation.
Authors:Zeyu Dong, Yuyang Yin, Yuqi Li, Eric Li, Hao-Xiang Guo, Yikai Wang
Title: PanoLora: Bridging Perspective and Panoramic Video Generation with LoRA Adaptation
Abstract:
Generating high-quality 360° panoramic videos remains a significant challenge due to the fundamental differences between panoramic and traditional perspective-view projections. While perspective videos rely on a single viewpoint with a limited field of view, panoramic content requires rendering the full surrounding environment, making it difficult for standard video generation models to adapt. Existing solutions often introduce complex architectures or large-scale training, leading to inefficiency and suboptimal results. Motivated by the success of Low-Rank Adaptation (LoRA) in style transfer tasks, we propose treating panoramic video generation as an adaptation problem from perspective views. Through theoretical analysis, we demonstrate that LoRA can effectively model the transformation between these projections when its rank exceeds the degrees of freedom in the task. Our approach efficiently fine-tunes a pretrained video diffusion model using only approximately 1,000 videos while achieving high-quality panoramic generation. Experimental results demonstrate that our method maintains proper projection geometry and surpasses previous state-of-the-art approaches in visual quality, left-right consistency, and motion diversity.
Authors:Duomin Wang, Wei Zuo, Aojie Li, Ling-Hao Chen, Xinyao Liao, Deyu Zhou, Zixin Yin, Xili Dai, Daxin Jiang, Gang Yu
Title: UniVerse-1: Unified Audio-Video Generation via Stitching of Experts
Abstract:
We introduce UniVerse-1, a unified, Veo-3-like model capable of simultaneously generating coordinated audio and video. To enhance training efficiency, we bypass training from scratch and instead employ a stitching of experts (SoE) technique. This approach deeply fuses the corresponding blocks of pre-trained video and music generation experts models, thereby fully leveraging their foundational capabilities. To ensure accurate annotations and temporal alignment for both ambient sounds and speech with video content, we developed an online annotation pipeline that processes the required training data and generates labels during training process. This strategy circumvents the performance degradation often caused by misalignment text-based annotations. Through the synergy of these techniques, our model, after being finetuned on approximately 7,600 hours of audio-video data, produces results with well-coordinated audio-visuals for ambient sounds generation and strong alignment for speech generation. To systematically evaluate our proposed method, we introduce Verse-Bench, a new benchmark dataset. In an effort to advance research in audio-video generation and to close the performance gap with state-of-the-art models such as Veo3, we make our model and code publicly available. We hope this contribution will benefit the broader research community. Project page: https://dorniwang.github.io/UniVerse-1/.
Authors:Feng-Lin Liu, Shi-Yang Li, Yan-Pei Cao, Hongbo Fu, Lin Gao
Title: Sketch3DVE: Sketch-based 3D-Aware Scene Video Editing
Abstract:
Recent video editing methods achieve attractive results in style transfer or appearance modification. However, editing the structural content of 3D scenes in videos remains challenging, particularly when dealing with significant viewpoint changes, such as large camera rotations or zooms. Key challenges include generating novel view content that remains consistent with the original video, preserving unedited regions, and translating sparse 2D inputs into realistic 3D video outputs. To address these issues, we propose Sketch3DVE, a sketch-based 3D-aware video editing method to enable detailed local manipulation of videos with significant viewpoint changes. To solve the challenge posed by sparse inputs, we employ image editing methods to generate edited results for the first frame, which are then propagated to the remaining frames of the video. We utilize sketching as an interaction tool for precise geometry control, while other mask-based image editing methods are also supported. To handle viewpoint changes, we perform a detailed analysis and manipulation of the 3D information in the video. Specifically, we utilize a dense stereo method to estimate a point cloud and the camera parameters of the input video. We then propose a point cloud editing approach that uses depth maps to represent the 3D geometry of newly edited components, aligning them effectively with the original 3D scene. To seamlessly merge the newly edited content with the original video while preserving the features of unedited regions, we introduce a 3D-aware mask propagation strategy and employ a video diffusion model to produce realistic edited videos. Extensive experiments demonstrate the superiority of Sketch3DVE in video editing. Homepage and code: http://http://geometrylearning.com/Sketch3DVE/
Authors:Chubin Chen, Jiashu Zhu, Xiaokun Feng, Nisha Huang, Meiqi Wu, Fangyuan Mao, Jiahong Wu, Xiangxiang Chu, Xiu Li
Title: S$^2$-Guidance: Stochastic Self Guidance for Training-Free Enhancement of Diffusion Models
Abstract:
Classifier-free Guidance (CFG) is a widely used technique in modern diffusion models for enhancing sample quality and prompt adherence. However, through an empirical analysis on Gaussian mixture modeling with a closed-form solution, we observe a discrepancy between the suboptimal results produced by CFG and the ground truth. The model's excessive reliance on these suboptimal predictions often leads to semantic incoherence and low-quality outputs. To address this issue, we first empirically demonstrate that the model's suboptimal predictions can be effectively refined using sub-networks of the model itself. Building on this insight, we propose S^2-Guidance, a novel method that leverages stochastic block-dropping during the forward process to construct stochastic sub-networks, effectively guiding the model away from potential low-quality predictions and toward high-quality outputs. Extensive qualitative and quantitative experiments on text-to-image and text-to-video generation tasks demonstrate that S^2-Guidance delivers superior performance, consistently surpassing CFG and other advanced guidance strategies. Our code will be released.
Authors:Qian Wang, Ziqi Huang, Ruoxi Jia, Paul Debevec, Ning Yu
Title: MAViS: A Multi-Agent Framework for Long-Sequence Video Storytelling
Abstract:
Despite recent advances, long-sequence video generation frameworks still suffer from significant limitations: poor assistive capability, suboptimal visual quality, and limited expressiveness. To mitigate these limitations, we propose MAViS, an end-to-end multi-agent collaborative framework for long-sequence video storytelling. MAViS orchestrates specialized agents across multiple stages, including script writing, shot designing, character modeling, keyframe generation, video animation, and audio generation. In each stage, agents operate under the 3E Principle -- Explore, Examine, and Enhance -- to ensure the completeness of intermediate outputs. Considering the capability limitations of current generative models, we propose the Script Writing Guidelines to optimize compatibility between scripts and generative tools. Experimental results demonstrate that MAViS achieves state-of-the-art performance in assistive capability, visual quality, and video expressiveness. Its modular framework further enables scalability with diverse generative models and tools. With just a brief user prompt, MAViS is capable of producing high-quality, expressive long-sequence video storytelling, enriching inspirations and creativity for users. To the best of our knowledge, MAViS is the only framework that provides multimodal design output -- videos with narratives and background music.
Authors:Fangyuan Mao, Aiming Hao, Jintao Chen, Dongxia Liu, Xiaokun Feng, Jiashu Zhu, Meiqi Wu, Chubin Chen, Jiahong Wu, Xiangxiang Chu
Title: Omni-Effects: Unified and Spatially-Controllable Visual Effects Generation
Abstract:
Visual effects (VFX) are essential visual enhancements fundamental to modern cinematic production. Although video generation models offer cost-efficient solutions for VFX production, current methods are constrained by per-effect LoRA training, which limits generation to single effects. This fundamental limitation impedes applications that require spatially controllable composite effects, i.e., the concurrent generation of multiple effects at designated locations. However, integrating diverse effects into a unified framework faces major challenges: interference from effect variations and spatial uncontrollability during multi-VFX joint training. To tackle these challenges, we propose Omni-Effects, a first unified framework capable of generating prompt-guided effects and spatially controllable composite effects. The core of our framework comprises two key innovations: (1) LoRA-based Mixture of Experts (LoRA-MoE), which employs a group of expert LoRAs, integrating diverse effects within a unified model while effectively mitigating cross-task interference. (2) Spatial-Aware Prompt (SAP) incorporates spatial mask information into the text token, enabling precise spatial control. Furthermore, we introduce an Independent-Information Flow (IIF) module integrated within the SAP, isolating the control signals corresponding to individual effects to prevent any unwanted blending. To facilitate this research, we construct a comprehensive VFX dataset Omni-VFX via a novel data collection pipeline combining image editing and First-Last Frame-to-Video (FLF2V) synthesis, and introduce a dedicated VFX evaluation framework for validating model performance. Extensive experiments demonstrate that Omni-Effects achieves precise spatial control and diverse effect generation, enabling users to specify both the category and location of desired effects.
Authors:Shuolin Xu, Bingyuan Wang, Zeyu Cai, Fangteng Fu, Yue Ma, Tongyi Lee, Hongchuan Yu, Zeyu Wang
Title: MagicAnime: A Hierarchically Annotated, Multimodal and Multitasking Dataset with Benchmarks for Cartoon Animation Generation
Abstract:
Generating high-quality cartoon animations multimodal control is challenging due to the complexity of non-human characters, stylistically diverse motions and fine-grained emotions. There is a huge domain gap between real-world videos and cartoon animation, as cartoon animation is usually abstract and has exaggerated motion. Meanwhile, public multimodal cartoon data are extremely scarce due to the difficulty of large-scale automatic annotation processes compared with real-life scenarios. To bridge this gap, We propose the MagicAnime dataset, a large-scale, hierarchically annotated, and multimodal dataset designed to support multiple video generation tasks, along with the benchmarks it includes. Containing 400k video clips for image-to-video generation, 50k pairs of video clips and keypoints for whole-body annotation, 12k pairs of video clips for video-to-video face animation, and 2.9k pairs of video and audio clips for audio-driven face animation. Meanwhile, we also build a set of multi-modal cartoon animation benchmarks, called MagicAnime-Bench, to support the comparisons of different methods in the tasks above. Comprehensive experiments on four tasks, including video-driven face animation, audio-driven face animation, image-to-video animation, and pose-driven character animation, validate its effectiveness in supporting high-fidelity, fine-grained, and controllable generation.
Authors:Chang Liu, Yunfan Ye, Fan Zhang, Qingyang Zhou, Yuchuan Luo, Zhiping Cai
Title: HumanSAM: Classifying Human-centric Forgery Videos in Human Spatial, Appearance, and Motion Anomaly
Abstract:
Numerous synthesized videos from generative models, especially human-centric ones that simulate realistic human actions, pose significant threats to human information security and authenticity. While progress has been made in binary forgery video detection, the lack of fine-grained understanding of forgery types raises concerns regarding both reliability and interpretability, which are critical for real-world applications. To address this limitation, we propose HumanSAM, a new framework that builds upon the fundamental challenges of video generation models. Specifically, HumanSAM aims to classify human-centric forgeries into three distinct types of artifacts commonly observed in generated content: spatial, appearance, and motion anomaly. To better capture the features of geometry, semantics and spatiotemporal consistency, we propose to generate the human forgery representation by fusing two branches of video understanding and spatial depth. We also adopt a rank-based confidence enhancement strategy during the training process to learn more robust representation by introducing three prior scores. For training and evaluation, we construct the first public benchmark, the Human-centric Forgery Video (HFV) dataset, with all types of forgeries carefully annotated semi-automatically. In our experiments, HumanSAM yields promising results in comparison with state-of-the-art methods, both in binary and multi-class forgery classification.
Authors:Haiquan Wen, Tianxiao Li, Zhenglin Huang, Yiwei He, Guangliang Cheng
Title: BusterX++: Towards Unified Cross-Modal AI-Generated Content Detection and Explanation with MLLM
Abstract:
Recent advances in generative AI have dramatically improved image and video synthesis capabilities, significantly increasing the risk of misinformation through sophisticated fake content. In response, detection methods have evolved from traditional approaches to multimodal large language models (MLLMs), offering enhanced transparency and interpretability in identifying synthetic media. However, current detection systems remain fundamentally limited by their single-modality design. These approaches analyze images or videos separately, making them ineffective against synthetic content that combines multiple media formats. To address these challenges, we introduce \textbf{BusterX++}, a novel framework designed specifically for cross-modal detection and explanation of synthetic media. Our approach incorporates an advanced reinforcement learning (RL) post-training strategy that eliminates cold-start. Through Multi-stage Training, Thinking Reward, and Hybrid Reasoning, BusterX++ achieves stable and substantial performance improvements. To enable comprehensive evaluation, we also present \textbf{GenBuster++}, a cross-modal benchmark leveraging state-of-the-art image and video generation techniques. This benchmark comprises 4,000 images and video clips, meticulously curated by human experts using a novel filtering methodology to ensure high quality, diversity, and real-world applicability. Extensive experiments demonstrate the effectiveness and generalizability of our approach.
Authors:François Rozet, Ruben Ohana, Michael McCabe, Gilles Louppe, François Lanusse, Shirley Ho
Title: Lost in Latent Space: An Empirical Study of Latent Diffusion Models for Physics Emulation
Abstract:
The steep computational cost of diffusion models at inference hinders their use as fast physics emulators. In the context of image and video generation, this computational drawback has been addressed by generating in the latent space of an autoencoder instead of the pixel space. In this work, we investigate whether a similar strategy can be effectively applied to the emulation of dynamical systems and at what cost. We find that the accuracy of latent-space emulation is surprisingly robust to a wide range of compression rates (up to 1000x). We also show that diffusion-based emulators are consistently more accurate than non-generative counterparts and compensate for uncertainty in their predictions with greater diversity. Finally, we cover practical design choices, spanning from architectures to optimizers, that we found critical to train latent-space emulators.
Authors:Zecheng Zhao, Selena Song, Tong Chen, Zhi Chen, Shazia Sadiq, Yadan Luo
Title: Are Synthetic Videos Useful? A Benchmark for Retrieval-Centric Evaluation of Synthetic Videos
Abstract:
Text-to-video (T2V) synthesis has advanced rapidly, yet current evaluation metrics primarily capture visual quality and temporal consistency, offering limited insight into how synthetic videos perform in downstream tasks such as text-to-video retrieval (TVR). In this work, we introduce SynTVA, a new dataset and benchmark designed to evaluate the utility of synthetic videos for building retrieval models. Based on 800 diverse user queries derived from MSRVTT training split, we generate synthetic videos using state-of-the-art T2V models and annotate each video-text pair along four key semantic alignment dimensions: Object \& Scene, Action, Attribute, and Prompt Fidelity. Our evaluation framework correlates general video quality assessment (VQA) metrics with these alignment scores, and examines their predictive power for downstream TVR performance. To explore pathways of scaling up, we further develop an Auto-Evaluator to estimate alignment quality from existing metrics. Beyond benchmarking, our results show that SynTVA is a valuable asset for dataset augmentation, enabling the selection of high-utility synthetic samples that measurably improve TVR outcomes. Project page and dataset can be found at https://jasoncodemaker.github.io/SynTVA/.
Authors:Yongjie Fu, Ruijian Zha, Pei Tian, Xuan Di
Title: LLM-based Realistic Safety-Critical Driving Video Generation
Abstract:
Designing diverse and safety-critical driving scenarios is essential for evaluating autonomous driving systems. In this paper, we propose a novel framework that leverages Large Language Models (LLMs) for few-shot code generation to automatically synthesize driving scenarios within the CARLA simulator, which has flexibility in scenario scripting, efficient code-based control of traffic participants, and enforcement of realistic physical dynamics. Given a few example prompts and code samples, the LLM generates safety-critical scenario scripts that specify the behavior and placement of traffic participants, with a particular focus on collision events. To bridge the gap between simulation and real-world appearance, we integrate a video generation pipeline using Cosmos-Transfer1 with ControlNet, which converts rendered scenes into realistic driving videos. Our approach enables controllable scenario generation and facilitates the creation of rare but critical edge cases, such as pedestrian crossings under occlusion or sudden vehicle cut-ins. Experimental results demonstrate the effectiveness of our method in generating a wide range of realistic, diverse, and safety-critical scenarios, offering a promising tool for simulation-based testing of autonomous vehicles.
Authors:Mengyi Shan, Zecheng He, Haoyu Ma, Felix Juefei-Xu, Peizhao Zhang, Tingbo Hou, Ching-Yao Chuang
Title: Populate-A-Scene: Affordance-Aware Human Video Generation
Abstract:
Can a video generation model be repurposed as an interactive world simulator? We explore the affordance perception potential of text-to-video models by teaching them to predict human-environment interaction. Given a scene image and a prompt describing human actions, we fine-tune the model to insert a person into the scene, while ensuring coherent behavior, appearance, harmonization, and scene affordance. Unlike prior work, we infer human affordance for video generation (i.e., where to insert a person and how they should behave) from a single scene image, without explicit conditions like bounding boxes or body poses. An in-depth study of cross-attention heatmaps demonstrates that we can uncover the inherent affordance perception of a pre-trained video model without labeled affordance datasets.
Authors:Liudi Yang, Yang Bai, George Eskandar, Fengyi Shen, Mohammad Altillawi, Dong Chen, Soumajit Majumder, Ziyuan Liu, Gitta Kutyniok, Abhinav Valada
Title: RoboEnvision: A Long-Horizon Video Generation Model for Multi-Task Robot Manipulation
Abstract:
We address the problem of generating long-horizon videos for robotic manipulation tasks. Text-to-video diffusion models have made significant progress in photorealism, language understanding, and motion generation but struggle with long-horizon robotic tasks. Recent works use video diffusion models for high-quality simulation data and predictive rollouts in robot planning. However, these works predict short sequences of the robot achieving one task and employ an autoregressive paradigm to extend to the long horizon, leading to error accumulations in the generated video and in the execution. To overcome these limitations, we propose a novel pipeline that bypasses the need for autoregressive generation. We achieve this through a threefold contribution: 1) we first decompose the high-level goals into smaller atomic tasks and generate keyframes aligned with these instructions. A second diffusion model then interpolates between each of the two generated frames, achieving the long-horizon video. 2) We propose a semantics preserving attention module to maintain consistency between the keyframes. 3) We design a lightweight policy model to regress the robot joint states from generated videos. Our approach achieves state-of-the-art results on two benchmarks in video quality and consistency while outperforming previous policy models on long-horizon tasks.
Authors:Wenqiang Sun, Fangyun Wei, Jinjing Zhao, Xi Chen, Zilong Chen, Hongyang Zhang, Jun Zhang, Yan Lu
Title: From Virtual Games to Real-World Play
Abstract:
We introduce RealPlay, a neural network-based real-world game engine that enables interactive video generation from user control signals. Unlike prior works focused on game-style visuals, RealPlay aims to produce photorealistic, temporally consistent video sequences that resemble real-world footage. It operates in an interactive loop: users observe a generated scene, issue a control command, and receive a short video chunk in response. To enable such realistic and responsive generation, we address key challenges including iterative chunk-wise prediction for low-latency feedback, temporal consistency across iterations, and accurate control response. RealPlay is trained on a combination of labeled game data and unlabeled real-world videos, without requiring real-world action annotations. Notably, we observe two forms of generalization: (1) control transfer-RealPlay effectively maps control signals from virtual to real-world scenarios; and (2) entity transfer-although training labels originate solely from a car racing game, RealPlay generalizes to control diverse real-world entities, including bicycles and pedestrians, beyond vehicles. Project page can be found: https://wenqsun.github.io/RealPlay/
Authors:Jisu Nam, Soowon Son, Dahyun Chung, Jiyoung Kim, Siyoon Jin, Junhwa Hur, Seungryong Kim
Title: Emergent Temporal Correspondences from Video Diffusion Transformers
Abstract:
Recent advancements in video diffusion models based on Diffusion Transformers (DiTs) have achieved remarkable success in generating temporally coherent videos. Yet, a fundamental question persists: how do these models internally establish and represent temporal correspondences across frames? We introduce DiffTrack, the first quantitative analysis framework designed to answer this question. DiffTrack constructs a dataset of prompt-generated video with pseudo ground-truth tracking annotations and proposes novel evaluation metrics to systematically analyze how each component within the full 3D attention mechanism of DiTs (e.g., representations, layers, and timesteps) contributes to establishing temporal correspondences. Our analysis reveals that query-key similarities in specific, but not all, layers play a critical role in temporal matching, and that this matching becomes increasingly prominent during the denoising process. We demonstrate practical applications of DiffTrack in zero-shot point tracking, where it achieves state-of-the-art performance compared to existing vision foundation and self-supervised video models. Further, we extend our findings to motion-enhanced video generation with a novel guidance method that improves temporal consistency of generated videos without additional training. We believe our work offers crucial insights into the inner workings of video DiTs and establishes a foundation for further research and applications leveraging their temporal understanding.
Authors:Yang Bai, Liudi Yang, George Eskandar, Fengyi Shen, Dong Chen, Mohammad Altillawi, Ziyuan Liu, Gitta Kutyniok
Title: RoboSwap: A GAN-driven Video Diffusion Framework For Unsupervised Robot Arm Swapping
Abstract:
Recent advancements in generative models have revolutionized video synthesis and editing. However, the scarcity of diverse, high-quality datasets continues to hinder video-conditioned robotic learning, limiting cross-platform generalization. In this work, we address the challenge of swapping a robotic arm in one video with another: a key step for crossembodiment learning. Unlike previous methods that depend on paired video demonstrations in the same environmental settings, our proposed framework, RoboSwap, operates on unpaired data from diverse environments, alleviating the data collection needs. RoboSwap introduces a novel video editing pipeline integrating both GANs and diffusion models, combining their isolated advantages. Specifically, we segment robotic arms from their backgrounds and train an unpaired GAN model to translate one robotic arm to another. The translated arm is blended with the original video background and refined with a diffusion model to enhance coherence, motion realism and object interaction. The GAN and diffusion stages are trained independently. Our experiments demonstrate that RoboSwap outperforms state-of-the-art video and image editing models on three benchmarks in terms of both structural coherence and motion consistency, thereby offering a robust solution for generating reliable, cross-embodiment data in robotic learning.
Authors:Shuting Wang, Yunqi Liu, Zixin Yang, Ning Hu, Zhicheng Dou, Chenyan Xiong
Title: Respond Beyond Language: A Benchmark for Video Generation in Response to Realistic User Intents
Abstract:
Querying generative AI models, e.g., large language models (LLMs), has become a prevalent method for information acquisition. However, existing query-answer datasets primarily focus on textual responses, making it challenging to address complex user queries that require visual demonstrations or explanations for better understanding. To bridge this gap, we construct a benchmark, RealVideoQuest, designed to evaluate the abilities of text-to-video (T2V) models in answering real-world, visually grounded queries. It identifies 7.5K real user queries with video response intents from Chatbot-Arena and builds 4.5K high-quality query-video pairs through a multistage video retrieval and refinement process. We further develop a multi-angle evaluation system to assess the quality of generated video answers. Experiments indicate that current T2V models struggle with effectively addressing real user queries, pointing to key challenges and future research opportunities in multimodal AI.
Authors:Hyunho Ha, Lei Xiao, Christian Richardt, Thu Nguyen-Phuoc, Changil Kim, Min H. Kim, Douglas Lanman, Numair Khan
Title: Geometry-guided Online 3D Video Synthesis with Multi-View Temporal Consistency
Abstract:
We introduce a novel geometry-guided online video view synthesis method with enhanced view and temporal consistency. Traditional approaches achieve high-quality synthesis from dense multi-view camera setups but require significant computational resources. In contrast, selective-input methods reduce this cost but often compromise quality, leading to multi-view and temporal inconsistencies such as flickering artifacts. Our method addresses this challenge to deliver efficient, high-quality novel-view synthesis with view and temporal consistency. The key innovation of our approach lies in using global geometry to guide an image-based rendering pipeline. To accomplish this, we progressively refine depth maps using color difference masks across time. These depth maps are then accumulated through truncated signed distance fields in the synthesized view's image space. This depth representation is view and temporally consistent, and is used to guide a pre-trained blending network that fuses multiple forward-rendered input-view images. Thus, the network is encouraged to output geometrically consistent synthesis results across multiple views and time. Our approach achieves consistent, high-quality video synthesis, while running efficiently in an online manner.
Authors:Changgu Chen, Xiaoyan Yang, Junwei Shu, Changbo Wang, Yang Li
Title: LMP: Leveraging Motion Prior in Zero-Shot Video Generation with Diffusion Transformer
Abstract:
In recent years, large-scale pre-trained diffusion transformer models have made significant progress in video generation. While current DiT models can produce high-definition, high-frame-rate, and highly diverse videos, there is a lack of fine-grained control over the video content. Controlling the motion of subjects in videos using only prompts is challenging, especially when it comes to describing complex movements. Further, existing methods fail to control the motion in image-to-video generation, as the subject in the reference image often differs from the subject in the reference video in terms of initial position, size, and shape. To address this, we propose the Leveraging Motion Prior (LMP) framework for zero-shot video generation. Our framework harnesses the powerful generative capabilities of pre-trained diffusion transformers to enable motion in the generated videos to reference user-provided motion videos in both text-to-video and image-to-video generation. To this end, we first introduce a foreground-background disentangle module to distinguish between moving subjects and backgrounds in the reference video, preventing interference in the target video generation. A reweighted motion transfer module is designed to allow the target video to reference the motion from the reference video. To avoid interference from the subject in the reference video, we propose an appearance separation module to suppress the appearance of the reference subject in the target video. We annotate the DAVIS dataset with detailed prompts for our experiments and design evaluation metrics to validate the effectiveness of our method. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in generation quality, prompt-video consistency, and control capability. Our homepage is available at https://vpx-ecnu.github.io/LMP-Website/
Authors:Yushi Huang, Ruihao Gong, Jing Liu, Yifu Ding, Chengtao Lv, Haotong Qin, Jun Zhang
Title: QVGen: Pushing the Limit of Quantized Video Generative Models
Abstract:
Video diffusion models (DMs) have enabled high-quality video synthesis. Yet, their substantial computational and memory demands pose serious challenges to real-world deployment, even on high-end GPUs. As a commonly adopted solution, quantization has proven notable success in reducing cost for image DMs, while its direct application to video DMs remains ineffective. In this paper, we present QVGen, a novel quantization-aware training (QAT) framework tailored for high-performance and inference-efficient video DMs under extremely low-bit quantization (e.g., 4-bit or below). We begin with a theoretical analysis demonstrating that reducing the gradient norm is essential to facilitate convergence for QAT. To this end, we introduce auxiliary modules ($Φ$) to mitigate large quantization errors, leading to significantly enhanced convergence. To eliminate the inference overhead of $Φ$, we propose a rank-decay strategy that progressively eliminates $Φ$. Specifically, we repeatedly employ singular value decomposition (SVD) and a proposed rank-based regularization $\mathbfγ$ to identify and decay low-contributing components. This strategy retains performance while zeroing out inference overhead. Extensive experiments across $4$ state-of-the-art (SOTA) video DMs, with parameter sizes ranging from $1.3$B $\sim14$B, show that QVGen is the first to reach full-precision comparable quality under 4-bit settings. Moreover, it significantly outperforms existing methods. For instance, our 3-bit CogVideoX-2B achieves improvements of $+25.28$ in Dynamic Degree and $+8.43$ in Scene Consistency on VBench.
Authors:Michal Geyer, Omer Tov, Linyi Jin, Richard Tucker, Inbar Mosseri, Tali Dekel, Noah Snavely
Title: Eye2Eye: A Simple Approach for Monocular-to-Stereo Video Synthesis
Abstract:
The rising popularity of immersive visual experiences has increased interest in stereoscopic 3D video generation. Despite significant advances in video synthesis, creating 3D videos remains challenging due to the relative scarcity of 3D video data. We propose a simple approach for transforming a text-to-video generator into a video-to-stereo generator. Given an input video, our framework automatically produces the video frames from a shifted viewpoint, enabling a compelling 3D effect. Prior and concurrent approaches for this task typically operate in multiple phases, first estimating video disparity or depth, then warping the video accordingly to produce a second view, and finally inpainting the disoccluded regions. This approach inherently fails when the scene involves specular surfaces or transparent objects. In such cases, single-layer disparity estimation is insufficient, resulting in artifacts and incorrect pixel shifts during warping. Our work bypasses these restrictions by directly synthesizing the new viewpoint, avoiding any intermediate steps. This is achieved by leveraging a pre-trained video model's priors on geometry, object materials, optics, and semantics, without relying on external geometry models or manually disentangling geometry from the synthesis process. We demonstrate the advantages of our approach in complex, real-world scenarios featuring diverse object materials and compositions. See videos on https://video-eye2eye.github.io
Authors:Minkyu Choi, S P Sharan, Harsh Goel, Sahil Shah, Sandeep Chinchali
Title: We'll Fix it in Post: Improving Text-to-Video Generation with Neuro-Symbolic Feedback
Abstract:
Current text-to-video (T2V) generation models are increasingly popular due to their ability to produce coherent videos from textual prompts. However, these models often struggle to generate semantically and temporally consistent videos when dealing with longer, more complex prompts involving multiple objects or sequential events. Additionally, the high computational costs associated with training or fine-tuning make direct improvements impractical. To overcome these limitations, we introduce NeuS-E, a novel zero-training video refinement pipeline that leverages neuro-symbolic feedback to automatically enhance video generation, achieving superior alignment with the prompts. Our approach first derives the neuro-symbolic feedback by analyzing a formal video representation and pinpoints semantically inconsistent events, objects, and their corresponding frames. This feedback then guides targeted edits to the original video. Extensive empirical evaluations on both open-source and proprietary T2V models demonstrate that NeuS-E significantly enhances temporal and logical alignment across diverse prompts by almost 40%
Authors:Ningli Xu, Rongjun Qin
Title: Satellite to GroundScape -- Large-scale Consistent Ground View Generation from Satellite Views
Abstract:
Generating consistent ground-view images from satellite imagery is challenging, primarily due to the large discrepancies in viewing angles and resolution between satellite and ground-level domains. Previous efforts mainly concentrated on single-view generation, often resulting in inconsistencies across neighboring ground views. In this work, we propose a novel cross-view synthesis approach designed to overcome these challenges by ensuring consistency across ground-view images generated from satellite views. Our method, based on a fixed latent diffusion model, introduces two conditioning modules: satellite-guided denoising, which extracts high-level scene layout to guide the denoising process, and satellite-temporal denoising, which captures camera motion to maintain consistency across multiple generated views. We further contribute a large-scale satellite-ground dataset containing over 100,000 perspective pairs to facilitate extensive ground scene or video generation. Experimental results demonstrate that our approach outperforms existing methods on perceptual and temporal metrics, achieving high photorealism and consistency in multi-view outputs.
Authors:Huiming Sun, Yikang Li, Kangning Yang, Ruineng Li, Daitao Xing, Yangbo Xie, Lan Fu, Kaiyu Zhang, Ming Chen, Jiaming Ding, Jiang Geng, Jie Cai, Zibo Meng, Chiuman Ho
Title: VIP: Video Inpainting Pipeline for Real World Human Removal
Abstract:
Inpainting for real-world human and pedestrian removal in high-resolution video clips presents significant challenges, particularly in achieving high-quality outcomes, ensuring temporal consistency, and managing complex object interactions that involve humans, their belongings, and their shadows. In this paper, we introduce VIP (Video Inpainting Pipeline), a novel promptless video inpainting framework for real-world human removal applications. VIP enhances a state-of-the-art text-to-video model with a motion module and employs a Variational Autoencoder (VAE) for progressive denoising in the latent space. Additionally, we implement an efficient human-and-belongings segmentation for precise mask generation. Sufficient experimental results demonstrate that VIP achieves superior temporal consistency and visual fidelity across diverse real-world scenarios, surpassing state-of-the-art methods on challenging datasets. Our key contributions include the development of the VIP pipeline, a reference frame integration technique, and the Dual-Fusion Latent Segment Refinement method, all of which address the complexities of inpainting in long, high-resolution video sequences.
Authors:Kun Liu, Qi Liu, Xinchen Liu, Jie Li, Yongdong Zhang, Jiebo Luo, Xiaodong He, Wu Liu
Title: HOIGen-1M: A Large-scale Dataset for Human-Object Interaction Video Generation
Abstract:
Text-to-video (T2V) generation has made tremendous progress in generating complicated scenes based on texts. However, human-object interaction (HOI) often cannot be precisely generated by current T2V models due to the lack of large-scale videos with accurate captions for HOI. To address this issue, we introduce HOIGen-1M, the first largescale dataset for HOI Generation, consisting of over one million high-quality videos collected from diverse sources. In particular, to guarantee the high quality of videos, we first design an efficient framework to automatically curate HOI videos using the powerful multimodal large language models (MLLMs), and then the videos are further cleaned by human annotators. Moreover, to obtain accurate textual captions for HOI videos, we design a novel video description method based on a Mixture-of-Multimodal-Experts (MoME) strategy that not only generates expressive captions but also eliminates the hallucination by individual MLLM. Furthermore, due to the lack of an evaluation framework for generated HOI videos, we propose two new metrics to assess the quality of generated videos in a coarse-to-fine manner. Extensive experiments reveal that current T2V models struggle to generate high-quality HOI videos and confirm that our HOIGen-1M dataset is instrumental for improving HOI video generation. Project webpage is available at https://liuqi-creat.github.io/HOIGen.github.io.
Authors:Qi Zhao, Xingyu Ni, Ziyu Wang, Feng Cheng, Ziyan Yang, Lu Jiang, Bohan Wang
Title: Synthetic Video Enhances Physical Fidelity in Video Synthesis
Abstract:
We investigate how to enhance the physical fidelity of video generation models by leveraging synthetic videos derived from computer graphics pipelines. These rendered videos respect real-world physics, such as maintaining 3D consistency, and serve as a valuable resource that can potentially improve video generation models. To harness this potential, we propose a solution that curates and integrates synthetic data while introducing a method to transfer its physical realism to the model, significantly reducing unwanted artifacts. Through experiments on three representative tasks emphasizing physical consistency, we demonstrate its efficacy in enhancing physical fidelity. While our model still lacks a deep understanding of physics, our work offers one of the first empirical demonstrations that synthetic video enhances physical fidelity in video synthesis. Website: https://kevinz8866.github.io/simulation/
Authors:Yong Zhong, Zhuoyi Yang, Jiayan Teng, Xiaotao Gu, Chongxuan Li
Title: Concat-ID: Towards Universal Identity-Preserving Video Synthesis
Abstract:
We present Concat-ID, a unified framework for identity-preserving video generation. Concat-ID employs variational autoencoders to extract image features, which are then concatenated with video latents along the sequence dimension. It relies exclusively on inherent 3D self-attention mechanisms to incorporate them, eliminating the need for additional parameters or modules. A novel cross-video pairing strategy and a multi-stage training regimen are introduced to balance identity consistency and facial editability while enhancing video naturalness. Extensive experiments demonstrate Concat-ID's superiority over existing methods in both single and multi-identity generation, as well as its seamless scalability to multi-subject scenarios, including virtual try-on and background-controllable generation. Concat-ID establishes a new benchmark for identity-preserving video synthesis, providing a versatile and scalable solution for a wide range of applications.
Authors:Guibiao Liao, Qing Li, Zhenyu Bao, Guoping Qiu, Kanglin Liu
Title: SPC-GS: Gaussian Splatting with Semantic-Prompt Consistency for Indoor Open-World Free-view Synthesis from Sparse Inputs
Abstract:
3D Gaussian Splatting-based indoor open-world free-view synthesis approaches have shown significant performance with dense input images. However, they exhibit poor performance when confronted with sparse inputs, primarily due to the sparse distribution of Gaussian points and insufficient view supervision. To relieve these challenges, we propose SPC-GS, leveraging Scene-layout-based Gaussian Initialization (SGI) and Semantic-Prompt Consistency (SPC) Regularization for open-world free view synthesis with sparse inputs. Specifically, SGI provides a dense, scene-layout-based Gaussian distribution by utilizing view-changed images generated from the video generation model and view-constraint Gaussian points densification. Additionally, SPC mitigates limited view supervision by employing semantic-prompt-based consistency constraints developed by SAM2. This approach leverages available semantics from training views, serving as instructive prompts, to optimize visually overlapping regions in novel views with 2D and 3D consistency constraints. Extensive experiments demonstrate the superior performance of SPC-GS across Replica and ScanNet benchmarks. Notably, our SPC-GS achieves a 3.06 dB gain in PSNR for reconstruction quality and a 7.3% improvement in mIoU for open-world semantic segmentation.
Authors:Ye Tao, Jiawei Zhang, Yahao Shi, Dongqing Zou, Bin Zhou
Title: GSV3D: Gaussian Splatting-based Geometric Distillation with Stable Video Diffusion for Single-Image 3D Object Generation
Abstract:
Image-based 3D generation has vast applications in robotics and gaming, where high-quality, diverse outputs and consistent 3D representations are crucial. However, existing methods have limitations: 3D diffusion models are limited by dataset scarcity and the absence of strong pre-trained priors, while 2D diffusion-based approaches struggle with geometric consistency. We propose a method that leverages 2D diffusion models' implicit 3D reasoning ability while ensuring 3D consistency via Gaussian-splatting-based geometric distillation. Specifically, the proposed Gaussian Splatting Decoder enforces 3D consistency by transforming SV3D latent outputs into an explicit 3D representation. Unlike SV3D, which only relies on implicit 2D representations for video generation, Gaussian Splatting explicitly encodes spatial and appearance attributes, enabling multi-view consistency through geometric constraints. These constraints correct view inconsistencies, ensuring robust geometric consistency. As a result, our approach simultaneously generates high-quality, multi-view-consistent images and accurate 3D models, providing a scalable solution for single-image-based 3D generation and bridging the gap between 2D Diffusion diversity and 3D structural coherence. Experimental results demonstrate state-of-the-art multi-view consistency and strong generalization across diverse datasets. The code will be made publicly available upon acceptance.
Authors:Runze Zhang, Guoguang Du, Xiaochuan Li, Qi Jia, Liang Jin, Lu Liu, Jingjing Wang, Cong Xu, Zhenhua Guo, Yaqian Zhao, Xiaoli Gong, Rengang Li, Baoyu Fan
Title: DropletVideo: A Dataset and Approach to Explore Integral Spatio-Temporal Consistent Video Generation
Abstract:
Spatio-temporal consistency is a critical research topic in video generation. A qualified generated video segment must ensure plot plausibility and coherence while maintaining visual consistency of objects and scenes across varying viewpoints. Prior research, especially in open-source projects, primarily focuses on either temporal or spatial consistency, or their basic combination, such as appending a description of a camera movement after a prompt without constraining the outcomes of this movement. However, camera movement may introduce new objects to the scene or eliminate existing ones, thereby overlaying and affecting the preceding narrative. Especially in videos with numerous camera movements, the interplay between multiple plots becomes increasingly complex. This paper introduces and examines integral spatio-temporal consistency, considering the synergy between plot progression and camera techniques, and the long-term impact of prior content on subsequent generation. Our research encompasses dataset construction through to the development of the model. Initially, we constructed a DropletVideo-10M dataset, which comprises 10 million videos featuring dynamic camera motion and object actions. Each video is annotated with an average caption of 206 words, detailing various camera movements and plot developments. Following this, we developed and trained the DropletVideo model, which excels in preserving spatio-temporal coherence during video generation. The DropletVideo dataset and model are accessible at https://dropletx.github.io.
Authors:Shutong Ding, Yimiao Zhou, Ke Hu, Xi Yao, Junchi Yan, Xiaoying Tang, Ye Shi
Title: Exploring the Boundary of Diffusion-based Methods for Solving Constrained Optimization
Abstract:
Diffusion models have achieved remarkable success in generative tasks such as image and video synthesis, and in control domains like robotics, owing to their strong generalization capabilities and proficiency in fitting complex multimodal distributions. However, their full potential in solving Continuous Constrained Optimization problems remains largely underexplored. Our work commences by investigating a two-dimensional constrained quadratic optimization problem as an illustrative example to explore the inherent challenges and issues when applying diffusion models to such optimization tasks and providing theoretical analyses for these observations. To address the identified gaps and harness diffusion models for Continuous Constrained Optimization, we build upon this analysis to propose a novel diffusion-based framework for optimization problems called DiOpt. This framework operates in two distinct phases: an initial warm-start phase, implemented via supervised learning, followed by a bootstrapping phase. This dual-phase architecture is designed to iteratively refine solutions, thereby improving the objective function while rigorously satisfying problem constraints. Finally, multiple candidate solutions are sampled, and the optimal one is selected through a screening process. We present extensive experiments detailing the training dynamics of DiOpt, its performance across a diverse set of Continuous Constrained Optimization problems, and an analysis of the impact of DiOpt's various hyperparameters.
Authors:Shuting Wang, Haihong Tang, Zhicheng Dou, Chenyan Xiong
Title: Harness Local Rewards for Global Benefits: Effective Text-to-Video Generation Alignment with Patch-level Reward Models
Abstract:
The emergence of diffusion models (DMs) has significantly improved the quality of text-to-video generation models (VGMs). However, current VGM optimization primarily emphasizes the global quality of videos, overlooking localized errors, which leads to suboptimal generation capabilities. To address this issue, we propose a post-training strategy for VGMs, HALO, which explicitly incorporates local feedback from a patch reward model, providing detailed and comprehensive training signals with the video reward model for advanced VGM optimization. To develop an effective patch reward model, we distill GPT-4o to continuously train our video reward model, which enhances training efficiency and ensures consistency between video and patch reward distributions. Furthermore, to harmoniously integrate patch rewards into VGM optimization, we introduce a granular DPO (Gran-DPO) algorithm for DMs, allowing collaborative use of both patch and video rewards during the optimization process. Experimental results indicate that our patch reward model aligns well with human annotations and HALO substantially outperforms the baselines across two evaluation methods. Further experiments quantitatively prove the existence of patch defects, and our proposed method could effectively alleviate this issue.
Authors:Zelu Qi, Ping Shi, Shuqi Wang, Chaoyang Zhang, Fei Zhao, Zefeng Ying, Da Pan, Xi Yang, Zheqi He, Teng Dai
Title: T2VEval: Benchmark Dataset and Objective Evaluation Method for T2V-generated Videos
Abstract:
Recent advances in text-to-video (T2V) technology, as demonstrated by models such as Runway Gen-3, Pika, Sora, and Kling, have significantly broadened the applicability and popularity of the technology. This progress has created a growing demand for accurate quality assessment metrics to evaluate the perceptual quality of T2V-generated videos and optimize video generation models. However, assessing the quality of text-to-video outputs remain challenging due to the presence of highly complex distortions, such as unnatural actions and phenomena that defy human cognition. To address these challenges, we constructed T2VEval-Bench, a multi-dimensional benchmark dataset for text-to-video quality evaluation, which contains 148 textual prompts and 1,783 videos generated by 13 T2V models. To ensure a comprehensive evaluation, we scored each video on four dimensions in the subjective experiment, which are overall impression, text-video consistency, realness, and technical quality. Based on T2VEval-Bench, we developed T2VEval, a multi-branch fusion scheme for T2V quality evaluation. T2VEval assesses videos across three branches: text-video consistency, realness, and technical quality. Using an attention-based fusion module, T2VEval effectively integrates features from each branch and predicts scores with the aid of a large language model. Additionally, we implemented a divide-and-conquer training strategy, enabling each branch to learn targeted knowledge while maintaining synergy with the others. Experimental results demonstrate that T2VEval achieves state-of-the-art performance across multiple metrics.
Authors:Yingjie Chen, Yifang Men, Yuan Yao, Miaomiao Cui, Liefeng Bo
Title: Perception-as-Control: Fine-grained Controllable Image Animation with 3D-aware Motion Representation
Abstract:
Motion-controllable image animation is a fundamental task with a wide range of potential applications. Recent works have made progress in controlling camera or object motion via various motion representations, while they still struggle to support collaborative camera and object motion control with adaptive control granularity. To this end, we introduce 3D-aware motion representation and propose an image animation framework, called Perception-as-Control, to achieve fine-grained collaborative motion control. Specifically, we construct 3D-aware motion representation from a reference image, manipulate it based on interpreted user instructions, and perceive it from different viewpoints. In this way, camera and object motions are transformed into intuitive and consistent visual changes. Then, our framework leverages the perception results as motion control signals, enabling it to support various motion-related video synthesis tasks in a unified and flexible way. Experiments demonstrate the superiority of the proposed approach. For more details and qualitative results, please refer to our anonymous project webpage: https://chen-yingjie.github.io/projects/Perception-as-Control.
Authors:Maham Tanveer, Yang Zhou, Simon Niklaus, Ali Mahdavi Amiri, Hao Zhang, Krishna Kumar Singh, Nanxuan Zhao
Title: MotionBridge: Dynamic Video Inbetweening with Flexible Controls
Abstract:
By generating plausible and smooth transitions between two image frames, video inbetweening is an essential tool for video editing and long video synthesis. Traditional works lack the capability to generate complex large motions. While recent video generation techniques are powerful in creating high-quality results, they often lack fine control over the details of intermediate frames, which can lead to results that do not align with the creative mind. We introduce MotionBridge, a unified video inbetweening framework that allows flexible controls, including trajectory strokes, keyframes, masks, guide pixels, and text. However, learning such multi-modal controls in a unified framework is a challenging task. We thus design two generators to extract the control signal faithfully and encode feature through dual-branch embedders to resolve ambiguities. We further introduce a curriculum training strategy to smoothly learn various controls. Extensive qualitative and quantitative experiments have demonstrated that such multi-modal controls enable a more dynamic, customizable, and contextually accurate visual narrative.
Authors:Samuel Teodoro, Agus Gunawan, Soo Ye Kim, Jihyong Oh, Munchurl Kim
Title: PRIMEdit: Probability Redistribution for Instance-aware Multi-object Video Editing with Benchmark Dataset
Abstract:
Recent AI-based video editing has enabled users to edit videos through simple text prompts, significantly simplifying the editing process. However, recent zero-shot video editing techniques primarily focus on global or single-object edits, which can lead to unintended changes in other parts of the video. When multiple objects require localized edits, existing methods face challenges, such as unfaithful editing, editing leakage, and lack of suitable evaluation datasets and metrics. To overcome these limitations, we propose $\textbf{P}$robability $\textbf{R}$edistribution for $\textbf{I}$nstance-aware $\textbf{M}$ulti-object Video $\textbf{Edit}$ing ($\textbf{PRIMEdit}$). PRIMEdit is a zero-shot framework that introduces two key modules: (i) Instance-centric Probability Redistribution (IPR) to ensure precise localization and faithful editing and (ii) Disentangled Multi-instance Sampling (DMS) to prevent editing leakage. Additionally, we present our new MIVE Dataset for video editing featuring diverse video scenarios, and introduce the Cross-Instance Accuracy (CIA) Score to evaluate editing leakage in multi-instance video editing tasks. Our extensive qualitative, quantitative, and user study evaluations demonstrate that PRIMEdit significantly outperforms recent state-of-the-art methods in terms of editing faithfulness, accuracy, and leakage prevention, setting a new benchmark for multi-instance video editing.
Authors:Jinxiu Liu, Shaoheng Lin, Yinxiao Li, Ming-Hsuan Yang
Title: DynamicScaler: Seamless and Scalable Video Generation for Panoramic Scenes
Abstract:
The increasing demand for immersive AR/VR applications and spatial intelligence has heightened the need to generate high-quality scene-level and 360° panoramic video. However, most video diffusion models are constrained by limited resolution and aspect ratio, which restricts their applicability to scene-level dynamic content synthesis. In this work, we propose the DynamicScaler, addressing these challenges by enabling spatially scalable and panoramic dynamic scene synthesis that preserves coherence across panoramic scenes of arbitrary size. Specifically, we introduce a Offset Shifting Denoiser, facilitating efficient, synchronous, and coherent denoising panoramic dynamic scenes via a diffusion model with fixed resolution through a seamless rotating Window, which ensures seamless boundary transitions and consistency across the entire panoramic space, accommodating varying resolutions and aspect ratios. Additionally, we employ a Global Motion Guidance mechanism to ensure both local detail fidelity and global motion continuity. Extensive experiments demonstrate our method achieves superior content and motion quality in panoramic scene-level video generation, offering a training-free, efficient, and scalable solution for immersive dynamic scene creation with constant VRAM consumption regardless of the output video resolution. Our project page is available at \url{https://dynamic-scaler.pages.dev/}.
Authors:Qiao Jin, Xiaodong Chen, Wu Liu, Tao Mei, Yongdong Zhang
Title: T-SVG: Text-Driven Stereoscopic Video Generation
Abstract:
The advent of stereoscopic videos has opened new horizons in multimedia, particularly in extended reality (XR) and virtual reality (VR) applications, where immersive content captivates audiences across various platforms. Despite its growing popularity, producing stereoscopic videos remains challenging due to the technical complexities involved in generating stereo parallax. This refers to the positional differences of objects viewed from two distinct perspectives and is crucial for creating depth perception. This complex process poses significant challenges for creators aiming to deliver convincing and engaging presentations. To address these challenges, this paper introduces the Text-driven Stereoscopic Video Generation (T-SVG) system. This innovative, model-agnostic, zero-shot approach streamlines video generation by using text prompts to create reference videos. These videos are transformed into 3D point cloud sequences, which are rendered from two perspectives with subtle parallax differences, achieving a natural stereoscopic effect. T-SVG represents a significant advancement in stereoscopic content creation by integrating state-of-the-art, training-free techniques in text-to-video generation, depth estimation, and video inpainting. Its flexible architecture ensures high efficiency and user-friendliness, allowing seamless updates with newer models without retraining. By simplifying the production pipeline, T-SVG makes stereoscopic video generation accessible to a broader audience, demonstrating its potential to revolutionize the field.
Authors:Mohammed Suhail, Carlos Esteves, Leonid Sigal, Ameesh Makadia
Title: Factorized Video Autoencoders for Efficient Generative Modelling
Abstract:
Latent variable generative models have emerged as powerful tools for generative tasks including image and video synthesis. These models are enabled by pretrained autoencoders that map high resolution data into a compressed lower dimensional latent space, where the generative models can subsequently be developed while requiring fewer computational resources. Despite their effectiveness, the direct application of latent variable models to higher dimensional domains such as videos continues to pose challenges for efficient training and inference. In this paper, we propose an autoencoder that projects volumetric data onto a four-plane factorized latent space that grows sublinearly with the input size, making it ideal for higher dimensional data like videos. The design of our factorized model supports straightforward adoption in a number of conditional generation tasks with latent diffusion models (LDMs), such as class-conditional generation, frame prediction, and video interpolation. Our results show that the proposed four-plane latent space retains a rich representation needed for high-fidelity reconstructions despite the heavy compression, while simultaneously enabling LDMs to operate with significant improvements in speed and memory.
Authors:Shuling Zhao, Fa-Ting Hong, Xiaoshui Huang, Dan Xu
Title: Synergizing Motion and Appearance: Multi-Scale Compensatory Codebooks for Talking Head Video Generation
Abstract:
Talking head video generation aims to generate a realistic talking head video that preserves the person's identity from a source image and the motion from a driving video. Despite the promising progress made in the field, it remains a challenging and critical problem to generate videos with accurate poses and fine-grained facial details simultaneously. Essentially, facial motion is often highly complex to model precisely, and the one-shot source face image cannot provide sufficient appearance guidance during generation due to dynamic pose changes. To tackle the problem, we propose to jointly learn motion and appearance codebooks and perform multi-scale codebook compensation to effectively refine both the facial motion conditions and appearance features for talking face image decoding. Specifically, the designed multi-scale motion and appearance codebooks are learned simultaneously in a unified framework to store representative global facial motion flow and appearance patterns. Then, we present a novel multi-scale motion and appearance compensation module, which utilizes a transformer-based codebook retrieval strategy to query complementary information from the two codebooks for joint motion and appearance compensation. The entire process produces motion flows of greater flexibility and appearance features with fewer distortions across different scales, resulting in a high-quality talking head video generation framework. Extensive experiments on various benchmarks validate the effectiveness of our approach and demonstrate superior generation results from both qualitative and quantitative perspectives when compared to state-of-the-art competitors.
Authors:S P Sharan, Minkyu Choi, Sahil Shah, Harsh Goel, Mohammad Omama, Sandeep Chinchali
Title: Neuro-Symbolic Evaluation of Text-to-Video Models using Formal Verification
Abstract:
Recent advancements in text-to-video models such as Sora, Gen-3, MovieGen, and CogVideoX are pushing the boundaries of synthetic video generation, with adoption seen in fields like robotics, autonomous driving, and entertainment. As these models become prevalent, various metrics and benchmarks have emerged to evaluate the quality of the generated videos. However, these metrics emphasize visual quality and smoothness, neglecting temporal fidelity and text-to-video alignment, which are crucial for safety-critical applications. To address this gap, we introduce NeuS-V, a novel synthetic video evaluation metric that rigorously assesses text-to-video alignment using neuro-symbolic formal verification techniques. Our approach first converts the prompt into a formally defined Temporal Logic (TL) specification and translates the generated video into an automaton representation. Then, it evaluates the text-to-video alignment by formally checking the video automaton against the TL specification. Furthermore, we present a dataset of temporally extended prompts to evaluate state-of-the-art video generation models against our benchmark. We find that NeuS-V demonstrates a higher correlation by over 5x with human evaluations when compared to existing metrics. Our evaluation further reveals that current video generation models perform poorly on these temporally complex prompts, highlighting the need for future work in improving text-to-video generation capabilities.
Authors:Anurag Bagchi, Zhipeng Bao, Yu-Xiong Wang, Pavel Tokmakov, Martial Hebert
Title: ReferEverything: Towards Segmenting Everything We Can Speak of in Videos
Abstract:
We present REM, a framework for segmenting a wide range of concepts in video that can be described through natural language. Our method leverages the universal visual-language mapping learned by video diffusion models on Internet-scale data by fine-tuning them on small-scale Referring Object Segmentation datasets. Our key insight is to preserve the entirety of the generative model's architecture by shifting its objective from predicting noise to predicting mask latents. The resulting model can accurately segment rare and unseen objects, despite only being trained on a limited set of categories. Additionally, it can effortlessly generalize to non-object dynamic concepts, such as smoke or raindrops, as demonstrated in our new benchmark for Referring Video Process Segmentation (Ref-VPS). REM performs on par with the state-of-the-art on in-domain datasets, like Ref-DAVIS, while outperforming them by up to 12 IoU points out-of-domain, leveraging the power of generative pre-training. We also show that advancements in video generation directly improve segmentation.
Authors:Ailing Zeng, Yuhang Yang, Weidong Chen, Wei Liu
Title: The Dawn of Video Generation: Preliminary Explorations with SORA-like Models
Abstract:
High-quality video generation, encompassing text-to-video (T2V), image-to-video (I2V), and video-to-video (V2V) generation, holds considerable significance in content creation to benefit anyone express their inherent creativity in new ways and world simulation to modeling and understanding the world. Models like SORA have advanced generating videos with higher resolution, more natural motion, better vision-language alignment, and increased controllability, particularly for long video sequences. These improvements have been driven by the evolution of model architectures, shifting from UNet to more scalable and parameter-rich DiT models, along with large-scale data expansion and refined training strategies. However, despite the emergence of DiT-based closed-source and open-source models, a comprehensive investigation into their capabilities and limitations remains lacking. Furthermore, the rapid development has made it challenging for recent benchmarks to fully cover SORA-like models and recognize their significant advancements. Additionally, evaluation metrics often fail to align with human preferences.
Authors:Yifang Men, Yuan Yao, Miaomiao Cui, Liefeng Bo
Title: MIMO: Controllable Character Video Synthesis with Spatial Decomposed Modeling
Abstract:
Character video synthesis aims to produce realistic videos of animatable characters within lifelike scenes. As a fundamental problem in the computer vision and graphics community, 3D works typically require multi-view captures for per-case training, which severely limits their applicability of modeling arbitrary characters in a short time. Recent 2D methods break this limitation via pre-trained diffusion models, but they struggle for pose generality and scene interaction. To this end, we propose MIMO, a novel framework which can not only synthesize character videos with controllable attributes (i.e., character, motion and scene) provided by simple user inputs, but also simultaneously achieve advanced scalability to arbitrary characters, generality to novel 3D motions, and applicability to interactive real-world scenes in a unified framework. The core idea is to encode the 2D video to compact spatial codes, considering the inherent 3D nature of video occurrence. Concretely, we lift the 2D frame pixels into 3D using monocular depth estimators, and decompose the video clip to three spatial components (i.e., main human, underlying scene, and floating occlusion) in hierarchical layers based on the 3D depth. These components are further encoded to canonical identity code, structured motion code and full scene code, which are utilized as control signals of synthesis process. The design of spatial decomposed modeling enables flexible user control, complex motion expression, as well as 3D-aware synthesis for scene interactions. Experimental results demonstrate effectiveness and robustness of the proposed method.
Authors:Xuan Gao, Haiyao Xiao, Chenglai Zhong, Shimin Hu, Yudong Guo, Juyong Zhang
Title: Portrait Video Editing Empowered by Multimodal Generative Priors
Abstract:
We introduce PortraitGen, a powerful portrait video editing method that achieves consistent and expressive stylization with multimodal prompts. Traditional portrait video editing methods often struggle with 3D and temporal consistency, and typically lack in rendering quality and efficiency. To address these issues, we lift the portrait video frames to a unified dynamic 3D Gaussian field, which ensures structural and temporal coherence across frames. Furthermore, we design a novel Neural Gaussian Texture mechanism that not only enables sophisticated style editing but also achieves rendering speed over 100FPS. Our approach incorporates multimodal inputs through knowledge distilled from large-scale 2D generative models. Our system also incorporates expression similarity guidance and a face-aware portrait editing module, effectively mitigating degradation issues associated with iterative dataset updates. Extensive experiments demonstrate the temporal consistency, editing efficiency, and superior rendering quality of our method. The broad applicability of the proposed approach is demonstrated through various applications, including text-driven editing, image-driven editing, and relighting, highlighting its great potential to advance the field of video editing. Demo videos and released code are provided in our project page: https://ustc3dv.github.io/PortraitGen/
Authors:Deyin Liu, Lin Yuanbo Wu, Xianghua Xie
Title: Blended Latent Diffusion under Attention Control for Real-World Video Editing
Abstract:
Due to lack of fully publicly available text-to-video models, current video editing methods tend to build on pre-trained text-to-image generation models, however, they still face grand challenges in dealing with the local editing of video with temporal information. First, although existing methods attempt to focus on local area editing by a pre-defined mask, the preservation of the outside-area background is non-ideal due to the spatially entire generation of each frame. In addition, specially providing a mask by user is an additional costly undertaking, so an autonomous masking strategy integrated into the editing process is desirable. Last but not least, image-level pretrained model hasn't learned temporal information across frames of a video which is vital for expressing the motion and dynamics. In this paper, we propose to adapt a image-level blended latent diffusion model to perform local video editing tasks. Specifically, we leverage DDIM inversion to acquire the latents as background latents instead of the randomly noised ones to better preserve the background information of the input video. We further introduce an autonomous mask manufacture mechanism derived from cross-attention maps in diffusion steps. Finally, we enhance the temporal consistency across video frames by transforming the self-attention blocks of U-Net into temporal-spatial blocks. Through extensive experiments, our proposed approach demonstrates effectiveness in different real-world video editing tasks.
Authors:Juncan Deng, Shuaiting Li, Zeyu Wang, Hong Gu, Kedong Xu, Kejie Huang
Title: VQ4DiT: Efficient Post-Training Vector Quantization for Diffusion Transformers
Abstract:
The Diffusion Transformers Models (DiTs) have transitioned the network architecture from traditional UNets to transformers, demonstrating exceptional capabilities in image generation. Although DiTs have been widely applied to high-definition video generation tasks, their large parameter size hinders inference on edge devices. Vector quantization (VQ) can decompose model weight into a codebook and assignments, allowing extreme weight quantization and significantly reducing memory usage. In this paper, we propose VQ4DiT, a fast post-training vector quantization method for DiTs. We found that traditional VQ methods calibrate only the codebook without calibrating the assignments. This leads to weight sub-vectors being incorrectly assigned to the same assignment, providing inconsistent gradients to the codebook and resulting in a suboptimal result. To address this challenge, VQ4DiT calculates the candidate assignment set for each weight sub-vector based on Euclidean distance and reconstructs the sub-vector based on the weighted average. Then, using the zero-data and block-wise calibration method, the optimal assignment from the set is efficiently selected while calibrating the codebook. VQ4DiT quantizes a DiT XL/2 model on a single NVIDIA A100 GPU within 20 minutes to 5 hours depending on the different quantization settings. Experiments show that VQ4DiT establishes a new state-of-the-art in model size and performance trade-offs, quantizing weights to 2-bit precision while retaining acceptable image generation quality.
Authors:Yongjie Fu, Yunlong Li, Xuan Di
Title: GenDDS: Generating Diverse Driving Video Scenarios with Prompt-to-Video Generative Model
Abstract:
Autonomous driving training requires a diverse range of datasets encompassing various traffic conditions, weather scenarios, and road types. Traditional data augmentation methods often struggle to generate datasets that represent rare occurrences. To address this challenge, we propose GenDDS, a novel approach for generating driving scenarios generation by leveraging the capabilities of Stable Diffusion XL (SDXL), an advanced latent diffusion model. Our methodology involves the use of descriptive prompts to guide the synthesis process, aimed at producing realistic and diverse driving scenarios. With the power of the latest computer vision techniques, such as ControlNet and Hotshot-XL, we have built a complete pipeline for video generation together with SDXL. We employ the KITTI dataset, which includes real-world driving videos, to train the model. Through a series of experiments, we demonstrate that our model can generate high-quality driving videos that closely replicate the complexity and variability of real-world driving scenarios. This research contributes to the development of sophisticated training data for autonomous driving systems and opens new avenues for creating virtual environments for simulation and validation purposes.
Authors:Joseph Cho, Samuel Schmidgall, Cyril Zakka, Mrudang Mathur, Dhamanpreet Kaur, Rohan Shad, William Hiesinger
Title: SurGen: Text-Guided Diffusion Model for Surgical Video Generation
Abstract:
Diffusion-based video generation models have made significant strides, producing outputs with improved visual fidelity, temporal coherence, and user control. These advancements hold great promise for improving surgical education by enabling more realistic, diverse, and interactive simulation environments. In this study, we introduce SurGen, a text-guided diffusion model tailored for surgical video synthesis. SurGen produces videos with the highest resolution and longest duration among existing surgical video generation models. We validate the visual and temporal quality of the outputs using standard image and video generation metrics. Additionally, we assess their alignment to the corresponding text prompts through a deep learning classifier trained on surgical data. Our results demonstrate the potential of diffusion models to serve as valuable educational tools for surgical trainees.
Authors:Jiasong Feng, Ao Ma, Jing Wang, Ke Cao, Zhanjie Zhang
Title: FancyVideo: Towards Dynamic and Consistent Video Generation via Cross-frame Textual Guidance
Abstract:
Synthesizing motion-rich and temporally consistent videos remains a challenge in artificial intelligence, especially when dealing with extended durations. Existing text-to-video (T2V) models commonly employ spatial cross-attention for text control, equivalently guiding different frame generations without frame-specific textual guidance. Thus, the model's capacity to comprehend the temporal logic conveyed in prompts and generate videos with coherent motion is restricted. To tackle this limitation, we introduce FancyVideo, an innovative video generator that improves the existing text-control mechanism with the well-designed Cross-frame Textual Guidance Module (CTGM). Specifically, CTGM incorporates the Temporal Information Injector (TII) and Temporal Affinity Refiner (TAR) at the beginning and end of cross-attention, respectively, to achieve frame-specific textual guidance. Firstly, TII injects frame-specific information from latent features into text conditions, thereby obtaining cross-frame textual conditions. Then, TAR refines the correlation matrix between cross-frame textual conditions and latent features along the time dimension. Extensive experiments comprising both quantitative and qualitative evaluations demonstrate the effectiveness of FancyVideo. Our approach achieves state-of-the-art T2V generation results on the EvalCrafter benchmark and facilitates the synthesis of dynamic and consistent videos. Note that the T2V process of FancyVideo essentially involves a text-to-image step followed by T+I2V. This means it also supports the generation of videos from user images, i.e., the image-to-video (I2V) task. A significant number of experiments have shown that its performance is also outstanding.
Authors:Idan Kligvasser, Regev Cohen, George Leifman, Ehud Rivlin, Michael Elad
Title: Anchored Diffusion for Video Face Reenactment
Abstract:
Video generation has drawn significant interest recently, pushing the development of large-scale models capable of producing realistic videos with coherent motion. Due to memory constraints, these models typically generate short video segments that are then combined into long videos. The merging process poses a significant challenge, as it requires ensuring smooth transitions and overall consistency. In this paper, we introduce Anchored Diffusion, a novel method for synthesizing relatively long and seamless videos. We extend Diffusion Transformers (DiTs) to incorporate temporal information, creating our sequence-DiT (sDiT) model for generating short video segments. Unlike previous works, we train our model on video sequences with random non-uniform temporal spacing and incorporate temporal information via external guidance, increasing flexibility and allowing it to capture both short and long-term relationships. Furthermore, during inference, we leverage the transformer architecture to modify the diffusion process, generating a batch of non-uniform sequences anchored to a common frame, ensuring consistency regardless of temporal distance. To demonstrate our method, we focus on face reenactment, the task of creating a video from a source image that replicates the facial expressions and movements from a driving video. Through comprehensive experiments, we show our approach outperforms current techniques in producing longer consistent high-quality videos while offering editing capabilities.
Authors:Fa-Ting Hong, Dan Xu
Title: Learning Online Scale Transformation for Talking Head Video Generation
Abstract:
One-shot talking head video generation uses a source image and driving video to create a synthetic video where the source person's facial movements imitate those of the driving video. However, differences in scale between the source and driving images remain a challenge for face reenactment. Existing methods attempt to locate a frame in the driving video that aligns best with the source image, but imprecise alignment can result in suboptimal outcomes. To this end, we introduce a scale transformation module that can automatically adjust the scale of the driving image to fit that of the source image, by using the information of scale difference maintained in the detected keypoints of the source image and the driving frame. Furthermore, to keep perceiving the scale information of faces during the generation process, we incorporate the scale information learned from the scale transformation module into each layer of the generation process to produce a final result with an accurate scale. Our method can perform accurate motion transfer between the two images without any anchor frame, achieved through the contributions of the proposed online scale transformation facial reenactment network. Extensive experiments have demonstrated that our proposed method adjusts the scale of the driving face automatically according to the source face, and generates high-quality faces with an accurate scale in the cross-identity facial reenactment.
Authors:Zifan Jiang, Gerard Sant, Amit Moryossef, Mathias Müller, Rico Sennrich, Sarah Ebling
Title: SignCLIP: Connecting Text and Sign Language by Contrastive Learning
Abstract:
We present SignCLIP, which re-purposes CLIP (Contrastive Language-Image Pretraining) to project spoken language text and sign language videos, two classes of natural languages of distinct modalities, into the same space. SignCLIP is an efficient method of learning useful visual representations for sign language processing from large-scale, multilingual video-text pairs, without directly optimizing for a specific task or sign language which is often of limited size. We pretrain SignCLIP on Spreadthesign, a prominent sign language dictionary consisting of ~500 thousand video clips in up to 44 sign languages, and evaluate it with various downstream datasets. SignCLIP discerns in-domain signing with notable text-to-video/video-to-text retrieval accuracy. It also performs competitively for out-of-domain downstream tasks such as isolated sign language recognition upon essential few-shot prompting or fine-tuning. We analyze the latent space formed by the spoken language text and sign language poses, which provides additional linguistic insights. Our code and models are openly available.
Authors:Zhengbang Yang, Haotian Xia, Jingxi Li, Zezhi Chen, Zhuangdi Zhu, Weining Shen
Title: Sports Intelligence: Assessing the Sports Understanding Capabilities of Language Models through Question Answering from Text to Video
Abstract:
Understanding sports is crucial for the advancement of Natural Language Processing (NLP) due to its intricate and dynamic nature. Reasoning over complex sports scenarios has posed significant challenges to current NLP technologies which require advanced cognitive capabilities. Toward addressing the limitations of existing benchmarks on sports understanding in the NLP field, we extensively evaluated mainstream large language models for various sports tasks. Our evaluation spans from simple queries on basic rules and historical facts to complex, context-specific reasoning, leveraging strategies from zero-shot to few-shot learning, and chain-of-thought techniques. In addition to unimodal analysis, we further assessed the sports reasoning capabilities of mainstream video language models to bridge the gap in multimodal sports understanding benchmarking. Our findings highlighted the critical challenges of sports understanding for NLP. We proposed a new benchmark based on a comprehensive overview of existing sports datasets and provided extensive error analysis which we hope can help identify future research priorities in this field.
Authors:Zenghao Chai, Chen Tang, Yongkang Wong, Mohan Kankanhalli
Title: STAR: Skeleton-aware Text-based 4D Avatar Generation with In-Network Motion Retargeting
Abstract:
The creation of 4D avatars (i.e., animated 3D avatars) from text description typically uses text-to-image (T2I) diffusion models to synthesize 3D avatars in the canonical space and subsequently applies animation with target motions. However, such an optimization-by-animation paradigm has several drawbacks. (1) For pose-agnostic optimization, the rendered images in canonical pose for naive Score Distillation Sampling (SDS) exhibit domain gap and cannot preserve view-consistency using only T2I priors, and (2) For post hoc animation, simply applying the source motions to target 3D avatars yields translation artifacts and misalignment. To address these issues, we propose Skeleton-aware Text-based 4D Avatar generation with in-network motion Retargeting (STAR). STAR considers the geometry and skeleton differences between the template mesh and target avatar, and corrects the mismatched source motion by resorting to the pretrained motion retargeting techniques. With the informatively retargeted and occlusion-aware skeleton, we embrace the skeleton-conditioned T2I and text-to-video (T2V) priors, and propose a hybrid SDS module to coherently provide multi-view and frame-consistent supervision signals. Hence, STAR can progressively optimize the geometry, texture, and motion in an end-to-end manner. The quantitative and qualitative experiments demonstrate our proposed STAR can synthesize high-quality 4D avatars with vivid animations that align well with the text description. Additional ablation studies shows the contributions of each component in STAR. The source code and demos are available at: \href{https://star-avatar.github.io}{https://star-avatar.github.io}.
Authors:Xiefan Guo, Jinlin Liu, Miaomiao Cui, Liefeng Bo, Di Huang
Title: I4VGen: Image as Free Stepping Stone for Text-to-Video Generation
Abstract:
Text-to-video generation has trailed behind text-to-image generation in terms of quality and diversity, primarily due to the inherent complexities of spatio-temporal modeling and the limited availability of video-text datasets. Recent text-to-video diffusion models employ the image as an intermediate step, significantly enhancing overall performance but incurring high training costs. In this paper, we present I4VGen, a novel video diffusion inference pipeline to leverage advanced image techniques to enhance pre-trained text-to-video diffusion models, which requires no additional training. Instead of the vanilla text-to-video inference pipeline, I4VGen consists of two stages: anchor image synthesis and anchor image-augmented text-to-video synthesis. Correspondingly, a simple yet effective generation-selection strategy is employed to achieve visually-realistic and semantically-faithful anchor image, and an innovative noise-invariant video score distillation sampling (NI-VSDS) is developed to animate the image to a dynamic video by distilling motion knowledge from video diffusion models, followed by a video regeneration process to refine the video. Extensive experiments show that the proposed method produces videos with higher visual realism and textual fidelity. Furthermore, I4VGen also supports being seamlessly integrated into existing image-to-video diffusion models, thereby improving overall video quality.
Authors:Oscar Davis, Samuel Kessler, Mircea Petrache, İsmail İlkan Ceylan, Michael Bronstein, Avishek Joey Bose
Title: Fisher Flow Matching for Generative Modeling over Discrete Data
Abstract:
Generative modeling over discrete data has recently seen numerous success stories, with applications spanning language modeling, biological sequence design, and graph-structured molecular data. The predominant generative modeling paradigm for discrete data is still autoregressive, with more recent alternatives based on diffusion or flow-matching falling short of their impressive performance in continuous data settings, such as image or video generation. In this work, we introduce Fisher-Flow, a novel flow-matching model for discrete data. Fisher-Flow takes a manifestly geometric perspective by considering categorical distributions over discrete data as points residing on a statistical manifold equipped with its natural Riemannian metric: the $\textit{Fisher-Rao metric}$. As a result, we demonstrate discrete data itself can be continuously reparameterised to points on the positive orthant of the $d$-hypersphere $\mathbb{S}^d_+$, which allows us to define flows that map any source distribution to target in a principled manner by transporting mass along (closed-form) geodesics of $\mathbb{S}^d_+$. Furthermore, the learned flows in Fisher-Flow can be further bootstrapped by leveraging Riemannian optimal transport leading to improved training dynamics. We prove that the gradient flow induced by Fisher-Flow is optimal in reducing the forward KL divergence. We evaluate Fisher-Flow on an array of synthetic and diverse real-world benchmarks, including designing DNA Promoter, and DNA Enhancer sequences. Empirically, we find that Fisher-Flow improves over prior diffusion and flow-matching models on these benchmarks.
Authors:Robert McCarthy, Daniel C. H. Tan, Dominik Schmidt, Fernando Acero, Nathan Herr, Yilun Du, Thomas G. Thuruthel, Zhibin Li
Title: Towards Generalist Robot Learning from Internet Video: A Survey
Abstract:
Scaling deep learning to massive and diverse internet data has driven remarkable breakthroughs in domains such as video generation and natural language processing. Robot learning, however, has thus far failed to replicate this success and remains constrained by a scarcity of available data. Learning from videos (LfV) methods aim to address this data bottleneck by augmenting traditional robot data with large-scale internet video. This video data provides foundational information regarding physical dynamics, behaviours, and tasks, and can be highly informative for general-purpose robots. This survey systematically examines the emerging field of LfV. We first outline essential concepts, including detailing fundamental LfV challenges such as distribution shift and missing action labels in video data. Next, we comprehensively review current methods for extracting knowledge from large-scale internet video, overcoming LfV challenges, and improving robot learning through video-informed training. The survey concludes with a critical discussion of future opportunities. Here, we emphasize the need for scalable foundation model approaches that can leverage the full range of available internet video and enhance the learning of robot policies and dynamics models. Overall, the survey aims to inform and catalyse future LfV research, driving progress towards general-purpose robots.
Authors:Fanyi Wang, Peng Liu, Haotian Hu, Dan Meng, Jingwen Su, Jinjin Xu, Yanhao Zhang, Xiaoming Ren, Zhiwang Zhang
Title: LoopAnimate: Loopable Salient Object Animation
Abstract:
Research on diffusion model-based video generation has advanced rapidly. However, limitations in object fidelity and generation length hinder its practical applications. Additionally, specific domains like animated wallpapers require seamless looping, where the first and last frames of the video match seamlessly. To address these challenges, this paper proposes LoopAnimate, a novel method for generating videos with consistent start and end frames. To enhance object fidelity, we introduce a framework that decouples multi-level image appearance and textual semantic information. Building upon an image-to-image diffusion model, our approach incorporates both pixel-level and feature-level information from the input image, injecting image appearance and textual semantic embeddings at different positions of the diffusion model. Existing UNet-based video generation models require to input the entire videos during training to encode temporal and positional information at once. However, due to limitations in GPU memory, the number of frames is typically restricted to 16. To address this, this paper proposes a three-stage training strategy with progressively increasing frame numbers and reducing fine-tuning modules. Additionally, we introduce the Temporal E nhanced Motion Module(TEMM) to extend the capacity for encoding temporal and positional information up to 36 frames. The proposed LoopAnimate, which for the first time extends the single-pass generation length of UNet-based video generation models to 35 frames while maintaining high-quality video generation. Experiments demonstrate that LoopAnimate achieves state-of-the-art performance in both objective metrics, such as fidelity and temporal consistency, and subjective evaluation results.
Authors:Aggelina Chatziagapi, Grigorios G. Chrysos, Dimitris Samaras
Title: MI-NeRF: Learning a Single Face NeRF from Multiple Identities
Abstract:
In this work, we introduce a method that learns a single dynamic neural radiance field (NeRF) from monocular talking face videos of multiple identities. NeRFs have shown remarkable results in modeling the 4D dynamics and appearance of human faces. However, they require per-identity optimization. Although recent approaches have proposed techniques to reduce the training and rendering time, increasing the number of identities can be expensive. We introduce MI-NeRF (multi-identity NeRF), a single unified network that models complex non-rigid facial motion for multiple identities, using only monocular videos of arbitrary length. The core premise in our method is to learn the non-linear interactions between identity and non-identity specific information with a multiplicative module. By training on multiple videos simultaneously, MI-NeRF not only reduces the total training time compared to standard single-identity NeRFs, but also demonstrates robustness in synthesizing novel expressions for any input identity. We present results for both facial expression transfer and talking face video synthesis. Our method can be further personalized for a target identity given only a short video.
Authors:Jongwoo Choi, Kwanggyoon Seo, Amirsaman Ashtari, Junyong Noh
Title: StyleCineGAN: Landscape Cinemagraph Generation using a Pre-trained StyleGAN
Abstract:
We propose a method that can generate cinemagraphs automatically from a still landscape image using a pre-trained StyleGAN. Inspired by the success of recent unconditional video generation, we leverage a powerful pre-trained image generator to synthesize high-quality cinemagraphs. Unlike previous approaches that mainly utilize the latent space of a pre-trained StyleGAN, our approach utilizes its deep feature space for both GAN inversion and cinemagraph generation. Specifically, we propose multi-scale deep feature warping (MSDFW), which warps the intermediate features of a pre-trained StyleGAN at different resolutions. By using MSDFW, the generated cinemagraphs are of high resolution and exhibit plausible looping animation. We demonstrate the superiority of our method through user studies and quantitative comparisons with state-of-the-art cinemagraph generation methods and a video generation method that uses a pre-trained StyleGAN.
Authors:Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, Robin Rombach
Title: Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation
Abstract:
Diffusion models are the main driver of progress in image and video synthesis, but suffer from slow inference speed. Distillation methods, like the recently introduced adversarial diffusion distillation (ADD) aim to shift the model from many-shot to single-step inference, albeit at the cost of expensive and difficult optimization due to its reliance on a fixed pretrained DINOv2 discriminator. We introduce Latent Adversarial Diffusion Distillation (LADD), a novel distillation approach overcoming the limitations of ADD. In contrast to pixel-based ADD, LADD utilizes generative features from pretrained latent diffusion models. This approach simplifies training and enhances performance, enabling high-resolution multi-aspect ratio image synthesis. We apply LADD to Stable Diffusion 3 (8B) to obtain SD3-Turbo, a fast model that matches the performance of state-of-the-art text-to-image generators using only four unguided sampling steps. Moreover, we systematically investigate its scaling behavior and demonstrate LADD's effectiveness in various applications such as image editing and inpainting.
Authors:Richard E. Turner, Cristiana-Diana Diaconu, Stratis Markou, Aliaksandra Shysheya, Andrew Y. K. Foong, Bruno Mlodozeniec
Title: Denoising Diffusion Probabilistic Models in Six Simple Steps
Abstract:
Denoising Diffusion Probabilistic Models (DDPMs) are a very popular class of deep generative model that have been successfully applied to a diverse range of problems including image and video generation, protein and material synthesis, weather forecasting, and neural surrogates of partial differential equations. Despite their ubiquity it is hard to find an introduction to DDPMs which is simple, comprehensive, clean and clear. The compact explanations necessary in research papers are not able to elucidate all of the different design steps taken to formulate the DDPM and the rationale of the steps that are presented is often omitted to save space. Moreover, the expositions are typically presented from the variational lower bound perspective which is unnecessary and arguably harmful as it obfuscates why the method is working and suggests generalisations that do not perform well in practice. On the other hand, perspectives that take the continuous time-limit are beautiful and general, but they have a high barrier-to-entry as they require background knowledge of stochastic differential equations and probability flow. In this note, we distill down the formulation of the DDPM into six simple steps each of which comes with a clear rationale. We assume that the reader is familiar with fundamental topics in machine learning including basic probabilistic modelling, Gaussian distributions, maximum likelihood estimation, and deep learning.
Authors:Changgu Chen, Junwei Shu, Gaoqi He, Changbo Wang, Yang Li
Title: Motion-Zero: Zero-Shot Moving Object Control Framework for Diffusion-Based Video Generation
Abstract:
Recent large-scale pre-trained diffusion models have demonstrated a powerful generative ability to produce high-quality videos from detailed text descriptions. However, exerting control over the motion of objects in videos generated by any video diffusion model is a challenging problem. In this paper, we propose a novel zero-shot moving object trajectory control framework, Motion-Zero, to enable a bounding-box-trajectories-controlled text-to-video diffusion model. To this end, an initial noise prior module is designed to provide a position-based prior to improve the stability of the appearance of the moving object and the accuracy of position. In addition, based on the attention map of the U-net, spatial constraints are directly applied to the denoising process of diffusion models, which further ensures the positional and spatial consistency of moving objects during the inference. Furthermore, temporal consistency is guaranteed with a proposed shift temporal attention mechanism. Our method can be flexibly applied to various state-of-the-art video diffusion models without any training process. Extensive experiments demonstrate our proposed method can control the motion trajectories of objects and generate high-quality videos. Our project page is https://vpx-ecnu.github.io/MotionZero-website/
Authors:Shutong Jin, Ruiyu Wang, Florian T. Pokorny
Title: RealCraft: Attention Control as A Tool for Zero-Shot Consistent Video Editing
Abstract:
Even though large-scale text-to-image generative models show promising performance in synthesizing high-quality images, applying these models directly to image editing remains a significant challenge. This challenge is further amplified in video editing due to the additional dimension of time. This is especially the case for editing real-world videos as it necessitates maintaining a stable structural layout across frames while executing localized edits without disrupting the existing content. In this paper, we propose RealCraft, an attention-control-based method for zero-shot real-world video editing. By swapping cross-attention for new feature injection and relaxing spatial-temporal attention of the editing object, we achieve localized shape-wise edit along with enhanced temporal consistency. Our model directly uses Stable Diffusion and operates without the need for additional information. We showcase the proposed zero-shot attention-control-based method across a range of videos, demonstrating shape-wise, time-consistent and parameter-free editing in videos of up to 64 frames.
Authors:Haoyu Ma, Shahin Mahdizadehaghdam, Bichen Wu, Zhipeng Fan, Yuchao Gu, Wenliang Zhao, Lior Shapira, Xiaohui Xie
Title: MaskINT: Video Editing via Interpolative Non-autoregressive Masked Transformers
Abstract:
Recent advances in generative AI have significantly enhanced image and video editing, particularly in the context of text prompt control. State-of-the-art approaches predominantly rely on diffusion models to accomplish these tasks. However, the computational demands of diffusion-based methods are substantial, often necessitating large-scale paired datasets for training, and therefore challenging the deployment in real applications. To address these issues, this paper breaks down the text-based video editing task into two stages. First, we leverage an pre-trained text-to-image diffusion model to simultaneously edit few keyframes in an zero-shot way. Second, we introduce an efficient model called MaskINT, which is built on non-autoregressive masked generative transformers and specializes in frame interpolation between the edited keyframes, using the structural guidance from intermediate frames. Experimental results suggest that our MaskINT achieves comparable performance with diffusion-based methodologies, while significantly improve the inference time. This research offers a practical solution for text-based video editing and showcases the potential of non-autoregressive masked generative transformers in this domain.
Authors:Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Li Fei-Fei, Irfan Essa, Lu Jiang, José Lezama
Title: Photorealistic Video Generation with Diffusion Models
Abstract:
We present W.A.L.T, a transformer-based approach for photorealistic video generation via diffusion modeling. Our approach has two key design decisions. First, we use a causal encoder to jointly compress images and videos within a unified latent space, enabling training and generation across modalities. Second, for memory and training efficiency, we use a window attention architecture tailored for joint spatial and spatiotemporal generative modeling. Taken together these design decisions enable us to achieve state-of-the-art performance on established video (UCF-101 and Kinetics-600) and image (ImageNet) generation benchmarks without using classifier free guidance. Finally, we also train a cascade of three models for the task of text-to-video generation consisting of a base latent video diffusion model, and two video super-resolution diffusion models to generate videos of $512 \times 896$ resolution at $8$ frames per second.
Authors:Wilson Yan, Andrew Brown, Pieter Abbeel, Rohit Girdhar, Samaneh Azadi
Title: Motion-Conditioned Image Animation for Video Editing
Abstract:
We introduce MoCA, a Motion-Conditioned Image Animation approach for video editing. It leverages a simple decomposition of the video editing problem into image editing followed by motion-conditioned image animation. Furthermore, given the lack of robust evaluation datasets for video editing, we introduce a new benchmark that measures edit capability across a wide variety of tasks, such as object replacement, background changes, style changes, and motion edits. We present a comprehensive human evaluation of the latest video editing methods along with MoCA, on our proposed benchmark. MoCA establishes a new state-of-the-art, demonstrating greater human preference win-rate, and outperforming notable recent approaches including Dreamix (63%), MasaCtrl (75%), and Tune-A-Video (72%), with especially significant improvements for motion edits.
Authors:Minshan Xie, Hanyuan Liu, Chengze Li, Tien-Tsin Wong
Title: Highly Detailed and Temporal Consistent Video Stylization via Synchronized Multi-Frame Diffusion
Abstract:
Text-guided video-to-video stylization transforms the visual appearance of a source video to a different appearance guided on textual prompts. Existing text-guided image diffusion models can be extended for stylized video synthesis. However, they struggle to generate videos with both highly detailed appearance and temporal consistency. In this paper, we propose a synchronized multi-frame diffusion framework to maintain both the visual details and the temporal consistency. Frames are denoised in a synchronous fashion, and more importantly, information of different frames is shared since the beginning of the denoising process. Such information sharing ensures that a consensus, in terms of the overall structure and color distribution, among frames can be reached in the early stage of the denoising process before it is too late. The optical flow from the original video serves as the connection, and hence the venue for information sharing, among frames. We demonstrate the effectiveness of our method in generating high-quality and diverse results in extensive experiments. Our method shows superior qualitative and quantitative results compared to state-of-the-art video editing methods.
Authors:Yupu Yao, Shangqi Deng, Zihan Cao, Harry Zhang, Liang-Jian Deng
Title: APLA: Additional Perturbation for Latent Noise with Adversarial Training Enables Consistency
Abstract:
Diffusion models have exhibited promising progress in video generation. However, they often struggle to retain consistent details within local regions across frames. One underlying cause is that traditional diffusion models approximate Gaussian noise distribution by utilizing predictive noise, without fully accounting for the impact of inherent information within the input itself. Additionally, these models emphasize the distinction between predictions and references, neglecting information intrinsic to the videos. To address this limitation, inspired by the self-attention mechanism, we propose a novel text-to-video (T2V) generation network structure based on diffusion models, dubbed Additional Perturbation for Latent noise with Adversarial training (APLA). Our approach only necessitates a single video as input and builds upon pre-trained stable diffusion networks. Notably, we introduce an additional compact network, known as the Video Generation Transformer (VGT). This auxiliary component is designed to extract perturbations from the inherent information contained within the input, thereby refining inconsistent pixels during temporal predictions. We leverage a hybrid architecture of transformers and convolutions to compensate for temporal intricacies, enhancing consistency between different frames within the video. Experiments demonstrate a noticeable improvement in the consistency of the generated videos both qualitatively and quantitatively.
Authors:Ariel Lapid, Idan Achituve, Lior Bracha, Ethan Fetaya
Title: GD-VDM: Generated Depth for better Diffusion-based Video Generation
Abstract:
The field of generative models has recently witnessed significant progress, with diffusion models showing remarkable performance in image generation. In light of this success, there is a growing interest in exploring the application of diffusion models to other modalities. One such challenge is the generation of coherent videos of complex scenes, which poses several technical difficulties, such as capturing temporal dependencies and generating long, high-resolution videos. This paper proposes GD-VDM, a novel diffusion model for video generation, demonstrating promising results. GD-VDM is based on a two-phase generation process involving generating depth videos followed by a novel diffusion Vid2Vid model that generates a coherent real-world video. We evaluated GD-VDM on the Cityscapes dataset and found that it generates more diverse and complex scenes compared to natural baselines, demonstrating the efficacy of our approach.
Authors:Jianhui Yu, Hao Zhu, Liming Jiang, Chen Change Loy, Weidong Cai, Wayne Wu
Title: CelebV-Text: A Large-Scale Facial Text-Video Dataset
Abstract:
Text-driven generation models are flourishing in video generation and editing. However, face-centric text-to-video generation remains a challenge due to the lack of a suitable dataset containing high-quality videos and highly relevant texts. This paper presents CelebV-Text, a large-scale, diverse, and high-quality dataset of facial text-video pairs, to facilitate research on facial text-to-video generation tasks. CelebV-Text comprises 70,000 in-the-wild face video clips with diverse visual content, each paired with 20 texts generated using the proposed semi-automatic text generation strategy. The provided texts are of high quality, describing both static and dynamic attributes precisely. The superiority of CelebV-Text over other datasets is demonstrated via comprehensive statistical analysis of the videos, texts, and text-video relevance. The effectiveness and potential of CelebV-Text are further shown through extensive self-evaluation. A benchmark is constructed with representative methods to standardize the evaluation of the facial text-to-video generation task. All data and models are publicly available.
Authors:Shiv Ram Dubey, Satish Kumar Singh
Title: Transformer-based Generative Adversarial Networks in Computer Vision: A Comprehensive Survey
Abstract:
Generative Adversarial Networks (GANs) have been very successful for synthesizing the images in a given dataset. The artificially generated images by GANs are very realistic. The GANs have shown potential usability in several computer vision applications, including image generation, image-to-image translation, video synthesis, and others. Conventionally, the generator network is the backbone of GANs, which generates the samples and the discriminator network is used to facilitate the training of the generator network. The discriminator network is usually a Convolutional Neural Network (CNN). Whereas, the generator network is usually either an Up-CNN for image generation or an Encoder-Decoder network for image-to-image translation. The convolution-based networks exploit the local relationship in a layer, which requires the deep networks to extract the abstract features. Hence, CNNs suffer to exploit the global relationship in the feature space. However, recently developed Transformer networks are able to exploit the global relationship at every layer. The Transformer networks have shown tremendous performance improvement for several problems in computer vision. Motivated from the success of Transformer networks and GANs, recent works have tried to exploit the Transformers in GAN framework for the image/video synthesis. This paper presents a comprehensive survey on the developments and advancements in GANs utilizing the Transformer networks for computer vision applications. The performance comparison for several applications on benchmark datasets is also performed and analyzed. The conducted survey will be very useful to deep learning and computer vision community to understand the research trends \& gaps related with Transformer-based GANs and to develop the advanced GAN architectures by exploiting the global and local relationships for different applications.
Authors:David Chuan-En Lin, Fabian Caba Heilbron, Joon-Young Lee, Oliver Wang, Nikolas Martelaro
Title: VideoMap: Supporting Video Editing Exploration, Brainstorming, and Prototyping in the Latent Space
Abstract:
Video editing is a creative and complex endeavor and we believe that there is potential for reimagining a new video editing interface to better support the creative and exploratory nature of video editing. We take inspiration from latent space exploration tools that help users find patterns and connections within complex datasets. We present VideoMap, a proof-of-concept video editing interface that operates on video frames projected onto a latent space. We support intuitive navigation through map-inspired navigational elements and facilitate transitioning between different latent spaces through swappable lenses. We built three VideoMap components to support editors in three common video tasks. In a user study with both professionals and non-professionals, editors found that VideoMap helps reduce grunt work, offers a user-friendly experience, provides an inspirational way of editing, and effectively supports the exploratory nature of video editing. We further demonstrate the versatility of VideoMap by implementing three extended applications. For interactive examples, we invite you to visit our project page: https://humanvideointeraction.github.io/videomap.
Authors:Bipasha Sen, Aditya Agarwal, Vinay P Namboodiri, C. V. Jawahar
Title: INR-V: A Continuous Representation Space for Video-based Generative Tasks
Abstract:
Generating videos is a complex task that is accomplished by generating a set of temporally coherent images frame-by-frame. This limits the expressivity of videos to only image-based operations on the individual video frames needing network designs to obtain temporally coherent trajectories in the underlying image space. We propose INR-V, a video representation network that learns a continuous space for video-based generative tasks. INR-V parameterizes videos using implicit neural representations (INRs), a multi-layered perceptron that predicts an RGB value for each input pixel location of the video. The INR is predicted using a meta-network which is a hypernetwork trained on neural representations of multiple video instances. Later, the meta-network can be sampled to generate diverse novel videos enabling many downstream video-based generative tasks. Interestingly, we find that conditional regularization and progressive weight initialization play a crucial role in obtaining INR-V. The representation space learned by INR-V is more expressive than an image space showcasing many interesting properties not possible with the existing works. For instance, INR-V can smoothly interpolate intermediate videos between known video instances (such as intermediate identities, expressions, and poses in face videos). It can also in-paint missing portions in videos to recover temporally coherent full videos. In this work, we evaluate the space learned by INR-V on diverse generative tasks such as video interpolation, novel video generation, video inversion, and video inpainting against the existing baselines. INR-V significantly outperforms the baselines on several of these demonstrated tasks, clearly showcasing the potential of the proposed representation space.
Authors:Wilson Yan, Danijar Hafner, Stephen James, Pieter Abbeel
Title: Temporally Consistent Transformers for Video Generation
Abstract:
To generate accurate videos, algorithms have to understand the spatial and temporal dependencies in the world. Current algorithms enable accurate predictions over short horizons but tend to suffer from temporal inconsistencies. When generated content goes out of view and is later revisited, the model invents different content instead. Despite this severe limitation, no established benchmarks on complex data exist for rigorously evaluating video generation with long temporal dependencies. In this paper, we curate 3 challenging video datasets with long-range dependencies by rendering walks through 3D scenes of procedural mazes, Minecraft worlds, and indoor scans. We perform a comprehensive evaluation of current models and observe their limitations in temporal consistency. Moreover, we introduce the Temporally Consistent Transformer (TECO), a generative model that substantially improves long-term consistency while also reducing sampling time. By compressing its input sequence into fewer embeddings, applying a temporal transformer, and expanding back using a spatial MaskGit, TECO outperforms existing models across many metrics. Videos are available on the website: https://wilson1yan.github.io/teco
Authors:Chen Zhu-Tian, Qisen Yang, Xiao Xie, Johanna Beyer, Haijun Xia, Yingcai Wu, Hanspeter Pfister
Title: Sporthesia: Augmenting Sports Videos Using Natural Language
Abstract:
Augmented sports videos, which combine visualizations and video effects to present data in actual scenes, can communicate insights engagingly and thus have been increasingly popular for sports enthusiasts around the world. Yet, creating augmented sports videos remains a challenging task, requiring considerable time and video editing skills. On the other hand, sports insights are often communicated using natural language, such as in commentaries, oral presentations, and articles, but usually lack visual cues. Thus, this work aims to facilitate the creation of augmented sports videos by enabling analysts to directly create visualizations embedded in videos using insights expressed in natural language. To achieve this goal, we propose a three-step approach - 1) detecting visualizable entities in the text, 2) mapping these entities into visualizations, and 3) scheduling these visualizations to play with the video - and analyzed 155 sports video clips and the accompanying commentaries for accomplishing these steps. Informed by our analysis, we have designed and implemented Sporthesia, a proof-of-concept system that takes racket-based sports videos and textual commentaries as the input and outputs augmented videos. We demonstrate Sporthesia's applicability in two exemplar scenarios, i.e., authoring augmented sports videos using text and augmenting historical sports videos based on auditory comments. A technical evaluation shows that Sporthesia achieves high accuracy (F1-score of 0.9) in detecting visualizable entities in the text. An expert evaluation with eight sports analysts suggests high utility, effectiveness, and satisfaction with our language-driven authoring method and provides insights for future improvement and opportunities.
Authors:David Chuan-En Lin, Anastasis Germanidis, Cristóbal Valenzuela, Yining Shi, Nikolas Martelaro
Title: Soundify: Matching Sound Effects to Video
Abstract:
In the art of video editing, sound helps add character to an object and immerse the viewer within a space. Through formative interviews with professional editors (N=10), we found that the task of adding sounds to video can be challenging. This paper presents Soundify, a system that assists editors in matching sounds to video. Given a video, Soundify identifies matching sounds, synchronizes the sounds to the video, and dynamically adjusts panning and volume to create spatial audio. In a human evaluation study (N=889), we show that Soundify is capable of matching sounds to video out-of-the-box for a diverse range of audio categories. In a within-subjects expert study (N=12), we demonstrate the usefulness of Soundify in helping video editors match sounds to video with lighter workload, reduced task completion time, and improved usability.
Authors:Geonung Kim, Janghyeok Han, Sunghyun Cho
Title: VideoFrom3D: 3D Scene Video Generation via Complementary Image and Video Diffusion Models
Abstract:
In this paper, we propose VideoFrom3D, a novel framework for synthesizing high-quality 3D scene videos from coarse geometry, a camera trajectory, and a reference image. Our approach streamlines the 3D graphic design workflow, enabling flexible design exploration and rapid production of deliverables. A straightforward approach to synthesizing a video from coarse geometry might condition a video diffusion model on geometric structure. However, existing video diffusion models struggle to generate high-fidelity results for complex scenes due to the difficulty of jointly modeling visual quality, motion, and temporal consistency. To address this, we propose a generative framework that leverages the complementary strengths of image and video diffusion models. Specifically, our framework consists of a Sparse Anchor-view Generation (SAG) and a Geometry-guided Generative Inbetweening (GGI) module. The SAG module generates high-quality, cross-view consistent anchor views using an image diffusion model, aided by Sparse Appearance-guided Sampling. Building on these anchor views, GGI module faithfully interpolates intermediate frames using a video diffusion model, enhanced by flow-based camera control and structural guidance. Notably, both modules operate without any paired dataset of 3D scene models and natural images, which is extremely difficult to obtain. Comprehensive experiments show that our method produces high-quality, style-consistent scene videos under diverse and challenging scenarios, outperforming simple and extended baselines.
Authors:Jiawei Wang, Haowei Sun, Xintao Yan, Shuo Feng, Jun Gao, Henry X. Liu
Title: TeraSim-World: Worldwide Safety-Critical Data Synthesis for End-to-End Autonomous Driving
Abstract:
Safe and scalable deployment of end-to-end (E2E) autonomous driving requires extensive and diverse data, particularly safety-critical events. Existing data are mostly generated from simulators with a significant sim-to-real gap or collected from on-road testing that is costly and unsafe. This paper presents TeraSim-World, an automated pipeline that synthesizes realistic and geographically diverse safety-critical data for E2E autonomous driving at anywhere in the world. Starting from an arbitrary location, TeraSim-World retrieves real-world maps and traffic demand from geospatial data sources. Then, it simulates agent behaviors from naturalistic driving datasets, and orchestrates diverse adversities to create corner cases. Informed by street views of the same location, it achieves photorealistic, geographically grounded sensor rendering via the frontier video generation model Cosmos-Drive. By bridging agent and sensor simulations, TeraSim-World provides a scalable and critical data synthesis framework for training and evaluation of E2E autonomous driving systems. Codes and videos are available at https://wjiawei.com/terasim-world-web/ .
Authors:Jenna Kang, Maria Silva, Patsorn Sangkloy, Kenneth Chen, Niall Williams, Qi Sun
Title: GeneVA: A Dataset of Human Annotations for Generative Text to Video Artifacts
Abstract:
Recent advances in probabilistic generative models have extended capabilities from static image synthesis to text-driven video generation. However, the inherent randomness of their generation process can lead to unpredictable artifacts, such as impossible physics and temporal inconsistency. Progress in addressing these challenges requires systematic benchmarks, yet existing datasets primarily focus on generative images due to the unique spatio-temporal complexities of videos. To bridge this gap, we introduce GeneVA, a large-scale artifact dataset with rich human annotations that focuses on spatio-temporal artifacts in videos generated from natural text prompts. We hope GeneVA can enable and assist critical applications, such as benchmarking model performance and improving generative video quality.
Authors:Lingzhou Mu, Qiang Wang, Fan Jiang, Mengchao Wang, Yaqi Fan, Mu Xu, Kai Zhang
Title: FantasyHSI: Video-Generation-Centric 4D Human Synthesis In Any Scene through A Graph-based Multi-Agent Framework
Abstract:
Human-Scene Interaction (HSI) seeks to generate realistic human behaviors within complex environments, yet it faces significant challenges in handling long-horizon, high-level tasks and generalizing to unseen scenes. To address these limitations, we introduce FantasyHSI, a novel HSI framework centered on video generation and multi-agent systems that operates without paired data. We model the complex interaction process as a dynamic directed graph, upon which we build a collaborative multi-agent system. This system comprises a scene navigator agent for environmental perception and high-level path planning, and a planning agent that decomposes long-horizon goals into atomic actions. Critically, we introduce a critic agent that establishes a closed-loop feedback mechanism by evaluating the deviation between generated actions and the planned path. This allows for the dynamic correction of trajectory drifts caused by the stochasticity of the generative model, thereby ensuring long-term logical consistency. To enhance the physical realism of the generated motions, we leverage Direct Preference Optimization (DPO) to train the action generator, significantly reducing artifacts such as limb distortion and foot-sliding. Extensive experiments on our custom SceneBench benchmark demonstrate that FantasyHSI significantly outperforms existing methods in terms of generalization, long-horizon task completion, and physical realism. Ours project page: https://fantasy-amap.github.io/fantasy-hsi/
Authors:Shaoshu Yang, Zhe Kong, Feng Gao, Meng Cheng, Xiangyu Liu, Yong Zhang, Zhuoliang Kang, Wenhan Luo, Xunliang Cai, Ran He, Xiaoming Wei
Title: InfiniteTalk: Audio-driven Video Generation for Sparse-Frame Video Dubbing
Abstract:
Recent breakthroughs in video AIGC have ushered in a transformative era for audio-driven human animation. However, conventional video dubbing techniques remain constrained to mouth region editing, resulting in discordant facial expressions and body gestures that compromise viewer immersion. To overcome this limitation, we introduce sparse-frame video dubbing, a novel paradigm that strategically preserves reference keyframes to maintain identity, iconic gestures, and camera trajectories while enabling holistic, audio-synchronized full-body motion editing. Through critical analysis, we identify why naive image-to-video models fail in this task, particularly their inability to achieve adaptive conditioning. Addressing this, we propose InfiniteTalk, a streaming audio-driven generator designed for infinite-length long sequence dubbing. This architecture leverages temporal context frames for seamless inter-chunk transitions and incorporates a simple yet effective sampling strategy that optimizes control strength via fine-grained reference frame positioning. Comprehensive evaluations on HDTF, CelebV-HQ, and EMTD datasets demonstrate state-of-the-art performance. Quantitative metrics confirm superior visual realism, emotional coherence, and full-body motion synchronization.
Authors:Yuanxin Wei, Lansong Diao, Bujiao Chen, Shenggan Cheng, Zhengping Qian, Wenyuan Yu, Nong Xiao, Wei Lin, Jiangsu Du
Title: MixCache: Mixture-of-Cache for Video Diffusion Transformer Acceleration
Abstract:
Leveraging the Transformer architecture and the diffusion process, video DiT models have emerged as a dominant approach for high-quality video generation. However, their multi-step iterative denoising process incurs high computational cost and inference latency. Caching, a widely adopted optimization method in DiT models, leverages the redundancy in the diffusion process to skip computations in different granularities (e.g., step, cfg, block). Nevertheless, existing caching methods are limited to single-granularity strategies, struggling to balance generation quality and inference speed in a flexible manner. In this work, we propose MixCache, a training-free caching-based framework for efficient video DiT inference. It first distinguishes the interference and boundary between different caching strategies, and then introduces a context-aware cache triggering strategy to determine when caching should be enabled, along with an adaptive hybrid cache decision strategy for dynamically selecting the optimal caching granularity. Extensive experiments on diverse models demonstrate that, MixCache can significantly accelerate video generation (e.g., 1.94$\times$ speedup on Wan 14B, 1.97$\times$ speedup on HunyuanVideo) while delivering both superior generation quality and inference efficiency compared to baseline methods.
Authors:Yuang Zhang, Junqi Cheng, Haoyu Zhao, Jiaxi Gu, Fangyuan Zou, Zenghui Lu, Peng Shu
Title: ShoulderShot: Generating Over-the-Shoulder Dialogue Videos
Abstract:
Over-the-shoulder dialogue videos are essential in films, short dramas, and advertisements, providing visual variety and enhancing viewers' emotional connection. Despite their importance, such dialogue scenes remain largely underexplored in video generation research. The main challenges include maintaining character consistency across different shots, creating a sense of spatial continuity, and generating long, multi-turn dialogues within limited computational budgets. Here, we present ShoulderShot, a framework that combines dual-shot generation with looping video, enabling extended dialogues while preserving character consistency. Our results demonstrate capabilities that surpass existing methods in terms of shot-reverse-shot layout, spatial continuity, and flexibility in dialogue length, thereby opening up new possibilities for practical dialogue video generation. Videos and comparisons are available at https://shouldershot.github.io.
Authors:Ruolin Yang, Da Li, Honggang Zhang, Yi-Zhe Song
Title: SketchAnimator: Animate Sketch via Motion Customization of Text-to-Video Diffusion Models
Abstract:
Sketching is a uniquely human tool for expressing ideas and creativity. The animation of sketches infuses life into these static drawings, opening a new dimension for designers. Animating sketches is a time-consuming process that demands professional skills and extensive experience, often proving daunting for amateurs. In this paper, we propose a novel sketch animation model SketchAnimator, which enables adding creative motion to a given sketch, like "a jumping car''. Namely, given an input sketch and a reference video, we divide the sketch animation into three stages: Appearance Learning, Motion Learning and Video Prior Distillation. In stages 1 and 2, we utilize LoRA to integrate sketch appearance information and motion dynamics from the reference video into the pre-trained T2V model. In the third stage, we utilize Score Distillation Sampling (SDS) to update the parameters of the Bezier curves in each sketch frame according to the acquired motion information. Consequently, our model produces a sketch video that not only retains the original appearance of the sketch but also mirrors the dynamic movements of the reference video. We compare our method with alternative approaches and demonstrate that it generates the desired sketch video under the challenge of one-shot motion customization.
Authors:Yanchen Liu, Yanan Sun, Zhening Xing, Junyao Gao, Kai Chen, Wenjie Pei
Title: MotionShot: Adaptive Motion Transfer across Arbitrary Objects for Text-to-Video Generation
Abstract:
Existing text-to-video methods struggle to transfer motion smoothly from a reference object to a target object with significant differences in appearance or structure between them. To address this challenge, we introduce MotionShot, a training-free framework capable of parsing reference-target correspondences in a fine-grained manner, thereby achieving high-fidelity motion transfer while preserving coherence in appearance. To be specific, MotionShot first performs semantic feature matching to ensure high-level alignments between the reference and target objects. It then further establishes low-level morphological alignments through reference-to-target shape retargeting. By encoding motion with temporal attention, our MotionShot can coherently transfer motion across objects, even in the presence of significant appearance and structure disparities, demonstrated by extensive experiments. The project page is available at: https://motionshot.github.io/.
Authors:Dawit Mureja Argaw, Xian Liu, Joon Son Chung, Ming-Yu Liu, Fitsum Reda
Title: MambaVideo for Discrete Video Tokenization with Channel-Split Quantization
Abstract:
Discrete video tokenization is essential for efficient autoregressive generative modeling due to the high dimensionality of video data. This work introduces a state-of-the-art discrete video tokenizer with two key contributions. First, we propose a novel Mamba-based encoder-decoder architecture that overcomes the limitations of previous sequencebased tokenizers. Second, we introduce a new quantization scheme, channel-split quantization, which significantly enhances the representational power of quantized latents while preserving the token count. Our model sets a new state-of-the-art, outperforming both causal 3D convolutionbased and Transformer-based approaches across multiple datasets. Experimental results further demonstrate its robustness as a tokenizer for autoregressive video generation.
Authors:Akio Kodaira, Tingbo Hou, Ji Hou, Masayoshi Tomizuka, Yue Zhao
Title: StreamDiT: Real-Time Streaming Text-to-Video Generation
Abstract:
Recently, great progress has been achieved in text-to-video (T2V) generation by scaling transformer-based diffusion models to billions of parameters, which can generate high-quality videos. However, existing models typically produce only short clips offline, restricting their use cases in interactive and real-time applications. This paper addresses these challenges by proposing StreamDiT, a streaming video generation model. StreamDiT training is based on flow matching by adding a moving buffer. We design mixed training with different partitioning schemes of buffered frames to boost both content consistency and visual quality. StreamDiT modeling is based on adaLN DiT with varying time embedding and window attention. To practice the proposed method, we train a StreamDiT model with 4B parameters. In addition, we propose a multistep distillation method tailored for StreamDiT. Sampling distillation is performed in each segment of a chosen partitioning scheme. After distillation, the total number of function evaluations (NFEs) is reduced to the number of chunks in a buffer. Finally, our distilled model reaches real-time performance at 16 FPS on one GPU, which can generate video streams at 512p resolution. We evaluate our method through both quantitative metrics and human evaluation. Our model enables real-time applications, e.g. streaming generation, interactive generation, and video-to-video. We provide video results and more examples in our project website: https://cumulo-autumn.github.io/StreamDiT/
Authors:Zekun Li, Rui Zhou, Rahul Sajnani, Xiaoyan Cong, Daniel Ritchie, Srinath Sridhar
Title: GenHSI: Controllable Generation of Human-Scene Interaction Videos
Abstract:
Large-scale pre-trained video diffusion models have exhibited remarkable capabilities in diverse video generation. However, existing solutions face several challenges in using these models to generate long movie-like videos with rich human-object interactions that include unrealistic human-scene interaction, lack of subject identity preservation, and require expensive training. We propose GenHSI, a training-free method for controllable generation of long human-scene interaction videos (HSI). Taking inspiration from movie animation, our key insight is to overcome the limitations of previous work by subdividing the long video generation task into three stages: (1) script writing, (2) pre-visualization, and (3) animation. Given an image of a scene, a user description, and multiple images of a person, we use these three stages to generate long-videos that preserve human-identity and provide rich human-scene interactions. Script writing converts complex human tasks into simple atomic tasks that are used in the pre-visualization stage to generate 3D keyframes (storyboards). These 3D keyframes are rendered and animated by off-the-shelf video diffusion models for consistent long video generation with rich contacts in a 3D-aware manner. A key advantage of our work is that we alleviate the need for scanned, accurate scenes and create 3D keyframes from single-view images. We are the first to generate a long video sequence with a consistent camera pose that contains arbitrary numbers of character actions without training. Experiments demonstrate that our method can generate long videos that effectively preserve scene content and character identity with plausible human-scene interaction from a single image scene. Visit our project homepage https://kunkun0w0.github.io/project/GenHSI/ for more information.
Authors:Qijun Gan, Ruizi Yang, Jianke Zhu, Shaofei Xue, Steven Hoi
Title: OmniAvatar: Efficient Audio-Driven Avatar Video Generation with Adaptive Body Animation
Abstract:
Significant progress has been made in audio-driven human animation, while most existing methods focus mainly on facial movements, limiting their ability to create full-body animations with natural synchronization and fluidity. They also struggle with precise prompt control for fine-grained generation. To tackle these challenges, we introduce OmniAvatar, an innovative audio-driven full-body video generation model that enhances human animation with improved lip-sync accuracy and natural movements. OmniAvatar introduces a pixel-wise multi-hierarchical audio embedding strategy to better capture audio features in the latent space, enhancing lip-syncing across diverse scenes. To preserve the capability for prompt-driven control of foundation models while effectively incorporating audio features, we employ a LoRA-based training approach. Extensive experiments show that OmniAvatar surpasses existing models in both facial and semi-body video generation, offering precise text-based control for creating videos in various domains, such as podcasts, human interactions, dynamic scenes, and singing. Our project page is https://omni-avatar.github.io/.
Authors:Jiahao Wang, Hualian Sheng, Sijia Cai, Weizhan Zhang, Caixia Yan, Yachuang Feng, Bing Deng, Jieping Ye
Title: EchoShot: Multi-Shot Portrait Video Generation
Abstract:
Video diffusion models substantially boost the productivity of artistic workflows with high-quality portrait video generative capacity. However, prevailing pipelines are primarily constrained to single-shot creation, while real-world applications urge for multiple shots with identity consistency and flexible content controllability. In this work, we propose EchoShot, a native and scalable multi-shot framework for portrait customization built upon a foundation video diffusion model. To start with, we propose shot-aware position embedding mechanisms within video diffusion transformer architecture to model inter-shot variations and establish intricate correspondence between multi-shot visual content and their textual descriptions. This simple yet effective design enables direct training on multi-shot video data without introducing additional computational overhead. To facilitate model training within multi-shot scenario, we construct PortraitGala, a large-scale and high-fidelity human-centric video dataset featuring cross-shot identity consistency and fine-grained captions such as facial attributes, outfits, and dynamic motions. To further enhance applicability, we extend EchoShot to perform reference image-based personalized multi-shot generation and long video synthesis with infinite shot counts. Extensive evaluations demonstrate that EchoShot achieves superior identity consistency as well as attribute-level controllability in multi-shot portrait video generation. Notably, the proposed framework demonstrates potential as a foundational paradigm for general multi-shot video modeling.
Authors:Gen Li, Yutong Chen, Yiqian Wu, Kaifeng Zhao, Marc Pollefeys, Siyu Tang
Title: EgoM2P: Egocentric Multimodal Multitask Pretraining
Abstract:
Understanding multimodal signals in egocentric vision, such as RGB video, depth, camera poses, and gaze, is essential for applications in augmented reality, robotics, and human-computer interaction, enabling systems to better interpret the camera wearer's actions, intentions, and surrounding environment. However, building large-scale egocentric multimodal and multitask models presents unique challenges. Egocentric data are inherently heterogeneous, with large variations in modality coverage across devices and settings. Generating pseudo-labels for missing modalities, such as gaze or head-mounted camera trajectories, is often infeasible, making standard supervised learning approaches difficult to scale. Furthermore, dynamic camera motion and the complex temporal and spatial structure of first-person video pose additional challenges for the direct application of existing multimodal foundation models. To address these challenges, we introduce a set of efficient temporal tokenizers and propose EgoM2P, a masked modeling framework that learns from temporally-aware multimodal tokens to train a large, general-purpose model for egocentric 4D understanding. This unified design supports multitasking across diverse egocentric perception and synthesis tasks, including gaze prediction, egocentric camera tracking, and monocular depth estimation from egocentric video, and also serves as a generative model for conditional egocentric video synthesis. Across these tasks, EgoM2P matches or outperforms specialist models while being an order of magnitude faster. We will fully open-source EgoM2P to support the community and advance egocentric vision research. Project page: https://egom2p.github.io/.
Authors:Min-Jung Kim, Dongjin Kim, Seokju Yun, Jaegul Choo
Title: TV-LiVE: Training-Free, Text-Guided Video Editing via Layer Informed Vitality Exploitation
Abstract:
Video editing has garnered increasing attention alongside the rapid progress of diffusion-based video generation models. As part of these advancements, there is a growing demand for more accessible and controllable forms of video editing, such as prompt-based editing. Previous studies have primarily focused on tasks such as style transfer, background replacement, object substitution, and attribute modification, while maintaining the content structure of the source video. However, more complex tasks, including the addition of novel objects and nonrigid transformations, remain relatively unexplored. In this paper, we present TV-LiVE, a Training-free and text-guided Video editing framework via Layerinformed Vitality Exploitation. We empirically identify vital layers within the video generation model that significantly influence the quality of generated outputs. Notably, these layers are closely associated with Rotary Position Embeddings (RoPE). Based on this observation, our method enables both object addition and non-rigid video editing by selectively injecting key and value features from the source model into the corresponding layers of the target model guided by the layer vitality. For object addition, we further identify prominent layers to extract the mask regions corresponding to the newly added target prompt. We found that the extracted masks from the prominent layers faithfully indicate the region to be edited. Experimental results demonstrate that TV-LiVE outperforms existing approaches for both object addition and non-rigid video editing. Project Page: https://emjay73.github.io/TV_LiVE/
Authors:Xingchang Huang, Ashish Kumar Singh, Florian Dubost, Cristina Nader Vasconcelos, Sakar Khattar, Liang Shi, Christian Theobalt, Cengiz Oztireli, Gurprit Singh
Title: Restereo: Diffusion stereo video generation and restoration
Abstract:
Stereo video generation has been gaining increasing attention with recent advancements in video diffusion models. However, most existing methods focus on generating 3D stereoscopic videos from monocular 2D videos. These approaches typically assume that the input monocular video is of high quality, making the task primarily about inpainting occluded regions in the warped video while preserving disoccluded areas. In this paper, we introduce a new pipeline that not only generates stereo videos but also enhances both left-view and right-view videos consistently with a single model. Our approach achieves this by fine-tuning the model on degraded data for restoration, as well as conditioning the model on warped masks for consistent stereo generation. As a result, our method can be fine-tuned on a relatively small synthetic stereo video datasets and applied to low-quality real-world videos, performing both stereo video generation and restoration. Experiments demonstrate that our method outperforms existing approaches both qualitatively and quantitatively in stereo video generation from low-resolution inputs.
Authors:Ssharvien Kumar Sivakumar, Yannik Frisch, Ghazal Ghazaei, Anirban Mukhopadhyay
Title: SG2VID: Scene Graphs Enable Fine-Grained Control for Video Synthesis
Abstract:
Surgical simulation plays a pivotal role in training novice surgeons, accelerating their learning curve and reducing intra-operative errors. However, conventional simulation tools fall short in providing the necessary photorealism and the variability of human anatomy. In response, current methods are shifting towards generative model-based simulators. Yet, these approaches primarily focus on using increasingly complex conditioning for precise synthesis while neglecting the fine-grained human control aspect. To address this gap, we introduce SG2VID, the first diffusion-based video model that leverages Scene Graphs for both precise video synthesis and fine-grained human control. We demonstrate SG2VID's capabilities across three public datasets featuring cataract and cholecystectomy surgery. While SG2VID outperforms previous methods both qualitatively and quantitatively, it also enables precise synthesis, providing accurate control over tool and anatomy's size and movement, entrance of new tools, as well as the overall scene layout. We qualitatively motivate how SG2VID can be used for generative augmentation and present an experiment demonstrating its ability to improve a downstream phase detection task when the training set is extended with our synthetic videos. Finally, to showcase SG2VID's ability to retain human control, we interact with the Scene Graphs to generate new video samples depicting major yet rare intra-operative irregularities.
Authors:Xianghui Ze, Beiyi Zhu, Zhenbo Song, Jianfeng Lu, Yujiao Shi
Title: SatDreamer360: Geometry Consistent Street-View Video Generation from Satellite Imagery
Abstract:
Generating continuous ground-level video from satellite imagery is a challenging task with significant potential for applications in simulation, autonomous navigation, and digital twin cities. Existing approaches primarily focus on synthesizing individual ground-view images, often relying on auxiliary inputs like height maps or handcrafted projections, and fall short in producing temporally consistent sequences. In this paper, we propose {SatDreamer360}, a novel framework that generates geometrically and temporally consistent ground-view video from a single satellite image and a predefined trajectory. To bridge the large viewpoint gap, we introduce a compact tri-plane representation that encodes scene geometry directly from the satellite image. A ray-based pixel attention mechanism retrieves view-dependent features from the tri-plane, enabling accurate cross-view correspondence without requiring additional geometric priors. To ensure multi-frame consistency, we propose an epipolar-constrained temporal attention module that aligns features across frames using the known relative poses along the trajectory. To support evaluation, we introduce {VIGOR++}, a large-scale dataset for cross-view video generation, with dense trajectory annotations and high-quality ground-view sequences. Extensive experiments demonstrate that SatDreamer360 achieves superior performance in fidelity, coherence, and geometric alignment across diverse urban scenes.
Authors:Ke Zhang, Cihan Xiao, Jiacong Xu, Yiqun Mei, Vishal M. Patel
Title: Think Before You Diffuse: LLMs-Guided Physics-Aware Video Generation
Abstract:
Recent video diffusion models have demonstrated their great capability in generating visually-pleasing results, while synthesizing the correct physical effects in generated videos remains challenging. The complexity of real-world motions, interactions, and dynamics introduce great difficulties when learning physics from data. In this work, we propose DiffPhy, a generic framework that enables physically-correct and photo-realistic video generation by fine-tuning a pre-trained video diffusion model. Our method leverages large language models (LLMs) to explicitly reason a comprehensive physical context from the text prompt and use it to guide the generation. To incorporate physical context into the diffusion model, we leverage a Multimodal large language model (MLLM) as a supervisory signal and introduce a set of novel training objectives that jointly enforce physical correctness and semantic consistency with the input text. We also establish a high-quality physical video dataset containing diverse phyiscal actions and events to facilitate effective finetuning. Extensive experiments on public benchmarks demonstrate that DiffPhy is able to produce state-of-the-art results across diverse physics-related scenarios. Our project page is available at https://bwgzk-keke.github.io/DiffPhy/
Authors:Boyang Wang, Xuweiyi Chen, Matheus Gadelha, Zezhou Cheng
Title: Frame In-N-Out: Unbounded Controllable Image-to-Video Generation
Abstract:
Controllability, temporal coherence, and detail synthesis remain the most critical challenges in video generation. In this paper, we focus on a commonly used yet underexplored cinematic technique known as Frame In and Frame Out. Specifically, starting from image-to-video generation, users can control the objects in the image to naturally leave the scene or provide breaking new identity references to enter the scene, guided by user-specified motion trajectory. To support this task, we introduce a new dataset curated semi-automatically, a comprehensive evaluation protocol targeting this setting, and an efficient identity-preserving motion-controllable video Diffusion Transformer architecture. Our evaluation shows that our proposed approach significantly outperforms existing baselines.
Authors:Siwei Meng, Yawei Luo, Ping Liu
Title: MAGIC: Motion-Aware Generative Inference via Confidence-Guided LLM
Abstract:
Recent advances in static 3D generation have intensified the demand for physically consistent dynamic 3D content. However, existing video generation models, including diffusion-based methods, often prioritize visual realism while neglecting physical plausibility, resulting in implausible object dynamics. Prior approaches for physics-aware dynamic generation typically rely on large-scale annotated datasets or extensive model fine-tuning, which imposes significant computational and data collection burdens and limits scalability across scenarios. To address these challenges, we present MAGIC, a training-free framework for single-image physical property inference and dynamic generation, integrating pretrained image-to-video diffusion models with iterative LLM-based reasoning. Our framework generates motion-rich videos from a static image and closes the visual-to-physical gap through a confidence-driven LLM feedback loop that adaptively steers the diffusion model toward physics-relevant motion. To translate visual dynamics into controllable physical behavior, we further introduce a differentiable MPM simulator operating directly on 3D Gaussians reconstructed from the single image, enabling physically grounded, simulation-ready outputs without any supervision or model tuning. Experiments show that MAGIC outperforms existing physics-aware generative methods in inference accuracy and achieves greater temporal coherence than state-of-the-art video diffusion models.
Authors:Katharina Winter, Abhishek Vivekanandan, Rupert Polley, Yinzhe Shen, Christian Schlauch, Mohamed-Khalil Bouzidi, Bojan Derajic, Natalie Grabowsky, Annajoyce Mariani, Dennis Rochau, Giovanni Lucente, Harsh Yadav, Firas Mualla, Adam Molin, Sebastian Bernhard, Christian Wirth, Ömer Şahin Taş, Nadja Klein, Fabian B. Flohr, Hanno Gottschalk
Title: Generative AI for Autonomous Driving: A Review
Abstract:
Generative AI (GenAI) is rapidly advancing the field of Autonomous Driving (AD), extending beyond traditional applications in text, image, and video generation. We explore how generative models can enhance automotive tasks, such as static map creation, dynamic scenario generation, trajectory forecasting, and vehicle motion planning. By examining multiple generative approaches ranging from Variational Autoencoder (VAEs) over Generative Adversarial Networks (GANs) and Invertible Neural Networks (INNs) to Generative Transformers (GTs) and Diffusion Models (DMs), we highlight and compare their capabilities and limitations for AD-specific applications. Additionally, we discuss hybrid methods integrating conventional techniques with generative approaches, and emphasize their improved adaptability and robustness. We also identify relevant datasets and outline open research questions to guide future developments in GenAI. Finally, we discuss three core challenges: safety, interpretability, and realtime capabilities, and present recommendations for image generation, dynamic scenario generation, and planning.
Authors:Philipp Hess, Maximilian Gelbrecht, Christof Schötz, Michael Aich, Yu Huang, Shangshang Yang, Niklas Boers
Title: Generating time-consistent dynamics with discriminator-guided image diffusion models
Abstract:
Realistic temporal dynamics are crucial for many video generation, processing and modelling applications, e.g. in computational fluid dynamics, weather prediction, or long-term climate simulations. Video diffusion models (VDMs) are the current state-of-the-art method for generating highly realistic dynamics. However, training VDMs from scratch can be challenging and requires large computational resources, limiting their wider application. Here, we propose a time-consistency discriminator that enables pretrained image diffusion models to generate realistic spatiotemporal dynamics. The discriminator guides the sampling inference process and does not require extensions or finetuning of the image diffusion model. We compare our approach against a VDM trained from scratch on an idealized turbulence simulation and a real-world global precipitation dataset. Our approach performs equally well in terms of temporal consistency, shows improved uncertainty calibration and lower biases compared to the VDM, and achieves stable centennial-scale climate simulations at daily time steps.
Authors:Ozgur Kara, Krishna Kumar Singh, Feng Liu, Duygu Ceylan, James M. Rehg, Tobias Hinz
Title: ShotAdapter: Text-to-Multi-Shot Video Generation with Diffusion Models
Abstract:
Current diffusion-based text-to-video methods are limited to producing short video clips of a single shot and lack the capability to generate multi-shot videos with discrete transitions where the same character performs distinct activities across the same or different backgrounds. To address this limitation we propose a framework that includes a dataset collection pipeline and architectural extensions to video diffusion models to enable text-to-multi-shot video generation. Our approach enables generation of multi-shot videos as a single video with full attention across all frames of all shots, ensuring character and background consistency, and allows users to control the number, duration, and content of shots through shot-specific conditioning. This is achieved by incorporating a transition token into the text-to-video model to control at which frames a new shot begins and a local attention masking strategy which controls the transition token's effect and allows shot-specific prompting. To obtain training data we propose a novel data collection pipeline to construct a multi-shot video dataset from existing single-shot video datasets. Extensive experiments demonstrate that fine-tuning a pre-trained text-to-video model for a few thousand iterations is enough for the model to subsequently be able to generate multi-shot videos with shot-specific control, outperforming the baselines. You can find more details in https://shotadapter.github.io/
Authors:Panwen Hu, Jiehui Huang, Qiang Sun, Xiaodan Liang
Title: BridgeIV: Bridging Customized Image and Video Generation through Test-Time Autoregressive Identity Propagation
Abstract:
Both zero-shot and tuning-based customized text-to-image (CT2I) generation have made significant progress for storytelling content creation. In contrast, research on customized text-to-video (CT2V) generation remains relatively limited. Existing zero-shot CT2V methods suffer from poor generalization, while another line of work directly combining tuning-based T2I models with temporal motion modules often leads to the loss of structural and texture information. To bridge this gap, we propose an autoregressive structure and texture propagation module (STPM), which extracts key structural and texture features from the reference subject and injects them autoregressively into each video frame to enhance consistency. Additionally, we introduce a test-time reward optimization (TTRO) method to further refine fine-grained details. Quantitative and qualitative experiments validate the effectiveness of STPM and TTRO, demonstrating improvements of 7.8 and 13.1 in CLIP-I and DINO consistency metrics over the baseline, respectively.
Authors:Quynh Phung, Long Mai, Fabian David Caba Heilbron, Feng Liu, Jia-Bin Huang, Cusuh Ham
Title: CineVerse: Consistent Keyframe Synthesis for Cinematic Scene Composition
Abstract:
We present CineVerse, a novel framework for the task of cinematic scene composition. Similar to traditional multi-shot generation, our task emphasizes the need for consistency and continuity across frames. However, our task also focuses on addressing challenges inherent to filmmaking, such as multiple characters, complex interactions, and visual cinematic effects. In order to learn to generate such content, we first create the CineVerse dataset. We use this dataset to train our proposed two-stage approach. First, we prompt a large language model (LLM) with task-specific instructions to take in a high-level scene description and generate a detailed plan for the overall setting and characters, as well as the individual shots. Then, we fine-tune a text-to-image generation model to synthesize high-quality visual keyframes. Experimental results demonstrate that CineVerse yields promising improvements in generating visually coherent and contextually rich movie scenes, paving the way for further exploration in cinematic video synthesis.
Authors:Chuer Chen, Shengqi Dang, Yuqi Liu, Nanxuan Zhao, Yang Shi, Nan Cao
Title: MV-Crafter: An Intelligent System for Music-guided Video Generation
Abstract:
Music videos, as a prevalent form of multimedia entertainment, deliver engaging audio-visual experiences to audiences and have gained immense popularity among singers and fans. Creators can express their interpretations of music naturally through visual elements. However, the creation process of music video demands proficiency in script design, video shooting, and music-video synchronization, posing significant challenges for non-professionals. Previous work has designed automated music video generation frameworks. However, they suffer from complexity in input and poor output quality. In response, we present MV-Crafter, a system capable of producing high-quality music videos with synchronized music-video rhythm and style. Our approach involves three technical modules that simulate the human creation process: the script generation module, video generation module, and music-video synchronization module. MV-Crafter leverages a large language model to generate scripts considering the musical semantics. To address the challenge of synchronizing short video clips with music of varying lengths, we propose a dynamic beat matching algorithm and visual envelope-induced warping method to ensure precise, monotonic music-video synchronization. Besides, we design a user-friendly interface to simplify the creation process with intuitive editing features. Extensive experiments have demonstrated that MV-Crafter provides an effective solution for improving the quality of generated music videos.
Authors:Shengjun Zhang, Jinzhao Li, Xin Fei, Hao Liu, Yueqi Duan
Title: Scene Splatter: Momentum 3D Scene Generation from Single Image with Video Diffusion Model
Abstract:
In this paper, we propose Scene Splatter, a momentum-based paradigm for video diffusion to generate generic scenes from single image. Existing methods, which employ video generation models to synthesize novel views, suffer from limited video length and scene inconsistency, leading to artifacts and distortions during further reconstruction. To address this issue, we construct noisy samples from original features as momentum to enhance video details and maintain scene consistency. However, for latent features with the perception field that spans both known and unknown regions, such latent-level momentum restricts the generative ability of video diffusion in unknown regions. Therefore, we further introduce the aforementioned consistent video as a pixel-level momentum to a directly generated video without momentum for better recovery of unseen regions. Our cascaded momentum enables video diffusion models to generate both high-fidelity and consistent novel views. We further finetune the global Gaussian representations with enhanced frames and render new frames for momentum update in the next step. In this manner, we can iteratively recover a 3D scene, avoiding the limitation of video length. Extensive experiments demonstrate the generalization capability and superior performance of our method in high-fidelity and consistent scene generation.
Authors:Zhaoyang Zhang, Yannick Hold-Geoffroy, Miloš Hašan, Ziwen Chen, Fujun Luan, Julie Dorsey, Yiwei Hu
Title: Generating 360° Video is What You Need For a 3D Scene
Abstract:
Generating 3D scenes is still a challenging task due to the lack of readily available scene data. Most existing methods only produce partial scenes and provide limited navigational freedom. We introduce a practical and scalable solution that uses 360° video as an intermediate scene representation, capturing the full-scene context and ensuring consistent visual content throughout the generation. We propose WorldPrompter, a generative pipeline that synthesizes traversable 3D scenes from text prompts. WorldPrompter incorporates a conditional 360° panoramic video generator, capable of producing a 128-frame video that simulates a person walking through and capturing a virtual environment. The resulting video is then reconstructed as Gaussian splats by a fast feedforward 3D reconstructor, enabling a true walkable experience within the 3D scene. Experiments demonstrate that our panoramic video generation model, trained with a mix of image and video data, achieves convincing spatial and temporal consistency for static scenes. This is validated by an average COLMAP matching rate of 94.6\%, allowing for high-quality panoramic Gaussian splat reconstruction and improved navigation throughout the scene. Qualitative and quantitative results also show it outperforms the state-of-the-art 360° video generators and 3D scene generation models.
Authors:Jaywon Koo, Jefferson Hernandez, Moayed Haji-Ali, Ziyan Yang, Vicente Ordonez
Title: Evaluating Text-to-Image and Text-to-Video Synthesis with a Conditional Fréchet Distance
Abstract:
Evaluating text-to-image and text-to-video models is challenging due to a fundamental disconnect: established metrics fail to jointly measure visual quality and semantic alignment with text, leading to a poor correlation with human judgments. To address this critical issue, we propose cFreD, a general metric based on a Conditional Fréchet Distance that unifies the assessment of visual fidelity and text-prompt consistency into a single score. Existing metrics such as Fréchet Inception Distance (FID) capture image quality but ignore text conditioning while alignment scores such as CLIPScore are insensitive to visual quality. Furthermore, learned preference models require constant retraining and are unlikely to generalize to novel architectures or out-of-distribution prompts. Through extensive experiments across multiple recently proposed text-to-image models and diverse prompt datasets, cFreD exhibits a higher correlation with human judgments compared to statistical metrics , including metrics trained with human preferences. Our findings validate cFreD as a robust, future-proof metric for the systematic evaluation of text conditioned models, standardizing benchmarking in this rapidly evolving field. We release our evaluation toolkit and benchmark.
Authors:Chenyu Li, Oscar Michel, Xichen Pan, Sainan Liu, Mike Roberts, Saining Xie
Title: PISA Experiments: Exploring Physics Post-Training for Video Diffusion Models by Watching Stuff Drop
Abstract:
Large-scale pre-trained video generation models excel in content creation but are not reliable as physically accurate world simulators out of the box. This work studies the process of post-training these models for accurate world modeling through the lens of the simple, yet fundamental, physics task of modeling object freefall. We show state-of-the-art video generation models struggle with this basic task, despite their visually impressive outputs. To remedy this problem, we find that fine-tuning on a relatively small amount of simulated videos is effective in inducing the dropping behavior in the model, and we can further improve results through a novel reward modeling procedure we introduce. Our study also reveals key limitations of post-training in generalization and distribution modeling. Additionally, we release a benchmark for this task that may serve as a useful diagnostic tool for tracking physical accuracy in large-scale video generative model development.
Authors:Yunpeng Zhang, Qiang Wang, Fan Jiang, Yaqi Fan, Mu Xu, Yonggang Qi
Title: FantasyID: Face Knowledge Enhanced ID-Preserving Video Generation
Abstract:
Tuning-free approaches adapting large-scale pre-trained video diffusion models for identity-preserving text-to-video generation (IPT2V) have gained popularity recently due to their efficacy and scalability. However, significant challenges remain to achieve satisfied facial dynamics while keeping the identity unchanged. In this work, we present a novel tuning-free IPT2V framework by enhancing face knowledge of the pre-trained video model built on diffusion transformers (DiT), dubbed FantasyID. Essentially, 3D facial geometry prior is incorporated to ensure plausible facial structures during video synthesis. To prevent the model from learning copy-paste shortcuts that simply replicate reference face across frames, a multi-view face augmentation strategy is devised to capture diverse 2D facial appearance features, hence increasing the dynamics over the facial expressions and head poses. Additionally, after blending the 2D and 3D features as guidance, instead of naively employing cross-attention to inject guidance cues into DiT layers, a learnable layer-aware adaptive mechanism is employed to selectively inject the fused features into each individual DiT layers, facilitating balanced modeling of identity preservation and motion dynamics. Experimental results validate our model's superiority over the current tuning-free IPT2V methods.
Authors:Danah Yatim, Rafail Fridman, Omer Bar-Tal, Tali Dekel
Title: DynVFX: Augmenting Real Videos with Dynamic Content
Abstract:
We present a method for augmenting real-world videos with newly generated dynamic content. Given an input video and a simple user-provided text instruction describing the desired content, our method synthesizes dynamic objects or complex scene effects that naturally interact with the existing scene over time. The position, appearance, and motion of the new content are seamlessly integrated into the original footage while accounting for camera motion, occlusions, and interactions with other dynamic objects in the scene, resulting in a cohesive and realistic output video. We achieve this via a zero-shot, training-free framework that harnesses a pre-trained text-to-video diffusion transformer to synthesize the new content and a pre-trained Vision Language Model to envision the augmented scene in detail. Specifically, we introduce a novel inference-based method that manipulates features within the attention mechanism, enabling accurate localization and seamless integration of the new content while preserving the integrity of the original scene. Our method is fully automated, requiring only a simple user instruction. We demonstrate its effectiveness on a wide range of edits applied to real-world videos, encompassing diverse objects and scenarios involving both camera and object motion.
Authors:Yicong Hong, Long Mai, Yuan Yao, Feng Liu
Title: Pushing the Boundaries of State Space Models for Image and Video Generation
Abstract:
While Transformers have become the dominant architecture for visual generation, linear attention models, such as the state-space models (SSM), are increasingly recognized for their efficiency in processing long visual sequences. However, the essential efficiency of these models comes from formulating a limited recurrent state, enforcing causality among tokens that are prone to inconsistent modeling of N-dimensional visual data, leaving questions on their capacity to generate long non-causal sequences. In this paper, we explore the boundary of SSM on image and video generation by building the largest-scale diffusion SSM-Transformer hybrid model to date (5B parameters) based on the sub-quadratic bi-directional Hydra and self-attention, and generate up to 2K images and 360p 8 seconds (16 FPS) videos. Our results demonstrate that the model can produce faithful results aligned with complex text prompts and temporal consistent videos with high dynamics, suggesting the great potential of using SSMs for visual generation tasks.
Authors:Aniruddha Mahapatra, Long Mai, David Bourgin, Yitian Zhang, Feng Liu
Title: Progressive Growing of Video Tokenizers for Temporally Compact Latent Spaces
Abstract:
Video tokenizers are essential for latent video diffusion models, converting raw video data into spatiotemporally compressed latent spaces for efficient training. However, extending state-of-the-art video tokenizers to achieve a temporal compression ratio beyond 4x without increasing channel capacity poses significant challenges. In this work, we propose an alternative approach to enhance temporal compression. We find that the reconstruction quality of temporally subsampled videos from a low-compression encoder surpasses that of high-compression encoders applied to original videos. This indicates that high-compression models can leverage representations from lower-compression models. Building on this insight, we develop a bootstrapped high-temporal-compression model that progressively trains high-compression blocks atop well-trained lower-compression models. Our method includes a cross-level feature-mixing module to retain information from the pretrained low-compression model and guide higher-compression blocks to capture the remaining details from the full video sequence. Evaluation of video benchmarks shows that our method significantly improves reconstruction quality while increasing temporal compression compared to directly training the full model. Furthermore, the resulting compact latent space effectively trains a video diffusion model for high-quality video generation with a significantly reduced token budget.
Authors:Hui Li, Mingwang Xu, Yun Zhan, Shan Mu, Jiaye Li, Kaihui Cheng, Yuxuan Chen, Tan Chen, Mao Ye, Jingdong Wang, Siyu Zhu
Title: OpenHumanVid: A Large-Scale High-Quality Dataset for Enhancing Human-Centric Video Generation
Abstract:
Recent advancements in visual generation technologies have markedly increased the scale and availability of video datasets, which are crucial for training effective video generation models. However, a significant lack of high-quality, human-centric video datasets presents a challenge to progress in this field. To bridge this gap, we introduce OpenHumanVid, a large-scale and high-quality human-centric video dataset characterized by precise and detailed captions that encompass both human appearance and motion states, along with supplementary human motion conditions, including skeleton sequences and speech audio. To validate the efficacy of this dataset and the associated training strategies, we propose an extension of existing classical diffusion transformer architectures and conduct further pretraining of our models on the proposed dataset. Our findings yield two critical insights: First, the incorporation of a large-scale, high-quality dataset substantially enhances evaluation metrics for generated human videos while preserving performance in general video generation tasks. Second, the effective alignment of text with human appearance, human motion, and facial motion is essential for producing high-quality video outputs. Based on these insights and corresponding methodologies, the straightforward extended network trained on the proposed dataset demonstrates an obvious improvement in the generation of human-centric videos. Project page https://fudan-generative-vision.github.io/OpenHumanVid
Authors:Kai Jiang, Jiaxing Huang
Title: A Survey on Vision Autoregressive Model
Abstract:
Autoregressive models have demonstrated great performance in natural language processing (NLP) with impressive scalability, adaptability and generalizability. Inspired by their notable success in NLP field, autoregressive models have been intensively investigated recently for computer vision, which perform next-token predictions by representing visual data as visual tokens and enables autoregressive modelling for a wide range of vision tasks, ranging from visual generation and visual understanding to the very recent multimodal generation that unifies visual generation and understanding with a single autoregressive model. This paper provides a systematic review of vision autoregressive models, including the development of a taxonomy of existing methods and highlighting their major contributions, strengths, and limitations, covering various vision tasks such as image generation, video generation, image editing, motion generation, medical image analysis, 3D generation, robotic manipulation, unified multimodal generation, etc. Besides, we investigate and analyze the latest advancements in autoregressive models, including thorough benchmarking and discussion of existing methods across various evaluation datasets. Finally, we outline key challenges and promising directions for future research, offering a roadmap to guide further advancements in vision autoregressive models.
Authors:Qiang Zhou, Shaofeng Zhang, Nianzu Yang, Ye Qian, Hao Li
Title: Motion Control for Enhanced Complex Action Video Generation
Abstract:
Existing text-to-video (T2V) models often struggle with generating videos with sufficiently pronounced or complex actions. A key limitation lies in the text prompt's inability to precisely convey intricate motion details. To address this, we propose a novel framework, MVideo, designed to produce long-duration videos with precise, fluid actions. MVideo overcomes the limitations of text prompts by incorporating mask sequences as an additional motion condition input, providing a clearer, more accurate representation of intended actions. Leveraging foundational vision models such as GroundingDINO and SAM2, MVideo automatically generates mask sequences, enhancing both efficiency and robustness. Our results demonstrate that, after training, MVideo effectively aligns text prompts with motion conditions to produce videos that simultaneously meet both criteria. This dual control mechanism allows for more dynamic video generation by enabling alterations to either the text prompt or motion condition independently, or both in tandem. Furthermore, MVideo supports motion condition editing and composition, facilitating the generation of videos with more complex actions. MVideo thus advances T2V motion generation, setting a strong benchmark for improved action depiction in current video diffusion models. Our project page is available at https://mvideo-v1.github.io/.
Authors:Zhilong Zhang, Ruifeng Chen, Junyin Ye, Yihao Sun, Pengyuan Wang, Jingcheng Pang, Kaiyuan Li, Tianshuo Liu, Haoxin Lin, Yang Yu, Zhi-Hua Zhou
Title: WHALE: Towards Generalizable and Scalable World Models for Embodied Decision-making
Abstract:
World models play a crucial role in decision-making within embodied environments, enabling cost-free explorations that would otherwise be expensive in the real world. To facilitate effective decision-making, world models must be equipped with strong generalizability to support faithful imagination in out-of-distribution (OOD) regions and provide reliable uncertainty estimation to assess the credibility of the simulated experiences, both of which present significant challenges for prior scalable approaches. This paper introduces WHALE, a framework for learning generalizable world models, consisting of two key techniques: behavior-conditioning and retracing-rollout. Behavior-conditioning addresses the policy distribution shift, one of the primary sources of the world model generalization error, while retracing-rollout enables efficient uncertainty estimation without the necessity of model ensembles. These techniques are universal and can be combined with any neural network architecture for world model learning. Incorporating these two techniques, we present Whale-ST, a scalable spatial-temporal transformer-based world model with enhanced generalizability. We demonstrate the superiority of Whale-ST in simulation tasks by evaluating both value estimation accuracy and video generation fidelity. Additionally, we examine the effectiveness of our uncertainty estimation technique, which enhances model-based policy optimization in fully offline scenarios. Furthermore, we propose Whale-X, a 414M parameter world model trained on 970K trajectories from Open X-Embodiment datasets. We show that Whale-X exhibits promising scalability and strong generalizability in real-world manipulation scenarios using minimal demonstrations.
Authors:Jingwei Ma, Erika Lu, Roni Paiss, Shiran Zada, Aleksander Holynski, Tali Dekel, Brian Curless, Michael Rubinstein, Forrester Cole
Title: VidPanos: Generative Panoramic Videos from Casual Panning Videos
Abstract:
Panoramic image stitching provides a unified, wide-angle view of a scene that extends beyond the camera's field of view. Stitching frames of a panning video into a panoramic photograph is a well-understood problem for stationary scenes, but when objects are moving, a still panorama cannot capture the scene. We present a method for synthesizing a panoramic video from a casually-captured panning video, as if the original video were captured with a wide-angle camera. We pose panorama synthesis as a space-time outpainting problem, where we aim to create a full panoramic video of the same length as the input video. Consistent completion of the space-time volume requires a powerful, realistic prior over video content and motion, for which we adapt generative video models. Existing generative models do not, however, immediately extend to panorama completion, as we show. We instead apply video generation as a component of our panorama synthesis system, and demonstrate how to exploit the strengths of the models while minimizing their limitations. Our system can create video panoramas for a range of in-the-wild scenes including people, vehicles, and flowing water, as well as stationary background features.
Authors:Jaekyeong Lee, Geonung Kim, Sunghyun Cho
Title: RNA: Video Editing with ROI-based Neural Atlas
Abstract:
With the recent growth of video-based Social Network Service (SNS) platforms, the demand for video editing among common users has increased. However, video editing can be challenging due to the temporally-varying factors such as camera movement and moving objects. While modern atlas-based video editing methods have addressed these issues, they often fail to edit videos including complex motion or multiple moving objects, and demand excessive computational cost, even for very simple edits. In this paper, we propose a novel region-of-interest (ROI)-based video editing framework: ROI-based Neural Atlas (RNA). Unlike prior work, RNA allows users to specify editing regions, simplifying the editing process by removing the need for foreground separation and atlas modeling for foreground objects. However, this simplification presents a unique challenge: acquiring a mask that effectively handles occlusions in the edited area caused by moving objects, without relying on an additional segmentation model. To tackle this, we propose a novel mask refinement approach designed for this specific challenge. Moreover, we introduce a soft neural atlas model for video reconstruction to ensure high-quality editing results. Extensive experiments show that RNA offers a more practical and efficient editing solution, applicable to a wider range of videos with superior quality compared to prior methods.
Authors:Sheng Shi, Xuyang Cao, Jun Zhao, Guoxin Wang
Title: JoyHallo: Digital human model for Mandarin
Abstract:
In audio-driven video generation, creating Mandarin videos presents significant challenges. Collecting comprehensive Mandarin datasets is difficult, and the complex lip movements in Mandarin further complicate model training compared to English. In this study, we collected 29 hours of Mandarin speech video from JD Health International Inc. employees, resulting in the jdh-Hallo dataset. This dataset includes a diverse range of ages and speaking styles, encompassing both conversational and specialized medical topics. To adapt the JoyHallo model for Mandarin, we employed the Chinese wav2vec2 model for audio feature embedding. A semi-decoupled structure is proposed to capture inter-feature relationships among lip, expression, and pose features. This integration not only improves information utilization efficiency but also accelerates inference speed by 14.3%. Notably, JoyHallo maintains its strong ability to generate English videos, demonstrating excellent cross-language generation capabilities. The code and models are available at https://jdh-algo.github.io/JoyHallo.
Authors:Samee Arif, Taimoor Arif, Muhammad Saad Haroon, Aamina Jamal Khan, Agha Ali Raza, Awais Athar
Title: The Art of Storytelling: Multi-Agent Generative AI for Dynamic Multimodal Narratives
Abstract:
This paper introduces the concept of an education tool that utilizes Generative Artificial Intelligence (GenAI) to enhance storytelling. We evaluate GenAI-driven narrative co-creation, text-to-speech conversion, text-to-music and text-to-video generation to produce an engaging experience for learners. We describe the co-creation process, the adaptation of narratives into spoken words using text-to-speech models, and the transformation of these narratives into contextually relevant visuals through text-to-video technology. Our evaluation covers the linguistics of the generated stories, the text-to-speech conversion quality, and the accuracy of the generated visuals.
Authors:Steven Hogue, Chenxu Zhang, Hamza Daruger, Yapeng Tian, Xiaohu Guo
Title: DiffTED: One-shot Audio-driven TED Talk Video Generation with Diffusion-based Co-speech Gestures
Abstract:
Audio-driven talking video generation has advanced significantly, but existing methods often depend on video-to-video translation techniques and traditional generative networks like GANs and they typically generate taking heads and co-speech gestures separately, leading to less coherent outputs. Furthermore, the gestures produced by these methods often appear overly smooth or subdued, lacking in diversity, and many gesture-centric approaches do not integrate talking head generation. To address these limitations, we introduce DiffTED, a new approach for one-shot audio-driven TED-style talking video generation from a single image. Specifically, we leverage a diffusion model to generate sequences of keypoints for a Thin-Plate Spline motion model, precisely controlling the avatar's animation while ensuring temporally coherent and diverse gestures. This innovative approach utilizes classifier-free guidance, empowering the gestures to flow naturally with the audio input without relying on pre-trained classifiers. Experiments demonstrate that DiffTED generates temporally coherent talking videos with diverse co-speech gestures.
Authors:Haitao Zhou, Chuang Wang, Rui Nie, Jinlin Liu, Dongdong Yu, Qian Yu, Changhu Wang
Title: TrackGo: A Flexible and Efficient Method for Controllable Video Generation
Abstract:
Recent years have seen substantial progress in diffusion-based controllable video generation. However, achieving precise control in complex scenarios, including fine-grained object parts, sophisticated motion trajectories, and coherent background movement, remains a challenge. In this paper, we introduce TrackGo, a novel approach that leverages free-form masks and arrows for conditional video generation. This method offers users with a flexible and precise mechanism for manipulating video content. We also propose the TrackAdapter for control implementation, an efficient and lightweight adapter designed to be seamlessly integrated into the temporal self-attention layers of a pretrained video generation model. This design leverages our observation that the attention map of these layers can accurately activate regions corresponding to motion in videos. Our experimental results demonstrate that our new approach, enhanced by the TrackAdapter, achieves state-of-the-art performance on key metrics such as FVD, FID, and ObjMC scores.
Authors:Manuel Kansy, Jacek Naruniec, Christopher Schroers, Markus Gross, Romann M. Weber
Title: Reenact Anything: Semantic Video Motion Transfer Using Motion-Textual Inversion
Abstract:
Recent years have seen a tremendous improvement in the quality of video generation and editing approaches. While several techniques focus on editing appearance, few address motion. Current approaches using text, trajectories, or bounding boxes are limited to simple motions, so we specify motions with a single motion reference video instead. We further propose to use a pre-trained image-to-video model rather than a text-to-video model. This approach allows us to preserve the exact appearance and position of a target object or scene and helps disentangle appearance from motion. Our method, called motion-textual inversion, leverages our observation that image-to-video models extract appearance mainly from the (latent) image input, while the text/image embedding injected via cross-attention predominantly controls motion. We thus represent motion using text/image embedding tokens. By operating on an inflated motion-text embedding containing multiple text/image embedding tokens per frame, we achieve a high temporal motion granularity. Once optimized on the motion reference video, this embedding can be applied to various target images to generate videos with semantically similar motions. Our approach does not require spatial alignment between the motion reference video and target image, generalizes across various domains, and can be applied to various tasks such as full-body and face reenactment, as well as controlling the motion of inanimate objects and the camera. We empirically demonstrate the effectiveness of our method in the semantic video motion transfer task, significantly outperforming existing methods in this context. Project website: https://mkansy.github.io/reenact-anything/
Authors:Yan Pang, Aiping Xiong, Yang Zhang, Tianhao Wang
Title: Towards Understanding Unsafe Video Generation
Abstract:
Video generation models (VGMs) have demonstrated the capability to synthesize high-quality output. It is important to understand their potential to produce unsafe content, such as violent or terrifying videos. In this work, we provide a comprehensive understanding of unsafe video generation. First, to confirm the possibility that these models could indeed generate unsafe videos, we choose unsafe content generation prompts collected from 4chan and Lexica, and three open-source SOTA VGMs to generate unsafe videos. After filtering out duplicates and poorly generated content, we created an initial set of 2112 unsafe videos from an original pool of 5607 videos. Through clustering and thematic coding analysis of these generated videos, we identify 5 unsafe video categories: Distorted/Weird, Terrifying, Pornographic, Violent/Bloody, and Political. With IRB approval, we then recruit online participants to help label the generated videos. Based on the annotations submitted by 403 participants, we identified 937 unsafe videos from the initial video set. With the labeled information and the corresponding prompts, we created the first dataset of unsafe videos generated by VGMs. We then study possible defense mechanisms to prevent the generation of unsafe videos. Existing defense methods in image generation focus on filtering either input prompt or output results. We propose a new approach called Latent Variable Defense (LVD), which works within the model's internal sampling process. LVD can achieve 0.90 defense accuracy while reducing time and computing resources by 10x when sampling a large number of unsafe prompts.
Authors:Jeongho Kim, Min-Jung Kim, Junsoo Lee, Jaegul Choo
Title: TCAN: Animating Human Images with Temporally Consistent Pose Guidance using Diffusion Models
Abstract:
Pose-driven human-image animation diffusion models have shown remarkable capabilities in realistic human video synthesis. Despite the promising results achieved by previous approaches, challenges persist in achieving temporally consistent animation and ensuring robustness with off-the-shelf pose detectors. In this paper, we present TCAN, a pose-driven human image animation method that is robust to erroneous poses and consistent over time. In contrast to previous methods, we utilize the pre-trained ControlNet without fine-tuning to leverage its extensive pre-acquired knowledge from numerous pose-image-caption pairs. To keep the ControlNet frozen, we adapt LoRA to the UNet layers, enabling the network to align the latent space between the pose and appearance features. Additionally, by introducing an additional temporal layer to the ControlNet, we enhance robustness against outliers of the pose detector. Through the analysis of attention maps over the temporal axis, we also designed a novel temperature map leveraging pose information, allowing for a more static background. Extensive experiments demonstrate that the proposed method can achieve promising results in video synthesis tasks encompassing various poses, like chibi. Project Page: https://eccv2024tcan.github.io/
Authors:Kyrie Zhixuan Zhou, Abhinav Choudhry, Ece Gumusel, Madelyn Rose Sanfilippo
Title: "Sora is Incredible and Scary": Emerging Governance Challenges of Text-to-Video Generative AI Models
Abstract:
Text-to-video generative AI models such as Sora OpenAI have the potential to disrupt multiple industries. In this paper, we report a qualitative social media analysis aiming to uncover people's perceived impact of and concerns about Sora's integration. We collected and analyzed comments (N=292) under popular posts about Sora-generated videos, comparison between Sora videos and Midjourney images, and artists' complaints about copyright infringement by Generative AI. We found that people were most concerned about Sora's impact on content creation-related industries. Emerging governance challenges included the for-profit nature of OpenAI, the blurred boundaries between real and fake content, human autonomy, data privacy, copyright issues, and environmental impact. Potential regulatory solutions proposed by people included law-enforced labeling of AI content and AI literacy education for the public. Based on the findings, we discuss the importance of gauging people's tech perceptions early and propose policy recommendations to regulate Sora before its public release.
Authors:Qiang Wang, Minghua Liu, Junjun Hu, Fan Jiang, Mu Xu
Title: Controllable Longer Image Animation with Diffusion Models
Abstract:
Generating realistic animated videos from static images is an important area of research in computer vision. Methods based on physical simulation and motion prediction have achieved notable advances, but they are often limited to specific object textures and motion trajectories, failing to exhibit highly complex environments and physical dynamics. In this paper, we introduce an open-domain controllable image animation method using motion priors with video diffusion models. Our method achieves precise control over the direction and speed of motion in the movable region by extracting the motion field information from videos and learning moving trajectories and strengths. Current pretrained video generation models are typically limited to producing very short videos, typically less than 30 frames. In contrast, we propose an efficient long-duration video generation method based on noise reschedule specifically tailored for image animation tasks, facilitating the creation of videos over 100 frames in length while maintaining consistency in content scenery and motion coordination. Specifically, we decompose the denoise process into two distinct phases: the shaping of scene contours and the refining of motion details. Then we reschedule the noise to control the generated frame sequences maintaining long-distance noise correlation. We conducted extensive experiments with 10 baselines, encompassing both commercial tools and academic methodologies, which demonstrate the superiority of our method. Our project page: https://wangqiang9.github.io/Controllable.github.io/
Authors:Jinlin Liu, Kai Yu, Mengyang Feng, Xiefan Guo, Miaomiao Cui
Title: Disentangling Foreground and Background Motion for Enhanced Realism in Human Video Generation
Abstract:
Recent advancements in human video synthesis have enabled the generation of high-quality videos through the application of stable diffusion models. However, existing methods predominantly concentrate on animating solely the human element (the foreground) guided by pose information, while leaving the background entirely static. Contrary to this, in authentic, high-quality videos, backgrounds often dynamically adjust in harmony with foreground movements, eschewing stagnancy. We introduce a technique that concurrently learns both foreground and background dynamics by segregating their movements using distinct motion representations. Human figures are animated leveraging pose-based motion, capturing intricate actions. Conversely, for backgrounds, we employ sparse tracking points to model motion, thereby reflecting the natural interaction between foreground activity and environmental changes. Training on real-world videos enhanced with this innovative motion depiction approach, our model generates videos exhibiting coherent movement in both foreground subjects and their surrounding contexts. To further extend video generation to longer sequences without accumulating errors, we adopt a clip-by-clip generation strategy, introducing global features at each step. To ensure seamless continuity across these segments, we ingeniously link the final frame of a produced clip with input noise to spawn the succeeding one, maintaining narrative flow. Throughout the sequential generation process, we infuse the feature representation of the initial reference image into the network, effectively curtailing any cumulative color inconsistencies that may otherwise arise. Empirical evaluations attest to the superiority of our method in producing videos that exhibit harmonious interplay between foreground actions and responsive background dynamics, surpassing prior methodologies in this regard.
Authors:Yong Zhong, Min Zhao, Zebin You, Xiaofeng Yu, Changwang Zhang, Chongxuan Li
Title: PoseCrafter: One-Shot Personalized Video Synthesis Following Flexible Pose Control
Abstract:
In this paper, we introduce PoseCrafter, a one-shot method for personalized video generation following the control of flexible poses. Built upon Stable Diffusion and ControlNet, we carefully design an inference process to produce high-quality videos without the corresponding ground-truth frames. First, we select an appropriate reference frame from the training video and invert it to initialize all latent variables for generation. Then, we insert the corresponding training pose into the target pose sequences to enhance faithfulness through a trained temporal attention module. Furthermore, to alleviate the face and hand degradation resulting from discrepancies between poses of training videos and inference poses, we implement simple latent editing through an affine transformation matrix involving facial and hand landmarks. Extensive experiments on several datasets demonstrate that PoseCrafter achieves superior results to baselines pre-trained on a vast collection of videos under 8 commonly used metrics. Besides, PoseCrafter can follow poses from different individuals or artificial edits and simultaneously retain the human identity in an open-domain training video. Our project page is available at https://ml-gsai.github.io/PoseCrafter-demo/.
Authors:Andrew Marmon, Grant Schindler, José Lezama, Dan Kondratyuk, Bryan Seybold, Irfan Essa
Title: CamViG: Camera Aware Image-to-Video Generation with Multimodal Transformers
Abstract:
We extend multimodal transformers to include 3D camera motion as a conditioning signal for the task of video generation. Generative video models are becoming increasingly powerful, thus focusing research efforts on methods of controlling the output of such models. We propose to add virtual 3D camera controls to generative video methods by conditioning generated video on an encoding of three-dimensional camera movement over the course of the generated video. Results demonstrate that we are (1) able to successfully control the camera during video generation, starting from a single frame and a camera signal, and (2) we demonstrate the accuracy of the generated 3D camera paths using traditional computer vision methods.
Authors:Zichen Liu, Yihao Meng, Hao Ouyang, Yue Yu, Bolin Zhao, Daniel Cohen-Or, Huamin Qu
Title: Dynamic Typography: Bringing Text to Life via Video Diffusion Prior
Abstract:
Text animation serves as an expressive medium, transforming static communication into dynamic experiences by infusing words with motion to evoke emotions, emphasize meanings, and construct compelling narratives. Crafting animations that are semantically aware poses significant challenges, demanding expertise in graphic design and animation. We present an automated text animation scheme, termed "Dynamic Typography", which combines two challenging tasks. It deforms letters to convey semantic meaning and infuses them with vibrant movements based on user prompts. Our technique harnesses vector graphics representations and an end-to-end optimization-based framework. This framework employs neural displacement fields to convert letters into base shapes and applies per-frame motion, encouraging coherence with the intended textual concept. Shape preservation techniques and perceptual loss regularization are employed to maintain legibility and structural integrity throughout the animation process. We demonstrate the generalizability of our approach across various text-to-video models and highlight the superiority of our end-to-end methodology over baseline methods, which might comprise separate tasks. Through quantitative and qualitative evaluations, we demonstrate the effectiveness of our framework in generating coherent text animations that faithfully interpret user prompts while maintaining readability. Our code is available at: https://animate-your-word.github.io/demo/.
Authors:Rüveyda Yilmaz, Dennis Eschweiler, Johannes Stegmaier
Title: Annotated Biomedical Video Generation using Denoising Diffusion Probabilistic Models and Flow Fields
Abstract:
The segmentation and tracking of living cells play a vital role within the biomedical domain, particularly in cancer research, drug development, and developmental biology. These are usually tedious and time-consuming tasks that are traditionally done by biomedical experts. Recently, to automatize these processes, deep learning based segmentation and tracking methods have been proposed. These methods require large-scale datasets and their full potential is constrained by the scarcity of annotated data in the biomedical imaging domain. To address this limitation, we propose Biomedical Video Diffusion Model (BVDM), capable of generating realistic-looking synthetic microscopy videos. Trained only on a single real video, BVDM can generate videos of arbitrary length with pixel-level annotations that can be used for training data-hungry models. It is composed of a denoising diffusion probabilistic model (DDPM) generating high-fidelity synthetic cell microscopy images and a flow prediction model (FPM) predicting the non-rigid transformation between consecutive video frames. During inference, initially, the DDPM imposes realistic cell textures on synthetic cell masks which are generated based on real data statistics. The flow prediction model predicts the flow field between consecutive masks and applies that to the DDPM output from the previous time frame to create the next one while keeping temporal consistency. BVDM outperforms state-of-the-art synthetic live cell microscopy video generation models. Furthermore, we demonstrate that a sufficiently large synthetic dataset enhances the performance of cell segmentation and tracking models compared to using a limited amount of available real data.
Authors:Yan Pang, Baicheng Chen, Yang Zhang, Tianhao Wang
Title: VGMShield: Mitigating Misuse of Video Generative Models
Abstract:
With the rapid advancement in video generation, people can conveniently use video generation models to create videos tailored to their specific desires. As a result, there are also growing concerns about the potential misuse of video generation for spreading illegal content and misinformation. In this work, we introduce VGMShield: a set of straightforward but effective mitigations through the lifecycle of fake video generation. We start from fake video detection, trying to understand whether there is uniqueness in generated videos and whether we can differentiate them from real videos; then, we investigate the fake video source tracing problem, which maps a fake video back to the model that generated it. Towards these, we propose to leverage pre-trained models that focus on spatial-temporal dynamics as the backbone to identify inconsistencies in videos. In detail, we analyze fake videos from the perspective of the generation process. Based on the observation of attention shifts, motion variations, and frequency fluctuations, we identify common patterns in the generated video. These patterns serve as the foundation for our experiments on fake video detection and source tracing. Through experiments on seven state-of-the-art open-source models, we demonstrate that current models still cannot reliably reproduce spatial-temporal relationships, and thus, we can accomplish detection and source tracing with over 90% accuracy. Furthermore, anticipating future generative model improvements, we propose a prevention method that adds invisible perturbations to the query images to make the generated videos look unreal. Together with detection and tracing, our multi-faceted set of solutions can effectively mitigate misuse of video generative models.
Authors:Dezhao Luo, Shaogang Gong, Jiabo Huang, Hailin Jin, Yang Liu
Title: Generative Video Diffusion for Unseen Novel Semantic Video Moment Retrieval
Abstract:
Video moment retrieval (VMR) aims to locate the most likely video moment(s) corresponding to a text query in untrimmed videos. Training of existing methods is limited by the lack of diverse and generalisable VMR datasets, hindering their ability to generalise moment-text associations to queries containing novel semantic concepts (unseen both visually and textually in a training source domain). For model generalisation to novel semantics, existing methods rely heavily on assuming to have access to both video and text sentence pairs from a target domain in addition to the source domain pair-wise training data. This is neither practical nor scalable. In this work, we introduce a more generalisable approach by assuming only text sentences describing new semantics are available in model training without having seen any videos from a target domain. To that end, we propose a Fine-grained Video Editing framework, termed FVE, that explores generative video diffusion to facilitate fine-grained video editing from the seen source concepts to the unseen target sentences consisting of new concepts. This enables generative hypotheses of unseen video moments corresponding to the novel concepts in the target domain. This fine-grained generative video diffusion retains the original video structure and subject specifics from the source domain while introducing semantic distinctions of unseen novel vocabularies in the target domain. A critical challenge is how to enable this generative fine-grained diffusion process to be meaningful in optimising VMR, more than just synthesising visually pleasing videos. We solve this problem by introducing a hybrid selection mechanism that integrates three quantitative metrics to selectively incorporate synthetic video moments (novel video hypotheses) as enlarged additions to the original source training data, whilst minimising potential ...
Authors:Danah Yatim, Rafail Fridman, Omer Bar-Tal, Yoni Kasten, Tali Dekel
Title: Space-Time Diffusion Features for Zero-Shot Text-Driven Motion Transfer
Abstract:
We present a new method for text-driven motion transfer - synthesizing a video that complies with an input text prompt describing the target objects and scene while maintaining an input video's motion and scene layout. Prior methods are confined to transferring motion across two subjects within the same or closely related object categories and are applicable for limited domains (e.g., humans). In this work, we consider a significantly more challenging setting in which the target and source objects differ drastically in shape and fine-grained motion characteristics (e.g., translating a jumping dog into a dolphin). To this end, we leverage a pre-trained and fixed text-to-video diffusion model, which provides us with generative and motion priors. The pillar of our method is a new space-time feature loss derived directly from the model. This loss guides the generation process to preserve the overall motion of the input video while complying with the target object in terms of shape and fine-grained motion traits.
Authors:Zhichao Zuo, Zhao Zhang, Yan Luo, Yang Zhao, Haijun Zhang, Yi Yang, Meng Wang
Title: Cut-and-Paste: Subject-Driven Video Editing with Attention Control
Abstract:
This paper presents a novel framework termed Cut-and-Paste for real-word semantic video editing under the guidance of text prompt and additional reference image. While the text-driven video editing has demonstrated remarkable ability to generate highly diverse videos following given text prompts, the fine-grained semantic edits are hard to control by plain textual prompt only in terms of object details and edited region, and cumbersome long text descriptions are usually needed for the task. We therefore investigate subject-driven video editing for more precise control of both edited regions and background preservation, and fine-grained semantic generation. We achieve this goal by introducing an reference image as supplementary input to the text-driven video editing, which avoids racking your brain to come up with a cumbersome text prompt describing the detailed appearance of the object. To limit the editing area, we refer to a method of cross attention control in image editing and successfully extend it to video editing by fusing the attention map of adjacent frames, which strikes a balance between maintaining video background and spatio-temporal consistency. Compared with current methods, the whole process of our method is like ``cut" the source object to be edited and then ``paste" the target object provided by reference image. We demonstrate that our method performs favorably over prior arts for video editing under the guidance of text prompt and extra reference image, as measured by both quantitative and subjective evaluations.
Authors:Mihai Masala, Nicolae Cudlenco, Traian Rebedea, Marius Leordeanu
Title: Explaining Vision and Language through Graphs of Events in Space and Time
Abstract:
Artificial Intelligence makes great advances today and starts to bridge the gap between vision and language. However, we are still far from understanding, explaining and controlling explicitly the visual content from a linguistic perspective, because we still lack a common explainable representation between the two domains. In this work we come to address this limitation and propose the Graph of Events in Space and Time (GEST), by which we can represent, create and explain, both visual and linguistic stories. We provide a theoretical justification of our model and an experimental validation, which proves that GEST can bring a solid complementary value along powerful deep learning models. In particular, GEST can help improve at the content-level the generation of videos from text, by being easily incorporated into our novel video generation engine. Additionally, by using efficient graph matching techniques, the GEST graphs can also improve the comparisons between texts at the semantic level.
Authors:Michal Geyer, Omer Bar-Tal, Shai Bagon, Tali Dekel
Title: TokenFlow: Consistent Diffusion Features for Consistent Video Editing
Abstract:
The generative AI revolution has recently expanded to videos. Nevertheless, current state-of-the-art video models are still lagging behind image models in terms of visual quality and user control over the generated content. In this work, we present a framework that harnesses the power of a text-to-image diffusion model for the task of text-driven video editing. Specifically, given a source video and a target text-prompt, our method generates a high-quality video that adheres to the target text, while preserving the spatial layout and motion of the input video. Our method is based on a key observation that consistency in the edited video can be obtained by enforcing consistency in the diffusion feature space. We achieve this by explicitly propagating diffusion features based on inter-frame correspondences, readily available in the model. Thus, our framework does not require any training or fine-tuning, and can work in conjunction with any off-the-shelf text-to-image editing method. We demonstrate state-of-the-art editing results on a variety of real-world videos. Webpage: https://diffusion-tokenflow.github.io/
Authors:Jiahui Huang, Leonid Sigal, Kwang Moo Yi, Oliver Wang, Joon-Young Lee
Title: INVE: Interactive Neural Video Editing
Abstract:
We present Interactive Neural Video Editing (INVE), a real-time video editing solution, which can assist the video editing process by consistently propagating sparse frame edits to the entire video clip. Our method is inspired by the recent work on Layered Neural Atlas (LNA). LNA, however, suffers from two major drawbacks: (1) the method is too slow for interactive editing, and (2) it offers insufficient support for some editing use cases, including direct frame editing and rigid texture tracking. To address these challenges we leverage and adopt highly efficient network architectures, powered by hash-grids encoding, to substantially improve processing speed. In addition, we learn bi-directional functions between image-atlas and introduce vectorized editing, which collectively enables a much greater variety of edits in both the atlas and the frames directly. Compared to LNA, our INVE reduces the learning and inference time by a factor of 5, and supports various video editing operations that LNA cannot. We showcase the superiority of INVE over LNA in interactive video editing through a comprehensive quantitative and qualitative analysis, highlighting its numerous advantages and improved performance. For video results, please see https://gabriel-huang.github.io/inve/
Authors:Paul Couairon, Clément Rambour, Jean-Emmanuel Haugeard, Nicolas Thome
Title: VidEdit: Zero-Shot and Spatially Aware Text-Driven Video Editing
Abstract:
Recently, diffusion-based generative models have achieved remarkable success for image generation and edition. However, existing diffusion-based video editing approaches lack the ability to offer precise control over generated content that maintains temporal consistency in long-term videos. On the other hand, atlas-based methods provide strong temporal consistency but are costly to edit a video and lack spatial control. In this work, we introduce VidEdit, a novel method for zero-shot text-based video editing that guarantees robust temporal and spatial consistency. In particular, we combine an atlas-based video representation with a pre-trained text-to-image diffusion model to provide a training-free and efficient video editing method, which by design fulfills temporal smoothness. To grant precise user control over generated content, we utilize conditional information extracted from off-the-shelf panoptic segmenters and edge detectors which guides the diffusion sampling process. This method ensures a fine spatial control on targeted regions while strictly preserving the structure of the original video. Our quantitative and qualitative experiments show that VidEdit outperforms state-of-the-art methods on DAVIS dataset, regarding semantic faithfulness, image preservation, and temporal consistency metrics. With this framework, processing a single video only takes approximately one minute, and it can generate multiple compatible edits based on a unique text prompt. Project web-page at https://videdit.github.io
Authors:Hsin-Ping Huang, Yu-Chuan Su, Ming-Hsuan Yang
Title: Video Generation Beyond a Single Clip
Abstract:
We tackle the long video generation problem, i.e.~generating videos beyond the output length of video generation models. Due to the computation resource constraints, video generation models can only generate video clips that are relatively short compared with the length of real videos. Existing works apply a sliding window approach to generate long videos at inference time, which is often limited to generating recurrent events or homogeneous content. To generate long videos covering diverse content and multiple events, we propose to use additional guidance to control the video generation process. We further present a two-stage approach to the problem, which allows us to utilize existing video generation models to generate high-quality videos within a small time window while modeling the video holistically based on the input guidance. The proposed approach is complementary to existing efforts on video generation, which focus on generating realistic video within a fixed time window. Extensive experiments on challenging real-world videos validate the benefit of the proposed method, which improves over state-of-the-art by up to 9.5% in objective metrics and is preferred by users more than 80% of time.
Authors:Shen Yan, Tao Zhu, Zirui Wang, Yuan Cao, Mi Zhang, Soham Ghosh, Yonghui Wu, Jiahui Yu
Title: VideoCoCa: Video-Text Modeling with Zero-Shot Transfer from Contrastive Captioners
Abstract:
We explore an efficient approach to establish a foundational video-text model. We present VideoCoCa that maximally reuses a pretrained image-text contrastive captioner (CoCa) model and adapt it to video-text tasks with minimal extra training. While previous works adapt image-text models with various cross-frame fusion modules, we find that the generative attentional pooling and contrastive attentional pooling layers in CoCa are instantly adaptable to flattened frame embeddings, yielding state-of-the-art results on zero-shot video classification and zero-shot text-to-video retrieval. Furthermore, we explore lightweight finetuning on top of VideoCoCa, and achieve strong results on video question-answering and video captioning.
Authors:Pedro Antonio Rabelo Saraiva, Enzo Ferreira de Souza, Joao Manoel Herrera Pinheiro, Thiago H. Segreto, Ricardo V. Godoy, Marcelo Becker
Title: A Synthetic Dataset for Manometry Recognition in Robotic Applications
Abstract:
This work addresses the challenges of data scarcity and high acquisition costs for training robust object detection models in complex industrial environments, such as offshore oil platforms. The practical and economic barriers to collecting real-world data in these hazardous settings often hamper the development of autonomous inspection systems. To overcome this, in this work we propose and validate a hybrid data synthesis pipeline that combines procedural rendering with AI-driven video generation. Our methodology leverages BlenderProc to create photorealistic images with precise annotations and controlled domain randomization, and integrates NVIDIA's Cosmos-Predict2 world-foundation model to synthesize physically plausible video sequences with temporal diversity, capturing rare viewpoints and adverse conditions. We demonstrate that a YOLO-based detection network trained on a composite dataset, blending real images with our synthetic data, achieves superior performance compared to models trained exclusively on real-world data. Notably, a 1:1 mixture of real and synthetic data yielded the highest accuracy, surpassing the real-only baseline. These findings highlight the viability of a synthetic-first approach as an efficient, cost-effective, and safe alternative for developing reliable perception systems in safety-critical and resource-constrained industrial applications.
Authors:Weitao Wang, Zichen Wang, Hongdeng Shen, Yulei Lu, Xirui Fan, Suhui Wu, Jun Zhang, Haoqian Wang, Hao Zhang
Title: DreamSwapV: Mask-guided Subject Swapping for Any Customized Video Editing
Abstract:
With the rapid progress of video generation, demand for customized video editing is surging, where subject swapping constitutes a key component yet remains under-explored. Prevailing swapping approaches either specialize in narrow domains--such as human-body animation or hand-object interaction--or rely on some indirect editing paradigm or ambiguous text prompts that compromise final fidelity. In this paper, we propose DreamSwapV, a mask-guided, subject-agnostic, end-to-end framework that swaps any subject in any video for customization with a user-specified mask and reference image. To inject fine-grained guidance, we introduce multiple conditions and a dedicated condition fusion module that integrates them efficiently. In addition, an adaptive mask strategy is designed to accommodate subjects of varying scales and attributes, further improving interactions between the swapped subject and its surrounding context. Through our elaborate two-phase dataset construction and training scheme, our DreamSwapV outperforms existing methods, as validated by comprehensive experiments on VBench indicators and our first introduced DreamSwapV-Benchmark.
Authors:Jisoo Kim, Wooseok Seo, Junwan Kim, Seungho Park, Sooyeon Park, Youngjae Yu
Title: V.I.P. : Iterative Online Preference Distillation for Efficient Video Diffusion Models
Abstract:
With growing interest in deploying text-to-video (T2V) models in resource-constrained environments, reducing their high computational cost has become crucial, leading to extensive research on pruning and knowledge distillation methods while maintaining performance. However, existing distillation methods primarily rely on supervised fine-tuning (SFT), which often leads to mode collapse as pruned models with reduced capacity fail to directly match the teacher's outputs, ultimately resulting in degraded quality. To address this challenge, we propose an effective distillation method, ReDPO, that integrates DPO and SFT. Our approach leverages DPO to guide the student model to focus on recovering only the targeted properties, rather than passively imitating the teacher, while also utilizing SFT to enhance overall performance. We additionally propose V.I.P., a novel framework for filtering and curating high-quality pair datasets, along with a step-by-step online approach for calibrated training. We validate our method on two leading T2V models, VideoCrafter2 and AnimateDiff, achieving parameter reduction of 36.2% and 67.5% each, while maintaining or even surpassing the performance of full models. Further experiments demonstrate the effectiveness of both ReDPO and V.I.P. framework in enabling efficient and high-quality video generation. Our code and videos are available at https://jiiiisoo.github.io/VIP.github.io/.
Authors:Xu Yang, Shaoli Huang, Shenbo Xie, Xuelin Chen, Yifei Liu, Changxing Ding
Title: Democratizing High-Fidelity Co-Speech Gesture Video Generation
Abstract:
Co-speech gesture video generation aims to synthesize realistic, audio-aligned videos of speakers, complete with synchronized facial expressions and body gestures. This task presents challenges due to the significant one-to-many mapping between audio and visual content, further complicated by the scarcity of large-scale public datasets and high computational demands. We propose a lightweight framework that utilizes 2D full-body skeletons as an efficient auxiliary condition to bridge audio signals with visual outputs. Our approach introduces a diffusion model conditioned on fine-grained audio segments and a skeleton extracted from the speaker's reference image, predicting skeletal motions through skeleton-audio feature fusion to ensure strict audio coordination and body shape consistency. The generated skeletons are then fed into an off-the-shelf human video generation model with the speaker's reference image to synthesize high-fidelity videos. To democratize research, we present CSG-405-the first public dataset with 405 hours of high-resolution videos across 71 speech types, annotated with 2D skeletons and diverse speaker demographics. Experiments show that our method exceeds state-of-the-art approaches in visual quality and synchronization while generalizing across speakers and contexts. Code, models, and CSG-405 are publicly released at https://mpi-lab.github.io/Democratizing-CSG/
Authors:Yu Lu, Yi Yang
Title: FreeLong++: Training-Free Long Video Generation via Multi-band SpectralFusion
Abstract:
Recent advances in video generation models have enabled high-quality short video generation from text prompts. However, extending these models to longer videos remains a significant challenge, primarily due to degraded temporal consistency and visual fidelity. Our preliminary observations show that naively applying short-video generation models to longer sequences leads to noticeable quality degradation. Further analysis identifies a systematic trend where high-frequency components become increasingly distorted as video length grows, an issue we term high-frequency distortion. To address this, we propose FreeLong, a training-free framework designed to balance the frequency distribution of long video features during the denoising process. FreeLong achieves this by blending global low-frequency features, which capture holistic semantics across the full video, with local high-frequency features extracted from short temporal windows to preserve fine details. Building on this, FreeLong++ extends FreeLong dual-branch design into a multi-branch architecture with multiple attention branches, each operating at a distinct temporal scale. By arranging multiple window sizes from global to local, FreeLong++ enables multi-band frequency fusion from low to high frequencies, ensuring both semantic continuity and fine-grained motion dynamics across longer video sequences. Without any additional training, FreeLong++ can be plugged into existing video generation models (e.g. Wan2.1 and LTX-Video) to produce longer videos with substantially improved temporal consistency and visual fidelity. We demonstrate that our approach outperforms previous methods on longer video generation tasks (e.g. 4x and 8x of native length). It also supports coherent multi-prompt video generation with smooth scene transitions and enables controllable video generation using long depth or pose sequences.
Authors:Junsung Lee, Junoh Kang, Bohyung Han
Title: STR-Match: Matching SpatioTemporal Relevance Score for Training-Free Video Editing
Abstract:
Previous text-guided video editing methods often suffer from temporal inconsistency, motion distortion, and-most notably-limited domain transformation. We attribute these limitations to insufficient modeling of spatiotemporal pixel relevance during the editing process. To address this, we propose STR-Match, a training-free video editing algorithm that produces visually appealing and spatiotemporally coherent videos through latent optimization guided by our novel STR score. The score captures spatiotemporal pixel relevance across adjacent frames by leveraging 2D spatial attention and 1D temporal modules in text-to-video (T2V) diffusion models, without the overhead of computationally expensive 3D attention mechanisms. Integrated into a latent optimization framework with a latent mask, STR-Match generates temporally consistent and visually faithful videos, maintaining strong performance even under significant domain transformations while preserving key visual attributes of the source. Extensive experiments demonstrate that STR-Match consistently outperforms existing methods in both visual quality and spatiotemporal consistency.
Authors:Saemee Choi, Sohyun Jeong, Jaegul Choo, Jinhee Kim
Title: Good Noise Makes Good Edits: A Training-Free Diffusion-Based Video Editing with Image and Text Prompts
Abstract:
We propose ImEdit, the first zero-shot, training-free video editing method conditioned on both images and text. The proposed method introduces $ρ$-start sampling and dilated dual masking to construct well-structured noise maps for coherent and accurate edits. We further present zero image guidance, a controllable negative prompt strategy, for visual fidelity. Both quantitative and qualitative evaluations show that our method outperforms state-of-the-art methods across all metrics.
Authors:Tao Hu, Haoyang Peng, Xiao Liu, Yuewen Ma
Title: EX-4D: EXtreme Viewpoint 4D Video Synthesis via Depth Watertight Mesh
Abstract:
Generating high-quality camera-controllable videos from monocular input is a challenging task, particularly under extreme viewpoint. Existing methods often struggle with geometric inconsistencies and occlusion artifacts in boundaries, leading to degraded visual quality. In this paper, we introduce EX-4D, a novel framework that addresses these challenges through a Depth Watertight Mesh representation. The representation serves as a robust geometric prior by explicitly modeling both visible and occluded regions, ensuring geometric consistency in extreme camera pose. To overcome the lack of paired multi-view datasets, we propose a simulated masking strategy that generates effective training data only from monocular videos. Additionally, a lightweight LoRA-based video diffusion adapter is employed to synthesize high-quality, physically consistent, and temporally coherent videos. Extensive experiments demonstrate that EX-4D outperforms state-of-the-art methods in terms of physical consistency and extreme-view quality, enabling practical 4D video generation.
Authors:Julian Quevedo, Percy Liang, Sherry Yang
Title: Evaluating Robot Policies in a World Model
Abstract:
Robotics has broad applications from automating house chores to taking care of patients. However, evaluating robot control policies is challenging, as real-world testing is expensive, while handcrafted simulations often fail to accurately reflect real-world conditions, resulting in poor correlation between simulated evaluation and real-world outcomes. In this work, we investigate World-model-based Policy Evaluation (WPE). We first train an action-conditioned video generation model as a proxy to real-world environments. To enable efficient rollouts of hundreds of interactive steps while mitigating error accumulation in the world model, we propose an inference scheme which we call Blockwise-Autoregressive Diffusion Transformer with adjustable context and decoding horizon lengths. To ensure that the world model indeed follows action input, we propose metrics based on the agreement between the ground truth video and generated video conditioned on the same sequence of actions to evaluate the world model. We then use the world model for policy evaluation by performing Monte Carlo rollouts in the world model while employing a vision-language model (VLM) as a reward function. Interestingly, we found that WPE tends to underestimate the policy values for in-distribution actions and overestimate policy values for out-of-distribution actions. Nevertheless, WPE preserves the relative rankings of different policies. In emulating real robot executions, WPE achieves high fidelity in mimicing robot arm movements as in real videos, while emulating highly realistic object interaction remains challenging. Despite this limitation, we show that a world model can serve as a starting point for evaluating robot policies before real-world deployment.
Authors:Anthony Gosselin, Ge Ya Luo, Luis Lara, Florian Golemo, Derek Nowrouzezahrai, Liam Paull, Alexia Jolicoeur-Martineau, Christopher Pal
Title: Ctrl-Crash: Controllable Diffusion for Realistic Car Crashes
Abstract:
Video diffusion techniques have advanced significantly in recent years; however, they struggle to generate realistic imagery of car crashes due to the scarcity of accident events in most driving datasets. Improving traffic safety requires realistic and controllable accident simulations. To tackle the problem, we propose Ctrl-Crash, a controllable car crash video generation model that conditions on signals such as bounding boxes, crash types, and an initial image frame. Our approach enables counterfactual scenario generation where minor variations in input can lead to dramatically different crash outcomes. To support fine-grained control at inference time, we leverage classifier-free guidance with independently tunable scales for each conditioning signal. Ctrl-Crash achieves state-of-the-art performance across quantitative video quality metrics (e.g., FVD and JEDi) and qualitative measurements based on a human-evaluation of physical realism and video quality compared to prior diffusion-based methods.
Authors:Guangcong Zheng, Jianlong Yuan, Bo Wang, Haoyang Huang, Guoqing Ma, Nan Duan
Title: Frame-Level Captions for Long Video Generation with Complex Multi Scenes
Abstract:
Generating long videos that can show complex stories, like movie scenes from scripts, has great promise and offers much more than short clips. However, current methods that use autoregression with diffusion models often struggle because their step-by-step process naturally leads to a serious error accumulation (drift). Also, many existing ways to make long videos focus on single, continuous scenes, making them less useful for stories with many events and changes. This paper introduces a new approach to solve these problems. First, we propose a novel way to annotate datasets at the frame-level, providing detailed text guidance needed for making complex, multi-scene long videos. This detailed guidance works with a Frame-Level Attention Mechanism to make sure text and video match precisely. A key feature is that each part (frame) within these windows can be guided by its own distinct text prompt. Our training uses Diffusion Forcing to provide the model with the ability to handle time flexibly. We tested our approach on difficult VBench 2.0 benchmarks ("Complex Plots" and "Complex Landscapes") based on the WanX2.1-T2V-1.3B model. The results show our method is better at following instructions in complex, changing scenes and creates high-quality long videos. We plan to share our dataset annotation methods and trained models with the research community. Project page: https://zgctroy.github.io/frame-level-captions .
Authors:Xiang Zhu, Yichen Liu, Hezhong Li, Jianyu Chen
Title: Learning Generalizable Robot Policy with Human Demonstration Video as a Prompt
Abstract:
Recent robot learning methods commonly rely on imitation learning from massive robotic dataset collected with teleoperation. When facing a new task, such methods generally require collecting a set of new teleoperation data and finetuning the policy. Furthermore, the teleoperation data collection pipeline is also tedious and expensive. Instead, human is able to efficiently learn new tasks by just watching others do. In this paper, we introduce a novel two-stage framework that utilizes human demonstrations to learn a generalizable robot policy. Such policy can directly take human demonstration video as a prompt and perform new tasks without any new teleoperation data and model finetuning at all. In the first stage, we train video generation model that captures a joint representation for both the human and robot demonstration video data using cross-prediction. In the second stage, we fuse the learned representation with a shared action space between human and robot using a novel prototypical contrastive loss. Empirical evaluations on real-world dexterous manipulation tasks show the effectiveness and generalization capabilities of our proposed method.
Authors:Dian Shao, Mingfei Shi, Shengda Xu, Haodong Chen, Yongle Huang, Binglu Wang
Title: FinePhys: Fine-grained Human Action Generation by Explicitly Incorporating Physical Laws for Effective Skeletal Guidance
Abstract:
Despite significant advances in video generation, synthesizing physically plausible human actions remains a persistent challenge, particularly in modeling fine-grained semantics and complex temporal dynamics. For instance, generating gymnastics routines such as "switch leap with 0.5 turn" poses substantial difficulties for current methods, often yielding unsatisfactory results. To bridge this gap, we propose FinePhys, a Fine-grained human action generation framework that incorporates Physics to obtain effective skeletal guidance. Specifically, FinePhys first estimates 2D poses in an online manner and then performs 2D-to-3D dimension lifting via in-context learning. To mitigate the instability and limited interpretability of purely data-driven 3D poses, we further introduce a physics-based motion re-estimation module governed by Euler-Lagrange equations, calculating joint accelerations via bidirectional temporal updating. The physically predicted 3D poses are then fused with data-driven ones, offering multi-scale 2D heatmap guidance for the diffusion process. Evaluated on three fine-grained action subsets from FineGym (FX-JUMP, FX-TURN, and FX-SALTO), FinePhys significantly outperforms competitive baselines. Comprehensive qualitative results further demonstrate FinePhys's ability to generate more natural and plausible fine-grained human actions.
Authors:Yuan Zhang, Jiacheng Jiang, Guoqing Ma, Zhiying Lu, Haoyang Huang, Jianlong Yuan, Nan Duan
Title: Generative Pre-trained Autoregressive Diffusion Transformer
Abstract:
In this work, we present GPDiT, a Generative Pre-trained Autoregressive Diffusion Transformer that unifies the strengths of diffusion and autoregressive modeling for long-range video synthesis, within a continuous latent space. Instead of predicting discrete tokens, GPDiT autoregressively predicts future latent frames using a diffusion loss, enabling natural modeling of motion dynamics and semantic consistency across frames. This continuous autoregressive framework not only enhances generation quality but also endows the model with representation capabilities. Additionally, we introduce a lightweight causal attention variant and a parameter-free rotation-based time-conditioning mechanism, improving both the training and inference efficiency. Extensive experiments demonstrate that GPDiT achieves strong performance in video generation quality, video representation ability, and few-shot learning tasks, highlighting its potential as an effective framework for video modeling in continuous space.
Authors:Xianghao Kong, Qiaosong Qi, Yuanbin Wang, Anyi Rao, Biaolong Chen, Aixi Zhang, Si Liu, Hao Jiang
Title: ProFashion: Prototype-guided Fashion Video Generation with Multiple Reference Images
Abstract:
Fashion video generation aims to synthesize temporally consistent videos from reference images of a designated character. Despite significant progress, existing diffusion-based methods only support a single reference image as input, severely limiting their capability to generate view-consistent fashion videos, especially when there are different patterns on the clothes from different perspectives. Moreover, the widely adopted motion module does not sufficiently model human body movement, leading to sub-optimal spatiotemporal consistency. To address these issues, we propose ProFashion, a fashion video generation framework leveraging multiple reference images to achieve improved view consistency and temporal coherency. To effectively leverage features from multiple reference images while maintaining a reasonable computational cost, we devise a Pose-aware Prototype Aggregator, which selects and aggregates global and fine-grained reference features according to pose information to form frame-wise prototypes, which serve as guidance in the denoising process. To further enhance motion consistency, we introduce a Flow-enhanced Prototype Instantiator, which exploits the human keypoint motion flow to guide an extra spatiotemporal attention process in the denoiser. To demonstrate the effectiveness of ProFashion, we extensively evaluate our method on the MRFashion-7K dataset we collected from the Internet. ProFashion also outperforms previous methods on the UBC Fashion dataset.
Authors:Zhaiming Shen, Alex Havrilla, Rongjie Lai, Alexander Cloninger, Wenjing Liao
Title: Transformers for Learning on Noisy and Task-Level Manifolds: Approximation and Generalization Insights
Abstract:
Transformers serve as the foundational architecture for large language and video generation models, such as GPT, BERT, SORA and their successors. Empirical studies have demonstrated that real-world data and learning tasks exhibit low-dimensional structures, along with some noise or measurement error. The performance of transformers tends to depend on the intrinsic dimension of the data/tasks, though theoretical understandings remain largely unexplored for transformers. This work establishes a theoretical foundation by analyzing the performance of transformers for regression tasks involving noisy input data on a manifold. Specifically, the input data are in a tubular neighborhood of a manifold, while the ground truth function depends on the projection of the noisy data onto the manifold. We prove approximation and generalization errors which crucially depend on the intrinsic dimension of the manifold. Our results demonstrate that transformers can leverage low-complexity structures in learning task even when the input data are perturbed by high-dimensional noise. Our novel proof technique constructs representations of basic arithmetic operations by transformers, which may hold independent interest.
Authors:Jong Inn Park, Maanas Taneja, Qianwen Wang, Dongyeop Kang
Title: Stealing Creator's Workflow: A Creator-Inspired Agentic Framework with Iterative Feedback Loop for Improved Scientific Short-form Generation
Abstract:
Generating engaging, accurate short-form videos from scientific papers is challenging due to content complexity and the gap between expert authors and readers. Existing end-to-end methods often suffer from factual inaccuracies and visual artifacts, limiting their utility for scientific dissemination. To address these issues, we propose SciTalk, a novel multi-LLM agentic framework, grounding videos in various sources, such as text, figures, visual styles, and avatars. Inspired by content creators' workflows, SciTalk uses specialized agents for content summarization, visual scene planning, and text and layout editing, and incorporates an iterative feedback mechanism where video agents simulate user roles to give feedback on generated videos from previous iterations and refine generation prompts. Experimental evaluations show that SciTalk outperforms simple prompting methods in generating scientifically accurate and engaging content over the refined loop of video generation. Although preliminary results are still not yet matching human creators' quality, our framework provides valuable insights into the challenges and benefits of feedback-driven video generation. Our code, data, and generated videos will be publicly available.
Authors:Xiaofan Li, Chenming Wu, Zhao Yang, Zhihao Xu, Dingkang Liang, Yumeng Zhang, Ji Wan, Jun Wang
Title: DriVerse: Navigation World Model for Driving Simulation via Multimodal Trajectory Prompting and Motion Alignment
Abstract:
This paper presents DriVerse, a generative model for simulating navigation-driven driving scenes from a single image and a future trajectory. Previous autonomous driving world models either directly feed the trajectory or discrete control signals into the generation pipeline, leading to poor alignment between the control inputs and the implicit features of the 2D base generative model, which results in low-fidelity video outputs. Some methods use coarse textual commands or discrete vehicle control signals, which lack the precision to guide fine-grained, trajectory-specific video generation, making them unsuitable for evaluating actual autonomous driving algorithms. DriVerse introduces explicit trajectory guidance in two complementary forms: it tokenizes trajectories into textual prompts using a predefined trend vocabulary for seamless language integration, and converts 3D trajectories into 2D spatial motion priors to enhance control over static content within the driving scene. To better handle dynamic objects, we further introduce a lightweight motion alignment module, which focuses on the inter-frame consistency of dynamic pixels, significantly enhancing the temporal coherence of moving elements over long sequences. With minimal training and no need for additional data, DriVerse outperforms specialized models on future video generation tasks across both the nuScenes and Waymo datasets. The code and models will be released to the public.
Authors:Chao Liu, Arash Vahdat
Title: EquiVDM: Equivariant Video Diffusion Models with Temporally Consistent Noise
Abstract:
Temporally consistent video-to-video generation is essential for applications of video diffusion models in areas such as sim-to-real, style-transfer, video upsampling, etc. In this paper, we propose a video diffusion framework that leverages temporally consistent noise to generate coherent video frames without specialized modules or additional constraints. We show that the standard training objective of diffusion models, when applied with temporally consistent noise, encourages the model to be equivariant to spatial transformations in input video and noise. This enables our model to better follow motion patterns from the input video, producing aligned motion and high-fidelity frames. Furthermore, we extend our approach to 3D-consistent video generation by attaching noise as textures on 3D meshes, ensuring 3D consistency in sim-to-real applications. Experimental results demonstrate that our method surpasses state-of-the-art baselines in motion alignment, 3D consistency, and video quality while requiring only a few sampling steps in practice.
Authors:Rosa Wolf, Yitian Shi, Sheng Liu, Rania Rayyes
Title: Diffusion Models for Robotic Manipulation: A Survey
Abstract:
Diffusion generative models have demonstrated remarkable success in visual domains such as image and video generation. They have also recently emerged as a promising approach in robotics, especially in robot manipulations. Diffusion models leverage a probabilistic framework, and they stand out with their ability to model multi-modal distributions and their robustness to high-dimensional input and output spaces. This survey provides a comprehensive review of state-of-the-art diffusion models in robotic manipulation, including grasp learning, trajectory planning, and data augmentation. Diffusion models for scene and image augmentation lie at the intersection of robotics and computer vision for vision-based tasks to enhance generalizability and data scarcity. This paper also presents the two main frameworks of diffusion models and their integration with imitation learning and reinforcement learning. In addition, it discusses the common architectures and benchmarks and points out the challenges and advantages of current state-of-the-art diffusion-based methods.
Authors:Renda Li, Xiaohua Qi, Qiang Ling, Jun Yu, Ziyi Chen, Peng Chang, Mei HanJing Xiao
Title: EasyGenNet: An Efficient Framework for Audio-Driven Gesture Video Generation Based on Diffusion Model
Abstract:
Audio-driven cospeech video generation typically involves two stages: speech-to-gesture and gesture-to-video. While significant advances have been made in speech-to-gesture generation, synthesizing natural expressions and gestures remains challenging in gesture-to-video systems. In order to improve the generation effect, previous works adopted complex input and training strategies and required a large amount of data sets for pre-training, which brought inconvenience to practical applications. We propose a simple one-stage training method and a temporal inference method based on a diffusion model to synthesize realistic and continuous gesture videos without the need for additional training of temporal modules.The entire model makes use of existing pre-trained weights, and only a few thousand frames of data are needed for each character at a time to complete fine-tuning. Built upon the video generator, we introduce a new audio-to-video pipeline to synthesize co-speech videos, using 2D human skeleton as the intermediate motion representation. Our experiments show that our method outperforms existing GAN-based and diffusion-based methods.
Authors:Jangho Park, Taesung Kwon, Jong Chul Ye
Title: Zero4D: Training-Free 4D Video Generation From Single Video Using Off-the-Shelf Video Diffusion
Abstract:
Recently, multi-view or 4D video generation has emerged as a significant research topic. Nonetheless, recent approaches to 4D generation still struggle with fundamental limitations, as they primarily rely on harnessing multiple video diffusion models with additional training or compute-intensive training of a full 4D diffusion model with limited real-world 4D data and large computational costs. To address these challenges, here we propose the first training-free 4D video generation method that leverages the off-the-shelf video diffusion models to generate multi-view videos from a single input video. Our approach consists of two key steps: (1) By designating the edge frames in the spatio-temporal sampling grid as key frames, we first synthesize them using a video diffusion model, leveraging a depth-based warping technique for guidance. This approach ensures structural consistency across the generated frames, preserving spatial and temporal coherence. (2) We then interpolate the remaining frames using a video diffusion model, constructing a fully populated and temporally coherent sampling grid while preserving spatial and temporal consistency. Through this approach, we extend a single video into a multi-view video along novel camera trajectories while maintaining spatio-temporal consistency. Our method is training-free and fully utilizes an off-the-shelf video diffusion model, offering a practical and effective solution for multi-view video generation.
Authors:Prin Phunyaphibarn, Phillip Y. Lee, Jaihoon Kim, Minhyuk Sung
Title: Unconditional Priors Matter! Improving Conditional Generation of Fine-Tuned Diffusion Models
Abstract:
Classifier-Free Guidance (CFG) is a fundamental technique in training conditional diffusion models. The common practice for CFG-based training is to use a single network to learn both conditional and unconditional noise prediction, with a small dropout rate for conditioning. However, we observe that the joint learning of unconditional noise with limited bandwidth in training results in poor priors for the unconditional case. More importantly, these poor unconditional noise predictions become a serious reason for degrading the quality of conditional generation. Inspired by the fact that most CFG-based conditional models are trained by fine-tuning a base model with better unconditional generation, we first show that simply replacing the unconditional noise in CFG with that predicted by the base model can significantly improve conditional generation. Furthermore, we show that a diffusion model other than the one the fine-tuned model was trained on can be used for unconditional noise replacement. We experimentally verify our claim with a range of CFG-based conditional models for both image and video generation, including Zero-1-to-3, Versatile Diffusion, DiT, DynamiCrafter, and InstructPix2Pix.
Authors:Bhishma Dedhia, David Bourgin, Krishna Kumar Singh, Yuheng Li, Yan Kang, Zhan Xu, Niraj K. Jha, Yuchen Liu
Title: Generating, Fast and Slow: Scalable Parallel Video Generation with Video Interface Networks
Abstract:
Diffusion Transformers (DiTs) can generate short photorealistic videos, yet directly training and sampling longer videos with full attention across the video remains computationally challenging. Alternative methods break long videos down into sequential generation of short video segments, requiring multiple sampling chain iterations and specialized consistency modules. To overcome these challenges, we introduce a new paradigm called Video Interface Networks (VINs), which augment DiTs with an abstraction module to enable parallel inference of video chunks. At each diffusion step, VINs encode global semantics from the noisy input of local chunks and the encoded representations, in turn, guide DiTs in denoising chunks in parallel. The coupling of VIN and DiT is learned end-to-end on the denoising objective. Further, the VIN architecture maintains fixed-size encoding tokens that encode the input via a single cross-attention step. Disentangling the encoding tokens from the input thus enables VIN to scale to long videos and learn essential semantics. Experiments on VBench demonstrate that VINs surpass existing chunk-based methods in preserving background consistency and subject coherence. We then show via an optical flow analysis that our approach attains state-of-the-art motion smoothness while using 25-40% fewer FLOPs than full generation. Finally, human raters favorably assessed the overall video quality and temporal consistency of our method in a user study.
Authors:Yu Fang, Yue Yang, Xinghao Zhu, Kaiyuan Zheng, Gedas Bertasius, Daniel Szafir, Mingyu Ding
Title: ReBot: Scaling Robot Learning with Real-to-Sim-to-Real Robotic Video Synthesis
Abstract:
Vision-language-action (VLA) models present a promising paradigm by training policies directly on real robot datasets like Open X-Embodiment. However, the high cost of real-world data collection hinders further data scaling, thereby restricting the generalizability of VLAs. In this paper, we introduce ReBot, a novel real-to-sim-to-real approach for scaling real robot datasets and adapting VLA models to target domains, which is the last-mile deployment challenge in robot manipulation. Specifically, ReBot replays real-world robot trajectories in simulation to diversify manipulated objects (real-to-sim), and integrates the simulated movements with inpainted real-world background to synthesize physically realistic and temporally consistent robot videos (sim-to-real). Our approach has several advantages: 1) it enjoys the benefit of real data to minimize the sim-to-real gap; 2) it leverages the scalability of simulation; and 3) it can generalize a pretrained VLA to a target domain with fully automated data pipelines. Extensive experiments in both simulation and real-world environments show that ReBot significantly enhances the performance and robustness of VLAs. For example, in SimplerEnv with the WidowX robot, ReBot improved the in-domain performance of Octo by 7.2% and OpenVLA by 21.8%, and out-of-domain generalization by 19.9% and 9.4%, respectively. For real-world evaluation with a Franka robot, ReBot increased the success rates of Octo by 17% and OpenVLA by 20%. More information can be found at: https://yuffish.github.io/rebot/
Authors:Zhiyuan Zhang, Dongdong Chen, Jing Liao
Title: I2V3D: Controllable image-to-video generation with 3D guidance
Abstract:
We present I2V3D, a novel framework for animating static images into dynamic videos with precise 3D control, leveraging the strengths of both 3D geometry guidance and advanced generative models. Our approach combines the precision of a computer graphics pipeline, enabling accurate control over elements such as camera movement, object rotation, and character animation, with the visual fidelity of generative AI to produce high-quality videos from coarsely rendered inputs. To support animations with any initial start point and extended sequences, we adopt a two-stage generation process guided by 3D geometry: 1) 3D-Guided Keyframe Generation, where a customized image diffusion model refines rendered keyframes to ensure consistency and quality, and 2) 3D-Guided Video Interpolation, a training-free approach that generates smooth, high-quality video frames between keyframes using bidirectional guidance. Experimental results highlight the effectiveness of our framework in producing controllable, high-quality animations from single input images by harmonizing 3D geometry with generative models. The code for our framework will be publicly released.
Authors:Yuna Kato, Mariko Isogawa, Shohei Mori, Hideo Saito, Hiroki Kajita, Yoshifumi Takatsume
Title: High-Quality Virtual Single-Viewpoint Surgical Video: Geometric Autocalibration of Multiple Cameras in Surgical Lights
Abstract:
Occlusion-free video generation is challenging due to surgeons' obstructions in the camera field of view. Prior work has addressed this issue by installing multiple cameras on a surgical light, hoping some cameras will observe the surgical field with less occlusion. However, this special camera setup poses a new imaging challenge since camera configurations can change every time surgeons move the light, and manual image alignment is required. This paper proposes an algorithm to automate this alignment task. The proposed method detects frames where the lighting system moves, realigns them, and selects the camera with the least occlusion. This algorithm results in a stabilized video with less occlusion. Quantitative results show that our method outperforms conventional approaches. A user study involving medical doctors also confirmed the superiority of our method.
Authors:Lingjun Zhao, Mingyang Xie, Paola Cascante-Bonilla, Hal Daumé, Kwonjoon Lee
Title: Can Hallucination Correction Improve Video-Language Alignment?
Abstract:
Large Vision-Language Models often generate hallucinated content that is not grounded in its visual inputs. While prior work focuses on mitigating hallucinations, we instead explore leveraging hallucination correction as a training objective to improve video-language alignment. We introduce HACA, a self-training framework learning to correct hallucinations in descriptions that do not align with the video content. By identifying and correcting inconsistencies, HACA enhances the model's ability to align video and textual representations for spatio-temporal reasoning. Our experimental results show consistent gains in video-caption binding and text-to-video retrieval tasks, demonstrating that hallucination correction-inspired tasks serve as an effective strategy for improving vision and language alignment.
Authors:Pinxin Liu, Pengfei Zhang, Hyeongwoo Kim, Pablo Garrido, Ari Shapiro, Kyle Olszewski
Title: Contextual Gesture: Co-Speech Gesture Video Generation through Context-aware Gesture Representation
Abstract:
Co-speech gesture generation is crucial for creating lifelike avatars and enhancing human-computer interactions by synchronizing gestures with speech. Despite recent advancements, existing methods struggle with accurately identifying the rhythmic or semantic triggers from audio for generating contextualized gesture patterns and achieving pixel-level realism. To address these challenges, we introduce Contextual Gesture, a framework that improves co-speech gesture video generation through three innovative components: (1) a chronological speech-gesture alignment that temporally connects two modalities, (2) a contextualized gesture tokenization that incorporate speech context into motion pattern representation through distillation, and (3) a structure-aware refinement module that employs edge connection to link gesture keypoints to improve video generation. Our extensive experiments demonstrate that Contextual Gesture not only produces realistic and speech-aligned gesture videos but also supports long-sequence generation and video gesture editing applications, shown in Fig.1.
Authors:Jiangchuan Wei, Shiyue Yan, Wenfeng Lin, Boyuan Liu, Renjie Chen, Mingyu Guo
Title: EchoVideo: Identity-Preserving Human Video Generation by Multimodal Feature Fusion
Abstract:
Recent advancements in video generation have significantly impacted various downstream applications, particularly in identity-preserving video generation (IPT2V). However, existing methods struggle with "copy-paste" artifacts and low similarity issues, primarily due to their reliance on low-level facial image information. This dependence can result in rigid facial appearances and artifacts reflecting irrelevant details. To address these challenges, we propose EchoVideo, which employs two key strategies: (1) an Identity Image-Text Fusion Module (IITF) that integrates high-level semantic features from text, capturing clean facial identity representations while discarding occlusions, poses, and lighting variations to avoid the introduction of artifacts; (2) a two-stage training strategy, incorporating a stochastic method in the second phase to randomly utilize shallow facial information. The objective is to balance the enhancements in fidelity provided by shallow features while mitigating excessive reliance on them. This strategy encourages the model to utilize high-level features during training, ultimately fostering a more robust representation of facial identities. EchoVideo effectively preserves facial identities and maintains full-body integrity. Extensive experiments demonstrate that it achieves excellent results in generating high-quality, controllability and fidelity videos.
Authors:Haocheng Huang, Jiaxin Chen, Jinyang Guo, Ruiyi Zhan, Yunhong Wang
Title: TCAQ-DM: Timestep-Channel Adaptive Quantization for Diffusion Models
Abstract:
Diffusion models have achieved remarkable success in the image and video generation tasks. Nevertheless, they often require a large amount of memory and time overhead during inference, due to the complex network architecture and considerable number of timesteps for iterative diffusion. Recently, the post-training quantization (PTQ) technique has proved a promising way to reduce the inference cost by quantizing the float-point operations to low-bit ones. However, most of them fail to tackle with the large variations in the distribution of activations across distinct channels and timesteps, as well as the inconsistent of input between quantization and inference on diffusion models, thus leaving much room for improvement. To address the above issues, we propose a novel method dubbed Timestep-Channel Adaptive Quantization for Diffusion Models (TCAQ-DM). Specifically, we develop a timestep-channel joint reparameterization (TCR) module to balance the activation range along both the timesteps and channels, facilitating the successive reconstruction procedure. Subsequently, we employ a dynamically adaptive quantization (DAQ) module that mitigate the quantization error by selecting an optimal quantizer for each post-Softmax layers according to their specific types of distributions. Moreover, we present a progressively aligned reconstruction (PAR) strategy to mitigate the bias caused by the input mismatch. Extensive experiments on various benchmarks and distinct diffusion models demonstrate that the proposed method substantially outperforms the state-of-the-art approaches in most cases, especially yielding comparable FID metrics to the full precision model on CIFAR-10 in the W6A6 setting, while enabling generating available images in the W4A4 settings.
Authors:Hanzhong Guo, Hongwei Yi, Daquan Zhou, Alexander William Bergman, Michael Lingelbach, Yizhou Yu
Title: Real-time One-Step Diffusion-based Expressive Portrait Videos Generation
Abstract:
Latent diffusion models have made great strides in generating expressive portrait videos with accurate lip-sync and natural motion from a single reference image and audio input. However, these models are far from real-time, often requiring many sampling steps that take minutes to generate even one second of video-significantly limiting practical use. We introduce OSA-LCM (One-Step Avatar Latent Consistency Model), paving the way for real-time diffusion-based avatars. Our method achieves comparable video quality to existing methods but requires only one sampling step, making it more than 10x faster. To accomplish this, we propose a novel avatar discriminator design that guides lip-audio consistency and motion expressiveness to enhance video quality in limited sampling steps. Additionally, we employ a second-stage training architecture using an editing fine-tuned method (EFT), transforming video generation into an editing task during training to effectively address the temporal gap challenge in single-step generation. Experiments demonstrate that OSA-LCM outperforms existing open-source portrait video generation models while operating more efficiently with a single sampling step.
Authors:Zhuoran Yang, Xi Guo, Chenjing Ding, Chiyu Wang, Wei Wu
Title: Physical Informed Driving World Model
Abstract:
Autonomous driving requires robust perception models trained on high-quality, large-scale multi-view driving videos for tasks like 3D object detection, segmentation and trajectory prediction. While world models provide a cost-effective solution for generating realistic driving videos, challenges remain in ensuring these videos adhere to fundamental physical principles, such as relative and absolute motion, spatial relationship like occlusion and spatial consistency, and temporal consistency. To address these, we propose DrivePhysica, an innovative model designed to generate realistic multi-view driving videos that accurately adhere to essential physical principles through three key advancements: (1) a Coordinate System Aligner module that integrates relative and absolute motion features to enhance motion interpretation, (2) an Instance Flow Guidance module that ensures precise temporal consistency via efficient 3D flow extraction, and (3) a Box Coordinate Guidance module that improves spatial relationship understanding and accurately resolves occlusion hierarchies. Grounded in physical principles, we achieve state-of-the-art performance in driving video generation quality (3.96 FID and 38.06 FVD on the Nuscenes dataset) and downstream perception tasks. Our project homepage: https://metadrivescape.github.io/papers_project/DrivePhysica/page.html
Authors:Rui Chen, Zehuan Wu, Yichen Liu, Yuxin Guo, Jingcheng Ni, Haifeng Xia, Siyu Xia
Title: UniMLVG: Unified Framework for Multi-view Long Video Generation with Comprehensive Control Capabilities for Autonomous Driving
Abstract:
The creation of diverse and realistic driving scenarios has become essential to enhance perception and planning capabilities of the autonomous driving system. However, generating long-duration, surround-view consistent driving videos remains a significant challenge. To address this, we present UniMLVG, a unified framework designed to generate extended street multi-perspective videos under precise control. By integrating single- and multi-view driving videos into the training data, our approach updates a DiT-based diffusion model equipped with cross-frame and cross-view modules across three stages with multi training objectives, substantially boosting the diversity and quality of generated visual content. Importantly, we propose an innovative explicit viewpoint modeling approach for multi-view video generation to effectively improve motion transition consistency. Capable of handling various input reference formats (e.g., text, images, or video), our UniMLVG generates high-quality multi-view videos according to the corresponding condition constraints such as 3D bounding boxes or frame-level text descriptions. Compared to the best models with similar capabilities, our framework achieves improvements of 48.2% in FID and 35.2% in FVD.
Authors:Xi Guo, Chenjing Ding, Haoxuan Dou, Xin Zhang, Weixuan Tang, Wei Wu
Title: InfinityDrive: Breaking Time Limits in Driving World Models
Abstract:
Autonomous driving systems struggle with complex scenarios due to limited access to diverse, extensive, and out-of-distribution driving data which are critical for safe navigation. World models offer a promising solution to this challenge; however, current driving world models are constrained by short time windows and limited scenario diversity. To bridge this gap, we introduce InfinityDrive, the first driving world model with exceptional generalization capabilities, delivering state-of-the-art performance in high fidelity, consistency, and diversity with minute-scale video generation. InfinityDrive introduces an efficient spatio-temporal co-modeling module paired with an extended temporal training strategy, enabling high-resolution (576$\times$1024) video generation with consistent spatial and temporal coherence. By incorporating memory injection and retention mechanisms alongside an adaptive memory curve loss to minimize cumulative errors, achieving consistent video generation lasting over 1500 frames (more than 2 minutes). Comprehensive experiments in multiple datasets validate InfinityDrive's ability to generate complex and varied scenarios, highlighting its potential as a next-generation driving world model built for the evolving demands of autonomous driving. Our project homepage: https://metadrivescape.github.io/papers_project/InfinityDrive/page.html
Authors:Xin Yan, Yuxuan Cai, Qiuyue Wang, Yuan Zhou, Wenhao Huang, Huan Yang
Title: Long Video Diffusion Generation with Segmented Cross-Attention and Content-Rich Video Data Curation
Abstract:
We introduce Presto, a novel video diffusion model designed to generate 15-second videos with long-range coherence and rich content. Extending video generation methods to maintain scenario diversity over long durations presents significant challenges. To address this, we propose a Segmented Cross-Attention (SCA) strategy, which splits hidden states into segments along the temporal dimension, allowing each segment to cross-attend to a corresponding sub-caption. SCA requires no additional parameters, enabling seamless incorporation into current DiT-based architectures. To facilitate high-quality long video generation, we build the LongTake-HD dataset, consisting of 261k content-rich videos with scenario coherence, annotated with an overall video caption and five progressive sub-captions. Experiments show that our Presto achieves 78.5% on the VBench Semantic Score and 100% on the Dynamic Degree, outperforming existing state-of-the-art video generation methods. This demonstrates that our proposed Presto significantly enhances content richness, maintains long-range coherence, and captures intricate textual details. More details are displayed on our project page: https://presto-video.github.io/.
Authors:Yuhang Zhang, Yuan Zhou, Zeyu Liu, Yuxuan Cai, Qiuyue Wang, Aidong Men, Huan Yang
Title: Fleximo: Towards Flexible Text-to-Human Motion Video Generation
Abstract:
Current methods for generating human motion videos rely on extracting pose sequences from reference videos, which restricts flexibility and control. Additionally, due to the limitations of pose detection techniques, the extracted pose sequences can sometimes be inaccurate, leading to low-quality video outputs. We introduce a novel task aimed at generating human motion videos solely from reference images and natural language. This approach offers greater flexibility and ease of use, as text is more accessible than the desired guidance videos. However, training an end-to-end model for this task requires millions of high-quality text and human motion video pairs, which are challenging to obtain. To address this, we propose a new framework called Fleximo, which leverages large-scale pre-trained text-to-3D motion models. This approach is not straightforward, as the text-generated skeletons may not consistently match the scale of the reference image and may lack detailed information. To overcome these challenges, we introduce an anchor point based rescale method and design a skeleton adapter to fill in missing details and bridge the gap between text-to-motion and motion-to-video generation. We also propose a video refinement process to further enhance video quality. A large language model (LLM) is employed to decompose natural language into discrete motion sequences, enabling the generation of motion videos of any desired length. To assess the performance of Fleximo, we introduce a new benchmark called MotionBench, which includes 400 videos across 20 identities and 20 motions. We also propose a new metric, MotionScore, to evaluate the accuracy of motion following. Both qualitative and quantitative results demonstrate that our method outperforms existing text-conditioned image-to-video generation methods. All code and model weights will be made publicly available.
Authors:KaiZhou Li, Jindong Gu, Xinchun Yu, Junjie Cao, Yansong Tang, Xiao-Ping Zhang
Title: UVCG: Leveraging Temporal Consistency for Universal Video Protection
Abstract:
The security risks of AI-driven video editing have garnered significant attention. Although recent studies indicate that adding perturbations to images can protect them from malicious edits, directly applying image-based methods to perturb each frame in a video becomes ineffective, as video editing techniques leverage the consistency of inter-frame information to restore individually perturbed content. To address this challenge, we leverage the temporal consistency of video content to propose a straightforward and efficient, yet highly effective and broadly applicable approach, Universal Video Consistency Guard (UVCG). UVCG embeds the content of another video(target video) within a protected video by introducing continuous, imperceptible perturbations which has the ability to force the encoder of editing models to map continuous inputs to misaligned continuous outputs, thereby inhibiting the generation of videos consistent with the intended textual prompts. Additionally leveraging similarity in perturbations between adjacent frames, we improve the computational efficiency of perturbation generation by employing a perturbation-reuse strategy. We applied UVCG across various versions of Latent Diffusion Models (LDM) and assessed its effectiveness and generalizability across multiple LDM-based editing pipelines. The results confirm the effectiveness, transferability, and efficiency of our approach in safeguarding video content from unauthorized modifications.
Authors:Jaemin Kim, Bryan S Kim, Jong Chul Ye
Title: Free$^2$Guide: Gradient-Free Path Integral Control for Enhancing Text-to-Video Generation with Large Vision-Language Models
Abstract:
Diffusion models have achieved impressive results in generative tasks like text-to-image (T2I) and text-to-video (T2V) synthesis. However, achieving accurate text alignment in T2V generation remains challenging due to the complex temporal dependency across frames. Existing reinforcement learning (RL)-based approaches to enhance text alignment often require differentiable reward functions or are constrained to limited prompts, hindering their scalability and applicability. In this paper, we propose Free$^2$Guide, a novel gradient-free framework for aligning generated videos with text prompts without requiring additional model training. Leveraging principles from path integral control, Free$^2$Guide approximates guidance for diffusion models using non-differentiable reward functions, thereby enabling the integration of powerful black-box Large Vision-Language Models (LVLMs) as reward model. Additionally, our framework supports the flexible ensembling of multiple reward models, including large-scale image-based models, to synergistically enhance alignment without incurring substantial computational overhead. We demonstrate that Free$^2$Guide significantly improves text alignment across various dimensions and enhances the overall quality of generated videos.
Authors:Hyelin Nam, Jaemin Kim, Dohun Lee, Jong Chul Ye
Title: Optical-Flow Guided Prompt Optimization for Coherent Video Generation
Abstract:
While text-to-video diffusion models have made significant strides, many still face challenges in generating videos with temporal consistency. Within diffusion frameworks, guidance techniques have proven effective in enhancing output quality during inference; however, applying these methods to video diffusion models introduces additional complexity of handling computations across entire sequences. To address this, we propose a novel framework called MotionPrompt that guides the video generation process via optical flow. Specifically, we train a discriminator to distinguish optical flow between random pairs of frames from real videos and generated ones. Given that prompts can influence the entire video, we optimize learnable token embeddings during reverse sampling steps by using gradients from a trained discriminator applied to random frame pairs. This approach allows our method to generate visually coherent video sequences that closely reflect natural motion dynamics, without compromising the fidelity of the generated content. We demonstrate the effectiveness of our approach across various models.
Authors:Zeqing Wang, Qingyang Ma, Wentao Wan, Haojie Li, Keze Wang, Yonghong Tian
Title: Is this Generated Person Existed in Real-world? Fine-grained Detecting and Calibrating Abnormal Human-body
Abstract:
Recent improvements in visual synthesis have significantly enhanced the depiction of generated human photos, which are pivotal due to their wide applicability and demand. Nonetheless, the existing text-to-image or text-to-video models often generate low-quality human photos that might differ considerably from real-world body structures, referred to as "abnormal human bodies". Such abnormalities, typically deemed unacceptable, pose considerable challenges in the detection and repair of them within human photos. These challenges require precise abnormality recognition capabilities, which entail pinpointing both the location and the abnormality type. Intuitively, Visual Language Models (VLMs) that have obtained remarkable performance on various visual tasks are quite suitable for this task. However, their performance on abnormality detection in human photos is quite poor. Hence, it is quite important to highlight this task for the research community. In this paper, we first introduce a simple yet challenging task, i.e., \textbf{F}ine-grained \textbf{H}uman-body \textbf{A}bnormality \textbf{D}etection \textbf{(FHAD)}, and construct two high-quality datasets for evaluation. Then, we propose a meticulous framework, named HumanCalibrator, which identifies and repairs abnormalities in human body structures while preserving the other content. Experiments indicate that our HumanCalibrator achieves high accuracy in abnormality detection and accomplishes an increase in visual comparisons while preserving the other visual content.
Authors:Paul Janson, Tiberiu Popa, Eugene Belilovsky
Title: Towards motion from video diffusion models
Abstract:
Text-conditioned video diffusion models have emerged as a powerful tool in the realm of video generation and editing. But their ability to capture the nuances of human movement remains under-explored. Indeed the ability of these models to faithfully model an array of text prompts can lead to a wide host of applications in human and character animation. In this work, we take initial steps to investigate whether these models can effectively guide the synthesis of realistic human body animations. Specifically we propose to synthesize human motion by deforming an SMPL-X body representation guided by Score distillation sampling (SDS) calculated using a video diffusion model. By analyzing the fidelity of the resulting animations, we gain insights into the extent to which we can obtain motion using publicly available text-to-video diffusion models using SDS. Our findings shed light on the potential and limitations of these models for generating diverse and plausible human motions, paving the way for further research in this exciting area.
Authors:Haoyu Zhao, Hao Wang, Xingyue Zhao, Hao Fei, Hongqiu Wang, Chengjiang Long, Hua Zou
Title: Efficient Physics Simulation for 3D Scenes via MLLM-Guided Gaussian Splatting
Abstract:
Recent advancements in 3D generation models have opened new possibilities for simulating dynamic 3D object movements and customizing behaviors, yet creating this content remains challenging. Current methods often require manual assignment of precise physical properties for simulations or rely on video generation models to predict them, which is computationally intensive. In this paper, we rethink the usage of multi-modal large language model (MLLM) in physics-based simulation, and present Sim Anything, a physics-based approach that endows static 3D objects with interactive dynamics. We begin with detailed scene reconstruction and object-level 3D open-vocabulary segmentation, progressing to multi-view image in-painting. Inspired by human visual reasoning, we propose MLLM-based Physical Property Perception (MLLM-P3) to predict mean physical properties of objects in a zero-shot manner. Based on the mean values and the object's geometry, the Material Property Distribution Prediction model (MPDP) model then estimates the full distribution, reformulating the problem as probability distribution estimation to reduce computational costs. Finally, we simulate objects in an open-world scene with particles sampled via the Physical-Geometric Adaptive Sampling (PGAS) strategy, efficiently capturing complex deformations and significantly reducing computational costs. Extensive experiments and user studies demonstrate our Sim Anything achieves more realistic motion than state-of-the-art methods within 2 minutes on a single GPU.
Authors:Jeonghyeok Do, Munchurl Kim
Title: Bridging the Skeleton-Text Modality Gap: Diffusion-Powered Modality Alignment for Zero-shot Skeleton-based Action Recognition
Abstract:
In zero-shot skeleton-based action recognition (ZSAR), aligning skeleton features with the text features of action labels is essential for accurately predicting unseen actions. ZSAR faces a fundamental challenge in bridging the modality gap between the two-kind features, which severely limits generalization to unseen actions. Previous methods focus on direct alignment between skeleton and text latent spaces, but the modality gaps between these spaces hinder robust generalization learning. Motivated by the success of diffusion models in multi-modal alignment (e.g., text-to-image, text-to-video), we firstly present a diffusion-based skeleton-text alignment framework for ZSAR. Our approach, Triplet Diffusion for Skeleton-Text Matching (TDSM), focuses on cross-alignment power of diffusion models rather than their generative capability. Specifically, TDSM aligns skeleton features with text prompts by incorporating text features into the reverse diffusion process, where skeleton features are denoised under text guidance, forming a unified skeleton-text latent space for robust matching. To enhance discriminative power, we introduce a triplet diffusion (TD) loss that encourages our TDSM to correct skeleton-text matches while pushing them apart for different action classes. Our TDSM significantly outperforms very recent state-of-the-art methods with significantly large margins of 2.36%-point to 13.05%-point, demonstrating superior accuracy and scalability in zero-shot settings through effective skeleton-text matching.
Authors:Xiaoyan Hu, Ho-fung Leung, Farzan Farnia
Title: PAK-UCB Contextual Bandit: An Online Learning Approach to Prompt-Aware Selection of Generative Models and LLMs
Abstract:
Selecting a sample generation scheme from multiple prompt-based generative models, including large language models (LLMs) and prompt-guided image and video generation models, is typically addressed by choosing the model that maximizes an averaged evaluation score. However, this score-based selection overlooks the possibility that different models achieve the best generation performance for different types of text prompts. An online identification of the best generation model for various input prompts can reduce the costs associated with querying sub-optimal models. In this work, we explore the possibility of varying rankings of text-based generative models for different text prompts and propose an online learning framework to predict the best data generation model for a given input prompt. The proposed PAK-UCB algorithm addresses a contextual bandit (CB) setting with shared context variables across the arms, utilizing the generated data to update kernel-based functions that predict the score of each model available for unseen text prompts. Additionally, we leverage random Fourier features (RFF) to accelerate the online learning process of PAK-UCB. Our numerical experiments on real and simulated text-to-image and image-to-text generative models show that RFF-UCB performs successfully in identifying the best generation model across different sample types. The code is available at: github.com/yannxiaoyanhu/dgm-online-select.
Authors:Zhang Wan, Sheng Tang, Jiawei Wei, Ruize Zhang, Juan Cao
Title: DragEntity: Trajectory Guided Video Generation using Entity and Positional Relationships
Abstract:
In recent years, diffusion models have achieved tremendous success in the field of video generation, with controllable video generation receiving significant attention. However, existing control methods still face two limitations: Firstly, control conditions (such as depth maps, 3D Mesh) are difficult for ordinary users to obtain directly. Secondly, it's challenging to drive multiple objects through complex motions with multiple trajectories simultaneously. In this paper, we introduce DragEntity, a video generation model that utilizes entity representation for controlling the motion of multiple objects. Compared to previous methods, DragEntity offers two main advantages: 1) Our method is more user-friendly for interaction because it allows users to drag entities within the image rather than individual pixels. 2) We use entity representation to represent any object in the image, and multiple objects can maintain relative spatial relationships. Therefore, we allow multiple trajectories to control multiple objects in the image with different levels of complexity simultaneously. Our experiments validate the effectiveness of DragEntity, demonstrating its excellent performance in fine-grained control in video generation.
Authors:Achint Soni, Sreyas Venkataraman, Abhranil Chandra, Sebastian Fischmeister, Percy Liang, Bo Dai, Sherry Yang
Title: VideoAgent: Self-Improving Video Generation
Abstract:
Video generation has been used to generate visual plans for controlling robotic systems. Given an image observation and a language instruction, previous work has generated video plans which are then converted to robot controls to be executed. However, a major bottleneck in leveraging video generation for control lies in the quality of the generated videos, which often suffer from hallucinatory content and unrealistic physics, resulting in low task success when control actions are extracted from the generated videos. While scaling up dataset and model size provides a partial solution, integrating external feedback is both natural and essential for grounding video generation in the real world. With this observation, we propose VideoAgent for self-improving generated video plans based on external feedback. Instead of directly executing the generated video plan, VideoAgent first refines the generated video plans using a novel procedure which we call self-conditioning consistency, allowing inference-time compute to be turned into better generated video plans. As the refined video plan is being executed, VideoAgent can collect additional data from the environment to further improve video plan generation. Experiments in simulated robotic manipulation from MetaWorld and iTHOR show that VideoAgent drastically reduces hallucination, thereby boosting success rate of downstream manipulation tasks. We further illustrate that VideoAgent can effectively refine real-robot videos, providing an early indicator that robots can be an effective tool in grounding video generation in the physical world. Video demos and code can be found at https://video-as-agent.github.io.
Authors:Serin Yang, Taesung Kwon, Jong Chul Ye
Title: ViBiDSampler: Enhancing Video Interpolation Using Bidirectional Diffusion Sampler
Abstract:
Recent progress in large-scale text-to-video (T2V) and image-to-video (I2V) diffusion models has greatly enhanced video generation, especially in terms of keyframe interpolation. However, current image-to-video diffusion models, while powerful in generating videos from a single conditioning frame, need adaptation for two-frame (start & end) conditioned generation, which is essential for effective bounded interpolation. Unfortunately, existing approaches that fuse temporally forward and backward paths in parallel often suffer from off-manifold issues, leading to artifacts or requiring multiple iterative re-noising steps. In this work, we introduce a novel, bidirectional sampling strategy to address these off-manifold issues without requiring extensive re-noising or fine-tuning. Our method employs sequential sampling along both forward and backward paths, conditioned on the start and end frames, respectively, ensuring more coherent and on-manifold generation of intermediate frames. Additionally, we incorporate advanced guidance techniques, CFG++ and DDS, to further enhance the interpolation process. By integrating these, our method achieves state-of-the-art performance, efficiently generating high-quality, smooth videos between keyframes. On a single 3090 GPU, our method can interpolate 25 frames at 1024 x 576 resolution in just 195 seconds, establishing it as a leading solution for keyframe interpolation.
Authors:Ge Ya Luo, Gian Mario Favero, Zhi Hao Luo, Alexia Jolicoeur-Martineau, Christopher Pal
Title: Beyond FVD: Enhanced Evaluation Metrics for Video Generation Quality
Abstract:
The Fréchet Video Distance (FVD) is a widely adopted metric for evaluating video generation distribution quality. However, its effectiveness relies on critical assumptions. Our analysis reveals three significant limitations: (1) the non-Gaussianity of the Inflated 3D Convnet (I3D) feature space; (2) the insensitivity of I3D features to temporal distortions; (3) the impractical sample sizes required for reliable estimation. These findings undermine FVD's reliability and show that FVD falls short as a standalone metric for video generation evaluation. After extensive analysis of a wide range of metrics and backbone architectures, we propose JEDi, the JEPA Embedding Distance, based on features derived from a Joint Embedding Predictive Architecture, measured using Maximum Mean Discrepancy with polynomial kernel. Our experiments on multiple open-source datasets show clear evidence that it is a superior alternative to the widely used FVD metric, requiring only 16% of the samples to reach its steady value, while increasing alignment with human evaluation by 34%, on average.
Authors:Jinzhi Zhang, Feng Xiong, Mu Xu
Title: G3PT: Unleash the power of Autoregressive Modeling in 3D Generation via Cross-scale Querying Transformer
Abstract:
Autoregressive transformers have revolutionized generative models in language processing and shown substantial promise in image and video generation. However, these models face significant challenges when extended to 3D generation tasks due to their reliance on next-token prediction to learn token sequences, which is incompatible with the unordered nature of 3D data. Instead of imposing an artificial order on 3D data, in this paper, we introduce G3PT, a scalable coarse-to-fine 3D generative model utilizing a cross-scale querying transformer. The key is to map point-based 3D data into discrete tokens with different levels of detail, naturally establishing a sequential relationship between different levels suitable for autoregressive modeling. Additionally, the cross-scale querying transformer connects tokens globally across different levels of detail without requiring an ordered sequence. Benefiting from this approach, G3PT features a versatile 3D generation pipeline that effortlessly supports diverse conditional structures, enabling the generation of 3D shapes from various types of conditions. Extensive experiments demonstrate that G3PT achieves superior generation quality and generalization ability compared to previous 3D generation methods. Most importantly, for the first time in 3D generation, scaling up G3PT reveals distinct power-law scaling behaviors.
Authors:Yining Yao, Xi Guo, Chenjing Ding, Wei Wu
Title: MyGo: Consistent and Controllable Multi-View Driving Video Generation with Camera Control
Abstract:
High-quality driving video generation is crucial for providing training data for autonomous driving models. However, current generative models rarely focus on enhancing camera motion control under multi-view tasks, which is essential for driving video generation. Therefore, we propose MyGo, an end-to-end framework for video generation, introducing motion of onboard cameras as conditions to make progress in camera controllability and multi-view consistency. MyGo employs additional plug-in modules to inject camera parameters into the pre-trained video diffusion model, which retains the extensive knowledge of the pre-trained model as much as possible. Furthermore, we use epipolar constraints and neighbor view information during the generation process of each view to enhance spatial-temporal consistency. Experimental results show that MyGo has achieved state-of-the-art results in both general camera-controlled video generation and multi-view driving video generation tasks, which lays the foundation for more accurate environment simulation in autonomous driving. Project page: https://metadrivescape.github.io/papers_project/MyGo/page.html
Authors:Wei Wu, Xi Guo, Weixuan Tang, Tingxuan Huang, Chiyu Wang, Dongyue Chen, Chenjing Ding
Title: DriveScape: Towards High-Resolution Controllable Multi-View Driving Video Generation
Abstract:
Recent advancements in generative models have provided promising solutions for synthesizing realistic driving videos, which are crucial for training autonomous driving perception models. However, existing approaches often struggle with multi-view video generation due to the challenges of integrating 3D information while maintaining spatial-temporal consistency and effectively learning from a unified model. We propose DriveScape, an end-to-end framework for multi-view, 3D condition-guided video generation, capable of producing 1024 x 576 high-resolution videos at 10Hz. Unlike other methods limited to 2Hz due to the 3D box annotation frame rate, DriveScape overcomes this with its ability to operate under sparse conditions. Our Bi-Directional Modulated Transformer (BiMot) ensures precise alignment of 3D structural information, maintaining spatial-temporal consistency. DriveScape excels in video generation performance, achieving state-of-the-art results on the nuScenes dataset with an FID score of 8.34 and an FVD score of 76.39. Our project homepage: https://metadrivescape.github.io/papers_project/drivescapev1/index.html
Authors:Rui Zhang, Yaosen Chen, Yuegen Liu, Wei Wang, Xuming Wen, Hongxia Wang
Title: TVG: A Training-free Transition Video Generation Method with Diffusion Models
Abstract:
Transition videos play a crucial role in media production, enhancing the flow and coherence of visual narratives. Traditional methods like morphing often lack artistic appeal and require specialized skills, limiting their effectiveness. Recent advances in diffusion model-based video generation offer new possibilities for creating transitions but face challenges such as poor inter-frame relationship modeling and abrupt content changes. We propose a novel training-free Transition Video Generation (TVG) approach using video-level diffusion models that addresses these limitations without additional training. Our method leverages Gaussian Process Regression ($\mathcal{GPR}$) to model latent representations, ensuring smooth and dynamic transitions between frames. Additionally, we introduce interpolation-based conditional controls and a Frequency-aware Bidirectional Fusion (FBiF) architecture to enhance temporal control and transition reliability. Evaluations of benchmark datasets and custom image pairs demonstrate the effectiveness of our approach in generating high-quality smooth transition videos. The code are provided in https://sobeymil.github.io/tvg.com.
Authors:Wei Wang, Yaosen Chen, Yuegen Liu, Qi Yuan, Shubin Yang, Yanru Zhang
Title: MVOC: a training-free multiple video object composition method with diffusion models
Abstract:
Video composition is the core task of video editing. Although image composition based on diffusion models has been highly successful, it is not straightforward to extend the achievement to video object composition tasks, which not only exhibit corresponding interaction effects but also ensure that the objects in the composited video maintain motion and identity consistency, which is necessary to composite a physical harmony video. To address this challenge, we propose a Multiple Video Object Composition (MVOC) method based on diffusion models. Specifically, we first perform DDIM inversion on each video object to obtain the corresponding noise features. Secondly, we combine and edit each object by image editing methods to obtain the first frame of the composited video. Finally, we use the image-to-video generation model to composite the video with feature and attention injections in the Video Object Dependence Module, which is a training-free conditional guidance operation for video generation, and enables the coordination of features and attention maps between various objects that can be non-independent in the composited video. The final generative model not only constrains the objects in the generated video to be consistent with the original object motion and identity, but also introduces interaction effects between objects. Extensive experiments have demonstrated that the proposed method outperforms existing state-of-the-art approaches. Project page: https://sobeymil.github.io/mvoc.com.
Authors:Rotem Shalev-Arkushin, Aharon Azulay, Tavi Halperin, Eitan Richardson, Amit H. Bermano, Ohad Fried
Title: V-LASIK: Consistent Glasses-Removal from Videos Using Synthetic Data
Abstract:
Diffusion-based generative models have recently shown remarkable image and video editing capabilities. However, local video editing, particularly removal of small attributes like glasses, remains a challenge. Existing methods either alter the videos excessively, generate unrealistic artifacts, or fail to perform the requested edit consistently throughout the video. In this work, we focus on consistent and identity-preserving removal of glasses in videos, using it as a case study for consistent local attribute removal in videos. Due to the lack of paired data, we adopt a weakly supervised approach and generate synthetic imperfect data, using an adjusted pretrained diffusion model. We show that despite data imperfection, by learning from our generated data and leveraging the prior of pretrained diffusion models, our model is able to perform the desired edit consistently while preserving the original video content. Furthermore, we exemplify the generalization ability of our method to other local video editing tasks by applying it successfully to facial sticker-removal. Our approach demonstrates significant improvement over existing methods, showcasing the potential of leveraging synthetic data and strong video priors for local video editing tasks.
Authors:Kuan Heng Lin, Sicheng Mo, Ben Klingher, Fangzhou Mu, Bolei Zhou
Title: Ctrl-X: Controlling Structure and Appearance for Text-To-Image Generation Without Guidance
Abstract:
Recent controllable generation approaches such as FreeControl and Diffusion Self-Guidance bring fine-grained spatial and appearance control to text-to-image (T2I) diffusion models without training auxiliary modules. However, these methods optimize the latent embedding for each type of score function with longer diffusion steps, making the generation process time-consuming and limiting their flexibility and use. This work presents Ctrl-X, a simple framework for T2I diffusion controlling structure and appearance without additional training or guidance. Ctrl-X designs feed-forward structure control to enable the structure alignment with a structure image and semantic-aware appearance transfer to facilitate the appearance transfer from a user-input image. Extensive qualitative and quantitative experiments illustrate the superior performance of Ctrl-X on various condition inputs and model checkpoints. In particular, Ctrl-X supports novel structure and appearance control with arbitrary condition images of any modality, exhibits superior image quality and appearance transfer compared to existing works, and provides instant plug-and-play functionality to any T2I and text-to-video (T2V) diffusion model. See our project page for an overview of the results: https://genforce.github.io/ctrl-x
Authors:Ge Ya Luo, Zhi Hao Luo, Anthony Gosselin, Alexia Jolicoeur-Martineau, Christopher Pal
Title: Ctrl-V: Higher Fidelity Video Generation with Bounding-Box Controlled Object Motion
Abstract:
Controllable video generation has attracted significant attention, largely due to advances in video diffusion models. In domains such as autonomous driving, it is essential to develop highly accurate predictions for object motions. This paper tackles a crucial challenge of how to exert precise control over object motion for realistic video synthesis. To accomplish this, we 1) control object movements using bounding boxes and extend this control to the renderings of 2D or 3D boxes in pixel space, 2) employ a distinct, specialized model to forecast the trajectories of object bounding boxes based on their previous and, if desired, future positions, and 3) adapt and enhance a separate video diffusion network to create video content based on these high quality trajectory forecasts. Our method, Ctrl-V, leverages modified and fine-tuned Stable Video Diffusion (SVD) models to solve both trajectory and video generation. Extensive experiments conducted on the KITTI, Virtual-KITTI 2, BDD100k, and nuScenes datasets validate the effectiveness of our approach in producing realistic and controllable video generation.
Authors:AmirHossein Zamani, Amir G. Aghdam, Tiberiu Popa, Eugene Belilovsky
Title: Temporally Consistent Object Editing in Videos using Extended Attention
Abstract:
Image generation and editing have seen a great deal of advancements with the rise of large-scale diffusion models that allow user control of different modalities such as text, mask, depth maps, etc. However, controlled editing of videos still lags behind. Prior work in this area has focused on using 2D diffusion models to globally change the style of an existing video. On the other hand, in many practical applications, editing localized parts of the video is critical. In this work, we propose a method to edit videos using a pre-trained inpainting image diffusion model. We systematically redesign the forward path of the model by replacing the self-attention modules with an extended version of attention modules that creates frame-level dependencies. In this way, we ensure that the edited information will be consistent across all the video frames no matter what the shape and position of the masked area is. We qualitatively compare our results with state-of-the-art in terms of accuracy on several video editing tasks like object retargeting, object replacement, and object removal tasks. Simulations demonstrate the superior performance of the proposed strategy.
Authors:Jun Zheng, Fuwei Zhao, Youjiang Xu, Xin Dong, Xiaodan Liang
Title: VITON-DiT: Learning In-the-Wild Video Try-On from Human Dance Videos via Diffusion Transformers
Abstract:
Video try-on stands as a promising area for its tremendous real-world potential. Prior works are limited to transferring product clothing images onto person videos with simple poses and backgrounds, while underperforming on casually captured videos. Recently, Sora revealed the scalability of Diffusion Transformer (DiT) in generating lifelike videos featuring real-world scenarios. Inspired by this, we explore and propose the first DiT-based video try-on framework for practical in-the-wild applications, named VITON-DiT. Specifically, VITON-DiT consists of a garment extractor, a Spatial-Temporal denoising DiT, and an identity preservation ControlNet. To faithfully recover the clothing details, the extracted garment features are fused with the self-attention outputs of the denoising DiT and the ControlNet. We also introduce novel random selection strategies during training and an Interpolated Auto-Regressive (IAR) technique at inference to facilitate long video generation. Unlike existing attempts that require the laborious and restrictive construction of a paired training dataset, severely limiting their scalability, VITON-DiT alleviates this by relying solely on unpaired human dance videos and a carefully designed multi-stage training strategy. Furthermore, we curate a challenging benchmark dataset to evaluate the performance of casual video try-on. Extensive experiments demonstrate the superiority of VITON-DiT in generating spatio-temporal consistent try-on results for in-the-wild videos with complicated human poses.
Authors:Zhaojian Yu, Yinghao Wu, Zhuotao Deng, Yansong Tang, Xiao-Ping Zhang
Title: OpenCarbonEval: A Unified Carbon Emission Estimation Framework in Large-Scale AI Models
Abstract:
In recent years, large-scale auto-regressive models have made significant progress in various tasks, such as text or video generation. However, the environmental impact of these models has been largely overlooked, with a lack of assessment and analysis of their carbon footprint. To address this gap, we introduce OpenCarbonEval, a unified framework for integrating large-scale models across diverse modalities to predict carbon emissions, which could provide AI service providers and users with a means to estimate emissions beforehand and help mitigate the environmental pressure associated with these models. In OpenCarbonEval, we propose a dynamic throughput modeling approach that could capture workload and hardware fluctuations in the training process for more precise emissions estimates. Our evaluation results demonstrate that OpenCarbonEval can more accurately predict training emissions than previous methods, and can be seamlessly applied to different modal tasks. Specifically, we show that OpenCarbonEval achieves superior performance in predicting carbon emissions for both visual models and language models. By promoting sustainable AI development and deployment, OpenCarbonEval can help reduce the environmental impact of large-scale models and contribute to a more environmentally responsible future for the AI community.
Authors:Jihwan Kim, Junoh Kang, Jinyoung Choi, Bohyung Han
Title: FIFO-Diffusion: Generating Infinite Videos from Text without Training
Abstract:
We propose a novel inference technique based on a pretrained diffusion model for text-conditional video generation. Our approach, called FIFO-Diffusion, is conceptually capable of generating infinitely long videos without additional training. This is achieved by iteratively performing diagonal denoising, which simultaneously processes a series of consecutive frames with increasing noise levels in a queue; our method dequeues a fully denoised frame at the head while enqueuing a new random noise frame at the tail. However, diagonal denoising is a double-edged sword as the frames near the tail can take advantage of cleaner frames by forward reference but such a strategy induces the discrepancy between training and inference. Hence, we introduce latent partitioning to reduce the training-inference gap and lookahead denoising to leverage the benefit of forward referencing. Practically, FIFO-Diffusion consumes a constant amount of memory regardless of the target video length given a baseline model, while well-suited for parallel inference on multiple GPUs. We have demonstrated the promising results and effectiveness of the proposed methods on existing text-to-video generation baselines. Generated video examples and source codes are available at our project page.
Authors:Dogucan Yaman, Fevziye Irem Eyiokur, Leonard Bärmann, Seymanur Aktı, Hazım Kemal Ekenel, Alexander Waibel
Title: Audio-Visual Speech Representation Expert for Enhanced Talking Face Video Generation and Evaluation
Abstract:
In the task of talking face generation, the objective is to generate a face video with lips synchronized to the corresponding audio while preserving visual details and identity information. Current methods face the challenge of learning accurate lip synchronization while avoiding detrimental effects on visual quality, as well as robustly evaluating such synchronization. To tackle these problems, we propose utilizing an audio-visual speech representation expert (AV-HuBERT) for calculating lip synchronization loss during training. Moreover, leveraging AV-HuBERT's features, we introduce three novel lip synchronization evaluation metrics, aiming to provide a comprehensive assessment of lip synchronization performance. Experimental results, along with a detailed ablation study, demonstrate the effectiveness of our approach and the utility of the proposed evaluation metrics.
Authors:Wentao Lei, Li Liu, Jun Wang
Title: Bridge to Non-Barrier Communication: Gloss-Prompted Fine-grained Cued Speech Gesture Generation with Diffusion Model
Abstract:
Cued Speech (CS) is an advanced visual phonetic encoding system that integrates lip reading with hand codings, enabling people with hearing impairments to communicate efficiently. CS video generation aims to produce specific lip and gesture movements of CS from audio or text inputs. The main challenge is that given limited CS data, we strive to simultaneously generate fine-grained hand and finger movements, as well as lip movements, meanwhile the two kinds of movements need to be asynchronously aligned. Existing CS generation methods are fragile and prone to poor performance due to template-based statistical models and careful hand-crafted pre-processing to fit the models. Therefore, we propose a novel Gloss-prompted Diffusion-based CS Gesture generation framework (called GlossDiff). Specifically, to integrate additional linguistic rules knowledge into the model. we first introduce a bridging instruction called \textbf{Gloss}, which is an automatically generated descriptive text to establish a direct and more delicate semantic connection between spoken language and CS gestures. Moreover, we first suggest rhythm is an important paralinguistic feature for CS to improve the communication efficacy. Therefore, we propose a novel Audio-driven Rhythmic Module (ARM) to learn rhythm that matches audio speech. Moreover, in this work, we design, record, and publish the first Chinese CS dataset with four CS cuers. Extensive experiments demonstrate that our method quantitatively and qualitatively outperforms current state-of-the-art (SOTA) methods. We release the code and data at https://glossdiff.github.io/.
Authors:Ronghuan Wu, Wanchao Su, Kede Ma, Jing Liao
Title: AniClipart: Clipart Animation with Text-to-Video Priors
Abstract:
Clipart, a pre-made art form, offers a convenient and efficient way of creating visual content. However, traditional workflows for animating static clipart are laborious and time-consuming, involving steps like rigging, keyframing, and inbetweening. Recent advancements in text-to-video generation hold great potential in resolving this challenge. Nevertheless, direct application of text-to-video models often struggles to preserve the visual identity of clipart or generate cartoon-style motion, resulting in subpar animation outcomes. In this paper, we introduce AniClipart, a computational system that converts static clipart into high-quality animations guided by text-to-video priors. To generate natural, smooth, and coherent motion, we first parameterize the motion trajectories of the keypoints defined over the initial clipart image by cubic Bézier curves. We then align these motion trajectories with a given text prompt by optimizing a video Score Distillation Sampling (SDS) loss and a skeleton fidelity loss. By incorporating differentiable As-Rigid-As-Possible (ARAP) shape deformation and differentiable rendering, AniClipart can be end-to-end optimized while maintaining deformation rigidity. Extensive experimental results show that the proposed AniClipart consistently outperforms the competing methods, in terms of text-video alignment, visual identity preservation, and temporal consistency. Additionally, we showcase the versatility of AniClipart by adapting it to generate layered animations, which allow for topological changes.
Authors:Xin Yuan, Jinoo Baek, Keyang Xu, Omer Tov, Hongliang Fei
Title: Inflation with Diffusion: Efficient Temporal Adaptation for Text-to-Video Super-Resolution
Abstract:
We propose an efficient diffusion-based text-to-video super-resolution (SR) tuning approach that leverages the readily learned capacity of pixel level image diffusion model to capture spatial information for video generation. To accomplish this goal, we design an efficient architecture by inflating the weightings of the text-to-image SR model into our video generation framework. Additionally, we incorporate a temporal adapter to ensure temporal coherence across video frames. We investigate different tuning approaches based on our inflated architecture and report trade-offs between computational costs and super-resolution quality. Empirical evaluation, both quantitative and qualitative, on the Shutterstock video dataset, demonstrates that our approach is able to perform text-to-video SR generation with good visual quality and temporal consistency. To evaluate temporal coherence, we also present visualizations in video format in https://drive.google.com/drive/folders/1YVc-KMSJqOrEUdQWVaI-Yfu8Vsfu_1aO?usp=sharing .
Authors:Kumara Kahatapitiya, Adil Karjauv, Davide Abati, Fatih Porikli, Yuki M. Asano, Amirhossein Habibian
Title: Object-Centric Diffusion for Efficient Video Editing
Abstract:
Diffusion-based video editing have reached impressive quality and can transform either the global style, local structure, and attributes of given video inputs, following textual edit prompts. However, such solutions typically incur heavy memory and computational costs to generate temporally-coherent frames, either in the form of diffusion inversion and/or cross-frame attention. In this paper, we conduct an analysis of such inefficiencies, and suggest simple yet effective modifications that allow significant speed-ups whilst maintaining quality. Moreover, we introduce Object-Centric Diffusion, to fix generation artifacts and further reduce latency by allocating more computations towards foreground edited regions, arguably more important for perceptual quality. We achieve this by two novel proposals: i) Object-Centric Sampling, decoupling the diffusion steps spent on salient or background regions and spending most on the former, and ii) Object-Centric Token Merging, which reduces cost of cross-frame attention by fusing redundant tokens in unimportant background regions. Both techniques are readily applicable to a given video editing model without retraining, and can drastically reduce its memory and computational cost. We evaluate our proposals on inversion-based and control-signal-based editing pipelines, and show a latency reduction up to 10x for a comparable synthesis quality. Project page: qualcomm-ai-research.github.io/object-centric-diffusion.
Authors:Yash Jain, Anshul Nasery, Vibhav Vineet, Harkirat Behl
Title: PEEKABOO: Interactive Video Generation via Masked-Diffusion
Abstract:
Modern video generation models like Sora have achieved remarkable success in producing high-quality videos. However, a significant limitation is their inability to offer interactive control to users, a feature that promises to open up unprecedented applications and creativity. In this work, we introduce the first solution to equip diffusion-based video generation models with spatio-temporal control. We present Peekaboo, a novel masked attention module, which seamlessly integrates with current video generation models offering control without the need for additional training or inference overhead. To facilitate future research, we also introduce a comprehensive benchmark for interactive video generation. This benchmark offers a standardized framework for the community to assess the efficacy of emerging interactive video generation models. Our extensive qualitative and quantitative assessments reveal that Peekaboo achieves up to a 3.8x improvement in mIoU over baseline models, all while maintaining the same latency. Code and benchmark are available on the webpage.
Authors:Zaber Ibn Abdul Hakim, Najibul Haque Sarker, Rahul Pratap Singh, Bishmoy Paul, Ali Dabouei, Min Xu
Title: Leveraging Generative Language Models for Weakly Supervised Sentence Component Analysis in Video-Language Joint Learning
Abstract:
A thorough comprehension of textual data is a fundamental element in multi-modal video analysis tasks. However, recent works have shown that the current models do not achieve a comprehensive understanding of the textual data during the training for the target downstream tasks. Orthogonal to the previous approaches to this limitation, we postulate that understanding the significance of the sentence components according to the target task can potentially enhance the performance of the models. Hence, we utilize the knowledge of a pre-trained large language model (LLM) to generate text samples from the original ones, targeting specific sentence components. We propose a weakly supervised importance estimation module to compute the relative importance of the components and utilize them to improve different video-language tasks. Through rigorous quantitative analysis, our proposed method exhibits significant improvement across several video-language tasks. In particular, our approach notably enhances video-text retrieval by a relative improvement of 8.3\% in video-to-text and 1.4\% in text-to-video retrieval over the baselines, in terms of R@1. Additionally, in video moment retrieval, average mAP shows a relative improvement ranging from 2.0\% to 13.7 \% across different baselines.
Authors:Yeji Song, Wonsik Shin, Junsoo Lee, Jeesoo Kim, Nojun Kwak
Title: SAVE: Protagonist Diversification with Structure Agnostic Video Editing
Abstract:
Driven by the upsurge progress in text-to-image (T2I) generation models, text-to-video (T2V) generation has experienced a significant advance as well. Accordingly, tasks such as modifying the object or changing the style in a video have been possible. However, previous works usually work well on trivial and consistent shapes, and easily collapse on a difficult target that has a largely different body shape from the original one. In this paper, we spot the bias problem in the existing video editing method that restricts the range of choices for the new protagonist and attempt to address this issue using the conventional image-level personalization method. We adopt motion personalization that isolates the motion from a single source video and then modifies the protagonist accordingly. To deal with the natural discrepancy between image and video, we propose a motion word with an inflated textual embedding to properly represent the motion in a source video. We also regulate the motion word to attend to proper motion-related areas by introducing a novel pseudo optical flow, efficiently computed from the pre-calculated attention maps. Finally, we decouple the motion from the appearance of the source video with an additional pseudo word. Extensive experiments demonstrate the editing capability of our method, taking a step toward more diverse and extensive video editing.
Authors:Tasin Islam, Alina Miron, XiaoHui Liu, Yongmin Li
Title: FashionFlow: Leveraging Diffusion Models for Dynamic Fashion Video Synthesis from Static Imagery
Abstract:
Our study introduces a new image-to-video generator called FashionFlow to generate fashion videos. By utilising a diffusion model, we are able to create short videos from still fashion images. Our approach involves developing and connecting relevant components with the diffusion model, which results in the creation of high-fidelity videos that are aligned with the conditional image. The components include the use of pseudo-3D convolutional layers to generate videos efficiently. VAE and CLIP encoders capture vital characteristics from still images to condition the diffusion model at a global level. Our research demonstrates a successful synthesis of fashion videos featuring models posing from various angles, showcasing the fit and appearance of the garment. Our findings hold great promise for improving and enhancing the shopping experience for the online fashion industry.
Authors:Shigui Li, Wei Chen, Delu Zeng
Title: SciRE-Solver: Accelerating Diffusion Models Sampling by Score-integrand Solver with Recursive Difference
Abstract:
Diffusion models (DMs) have made significant progress in the fields of image, audio, and video generation. One downside of DMs is their slow iterative process. Recent algorithms for fast sampling are designed from the perspective of differential equations. However, in higher-order algorithms based on Taylor expansion, estimating the derivative of the score function becomes intractable due to the complexity of large-scale, well-trained neural networks. Driven by this motivation, in this work, we introduce the recursive difference (RD) method to calculate the derivative of the score function in the realm of DMs. Based on the RD method and the truncated Taylor expansion of score-integrand, we propose SciRE-Solver with the convergence order guarantee for accelerating sampling of DMs. To further investigate the effectiveness of the RD method, we also propose a variant named SciREI-Solver based on the RD method and exponential integrator. Our proposed sampling algorithms with RD method attain state-of-the-art (SOTA) FIDs in comparison to existing training-free sampling algorithms, across both discrete-time and continuous-time pre-trained DMs, under various number of score function evaluations (NFE). Remarkably, SciRE-Solver using a small NFEs demonstrates promising potential to surpass the FID achieved by some pre-trained models in their original papers using no fewer than $1000$ NFEs. For example, we reach SOTA value of $2.40$ FID with $100$ NFE for continuous-time DM and of $3.15$ FID with $84$ NFE for discrete-time DM on CIFAR-10, as well as of $2.17$ (2.02) FID with $18$ (50) NFE for discrete-time DM on CelebA 64$\times$64.
Authors:Wing-Yin Yu, Lai-Man Po, Ray C. C. Cheung, Yuzhi Zhao, Yu Xue, Kun Li
Title: Bidirectionally Deformable Motion Modulation For Video-based Human Pose Transfer
Abstract:
Video-based human pose transfer is a video-to-video generation task that animates a plain source human image based on a series of target human poses. Considering the difficulties in transferring highly structural patterns on the garments and discontinuous poses, existing methods often generate unsatisfactory results such as distorted textures and flickering artifacts. To address these issues, we propose a novel Deformable Motion Modulation (DMM) that utilizes geometric kernel offset with adaptive weight modulation to simultaneously perform feature alignment and style transfer. Different from normal style modulation used in style transfer, the proposed modulation mechanism adaptively reconstructs smoothed frames from style codes according to the object shape through an irregular receptive field of view. To enhance the spatio-temporal consistency, we leverage bidirectional propagation to extract the hidden motion information from a warped image sequence generated by noisy poses. The proposed feature propagation significantly enhances the motion prediction ability by forward and backward propagation. Both quantitative and qualitative experimental results demonstrate superiority over the state-of-the-arts in terms of image fidelity and visual continuity. The source code is publicly available at github.com/rocketappslab/bdmm.
Authors:Seungwoo Lee, Chaerin Kong, Donghyeon Jeon, Nojun Kwak
Title: AADiff: Audio-Aligned Video Synthesis with Text-to-Image Diffusion
Abstract:
Recent advances in diffusion models have showcased promising results in the text-to-video (T2V) synthesis task. However, as these T2V models solely employ text as the guidance, they tend to struggle in modeling detailed temporal dynamics. In this paper, we introduce a novel T2V framework that additionally employ audio signals to control the temporal dynamics, empowering an off-the-shelf T2I diffusion to generate audio-aligned videos. We propose audio-based regional editing and signal smoothing to strike a good balance between the two contradicting desiderata of video synthesis, i.e., temporal flexibility and coherence. We empirically demonstrate the effectiveness of our method through experiments, and further present practical applications for contents creation.
Authors:Anna Frühstück, Nikolaos Sarafianos, Yuanlu Xu, Peter Wonka, Tony Tung
Title: VIVE3D: Viewpoint-Independent Video Editing using 3D-Aware GANs
Abstract:
We introduce VIVE3D, a novel approach that extends the capabilities of image-based 3D GANs to video editing and is able to represent the input video in an identity-preserving and temporally consistent way. We propose two new building blocks. First, we introduce a novel GAN inversion technique specifically tailored to 3D GANs by jointly embedding multiple frames and optimizing for the camera parameters. Second, besides traditional semantic face edits (e.g. for age and expression), we are the first to demonstrate edits that show novel views of the head enabled by the inherent properties of 3D GANs and our optical flow-guided compositing technique to combine the head with the background video. Our experiments demonstrate that VIVE3D generates high-fidelity face edits at consistent quality from a range of camera viewpoints which are composited with the original video in a temporally and spatially consistent manner.
Authors:Jaehoon Yoo, Semin Kim, Doyup Lee, Chiheon Kim, Seunghoon Hong
Title: Towards End-to-End Generative Modeling of Long Videos with Memory-Efficient Bidirectional Transformers
Abstract:
Autoregressive transformers have shown remarkable success in video generation. However, the transformers are prohibited from directly learning the long-term dependency in videos due to the quadratic complexity of self-attention, and inherently suffering from slow inference time and error propagation due to the autoregressive process. In this paper, we propose Memory-efficient Bidirectional Transformer (MeBT) for end-to-end learning of long-term dependency in videos and fast inference. Based on recent advances in bidirectional transformers, our method learns to decode the entire spatio-temporal volume of a video in parallel from partially observed patches. The proposed transformer achieves a linear time complexity in both encoding and decoding, by projecting observable context tokens into a fixed number of latent tokens and conditioning them to decode the masked tokens through the cross-attention. Empowered by linear complexity and bidirectional modeling, our method demonstrates significant improvement over the autoregressive Transformers for generating moderately long videos in both quality and speed. Videos and code are available at https://sites.google.com/view/mebt-cvpr2023 .
Authors:Yucheng Xu, Li Nanbo, Arushi Goel, Zijian Guo, Zonghai Yao, Hamidreza Kasaei, Mohammadreze Kasaei, Zhibin Li
Title: Controllable Video Generation by Learning the Underlying Dynamical System with Neural ODE
Abstract:
Videos depict the change of complex dynamical systems over time in the form of discrete image sequences. Generating controllable videos by learning the dynamical system is an important yet underexplored topic in the computer vision community. This paper presents a novel framework, TiV-ODE, to generate highly controllable videos from a static image and a text caption. Specifically, our framework leverages the ability of Neural Ordinary Differential Equations~(Neural ODEs) to represent complex dynamical systems as a set of nonlinear ordinary differential equations. The resulting framework is capable of generating videos with both desired dynamics and content. Experiments demonstrate the ability of the proposed method in generating highly controllable and visually consistent videos, and its capability of modeling dynamical systems. Overall, this work is a significant step towards developing advanced controllable video generation models that can handle complex and dynamic scenes.
Authors:Yao-Chih Lee, Ji-Ze Genevieve Jang, Yi-Ting Chen, Elizabeth Qiu, Jia-Bin Huang
Title: Shape-aware Text-driven Layered Video Editing
Abstract:
Temporal consistency is essential for video editing applications. Existing work on layered representation of videos allows propagating edits consistently to each frame. These methods, however, can only edit object appearance rather than object shape changes due to the limitation of using a fixed UV mapping field for texture atlas. We present a shape-aware, text-driven video editing method to tackle this challenge. To handle shape changes in video editing, we first propagate the deformation field between the input and edited keyframe to all frames. We then leverage a pre-trained text-conditioned diffusion model as guidance for refining shape distortion and completing unseen regions. The experimental results demonstrate that our method can achieve shape-aware consistent video editing and compare favorably with the state-of-the-art.
Authors:Dan Bigioi, Shubhajit Basak, Michał Stypułkowski, Maciej Zięba, Hugh Jordan, Rachel McDonnell, Peter Corcoran
Title: Speech Driven Video Editing via an Audio-Conditioned Diffusion Model
Abstract:
Taking inspiration from recent developments in visual generative tasks using diffusion models, we propose a method for end-to-end speech-driven video editing using a denoising diffusion model. Given a video of a talking person, and a separate auditory speech recording, the lip and jaw motions are re-synchronized without relying on intermediate structural representations such as facial landmarks or a 3D face model. We show this is possible by conditioning a denoising diffusion model on audio mel spectral features to generate synchronised facial motion. Proof of concept results are demonstrated on both single-speaker and multi-speaker video editing, providing a baseline model on the CREMA-D audiovisual data set. To the best of our knowledge, this is the first work to demonstrate and validate the feasibility of applying end-to-end denoising diffusion models to the task of audio-driven video editing.
Authors:Gyeongman Kim, Hajin Shim, Hyunsu Kim, Yunjey Choi, Junho Kim, Eunho Yang
Title: Diffusion Video Autoencoders: Toward Temporally Consistent Face Video Editing via Disentangled Video Encoding
Abstract:
Inspired by the impressive performance of recent face image editing methods, several studies have been naturally proposed to extend these methods to the face video editing task. One of the main challenges here is temporal consistency among edited frames, which is still unresolved. To this end, we propose a novel face video editing framework based on diffusion autoencoders that can successfully extract the decomposed features - for the first time as a face video editing model - of identity and motion from a given video. This modeling allows us to edit the video by simply manipulating the temporally invariant feature to the desired direction for the consistency. Another unique strength of our model is that, since our model is based on diffusion models, it can satisfy both reconstruction and edit capabilities at the same time, and is robust to corner cases in wild face videos (e.g. occluded faces) unlike the existing GAN-based methods.
Authors:Pin-Yen Chiu, I-Sheng Fang, Jun-Cheng Chen
Title: Text Slider: Efficient and Plug-and-Play Continuous Concept Control for Image/Video Synthesis via LoRA Adapters
Abstract:
Recent advances in diffusion models have significantly improved image and video synthesis. In addition, several concept control methods have been proposed to enable fine-grained, continuous, and flexible control over free-form text prompts. However, these methods not only require intensive training time and GPU memory usage to learn the sliders or embeddings but also need to be retrained for different diffusion backbones, limiting their scalability and adaptability. To address these limitations, we introduce Text Slider, a lightweight, efficient and plug-and-play framework that identifies low-rank directions within a pre-trained text encoder, enabling continuous control of visual concepts while significantly reducing training time, GPU memory consumption, and the number of trainable parameters. Furthermore, Text Slider supports multi-concept composition and continuous control, enabling fine-grained and flexible manipulation in both image and video synthesis. We show that Text Slider enables smooth and continuous modulation of specific attributes while preserving the original spatial layout and structure of the input. Text Slider achieves significantly better efficiency: 5$\times$ faster training than Concept Slider and 47$\times$ faster than Attribute Control, while reducing GPU memory usage by nearly 2$\times$ and 4$\times$, respectively.
Authors:Jan Philipp Schneider, Pratik Singh Bisht, Ilya Chugunov, Andreas Kolb, Michael Moeller, Felix Heide
Title: Neural Atlas Graphs for Dynamic Scene Decomposition and Editing
Abstract:
Learning editable high-resolution scene representations for dynamic scenes is an open problem with applications across the domains from autonomous driving to creative editing - the most successful approaches today make a trade-off between editability and supporting scene complexity: neural atlases represent dynamic scenes as two deforming image layers, foreground and background, which are editable in 2D, but break down when multiple objects occlude and interact. In contrast, scene graph models make use of annotated data such as masks and bounding boxes from autonomous-driving datasets to capture complex 3D spatial relationships, but their implicit volumetric node representations are challenging to edit view-consistently. We propose Neural Atlas Graphs (NAGs), a hybrid high-resolution scene representation, where every graph node is a view-dependent neural atlas, facilitating both 2D appearance editing and 3D ordering and positioning of scene elements. Fit at test-time, NAGs achieve state-of-the-art quantitative results on the Waymo Open Dataset - by 5 dB PSNR increase compared to existing methods - and make environmental editing possible in high resolution and visual quality - creating counterfactual driving scenarios with new backgrounds and edited vehicle appearance. We find that the method also generalizes beyond driving scenes and compares favorably - by more than 7 dB in PSNR - to recent matting and video editing baselines on the DAVIS video dataset with a diverse set of human and animal-centric scenes.
Authors:Peng Hu, Yu Gu, Liang Luo, Fuji Ren
Title: SSG-Dit: A Spatial Signal Guided Framework for Controllable Video Generation
Abstract:
Controllable video generation aims to synthesize video content that aligns precisely with user-provided conditions, such as text descriptions and initial images. However, a significant challenge persists in this domain: existing models often struggle to maintain strong semantic consistency, frequently generating videos that deviate from the nuanced details specified in the prompts. To address this issue, we propose SSG-DiT (Spatial Signal Guided Diffusion Transformer), a novel and efficient framework for high-fidelity controllable video generation. Our approach introduces a decoupled two-stage process. The first stage, Spatial Signal Prompting, generates a spatially aware visual prompt by leveraging the rich internal representations of a pre-trained multi-modal model. This prompt, combined with the original text, forms a joint condition that is then injected into a frozen video DiT backbone via our lightweight and parameter-efficient SSG-Adapter. This unique design, featuring a dual-branch attention mechanism, allows the model to simultaneously harness its powerful generative priors while being precisely steered by external spatial signals. Extensive experiments demonstrate that SSG-DiT achieves state-of-the-art performance, outperforming existing models on multiple key metrics in the VBench benchmark, particularly in spatial relationship control and overall consistency.
Authors:Chun-Peng Chang, Chen-Yu Wang, Julian Schmidt, Holger Caesar, Alain Pagani
Title: Seeing Clearly, Forgetting Deeply: Revisiting Fine-Tuned Video Generators for Driving Simulation
Abstract:
Recent advancements in video generation have substantially improved visual quality and temporal coherence, making these models increasingly appealing for applications such as autonomous driving, particularly in the context of driving simulation and so-called "world models". In this work, we investigate the effects of existing fine-tuning video generation approaches on structured driving datasets and uncover a potential trade-off: although visual fidelity improves, spatial accuracy in modeling dynamic elements may degrade. We attribute this degradation to a shift in the alignment between visual quality and dynamic understanding objectives. In datasets with diverse scene structures within temporal space, where objects or perspective shift in varied ways, these objectives tend to highly correlated. However, the very regular and repetitive nature of driving scenes allows visual quality to improve by modeling dominant scene motion patterns, without necessarily preserving fine-grained dynamic behavior. As a result, fine-tuning encourages the model to prioritize surface-level realism over dynamic accuracy. To further examine this phenomenon, we show that simple continual learning strategies, such as replay from diverse domains, can offer a balanced alternative by preserving spatial accuracy while maintaining strong visual quality.
Authors:Kelin Yu, Sheng Zhang, Harshit Soora, Furong Huang, Heng Huang, Pratap Tokekar, Ruohan Gao
Title: GenFlowRL: Shaping Rewards with Generative Object-Centric Flow in Visual Reinforcement Learning
Abstract:
Recent advances have shown that video generation models can enhance robot learning by deriving effective robot actions through inverse dynamics. However, these methods heavily depend on the quality of generated data and struggle with fine-grained manipulation due to the lack of environment feedback. While video-based reinforcement learning improves policy robustness, it remains constrained by the uncertainty of video generation and the challenges of collecting large-scale robot datasets for training diffusion models. To address these limitations, we propose GenFlowRL, which derives shaped rewards from generated flow trained from diverse cross-embodiment datasets. This enables learning generalizable and robust policies from diverse demonstrations using low-dimensional, object-centric features. Experiments on 10 manipulation tasks, both in simulation and real-world cross-embodiment evaluations, demonstrate that GenFlowRL effectively leverages manipulation features extracted from generated object-centric flow, consistently achieving superior performance across diverse and challenging scenarios. Our Project Page: https://colinyu1.github.io/genflowrl
Authors:Bowen Xue, Qixin Yan, Wenjing Wang, Hao Liu, Chen Li
Title: Stand-In: A Lightweight and Plug-and-Play Identity Control for Video Generation
Abstract:
Generating high-fidelity human videos that match user-specified identities is important yet challenging in the field of generative AI. Existing methods often rely on an excessive number of training parameters and lack compatibility with other AIGC tools. In this paper, we propose Stand-In, a lightweight and plug-and-play framework for identity preservation in video generation. Specifically, we introduce a conditional image branch into the pre-trained video generation model. Identity control is achieved through restricted self-attentions with conditional position mapping, and can be learned quickly with only 2000 pairs. Despite incorporating and training just $\sim$1% additional parameters, our framework achieves excellent results in video quality and identity preservation, outperforming other full-parameter training methods. Moreover, our framework can be seamlessly integrated for other tasks, such as subject-driven video generation, pose-referenced video generation, stylization, and face swapping.
Authors:Matus Krajcovic, Peter Demcak, Eduard Kuric
Title: Talking Surveys: How Photorealistic Embodied Conversational Agents Shape Response Quality, Engagement, and Satisfaction
Abstract:
Embodied conversational agents (ECAs) are increasingly more realistic and capable of dynamic conversations. In online surveys, anthropomorphic agents could help address issues like careless responding and satisficing, which originate from the lack of personal engagement and perceived accountability. However, there is a lack of understanding of how ECAs in user experience research may affect participant engagement, satisfaction, and the quality of responses. As a proof of concept, we propose an instrument that enables the incorporation of conversations with a virtual avatar into surveys, using on AI-driven video generation, speech recognition, and Large Language Models. In our between-subjects study, 80 participants (UK, stratified random sample of general population) either talked to a voice-based agent with an animated video avatar, or interacted with a chatbot. Across surveys based on two self-reported psychometric tests, 2,265 conversation responses were obtained. Statistical comparison of results indicates that embodied agents can contribute significantly to more informative, detailed responses, as well as higher yet more time-efficient engagement. Furthermore, qualitative analysis provides valuable insights for causes of no significant change to satisfaction, linked to personal preferences, turn-taking delays and Uncanny Valley reactions. These findings support the pursuit and development of new methods toward human-like agents for the transformation of online surveys into more natural interactions resembling in-person interviews.
Authors:X. Feng, H. Yu, M. Wu, S. Hu, J. Chen, C. Zhu, J. Wu, X. Chu, K. Huang
Title: NarrLV: Towards a Comprehensive Narrative-Centric Evaluation for Long Video Generation Models
Abstract:
With the rapid development of foundation video generation technologies, long video generation models have exhibited promising research potential thanks to expanded content creation space. Recent studies reveal that the goal of long video generation tasks is not only to extend video duration but also to accurately express richer narrative content within longer videos. However, due to the lack of evaluation benchmarks specifically designed for long video generation models, the current assessment of these models primarily relies on benchmarks with simple narrative prompts (e.g., VBench). To the best of our knowledge, our proposed NarrLV is the first benchmark to comprehensively evaluate the Narrative expression capabilities of Long Video generation models. Inspired by film narrative theory, (i) we first introduce the basic narrative unit maintaining continuous visual presentation in videos as Temporal Narrative Atom (TNA), and use its count to quantitatively measure narrative richness. Guided by three key film narrative elements influencing TNA changes, we construct an automatic prompt generation pipeline capable of producing evaluation prompts with a flexibly expandable number of TNAs. (ii) Then, based on the three progressive levels of narrative content expression, we design an effective evaluation metric using the MLLM-based question generation and answering framework. (iii) Finally, we conduct extensive evaluations on existing long video generation models and the foundation generation models. Experimental results demonstrate that our metric aligns closely with human judgments. The derived evaluation outcomes reveal the detailed capability boundaries of current video generation models in narrative content expression.
Authors:Ziye Li, Hao Luo, Xincheng Shuai, Henghui Ding
Title: AnyI2V: Animating Any Conditional Image with Motion Control
Abstract:
Recent advancements in video generation, particularly in diffusion models, have driven notable progress in text-to-video (T2V) and image-to-video (I2V) synthesis. However, challenges remain in effectively integrating dynamic motion signals and flexible spatial constraints. Existing T2V methods typically rely on text prompts, which inherently lack precise control over the spatial layout of generated content. In contrast, I2V methods are limited by their dependence on real images, which restricts the editability of the synthesized content. Although some methods incorporate ControlNet to introduce image-based conditioning, they often lack explicit motion control and require computationally expensive training. To address these limitations, we propose AnyI2V, a training-free framework that animates any conditional images with user-defined motion trajectories. AnyI2V supports a broader range of modalities as the conditional image, including data types such as meshes and point clouds that are not supported by ControlNet, enabling more flexible and versatile video generation. Additionally, it supports mixed conditional inputs and enables style transfer and editing via LoRA and text prompts. Extensive experiments demonstrate that the proposed AnyI2V achieves superior performance and provides a new perspective in spatial- and motion-controlled video generation. Code is available at https://henghuiding.com/AnyI2V/.
Authors:Zhican Wang, Guanghui He, Hongxiang Fan
Title: SD-Acc: Accelerating Stable Diffusion through Phase-aware Sampling and Hardware Co-Optimizations
Abstract:
The emergence of diffusion models has significantly advanced generative AI, improving the quality, realism, and creativity of image and video generation. Among them, Stable Diffusion (StableDiff) stands out as a key model for text-to-image generation and a foundation for next-generation multi-modal algorithms. However, its high computational and memory demands hinder inference speed and energy efficiency. To address these challenges, we identify three core issues: (1) intensive and often redundant computations, (2) heterogeneous operations involving convolutions and attention mechanisms, and (3) diverse weight and activation sizes. We present SD-Acc, a novel algorithm and hardware co-optimization framework. At the algorithm level, we observe that high-level features in certain denoising phases show significant similarity, enabling approximate computation. Leveraging this, we propose an adaptive, phase-aware sampling strategy that reduces compute and memory loads. This framework automatically balances image quality and complexity based on the StableDiff model and user requirements. At the hardware level, we design an address-centric dataflow to efficiently handle heterogeneous operations within a simple systolic array. We address the bottleneck of nonlinear functions via a two-stage streaming architecture and a reconfigurable vector processing unit. Additionally, we implement adaptive dataflow optimizations by combining dynamic reuse and operator fusion tailored to StableDiff workloads, significantly reducing memory access. Across multiple StableDiff models, our method achieves up to a 3x reduction in computational demand without compromising image quality. Combined with our optimized hardware accelerator, SD-Acc delivers higher speed and energy efficiency than traditional CPU and GPU implementations.
Authors:Heyang Huang, Cunchen Hu, Jiaqi Zhu, Ziyuan Gao, Liangliang Xu, Yizhou Shan, Yungang Bao, Sun Ninghui, Tianwei Zhang, Sa Wang
Title: DDiT: Dynamic Resource Allocation for Diffusion Transformer Model Serving
Abstract:
The Text-to-Video (T2V) model aims to generate dynamic and expressive videos from textual prompts. The generation pipeline typically involves multiple modules, such as language encoder, Diffusion Transformer (DiT), and Variational Autoencoders (VAE). Existing serving systems often rely on monolithic model deployment, while overlooking the distinct characteristics of each module, leading to inefficient GPU utilization. In addition, DiT exhibits varying performance gains across different resolutions and degrees of parallelism, and significant optimization potential remains unexplored. To address these problems, we present DDiT, a flexible system that integrates both inter-phase and intra-phase optimizations. DDiT focuses on two key metrics: optimal degree of parallelism, which prevents excessive parallelism for specific resolutions, and starvation time, which quantifies the sacrifice of each request. To this end, DDiT introduces a decoupled control mechanism to minimize the computational inefficiency caused by imbalances in the degree of parallelism between the DiT and VAE phases. It also designs a greedy resource allocation algorithm with a novel scheduling mechanism that operates at the single-step granularity, enabling dynamic and timely resource scaling. Our evaluation on the T5 encoder, OpenSora SDDiT, and OpenSora VAE models across diverse datasets reveals that DDiT significantly outperforms state-of-the-art baselines by up to 1.44x in p99 latency and 1.43x in average latency.
Authors:Xun Huang, Zhengqi Li, Guande He, Mingyuan Zhou, Eli Shechtman
Title: Self Forcing: Bridging the Train-Test Gap in Autoregressive Video Diffusion
Abstract:
We introduce Self Forcing, a novel training paradigm for autoregressive video diffusion models. It addresses the longstanding issue of exposure bias, where models trained on ground-truth context must generate sequences conditioned on their own imperfect outputs during inference. Unlike prior methods that denoise future frames based on ground-truth context frames, Self Forcing conditions each frame's generation on previously self-generated outputs by performing autoregressive rollout with key-value (KV) caching during training. This strategy enables supervision through a holistic loss at the video level that directly evaluates the quality of the entire generated sequence, rather than relying solely on traditional frame-wise objectives. To ensure training efficiency, we employ a few-step diffusion model along with a stochastic gradient truncation strategy, effectively balancing computational cost and performance. We further introduce a rolling KV cache mechanism that enables efficient autoregressive video extrapolation. Extensive experiments demonstrate that our approach achieves real-time streaming video generation with sub-second latency on a single GPU, while matching or even surpassing the generation quality of significantly slower and non-causal diffusion models. Project website: http://self-forcing.github.io/
Authors:Bowen Xue, Giuseppe Claudio Guarnera, Shuang Zhao, Zahra Montazeri
Title: Motion aware video generative model
Abstract:
Recent advances in diffusion-based video generation have yielded unprecedented quality in visual content and semantic coherence. However, current approaches predominantly rely on statistical learning from vast datasets without explicitly modeling the underlying physics of motion, resulting in subtle yet perceptible non-physical artifacts that diminish the realism of generated videos. This paper introduces a physics-informed frequency domain approach to enhance the physical plausibility of generated videos. We first conduct a systematic analysis of the frequency-domain characteristics of diverse physical motions (translation, rotation, scaling), revealing that each motion type exhibits distinctive and identifiable spectral signatures. Building on this theoretical foundation, we propose two complementary components: (1) a physical motion loss function that quantifies and optimizes the conformity of generated videos to ideal frequency-domain motion patterns, and (2) a frequency domain enhancement module that progressively learns to adjust video features to conform to physical motion constraints while preserving original network functionality through a zero-initialization strategy. Experiments across multiple video diffusion architectures demonstrate that our approach significantly enhances motion quality and physical plausibility without compromising visual quality or semantic alignment. Our frequency-domain physical motion framework generalizes effectively across different video generation architectures, offering a principled approach to incorporating physical constraints into deep learning-based video synthesis pipelines. This work seeks to establish connections between data-driven models and physics-based motion models.
Authors:Geunmin Hwang, Hyun-kyu Ko, Younghyun Kim, Seungryong Lee, Eunbyung Park
Title: DiffuseSlide: Training-Free High Frame Rate Video Generation Diffusion
Abstract:
Recent advancements in diffusion models have revolutionized video generation, enabling the creation of high-quality, temporally consistent videos. However, generating high frame-rate (FPS) videos remains a significant challenge due to issues such as flickering and degradation in long sequences, particularly in fast-motion scenarios. Existing methods often suffer from computational inefficiencies and limitations in maintaining video quality over extended frames. In this paper, we present a novel, training-free approach for high FPS video generation using pre-trained diffusion models. Our method, DiffuseSlide, introduces a new pipeline that leverages key frames from low FPS videos and applies innovative techniques, including noise re-injection and sliding window latent denoising, to achieve smooth, consistent video outputs without the need for additional fine-tuning. Through extensive experiments, we demonstrate that our approach significantly improves video quality, offering enhanced temporal coherence and spatial fidelity. The proposed method is not only computationally efficient but also adaptable to various video generation tasks, making it ideal for applications such as virtual reality, video games, and high-quality content creation.
Authors:Aiyue Chen, Bin Dong, Jingru Li, Jing Lin, Kun Tian, Yiwu Yao, Gongyi Wang
Title: RainFusion: Adaptive Video Generation Acceleration via Multi-Dimensional Visual Redundancy
Abstract:
Video generation using diffusion models is highly computationally intensive, with 3D attention in Diffusion Transformer (DiT) models accounting for over 80\% of the total computational resources. In this work, we introduce {\bf RainFusion}, a novel training-free sparse attention method that exploits inherent sparsity nature in visual data to accelerate attention computation while preserving video quality. Specifically, we identify three unique sparse patterns in video generation attention calculations--Spatial Pattern, Temporal Pattern and Textural Pattern. The sparse pattern for each attention head is determined online with negligible overhead (\textasciitilde\,0.2\%) with our proposed {\bf ARM} (Adaptive Recognition Module) during inference. Our proposed {\bf RainFusion} is a plug-and-play method, that can be seamlessly integrated into state-of-the-art 3D-attention video generation models without additional training or calibration. We evaluate our method on leading open-sourced models including HunyuanVideo, OpenSoraPlan-1.2 and CogVideoX-5B, demonstrating its broad applicability and effectiveness. Experimental results show that RainFusion achieves over {\bf 2\(\times\)} speedup in attention computation while maintaining video quality, with only a minimal impact on VBench scores (-0.2\%).
Authors:Jiawei Zhou, Linye Lyu, Zhuotao Tian, Cheng Zhuo, Yu Li
Title: SafeMVDrive: Multi-view Safety-Critical Driving Video Synthesis in the Real World Domain
Abstract:
Safety-critical scenarios are rare yet pivotal for evaluating and enhancing the robustness of autonomous driving systems. While existing methods generate safety-critical driving trajectories, simulations, or single-view videos, they fall short of meeting the demands of advanced end-to-end autonomous systems (E2E AD), which require real-world, multi-view video data. To bridge this gap, we introduce SafeMVDrive, the first framework designed to generate high-quality, safety-critical, multi-view driving videos grounded in real-world domains. SafeMVDrive strategically integrates a safety-critical trajectory generator with an advanced multi-view video generator. To tackle the challenges inherent in this integration, we first enhance scene understanding ability of the trajectory generator by incorporating visual context -- which is previously unavailable to such generator -- and leveraging a GRPO-finetuned vision-language model to achieve more realistic and context-aware trajectory generation. Second, recognizing that existing multi-view video generators struggle to render realistic collision events, we introduce a two-stage, controllable trajectory generation mechanism that produces collision-evasion trajectories, ensuring both video quality and safety-critical fidelity. Finally, we employ a diffusion-based multi-view video generator to synthesize high-quality safety-critical driving videos from the generated trajectories. Experiments conducted on an E2E AD planner demonstrate a significant increase in collision rate when tested with our generated data, validating the effectiveness of SafeMVDrive in stress-testing planning modules. Our code, examples, and datasets are publicly available at: https://zhoujiawei3.github.io/SafeMVDrive/.
Authors:Jiaxin Huang, Sheng Miao, BangBang Yang, Yuewen Ma, Yiyi Liao
Title: Vivid4D: Improving 4D Reconstruction from Monocular Video by Video Inpainting
Abstract:
Reconstructing 4D dynamic scenes from casually captured monocular videos is valuable but highly challenging, as each timestamp is observed from a single viewpoint. We introduce Vivid4D, a novel approach that enhances 4D monocular video synthesis by augmenting observation views - synthesizing multi-view videos from a monocular input. Unlike existing methods that either solely leverage geometric priors for supervision or use generative priors while overlooking geometry, we integrate both. This reformulates view augmentation as a video inpainting task, where observed views are warped into new viewpoints based on monocular depth priors. To achieve this, we train a video inpainting model on unposed web videos with synthetically generated masks that mimic warping occlusions, ensuring spatially and temporally consistent completion of missing regions. To further mitigate inaccuracies in monocular depth priors, we introduce an iterative view augmentation strategy and a robust reconstruction loss. Experiments demonstrate that our method effectively improves monocular 4D scene reconstruction and completion. See our project page: https://xdimlab.github.io/Vivid4D/.
Authors:Fabrizio Garuti, Enver Sangineto, Simone Luetto, Lorenzo Forni, Rita Cucchiara
Title: Diffusion Transformers for Tabular Data Time Series Generation
Abstract:
Tabular data generation has recently attracted a growing interest due to its different application scenarios. However, generating time series of tabular data, where each element of the series depends on the others, remains a largely unexplored domain. This gap is probably due to the difficulty of jointly solving different problems, the main of which are the heterogeneity of tabular data (a problem common to non-time-dependent approaches) and the variable length of a time series. In this paper, we propose a Diffusion Transformers (DiTs) based approach for tabular data series generation. Inspired by the recent success of DiTs in image and video generation, we extend this framework to deal with heterogeneous data and variable-length sequences. Using extensive experiments on six datasets, we show that the proposed approach outperforms previous work by a large margin.
Authors:Stefan Stojanov, David Wendt, Seungwoo Kim, Rahul Venkatesh, Kevin Feigelis, Jiajun Wu, Daniel LK Yamins
Title: Self-Supervised Learning of Motion Concepts by Optimizing Counterfactuals
Abstract:
Estimating motion in videos is an essential computer vision problem with many downstream applications, including controllable video generation and robotics. Current solutions are primarily trained using synthetic data or require tuning of situation-specific heuristics, which inherently limits these models' capabilities in real-world contexts. Despite recent developments in large-scale self-supervised learning from videos, leveraging such representations for motion estimation remains relatively underexplored. In this work, we develop Opt-CWM, a self-supervised technique for flow and occlusion estimation from a pre-trained next-frame prediction model. Opt-CWM works by learning to optimize counterfactual probes that extract motion information from a base video model, avoiding the need for fixed heuristics while training on unrestricted video inputs. We achieve state-of-the-art performance for motion estimation on real-world videos while requiring no labeled data.
Authors:Yukang Lin, Hokit Fung, Jianjin Xu, Zeping Ren, Adela S. M. Lau, Guosheng Yin, Xiu Li
Title: MVPortrait: Text-Guided Motion and Emotion Control for Multi-view Vivid Portrait Animation
Abstract:
Recent portrait animation methods have made significant strides in generating realistic lip synchronization. However, they often lack explicit control over head movements and facial expressions, and cannot produce videos from multiple viewpoints, resulting in less controllable and expressive animations. Moreover, text-guided portrait animation remains underexplored, despite its user-friendly nature. We present a novel two-stage text-guided framework, MVPortrait (Multi-view Vivid Portrait), to generate expressive multi-view portrait animations that faithfully capture the described motion and emotion. MVPortrait is the first to introduce FLAME as an intermediate representation, effectively embedding facial movements, expressions, and view transformations within its parameter space. In the first stage, we separately train the FLAME motion and emotion diffusion models based on text input. In the second stage, we train a multi-view video generation model conditioned on a reference portrait image and multi-view FLAME rendering sequences from the first stage. Experimental results exhibit that MVPortrait outperforms existing methods in terms of motion and emotion control, as well as view consistency. Furthermore, by leveraging FLAME as a bridge, MVPortrait becomes the first controllable portrait animation framework that is compatible with text, speech, and video as driving signals.
Authors:Zhihao Zhan, Wang Pang, Xiang Zhu, Yechao Bai
Title: Rethinking Video Super-Resolution: Towards Diffusion-Based Methods without Motion Alignment
Abstract:
In this work, we rethink the approach to video super-resolution by introducing a method based on the Diffusion Posterior Sampling framework, combined with an unconditional video diffusion transformer operating in latent space. The video generation model, a diffusion transformer, functions as a space-time model. We argue that a powerful model, which learns the physics of the real world, can easily handle various kinds of motion patterns as prior knowledge, thus eliminating the need for explicit estimation of optical flows or motion parameters for pixel alignment. Furthermore, a single instance of the proposed video diffusion transformer model can adapt to different sampling conditions without re-training. Empirical results on synthetic and real-world datasets illustrate the feasibility of diffusion-based, alignment-free video super-resolution.
Authors:Shuang Li, Yihuai Gao, Dorsa Sadigh, Shuran Song
Title: Unified Video Action Model
Abstract:
A unified video and action model holds significant promise for robotics, where videos provide rich scene information for action prediction, and actions provide dynamics information for video prediction. However, effectively combining video generation and action prediction remains challenging, and current video generation-based methods struggle to match the performance of direct policy learning in action accuracy and inference speed. To bridge this gap, we introduce the Unified Video Action model (UVA), which jointly optimizes video and action predictions to achieve both high accuracy and efficient action inference. The key lies in learning a joint video-action latent representation and decoupling video-action decoding. The joint latent representation bridges the visual and action domains, effectively modeling the relationship between video and action sequences. Meanwhile, the decoupled decoding, powered by two lightweight diffusion heads, enables high-speed action inference by bypassing video generation during inference. Such a unified framework further enables versatile functionality through masked input training. By selectively masking actions or videos, a single model can tackle diverse tasks beyond policy learning, such as forward and inverse dynamics modeling and video generation. Via an extensive set of experiments, we demonstrate that UVA can serve as a general-purpose solution for a wide range of robotics tasks, such as policy learning, forward/inverse dynamics and video observation prediction, without compromising performance compared to methods tailored for specific applications. Results are best viewed on https://unified-video-action-model.github.io/.
Authors:Pedro Vélez, Luisa F. Polanía, Yi Yang, Chuhan Zhang, Rishabh Kabra, Anurag Arnab, Mehdi S. M. Sajjadi
Title: From Image to Video: An Empirical Study of Diffusion Representations
Abstract:
Diffusion models have revolutionized generative modeling, enabling unprecedented realism in image and video synthesis. This success has sparked interest in leveraging their representations for visual understanding tasks. While recent works have explored this potential for image generation, the visual understanding capabilities of video diffusion models remain largely uncharted. To address this gap, we systematically compare the same model architecture trained for video versus image generation, analyzing the performance of their latent representations on various downstream tasks including image classification, action recognition, depth estimation, and tracking. Results show that video diffusion models consistently outperform their image counterparts, though we find a striking range in the extent of this superiority. We further analyze features extracted from different layers and with varying noise levels, as well as the effect of model size and training budget on representation and generation quality. This work marks the first direct comparison of video and image diffusion objectives for visual understanding, offering insights into the role of temporal information in representation learning.
Authors:Han Zhang, Rotem Shalev-Arkushin, Vasileios Baltatzis, Connor Gillis, Gierad Laput, Raja Kushalnagar, Lorna Quandt, Leah Findlater, Abdelkareem Bedri, Colin Lea
Title: Towards AI-driven Sign Language Generation with Non-manual Markers
Abstract:
Sign languages are essential for the Deaf and Hard-of-Hearing (DHH) community. Sign language generation systems have the potential to support communication by translating from written languages, such as English, into signed videos. However, current systems often fail to meet user needs due to poor translation of grammatical structures, the absence of facial cues and body language, and insufficient visual and motion fidelity. We address these challenges by building on recent advances in LLMs and video generation models to translate English sentences into natural-looking AI ASL signers. The text component of our model extracts information for manual and non-manual components of ASL, which are used to synthesize skeletal pose sequences and corresponding video frames. Our findings from a user study with 30 DHH participants and thorough technical evaluations demonstrate significant progress and identify critical areas necessary to meet user needs.
Authors:Lifan Jiang, Boxi Wu, Jiahui Zhang, Xiaotong Guan, Shuang Chen
Title: HuViDPO:Enhancing Video Generation through Direct Preference Optimization for Human-Centric Alignment
Abstract:
With the rapid development of AIGC technology, significant progress has been made in diffusion model-based technologies for text-to-image (T2I) and text-to-video (T2V). In recent years, a few studies have introduced the strategy of Direct Preference Optimization (DPO) into T2I tasks, significantly enhancing human preferences in generated images. However, existing T2V generation methods lack a well-formed pipeline with exact loss function to guide the alignment of generated videos with human preferences using DPO strategies. Additionally, challenges such as the scarcity of paired video preference data hinder effective model training. At the same time, the lack of training datasets poses a risk of insufficient flexibility and poor video generation quality in the generated videos. Based on those problems, our work proposes three targeted solutions in sequence. 1) Our work is the first to introduce the DPO strategy into the T2V tasks. By deriving a carefully structured loss function, we utilize human feedback to align video generation with human preferences. We refer to this new method as HuViDPO. 2) Our work constructs small-scale human preference datasets for each action category and fine-tune this model, improving the aesthetic quality of the generated videos while reducing training costs. 3) We adopt a First-Frame-Conditioned strategy, leveraging the rich in formation from the first frame to guide the generation of subsequent frames, enhancing flexibility in video generation. At the same time, we employ a SparseCausal Attention mechanism to enhance the quality of the generated videos.More details and examples can be accessed on our website: https://tankowa.github.io/HuViDPO. github.io/.
Authors:Lifan Jiang, Shuang Chen, Boxi Wu, Xiaotong Guan, Jiahui Zhang
Title: VidSketch: Hand-drawn Sketch-Driven Video Generation with Diffusion Control
Abstract:
With the advancement of generative artificial intelligence, previous studies have achieved the task of generating aesthetic images from hand-drawn sketches, fulfilling the public's needs for drawing. However, these methods are limited to static images and lack the ability to control video animation generation using hand-drawn sketches. To address this gap, we propose VidSketch, the first method capable of generating high-quality video animations directly from any number of hand-drawn sketches and simple text prompts, bridging the divide between ordinary users and professional artists. Specifically, our method introduces a Level-Based Sketch Control Strategy to automatically adjust the guidance strength of sketches during the generation process, accommodating users with varying drawing skills. Furthermore, a TempSpatial Attention mechanism is designed to enhance the spatiotemporal consistency of generated video animations, significantly improving the coherence across frames. You can find more detailed cases on our official website.
Authors:Tao Ren, Zishi Zhang, Zehao Li, Jingyang Jiang, Shentao Qin, Guanghao Li, Yan Li, Yi Zheng, Xinping Li, Min Zhan, Yijie Peng
Title: Zeroth-order Informed Fine-Tuning for Diffusion Model: A Recursive Likelihood Ratio Optimizer
Abstract:
The probabilistic diffusion model (DM), generating content by inferencing through a recursive chain structure, has emerged as a powerful framework for visual generation. After pre-training on enormous unlabeled data, the model needs to be properly aligned to meet requirements for downstream applications. How to efficiently align the foundation DM is a crucial task. Contemporary methods are either based on Reinforcement Learning (RL) or truncated Backpropagation (BP). However, RL and truncated BP suffer from low sample efficiency and biased gradient estimation respectively, resulting in limited improvement or, even worse, complete training failure. To overcome the challenges, we propose the Recursive Likelihood Ratio (RLR) optimizer, a zeroth-order informed fine-tuning paradigm for DM. The zeroth-order gradient estimator enables the computation graph rearrangement within the recursive diffusive chain, making the RLR's gradient estimator an unbiased one with the lower variance than other methods. We provide theoretical guarantees for the performance of the RLR. Extensive experiments are conducted on image and video generation tasks to validate the superiority of the RLR. Furthermore, we propose a novel prompt technique that is natural for the RLR to achieve a synergistic effect.
Authors:Zhikang Dong, Weituo Hao, Ju-Chiang Wang, Peng Zhang, Pawel Polak
Title: Every Image Listens, Every Image Dances: Music-Driven Image Animation
Abstract:
Image animation has become a promising area in multimodal research, with a focus on generating videos from reference images. While prior work has largely emphasized generic video generation guided by text, music-driven dance video generation remains underexplored. In this paper, we introduce MuseDance, an innovative end-to-end model that animates reference images using both music and text inputs. This dual input enables MuseDance to generate personalized videos that follow text descriptions and synchronize character movements with the music. Unlike existing approaches, MuseDance eliminates the need for complex motion guidance inputs, such as pose or depth sequences, making flexible and creative video generation accessible to users of all expertise levels. To advance research in this field, we present a new multimodal dataset comprising 2,904 dance videos with corresponding background music and text descriptions. Our approach leverages diffusion-based methods to achieve robust generalization, precise control, and temporal consistency, setting a new baseline for the music-driven image animation task.
Authors:Xinyu Zhang, Zicheng Duan, Dong Gong, Lingqiao Liu
Title: Training-Free Motion-Guided Video Generation with Enhanced Temporal Consistency Using Motion Consistency Loss
Abstract:
In this paper, we address the challenge of generating temporally consistent videos with motion guidance. While many existing methods depend on additional control modules or inference-time fine-tuning, recent studies suggest that effective motion guidance is achievable without altering the model architecture or requiring extra training. Such approaches offer promising compatibility with various video generation foundation models. However, existing training-free methods often struggle to maintain consistent temporal coherence across frames or to follow guided motion accurately. In this work, we propose a simple yet effective solution that combines an initial-noise-based approach with a novel motion consistency loss, the latter being our key innovation. Specifically, we capture the inter-frame feature correlation patterns of intermediate features from a video diffusion model to represent the motion pattern of the reference video. We then design a motion consistency loss to maintain similar feature correlation patterns in the generated video, using the gradient of this loss in the latent space to guide the generation process for precise motion control. This approach improves temporal consistency across various motion control tasks while preserving the benefits of a training-free setup. Extensive experiments show that our method sets a new standard for efficient, temporally coherent video generation.
Authors:Xincheng Shuai, Henghui Ding, Zhenyuan Qin, Hao Luo, Xingjun Ma, Dacheng Tao
Title: Free-Form Motion Control: Controlling the 6D Poses of Camera and Objects in Video Generation
Abstract:
Controlling the movements of dynamic objects and the camera within generated videos is a meaningful yet challenging task. Due to the lack of datasets with comprehensive 6D pose annotations, existing text-to-video methods can not simultaneously control the motions of both camera and objects in 3D-aware manner, resulting in limited controllability over generated contents. To address this issue and facilitate the research in this field, we introduce a Synthetic Dataset for Free-Form Motion Control (SynFMC). The proposed SynFMC dataset includes diverse object and environment categories and covers various motion patterns according to specific rules, simulating common and complex real-world scenarios. The complete 6D pose information facilitates models learning to disentangle the motion effects from objects and the camera in a video.~To provide precise 3D-aware motion control, we further propose a method trained on SynFMC, Free-Form Motion Control (FMC). FMC can control the 6D poses of objects and camera independently or simultaneously, producing high-fidelity videos. Moreover, it is compatible with various personalized text-to-image (T2I) models for different content styles. Extensive experiments demonstrate that the proposed FMC outperforms previous methods across multiple scenarios.
Authors:Andrei Znobishchev, Valerii Filev, Oleg Kudashev, Nikita Orlov, Humphrey Shi
Title: CompactFlowNet: Efficient Real-time Optical Flow Estimation on Mobile Devices
Abstract:
We present CompactFlowNet, the first real-time mobile neural network for optical flow prediction, which involves determining the displacement of each pixel in an initial frame relative to the corresponding pixel in a subsequent frame. Optical flow serves as a fundamental building block for various video-related tasks, such as video restoration, motion estimation, video stabilization, object tracking, action recognition, and video generation. While current state-of-the-art methods prioritize accuracy, they often overlook constraints regarding speed and memory usage. Existing light models typically focus on reducing size but still exhibit high latency, compromise significantly on quality, or are optimized for high-performance GPUs, resulting in sub-optimal performance on mobile devices. This study aims to develop a mobile-optimized optical flow model by proposing a novel mobile device-compatible architecture, as well as enhancements to the training pipeline, which optimize the model for reduced weight, low memory utilization, and increased speed while maintaining minimal error. Our approach demonstrates superior or comparable performance to the state-of-the-art lightweight models on the challenging KITTI and Sintel benchmarks. Furthermore, it attains a significantly accelerated inference speed, thereby yielding real-time operational efficiency on the iPhone 8, while surpassing real-time performance levels on more advanced mobile devices.
Authors:Rohit Kundu, Hao Xiong, Vishal Mohanty, Athula Balachandran, Amit K. Roy-Chowdhury
Title: Towards a Universal Synthetic Video Detector: From Face or Background Manipulations to Fully AI-Generated Content
Abstract:
Existing DeepFake detection techniques primarily focus on facial manipulations, such as face-swapping or lip-syncing. However, advancements in text-to-video (T2V) and image-to-video (I2V) generative models now allow fully AI-generated synthetic content and seamless background alterations, challenging face-centric detection methods and demanding more versatile approaches. To address this, we introduce the \underline{U}niversal \underline{N}etwork for \underline{I}dentifying \underline{T}ampered and synth\underline{E}tic videos (\texttt{UNITE}) model, which, unlike traditional detectors, captures full-frame manipulations. \texttt{UNITE} extends detection capabilities to scenarios without faces, non-human subjects, and complex background modifications. It leverages a transformer-based architecture that processes domain-agnostic features extracted from videos via the SigLIP-So400M foundation model. Given limited datasets encompassing both facial/background alterations and T2V/I2V content, we integrate task-irrelevant data alongside standard DeepFake datasets in training. We further mitigate the model's tendency to over-focus on faces by incorporating an attention-diversity (AD) loss, which promotes diverse spatial attention across video frames. Combining AD loss with cross-entropy improves detection performance across varied contexts. Comparative evaluations demonstrate that \texttt{UNITE} outperforms state-of-the-art detectors on datasets (in cross-data settings) featuring face/background manipulations and fully synthetic T2V/I2V videos, showcasing its adaptability and generalizable detection capabilities.
Authors:Muhammet Furkan Ilaslan, Ali Koksal, Kevin Qinhong Lin, Burak Satar, Mike Zheng Shou, Qianli Xu
Title: VG-TVP: Multimodal Procedural Planning via Visually Grounded Text-Video Prompting
Abstract:
Large Language Model (LLM)-based agents have shown promise in procedural tasks, but the potential of multimodal instructions augmented by texts and videos to assist users remains under-explored. To address this gap, we propose the Visually Grounded Text-Video Prompting (VG-TVP) method which is a novel LLM-empowered Multimodal Procedural Planning (MPP) framework. It generates cohesive text and video procedural plans given a specified high-level objective. The main challenges are achieving textual and visual informativeness, temporal coherence, and accuracy in procedural plans. VG-TVP leverages the zero-shot reasoning capability of LLMs, the video-to-text generation ability of the video captioning models, and the text-to-video generation ability of diffusion models. VG-TVP improves the interaction between modalities by proposing a novel Fusion of Captioning (FoC) method and using Text-to-Video Bridge (T2V-B) and Video-to-Text Bridge (V2T-B). They allow LLMs to guide the generation of visually-grounded text plans and textual-grounded video plans. To address the scarcity of datasets suitable for MPP, we have curated a new dataset called Daily-Life Task Procedural Plans (Daily-PP). We conduct comprehensive experiments and benchmarks to evaluate human preferences (regarding textual and visual informativeness, temporal coherence, and plan accuracy). Our VG-TVP method outperforms unimodal baselines on the Daily-PP dataset.
Authors:Adil Karjauv, Noor Fathima, Ioannis Lelekas, Fatih Porikli, Amir Ghodrati, Amirhossein Habibian
Title: MoViE: Mobile Diffusion for Video Editing
Abstract:
Recent progress in diffusion-based video editing has shown remarkable potential for practical applications. However, these methods remain prohibitively expensive and challenging to deploy on mobile devices. In this study, we introduce a series of optimizations that render mobile video editing feasible. Building upon the existing image editing model, we first optimize its architecture and incorporate a lightweight autoencoder. Subsequently, we extend classifier-free guidance distillation to multiple modalities, resulting in a threefold on-device speedup. Finally, we reduce the number of sampling steps to one by introducing a novel adversarial distillation scheme which preserves the controllability of the editing process. Collectively, these optimizations enable video editing at 12 frames per second on mobile devices, while maintaining high quality. Our results are available at https://qualcomm-ai-research.github.io/mobile-video-editing/
Authors:Yuanzhi Zhu, Hanshu Yan, Huan Yang, Kai Zhang, Junnan Li
Title: Accelerating Video Diffusion Models via Distribution Matching
Abstract:
Generative models, particularly diffusion models, have made significant success in data synthesis across various modalities, including images, videos, and 3D assets. However, current diffusion models are computationally intensive, often requiring numerous sampling steps that limit their practical application, especially in video generation. This work introduces a novel framework for diffusion distillation and distribution matching that dramatically reduces the number of inference steps while maintaining-and potentially improving-generation quality. Our approach focuses on distilling pre-trained diffusion models into a more efficient few-step generator, specifically targeting video generation. By leveraging a combination of video GAN loss and a novel 2D score distribution matching loss, we demonstrate the potential to generate high-quality video frames with substantially fewer sampling steps. To be specific, the proposed method incorporates a denoising GAN discriminator to distil from the real data and a pre-trained image diffusion model to enhance the frame quality and the prompt-following capabilities. Experimental results using AnimateDiff as the teacher model showcase the method's effectiveness, achieving superior performance in just four sampling steps compared to existing techniques.
Authors:Tiancheng Li, Weijian Luo, Zhiyang Chen, Liyuan Ma, Guo-Jun Qi
Title: Self-Guidance: Boosting Flow and Diffusion Generation on Their Own
Abstract:
Proper guidance strategies are essential to achieve high-quality generation results without retraining diffusion and flow-based text-to-image models. Existing guidance either requires specific training or strong inductive biases of diffusion model networks, potentially limiting their applications. Motivated by the observation that artifact outliers can be detected by a significant decline in the density from a noisier to a cleaner noise level, we propose Self-Guidance (SG), which improves the image quality by suppressing the generation of low-quality samples. SG only relies on the sampling probabilities of its own diffusion model at different noise levels with no need of any guidance-specific training. This makes it flexible to be used in a plug-and-play manner with other sampling algorithms. We also introduce a more efficient approximation of SG, named SG-prev, which reuses the output from the immediately previous diffusion step to avoid doubling sampling time. We conduct experiments on text-to-image and text-to-video generation with different architectures, including UNet and transformer models. With open-sourced diffusion models such as Stable Diffusion 3.5 and FLUX, SG exceeds existing algorithms on multiple metrics, including both FID and Human Preference Score. SG-prev also achieves strong results over both the baseline and the SG with only one forward pass. Moreover, we find that SG and SG-prev both have a surprisingly positive effect on the generation of physiologically correct human body structures such as hands, faces, and arms, showing their ability of eliminating human body artifacts with minimal efforts. We will release our code along with this paper.
Authors:Matyas Bohacek, Hany Farid
Title: Human Action CLIPs: Detecting AI-generated Human Motion
Abstract:
AI-generated video generation continues its journey through the uncanny valley to produce content that is increasingly perceptually indistinguishable from reality. To better protect individuals, organizations, and societies from its malicious applications, we describe an effective and robust technique for distinguishing real from AI-generated human motion using multi-modal semantic embeddings. Our method is robust to the types of laundering that typically confound more low- to mid-level approaches, including resolution and compression attacks. This method is evaluated against DeepAction, a custom-built, open-sourced dataset of video clips with human actions generated by seven text-to-video AI models and matching real footage. The dataset is available under an academic license at https://www.huggingface.co/datasets/faridlab/deepaction_v1.
Authors:Noam Rotstein, Gal Yona, Daniel Silver, Roy Velich, David Bensaïd, Ron Kimmel
Title: Pathways on the Image Manifold: Image Editing via Video Generation
Abstract:
Recent advances in image editing, driven by image diffusion models, have shown remarkable progress. However, significant challenges remain, as these models often struggle to follow complex edit instructions accurately and frequently compromise fidelity by altering key elements of the original image. Simultaneously, video generation has made remarkable strides, with models that effectively function as consistent and continuous world simulators. In this paper, we propose merging these two fields by utilizing image-to-video models for image editing. We reformulate image editing as a temporal process, using pretrained video models to create smooth transitions from the original image to the desired edit. This approach traverses the image manifold continuously, ensuring consistent edits while preserving the original image's key aspects. Our approach achieves state-of-the-art results on text-based image editing, demonstrating significant improvements in both edit accuracy and image preservation. Visit our project page at https://rotsteinnoam.github.io/Frame2Frame.
Authors:Hao-Yu Hsu, Zhi-Hao Lin, Albert Zhai, Hongchi Xia, Shenlong Wang
Title: AutoVFX: Physically Realistic Video Editing from Natural Language Instructions
Abstract:
Modern visual effects (VFX) software has made it possible for skilled artists to create imagery of virtually anything. However, the creation process remains laborious, complex, and largely inaccessible to everyday users. In this work, we present AutoVFX, a framework that automatically creates realistic and dynamic VFX videos from a single video and natural language instructions. By carefully integrating neural scene modeling, LLM-based code generation, and physical simulation, AutoVFX is able to provide physically-grounded, photorealistic editing effects that can be controlled directly using natural language instructions. We conduct extensive experiments to validate AutoVFX's efficacy across a diverse spectrum of videos and instructions. Quantitative and qualitative results suggest that AutoVFX outperforms all competing methods by a large margin in generative quality, instruction alignment, editing versatility, and physical plausibility.
Authors:Zhenbin Wang, Lei Zhang, Lituan Wang, Minjuan Zhu, Zhenwei Zhang
Title: Optical Flow Representation Alignment Mamba Diffusion Model for Medical Video Generation
Abstract:
Medical video generation models are expected to have a profound impact on the healthcare industry, including but not limited to medical education and training, surgical planning, and simulation. Current video diffusion models typically build on image diffusion architecture by incorporating temporal operations (such as 3D convolution and temporal attention). Although this approach is effective, its oversimplification limits spatio-temporal performance and consumes substantial computational resources. To counter this, we propose Medical Simulation Video Generator (MedSora), which incorporates three key elements: i) a video diffusion framework integrates the advantages of attention and Mamba, balancing low computational load with high-quality video generation, ii) an optical flow representation alignment method that implicitly enhances attention to inter-frame pixels, and iii) a video variational autoencoder (VAE) with frequency compensation addresses the information loss of medical features that occurs when transforming pixel space into latent features and then back to pixel frames. Extensive experiments and applications demonstrate that MedSora exhibits superior visual quality in generating medical videos, outperforming the most advanced baseline methods. Further results and code are available at https://wongzbb.github.io/MedSora
Authors:Johanna Karras, Yingwei Li, Nan Liu, Luyang Zhu, Innfarn Yoo, Andreas Lugmayr, Chris Lee, Ira Kemelmacher-Shlizerman
Title: Fashion-VDM: Video Diffusion Model for Virtual Try-On
Abstract:
We present Fashion-VDM, a video diffusion model (VDM) for generating virtual try-on videos. Given an input garment image and person video, our method aims to generate a high-quality try-on video of the person wearing the given garment, while preserving the person's identity and motion. Image-based virtual try-on has shown impressive results; however, existing video virtual try-on (VVT) methods are still lacking garment details and temporal consistency. To address these issues, we propose a diffusion-based architecture for video virtual try-on, split classifier-free guidance for increased control over the conditioning inputs, and a progressive temporal training strategy for single-pass 64-frame, 512px video generation. We also demonstrate the effectiveness of joint image-video training for video try-on, especially when video data is limited. Our qualitative and quantitative experiments show that our approach sets the new state-of-the-art for video virtual try-on. For additional results, visit our project page: https://johannakarras.github.io/Fashion-VDM.
Authors:Kuan-Chen Mu, Zhi-Yi Chin, Wei-Chen Chiu
Title: Realizing Video Summarization from the Path of Language-based Semantic Understanding
Abstract:
The recent development of Video-based Large Language Models (VideoLLMs), has significantly advanced video summarization by aligning video features and, in some cases, audio features with Large Language Models (LLMs). Each of these VideoLLMs possesses unique strengths and weaknesses. Many recent methods have required extensive fine-tuning to overcome the limitations of these models, which can be resource-intensive. In this work, we observe that the strengths of one VideoLLM can complement the weaknesses of another. Leveraging this insight, we propose a novel video summarization framework inspired by the Mixture of Experts (MoE) paradigm, which operates as an inference-time algorithm without requiring any form of fine-tuning. Our approach integrates multiple VideoLLMs to generate comprehensive and coherent textual summaries. It effectively combines visual and audio content, provides detailed background descriptions, and excels at identifying keyframes, which enables more semantically meaningful retrieval compared to traditional computer vision approaches that rely solely on visual information, all without the need for additional fine-tuning. Moreover, the resulting summaries enhance performance in downstream tasks such as summary video generation, either through keyframe selection or in combination with text-to-image models. Our language-driven approach offers a semantically rich alternative to conventional methods and provides flexibility to incorporate newer VideoLLMs, enhancing adaptability and performance in video summarization tasks.
Authors:Shaowei Liu, Zhongzheng Ren, Saurabh Gupta, Shenlong Wang
Title: PhysGen: Rigid-Body Physics-Grounded Image-to-Video Generation
Abstract:
We present PhysGen, a novel image-to-video generation method that converts a single image and an input condition (e.g., force and torque applied to an object in the image) to produce a realistic, physically plausible, and temporally consistent video. Our key insight is to integrate model-based physical simulation with a data-driven video generation process, enabling plausible image-space dynamics. At the heart of our system are three core components: (i) an image understanding module that effectively captures the geometry, materials, and physical parameters of the image; (ii) an image-space dynamics simulation model that utilizes rigid-body physics and inferred parameters to simulate realistic behaviors; and (iii) an image-based rendering and refinement module that leverages generative video diffusion to produce realistic video footage featuring the simulated motion. The resulting videos are realistic in both physics and appearance and are even precisely controllable, showcasing superior results over existing data-driven image-to-video generation works through quantitative comparison and comprehensive user study. PhysGen's resulting videos can be used for various downstream applications, such as turning an image into a realistic animation or allowing users to interact with the image and create various dynamics. Project page: https://stevenlsw.github.io/physgen/
Authors:Yuanhang Li, Qi Mao, Lan Chen, Zhen Fang, Lei Tian, Xinyan Xiao, Libiao Jin, Hua Wu
Title: StarVid: Enhancing Semantic Alignment in Video Diffusion Models via Spatial and SynTactic Guided Attention Refocusing
Abstract:
Recent advances in text-to-video (T2V) generation with diffusion models have garnered significant attention. However, they typically perform well in scenes with a single object and motion, struggling in compositional scenarios with multiple objects and distinct motions to accurately reflect the semantic content of text prompts. To address these challenges, we propose \textbf{StarVid}, a plug-and-play, training-free method that improves semantic alignment between multiple subjects, their motions, and text prompts in T2V models. StarVid first leverages the spatial reasoning capabilities of large language models (LLMs) for two-stage motion trajectory planning based on text prompts. Such trajectories serve as spatial priors, guiding a spatial-aware loss to refocus cross-attention (CA) maps into distinctive regions. Furthermore, we propose a syntax-guided contrastive constraint to strengthen the correlation between the CA maps of verbs and their corresponding nouns, enhancing motion-subject binding. Both qualitative and quantitative evaluations demonstrate that the proposed framework significantly outperforms baseline methods, delivering videos of higher quality with improved semantic consistency.
Authors:Xiaoyu Jin, Zunnan Xu, Mingwen Ou, Wenming Yang
Title: Alignment is All You Need: A Training-free Augmentation Strategy for Pose-guided Video Generation
Abstract:
Character animation is a transformative field in computer graphics and vision, enabling dynamic and realistic video animations from static images. Despite advancements, maintaining appearance consistency in animations remains a challenge. Our approach addresses this by introducing a training-free framework that ensures the generated video sequence preserves the reference image's subtleties, such as physique and proportions, through a dual alignment strategy. We decouple skeletal and motion priors from pose information, enabling precise control over animation generation. Our method also improves pixel-level alignment for conditional control from the reference character, enhancing the temporal consistency and visual cohesion of animations. Our method significantly enhances the quality of video generation without the need for large datasets or expensive computational resources.
Authors:Sarah Barrington, Matyas Bohacek, Hany Farid
Title: The DeepSpeak Dataset
Abstract:
Deepfakes represent a growing concern across domains such as impostor hiring, fraud, and disinformation. Despite significant efforts to develop robust detection classifiers to distinguish the real from the fake, commonly used training datasets remain inadequate: relying on low-quality and outdated deepfake generators, consisting of content scraped from online repositories without participant consent, lacking in multimodal coverage, and rarely employing identity-matching protocols to ensure realistic fakes. To overcome these limitations, we present the DeepSpeak dataset, a diverse and multimodal dataset comprising over 100 hours of authentic and deepfake audiovisual content. We contribute: i) more than 50 hours of real, self-recorded data collected from 500 diverse and consenting participants using a custom-built data collection tool, ii) more than 50 hours of state-of-the-art audio and visual deepfakes generated using 14 video synthesis engines and three voice cloning engines, and iii) an embedding-based, identity-matching approach to ensure the creation of convincing, high-quality identity swaps that realistically simulate adversarial deepfake attacks. We also perform large-scale evaluations of state-of-the-art deepfake detectors and show that, without retraining, these detectors fail to generalize to the DeepSpeak dataset. These evaluations highlight the importance of a large and diverse dataset containing deepfakes from the latest generative-AI tools.
Authors:Nirat Saini, Navaneeth Bodla, Ashish Shrivastava, Avinash Ravichandran, Xiao Zhang, Abhinav Shrivastava, Bharat Singh
Title: InVi: Object Insertion In Videos Using Off-the-Shelf Diffusion Models
Abstract:
We introduce InVi, an approach for inserting or replacing objects within videos (referred to as inpainting) using off-the-shelf, text-to-image latent diffusion models. InVi targets controlled manipulation of objects and blending them seamlessly into a background video unlike existing video editing methods that focus on comprehensive re-styling or entire scene alterations. To achieve this goal, we tackle two key challenges. Firstly, for high quality control and blending, we employ a two-step process involving inpainting and matching. This process begins with inserting the object into a single frame using a ControlNet-based inpainting diffusion model, and then generating subsequent frames conditioned on features from an inpainted frame as an anchor to minimize the domain gap between the background and the object. Secondly, to ensure temporal coherence, we replace the diffusion model's self-attention layers with extended-attention layers. The anchor frame features serve as the keys and values for these layers, enhancing consistency across frames. Our approach removes the need for video-specific fine-tuning, presenting an efficient and adaptable solution. Experimental results demonstrate that InVi achieves realistic object insertion with consistent blending and coherence across frames, outperforming existing methods.
Authors:Youngsuk Park, Kailash Budhathoki, Liangfu Chen, Jonas Kübler, Jiaji Huang, Matthäus Kleindessner, Jun Huan, Volkan Cevher, Yida Wang, George Karypis
Title: Inference Optimization of Foundation Models on AI Accelerators
Abstract:
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI across various industries. Industry and research community have witnessed a large number of new applications, based on those foundation models. Such applications include question and answer, customer services, image and video generation, and code completions, among others. However, as the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios. As a result, the demand for cost-effective and fast inference using AI accelerators is ever more higher. To this end, our tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators. Beginning with an overview of basic Transformer architectures and deep learning system frameworks, we deep dive into system optimization techniques for fast and memory-efficient attention computations and discuss how they can be implemented efficiently on AI accelerators. Next, we describe architectural elements that are key for fast transformer inference. Finally, we examine various model compression and fast decoding strategies in the same context.
Authors:Biao Wu, Diankai Zhang, Si Gao, Chengjian Zheng, Shaoli Liu, Ning Wang
Title: 2nd Place Solution for PVUW Challenge 2024: Video Panoptic Segmentation
Abstract:
Video Panoptic Segmentation (VPS) is a challenging task that is extends from image panoptic segmentation.VPS aims to simultaneously classify, track, segment all objects in a video, including both things and stuff. Due to its wide application in many downstream tasks such as video understanding, video editing, and autonomous driving. In order to deal with the task of video panoptic segmentation in the wild, we propose a robust integrated video panoptic segmentation solution. We use DVIS++ framework as our baseline to generate the initial masks. Then,we add an additional image semantic segmentation model to further improve the performance of semantic classes.Finally, our method achieves state-of-the-art performance with a VPQ score of 56.36 and 57.12 in the development and test phases, respectively, and ultimately ranked 2nd in the VPS track of the PVUW Challenge at CVPR2024.
Authors:Wenqi Ouyang, Yi Dong, Lei Yang, Jianlou Si, Xingang Pan
Title: I2VEdit: First-Frame-Guided Video Editing via Image-to-Video Diffusion Models
Abstract:
The remarkable generative capabilities of diffusion models have motivated extensive research in both image and video editing. Compared to video editing which faces additional challenges in the time dimension, image editing has witnessed the development of more diverse, high-quality approaches and more capable software like Photoshop. In light of this gap, we introduce a novel and generic solution that extends the applicability of image editing tools to videos by propagating edits from a single frame to the entire video using a pre-trained image-to-video model. Our method, dubbed I2VEdit, adaptively preserves the visual and motion integrity of the source video depending on the extent of the edits, effectively handling global edits, local edits, and moderate shape changes, which existing methods cannot fully achieve. At the core of our method are two main processes: Coarse Motion Extraction to align basic motion patterns with the original video, and Appearance Refinement for precise adjustments using fine-grained attention matching. We also incorporate a skip-interval strategy to mitigate quality degradation from auto-regressive generation across multiple video clips. Experimental results demonstrate our framework's superior performance in fine-grained video editing, proving its capability to produce high-quality, temporally consistent outputs.
Authors:Nathaniel Cohen, Vladimir Kulikov, Matan Kleiner, Inbar Huberman-Spiegelglas, Tomer Michaeli
Title: Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices
Abstract:
Text-to-image (T2I) diffusion models achieve state-of-the-art results in image synthesis and editing. However, leveraging such pretrained models for video editing is considered a major challenge. Many existing works attempt to enforce temporal consistency in the edited video through explicit correspondence mechanisms, either in pixel space or between deep features. These methods, however, struggle with strong nonrigid motion. In this paper, we introduce a fundamentally different approach, which is based on the observation that spatiotemporal slices of natural videos exhibit similar characteristics to natural images. Thus, the same T2I diffusion model that is normally used only as a prior on video frames, can also serve as a strong prior for enhancing temporal consistency by applying it on spatiotemporal slices. Based on this observation, we present Slicedit, a method for text-based video editing that utilizes a pretrained T2I diffusion model to process both spatial and spatiotemporal slices. Our method generates videos that retain the structure and motion of the original video while adhering to the target text. Through extensive experiments, we demonstrate Slicedit's ability to edit a wide range of real-world videos, confirming its clear advantages compared to existing competing methods. Webpage: https://matankleiner.github.io/slicedit/
Authors:Saman Motamed, Wouter Van Gansbeke, Luc Van Gool
Title: Investigating the Effectiveness of Cross-Attention to Unlock Zero-Shot Editing of Text-to-Video Diffusion Models
Abstract:
With recent advances in image and video diffusion models for content creation, a plethora of techniques have been proposed for customizing their generated content. In particular, manipulating the cross-attention layers of Text-to-Image (T2I) diffusion models has shown great promise in controlling the shape and location of objects in the scene. Transferring image-editing techniques to the video domain, however, is extremely challenging as object motion and temporal consistency are difficult to capture accurately. In this work, we take a first look at the role of cross-attention in Text-to-Video (T2V) diffusion models for zero-shot video editing. While one-shot models have shown potential in controlling motion and camera movement, we demonstrate zero-shot control over object shape, position and movement in T2V models. We show that despite the limitations of current T2V models, cross-attention guidance can be a promising approach for editing videos.
Authors:Taegyeong Lee, Soyeong Kwon, Taehwan Kim
Title: Grid Diffusion Models for Text-to-Video Generation
Abstract:
Recent advances in the diffusion models have significantly improved text-to-image generation. However, generating videos from text is a more challenging task than generating images from text, due to the much larger dataset and higher computational cost required. Most existing video generation methods use either a 3D U-Net architecture that considers the temporal dimension or autoregressive generation. These methods require large datasets and are limited in terms of computational costs compared to text-to-image generation. To tackle these challenges, we propose a simple but effective novel grid diffusion for text-to-video generation without temporal dimension in architecture and a large text-video paired dataset. We can generate a high-quality video using a fixed amount of GPU memory regardless of the number of frames by representing the video as a grid image. Additionally, since our method reduces the dimensions of the video to the dimensions of the image, various image-based methods can be applied to videos, such as text-guided video manipulation from image manipulation. Our proposed method outperforms the existing methods in both quantitative and qualitative evaluations, demonstrating the suitability of our model for real-world video generation.
Authors:Bumsoo Kim, Wonseop Shin, Kyuchul Lee, Yonghoon Jung, Sanghyun Seo
Title: Make VLM Recognize Visual Hallucination on Cartoon Character Image with Pose Information
Abstract:
Leveraging large-scale Text-to-Image (TTI) models have become a common technique for generating exemplar or training dataset in the fields of image synthesis, video editing, 3D reconstruction. However, semantic structural visual hallucinations involving perceptually severe defects remain a concern, especially in the domain of non-photorealistic rendering (NPR) such as cartoons and pixelization-style character. To detect these hallucinations in NPR, We propose a novel semantic structural hallucination detection system using Vision-Language Model (VLM). Our approach is to leverage the emerging capability of large language model, in-context learning which denotes that VLM has seen some examples by user for specific downstream task, here hallucination detection. Based on in-context learning, we introduce pose-aware in-context visual learning (PA-ICVL) which improve the overall performance of VLM by further inputting visual data beyond prompts, RGB images and pose information. By incorporating pose guidance, we enable VLMs to make more accurate decisions. Experimental results demonstrate significant improvements in identifying visual hallucinations compared to baseline methods relying solely on RGB images. Within selected two VLMs, GPT-4v, Gemini pro vision, our proposed PA-ICVL improves the hallucination detection with 50% to 78%, 57% to 80%, respectively. This research advances a capability of TTI models toward real-world applications by mitigating visual hallucinations via in-context visual learning, expanding their potential in non-photorealistic domains. In addition, it showcase how users can boost the downstream-specialized capability of open VLM by harnessing additional conditions. We collect synthetic cartoon-hallucination dataset with TTI models, this dataset and final tuned VLM will be publicly available.
Authors:Shanchuan Lin, Xiao Yang
Title: AnimateDiff-Lightning: Cross-Model Diffusion Distillation
Abstract:
We present AnimateDiff-Lightning for lightning-fast video generation. Our model uses progressive adversarial diffusion distillation to achieve new state-of-the-art in few-step video generation. We discuss our modifications to adapt it for the video modality. Furthermore, we propose to simultaneously distill the probability flow of multiple base diffusion models, resulting in a single distilled motion module with broader style compatibility. We are pleased to release our distilled AnimateDiff-Lightning model for the community's use.
Authors:Tian Xia, Xuweiyi Chen, Sihan Xu
Title: UniCtrl: Improving the Spatiotemporal Consistency of Text-to-Video Diffusion Models via Training-Free Unified Attention Control
Abstract:
Video Diffusion Models have been developed for video generation, usually integrating text and image conditioning to enhance control over the generated content. Despite the progress, ensuring consistency across frames remains a challenge, particularly when using text prompts as control conditions. To address this problem, we introduce UniCtrl, a novel, plug-and-play method that is universally applicable to improve the spatiotemporal consistency and motion diversity of videos generated by text-to-video models without additional training. UniCtrl ensures semantic consistency across different frames through cross-frame self-attention control, and meanwhile, enhances the motion quality and spatiotemporal consistency through motion injection and spatiotemporal synchronization. Our experimental results demonstrate UniCtrl's efficacy in enhancing various text-to-video models, confirming its effectiveness and universality.
Authors:Kihong Kim, Haneol Lee, Jihye Park, Seyeon Kim, Kwanghee Lee, Seungryong Kim, Jaejun Yoo
Title: Hybrid Video Diffusion Models with 2D Triplane and 3D Wavelet Representation
Abstract:
Generating high-quality videos that synthesize desired realistic content is a challenging task due to their intricate high-dimensionality and complexity of videos. Several recent diffusion-based methods have shown comparable performance by compressing videos to a lower-dimensional latent space, using traditional video autoencoder architecture. However, such method that employ standard frame-wise 2D and 3D convolution fail to fully exploit the spatio-temporal nature of videos. To address this issue, we propose a novel hybrid video diffusion model, called HVDM, which can capture spatio-temporal dependencies more effectively. The HVDM is trained by a hybrid video autoencoder which extracts a disentangled representation of the video including: (i) a global context information captured by a 2D projected latent (ii) a local volume information captured by 3D convolutions with wavelet decomposition (iii) a frequency information for improving the video reconstruction. Based on this disentangled representation, our hybrid autoencoder provide a more comprehensive video latent enriching the generated videos with fine structures and details. Experiments on video generation benchamarks (UCF101, SkyTimelapse, and TaiChi) demonstrate that the proposed approach achieves state-of-the-art video generation quality, showing a wide range of video applications (e.g., long video generation, image-to-video, and video dynamics control).
Authors:Jiawei Wang, Yuchen Zhang, Jiaxin Zou, Yan Zeng, Guoqiang Wei, Liping Yuan, Hang Li
Title: Boximator: Generating Rich and Controllable Motions for Video Synthesis
Abstract:
Generating rich and controllable motion is a pivotal challenge in video synthesis. We propose Boximator, a new approach for fine-grained motion control. Boximator introduces two constraint types: hard box and soft box. Users select objects in the conditional frame using hard boxes and then use either type of boxes to roughly or rigorously define the object's position, shape, or motion path in future frames. Boximator functions as a plug-in for existing video diffusion models. Its training process preserves the base model's knowledge by freezing the original weights and training only the control module. To address training challenges, we introduce a novel self-tracking technique that greatly simplifies the learning of box-object correlations. Empirically, Boximator achieves state-of-the-art video quality (FVD) scores, improving on two base models, and further enhanced after incorporating box constraints. Its robust motion controllability is validated by drastic increases in the bounding box alignment metric. Human evaluation also shows that users favor Boximator generation results over the base model.
Authors:Xinkai Yan, Jieting Xu, Yuchi Huo, Hujun Bao
Title: Neural Rendering and Its Hardware Acceleration: A Review
Abstract:
Neural rendering is a new image and video generation method based on deep learning. It combines the deep learning model with the physical knowledge of computer graphics, to obtain a controllable and realistic scene model, and realize the control of scene attributes such as lighting, camera parameters, posture and so on. On the one hand, neural rendering can not only make full use of the advantages of deep learning to accelerate the traditional forward rendering process, but also provide new solutions for specific tasks such as inverse rendering and 3D reconstruction. On the other hand, the design of innovative hardware structures that adapt to the neural rendering pipeline breaks through the parallel computing and power consumption bottleneck of existing graphics processors, which is expected to provide important support for future key areas such as virtual and augmented reality, film and television creation and digital entertainment, artificial intelligence and the metaverse. In this paper, we review the technical connotation, main challenges, and research progress of neural rendering. On this basis, we analyze the common requirements of neural rendering pipeline for hardware acceleration and the characteristics of the current hardware acceleration architecture, and then discuss the design challenges of neural rendering processor architecture. Finally, the future development trend of neural rendering processor architecture is prospected.
Authors:Wan-Duo Kurt Ma, J. P. Lewis, W. Bastiaan Kleijn
Title: TrailBlazer: Trajectory Control for Diffusion-Based Video Generation
Abstract:
Within recent approaches to text-to-video (T2V) generation, achieving controllability in the synthesized video is often a challenge. Typically, this issue is addressed by providing low-level per-frame guidance in the form of edge maps, depth maps, or an existing video to be altered. However, the process of obtaining such guidance can be labor-intensive. This paper focuses on enhancing controllability in video synthesis by employing straightforward bounding boxes to guide the subject in various ways, all without the need for neural network training, finetuning, optimization at inference time, or the use of pre-existing videos. Our algorithm, TrailBlazer, is constructed upon a pre-trained (T2V) model, and easy to implement. The subject is directed by a bounding box through the proposed spatial and temporal attention map editing. Moreover, we introduce the concept of keyframing, allowing the subject trajectory and overall appearance to be guided by both a moving bounding box and corresponding prompts, without the need to provide a detailed mask. The method is efficient, with negligible additional computation relative to the underlying pre-trained model. Despite the simplicity of the bounding box guidance, the resulting motion is surprisingly natural, with emergent effects including perspective and movement toward the virtual camera as the box size increases.
Authors:William F. Whitney, Tatiana Lopez-Guevara, Tobias Pfaff, Yulia Rubanova, Thomas Kipf, Kimberly Stachenfeld, Kelsey R. Allen
Title: Learning 3D Particle-based Simulators from RGB-D Videos
Abstract:
Realistic simulation is critical for applications ranging from robotics to animation. Traditional analytic simulators sometimes struggle to capture sufficiently realistic simulation which can lead to problems including the well known "sim-to-real" gap in robotics. Learned simulators have emerged as an alternative for better capturing real-world physical dynamics, but require access to privileged ground truth physics information such as precise object geometry or particle tracks. Here we propose a method for learning simulators directly from observations. Visual Particle Dynamics (VPD) jointly learns a latent particle-based representation of 3D scenes, a neural simulator of the latent particle dynamics, and a renderer that can produce images of the scene from arbitrary views. VPD learns end to end from posed RGB-D videos and does not require access to privileged information. Unlike existing 2D video prediction models, we show that VPD's 3D structure enables scene editing and long-term predictions. These results pave the way for downstream applications ranging from video editing to robotic planning.
Authors:Yan Zeng, Guoqiang Wei, Jiani Zheng, Jiaxin Zou, Yang Wei, Yuchen Zhang, Hang Li
Title: Make Pixels Dance: High-Dynamic Video Generation
Abstract:
Creating high-dynamic videos such as motion-rich actions and sophisticated visual effects poses a significant challenge in the field of artificial intelligence. Unfortunately, current state-of-the-art video generation methods, primarily focusing on text-to-video generation, tend to produce video clips with minimal motions despite maintaining high fidelity. We argue that relying solely on text instructions is insufficient and suboptimal for video generation. In this paper, we introduce PixelDance, a novel approach based on diffusion models that incorporates image instructions for both the first and last frames in conjunction with text instructions for video generation. Comprehensive experimental results demonstrate that PixelDance trained with public data exhibits significantly better proficiency in synthesizing videos with complex scenes and intricate motions, setting a new standard for video generation.
Authors:Xiaofan Li, Yifu Zhang, Xiaoqing Ye
Title: DrivingDiffusion: Layout-Guided multi-view driving scene video generation with latent diffusion model
Abstract:
With the increasing popularity of autonomous driving based on the powerful and unified bird's-eye-view (BEV) representation, a demand for high-quality and large-scale multi-view video data with accurate annotation is urgently required. However, such large-scale multi-view data is hard to obtain due to expensive collection and annotation costs. To alleviate the problem, we propose a spatial-temporal consistent diffusion framework DrivingDiffusion, to generate realistic multi-view videos controlled by 3D layout. There are three challenges when synthesizing multi-view videos given a 3D layout: How to keep 1) cross-view consistency and 2) cross-frame consistency? 3) How to guarantee the quality of the generated instances? Our DrivingDiffusion solves the problem by cascading the multi-view single-frame image generation step, the single-view video generation step shared by multiple cameras, and post-processing that can handle long video generation. In the multi-view model, the consistency of multi-view images is ensured by information exchange between adjacent cameras. In the temporal model, we mainly query the information that needs attention in subsequent frame generation from the multi-view images of the first frame. We also introduce the local prompt to effectively improve the quality of generated instances. In post-processing, we further enhance the cross-view consistency of subsequent frames and extend the video length by employing temporal sliding window algorithm. Without any extra cost, our model can generate large-scale realistic multi-camera driving videos in complex urban scenes, fueling the downstream driving tasks. The code will be made publicly available.
Authors:Cheng-Hung Chan, Cheng-Yang Yuan, Cheng Sun, Hwann-Tzong Chen
Title: Hashing Neural Video Decomposition with Multiplicative Residuals in Space-Time
Abstract:
We present a video decomposition method that facilitates layer-based editing of videos with spatiotemporally varying lighting and motion effects. Our neural model decomposes an input video into multiple layered representations, each comprising a 2D texture map, a mask for the original video, and a multiplicative residual characterizing the spatiotemporal variations in lighting conditions. A single edit on the texture maps can be propagated to the corresponding locations in the entire video frames while preserving other contents' consistencies. Our method efficiently learns the layer-based neural representations of a 1080p video in 25s per frame via coordinate hashing and allows real-time rendering of the edited result at 71 fps on a single GPU. Qualitatively, we run our method on various videos to show its effectiveness in generating high-quality editing effects. Quantitatively, we propose to adopt feature-tracking evaluation metrics for objectively assessing the consistency of video editing. Project page: https://lightbulb12294.github.io/hashing-nvd/
Authors:Jonathon Luiten, Georgios Kopanas, Bastian Leibe, Deva Ramanan
Title: Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis
Abstract:
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements. We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians which are optimized to reconstruct input images via differentiable rendering. To model dynamic scenes, we allow Gaussians to move and rotate over time while enforcing that they have persistent color, opacity, and size. By regularizing Gaussians' motion and rotation with local-rigidity constraints, we show that our Dynamic 3D Gaussians correctly model the same area of physical space over time, including the rotation of that space. Dense 6-DOF tracking and dynamic reconstruction emerges naturally from persistent dynamic view synthesis, without requiring any correspondence or flow as input. We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
Authors:Yaosi Hu, Zhenzhong Chen, Chong Luo
Title: LaMD: Latent Motion Diffusion for Image-Conditional Video Generation
Abstract:
The video generation field has witnessed rapid improvements with the introduction of recent diffusion models. While these models have successfully enhanced appearance quality, they still face challenges in generating coherent and natural movements while efficiently sampling videos. In this paper, we propose to condense video generation into a problem of motion generation, to improve the expressiveness of motion and make video generation more manageable. This can be achieved by breaking down the video generation process into latent motion generation and video reconstruction. Specifically, we present a latent motion diffusion (LaMD) framework, which consists of a motion-decomposed video autoencoder and a diffusion-based motion generator, to implement this idea. Through careful design, the motion-decomposed video autoencoder can compress patterns in movement into a concise latent motion representation. Consequently, the diffusion-based motion generator is able to efficiently generate realistic motion on a continuous latent space under multi-modal conditions, at a cost that is similar to that of image diffusion models. Results show that LaMD generates high-quality videos on various benchmark datasets, including BAIR, Landscape, NATOPS, MUG and CATER-GEN, that encompass a variety of stochastic dynamics and highly controllable movements on multiple image-conditional video generation tasks, while significantly decreases sampling time.
Authors:Johanna Karras, Aleksander Holynski, Ting-Chun Wang, Ira Kemelmacher-Shlizerman
Title: DreamPose: Fashion Image-to-Video Synthesis via Stable Diffusion
Abstract:
We present DreamPose, a diffusion-based method for generating animated fashion videos from still images. Given an image and a sequence of human body poses, our method synthesizes a video containing both human and fabric motion. To achieve this, we transform a pretrained text-to-image model (Stable Diffusion) into a pose-and-image guided video synthesis model, using a novel fine-tuning strategy, a set of architectural changes to support the added conditioning signals, and techniques to encourage temporal consistency. We fine-tune on a collection of fashion videos from the UBC Fashion dataset. We evaluate our method on a variety of clothing styles and poses, and demonstrate that our method produces state-of-the-art results on fashion video animation.Video results are available on our project page.
Authors:Yang Song, Prafulla Dhariwal, Mark Chen, Ilya Sutskever
Title: Consistency Models
Abstract:
Diffusion models have significantly advanced the fields of image, audio, and video generation, but they depend on an iterative sampling process that causes slow generation. To overcome this limitation, we propose consistency models, a new family of models that generate high quality samples by directly mapping noise to data. They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality. They also support zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training on these tasks. Consistency models can be trained either by distilling pre-trained diffusion models, or as standalone generative models altogether. Through extensive experiments, we demonstrate that they outperform existing distillation techniques for diffusion models in one- and few-step sampling, achieving the new state-of-the-art FID of 3.55 on CIFAR-10 and 6.20 on ImageNet 64x64 for one-step generation. When trained in isolation, consistency models become a new family of generative models that can outperform existing one-step, non-adversarial generative models on standard benchmarks such as CIFAR-10, ImageNet 64x64 and LSUN 256x256.
Authors:Trevine Oorloff, Yaser Yacoob
Title: One-Shot Face Video Re-enactment using Hybrid Latent Spaces of StyleGAN2
Abstract:
While recent research has progressively overcome the low-resolution constraint of one-shot face video re-enactment with the help of StyleGAN's high-fidelity portrait generation, these approaches rely on at least one of the following: explicit 2D/3D priors, optical flow based warping as motion descriptors, off-the-shelf encoders, etc., which constrain their performance (e.g., inconsistent predictions, inability to capture fine facial details and accessories, poor generalization, artifacts). We propose an end-to-end framework for simultaneously supporting face attribute edits, facial motions and deformations, and facial identity control for video generation. It employs a hybrid latent-space that encodes a given frame into a pair of latents: Identity latent, $\mathcal{W}_{ID}$, and Facial deformation latent, $\mathcal{S}_F$, that respectively reside in the $W+$ and $SS$ spaces of StyleGAN2. Thereby, incorporating the impressive editability-distortion trade-off of $W+$ and the high disentanglement properties of $SS$. These hybrid latents employ the StyleGAN2 generator to achieve high-fidelity face video re-enactment at $1024^2$. Furthermore, the model supports the generation of realistic re-enactment videos with other latent-based semantic edits (e.g., beard, age, make-up, etc.). Qualitative and quantitative analyses performed against state-of-the-art methods demonstrate the superiority of the proposed approach.
Authors:Guillaume Le Moing, Jean Ponce, Cordelia Schmid
Title: WALDO: Future Video Synthesis using Object Layer Decomposition and Parametric Flow Prediction
Abstract:
This paper presents WALDO (WArping Layer-Decomposed Objects), a novel approach to the prediction of future video frames from past ones. Individual images are decomposed into multiple layers combining object masks and a small set of control points. The layer structure is shared across all frames in each video to build dense inter-frame connections. Complex scene motions are modeled by combining parametric geometric transformations associated with individual layers, and video synthesis is broken down into discovering the layers associated with past frames, predicting the corresponding transformations for upcoming ones and warping the associated object regions accordingly, and filling in the remaining image parts. Extensive experiments on multiple benchmarks including urban videos (Cityscapes and KITTI) and videos featuring nonrigid motions (UCF-Sports and H3.6M), show that our method consistently outperforms the state of the art by a significant margin in every case. Code, pretrained models, and video samples synthesized by our approach can be found in the project webpage https://16lemoing.github.io/waldo.
Authors:Yaniv Nikankin, Niv Haim, Michal Irani
Title: SinFusion: Training Diffusion Models on a Single Image or Video
Abstract:
Diffusion models exhibited tremendous progress in image and video generation, exceeding GANs in quality and diversity. However, they are usually trained on very large datasets and are not naturally adapted to manipulate a given input image or video. In this paper we show how this can be resolved by training a diffusion model on a single input image or video. Our image/video-specific diffusion model (SinFusion) learns the appearance and dynamics of the single image or video, while utilizing the conditioning capabilities of diffusion models. It can solve a wide array of image/video-specific manipulation tasks. In particular, our model can learn from few frames the motion and dynamics of a single input video. It can then generate diverse new video samples of the same dynamic scene, extrapolate short videos into long ones (both forward and backward in time) and perform video upsampling. Most of these tasks are not realizable by current video-specific generation methods.
Authors:Madeline C. Schiappa, Shruti Vyas, Hamid Palangi, Yogesh S. Rawat, Vibhav Vineet
Title: Robustness Analysis of Video-Language Models Against Visual and Language Perturbations
Abstract:
Joint visual and language modeling on large-scale datasets has recently shown good progress in multi-modal tasks when compared to single modal learning. However, robustness of these approaches against real-world perturbations has not been studied. In this work, we perform the first extensive robustness study of video-language models against various real-world perturbations. We focus on text-to-video retrieval and propose two large-scale benchmark datasets, MSRVTT-P and YouCook2-P, which utilize 90 different visual and 35 different text perturbations. The study reveals some interesting initial findings from the studied models: 1) models are generally more susceptible when only video is perturbed as opposed to when only text is perturbed, 2) models that are pre-trained are more robust than those trained from scratch, 3) models attend more to scene and objects rather than motion and action. We hope this study will serve as a benchmark and guide future research in robust video-language learning. The benchmark introduced in this study along with the code and datasets is available at https://bit.ly/3CNOly4.
Authors:Burak Satar, Hongyuan Zhu, Xavier Bresson, Joo Hwee Lim
Title: Semantic Role Aware Correlation Transformer for Text to Video Retrieval
Abstract:
With the emergence of social media, voluminous video clips are uploaded every day, and retrieving the most relevant visual content with a language query becomes critical. Most approaches aim to learn a joint embedding space for plain textual and visual contents without adequately exploiting their intra-modality structures and inter-modality correlations. This paper proposes a novel transformer that explicitly disentangles the text and video into semantic roles of objects, spatial contexts and temporal contexts with an attention scheme to learn the intra- and inter-role correlations among the three roles to discover discriminative features for matching at different levels. The preliminary results on popular YouCook2 indicate that our approach surpasses a current state-of-the-art method, with a high margin in all metrics. It also overpasses two SOTA methods in terms of two metrics.
Authors:Chenxi Song, Yanming Yang, Tong Zhao, Ruibo Li, Chi Zhang
Title: WorldForge: Unlocking Emergent 3D/4D Generation in Video Diffusion Model via Training-Free Guidance
Abstract:
Recent video diffusion models demonstrate strong potential in spatial intelligence tasks due to their rich latent world priors. However, this potential is hindered by their limited controllability and geometric inconsistency, creating a gap between their strong priors and their practical use in 3D/4D tasks. As a result, current approaches often rely on retraining or fine-tuning, which risks degrading pretrained knowledge and incurs high computational costs. To address this, we propose WorldForge, a training-free, inference-time framework composed of three tightly coupled modules. Intra-Step Recursive Refinement introduces a recursive refinement mechanism during inference, which repeatedly optimizes network predictions within each denoising step to enable precise trajectory injection. Flow-Gated Latent Fusion leverages optical flow similarity to decouple motion from appearance in the latent space and selectively inject trajectory guidance into motion-related channels. Dual-Path Self-Corrective Guidance compares guided and unguided denoising paths to adaptively correct trajectory drift caused by noisy or misaligned structural signals. Together, these components inject fine-grained, trajectory-aligned guidance without training, achieving both accurate motion control and photorealistic content generation. Extensive experiments across diverse benchmarks validate our method's superiority in realism, trajectory consistency, and visual fidelity. This work introduces a novel plug-and-play paradigm for controllable video synthesis, offering a new perspective on leveraging generative priors for spatial intelligence.
Authors:Wenshuo Gao, Xicheng Lan, Luyao Zhang, Shuai Yang
Title: LINR Bridge: Vector Graphic Animation via Neural Implicits and Video Diffusion Priors
Abstract:
Vector graphics, known for their scalability and user-friendliness, provide a unique approach to visual content compared to traditional pixel-based images. Animation of these graphics, driven by the motion of their elements, offers enhanced comprehensibility and controllability but often requires substantial manual effort. To automate this process, we propose a novel method that integrates implicit neural representations with text-to-video diffusion models for vector graphic animation. Our approach employs layered implicit neural representations to reconstruct vector graphics, preserving their inherent properties such as infinite resolution and precise color and shape constraints, which effectively bridges the large domain gap between vector graphics and diffusion models. The neural representations are then optimized using video score distillation sampling, which leverages motion priors from pretrained text-to-video diffusion models. Finally, the vector graphics are warped to match the representations resulting in smooth animation. Experimental results validate the effectiveness of our method in generating vivid and natural vector graphic animations, demonstrating significant improvement over existing techniques that suffer from limitations in flexibility and animation quality.
Authors:Wenshuo Gao, Xicheng Lan, Shuai Yang
Title: ANYPORTAL: Zero-Shot Consistent Video Background Replacement
Abstract:
Despite the rapid advancements in video generation technology, creating high-quality videos that precisely align with user intentions remains a significant challenge. Existing methods often fail to achieve fine-grained control over video details, limiting their practical applicability. We introduce ANYPORTAL, a novel zero-shot framework for video background replacement that leverages pre-trained diffusion models. Our framework collaboratively integrates the temporal prior of video diffusion models with the relighting capabilities of image diffusion models in a zero-shot setting. To address the critical challenge of foreground consistency, we propose a Refinement Projection Algorithm, which enables pixel-level detail manipulation to ensure precise foreground preservation. ANYPORTAL is training-free and overcomes the challenges of achieving foreground consistency and temporally coherent relighting. Experimental results demonstrate that ANYPORTAL achieves high-quality results on consumer-grade GPUs, offering a practical and efficient solution for video content creation and editing.
Authors:Zixin Zhu, Kevin Duarte, Mamshad Nayeem Rizve, Chengyuan Xu, Ratheesh Kalarot, Junsong Yuan
Title: CompSlider: Compositional Slider for Disentangled Multiple-Attribute Image Generation
Abstract:
In text-to-image (T2I) generation, achieving fine-grained control over attributes - such as age or smile - remains challenging, even with detailed text prompts. Slider-based methods offer a solution for precise control of image attributes. Existing approaches typically train individual adapter for each attribute separately, overlooking the entanglement among multiple attributes. As a result, interference occurs among different attributes, preventing precise control of multiple attributes together. To address this challenge, we aim to disentangle multiple attributes in slider-based generation to enbale more reliable and independent attribute manipulation. Our approach, CompSlider, can generate a conditional prior for the T2I foundation model to control multiple attributes simultaneously. Furthermore, we introduce novel disentanglement and structure losses to compose multiple attribute changes while maintaining structural consistency within the image. Since CompSlider operates in the latent space of the conditional prior and does not require retraining the foundation model, it reduces the computational burden for both training and inference. We evaluate our approach on a variety of image attributes and highlight its generality by extending to video generation.
Authors:Binjie Zhang, Mike Zheng Shou
Title: Ego-centric Predictive Model Conditioned on Hand Trajectories
Abstract:
In egocentric scenarios, anticipating both the next action and its visual outcome is essential for understanding human-object interactions and for enabling robotic planning. However, existing paradigms fall short of jointly modeling these aspects. Vision-Language-Action (VLA) models focus on action prediction but lack explicit modeling of how actions influence the visual scene, while video prediction models generate future frames without conditioning on specific actions, often resulting in implausible or contextually inconsistent outcomes. To bridge this gap, we propose a unified two-stage predictive framework that jointly models action and visual future in egocentric scenarios, conditioned on hand trajectories. In the first stage, we perform consecutive state modeling to process heterogeneous inputs (visual observations, language, and action history) and explicitly predict future hand trajectories. In the second stage, we introduce causal cross-attention to fuse multi-modal cues, leveraging inferred action signals to guide an image-based Latent Diffusion Model (LDM) for frame-by-frame future video generation. Our approach is the first unified model designed to handle both egocentric human activity understanding and robotic manipulation tasks, providing explicit predictions of both upcoming actions and their visual consequences. Extensive experiments on Ego4D, BridgeData, and RLBench demonstrate that our method outperforms state-of-the-art baselines in both action prediction and future video synthesis.
Authors:Sizhe Shan, Qiulin Li, Yutao Cui, Miles Yang, Yuehai Wang, Qun Yang, Jin Zhou, Zhao Zhong
Title: HunyuanVideo-Foley: Multimodal Diffusion with Representation Alignment for High-Fidelity Foley Audio Generation
Abstract:
Recent advances in video generation produce visually realistic content, yet the absence of synchronized audio severely compromises immersion. To address key challenges in video-to-audio generation, including multimodal data scarcity, modality imbalance and limited audio quality in existing methods, we propose HunyuanVideo-Foley, an end-to-end text-video-to-audio framework that synthesizes high-fidelity audio precisely aligned with visual dynamics and semantic context. Our approach incorporates three core innovations: (1) a scalable data pipeline curating 100k-hour multimodal datasets through automated annotation; (2) a representation alignment strategy using self-supervised audio features to guide latent diffusion training, efficiently improving audio quality and generation stability; (3) a novel multimodal diffusion transformer resolving modal competition, containing dual-stream audio-video fusion through joint attention, and textual semantic injection via cross-attention. Comprehensive evaluations demonstrate that HunyuanVideo-Foley achieves new state-of-the-art performance across audio fidelity, visual-semantic alignment, temporal alignment and distribution matching. The demo page is available at: https://szczesnys.github.io/hunyuanvideo-foley/.
Authors:Ruixin Zhang, Jiaqing Fan, Yifan Liao, Qian Qiao, Fanzhang Li
Title: Temporal-Conditional Referring Video Object Segmentation with Noise-Free Text-to-Video Diffusion Model
Abstract:
Referring Video Object Segmentation (RVOS) aims to segment specific objects in a video according to textual descriptions. We observe that recent RVOS approaches often place excessive emphasis on feature extraction and temporal modeling, while relatively neglecting the design of the segmentation head. In fact, there remains considerable room for improvement in segmentation head design. To address this, we propose a Temporal-Conditional Referring Video Object Segmentation model, which innovatively integrates existing segmentation methods to effectively enhance boundary segmentation capability. Furthermore, our model leverages a text-to-video diffusion model for feature extraction. On top of this, we remove the traditional noise prediction module to avoid the randomness of noise from degrading segmentation accuracy, thereby simplifying the model while improving performance. Finally, to overcome the limited feature extraction capability of the VAE, we design a Temporal Context Mask Refinement (TCMR) module, which significantly improves segmentation quality without introducing complex designs. We evaluate our method on four public RVOS benchmarks, where it consistently achieves state-of-the-art performance.
Authors:Kunyang Li, Jeffrey A Chan Santiago, Sarinda Dhanesh Samarasinghe, Gaowen Liu, Mubarak Shah
Title: GVD: Guiding Video Diffusion Model for Scalable Video Distillation
Abstract:
To address the larger computation and storage requirements associated with large video datasets, video dataset distillation aims to capture spatial and temporal information in a significantly smaller dataset, such that training on the distilled data has comparable performance to training on all of the data. We propose GVD: Guiding Video Diffusion, the first diffusion-based video distillation method. GVD jointly distills spatial and temporal features, ensuring high-fidelity video generation across diverse actions while capturing essential motion information. Our method's diverse yet representative distillations significantly outperform previous state-of-the-art approaches on the MiniUCF and HMDB51 datasets across 5, 10, and 20 Instances Per Class (IPC). Specifically, our method achieves 78.29 percent of the original dataset's performance using only 1.98 percent of the total number of frames in MiniUCF. Additionally, it reaches 73.83 percent of the performance with just 3.30 percent of the frames in HMDB51. Experimental results across benchmark video datasets demonstrate that GVD not only achieves state-of-the-art performance but can also generate higher resolution videos and higher IPC without significantly increasing computational cost.
Authors:Keerthi Veeramachaneni, Praveen Tirupattur, Amrit Singh Bedi, Mubarak Shah
Title: Leveraging Pre-Trained Visual Models for AI-Generated Video Detection
Abstract:
Recent advances in Generative AI (GenAI) have led to significant improvements in the quality of generated visual content. As AI-generated visual content becomes increasingly indistinguishable from real content, the challenge of detecting the generated content becomes critical in combating misinformation, ensuring privacy, and preventing security threats. Although there has been substantial progress in detecting AI-generated images, current methods for video detection are largely focused on deepfakes, which primarily involve human faces. However, the field of video generation has advanced beyond DeepFakes, creating an urgent need for methods capable of detecting AI-generated videos with generic content. To address this gap, we propose a novel approach that leverages pre-trained visual models to distinguish between real and generated videos. The features extracted from these pre-trained models, which have been trained on extensive real visual content, contain inherent signals that can help distinguish real from generated videos. Using these extracted features, we achieve high detection performance without requiring additional model training, and we further improve performance by training a simple linear classification layer on top of the extracted features. We validated our method on a dataset we compiled (VID-AID), which includes around 10,000 AI-generated videos produced by 9 different text-to-video models, along with 4,000 real videos, totaling over 7 hours of video content. Our evaluation shows that our approach achieves high detection accuracy, above 90% on average, underscoring its effectiveness. Upon acceptance, we plan to publicly release the code, the pre-trained models, and our dataset to support ongoing research in this critical area.
Authors:Daniel Saragih, Deyu Cao, Tejas Balaji
Title: Flows and Diffusions on the Neural Manifold
Abstract:
Diffusion and flow-based generative models have achieved remarkable success in domains such as image synthesis, video generation, and natural language modeling. In this work, we extend these advances to weight space learning by leveraging recent techniques to incorporate structural priors derived from optimization dynamics. Central to our approach is modeling the trajectory induced by gradient descent as a trajectory inference problem. We unify several trajectory inference techniques under the framework of gradient flow matching, providing a theoretical framework for treating optimization paths as inductive bias. We further explore architectural and algorithmic choices, including reward fine-tuning by adjoint matching, the use of autoencoders for latent weight representation, conditioning on task-specific context data, and adopting informative source distributions such as Kaiming uniform. Experiments demonstrate that our method matches or surpasses baselines in generating in-distribution weights, improves initialization for downstream training, and supports fine-tuning to enhance performance. Finally, we illustrate a practical application in safety-critical systems: detecting harmful covariate shifts, where our method outperforms the closest comparable baseline.
Authors:Xiang Fan, Xiaohang Sun, Kushan Thakkar, Zhu Liu, Vimal Bhat, Ranjay Krishna, Xiang Hao
Title: RefTok: Reference-Based Tokenization for Video Generation
Abstract:
Effectively handling temporal redundancy remains a key challenge in learning video models. Prevailing approaches often treat each set of frames independently, failing to effectively capture the temporal dependencies and redundancies inherent in videos. To address this limitation, we introduce RefTok, a novel reference-based tokenization method capable of capturing complex temporal dynamics and contextual information. Our method encodes and decodes sets of frames conditioned on an unquantized reference frame. When decoded, RefTok preserves the continuity of motion and the appearance of objects across frames. For example, RefTok retains facial details despite head motion, reconstructs text correctly, preserves small patterns, and maintains the legibility of handwriting from the context. Across 4 video datasets (K600, UCF-101, BAIR Robot Pushing, and DAVIS), RefTok significantly outperforms current state-of-the-art tokenizers (Cosmos and MAGVIT) and improves all evaluated metrics (PSNR, SSIM, LPIPS) by an average of 36.7% at the same or higher compression ratios. When a video generation model is trained using RefTok's latents on the BAIR Robot Pushing task, the generations not only outperform MAGVIT-B but the larger MAGVIT-L, which has 4x more parameters, across all generation metrics by an average of 27.9%.
Authors:Donggoo Kang, Jangyeong Kim, Dasol Jeong, Junyoung Choi, Jeonga Wi, Hyunmin Lee, Joonho Gwon, Joonki Paik
Title: Consistent Zero-shot 3D Texture Synthesis Using Geometry-aware Diffusion and Temporal Video Models
Abstract:
Current texture synthesis methods, which generate textures from fixed viewpoints, suffer from inconsistencies due to the lack of global context and geometric understanding. Meanwhile, recent advancements in video generation models have demonstrated remarkable success in achieving temporally consistent videos. In this paper, we introduce VideoTex, a novel framework for seamless texture synthesis that leverages video generation models to address both spatial and temporal inconsistencies in 3D textures. Our approach incorporates geometry-aware conditions, enabling precise utilization of 3D mesh structures. Additionally, we propose a structure-wise UV diffusion strategy, which enhances the generation of occluded areas by preserving semantic information, resulting in smoother and more coherent textures. VideoTex not only achieves smoother transitions across UV boundaries but also ensures high-quality, temporally stable textures across video frames. Extensive experiments demonstrate that VideoTex outperforms existing methods in texture fidelity, seam blending, and stability, paving the way for dynamic real-time applications that demand both visual quality and temporal coherence.
Authors:Denys Rozumnyi, Jonathon Luiten, Numair Khan, Johannes Schönberger, Peter Kontschieder
Title: BulletGen: Improving 4D Reconstruction with Bullet-Time Generation
Abstract:
Transforming casually captured, monocular videos into fully immersive dynamic experiences is a highly ill-posed task, and comes with significant challenges, e.g., reconstructing unseen regions, and dealing with the ambiguity in monocular depth estimation. In this work we introduce BulletGen, an approach that takes advantage of generative models to correct errors and complete missing information in a Gaussian-based dynamic scene representation. This is done by aligning the output of a diffusion-based video generation model with the 4D reconstruction at a single frozen "bullet-time" step. The generated frames are then used to supervise the optimization of the 4D Gaussian model. Our method seamlessly blends generative content with both static and dynamic scene components, achieving state-of-the-art results on both novel-view synthesis, and 2D/3D tracking tasks.
Authors:Nikos Spyrou, Athanasios Vlontzos, Paraskevas Pegios, Thomas Melistas, Nefeli Gkouti, Yannis Panagakis, Giorgos Papanastasiou, Sotirios A. Tsaftaris
Title: Causally Steered Diffusion for Automated Video Counterfactual Generation
Abstract:
Adapting text-to-image (T2I) latent diffusion models (LDMs) to video editing has shown strong visual fidelity and controllability, but challenges remain in maintaining causal relationships inherent to the video data generating process. Edits affecting causally dependent attributes often generate unrealistic or misleading outcomes if these relationships are ignored. In this work, we introduce a causally faithful framework for counterfactual video generation, formulated as an Out-of-Distribution (OOD) prediction problem. We embed prior causal knowledge by encoding the relationships specified in a causal graph into text prompts and guide the generation process by optimizing these prompts using a vision-language model (VLM)-based textual loss. This loss encourages the latent space of the LDMs to capture OOD variations in the form of counterfactuals, effectively steering generation toward causally meaningful alternatives. The proposed framework, dubbed CSVC, is agnostic to the underlying video editing system and does not require access to its internal mechanisms or fine-tuning. We evaluate our approach using standard video quality metrics and counterfactual-specific criteria, such as causal effectiveness and minimality. Experimental results show that CSVC generates causally faithful video counterfactuals within the LDM distribution via prompt-based causal steering, achieving state-of-the-art causal effectiveness without compromising temporal consistency or visual quality on real-world facial videos. Due to its compatibility with any black-box video editing system, our framework has significant potential to generate realistic 'what if' hypothetical video scenarios in diverse areas such as digital media and healthcare.
Authors:Lizhen Wang, Zhurong Xia, Tianshu Hu, Pengrui Wang, Pengfei Wei, Zerong Zheng, Ming Zhou, Yuan Zhang, Mingyuan Gao
Title: DreamActor-H1: High-Fidelity Human-Product Demonstration Video Generation via Motion-designed Diffusion Transformers
Abstract:
In e-commerce and digital marketing, generating high-fidelity human-product demonstration videos is important for effective product presentation. However, most existing frameworks either fail to preserve the identities of both humans and products or lack an understanding of human-product spatial relationships, leading to unrealistic representations and unnatural interactions. To address these challenges, we propose a Diffusion Transformer (DiT)-based framework. Our method simultaneously preserves human identities and product-specific details, such as logos and textures, by injecting paired human-product reference information and utilizing an additional masked cross-attention mechanism. We employ a 3D body mesh template and product bounding boxes to provide precise motion guidance, enabling intuitive alignment of hand gestures with product placements. Additionally, structured text encoding is used to incorporate category-level semantics, enhancing 3D consistency during small rotational changes across frames. Trained on a hybrid dataset with extensive data augmentation strategies, our approach outperforms state-of-the-art techniques in maintaining the identity integrity of both humans and products and generating realistic demonstration motions. Project page: https://lizhenwangt.github.io/DreamActor-H1/.
Authors:Shubhashis Roy Dipta, Francis Ferraro
Title: Q2E: Query-to-Event Decomposition for Zero-Shot Multilingual Text-to-Video Retrieval
Abstract:
Recent approaches have shown impressive proficiency in extracting and leveraging parametric knowledge from Large-Language Models (LLMs) and Vision-Language Models (VLMs). In this work, we consider how we can improve the identification and retrieval of videos related to complex real-world events by automatically extracting latent parametric knowledge about those events. We present Q2E: a Query-to-Event decomposition method for zero-shot multilingual text-to-video retrieval, adaptable across datasets, domains, LLMs, or VLMs. Our approach demonstrates that we can enhance the understanding of otherwise overly simplified human queries by decomposing the query using the knowledge embedded in LLMs and VLMs. We additionally show how to apply our approach to both visual and speech-based inputs. To combine this varied multimodal knowledge, we adopt entropy-based fusion scoring for zero-shot fusion. Through evaluations on two diverse datasets and multiple retrieval metrics, we demonstrate that Q2E outperforms several state-of-the-art baselines. Our evaluation also shows that integrating audio information can significantly improve text-to-video retrieval. We have released code and data for future research.
Authors:Haojie Yu, Zhaonian Wang, Yihan Pan, Meng Cheng, Hao Yang, Chao Wang, Tao Xie, Xiaoming Xu, Xiaoming Wei, Xunliang Cai
Title: LLIA -- Enabling Low-Latency Interactive Avatars: Real-Time Audio-Driven Portrait Video Generation with Diffusion Models
Abstract:
Diffusion-based models have gained wide adoption in the virtual human generation due to their outstanding expressiveness. However, their substantial computational requirements have constrained their deployment in real-time interactive avatar applications, where stringent speed, latency, and duration requirements are paramount. We present a novel audio-driven portrait video generation framework based on the diffusion model to address these challenges. Firstly, we propose robust variable-length video generation to reduce the minimum time required to generate the initial video clip or state transitions, which significantly enhances the user experience. Secondly, we propose a consistency model training strategy for Audio-Image-to-Video to ensure real-time performance, enabling a fast few-step generation. Model quantization and pipeline parallelism are further employed to accelerate the inference speed. To mitigate the stability loss incurred by the diffusion process and model quantization, we introduce a new inference strategy tailored for long-duration video generation. These methods ensure real-time performance and low latency while maintaining high-fidelity output. Thirdly, we incorporate class labels as a conditional input to seamlessly switch between speaking, listening, and idle states. Lastly, we design a novel mechanism for fine-grained facial expression control to exploit our model's inherent capacity. Extensive experiments demonstrate that our approach achieves low-latency, fluid, and authentic two-way communication. On an NVIDIA RTX 4090D, our model achieves a maximum of 78 FPS at a resolution of 384x384 and 45 FPS at a resolution of 512x512, with an initial video generation latency of 140 ms and 215 ms, respectively.
Authors:Guangzhao Li, Yanming Yang, Chenxi Song, Chi Zhang
Title: FlowDirector: Training-Free Flow Steering for Precise Text-to-Video Editing
Abstract:
Text-driven video editing aims to modify video content according to natural language instructions. While recent training-free approaches have made progress by leveraging pre-trained diffusion models, they typically rely on inversion-based techniques that map input videos into the latent space, which often leads to temporal inconsistencies and degraded structural fidelity. To address this, we propose FlowDirector, a novel inversion-free video editing framework. Our framework models the editing process as a direct evolution in data space, guiding the video via an Ordinary Differential Equation (ODE) to smoothly transition along its inherent spatiotemporal manifold, thereby preserving temporal coherence and structural details. To achieve localized and controllable edits, we introduce an attention-guided masking mechanism that modulates the ODE velocity field, preserving non-target regions both spatially and temporally. Furthermore, to address incomplete edits and enhance semantic alignment with editing instructions, we present a guidance-enhanced editing strategy inspired by Classifier-Free Guidance, which leverages differential signals between multiple candidate flows to steer the editing trajectory toward stronger semantic alignment without compromising structural consistency. Extensive experiments across benchmarks demonstrate that FlowDirector achieves state-of-the-art performance in instruction adherence, temporal consistency, and background preservation, establishing a new paradigm for efficient and coherent video editing without inversion.
Authors:Xiaoyi Feng, Kaifeng Zou, Caichun Cen, Tao Huang, Hui Guo, Zizhou Huang, Yingli Zhao, Mingqing Zhang, Ziyuan Zheng, Diwei Wang, Yuntao Zou, Dagang Li
Title: LinkTo-Anime: A 2D Animation Optical Flow Dataset from 3D Model Rendering
Abstract:
Existing optical flow datasets focus primarily on real-world simulation or synthetic human motion, but few are tailored to Celluloid(cel) anime character motion: a domain with unique visual and motion characteristics. To bridge this gap and facilitate research in optical flow estimation and downstream tasks such as anime video generation and line drawing colorization, we introduce LinkTo-Anime, the first high-quality dataset specifically designed for cel anime character motion generated with 3D model rendering. LinkTo-Anime provides rich annotations including forward and backward optical flow, occlusion masks, and Mixamo Skeleton. The dataset comprises 395 video sequences, totally 24,230 training frames, 720 validation frames, and 4,320 test frames. Furthermore, a comprehensive benchmark is constructed with various optical flow estimation methods to analyze the shortcomings and limitations across multiple datasets.
Authors:Xiaodong Wang, Zhirong Wu, Peixi Peng
Title: LongDWM: Cross-Granularity Distillation for Building a Long-Term Driving World Model
Abstract:
Driving world models are used to simulate futures by video generation based on the condition of the current state and actions. However, current models often suffer serious error accumulations when predicting the long-term future, which limits the practical application. Recent studies utilize the Diffusion Transformer (DiT) as the backbone of driving world models to improve learning flexibility. However, these models are always trained on short video clips (high fps and short duration), and multiple roll-out generations struggle to produce consistent and reasonable long videos due to the training-inference gap. To this end, we propose several solutions to build a simple yet effective long-term driving world model. First, we hierarchically decouple world model learning into large motion learning and bidirectional continuous motion learning. Then, considering the continuity of driving scenes, we propose a simple distillation method where fine-grained video flows are self-supervised signals for coarse-grained flows. The distillation is designed to improve the coherence of infinite video generation. The coarse-grained and fine-grained modules are coordinated to generate long-term and temporally coherent videos. In the public benchmark NuScenes, compared with the state-of-the-art front-view model, our model improves FVD by $27\%$ and reduces inference time by $85\%$ for the video task of generating 110+ frames. More videos (including 90s duration) are available at https://Wang-Xiaodong1899.github.io/longdwm/.
Authors:Tingyu Song, Tongyan Hu, Guo Gan, Yilun Zhao
Title: VF-Eval: Evaluating Multimodal LLMs for Generating Feedback on AIGC Videos
Abstract:
MLLMs have been widely studied for video question answering recently. However, most existing assessments focus on natural videos, overlooking synthetic videos, such as AI-generated content (AIGC). Meanwhile, some works in video generation rely on MLLMs to evaluate the quality of generated videos, but the capabilities of MLLMs on interpreting AIGC videos remain largely underexplored. To address this, we propose a new benchmark, VF-Eval, which introduces four tasks-coherence validation, error awareness, error type detection, and reasoning evaluation-to comprehensively evaluate the abilities of MLLMs on AIGC videos. We evaluate 13 frontier MLLMs on VF-Eval and find that even the best-performing model, GPT-4.1, struggles to achieve consistently good performance across all tasks. This highlights the challenging nature of our benchmark. Additionally, to investigate the practical applications of VF-Eval in improving video generation, we conduct an experiment, RePrompt, demonstrating that aligning MLLMs more closely with human feedback can benefit video generation.
Authors:Xiaodong Wang, Peixi Peng
Title: ProphetDWM: A Driving World Model for Rolling Out Future Actions and Videos
Abstract:
Real-world driving requires people to observe the current environment, anticipate the future, and make appropriate driving decisions. This requirement is aligned well with the capabilities of world models, which understand the environment and predict the future. However, recent world models in autonomous driving are built explicitly, where they could predict the future by controllable driving video generation. We argue that driving world models should have two additional abilities: action control and action prediction. Following this line, previous methods are limited because they predict the video requires given actions of the same length as the video and ignore the dynamical action laws. To address these issues, we propose ProphetDWM, a novel end-to-end driving world model that jointly predicts future videos and actions. Our world model has an action module to learn latent action from the present to the future period by giving the action sequence and observations. And a diffusion-model-based transition module to learn the state distribution. The model is jointly trained by learning latent actions given finite states and predicting action and video. The joint learning connects the action dynamics and states and enables long-term future prediction. We evaluate our method in video generation and action prediction tasks on the Nuscenes dataset. Compared to the state-of-the-art methods, our method achieves the best video consistency and best action prediction accuracy, while also enabling high-quality long-term video and action generation.
Authors:Taewon Kang, Ming C. Lin
Title: Action2Dialogue: Generating Character-Centric Narratives from Scene-Level Prompts
Abstract:
Recent advances in scene-based video generation have enabled systems to synthesize coherent visual narratives from structured prompts. However, a crucial dimension of storytelling -- character-driven dialogue and speech -- remains underexplored. In this paper, we present a modular pipeline that transforms action-level prompts into visually and auditorily grounded narrative dialogue, enriching visual storytelling with natural voice and character expression. Our method takes as input a pair of prompts per scene, where the first defines the setting and the second specifies a character's behavior. While a story generation model such as Text2Story produces the corresponding visual scene, we focus on generating expressive, character-consistent utterances grounded in both the prompts and the scene image. A pretrained vision-language encoder extracts high-level semantic features from a representative frame, capturing salient visual context. These features are then integrated with structured prompts to guide a large language model in synthesizing natural dialogue. To ensure contextual and emotional consistency across scenes, we introduce a Recursive Narrative Bank -- a speaker-aware, temporally structured memory that recursively accumulates each character's dialogue history. Inspired by Script Theory in cognitive psychology, this design enables characters to speak in ways that reflect their evolving goals, social context, and narrative roles throughout the story. Finally, we render each utterance as expressive, character-conditioned speech, resulting in fully-voiced, multimodal video narratives. Our training-free framework generalizes across diverse story settings -- from fantasy adventures to slice-of-life episodes -- offering a scalable solution for coherent, character-grounded audiovisual storytelling.
Authors:Huafeng Shi, Jianzhong Liang, Rongchang Xie, Xian Wu, Cheng Chen, Chang Liu
Title: Aquarius: A Family of Industry-Level Video Generation Models for Marketing Scenarios
Abstract:
This report introduces Aquarius, a family of industry-level video generation models for marketing scenarios designed for thousands-xPU clusters and models with hundreds of billions of parameters. Leveraging efficient engineering architecture and algorithmic innovation, Aquarius demonstrates exceptional performance in high-fidelity, multi-aspect-ratio, and long-duration video synthesis. By disclosing the framework's design details, we aim to demystify industrial-scale video generation systems and catalyze advancements in the generative video community. The Aquarius framework consists of five components: Distributed Graph and Video Data Processing Pipeline: Manages tens of thousands of CPUs and thousands of xPUs via automated task distribution, enabling efficient video data processing. Additionally, we are about to open-source the entire data processing framework named "Aquarius-Datapipe". Model Architectures for Different Scales: Include a Single-DiT architecture for 2B models and a Multimodal-DiT architecture for 13.4B models, supporting multi-aspect ratios, multi-resolution, and multi-duration video generation. High-Performance infrastructure designed for video generation model training: Incorporating hybrid parallelism and fine-grained memory optimization strategies, this infrastructure achieves 36% MFU at large scale. Multi-xPU Parallel Inference Acceleration: Utilizes diffusion cache and attention optimization to achieve a 2.35x inference speedup. Multiple marketing-scenarios applications: Including image-to-video, text-to-video (avatar), video inpainting and video personalization, among others. More downstream applications and multi-dimensional evaluation metrics will be added in the upcoming version updates.
Authors:Xian Wu, Chang Liu
Title: DiTPainter: Efficient Video Inpainting with Diffusion Transformers
Abstract:
Many existing video inpainting algorithms utilize optical flows to construct the corresponding maps and then propagate pixels from adjacent frames to missing areas by mapping. Despite the effectiveness of the propagation mechanism, they might encounter blurry and inconsistencies when dealing with inaccurate optical flows or large masks. Recently, Diffusion Transformer (DiT) has emerged as a revolutionary technique for video generation tasks. However, pretrained DiT models for video generation all contain a large amount of parameters, which makes it very time consuming to apply to video inpainting tasks. In this paper, we present DiTPainter, an end-to-end video inpainting model based on Diffusion Transformer (DiT). DiTPainter uses an efficient transformer network designed for video inpainting, which is trained from scratch instead of initializing from any large pretrained models. DiTPainter can address videos with arbitrary lengths and can be applied to video decaptioning and video completion tasks with an acceptable time cost. Experiments show that DiTPainter outperforms existing video inpainting algorithms with higher quality and better spatial-temporal consistency.
Authors:Zhengbo Zhang, Yuxi Zhou, Duo Peng, Joo-Hwee Lim, Zhigang Tu, De Wen Soh, Lin Geng Foo
Title: Visual Prompting for One-shot Controllable Video Editing without Inversion
Abstract:
One-shot controllable video editing (OCVE) is an important yet challenging task, aiming to propagate user edits that are made -- using any image editing tool -- on the first frame of a video to all subsequent frames, while ensuring content consistency between edited frames and source frames. To achieve this, prior methods employ DDIM inversion to transform source frames into latent noise, which is then fed into a pre-trained diffusion model, conditioned on the user-edited first frame, to generate the edited video. However, the DDIM inversion process accumulates errors, which hinder the latent noise from accurately reconstructing the source frames, ultimately compromising content consistency in the generated edited frames. To overcome it, our method eliminates the need for DDIM inversion by performing OCVE through a novel perspective based on visual prompting. Furthermore, inspired by consistency models that can perform multi-step consistency sampling to generate a sequence of content-consistent images, we propose a content consistency sampling (CCS) to ensure content consistency between the generated edited frames and the source frames. Moreover, we introduce a temporal-content consistency sampling (TCS) based on Stein Variational Gradient Descent to ensure temporal consistency across the edited frames. Extensive experiments validate the effectiveness of our approach.
Authors:Ruineng Li, Daitao Xing, Huiming Sun, Yuanzhou Ha, Jinglin Shen, Chiuman Ho
Title: TokenMotion: Decoupled Motion Control via Token Disentanglement for Human-centric Video Generation
Abstract:
Human-centric motion control in video generation remains a critical challenge, particularly when jointly controlling camera movements and human poses in scenarios like the iconic Grammy Glambot moment. While recent video diffusion models have made significant progress, existing approaches struggle with limited motion representations and inadequate integration of camera and human motion controls. In this work, we present TokenMotion, the first DiT-based video diffusion framework that enables fine-grained control over camera motion, human motion, and their joint interaction. We represent camera trajectories and human poses as spatio-temporal tokens to enable local control granularity. Our approach introduces a unified modeling framework utilizing a decouple-and-fuse strategy, bridged by a human-aware dynamic mask that effectively handles the spatially-and-temporally varying nature of combined motion signals. Through extensive experiments, we demonstrate TokenMotion's effectiveness across both text-to-video and image-to-video paradigms, consistently outperforming current state-of-the-art methods in human-centric motion control tasks. Our work represents a significant advancement in controllable video generation, with particular relevance for creative production applications.
Authors:Chenyu Zhang, Daniil Cherniavskii, Andrii Zadaianchuk, Antonios Tragoudaras, Antonios Vozikis, Thijmen Nijdam, Derck W. E. Prinzhorn, Mark Bodracska, Nicu Sebe, Efstratios Gavves
Title: Morpheus: Benchmarking Physical Reasoning of Video Generative Models with Real Physical Experiments
Abstract:
Recent advances in image and video generation raise hopes that these models possess world modeling capabilities, the ability to generate realistic, physically plausible videos. This could revolutionize applications in robotics, autonomous driving, and scientific simulation. However, before treating these models as world models, we must ask: Do they adhere to physical conservation laws? To answer this, we introduce Morpheus, a benchmark for evaluating video generation models on physical reasoning. It features 80 real-world videos capturing physical phenomena, guided by conservation laws. Since artificial generations lack ground truth, we assess physical plausibility using physics-informed metrics evaluated with respect to infallible conservation laws known per physical setting, leveraging advances in physics-informed neural networks and vision-language foundation models. Our findings reveal that even with advanced prompting and video conditioning, current models struggle to encode physical principles despite generating aesthetically pleasing videos. All data, leaderboard, and code are open-sourced at our project page.
Authors:Yuxiang Bao, Huijie Liu, Xun Gao, Huan Fu, Guoliang Kang
Title: FreeInv: Free Lunch for Improving DDIM Inversion
Abstract:
Naive DDIM inversion process usually suffers from a trajectory deviation issue, i.e., the latent trajectory during reconstruction deviates from the one during inversion. To alleviate this issue, previous methods either learn to mitigate the deviation or design cumbersome compensation strategy to reduce the mismatch error, exhibiting substantial time and computation cost. In this work, we present a nearly free-lunch method (named FreeInv) to address the issue more effectively and efficiently. In FreeInv, we randomly transform the latent representation and keep the transformation the same between the corresponding inversion and reconstruction time-step. It is motivated from a statistical perspective that an ensemble of DDIM inversion processes for multiple trajectories yields a smaller trajectory mismatch error on expectation. Moreover, through theoretical analysis and empirical study, we show that FreeInv performs an efficient ensemble of multiple trajectories. FreeInv can be freely integrated into existing inversion-based image and video editing techniques. Especially for inverting video sequences, it brings more significant fidelity and efficiency improvements. Comprehensive quantitative and qualitative evaluation on PIE benchmark and DAVIS dataset shows that FreeInv remarkably outperforms conventional DDIM inversion, and is competitive among previous state-of-the-art inversion methods, with superior computation efficiency.
Authors:Lloyd Russell, Anthony Hu, Lorenzo Bertoni, George Fedoseev, Jamie Shotton, Elahe Arani, Gianluca Corrado
Title: GAIA-2: A Controllable Multi-View Generative World Model for Autonomous Driving
Abstract:
Generative models offer a scalable and flexible paradigm for simulating complex environments, yet current approaches fall short in addressing the domain-specific requirements of autonomous driving - such as multi-agent interactions, fine-grained control, and multi-camera consistency. We introduce GAIA-2, Generative AI for Autonomy, a latent diffusion world model that unifies these capabilities within a single generative framework. GAIA-2 supports controllable video generation conditioned on a rich set of structured inputs: ego-vehicle dynamics, agent configurations, environmental factors, and road semantics. It generates high-resolution, spatiotemporally consistent multi-camera videos across geographically diverse driving environments (UK, US, Germany). The model integrates both structured conditioning and external latent embeddings (e.g., from a proprietary driving model) to facilitate flexible and semantically grounded scene synthesis. Through this integration, GAIA-2 enables scalable simulation of both common and rare driving scenarios, advancing the use of generative world models as a core tool in the development of autonomous systems. Videos are available at https://wayve.ai/thinking/gaia-2.
Authors:Dingcheng Zhen, Shunshun Yin, Shiyang Qin, Hou Yi, Ziwei Zhang, Siyuan Liu, Gan Qi, Ming Tao
Title: Teller: Real-Time Streaming Audio-Driven Portrait Animation with Autoregressive Motion Generation
Abstract:
In this work, we introduce the first autoregressive framework for real-time, audio-driven portrait animation, a.k.a, talking head. Beyond the challenge of lengthy animation times, a critical challenge in realistic talking head generation lies in preserving the natural movement of diverse body parts. To this end, we propose Teller, the first streaming audio-driven protrait animation framework with autoregressive motion generation. Specifically, Teller first decomposes facial and body detail animation into two components: Facial Motion Latent Generation (FMLG) based on an autoregressive transfromer, and movement authenticity refinement using a Efficient Temporal Module (ETM).Concretely, FMLG employs a Residual VQ model to map the facial motion latent from the implicit keypoint-based model into discrete motion tokens, which are then temporally sliced with audio embeddings. This enables the AR tranformer to learn real-time, stream-based mappings from audio to motion. Furthermore, Teller incorporate ETM to capture finer motion details. This module ensures the physical consistency of body parts and accessories, such as neck muscles and earrings, improving the realism of these movements. Teller is designed to be efficient, surpassing the inference speed of diffusion-based models (Hallo 20.93s vs. Teller 0.92s for one second video generation), and achieves a real-time streaming performance of up to 25 FPS. Extensive experiments demonstrate that our method outperforms recent audio-driven portrait animation models, especially in small movements, as validated by human evaluations with a significant margin in quality and realism.
Authors:Maria Pilligua, Danna Xue, Javier Vazquez-Corral
Title: HyperNVD: Accelerating Neural Video Decomposition via Hypernetworks
Abstract:
Decomposing a video into a layer-based representation is crucial for easy video editing for the creative industries, as it enables independent editing of specific layers. Existing video-layer decomposition models rely on implicit neural representations (INRs) trained independently for each video, making the process time-consuming when applied to new videos. Noticing this limitation, we propose a meta-learning strategy to learn a generic video decomposition model to speed up the training on new videos. Our model is based on a hypernetwork architecture which, given a video-encoder embedding, generates the parameters for a compact INR-based neural video decomposition model. Our strategy mitigates the problem of single-video overfitting and, importantly, shortens the convergence of video decomposition on new, unseen videos. Our code is available at: https://hypernvd.github.io/
Authors:Longbin Ji, Lei Zhong, Pengfei Wei, Changjian Li
Title: PoseTraj: Pose-Aware Trajectory Control in Video Diffusion
Abstract:
Recent advancements in trajectory-guided video generation have achieved notable progress. However, existing models still face challenges in generating object motions with potentially changing 6D poses under wide-range rotations, due to limited 3D understanding. To address this problem, we introduce PoseTraj, a pose-aware video dragging model for generating 3D-aligned motion from 2D trajectories. Our method adopts a novel two-stage pose-aware pretraining framework, improving 3D understanding across diverse trajectories. Specifically, we propose a large-scale synthetic dataset PoseTraj-10K, containing 10k videos of objects following rotational trajectories, and enhance the model perception of object pose changes by incorporating 3D bounding boxes as intermediate supervision signals. Following this, we fine-tune the trajectory-controlling module on real-world videos, applying an additional camera-disentanglement module to further refine motion accuracy. Experiments on various benchmark datasets demonstrate that our method not only excels in 3D pose-aligned dragging for rotational trajectories but also outperforms existing baselines in trajectory accuracy and video quality.
Authors:Zihao Liu, Xiaoyu Wu, Jianqin Wu, Xuxu Wang, Linlin Yang
Title: Language-guided Open-world Video Anomaly Detection
Abstract:
Video anomaly detection models aim to detect anomalies that deviate from what is expected. In open-world scenarios, the expected events may change as requirements change. For example, not wearing a mask is considered abnormal during a flu outbreak but normal otherwise. However, existing methods assume that the definition of anomalies is invariable, and thus are not applicable to the open world. To address this, we propose a novel open-world VAD paradigm with variable definitions, allowing guided detection through user-provided natural language at inference time. This paradigm necessitates establishing a robust mapping from video and textual definition to anomaly score. Therefore, we propose LaGoVAD (Language-guided Open-world VAD), a model that dynamically adapts anomaly definitions through two regularization strategies: diversifying the relative durations of anomalies via dynamic video synthesis, and enhancing feature robustness through contrastive learning with negative mining. Training such adaptable models requires diverse anomaly definitions, but existing datasets typically provide given labels without semantic descriptions. To bridge this gap, we collect PreVAD (Pre-training Video Anomaly Dataset), the largest and most diverse video anomaly dataset to date, featuring 35,279 annotated videos with multi-level category labels and descriptions that explicitly define anomalies. Zero-shot experiments on seven datasets demonstrate SOTA performance. Data and code will be released.
Authors:Yehang Zhang, Xinli Xu, Xiaojie Xu, Li Liu, Yingcong Chen
Title: Long-Video Audio Synthesis with Multi-Agent Collaboration
Abstract:
Video-to-audio synthesis, which generates synchronized audio for visual content, critically enhances viewer immersion and narrative coherence in film and interactive media. However, video-to-audio dubbing for long-form content remains an unsolved challenge due to dynamic semantic shifts, temporal misalignment, and the absence of dedicated datasets. While existing methods excel in short videos, they falter in long scenarios (e.g., movies) due to fragmented synthesis and inadequate cross-scene consistency. We propose LVAS-Agent, a novel multi-agent framework that emulates professional dubbing workflows through collaborative role specialization. Our approach decomposes long-video synthesis into four steps including scene segmentation, script generation, sound design and audio synthesis. Central innovations include a discussion-correction mechanism for scene/script refinement and a generation-retrieval loop for temporal-semantic alignment. To enable systematic evaluation, we introduce LVAS-Bench, the first benchmark with 207 professionally curated long videos spanning diverse scenarios. Experiments demonstrate superior audio-visual alignment over baseline methods. Project page: https://lvas-agent.github.io
Authors:Chen Liu, Tobias Ritschel
Title: Generative Video Bi-flow
Abstract:
We propose a novel generative video model to robustly learn temporal change as a neural Ordinary Differential Equation (ODE) flow with a bilinear objective which combines two aspects: The first is to map from the past into future video frames directly. Previous work has mapped the noise to new frames, a more computationally expensive process. Unfortunately, starting from the previous frame, instead of noise, is more prone to drifting errors. Hence, second, we additionally learn how to remove the accumulated errors as the joint objective by adding noise during training. We demonstrate unconditional video generation in a streaming manner for various video datasets, all at competitive quality compared to a conditional diffusion baseline but with higher speed, i.e., fewer ODE solver steps.
Authors:Taewon Kang, Divya Kothandaraman, Ming C. Lin
Title: Text2Story: Advancing Video Storytelling with Text Guidance
Abstract:
Generating coherent long-form video sequences from discrete input using only text prompts is a critical task in content creation. While diffusion-based models excel at short video synthesis, long-form storytelling from text remains largely unexplored and a challenge due to challenges pertaining to temporal coherency, preserving semantic meaning and action continuity across the video. We introduce a novel AI-empowered storytelling framework to enable seamless video generation with natural action transitions and structured narratives. We first present a bidirectional time-weighted latent blending strategy to ensure temporal consistency between segments of the long-form video being generated. We then introduce a dynamics-informed prompt weighting (DIPW) mechanism that adaptively adjusts the influence of scene and action prompts at each diffusion timestep by jointly considering CLIP-based alignment, narrative continuity, and temporal smoothness. To further enhance motion continuity, we propose a semantic action representation to encode high-level action semantics into the blending process, dynamically adjusting transitions based on action similarity, ensuring smooth yet adaptable motion changes. Latent space blending maintains spatial coherence between objects in a scene, while time-weighted blending enforces bidirectional constraints for temporal consistency. The resulting integrative system prevents abrupt transitions while ensuring fluid storytelling. Extensive experiments demonstrate significant improvements over baselines, achieving temporally consistent and visually compelling video narratives without any additional training. This approach bridges the gap between short clips and extended video to establish a new paradigm in GenAI-driven video synthesis from text.
Authors:Lingzhou Mu, Baiji Liu, Ruonan Zhang, Guiming Mo, Jiawei Jin, Kai Zhang, Haozhi Huang
Title: FLAP: Fully-controllable Audio-driven Portrait Video Generation through 3D head conditioned diffusion model
Abstract:
Diffusion-based video generation techniques have significantly improved zero-shot talking-head avatar generation, enhancing the naturalness of both head motion and facial expressions. However, existing methods suffer from poor controllability, making them less applicable to real-world scenarios such as filmmaking and live streaming for e-commerce. To address this limitation, we propose FLAP, a novel approach that integrates explicit 3D intermediate parameters (head poses and facial expressions) into the diffusion model for end-to-end generation of realistic portrait videos. The proposed architecture allows the model to generate vivid portrait videos from audio while simultaneously incorporating additional control signals, such as head rotation angles and eye-blinking frequency. Furthermore, the decoupling of head pose and facial expression allows for independent control of each, offering precise manipulation of both the avatar's pose and facial expressions. We also demonstrate its flexibility in integrating with existing 3D head generation methods, bridging the gap between 3D model-based approaches and end-to-end diffusion techniques. Extensive experiments show that our method outperforms recent audio-driven portrait video models in both naturalness and controllability.
Authors:Sanghyun Yi, Qingfeng Liu, Mostafa El-Khamy
Title: Hardware-Friendly Static Quantization Method for Video Diffusion Transformers
Abstract:
Diffusion Transformers for video generation have gained significant research interest since the impressive performance of SORA. Efficient deployment of such generative-AI models on GPUs has been demonstrated with dynamic quantization. However, resource-constrained devices cannot support dynamic quantization, and need static quantization of the models for their efficient deployment on AI processors. In this paper, we propose a novel method for the post-training quantization of OpenSora\cite{opensora}, a Video Diffusion Transformer, without relying on dynamic quantization techniques. Our approach employs static quantization, achieving video quality comparable to FP16 and dynamically quantized ViDiT-Q methods, as measured by CLIP, and VQA metrics. In particular, we utilize per-step calibration data to adequately provide a post-training statically quantized model for each time step, incorporating channel-wise quantization for weights and tensor-wise quantization for activations. By further applying the smooth-quantization technique, we can obtain high-quality video outputs with the statically quantized models. Extensive experimental results demonstrate that static quantization can be a viable alternative to dynamic quantization for video diffusion transformers, offering a more efficient approach without sacrificing performance.
Authors:Rohit Girmaji, Bhav Beri, Ramanathan Subramanian, Vineet Gandhi
Title: EditIQ: Automated Cinematic Editing of Static Wide-Angle Videos via Dialogue Interpretation and Saliency Cues
Abstract:
We present EditIQ, a completely automated framework for cinematically editing scenes captured via a stationary, large field-of-view and high-resolution camera. From the static camera feed, EditIQ initially generates multiple virtual feeds, emulating a team of cameramen. These virtual camera shots termed rushes are subsequently assembled using an automated editing algorithm, whose objective is to present the viewer with the most vivid scene content. To understand key scene elements and guide the editing process, we employ a two-pronged approach: (1) a large language model (LLM)-based dialogue understanding module to analyze conversational flow, coupled with (2) visual saliency prediction to identify meaningful scene elements and camera shots therefrom. We then formulate cinematic video editing as an energy minimization problem over shot selection, where cinematic constraints determine shot choices, transitions, and continuity. EditIQ synthesizes an aesthetically and visually compelling representation of the original narrative while maintaining cinematic coherence and a smooth viewing experience. Efficacy of EditIQ against competing baselines is demonstrated via a psychophysical study involving twenty participants on the BBC Old School dataset plus eleven theatre performance videos. Video samples from EditIQ can be found at https://editiq-ave.github.io/.
Authors:Sahil Goyal, Debapriya Tula, Gagan Jain, Pradeep Shenoy, Prateek Jain, Sujoy Paul
Title: Masked Generative Nested Transformers with Decode Time Scaling
Abstract:
Recent advances in visual generation have made significant strides in producing content of exceptional quality. However, most methods suffer from a fundamental problem - a bottleneck of inference computational efficiency. Most of these algorithms involve multiple passes over a transformer model to generate tokens or denoise inputs. However, the model size is kept consistent throughout all iterations, which makes it computationally expensive. In this work, we aim to address this issue primarily through two key ideas - (a) not all parts of the generation process need equal compute, and we design a decode time model scaling schedule to utilize compute effectively, and (b) we can cache and reuse some of the computation. Combining these two ideas leads to using smaller models to process more tokens while large models process fewer tokens. These different-sized models do not increase the parameter size, as they share parameters. We rigorously experiment with ImageNet256$\times$256 , UCF101, and Kinetics600 to showcase the efficacy of the proposed method for image/video generation and frame prediction. Our experiments show that with almost $3\times$ less compute than baseline, our model obtains competitive performance.
Authors:Jessie J. Smith, Wesley Hanwen Deng, William H. Smith, Maarten Sap, Nicole DeCario, Jesse Dodge
Title: The Generative AI Ethics Playbook
Abstract:
The Generative AI Ethics Playbook provides guidance for identifying and mitigating risks of machine learning systems across various domains, including natural language processing, computer vision, and generative AI. This playbook aims to assist practitioners in diagnosing potential harms that may arise during the design, development, and deployment of datasets and models. It offers concrete strategies and resources for mitigating these risks, to help minimize negative impacts on users and society. Drawing on current best practices in both research and ethical considerations, this playbook aims to serve as a comprehensive resource for AI/ML practitioners. The intended audience of this playbook includes machine learning researchers, engineers, and practitioners who are involved in the creation and implementation of generative and multimodal models (e.g., text-to-text, image-to-image, text-to-image, text-to-video). Specifically, we provide transparency/documentation checklists, topics of interest, common questions, examples of harms through case studies, and resources and strategies to mitigate harms throughout the Generative AI lifecycle. This playbook was made collaboratively over the course of 16 months through extensive literature review of over 100 resources and peer-reviewed articles, as well as through an initial group brainstorming session with 18 interdisciplinary AI ethics experts from industry and academia, and with additional feedback from 8 experts (5 of whom were in the initial brainstorming session). We note that while this playbook provides examples, discussion, and harm mitigation strategies, research in this area is ongoing. Our playbook aims to be a practically useful survey, taking a high-level view rather than aiming for covering the entire existing body of research.
Authors:Tharun Anand, Aryan Garg, Kaushik Mitra
Title: IP-FaceDiff: Identity-Preserving Facial Video Editing with Diffusion
Abstract:
Facial video editing has become increasingly important for content creators, enabling the manipulation of facial expressions and attributes. However, existing models encounter challenges such as poor editing quality, high computational costs and difficulties in preserving facial identity across diverse edits. Additionally, these models are often constrained to editing predefined facial attributes, limiting their flexibility to diverse editing prompts. To address these challenges, we propose a novel facial video editing framework that leverages the rich latent space of pre-trained text-to-image (T2I) diffusion models and fine-tune them specifically for facial video editing tasks. Our approach introduces a targeted fine-tuning scheme that enables high quality, localized, text-driven edits while ensuring identity preservation across video frames. Additionally, by using pre-trained T2I models during inference, our approach significantly reduces editing time by 80%, while maintaining temporal consistency throughout the video sequence. We evaluate the effectiveness of our approach through extensive testing across a wide range of challenging scenarios, including varying head poses, complex action sequences, and diverse facial expressions. Our method consistently outperforms existing techniques, demonstrating superior performance across a broad set of metrics and benchmarks.
Authors:Dabing Cheng, Haosen Zhan, Xingchen Zhao, Guisheng Liu, Zemin Li, Jinghui Xie, Zhao Song, Weiguo Feng, Bingyue Peng
Title: Text-to-Edit: Controllable End-to-End Video Ad Creation via Multimodal LLMs
Abstract:
The exponential growth of short-video content has ignited a surge in the necessity for efficient, automated solutions to video editing, with challenges arising from the need to understand videos and tailor the editing according to user requirements. Addressing this need, we propose an innovative end-to-end foundational framework, ultimately actualizing precise control over the final video content editing. Leveraging the flexibility and generalizability of Multimodal Large Language Models (MLLMs), we defined clear input-output mappings for efficient video creation. To bolster the model's capability in processing and comprehending video content, we introduce a strategic combination of a denser frame rate and a slow-fast processing technique, significantly enhancing the extraction and understanding of both temporal and spatial video information. Furthermore, we introduce a text-to-edit mechanism that allows users to achieve desired video outcomes through textual input, thereby enhancing the quality and controllability of the edited videos. Through comprehensive experimentation, our method has not only showcased significant effectiveness within advertising datasets, but also yields universally applicable conclusions on public datasets.
Authors:Desen Sun, Henry Tian, Tim Lu, Sihang Liu
Title: FlexCache: Flexible Approximate Cache System for Video Diffusion
Abstract:
Text-to-Video applications receive increasing attention from the public. Among these, diffusion models have emerged as the most prominent approach, offering impressive quality in visual content generation. However, it still suffers from substantial computational complexity, often requiring several minutes to generate a single video. While prior research has addressed the computational overhead in text-to-image diffusion models, the techniques developed are not directly suitable for video diffusion models due to the significantly larger cache requirements and enhanced computational demands associated with video generation. We present FlexCache, a flexible approximate cache system that addresses the challenges in two main designs. First, we compress the caches before saving them to storage. Our compression strategy can reduce 6.7 times consumption on average. Then we find that the approximate cache system can achieve higher hit rate and computation savings by decoupling the object and background. We further design a tailored cache replacement policy to support the two techniques mentioned above better. Through our evaluation, FlexCache reaches 1.26 times higher throughput and 25% lower cost compared to the state-of-the-art diffusion approximate cache system.
Authors:Jinzhi Wang, Qinfeng Song, Lidong Qian, Haozhou Li, Qinke Peng, Jiangbo Zhang
Title: SubstationAI: Multimodal Large Model-Based Approaches for Analyzing Substation Equipment Faults
Abstract:
The reliability of substation equipment is crucial to the stability of power systems, but traditional fault analysis methods heavily rely on manual expertise, limiting their effectiveness in handling complex and large-scale data. This paper proposes a substation equipment fault analysis method based on a multimodal large language model (MLLM). We developed a database containing 40,000 entries, including images, defect labels, and analysis reports, and used an image-to-video generation model for data augmentation. Detailed fault analysis reports were generated using GPT-4. Based on this database, we developed SubstationAI, the first model dedicated to substation fault analysis, and designed a fault diagnosis knowledge base along with knowledge enhancement methods. Experimental results show that SubstationAI significantly outperforms existing models, such as GPT-4, across various evaluation metrics, demonstrating higher accuracy and practicality in fault cause analysis, repair suggestions, and preventive measures, providing a more advanced solution for substation equipment fault analysis.
Authors:Xiaozhe Li, Kai WU, Siyi Yang, YiZhan Qu, Guohua. Zhang, Zhiyu Chen, Jiayao Li, Jiangchuan Mu, Xiaobin Hu, Wen Fang, Mingliang Xiong, Hao Deng, Qingwen Liu, Gang Li, Bin He
Title: Can video generation replace cinematographers? Research on the cinematic language of generated video
Abstract:
Recent advancements in text-to-video (T2V) generation have leveraged diffusion models to enhance visual coherence in videos synthesized from textual descriptions. However, existing research primarily focuses on object motion, often overlooking cinematic language, which is crucial for conveying emotion and narrative pacing in cinematography. To address this, we propose a threefold approach to improve cinematic control in T2V models. First, we introduce a meticulously annotated cinematic language dataset with twenty subcategories, covering shot framing, shot angles, and camera movements, enabling models to learn diverse cinematic styles. Second, we present CameraDiff, which employs LoRA for precise and stable cinematic control, ensuring flexible shot generation. Third, we propose CameraCLIP, designed to evaluate cinematic alignment and guide multi-shot composition. Building on CameraCLIP, we introduce CLIPLoRA, a CLIP-guided dynamic LoRA composition method that adaptively fuses multiple pre-trained cinematic LoRAs, enabling smooth transitions and seamless style blending. Experimental results demonstrate that CameraDiff ensures stable and precise cinematic control, CameraCLIP achieves an R@1 score of 0.83, and CLIPLoRA significantly enhances multi-shot composition within a single video, bridging the gap between automated video generation and professional cinematography.\textsuperscript{1}
Authors:Yayuan Li, Zhi Cao, Jason J. Corso
Title: HANDI: Hand-Centric Text-and-Image Conditioned Video Generation
Abstract:
Despite the recent strides in video generation, state-of-the-art methods still struggle with elements of visual detail. One particularly challenging case is the class of videos in which the intricate motion of the hand coupled with a mostly stable and otherwise distracting environment is necessary to convey the execution of some complex action and its effects. To address these challenges, we introduce a new method for video generation that focuses on hand-centric actions. Our diffusion-based method incorporates two distinct innovations. First, we propose an automatic method to generate the motion area -- the region in the video in which the detailed activities occur -- guided by both the visual context and the action text prompt, rather than assuming this region can be provided manually as is now commonplace. Second, we introduce a critical Hand Refinement Loss to guide the diffusion model to focus on smooth and consistent hand poses. We evaluate our method on challenging augmented datasets based on EpicKitchens and Ego4D, demonstrating significant improvements over state-of-the-art methods in terms of action clarity, especially of the hand motion in the target region, across diverse environments and actions. Video results can be found in https://excitedbutter.github.io/project_page
Authors:Sejong Yang, Seoung Wug Oh, Yang Zhou, Seon Joo Kim
Title: IF-MDM: Implicit Face Motion Diffusion Model for High-Fidelity Realtime Talking Head Generation
Abstract:
We introduce a novel approach for high-resolution talking head generation from a single image and audio input. Prior methods using explicit face models, like 3D morphable models (3DMM) and facial landmarks, often fall short in generating high-fidelity videos due to their lack of appearance-aware motion representation. While generative approaches such as video diffusion models achieve high video quality, their slow processing speeds limit practical application. Our proposed model, Implicit Face Motion Diffusion Model (IF-MDM), employs implicit motion to encode human faces into appearance-aware compressed facial latents, enhancing video generation. Although implicit motion lacks the spatial disentanglement of explicit models, which complicates alignment with subtle lip movements, we introduce motion statistics to help capture fine-grained motion information. Additionally, our model provides motion controllability to optimize the trade-off between motion intensity and visual quality during inference. IF-MDM supports real-time generation of 512x512 resolution videos at up to 45 frames per second (fps). Extensive evaluations demonstrate its superior performance over existing diffusion and explicit face models. The code will be released publicly, available alongside supplementary materials. The video results can be found on https://bit.ly/ifmdm_supplementary.
Authors:Taekyung Ki, Dongchan Min, Gyeongsu Chae
Title: FLOAT: Generative Motion Latent Flow Matching for Audio-driven Talking Portrait
Abstract:
With the rapid advancement of diffusion-based generative models, portrait image animation has achieved remarkable results. However, it still faces challenges in temporally consistent video generation and fast sampling due to its iterative sampling nature. This paper presents FLOAT, an audio-driven talking portrait video generation method based on flow matching generative model. Instead of a pixel-based latent space, we take advantage of a learned orthogonal motion latent space, enabling efficient generation and editing of temporally consistent motion. To achieve this, we introduce a transformer-based vector field predictor with an effective frame-wise conditioning mechanism. Additionally, our method supports speech-driven emotion enhancement, enabling a natural incorporation of expressive motions. Extensive experiments demonstrate that our method outperforms state-of-the-art audio-driven talking portrait methods in terms of visual quality, motion fidelity, and efficiency.
Authors:Haopeng Fang, Di Qiu, Binjie Mao, Pengfei Yan, He Tang
Title: MotionCharacter: Identity-Preserving and Motion Controllable Human Video Generation
Abstract:
Recent advancements in personalized Text-to-Video (T2V) generation highlight the importance of integrating character-specific identities and actions. However, previous T2V models struggle with identity consistency and controllable motion dynamics, mainly due to limited fine-grained facial and action-based textual prompts, and datasets that overlook key human attributes and actions. To address these challenges, we propose MotionCharacter, an efficient and high-fidelity human video generation framework designed for identity preservation and fine-grained motion control. We introduce an ID-preserving module to maintain identity fidelity while allowing flexible attribute modifications, and further integrate ID-consistency and region-aware loss mechanisms, significantly enhancing identity consistency and detail fidelity. Additionally, our approach incorporates a motion control module that prioritizes action-related text while maintaining subject consistency, along with a dataset, Human-Motion, which utilizes large language models to generate detailed motion descriptions. For simplify user control during inference, we parameterize motion intensity through a single coefficient, allowing for easy adjustments. Extensive experiments highlight the effectiveness of MotionCharacter, demonstrating significant improvements in ID-preserving, high-quality video generation.
Authors:Zihan Wang, Songlin Li, Lingyan Hao, Xinyu Hu, Bowen Song
Title: What You See Is What Matters: A Novel Visual and Physics-Based Metric for Evaluating Video Generation Quality
Abstract:
As video generation models advance rapidly, assessing the quality of generated videos has become increasingly critical. Existing metrics, such as Fréchet Video Distance (FVD), Inception Score (IS), and ClipSim, measure quality primarily in latent space rather than from a human visual perspective, often overlooking key aspects like appearance and motion consistency to physical laws. In this paper, we propose a novel metric, VAMP (Visual Appearance and Motion Plausibility), that evaluates both the visual appearance and physical plausibility of generated videos. VAMP is composed of two main components: an appearance score, which assesses color, shape, and texture consistency across frames, and a motion score, which evaluates the realism of object movements. We validate VAMP through two experiments: corrupted video evaluation and generated video evaluation. In the corrupted video evaluation, we introduce various types of corruptions into real videos and measure the correlation between corruption severity and VAMP scores. In the generated video evaluation, we use state-of-the-art models to generate videos from carefully designed prompts and compare VAMP's performance to human evaluators' rankings. Our results demonstrate that VAMP effectively captures both visual fidelity and temporal consistency, offering a more comprehensive evaluation of video quality than traditional methods.
Authors:Xi Liu, Chaoyi Zhou, Siyu Huang
Title: 3DGS-Enhancer: Enhancing Unbounded 3D Gaussian Splatting with View-consistent 2D Diffusion Priors
Abstract:
Novel-view synthesis aims to generate novel views of a scene from multiple input images or videos, and recent advancements like 3D Gaussian splatting (3DGS) have achieved notable success in producing photorealistic renderings with efficient pipelines. However, generating high-quality novel views under challenging settings, such as sparse input views, remains difficult due to insufficient information in under-sampled areas, often resulting in noticeable artifacts. This paper presents 3DGS-Enhancer, a novel pipeline for enhancing the representation quality of 3DGS representations. We leverage 2D video diffusion priors to address the challenging 3D view consistency problem, reformulating it as achieving temporal consistency within a video generation process. 3DGS-Enhancer restores view-consistent latent features of rendered novel views and integrates them with the input views through a spatial-temporal decoder. The enhanced views are then used to fine-tune the initial 3DGS model, significantly improving its rendering performance. Extensive experiments on large-scale datasets of unbounded scenes demonstrate that 3DGS-Enhancer yields superior reconstruction performance and high-fidelity rendering results compared to state-of-the-art methods. The project webpage is https://xiliu8006.github.io/3DGS-Enhancer-project .
Authors:Onkar Susladkar, Jishu Sen Gupta, Chirag Sehgal, Sparsh Mittal, Rekha Singhal
Title: MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion
Abstract:
The spatio-temporal complexity of video data presents significant challenges in tasks such as compression, generation, and inpainting. We present four key contributions to address the challenges of spatiotemporal video processing. First, we introduce the 3D Mobile Inverted Vector-Quantization Variational Autoencoder (3D-MBQ-VAE), which combines Variational Autoencoders (VAEs) with masked token modeling to enhance spatiotemporal video compression. The model achieves superior temporal consistency and state-of-the-art (SOTA) reconstruction quality by employing a novel training strategy with full frame masking. Second, we present MotionAura, a text-to-video generation framework that utilizes vector-quantized diffusion models to discretize the latent space and capture complex motion dynamics, producing temporally coherent videos aligned with text prompts. Third, we propose a spectral transformer-based denoising network that processes video data in the frequency domain using the Fourier Transform. This method effectively captures global context and long-range dependencies for high-quality video generation and denoising. Lastly, we introduce a downstream task of Sketch Guided Video Inpainting. This task leverages Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning. Our models achieve SOTA performance on a range of benchmarks. Our work offers robust frameworks for spatiotemporal modeling and user-driven video content manipulation. We will release the code, datasets, and models in open-source.
Authors:Sarah Barrington, Emily A. Cooper, Hany Farid
Title: People are poorly equipped to detect AI-powered voice clones
Abstract:
As generative artificial intelligence (AI) continues its ballistic trajectory, everything from text to audio, image, and video generation continues to improve at mimicking human-generated content. Through a series of perceptual studies, we report on the realism of AI-generated voices in terms of identity matching and naturalness. We find human participants cannot consistently identify recordings of AI-generated voices. Specifically, participants perceived the identity of an AI-voice to be the same as its real counterpart approximately 80% of the time, and correctly identified a voice as AI generated only about 60% of the time.
Authors:Iskander Azangulov, George Deligiannidis, Judith Rousseau
Title: Convergence of Diffusion Models Under the Manifold Hypothesis in High-Dimensions
Abstract:
Denoising Diffusion Probabilistic Models (DDPM) are powerful state-of-the-art methods used to generate synthetic data from high-dimensional data distributions and are widely used for image, audio, and video generation as well as many more applications in science and beyond. The \textit{manifold hypothesis} states that high-dimensional data often lie on lower-dimensional manifolds within the ambient space, and is widely believed to hold in provided examples. While recent results have provided invaluable insight into how diffusion models adapt to the manifold hypothesis, they do not capture the great empirical success of these models, making this a very fruitful research direction. In this work, we study DDPMs under the manifold hypothesis and prove that they achieve rates independent of the ambient dimension in terms of score learning. In terms of sampling complexity, we obtain rates independent of the ambient dimension w.r.t. the Kullback-Leibler divergence, and $O(\sqrt{D})$ w.r.t. the Wasserstein distance. We do this by developing a new framework connecting diffusion models to the well-studied theory of extrema of Gaussian Processes.
Authors:Jian Zhang, Weijian Mai, Zhijun Zhang
Title: EMOdiffhead: Continuously Emotional Control in Talking Head Generation via Diffusion
Abstract:
The task of audio-driven portrait animation involves generating a talking head video using an identity image and an audio track of speech. While many existing approaches focus on lip synchronization and video quality, few tackle the challenge of generating emotion-driven talking head videos. The ability to control and edit emotions is essential for producing expressive and realistic animations. In response to this challenge, we propose EMOdiffhead, a novel method for emotional talking head video generation that not only enables fine-grained control of emotion categories and intensities but also enables one-shot generation. Given the FLAME 3D model's linearity in expression modeling, we utilize the DECA method to extract expression vectors, that are combined with audio to guide a diffusion model in generating videos with precise lip synchronization and rich emotional expressiveness. This approach not only enables the learning of rich facial information from emotion-irrelevant data but also facilitates the generation of emotional videos. It effectively overcomes the limitations of emotional data, such as the lack of diversity in facial and background information, and addresses the absence of emotional details in emotion-irrelevant data. Extensive experiments and user studies demonstrate that our approach achieves state-of-the-art performance compared to other emotion portrait animation methods.
Authors:Bo Han, Heqing Zou, Haoyang Li, Guangcong Wang, Chng Eng Siong
Title: Text-based Talking Video Editing with Cascaded Conditional Diffusion
Abstract:
Text-based talking-head video editing aims to efficiently insert, delete, and substitute segments of talking videos through a user-friendly text editing approach. It is challenging because of \textbf{1)} generalizable talking-face representation, \textbf{2)} seamless audio-visual transitions, and \textbf{3)} identity-preserved talking faces. Previous works either require minutes of talking-face video training data and expensive test-time optimization for customized talking video editing or directly generate a video sequence without considering in-context information, leading to a poor generalizable representation, or incoherent transitions, or even inconsistent identity. In this paper, we propose an efficient cascaded conditional diffusion-based framework, which consists of two stages: audio to dense-landmark motion and motion to video. \textit{\textbf{In the first stage}}, we first propose a dynamic weighted in-context diffusion module to synthesize dense-landmark motions given an edited audio. \textit{\textbf{In the second stage}}, we introduce a warping-guided conditional diffusion module. The module first interpolates between the start and end frames of the editing interval to generate smooth intermediate frames. Then, with the help of the audio-to-dense motion images, these intermediate frames are warped to obtain coarse intermediate frames. Conditioned on the warped intermedia frames, a diffusion model is adopted to generate detailed and high-resolution target frames, which guarantees coherent and identity-preserved transitions. The cascaded conditional diffusion model decomposes the complex talking editing task into two flexible generation tasks, which provides a generalizable talking-face representation, seamless audio-visual transitions, and identity-preserved faces on a small dataset. Experiments show the effectiveness and superiority of the proposed method.
Authors:Shiqi Liu, Yihua Tan
Title: Unlearning Concepts from Text-to-Video Diffusion Models
Abstract:
With the advancement of computer vision and natural language processing, text-to-video generation, enabled by text-to-video diffusion models, has become more prevalent. These models are trained using a large amount of data from the internet. However, the training data often contain copyrighted content, including cartoon character icons and artist styles, private portraits, and unsafe videos. Since filtering the data and retraining the model is challenging, methods for unlearning specific concepts from text-to-video diffusion models have been investigated. However, due to the high computational complexity and relative large optimization scale, there is little work on unlearning methods for text-to-video diffusion models. We propose a novel concept-unlearning method by transferring the unlearning capability of the text encoder of text-to-image diffusion models to text-to-video diffusion models. Specifically, the method optimizes the text encoder using few-shot unlearning, where several generated images are used. We then use the optimized text encoder in text-to-video diffusion models to generate videos. Our method costs low computation resources and has small optimization scale. We discuss the generated videos after unlearning a concept. The experiments demonstrates that our method can unlearn copyrighted cartoon characters, artist styles, objects and people's facial characteristics. Our method can unlearn a concept within about 100 seconds on an RTX 3070. Since there was no concept unlearning method for text-to-video diffusion models before, we make concept unlearning feasible and more accessible in the text-to-video domain.
Authors:Wenjun Li, Shudong Wang, Dong Zhao, Shenghui Xu, Zhaoming Pan, Zhimin Zhang
Title: Multi-Granularity and Multi-modal Feature Interaction Approach for Text Video Retrieval
Abstract:
The key of the text-to-video retrieval (TVR) task lies in learning the unique similarity between each pair of text (consisting of words) and video (consisting of audio and image frames) representations. However, some problems exist in the representation alignment of video and text, such as a text, and further each word, are of different importance for video frames. Besides, audio usually carries additional or critical information for TVR in the case that frames carry little valid information. Therefore, in TVR task, multi-granularity representation of text, including whole sentence and every word, and the modal of audio are salutary which are underutilized in most existing works. To address this, we propose a novel multi-granularity feature interaction module called MGFI, consisting of text-frame and word-frame, for video-text representations alignment. Moreover, we introduce a cross-modal feature interaction module of audio and text called CMFI to solve the problem of insufficient expression of frames in the video. Experiments on benchmark datasets such as MSR-VTT, MSVD, DiDeMo show that the proposed method outperforms the existing state-of-the-art methods.
Authors:Jinxiu Liang, Bohan Yu, Yixin Yang, Yiming Han, Boxin Shi
Title: E2VIDiff: Perceptual Events-to-Video Reconstruction using Diffusion Priors
Abstract:
Event cameras, mimicking the human retina, capture brightness changes with unparalleled temporal resolution and dynamic range. Integrating events into intensities poses a highly ill-posed challenge, marred by initial condition ambiguities. Traditional regression-based deep learning methods fall short in perceptual quality, offering deterministic and often unrealistic reconstructions. In this paper, we introduce diffusion models to events-to-video reconstruction, achieving colorful, realistic, and perceptually superior video generation from achromatic events. Powered by the image generation ability and knowledge of pretrained diffusion models, the proposed method can achieve a better trade-off between the perception and distortion of the reconstructed frame compared to previous solutions. Extensive experiments on benchmark datasets demonstrate that our approach can produce diverse, realistic frames with faithfulness to the given events.
Authors:Hannah Lee, Changyeon Lee, Kevin Farhat, Lin Qiu, Steve Geluso, Aerin Kim, Oren Etzioni
Title: The Tug-of-War Between Deepfake Generation and Detection
Abstract:
Multimodal generative models are rapidly evolving, leading to a surge in the generation of realistic video and audio that offers exciting possibilities but also serious risks. Deepfake videos, which can convincingly impersonate individuals, have particularly garnered attention due to their potential misuse in spreading misinformation and creating fraudulent content. This survey paper examines the dual landscape of deepfake video generation and detection, emphasizing the need for effective countermeasures against potential abuses. We provide a comprehensive overview of current deepfake generation techniques, including face swapping, reenactment, and audio-driven animation, which leverage cutting-edge technologies like GANs and diffusion models to produce highly realistic fake videos. Additionally, we analyze various detection approaches designed to differentiate authentic from altered videos, from detecting visual artifacts to deploying advanced algorithms that pinpoint inconsistencies across video and audio signals. The effectiveness of these detection methods heavily relies on the diversity and quality of datasets used for training and evaluation. We discuss the evolution of deepfake datasets, highlighting the importance of robust, diverse, and frequently updated collections to enhance the detection accuracy and generalizability. As deepfakes become increasingly indistinguishable from authentic content, developing advanced detection techniques that can keep pace with generation technologies is crucial. We advocate for a proactive approach in the "tug-of-war" between deepfake creators and detectors, emphasizing the need for continuous research collaboration, standardization of evaluation metrics, and the creation of comprehensive benchmarks.
Authors:Boyang Wang, Nikhil Sridhar, Chao Feng, Mark Van der Merwe, Adam Fishman, Nima Fazeli, Jeong Joon Park
Title: This&That: Language-Gesture Controlled Video Generation for Robot Planning
Abstract:
Clear, interpretable instructions are invaluable when attempting any complex task. Good instructions help to clarify the task and even anticipate the steps needed to solve it. In this work, we propose a robot learning framework for communicating, planning, and executing a wide range of tasks, dubbed This&That. This&That solves general tasks by leveraging video generative models, which, through training on internet-scale data, contain rich physical and semantic context. In this work, we tackle three fundamental challenges in video-based planning: 1) unambiguous task communication with simple human instructions, 2) controllable video generation that respects user intent, and 3) translating visual plans into robot actions. This&That uses language-gesture conditioning to generate video predictions, as a succinct and unambiguous alternative to existing language-only methods, especially in complex and uncertain environments. These video predictions are then fed into a behavior cloning architecture dubbed Diffusion Video to Action (DiVA), which outperforms prior state-of-the-art behavior cloning and video-based planning methods by substantial margins.
Authors:Meenakshi Sarkar, Devansh Bhardwaj, Debasish Ghose
Title: Video Generation with Learned Action Prior
Abstract:
Stochastic video generation is particularly challenging when the camera is mounted on a moving platform, as camera motion interacts with observed image pixels, creating complex spatio-temporal dynamics and making the problem partially observable. Existing methods typically address this by focusing on raw pixel-level image reconstruction without explicitly modelling camera motion dynamics. We propose a solution by considering camera motion or action as part of the observed image state, modelling both image and action within a multi-modal learning framework. We introduce three models: Video Generation with Learning Action Prior (VG-LeAP) treats the image-action pair as an augmented state generated from a single latent stochastic process and uses variational inference to learn the image-action latent prior; Causal-LeAP, which establishes a causal relationship between action and the observed image frame at time $t$, learning an action prior conditioned on the observed image states; and RAFI, which integrates the augmented image-action state concept into flow matching with diffusion generative processes, demonstrating that this action-conditioned image generation concept can be extended to other diffusion-based models. We emphasize the importance of multi-modal training in partially observable video generation problems through detailed empirical studies on our new video action dataset, RoAM.
Authors:Salma Abdel Magid, Jui-Hsien Wang, Kushal Kafle, Hanspeter Pfister
Title: They're All Doctors: Synthesizing Diverse Counterfactuals to Mitigate Associative Bias
Abstract:
Vision Language Models (VLMs) such as CLIP are powerful models; however they can exhibit unwanted biases, making them less safe when deployed directly in applications such as text-to-image, text-to-video retrievals, reverse search, or classification tasks. In this work, we propose a novel framework to generate synthetic counterfactual images to create a diverse and balanced dataset that can be used to fine-tune CLIP. Given a set of diverse synthetic base images from text-to-image models, we leverage off-the-shelf segmentation and inpainting models to place humans with diverse visual appearances in context. We show that CLIP trained on such datasets learns to disentangle the human appearance from the context of an image, i.e., what makes a doctor is not correlated to the person's visual appearance, like skin color or body type, but to the context, such as background, the attire they are wearing, or the objects they are holding. We demonstrate that our fine-tuned CLIP model, $CF_α$, improves key fairness metrics such as MaxSkew, MinSkew, and NDKL by 40-66\% for image retrieval tasks, while still achieving similar levels of performance in downstream tasks. We show that, by design, our model retains maximal compatibility with the original CLIP models, and can be easily controlled to support different accuracy versus fairness trade-offs in a plug-n-play fashion.
Authors:Chen Hou, Zhibo Chen
Title: Training-free Camera Control for Video Generation
Abstract:
We propose a training-free and robust solution to offer camera movement control for off-the-shelf video diffusion models. Unlike previous work, our method does not require any supervised finetuning on camera-annotated datasets or self-supervised training via data augmentation. Instead, it can be plug-and-play with most pretrained video diffusion models and generate camera-controllable videos with a single image or text prompt as input. The inspiration for our work comes from the layout prior that intermediate latents encode for the generated results, thus rearranging noisy pixels in them will cause the output content to relocate as well. As camera moving could also be seen as a type of pixel rearrangement caused by perspective change, videos can be reorganized following specific camera motion if their noisy latents change accordingly. Building on this, we propose CamTrol, which enables robust camera control for video diffusion models. It is achieved by a two-stage process. First, we model image layout rearrangement through explicit camera movement in 3D point cloud space. Second, we generate videos with camera motion by leveraging the layout prior of noisy latents formed by a series of rearranged images. Extensive experiments have demonstrated its superior performance in both video generation and camera motion alignment compared with other finetuned methods. Furthermore, we show the capability of CamTrol to generalize to various base models, as well as its impressive applications in scalable motion control, dealing with complicated trajectories and unsupervised 3D video generation. Videos available at https://lifedecoder.github.io/CamTrol/.
Authors:Andrew Shin, Yusuke Mori, Kunitake Kaneko
Title: The Lost Melody: Empirical Observations on Text-to-Video Generation From A Storytelling Perspective
Abstract:
Text-to-video generation task has witnessed a notable progress, with the generated outcomes reflecting the text prompts with high fidelity and impressive visual qualities. However, current text-to-video generation models are invariably focused on conveying the visual elements of a single scene, and have so far been indifferent to another important potential of the medium, namely a storytelling. In this paper, we examine text-to-video generation from a storytelling perspective, which has been hardly investigated, and make empirical remarks that spotlight the limitations of current text-to-video generation scheme. We also propose an evaluation framework for storytelling aspects of videos, and discuss the potential future directions.
Authors:Lucas Ventura, Cordelia Schmid, Gül Varol
Title: Learning text-to-video retrieval from image captioning
Abstract:
We describe a protocol to study text-to-video retrieval training with unlabeled videos, where we assume (i) no access to labels for any videos, i.e., no access to the set of ground-truth captions, but (ii) access to labeled images in the form of text. Using image expert models is a realistic scenario given that annotating images is cheaper therefore scalable, in contrast to expensive video labeling schemes. Recently, zero-shot image experts such as CLIP have established a new strong baseline for video understanding tasks. In this paper, we make use of this progress and instantiate the image experts from two types of models: a text-to-image retrieval model to provide an initial backbone, and image captioning models to provide supervision signal into unlabeled videos. We show that automatically labeling video frames with image captioning allows text-to-video retrieval training. This process adapts the features to the target domain at no manual annotation cost, consequently outperforming the strong zero-shot CLIP baseline. During training, we sample captions from multiple video frames that best match the visual content, and perform a temporal pooling over frame representations by scoring frames according to their relevance to each caption. We conduct extensive ablations to provide insights and demonstrate the effectiveness of this simple framework by outperforming the CLIP zero-shot baselines on text-to-video retrieval on three standard datasets, namely ActivityNet, MSR-VTT, and MSVD.
Authors:Meenakshi Sarkar, Debasish Ghose
Title: Action-conditioned video data improves predictability
Abstract:
Long-term video generation and prediction remain challenging tasks in computer vision, particularly in partially observable scenarios where cameras are mounted on moving platforms. The interaction between observed image frames and the motion of the recording agent introduces additional complexities. To address these issues, we introduce the Action-Conditioned Video Generation (ACVG) framework, a novel approach that investigates the relationship between actions and generated image frames through a deep dual Generator-Actor architecture. ACVG generates video sequences conditioned on the actions of robots, enabling exploration and analysis of how vision and action mutually influence one another in dynamic environments. We evaluate the framework's effectiveness on an indoor robot motion dataset which consists of sequences of image frames along with the sequences of actions taken by the robotic agent, conducting a comprehensive empirical study comparing ACVG to other state-of-the-art frameworks along with a detailed ablation study.
Authors:Aimon Rahman, Malsha V. Perera, Vishal M. Patel
Title: Frame by Familiar Frame: Understanding Replication in Video Diffusion Models
Abstract:
Building on the momentum of image generation diffusion models, there is an increasing interest in video-based diffusion models. However, video generation poses greater challenges due to its higher-dimensional nature, the scarcity of training data, and the complex spatiotemporal relationships involved. Image generation models, due to their extensive data requirements, have already strained computational resources to their limits. There have been instances of these models reproducing elements from the training samples, leading to concerns and even legal disputes over sample replication. Video diffusion models, which operate with even more constrained datasets and are tasked with generating both spatial and temporal content, may be more prone to replicating samples from their training sets. Compounding the issue, these models are often evaluated using metrics that inadvertently reward replication. In our paper, we present a systematic investigation into the phenomenon of sample replication in video diffusion models. We scrutinize various recent diffusion models for video synthesis, assessing their tendency to replicate spatial and temporal content in both unconditional and conditional generation scenarios. Our study identifies strategies that are less likely to lead to replication. Furthermore, we propose new evaluation strategies that take replication into account, offering a more accurate measure of a model's ability to generate the original content.
Authors:Xiang Fan, Anand Bhattad, Ranjay Krishna
Title: Videoshop: Localized Semantic Video Editing with Noise-Extrapolated Diffusion Inversion
Abstract:
We introduce Videoshop, a training-free video editing algorithm for localized semantic edits. Videoshop allows users to use any editing software, including Photoshop and generative inpainting, to modify the first frame; it automatically propagates those changes, with semantic, spatial, and temporally consistent motion, to the remaining frames. Unlike existing methods that enable edits only through imprecise textual instructions, Videoshop allows users to add or remove objects, semantically change objects, insert stock photos into videos, etc. with fine-grained control over locations and appearance. We achieve this through image-based video editing by inverting latents with noise extrapolation, from which we generate videos conditioned on the edited image. Videoshop produces higher quality edits against 6 baselines on 2 editing benchmarks using 10 evaluation metrics.
Authors:Juan Zhang, Jiahao Chen, Cheng Wang, Zhiwang Yu, Tangquan Qi, Can Liu, Di Wu
Title: Virbo: Multimodal Multilingual Avatar Video Generation in Digital Marketing
Abstract:
With the widespread popularity of internet celebrity marketing all over the world, short video production has gradually become a popular way of presenting products information. However, the traditional video production industry usually includes series of procedures as script writing, video filming in a professional studio, video clipping, special effects rendering, customized post-processing, and so forth. Not to mention that multilingual videos is not accessible for those who could not speak multilingual languages. These complicated procedures usually needs a professional team to complete, and this made short video production costly in both time and money. This paper presents an intelligent system that supports the automatic generation of talking avatar videos, namely Virbo. With simply a user-specified script, Virbo could use a deep generative model to generate a target talking videos. Meanwhile, the system also supports multimodal inputs to customize the video with specified face, specified voice and special effects. This system also integrated a multilingual customization module that supports generate multilingual talking avatar videos in a batch with hundreds of delicate templates and creative special effects. Through a series of user studies and demo tests, we found that Virbo can generate talking avatar videos that maintained a high quality of videos as those from a professional team while reducing the entire production costs significantly. This intelligent system will effectively promote the video production industry and facilitate the internet marketing neglecting of language barriers and cost challenges.
Authors:Youyuan Zhang, Xuan Ju, James J. Clark
Title: FastVideoEdit: Leveraging Consistency Models for Efficient Text-to-Video Editing
Abstract:
Diffusion models have demonstrated remarkable capabilities in text-to-image and text-to-video generation, opening up possibilities for video editing based on textual input. However, the computational cost associated with sequential sampling in diffusion models poses challenges for efficient video editing. Existing approaches relying on image generation models for video editing suffer from time-consuming one-shot fine-tuning, additional condition extraction, or DDIM inversion, making real-time applications impractical. In this work, we propose FastVideoEdit, an efficient zero-shot video editing approach inspired by Consistency Models (CMs). By leveraging the self-consistency property of CMs, we eliminate the need for time-consuming inversion or additional condition extraction, reducing editing time. Our method enables direct mapping from source video to target video with strong preservation ability utilizing a special variance schedule. This results in improved speed advantages, as fewer sampling steps can be used while maintaining comparable generation quality. Experimental results validate the state-of-the-art performance and speed advantages of FastVideoEdit across evaluation metrics encompassing editing speed, temporal consistency, and text-video alignment.
Authors:Meidai Xuanyuan, Yuwang Wang, Honglei Guo, Qionghai Dai
Title: Context-aware Talking Face Video Generation
Abstract:
In this paper, we consider a novel and practical case for talking face video generation. Specifically, we focus on the scenarios involving multi-people interactions, where the talking context, such as audience or surroundings, is present. In these situations, the video generation should take the context into consideration in order to generate video content naturally aligned with driving audios and spatially coherent to the context. To achieve this, we provide a two-stage and cross-modal controllable video generation pipeline, taking facial landmarks as an explicit and compact control signal to bridge the driving audio, talking context and generated videos. Inside this pipeline, we devise a 3D video diffusion model, allowing for efficient contort of both spatial conditions (landmarks and context video), as well as audio condition for temporally coherent generation. The experimental results verify the advantage of the proposed method over other baselines in terms of audio-video synchronization, video fidelity and frame consistency.
Authors:Ludan Ruan, Lei Tian, Chuanwei Huang, Xu Zhang, Xinyan Xiao
Title: UniVG: Towards UNIfied-modal Video Generation
Abstract:
Diffusion based video generation has received extensive attention and achieved considerable success within both the academic and industrial communities. However, current efforts are mainly concentrated on single-objective or single-task video generation, such as generation driven by text, by image, or by a combination of text and image. This cannot fully meet the needs of real-world application scenarios, as users are likely to input images and text conditions in a flexible manner, either individually or in combination. To address this, we propose a Unified-modal Video Genearation system that is capable of handling multiple video generation tasks across text and image modalities. To this end, we revisit the various video generation tasks within our system from the perspective of generative freedom, and classify them into high-freedom and low-freedom video generation categories. For high-freedom video generation, we employ Multi-condition Cross Attention to generate videos that align with the semantics of the input images or text. For low-freedom video generation, we introduce Biased Gaussian Noise to replace the pure random Gaussian Noise, which helps to better preserve the content of the input conditions. Our method achieves the lowest Fréchet Video Distance (FVD) on the public academic benchmark MSR-VTT, surpasses the current open-source methods in human evaluations, and is on par with the current close-source method Gen2. For more samples, visit https://univg-baidu.github.io.
Authors:Weijian Mai, Jian Zhang, Pengfei Fang, Zhijun Zhang
Title: Brain-Conditional Multimodal Synthesis: A Survey and Taxonomy
Abstract:
In the era of Artificial Intelligence Generated Content (AIGC), conditional multimodal synthesis technologies (e.g., text-to-image, text-to-video, text-to-audio, etc) are gradually reshaping the natural content in the real world. The key to multimodal synthesis technology is to establish the mapping relationship between different modalities. Brain signals, serving as potential reflections of how the brain interprets external information, exhibit a distinctive One-to-Many correspondence with various external modalities. This correspondence makes brain signals emerge as a promising guiding condition for multimodal content synthesis. Brian-conditional multimodal synthesis refers to decoding brain signals back to perceptual experience, which is crucial for developing practical brain-computer interface systems and unraveling complex mechanisms underlying how the brain perceives and comprehends external stimuli. This survey comprehensively examines the emerging field of AIGC-based Brain-conditional Multimodal Synthesis, termed AIGC-Brain, to delineate the current landscape and future directions. To begin, related brain neuroimaging datasets, functional brain regions, and mainstream generative models are introduced as the foundation of AIGC-Brain decoding and analysis. Next, we provide a comprehensive taxonomy for AIGC-Brain decoding models and present task-specific representative work and detailed implementation strategies to facilitate comparison and in-depth analysis. Quality assessments are then introduced for both qualitative and quantitative evaluation. Finally, this survey explores insights gained, providing current challenges and outlining prospects of AIGC-Brain. Being the inaugural survey in this domain, this paper paves the way for the progress of AIGC-Brain research, offering a foundational overview to guide future work.
Authors:Rohan Choudhury, Koichiro Niinuma, Kris M. Kitani, László A. Jeni
Title: Zero-Shot Video Question Answering with Procedural Programs
Abstract:
We propose to answer zero-shot questions about videos by generating short procedural programs that derive a final answer from solving a sequence of visual subtasks. We present Procedural Video Querying (ProViQ), which uses a large language model to generate such programs from an input question and an API of visual modules in the prompt, then executes them to obtain the output. Recent similar procedural approaches have proven successful for image question answering, but videos remain challenging: we provide ProViQ with modules intended for video understanding, allowing it to generalize to a wide variety of videos. This code generation framework additionally enables ProViQ to perform other video tasks in addition to question answering, such as multi-object tracking or basic video editing. ProViQ achieves state-of-the-art results on a diverse range of benchmarks, with improvements of up to 25% on short, long, open-ended, and multimodal video question-answering datasets. Our project page is at https://rccchoudhury.github.io/proviq2023.
Authors:Violeta Menéndez González, Andrew Gilbert, Graeme Phillipson, Stephen Jolly, Simon Hadfield
Title: ZeST-NeRF: Using temporal aggregation for Zero-Shot Temporal NeRFs
Abstract:
In the field of media production, video editing techniques play a pivotal role. Recent approaches have had great success at performing novel view image synthesis of static scenes. But adding temporal information adds an extra layer of complexity. Previous models have focused on implicitly representing static and dynamic scenes using NeRF. These models achieve impressive results but are costly at training and inference time. They overfit an MLP to describe the scene implicitly as a function of position. This paper proposes ZeST-NeRF, a new approach that can produce temporal NeRFs for new scenes without retraining. We can accurately reconstruct novel views using multi-view synthesis techniques and scene flow-field estimation, trained only with unrelated scenes. We demonstrate how existing state-of-the-art approaches from a range of fields cannot adequately solve this new task and demonstrate the efficacy of our solution. The resulting network improves quantitatively by 15% and produces significantly better visual results.
Authors:Sudheer Achary, Rohit Girmaji, Adhiraj Anil Deshmukh, Vineet Gandhi
Title: Real Time GAZED: Online Shot Selection and Editing of Virtual Cameras from Wide-Angle Monocular Video Recordings
Abstract:
Eliminating time-consuming post-production processes and delivering high-quality videos in today's fast-paced digital landscape are the key advantages of real-time approaches. To address these needs, we present Real Time GAZED: a real-time adaptation of the GAZED framework integrated with CineFilter, a novel real-time camera trajectory stabilization approach. It enables users to create professionally edited videos in real-time. Comparative evaluations against baseline methods, including the non-real-time GAZED, demonstrate that Real Time GAZED achieves similar editing results, ensuring high-quality video output. Furthermore, a user study confirms the aesthetic quality of the video edits produced by the Real Time GAZED approach. With these advancements in real-time camera trajectory optimization and video editing presented, the demand for immediate and dynamic content creation in industries such as live broadcasting, sports coverage, news reporting, and social media content creation can be met more efficiently.
Authors:Emanuele Bugliarello, Hernan Moraldo, Ruben Villegas, Mohammad Babaeizadeh, Mohammad Taghi Saffar, Han Zhang, Dumitru Erhan, Vittorio Ferrari, Pieter-Jan Kindermans, Paul Voigtlaender
Title: StoryBench: A Multifaceted Benchmark for Continuous Story Visualization
Abstract:
Generating video stories from text prompts is a complex task. In addition to having high visual quality, videos need to realistically adhere to a sequence of text prompts whilst being consistent throughout the frames. Creating a benchmark for video generation requires data annotated over time, which contrasts with the single caption used often in video datasets. To fill this gap, we collect comprehensive human annotations on three existing datasets, and introduce StoryBench: a new, challenging multi-task benchmark to reliably evaluate forthcoming text-to-video models. Our benchmark includes three video generation tasks of increasing difficulty: action execution, where the next action must be generated starting from a conditioning video; story continuation, where a sequence of actions must be executed starting from a conditioning video; and story generation, where a video must be generated from only text prompts. We evaluate small yet strong text-to-video baselines, and show the benefits of training on story-like data algorithmically generated from existing video captions. Finally, we establish guidelines for human evaluation of video stories, and reaffirm the need of better automatic metrics for video generation. StoryBench aims at encouraging future research efforts in this exciting new area.
Authors:Xu Zhang, Fan Ni, Guan-Nan Dong, Aichun Zhu, Jianhui Wu, Mingcheng Ni, Hui Liu
Title: TVPR: Text-to-Video Person Retrieval and a New Benchmark
Abstract:
Most existing methods for text-based person retrieval focus on text-to-image person retrieval. Nevertheless, due to the lack of dynamic information provided by isolated frames, the performance is hampered when the person is obscured or variable motion details are missed in isolated frames. To overcome this, we propose a novel Text-to-Video Person Retrieval (TVPR) task. Since there is no dataset or benchmark that describes person videos with natural language, we construct a large-scale cross-modal person video dataset containing detailed natural language annotations, termed as Text-to-Video Person Re-identification (TVPReid) dataset. In this paper, we introduce a Multielement Feature Guided Fragments Learning (MFGF) strategy, which leverages the cross-modal text-video representations to provide strong text-visual and text-motion matching information to tackle uncertain occlusion conflicting and variable motion details. Specifically, we establish two potential cross-modal spaces for text and video feature collaborative learning to progressively reduce the semantic difference between text and video. To evaluate the effectiveness of the proposed MFGF, extensive experiments have been conducted on TVPReid dataset. To the best of our knowledge, MFGF is the first successful attempt to use video for text-based person retrieval task and has achieved state-of-the-art performance on TVPReid dataset. The TVPReid dataset will be publicly available to benefit future research.
Authors:Tal Daniel, Aviv Tamar
Title: DDLP: Unsupervised Object-Centric Video Prediction with Deep Dynamic Latent Particles
Abstract:
We propose a new object-centric video prediction algorithm based on the deep latent particle (DLP) representation. In comparison to existing slot- or patch-based representations, DLPs model the scene using a set of keypoints with learned parameters for properties such as position and size, and are both efficient and interpretable. Our method, deep dynamic latent particles (DDLP), yields state-of-the-art object-centric video prediction results on several challenging datasets. The interpretable nature of DDLP allows us to perform ``what-if'' generation -- predict the consequence of changing properties of objects in the initial frames, and DLP's compact structure enables efficient diffusion-based unconditional video generation. Videos, code and pre-trained models are available: https://taldatech.github.io/ddlp-web
Authors:Samaneh Azadi, Akbar Shah, Thomas Hayes, Devi Parikh, Sonal Gupta
Title: Make-An-Animation: Large-Scale Text-conditional 3D Human Motion Generation
Abstract:
Text-guided human motion generation has drawn significant interest because of its impactful applications spanning animation and robotics. Recently, application of diffusion models for motion generation has enabled improvements in the quality of generated motions. However, existing approaches are limited by their reliance on relatively small-scale motion capture data, leading to poor performance on more diverse, in-the-wild prompts. In this paper, we introduce Make-An-Animation, a text-conditioned human motion generation model which learns more diverse poses and prompts from large-scale image-text datasets, enabling significant improvement in performance over prior works. Make-An-Animation is trained in two stages. First, we train on a curated large-scale dataset of (text, static pseudo-pose) pairs extracted from image-text datasets. Second, we fine-tune on motion capture data, adding additional layers to model the temporal dimension. Unlike prior diffusion models for motion generation, Make-An-Animation uses a U-Net architecture similar to recent text-to-video generation models. Human evaluation of motion realism and alignment with input text shows that our model reaches state-of-the-art performance on text-to-motion generation.
Authors:Taekyung Ki, Dongchan Min
Title: StyleLipSync: Style-based Personalized Lip-sync Video Generation
Abstract:
In this paper, we present StyleLipSync, a style-based personalized lip-sync video generative model that can generate identity-agnostic lip-synchronizing video from arbitrary audio. To generate a video of arbitrary identities, we leverage expressive lip prior from the semantically rich latent space of a pre-trained StyleGAN, where we can also design a video consistency with a linear transformation. In contrast to the previous lip-sync methods, we introduce pose-aware masking that dynamically locates the mask to improve the naturalness over frames by utilizing a 3D parametric mesh predictor frame by frame. Moreover, we propose a few-shot lip-sync adaptation method for an arbitrary person by introducing a sync regularizer that preserves lip-sync generalization while enhancing the person-specific visual information. Extensive experiments demonstrate that our model can generate accurate lip-sync videos even with the zero-shot setting and enhance characteristics of an unseen face using a few seconds of target video through the proposed adaptation method.
Authors:Rafail Fridman, Amit Abecasis, Yoni Kasten, Tali Dekel
Title: SceneScape: Text-Driven Consistent Scene Generation
Abstract:
We present a method for text-driven perpetual view generation -- synthesizing long-term videos of various scenes solely, given an input text prompt describing the scene and camera poses. We introduce a novel framework that generates such videos in an online fashion by combining the generative power of a pre-trained text-to-image model with the geometric priors learned by a pre-trained monocular depth prediction model. To tackle the pivotal challenge of achieving 3D consistency, i.e., synthesizing videos that depict geometrically-plausible scenes, we deploy an online test-time training to encourage the predicted depth map of the current frame to be geometrically consistent with the synthesized scene. The depth maps are used to construct a unified mesh representation of the scene, which is progressively constructed along the video generation process. In contrast to previous works, which are applicable only to limited domains, our method generates diverse scenes, such as walkthroughs in spaceships, caves, or ice castles.
Authors:Hamza Bouzid, Lahoucine Ballihi
Title: Facial Expression Video Generation Based-On Spatio-temporal Convolutional GAN: FEV-GAN
Abstract:
Facial expression generation has always been an intriguing task for scientists and researchers all over the globe. In this context, we present our novel approach for generating videos of the six basic facial expressions. Starting from a single neutral facial image and a label indicating the desired facial expression, we aim to synthesize a video of the given identity performing the specified facial expression. Our approach, referred to as FEV-GAN (Facial Expression Video GAN), is based on Spatio-temporal Convolutional GANs, that are known to model both content and motion in the same network. Previous methods based on such a network have shown a good ability to generate coherent videos with smooth temporal evolution. However, they still suffer from low image quality and low identity preservation capability. In this work, we address this problem by using a generator composed of two image encoders. The first one is pre-trained for facial identity feature extraction and the second for spatial feature extraction. We have qualitatively and quantitatively evaluated our model on two international facial expression benchmark databases: MUG and Oulu-CASIA NIR&VIS. The experimental results analysis demonstrates the effectiveness of our approach in generating videos of the six basic facial expressions while preserving the input identity. The analysis also proves that the use of both identity and spatial features enhances the decoder ability to better preserve the identity and generate high-quality videos. The code and the pre-trained model will soon be made publicly available.
Authors:Dongchan Min, Minyoung Song, Eunji Ko, Sung Ju Hwang
Title: StyleTalker: One-shot Style-based Audio-driven Talking Head Video Generation
Abstract:
We propose StyleTalker, a novel audio-driven talking head generation model that can synthesize a video of a talking person from a single reference image with accurately audio-synced lip shapes, realistic head poses, and eye blinks. Specifically, by leveraging a pretrained image generator and an image encoder, we estimate the latent codes of the talking head video that faithfully reflects the given audio. This is made possible with several newly devised components: 1) A contrastive lip-sync discriminator for accurate lip synchronization, 2) A conditional sequential variational autoencoder that learns the latent motion space disentangled from the lip movements, such that we can independently manipulate the motions and lip movements while preserving the identity. 3) An auto-regressive prior augmented with normalizing flow to learn a complex audio-to-motion multi-modal latent space. Equipped with these components, StyleTalker can generate talking head videos not only in a motion-controllable way when another motion source video is given but also in a completely audio-driven manner by inferring realistic motions from the input audio. Through extensive experiments and user studies, we show that our model is able to synthesize talking head videos with impressive perceptual quality which are accurately lip-synced with the input audios, largely outperforming state-of-the-art baselines.
Authors:Remi Denton, Rob Fergus
Title: Stochastic Video Generation with a Learned Prior
Abstract:
Generating video frames that accurately predict future world states is challenging. Existing approaches either fail to capture the full distribution of outcomes, or yield blurry generations, or both. In this paper we introduce an unsupervised video generation model that learns a prior model of uncertainty in a given environment. Video frames are generated by drawing samples from this prior and combining them with a deterministic estimate of the future frame. The approach is simple and easily trained end-to-end on a variety of datasets. Sample generations are both varied and sharp, even many frames into the future, and compare favorably to those from existing approaches.
Authors:Björn Möller, Zhengyang Li, Malte Stelzer, Thomas Graave, Fabian Bettels, Muaaz Ataya, Tim Fingscheidt
Title: OpenViGA: Video Generation for Automotive Driving Scenes by Streamlining and Fine-Tuning Open Source Models with Public Data
Abstract:
Recent successful video generation systems that predict and create realistic automotive driving scenes from short video inputs assign tokenization, future state prediction (world model), and video decoding to dedicated models. These approaches often utilize large models that require significant training resources, offer limited insight into design choices, and lack publicly available code and datasets. In this work, we address these deficiencies and present OpenViGA, an open video generation system for automotive driving scenes. Our contributions are: Unlike several earlier works for video generation, such as GAIA-1, we provide a deep analysis of the three components of our system by separate quantitative and qualitative evaluation: Image tokenizer, world model, video decoder. Second, we purely build upon powerful pre-trained open source models from various domains, which we fine-tune by publicly available automotive data (BDD100K) on GPU hardware at academic scale. Third, we build a coherent video generation system by streamlining interfaces of our components. Fourth, due to public availability of the underlying models and data, we allow full reproducibility. Finally, we also publish our code and models on Github. For an image size of 256x256 at 4 fps we are able to predict realistic driving scene videos frame-by-frame with only one frame of algorithmic latency.
Authors:Huanpeng Chu, Wei Wu, Guanyu Fen, Yutao Zhang
Title: OmniCache: A Trajectory-Oriented Global Perspective on Training-Free Cache Reuse for Diffusion Transformer Models
Abstract:
Diffusion models have emerged as a powerful paradigm for generative tasks such as image synthesis and video generation, with Transformer architectures further enhancing performance. However, the high computational cost of diffusion Transformers-stemming from a large number of sampling steps and complex per-step computations-presents significant challenges for real-time deployment. In this paper, we introduce OmniCache, a training-free acceleration method that exploits the global redundancy inherent in the denoising process. Unlike existing methods that determine caching strategies based on inter-step similarities and tend to prioritize reusing later sampling steps, our approach originates from the sampling perspective of DIT models. We systematically analyze the model's sampling trajectories and strategically distribute cache reuse across the entire sampling process. This global perspective enables more effective utilization of cached computations throughout the diffusion trajectory, rather than concentrating reuse within limited segments of the sampling procedure. In addition, during cache reuse, we dynamically estimate the corresponding noise and filter it out to reduce its impact on the sampling direction. Extensive experiments demonstrate that our approach accelerates the sampling process while maintaining competitive generative quality, offering a promising and practical solution for efficient deployment of diffusion-based generative models.
Authors:Peihao Yan, Huacheng Zeng, Y. Thomas Hou
Title: xDiff: Online Diffusion Model for Collaborative Inter-Cell Interference Management in 5G O-RAN
Abstract:
Open Radio Access Network (O-RAN) is a key architectural paradigm for 5G and beyond cellular networks, enabling the adoption of intelligent and efficient resource management solutions. Meanwhile, diffusion models have demonstrated remarkable capabilities in image and video generation, making them attractive for network optimization tasks. In this paper, we propose xDiff, a diffusion-based reinforcement learning(RL) framework for inter-cell interference management (ICIM) in O-RAN. We first formulate ICIM as a resource allocation optimization problem aimed at maximizing a user-defined reward function and then develop an online learning solution by integrating a diffusion model into an RL framework for near-real-time policy generation. Particularly, we introduce a novel metric, preference values, as the policy representation to enable efficient policy-guided resource allocation within O-RAN distributed units (DUs). We implement xDiff on a 5G testbed consisting of three cells and a set of smartphones in two small-cell scenarios. Experimental results demonstrate that xDiff outperforms state-of-the-art ICIM approaches, highlighting the potential of diffusion models for online optimization of O-RAN. Source code is available on GitHub [1].
Authors:Danzhen Fu, Jiagao Hu, Daiguo Zhou, Fei Wang, Zepeng Wang, Wenhua Liao
Title: Controllable Pedestrian Video Editing for Multi-View Driving Scenarios via Motion Sequence
Abstract:
Pedestrian detection models in autonomous driving systems often lack robustness due to insufficient representation of dangerous pedestrian scenarios in training datasets. To address this limitation, we present a novel framework for controllable pedestrian video editing in multi-view driving scenarios by integrating video inpainting and human motion control techniques. Our approach begins by identifying pedestrian regions of interest across multiple camera views, expanding detection bounding boxes with a fixed ratio, and resizing and stitching these regions into a unified canvas while preserving cross-view spatial relationships. A binary mask is then applied to designate the editable area, within which pedestrian editing is guided by pose sequence control conditions. This enables flexible editing functionalities, including pedestrian insertion, replacement, and removal. Extensive experiments demonstrate that our framework achieves high-quality pedestrian editing with strong visual realism, spatiotemporal coherence, and cross-view consistency. These results establish the proposed method as a robust and versatile solution for multi-view pedestrian video generation, with broad potential for applications in data augmentation and scenario simulation in autonomous driving.
Authors:Adil Kaan Akan, Yucel Yemez
Title: Compositional Video Synthesis by Temporal Object-Centric Learning
Abstract:
We present a novel framework for compositional video synthesis that leverages temporally consistent object-centric representations, extending our previous work, SlotAdapt, from images to video. While existing object-centric approaches either lack generative capabilities entirely or treat video sequences holistically, thus neglecting explicit object-level structure, our approach explicitly captures temporal dynamics by learning pose invariant object-centric slots and conditioning them on pretrained diffusion models. This design enables high-quality, pixel-level video synthesis with superior temporal coherence, and offers intuitive compositional editing capabilities such as object insertion, deletion, or replacement, maintaining consistent object identities across frames. Extensive experiments demonstrate that our method sets new benchmarks in video generation quality and temporal consistency, outperforming previous object-centric generative methods. Although our segmentation performance closely matches state-of-the-art methods, our approach uniquely integrates this capability with robust generative performance, significantly advancing interactive and controllable video generation and opening new possibilities for advanced content creation, semantic editing, and dynamic scene understanding.
Authors:Xiangfeng Wang, Xiao Li, Yadong Wei, Xueyu Song, Yang Song, Xiaoqiang Xia, Fangrui Zeng, Zaiyi Chen, Liu Liu, Gu Xu, Tong Xu
Title: From Long Videos to Engaging Clips: A Human-Inspired Video Editing Framework with Multimodal Narrative Understanding
Abstract:
The rapid growth of online video content, especially on short video platforms, has created a growing demand for efficient video editing techniques that can condense long-form videos into concise and engaging clips. Existing automatic editing methods predominantly rely on textual cues from ASR transcripts and end-to-end segment selection, often neglecting the rich visual context and leading to incoherent outputs. In this paper, we propose a human-inspired automatic video editing framework (HIVE) that leverages multimodal narrative understanding to address these limitations. Our approach incorporates character extraction, dialogue analysis, and narrative summarization through multimodal large language models, enabling a holistic understanding of the video content. To further enhance coherence, we apply scene-level segmentation and decompose the editing process into three subtasks: highlight detection, opening/ending selection, and pruning of irrelevant content. To facilitate research in this area, we introduce DramaAD, a novel benchmark dataset comprising over 800 short drama episodes and 500 professionally edited advertisement clips. Experimental results demonstrate that our framework consistently outperforms existing baselines across both general and advertisement-oriented editing tasks, significantly narrowing the quality gap between automatic and human-edited videos.
Authors:Kehan Sui, Jinxu Xiang, Fang Jin
Title: SmoothSinger: A Conditional Diffusion Model for Singing Voice Synthesis with Multi-Resolution Architecture
Abstract:
Singing voice synthesis (SVS) aims to generate expressive and high-quality vocals from musical scores, requiring precise modeling of pitch, duration, and articulation. While diffusion-based models have achieved remarkable success in image and video generation, their application to SVS remains challenging due to the complex acoustic and musical characteristics of singing, often resulting in artifacts that degrade naturalness. In this work, we propose SmoothSinger, a conditional diffusion model designed to synthesize high quality and natural singing voices. Unlike prior methods that depend on vocoders as a final stage and often introduce distortion, SmoothSinger refines low-quality synthesized audio directly in a unified framework, mitigating the degradation associated with two-stage pipelines. The model adopts a reference-guided dual-branch architecture, using low-quality audio from any baseline system as a reference to guide the denoising process, enabling more expressive and context-aware synthesis. Furthermore, it enhances the conventional U-Net with a parallel low-frequency upsampling path, allowing the model to better capture pitch contours and long term spectral dependencies. To improve alignment during training, we replace reference audio with degraded ground truth audio, addressing temporal mismatch between reference and target signals. Experiments on the Opencpop dataset, a large-scale Chinese singing corpus, demonstrate that SmoothSinger achieves state-of-the-art results in both objective and subjective evaluations. Extensive ablation studies confirm its effectiveness in reducing artifacts and improving the naturalness of synthesized voices.
Authors:Chetwin Low, Weimin Wang
Title: TalkingMachines: Real-Time Audio-Driven FaceTime-Style Video via Autoregressive Diffusion Models
Abstract:
In this paper, we present TalkingMachines -- an efficient framework that transforms pretrained video generation models into real-time, audio-driven character animators. TalkingMachines enables natural conversational experiences by integrating an audio large language model (LLM) with our video generation foundation model. Our primary contributions include: (1) We adapt a pretrained SOTA image-to-video DiT into an audio-driven avatar generation model of 18 billion parameters; (2) We enable infinite video streaming without error accumulation through asymmetric knowledge distillation from a bidirectional teacher model into a sparse causal, autoregressive student model; (3) We design a high-throughput, low-latency inference pipeline incorporating several key engineering optimizations such as: (a) disaggregation of the DiT and VAE decoder across separate devices, (b) efficient overlap of inter-device communication and computation using CUDA streams, (c) elimination of redundant recomputations to maximize frame-generation throughput. Please see demo videos here - https://aaxwaz.github.io/TalkingMachines/
Authors:Tong Zhang, Juan C Leon Alcazar, Bernard Ghanem
Title: Motion-Aware Concept Alignment for Consistent Video Editing
Abstract:
We introduce MoCA-Video (Motion-Aware Concept Alignment in Video), a training-free framework bridging the gap between image-domain semantic mixing and video. Given a generated video and a user-provided reference image, MoCA-Video injects the semantic features of the reference image into a specific object within the video, while preserving the original motion and visual context. Our approach leverages a diagonal denoising schedule and class-agnostic segmentation to detect and track objects in the latent space and precisely control the spatial location of the blended objects. To ensure temporal coherence, we incorporate momentum-based semantic corrections and gamma residual noise stabilization for smooth frame transitions. We evaluate MoCA's performance using the standard SSIM, image-level LPIPS, temporal LPIPS, and introduce a novel metric CASS (Conceptual Alignment Shift Score) to evaluate the consistency and effectiveness of the visual shifts between the source prompt and the modified video frames. Using self-constructed dataset, MoCA-Video outperforms current baselines, achieving superior spatial consistency, coherent motion, and a significantly higher CASS score, despite having no training or fine-tuning. MoCA-Video demonstrates that structured manipulation in the diffusion noise trajectory allows for controllable, high-quality video synthesis.
Authors:Yuzhi Li, Haojun Xu, Feng Tian
Title: From Shots to Stories: LLM-Assisted Video Editing with Unified Language Representations
Abstract:
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable reasoning and generalization capabilities in video understanding; however, their application in video editing remains largely underexplored. This paper presents the first systematic study of LLMs in the context of video editing. To bridge the gap between visual information and language-based reasoning, we introduce L-Storyboard, an intermediate representation that transforms discrete video shots into structured language descriptions suitable for LLM processing. We categorize video editing tasks into Convergent Tasks and Divergent Tasks, focusing on three core tasks: Shot Attributes Classification, Next Shot Selection, and Shot Sequence Ordering. To address the inherent instability of divergent task outputs, we propose the StoryFlow strategy, which converts the divergent multi-path reasoning process into a convergent selection mechanism, effectively enhancing task accuracy and logical coherence. Experimental results demonstrate that L-Storyboard facilitates a more robust mapping between visual information and language descriptions, significantly improving the interpretability and privacy protection of video editing tasks. Furthermore, StoryFlow enhances the logical consistency and output stability in Shot Sequence Ordering, underscoring the substantial potential of LLMs in intelligent video editing.
Authors:Jiwoo Jeong, Kirok Kim, Wooju Kim, Nam-Joon Kim
Title: Real-Time Person Image Synthesis Using a Flow Matching Model
Abstract:
Pose-Guided Person Image Synthesis (PGPIS) generates realistic person images conditioned on a target pose and a source image. This task plays a key role in various real-world applications, such as sign language video generation, AR/VR, gaming, and live streaming. In these scenarios, real-time PGPIS is critical for providing immediate visual feedback and maintaining user immersion.However, achieving real-time performance remains a significant challenge due to the complexity of synthesizing high-fidelity images from diverse and dynamic human poses. Recent diffusion-based methods have shown impressive image quality in PGPIS, but their slow sampling speeds hinder deployment in time-sensitive applications. This latency is particularly problematic in tasks like generating sign language videos during live broadcasts, where rapid image updates are required. Therefore, developing a fast and reliable PGPIS model is a crucial step toward enabling real-time interactive systems. To address this challenge, we propose a generative model based on flow matching (FM). Our approach enables faster, more stable, and more efficient training and sampling. Furthermore, the proposed model supports conditional generation and can operate in latent space, making it especially suitable for real-time PGPIS applications where both speed and quality are critical. We evaluate our proposed method, Real-Time Person Image Synthesis Using a Flow Matching Model (RPFM), on the widely used DeepFashion dataset for PGPIS tasks. Our results show that RPFM achieves near-real-time sampling speeds while maintaining performance comparable to the state-of-the-art models. Our methodology trades off a slight, acceptable decrease in generated-image accuracy for over a twofold increase in generation speed, thereby ensuring real-time performance.
Authors:Anushka Agarwal, Muhammad Yusuf Hassan, Talha Chafekar
Title: GenSync: A Generalized Talking Head Framework for Audio-driven Multi-Subject Lip-Sync using 3D Gaussian Splatting
Abstract:
We introduce GenSync, a novel framework for multi-identity lip-synced video synthesis using 3D Gaussian Splatting. Unlike most existing 3D methods that require training a new model for each identity , GenSync learns a unified network that synthesizes lip-synced videos for multiple speakers. By incorporating a Disentanglement Module, our approach separates identity-specific features from audio representations, enabling efficient multi-identity video synthesis. This design reduces computational overhead and achieves 6.8x faster training compared to state-of-the-art models, while maintaining high lip-sync accuracy and visual quality.
Authors:Hao Luan, See-Kiong Ng, Chun Kai Ling
Title: DDPS: Discrete Diffusion Posterior Sampling for Paths in Layered Graphs
Abstract:
Diffusion models form an important class of generative models today, accounting for much of the state of the art in cutting edge AI research. While numerous extensions beyond image and video generation exist, few of such approaches address the issue of explicit constraints in the samples generated. In this paper, we study the problem of generating paths in a layered graph (a variant of a directed acyclic graph) using discrete diffusion models, while guaranteeing that our generated samples are indeed paths. Our approach utilizes a simple yet effective representation for paths which we call the padded adjacency-list matrix (PALM). In addition, we show how to effectively perform classifier guidance, which helps steer the sampled paths to specific preferred edges without any retraining of the diffusion model. Our preliminary results show that empirically, our method outperforms alternatives which do not explicitly account for path constraints.
Authors:Zhanbo Huang, Xiaoming Liu, Yu Kong
Title: H-MoRe: Learning Human-centric Motion Representation for Action Analysis
Abstract:
In this paper, we propose H-MoRe, a novel pipeline for learning precise human-centric motion representation. Our approach dynamically preserves relevant human motion while filtering out background movement. Notably, unlike previous methods relying on fully supervised learning from synthetic data, H-MoRe learns directly from real-world scenarios in a self-supervised manner, incorporating both human pose and body shape information. Inspired by kinematics, H-MoRe represents absolute and relative movements of each body point in a matrix format that captures nuanced motion details, termed world-local flows. H-MoRe offers refined insights into human motion, which can be integrated seamlessly into various action-related applications. Experimental results demonstrate that H-MoRe brings substantial improvements across various downstream tasks, including gait recognition(CL@R1: +16.01%), action recognition(Acc@1: +8.92%), and video generation(FVD: -67.07%). Additionally, H-MoRe exhibits high inference efficiency (34 fps), making it suitable for most real-time scenarios. Models and code will be released upon publication.
Authors:Luis Denninger, Sina Mokhtarzadeh Azar, Juergen Gall
Title: CamC2V: Context-aware Controllable Video Generation
Abstract:
Recently, image-to-video (I2V) diffusion models have demonstrated impressive scene understanding and generative quality, incorporating image conditions to guide generation. However, these models primarily animate static images without extending beyond their provided context. Introducing additional constraints, such as camera trajectories, can enhance diversity but often degrade visual quality, limiting their applicability for tasks requiring faithful scene representation. We propose CamC2V, a context-to-video (C2V) model that integrates multiple image conditions as context with 3D constraints alongside camera control to enrich both global semantics and fine-grained visual details. This enables more coherent and context-aware video generation. Moreover, we motivate the necessity of temporal awareness for an effective context representation. Our comprehensive study on the RealEstate10K dataset demonstrates improvements in visual quality and camera controllability. We will publish our code upon acceptance.
Authors:Pascal Chang, Jingwei Tang, Markus Gross, Vinicius C. Azevedo
Title: How I Warped Your Noise: a Temporally-Correlated Noise Prior for Diffusion Models
Abstract:
Video editing and generation methods often rely on pre-trained image-based diffusion models. During the diffusion process, however, the reliance on rudimentary noise sampling techniques that do not preserve correlations present in subsequent frames of a video is detrimental to the quality of the results. This either produces high-frequency flickering, or texture-sticking artifacts that are not amenable to post-processing. With this in mind, we propose a novel method for preserving temporal correlations in a sequence of noise samples. This approach is materialized by a novel noise representation, dubbed $\int$-noise (integral noise), that reinterprets individual noise samples as a continuously integrated noise field: pixel values do not represent discrete values, but are rather the integral of an underlying infinite-resolution noise over the pixel area. Additionally, we propose a carefully tailored transport method that uses $\int$-noise to accurately advect noise samples over a sequence of frames, maximizing the correlation between different frames while also preserving the noise properties. Our results demonstrate that the proposed $\int$-noise can be used for a variety of tasks, such as video restoration, surrogate rendering, and conditional video generation. See https://warpyournoise.github.io/ for video results.
Authors:Mikel Zhobro, Andreas René Geist, Georg Martius
Title: Learning 3D-Gaussian Simulators from RGB Videos
Abstract:
Realistic simulation is critical for applications ranging from robotics to animation. Learned simulators have emerged as a possibility to capture real world physics directly from video data, but very often require privileged information such as depth information, particle tracks and hand-engineered features to maintain spatial and temporal consistency. These strong inductive biases or ground truth 3D information help in domains where data is sparse but limit scalability and generalization in data rich regimes. To overcome the key limitations, we propose 3DGSim, a learned 3D simulator that directly learns physical interactions from multi-view RGB videos. 3DGSim unifies 3D scene reconstruction, particle dynamics prediction and video synthesis into an end-to-end trained framework. It adopts MVSplat to learn a latent particle-based representation of 3D scenes, a Point Transformer for particle dynamics, a Temporal Merging module for consistent temporal aggregation and Gaussian Splatting to produce novel view renderings. By jointly training inverse rendering and dynamics forecasting, 3DGSim embeds the physical properties into point-wise latent features. This enables the model to capture diverse physical behaviors, from rigid to elastic, cloth-like dynamics, and boundary conditions (e.g. fixed cloth corner), along with realistic lighting effects that also generalize to unseen multibody interactions and novel scene edits.
Authors:Jiahui Chen, Yang Huan, Runhua Shi, Chanfan Ding, Xiaoqi Mo, Siyu Xiong, Yinong He
Title: Audio-driven Gesture Generation via Deviation Feature in the Latent Space
Abstract:
Gestures are essential for enhancing co-speech communication, offering visual emphasis and complementing verbal interactions. While prior work has concentrated on point-level motion or fully supervised data-driven methods, we focus on co-speech gestures, advocating for weakly supervised learning and pixel-level motion deviations. We introduce a weakly supervised framework that learns latent representation deviations, tailored for co-speech gesture video generation. Our approach employs a diffusion model to integrate latent motion features, enabling more precise and nuanced gesture representation. By leveraging weakly supervised deviations in latent space, we effectively generate hand gestures and mouth movements, crucial for realistic video production. Experiments show our method significantly improves video quality, surpassing current state-of-the-art techniques.
Authors:Xuewei Chen, Zhimin Chen, Yiren Song
Title: TransAnimate: Taming Layer Diffusion to Generate RGBA Video
Abstract:
Text-to-video generative models have made remarkable advancements in recent years. However, generating RGBA videos with alpha channels for transparency and visual effects remains a significant challenge due to the scarcity of suitable datasets and the complexity of adapting existing models for this purpose. To address these limitations, we present TransAnimate, an innovative framework that integrates RGBA image generation techniques with video generation modules, enabling the creation of dynamic and transparent videos. TransAnimate efficiently leverages pre-trained text-to-transparent image model weights and combines them with temporal models and controllability plugins trained on RGB videos, adapting them for controllable RGBA video generation tasks. Additionally, we introduce an interactive motion-guided control mechanism, where directional arrows define movement and colors adjust scaling, offering precise and intuitive control for designing game effects. To further alleviate data scarcity, we have developed a pipeline for creating an RGBA video dataset, incorporating high-quality game effect videos, extracted foreground objects, and synthetic transparent videos. Comprehensive experiments demonstrate that TransAnimate generates high-quality RGBA videos, establishing it as a practical and effective tool for applications in gaming and visual effects.
Authors:Shivanshu Shekhar, Tong Zhang
Title: ROCM: RLHF on consistency models
Abstract:
Diffusion models have revolutionized generative modeling in continuous domains like image, audio, and video synthesis. However, their iterative sampling process leads to slow generation and inefficient training, challenges that are further exacerbated when incorporating Reinforcement Learning from Human Feedback (RLHF) due to sparse rewards and long time horizons. Consistency models address these issues by enabling single-step or efficient multi-step generation, significantly reducing computational costs. In this work, we propose a direct reward optimization framework for applying RLHF to consistency models, incorporating distributional regularization to enhance training stability and prevent reward hacking. We investigate various $f$-divergences as regularization strategies, striking a balance between reward maximization and model consistency. Unlike policy gradient methods, our approach leverages first-order gradients, making it more efficient and less sensitive to hyperparameter tuning. Empirical results show that our method achieves competitive or superior performance compared to policy gradient based RLHF methods, across various automatic metrics and human evaluation. Additionally, our analysis demonstrates the impact of different regularization techniques in improving model generalization and preventing overfitting.
Authors:Youngjoon Jeong, Junha Chun, Soonwoo Cha, Taesup Kim
Title: Object-Centric World Model for Language-Guided Manipulation
Abstract:
A world model is essential for an agent to predict the future and plan in domains such as autonomous driving and robotics. To achieve this, recent advancements have focused on video generation, which has gained significant attention due to the impressive success of diffusion models. However, these models require substantial computational resources. To address these challenges, we propose a world model leveraging object-centric representation space using slot attention, guided by language instructions. Our model perceives the current state as an object-centric representation and predicts future states in this representation space conditioned on natural language instructions. This approach results in a more compact and computationally efficient model compared to diffusion-based generative alternatives. Furthermore, it flexibly predicts future states based on language instructions, and offers a significant advantage in manipulation tasks where object recognition is crucial. In this paper, we demonstrate that our latent predictive world model surpasses generative world models in visuo-linguo-motor control tasks, achieving superior sample and computation efficiency. We also investigate the generalization performance of the proposed method and explore various strategies for predicting actions using object-centric representations.
Authors:Long Cheng, Qichen Liao, Fan Wu, Junlin Mu, Tengfei Han, Zhe Qiu, Lianqiang Li, Tianyi Liu, Fangzheng Miao, Keming Gao, Liang Wang, Zhen Zhang, Qiande Yin
Title: Online Pseudo-average Shifting Attention(PASA) for Robust Low-precision LLM Inference: Algorithms and Numerical Analysis
Abstract:
Attention calculation is extremely time-consuming for long-sequence inference tasks, such as text or image/video generation, in large models. To accelerate this process, we developed a low-precision, mathematically-equivalent algorithm called PASA, based on Flash Attention. PASA introduces two novel techniques: online pseudo-average shifting and global recovering. These techniques enable the use of half-precision computation throughout the Flash Attention process without incurring overflow instability or unacceptable numerical accuracy loss. This algorithm enhances performance on memory-restricted AI hardware architectures, such as the Ascend Neural-network Processing Unit(NPU), by reducing data movement and increasing computational FLOPs. The algorithm is validated using both designed random benchmarks and real large models. We find that the large bias and amplitude of attention input data are critical factors contributing to numerical overflow ($>65504$ for half precision) in two different categories of large models (Qwen2-7B language models and Stable-Video-Diffusion multi-modal models). Specifically, overflow arises due to the large bias in the sequence dimension and the resonance mechanism between the query and key in the head dimension of the Stable-Video-Diffusion models. The resonance mechanism is defined as phase coincidence or 180-degree phase shift between query and key matrices. It will remarkably amplify the element values of attention score matrix. This issue also applies to the Qwen models. Additionally, numerical accuracy is assessed through root mean square error (RMSE) and by comparing the final generated texts and videos to those produced using high-precision attention.
Authors:Aditya Vora, Sauradip Nag, Hao Zhang
Title: Articulate That Object Part (ATOP): 3D Part Articulation via Text and Motion Personalization
Abstract:
We present ATOP (Articulate That Object Part), a novel few-shot method based on motion personalization to articulate a static 3D object with respect to a part and its motion as prescribed in a text prompt. Given the scarcity of available datasets with motion attribute annotations, existing methods struggle to generalize well in this task. In our work, the text input allows us to tap into the power of modern-day diffusion models to generate plausible motion samples for the right object category and part. In turn, the input 3D object provides image prompting to personalize the generated video to that very object we wish to articulate. Our method starts with a few-shot finetuning for category-specific motion generation, a key first step to compensate for the lack of articulation awareness by current diffusion models. For this, we finetune a pre-trained multi-view image generation model for controllable multi-view video generation, using a small collection of video samples obtained for the target object category. This is followed by motion video personalization that is realized by multi-view rendered images of the target 3D object. At last, we transfer the personalized video motion to the target 3D object via differentiable rendering to optimize part motion parameters by a score distillation sampling loss. Experimental results on PartNet-Sapien and ACD datasets show that our method is capable of generating realistic motion videos and predicting 3D motion parameters in a more accurate and generalizable way, compared to prior works in the few-shot setting.
Authors:Lirui Wang, Kevin Zhao, Chaoqi Liu, Xinlei Chen
Title: Learning Real-World Action-Video Dynamics with Heterogeneous Masked Autoregression
Abstract:
We propose Heterogeneous Masked Autoregression (HMA) for modeling action-video dynamics to generate high-quality data and evaluation in scaling robot learning. Building interactive video world models and policies for robotics is difficult due to the challenge of handling diverse settings while maintaining computational efficiency to run in real time. HMA uses heterogeneous pre-training from observations and action sequences across different robotic embodiments, domains, and tasks. HMA uses masked autoregression to generate quantized or soft tokens for video predictions. \ourshort achieves better visual fidelity and controllability than the previous robotic video generation models with 15 times faster speed in the real world. After post-training, this model can be used as a video simulator from low-level action inputs for evaluating policies and generating synthetic data. See this link https://liruiw.github.io/hma for more information.
Authors:Xiaowen Li, Haolan Xue, Peiran Ren, Liefeng Bo
Title: DiffuEraser: A Diffusion Model for Video Inpainting
Abstract:
Recent video inpainting algorithms integrate flow-based pixel propagation with transformer-based generation to leverage optical flow for restoring textures and objects using information from neighboring frames, while completing masked regions through visual Transformers. However, these approaches often encounter blurring and temporal inconsistencies when dealing with large masks, highlighting the need for models with enhanced generative capabilities. Recently, diffusion models have emerged as a prominent technique in image and video generation due to their impressive performance. In this paper, we introduce DiffuEraser, a video inpainting model based on stable diffusion, designed to fill masked regions with greater details and more coherent structures. We incorporate prior information to provide initialization and weak conditioning,which helps mitigate noisy artifacts and suppress hallucinations. Additionally, to improve temporal consistency during long-sequence inference, we expand the temporal receptive fields of both the prior model and DiffuEraser, and further enhance consistency by leveraging the temporal smoothing property of Video Diffusion Models. Experimental results demonstrate that our proposed method outperforms state-of-the-art techniques in both content completeness and temporal consistency while maintaining acceptable efficiency.
Authors:Meenakshi Krishnan, Liam Fowl, Ramani Duraiswami
Title: 3D Gaussian Splatting with Normal Information for Mesh Extraction and Improved Rendering
Abstract:
Differentiable 3D Gaussian splatting has emerged as an efficient and flexible rendering technique for representing complex scenes from a collection of 2D views and enabling high-quality real-time novel-view synthesis. However, its reliance on photometric losses can lead to imprecisely reconstructed geometry and extracted meshes, especially in regions with high curvature or fine detail. We propose a novel regularization method using the gradients of a signed distance function estimated from the Gaussians, to improve the quality of rendering while also extracting a surface mesh. The regularizing normal supervision facilitates better rendering and mesh reconstruction, which is crucial for downstream applications in video generation, animation, AR-VR and gaming. We demonstrate the effectiveness of our approach on datasets such as Mip-NeRF360, Tanks and Temples, and Deep-Blending. Our method scores higher on photorealism metrics compared to other mesh extracting rendering methods without compromising mesh quality.
Authors:Min Zhang, Zilin Wang, Liyan Chen, Kunhong Liu, Juncong Lin
Title: Dialogue Director: Bridging the Gap in Dialogue Visualization for Multimodal Storytelling
Abstract:
Recent advances in AI-driven storytelling have enhanced video generation and story visualization. However, translating dialogue-centric scripts into coherent storyboards remains a significant challenge due to limited script detail, inadequate physical context understanding, and the complexity of integrating cinematic principles. To address these challenges, we propose Dialogue Visualization, a novel task that transforms dialogue scripts into dynamic, multi-view storyboards. We introduce Dialogue Director, a training-free multimodal framework comprising a Script Director, Cinematographer, and Storyboard Maker. This framework leverages large multimodal models and diffusion-based architectures, employing techniques such as Chain-of-Thought reasoning, Retrieval-Augmented Generation, and multi-view synthesis to improve script understanding, physical context comprehension, and cinematic knowledge integration. Experimental results demonstrate that Dialogue Director outperforms state-of-the-art methods in script interpretation, physical world understanding, and cinematic principle application, significantly advancing the quality and controllability of dialogue-based story visualization.
Authors:Siyang Zhang, Ser-Nam Lim
Title: Towards Chunk-Wise Generation for Long Videos
Abstract:
Generating long-duration videos has always been a significant challenge due to the inherent complexity of spatio-temporal domain and the substantial GPU memory demands required to calculate huge size tensors. While diffusion based generative models achieve state-of-the-art performance in video generation task, they are typically trained with predefined video resolutions and lengths. During inference, a noise tensor with specific resolution and length should be specified at first, and the model will perform denoising on the entire video tensor simultaneously, all the frames together. Such approach will easily raise an out-of-memory (OOM) problem when the specified resolution and/or length exceed a certain limit. One of the solutions to this problem is to generate many short video chunks autoregressively with strong inter-chunk spatio-temporal relation and then concatenate them together to form a long video. In this approach, a long video generation task is divided into multiple short video generation subtasks, and the cost of each subtask is reduced to a feasible level. In this paper, we conduct a detailed survey on long video generation with the autoregressive chunk-by-chunk strategy. We address common problems caused by applying short image-to-video models to long video tasks and design an efficient $k$-step search solution to mitigate these problems.
Authors:Zhaofang Qian, Abolfazl Sharifi, Tucker Carroll, Ser-Nam Lim
Title: Scene Co-pilot: Procedural Text to Video Generation with Human in the Loop
Abstract:
Video generation has achieved impressive quality, but it still suffers from artifacts such as temporal inconsistency and violation of physical laws. Leveraging 3D scenes can fundamentally resolve these issues by providing precise control over scene entities. To facilitate the easy generation of diverse photorealistic scenes, we propose Scene Copilot, a framework combining large language models (LLMs) with a procedural 3D scene generator. Specifically, Scene Copilot consists of Scene Codex, BlenderGPT, and Human in the loop. Scene Codex is designed to translate textual user input into commands understandable by the 3D scene generator. BlenderGPT provides users with an intuitive and direct way to precisely control the generated 3D scene and the final output video. Furthermore, users can utilize Blender UI to receive instant visual feedback. Additionally, we have curated a procedural dataset of objects in code format to further enhance our system's capabilities. Each component works seamlessly together to support users in generating desired 3D scenes. Extensive experiments demonstrate the capability of our framework in customizing 3D scenes and video generation.
Authors:Zhen Lv, Yangqi Long, Congzhentao Huang, Cao Li, Chengfei Lv, Hao Ren, Dian Zheng
Title: SpatialDreamer: Self-supervised Stereo Video Synthesis from Monocular Input
Abstract:
Stereo video synthesis from a monocular input is a demanding task in the fields of spatial computing and virtual reality. The main challenges of this task lie on the insufficiency of high-quality paired stereo videos for training and the difficulty of maintaining the spatio-temporal consistency between frames. Existing methods primarily address these issues by directly applying novel view synthesis (NVS) techniques to video, while facing limitations such as the inability to effectively represent dynamic scenes and the requirement for large amounts of training data. In this paper, we introduce a novel self-supervised stereo video synthesis paradigm via a video diffusion model, termed SpatialDreamer, which meets the challenges head-on. Firstly, to address the stereo video data insufficiency, we propose a Depth based Video Generation module DVG, which employs a forward-backward rendering mechanism to generate paired videos with geometric and temporal priors. Leveraging data generated by DVG, we propose RefinerNet along with a self-supervised synthetic framework designed to facilitate efficient and dedicated training. More importantly, we devise a consistency control module, which consists of a metric of stereo deviation strength and a Temporal Interaction Learning module TIL for geometric and temporal consistency ensurance respectively. We evaluated the proposed method against various benchmark methods, with the results showcasing its superior performance.
Authors:Mathis Koroglu, Hugo Caselles-Dupré, Guillaume Jeanneret Sanmiguel, Matthieu Cord
Title: OnlyFlow: Optical Flow based Motion Conditioning for Video Diffusion Models
Abstract:
We consider the problem of text-to-video generation tasks with precise control for various applications such as camera movement control and video-to-video editing. Most methods tacking this problem rely on providing user-defined controls, such as binary masks or camera movement embeddings. In our approach we propose OnlyFlow, an approach leveraging the optical flow firstly extracted from an input video to condition the motion of generated videos. Using a text prompt and an input video, OnlyFlow allows the user to generate videos that respect the motion of the input video as well as the text prompt. This is implemented through an optical flow estimation model applied on the input video, which is then fed to a trainable optical flow encoder. The output feature maps are then injected into the text-to-video backbone model. We perform quantitative, qualitative and user preference studies to show that OnlyFlow positively compares to state-of-the-art methods on a wide range of tasks, even though OnlyFlow was not specifically trained for such tasks. OnlyFlow thus constitutes a versatile, lightweight yet efficient method for controlling motion in text-to-video generation. Models and code will be made available on GitHub and HuggingFace.
Authors:Ashutosh Chaubey, Anoubhav Agarwaal, Sartaki Sinha Roy, Aayush Agrawal, Susmita Ghose
Title: ContextIQ: A Multimodal Expert-Based Video Retrieval System for Contextual Advertising
Abstract:
Contextual advertising serves ads that are aligned to the content that the user is viewing. The rapid growth of video content on social platforms and streaming services, along with privacy concerns, has increased the need for contextual advertising. Placing the right ad in the right context creates a seamless and pleasant ad viewing experience, resulting in higher audience engagement and, ultimately, better ad monetization. From a technology standpoint, effective contextual advertising requires a video retrieval system capable of understanding complex video content at a very granular level. Current text-to-video retrieval models based on joint multimodal training demand large datasets and computational resources, limiting their practicality and lacking the key functionalities required for ad ecosystem integration. We introduce ContextIQ, a multimodal expert-based video retrieval system designed specifically for contextual advertising. ContextIQ utilizes modality-specific experts-video, audio, transcript (captions), and metadata such as objects, actions, emotion, etc.-to create semantically rich video representations. We show that our system, without joint training, achieves better or comparable results to state-of-the-art models and commercial solutions on multiple text-to-video retrieval benchmarks. Our ablation studies highlight the benefits of leveraging multiple modalities for enhanced video retrieval accuracy instead of using a vision-language model alone. Furthermore, we show how video retrieval systems such as ContextIQ can be used for contextual advertising in an ad ecosystem while also addressing concerns related to brand safety and filtering inappropriate content.
Authors:Junjie Li, Jianghong Ma, Xiaofeng Zhang, Yuhang Li, Jianyang Shi
Title: GiVE: Guiding Visual Encoder to Perceive Overlooked Information
Abstract:
Multimodal Large Language Models have advanced AI in applications like text-to-video generation and visual question answering. These models rely on visual encoders to convert non-text data into vectors, but current encoders either lack semantic alignment or overlook non-salient objects. We propose the Guiding Visual Encoder to Perceive Overlooked Information (GiVE) approach. GiVE enhances visual representation with an Attention-Guided Adapter (AG-Adapter) module and an Object-focused Visual Semantic Learning module. These incorporate three novel loss terms: Object-focused Image-Text Contrast (OITC) loss, Object-focused Image-Image Contrast (OIIC) loss, and Object-focused Image Discrimination (OID) loss, improving object consideration, retrieval accuracy, and comprehensiveness. Our contributions include dynamic visual focus adjustment, novel loss functions to enhance object retrieval, and the Multi-Object Instruction (MOInst) dataset. Experiments show our approach achieves state-of-the-art performance.
Authors:Aakash Varma Nadimpalli, Ajita Rattani
Title: Social Media Authentication and Combating Deepfakes using Semi-fragile Invisible Image Watermarking
Abstract:
With the significant advances in deep generative models for image and video synthesis, Deepfakes and manipulated media have raised severe societal concerns. Conventional machine learning classifiers for deepfake detection often fail to cope with evolving deepfake generation technology and are susceptible to adversarial attacks. Alternatively, invisible image watermarking is being researched as a proactive defense technique that allows media authentication by verifying an invisible secret message embedded in the image pixels. A handful of invisible image watermarking techniques introduced for media authentication have proven vulnerable to basic image processing operations and watermark removal attacks. In response, we have proposed a semi-fragile image watermarking technique that embeds an invisible secret message into real images for media authentication. Our proposed watermarking framework is designed to be fragile to facial manipulations or tampering while being robust to benign image-processing operations and watermark removal attacks. This is facilitated through a unique architecture of our proposed technique consisting of critic and adversarial networks that enforce high image quality and resiliency to watermark removal efforts, respectively, along with the backbone encoder-decoder and the discriminator networks. Thorough experimental investigations on SOTA facial Deepfake datasets demonstrate that our proposed model can embed a $64$-bit secret as an imperceptible image watermark that can be recovered with a high-bit recovery accuracy when benign image processing operations are applied while being non-recoverable when unseen Deepfake manipulations are applied. In addition, our proposed watermarking technique demonstrates high resilience to several white-box and black-box watermark removal attacks. Thus, obtaining state-of-the-art performance.
Authors:Zhitong Huang, Mohan Zhang, Jing Liao
Title: LVCD: Reference-based Lineart Video Colorization with Diffusion Models
Abstract:
We propose the first video diffusion framework for reference-based lineart video colorization. Unlike previous works that rely solely on image generative models to colorize lineart frame by frame, our approach leverages a large-scale pretrained video diffusion model to generate colorized animation videos. This approach leads to more temporally consistent results and is better equipped to handle large motions. Firstly, we introduce Sketch-guided ControlNet which provides additional control to finetune an image-to-video diffusion model for controllable video synthesis, enabling the generation of animation videos conditioned on lineart. We then propose Reference Attention to facilitate the transfer of colors from the reference frame to other frames containing fast and expansive motions. Finally, we present a novel scheme for sequential sampling, incorporating the Overlapped Blending Module and Prev-Reference Attention, to extend the video diffusion model beyond its original fixed-length limitation for long video colorization. Both qualitative and quantitative results demonstrate that our method significantly outperforms state-of-the-art techniques in terms of frame and video quality, as well as temporal consistency. Moreover, our method is capable of generating high-quality, long temporal-consistent animation videos with large motions, which is not achievable in previous works. Our code and model are available at https://luckyhzt.github.io/lvcd.
Authors:Yupeng Chen, Penglin Chen, Xiaoyu Zhang, Yixian Huang, Qian Xie
Title: EditBoard: Towards a Comprehensive Evaluation Benchmark for Text-Based Video Editing Models
Abstract:
The rapid development of diffusion models has significantly advanced AI-generated content (AIGC), particularly in Text-to-Image (T2I) and Text-to-Video (T2V) generation. Text-based video editing, leveraging these generative capabilities, has emerged as a promising field, enabling precise modifications to videos based on text prompts. Despite the proliferation of innovative video editing models, there is a conspicuous lack of comprehensive evaluation benchmarks that holistically assess these models' performance across various dimensions. Existing evaluations are limited and inconsistent, typically summarizing overall performance with a single score, which obscures models' effectiveness on individual editing tasks. To address this gap, we propose EditBoard, the first comprehensive evaluation benchmark for text-based video editing models. EditBoard encompasses nine automatic metrics across four dimensions, evaluating models on four task categories and introducing three new metrics to assess fidelity. This task-oriented benchmark facilitates objective evaluation by detailing model performance and providing insights into each model's strengths and weaknesses. By open-sourcing EditBoard, we aim to standardize evaluation and advance the development of robust video editing models.
Authors:Khaled M. Seyam, Julian Wiederer, Markus Braun, Bin Yang
Title: SVS-GAN: Leveraging GANs for Semantic Video Synthesis
Abstract:
In recent years, there has been a growing interest in Semantic Image Synthesis (SIS) through the use of Generative Adversarial Networks (GANs) and diffusion models. This field has seen innovations such as the implementation of specialized loss functions tailored for this task, diverging from the more general approaches in Image-to-Image (I2I) translation. While the concept of Semantic Video Synthesis (SVS)$\unicode{x2013}$the generation of temporally coherent, realistic sequences of images from semantic maps$\unicode{x2013}$is newly formalized in this paper, some existing methods have already explored aspects of this field. Most of these approaches rely on generic loss functions designed for video-to-video translation or require additional data to achieve temporal coherence. In this paper, we introduce the SVS-GAN, a framework specifically designed for SVS, featuring a custom architecture and loss functions. Our approach includes a triple-pyramid generator that utilizes SPADE blocks. Additionally, we employ a U-Net-based network for the image discriminator, which performs semantic segmentation for the OASIS loss. Through this combination of tailored architecture and objective engineering, our framework aims to bridge the existing gap between SIS and SVS, outperforming current state-of-the-art models on datasets like Cityscapes and KITTI-360.
Authors:Andreea-Maria Oncescu, João F. Henriques, A. Sophia Koepke
Title: Dissecting Temporal Understanding in Text-to-Audio Retrieval
Abstract:
Recent advancements in machine learning have fueled research on multimodal tasks, such as for instance text-to-video and text-to-audio retrieval. These tasks require models to understand the semantic content of video and audio data, including objects, and characters. The models also need to learn spatial arrangements and temporal relationships. In this work, we analyse the temporal ordering of sounds, which is an understudied problem in the context of text-to-audio retrieval. In particular, we dissect the temporal understanding capabilities of a state-of-the-art model for text-to-audio retrieval on the AudioCaps and Clotho datasets. Additionally, we introduce a synthetic text-audio dataset that provides a controlled setting for evaluating temporal capabilities of recent models. Lastly, we present a loss function that encourages text-audio models to focus on the temporal ordering of events. Code and data are available at https://www.robots.ox.ac.uk/~vgg/research/audio-retrieval/dtu/.
Authors:Jiacheng Su, Kunhong Liu, Liyan Chen, Junfeng Yao, Qingsong Liu, Dongdong Lv
Title: Audio-driven High-resolution Seamless Talking Head Video Editing via StyleGAN
Abstract:
The existing methods for audio-driven talking head video editing have the limitations of poor visual effects. This paper tries to tackle this problem through editing talking face images seamless with different emotions based on two modules: (1) an audio-to-landmark module, consisting of the CrossReconstructed Emotion Disentanglement and an alignment network module. It bridges the gap between speech and facial motions by predicting corresponding emotional landmarks from speech; (2) a landmark-based editing module edits face videos via StyleGAN. It aims to generate the seamless edited video consisting of the emotion and content components from the input audio. Extensive experiments confirm that compared with state-of-the-arts methods, our method provides high-resolution videos with high visual quality.
Authors:Omar Elharrouss, Rafat Damseh, Abdelkader Nasreddine Belkacem, Elarbi Badidi, Abderrahmane Lakas
Title: Transformer-based Image and Video Inpainting: Current Challenges and Future Directions
Abstract:
Image inpainting is currently a hot topic within the field of computer vision. It offers a viable solution for various applications, including photographic restoration, video editing, and medical imaging. Deep learning advancements, notably convolutional neural networks (CNNs) and generative adversarial networks (GANs), have significantly enhanced the inpainting task with an improved capability to fill missing or damaged regions in an image or video through the incorporation of contextually appropriate details. These advancements have improved other aspects, including efficiency, information preservation, and achieving both realistic textures and structures. Recently, visual transformers have been exploited and offer some improvements to image or video inpainting. The advent of transformer-based architectures, which were initially designed for natural language processing, has also been integrated into computer vision tasks. These methods utilize self-attention mechanisms that excel in capturing long-range dependencies within data; therefore, they are particularly effective for tasks requiring a comprehensive understanding of the global context of an image or video. In this paper, we provide a comprehensive review of the current image or video inpainting approaches, with a specific focus on transformer-based techniques, with the goal to highlight the significant improvements and provide a guideline for new researchers in the field of image or video inpainting using visual transformers. We categorized the transformer-based techniques by their architectural configurations, types of damage, and performance metrics. Furthermore, we present an organized synthesis of the current challenges, and suggest directions for future research in the field of image or video inpainting.
Authors:Yuang Zhang, Jiaxi Gu, Li-Wen Wang, Han Wang, Junqi Cheng, Yuefeng Zhu, Fangyuan Zou
Title: MimicMotion: High-Quality Human Motion Video Generation with Confidence-aware Pose Guidance
Abstract:
In recent years, generative artificial intelligence has achieved significant advancements in the field of image generation, spawning a variety of applications. However, video generation still faces considerable challenges in various aspects, such as controllability, video length, and richness of details, which hinder the application and popularization of this technology. In this work, we propose a controllable video generation framework, dubbed MimicMotion, which can generate high-quality videos of arbitrary length mimicking specific motion guidance. Compared with previous methods, our approach has several highlights. Firstly, we introduce confidence-aware pose guidance that ensures high frame quality and temporal smoothness. Secondly, we introduce regional loss amplification based on pose confidence, which significantly reduces image distortion. Lastly, for generating long and smooth videos, we propose a progressive latent fusion strategy. By this means, we can produce videos of arbitrary length with acceptable resource consumption. With extensive experiments and user studies, MimicMotion demonstrates significant improvements over previous approaches in various aspects. Detailed results and comparisons are available on our project page: https://tencent.github.io/MimicMotion .
Authors:Rishab Parthasarathy, Zachary Ankner, Aaron Gokaslan
Title: Vid3D: Synthesis of Dynamic 3D Scenes using 2D Video Diffusion
Abstract:
A recent frontier in computer vision has been the task of 3D video generation, which consists of generating a time-varying 3D representation of a scene. To generate dynamic 3D scenes, current methods explicitly model 3D temporal dynamics by jointly optimizing for consistency across both time and views of the scene. In this paper, we instead investigate whether it is necessary to explicitly enforce multiview consistency over time, as current approaches do, or if it is sufficient for a model to generate 3D representations of each timestep independently. We hence propose a model, Vid3D, that leverages 2D video diffusion to generate 3D videos by first generating a 2D "seed" of the video's temporal dynamics and then independently generating a 3D representation for each timestep in the seed video. We evaluate Vid3D against two state-of-the-art 3D video generation methods and find that Vid3D is achieves comparable results despite not explicitly modeling 3D temporal dynamics. We further ablate how the quality of Vid3D depends on the number of views generated per frame. While we observe some degradation with fewer views, performance degradation remains minor. Our results thus suggest that 3D temporal knowledge may not be necessary to generate high-quality dynamic 3D scenes, potentially enabling simpler generative algorithms for this task.
Authors:Elijah Miller, Thomas Dupont, Mingming Wang
Title: Enhanced Creativity and Ideation through Stable Video Synthesis
Abstract:
This paper explores the innovative application of Stable Video Diffusion (SVD), a diffusion model that revolutionizes the creation of dynamic video content from static images. As digital media and design industries accelerate, SVD emerges as a powerful generative tool that enhances productivity and introduces novel creative possibilities. The paper examines the technical underpinnings of diffusion models, their practical effectiveness, and potential future developments, particularly in the context of video generation. SVD operates on a probabilistic framework, employing a gradual denoising process to transform random noise into coherent video frames. It addresses the challenges of visual consistency, natural movement, and stylistic reflection in generated videos, showcasing high generalization capabilities. The integration of SVD in design tasks promises enhanced creativity, rapid prototyping, and significant time and cost efficiencies. It is particularly impactful in areas requiring frame-to-frame consistency, natural motion capture, and creative diversity, such as animation, visual effects, advertising, and educational content creation. The paper concludes that SVD is a catalyst for design innovation, offering a wide array of applications and a promising avenue for future research and development in the field of digital media and design.
Authors:Gustave Florentin Nkoulou Mvondo, Ben Niu
Title: Factors Influencing User Willingness To Use SORA
Abstract:
Sora promises to redefine the way visual content is created. Despite its numerous forecasted benefits, the drivers of user willingness to use the text-to-video (T2V) model are unknown. This study extends the extended unified theory of acceptance and use of technology (UTAUT2) with perceived realism and novelty value. Using a purposive sampling method, we collected data from 940 respondents in the US and analyzed the sample using covariance-based structural equation modeling and fuzzy set qualitative comparative analysis (fsQCA). The findings reveal that all hypothesized relationships are supported, with perceived realism emerging as the most influential driver, followed by novelty value. Moreover, fsQCA identifies five configurations leading to high and low willingness to use, and the model demonstrates high predictive validity, contributing to theory advancement. Our study provides valuable insights for developers and marketers, offering guidance for strategic decisions to promote the widespread adoption of T2V models.
Authors:Yichen Ouyang, jianhao Yuan, Hao Zhao, Gaoang Wang, Bo zhao
Title: FlexiFilm: Long Video Generation with Flexible Conditions
Abstract:
Generating long and consistent videos has emerged as a significant yet challenging problem. While most existing diffusion-based video generation models, derived from image generation models, demonstrate promising performance in generating short videos, their simple conditioning mechanism and sampling strategy-originally designed for image generation-cause severe performance degradation when adapted to long video generation. This results in prominent temporal inconsistency and overexposure. Thus, in this work, we introduce FlexiFilm, a new diffusion model tailored for long video generation. Our framework incorporates a temporal conditioner to establish a more consistent relationship between generation and multi-modal conditions, and a resampling strategy to tackle overexposure. Empirical results demonstrate FlexiFilm generates long and consistent videos, each over 30 seconds in length, outperforming competitors in qualitative and quantitative analyses. Project page: https://y-ichen.github.io/FlexiFilm-Page/
Authors:Xi Fang, Weigang Wang, Xiaoxin Lv, Jun Yan
Title: PCQA: A Strong Baseline for AIGC Quality Assessment Based on Prompt Condition
Abstract:
The development of Large Language Models (LLM) and Diffusion Models brings the boom of Artificial Intelligence Generated Content (AIGC). It is essential to build an effective quality assessment framework to provide a quantifiable evaluation of different images or videos based on the AIGC technologies. The content generated by AIGC methods is driven by the crafted prompts. Therefore, it is intuitive that the prompts can also serve as the foundation of the AIGC quality assessment. This study proposes an effective AIGC quality assessment (QA) framework. First, we propose a hybrid prompt encoding method based on a dual-source CLIP (Contrastive Language-Image Pre-Training) text encoder to understand and respond to the prompt conditions. Second, we propose an ensemble-based feature mixer module to effectively blend the adapted prompt and vision features. The empirical study practices in two datasets: AIGIQA-20K (AI-Generated Image Quality Assessment database) and T2VQA-DB (Text-to-Video Quality Assessment DataBase), which validates the effectiveness of our proposed method: Prompt Condition Quality Assessment (PCQA). Our proposed simple and feasible framework may promote research development in the multimodal generation field.
Authors:Sai Sree Harsha, Ambareesh Revanur, Dhwanit Agarwal, Shradha Agrawal
Title: GenVideo: One-shot Target-image and Shape Aware Video Editing using T2I Diffusion Models
Abstract:
Video editing methods based on diffusion models that rely solely on a text prompt for the edit are hindered by the limited expressive power of text prompts. Thus, incorporating a reference target image as a visual guide becomes desirable for precise control over edit. Also, most existing methods struggle to accurately edit a video when the shape and size of the object in the target image differ from the source object. To address these challenges, we propose "GenVideo" for editing videos leveraging target-image aware T2I models. Our approach handles edits with target objects of varying shapes and sizes while maintaining the temporal consistency of the edit using our novel target and shape aware InvEdit masks. Further, we propose a novel target-image aware latent noise correction strategy during inference to improve the temporal consistency of the edits. Experimental analyses indicate that GenVideo can effectively handle edits with objects of varying shapes, where existing approaches fail.
Authors:Bekzat Tilekbay, Saelyne Yang, Michal Lewkowicz, Alex Suryapranata, Juho Kim
Title: ExpressEdit: Video Editing with Natural Language and Sketching
Abstract:
Informational videos serve as a crucial source for explaining conceptual and procedural knowledge to novices and experts alike. When producing informational videos, editors edit videos by overlaying text/images or trimming footage to enhance the video quality and make it more engaging. However, video editing can be difficult and time-consuming, especially for novice video editors who often struggle with expressing and implementing their editing ideas. To address this challenge, we first explored how multimodality$-$natural language (NL) and sketching, which are natural modalities humans use for expression$-$can be utilized to support video editors in expressing video editing ideas. We gathered 176 multimodal expressions of editing commands from 10 video editors, which revealed the patterns of use of NL and sketching in describing edit intents. Based on the findings, we present ExpressEdit, a system that enables editing videos via NL text and sketching on the video frame. Powered by LLM and vision models, the system interprets (1) temporal, (2) spatial, and (3) operational references in an NL command and spatial references from sketching. The system implements the interpreted edits, which then the user can iterate on. An observational study (N=10) showed that ExpressEdit enhanced the ability of novice video editors to express and implement their edit ideas. The system allowed participants to perform edits more efficiently and generate more ideas by generating edits based on user's multimodal edit commands and supporting iterations on the editing commands. This work offers insights into the design of future multimodal interfaces and AI-based pipelines for video editing.
Authors:Haoran Lang, Yuxuan Ge, Zheng Tian
Title: S2DM: Sector-Shaped Diffusion Models for Video Generation
Abstract:
Diffusion models have achieved great success in image generation. However, when leveraging this idea for video generation, we face significant challenges in maintaining the consistency and continuity across video frames. This is mainly caused by the lack of an effective framework to align frames of videos with desired temporal features while preserving consistent semantic and stochastic features. In this work, we propose a novel Sector-Shaped Diffusion Model (S2DM) whose sector-shaped diffusion region is formed by a set of ray-shaped reverse diffusion processes starting at the same noise point. S2DM can generate a group of intrinsically related data sharing the same semantic and stochastic features while varying on temporal features with appropriate guided conditions. We apply S2DM to video generation tasks, and explore the use of optical flow as temporal conditions. Our experimental results show that S2DM outperforms many existing methods in the task of video generation without any temporal-feature modelling modules. For text-to-video generation tasks where temporal conditions are not explicitly given, we propose a two-stage generation strategy which can decouple the generation of temporal features from semantic-content features. We show that, without additional training, our model integrated with another temporal conditions generative model can still achieve comparable performance with existing works. Our results can be viewd at https://s2dm.github.io/S2DM/.
Authors:Jiuniu Wang, Zehua Du, Yuyuan Zhao, Bo Yuan, Kexiang Wang, Jian Liang, Yaxi Zhao, Yihen Lu, Gengliang Li, Junlong Gao, Xin Tu, Zhenyu Guo
Title: AesopAgent: Agent-driven Evolutionary System on Story-to-Video Production
Abstract:
The Agent and AIGC (Artificial Intelligence Generated Content) technologies have recently made significant progress. We propose AesopAgent, an Agent-driven Evolutionary System on Story-to-Video Production. AesopAgent is a practical application of agent technology for multimodal content generation. The system integrates multiple generative capabilities within a unified framework, so that individual users can leverage these modules easily. This innovative system would convert user story proposals into scripts, images, and audio, and then integrate these multimodal contents into videos. Additionally, the animating units (e.g., Gen-2 and Sora) could make the videos more infectious. The AesopAgent system could orchestrate task workflow for video generation, ensuring that the generated video is both rich in content and coherent. This system mainly contains two layers, i.e., the Horizontal Layer and the Utility Layer. In the Horizontal Layer, we introduce a novel RAG-based evolutionary system that optimizes the whole video generation workflow and the steps within the workflow. It continuously evolves and iteratively optimizes workflow by accumulating expert experience and professional knowledge, including optimizing the LLM prompts and utilities usage. The Utility Layer provides multiple utilities, leading to consistent image generation that is visually coherent in terms of composition, characters, and style. Meanwhile, it provides audio and special effects, integrating them into expressive and logically arranged videos. Overall, our AesopAgent achieves state-of-the-art performance compared with many previous works in visual storytelling. Our AesopAgent is designed for convenient service for individual users, which is available on the following page: https://aesopai.github.io/.
Authors:Chaoyi Wang, Yaozhe Song, Yafeng Zhang, Jun Pei, Lijie Xia, Jianpo Liu
Title: Video Generation with Consistency Tuning
Abstract:
Currently, various studies have been exploring generation of long videos. However, the generated frames in these videos often exhibit jitter and noise. Therefore, in order to generate the videos without these noise, we propose a novel framework composed of four modules: separate tuning module, average fusion module, combined tuning module, and inter-frame consistency module. By applying our newly proposed modules subsequently, the consistency of the background and foreground in each video frames is optimized. Besides, the experimental results demonstrate that videos generated by our method exhibit a high quality in comparison of the state-of-the-art methods.
Authors:Antonino Greco, Markus Siegel
Title: A spatiotemporal style transfer algorithm for dynamic visual stimulus generation
Abstract:
Understanding how visual information is encoded in biological and artificial systems often requires vision scientists to generate appropriate stimuli to test specific hypotheses. Although deep neural network models have revolutionized the field of image generation with methods such as image style transfer, available methods for video generation are scarce. Here, we introduce the Spatiotemporal Style Transfer (STST) algorithm, a dynamic visual stimulus generation framework that allows powerful manipulation and synthesis of video stimuli for vision research. It is based on a two-stream deep neural network model that factorizes spatial and temporal features to generate dynamic visual stimuli whose model layer activations are matched to those of input videos. As an example, we show that our algorithm enables the generation of model metamers, dynamic stimuli whose layer activations within our two-stream model are matched to those of natural videos. We show that these generated stimuli match the low-level spatiotemporal features of their natural counterparts but lack their high-level semantic features, making it a powerful paradigm to study object recognition. Late layer activations in deep vision models exhibited a lower similarity between natural and metameric stimuli compared to early layers, confirming the lack of high-level information in the generated stimuli. Finally, we use our generated stimuli to probe the representational capabilities of predictive coding deep networks. These results showcase potential applications of our algorithm as a versatile tool for dynamic stimulus generation in vision science.
Authors:Chen Bai, Zeman Shao, Guoxiang Zhang, Di Liang, Jie Yang, Zhuorui Zhang, Yujian Guo, Chengzhang Zhong, Yiqiao Qiu, Zhendong Wang, Yichen Guan, Xiaoyin Zheng, Tao Wang, Cheng Lu
Title: Anything in Any Scene: Photorealistic Video Object Insertion
Abstract:
Realistic video simulation has shown significant potential across diverse applications, from virtual reality to film production. This is particularly true for scenarios where capturing videos in real-world settings is either impractical or expensive. Existing approaches in video simulation often fail to accurately model the lighting environment, represent the object geometry, or achieve high levels of photorealism. In this paper, we propose Anything in Any Scene, a novel and generic framework for realistic video simulation that seamlessly inserts any object into an existing dynamic video with a strong emphasis on physical realism. Our proposed general framework encompasses three key processes: 1) integrating a realistic object into a given scene video with proper placement to ensure geometric realism; 2) estimating the sky and environmental lighting distribution and simulating realistic shadows to enhance the light realism; 3) employing a style transfer network that refines the final video output to maximize photorealism. We experimentally demonstrate that Anything in Any Scene framework produces simulated videos of great geometric realism, lighting realism, and photorealism. By significantly mitigating the challenges associated with video data generation, our framework offers an efficient and cost-effective solution for acquiring high-quality videos. Furthermore, its applications extend well beyond video data augmentation, showing promising potential in virtual reality, video editing, and various other video-centric applications. Please check our project website https://anythinginanyscene.github.io for access to our project code and more high-resolution video results.
Authors:Partha Ghosh, Soubhik Sanyal, Cordelia Schmid, Bernhard Schölkopf
Title: RAVEN: Rethinking Adversarial Video Generation with Efficient Tri-plane Networks
Abstract:
We present a novel unconditional video generative model designed to address long-term spatial and temporal dependencies, with attention to computational and dataset efficiency. To capture long spatio-temporal dependencies, our approach incorporates a hybrid explicit-implicit tri-plane representation inspired by 3D-aware generative frameworks developed for three-dimensional object representation and employs a single latent code to model an entire video clip. Individual video frames are then synthesized from an intermediate tri-plane representation, which itself is derived from the primary latent code. This novel strategy more than halves the computational complexity measured in FLOPs compared to the most efficient state-of-the-art methods. Consequently, our approach facilitates the efficient and temporally coherent generation of videos. Moreover, our joint frame modeling approach, in contrast to autoregressive methods, mitigates the generation of visual artifacts. We further enhance the model's capabilities by integrating an optical flow-based module within our Generative Adversarial Network (GAN) based generator architecture, thereby compensating for the constraints imposed by a smaller generator size. As a result, our model synthesizes high-fidelity video clips at a resolution of $256\times256$ pixels, with durations extending to more than $5$ seconds at a frame rate of 30 fps. The efficacy and versatility of our approach are empirically validated through qualitative and quantitative assessments across three different datasets comprising both synthetic and real video clips. We will make our training and inference code public.
Authors:Shao-Yu Chang, Hwann-Tzong Chen, Tyng-Luh Liu
Title: DiffusionAtlas: High-Fidelity Consistent Diffusion Video Editing
Abstract:
We present a diffusion-based video editing framework, namely DiffusionAtlas, which can achieve both frame consistency and high fidelity in editing video object appearance. Despite the success in image editing, diffusion models still encounter significant hindrances when it comes to video editing due to the challenge of maintaining spatiotemporal consistency in the object's appearance across frames. On the other hand, atlas-based techniques allow propagating edits on the layered representations consistently back to frames. However, they often struggle to create editing effects that adhere correctly to the user-provided textual or visual conditions due to the limitation of editing the texture atlas on a fixed UV mapping field. Our method leverages a visual-textual diffusion model to edit objects directly on the diffusion atlases, ensuring coherent object identity across frames. We design a loss term with atlas-based constraints and build a pretrained text-driven diffusion model as pixel-wise guidance for refining shape distortions and correcting texture deviations. Qualitative and quantitative experiments show that our method outperforms state-of-the-art methods in achieving consistent high-fidelity video-object editing.
Authors:Jacob Zhiyuan Fang, Skyler Zheng, Vasu Sharma, Robinson Piramuthu
Title: E-ViLM: Efficient Video-Language Model via Masked Video Modeling with Semantic Vector-Quantized Tokenizer
Abstract:
To build scalable models for challenging real-world tasks, it is important to learn from diverse, multi-modal data in various forms (e.g., videos, text, and images). Among the existing works, a plethora of them have focused on leveraging large but cumbersome cross-modal architectures. Regardless of their effectiveness, larger architectures unavoidably prevent the models from being extended to real-world applications, so building a lightweight VL architecture and an efficient learning schema is of great practical value. In this paper, we propose an Efficient Video-Language Model (dubbed as E-ViLM) and a masked video modeling (MVM) schema, assisted with a semantic vector-quantized tokenizer. In particular, our E-ViLM learns to reconstruct the semantic labels of masked video regions, produced by the pre-trained vector-quantized tokenizer, which discretizes the continuous visual signals into labels. We show that with our simple MVM task and regular VL pre-training modelings, our E-ViLM, despite its compactness, is able to learn expressive representations from Video-Language corpus and generalize well to extensive Video-Language tasks including video question answering, text-to-video retrieval, etc. In particular, our E-ViLM obtains obvious efficiency improvements by reaching competing performances with faster inference speed, i.e., our model reaches $39.3$% Top-$1$ accuracy on the MSRVTT benchmark, retaining $91.4$% of the accuracy of state-of-the-art larger VL architecture with only $15%$ parameters and $94.8%$ fewer GFLOPs. We also provide extensive ablative studies that validate the effectiveness of our proposed learning schema for E-ViLM.
Authors:Cuifeng Shen, Yulu Gan, Chen Chen, Xiongwei Zhu, Lele Cheng, Tingting Gao, Jinzhi Wang
Title: Decouple Content and Motion for Conditional Image-to-Video Generation
Abstract:
The goal of conditional image-to-video (cI2V) generation is to create a believable new video by beginning with the condition, i.e., one image and text.The previous cI2V generation methods conventionally perform in RGB pixel space, with limitations in modeling motion consistency and visual continuity. Additionally, the efficiency of generating videos in pixel space is quite low.In this paper, we propose a novel approach to address these challenges by disentangling the target RGB pixels into two distinct components: spatial content and temporal motions. Specifically, we predict temporal motions which include motion vector and residual based on a 3D-UNet diffusion model. By explicitly modeling temporal motions and warping them to the starting image, we improve the temporal consistency of generated videos. This results in a reduction of spatial redundancy, emphasizing temporal details. Our proposed method achieves performance improvements by disentangling content and motion, all without introducing new structural complexities to the model. Extensive experiments on various datasets confirm our approach's superior performance over the majority of state-of-the-art methods in both effectiveness and efficiency.
Authors:Thanos Delatolas, Vicky Kalogeiton, Dim P. Papadopoulos
Title: Learning the What and How of Annotation in Video Object Segmentation
Abstract:
Video Object Segmentation (VOS) is crucial for several applications, from video editing to video data generation. Training a VOS model requires an abundance of manually labeled training videos. The de-facto traditional way of annotating objects requires humans to draw detailed segmentation masks on the target objects at each video frame. This annotation process, however, is tedious and time-consuming. To reduce this annotation cost, in this paper, we propose EVA-VOS, a human-in-the-loop annotation framework for video object segmentation. Unlike the traditional approach, we introduce an agent that predicts iteratively both which frame ("What") to annotate and which annotation type ("How") to use. Then, the annotator annotates only the selected frame that is used to update a VOS module, leading to significant gains in annotation time. We conduct experiments on the MOSE and the DAVIS datasets and we show that: (a) EVA-VOS leads to masks with accuracy close to the human agreement 3.5x faster than the standard way of annotating videos; (b) our frame selection achieves state-of-the-art performance; (c) EVA-VOS yields significant performance gains in terms of annotation time compared to all other methods and baselines.
Authors:Phi Nguyen Van, Duc Tran Minh, Hieu Pham Huy, Long Tran Quoc
Title: Echocardiography video synthesis from end diastolic semantic map via diffusion model
Abstract:
Denoising Diffusion Probabilistic Models (DDPMs) have demonstrated significant achievements in various image and video generation tasks, including the domain of medical imaging. However, generating echocardiography videos based on semantic anatomical information remains an unexplored area of research. This is mostly due to the constraints imposed by the currently available datasets, which lack sufficient scale and comprehensive frame-wise annotations for every cardiac cycle. This paper aims to tackle the aforementioned challenges by expanding upon existing video diffusion models for the purpose of cardiac video synthesis. More specifically, our focus lies in generating video using semantic maps of the initial frame during the cardiac cycle, commonly referred to as end diastole. To further improve the synthesis process, we integrate spatial adaptive normalization into multiscale feature maps. This enables the inclusion of semantic guidance during synthesis, resulting in enhanced realism and coherence of the resultant video sequences. Experiments are conducted on the CAMUS dataset, which is a highly used dataset in the field of echocardiography. Our model exhibits better performance compared to the standard diffusion technique in terms of multiple metrics, including FID, FVD, and SSMI.
Authors:Dongyeun Lee, Chaewon Kim, Sangjoon Yu, Jaejun Yoo, Gyeong-Moon Park
Title: RADIO: Reference-Agnostic Dubbing Video Synthesis
Abstract:
One of the most challenging problems in audio-driven talking head generation is achieving high-fidelity detail while ensuring precise synchronization. Given only a single reference image, extracting meaningful identity attributes becomes even more challenging, often causing the network to mirror the facial and lip structures too closely. To address these issues, we introduce RADIO, a framework engineered to yield high-quality dubbed videos regardless of the pose or expression in reference images. The key is to modulate the decoder layers using latent space composed of audio and reference features. Additionally, we incorporate ViT blocks into the decoder to emphasize high-fidelity details, especially in the lip region. Our experimental results demonstrate that RADIO displays high synchronization without the loss of fidelity. Especially in harsh scenarios where the reference frame deviates significantly from the ground truth, our method outperforms state-of-the-art methods, highlighting its robustness.
Authors:Sarah Ibrahimi, Xiaohang Sun, Pichao Wang, Amanmeet Garg, Ashutosh Sanan, Mohamed Omar
Title: Audio-Enhanced Text-to-Video Retrieval using Text-Conditioned Feature Alignment
Abstract:
Text-to-video retrieval systems have recently made significant progress by utilizing pre-trained models trained on large-scale image-text pairs. However, most of the latest methods primarily focus on the video modality while disregarding the audio signal for this task. Nevertheless, a recent advancement by ECLIPSE has improved long-range text-to-video retrieval by developing an audiovisual video representation. Nonetheless, the objective of the text-to-video retrieval task is to capture the complementary audio and video information that is pertinent to the text query rather than simply achieving better audio and video alignment. To address this issue, we introduce TEFAL, a TExt-conditioned Feature ALignment method that produces both audio and video representations conditioned on the text query. Instead of using only an audiovisual attention block, which could suppress the audio information relevant to the text query, our approach employs two independent cross-modal attention blocks that enable the text to attend to the audio and video representations separately. Our proposed method's efficacy is demonstrated on four benchmark datasets that include audio: MSR-VTT, LSMDC, VATEX, and Charades, and achieves better than state-of-the-art performance consistently across the four datasets. This is attributed to the additional text-query-conditioned audio representation and the complementary information it adds to the text-query-conditioned video representation.
Authors:Zhigang Chang, Weitai Hu, Qing Yang, Shibao Zheng
Title: Hierarchical Semantic Perceptual Listener Head Video Generation: A High-performance Pipeline
Abstract:
In dyadic speaker-listener interactions, the listener's head reactions along with the speaker's head movements, constitute an important non-verbal semantic expression together. The listener Head generation task aims to synthesize responsive listener's head videos based on audios of the speaker and reference images of the listener. Compared to the Talking-head generation, it is more challenging to capture the correlation clues from the speaker's audio and visual information. Following the ViCo baseline scheme, we propose a high-performance solution by enhancing the hierarchical semantic extraction capability of the audio encoder module and improving the decoder part, renderer and post-processing modules. Our solution gets the first place on the official leaderboard for the track of listening head generation. This paper is a technical report of ViCo@2023 Conversational Head Generation Challenge in ACM Multimedia 2023 conference.
Authors:Vivian Liu, Tao Long, Nathan Raw, Lydia Chilton
Title: Generative Disco: Text-to-Video Generation for Music Visualization
Abstract:
Visuals can enhance our experience of music, owing to the way they can amplify the emotions and messages conveyed within it. However, creating music visualization is a complex, time-consuming, and resource-intensive process. We introduce Generative Disco, a generative AI system that helps generate music visualizations with large language models and text-to-video generation. The system helps users visualize music in intervals by finding prompts to describe the images that intervals start and end on and interpolating between them to the beat of the music. We introduce design patterns for improving these generated videos: transitions, which express shifts in color, time, subject, or style, and holds, which help focus the video on subjects. A study with professionals showed that transitions and holds were a highly expressive framework that enabled them to build coherent visual narratives. We conclude on the generalizability of these patterns and the potential of generated video for creative professionals.
Authors:Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, Anastasis Germanidis
Title: Structure and Content-Guided Video Synthesis with Diffusion Models
Abstract:
Text-guided generative diffusion models unlock powerful image creation and editing tools. While these have been extended to video generation, current approaches that edit the content of existing footage while retaining structure require expensive re-training for every input or rely on error-prone propagation of image edits across frames. In this work, we present a structure and content-guided video diffusion model that edits videos based on visual or textual descriptions of the desired output. Conflicts between user-provided content edits and structure representations occur due to insufficient disentanglement between the two aspects. As a solution, we show that training on monocular depth estimates with varying levels of detail provides control over structure and content fidelity. Our model is trained jointly on images and videos which also exposes explicit control of temporal consistency through a novel guidance method. Our experiments demonstrate a wide variety of successes; fine-grained control over output characteristics, customization based on a few reference images, and a strong user preference towards results by our model.
Authors:Chengmin Gao, Bin Li
Title: Time-Conditioned Generative Modeling of Object-Centric Representations for Video Decomposition and Prediction
Abstract:
When perceiving the world from multiple viewpoints, humans have the ability to reason about the complete objects in a compositional manner even when an object is completely occluded from certain viewpoints. Meanwhile, humans are able to imagine novel views after observing multiple viewpoints. Recent remarkable advances in multi-view object-centric learning still leaves some unresolved problems: 1) The shapes of partially or completely occluded objects can not be well reconstructed. 2) The novel viewpoint prediction depends on expensive viewpoint annotations rather than implicit rules in view representations. In this paper, we introduce a time-conditioned generative model for videos. To reconstruct the complete shape of an object accurately, we enhance the disentanglement between the latent representations of objects and views, where the latent representations of time-conditioned views are jointly inferred with a Transformer and then are input to a sequential extension of Slot Attention to learn object-centric representations. In addition, Gaussian processes are employed as priors of view latent variables for video generation and novel-view prediction without viewpoint annotations. Experiments on multiple datasets demonstrate that the proposed model can make object-centric video decomposition, reconstruct the complete shapes of occluded objects, and make novel-view predictions.
Authors:Prakhar Mishra, Chaitali Diwan, Srinath Srinivasa, G. Srinivasaraghavan
Title: AI based approach to Trailer Generation for Online Educational Courses
Abstract:
In this paper, we propose an AI based approach to Trailer Generation in the form of short videos for online educational courses. Trailers give an overview of the course to the learners and help them make an informed choice about the courses they want to learn. It also helps to generate curiosity and interest among the learners and encourages them to pursue a course. While it is possible to manually generate the trailers, it requires extensive human efforts and skills over a broad spectrum of design, span selection, video editing, domain knowledge, etc., thus making it time-consuming and expensive, especially in an academic setting. The framework we propose in this work is a template based method for video trailer generation, where most of the textual content of the trailer is auto-generated and the trailer video is automatically generated, by leveraging Machine Learning and Natural Language Processing techniques. The proposed trailer is in the form of a timeline consisting of various fragments created by selecting, para-phrasing or generating content using various proposed techniques. The fragments are further enhanced by adding voice-over text, subtitles, animations, etc., to create a holistic experience. Finally, we perform user evaluation with 63 human evaluators for evaluating the trailers generated by our system and the results obtained were encouraging.
Authors:Julien Delavande, Regis Pierrard, Sasha Luccioni
Title: Video Killed the Energy Budget: Characterizing the Latency and Power Regimes of Open Text-to-Video Models
Abstract:
Recent advances in text-to-video (T2V) generation have enabled the creation of high-fidelity, temporally coherent clips from natural language prompts. Yet these systems come with significant computational costs, and their energy demands remain poorly understood. In this paper, we present a systematic study of the latency and energy consumption of state-of-the-art open-source T2V models. We first develop a compute-bound analytical model that predicts scaling laws with respect to spatial resolution, temporal length, and denoising steps. We then validate these predictions through fine-grained experiments on WAN2.1-T2V, showing quadratic growth with spatial and temporal dimensions, and linear scaling with the number of denoising steps. Finally, we extend our analysis to six diverse T2V models, comparing their runtime and energy profiles under default settings. Our results provide both a benchmark reference and practical insights for designing and deploying more sustainable generative video systems.
Authors:Yuchen Deng, Xiuyang Wu, Hai-Tao Zheng, Suiyang Zhang, Yi He, Yuxing Han
Title: AvatarSync: Rethinking Talking-Head Animation through Autoregressive Perspective
Abstract:
Existing talking-head animation approaches based on Generative Adversarial Networks (GANs) or diffusion models often suffer from inter-frame flicker, identity drift, and slow inference. These limitations inherent to their video generation pipelines restrict their suitability for applications. To address this, we introduce AvatarSync, an autoregressive framework on phoneme representations that generates realistic and controllable talking-head animations from a single reference image, driven directly text or audio input. In addition, AvatarSync adopts a two-stage generation strategy, decoupling semantic modeling from visual dynamics, which is a deliberate "Divide and Conquer" design. The first stage, Facial Keyframe Generation (FKG), focuses on phoneme-level semantic representation by leveraging the many-to-one mapping from text or audio to phonemes. A Phoneme-to-Visual Mapping is constructed to anchor abstract phonemes to character-level units. Combined with a customized Text-Frame Causal Attention Mask, the keyframes are generated. The second stage, inter-frame interpolation, emphasizes temporal coherence and visual smoothness. We introduce a timestamp-aware adaptive strategy based on a selective state space model, enabling efficient bidirectional context reasoning. To support deployment, we optimize the inference pipeline to reduce latency without compromising visual fidelity. Extensive experiments show that AvatarSync outperforms existing talking-head animation methods in visual fidelity, temporal consistency, and computational efficiency, providing a scalable and controllable solution.
Authors:Adam Cole, Mick Grierson
Title: Attention of a Kiss: Exploring Attention Maps in Video Diffusion for XAIxArts
Abstract:
This paper presents an artistic and technical investigation into the attention mechanisms of video diffusion transformers. Inspired by early video artists who manipulated analog video signals to create new visual aesthetics, this study proposes a method for extracting and visualizing cross-attention maps in generative video models. Built on the open-source Wan model, our tool provides an interpretable window into the temporal and spatial behavior of attention in text-to-video generation. Through exploratory probes and an artistic case study, we examine the potential of attention maps as both analytical tools and raw artistic material. This work contributes to the growing field of Explainable AI for the Arts (XAIxArts), inviting artists to reclaim the inner workings of AI as a creative medium.
Authors:Jingxing Fan, Jinrong Shen, Yusheng Yao, Shuangqing Wang, Qian Wang, Yuling Wang
Title: Communicative Agents for Slideshow Storytelling Video Generation based on LLMs
Abstract:
With the rapid advancement of artificial intelligence (AI), the proliferation of AI-generated content (AIGC) tasks has significantly accelerated developments in text-to-video generation. As a result, the field of video production is undergoing a transformative shift. However, conventional text-to-video models are typically constrained by high computational costs. In this study, we propose Video-Generation-Team (VGTeam), a novel slide show video generation system designed to redefine the video creation pipeline through the integration of large language models (LLMs). VGTeam is composed of a suite of communicative agents, each responsible for a distinct aspect of video generation, such as scriptwriting, scene creation, and audio design. These agents operate collaboratively within a chat tower workflow, transforming user-provided textual prompts into coherent, slide-style narrative videos. By emulating the sequential stages of traditional video production, VGTeam achieves remarkable improvements in both efficiency and scalability, while substantially reducing computational overhead. On average, the system generates videos at a cost of only $0.103, with a successful generation rate of 98.4%. Importantly, this framework maintains a high degree of creative fidelity and customization. The implications of VGTeam are far-reaching. It democratizes video production by enabling broader access to high-quality content creation without the need for extensive resources. Furthermore, it highlights the transformative potential of language models in creative domains and positions VGTeam as a pioneering system for next-generation content creation.
Authors:Youping Gu, Xiaolong Li, Yuhao Hu, Bohan Zhuang
Title: Video-BLADE: Block-Sparse Attention Meets Step Distillation for Efficient Video Generation
Abstract:
Diffusion transformers currently lead the field in high-quality video generation, but their slow iterative denoising process and prohibitive quadratic attention costs for long sequences create significant inference bottlenecks. While both step distillation and sparse attention mechanisms have shown promise as independent acceleration strategies, effectively combining these approaches presents critical challenges -- training-free integration yields suboptimal results, while separately training sparse attention after step distillation requires prohibitively expensive high-quality video data. To overcome these limitations, we propose BLADE, an innovative data-free joint training framework that introduces: (1) an Adaptive Block-Sparse Attention (ASA) mechanism for dynamically generating content-aware sparsity masks to focus computation on salient spatiotemporal features, and (2) a sparsity-aware step distillation paradigm built upon Trajectory Distribution Matching (TDM) that directly incorporates sparsity into the distillation process rather than treating it as a separate compression step, with fast convergence. We validate BLADE on text-to-video models like CogVideoX-5B and Wan2.1-1.3B. Our framework demonstrates remarkable efficiency gains across different scales. On Wan2.1-1.3B, BLADE achieves a 14.10x end-to-end inference acceleration over a 50-step baseline. Moreover, on models such as CogVideoX-5B with short video sequence lengths, our framework delivers a robust 8.89x speedup. Crucially, the acceleration is accompanied by a consistent quality improvement. On the VBench-2.0 benchmark, BLADE boosts the score of CogVideoX-5B to 0.569 (from 0.534) and Wan2.1-1.3B to 0.570 (from 0.563), results that are further corroborated by superior ratings in human evaluations. Our code and model weights are publicly available at: http://ziplab.co/BLADE-Homepage/.
Authors:Zhentao Fan, Zongzuo Wang, Weiwei Zhang
Title: TaoCache: Structure-Maintained Video Generation Acceleration
Abstract:
Existing cache-based acceleration methods for video diffusion models primarily skip early or mid denoising steps, which often leads to structural discrepancies relative to full-timestep generation and can hinder instruction following and character consistency. We present TaoCache, a training-free, plug-and-play caching strategy that, instead of residual-based caching, adopts a fixed-point perspective to predict the model's noise output and is specifically effective in late denoising stages. By calibrating cosine similarities and norm ratios of consecutive noise deltas, TaoCache preserves high-resolution structure while enabling aggressive skipping. The approach is orthogonal to complementary accelerations such as Pyramid Attention Broadcast (PAB) and TeaCache, and it integrates seamlessly into DiT-based frameworks. Across Latte-1, OpenSora-Plan v110, and Wan2.1, TaoCache attains substantially higher visual quality (LPIPS, SSIM, PSNR) than prior caching methods under the same speedups.
Authors:Xiaoyan Liu, Kangrui Li, Jiaxin Liu
Title: Dream4D: Lifting Camera-Controlled I2V towards Spatiotemporally Consistent 4D Generation
Abstract:
The synthesis of spatiotemporally coherent 4D content presents fundamental challenges in computer vision, requiring simultaneous modeling of high-fidelity spatial representations and physically plausible temporal dynamics. Current approaches often struggle to maintain view consistency while handling complex scene dynamics, particularly in large-scale environments with multiple interacting elements. This work introduces Dream4D, a novel framework that bridges this gap through a synergy of controllable video generation and neural 4D reconstruction. Our approach seamlessly combines a two-stage architecture: it first predicts optimal camera trajectories from a single image using few-shot learning, then generates geometrically consistent multi-view sequences via a specialized pose-conditioned diffusion process, which are finally converted into a persistent 4D representation. This framework is the first to leverage both rich temporal priors from video diffusion models and geometric awareness of the reconstruction models, which significantly facilitates 4D generation and shows higher quality (e.g., mPSNR, mSSIM) over existing methods.
Authors:Jingxuan He, Busheng Su, Finn Wong
Title: PoseGen: In-Context LoRA Finetuning for Pose-Controllable Long Human Video Generation
Abstract:
Generating long, temporally coherent videos with precise control over subject identity and motion is a formidable challenge for current diffusion models, which often suffer from identity drift and are limited to short clips. We introduce PoseGen, a novel framework that generates arbitrarily long videos of a specific subject from a single reference image and a driving pose sequence. Our core innovation is an in-context LoRA finetuning strategy that injects subject appearance at the token level for identity preservation, while simultaneously conditioning on pose information at the channel level for fine-grained motion control. To overcome duration limits, PoseGen pioneers an interleaved segment generation method that seamlessly stitches video clips together, using a shared KV cache mechanism and a specialized transition process to ensure background consistency and temporal smoothness. Trained on a remarkably small 33-hour video dataset, extensive experiments show that PoseGen significantly outperforms state-of-the-art methods in identity fidelity, pose accuracy, and its unique ability to produce coherent, artifact-free videos of unlimited duration.
Authors:Xi Xue, Kunio Suzuki, Nabarun Goswami, Takuya Shintate
Title: Video Forgery Detection with Optical Flow Residuals and Spatial-Temporal Consistency
Abstract:
The rapid advancement of diffusion-based video generation models has led to increasingly realistic synthetic content, presenting new challenges for video forgery detection. Existing methods often struggle to capture fine-grained temporal inconsistencies, particularly in AI-generated videos with high visual fidelity and coherent motion. In this work, we propose a detection framework that leverages spatial-temporal consistency by combining RGB appearance features with optical flow residuals. The model adopts a dual-branch architecture, where one branch analyzes RGB frames to detect appearance-level artifacts, while the other processes flow residuals to reveal subtle motion anomalies caused by imperfect temporal synthesis. By integrating these complementary features, the proposed method effectively detects a wide range of forged videos. Extensive experiments on text-to-video and image-to-video tasks across ten diverse generative models demonstrate the robustness and strong generalization ability of the proposed approach.
Authors:Akshat Rakheja, Aarsh Ashdhir, Aryan Bhattacharjee, Vanshika Sharma
Title: World Consistency Score: A Unified Metric for Video Generation Quality
Abstract:
We introduce World Consistency Score (WCS), a novel unified evaluation metric for generative video models that emphasizes internal world consistency of the generated videos. WCS integrates four interpretable sub-components - object permanence, relation stability, causal compliance, and flicker penalty - each measuring a distinct aspect of temporal and physical coherence in a video. These submetrics are combined via a learned weighted formula to produce a single consistency score that aligns with human judgments. We detail the motivation for WCS in the context of existing video evaluation metrics, formalize each submetric and how it is computed with open-source tools (trackers, action recognizers, CLIP embeddings, optical flow), and describe how the weights of the WCS combination are trained using human preference data. We also outline an experimental validation blueprint: using benchmarks like VBench-2.0, EvalCrafter, and LOVE to test WCS's correlation with human evaluations, performing sensitivity analyses, and comparing WCS against established metrics (FVD, CLIPScore, VBench, FVMD). The proposed WCS offers a comprehensive and interpretable framework for evaluating video generation models on their ability to maintain a coherent "world" over time, addressing gaps left by prior metrics focused only on visual fidelity or prompt alignment.
Authors:Elham Soltani Kazemi, Imad Eddine Toubal, Gani Rahmon, Jaired Collins, K. Palaniappan
Title: HQ-SMem: Video Segmentation and Tracking Using Memory Efficient Object Embedding With Selective Update and Self-Supervised Distillation Feedback
Abstract:
Video Object Segmentation (VOS) is foundational to numerous computer vision applications, including surveillance, autonomous driving, robotics and generative video editing. However, existing VOS models often struggle with precise mask delineation, deformable objects, topologically transforming objects, tracking drift and long video sequences. In this paper, we introduce HQ-SMem, for High Quality video segmentation and tracking using Smart Memory, a novel method that enhances the performance of VOS base models by addressing these limitations. Our approach incorporates three key innovations: (i) leveraging SAM with High-Quality masks (SAM-HQ) alongside appearance-based candidate-selection to refine coarse segmentation masks, resulting in improved object boundaries; (ii) implementing a dynamic smart memory mechanism that selectively stores relevant key frames while discarding redundant ones, thereby optimizing memory usage and processing efficiency for long-term videos; and (iii) dynamically updating the appearance model to effectively handle complex topological object variations and reduce drift throughout the video. These contributions mitigate several limitations of existing VOS models including, coarse segmentations that mix-in background pixels, fixed memory update schedules, brittleness to drift and occlusions, and prompt ambiguity issues associated with SAM. Extensive experiments conducted on multiple public datasets and state-of-the-art base trackers demonstrate that our method consistently ranks among the top two on VOTS and VOTSt 2024 datasets. Moreover, HQ-SMem sets new benchmarks on Long Video Dataset and LVOS, showcasing its effectiveness in challenging scenarios characterized by complex multi-object dynamics over extended temporal durations.
Authors:Hanwen Shen, Jiajie Lu, Yupeng Cao, Xiaonan Yang
Title: Enhancing Scene Transition Awareness in Video Generation via Post-Training
Abstract:
Recent advances in AI-generated video have shown strong performance on \emph{text-to-video} tasks, particularly for short clips depicting a single scene. However, current models struggle to generate longer videos with coherent scene transitions, primarily because they cannot infer when a transition is needed from the prompt. Most open-source models are trained on datasets consisting of single-scene video clips, which limits their capacity to learn and respond to prompts requiring multiple scenes. Developing scene transition awareness is essential for multi-scene generation, as it allows models to identify and segment videos into distinct clips by accurately detecting transitions. To address this, we propose the \textbf{Transition-Aware Video} (TAV) dataset, which consists of preprocessed video clips with multiple scene transitions. Our experiment shows that post-training on the \textbf{TAV} dataset improves prompt-based scene transition understanding, narrows the gap between required and generated scenes, and maintains image quality.
Authors:Justin D. Norman, Hany Farid
Title: Detecting Deepfake Talking Heads from Facial Biometric Anomalies
Abstract:
The combination of highly realistic voice cloning, along with visually compelling avatar, face-swap, or lip-sync deepfake video generation, makes it relatively easy to create a video of anyone saying anything. Today, such deepfake impersonations are often used to power frauds, scams, and political disinformation. We propose a novel forensic machine learning technique for the detection of deepfake video impersonations that leverages unnatural patterns in facial biometrics. We evaluate this technique across a large dataset of deepfake techniques and impersonations, as well as assess its reliability to video laundering and its generalization to previously unseen video deepfake generators.
Authors:Zishen Huang, Chunyu Yang, Mengyuan Ren
Title: PromptTea: Let Prompts Tell TeaCache the Optimal Threshold
Abstract:
Despite recent progress in video generation, inference speed remains a major bottleneck. A common acceleration strategy involves reusing model outputs via caching mechanisms at fixed intervals. However, we find that such fixed-frequency reuse significantly degrades quality in complex scenes, while manually tuning reuse thresholds is inefficient and lacks robustness. To address this, we propose Prompt-Complexity-Aware (PCA) caching, a method that automatically adjusts reuse thresholds based on scene complexity estimated directly from the input prompt. By incorporating prompt-derived semantic cues, PCA enables more adaptive and informed reuse decisions than conventional caching methods. We also revisit the assumptions behind TeaCache and identify a key limitation: it suffers from poor input-output relationship modeling due to an oversimplified prior. To overcome this, we decouple the noisy input, enhance the contribution of meaningful textual information, and improve the model's predictive accuracy through multivariate polynomial feature expansion. To further reduce computational cost, we replace the static CFGCache with DynCFGCache, a dynamic mechanism that selectively reuses classifier-free guidance (CFG) outputs based on estimated output variations. This allows for more flexible reuse without compromising output quality. Extensive experiments demonstrate that our approach achieves significant acceleration-for example, 2.79x speedup on the Wan2.1 model-while maintaining high visual fidelity across a range of scenes.
Authors:Sridhar S, Nithin A, Shakeel Rifath, Vasantha Raj
Title: Multimodal Cinematic Video Synthesis Using Text-to-Image and Audio Generation Models
Abstract:
Advances in generative artificial intelligence have altered multimedia creation, allowing for automatic cinematic video synthesis from text inputs. This work describes a method for creating 60-second cinematic movies incorporating Stable Diffusion for high-fidelity image synthesis, GPT-2 for narrative structuring, and a hybrid audio pipeline using gTTS and YouTube-sourced music. It uses a five-scene framework, which is augmented by linear frame interpolation, cinematic post-processing (e.g., sharpening), and audio-video synchronization to provide professional-quality results. It was created in a GPU-accelerated Google Colab environment using Python 3.11. It has a dual-mode Gradio interface (Simple and Advanced), which supports resolutions of up to 1024x768 and frame rates of 15-30 FPS. Optimizations such as CUDA memory management and error handling ensure reliability. The experiments demonstrate outstanding visual quality, narrative coherence, and efficiency, furthering text-to-video synthesis for creative, educational, and industrial applications.
Authors:Yuxuan Li, Sheng Jinag, Bizhu Wang
Title: Semantic Communication-Enabled Cloud-Edge-End-collaborative Metaverse Services Architecure
Abstract:
With technology advancing and the pursuit of new audiovisual experiences strengthening, the metaverse has gained surging enthusiasm. However, it faces practical hurdles as substantial data like high-resolution virtual scenes must be transmitted between cloud platforms and VR devices. Specifically, the VR device's wireless transmission hampered by insufficient bandwidth, causes speed and delay problems. Meanwhile, poor channel quality leads to data errors and worsens user experience. To solve this, we've proposed the Semantic Communication-Enabled Cloud-Edge-End Collaborative Immersive Metaverse Service (SC-CEE-Meta) Architecture, which includes three modules: VR video semantic transmission, video synthesis, and 3D virtual scene reconstruction. By deploying semantic modules on VR devices and edge servers and sending key semantic info instead of focusing on bit-level reconstruction, it can cut latency, resolve the resource-bandwidth conflict, and better withstand channel interference. Also, the cloud deploys video synthesis and 3D scene reconstruction preprocessing, while edge devices host 3D reconstruction rendering modules, all for immersive services. Verified on Meta Quest Pro, the SC-CEE-Meta can reduce wireless transmission delay by 96.05\% and boost image quality by 43.99\% under poor channel condition.
Authors:Aditi Sundararaman, Amogh Adishesha, Andrew Jaegle, Dan Bigioi, Hyoung-Kyu Song, Jon Kyl, Justin Mao, Kevin Lan, Mojtaba Komeili, ShahRukh Athar, Sheila Babayan, Stanislau Beliasau, William Buchwalter
Title: Seeing Voices: Generating A-Roll Video from Audio with Mirage
Abstract:
From professional filmmaking to user-generated content, creators and consumers have long recognized that the power of video depends on the harmonious integration of what we hear (the video's audio track) with what we see (the video's image sequence). Current approaches to video generation either ignore sound to focus on general-purpose but silent image sequence generation or address both visual and audio elements but focus on restricted application domains such as re-dubbing. We introduce Mirage, an audio-to-video foundation model that excels at generating realistic, expressive output imagery from scratch given an audio input. When integrated with existing methods for speech synthesis (text-to-speech, or TTS), Mirage results in compelling multimodal video. When trained on audio-video footage of people talking (A-roll) and conditioned on audio containing speech, Mirage generates video of people delivering a believable interpretation of the performance implicit in input audio. Our central technical contribution is a unified method for training self-attention-based audio-to-video generation models, either from scratch or given existing weights. This methodology allows Mirage to retain generality as an approach to audio-to-video generation while producing outputs of superior subjective quality to methods that incorporate audio-specific architectures or loss components specific to people, speech, or details of how images or audio are captured. We encourage readers to watch and listen to the results of Mirage for themselves (see paper and comments for links).
Authors:Boris Martirosyan, Alexey Karmanov
Title: Evaluating Robustness in Latent Diffusion Models via Embedding Level Augmentation
Abstract:
Latent diffusion models (LDMs) achieve state-of-the-art performance across various tasks, including image generation and video synthesis. However, they generally lack robustness, a limitation that remains not fully explored in current research. In this paper, we propose several methods to address this gap. First, we hypothesize that the robustness of LDMs primarily should be measured without their text encoder, because if we take and explore the whole architecture, the problems of image generator and text encoders wll be fused. Second, we introduce novel data augmentation techniques designed to reveal robustness shortcomings in LDMs when processing diverse textual prompts. We then fine-tune Stable Diffusion 3 and Stable Diffusion XL models using Dreambooth, incorporating these proposed augmentation methods across multiple tasks. Finally, we propose a novel evaluation pipeline specifically tailored to assess the robustness of LDMs fine-tuned via Dreambooth.
Authors:Eunhye Grace Ko, Soo Hyoung Joo
Title: (AI peers) are people learning from the same standpoint: Perception of AI characters in a Collaborative Science Investigation
Abstract:
While the complexity of 21st-century demands has promoted pedagogical approaches to foster complex competencies, a persistent gap remains between in-class learning activities and individualized learning or assessment practices. To address this, studies have explored the use of AI-generated characters in learning and assessment. One attempt is scenario-based assessment (SBA), a technique that not only measures but also fosters the development of competencies throughout the assessment process. SBA introduces simulated agents to provide an authentic social-interactional context, allowing for the assessment of competency-based constructs while mitigating the unpredictability of real-life interactions. Recent advancements in multimodal AI, such as text-to-video technology, allow these agents to be enhanced into AI-generated characters. This mixed-method study investigates how learners perceive AI characters taking the role of mentor and teammates in an SBA mirroring the context of a collaborative science investigation. Specifically, we examined the Likert scale responses of 56 high schoolers regarding trust, social presence, and effectiveness. We analyzed the relationships between these factors and their impact on the intention to adopt AI characters through PLS-SEM. Our findings indicated that learners' trust shaped their sense of social presence with the AI characters, enhancing perceived effectiveness. Qualitative analysis further highlighted factors that foster trust, such as material credibility and alignment with learning goals, as well as the pivotal role of social presence in creating a collaborative context. This paper was accepted as an full paper for AIED 2025.
Authors:Austin Silveria, Soham V. Govande, Daniel Y. Fu
Title: Chipmunk: Training-Free Acceleration of Diffusion Transformers with Dynamic Column-Sparse Deltas
Abstract:
Diffusion Transformers (DiTs) have achieved state-of-the-art performance in high-quality image and video generation but incur substantial compute cost at inference. A common observation is that DiT latent noise vectors change slowly across inference steps, which suggests that the DiT compute may be redundant across steps. In this paper, we aim to speed up inference by reducing this redundancy, without additional training. We first study how activations change between steps in two state-of-the-art open-source DiTs. We find that just 5-25% of the values in attention and MLP explain 70-90% of the change in activations across steps. This finding motivates our approach, Chipmunk, which uses dynamic sparsity at inference time to recompute only the fastest-changing intermediate activations, while caching the rest. Dynamic sparsity introduces two systems challenges: (1) sparse attention and MLP operations tend to underutilize GPU tensor cores; and (2) computing dynamic sparsity patterns at runtime and caching activations both introduce overhead. To address these challenges, Chipmunk first uses a voxel-based reordering of input tokens to introduce column-wise sparsity. We implement column-sparse kernels utilizing efficient sparse gathers from global to shared GPU memory, achieving a 9.3x speedup at 93% sparsity compared to highly-optimized dense baselines. Second, Chipmunk overlaps the computation of sparsity patterns and cache updates with other parts of the computation (e.g., second layer of the MLP) to hide the extra latency. Chipmunk achieves up to 2.16x speedup on HunyuanVideo and 1.41x on FLUX.1-dev without compromising generation quality. Furthermore, we show that Chipmunk can be stacked on top of full step caching, achieving a 3.72x speedup on HunyuanVideo, a 2.67x speedup on WAN2.1, and a 2.25x speedup on FLUX.1-dev with minimal quality impact.
Authors:Ishaan Rawal, Suryansh Kumar
Title: Interactive Video Generation via Domain Adaptation
Abstract:
Text-conditioned diffusion models have emerged as powerful tools for high-quality video generation. However, enabling Interactive Video Generation (IVG), where users control motion elements such as object trajectory, remains challenging. Recent training-free approaches introduce attention masking to guide trajectory, but this often degrades perceptual quality. We identify two key failure modes in these methods, both of which we interpret as domain shift problems, and propose solutions inspired by domain adaptation. First, we attribute the perceptual degradation to internal covariate shift induced by attention masking, as pretrained models are not trained to handle masked attention. To address this, we propose mask normalization, a pre-normalization layer designed to mitigate this shift via distribution matching. Second, we address initialization gap, where the randomly sampled initial noise does not align with IVG conditioning, by introducing a temporal intrinsic diffusion prior that enforces spatio-temporal consistency at each denoising step. Extensive qualitative and quantitative evaluations demonstrate that mask normalization and temporal intrinsic denoising improve both perceptual quality and trajectory control over the existing state-of-the-art IVG techniques.
Authors:Binyamin Manela, Sharon Gannot, Ethan Fetyaya
Title: Video Editing for Audio-Visual Dubbing
Abstract:
Visual dubbing, the synchronization of facial movements with new speech, is crucial for making content accessible across different languages, enabling broader global reach. However, current methods face significant limitations. Existing approaches often generate talking faces, hindering seamless integration into original scenes, or employ inpainting techniques that discard vital visual information like partial occlusions and lighting variations. This work introduces EdiDub, a novel framework that reformulates visual dubbing as a content-aware editing task. EdiDub preserves the original video context by utilizing a specialized conditioning scheme to ensure faithful and accurate modifications rather than mere copying. On multiple benchmarks, including a challenging occluded-lip dataset, EdiDub significantly improves identity preservation and synchronization. Human evaluations further confirm its superiority, achieving higher synchronization and visual naturalness scores compared to the leading methods. These results demonstrate that our content-aware editing approach outperforms traditional generation or inpainting, particularly in maintaining complex visual elements while ensuring accurate lip synchronization.
Authors:Michal Podstawski, Malgorzata Kudelska, Haohong Wang
Title: Face Consistency Benchmark for GenAI Video
Abstract:
Video generation driven by artificial intelligence has advanced significantly, enabling the creation of dynamic and realistic content. However, maintaining character consistency across video sequences remains a major challenge, with current models struggling to ensure coherence in appearance and attributes. This paper introduces the Face Consistency Benchmark (FCB), a framework for evaluating and comparing the consistency of characters in AI-generated videos. By providing standardized metrics, the benchmark highlights gaps in existing solutions and promotes the development of more reliable approaches. This work represents a crucial step toward improving character consistency in AI video generation technologies.
Authors:Rui-Yang Ju, Sheng-Yen Huang, Yi-Ping Hung
Title: ToonifyGB: StyleGAN-based Gaussian Blendshapes for 3D Stylized Head Avatars
Abstract:
The introduction of 3D Gaussian blendshapes has enabled the real-time reconstruction of animatable head avatars from monocular video. Toonify, a StyleGAN-based method, has become widely used for facial image stylization. To extend Toonify for synthesizing diverse stylized 3D head avatars using Gaussian blendshapes, we propose an efficient two-stage framework, ToonifyGB. In Stage 1 (stylized video generation), we adopt an improved StyleGAN to generate the stylized video from the input video frames, which overcomes the limitation of cropping aligned faces at a fixed resolution as preprocessing for normal StyleGAN. This process provides a more stable stylized video, which enables Gaussian blendshapes to better capture the high-frequency details of the video frames, facilitating the synthesis of high-quality animations in the next stage. In Stage 2 (Gaussian blendshapes synthesis), our method learns a stylized neutral head model and a set of expression blendshapes from the generated stylized video. By combining the neutral head model with expression blendshapes, ToonifyGB can efficiently render stylized avatars with arbitrary expressions. We validate the effectiveness of ToonifyGB on benchmark datasets using two representative styles: Arcane and Pixar.
Authors:Junhao Xia, Chaoyang Zhang, Yecheng Zhang, Chengyang Zhou, Zhichang Wang, Bochun Liu, Dongshuo Yin
Title: DAPE: Dual-Stage Parameter-Efficient Fine-Tuning for Consistent Video Editing with Diffusion Models
Abstract:
Video generation based on diffusion models presents a challenging multimodal task, with video editing emerging as a pivotal direction in this field. Recent video editing approaches primarily fall into two categories: training-required and training-free methods. While training-based methods incur high computational costs, training-free alternatives often yield suboptimal performance. To address these limitations, we propose DAPE, a high-quality yet cost-effective two-stage parameter-efficient fine-tuning (PEFT) framework for video editing. In the first stage, we design an efficient norm-tuning method to enhance temporal consistency in generated videos. The second stage introduces a vision-friendly adapter to improve visual quality. Additionally, we identify critical shortcomings in existing benchmarks, including limited category diversity, imbalanced object distribution, and inconsistent frame counts. To mitigate these issues, we curate a large dataset benchmark comprising 232 videos with rich annotations and 6 editing prompts, enabling objective and comprehensive evaluation of advanced methods. Extensive experiments on existing datasets (BalanceCC, LOVEU-TGVE, RAVE) and our proposed benchmark demonstrate that DAPE significantly improves temporal coherence and text-video alignment while outperforming previous state-of-the-art approaches.
Authors:S. Z. Zhou, Y. B. Wang, J. F. Wu, T. Hu, J. N. Zhang
Title: A Unit Enhancement and Guidance Framework for Audio-Driven Avatar Video Generation
Abstract:
Audio-driven human animation technology is widely used in human-computer interaction, and the emergence of diffusion models has further advanced its development. Currently, most methods rely on multi-stage generation and intermediate representations, resulting in long inference time and issues with generation quality in specific foreground regions and audio-motion consistency. These shortcomings are primarily due to the lack of localized fine-grained supervised guidance. To address above challenges, we propose Parts-aware Audio-driven Human Animation, PAHA, a unit enhancement and guidance framework for audio-driven upper-body animation. We introduce two key methods: Parts-Aware Re-weighting (PAR) and Parts Consistency Enhancement (PCE). PAR dynamically adjusts regional training loss weights based on pose confidence scores, effectively improving visual quality. PCE constructs and trains diffusion-based regional audio-visual classifiers to improve the consistency of motion and co-speech audio. Afterwards, we design two novel inference guidance methods for the foregoing classifiers, Sequential Guidance (SG) and Differential Guidance (DG), to balance efficiency and quality respectively. Additionally, we build CNAS, the first public Chinese News Anchor Speech dataset, to advance research and validation in this field. Extensive experimental results and user studies demonstrate that PAHA significantly outperforms existing methods in audio-motion alignment and video-related evaluations. The codes and CNAS dataset will be released upon acceptance.
Authors:Yeonsang Shin, Jihwan Kim, Yumin Song, Kyungseung Lee, Hyunhee Chung, Taeyoung Na
Title: Generating Animated Layouts as Structured Text Representations
Abstract:
Despite the remarkable progress in text-to-video models, achieving precise control over text elements and animated graphics remains a significant challenge, especially in applications such as video advertisements. To address this limitation, we introduce Animated Layout Generation, a novel approach to extend static graphic layouts with temporal dynamics. We propose a Structured Text Representation for fine-grained video control through hierarchical visual elements. To demonstrate the effectiveness of our approach, we present VAKER (Video Ad maKER), a text-to-video advertisement generation pipeline that combines a three-stage generation process with Unstructured Text Reasoning for seamless integration with LLMs. VAKER fully automates video advertisement generation by incorporating dynamic layout trajectories for objects and graphics across specific video frames. Through extensive evaluations, we demonstrate that VAKER significantly outperforms existing methods in generating video advertisements. Project Page: https://yeonsangshin.github.io/projects/Vaker
Authors:Misora Sugiyama, Hirokatsu Kataoka
Title: Simple Visual Artifact Detection in Sora-Generated Videos
Abstract:
The December 2024 release of OpenAI's Sora, a powerful video generation model driven by natural language prompts, highlights a growing convergence between large language models (LLMs) and video synthesis. As these multimodal systems evolve into video-enabled LLMs (VidLLMs), capable of interpreting, generating, and interacting with visual content, understanding their limitations and ensuring their safe deployment becomes essential. This study investigates visual artifacts frequently found and reported in Sora-generated videos, which can compromise quality, mislead viewers, or propagate disinformation. We propose a multi-label classification framework targeting four common artifact label types: label 1: boundary / edge defects, label 2: texture / noise issues, label 3: movement / joint anomalies, and label 4: object mismatches / disappearances. Using a dataset of 300 manually annotated frames extracted from 15 Sora-generated videos, we trained multiple 2D CNN architectures (ResNet-50, EfficientNet-B3 / B4, ViT-Base). The best-performing model trained by ResNet-50 achieved an average multi-label classification accuracy of 94.14%. This work supports the broader development of VidLLMs by contributing to (1) the creation of datasets for video quality evaluation, (2) interpretable artifact-based analysis beyond language metrics, and (3) the identification of visual risks relevant to factuality and safety.
Authors:Diljeet Jagpal, Xi Chen, Vinay P. Namboodiri
Title: EIDT-V: Exploiting Intersections in Diffusion Trajectories for Model-Agnostic, Zero-Shot, Training-Free Text-to-Video Generation
Abstract:
Zero-shot, training-free, image-based text-to-video generation is an emerging area that aims to generate videos using existing image-based diffusion models. Current methods in this space require specific architectural changes to image generation models, which limit their adaptability and scalability. In contrast to such methods, we provide a model-agnostic approach. We use intersections in diffusion trajectories, working only with the latent values. We could not obtain localized frame-wise coherence and diversity using only the intersection of trajectories. Thus, we instead use a grid-based approach. An in-context trained LLM is used to generate coherent frame-wise prompts; another is used to identify differences between frames. Based on these, we obtain a CLIP-based attention mask that controls the timing of switching the prompts for each grid cell. Earlier switching results in higher variance, while later switching results in more coherence. Therefore, our approach can ensure appropriate control between coherence and variance for the frames. Our approach results in state-of-the-art performance while being more flexible when working with diverse image-generation models. The empirical analysis using quantitative metrics and user studies confirms our model's superior temporal consistency, visual fidelity and user satisfaction, thus providing a novel way to obtain training-free, image-based text-to-video generation.
Authors:Nikolaj T. Mücke, Benjamin Sanderse
Title: Physics-aware generative models for turbulent fluid flows through energy-consistent stochastic interpolants
Abstract:
Generative models have demonstrated remarkable success in domains such as text, image, and video synthesis. In this work, we explore the application of generative models to fluid dynamics, specifically for turbulence simulation, where classical numerical solvers are computationally expensive. We propose a novel stochastic generative model based on stochastic interpolants, which enables probabilistic forecasting while incorporating physical constraints such as energy stability and divergence-freeness. Unlike conventional stochastic generative models, which are often agnostic to underlying physical laws, our approach embeds energy consistency by making the parameters of the stochastic interpolant learnable coefficients. We evaluate our method on a benchmark turbulence problem - Kolmogorov flow - demonstrating superior accuracy and stability over state-of-the-art alternatives such as autoregressive conditional diffusion models (ACDMs) and PDE-Refiner. Furthermore, we achieve stable results for significantly longer roll-outs than standard stochastic interpolants. Our results highlight the potential of physics-aware generative models in accelerating and enhancing turbulence simulations while preserving fundamental conservation properties.
Authors:Fangda Chen, Shanshan Zhao, Chuanfu Xu, Long Lan
Title: JointTuner: Appearance-Motion Adaptive Joint Training for Customized Video Generation
Abstract:
Recent advancements in customized video generation have led to significant improvements in the simultaneous adaptation of appearance and motion. While prior methods typically decouple appearance and motion training, the stage-wise strategy often introduces concept interference, resulting in inaccurate rendering of appearance features or motion patterns. Another challenge is appearance contamination, where background and foreground elements from reference videos distort the customized subject. In this work, we propose JointTuner, a novel framework that enables joint optimization of both appearance and motion components by leveraging two key innovations: Synaptic Low-Rank Adaptation (Synaptic LoRA) and Appearance-independent Temporal Loss (AiT Loss). Synaptic LoRA introduces a synaptic regulator, implemented as a context-aware linear activation layer, to dynamically guide LoRA modules to focus on either subject appearance or motion patterns, thereby enabling consistent optimization across spatial and temporal dimensions. AiT Loss disrupts the gradient flow of appearance-related components, guiding the model to focus exclusively on motion learning and minimizing appearance interference. JointTuner is compatible with both UNet-based models (e.g., ZeroScope) and Diffusion Transformer-based models (e.g., CogVideoX), supporting the generation of longer and higher-quality customized videos. Additionally, we present a systematic evaluation framework for appearance-motion combined customization, covering 90 combinations evaluated along four critical dimensions: semantic alignment, motion dynamism, temporal consistency, and perceptual quality. Our project homepage can be found at https://fdchen24.github.io/JointTuner-Website.
Authors:Sicong Feng, Jielong Yang, Li Peng
Title: Resource-Efficient Motion Control for Video Generation via Dynamic Mask Guidance
Abstract:
Recent advances in diffusion models bring new vitality to visual content creation. However, current text-to-video generation models still face significant challenges such as high training costs, substantial data requirements, and difficulties in maintaining consistency between given text and motion of the foreground object. To address these challenges, we propose mask-guided video generation, which can control video generation through mask motion sequences, while requiring limited training data. Our model enhances existing architectures by incorporating foreground masks for precise text-position matching and motion trajectory control. Through mask motion sequences, we guide the video generation process to maintain consistent foreground objects throughout the sequence. Additionally, through a first-frame sharing strategy and autoregressive extension approach, we achieve more stable and longer video generation. Extensive qualitative and quantitative experiments demonstrate that this approach excels in various video generation tasks, such as video editing and generating artistic videos, outperforming previous methods in terms of consistency and quality. Our generated results can be viewed in the supplementary materials.
Authors:Ahmad Mustafa Anis, Hasnain Ali, Saquib Sarfraz
Title: On the Limitations of Vision-Language Models in Understanding Image Transforms
Abstract:
Vision Language Models (VLMs) have demonstrated significant potential in various downstream tasks, including Image/Video Generation, Visual Question Answering, Multimodal Chatbots, and Video Understanding. However, these models often struggle with basic image transformations. This paper investigates the image-level understanding of VLMs, specifically CLIP by OpenAI and SigLIP by Google. Our findings reveal that these models lack comprehension of multiple image-level augmentations. To facilitate this study, we created an augmented version of the Flickr8k dataset, pairing each image with a detailed description of the applied transformation. We further explore how this deficiency impacts downstream tasks, particularly in image editing, and evaluate the performance of state-of-the-art Image2Image models on simple transformations.
Authors:Alexey Buzovkin, Evgeny Shilov
Title: Toward Lightweight and Fast Decoders for Diffusion Models in Image and Video Generation
Abstract:
We investigate methods to reduce inference time and memory footprint in stable diffusion models by introducing lightweight decoders for both image and video synthesis. Traditional latent diffusion pipelines rely on large Variational Autoencoder decoders that can slow down generation and consume considerable GPU memory. We propose custom-trained decoders using lightweight Vision Transformer and Taming Transformer architectures. Experiments show up to 15% overall speed-ups for image generation on COCO2017 and up to 20 times faster decoding in the sub-module, with additional gains on UCF-101 for video tasks. Memory requirements are moderately reduced, and while there is a small drop in perceptual quality compared to the default decoder, the improvements in speed and scalability are crucial for large-scale inference scenarios such as generating 100K images. Our work is further contextualized by advances in efficient video generation, including dual masking strategies, illustrating a broader effort to improve the scalability and efficiency of generative models.
Authors:Mehul Agarwal, Gauri Agarwal, Santiago Benoit, Andrew Lippman, Jean Oh
Title: Secure & Personalized Music-to-Video Generation via CHARCHA
Abstract:
Music is a deeply personal experience and our aim is to enhance this with a fully-automated pipeline for personalized music video generation. Our work allows listeners to not just be consumers but co-creators in the music video generation process by creating personalized, consistent and context-driven visuals based on lyrics, rhythm and emotion in the music. The pipeline combines multimodal translation and generation techniques and utilizes low-rank adaptation on listeners' images to create immersive music videos that reflect both the music and the individual. To ensure the ethical use of users' identity, we also introduce CHARCHA (patent pending), a facial identity verification protocol that protects people against unauthorized use of their face while at the same time collecting authorized images from users for personalizing their videos. This paper thus provides a secure and innovative framework for creating deeply personalized music videos.
Authors:Katarzyna Fojcik, Piotr Syga
Title: Counteracting temporal attacks in Video Copy Detection
Abstract:
Video Copy Detection (VCD) plays a crucial role in copyright protection and content verification by identifying duplicates and near-duplicates in large-scale video databases. The META AI Challenge on video copy detection provided a benchmark for evaluating state-of-the-art methods, with the Dual-level detection approach emerging as a winning solution. This method integrates Video Editing Detection and Frame Scene Detection to handle adversarial transformations and large datasets efficiently. However, our analysis reveals significant limitations in the VED component, particularly in its ability to handle exact copies. Moreover, Dual-level detection shows vulnerability to temporal attacks. To address it, we propose an improved frame selection strategy based on local maxima of interframe differences, which enhances robustness against adversarial temporal modifications while significantly reducing computational overhead. Our method achieves an increase of 1.4 to 5.8 times in efficiency over the standard 1 FPS approach. Compared to Dual-level detection method, our approach maintains comparable micro-average precision ($μ$AP) while also demonstrating improved robustness against temporal attacks. Given 56\% reduced representation size and the inference time of more than 2 times faster, our approach is more suitable to real-world resource restriction.
Authors:Mariia Shpir, Nadiya Shvai, Amir Nakib
Title: License Plate Images Generation with Diffusion Models
Abstract:
Despite the evident practical importance of license plate recognition (LPR), corresponding research is limited by the volume of publicly available datasets due to privacy regulations such as the General Data Protection Regulation (GDPR). To address this challenge, synthetic data generation has emerged as a promising approach. In this paper, we propose to synthesize realistic license plates (LPs) using diffusion models, inspired by recent advances in image and video generation. In our experiments a diffusion model was successfully trained on a Ukrainian LP dataset, and 1000 synthetic images were generated for detailed analysis. Through manual classification and annotation of the generated images, we performed a thorough study of the model output, such as success rate, character distributions, and type of failures. Our contributions include experimental validation of the efficacy of diffusion models for LP synthesis, along with insights into the characteristics of the generated data. Furthermore, we have prepared a synthetic dataset consisting of 10,000 LP images, publicly available at https://zenodo.org/doi/10.5281/zenodo.13342102. Conducted experiments empirically confirm the usefulness of synthetic data for the LPR task. Despite the initial performance gap between the model trained with real and synthetic data, the expansion of the training data set with pseudolabeled synthetic data leads to an improvement in LPR accuracy by 3% compared to baseline.
Authors:Qili Wang, Dajiang Wu, Zihang Xu, Junshi Huang, Jun Lv
Title: JoyGen: Audio-Driven 3D Depth-Aware Talking-Face Video Editing
Abstract:
Significant progress has been made in talking-face video generation research; however, precise lip-audio synchronization and high visual quality remain challenging in editing lip shapes based on input audio. This paper introduces JoyGen, a novel two-stage framework for talking-face generation, comprising audio-driven lip motion generation and visual appearance synthesis. In the first stage, a 3D reconstruction model and an audio2motion model predict identity and expression coefficients respectively. Next, by integrating audio features with a facial depth map, we provide comprehensive supervision for precise lip-audio synchronization in facial generation. Additionally, we constructed a Chinese talking-face dataset containing 130 hours of high-quality video. JoyGen is trained on the open-source HDTF dataset and our curated dataset. Experimental results demonstrate superior lip-audio synchronization and visual quality achieved by our method.
Authors:Vriksha Srihari, R. Bhavya, Shruti Jayaraman, V. Mary Anita Rajam
Title: TexAVi: Generating Stereoscopic VR Video Clips from Text Descriptions
Abstract:
While generative models such as text-to-image, large language models and text-to-video have seen significant progress, the extension to text-to-virtual-reality remains largely unexplored, due to a deficit in training data and the complexity of achieving realistic depth and motion in virtual environments. This paper proposes an approach to coalesce existing generative systems to form a stereoscopic virtual reality video from text. Carried out in three main stages, we start with a base text-to-image model that captures context from an input text. We then employ Stable Diffusion on the rudimentary image produced, to generate frames with enhanced realism and overall quality. These frames are processed with depth estimation algorithms to create left-eye and right-eye views, which are stitched side-by-side to create an immersive viewing experience. Such systems would be highly beneficial in virtual reality production, since filming and scene building often require extensive hours of work and post-production effort. We utilize image evaluation techniques, specifically Fréchet Inception Distance and CLIP Score, to assess the visual quality of frames produced for the video. These quantitative measures establish the proficiency of the proposed method. Our work highlights the exciting possibilities of using natural language-driven graphics in fields like virtual reality simulations.
Authors:Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson, Eran Levin, Guy Shiran, Nir Zabari, Ori Gordon, Poriya Panet, Sapir Weissbuch, Victor Kulikov, Yaki Bitterman, Zeev Melumian, Ofir Bibi
Title: LTX-Video: Realtime Video Latent Diffusion
Abstract:
We introduce LTX-Video, a transformer-based latent diffusion model that adopts a holistic approach to video generation by seamlessly integrating the responsibilities of the Video-VAE and the denoising transformer. Unlike existing methods, which treat these components as independent, LTX-Video aims to optimize their interaction for improved efficiency and quality. At its core is a carefully designed Video-VAE that achieves a high compression ratio of 1:192, with spatiotemporal downscaling of 32 x 32 x 8 pixels per token, enabled by relocating the patchifying operation from the transformer's input to the VAE's input. Operating in this highly compressed latent space enables the transformer to efficiently perform full spatiotemporal self-attention, which is essential for generating high-resolution videos with temporal consistency. However, the high compression inherently limits the representation of fine details. To address this, our VAE decoder is tasked with both latent-to-pixel conversion and the final denoising step, producing the clean result directly in pixel space. This approach preserves the ability to generate fine details without incurring the runtime cost of a separate upsampling module. Our model supports diverse use cases, including text-to-video and image-to-video generation, with both capabilities trained simultaneously. It achieves faster-than-real-time generation, producing 5 seconds of 24 fps video at 768x512 resolution in just 2 seconds on an Nvidia H100 GPU, outperforming all existing models of similar scale. The source code and pre-trained models are publicly available, setting a new benchmark for accessible and scalable video generation.
Authors:Faraz Waseem, Muhammad Shahzad
Title: Video Is Worth a Thousand Images: Exploring the Latest Trends in Long Video Generation
Abstract:
An image may convey a thousand words, but a video composed of hundreds or thousands of image frames tells a more intricate story. Despite significant progress in multimodal large language models (MLLMs), generating extended videos remains a formidable challenge. As of this writing, OpenAI's Sora, the current state-of-the-art system, is still limited to producing videos that are up to one minute in length. This limitation stems from the complexity of long video generation, which requires more than generative AI techniques for approximating density functions essential aspects such as planning, story development, and maintaining spatial and temporal consistency present additional hurdles. Integrating generative AI with a divide-and-conquer approach could improve scalability for longer videos while offering greater control. In this survey, we examine the current landscape of long video generation, covering foundational techniques like GANs and diffusion models, video generation strategies, large-scale training datasets, quality metrics for evaluating long videos, and future research areas to address the limitations of the existing video generation capabilities. We believe it would serve as a comprehensive foundation, offering extensive information to guide future advancements and research in the field of long video generation.
Authors:Luoxu Jin, Hiroshi Watanabe
Title: Adapting Image-to-Video Diffusion Models for Large-Motion Frame Interpolation
Abstract:
With the development of video generation models has advanced significantly in recent years, we adopt large-scale image-to-video diffusion models for video frame interpolation. We present a conditional encoder designed to adapt an image-to-video model for large-motion frame interpolation. To enhance performance, we integrate a dual-branch feature extractor and propose a cross-frame attention mechanism that effectively captures both spatial and temporal information, enabling accurate interpolations of intermediate frames. Our approach demonstrates superior performance on the Fréchet Video Distance (FVD) metric when evaluated against other state-of-the-art approaches, particularly in handling large motion scenarios, highlighting advancements in generative-based methodologies.
Authors:Beiyuan Zhang, Yue Ma, Chunlei Fu, Xinyang Song, Zhenan Sun, Ziqiang Li
Title: Follow-Your-MultiPose: Tuning-Free Multi-Character Text-to-Video Generation via Pose Guidance
Abstract:
Text-editable and pose-controllable character video generation is a challenging but prevailing topic with practical applications. However, existing approaches mainly focus on single-object video generation with pose guidance, ignoring the realistic situation that multi-character appear concurrently in a scenario. To tackle this, we propose a novel multi-character video generation framework in a tuning-free manner, which is based on the separated text and pose guidance. Specifically, we first extract character masks from the pose sequence to identify the spatial position for each generating character, and then single prompts for each character are obtained with LLMs for precise text guidance. Moreover, the spatial-aligned cross attention and multi-branch control module are proposed to generate fine grained controllable multi-character video. The visualized results of generating video demonstrate the precise controllability of our method for multi-character generation. We also verify the generality of our method by applying it to various personalized T2I models. Moreover, the quantitative results show that our approach achieves superior performance compared with previous works.
Authors:Xunnong Xu, Mengying Cao
Title: MSC: Multi-Scale Spatio-Temporal Causal Attention for Autoregressive Video Diffusion
Abstract:
Diffusion transformers enable flexible generative modeling for video. However, it is still technically challenging and computationally expensive to generate high-resolution videos with rich semantics and complex motion. Similar to languages, video data are also auto-regressive by nature, so it is counter-intuitive to use attention mechanism with bi-directional dependency in the model. Here we propose a Multi-Scale Causal (MSC) framework to address these problems. Specifically, we introduce multiple resolutions in the spatial dimension and high-low frequencies in the temporal dimension to realize efficient attention calculation. Furthermore, attention blocks on multiple scales are combined in a controlled way to allow causal conditioning on noisy image frames for diffusion training, based on the idea that noise destroys information at different rates on different resolutions. We theoretically show that our approach can greatly reduce the computational complexity and enhance the efficiency of training. The causal attention diffusion framework can also be used for auto-regressive long video generation, without violating the natural order of frame sequences.
Authors:Leonardo Pina, Yongmin Li
Title: Combining Genre Classification and Harmonic-Percussive Features with Diffusion Models for Music-Video Generation
Abstract:
This study presents a novel method for generating music visualisers using diffusion models, combining audio input with user-selected artwork. The process involves two main stages: image generation and video creation. First, music captioning and genre classification are performed, followed by the retrieval of artistic style descriptions. A diffusion model then generates images based on the user's input image and the derived artistic style descriptions. The video generation stage utilises the same diffusion model to interpolate frames, controlled by audio energy vectors derived from key musical features of harmonics and percussives. The method demonstrates promising results across various genres, and a new metric, Audio-Visual Synchrony (AVS), is introduced to quantitatively evaluate the synchronisation between visual and audio elements. Comparative analysis shows significantly higher AVS values for videos generated using the proposed method with audio energy vectors, compared to linear interpolation. This approach has potential applications in diverse fields, including independent music video creation, film production, live music events, and enhancing audio-visual experiences in public spaces.
Authors:Haoyang Long, Yan Wang, Wendong Wang
Title: DIVD: Deblurring with Improved Video Diffusion Model
Abstract:
Video deblurring presents a considerable challenge owing to the complexity of blur, which frequently results from a combination of camera shakes, and object motions. In the field of video deblurring, many previous works have primarily concentrated on distortion-based metrics, such as PSNR. However, this approach often results in a weak correlation with human perception and yields reconstructions that lack realism. Diffusion models and video diffusion models have respectively excelled in the fields of image and video generation, particularly achieving remarkable results in terms of image authenticity and realistic perception. However, due to the computational complexity and challenges inherent in adapting diffusion models, there is still uncertainty regarding the potential of video diffusion models in video deblurring tasks. To explore the viability of video diffusion models in the task of video deblurring, we introduce a diffusion model specifically for this purpose. In this field, leveraging highly correlated information between adjacent frames and addressing the challenge of temporal misalignment are crucial research directions. To tackle these challenges, many improvements based on the video diffusion model are introduced in this work. As a result, our model outperforms existing models and achieves state-of-the-art results on a range of perceptual metrics. Our model preserves a significant amount of detail in the images while maintaining competitive distortion metrics. Furthermore, to the best of our knowledge, this is the first time the diffusion model has been applied in video deblurring to overcome the limitations mentioned above.
Authors:Gaurav Rai, Ojaswa Sharma
Title: Enhancing Sketch Animation: Text-to-Video Diffusion Models with Temporal Consistency and Rigidity Constraints
Abstract:
Animating hand-drawn sketches using traditional tools is challenging and complex. Sketches provide a visual basis for explanations, and animating these sketches offers an experience of real-time scenarios. We propose an approach for animating a given input sketch based on a descriptive text prompt. Our method utilizes a parametric representation of the sketch's strokes. Unlike previous methods, which struggle to estimate smooth and accurate motion and often fail to preserve the sketch's topology, we leverage a pre-trained text-to-video diffusion model with SDS loss to guide the motion of the sketch's strokes. We introduce length-area (LA) regularization to ensure temporal consistency by accurately estimating the smooth displacement of control points across the frame sequence. Additionally, to preserve shape and avoid topology changes, we apply a shape-preserving As-Rigid-As-Possible (ARAP) loss to maintain sketch rigidity. Our method surpasses state-of-the-art performance in both quantitative and qualitative evaluations.
Authors:Daewon Yoon, Hyungsuk Lee, Wonsik Shin
Title: MSG score: A Comprehensive Evaluation for Multi-Scene Video Generation
Abstract:
This paper addresses the metrics required for generating multi-scene videos based on a continuous scenario, as opposed to traditional short video generation. Scenario-based videos require a comprehensive evaluation that considers multiple factors such as character consistency, artistic coherence, aesthetic quality, and the alignment of the generated content with the intended prompt. Additionally, in video generation, unlike single images, the movement of characters across frames introduces potential issues like distortion or unintended changes, which must be effectively evaluated and corrected. In the context of probabilistic models like diffusion, generating the desired scene requires repeated sampling and manual selection, akin to how a film director chooses the best shots from numerous takes. We propose a score-based evaluation benchmark that automates this process, enabling a more objective and efficient assessment of these complexities. This approach allows for the generation of high-quality multi-scene videos by selecting the best outcomes based on automated scoring rather than manual inspection.
Authors:Shengkai Zhang, Nianhong Jiao, Tian Li, Chaojie Yang, Chenhui Xue, Boya Niu, Jun Gao
Title: HelloMeme: Integrating Spatial Knitting Attentions to Embed High-Level and Fidelity-Rich Conditions in Diffusion Models
Abstract:
We propose an effective method for inserting adapters into text-to-image foundation models, which enables the execution of complex downstream tasks while preserving the generalization ability of the base model. The core idea of this method is to optimize the attention mechanism related to 2D feature maps, which enhances the performance of the adapter. This approach was validated on the task of meme video generation and achieved significant results. We hope this work can provide insights for post-training tasks of large text-to-image models. Additionally, as this method demonstrates good compatibility with SD1.5 derivative models, it holds certain value for the open-source community. Therefore, we will release the related code (\url{https://songkey.github.io/hellomeme}).
Authors:Xiaoran Wu, Zien Huang, Chonghan Yu
Title: Animating the Past: Reconstruct Trilobite via Video Generation
Abstract:
Paleontology, the study of past life, fundamentally relies on fossils to reconstruct ancient ecosystems and understand evolutionary dynamics. Trilobites, as an important group of extinct marine arthropods, offer valuable insights into Paleozoic environments through their well-preserved fossil records. Reconstructing trilobite behaviour from static fossils will set new standards for dynamic reconstructions in scientific research and education. Despite the potential, current computational methods for this purpose like text-to-video (T2V) face significant challenges, such as maintaining visual realism and consistency, which hinder their application in science contexts. To overcome these obstacles, we introduce an automatic T2V prompt learning method. Within this framework, prompts for a fine-tuned video generation model are generated by a large language model, which is trained using rewards that quantify the visual realism and smoothness of the generated video. The fine-tuning of the video generation model, along with the reward calculations make use of a collected dataset of 9,088 Eoredlichia intermedia fossil images, which provides a common representative of visual details of all class of trilobites. Qualitative and quantitative experiments show that our method can generate trilobite videos with significantly higher visual realism compared to powerful baselines, promising to boost both scientific understanding and public engagement.
Authors:Shengfu Chen, Hailong Liu, Wenzhao Wei
Title: Technical Report: Competition Solution For Modelscope-Sora
Abstract:
This report presents the approach adopted in the Modelscope-Sora challenge, which focuses on fine-tuning data for video generation models. The challenge evaluates participants' ability to analyze, clean, and generate high-quality datasets for video-based text-to-video tasks under specific computational constraints. The provided methodology involves data processing techniques such as video description generation, filtering, and acceleration. This report outlines the procedures and tools utilized to enhance the quality of training data, ensuring improved performance in text-to-video generation models.
Authors:Mahesh Kandhare, Thibault Gisselbrecht
Title: An Empirical Comparison of Video Frame Sampling Methods for Multi-Modal RAG Retrieval
Abstract:
Numerous video frame sampling methodologies detailed in the literature present a significant challenge in determining the optimal video frame method for Video RAG pattern without a comparative side-by-side analysis. In this work, we investigate the trade-offs in frame sampling methods for Video & Frame Retrieval using natural language questions. We explore the balance between the quantity of sampled frames and the retrieval recall score, aiming to identify efficient video frame sampling strategies that maintain high retrieval efficacy with reduced storage and processing demands. Our study focuses on the storage and retrieval of image data (video frames) within a vector database required by Video RAG pattern, comparing the effectiveness of various frame sampling techniques. Our investigation indicates that the recall@k metric for both text-to-video and text-to-frame retrieval tasks using various methods covered as part of this work is comparable to or exceeds that of storing each frame from the video. Our findings are intended to inform the selection of frame sampling methods for practical Video RAG implementations, serving as a springboard for innovative research in this domain.
Authors:Hugo Garrido-Lestache Belinchon, Helina Mulugeta, Adam Haile
Title: Synthesizing Audio from Silent Video using Sequence to Sequence Modeling
Abstract:
Generating audio from a video's visual context has multiple practical applications in improving how we interact with audio-visual media - for example, enhancing CCTV footage analysis, restoring historical videos (e.g., silent movies), and improving video generation models. We propose a novel method to generate audio from video using a sequence-to-sequence model, improving on prior work that used CNNs and WaveNet and faced sound diversity and generalization challenges. Our approach employs a 3D Vector Quantized Variational Autoencoder (VQ-VAE) to capture the video's spatial and temporal structures, decoding with a custom audio decoder for a broader range of sounds. Trained on the Youtube8M dataset segment, focusing on specific domains, our model aims to enhance applications like CCTV footage analysis, silent movie restoration, and video generation models.
Authors:Pratim Saha, Chengcui Zhang
Title: Translation-based Video-to-Video Synthesis
Abstract:
Translation-based Video Synthesis (TVS) has emerged as a vital research area in computer vision, aiming to facilitate the transformation of videos between distinct domains while preserving both temporal continuity and underlying content features. This technique has found wide-ranging applications, encompassing video super-resolution, colorization, segmentation, and more, by extending the capabilities of traditional image-to-image translation to the temporal domain. One of the principal challenges faced in TVS is the inherent risk of introducing flickering artifacts and inconsistencies between frames during the synthesis process. This is particularly challenging due to the necessity of ensuring smooth and coherent transitions between video frames. Efforts to tackle this challenge have induced the creation of diverse strategies and algorithms aimed at mitigating these unwanted consequences. This comprehensive review extensively examines the latest progress in the realm of TVS. It thoroughly investigates emerging methodologies, shedding light on the fundamental concepts and mechanisms utilized for proficient video synthesis. This survey also illuminates their inherent strengths, limitations, appropriate applications, and potential avenues for future development.
Authors:Kilian Carolan, Laura Fennelly, Alan F. Smeaton
Title: A Review of Multi-Modal Large Language and Vision Models
Abstract:
Large Language Models (LLMs) have recently emerged as a focal point of research and application, driven by their unprecedented ability to understand and generate text with human-like quality. Even more recently, LLMs have been extended into multi-modal large language models (MM-LLMs) which extends their capabilities to deal with image, video and audio information, in addition to text. This opens up applications like text-to-video generation, image captioning, text-to-speech, and more and is achieved either by retro-fitting an LLM with multi-modal capabilities, or building a MM-LLM from scratch. This paper provides an extensive review of the current state of those LLMs with multi-modal capabilities as well as the very recent MM-LLMs. It covers the historical development of LLMs especially the advances enabled by transformer-based architectures like OpenAI's GPT series and Google's BERT, as well as the role of attention mechanisms in enhancing model performance. The paper includes coverage of the major and most important of the LLMs and MM-LLMs and also covers the techniques of model tuning, including fine-tuning and prompt engineering, which tailor pre-trained models to specific tasks or domains. Ethical considerations and challenges, such as data bias and model misuse, are also analysed to underscore the importance of responsible AI development and deployment. Finally, we discuss the implications of open-source versus proprietary models in AI research. Through this review, we provide insights into the transformative potential of MM-LLMs in various applications.
Authors:Lan Wang, Vishnu Boddeti, Sernam Lim
Title: Action Reimagined: Text-to-Pose Video Editing for Dynamic Human Actions
Abstract:
We introduce a novel text-to-pose video editing method, ReimaginedAct. While existing video editing tasks are limited to changes in attributes, backgrounds, and styles, our method aims to predict open-ended human action changes in video. Moreover, our method can accept not only direct instructional text prompts but also `what if' questions to predict possible action changes. ReimaginedAct comprises video understanding, reasoning, and editing modules. First, an LLM is utilized initially to obtain a plausible answer for the instruction or question, which is then used for (1) prompting Grounded-SAM to produce bounding boxes of relevant individuals and (2) retrieving a set of pose videos that we have collected for editing human actions. The retrieved pose videos and the detected individuals are then utilized to alter the poses extracted from the original video. We also employ a timestep blending module to ensure the edited video retains its original content except where necessary modifications are needed. To facilitate research in text-to-pose video editing, we introduce a new evaluation dataset, WhatifVideo-1.0. This dataset includes videos of different scenarios spanning a range of difficulty levels, along with questions and text prompts. Experimental results demonstrate that existing video editing methods struggle with human action editing, while our approach can achieve effective action editing and even imaginary editing from counterfactual questions.
Authors:Bryan Wang, Yuliang Li, Zhaoyang Lv, Haijun Xia, Yan Xu, Raj Sodhi
Title: LAVE: LLM-Powered Agent Assistance and Language Augmentation for Video Editing
Abstract:
Video creation has become increasingly popular, yet the expertise and effort required for editing often pose barriers to beginners. In this paper, we explore the integration of large language models (LLMs) into the video editing workflow to reduce these barriers. Our design vision is embodied in LAVE, a novel system that provides LLM-powered agent assistance and language-augmented editing features. LAVE automatically generates language descriptions for the user's footage, serving as the foundation for enabling the LLM to process videos and assist in editing tasks. When the user provides editing objectives, the agent plans and executes relevant actions to fulfill them. Moreover, LAVE allows users to edit videos through either the agent or direct UI manipulation, providing flexibility and enabling manual refinement of agent actions. Our user study, which included eight participants ranging from novices to proficient editors, demonstrated LAVE's effectiveness. The results also shed light on user perceptions of the proposed LLM-assisted editing paradigm and its impact on users' creativity and sense of co-creation. Based on these findings, we propose design implications to inform the future development of agent-assisted content editing.
Authors:Allen Roush, Emil Zakirov, Artemiy Shirokov, Polina Lunina, Jack Gane, Alexander Duffy, Charlie Basil, Aber Whitcomb, Jim Benedetto, Chris DeWolfe
Title: LLM as an Art Director (LaDi): Using LLMs to improve Text-to-Media Generators
Abstract:
Recent advancements in text-to-image generation have revolutionized numerous fields, including art and cinema, by automating the generation of high-quality, context-aware images and video. However, the utility of these technologies is often limited by the inadequacy of text prompts in guiding the generator to produce artistically coherent and subject-relevant images. In this paper, We describe the techniques that can be used to make Large Language Models (LLMs) act as Art Directors that enhance image and video generation. We describe our unified system for this called "LaDi". We explore how LaDi integrates multiple techniques for augmenting the capabilities of text-to-image generators (T2Is) and text-to-video generators (T2Vs), with a focus on constrained decoding, intelligent prompting, fine-tuning, and retrieval. LaDi and these techniques are being used today in apps and platforms developed by Plai Labs.
Authors:Yuchen Yang, Linyida Zhang
Title: Latent Wander: an Alternative Interface for Interactive and Serendipitous Discovery of Large AV Archives
Abstract:
Audiovisual (AV) archives are invaluable for holistically preserving the past. Unlike other forms, AV archives can be difficult to explore. This is not only because of its complex modality and sheer volume but also the lack of appropriate interfaces beyond keyword search. The recent rise in text-to-video retrieval tasks in computer science opens the gate to accessing AV content more naturally and semantically, able to map natural language descriptive sentences to matching videos. However, applications of this model are rarely seen. The contribution of this work is threefold. First, working with RTS (Télévision Suisse Romande), we identified the key blockers in a real archive for implementing such models. We built a functioning pipeline for encoding raw archive videos to the text-to-video feature vectors. Second, we designed and verified a method to encode and retrieve videos using emotionally abundant descriptions not supported in the original model. Third, we proposed an initial prototype for immersive and interactive exploration of AV archives in a latent space based on the previously mentioned encoding of videos.
Authors:Iya Chivileva, Philip Lynch, Tomas E. Ward, Alan F. Smeaton
Title: Measuring the Quality of Text-to-Video Model Outputs: Metrics and Dataset
Abstract:
Evaluating the quality of videos generated from text-to-video (T2V) models is important if they are to produce plausible outputs that convince a viewer of their authenticity. We examine some of the metrics used in this area and highlight their limitations. The paper presents a dataset of more than 1,000 generated videos from 5 very recent T2V models on which some of those commonly used quality metrics are applied. We also include extensive human quality evaluations on those videos, allowing the relative strengths and weaknesses of metrics, including human assessment, to be compared. The contribution is an assessment of commonly used quality metrics, and a comparison of their performances and the performance of human evaluations on an open dataset of T2V videos. Our conclusion is that naturalness and semantic matching with the text prompt used to generate the T2V output are important but there is no single measure to capture these subtleties in assessing T2V model output.
Authors:Yongyuan Li, Xiuyuan Qin, Chao Liang, Mingqiang Wei
Title: HDTR-Net: A Real-Time High-Definition Teeth Restoration Network for Arbitrary Talking Face Generation Methods
Abstract:
Talking Face Generation (TFG) aims to reconstruct facial movements to achieve high natural lip movements from audio and facial features that are under potential connections. Existing TFG methods have made significant advancements to produce natural and realistic images. However, most work rarely takes visual quality into consideration. It is challenging to ensure lip synchronization while avoiding visual quality degradation in cross-modal generation methods. To address this issue, we propose a universal High-Definition Teeth Restoration Network, dubbed HDTR-Net, for arbitrary TFG methods. HDTR-Net can enhance teeth regions at an extremely fast speed while maintaining synchronization, and temporal consistency. In particular, we propose a Fine-Grained Feature Fusion (FGFF) module to effectively capture fine texture feature information around teeth and surrounding regions, and use these features to fine-grain the feature map to enhance the clarity of teeth. Extensive experiments show that our method can be adapted to arbitrary TFG methods without suffering from lip synchronization and frame coherence. Another advantage of HDTR-Net is its real-time generation ability. Also under the condition of high-definition restoration of talking face video synthesis, its inference speed is $300\%$ faster than the current state-of-the-art face restoration based on super-resolution.
Authors:Rohan Dhesikan, Vignesh Rajmohan
Title: Sketching the Future (STF): Applying Conditional Control Techniques to Text-to-Video Models
Abstract:
The proliferation of video content demands efficient and flexible neural network based approaches for generating new video content. In this paper, we propose a novel approach that combines zero-shot text-to-video generation with ControlNet to improve the output of these models. Our method takes multiple sketched frames as input and generates video output that matches the flow of these frames, building upon the Text-to-Video Zero architecture and incorporating ControlNet to enable additional input conditions. By first interpolating frames between the inputted sketches and then running Text-to-Video Zero using the new interpolated frames video as the control technique, we leverage the benefits of both zero-shot text-to-video generation and the robust control provided by ControlNet. Experiments demonstrate that our method excels at producing high-quality and remarkably consistent video content that more accurately aligns with the user's intended motion for the subject within the video. We provide a comprehensive resource package, including a demo video, project website, open-source GitHub repository, and a Colab playground to foster further research and application of our proposed method.
Authors:Muhammed Korkmaz, T. Metin Sezgin
Title: HAISTA-NET: Human Assisted Instance Segmentation Through Attention
Abstract:
Instance segmentation is a form of image detection which has a range of applications, such as object refinement, medical image analysis, and image/video editing, all of which demand a high degree of accuracy. However, this precision is often beyond the reach of what even state-of-the-art, fully automated instance segmentation algorithms can deliver. The performance gap becomes particularly prohibitive for small and complex objects. Practitioners typically resort to fully manual annotation, which can be a laborious process. In order to overcome this problem, we propose a novel approach to enable more precise predictions and generate higher-quality segmentation masks for high-curvature, complex and small-scale objects. Our human-assisted segmentation model, HAISTA-NET, augments the existing Strong Mask R-CNN network to incorporate human-specified partial boundaries. We also present a dataset of hand-drawn partial object boundaries, which we refer to as human attention maps. In addition, the Partial Sketch Object Boundaries (PSOB) dataset contains hand-drawn partial object boundaries which represent curvatures of an object's ground truth mask with several pixels. Through extensive evaluation using the PSOB dataset, we show that HAISTA-NET outperforms state-of-the art methods such as Mask R-CNN, Strong Mask R-CNN, and Mask2Former, achieving respective increases of +36.7, +29.6, and +26.5 points in AP-Mask metrics for these three models. We hope that our novel approach will set a baseline for future human-aided deep learning models by combining fully automated and interactive instance segmentation architectures.
Authors:Sen Pei, Jingya Yu, Qi Chen, Wozhou He
Title: AutoMatch: A Large-scale Audio Beat Matching Benchmark for Boosting Deep Learning Assistant Video Editing
Abstract:
The explosion of short videos has dramatically reshaped the manners people socialize, yielding a new trend for daily sharing and access to the latest information. These rich video resources, on the one hand, benefited from the popularization of portable devices with cameras, but on the other, they can not be independent of the valuable editing work contributed by numerous video creators. In this paper, we investigate a novel and practical problem, namely audio beat matching (ABM), which aims to recommend the proper transition time stamps based on the background music. This technique helps to ease the labor-intensive work during video editing, saving energy for creators so that they can focus more on the creativity of video content. We formally define the ABM problem and its evaluation protocol. Meanwhile, a large-scale audio dataset, i.e., the AutoMatch with over 87k finely annotated background music, is presented to facilitate this newly opened research direction. To further lay solid foundations for the following study, we also propose a novel model termed BeatX to tackle this challenging task. Alongside, we creatively present the concept of label scope, which eliminates the data imbalance issues and assigns adaptive weights for the ground truth during the training procedure in one stop. Though plentiful short video platforms have flourished for a long time, the relevant research concerning this scenario is not sufficient, and to the best of our knowledge, AutoMatch is the first large-scale dataset to tackle the audio beat matching problem. We hope the released dataset and our competitive baseline can encourage more attention to this line of research. The dataset and codes will be made publicly available.
Authors:Min Peng, Chongyang Wang, Yu Shi, Xiang-Dong Zhou
Title: Efficient End-to-End Video Question Answering with Pyramidal Multimodal Transformer
Abstract:
This paper presents a new method for end-to-end Video Question Answering (VideoQA), aside from the current popularity of using large-scale pre-training with huge feature extractors. We achieve this with a pyramidal multimodal transformer (PMT) model, which simply incorporates a learnable word embedding layer, a few convolutional and transformer layers. We use the anisotropic pyramid to fulfill video-language interactions across different spatio-temporal scales. In addition to the canonical pyramid, which includes both bottom-up and top-down pathways with lateral connections, novel strategies are proposed to decompose the visual feature stream into spatial and temporal sub-streams at different scales and implement their interactions with the linguistic semantics while preserving the integrity of local and global semantics. We demonstrate better or on-par performances with high computational efficiency against state-of-the-art methods on five VideoQA benchmarks. Our ablation study shows the scalability of our model that achieves competitive results for text-to-video retrieval by leveraging feature extractors with reusable pre-trained weights, and also the effectiveness of the pyramid.
Authors:Matyáš Boháček, Marek Hrúz
Title: Learning from What is Already Out There: Few-shot Sign Language Recognition with Online Dictionaries
Abstract:
Today's sign language recognition models require large training corpora of laboratory-like videos, whose collection involves an extensive workforce and financial resources. As a result, only a handful of such systems are publicly available, not to mention their limited localization capabilities for less-populated sign languages. Utilizing online text-to-video dictionaries, which inherently hold annotated data of various attributes and sign languages, and training models in a few-shot fashion hence poses a promising path for the democratization of this technology. In this work, we collect and open-source the UWB-SL-Wild few-shot dataset, the first of its kind training resource consisting of dictionary-scraped videos. This dataset represents the actual distribution and characteristics of available online sign language data. We select glosses that directly overlap with the already existing datasets WLASL100 and ASLLVD and share their class mappings to allow for transfer learning experiments. Apart from providing baseline results on a pose-based architecture, we introduce a novel approach to training sign language recognition models in a few-shot scenario, resulting in state-of-the-art results on ASLLVD-Skeleton and ASLLVD-Skeleton-20 datasets with top-1 accuracy of $30.97~\%$ and $95.45~\%$, respectively.
Authors:Gil Knafo, Ohad Fried
Title: FakeOut: Leveraging Out-of-domain Self-supervision for Multi-modal Video Deepfake Detection
Abstract:
Video synthesis methods rapidly improved in recent years, allowing easy creation of synthetic humans. This poses a problem, especially in the era of social media, as synthetic videos of speaking humans can be used to spread misinformation in a convincing manner. Thus, there is a pressing need for accurate and robust deepfake detection methods, that can detect forgery techniques not seen during training. In this work, we explore whether this can be done by leveraging a multi-modal, out-of-domain backbone trained in a self-supervised manner, adapted to the video deepfake domain. We propose FakeOut; a novel approach that relies on multi-modal data throughout both the pre-training phase and the adaption phase. We demonstrate the efficacy and robustness of FakeOut in detecting various types of deepfakes, especially manipulations which were not seen during training. Our method achieves state-of-the-art results in cross-dataset generalization on audio-visual datasets. This study shows that, perhaps surprisingly, training on out-of-domain videos (i.e., not especially featuring speaking humans), can lead to better deepfake detection systems. Code is available on GitHub.
Authors:Pedro Rodriguez, Mahmoud Azab, Becka Silvert, Renato Sanchez, Linzy Labson, Hardik Shah, Seungwhan Moon
Title: Fighting FIRe with FIRE: Assessing the Validity of Text-to-Video Retrieval Benchmarks
Abstract:
Searching troves of videos with textual descriptions is a core multimodal retrieval task. Owing to the lack of a purpose-built dataset for text-to-video retrieval, video captioning datasets have been re-purposed to evaluate models by (1) treating captions as positive matches to their respective videos and (2) assuming all other videos to be negatives. However, this methodology leads to a fundamental flaw during evaluation: since captions are marked as relevant only to their original video, many alternate videos also match the caption, which introduces false-negative caption-video pairs. We show that when these false negatives are corrected, a recent state-of-the-art model gains 25\% recall points -- a difference that threatens the validity of the benchmark itself. To diagnose and mitigate this issue, we annotate and release 683K additional caption-video pairs. Using these, we recompute effectiveness scores for three models on two standard benchmarks (MSR-VTT and MSVD). We find that (1) the recomputed metrics are up to 25\% recall points higher for the best models, (2) these benchmarks are nearing saturation for Recall@10, (3) caption length (generality) is related to the number of positives, and (4) annotation costs can be mitigated through sampling. We recommend retiring these benchmarks in their current form, and we make recommendations for future text-to-video retrieval benchmarks.
Authors:Smith W. A. Canchumuni, Jose D. B. Castro, Júlia Potratz, Alexandre A. Emerick, Marco Aurelio C. Pacheco
Title: Recent Developments Combining Ensemble Smoother and Deep Generative Networks for Facies History Matching
Abstract:
Ensemble smoothers are among the most successful and efficient techniques currently available for history matching. However, because these methods rely on Gaussian assumptions, their performance is severely degraded when the prior geology is described in terms of complex facies distributions. Inspired by the impressive results obtained by deep generative networks in areas such as image and video generation, we started an investigation focused on the use of autoencoders networks to construct a continuous parameterization for facies models. In our previous publication, we combined a convolutional variational autoencoder (VAE) with the ensemble smoother with multiple data assimilation (ES-MDA) for history matching production data in models generated with multiple-point geostatistics. Despite the good results reported in our previous publication, a major limitation of the designed parameterization is the fact that it does not allow applying distance-based localization during the ensemble smoother update, which limits its application in large-scale problems. The present work is a continuation of this research project focusing in two aspects: firstly, we benchmark seven different formulations, including VAE, generative adversarial network (GAN), Wasserstein GAN, variational auto-encoding GAN, principal component analysis (PCA) with cycle GAN, PCA with transfer style network and VAE with style loss. These formulations are tested in a synthetic history matching problem with channelized facies. Secondly, we propose two strategies to allow the use of distance-based localization with the deep learning parameterizations.
Authors:Ashen Weligalle
Title: Discrete Diffusion Models for Language Generation
Abstract:
Diffusion models have emerged as a powerful class of generative models, achieving state-of-the-art results in continuous data domains such as image and video generation. Their core mechanism involves a forward diffusion process that gradually transforms structured data into a Gaussian-like distribution, followed by a learned reverse process to reconstruct the data. While successful in continuous modalities, applying this framework to discrete data-particularly natural language-remains challenging due to token dependency complexities and the lack of a defined generation order.This thesis investigates the feasibility and performance of discrete diffusion models for natural language generation. Specifically, we evaluate the Discrete Denoising Diffusion Probabilistic Model (D3PM) and compare it with traditional autoregressive (AR) language models. To assess generative performance, we use Bits Per Token (BPT), Negative Log-Likelihood (NLL), Perplexity (PPL), and Batch Processing Speed. Results show the best-performing D3PM model achieves a BPT of 5.72, with a mean of 8.05. The AR model outperforms in compression with a lower mean BPT of 4.59, but D3PM achieves higher processing speed, reaching up to 3.97 batches per sec., indicating potential for parallel generation.All evaluations were conducted under consistent conditions-generating 100,000 tokens per model with a fixed batch size of four-for fair comparison. This research presents a detailed analysis of diffusion-based vs. autoregressive models, highlighting trade-offs in generative quality and efficiency. Findings emphasize both the promise and limitations of diffusion models for discrete data, supporting future work in non-autoregressive language generation.
Authors:Tessa De La Fuente
Title: Photoshop Batch Rendering Using Actions for Stylistic Video Editing
Abstract:
My project looks at an efficient workflow for creative image/video editing using Adobe Photoshop Actions tool and Batch Processing System. This innovative approach to video editing through Photoshop creates a fundamental shift to creative workflow management through the integration of industry-leading image manipulation with video editing techniques. Through systematic automation of Actions, users can achieve a simple and consistent application of visual edits across a string of images. This approach provides an alternative method to optimize productivity while ensuring uniform results across image collections through a post-processing pipeline.
Authors:Xianpan Zhou
Title: Tiger200K: Manually Curated High Visual Quality Video Dataset from UGC Platform
Abstract:
The recent surge in open-source text-to-video generation models has significantly energized the research community, yet their dependence on proprietary training datasets remains a key constraint. While existing open datasets like Koala-36M employ algorithmic filtering of web-scraped videos from early platforms, they still lack the quality required for fine-tuning advanced video generation models. We present Tiger200K, a manually curated high visual quality video dataset sourced from User-Generated Content (UGC) platforms. By prioritizing visual fidelity and aesthetic quality, Tiger200K underscores the critical role of human expertise in data curation, and providing high-quality, temporally consistent video-text pairs for fine-tuning and optimizing video generation architectures through a simple but effective pipeline including shot boundary detection, OCR, border detecting, motion filter and fine bilingual caption. The dataset will undergo ongoing expansion and be released as an open-source initiative to advance research and applications in video generative models. Project page: https://tinytigerpan.github.io/tiger200k/
Authors:Vignesh Sundaresha
Title: Designing Parameter and Compute Efficient Diffusion Transformers using Distillation
Abstract:
Diffusion Transformers (DiTs) with billions of model parameters form the backbone of popular image and video generation models like DALL.E, Stable-Diffusion and SORA. Though these models are necessary in many low-latency applications like Augmented/Virtual Reality, they cannot be deployed on resource-constrained Edge devices (like Apple Vision Pro or Meta Ray-Ban glasses) due to their huge computational complexity. To overcome this, we turn to knowledge distillation and perform a thorough design-space exploration to achieve the best DiT for a given parameter size. In particular, we provide principles for how to choose design knobs such as depth, width, attention heads and distillation setup for a DiT. During the process, a three-way trade-off emerges between model performance, size and speed that is crucial for Edge implementation of diffusion. We also propose two distillation approaches - Teaching Assistant (TA) method and Multi-In-One (MI1) method - to perform feature distillation in the DiT context. Unlike existing solutions, we demonstrate and benchmark the efficacy of our approaches on practical Edge devices such as NVIDIA Jetson Orin Nano.
Authors:Yunge Wen
Title: "See What I Imagine, Imagine What I See": Human-AI Co-Creation System for 360$^\circ$ Panoramic Video Generation in VR
Abstract:
The emerging field of panoramic video generation from text and image prompts unlocks new creative possibilities in virtual reality (VR), addressing the limitations of current immersive experiences, which are constrained by pre-designed environments that restrict user creativity. To advance this frontier, we present Imagine360, a proof-of-concept prototype that integrates co-creation principles with AI agents. This system enables refined speech-based text prompts, egocentric perspective adjustments, and real-time customization of virtual surroundings based on user perception and intent. An eight-participant pilot study comparing non-AI and linear AI-driven workflows demonstrates that Imagine360's co-creative approach effectively integrates temporal and spatial creative controls. This introduces a transformative VR paradigm, allowing users to seamlessly transition between 'seeing' and 'imagining,' thereby shaping virtual reality through the creations of their minds.
Authors:Anant Khandelwal
Title: FlexiClip: Locality-Preserving Free-Form Character Animation
Abstract:
Animating clipart images with seamless motion while maintaining visual fidelity and temporal coherence presents significant challenges. Existing methods, such as AniClipart, effectively model spatial deformations but often fail to ensure smooth temporal transitions, resulting in artifacts like abrupt motions and geometric distortions. Similarly, text-to-video (T2V) and image-to-video (I2V) models struggle to handle clipart due to the mismatch in statistical properties between natural video and clipart styles. This paper introduces FlexiClip, a novel approach designed to overcome these limitations by addressing the intertwined challenges of temporal consistency and geometric integrity. FlexiClip extends traditional Bézier curve-based trajectory modeling with key innovations: temporal Jacobians to correct motion dynamics incrementally, continuous-time modeling via probability flow ODEs (pfODEs) to mitigate temporal noise, and a flow matching loss inspired by GFlowNet principles to optimize smooth motion transitions. These enhancements ensure coherent animations across complex scenarios involving rapid movements and non-rigid deformations. Extensive experiments validate the effectiveness of FlexiClip in generating animations that are not only smooth and natural but also structurally consistent across diverse clipart types, including humans and animals. By integrating spatial and temporal modeling with pre-trained video diffusion models, FlexiClip sets a new standard for high-quality clipart animation, offering robust performance across a wide range of visual content. Project Page: https://creative-gen.github.io/flexiclip.github.io/
Authors:Cheonsu Jeong
Title: Beyond Text: Implementing Multimodal Large Language Model-Powered Multi-Agent Systems Using a No-Code Platform
Abstract:
This study proposes the design and implementation of a multimodal LLM-based Multi-Agent System (MAS) leveraging a No-Code platform to address the practical constraints and significant entry barriers associated with AI adoption in enterprises. Advanced AI technologies, such as Large Language Models (LLMs), often pose challenges due to their technical complexity and high implementation costs, making them difficult for many organizations to adopt. To overcome these limitations, this research develops a No-Code-based Multi-Agent System designed to enable users without programming knowledge to easily build and manage AI systems. The study examines various use cases to validate the applicability of AI in business processes, including code generation from image-based notes, Advanced RAG-based question-answering systems, text-based image generation, and video generation using images and prompts. These systems lower the barriers to AI adoption, empowering not only professional developers but also general users to harness AI for significantly improved productivity and efficiency. By demonstrating the scalability and accessibility of No-Code platforms, this study advances the democratization of AI technologies within enterprises and validates the practical applicability of Multi-Agent Systems, ultimately contributing to the widespread adoption of AI across various industries.
Authors:Minmin Yang
Title: Face Mask Removal with Region-attentive Face Inpainting
Abstract:
During the COVID-19 pandemic, face masks have become ubiquitous in our lives. Face masks can cause some face recognition models to fail since they cover significant portion of a face. In addition, removing face masks from captured images or videos can be desirable, e.g., for better social interaction and for image/video editing and enhancement purposes. Hence, we propose a generative face inpainting method to effectively recover/reconstruct the masked part of a face. Face inpainting is more challenging compared to traditional inpainting, since it requires high fidelity while maintaining the identity at the same time. Our proposed method includes a Multi-scale Channel-Spatial Attention Module (M-CSAM) to mitigate the spatial information loss and learn the inter- and intra-channel correlation. In addition, we introduce an approach enforcing the supervised signal to focus on masked regions instead of the whole image. We also synthesize our own Masked-Faces dataset from the CelebA dataset by incorporating five different types of face masks, including surgical mask, regular mask and scarves, which also cover the neck area. The experimental results show that our proposed method outperforms different baselines in terms of structural similarity index measure, peak signal-to-noise ratio and l1 loss, while also providing better outputs qualitatively. The code will be made publicly available. Code is available at GitHub.
Authors:Anisha Jain
Title: One-Shot Learning Meets Depth Diffusion in Multi-Object Videos
Abstract:
Creating editable videos that depict complex interactions between multiple objects in various artistic styles has long been a challenging task in filmmaking. Progress is often hampered by the scarcity of data sets that contain paired text descriptions and corresponding videos that showcase these interactions. This paper introduces a novel depth-conditioning approach that significantly advances this field by enabling the generation of coherent and diverse videos from just a single text-video pair using a pre-trained depth-aware Text-to-Image (T2I) model. Our method fine-tunes the pre-trained model to capture continuous motion by employing custom-designed spatial and temporal attention mechanisms. During inference, we use the DDIM inversion to provide structural guidance for video generation. This innovative technique allows for continuously controllable depth in videos, facilitating the generation of multiobject interactions while maintaining the concept generation and compositional strengths of the original T2I model across various artistic styles, such as photorealism, animation, and impressionism.
Authors:Vatsal Vinay Parikh
Title: Analysing the Public Discourse around OpenAI's Text-To-Video Model 'Sora' using Topic Modeling
Abstract:
The recent introduction of OpenAI's text-to-video model Sora has sparked widespread public discourse across online communities. This study aims to uncover the dominant themes and narratives surrounding Sora by conducting topic modeling analysis on a corpus of 1,827 Reddit comments from five relevant subreddits (r/OpenAI, r/technology, r/singularity, r/vfx, and r/ChatGPT). The comments were collected over a two-month period following Sora's announcement in February 2024. After preprocessing the data, Latent Dirichlet Allocation (LDA) was employed to extract four key topics: 1) AI Impact and Trends in Sora Discussions, 2) Public Opinion and Concerns about Sora, 3) Artistic Expression and Video Creation with Sora, and 4) Sora's Applications in Media and Entertainment. Visualizations including word clouds, bar charts, and t-SNE clustering provided insights into the importance of topic keywords and the distribution of comments across topics. The results highlight prominent narratives around Sora's potential impact on industries and employment, public sentiment and ethical concerns, creative applications, and use cases in the media and entertainment sectors. While limited to Reddit data within a specific timeframe, this study offers a framework for understanding public perceptions of emerging generative AI technologies through online discourse analysis.
Authors:Rafael Redondo
Title: Listen and Move: Improving GANs Coherency in Agnostic Sound-to-Video Generation
Abstract:
Deep generative models have demonstrated the ability to create realistic audiovisual content, sometimes driven by domains of different nature. However, smooth temporal dynamics in video generation is a challenging problem. This work focuses on generic sound-to-video generation and proposes three main features to enhance both image quality and temporal coherency in generative adversarial models: a triple sound routing scheme, a multi-scale residual and dilated recurrent network for extended sound analysis, and a novel recurrent and directional convolutional layer for video prediction. Each of the proposed features improves, in both quality and coherency, the baseline neural architecture typically used in the SoTA, with the video prediction layer providing an extra temporal refinement.
Authors:Niu Guanchen
Title: NLDF: Neural Light Dynamic Fields for Efficient 3D Talking Head Generation
Abstract:
Talking head generation based on the neural radiation fields model has shown promising visual effects. However, the slow rendering speed of NeRF seriously limits its application, due to the burdensome calculation process over hundreds of sampled points to synthesize one pixel. In this work, a novel Neural Light Dynamic Fields model is proposed aiming to achieve generating high quality 3D talking face with significant speedup. The NLDF represents light fields based on light segments, and a deep network is used to learn the entire light beam's information at once. In learning the knowledge distillation is applied and the NeRF based synthesized result is used to guide the correct coloration of light segments in NLDF. Furthermore, a novel active pool training strategy is proposed to focus on high frequency movements, particularly on the speaker mouth and eyebrows. The propose method effectively represents the facial light dynamics in 3D talking video generation, and it achieves approximately 30 times faster speed compared to state of the art NeRF based method, with comparable generation visual quality.
Authors:Lijun Yu
Title: Towards Multi-Task Multi-Modal Models: A Video Generative Perspective
Abstract:
Advancements in language foundation models have primarily fueled the recent surge in artificial intelligence. In contrast, generative learning of non-textual modalities, especially videos, significantly trails behind language modeling. This thesis chronicles our endeavor to build multi-task models for generating videos and other modalities under diverse conditions, as well as for understanding and compression applications. Given the high dimensionality of visual data, we pursue concise and accurate latent representations. Our video-native spatial-temporal tokenizers preserve high fidelity. We unveil a novel approach to mapping bidirectionally between visual observation and interpretable lexical terms. Furthermore, our scalable visual token representation proves beneficial across generation, compression, and understanding tasks. This achievement marks the first instances of language models surpassing diffusion models in visual synthesis and a video tokenizer outperforming industry-standard codecs. Within these multi-modal latent spaces, we study the design of multi-task generative models. Our masked multi-task transformer excels at the quality, efficiency, and flexibility of video generation. We enable a frozen language model, trained solely on text, to generate visual content. Finally, we build a scalable generative multi-modal transformer trained from scratch, enabling the generation of videos containing high-fidelity motion with the corresponding audio given diverse conditions. Throughout the course, we have shown the effectiveness of integrating multiple tasks, crafting high-fidelity latent representation, and generating multiple modalities. This work suggests intriguing potential for future exploration in generating non-textual data and enabling real-time, interactive experiences across various media forms.
Authors:Ali Kashefi
Title: A Misleading Gallery of Fluid Motion by Generative Artificial Intelligence
Abstract:
In this technical report, we extensively investigate the accuracy of outputs from well-known generative artificial intelligence (AI) applications in response to prompts describing common fluid motion phenomena familiar to the fluid mechanics community. We examine a range of applications, including Midjourney, Dall-E, Runway ML, Microsoft Designer, Gemini, Meta AI, and Leonardo AI, introduced by prominent companies such as Google, OpenAI, Meta, and Microsoft. Our text prompts for generating images or videos include examples such as "Von Karman vortex street", "flow past an airfoil", "Kelvin-Helmholtz instability", "shock waves on a sharp-nosed supersonic body", etc. We compare the images generated by these applications with real images from laboratory experiments and numerical software. Our findings indicate that these generative AI models are not adequately trained in fluid dynamics imagery, leading to potentially misleading outputs. Beyond text-to-image/video generation, we further explore the transition from image/video to text generation using these AI tools, aiming to investigate the accuracy of their descriptions of fluid motion phenomena. This report serves as a cautionary note for educators in academic institutions, highlighting the potential for these tools to mislead students. It also aims to inform researchers at these renowned companies, encouraging them to address this issue. We conjecture that a primary reason for this shortcoming is the limited access to copyright-protected fluid motion images from scientific journals.
Authors:Jinwei Lin
Title: OneTo3D: One Image to Re-editable Dynamic 3D Model and Video Generation
Abstract:
One image to editable dynamic 3D model and video generation is novel direction and change in the research area of single image to 3D representation or 3D reconstruction of image. Gaussian Splatting has demonstrated its advantages in implicit 3D reconstruction, compared with the original Neural Radiance Fields. As the rapid development of technologies and principles, people tried to used the Stable Diffusion models to generate targeted models with text instructions. However, using the normal implicit machine learning methods is hard to gain the precise motions and actions control, further more, it is difficult to generate a long content and semantic continuous 3D video. To address this issue, we propose the OneTo3D, a method and theory to used one single image to generate the editable 3D model and generate the targeted semantic continuous time-unlimited 3D video. We used a normal basic Gaussian Splatting model to generate the 3D model from a single image, which requires less volume of video memory and computer calculation ability. Subsequently, we designed an automatic generation and self-adaptive binding mechanism for the object armature. Combined with the re-editable motions and actions analyzing and controlling algorithm we proposed, we can achieve a better performance than the SOTA projects in the area of building the 3D model precise motions and actions control, and generating a stable semantic continuous time-unlimited 3D video with the input text instructions. Here we will analyze the detailed implementation methods and theories analyses. Relative comparisons and conclusions will be presented. The project code is open source.
Authors:Stanley H. Chan
Title: Tutorial on Diffusion Models for Imaging and Vision
Abstract:
The astonishing growth of generative tools in recent years has empowered many exciting applications in text-to-image generation and text-to-video generation. The underlying principle behind these generative tools is the concept of diffusion, a particular sampling mechanism that has overcome some shortcomings that were deemed difficult in the previous approaches. The goal of this tutorial is to discuss the essential ideas underlying the diffusion models. The target audience of this tutorial includes undergraduate and graduate students who are interested in doing research on diffusion models or applying these models to solve other problems.
Authors:Aditi Singh
Title: A Survey of AI Text-to-Image and AI Text-to-Video Generators
Abstract:
Text-to-Image and Text-to-Video AI generation models are revolutionary technologies that use deep learning and natural language processing (NLP) techniques to create images and videos from textual descriptions. This paper investigates cutting-edge approaches in the discipline of Text-to-Image and Text-to-Video AI generations. The survey provides an overview of the existing literature as well as an analysis of the approaches used in various studies. It covers data preprocessing techniques, neural network types, and evaluation metrics used in the field. In addition, the paper discusses the challenges and limitations of Text-to-Image and Text-to-Video AI generations, as well as future research directions. Overall, these models have promising potential for a wide range of applications such as video production, content creation, and digital marketing.
Authors:Yuchen Yang
Title: Encoding and Decoding Narratives: Datafication and Alternative Access Models for Audiovisual Archives
Abstract:
Situated in the intersection of audiovisual archives, computational methods, and immersive interactions, this work probes the increasingly important accessibility issues from a two-fold approach. Firstly, the work proposes an ontological data model to handle complex descriptors (metadata, feature vectors, etc.) with regard to user interactions. Secondly, this work examines text-to-video retrieval from an implementation perspective by proposing a classifier-enhanced workflow to deal with complex and hybrid queries and a training data augmentation workflow to improve performance. This work serves as the foundation for experimenting with novel public-facing access models to large audiovisual archives
Authors:Yuchen Yang
Title: Write What You Want: Applying Text-to-video Retrieval to Audiovisual Archives
Abstract:
Audiovisual (AV) archives, as an essential reservoir of our cultural assets, are suffering from the issue of accessibility. The complex nature of the medium itself made processing and interaction an open challenge still in the field of computer vision, multimodal learning, and human-computer interaction, as well as in culture and heritage. In recent years, with the raising of video retrieval tasks, methods in retrieving video content with natural language (text-to-video retrieval) gained quite some attention and have reached a performance level where real-world application is on the horizon. Appealing as it may sound, such methods focus on retrieving videos using plain visual-focused descriptions of what has happened in the video and finding videos such as instructions. It is too early to say such methods would be the new paradigms for accessing and encoding complex video content into high-dimensional data, but they are indeed innovative attempts and foundations to build future exploratory interfaces for AV archives (e.g. allow users to write stories and retrieve related snippets in the archive, or encoding video content at high-level for visualisation). This work filled the application gap by examining such text-to-video retrieval methods from an implementation point of view and proposed and verified a classifier-enhanced workflow to allow better results when dealing with in-situ queries that might have been different from the training dataset. Such a workflow is then applied to the real-world archive from Télévision Suisse Romande (RTS) to create a demo. At last, a human-centred evaluation is conducted to understand whether the text-to-video retrieval methods improve the overall experience of accessing AV archives.
Authors:Pengfei Pei
Title: UVL2: A Unified Framework for Video Tampering Localization
Abstract:
With the advancement of deep learning-driven video editing technology, security risks have emerged. Malicious video tampering can lead to public misunderstanding, property losses, and legal disputes. Currently, detection methods are mostly limited to specific datasets, with limited detection performance for unknown forgeries, and lack of robustness for processed data. This paper proposes an effective video tampering localization network that significantly improves the detection performance of video inpainting and splicing by extracting more generalized features of forgery traces. Considering the inherent differences between tampered videos and original videos, such as edge artifacts, pixel distribution, texture features, and compress information, we have specifically designed four modules to independently extract these features. Furthermore, to seamlessly integrate these features, we employ a two-stage approach utilizing both a Convolutional Neural Network and a Vision Transformer, enabling us to learn these features in a local-to-global manner. Experimental results demonstrate that the method significantly outperforms the existing state-of-the-art methods and exhibits robustness.
Authors:Gang Chen
Title: A Simple Text to Video Model via Transformer
Abstract:
We present a general and simple text to video model based on Transformer. Since both text and video are sequential data, we encode both texts and images into the same hidden space, which are further fed into Transformer to capture the temporal consistency and then decoder to generate either text or images. Considering the image signal may become weak in the long sequence, we introduce the U-Net to reconstruct image from its noised version. Specifically, we increase the noise level to the original image in the long sequence, then use the $down$ module from U-Net to encode noised images, which are further input to transformer to predict next clear images. We also add a constraint to promote motion between any generated image pair in the video. We use GPT2 and test our approach on UCF101 dataset and show it can generate promising videos.
Authors:Yuanhao Gong
Title: Gradient Domain Diffusion Models for Image Synthesis
Abstract:
Diffusion models are getting popular in generative image and video synthesis. However, due to the diffusion process, they require a large number of steps to converge. To tackle this issue, in this paper, we propose to perform the diffusion process in the gradient domain, where the convergence becomes faster. There are two reasons. First, thanks to the Poisson equation, the gradient domain is mathematically equivalent to the original image domain. Therefore, each diffusion step in the image domain has a unique corresponding gradient domain representation. Second, the gradient domain is much sparser than the image domain. As a result, gradient domain diffusion models converge faster. Several numerical experiments confirm that the gradient domain diffusion models are more efficient than the original diffusion models. The proposed method can be applied in a wide range of applications such as image processing, computer vision and machine learning tasks.
Authors:Christine Allen-Blanchette
Title: Hamiltonian GAN
Abstract:
A growing body of work leverages the Hamiltonian formalism as an inductive bias for physically plausible neural network based video generation. The structure of the Hamiltonian ensures conservation of a learned quantity (e.g., energy) and imposes a phase-space interpretation on the low-dimensional manifold underlying the input video. While this interpretation has the potential to facilitate the integration of learned representations in downstream tasks, existing methods are limited in their applicability as they require a structural prior for the configuration space at design time. In this work, we present a GAN-based video generation pipeline with a learned configuration space map and Hamiltonian neural network motion model, to learn a representation of the configuration space from data. We train our model with a physics-inspired cyclic-coordinate loss function which encourages a minimal representation of the configuration space and improves interpretability. We demonstrate the efficacy and advantages of our approach on the Hamiltonian Dynamics Suite Toy Physics dataset.
Authors:Anant Khandelwal
Title: InFusion: Inject and Attention Fusion for Multi Concept Zero-Shot Text-based Video Editing
Abstract:
Large text-to-image diffusion models have achieved remarkable success in generating diverse, high-quality images. Additionally, these models have been successfully leveraged to edit input images by just changing the text prompt. But when these models are applied to videos, the main challenge is to ensure temporal consistency and coherence across frames. In this paper, we propose InFusion, a framework for zero-shot text-based video editing leveraging large pre-trained image diffusion models. Our framework specifically supports editing of multiple concepts with pixel-level control over diverse concepts mentioned in the editing prompt. Specifically, we inject the difference in features obtained with source and edit prompts from U-Net residual blocks of decoder layers. When these are combined with injected attention features, it becomes feasible to query the source contents and scale edited concepts along with the injection of unedited parts. The editing is further controlled in a fine-grained manner with mask extraction and attention fusion, which cut the edited part from the source and paste it into the denoising pipeline for the editing prompt. Our framework is a low-cost alternative to one-shot tuned models for editing since it does not require training. We demonstrated complex concept editing with a generalised image model (Stable Diffusion v1.5) using LoRA. Adaptation is compatible with all the existing image diffusion techniques. Extensive experimental results demonstrate the effectiveness of existing methods in rendering high-quality and temporally consistent videos.
Authors:Tri Dao
Title: FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning
Abstract:
Scaling Transformers to longer sequence lengths has been a major problem in the last several years, promising to improve performance in language modeling and high-resolution image understanding, as well as to unlock new applications in code, audio, and video generation. The attention layer is the main bottleneck in scaling to longer sequences, as its runtime and memory increase quadratically in the sequence length. FlashAttention exploits the asymmetric GPU memory hierarchy to bring significant memory saving (linear instead of quadratic) and runtime speedup (2-4$\times$ compared to optimized baselines), with no approximation. However, FlashAttention is still not nearly as fast as optimized matrix-multiply (GEMM) operations, reaching only 25-40\% of the theoretical maximum FLOPs/s. We observe that the inefficiency is due to suboptimal work partitioning between different thread blocks and warps on the GPU, causing either low-occupancy or unnecessary shared memory reads/writes. We propose FlashAttention-2, with better work partitioning to address these issues. In particular, we (1) tweak the algorithm to reduce the number of non-matmul FLOPs (2) parallelize the attention computation, even for a single head, across different thread blocks to increase occupancy, and (3) within each thread block, distribute the work between warps to reduce communication through shared memory. These yield around 2$\times$ speedup compared to FlashAttention, reaching 50-73\% of the theoretical maximum FLOPs/s on A100 and getting close to the efficiency of GEMM operations. We empirically validate that when used end-to-end to train GPT-style models, FlashAttention-2 reaches training speed of up to 225 TFLOPs/s per A100 GPU (72\% model FLOPs utilization).
Authors:Willy Fitra Hendria
Title: MSVD-Indonesian: A Benchmark for Multimodal Video-Text Tasks in Indonesian
Abstract:
Multimodal learning on video and text has seen significant progress, particularly in tasks like text-to-video retrieval, video-to-text retrieval, and video captioning. However, most existing methods and datasets focus exclusively on English. Despite Indonesian being one of the most widely spoken languages, multimodal research in Indonesian remains under-explored, largely due to the lack of benchmark datasets. To address this gap, we introduce the first public Indonesian video-text dataset by translating the English captions in the MSVD dataset into Indonesian. Using this dataset, we evaluate neural network models which were developed for the English video-text dataset on three tasks, i.e., text-to-video retrieval, video-to-text retrieval, and video captioning. Most existing models rely on feature extractors pretrained on English vision-language datasets, raising concerns about their applicability to Indonesian, given the scarcity of large-scale pretraining resources in the language. We apply a cross-lingual transfer learning approach by leveraging English-pretrained extractors and fine-tuning models on our Indonesian dataset. Experimental results demonstrate that this strategy improves performance across all tasks and metrics. We release our dataset publicly to support future research and hope it will inspire further progress in Indonesian multimodal learning.
Authors:Ali Borji
Title: Qualitative Failures of Image Generation Models and Their Application in Detecting Deepfakes
Abstract:
The ability of image and video generation models to create photorealistic images has reached unprecedented heights, making it difficult to distinguish between real and fake images in many cases. However, despite this progress, a gap remains between the quality of generated images and those found in the real world. To address this, we have reviewed a vast body of literature from both academic publications and social media to identify qualitative shortcomings in image generation models, which we have classified into five categories. By understanding these failures, we can identify areas where these models need improvement, as well as develop strategies for detecting deep fakes. The prevalence of deep fakes in today's society is a serious concern, and our findings can help mitigate their negative impact.
Authors:Abhinav Sagar
Title: HRVGAN: High Resolution Video Generation using Spatio-Temporal GAN
Abstract:
High-resolution video generation has emerged as a crucial task in computer vision, with wide-ranging applications in entertainment, simulation, and data augmentation. However, generating temporally coherent and visually realistic videos remains a significant challenge due to the high dimensionality and complex dynamics of video data. In this paper, we propose a novel deep generative network architecture designed specifically for high-resolution video synthesis. Our approach integrates key concepts from Wasserstein Generative Adversarial Networks (WGANs), enforcing a k-Lipschitz continuity constraint on the discriminator to stabilize training and enhance convergence. We further leverage Conditional GAN (cGAN) techniques by incorporating class labels during both training and inference, enabling class-specific video generation with improved semantic consistency. We provide a detailed layer-wise description of the Generator and Discriminator networks, highlighting architectural design choices promoting temporal coherence and spatial detail. The overall combined architecture, training algorithm, and optimization strategy are thoroughly presented. Our training objective combines a pixel-wise mean squared error loss with an adversarial loss to balance frame-level accuracy and video realism. We validate our approach on benchmark datasets including UCF101, Golf, and Aeroplane, encompassing diverse motion patterns and scene contexts. Quantitative evaluations using Inception Score (IS) and Fréchet Inception Distance (FID) demonstrate that our model significantly outperforms previous state-of-the-art unsupervised video generation methods in terms of both quality and diversity.