arXiv Papers of Video Generation
Authors:Robbyant Team, Zelin Gao, Qiuyu Wang, Yanhong Zeng, Jiapeng Zhu, Ka Leong Cheng, Yixuan Li, Hanlin Wang, Yinghao Xu, Shuailei Ma, Yihang Chen, Jie Liu, Yansong Cheng, Yao Yao, Jiayi Zhu, Yihao Meng, Kecheng Zheng, Qingyan Bai, Jingye Chen, Zehong Shen, Yue Yu, Xing Zhu, Yujun Shen, Hao Ouyang
Abstract:
We present LingBot-World, an open-sourced world simulator stemming from video generation. Positioned as a top-tier world model, LingBot-World offers the following features. (1) It maintains high fidelity and robust dynamics in a broad spectrum of environments, including realism, scientific contexts, cartoon styles, and beyond. (2) It enables a minute-level horizon while preserving contextual consistency over time, which is also known as "long-term memory". (3) It supports real-time interactivity, achieving a latency of under 1 second when producing 16 frames per second. We provide public access to the code and model in an effort to narrow the divide between open-source and closed-source technologies. We believe our release will empower the community with practical applications across areas like content creation, gaming, and robot learning.
Authors:Hang Guo, Zhaoyang Jia, Jiahao Li, Bin Li, Yuanhao Cai, Jiangshan Wang, Yawei Li, Yan Lu
Abstract:
The autoregressive video diffusion model has recently gained considerable research interest due to its causal modeling and iterative denoising. In this work, we identify that the multi-head self-attention in these models under-utilizes historical frames: approximately 25% heads attend almost exclusively to the current frame, and discarding their KV caches incurs only minor performance degradation. Building upon this, we propose Dummy Forcing, a simple yet effective method to control context accessibility across different heads. Specifically, the proposed heterogeneous memory allocation reduces head-wise context redundancy, accompanied by dynamic head programming to adaptively classify head types. Moreover, we develop a context packing technique to achieve more aggressive cache compression. Without additional training, our Dummy Forcing delivers up to 2.0x speedup over the baseline, supporting video generation at 24.3 FPS with less than 0.5% quality drop. Project page is available at https://csguoh.github.io/project/DummyForcing/.
Authors:Ziyang Song, Xinyu Gong, Bangya Liu, Zelin Zhao
Abstract:
Existing Subject-to-Video Generation (S2V) methods have achieved high-fidelity and subject-consistent video generation, yet remain constrained to single-view subject references. This limitation renders the S2V task reducible to an S2I + I2V pipeline, failing to exploit the full potential of video subject control. In this work, we propose and address the challenging Multi-View S2V (MV-S2V) task, which synthesizes videos from multiple reference views to enforce 3D-level subject consistency. Regarding the scarcity of training data, we first develop a synthetic data curation pipeline to generate highly customized synthetic data, complemented by a small-scale real-world captured dataset to boost the training of MV-S2V. Another key issue lies in the potential confusion between cross-subject and cross-view references in conditional generation. To overcome this, we further introduce Temporally Shifted RoPE (TS-RoPE) to distinguish between different subjects and distinct views of the same subject in reference conditioning. Our framework achieves superior 3D subject consistency w.r.t. multi-view reference images and high-quality visual outputs, establishing a new meaningful direction for subject-driven video generation. Our project page is available at: https://szy-young.github.io/mv-s2v
Authors:Debang Li, Zhengcong Fei, Tuanhui Li, Yikun Dou, Zheng Chen, Jiangping Yang, Mingyuan Fan, Jingtao Xu, Jiahua Wang, Baoxuan Gu, Mingshan Chang, Wenjing Cai, Yuqiang Xie, Binjie Mao, Youqiang Zhang, Nuo Pang, Hao Zhang, Yuzhe Jin, Zhiheng Xu, Dixuan Lin, Guibin Chen, Yahui Zhou
Abstract:
Video generation serves as a cornerstone for building world models, where multimodal contextual inference stands as the defining test of capability. In this end, we present SkyReels-V3, a conditional video generation model, built upon a unified multimodal in-context learning framework with diffusion Transformers. SkyReels-V3 model supports three core generative paradigms within a single architecture: reference images-to-video synthesis, video-to-video extension and audio-guided video generation. (i) reference images-to-video model is designed to produce high-fidelity videos with strong subject identity preservation, temporal coherence, and narrative consistency. To enhance reference adherence and compositional stability, we design a comprehensive data processing pipeline that leverages cross frame pairing, image editing, and semantic rewriting, effectively mitigating copy paste artifacts. During training, an image video hybrid strategy combined with multi-resolution joint optimization is employed to improve generalization and robustness across diverse scenarios. (ii) video extension model integrates spatio-temporal consistency modeling with large-scale video understanding, enabling both seamless single-shot continuation and intelligent multi-shot switching with professional cinematographic patterns. (iii) Talking avatar model supports minute-level audio-conditioned video generation by training first-and-last frame insertion patterns and reconstructing key-frame inference paradigms. On the basis of ensuring visual quality, synchronization of audio and videos has been optimized. Extensive evaluations demonstrate that SkyReels-V3 achieves state-of-the-art or near state-of-the-art performance on key metrics including visual quality, instruction following, and specific aspect metrics, approaching leading closed-source systems. Github: https://github.com/SkyworkAI/SkyReels-V3.
Authors:Basile Van Hoorick, Dian Chen, Shun Iwase, Pavel Tokmakov, Muhammad Zubair Irshad, Igor Vasiljevic, Swati Gupta, Fangzhou Cheng, Sergey Zakharov, Vitor Campagnolo Guizilini
Abstract:
Modern generative video models excel at producing convincing, high-quality outputs, but struggle to maintain multi-view and spatiotemporal consistency in highly dynamic real-world environments. In this work, we introduce \textbf{AnyView}, a diffusion-based video generation framework for \emph{dynamic view synthesis} with minimal inductive biases or geometric assumptions. We leverage multiple data sources with various levels of supervision, including monocular (2D), multi-view static (3D) and multi-view dynamic (4D) datasets, to train a generalist spatiotemporal implicit representation capable of producing zero-shot novel videos from arbitrary camera locations and trajectories. We evaluate AnyView on standard benchmarks, showing competitive results with the current state of the art, and propose \textbf{AnyViewBench}, a challenging new benchmark tailored towards \emph{extreme} dynamic view synthesis in diverse real-world scenarios. In this more dramatic setting, we find that most baselines drastically degrade in performance, as they require significant overlap between viewpoints, while AnyView maintains the ability to produce realistic, plausible, and spatiotemporally consistent videos when prompted from \emph{any} viewpoint. Results, data, code, and models can be viewed at: https://tri-ml.github.io/AnyView/
Authors:Dohun Lee, Chun-Hao Paul Huang, Xuelin Chen, Jong Chul Ye, Duygu Ceylan, Hyeonho Jeong
Abstract:
Recent foundational video-to-video diffusion models have achieved impressive results in editing user provided videos by modifying appearance, motion, or camera movement. However, real-world video editing is often an iterative process, where users refine results across multiple rounds of interaction. In this multi-turn setting, current video editors struggle to maintain cross-consistency across sequential edits. In this work, we tackle, for the first time, the problem of cross-consistency in multi-turn video editing and introduce Memory-V2V, a simple, yet effective framework that augments existing video-to-video models with explicit memory. Given an external cache of previously edited videos, Memory-V2V employs accurate retrieval and dynamic tokenization strategies to condition the current editing step on prior results. To further mitigate redundancy and computational overhead, we propose a learnable token compressor within the DiT backbone that compresses redundant conditioning tokens while preserving essential visual cues, achieving an overall speedup of 30%. We validate Memory-V2V on challenging tasks including video novel view synthesis and text-conditioned long video editing. Extensive experiments show that Memory-V2V produces videos that are significantly more cross-consistent with minimal computational overhead, while maintaining or even improving task-specific performance over state-of-the-art baselines. Project page: https://dohunlee1.github.io/MemoryV2V
Authors:Yufan Deng, Zilin Pan, Hongyu Zhang, Xiaojie Li, Ruoqing Hu, Yufei Ding, Yiming Zou, Yan Zeng, Daquan Zhou
Abstract:
Video generation models have significantly advanced embodied intelligence, unlocking new possibilities for generating diverse robot data that capture perception, reasoning, and action in the physical world. However, synthesizing high-quality videos that accurately reflect real-world robotic interactions remains challenging, and the lack of a standardized benchmark limits fair comparisons and progress. To address this gap, we introduce a comprehensive robotics benchmark, RBench, designed to evaluate robot-oriented video generation across five task domains and four distinct embodiments. It assesses both task-level correctness and visual fidelity through reproducible sub-metrics, including structural consistency, physical plausibility, and action completeness. Evaluation of 25 representative models highlights significant deficiencies in generating physically realistic robot behaviors. Furthermore, the benchmark achieves a Spearman correlation coefficient of 0.96 with human evaluations, validating its effectiveness. While RBench provides the necessary lens to identify these deficiencies, achieving physical realism requires moving beyond evaluation to address the critical shortage of high-quality training data. Driven by these insights, we introduce a refined four-stage data pipeline, resulting in RoVid-X, the largest open-source robotic dataset for video generation with 4 million annotated video clips, covering thousands of tasks and enriched with comprehensive physical property annotations. Collectively, this synergistic ecosystem of evaluation and data establishes a robust foundation for rigorous assessment and scalable training of video models, accelerating the evolution of embodied AI toward general intelligence.
Authors:Chengfeng Zhao, Jiazhi Shu, Yubo Zhao, Tianyu Huang, Jiahao Lu, Zekai Gu, Chengwei Ren, Zhiyang Dou, Qing Shuai, Yuan Liu
Abstract:
In this paper, we find that the generation of 3D human motions and 2D human videos is intrinsically coupled. 3D motions provide the structural prior for plausibility and consistency in videos, while pre-trained video models offer strong generalization capabilities for motions, which necessitate coupling their generation processes. Based on this, we present CoMoVi, a co-generative framework that couples two video diffusion models (VDMs) to generate 3D human motions and videos synchronously within a single diffusion denoising loop. To achieve this, we first propose an effective 2D human motion representation that can inherit the powerful prior of pre-trained VDMs. Then, we design a dual-branch diffusion model to couple human motion and video generation process with mutual feature interaction and 3D-2D cross attentions. Moreover, we curate CoMoVi Dataset, a large-scale real-world human video dataset with text and motion annotations, covering diverse and challenging human motions. Extensive experiments demonstrate the effectiveness of our method in both 3D human motion and video generation tasks.
Authors:Maxwell Jones, Rameen Abdal, Or Patashnik, Ruslan Salakhutdinov, Sergey Tulyakov, Jun-Yan Zhu, Kuan-Chieh Jackson Wang
Abstract:
We present RefVFX, a new framework that transfers complex temporal effects from a reference video onto a target video or image in a feed-forward manner. While existing methods excel at prompt-based or keyframe-conditioned editing, they struggle with dynamic temporal effects such as dynamic lighting changes or character transformations, which are difficult to describe via text or static conditions. Transferring a video effect is challenging, as the model must integrate the new temporal dynamics with the input video's existing motion and appearance. % To address this, we introduce a large-scale dataset of triplets, where each triplet consists of a reference effect video, an input image or video, and a corresponding output video depicting the transferred effect. Creating this data is non-trivial, especially the video-to-video effect triplets, which do not exist naturally. To generate these, we propose a scalable automated pipeline that creates high-quality paired videos designed to preserve the input's motion and structure while transforming it based on some fixed, repeatable effect. We then augment this data with image-to-video effects derived from LoRA adapters and code-based temporal effects generated through programmatic composition. Building on our new dataset, we train our reference-conditioned model using recent text-to-video backbones. Experimental results demonstrate that RefVFX produces visually consistent and temporally coherent edits, generalizes across unseen effect categories, and outperforms prompt-only baselines in both quantitative metrics and human preference. See our website at https://tuningfreevisualeffects-maker.github.io/Tuning-free-Visual-Effect-Transfer-across-Videos-Project-Page/
Authors:Kewei Zhang, Ye Huang, Yufan Deng, Jincheng Yu, Junsong Chen, Huan Ling, Enze Xie, Daquan Zhou
Abstract:
While the Transformer architecture dominates many fields, its quadratic self-attention complexity hinders its use in large-scale applications. Linear attention offers an efficient alternative, but its direct application often degrades performance, with existing fixes typically re-introducing computational overhead through extra modules (e.g., depthwise separable convolution) that defeat the original purpose. In this work, we identify a key failure mode in these methods: global context collapse, where the model loses representational diversity. To address this, we propose Multi-Head Linear Attention (MHLA), which preserves this diversity by computing attention within divided heads along the token dimension. We prove that MHLA maintains linear complexity while recovering much of the expressive power of softmax attention, and verify its effectiveness across multiple domains, achieving a 3.6\% improvement on ImageNet classification, a 6.3\% gain on NLP, a 12.6\% improvement on image generation, and a 41\% enhancement on video generation under the same time complexity.
Authors:Saksham Singh Kushwaha, Sayan Nag, Yapeng Tian, Kuldeep Kulkarni
Abstract:
In this paper, we introduce Object-WIPER, a training-free framework for removing dynamic objects and their associated visual effects from videos, and inpainting them with semantically consistent and temporally coherent content. Our approach leverages a pre-trained text-to-video diffusion transformer (DiT). Given an input video, a user-provided object mask, and query tokens describing the target object and its effects, we localize relevant visual tokens via visual-text cross-attention and visual self-attention. This produces an intermediate effect mask that we fuse with the user mask to obtain a final foreground token mask to replace. We first invert the video through the DiT to obtain structured noise, then reinitialize the masked tokens with Gaussian noise while preserving background tokens. During denoising, we copy values for the background tokens saved during inversion to maintain scene fidelity. To address the lack of suitable evaluation, we introduce a new object removal metric that rewards temporal consistency among foreground tokens across consecutive frames, coherence between foreground and background tokens within each frame, and dissimilarity between the input and output foreground tokens. Experiments on DAVIS and a newly curated real-world associated effect benchmark (WIPER-Bench) show that Object-WIPER surpasses both training-based and training-free baselines in terms of the metric, achieving clean removal and temporally stable reconstruction without any retraining. Our new benchmark, source code, and pre-trained models will be publicly available.
Authors:Longbin Ji, Xiaoxiong Liu, Junyuan Shang, Shuohuan Wang, Yu Sun, Hua Wu, Haifeng Wang
Abstract:
Recent advances in video generation have been dominated by diffusion and flow-matching models, which produce high-quality results but remain computationally intensive and difficult to scale. In this work, we introduce VideoAR, the first large-scale Visual Autoregressive (VAR) framework for video generation that combines multi-scale next-frame prediction with autoregressive modeling. VideoAR disentangles spatial and temporal dependencies by integrating intra-frame VAR modeling with causal next-frame prediction, supported by a 3D multi-scale tokenizer that efficiently encodes spatio-temporal dynamics. To improve long-term consistency, we propose Multi-scale Temporal RoPE, Cross-Frame Error Correction, and Random Frame Mask, which collectively mitigate error propagation and stabilize temporal coherence. Our multi-stage pretraining pipeline progressively aligns spatial and temporal learning across increasing resolutions and durations. Empirically, VideoAR achieves new state-of-the-art results among autoregressive models, improving FVD on UCF-101 from 99.5 to 88.6 while reducing inference steps by over 10x, and reaching a VBench score of 81.74-competitive with diffusion-based models an order of magnitude larger. These results demonstrate that VideoAR narrows the performance gap between autoregressive and diffusion paradigms, offering a scalable, efficient, and temporally consistent foundation for future video generation research.
Authors:Mohsen Ghafoorian, Amirhossein Habibian
Abstract:
Recent advances in video diffusion models have shifted towards transformer-based architectures, achieving state-of-the-art video generation but at the cost of quadratic attention complexity, which severely limits scalability for longer sequences. We introduce ReHyAt, a Recurrent Hybrid Attention mechanism that combines the fidelity of softmax attention with the efficiency of linear attention, enabling chunk-wise recurrent reformulation and constant memory usage. Unlike the concurrent linear-only SANA Video, ReHyAt's hybrid design allows efficient distillation from existing softmax-based models, reducing the training cost by two orders of magnitude to ~160 GPU hours, while being competitive in the quality. Our light-weight distillation and finetuning pipeline provides a recipe that can be applied to future state-of-the-art bidirectional softmax-based models. Experiments on VBench and VBench-2.0, as well as a human preference study, demonstrate that ReHyAt achieves state-of-the-art video quality while reducing attention cost from quadratic to linear, unlocking practical scalability for long-duration and on-device video generation. Project page is available at https://qualcomm-ai-research.github.io/rehyat.
Authors:Siddarth Nilol Kundur Satish, Devesh Jaiswal, Hongyu Chen, Abhishek Bakshi
Abstract:
Current video generation models produce high-quality aesthetic videos but often struggle to learn representations of real-world physics dynamics, resulting in artifacts such as unnatural object collisions, inconsistent gravity, and temporal flickering. In this work, we propose PhysVideoGenerator, a proof-of-concept framework that explicitly embeds a learnable physics prior into the video generation process. We introduce a lightweight predictor network, PredictorP, which regresses high-level physical features extracted from a pre-trained Video Joint Embedding Predictive Architecture (V-JEPA 2) directly from noisy diffusion latents. These predicted physics tokens are injected into the temporal attention layers of a DiT-based generator (Latte) via a dedicated cross-attention mechanism. Our primary contribution is demonstrating the technical feasibility of this joint training paradigm: we show that diffusion latents contain sufficient information to recover V-JEPA 2 physical representations, and that multi-task optimization remains stable over training. This report documents the architectural design, technical challenges, and validation of training stability, establishing a foundation for future large-scale evaluation of physics-aware generative models.
Authors:Jinsong Zhou, Yihua Du, Xinli Xu, Luozhou Wang, Zijie Zhuang, Yehang Zhang, Shuaibo Li, Xiaojun Hu, Bolan Su, Ying-cong Chen
Abstract:
Maintaining consistent characters, props, and environments across multiple shots is a central challenge in narrative video generation. Existing models can produce high-quality short clips but often fail to preserve entity identity and appearance when scenes change or when entities reappear after long temporal gaps. We present VideoMemory, an entity-centric framework that integrates narrative planning with visual generation through a Dynamic Memory Bank. Given a structured script, a multi-agent system decomposes the narrative into shots, retrieves entity representations from memory, and synthesizes keyframes and videos conditioned on these retrieved states. The Dynamic Memory Bank stores explicit visual and semantic descriptors for characters, props, and backgrounds, and is updated after each shot to reflect story-driven changes while preserving identity. This retrieval-update mechanism enables consistent portrayal of entities across distant shots and supports coherent long-form generation. To evaluate this setting, we construct a 54-case multi-shot consistency benchmark covering character-, prop-, and background-persistent scenarios. Extensive experiments show that VideoMemory achieves strong entity-level coherence and high perceptual quality across diverse narrative sequences.
Authors:Mengtian Li, Jinshu Chen, Songtao Zhao, Wanquan Feng, Pengqi Tu, Qian He
Abstract:
Video stylization, an important downstream task of video generation models, has not yet been thoroughly explored. Its input style conditions typically include text, style image, and stylized first frame. Each condition has a characteristic advantage: text is more flexible, style image provides a more accurate visual anchor, and stylized first frame makes long-video stylization feasible. However, existing methods are largely confined to a single type of style condition, which limits their scope of application. Additionally, their lack of high-quality datasets leads to style inconsistency and temporal flicker. To address these limitations, we introduce DreamStyle, a unified framework for video stylization, supporting (1) text-guided, (2) style-image-guided, and (3) first-frame-guided video stylization, accompanied by a well-designed data curation pipeline to acquire high-quality paired video data. DreamStyle is built on a vanilla Image-to-Video (I2V) model and trained using a Low-Rank Adaptation (LoRA) with token-specific up matrices that reduces the confusion among different condition tokens. Both qualitative and quantitative evaluations demonstrate that DreamStyle is competent in all three video stylization tasks, and outperforms the competitors in style consistency and video quality.
Authors:Aniruddha Mahapatra, Long Mai, Cusuh Ham, Feng Liu
Abstract:
Cinemagraphs, which combine static photographs with selective, looping motion, offer unique artistic appeal. Generating them from a single photograph in a controllable manner is particularly challenging. Existing image-animation techniques are restricted to simple, low-frequency motions and operate only in narrow domains with repetitive textures like water and smoke. In contrast, large-scale video diffusion models are not tailored for cinemagraph constraints and lack the specialized data required to generate seamless, controlled loops. We present DreamLoop, a controllable video synthesis framework dedicated to generating cinemagraphs from a single photo without requiring any cinemagraph training data. Our key idea is to adapt a general video diffusion model by training it on two objectives: temporal bridging and motion conditioning. This strategy enables flexible cinemagraph generation. During inference, by using the input image as both the first- and last- frame condition, we enforce a seamless loop. By conditioning on static tracks, we maintain a static background. Finally, by providing a user-specified motion path for a target object, our method provides intuitive control over the animation's trajectory and timing. To our knowledge, DreamLoop is the first method to enable cinemagraph generation for general scenes with flexible and intuitive controls. We demonstrate that our method produces high-quality, complex cinemagraphs that align with user intent, outperforming existing approaches.
Authors:Junyi Chen, Tong He, Zhoujie Fu, Pengfei Wan, Kun Gai, Weicai Ye
Abstract:
We present VINO, a unified visual generator that performs image and video generation and editing within a single framework. Instead of relying on task-specific models or independent modules for each modality, VINO uses a shared diffusion backbone that conditions on text, images and videos, enabling a broad range of visual creation and editing tasks under one model. Specifically, VINO couples a vision-language model (VLM) with a Multimodal Diffusion Transformer (MMDiT), where multimodal inputs are encoded as interleaved conditioning tokens, and then used to guide the diffusion process. This design supports multi-reference grounding, long-form instruction following, and coherent identity preservation across static and dynamic content, while avoiding modality-specific architectural components. To train such a unified system, we introduce a multi-stage training pipeline that progressively expands a video generation base model into a unified, multi-task generator capable of both image and video input and output. Across diverse generation and editing benchmarks, VINO demonstrates strong visual quality, faithful instruction following, improved reference and attribute preservation, and more controllable multi-identity edits. Our results highlight a practical path toward scalable unified visual generation, and the promise of interleaved, in-context computation as a foundation for general-purpose visual creation.
Authors:Huichao Zhang, Liao Qu, Yiheng Liu, Hang Chen, Yangyang Song, Yongsheng Dong, Shikun Sun, Xian Li, Xu Wang, Yi Jiang, Hu Ye, Bo Chen, Yiming Gao, Peng Liu, Akide Liu, Zhipeng Yang, Qili Deng, Linjie Xing, Jiyang Liu, Zhao Wang, Yang Zhou, Mingcong Liu, Yi Zhang, Qian He, Xiwei Hu, Zhongqi Qi, Jie Shao, Zhiye Fu, Shuai Wang, Fangmin Chen, Xuezhi Chai, Zhihua Wu, Yitong Wang, Zehuan Yuan, Daniel K. Du, Xinglong Wu
Abstract:
We present NextFlow, a unified decoder-only autoregressive transformer trained on 6 trillion interleaved text-image discrete tokens. By leveraging a unified vision representation within a unified autoregressive architecture, NextFlow natively activates multimodal understanding and generation capabilities, unlocking abilities of image editing, interleaved content and video generation. Motivated by the distinct nature of modalities - where text is strictly sequential and images are inherently hierarchical - we retain next-token prediction for text but adopt next-scale prediction for visual generation. This departs from traditional raster-scan methods, enabling the generation of 1024x1024 images in just 5 seconds - orders of magnitude faster than comparable AR models. We address the instabilities of multi-scale generation through a robust training recipe. Furthermore, we introduce a prefix-tuning strategy for reinforcement learning. Experiments demonstrate that NextFlow achieves state-of-the-art performance among unified models and rivals specialized diffusion baselines in visual quality.
Authors:Jiancheng Huang, Mingfu Yan, Songyan Chen, Yi Huang, Shifeng Chen
Abstract:
Amid the surge in generic text-to-video generation, the field of personalized human video generation has witnessed notable advancements, primarily concentrated on single-person scenarios. However, to our knowledge, the domain of two-person interactions, particularly in the context of martial arts combat, remains uncharted. We identify a significant gap: existing models for single-person dancing generation prove insufficient for capturing the subtleties and complexities of two engaged fighters, resulting in challenges such as identity confusion, anomalous limbs, and action mismatches. To address this, we introduce a pioneering new task, Personalized Martial Arts Combat Video Generation. Our approach, MagicFight, is specifically crafted to overcome these hurdles. Given this pioneering task, we face a lack of appropriate datasets. Thus, we generate a bespoke dataset using the game physics engine Unity, meticulously crafting a multitude of 3D characters, martial arts moves, and scenes designed to represent the diversity of combat. MagicFight refines and adapts existing models and strategies to generate high-fidelity two-person combat videos that maintain individual identities and ensure seamless, coherent action sequences, thereby laying the groundwork for future innovations in the realm of interactive video content creation. Website: https://MingfuYAN.github.io/MagicFight/ Dataset: https://huggingface.co/datasets/MingfuYAN/KungFu-Fiesta
Authors:Megha Mariam K. M, Aditya Arun, Zakaria Laskar, C. V. Jawahar
Abstract:
Generative AI models, particularly Text-to-Video (T2V) systems, offer a promising avenue for transforming science education by automating the creation of engaging and intuitive visual explanations. In this work, we take a first step toward evaluating their potential in physics education by introducing a dedicated benchmark for explanatory video generation. The benchmark is designed to assess how well T2V models can convey core physics concepts through visual illustrations. Each physics concept in our benchmark is decomposed into granular teaching points, with each point accompanied by a carefully crafted prompt intended for visual explanation of the teaching point. T2V models are evaluated on their ability to generate accurate videos in response to these prompts. Our aim is to systematically explore the feasibility of using T2V models to generate high-quality, curriculum-aligned educational content-paving the way toward scalable, accessible, and personalized learning experiences powered by AI. Our evaluation reveals that current models produce visually coherent videos with smooth motion and minimal flickering, yet their conceptual accuracy is less reliable. Performance in areas such as mechanics, fluids, and optics is encouraging, but models struggle with electromagnetism and thermodynamics, where abstract interactions are harder to depict. These findings underscore the gap between visual quality and conceptual correctness in educational video generation. We hope this benchmark helps the community close that gap and move toward T2V systems that can deliver accurate, curriculum-aligned physics content at scale. The benchmark and accompanying codebase are publicly available at https://github.com/meghamariamkm/PhyEduVideo.
Authors:Jiewen Chan, Zhenjun Zhao, Yu-Lun Liu
Abstract:
Reconstructing dynamic 3D scenes from monocular videos requires simultaneously capturing high-frequency appearance details and temporally continuous motion. Existing methods using single Gaussian primitives are limited by their low-pass filtering nature, while standard Gabor functions introduce energy instability. Moreover, lack of temporal continuity constraints often leads to motion artifacts during interpolation. We propose AdaGaR, a unified framework addressing both frequency adaptivity and temporal continuity in explicit dynamic scene modeling. We introduce Adaptive Gabor Representation, extending Gaussians through learnable frequency weights and adaptive energy compensation to balance detail capture and stability. For temporal continuity, we employ Cubic Hermite Splines with Temporal Curvature Regularization to ensure smooth motion evolution. An Adaptive Initialization mechanism combining depth estimation, point tracking, and foreground masks establishes stable point cloud distributions in early training. Experiments on Tap-Vid DAVIS demonstrate state-of-the-art performance (PSNR 35.49, SSIM 0.9433, LPIPS 0.0723) and strong generalization across frame interpolation, depth consistency, video editing, and stereo view synthesis. Project page: https://jiewenchan.github.io/AdaGaR/
Authors:Melonie de Almeida, Daniela Ivanova, Tong Shi, John H. Williamson, Paul Henderson
Abstract:
Humans excel at forecasting the future dynamics of a scene given just a single image. Video generation models that can mimic this ability are an essential component for intelligent systems. Recent approaches have improved temporal coherence and 3D consistency in single-image-conditioned video generation. However, these methods often lack robust user controllability, such as modifying the camera path, limiting their applicability in real-world applications. Most existing camera-controlled image-to-video models struggle with accurately modeling camera motion, maintaining temporal consistency, and preserving geometric integrity. Leveraging explicit intermediate 3D representations offers a promising solution by enabling coherent video generation aligned with a given camera trajectory. Although these methods often use 3D point clouds to render scenes and introduce object motion in a later stage, this two-step process still falls short in achieving full temporal consistency, despite allowing precise control over camera movement. We propose a novel framework that constructs a 3D Gaussian scene representation and samples plausible object motion, given a single image in a single forward pass. This enables fast, camera-guided video generation without the need for iterative denoising to inject object motion into render frames. Extensive experiments on the KITTI, Waymo, RealEstate10K and DL3DV-10K datasets demonstrate that our method achieves state-of-the-art video quality and inference efficiency. The project page is available at https://melonienimasha.github.io/Pixel-to-4D-Website.
Authors:Xu He, Haoxian Zhang, Hejia Chen, Changyuan Zheng, Liyang Chen, Songlin Tang, Jiehui Huang, Xiaoqiang Liu, Pengfei Wan, Zhiyong Wu
Abstract:
Audio-driven visual dubbing aims to synchronize a video's lip movements with new speech, but is fundamentally challenged by the lack of ideal training data: paired videos where only a subject's lip movements differ while all other visual conditions are identical. Existing methods circumvent this with a mask-based inpainting paradigm, where an incomplete visual conditioning forces models to simultaneously hallucinate missing content and sync lips, leading to visual artifacts, identity drift, and poor synchronization. In this work, we propose a novel self-bootstrapping framework that reframes visual dubbing from an ill-posed inpainting task into a well-conditioned video-to-video editing problem. Our approach employs a Diffusion Transformer, first as a data generator, to synthesize ideal training data: a lip-altered companion video for each real sample, forming visually aligned video pairs. A DiT-based audio-driven editor is then trained on these pairs end-to-end, leveraging the complete and aligned input video frames to focus solely on precise, audio-driven lip modifications. This complete, frame-aligned input conditioning forms a rich visual context for the editor, providing it with complete identity cues, scene interactions, and continuous spatiotemporal dynamics. Leveraging this rich context fundamentally enables our method to achieve highly accurate lip sync, faithful identity preservation, and exceptional robustness against challenging in-the-wild scenarios. We further introduce a timestep-adaptive multi-phase learning strategy as a necessary component to disentangle conflicting editing objectives across diffusion timesteps, thereby facilitating stable training and yielding enhanced lip synchronization and visual fidelity. Additionally, we propose ContextDubBench, a comprehensive benchmark dataset for robust evaluation in diverse and challenging practical application scenarios.
Authors:Karthik Dharmarajan, Wenlong Huang, Jiajun Wu, Li Fei-Fei, Ruohan Zhang
Abstract:
Generative video modeling has emerged as a compelling tool to zero-shot reason about plausible physical interactions for open-world manipulation. Yet, it remains a challenge to translate such human-led motions into the low-level actions demanded by robotic systems. We observe that given an initial image and task instruction, these models excel at synthesizing sensible object motions. Thus, we introduce Dream2Flow, a framework that bridges video generation and robotic control through 3D object flow as an intermediate representation. Our method reconstructs 3D object motions from generated videos and formulates manipulation as object trajectory tracking. By separating the state changes from the actuators that realize those changes, Dream2Flow overcomes the embodiment gap and enables zero-shot guidance from pre-trained video models to manipulate objects of diverse categories-including rigid, articulated, deformable, and granular. Through trajectory optimization or reinforcement learning, Dream2Flow converts reconstructed 3D object flow into executable low-level commands without task-specific demonstrations. Simulation and real-world experiments highlight 3D object flow as a general and scalable interface for adapting video generation models to open-world robotic manipulation. Videos and visualizations are available at https://dream2flow.github.io/.
Authors:Jibin Song, Mingi Kwon, Jaeseok Jeong, Youngjung Uh
Abstract:
In this work, we show that the impact of model capacity varies across timesteps: it is crucial for the early and late stages but largely negligible during the intermediate stage. Accordingly, we propose FlowBlending, a stage-aware multi-model sampling strategy that employs a large model and a small model at capacity-sensitive stages and intermediate stages, respectively. We further introduce simple criteria to choose stage boundaries and provide a velocity-divergence analysis as an effective proxy for identifying capacity-sensitive regions. Across LTX-Video (2B/13B) and WAN 2.1 (1.3B/14B), FlowBlending achieves up to 1.65x faster inference with 57.35% fewer FLOPs, while maintaining the visual fidelity, temporal coherence, and semantic alignment of the large models. FlowBlending is also compatible with existing sampling-acceleration techniques, enabling up to 2x additional speedup. Project page is available at: https://jibin86.github.io/flowblending_project_page.
Authors:Yuanhao Cai, Kunpeng Li, Menglin Jia, Jialiang Wang, Junzhe Sun, Feng Liang, Weifeng Chen, Felix Juefei-Xu, Chu Wang, Ali Thabet, Xiaoliang Dai, Xuan Ju, Alan Yuille, Ji Hou
Abstract:
Recent advances in text-to-video (T2V) generation have achieved good visual quality, yet synthesizing videos that faithfully follow physical laws remains an open challenge. Existing methods mainly based on graphics or prompt extension struggle to generalize beyond simple simulated environments or learn implicit physical reasoning. The scarcity of training data with rich physics interactions and phenomena is also a problem. In this paper, we first introduce a Physics-Augmented video data construction Pipeline, PhyAugPipe, that leverages a vision-language model (VLM) with chain-of-thought reasoning to collect a large-scale training dataset, PhyVidGen-135K. Then we formulate a principled Physics-aware Groupwise Direct Preference Optimization, PhyGDPO, framework that builds upon the groupwise Plackett-Luce probabilistic model to capture holistic preferences beyond pairwise comparisons. In PhyGDPO, we design a Physics-Guided Rewarding (PGR) scheme that embeds VLM-based physics rewards to steer optimization toward physical consistency. We also propose a LoRA-Switch Reference (LoRA-SR) scheme that eliminates memory-heavy reference duplication for efficient training. Experiments show that our method significantly outperforms state-of-the-art open-source methods on PhyGenBench and VideoPhy2. Please check our project page at https://caiyuanhao1998.github.io/project/PhyGDPO for more video results. Our code, models, and data will be released at https://github.com/caiyuanhao1998/Open-PhyGDPO
Authors:Shuyun Wang, Haiyang Sun, Bing Wang, Hangjun Ye, Xin Yu
Abstract:
Vision-centric autonomous driving systems rely on diverse and scalable training data to achieve robust performance. While video object editing offers a promising path for data augmentation, existing methods often struggle to maintain both high visual fidelity and temporal coherence. In this work, we propose \textbf{Mirage}, a one-step video diffusion model for photorealistic and coherent asset editing in driving scenes. Mirage builds upon a text-to-video diffusion prior to ensure temporal consistency across frames. However, 3D causal variational autoencoders often suffer from degraded spatial fidelity due to compression, and directly passing 3D encoder features to decoder layers breaks temporal causality. To address this, we inject temporally agnostic latents from a pretrained 2D encoder into the 3D decoder to restore detail while preserving causal structures. Furthermore, because scene objects and inserted assets are optimized under different objectives, their Gaussians exhibit a distribution mismatch that leads to pose misalignment. To mitigate this, we introduce a two-stage data alignment strategy combining coarse 3D alignment and fine 2D refinement, thereby improving alignment and providing cleaner supervision. Extensive experiments demonstrate that Mirage achieves high realism and temporal consistency across diverse editing scenarios. Beyond asset editing, Mirage can also generalize to other video-to-video translation tasks, serving as a reliable baseline for future research. Our code is available at https://github.com/wm-research/mirage.
Authors:Johnathan Xie, Stefan Stojanov, Cristobal Eyzaguirre, Daniel L. K. Yamins, Jiajun Wu
Abstract:
Motion prediction has been studied in different contexts with models trained on narrow distributions and applied to downstream tasks in human motion prediction and robotics. Simultaneously, recent efforts in scaling video prediction have demonstrated impressive visual realism, yet they struggle to accurately model complex motions despite massive scale. Inspired by the scaling of video generation, we develop autoregressive flow matching (ARFM), a new method for probabilistic modeling of sequential continuous data and train it on diverse video datasets to generate future point track locations over long horizons. To evaluate our model, we develop benchmarks for evaluating the ability of motion prediction models to predict human and robot motion. Our model is able to predict complex motions, and we demonstrate that conditioning robot action prediction and human motion prediction on predicted future tracks can significantly improve downstream task performance. Code and models publicly available at: https://github.com/Johnathan-Xie/arfm-motion-prediction.
Authors:Zhi Ouyang, Dian Zheng, Xiao-Ming Wu, Jian-Jian Jiang, Kun-Yu Lin, Jingke Meng, Wei-Shi Zheng
Abstract:
Inversion-based visual editing provides an effective and training-free way to edit an image or a video based on user instructions. Existing methods typically inject source image information during the sampling process to maintain editing consistency. However, this sampling strategy overly relies on source information, which negatively affects the edits in the target image (e.g., failing to change the subject's atributes like pose, number, or color as instructed). In this work, we propose ProEdit to address this issue both in the attention and the latent aspects. In the attention aspect, we introduce KV-mix, which mixes KV features of the source and the target in the edited region, mitigating the influence of the source image on the editing region while maintaining background consistency. In the latent aspect, we propose Latents-Shift, which perturbs the edited region of the source latent, eliminating the influence of the inverted latent on the sampling. Extensive experiments on several image and video editing benchmarks demonstrate that our method achieves SOTA performance. In addition, our design is plug-and-play, which can be seamlessly integrated into existing inversion and editing methods, such as RF-Solver, FireFlow and UniEdit.
Authors:Steven Xiao, Xindi Zhang, Dechao Meng, Qi Wang, Peng Zhang, Bang Zhang
Abstract:
Real-time portrait animation is essential for interactive applications such as virtual assistants and live avatars, requiring high visual fidelity, temporal coherence, ultra-low latency, and responsive control from dynamic inputs like reference images and driving signals. While diffusion-based models achieve strong quality, their non-causal nature hinders streaming deployment. Causal autoregressive video generation approaches enable efficient frame-by-frame generation but suffer from error accumulation, motion discontinuities at chunk boundaries, and degraded long-term consistency. In this work, we present a novel streaming framework named Knot Forcing for real-time portrait animation that addresses these challenges through three key designs: (1) a chunk-wise generation strategy with global identity preservation via cached KV states of the reference image and local temporal modeling using sliding window attention; (2) a temporal knot module that overlaps adjacent chunks and propagates spatio-temporal cues via image-to-video conditioning to smooth inter-chunk motion transitions; and (3) A "running ahead" mechanism that dynamically updates the reference frame's temporal coordinate during inference, keeping its semantic context ahead of the current rollout frame to support long-term coherence. Knot Forcing enables high-fidelity, temporally consistent, and interactive portrait animation over infinite sequences, achieving real-time performance with strong visual stability on consumer-grade GPUs.
Authors:Jiawei Liu, Junqiao Li, Jiangfan Deng, Gen Li, Siyu Zhou, Zetao Fang, Shanshan Lao, Zengde Deng, Jianing Zhu, Tingting Ma, Jiayi Li, Yunqiu Wang, Qian He, Xinglong Wu
Abstract:
The "one-shot" technique represents a distinct and sophisticated aesthetic in filmmaking. However, its practical realization is often hindered by prohibitive costs and complex real-world constraints. Although emerging video generation models offer a virtual alternative, existing approaches typically rely on naive clip concatenation, which frequently fails to maintain visual smoothness and temporal coherence. In this paper, we introduce DreaMontage, a comprehensive framework designed for arbitrary frame-guided generation, capable of synthesizing seamless, expressive, and long-duration one-shot videos from diverse user-provided inputs. To achieve this, we address the challenge through three primary dimensions. (i) We integrate a lightweight intermediate-conditioning mechanism into the DiT architecture. By employing an Adaptive Tuning strategy that effectively leverages base training data, we unlock robust arbitrary-frame control capabilities. (ii) To enhance visual fidelity and cinematic expressiveness, we curate a high-quality dataset and implement a Visual Expression SFT stage. In addressing critical issues such as subject motion rationality and transition smoothness, we apply a Tailored DPO scheme, which significantly improves the success rate and usability of the generated content. (iii) To facilitate the production of extended sequences, we design a Segment-wise Auto-Regressive (SAR) inference strategy that operates in a memory-efficient manner. Extensive experiments demonstrate that our approach achieves visually striking and seamlessly coherent one-shot effects while maintaining computational efficiency, empowering users to transform fragmented visual materials into vivid, cohesive one-shot cinematic experiences.
Authors:Jianhong Bai, Xiaoshi Wu, Xintao Wang, Xiao Fu, Yuanxing Zhang, Qinghe Wang, Xiaoyu Shi, Menghan Xia, Zuozhu Liu, Haoji Hu, Pengfei Wan, Kun Gai
Abstract:
State-of-the-art video generative models typically learn the distribution of video latents in the VAE space and map them to pixels using a VAE decoder. While this approach can generate high-quality videos, it suffers from slow convergence and is computationally expensive when generating long videos. In this paper, we introduce SemanticGen, a novel solution to address these limitations by generating videos in the semantic space. Our main insight is that, due to the inherent redundancy in videos, the generation process should begin in a compact, high-level semantic space for global planning, followed by the addition of high-frequency details, rather than directly modeling a vast set of low-level video tokens using bi-directional attention. SemanticGen adopts a two-stage generation process. In the first stage, a diffusion model generates compact semantic video features, which define the global layout of the video. In the second stage, another diffusion model generates VAE latents conditioned on these semantic features to produce the final output. We observe that generation in the semantic space leads to faster convergence compared to the VAE latent space. Our method is also effective and computationally efficient when extended to long video generation. Extensive experiments demonstrate that SemanticGen produces high-quality videos and outperforms state-of-the-art approaches and strong baselines.
Authors:Soowon Son, Honggyu An, Chaehyun Kim, Hyunah Ko, Jisu Nam, Dahyun Chung, Siyoon Jin, Jung Yi, Jaewon Min, Junhwa Hur, Seungryong Kim
Abstract:
Point tracking aims to localize corresponding points across video frames, serving as a fundamental task for 4D reconstruction, robotics, and video editing. Existing methods commonly rely on shallow convolutional backbones such as ResNet that process frames independently, lacking temporal coherence and producing unreliable matching costs under challenging conditions. Through systematic analysis, we find that video Diffusion Transformers (DiTs), pre-trained on large-scale real-world videos with spatio-temporal attention, inherently exhibit strong point tracking capability and robustly handle dynamic motions and frequent occlusions. We propose DiTracker, which adapts video DiTs through: (1) query-key attention matching, (2) lightweight LoRA tuning, and (3) cost fusion with a ResNet backbone. Despite training with 8 times smaller batch size, DiTracker achieves state-of-the-art performance on challenging ITTO benchmark and matches or outperforms state-of-the-art models on TAP-Vid benchmarks. Our work validates video DiT features as an effective and efficient foundation for point tracking.
Authors:Zhenhao Li, Shaohan Yi, Zheng Liu, Leonartinus Gao, Minh Ngoc Le, Ambrose Ling, Zhuoran Wang, Md Amirul Islam, Zhixiang Chi, Yuanhao Yu
Abstract:
Diffusion models (DMs) have recently achieved impressive photorealism in image and video generation. However, their application to image animation remains limited, even when trained on large-scale datasets. Two primary challenges contribute to this: the high dimensionality of video signals leads to a scarcity of training data, causing DMs to favor memorization over prompt compliance when generating motion; moreover, DMs struggle to generalize to novel motion patterns not present in the training set, and fine-tuning them to learn such patterns, especially using limited training data, is still under-explored. To address these limitations, we propose Modular Image-to-Video Adapter (MIVA), a lightweight sub-network attachable to a pre-trained DM, each designed to capture a single motion pattern and scalable via parallelization. MIVAs can be efficiently trained on approximately ten samples using a single consumer-grade GPU. At inference time, users can specify motion by selecting one or multiple MIVAs, eliminating the need for prompt engineering. Extensive experiments demonstrate that MIVA enables more precise motion control while maintaining, or even surpassing, the generation quality of models trained on significantly larger datasets.
Authors:Zelin Zhao, Xinyu Gong, Bangya Liu, Ziyang Song, Jun Zhang, Suhui Wu, Yongxin Chen, Hao Zhang
Abstract:
Achieving precise camera control in video generation remains challenging, as existing methods often rely on camera pose annotations that are difficult to scale to large and dynamic datasets and are frequently inconsistent with depth estimation, leading to train-test discrepancies. We introduce CETCAM, a camera-controllable video generation framework that eliminates the need for camera annotations through a consistent and extensible tokenization scheme. CETCAM leverages recent advances in geometry foundation models, such as VGGT, to estimate depth and camera parameters and converts them into unified, geometry-aware tokens. These tokens are seamlessly integrated into a pretrained video diffusion backbone via lightweight context blocks. Trained in two progressive stages, CETCAM first learns robust camera controllability from diverse raw video data and then refines fine-grained visual quality using curated high-fidelity datasets. Extensive experiments across multiple benchmarks demonstrate state-of-the-art geometric consistency, temporal stability, and visual realism. Moreover, CETCAM exhibits strong adaptability to additional control modalities, including inpainting and layout control, highlighting its flexibility beyond camera control. The project page is available at https://sjtuytc.github.io/CETCam_project_page.github.io/.
Authors:Tianrui Zhu, Shiyi Zhang, Zhirui Sun, Jingqi Tian, Yansong Tang
Abstract:
Frame-level autoregressive (frame-AR) models have achieved significant progress, enabling real-time video generation comparable to bidirectional diffusion models and serving as a foundation for interactive world models and game engines. However, current approaches in long video generation typically rely on window attention, which naively discards historical context outside the window, leading to catastrophic forgetting and scene inconsistency; conversely, retaining full history incurs prohibitive memory costs. To address this trade-off, we propose Memorize-and-Generate (MAG), a framework that decouples memory compression and frame generation into distinct tasks. Specifically, we train a memory model to compress historical information into a compact KV cache, and a separate generator model to synthesize subsequent frames utilizing this compressed representation. Furthermore, we introduce MAG-Bench to strictly evaluate historical memory retention. Extensive experiments demonstrate that MAG achieves superior historical scene consistency while maintaining competitive performance on standard video generation benchmarks.
Authors:Yitong Wang, Fangyun Wei, Hongyang Zhang, Bo Dai, Yan Lu
Abstract:
Recent advances in world models have greatly enhanced interactive environment simulation. Existing methods mainly fall into two categories: (1) static world generation models, which construct 3D environments without active agents, and (2) controllable-entity models, which allow a single entity to perform limited actions in an otherwise uncontrollable environment. In this work, we introduce AniX, leveraging the realism and structural grounding of static world generation while extending controllable-entity models to support user-specified characters capable of performing open-ended actions. Users can provide a 3DGS scene and a character, then direct the character through natural language to perform diverse behaviors from basic locomotion to object-centric interactions while freely exploring the environment. AniX synthesizes temporally coherent video clips that preserve visual fidelity with the provided scene and character, formulated as a conditional autoregressive video generation problem. Built upon a pre-trained video generator, our training strategy significantly enhances motion dynamics while maintaining generalization across actions and characters. Our evaluation covers a broad range of aspects, including visual quality, character consistency, action controllability, and long-horizon coherence.
Authors:Zhongwei Zhang, Fuchen Long, Wei Li, Zhaofan Qiu, Wu Liu, Ting Yao, Tao Mei
Abstract:
The In-context generation paradigm recently has demonstrated strong power in instructional image editing with both data efficiency and synthesis quality. Nevertheless, shaping such in-context learning for instruction-based video editing is not trivial. Without specifying editing regions, the results can suffer from the problem of inaccurate editing regions and the token interference between editing and non-editing areas during denoising. To address these, we present ReCo, a new instructional video editing paradigm that novelly delves into constraint modeling between editing and non-editing regions during in-context generation. Technically, ReCo width-wise concatenates source and target video for joint denoising. To calibrate video diffusion learning, ReCo capitalizes on two regularization terms, i.e., latent and attention regularization, conducting on one-step backward denoised latents and attention maps, respectively. The former increases the latent discrepancy of the editing region between source and target videos while reducing that of non-editing areas, emphasizing the modification on editing area and alleviating outside unexpected content generation. The latter suppresses the attention of tokens in the editing region to the tokens in counterpart of the source video, thereby mitigating their interference during novel object generation in target video. Furthermore, we propose a large-scale, high-quality video editing dataset, i.e., ReCo-Data, comprising 500K instruction-video pairs to benefit model training. Extensive experiments conducted on four major instruction-based video editing tasks demonstrate the superiority of our proposal.
Authors:Hoiyeong Jin, Hyojin Jang, Jeongho Kim, Junha Hyung, Kinam Kim, Dongjin Kim, Huijin Choi, Hyeonji Kim, Jaegul Choo
Abstract:
Recent advances in diffusion-based video generation have opened new possibilities for controllable video editing, yet realistic video object insertion (VOI) remains challenging due to limited 4D scene understanding and inadequate handling of occlusion and lighting effects. We present InsertAnywhere, a new VOI framework that achieves geometrically consistent object placement and appearance-faithful video synthesis. Our method begins with a 4D aware mask generation module that reconstructs the scene geometry and propagates user specified object placement across frames while maintaining temporal coherence and occlusion consistency. Building upon this spatial foundation, we extend a diffusion based video generation model to jointly synthesize the inserted object and its surrounding local variations such as illumination and shading. To enable supervised training, we introduce ROSE++, an illumination aware synthetic dataset constructed by transforming the ROSE object removal dataset into triplets of object removed video, object present video, and a VLM generated reference image. Through extensive experiments, we demonstrate that our framework produces geometrically plausible and visually coherent object insertions across diverse real world scenarios, significantly outperforming existing research and commercial models.
Authors:Min-Jung Kim, Jeongho Kim, Hoiyeong Jin, Junha Hyung, Jaegul Choo
Abstract:
Recent progress in video diffusion models has spurred growing interest in camera-controlled novel-view video generation for dynamic scenes, aiming to provide creators with cinematic camera control capabilities in post-production. A key challenge in camera-controlled video generation is ensuring fidelity to the specified camera pose, while maintaining view consistency and reasoning about occluded geometry from limited observations. To address this, existing methods either train trajectory-conditioned video generation model on trajectory-video pair dataset, or estimate depth from the input video to reproject it along a target trajectory and generate the unprojected regions. Nevertheless, existing methods struggle to generate camera-pose-faithful, high-quality videos for two main reasons: (1) reprojection-based approaches are highly susceptible to errors caused by inaccurate depth estimation; and (2) the limited diversity of camera trajectories in existing datasets restricts learned models. To address these limitations, we present InfCam, a depth-free, camera-controlled video-to-video generation framework with high pose fidelity. The framework integrates two key components: (1) infinite homography warping, which encodes 3D camera rotations directly within the 2D latent space of a video diffusion model. Conditioning on this noise-free rotational information, the residual parallax term is predicted through end-to-end training to achieve high camera-pose fidelity; and (2) a data augmentation pipeline that transforms existing synthetic multiview datasets into sequences with diverse trajectories and focal lengths. Experimental results demonstrate that InfCam outperforms baseline methods in camera-pose accuracy and visual fidelity, generalizing well from synthetic to real-world data. Link to our project page:https://emjay73.github.io/InfCam/
Authors:Jinjie Mai, Chaoyang Wang, Guocheng Gordon Qian, Willi Menapace, Sergey Tulyakov, Bernard Ghanem, Peter Wonka, Ashkan Mirzaei
Abstract:
While image editing has advanced rapidly, video editing remains less explored, facing challenges in consistency, control, and generalization. We study the design space of data, architecture, and control, and introduce \emph{EasyV2V}, a simple and effective framework for instruction-based video editing. On the data side, we compose existing experts with fast inverses to build diverse video pairs, lift image edit pairs into videos via single-frame supervision and pseudo pairs with shared affine motion, mine dense-captioned clips for video pairs, and add transition supervision to teach how edits unfold. On the model side, we observe that pretrained text-to-video models possess editing capability, motivating a simplified design. Simple sequence concatenation for conditioning with light LoRA fine-tuning suffices to train a strong model. For control, we unify spatiotemporal control via a single mask mechanism and support optional reference images. Overall, EasyV2V works with flexible inputs, e.g., video+text, video+mask+text, video+mask+reference+text, and achieves state-of-the-art video editing results, surpassing concurrent and commercial systems. Project page: https://snap-research.github.io/easyv2v/
Authors:Jintao Zhang, Kaiwen Zheng, Kai Jiang, Haoxu Wang, Ion Stoica, Joseph E. Gonzalez, Jianfei Chen, Jun Zhu
Abstract:
We introduce TurboDiffusion, a video generation acceleration framework that can speed up end-to-end diffusion generation by 100-200x while maintaining video quality. TurboDiffusion mainly relies on several components for acceleration: (1) Attention acceleration: TurboDiffusion uses low-bit SageAttention and trainable Sparse-Linear Attention (SLA) to speed up attention computation. (2) Step distillation: TurboDiffusion adopts rCM for efficient step distillation. (3) W8A8 quantization: TurboDiffusion quantizes model parameters and activations to 8 bits to accelerate linear layers and compress the model. In addition, TurboDiffusion incorporates several other engineering optimizations. We conduct experiments on the Wan2.2-I2V-14B-720P, Wan2.1-T2V-1.3B-480P, Wan2.1-T2V-14B-720P, and Wan2.1-T2V-14B-480P models. Experimental results show that TurboDiffusion achieves 100-200x speedup for video generation even on a single RTX 5090 GPU, while maintaining comparable video quality. The GitHub repository, which includes model checkpoints and easy-to-use code, is available at https://github.com/thu-ml/TurboDiffusion.
Authors:Jinjing Zhao, Fangyun Wei, Zhening Liu, Hongyang Zhang, Chang Xu, Yan Lu
Abstract:
Existing video generation models struggle to maintain long-term spatial and temporal consistency due to the dense, high-dimensional nature of video signals. To overcome this limitation, we propose Spatia, a spatial memory-aware video generation framework that explicitly preserves a 3D scene point cloud as persistent spatial memory. Spatia iteratively generates video clips conditioned on this spatial memory and continuously updates it through visual SLAM. This dynamic-static disentanglement design enhances spatial consistency throughout the generation process while preserving the model's ability to produce realistic dynamic entities. Furthermore, Spatia enables applications such as explicit camera control and 3D-aware interactive editing, providing a geometrically grounded framework for scalable, memory-driven video generation.
Authors:Yifei Li, Wenzhao Zheng, Yanran Zhang, Runze Sun, Yu Zheng, Lei Chen, Jie Zhou, Jiwen Lu
Abstract:
The misuse of AI-driven video generation technologies has raised serious social concerns, highlighting the urgent need for reliable AI-generated video detectors. However, most existing methods are limited to binary classification and lack the necessary explanations for human interpretation. In this paper, we present Skyra, a specialized multimodal large language model (MLLM) that identifies human-perceivable visual artifacts in AI-generated videos and leverages them as grounded evidence for both detection and explanation. To support this objective, we construct ViF-CoT-4K for Supervised Fine-Tuning (SFT), which represents the first large-scale AI-generated video artifact dataset with fine-grained human annotations. We then develop a two-stage training strategy that systematically enhances our model's spatio-temporal artifact perception, explanation capability, and detection accuracy. To comprehensively evaluate Skyra, we introduce ViF-Bench, a benchmark comprising 3K high-quality samples generated by over ten state-of-the-art video generators. Extensive experiments demonstrate that Skyra surpasses existing methods across multiple benchmarks, while our evaluation yields valuable insights for advancing explainable AI-generated video detection.
Authors:Yuxiang Shi, Zhe Li, Yanwen Wang, Hao Zhu, Xun Cao, Ligang Liu
Abstract:
Portrait animation from a single source image and a driving video is a long-standing problem. Recent approaches tend to adopt diffusion-based image/video generation models for realistic and expressive animation. However, none of these diffusion models realizes high-fidelity disentangled control between the head pose and facial expression, hindering applications like expression-only or pose-only editing and animation. To address this, we propose DeX-Portrait, a novel approach capable of generating expressive portrait animation driven by disentangled pose and expression signals. Specifically, we represent the pose as an explicit global transformation and the expression as an implicit latent code. First, we design a powerful motion trainer to learn both pose and expression encoders for extracting precise and decomposed driving signals. Then we propose to inject the pose transformation into the diffusion model through a dual-branch conditioning mechanism, and the expression latent through cross attention. Finally, we design a progressive hybrid classifier-free guidance for more faithful identity consistency. Experiments show that our method outperforms state-of-the-art baselines on both animation quality and disentangled controllability.
Authors:Zhenzhi Wang, Jian Wang, Ke Ma, Dahua Lin, Bing Zhou
Abstract:
We introduce TalkVerse, a large-scale, open corpus for single-person, audio-driven talking video generation designed to enable fair, reproducible comparison across methods. While current state-of-the-art systems rely on closed data or compute-heavy models, TalkVerse offers 2.3 million high-resolution (720p/1080p) audio-video synchronized clips totaling 6.3k hours. These are curated from over 60k hours of video via a transparent pipeline that includes scene-cut detection, aesthetic assessment, strict audio-visual synchronization checks, and comprehensive annotations including 2D skeletons and structured visual/audio-style captions. Leveraging TalkVerse, we present a reproducible 5B DiT baseline built on Wan2.2-5B. By utilizing a video VAE with a high downsampling ratio and a sliding window mechanism with motion-frame context, our model achieves minute-long generation with low drift. It delivers comparable lip-sync and visual quality to the 14B Wan-S2V model but with 10$\times$ lower inference cost. To enhance storytelling in long videos, we integrate an MLLM director to rewrite prompts based on audio and visual cues. Furthermore, our model supports zero-shot video dubbing via controlled latent noise injection. We open-source the dataset, training recipes, and 5B checkpoints to lower barriers for research in audio-driven human video generation. Project Page: https://zhenzhiwang.github.io/talkverse/
Authors:Sihui Ji, Xi Chen, Shuai Yang, Xin Tao, Pengfei Wan, Hengshuang Zhao
Abstract:
The core challenge for streaming video generation is maintaining the content consistency in long context, which poses high requirement for the memory design. Most existing solutions maintain the memory by compressing historical frames with predefined strategies. However, different to-generate video chunks should refer to different historical cues, which is hard to satisfy with fixed strategies. In this work, we propose MemFlow to address this problem. Specifically, before generating the coming chunk, we dynamically update the memory bank by retrieving the most relevant historical frames with the text prompt of this chunk. This design enables narrative coherence even if new event happens or scenario switches in future frames. In addition, during generation, we only activate the most relevant tokens in the memory bank for each query in the attention layers, which effectively guarantees the generation efficiency. In this way, MemFlow achieves outstanding long-context consistency with negligible computation burden (7.9% speed reduction compared with the memory-free baseline) and keeps the compatibility with any streaming video generation model with KV cache.
Authors:Leon Sick, Lukas Hoyer, Dominik Engel, Pedro Hermosilla, Timo Ropinski
Abstract:
In recent years, the state-of-the-art in unsupervised video instance segmentation has heavily relied on synthetic video data, generated from object-centric image datasets such as ImageNet. However, video synthesis by artificially shifting and scaling image instance masks fails to accurately model realistic motion in videos, such as perspective changes, movement by parts of one or multiple instances, or camera motion. To tackle this issue, we propose an unsupervised video instance segmentation model trained exclusively on real video data. We start from unsupervised instance segmentation masks on individual video frames. However, these single-frame segmentations exhibit temporal noise and their quality varies through the video. Therefore, we establish temporal coherence by identifying high-quality keymasks in the video by leveraging deep motion priors. The sparse keymask pseudo-annotations are then used to train a segmentation model for implicit mask propagation, for which we propose a Sparse-To-Dense Distillation approach aided by a Temporal DropLoss. After training the final model on the resulting dense labelset, our approach outperforms the current state-of-the-art across various benchmarks.
Authors:Susung Hong, Chongjian Ge, Zhifei Zhang, Jui-Hsien Wang
Abstract:
Video diffusion models have revolutionized generative video synthesis, but they are imprecise, slow, and can be opaque during generation -- keeping users in the dark for a prolonged period. In this work, we propose DiffusionBrowser, a model-agnostic, lightweight decoder framework that allows users to interactively generate previews at any point (timestep or transformer block) during the denoising process. Our model can generate multi-modal preview representations that include RGB and scene intrinsics at more than 4$\times$ real-time speed (less than 1 second for a 4-second video) that convey consistent appearance and motion to the final video. With the trained decoder, we show that it is possible to interactively guide the generation at intermediate noise steps via stochasticity reinjection and modal steering, unlocking a new control capability. Moreover, we systematically probe the model using the learned decoders, revealing how scene, object, and other details are composed and assembled during the otherwise black-box denoising process.
Authors:Jianxiong Gao, Zhaoxi Chen, Xian Liu, Junhao Zhuang, Chengming Xu, Jianfeng Feng, Yu Qiao, Yanwei Fu, Chenyang Si, Ziwei Liu
Abstract:
Building video world models upon pretrained video generation systems represents an important yet challenging step toward general spatiotemporal intelligence. A world model should possess three essential properties: controllability, long-term visual quality, and temporal consistency. To this end, we take a progressive approach-first enhancing controllability and then extending toward long-term, high-quality generation. We present LongVie 2, an end-to-end autoregressive framework trained in three stages: (1) Multi-modal guidance, which integrates dense and sparse control signals to provide implicit world-level supervision and improve controllability; (2) Degradation-aware training on the input frame, bridging the gap between training and long-term inference to maintain high visual quality; and (3) History-context guidance, which aligns contextual information across adjacent clips to ensure temporal consistency. We further introduce LongVGenBench, a comprehensive benchmark comprising 100 high-resolution one-minute videos covering diverse real-world and synthetic environments. Extensive experiments demonstrate that LongVie 2 achieves state-of-the-art performance in long-range controllability, temporal coherence, and visual fidelity, and supports continuous video generation lasting up to five minutes, marking a significant step toward unified video world modeling.
Authors:Jiangning Zhang, Junwei Zhu, Teng Hu, Yabiao Wang, Donghao Luo, Weijian Cao, Zhenye Gan, Xiaobin Hu, Zhucun Xue, Chengjie Wang
Abstract:
Native 4K (2160$\times$3840) video generation remains a critical challenge due to the quadratic computational explosion of full-attention as spatiotemporal resolution increases, making it difficult for models to strike a balance between efficiency and quality. This paper proposes a novel Transformer retrofit strategy termed $\textbf{T3}$ ($\textbf{T}$ransform $\textbf{T}$rained $\textbf{T}$ransformer) that, without altering the core architecture of full-attention pretrained models, significantly reduces compute requirements by optimizing their forward logic. Specifically, $\textbf{T3-Video}$ introduces a multi-scale weight-sharing window attention mechanism and, via hierarchical blocking together with an axis-preserving full-attention design, can effect an "attention pattern" transformation of a pretrained model using only modest compute and data. Results on 4K-VBench show that $\textbf{T3-Video}$ substantially outperforms existing approaches: while delivering performance improvements (+4.29$\uparrow$ VQA and +0.08$\uparrow$ VTC), it accelerates native 4K video generation by more than 10$\times$. Project page at https://zhangzjn.github.io/projects/T3-Video
Authors:Anran Qi, Changjian Li, Adrien Bousseau, Niloy J. Mitra
Abstract:
We address image-to-video generation with explicit user control over the final frame's disoccluded regions. Current image-to-video pipelines produce plausible motion but struggle to generate predictable, articulated motions while enforcing user-specified content in newly revealed areas. Our key idea is to separate motion specification from appearance synthesis: we introduce a lightweight, user-editable Proxy Dynamic Graph (PDG) that deterministically yet approximately drives part motion, while a frozen diffusion prior is used to synthesize plausible appearance that follows that motion. In our training-free pipeline, the user loosely annotates and reposes a PDG, from which we compute a dense motion flow to leverage diffusion as a motion-guided shader. We then let the user edit appearance in the disoccluded areas of the image, and exploit the visibility information encoded by the PDG to perform a latent-space composite that reconciles motion with user intent in these areas. This design yields controllable articulation and user control over disocclusions without fine-tuning. We demonstrate clear advantages against state-of-the-art alternatives towards images turned into short videos of articulated objects, furniture, vehicles, and deformables. Our method mixes generative control, in the form of loose pose and structure, with predictable controls, in the form of appearance specification in the final frame in the disoccluded regions, unlocking a new image-to-video workflow. Code will be released on acceptance. Project page: https://anranqi.github.io/beyond-visible.github.io/
Authors:Shu Yu, Chaochao Lu
Abstract:
Diffusion models (DMs) have achieved remarkable success in image and video generation. However, they still struggle with (1) physical alignment and (2) out-of-distribution (OOD) instruction following. We argue that these issues stem from the models' failure to learn causal directions and to disentangle causal factors for novel recombination. We introduce the Causal Scene Graph (CSG) and the Physical Alignment Probe (PAP) dataset to enable diagnostic interventions. This analysis yields three key insights. First, DMs struggle with multi-hop reasoning for elements not explicitly determined in the prompt. Second, the prompt embedding contains disentangled representations for texture and physics. Third, visual causal structure is disproportionately established during the initial, computationally limited denoising steps. Based on these findings, we introduce LINA (Learning INterventions Adaptively), a novel framework that learns to predict prompt-specific interventions, which employs (1) targeted guidance in the prompt and visual latent spaces, and (2) a reallocated, causality-aware denoising schedule. Our approach enforces both physical alignment and OOD instruction following in image and video DMs, achieving state-of-the-art performance on challenging causal generation tasks and the Winoground dataset. Our project page is at https://opencausalab.github.io/LINA.
Authors:Jiaqi Wang, Weijia Wu, Yi Zhan, Rui Zhao, Ming Hu, James Cheng, Wei Liu, Philip Torr, Kevin Qinghong Lin
Abstract:
Recent advances in video generation have produced vivid content that are often indistinguishable from real videos, making AI-generated video detection an emerging societal challenge. Prior AIGC detection benchmarks mostly evaluate video without audio, target broad narrative domains, and focus on classification solely. Yet it remains unclear whether state-of-the-art video generation models can produce immersive, audio-paired videos that reliably deceive humans and VLMs. To this end, we introduce Video Reality Test, an ASMR-sourced video benchmark suite for testing perceptual realism under tight audio-visual coupling, featuring the following dimensions: (i) Immersive ASMR video-audio sources. Built on carefully curated real ASMR videos, the benchmark targets fine-grained action-object interactions with diversity across objects, actions, and backgrounds. (ii) Peer-Review evaluation. An adversarial creator-reviewer protocol where video generation models act as creators aiming to fool reviewers, while VLMs serve as reviewers seeking to identify fakeness. Our experimental findings show: The best creator Veo3.1-Fast even fools most VLMs: the strongest reviewer (Gemini 2.5-Pro) achieves only 56% accuracy (random 50%), far below that of human experts (81.25%). Adding audio improves real-fake discrimination, yet superficial cues such as watermarks can still significantly mislead models. These findings delineate the current boundary of video generation realism and expose limitations of VLMs in perceptual fidelity and audio-visual consistency. Our code is available at https://github.com/video-reality-test/video-reality-test.
Authors:Zhenya Yang, Zhe Liu, Yuxiang Lu, Liping Hou, Chenxuan Miao, Siyi Peng, Bailan Feng, Xiang Bai, Hengshuang Zhao
Abstract:
Physics-aware driving world model is essential for drive planning, out-of-distribution data synthesis, and closed-loop evaluation. However, existing methods often rely on a single diffusion model to directly map driving actions to videos, which makes learning difficult and leads to physically inconsistent outputs. To overcome these challenges, we propose GenieDrive, a novel framework designed for physics-aware driving video generation. Our approach starts by generating 4D occupancy, which serves as a physics-informed foundation for subsequent video generation. 4D occupancy contains rich physical information, including high-resolution 3D structures and dynamics. To facilitate effective compression of such high-resolution occupancy, we propose a VAE that encodes occupancy into a latent tri-plane representation, reducing the latent size to only 58% of that used in previous methods. We further introduce Mutual Control Attention (MCA) to accurately model the influence of control on occupancy evolution, and we jointly train the VAE and the subsequent prediction module in an end-to-end manner to maximize forecasting accuracy. Together, these designs yield a 7.2% improvement in forecasting mIoU at an inference speed of 41 FPS, while using only 3.47 M parameters. Additionally, a Normalized Multi-View Attention is introduced in the video generation model to generate multi-view driving videos with guidance from our 4D occupancy, significantly improving video quality with a 20.7% reduction in FVD. Experiments demonstrate that GenieDrive enables highly controllable, multi-view consistent, and physics-aware driving video generation.
Authors:Qi Sun, Can Wang, Jiaxiang Shang, Wensen Feng, Jing Liao
Abstract:
We present Animus3D, a text-driven 3D animation framework that generates motion field given a static 3D asset and text prompt. Previous methods mostly leverage the vanilla Score Distillation Sampling (SDS) objective to distill motion from pretrained text-to-video diffusion, leading to animations with minimal movement or noticeable jitter. To address this, our approach introduces a novel SDS alternative, Motion Score Distillation (MSD). Specifically, we introduce a LoRA-enhanced video diffusion model that defines a static source distribution rather than pure noise as in SDS, while another inversion-based noise estimation technique ensures appearance preservation when guiding motion. To further improve motion fidelity, we incorporate explicit temporal and spatial regularization terms that mitigate geometric distortions across time and space. Additionally, we propose a motion refinement module to upscale the temporal resolution and enhance fine-grained details, overcoming the fixed-resolution constraints of the underlying video model. Extensive experiments demonstrate that Animus3D successfully animates static 3D assets from diverse text prompts, generating significantly more substantial and detailed motion than state-of-the-art baselines while maintaining high visual integrity. Code will be released at https://qiisun.github.io/animus3d_page.
Authors:Ke Zhang, Yiqun Mei, Jiacong Xu, Vishal M. Patel
Abstract:
Producing long, coherent video sequences with stable 3D structure remains a major challenge, particularly in streaming scenarios. Motivated by this, we introduce Endless World, a real-time framework for infinite, 3D-consistent video generation.To support infinite video generation, we introduce a conditional autoregressive training strategy that aligns newly generated content with existing video frames. This design preserves long-range dependencies while remaining computationally efficient, enabling real-time inference on a single GPU without additional training overhead.Moreover, our Endless World integrates global 3D-aware attention to provide continuous geometric guidance across time. Our 3D injection mechanism enforces physical plausibility and geometric consistency throughout extended sequences, addressing key challenges in long-horizon and dynamic scene synthesis.Extensive experiments demonstrate that Endless World produces long, stable, and visually coherent videos, achieving competitive or superior performance to existing methods in both visual fidelity and spatial consistency. Our project has been available on https://bwgzk-keke.github.io/EndlessWorld/.
Authors:Tejas Panambur, Ishan Rajendrakumar Dave, Chongjian Ge, Ersin Yumer, Xue Bai
Abstract:
Modern text-to-video (T2V) diffusion models can synthesize visually compelling clips, yet they remain brittle at fine-scale structure: even state-of-the-art generators often produce distorted faces and hands, warped backgrounds, and temporally inconsistent motion. Such severe structural artifacts also appear in very low-quality real-world videos. Classical video restoration and super-resolution (VR/VSR) methods, in contrast, are tuned for synthetic degradations such as blur and downsampling and tend to stabilize these artifacts rather than repair them, while diffusion-prior restorers are usually trained on photometric noise and offer little control over the trade-off between perceptual quality and fidelity. We introduce CreativeVR, a diffusion-prior-guided video restoration framework for AI-generated (AIGC) and real videos with severe structural and temporal artifacts. Our deep-adapter-based method exposes a single precision knob that controls how strongly the model follows the input, smoothly trading off between precise restoration on standard degradations and stronger structure- and motion-corrective behavior on challenging content. Our key novelty is a temporally coherent degradation module used during training, which applies carefully designed transformations that produce realistic structural failures. To evaluate AIGC-artifact restoration, we propose the AIGC54 benchmark with FIQA, semantic and perceptual metrics, and multi-aspect scoring. CreativeVR achieves state-of-the-art results on videos with severe artifacts and performs competitively on standard video restoration benchmarks, while running at practical throughput (about 13 FPS at 720p on a single 80-GB A100). Project page: https://daveishan.github.io/creativevr-webpage/.
Authors:Ye Fang, Tong Wu, Valentin Deschaintre, Duygu Ceylan, Iliyan Georgiev, Chun-Hao Paul Huang, Yiwei Hu, Xuelin Chen, Tuanfeng Yang Wang
Abstract:
Large-scale video generation models have shown remarkable potential in modeling photorealistic appearance and lighting interactions in real-world scenes. However, a closed-loop framework that jointly understands intrinsic scene properties (e.g., albedo, normal, material, and irradiance), leverages them for video synthesis, and supports editable intrinsic representations remains unexplored. We present V-RGBX, the first end-to-end framework for intrinsic-aware video editing. V-RGBX unifies three key capabilities: (1) video inverse rendering into intrinsic channels, (2) photorealistic video synthesis from these intrinsic representations, and (3) keyframe-based video editing conditioned on intrinsic channels. At the core of V-RGBX is an interleaved conditioning mechanism that enables intuitive, physically grounded video editing through user-selected keyframes, supporting flexible manipulation of any intrinsic modality. Extensive qualitative and quantitative results show that V-RGBX produces temporally consistent, photorealistic videos while propagating keyframe edits across sequences in a physically plausible manner. We demonstrate its effectiveness in diverse applications, including object appearance editing and scene-level relighting, surpassing the performance of prior methods.
Authors:Sharath Girish, Viacheslav Ivanov, Tsai-Shien Chen, Hao Chen, Aliaksandr Siarohin, Sergey Tulyakov
Abstract:
Recent advances in subject-driven video generation with large diffusion models have enabled personalized content synthesis conditioned on user-provided subjects. However, existing methods lack fine-grained temporal control over subject appearance and disappearance, which are essential for applications such as compositional video synthesis, storyboarding, and controllable animation. We propose AlcheMinT, a unified framework that introduces explicit timestamps conditioning for subject-driven video generation. Our approach introduces a novel positional encoding mechanism that unlocks the encoding of temporal intervals, associated in our case with subject identities, while seamlessly integrating with the pretrained video generation model positional embeddings. Additionally, we incorporate subject-descriptive text tokens to strengthen binding between visual identity and video captions, mitigating ambiguity during generation. Through token-wise concatenation, AlcheMinT avoids any additional cross-attention modules and incurs negligible parameter overhead. We establish a benchmark evaluating multiple subject identity preservation, video fidelity, and temporal adherence. Experimental results demonstrate that AlcheMinT achieves visual quality matching state-of-the-art video personalization methods, while, for the first time, enabling precise temporal control over multi-subject generation within videos. Project page is at https://snap-research.github.io/Video-AlcheMinT
Authors:Xiang Fan, Sharath Girish, Vivek Ramanujan, Chaoyang Wang, Ashkan Mirzaei, Petr Sushko, Aliaksandr Siarohin, Sergey Tulyakov, Ranjay Krishna
Abstract:
Prior approaches injecting camera control into diffusion models have focused on specific subsets of 4D consistency tasks: novel view synthesis, text-to-video with camera control, image-to-video, amongst others. Therefore, these fragmented approaches are trained on disjoint slices of available 3D/4D data. We introduce OmniView, a unified framework that generalizes across a wide range of 4D consistency tasks. Our method separately represents space, time, and view conditions, enabling flexible combinations of these inputs. For example, OmniView can synthesize novel views from static, dynamic, and multiview inputs, extrapolate trajectories forward and backward in time, and create videos from text or image prompts with full camera control. OmniView is competitive with task-specific models across diverse benchmarks and metrics, improving image quality scores among camera-conditioned diffusion models by up to 33\% in multiview NVS LLFF dataset, 60\% in dynamic NVS Neural 3D Video benchmark, 20\% in static camera control on RE-10K, and reducing camera trajectory errors by 4x in text-conditioned video generation. With strong generalizability in one model, OmniView demonstrates the feasibility of a generalist 4D video model. Project page is available at https://snap-research.github.io/OmniView/
Authors:Xiaoxue Wu, Xinyuan Chen, Yaohui Wang, Yu Qiao
Abstract:
Shot transitions play a pivotal role in multi-shot video generation, as they determine the overall narrative expression and the directorial design of visual storytelling. However, recent progress has primarily focused on low-level visual consistency across shots, neglecting how transitions are designed and how cinematographic language contributes to coherent narrative expression. This often leads to mere sequential shot changes without intentional film-editing patterns. To address this limitation, we propose ShotDirector, an efficient framework that integrates parameter-level camera control and hierarchical editing-pattern-aware prompting. Specifically, we adopt a camera control module that incorporates 6-DoF poses and intrinsic settings to enable precise camera information injection. In addition, a shot-aware mask mechanism is employed to introduce hierarchical prompts aware of professional editing patterns, allowing fine-grained control over shot content. Through this design, our framework effectively combines parameter-level conditions with high-level semantic guidance, achieving film-like controllable shot transitions. To facilitate training and evaluation, we construct ShotWeaver40K, a dataset that captures the priors of film-like editing patterns, and develop a set of evaluation metrics for controllable multi-shot video generation. Extensive experiments demonstrate the effectiveness of our framework.
Authors:Yixin Wan, Lei Ke, Wenhao Yu, Kai-Wei Chang, Dong Yu
Abstract:
We introduce MotionEdit, a novel dataset for motion-centric image editing-the task of modifying subject actions and interactions while preserving identity, structure, and physical plausibility. Unlike existing image editing datasets that focus on static appearance changes or contain only sparse, low-quality motion edits, MotionEdit provides high-fidelity image pairs depicting realistic motion transformations extracted and verified from continuous videos. This new task is not only scientifically challenging but also practically significant, powering downstream applications such as frame-controlled video synthesis and animation. To evaluate model performance on the novel task, we introduce MotionEdit-Bench, a benchmark that challenges models on motion-centric edits and measures model performance with generative, discriminative, and preference-based metrics. Benchmark results reveal that motion editing remains highly challenging for existing state-of-the-art diffusion-based editing models. To address this gap, we propose MotionNFT (Motion-guided Negative-aware Fine Tuning), a post-training framework that computes motion alignment rewards based on how well the motion flow between input and model-edited images matches the ground-truth motion, guiding models toward accurate motion transformations. Extensive experiments on FLUX.1 Kontext and Qwen-Image-Edit show that MotionNFT consistently improves editing quality and motion fidelity of both base models on the motion editing task without sacrificing general editing ability, demonstrating its effectiveness. Our code is at https://github.com/elainew728/motion-edit/.
Authors:Xinyu Liu, Hangjie Yuan, Yujie Wei, Jiazheng Xing, Yujin Han, Jiahao Pan, Yanbiao Ma, Chi-Min Chan, Kang Zhao, Shiwei Zhang, Wenhan Luo, Yike Guo
Abstract:
Video unified models exhibit strong capabilities in understanding and generation, yet they struggle with reason-informed visual editing even when equipped with powerful internal vision-language models (VLMs). We attribute this gap to two factors: 1) existing datasets are inadequate for training and evaluating reasoning-aware video editing, and 2) an inherent disconnect between the models' reasoning and editing capabilities, which prevents the rich understanding from effectively instructing the editing process. Bridging this gap requires an integrated framework that connects reasoning with visual transformation. To address this gap, we introduce the Reason-Informed Video Editing (RVE) task, which requires reasoning about physical plausibility and causal dynamics during editing. To support systematic evaluation, we construct RVE-Bench, a comprehensive benchmark with two complementary subsets: Reasoning-Informed Video Editing and In-Context Video Generation. These subsets cover diverse reasoning dimensions and real-world editing scenarios. Building upon this foundation, we propose the ReViSE, a Self-Reflective Reasoning (SRF) framework that unifies generation and evaluation within a single architecture. The model's internal VLM provides intrinsic feedback by assessing whether the edited video logically satisfies the given instruction. The differential feedback that refines the generator's reasoning behavior during training. Extensive experiments on RVE-Bench demonstrate that ReViSE significantly enhances editing accuracy and visual fidelity, achieving a 32% improvement of the Overall score in the reasoning-informed video editing subset over state-of-the-art methods.
Authors:Zhe Li, Hadrien Reynaud, Johanna P Müller, Bernhard Kainz
Abstract:
Ultrasound echocardiography is essential for the non-invasive, real-time assessment of cardiac function, but the scarcity of labelled data, driven by privacy restrictions and the complexity of expert annotation, remains a major obstacle for deep learning methods. We propose the Motion Conditioned Diffusion Model (MCDM), a label-free latent diffusion framework that synthesises realistic echocardiography videos conditioned on self-supervised motion features. To extract these features, we design the Motion and Appearance Feature Extractor (MAFE), which disentangles motion and appearance representations from videos. Feature learning is further enhanced by two auxiliary objectives: a re-identification loss guided by pseudo appearance features and an optical flow loss guided by pseudo flow fields. Evaluated on the EchoNet-Dynamic dataset, MCDM achieves competitive video generation performance, producing temporally coherent and clinically realistic sequences without reliance on manual labels. These results demonstrate the potential of self-supervised conditioning for scalable echocardiography synthesis. Our code is available at https://github.com/ZheLi2020/LabelfreeMCDM.
Authors:Ke Xing, Xiaojie Jin, Longfei Li, Yuyang Yin, Hanwen Liang, Guixun Luo, Chen Fang, Jue Wang, Konstantinos N. Plataniotis, Yao Zhao, Yunchao Wei
Abstract:
The growing adoption of XR devices has fueled strong demand for high-quality stereo video, yet its production remains costly and artifact-prone. To address this challenge, we present StereoWorld, an end-to-end framework that repurposes a pretrained video generator for high-fidelity monocular-to-stereo video generation. Our framework jointly conditions the model on the monocular video input while explicitly supervising the generation with a geometry-aware regularization to ensure 3D structural fidelity. A spatio-temporal tiling scheme is further integrated to enable efficient, high-resolution synthesis. To enable large-scale training and evaluation, we curate a high-definition stereo video dataset containing over 11M frames aligned to natural human interpupillary distance (IPD). Extensive experiments demonstrate that StereoWorld substantially outperforms prior methods, generating stereo videos with superior visual fidelity and geometric consistency. The project webpage is available at https://ke-xing.github.io/StereoWorld/.
Authors:Frédéric Fortier-Chouinard, Yannick Hold-Geoffroy, Valentin Deschaintre, Matheus Gadelha, Jean-François Lalonde
Abstract:
Recent progress in text-to-video generation has achieved remarkable realism, yet fine-grained control over camera motion and orientation remains elusive. Existing approaches typically encode camera trajectories through relative or ambiguous representations, limiting explicit geometric control. We introduce GimbalDiffusion, a framework that enables camera control grounded in physical-world coordinates, using gravity as a global reference. Instead of describing motion relative to previous frames, our method defines camera trajectories in an absolute coordinate system, allowing precise and interpretable control over camera parameters without requiring an initial reference frame. We leverage panoramic 360-degree videos to construct a wide variety of camera trajectories, well beyond the predominantly straight, forward-facing trajectories seen in conventional video data. To further enhance camera guidance, we introduce null-pitch conditioning, an annotation strategy that reduces the model's reliance on text content when conflicting with camera specifications (e.g., generating grass while the camera points towards the sky). Finally, we establish a benchmark for camera-aware video generation by rebalancing SpatialVID-HQ for comprehensive evaluation under wide camera pitch variation. Together, these contributions advance the controllability and robustness of text-to-video models, enabling precise, gravity-aligned camera manipulation within generative frameworks.
Authors:Yixuan Zhu, Jiaqi Feng, Wenzhao Zheng, Yuan Gao, Xin Tao, Pengfei Wan, Jie Zhou, Jiwen Lu
Abstract:
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
Authors:Ruihang Chu, Yefei He, Zhekai Chen, Shiwei Zhang, Xiaogang Xu, Bin Xia, Dingdong Wang, Hongwei Yi, Xihui Liu, Hengshuang Zhao, Yu Liu, Yingya Zhang, Yujiu Yang
Abstract:
We present Wan-Move, a simple and scalable framework that brings motion control to video generative models. Existing motion-controllable methods typically suffer from coarse control granularity and limited scalability, leaving their outputs insufficient for practical use. We narrow this gap by achieving precise and high-quality motion control. Our core idea is to directly make the original condition features motion-aware for guiding video synthesis. To this end, we first represent object motions with dense point trajectories, allowing fine-grained control over the scene. We then project these trajectories into latent space and propagate the first frame's features along each trajectory, producing an aligned spatiotemporal feature map that tells how each scene element should move. This feature map serves as the updated latent condition, which is naturally integrated into the off-the-shelf image-to-video model, e.g., Wan-I2V-14B, as motion guidance without any architecture change. It removes the need for auxiliary motion encoders and makes fine-tuning base models easily scalable. Through scaled training, Wan-Move generates 5-second, 480p videos whose motion controllability rivals Kling 1.5 Pro's commercial Motion Brush, as indicated by user studies. To support comprehensive evaluation, we further design MoveBench, a rigorously curated benchmark featuring diverse content categories and hybrid-verified annotations. It is distinguished by larger data volume, longer video durations, and high-quality motion annotations. Extensive experiments on MoveBench and the public dataset consistently show Wan-Move's superior motion quality. Code, models, and benchmark data are made publicly available.
Authors:Taewoong Kang, Kinam Kim, Dohyeon Kim, Minho Park, Junha Hyung, Jaegul Choo
Abstract:
Egocentric perception enables humans to experience and understand the world directly from their own point of view. Translating exocentric (third-person) videos into egocentric (first-person) videos opens up new possibilities for immersive understanding but remains highly challenging due to extreme camera pose variations and minimal view overlap. This task requires faithfully preserving visible content while synthesizing unseen regions in a geometrically consistent manner. To achieve this, we present EgoX, a novel framework for generating egocentric videos from a single exocentric input. EgoX leverages the pretrained spatio temporal knowledge of large-scale video diffusion models through lightweight LoRA adaptation and introduces a unified conditioning strategy that combines exocentric and egocentric priors via width and channel wise concatenation. Additionally, a geometry-guided self-attention mechanism selectively attends to spatially relevant regions, ensuring geometric coherence and high visual fidelity. Our approach achieves coherent and realistic egocentric video generation while demonstrating strong scalability and robustness across unseen and in-the-wild videos.
Authors:Jiehui Huang, Yuechen Zhang, Xu He, Yuan Gao, Zhi Cen, Bin Xia, Yan Zhou, Xin Tao, Pengfei Wan, Jiaya Jia
Abstract:
Recent video generation models demonstrate impressive synthesis capabilities but remain limited by single-modality conditioning, constraining their holistic world understanding. This stems from insufficient cross-modal interaction and limited modal diversity for comprehensive world knowledge representation. To address these limitations, we introduce UnityVideo, a unified framework for world-aware video generation that jointly learns across multiple modalities (segmentation masks, human skeletons, DensePose, optical flow, and depth maps) and training paradigms. Our approach features two core components: (1) dynamic noising to unify heterogeneous training paradigms, and (2) a modality switcher with an in-context learner that enables unified processing via modular parameters and contextual learning. We contribute a large-scale unified dataset with 1.3M samples. Through joint optimization, UnityVideo accelerates convergence and significantly enhances zero-shot generalization to unseen data. We demonstrate that UnityVideo achieves superior video quality, consistency, and improved alignment with physical world constraints. Code and data can be found at: https://github.com/dvlab-research/UnityVideo
Authors:Haoyang He, Jie Wang, Jiangning Zhang, Zhucun Xue, Xingyuan Bu, Qiangpeng Yang, Shilei Wen, Lei Xie
Abstract:
The quality and diversity of instruction-based image editing datasets are continuously increasing, yet large-scale, high-quality datasets for instruction-based video editing remain scarce. To address this gap, we introduce OpenVE-3M, an open-source, large-scale, and high-quality dataset for instruction-based video editing. It comprises two primary categories: spatially-aligned edits (Global Style, Background Change, Local Change, Local Remove, Local Add, and Subtitles Edit) and non-spatially-aligned edits (Camera Multi-Shot Edit and Creative Edit). All edit types are generated via a meticulously designed data pipeline with rigorous quality filtering. OpenVE-3M surpasses existing open-source datasets in terms of scale, diversity of edit types, instruction length, and overall quality. Furthermore, to address the lack of a unified benchmark in the field, we construct OpenVE-Bench, containing 431 video-edit pairs that cover a diverse range of editing tasks with three key metrics highly aligned with human judgment. We present OpenVE-Edit, a 5B model trained on our dataset that demonstrates remarkable efficiency and effectiveness by setting a new state-of-the-art on OpenVE-Bench, outperforming all prior open-source models including a 14B baseline. Project page is at https://github.com/lewandofskee/OpenVE.
Authors:Zhaochong An, Menglin Jia, Haonan Qiu, Zijian Zhou, Xiaoke Huang, Zhiheng Liu, Weiming Ren, Kumara Kahatapitiya, Ding Liu, Sen He, Chenyang Zhang, Tao Xiang, Fanny Yang, Serge Belongie, Tian Xie
Abstract:
Storytelling in real-world videos often unfolds through multiple shots -- discontinuous yet semantically connected clips that together convey a coherent narrative. However, existing multi-shot video generation (MSV) methods struggle to effectively model long-range cross-shot context, as they rely on limited temporal windows or single keyframe conditioning, leading to degraded performance under complex narratives. In this work, we propose OneStory, enabling global yet compact cross-shot context modeling for consistent and scalable narrative generation. OneStory reformulates MSV as a next-shot generation task, enabling autoregressive shot synthesis while leveraging pretrained image-to-video (I2V) models for strong visual conditioning. We introduce two key modules: a Frame Selection module that constructs a semantically-relevant global memory based on informative frames from prior shots, and an Adaptive Conditioner that performs importance-guided patchification to generate compact context for direct conditioning. We further curate a high-quality multi-shot dataset with referential captions to mirror real-world storytelling patterns, and design effective training strategies under the next-shot paradigm. Finetuned from a pretrained I2V model on our curated 60K dataset, OneStory achieves state-of-the-art narrative coherence across diverse and complex scenes in both text- and image-conditioned settings, enabling controllable and immersive long-form video storytelling.
Authors:Fan Yang, Heyuan Li, Peihao Li, Weihao Yuan, Lingteng Qiu, Chaoyue Song, Cheng Chen, Yisheng He, Shifeng Zhang, Xiaoguang Han, Steven Hoi, Guosheng Lin
Abstract:
Generating high-fidelity upper-body 3D avatars from one-shot input image remains a significant challenge. Current 3D avatar generation methods, which rely on large reconstruction models, are fast and capable of producing stable body structures, but they often suffer from artifacts such as blurry textures and stiff, unnatural motion. In contrast, generative video models show promising performance by synthesizing photorealistic and dynamic results, but they frequently struggle with unstable behavior, including body structural errors and identity drift. To address these limitations, we propose a novel approach that combines the strengths of both paradigms. Our framework employs a 3D reconstruction model to provide robust structural and appearance priors, which in turn guides a real-time autoregressive video diffusion model for rendering. This process enables the model to synthesize high-frequency, photorealistic details and fluid dynamics in real time, effectively reducing texture blur and motion stiffness while preventing the structural inconsistencies common in video generation methods. By uniting the geometric stability of 3D reconstruction with the generative capabilities of video models, our method produces high-fidelity digital avatars with realistic appearance and dynamic, temporally coherent motion. Experiments demonstrate that our approach significantly reduces artifacts and achieves substantial improvements in visual quality over leading methods, providing a robust and efficient solution for real-time applications such as gaming and virtual reality. Project page: https://lhyfst.github.io/visa
Authors:Xiangpeng Yang, Ji Xie, Yiyuan Yang, Yan Huang, Min Xu, Qiang Wu
Abstract:
Existing video editing methods face a critical trade-off: expert models offer precision but rely on task-specific priors like masks, hindering unification; conversely, unified temporal in-context learning models are mask-free but lack explicit spatial cues, leading to weak instruction-to-region mapping and imprecise localization. To resolve this conflict, we propose VideoCoF, a novel Chain-of-Frames approach inspired by Chain-of-Thought reasoning. VideoCoF enforces a ``see, reason, then edit" procedure by compelling the video diffusion model to first predict reasoning tokens (edit-region latents) before generating the target video tokens. This explicit reasoning step removes the need for user-provided masks while achieving precise instruction-to-region alignment and fine-grained video editing. Furthermore, we introduce a RoPE alignment strategy that leverages these reasoning tokens to ensure motion alignment and enable length extrapolation beyond the training duration. We demonstrate that with a minimal data cost of only 50k video pairs, VideoCoF achieves state-of-the-art performance on VideoCoF-Bench, validating the efficiency and effectiveness of our approach. Our code, weight, data are available at https://github.com/knightyxp/VideoCoF.
Authors:Ziyang Mai, Yu-Wing Tai
Abstract:
Text-to-video (T2V) generation has advanced rapidly, yet maintaining consistent character identities across scenes remains a major challenge. Existing personalization methods often focus on facial identity but fail to preserve broader contextual cues such as hairstyle, outfit, and body shape, which are critical for visual coherence. We propose \textbf{ContextAnyone}, a context-aware diffusion framework that achieves character-consistent video generation from text and a single reference image. Our method jointly reconstructs the reference image and generates new video frames, enabling the model to fully perceive and utilize reference information. Reference information is effectively integrated into a DiT-based diffusion backbone through a novel Emphasize-Attention module that selectively reinforces reference-aware features and prevents identity drift across frames. A dual-guidance loss combines diffusion and reference reconstruction objectives to enhance appearance fidelity, while the proposed Gap-RoPE positional embedding separates reference and video tokens to stabilize temporal modeling. Experiments demonstrate that ContextAnyone outperforms existing reference-to-video methods in identity consistency and visual quality, generating coherent and context-preserving character videos across diverse motions and scenes. Project page: \href{https://github.com/ziyang1106/ContextAnyone}{https://github.com/ziyang1106/ContextAnyone}.
Authors:Cheng Zhang, Boying Li, Meng Wei, Yan-Pei Cao, Camilo Cruz Gambardella, Dinh Phung, Jianfei Cai
Abstract:
Transformers have emerged as a universal backbone across 3D perception, video generation, and world models for autonomous driving and embodied AI, where understanding camera geometry is essential for grounding visual observations in three-dimensional space. However, existing camera encoding methods often rely on simplified pinhole assumptions, restricting generalization across the diverse intrinsics and lens distortions in real-world cameras. We introduce Relative Ray Encoding, a geometry-consistent representation that unifies complete camera information, including 6-DoF poses, intrinsics, and lens distortions. To evaluate its capability under diverse controllability demands, we adopt camera-controlled text-to-video generation as a testbed task. Within this setting, we further identify pitch and roll as two components effective for Absolute Orientation Encoding, enabling full control over the initial camera orientation. Together, these designs form UCPE (Unified Camera Positional Encoding), which integrates into a pretrained video Diffusion Transformer through a lightweight spatial attention adapter, adding less than 1% trainable parameters while achieving state-of-the-art camera controllability and visual fidelity. To facilitate systematic training and evaluation, we construct a large video dataset covering a wide range of camera motions and lens types. Extensive experiments validate the effectiveness of UCPE in camera-controllable video generation and highlight its potential as a general camera representation for Transformers across future multi-view, video, and 3D tasks. Code will be available at https://github.com/chengzhag/UCPE.
Authors:Zijian Zhou, Shikun Liu, Haozhe Liu, Haonan Qiu, Zhaochong An, Weiming Ren, Zhiheng Liu, Xiaoke Huang, Kam Woh Ng, Tian Xie, Xiao Han, Yuren Cong, Hang Li, Chuyan Zhu, Aditya Patel, Tao Xiang, Sen He
Abstract:
Reference-to-video (R2V) generation aims to synthesize videos that align with a text prompt while preserving the subject identity from reference images. However, current R2V methods are hindered by the reliance on explicit reference image-video-text triplets, whose construction is highly expensive and difficult to scale. We bypass this bottleneck by introducing Saber, a scalable zero-shot framework that requires no explicit R2V data. Trained exclusively on video-text pairs, Saber employs a masked training strategy and a tailored attention-based model design to learn identity-consistent and reference-aware representations. Mask augmentation techniques are further integrated to mitigate copy-paste artifacts common in reference-to-video generation. Moreover, Saber demonstrates remarkable generalization capabilities across a varying number of references and achieves superior performance on the OpenS2V-Eval benchmark compared to methods trained with R2V data.
Authors:Runjia Li, Moayed Haji-Ali, Ashkan Mirzaei, Chaoyang Wang, Arpit Sahni, Ivan Skorokhodov, Aliaksandr Siarohin, Tomas Jakab, Junlin Han, Sergey Tulyakov, Philip Torr, Willi Menapace
Abstract:
We study instruction-guided editing of egocentric videos for interactive AR applications. While recent AI video editors perform well on third-person footage, egocentric views present unique challenges - including rapid egomotion and frequent hand-object interactions - that create a significant domain gap. Moreover, existing offline editing pipelines suffer from high latency, limiting real-time interaction. To address these issues, we present a complete ecosystem for egocentric video editing. First, we construct EgoEditData, a carefully designed and manually curated dataset specifically designed for egocentric editing scenarios, featuring rich hand-object interactions, while explicitly preserving hands. Second, we develop EgoEdit, an instruction-following egocentric video editor that supports real-time streaming inference on a single GPU. Finally, we introduce EgoEditBench, an evaluation suite targeting instruction faithfulness, hand and interaction preservation, and temporal stability under egomotion. Across both egocentric and general editing tasks, EgoEdit produces temporally stable, instruction-faithful results with interactive latency. It achieves clear gains on egocentric editing benchmarks-where existing methods struggle-while maintaining performance comparable to the strongest baselines on general editing tasks. EgoEditData and EgoEditBench will be made public for the research community. See our website at https://snap-research.github.io/EgoEdit
Authors:Hokin Deng
Abstract:
We show that video generation models could reason now. Testing on tasks such as chess, maze, Sudoku, mental rotation, and Raven's Matrices, leading models such as Sora-2 achieve sixty percent success rates. We establish a robust experimental paradigm centered on the "Task Pair" design. We build a code framework, with 39 models available already, that supports this paradigm and allows for easy scaling - users can add models and tasks efficiently. We show our automated evaluation strongly correlates with human judgment, and therefore this paradigm is highly scalable. We see an opportunity, given the availability of our paradigm, to do reinforcement learning for improving reasoning in video models. You could checkout all of our raw $\href{https://grow-ai-like-a-child.com/video-reason/}{results}$ and our $\href{https://github.com/hokindeng/VMEvalKit}{VMEvalKit}$ codebase.
Authors:Jiahua Dong, Xudong Wang, Wenqi Liang, Zongyan Han, Meng Cao, Duzhen Zhang, Hanbin Zhao, Zhi Han, Salman Khan, Fahad Shahbaz Khan
Abstract:
Customized text-to-video generation (CTVG) has recently witnessed great progress in generating tailored videos from user-specific text. However, most CTVG methods assume that personalized concepts remain static and do not expand incrementally over time. Additionally, they struggle with forgetting and concept neglect when continuously learning new concepts, including subjects and motions. To resolve the above challenges, we develop a novel Continual Customized Video Diffusion (CCVD) model, which can continuously learn new concepts to generate videos across various text-to-video generation tasks by tackling forgetting and concept neglect. To address catastrophic forgetting, we introduce a concept-specific attribute retention module and a task-aware concept aggregation strategy. They can capture the unique characteristics and identities of old concepts during training, while combining all subject and motion adapters of old concepts based on their relevance during testing. Besides, to tackle concept neglect, we develop a controllable conditional synthesis to enhance regional features and align video contexts with user conditions, by incorporating layer-specific region attention-guided noise estimation. Extensive experimental comparisons demonstrate that our CCVD outperforms existing CTVG models. The code is available at https://github.com/JiahuaDong/CCVD.
Authors:Yeobin Hong, Suhyeon Lee, Hyungjin Chung, Jong Chul Ye
Abstract:
Recent approaches to controllable 4D video generation often rely on fine-tuning pre-trained Video Diffusion Models (VDMs). This dominant paradigm is computationally expensive, requiring large-scale datasets and architectural modifications, and frequently suffers from catastrophic forgetting of the model's original generative priors. Here, we propose InverseCrafter, an efficient inpainting inverse solver that reformulates the 4D generation task as an inpainting problem solved in the latent space. The core of our method is a principled mechanism to encode the pixel space degradation operator into a continuous, multi-channel latent mask, thereby bypassing the costly bottleneck of repeated VAE operations and backpropagation. InverseCrafter not only achieves comparable novel view generation and superior measurement consistency in camera control tasks with near-zero computational overhead, but also excels at general-purpose video inpainting with editing. Code is available at https://github.com/yeobinhong/InverseCrafter.
Authors:Shizhan Liu, Xinran Deng, Zhuoyi Yang, Jiayan Teng, Xiaotao Gu, Jie Tang
Abstract:
Latent diffusion models pair VAEs with diffusion backbones, and the structure of VAE latents strongly influences the difficulty of diffusion training. However, existing video VAEs typically focus on reconstruction fidelity, overlooking latent structure. We present a statistical analysis of video VAE latent spaces and identify two spectral properties essential for diffusion training: a spatio-temporal frequency spectrum biased toward low frequencies, and a channel-wise eigenspectrum dominated by a few modes. To induce these properties, we propose two lightweight, backbone-agnostic regularizers: Local Correlation Regularization and Latent Masked Reconstruction. Experiments show that our Spectral-Structured VAE (SSVAE) achieves a $3\times$ speedup in text-to-video generation convergence and a 10\% gain in video reward, outperforming strong open-source VAEs. The code is available at https://github.com/zai-org/SSVAE.
Authors:Yu Zeng, Charles Ochoa, Mingyuan Zhou, Vishal M. Patel, Vitor Guizilini, Rowan McAllister
Abstract:
Standard diffusion corrupts data using Gaussian noise whose Fourier coefficients have random magnitudes and random phases. While effective for unconditional or text-to-image generation, corrupting phase components destroys spatial structure, making it ill-suited for tasks requiring geometric consistency, such as re-rendering, simulation enhancement, and image-to-image translation. We introduce Phase-Preserving Diffusion ϕ-PD, a model-agnostic reformulation of the diffusion process that preserves input phase while randomizing magnitude, enabling structure-aligned generation without architectural changes or additional parameters. We further propose Frequency-Selective Structured (FSS) noise, which provides continuous control over structural rigidity via a single frequency-cutoff parameter. ϕ-PD adds no inference-time cost and is compatible with any diffusion model for images or videos. Across photorealistic and stylized re-rendering, as well as sim-to-real enhancement for driving planners, ϕ-PD produces controllable, spatially aligned results. When applied to the CARLA simulator, ϕ-PD improves CARLA-to-Waymo planner performance by 50\%. The method is complementary to existing conditioning approaches and broadly applicable to image-to-image and video-to-video generation. Videos, additional examples, and code are available on our \href{https://yuzeng-at-tri.github.io/ppd-page/}{project page}.
Authors:Jung Yi, Wooseok Jang, Paul Hyunbin Cho, Jisu Nam, Heeji Yoon, Seungryong Kim
Abstract:
Recent advances in autoregressive video diffusion have enabled real-time frame streaming, yet existing solutions still suffer from temporal repetition, drift, and motion deceleration. We find that naively applying StreamingLLM-style attention sinks to video diffusion leads to fidelity degradation and motion stagnation. To overcome this, we introduce Deep Forcing, which consists of two training-free mechanisms that address this without any fine-tuning. Specifically, 1) Deep Sink dedicates half of the sliding window to persistent sink tokens and re-aligns their temporal RoPE phase to the current timeline, stabilizing global context during long rollouts. 2) Participative Compression performs importance-aware KV cache pruning that preserves only tokens actively participating in recent attention while safely discarding redundant and degraded history, minimizing error accumulation under out-of-distribution length generation. Together, these components enable over 12x extrapolation (e.g. 5s-trained to 60s+ generation) with better imaging quality than LongLive, better aesthetic quality than RollingForcing, almost maintaining overall consistency, and substantial gains in dynamic degree, all while maintaining real-time generation. Our results demonstrate that training-free KV-cache management can match or exceed training-based approaches for autoregressively streaming long-video generation.
Authors:Yiming Wang, Qihang Zhang, Shengqu Cai, Tong Wu, Jan Ackermann, Zhengfei Kuang, Yang Zheng, Frano Rajič, Siyu Tang, Gordon Wetzstein
Abstract:
Emerging video diffusion models achieve high visual fidelity but fundamentally couple scene dynamics with camera motion, limiting their ability to provide precise spatial and temporal control. We introduce a 4D-controllable video diffusion framework that explicitly decouples scene dynamics from camera pose, enabling fine-grained manipulation of both scene dynamics and camera viewpoint. Our framework takes continuous world-time sequences and camera trajectories as conditioning inputs, injecting them into the video diffusion model through a 4D positional encoding in the attention layer and adaptive normalizations for feature modulation. To train this model, we curate a unique dataset in which temporal and camera variations are independently parameterized; this dataset will be made public. Experiments show that our model achieves robust real-world 4D control across diverse timing patterns and camera trajectories, while preserving high generation quality and outperforming prior work in controllability. See our website for video results: https://19reborn.github.io/Bullet4D/
Authors:Youze Huang, Penghui Ruan, Bojia Zi, Xianbiao Qi, Jianan Wang, Rong Xiao
Abstract:
Recent advances in diffusion models have brought remarkable progress in image and video editing, yet some tasks remain underexplored. In this paper, we introduce a new task, Object Retexture, which transfers local textures from a reference object to a target object in images or videos. To perform this task, a straightforward solution is to use ControlNet conditioned on the source structure and the reference texture. However, this approach suffers from limited controllability for two reasons: conditioning on the raw reference image introduces unwanted structural information, and it fails to disentangle the visual texture and structure information of the source. To address this problem, we propose Refaçade, a method that consists of two key designs to achieve precise and controllable texture transfer in both images and videos. First, we employ a texture remover trained on paired textured/untextured 3D mesh renderings to remove appearance information while preserving the geometry and motion of source videos. Second, we disrupt the reference global layout using a jigsaw permutation, encouraging the model to focus on local texture statistics rather than the global layout of the object. Extensive experiments demonstrate superior visual quality, precise editing, and controllability, outperforming strong baselines in both quantitative and human evaluations. Code is available at https://github.com/fishZe233/Refacade.
Authors:Liuzhou Zhang, Jiarui Ye, Yuanlei Wang, Ming Zhong, Mingju Cao, Wanke Xia, Bowen Zeng, Zeyu Zhang, Hao Tang
Abstract:
Generating long, coherent egocentric videos is difficult, as hand-object interactions and procedural tasks require reliable long-term memory. Existing autoregressive models suffer from content drift, where object identity and scene semantics degrade over time. To address this challenge, we introduce EgoLCD, an end-to-end framework for egocentric long-context video generation that treats long video synthesis as a problem of efficient and stable memory management. EgoLCD combines a Long-Term Sparse KV Cache for stable global context with an attention-based short-term memory, extended by LoRA for local adaptation. A Memory Regulation Loss enforces consistent memory usage, and Structured Narrative Prompting provides explicit temporal guidance. Extensive experiments on the EgoVid-5M benchmark demonstrate that EgoLCD achieves state-of-the-art performance in both perceptual quality and temporal consistency, effectively mitigating generative forgetting and representing a significant step toward building scalable world models for embodied AI. Code: https://github.com/AIGeeksGroup/EgoLCD. Website: https://aigeeksgroup.github.io/EgoLCD.
Authors:Sidan Zhu, Hongteng Xu, Dixin Luo
Abstract:
As a challenging video editing task, movie trailer generation involves selecting and reorganizing movie shots to create engaging trailers. Currently, most existing automatic trailer generation methods employ a "selection-then-ranking" paradigm (i.e., first selecting key shots and then ranking them), which suffers from inevitable error propagation and limits the quality of the generated trailers. Beyond this paradigm, we propose a new self-paced and self-corrective masked prediction method called SSMP, which achieves state-of-the-art results in automatic trailer generation via bi-directional contextual modeling and progressive self-correction. In particular, SSMP trains a Transformer encoder that takes the movie shot sequences as prompts and generates corresponding trailer shot sequences accordingly. The model is trained via masked prediction, reconstructing each trailer shot sequence from its randomly masked counterpart. The mask ratio is self-paced, allowing the task difficulty to adapt to the model and thereby improving model performance. When generating a movie trailer, the model fills the shot positions with high confidence at each step and re-masks the remaining positions for the next prediction, forming a progressive self-correction mechanism that is analogous to how human editors work. Both quantitative results and user studies demonstrate the superiority of SSMP in comparison to existing automatic movie trailer generation methods. Demo is available at: https://github.com/Dixin-Lab/SSMP.
Authors:Shuai Yang, Junxin Lin, Yifan Zhou, Ziwei Liu, Chen Change Loy
Abstract:
The remarkable success in text-to-image diffusion models has motivated extensive investigation of their potential for video applications. Zero-shot techniques aim to adapt image diffusion models for videos without requiring further model training. Recent methods largely emphasize integrating inter-frame correspondence into attention mechanisms. However, the soft constraint applied to identify the valid features to attend is insufficient, which could lead to temporal inconsistency. In this paper, we present FRESCO, which integrates intra-frame correspondence with inter-frame correspondence to formulate a more robust spatial-temporal constraint. This enhancement ensures a consistent transformation of semantically similar content between frames. Our method goes beyond attention guidance to explicitly optimize features, achieving high spatial-temporal consistency with the input video, significantly enhancing the visual coherence of manipulated videos. We verify FRESCO adaptations on two zero-shot tasks of video-to-video translation and text-guided video editing. Comprehensive experiments demonstrate the effectiveness of our framework in generating high-quality, coherent videos, highlighting a significant advance over current zero-shot methods.
Authors:Muhammed Burak Kizil, Enes Sanli, Niloy J. Mitra, Erkut Erdem, Aykut Erdem, Duygu Ceylan
Abstract:
Video generation has achieved remarkable progress in visual fidelity and controllability, enabling conditioning on text, layout, or motion. Among these, motion control - specifying object dynamics and camera trajectories - is essential for composing complex, cinematic scenes, yet existing interfaces remain limited. We introduce LAMP that leverages large language models (LLMs) as motion planners to translate natural language descriptions into explicit 3D trajectories for dynamic objects and (relatively defined) cameras. LAMP defines a motion domain-specific language (DSL), inspired by cinematography conventions. By harnessing program synthesis capabilities of LLMs, LAMP generates structured motion programs from natural language, which are deterministically mapped to 3D trajectories. We construct a large-scale procedural dataset pairing natural text descriptions with corresponding motion programs and 3D trajectories. Experiments demonstrate LAMP's improved performance in motion controllability and alignment with user intent compared to state-of-the-art alternatives establishing the first framework for generating both object and camera motions directly from natural language specifications. Code, models and data are available on our project page.
Authors:Subin Kim, Sangwoo Mo, Mamshad Nayeem Rizve, Yiran Xu, Difan Liu, Jinwoo Shin, Tobias Hinz
Abstract:
Achieving precise alignment between user intent and generated visuals remains a central challenge in text-to-visual generation, as a single attempt often fails to produce the desired output. To handle this, prior approaches mainly scale the visual generation process (e.g., increasing sampling steps or seeds), but this quickly leads to a quality plateau. This limitation arises because the prompt, crucial for guiding generation, is kept fixed. To address this, we propose Prompt Redesign for Inference-time Scaling, coined PRIS, a framework that adaptively revises the prompt during inference in response to the scaled visual generations. The core idea of PRIS is to review the generated visuals, identify recurring failure patterns across visuals, and redesign the prompt accordingly before regenerating the visuals with the revised prompt. To provide precise alignment feedback for prompt revision, we introduce a new verifier, element-level factual correction, which evaluates the alignment between prompt attributes and generated visuals at a fine-grained level, achieving more accurate and interpretable assessments than holistic measures. Extensive experiments on both text-to-image and text-to-video benchmarks demonstrate the effectiveness of our approach, including a 15% gain on VBench 2.0. These results highlight that jointly scaling prompts and visuals is key to fully leveraging scaling laws at inference-time. Visualizations are available at the website: https://subin-kim-cv.github.io/PRIS.
Authors:Yunpeng Bai, Shaoheng Fang, Chaohui Yu, Fan Wang, Qixing Huang
Abstract:
Recent advances in video generation have enabled the synthesis of high-quality and visually realistic clips using diffusion transformer models. However, most existing approaches operate purely in the 2D pixel space and lack explicit mechanisms for modeling 3D structures, often resulting in temporally inconsistent geometries, implausible motions, and structural artifacts. In this work, we introduce geometric regularization losses into video generation by augmenting latent diffusion models with per-frame depth prediction. We adopted depth as the geometric representation because of the great progress in depth prediction and its compatibility with image-based latent encoders. Specifically, to enforce structural consistency over time, we propose a multi-view geometric loss that aligns the predicted depth maps across frames within a shared 3D coordinate system. Our method bridges the gap between appearance generation and 3D structure modeling, leading to improved spatio-temporal coherence, shape consistency, and physical plausibility. Experiments across multiple datasets show that our approach produces significantly more stable and geometrically consistent results than existing baselines.
Authors:Qinghe Wang, Xiaoyu Shi, Baolu Li, Weikang Bian, Quande Liu, Huchuan Lu, Xintao Wang, Pengfei Wan, Kun Gai, Xu Jia
Abstract:
Current video generation techniques excel at single-shot clips but struggle to produce narrative multi-shot videos, which require flexible shot arrangement, coherent narrative, and controllability beyond text prompts. To tackle these challenges, we propose MultiShotMaster, a framework for highly controllable multi-shot video generation. We extend a pretrained single-shot model by integrating two novel variants of RoPE. First, we introduce Multi-Shot Narrative RoPE, which applies explicit phase shift at shot transitions, enabling flexible shot arrangement while preserving the temporal narrative order. Second, we design Spatiotemporal Position-Aware RoPE to incorporate reference tokens and grounding signals, enabling spatiotemporal-grounded reference injection. In addition, to overcome data scarcity, we establish an automated data annotation pipeline to extract multi-shot videos, captions, cross-shot grounding signals and reference images. Our framework leverages the intrinsic architectural properties to support multi-shot video generation, featuring text-driven inter-shot consistency, customized subject with motion control, and background-driven customized scene. Both shot count and duration are flexibly configurable. Extensive experiments demonstrate the superior performance and outstanding controllability of our framework.
Authors:Zeqi Xiao, Yiwei Zhao, Lingxiao Li, Yushi Lan, Yu Ning, Rahul Garg, Roshni Cooper, Mohammad H. Taghavi, Xingang Pan
Abstract:
We investigate whether video generative models can exhibit visuospatial intelligence, a capability central to human cognition, using only visual data. To this end, we present Video4Spatial, a framework showing that video diffusion models conditioned solely on video-based scene context can perform complex spatial tasks. We validate on two tasks: scene navigation - following camera-pose instructions while remaining consistent with 3D geometry of the scene, and object grounding - which requires semantic localization, instruction following, and planning. Both tasks use video-only inputs, without auxiliary modalities such as depth or poses. With simple yet effective design choices in the framework and data curation, Video4Spatial demonstrates strong spatial understanding from video context: it plans navigation and grounds target objects end-to-end, follows camera-pose instructions while maintaining spatial consistency, and generalizes to long contexts and out-of-domain environments. Taken together, these results advance video generative models toward general visuospatial reasoning.
Authors:Youxin Pang, Jiajun Liu, Lingfeng Tan, Yong Zhang, Feng Gao, Xiang Deng, Zhuoliang Kang, Xiaoming Wei, Yebin Liu
Abstract:
We propose MAViD, a novel Multimodal framework for Audio-Visual Dialogue understanding and generation. Existing approaches primarily focus on non-interactive systems and are limited to producing constrained and unnatural human speech.The primary challenge of this task lies in effectively integrating understanding and generation capabilities, as well as achieving seamless multimodal audio-video fusion. To solve these problems, we propose a Conductor-Creator architecture that divides the dialogue system into two primary components.The Conductor is tasked with understanding, reasoning, and generating instructions by breaking them down into motion and speech components, thereby enabling fine-grained control over interactions. The Creator then delivers interactive responses based on these instructions.Furthermore, to address the difficulty of generating long videos with consistent identity, timbre, and tone using dual DiT structures, the Creator adopts a structure that combines autoregressive (AR) and diffusion models. The AR model is responsible for audio generation, while the diffusion model ensures high-quality video generation.Additionally, we propose a novel fusion module to enhance connections between contextually consecutive clips and modalities, enabling synchronized long-duration audio-visual content generation.Extensive experiments demonstrate that our framework can generate vivid and contextually coherent long-duration dialogue interactions and accurately interpret users' multimodal queries.
Authors:Sagi Polaczek, Or Patashnik, Ali Mahdavi-Amiri, Daniel Cohen-Or
Abstract:
Editing portrait videos is a challenging task that requires flexible yet precise control over a wide range of modifications, such as appearance changes, expression edits, or the addition of objects. The key difficulty lies in preserving the subject's original temporal behavior, demanding that every edited frame remains precisely synchronized with the corresponding source frame. We present Sync-LoRA, a method for editing portrait videos that achieves high-quality visual modifications while maintaining frame-accurate synchronization and identity consistency. Our approach uses an image-to-video diffusion model, where the edit is defined by modifying the first frame and then propagated to the entire sequence. To enable accurate synchronization, we train an in-context LoRA using paired videos that depict identical motion trajectories but differ in appearance. These pairs are automatically generated and curated through a synchronization-based filtering process that selects only the most temporally aligned examples for training. This training setup teaches the model to combine motion cues from the source video with the visual changes introduced in the edited first frame. Trained on a compact, highly curated set of synchronized human portraits, Sync-LoRA generalizes to unseen identities and diverse edits (e.g., modifying appearance, adding objects, or changing backgrounds), robustly handling variations in pose and expression. Our results demonstrate high visual fidelity and strong temporal coherence, achieving a robust balance between edit fidelity and precise motion preservation.
Authors:Lanxiang Hu, Abhilash Shankarampeta, Yixin Huang, Zilin Dai, Haoyang Yu, Yujie Zhao, Haoqiang Kang, Daniel Zhao, Tajana Rosing, Hao Zhang
Abstract:
The next frontier for video generation lies in developing models capable of zero-shot reasoning, where understanding real-world scientific laws is crucial for accurate physical outcome modeling under diverse conditions. However, existing video benchmarks are physical commonsense-based, offering limited insight into video models' scientific reasoning capability. We introduce VideoScience-Bench, a benchmark designed to evaluate undergraduate-level scientific understanding in video models. Each prompt encodes a composite scientific scenario that requires understanding and reasoning across multiple scientific concepts to generate the correct phenomenon. The benchmark comprises 200 carefully curated prompts spanning 14 topics and 103 concepts in physics and chemistry. We conduct expert-annotated evaluations across seven state-of-the-art video models in T2V and I2V settings along five dimensions: Prompt Consistency, Phenomenon Congruency, Correct Dynamism, Immutability, and Spatio-Temporal Continuity. Using a VLM-as-a-Judge to assess video generations, we observe strong correlation with human assessments. To the best of our knowledge, VideoScience-Bench is the first benchmark to evaluate video models not only as generators but also as reasoners, requiring their generations to demonstrate scientific understanding consistent with expected physical and chemical phenomena. Our data and evaluation code are available at: \href{https://github.com/hao-ai-lab/VideoScience}{github.com/hao-ai-lab/VideoScience}.
Authors:Zhihan Xiao, Lin Liu, Yixin Gao, Xiaopeng Zhang, Haoxuan Che, Songping Mai, Qi Tian
Abstract:
Text-guided video editing, particularly for object removal and addition, remains a challenging task due to the need for precise spatial and temporal consistency. Existing methods often rely on auxiliary masks or reference images for editing guidance, which limits their scalability and generalization. To address these issues, we propose LoVoRA, a novel framework for mask-free video object removal and addition using object-aware localization mechanism. Our approach utilizes a unique dataset construction pipeline that integrates image-to-video translation, optical flow-based mask propagation, and video inpainting, enabling temporally consistent edits. The core innovation of LoVoRA is its learnable object-aware localization mechanism, which provides dense spatio-temporal supervision for both object insertion and removal tasks. By leveraging a Diffusion Mask Predictor, LoVoRA achieves end-to-end video editing without requiring external control signals during inference. Extensive experiments and human evaluation demonstrate the effectiveness and high-quality performance of LoVoRA. https://cz-5f.github.io/LoVoRA.github.io
Authors:Jiahui Chen, Weida Wang, Runhua Shi, Huan Yang, Chaofan Ding, Zihao Chen
Abstract:
While diffusion model for audio-driven avatar video generation have achieved notable process in synthesizing long sequences with natural audio-visual synchronization and identity consistency, the generation of music-performance videos with camera motions remains largely unexplored. We present YingVideo-MV, the first cascaded framework for music-driven long-video generation. Our approach integrates audio semantic analysis, an interpretable shot planning module (MV-Director), temporal-aware diffusion Transformer architectures, and long-sequence consistency modeling to enable automatic synthesis of high-quality music performance videos from audio signals. We construct a large-scale Music-in-the-Wild Dataset by collecting web data to support the achievement of diverse, high-quality results. Observing that existing long-video generation methods lack explicit camera motion control, we introduce a camera adapter module that embeds camera poses into latent noise. To enhance continulity between clips during long-sequence inference, we further propose a time-aware dynamic window range strategy that adaptively adjust denoising ranges based on audio embedding. Comprehensive benchmark tests demonstrate that YingVideo-MV achieves outstanding performance in generating coherent and expressive music videos, and enables precise music-motion-camera synchronization. More videos are available in our project page: https://giantailab.github.io/YingVideo-MV/ .
Authors:Jianzong Wu, Hao Lian, Dachao Hao, Ye Tian, Qingyu Shi, Biaolong Chen, Hao Jiang, Yunhai Tong
Abstract:
Recent audio-video generative systems suggest that coupling modalities benefits not only audio-video synchrony but also the video modality itself. We pose a fundamental question: Does audio-video joint denoising training improve video generation, even when we only care about video quality? To study this, we introduce a parameter-efficient Audio-Video Full DiT (AVFullDiT) architecture that leverages pre-trained text-to-video (T2V) and text-to-audio (T2A) modules for joint denoising. We train (i) a T2AV model with AVFullDiT and (ii) a T2V-only counterpart under identical settings. Our results provide the first systematic evidence that audio-video joint denoising can deliver more than synchrony. We observe consistent improvements on challenging subsets featuring large and object contact motions. We hypothesize that predicting audio acts as a privileged signal, encouraging the model to internalize causal relationships between visual events and their acoustic consequences (e.g., collision $\times$ impact sound), which in turn regularizes video dynamics. Our findings suggest that cross-modal co-training is a promising approach to developing stronger, more physically grounded world models. Code and dataset will be made publicly available.
Authors:Zeqing Wang, Keze Wang, Lei Zhang
Abstract:
Driven by the growing capacity and training scale, Text-to-Video (T2V) generation models have recently achieved substantial progress in video quality, length, and instruction-following capability. However, whether these models can understand physics and generate physically plausible videos remains a question. While Vision-Language Models (VLMs) have been widely used as general-purpose evaluators in various applications, they struggle to identify the physically impossible content from generated videos. To investigate this issue, we construct a \textbf{PID} (\textbf{P}hysical \textbf{I}mplausibility \textbf{D}etection) dataset, which consists of a \textit{test split} of 500 manually annotated videos and a \textit{train split} of 2,588 paired videos, where each implausible video is generated by carefully rewriting the caption of its corresponding real-world video to induce T2V models producing physically implausible content. With the constructed dataset, we introduce a lightweight fine-tuning approach, enabling VLMs to not only detect physically implausible events but also generate textual explanations on the violated physical principles. Taking the fine-tuned VLM as a physical plausibility detector and explainer, namely \textbf{PhyDetEx}, we benchmark a series of state-of-the-art T2V models to assess their adherence to physical laws. Our findings show that although recent T2V models have made notable progress toward generating physically plausible content, understanding and adhering to physical laws remains a challenging issue, especially for open-source models. Our dataset, training code, and checkpoints are available at \href{https://github.com/Zeqing-Wang/PhyDetEx}{https://github.com/Zeqing-Wang/PhyDetEx}.
Authors:Haodong Yan, Hang Yu, Zhide Zhong, Weilin Yuan, Xin Gong, Zehang Luo, Chengxi Heyu, Junfeng Li, Wenxuan Song, Shunbo Zhou, Haoang Li
Abstract:
Generating realistic hand-object interactions (HOI) videos is a significant challenge due to the difficulty of modeling physical constraints (e.g., contact and occlusion between hands and manipulated objects). Current methods utilize HOI representation as an auxiliary generative objective to guide video synthesis. However, there is a dilemma between 2D and 3D representations that cannot simultaneously guarantee scalability and interaction fidelity. To address this limitation, we propose a structure and contact-aware representation that captures hand-object contact, hand-object occlusion, and holistic structure context without 3D annotations. This interaction-oriented and scalable supervision signal enables the model to learn fine-grained interaction physics and generalize to open-world scenarios. To fully exploit the proposed representation, we introduce a joint-generation paradigm with a share-and-specialization strategy that generates interaction-oriented representations and videos. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on two real-world datasets in generating physics-realistic and temporally coherent HOI videos. Furthermore, our approach exhibits strong generalization to challenging open-world scenarios, highlighting the benefit of our scalable design. Our project page is https://hgzn258.github.io/SCAR/.
Authors:Cheng Zhang, Hanwen Liang, Donny Y. Chen, Qianyi Wu, Konstantinos N. Plataniotis, Camilo Cruz Gambardella, Jianfei Cai
Abstract:
Panoramic video generation has attracted growing attention due to its applications in virtual reality and immersive media. However, existing methods lack explicit motion control and struggle to generate scenes with large and complex motions. We propose PanFlow, a novel approach that exploits the spherical nature of panoramas to decouple the highly dynamic camera rotation from the input optical flow condition, enabling more precise control over large and dynamic motions. We further introduce a spherical noise warping strategy to promote loop consistency in motion across panorama boundaries. To support effective training, we curate a large-scale, motion-rich panoramic video dataset with frame-level pose and flow annotations. We also showcase the effectiveness of our method in various applications, including motion transfer and video editing. Extensive experiments demonstrate that PanFlow significantly outperforms prior methods in motion fidelity, visual quality, and temporal coherence. Our code, dataset, and models are available at https://github.com/chengzhag/PanFlow.
Authors:Zhiyuan Gao, Jiageng Mao, Hong-Xing Yu, Haozhe Lou, Emily Yue-Ting Jia, Jernej Barbic, Jiajun Wu, Yue Wang
Abstract:
A longstanding goal in computer vision is to model motions from videos, while the representations behind motions, i.e. the invisible physical interactions that cause objects to deform and move, remain largely unexplored. In this paper, we study how to recover the invisible forces from visual observations, e.g., estimating the wind field by observing a leaf falling to the ground. Our key innovation is an end-to-end differentiable inverse graphics framework, which jointly models object geometry, physical properties, and interactions directly from videos. Through backpropagation, our approach enables the recovery of force representations from object motions. We validate our method on both synthetic and real-world scenarios, and the results demonstrate its ability to infer plausible force fields from videos. Furthermore, we show the potential applications of our approach, including physics-based video generation and editing. We hope our approach sheds light on understanding and modeling the physical process behind pixels, bridging the gap between vision and physics. Please check more video results in our \href{https://chaoren2357.github.io/seeingthewind/}{project page}.
Authors:Minh-Quan Le, Yuanzhi Zhu, Vicky Kalogeiton, Dimitris Samaras
Abstract:
Recent video diffusion models can synthesize visually compelling clips, yet often violate basic physical laws-objects float, accelerations drift, and collisions behave inconsistently-revealing a persistent gap between visual realism and physical realism. We propose $\texttt{NewtonRewards}$, the first physics-grounded post-training framework for video generation based on $\textit{verifiable rewards}$. Instead of relying on human or VLM feedback, $\texttt{NewtonRewards}$ extracts $\textit{measurable proxies}$ from generated videos using frozen utility models: optical flow serves as a proxy for velocity, while high-level appearance features serve as a proxy for mass. These proxies enable explicit enforcement of Newtonian structure through two complementary rewards: a Newtonian kinematic constraint enforcing constant-acceleration dynamics, and a mass conservation reward preventing trivial, degenerate solutions. We evaluate $\texttt{NewtonRewards}$ on five Newtonian Motion Primitives (free fall, horizontal/parabolic throw, and ramp sliding down/up) using our newly constructed large-scale benchmark, $\texttt{NewtonBench-60K}$. Across all primitives in visual and physics metrics, $\texttt{NewtonRewards}$ consistently improves physical plausibility, motion smoothness, and temporal coherence over prior post-training methods. It further maintains strong performance under out-of-distribution shifts in height, speed, and friction. Our results show that physics-grounded verifiable rewards offer a scalable path toward physics-aware video generation.
Authors:Zhizhou Zhong, Yicheng Ji, Zhe Kong, Yiying Liu, Jiarui Wang, Jiasun Feng, Lupeng Liu, Xiangyi Wang, Yanjia Li, Yuqing She, Ying Qin, Huan Li, Shuiyang Mao, Wei Liu, Wenhan Luo
Abstract:
Recently, multi-person video generation has started to gain prominence. While a few preliminary works have explored audio-driven multi-person talking video generation, they often face challenges due to the high costs of diverse multi-person data collection and the difficulty of driving multiple identities with coherent interactivity. To address these challenges, we propose AnyTalker, a multi-person generation framework that features an extensible multi-stream processing architecture. Specifically, we extend Diffusion Transformer's attention block with a novel identity-aware attention mechanism that iteratively processes identity-audio pairs, allowing arbitrary scaling of drivable identities. Besides, training multi-person generative models demands massive multi-person data. Our proposed training pipeline depends solely on single-person videos to learn multi-person speaking patterns and refines interactivity with only a few real multi-person clips. Furthermore, we contribute a targeted metric and dataset designed to evaluate the naturalness and interactivity of the generated multi-person videos. Extensive experiments demonstrate that AnyTalker achieves remarkable lip synchronization, visual quality, and natural interactivity, striking a favorable balance between data costs and identity scalability.
Authors:Thomas Ressler-Antal, Frank Fundel, Malek Ben Alaya, Stefan Andreas Baumann, Felix Krause, Ming Gui, Björn Ommer
Abstract:
Recent advances in text-to-video (T2V) and image-to-video (I2V) models, have enabled the creation of visually compelling and dynamic videos from simple textual descriptions or initial frames. However, these models often fail to provide an explicit representation of motion separate from content, limiting their applicability for content creators. To address this gap, we propose DisMo, a novel paradigm for learning abstract motion representations directly from raw video data via an image-space reconstruction objective. Our representation is generic and independent of static information such as appearance, object identity, or pose. This enables open-world motion transfer, allowing motion to be transferred across semantically unrelated entities without requiring object correspondences, even between vastly different categories. Unlike prior methods, which trade off motion fidelity and prompt adherence, are overfitting to source structure or drifting from the described action, our approach disentangles motion semantics from appearance, enabling accurate transfer and faithful conditioning. Furthermore, our motion representation can be combined with any existing video generator via lightweight adapters, allowing us to effortlessly benefit from future advancements in video models. We demonstrate the effectiveness of our method through a diverse set of motion transfer tasks. Finally, we show that the learned representations are well-suited for downstream motion understanding tasks, consistently outperforming state-of-the-art video representation models such as V-JEPA in zero-shot action classification on benchmarks including Something-Something v2 and Jester. Project page: https://compvis.github.io/DisMo
Authors:Yuhao Wan, Lijuan Liu, Jingzhi Zhou, Zihan Zhou, Xuying Zhang, Dongbo Zhang, Shaohui Jiao, Qibin Hou, Ming-Ming Cheng
Abstract:
Previous works leveraging video models for image-to-3D scene generation tend to suffer from geometric distortions and blurry content. In this paper, we renovate the pipeline of image-to-3D scene generation by unlocking the potential of geometry models and present our GeoWorld. Instead of exploiting geometric information obtained from a single-frame input, we propose to first generate consecutive video frames and then take advantage of the geometry model to provide full-frame geometry features, which contain richer information than single-frame depth maps or camera embeddings used in previous methods, and use these geometry features as geometrical conditions to aid the video generation model. To enhance the consistency of geometric structures, we further propose a geometry alignment loss to provide the model with real-world geometric constraints and a geometry adaptation module to ensure the effective utilization of geometry features. Extensive experiments show that our GeoWorld can generate high-fidelity 3D scenes from a single image and a given camera trajectory, outperforming prior methods both qualitatively and quantitatively. Project Page: https://peaes.github.io/GeoWorld/.
Authors:Hongfei Zhang, Kanghao Chen, Zixin Zhang, Harold Haodong Chen, Yuanhuiyi Lyu, Yuqi Zhang, Shuai Yang, Kun Zhou, Yingcong Chen
Abstract:
This paper presents DualCamCtrl, a novel end-to-end diffusion model for camera-controlled video generation. Recent works have advanced this field by representing camera poses as ray-based conditions, yet they often lack sufficient scene understanding and geometric awareness. DualCamCtrl specifically targets this limitation by introducing a dual-branch framework that mutually generates camera-consistent RGB and depth sequences. To harmonize these two modalities, we further propose the Semantic Guided Mutual Alignment (SIGMA) mechanism, which performs RGB-depth fusion in a semantics-guided and mutually reinforced manner. These designs collectively enable DualCamCtrl to better disentangle appearance and geometry modeling, generating videos that more faithfully adhere to the specified camera trajectories. Additionally, we analyze and reveal the distinct influence of depth and camera poses across denoising stages and further demonstrate that early and late stages play complementary roles in forming global structure and refining local details. Extensive experiments demonstrate that DualCamCtrl achieves more consistent camera-controlled video generation, with over 40\% reduction in camera motion errors compared with prior methods. Our project page: https://soyouthinkyoucantell.github.io/dualcamctrl-page/
Authors:Zeyu Zhang, Shuning Chang, Yuanyu He, Yizeng Han, Jiasheng Tang, Fan Wang, Bohan Zhuang
Abstract:
Generating minute-long videos is a critical step toward developing world models, providing a foundation for realistic extended scenes and advanced AI simulators. The emerging semi-autoregressive (block diffusion) paradigm integrates the strengths of diffusion and autoregressive models, enabling arbitrary-length video generation and improving inference efficiency through KV caching and parallel sampling. However, it yet faces two enduring challenges: (i) KV-cache-induced long-horizon error accumulation, and (ii) the lack of fine-grained long-video benchmarks and coherence-aware metrics. To overcome these limitations, we propose BlockVid, a novel block diffusion framework equipped with semantic-aware sparse KV cache, an effective training strategy called Block Forcing, and dedicated chunk-wise noise scheduling and shuffling to reduce error propagation and enhance temporal consistency. We further introduce LV-Bench, a fine-grained benchmark for minute-long videos, complete with new metrics evaluating long-range coherence. Extensive experiments on VBench and LV-Bench demonstrate that BlockVid consistently outperforms existing methods in generating high-quality, coherent minute-long videos. In particular, it achieves a 22.2% improvement on VDE Subject and a 19.4% improvement on VDE Clarity in LV-Bench over the state of the art approaches. Project website: https://ziplab.co/BlockVid. Inferix (Code): https://github.com/alibaba-damo-academy/Inferix.
Authors:Shijun Shi, Jing Xu, Zhihang Li, Chunli Peng, Xiaoda Yang, Lijing Lu, Kai Hu, Jiangning Zhang
Abstract:
Recent advances in diffusion models have greatly improved pose-driven character animation. However, existing methods are limited to spatially aligned reference-pose pairs with matched skeletal structures. Handling reference-pose misalignment remains unsolved. To address this, we present One-to-All Animation, a unified framework for high-fidelity character animation and image pose transfer for references with arbitrary layouts. First, to handle spatially misaligned reference, we reformulate training as a self-supervised outpainting task that transforms diverse-layout reference into a unified occluded-input format. Second, to process partially visible reference, we design a reference extractor for comprehensive identity feature extraction. Further, we integrate hybrid reference fusion attention to handle varying resolutions and dynamic sequence lengths. Finally, from the perspective of generation quality, we introduce identity-robust pose control that decouples appearance from skeletal structure to mitigate pose overfitting, and a token replace strategy for coherent long-video generation. Extensive experiments show that our method outperforms existing approaches. The code and model are available at https://github.com/ssj9596/One-to-All-Animation.
Authors:Haotian Xue, Qi Chen, Zhonghao Wang, Xun Huang, Eli Shechtman, Jinrong Xie, Yongxin Chen
Abstract:
Video diffusion models achieve strong frame-level fidelity but still struggle with motion coherence, dynamics and realism, often producing jitter, ghosting, or implausible dynamics. A key limitation is that the standard denoising MSE objective provides no direct supervision on temporal consistency, allowing models to achieve low loss while still generating poor motion. We propose MoGAN, a motion-centric post-training framework that improves motion realism without reward models or human preference data. Built atop a 3-step distilled video diffusion model, we train a DiT-based optical-flow discriminator to differentiate real from generated motion, combined with a distribution-matching regularizer to preserve visual fidelity. With experiments on Wan2.1-T2V-1.3B, MoGAN substantially improves motion quality across benchmarks. On VBench, MoGAN boosts motion score by +7.3% over the 50-step teacher and +13.3% over the 3-step DMD model. On VideoJAM-Bench, MoGAN improves motion score by +7.4% over the teacher and +8.8% over DMD, while maintaining comparable or even better aesthetic and image-quality scores. A human study further confirms that MoGAN is preferred for motion quality (52% vs. 38% for the teacher; 56% vs. 29% for DMD). Overall, MoGAN delivers significantly more realistic motion without sacrificing visual fidelity or efficiency, offering a practical path toward fast, high-quality video generation. Project webpage is: https://xavihart.github.io/mogan.
Authors:Shuai Zhang, Bao Tang, Siyuan Yu, Yueting Zhu, Jingfeng Yao, Ya Zou, Shanglin Yuan, Li Yu, Wenyu Liu, Xinggang Wang
Abstract:
Recently, video generation has witnessed rapid advancements, drawing increasing attention to image-to-video (I2V) synthesis on mobile devices. However, the substantial computational complexity and slow generation speed of diffusion models pose significant challenges for real-time, high-resolution video generation on resource-constrained mobile devices. In this work, we propose MobileI2V, a 270M lightweight diffusion model for real-time image-to-video generation on mobile devices. The core lies in: (1) We analyzed the performance of linear attention modules and softmax attention modules on mobile devices, and proposed a linear hybrid architecture denoiser that balances generation efficiency and quality. (2) We design a time-step distillation strategy that compresses the I2V sampling steps from more than 20 to only two without significant quality loss, resulting in a 10-fold increase in generation speed. (3) We apply mobile-specific attention optimizations that yield a 2-fold speed-up for attention operations during on-device inference. MobileI2V enables, for the first time, fast 720p image-to-video generation on mobile devices, with quality comparable to existing models. Under one-step conditions, the generation speed of each frame of 720p video is less than 100 ms. Our code is available at: https://github.com/hustvl/MobileI2V.
Authors:Changlin Li, Jiawei Zhang, Shuhao Liu, Sihao Lin, Zeyi Shi, Zhihui Li, Xiaojun Chang
Abstract:
Human video generation has advanced rapidly with the development of diffusion models, but the high computational cost and substantial memory consumption associated with training these models on high-resolution, multi-frame data pose significant challenges. In this paper, we propose Entropy-Guided Prioritized Progressive Learning (Ent-Prog), an efficient training framework tailored for diffusion models on human video generation. First, we introduce Conditional Entropy Inflation (CEI) to assess the importance of different model components on the target conditional generation task, enabling prioritized training of the most critical components. Second, we introduce an adaptive progressive schedule that adaptively increases computational complexity during training by measuring the convergence efficiency. Ent-Prog reduces both training time and GPU memory consumption while maintaining model performance. Extensive experiments across three datasets, demonstrate the effectiveness of Ent-Prog, achieving up to 2.2$\times$ training speedup and 2.4$\times$ GPU memory reduction without compromising generative performance.
Authors:Dianbing Xi, Jiepeng Wang, Yuanzhi Liang, Xi Qiu, Jialun Liu, Hao Pan, Yuchi Huo, Rui Wang, Haibin Huang, Chi Zhang, Xuelong Li
Abstract:
We tackle the dual challenges of video understanding and controllable video generation within a unified diffusion framework. Our key insights are two-fold: geometry-only cues (e.g., depth, edges) are insufficient: they specify layout but under-constrain appearance, materials, and illumination, limiting physically meaningful edits such as relighting or material swaps and often causing temporal drift. Enriching the model with additional graphics-based modalities (intrinsics and semantics) provides complementary constraints that both disambiguate understanding and enable precise, predictable control during generation. However, building a single model that uses many heterogeneous cues introduces two core difficulties. Architecturally, the model must accept any subset of modalities, remain robust to missing inputs, and inject control signals without sacrificing temporal consistency. Data-wise, training demands large-scale, temporally aligned supervision that ties real videos to per-pixel multimodal annotations. We then propose CtrlVDiff, a unified diffusion model trained with a Hybrid Modality Control Strategy (HMCS) that routes and fuses features from depth, normals, segmentation, edges, and graphics-based intrinsics (albedo, roughness, metallic), and re-renders videos from any chosen subset with strong temporal coherence. To enable this, we build MMVideo, a hybrid real-and-synthetic dataset aligned across modalities and captions. Across understanding and generation benchmarks, CtrlVDiff delivers superior controllability and fidelity, enabling layer-wise edits (relighting, material adjustment, object insertion) and surpassing state-of-the-art baselines while remaining robust when some modalities are unavailable.
Authors:Ryan Burgert, Charles Herrmann, Forrester Cole, Michael S Ryoo, Neal Wadhwa, Andrey Voynov, Nataniel Ruiz
Abstract:
While generative video models have achieved remarkable fidelity and consistency, applying these capabilities to video editing remains a complex challenge. Recent research has explored motion controllability as a means to enhance text-to-video generation or image animation; however, we identify precise motion control as a promising yet under-explored paradigm for editing existing videos. In this work, we propose modifying video motion by directly editing sparse trajectories extracted from the input. We term the deviation between input and output trajectories a "motion edit" and demonstrate that this representation, when coupled with a generative backbone, enables powerful video editing capabilities. To achieve this, we introduce a pipeline for generating "motion counterfactuals", video pairs that share identical content but distinct motion, and we fine-tune a motion-conditioned video diffusion architecture on this dataset. Our approach allows for edits that start at any timestamp and propagate naturally. In a four-way head-to-head user study, our model achieves over 65 percent preference against prior work. Please see our project page: https://ryanndagreat.github.io/MotionV2V
Authors:Jiatao Gu, Ying Shen, Tianrong Chen, Laurent Dinh, Yuyang Wang, Miguel Angel Bautista, David Berthelot, Josh Susskind, Shuangfei Zhai
Abstract:
Normalizing flows (NFs) are end-to-end likelihood-based generative models for continuous data, and have recently regained attention with encouraging progress on image generation. Yet in the video generation domain, where spatiotemporal complexity and computational cost are substantially higher, state-of-the-art systems almost exclusively rely on diffusion-based models. In this work, we revisit this design space by presenting STARFlow-V, a normalizing flow-based video generator with substantial benefits such as end-to-end learning, robust causal prediction, and native likelihood estimation. Building upon the recently proposed STARFlow, STARFlow-V operates in the spatiotemporal latent space with a global-local architecture which restricts causal dependencies to a global latent space while preserving rich local within-frame interactions. This eases error accumulation over time, a common pitfall of standard autoregressive diffusion model generation. Additionally, we propose flow-score matching, which equips the model with a light-weight causal denoiser to improve the video generation consistency in an autoregressive fashion. To improve the sampling efficiency, STARFlow-V employs a video-aware Jacobi iteration scheme that recasts inner updates as parallelizable iterations without breaking causality. Thanks to the invertible structure, the same model can natively support text-to-video, image-to-video as well as video-to-video generation tasks. Empirically, STARFlow-V achieves strong visual fidelity and temporal consistency with practical sampling throughput relative to diffusion-based baselines. These results present the first evidence, to our knowledge, that NFs are capable of high-quality autoregressive video generation, establishing them as a promising research direction for building world models. Code and generated samples are available at https://github.com/apple/ml-starflow.
Authors:Hmrishav Bandyopadhyay, Nikhil Pinnaparaju, Rahim Entezari, Jim Scott, Yi-Zhe Song, Varun Jampani
Abstract:
Block-causal video generation faces a stark speed-quality trade-off: small 1.3B models manage only 16 FPS while large 14B models crawl at 4.5 FPS, forcing users to choose between responsiveness and quality. Block Cascading significantly mitigates this trade-off through training-free parallelization. Our key insight: future video blocks do not need fully denoised current blocks to begin generation. By starting block generation with partially denoised context from predecessors, we transform sequential pipelines into parallel cascades where multiple blocks denoise simultaneously. With 5 GPUs exploiting temporal parallelism, we achieve ~2x acceleration across all model scales: 1.3B models accelerate from 16 to 30 FPS, 14B models from 4.5 to 12.5 FPS. Beyond inference speed, Block Cascading eliminates overhead from KV-recaching (of ~200ms) during context switches for interactive generation. Extensive evaluations validated against multiple block-causal pipelines demonstrate no significant loss in generation quality when switching from block-causal to Block Cascading pipelines for inference. Project Page: https://hmrishavbandy.github.io/block_cascading_page/
Authors:Min Zhao, Hongzhou Zhu, Yingze Wang, Bokai Yan, Jintao Zhang, Guande He, Ling Yang, Chongxuan Li, Jun Zhu
Abstract:
Despite advances, video diffusion transformers still struggle to generalize beyond their training length, a challenge we term video length extrapolation. We identify two failure modes: model-specific periodic content repetition and a universal quality degradation. Prior works attempt to solve repetition via positional encodings, overlooking quality degradation and achieving only limited extrapolation. In this paper, we revisit this challenge from a more fundamental view: attention maps, which directly govern how context influences outputs. We identify that both failure modes arise from a unified cause: attention dispersion, where tokens beyond the training window dilute learned attention patterns. This leads to quality degradation and repetition emerges as a special case when this dispersion becomes structured into periodic attention patterns, induced by harmonic properties of positional encodings. Building on this insight, we propose UltraViCo, a training-free, plug-and-play method that suppresses attention for tokens beyond the training window via a constant decay factor. By jointly addressing both failure modes, we outperform a broad set of baselines largely across models and extrapolation ratios, pushing the extrapolation limit from 2x to 4x. Remarkably, it improves Dynamic Degree and Imaging Quality by 233% and 40.5% over the previous best method at 4x extrapolation. Furthermore, our method generalizes seamlessly to downstream tasks such as controllable video synthesis and editing.
Authors:Xuewen Liu, Zhikai Li, Jing Zhang, Mengjuan Chen, Qingyi Gu
Abstract:
Diffusion Transformers dominate video generation, but the quadratic complexity of attention computation introduces substantial latency. Attention sparsity reduces computational costs by focusing on critical tokens while ignoring non-critical tokens. However, existing methods suffer from severe performance degradation. In this paper, we revisit attention sparsity and reveal that existing methods induce systematic biases in attention allocation: (1) excessive focus on critical tokens amplifies their attention weights; (2) complete neglect of non-critical tokens causes the loss of relevant attention weights. To address these issues, we propose Rectified SpaAttn, which rectifies attention allocation with implicit full attention reference, thereby enhancing the alignment between sparse and full attention maps. Specifically: (1) for critical tokens, we show that their bias is proportional to the sparse attention weights, with the ratio governed by the amplified weights. Accordingly, we propose Isolated-Pooling Attention Reallocation, which calculates accurate rectification factors by reallocating multimodal pooled weights. (2) for non-critical tokens, recovering attention weights from the pooled query-key yields attention gains but also introduces pooling errors. Therefore, we propose Gain-Aware Pooling Rectification, which ensures that the rectified gain consistently surpasses the induced error. Moreover, we customize and integrate the Rectified SpaAttn kernel using Triton, achieving up to 3.33 and 2.08 times speedups on HunyuanVideo and Wan 2.1, respectively, while maintaining high generation quality. We release Rectified SpaAttn as open-source at https://github.com/BienLuky/Rectified-SpaAttn .
Authors:Selena Song, Ziming Xu, Zijun Zhang, Kun Zhou, Jiaxian Guo, Lianhui Qin, Biwei Huang
Abstract:
Diffusion Transformer(DiT) based video generation models have recently achieved impressive visual quality and temporal coherence, but they still frequently violate basic physical laws and commonsense dynamics, revealing a lack of explicit world knowledge. In this work, we explore how to equip them with a plug-and-play memory that injects useful world knowledge. Motivated by in-context memory in Transformer-based LLMs, we conduct empirical studies to show that DiT can be steered via interventions on its hidden states, and simple low-pass and high-pass filters in the embedding space naturally disentangle low-level appearance and high-level physical/semantic cues, enabling targeted guidance. Building on these observations, we propose a learnable memory encoder DiT-Mem, composed of stacked 3D CNNs, low-/high-pass filters, and self-attention layers. The encoder maps reference videos into a compact set of memory tokens, which are concatenated as the memory within the DiT self-attention layers. During training, we keep the diffusion backbone frozen, and only optimize the memory encoder. It yields a rather efficient training process on few training parameters (150M) and 10K data samples, and enables plug-and-play usage at inference time. Extensive experiments on state-of-the-art models demonstrate the effectiveness of our method in improving physical rule following and video fidelity. Our code and data are publicly released here: https://thrcle421.github.io/DiT-Mem-Web/.
Authors:Duolikun Danier, Ge Gao, Steven McDonagh, Changjian Li, Hakan Bilen, Oisin Mac Aodha
Abstract:
Video generation models have made significant progress in generating realistic content, enabling applications in simulation, gaming, and film making. However, current generated videos still contain visual artifacts arising from 3D inconsistencies, e.g., objects and structures deforming under changes in camera pose, which can undermine user experience and simulation fidelity. Motivated by recent findings on representation alignment for diffusion models, we hypothesize that improving the multi-view consistency of video diffusion representations will yield more 3D-consistent video generation. Through detailed analysis on multiple recent camera-controlled video diffusion models we reveal strong correlations between 3D-consistent representations and videos. We also propose ViCoDR, a new approach for improving the 3D consistency of video models by learning multi-view consistent diffusion representations. We evaluate ViCoDR on camera controlled image-to-video, text-to-video, and multi-view generation models, demonstrating significant improvements in the 3D consistency of the generated videos. Project page: https://danier97.github.io/ViCoDR.
Authors:Zhenxing Mi, Yuxin Wang, Dan Xu
Abstract:
We present One4D, a unified framework for 4D generation and reconstruction that produces dynamic 4D content as synchronized RGB frames and pointmaps. By consistently handling varying sparsities of conditioning frames through a Unified Masked Conditioning (UMC) mechanism, One4D can seamlessly transition between 4D generation from a single image, 4D reconstruction from a full video, and mixed generation and reconstruction from sparse frames. Our framework adapts a powerful video generation model for joint RGB and pointmap generation, with carefully designed network architectures. The commonly used diffusion finetuning strategies for depthmap or pointmap reconstruction often fail on joint RGB and pointmap generation, quickly degrading the base video model. To address this challenge, we introduce Decoupled LoRA Control (DLC), which employs two modality-specific LoRA adapters to form decoupled computation branches for RGB frames and pointmaps, connected by lightweight, zero-initialized control links that gradually learn mutual pixel-level consistency. Trained on a mixture of synthetic and real 4D datasets under modest computational budgets, One4D produces high-quality RGB frames and accurate pointmaps across both generation and reconstruction tasks. This work represents a step toward general, high-quality geometry-based 4D world modeling using video diffusion models. Project page: https://mizhenxing.github.io/One4D
Authors:Bing Wu, Chang Zou, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Jack Peng, Jianbing Wu, Jiangfeng Xiong, Jie Jiang, Linus, Patrol, Peizhen Zhang, Peng Chen, Penghao Zhao, Qi Tian, Songtao Liu, Weijie Kong, Weiyan Wang, Xiao He, Xin Li, Xinchi Deng, Xuefei Zhe, Yang Li, Yanxin Long, Yuanbo Peng, Yue Wu, Yuhong Liu, Zhenyu Wang, Zuozhuo Dai, Bo Peng, Coopers Li, Gu Gong, Guojian Xiao, Jiahe Tian, Jiaxin Lin, Jie Liu, Jihong Zhang, Jiesong Lian, Kaihang Pan, Lei Wang, Lin Niu, Mingtao Chen, Mingyang Chen, Mingzhe Zheng, Miles Yang, Qiangqiang Hu, Qi Yang, Qiuyong Xiao, Runzhou Wu, Ryan Xu, Rui Yuan, Shanshan Sang, Shisheng Huang, Siruis Gong, Shuo Huang, Weiting Guo, Xiang Yuan, Xiaojia Chen, Xiawei Hu, Wenzhi Sun, Xiele Wu, Xianshun Ren, Xiaoyan Yuan, Xiaoyue Mi, Yepeng Zhang, Yifu Sun, Yiting Lu, Yitong Li, You Huang, Yu Tang, Yixuan Li, Yuhang Deng, Yuan Zhou, Zhichao Hu, Zhiguang Liu, Zhihe Yang, Zilin Yang, Zhenzhi Lu, Zixiang Zhou, Zhao Zhong
Abstract:
We present HunyuanVideo 1.5, a lightweight yet powerful open-source video generation model that achieves state-of-the-art visual quality and motion coherence with only 8.3 billion parameters, enabling efficient inference on consumer-grade GPUs. This achievement is built upon several key components, including meticulous data curation, an advanced DiT architecture featuring selective and sliding tile attention (SSTA), enhanced bilingual understanding through glyph-aware text encoding, progressive pre-training and post-training, and an efficient video super-resolution network. Leveraging these designs, we developed a unified framework capable of high-quality text-to-video and image-to-video generation across multiple durations and resolutions. Extensive experiments demonstrate that this compact and proficient model establishes a new state-of-the-art among open-source video generation models. By releasing the code and model weights, we provide the community with a high-performance foundation that lowers the barrier to video creation and research, making advanced video generation accessible to a broader audience. All open-source assets are publicly available at https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5.
Authors:Ruize Ma, Minghong Cai, Yilei Jiang, Jiaming Han, Yi Feng, Yingshui Tan, Xiaoyong Zhu, Bo Zhang, Bo Zheng, Xiangyu Yue
Abstract:
Recent progress in video generative models has enabled the creation of high-quality videos from multimodal prompts that combine text and images. While these systems offer enhanced controllability, they also introduce new safety risks, as harmful content can emerge from individual modalities or their interaction. Existing safety methods are often text-only, require prior knowledge of the risk category, or operate as post-generation auditors, struggling to proactively mitigate such compositional, multimodal risks. To address this challenge, we present ConceptGuard, a unified safeguard framework for proactively detecting and mitigating unsafe semantics in multimodal video generation. ConceptGuard operates in two stages: First, a contrastive detection module identifies latent safety risks by projecting fused image-text inputs into a structured concept space; Second, a semantic suppression mechanism steers the generative process away from unsafe concepts by intervening in the prompt's multimodal conditioning. To support the development and rigorous evaluation of this framework, we introduce two novel benchmarks: ConceptRisk, a large-scale dataset for training on multimodal risks, and T2VSafetyBench-TI2V, the first benchmark adapted from T2VSafetyBench for the Text-and-Image-to-Video (TI2V) safety setting. Comprehensive experiments on both benchmarks show that ConceptGuard consistently outperforms existing baselines, achieving state-of-the-art results in both risk detection and safe video generation. Our code is available at https://github.com/Ruize-Ma/ConceptGuard.
Authors:Alexandros Stergiou
Abstract:
How do video understanding models acquire their answers? Although current Vision Language Models (VLMs) reason over complex scenes with diverse objects, action performances, and scene dynamics, understanding and controlling their internal processes remains an open challenge. Motivated by recent advancements in text-to-video (T2V) generative models, this paper introduces a logits-to-video (L2V) task alongside a model-independent approach, TRANSPORTER, to generate videos that capture the underlying rules behind VLMs' predictions. Given the high-visual-fidelity produced by T2V models, TRANSPORTER learns an optimal transport coupling to VLM's high-semantic embedding spaces. In turn, logit scores define embedding directions for conditional video generation. TRANSPORTER generates videos that reflect caption changes over diverse object attributes, action adverbs, and scene context. Quantitative and qualitative evaluations across VLMs demonstrate that L2V can provide a fidelity-rich, novel direction for model interpretability that has not been previously explored.
Authors:Lun Huang, You Xie, Hongyi Xu, Tianpei Gu, Chenxu Zhang, Guoxian Song, Zenan Li, Xiaochen Zhao, Linjie Luo, Guillermo Sapiro
Abstract:
Diffusion Transformers have demonstrated remarkable capabilities in visual synthesis, yet they often struggle with high-level semantic reasoning and long-horizon planning. This limitation frequently leads to visual hallucinations and mis-alignments with user instructions, especially in scenarios involving complex scene understanding, human-object interactions, multi-stage actions, and in-context motion reasoning. To address these challenges, we propose Plan-X, a framework that explicitly enforces high-level semantic planning to instruct video generation process. At its core lies a Semantic Planner, a learnable multimodal language model that reasons over the user's intent from both text prompts and visual context, and autoregressively generates a sequence of text-grounded spatio-temporal semantic tokens. These semantic tokens, complementary to high-level text prompt guidance, serve as structured "semantic sketches" over time for the video diffusion model, which has its strength at synthesizing high-fidelity visual details. Plan-X effectively integrates the strength of language models in multimodal in-context reasoning and planning, together with the strength of diffusion models in photorealistic video synthesis. Extensive experiments demonstrate that our framework substantially reduces visual hallucinations and enables fine-grained, instruction-aligned video generation consistent with multimodal context.
Authors:Yipeng Chen, Zhichao Ye, Zhenzhou Fang, Xinyu Chen, Xiaoyu Zhang, Jialing Liu, Nan Wang, Haomin Liu, Guofeng Zhang
Abstract:
We propose PostCam, a framework for novel-view video generation that enables post-capture editing of camera trajectories in dynamic scenes. We find that existing video recapture methods suffer from suboptimal camera motion injection strategies; such suboptimal designs not only limit camera control precision but also result in generated videos that fail to preserve fine visual details from the source video. To achieve more accurate and flexible motion manipulation, PostCam introduces a query-shared cross-attention module. It integrates two distinct forms of control signals: the 6-DoF camera poses and the 2D rendered video frames. By fusing them into a unified representation within a shared feature space, our model can extract underlying motion cues, which enhances both control precision and generation quality. Furthermore, we adopt a two-stage training strategy: the model first learns coarse camera control from pose inputs, and then incorporates visual information to refine motion accuracy and enhance visual fidelity. Experiments on both real-world and synthetic datasets demonstrate that PostCam outperforms state-of-the-art methods by over 20% in camera control precision and view consistency, while achieving the highest video generation quality. Our project webpage is publicly available at: https://cccqaq.github.io/PostCam.github.io/
Authors:Junhao Cheng, Liang Hou, Xin Tao, Jing Liao
Abstract:
While language models have become impactful in many real-world applications, video generation remains largely confined to entertainment. Motivated by video's inherent capacity to demonstrate physical-world information that is difficult to convey through language alone (e.g., imagine teaching someone to tie a tie using only text), we identify an underutilized opportunity to extend video as a new answer modality for Next-Event Prediction (NEP), formalized as Video-Next-Event Prediction (VNEP). While the established NEP task takes a video with a procedural or predictive question as input to predict the next event in text, VNEP requires dynamic video responses. This shift from telling to showing unlocks more intuitive and customized answers for procedural learning and creative exploration. However, this task remains challenging for existing models, as it demands an understanding of multimodal input, instruction-conditioned reasoning, and the generation of video with visual and semantic consistency. To address this, we introduce VANS, a model that leverages reinforcement learning to align a Vision-Language Model (VLM) with a Video Diffusion Model (VDM) for VNEP. The core of VANS is our proposed Joint-GRPO that orchestrates the VLM and VDM to function as a unit. Driven by a shared reward on their respective output, it optimizes the VLM to produce captions that are both accurate and friendly to visualize, while guiding the VDM to generate videos that are faithful to these captions and the input visual context. To enable this learning, we craft VANS-Data-100K, a dedicated dataset for the VNEP task. Experiments on procedural and predictive benchmarks demonstrate that VANS achieves state-of-the-art performance in both video event prediction and visualization. Codes are released in https://github.com/KlingTeam/VANS.
Authors:Yang Luo, Xuanlei Zhao, Baijiong Lin, Lingting Zhu, Liyao Tang, Yuqi Liu, Ying-Cong Chen, Shengju Qian, Xin Wang, Yang You
Abstract:
Recent progress in generative video models, such as Veo-3, has shown surprising zero-shot reasoning abilities, creating a growing need for systematic and reliable evaluation. We introduce V-ReasonBench, a benchmark designed to assess video reasoning across four key dimensions: structured problem-solving, spatial cognition, pattern-based inference, and physical dynamics. The benchmark is built from both synthetic and real-world image sequences and provides a diverse set of answer-verifiable tasks that are reproducible, scalable, and unambiguous. Evaluations of six state-of-the-art video models reveal clear dimension-wise differences, with strong variation in structured, spatial, pattern-based, and physical reasoning. We further compare video models with strong image models, analyze common hallucination behaviors, and study how video duration affects Chain-of-Frames reasoning. Overall, V-ReasonBench offers a unified and reproducible framework for measuring video reasoning and aims to support the development of models with more reliable, human-aligned reasoning skills.
Authors:Yunfeng Wu, Jiayi Song, Zhenxiong Tan, Zihao He, Songhua Liu
Abstract:
The quadratic time and memory complexity of the attention mechanism in modern Transformer based video generators makes end-to-end training for ultra high resolution videos prohibitively expensive. Motivated by this limitation, we introduce a training-free approach that leverages video Diffusion Transformers pretrained at their native scale to synthesize higher resolution videos without any additional training or adaptation. At the core of our method lies an inward sliding window attention mechanism, which originates from a key observation: maintaining each query token's training scale receptive field is crucial for preserving visual fidelity and detail. However, naive local window attention, unfortunately, often leads to repetitive content and exhibits a lack of global coherence in the generated results. To overcome this challenge, we devise a dual-path pipeline that backs up window attention with a novel cross-attention override strategy, enabling the semantic content produced by local attention to be guided by another branch with a full receptive field and, therefore, ensuring holistic consistency. Furthermore, to improve efficiency, we incorporate a cross-attention caching strategy for this branch to avoid the frequent computation of full 3D attention. Extensive experiments demonstrate that our method delivers ultra-high-resolution videos with fine-grained visual details and high efficiency in a training-free paradigm. Meanwhile, it achieves superior performance on VBench, even compared to training-based alternatives, with competitive or improved efficiency. Codes are available at: https://github.com/WillWu111/FreeSwim
Authors:Harold Haodong Chen, Disen Lan, Wen-Jie Shu, Qingyang Liu, Zihan Wang, Sirui Chen, Wenkai Cheng, Kanghao Chen, Hongfei Zhang, Zixin Zhang, Rongjin Guo, Yu Cheng, Ying-Cong Chen
Abstract:
The rapid evolution of video generative models has shifted their focus from producing visually plausible outputs to tackling tasks requiring physical plausibility and logical consistency. However, despite recent breakthroughs such as Veo 3's chain-of-frames reasoning, it remains unclear whether these models can exhibit reasoning capabilities similar to large language models (LLMs). Existing benchmarks predominantly evaluate visual fidelity and temporal coherence, failing to capture higher-order reasoning abilities. To bridge this gap, we propose TiViBench, a hierarchical benchmark specifically designed to evaluate the reasoning capabilities of image-to-video (I2V) generation models. TiViBench systematically assesses reasoning across four dimensions: i) Structural Reasoning & Search, ii) Spatial & Visual Pattern Reasoning, iii) Symbolic & Logical Reasoning, and iv) Action Planning & Task Execution, spanning 24 diverse task scenarios across 3 difficulty levels. Through extensive evaluations, we show that commercial models (e.g., Sora 2, Veo 3.1) demonstrate stronger reasoning potential, while open-source models reveal untapped potential that remains hindered by limited training scale and data diversity. To further unlock this potential, we introduce VideoTPO, a simple yet effective test-time strategy inspired by preference optimization. By performing LLM self-analysis on generated candidates to identify strengths and weaknesses, VideoTPO significantly enhances reasoning performance without requiring additional training, data, or reward models. Together, TiViBench and VideoTPO pave the way for evaluating and advancing reasoning in video generation models, setting a foundation for future research in this emerging field.
Authors:Zongyang Qiu, Bingyuan Wang, Xingbei Chen, Yingqing He, Zeyu Wang
Abstract:
Emotion plays a pivotal role in video-based expression, but existing video generation systems predominantly focus on low-level visual metrics while neglecting affective dimensions. Although emotion analysis has made progress in the visual domain, the video community lacks dedicated resources to bridge emotion understanding with generative tasks, particularly for stylized and non-realistic contexts. To address this gap, we introduce EmoVid, the first multimodal, emotion-annotated video dataset specifically designed for creative media, which includes cartoon animations, movie clips, and animated stickers. Each video is annotated with emotion labels, visual attributes (brightness, colorfulness, hue), and text captions. Through systematic analysis, we uncover spatial and temporal patterns linking visual features to emotional perceptions across diverse video forms. Building on these insights, we develop an emotion-conditioned video generation technique by fine-tuning the Wan2.1 model. The results show a significant improvement in both quantitative metrics and the visual quality of generated videos for text-to-video and image-to-video tasks. EmoVid establishes a new benchmark for affective video computing. Our work not only offers valuable insights into visual emotion analysis in artistically styled videos, but also provides practical methods for enhancing emotional expression in video generation.
Authors:Assaf Singer, Noam Rotstein, Amir Mann, Ron Kimmel, Or Litany
Abstract:
Diffusion-based video generation can create realistic videos, yet existing image- and text-based conditioning fails to offer precise motion control. Prior methods for motion-conditioned synthesis typically require model-specific fine-tuning, which is computationally expensive and restrictive. We introduce Time-to-Move (TTM), a training-free, plug-and-play framework for motion- and appearance-controlled video generation with image-to-video (I2V) diffusion models. Our key insight is to use crude reference animations obtained through user-friendly manipulations such as cut-and-drag or depth-based reprojection. Motivated by SDEdit's use of coarse layout cues for image editing, we treat the crude animations as coarse motion cues and adapt the mechanism to the video domain. We preserve appearance with image conditioning and introduce dual-clock denoising, a region-dependent strategy that enforces strong alignment in motion-specified regions while allowing flexibility elsewhere, balancing fidelity to user intent with natural dynamics. This lightweight modification of the sampling process incurs no additional training or runtime cost and is compatible with any backbone. Extensive experiments on object and camera motion benchmarks show that TTM matches or exceeds existing training-based baselines in realism and motion control. Beyond this, TTM introduces a unique capability: precise appearance control through pixel-level conditioning, exceeding the limits of text-only prompting. Visit our project page for video examples and code: https://time-to-move.github.io/.
Authors:Jingtong Yue, Ziqi Huang, Zhaoxi Chen, Xintao Wang, Pengfei Wan, Ziwei Liu
Abstract:
The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.
Authors:Yunhong He, Zhengqing Yuan, Zhengzhong Tu, Yanfang Ye, Lichao Sun
Abstract:
We introduce 3D4D, an interactive 4D visualization framework that integrates WebGL with Supersplat rendering. It transforms static images and text into coherent 4D scenes through four core modules and employs a foveated rendering strategy for efficient, real-time multi-modal interaction. This framework enables adaptive, user-driven exploration of complex 4D environments. The project page and code are available at https://yunhonghe1021.github.io/NOVA/.
Authors:Jiageng Mao, Sicheng He, Hao-Ning Wu, Yang You, Shuyang Sun, Zhicheng Wang, Yanan Bao, Huizhong Chen, Leonidas Guibas, Vitor Guizilini, Howard Zhou, Yue Wang
Abstract:
We introduce PhysWorld, a framework that enables robot learning from video generation through physical world modeling. Recent video generation models can synthesize photorealistic visual demonstrations from language commands and images, offering a powerful yet underexplored source of training signals for robotics. However, directly retargeting pixel motions from generated videos to robots neglects physics, often resulting in inaccurate manipulations. PhysWorld addresses this limitation by coupling video generation with physical world reconstruction. Given a single image and a task command, our method generates task-conditioned videos and reconstructs the underlying physical world from the videos, and the generated video motions are grounded into physically accurate actions through object-centric residual reinforcement learning with the physical world model. This synergy transforms implicit visual guidance into physically executable robotic trajectories, eliminating the need for real robot data collection and enabling zero-shot generalizable robotic manipulation. Experiments on diverse real-world tasks demonstrate that PhysWorld substantially improves manipulation accuracy compared to previous approaches. Visit \href{https://pointscoder.github.io/PhysWorld_Web/}{the project webpage} for details.
Authors:Weikang Bian, Xiaoyu Shi, Zhaoyang Huang, Jianhong Bai, Qinghe Wang, Xintao Wang, Pengfei Wan, Kun Gai, Hongsheng Li
Abstract:
Recent advances in diffusion models enable high-quality video generation and editing, but precise relighting with consistent video contents, which is critical for shaping scene atmosphere and viewer attention, remains unexplored. Mainstream text-to-video (T2V) models lack fine-grained lighting control due to text's inherent limitation in describing lighting details and insufficient pre-training on lighting-related prompts. Additionally, constructing high-quality relighting training data is challenging, as real-world controllable lighting data is scarce. To address these issues, we propose RelightMaster, a novel framework for accurate and controllable video relighting. First, we build RelightVideo, the first dataset with identical dynamic content under varying precise lighting conditions based on the Unreal Engine. Then, we introduce Multi-plane Light Image (MPLI), a novel visual prompt inspired by Multi-Plane Image (MPI). MPLI models lighting via K depth-aligned planes, representing 3D light source positions, intensities, and colors while supporting multi-source scenarios and generalizing to unseen light setups. Third, we design a Light Image Adapter that seamlessly injects MPLI into pre-trained Video Diffusion Transformers (DiT): it compresses MPLI via a pre-trained Video VAE and injects latent light features into DiT blocks, leveraging the base model's generative prior without catastrophic forgetting. Experiments show that RelightMaster generates physically plausible lighting and shadows and preserves original scene content. Demos are available at https://wkbian.github.io/Projects/RelightMaster/.
Authors:Animesh Karnewar, Denis Korzhenkov, Ioannis Lelekas, Adil Karjauv, Noor Fathima, Hanwen Xiong, Vancheeswaran Vaidyanathan, Will Zeng, Rafael Esteves, Tushar Singhal, Fatih Porikli, Mohsen Ghafoorian, Amirhossein Habibian
Abstract:
We introduce Neodragon, a text-to-video system capable of generating 2s (49 frames @24 fps) videos at the 640x1024 resolution directly on a Qualcomm Hexagon NPU in a record 6.7s (7 FPS). Differing from existing transformer-based offline text-to-video generation models, Neodragon is the first to have been specifically optimised for mobile hardware to achieve efficient and high-fidelity video synthesis. We achieve this through four key technical contributions: (1) Replacing the original large 4.762B T5xxl Text-Encoder with a much smaller 0.2B DT5 (DistilT5) with minimal quality loss, enabled through a novel Text-Encoder Distillation procedure. (2) Proposing an Asymmetric Decoder Distillation approach allowing us to replace the native codec-latent-VAE decoder with a more efficient one, without disturbing the generative latent-space of the generation pipeline. (3) Pruning of MMDiT blocks within the denoiser backbone based on their relative importance, with recovery of original performance through a two-stage distillation process. (4) Reducing the NFE (Neural Functional Evaluation) requirement of the denoiser by performing step distillation using DMD adapted for pyramidal flow-matching, thereby substantially accelerating video generation. When paired with an optimised SSD1B first-frame image generator and QuickSRNet for 2x super-resolution, our end-to-end Neodragon system becomes a highly parameter (4.945B full model), memory (3.5GB peak RAM usage), and runtime (6.7s E2E latency) efficient mobile-friendly model, while achieving a VBench total score of 81.61. By enabling low-cost, private, and on-device text-to-video synthesis, Neodragon democratizes AI-based video content creation, empowering creators to generate high-quality videos without reliance on cloud services. Code and model will be made publicly available at our website: https://qualcomm-ai-research.github.io/neodragon
Authors:Yujin Potter, Zhun Wang, Nicholas Crispino, Kyle Montgomery, Alexander Xiong, Ethan Y. Chang, Francesco Pinto, Yuqi Chen, Rahul Gupta, Morteza Ziyadi, Christos Christodoulopoulos, Bo Li, Chenguang Wang, Dawn Song
Abstract:
As foundation models become more sophisticated, ensuring their trustworthiness becomes increasingly critical; yet, unlike text and image, the video modality still lacks comprehensive trustworthiness benchmarks. We introduce VMDT (Video-Modal DecodingTrust), the first unified platform for evaluating text-to-video (T2V) and video-to-text (V2T) models across five key trustworthiness dimensions: safety, hallucination, fairness, privacy, and adversarial robustness. Through our extensive evaluation of 7 T2V models and 19 V2T models using VMDT, we uncover several significant insights. For instance, all open-source T2V models evaluated fail to recognize harmful queries and often generate harmful videos, while exhibiting higher levels of unfairness compared to image modality models. In V2T models, unfairness and privacy risks rise with scale, whereas hallucination and adversarial robustness improve -- though overall performance remains low. Uniquely, safety shows no correlation with model size, implying that factors other than scale govern current safety levels. Our findings highlight the urgent need for developing more robust and trustworthy video foundation models, and VMDT provides a systematic framework for measuring and tracking progress toward this goal. The code is available at https://sunblaze-ucb.github.io/VMDT-page/.
Authors:Yaosen Chen, Wei Wang, Tianheng Zheng, Xuming Wen, Han Yang, Yanru Zhang
Abstract:
Shot assembly is a crucial step in film production and video editing, involving the sequencing and arrangement of shots to construct a narrative, convey information, or evoke emotions. Traditionally, this process has been manually executed by experienced editors. While current intelligent video editing technologies can handle some automated video editing tasks, they often fail to capture the creator's unique artistic expression in shot assembly. To address this challenge, we propose an energy-based optimization method for video shot assembly. Specifically, we first perform visual-semantic matching between the script generated by a large language model and a video library to obtain subsets of candidate shots aligned with the script semantics. Next, we segment and label the shots from reference videos, extracting attributes such as shot size, camera motion, and semantics. We then employ energy-based models to learn from these attributes, scoring candidate shot sequences based on their alignment with reference styles. Finally, we achieve shot assembly optimization by combining multiple syntax rules, producing videos that align with the assembly style of the reference videos. Our method not only automates the arrangement and combination of independent shots according to specific logic, narrative requirements, or artistic styles but also learns the assembly style of reference videos, creating a coherent visual sequence or holistic visual expression. With our system, even users with no prior video editing experience can create visually compelling videos. Project page: https://sobeymil.github.io/esa.com
Authors:Huanlin Gao, Ping Chen, Fuyuan Shi, Chao Tan, Zhaoxiang Liu, Fang Zhao, Kai Wang, Shiguo Lian
Abstract:
We present LeMiCa, a training-free and efficient acceleration framework for diffusion-based video generation. While existing caching strategies primarily focus on reducing local heuristic errors, they often overlook the accumulation of global errors, leading to noticeable content degradation between accelerated and original videos. To address this issue, we formulate cache scheduling as a directed graph with error-weighted edges and introduce a Lexicographic Minimax Path Optimization strategy that explicitly bounds the worst-case path error. This approach substantially improves the consistency of global content and style across generated frames. Extensive experiments on multiple text-to-video benchmarks demonstrate that LeMiCa delivers dual improvements in both inference speed and generation quality. Notably, our method achieves a 2.9x speedup on the Latte model and reaches an LPIPS score of 0.05 on Open-Sora, outperforming prior caching techniques. Importantly, these gains come with minimal perceptual quality degradation, making LeMiCa a robust and generalizable paradigm for accelerating diffusion-based video generation. We believe this approach can serve as a strong foundation for future research on efficient and reliable video synthesis. Our code is available at :https://github.com/UnicomAI/LeMiCa
Authors:NVIDIA, :, Arslan Ali, Junjie Bai, Maciej Bala, Yogesh Balaji, Aaron Blakeman, Tiffany Cai, Jiaxin Cao, Tianshi Cao, Elizabeth Cha, Yu-Wei Chao, Prithvijit Chattopadhyay, Mike Chen, Yongxin Chen, Yu Chen, Shuai Cheng, Yin Cui, Jenna Diamond, Yifan Ding, Jiaojiao Fan, Linxi Fan, Liang Feng, Francesco Ferroni, Sanja Fidler, Xiao Fu, Ruiyuan Gao, Yunhao Ge, Jinwei Gu, Aryaman Gupta, Siddharth Gururani, Imad El Hanafi, Ali Hassani, Zekun Hao, Jacob Huffman, Joel Jang, Pooya Jannaty, Jan Kautz, Grace Lam, Xuan Li, Zhaoshuo Li, Maosheng Liao, Chen-Hsuan Lin, Tsung-Yi Lin, Yen-Chen Lin, Huan Ling, Ming-Yu Liu, Xian Liu, Yifan Lu, Alice Luo, Qianli Ma, Hanzi Mao, Kaichun Mo, Seungjun Nah, Yashraj Narang, Abhijeet Panaskar, Lindsey Pavao, Trung Pham, Morteza Ramezanali, Fitsum Reda, Scott Reed, Xuanchi Ren, Haonan Shao, Yue Shen, Stella Shi, Shuran Song, Bartosz Stefaniak, Shangkun Sun, Shitao Tang, Sameena Tasmeen, Lyne Tchapmi, Wei-Cheng Tseng, Jibin Varghese, Andrew Z. Wang, Hao Wang, Haoxiang Wang, Heng Wang, Ting-Chun Wang, Fangyin Wei, Jiashu Xu, Dinghao Yang, Xiaodong Yang, Haotian Ye, Seonghyeon Ye, Xiaohui Zeng, Jing Zhang, Qinsheng Zhang, Kaiwen Zheng, Andrew Zhu, Yuke Zhu
Abstract:
We introduce [Cosmos-Predict2.5], the latest generation of the Cosmos World Foundation Models for Physical AI. Built on a flow-based architecture, [Cosmos-Predict2.5] unifies Text2World, Image2World, and Video2World generation in a single model and leverages [Cosmos-Reason1], a Physical AI vision-language model, to provide richer text grounding and finer control of world simulation. Trained on 200M curated video clips and refined with reinforcement learning-based post-training, [Cosmos-Predict2.5] achieves substantial improvements over [Cosmos-Predict1] in video quality and instruction alignment, with models released at 2B and 14B scales. These capabilities enable more reliable synthetic data generation, policy evaluation, and closed-loop simulation for robotics and autonomous systems. We further extend the family with [Cosmos-Transfer2.5], a control-net style framework for Sim2Real and Real2Real world translation. Despite being 3.5$\times$ smaller than [Cosmos-Transfer1], it delivers higher fidelity and robust long-horizon video generation. Together, these advances establish [Cosmos-Predict2.5] and [Cosmos-Transfer2.5] as versatile tools for scaling embodied intelligence. To accelerate research and deployment in Physical AI, we release source code, pretrained checkpoints, and curated benchmarks under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-predict2.5 and https://github.com/nvidia-cosmos/cosmos-transfer2.5. We hope these open resources lower the barrier to adoption and foster innovation in building the next generation of embodied intelligence.
Authors:Baolu Li, Yiming Zhang, Qinghe Wang, Liqian Ma, Xiaoyu Shi, Xintao Wang, Pengfei Wan, Zhenfei Yin, Yunzhi Zhuge, Huchuan Lu, Xu Jia
Abstract:
Visual effects (VFX) are crucial to the expressive power of digital media, yet their creation remains a major challenge for generative AI. Prevailing methods often rely on the one-LoRA-per-effect paradigm, which is resource-intensive and fundamentally incapable of generalizing to unseen effects, thus limiting scalability and creation. To address this challenge, we introduce VFXMaster, the first unified, reference-based framework for VFX video generation. It recasts effect generation as an in-context learning task, enabling it to reproduce diverse dynamic effects from a reference video onto target content. In addition, it demonstrates remarkable generalization to unseen effect categories. Specifically, we design an in-context conditioning strategy that prompts the model with a reference example. An in-context attention mask is designed to precisely decouple and inject the essential effect attributes, allowing a single unified model to master the effect imitation without information leakage. In addition, we propose an efficient one-shot effect adaptation mechanism to boost generalization capability on tough unseen effects from a single user-provided video rapidly. Extensive experiments demonstrate that our method effectively imitates various categories of effect information and exhibits outstanding generalization to out-of-domain effects. To foster future research, we will release our code, models, and a comprehensive dataset to the community.
Authors:Qiucheng Wu, Handong Zhao, Zhixin Shu, Jing Shi, Yang Zhang, Shiyu Chang
Abstract:
Although recent text-to-video generative models are getting more capable of following external camera controls, imposed by either text descriptions or camera trajectories, they still struggle to generalize to unconventional camera motions, which is crucial in creating truly original and artistic videos. The challenge lies in the difficulty of finding sufficient training videos with the intended uncommon camera motions. To address this challenge, we propose VividCam, a training paradigm that enables diffusion models to learn complex camera motions from synthetic videos, releasing the reliance on collecting realistic training videos. VividCam incorporates multiple disentanglement strategies that isolates camera motion learning from synthetic appearance artifacts, ensuring more robust motion representation and mitigating domain shift. We demonstrate that our design synthesizes a wide range of precisely controlled and complex camera motions using surprisingly simple synthetic data. Notably, this synthetic data often consists of basic geometries within a low-poly 3D scene and can be efficiently rendered by engines like Unity. Our video results can be found in https://wuqiuche.github.io/VividCamDemoPage/ .
Authors:Chonghyuk Song, Michal Stary, Boyuan Chen, George Kopanas, Vincent Sitzmann
Abstract:
Autoregressive video diffusion models are capable of long rollouts that are stable and consistent with history, but they are unable to guide the current generation with conditioning from the future. In camera-guided video generation with a predefined camera trajectory, this limitation leads to collisions with the generated scene, after which autoregression quickly collapses. To address this, we propose Generative View Stitching (GVS), which samples the entire sequence in parallel such that the generated scene is faithful to every part of the predefined camera trajectory. Our main contribution is a sampling algorithm that extends prior work on diffusion stitching for robot planning to video generation. While such stitching methods usually require a specially trained model, GVS is compatible with any off-the-shelf video model trained with Diffusion Forcing, a prevalent sequence diffusion framework that we show already provides the affordances necessary for stitching. We then introduce Omni Guidance, a technique that enhances the temporal consistency in stitching by conditioning on both the past and future, and that enables our proposed loop-closing mechanism for delivering long-range coherence. Overall, GVS achieves camera-guided video generation that is stable, collision-free, frame-to-frame consistent, and closes loops for a variety of predefined camera paths, including Oscar Reutersvärd's Impossible Staircase. Results are best viewed as videos at https://andrewsonga.github.io/gvs.
Authors:Haoge Deng, Ting Pan, Fan Zhang, Yang Liu, Zhuoyan Luo, Yufeng Cui, Wenxuan Wang, Chunhua Shen, Shiguang Shan, Zhaoxiang Zhang, Xinlong Wang
Abstract:
Continuous-space video generation has advanced rapidly, while discrete approaches lag behind due to error accumulation and long-context inconsistency. In this work, we revisit discrete generative modeling and present Uniform discRete diffuSion with metric pAth (URSA), a simple yet powerful framework that bridges the gap with continuous approaches for the scalable video generation. At its core, URSA formulates the video generation task as an iterative global refinement of discrete spatiotemporal tokens. It integrates two key designs: a Linearized Metric Path and a Resolution-dependent Timestep Shifting mechanism. These designs enable URSA to scale efficiently to high-resolution image synthesis and long-duration video generation, while requiring significantly fewer inference steps. Additionally, we introduce an asynchronous temporal fine-tuning strategy that unifies versatile tasks within a single model, including interpolation and image-to-video generation. Extensive experiments on challenging video and image generation benchmarks demonstrate that URSA consistently outperforms existing discrete methods and achieves performance comparable to state-of-the-art continuous diffusion methods. Code and models are available at https://github.com/baaivision/URSA
Authors:Yang Du, Zhuoran Lin, Kaiqiang Song, Biao Wang, Zhicheng Zheng, Tiezheng Ge, Bo Zheng, Qin Jin
Abstract:
Recent advances in text-to-video (T2V) generation highlight the critical role of high-quality video-text pairs in training models capable of producing coherent and instruction-aligned videos. However, strategies for optimizing video captions specifically for T2V training remain underexplored. In this paper, we introduce VC4VG (Video Captioning for Video Generation), a comprehensive caption optimization framework tailored to the needs of T2V models.We begin by analyzing caption content from a T2V perspective, decomposing the essential elements required for video reconstruction into multiple dimensions, and proposing a principled caption design methodology. To support evaluation, we construct VC4VG-Bench, a new benchmark featuring fine-grained, multi-dimensional, and necessity-graded metrics aligned with T2V-specific requirements.Extensive T2V fine-tuning experiments demonstrate a strong correlation between improved caption quality and video generation performance, validating the effectiveness of our approach. We release all benchmark tools and code at https://github.com/qyr0403/VC4VG to support further research.
Authors:Youcan Xu, Zhen Wang, Jiaxin Shi, Kexin Li, Feifei Shao, Jun Xiao, Yi Yang, Jun Yu, Long Chen
Abstract:
While recent text-to-video models excel at generating diverse scenes, they struggle with precise motion control, particularly for complex, multi-subject motions. Although methods for single-motion customization have been developed to address this gap, they fail in compositional scenarios due to two primary challenges: motion-appearance entanglement and ineffective multi-motion blending. This paper introduces CoMo, a novel framework for $\textbf{compositional motion customization}$ in text-to-video generation, enabling the synthesis of multiple, distinct motions within a single video. CoMo addresses these issues through a two-phase approach. First, in the single-motion learning phase, a static-dynamic decoupled tuning paradigm disentangles motion from appearance to learn a motion-specific module. Second, in the multi-motion composition phase, a plug-and-play divide-and-merge strategy composes these learned motions without additional training by spatially isolating their influence during the denoising process. To facilitate research in this new domain, we also introduce a new benchmark and a novel evaluation metric designed to assess multi-motion fidelity and blending. Extensive experiments demonstrate that CoMo achieves state-of-the-art performance, significantly advancing the capabilities of controllable video generation. Our project page is at https://como6.github.io/.
Authors:Bohan Li, Xin Jin, Hu Zhu, Hongsi Liu, Ruikai Li, Jiazhe Guo, Kaiwen Cai, Chao Ma, Yueming Jin, Hao Zhao, Xiaokang Yang, Wenjun Zeng
Abstract:
Driving scene generation is a critical domain for autonomous driving, enabling downstream applications, including perception and planning evaluation. Occupancy-centric methods have recently achieved state-of-the-art results by offering consistent conditioning across frames and modalities; however, their performance heavily depends on annotated occupancy data, which still remains scarce. To overcome this limitation, we curate Nuplan-Occ, the largest semantic occupancy dataset to date, constructed from the widely used Nuplan benchmark. Its scale and diversity facilitate not only large-scale generative modeling but also autonomous driving downstream applications. Based on this dataset, we develop a unified framework that jointly synthesizes high-quality semantic occupancy, multi-view videos, and LiDAR point clouds. Our approach incorporates a spatio-temporal disentangled architecture to support high-fidelity spatial expansion and temporal forecasting of 4D dynamic occupancy. To bridge modal gaps, we further propose two novel techniques: a Gaussian splatting-based sparse point map rendering strategy that enhances multi-view video generation, and a sensor-aware embedding strategy that explicitly models LiDAR sensor properties for realistic multi-LiDAR simulation. Extensive experiments demonstrate that our method achieves superior generation fidelity and scalability compared to existing approaches, and validates its practical value in downstream tasks. Repo: https://github.com/Arlo0o/UniScene-Unified-Occupancy-centric-Driving-Scene-Generation/tree/v2
Authors:Han Yan, Xibin Song, Yifu Wang, Hongdong Li, Pan Ji, Chao Ma
Abstract:
Diffusion Transformers (DiTs) have recently driven significant progress in text-to-video (T2V) generation. However, generating multiple videos with consistent characters and backgrounds remains a significant challenge. Existing methods typically rely on reference images or extensive training, and often only address character consistency, leaving background consistency to image-to-video models. We introduce BachVid, the first training-free method that achieves consistent video generation without needing any reference images. Our approach is based on a systematic analysis of DiT's attention mechanism and intermediate features, revealing its ability to extract foreground masks and identify matching points during the denoising process. Our method leverages this finding by first generating an identity video and caching the intermediate variables, and then inject these cached variables into corresponding positions in newly generated videos, ensuring both foreground and background consistency across multiple videos. Experimental results demonstrate that BachVid achieves robust consistency in generated videos without requiring additional training, offering a novel and efficient solution for consistent video generation without relying on reference images or additional training.
Authors:Yuxuan Bian, Xin Chen, Zenan Li, Tiancheng Zhi, Shen Sang, Linjie Luo, Qiang Xu
Abstract:
Unified, generalizable semantic control in video generation remains a critical open challenge. Existing methods either introduce artifacts by enforcing inappropriate pixel-wise priors from structure-based controls, or rely on non-generalizable, condition-specific finetuning or task-specific architectures. We introduce Video-As-Prompt (VAP), a new paradigm that reframes this problem as in-context generation. VAP leverages a reference video as a direct semantic prompt, guiding a frozen Video Diffusion Transformer (DiT) via a plug-and-play Mixture-of-Transformers (MoT) expert. This architecture prevents catastrophic forgetting and is guided by a temporally biased position embedding that eliminates spurious mapping priors for robust context retrieval. To power this approach and catalyze future research, we built VAP-Data, the largest dataset for semantic-controlled video generation with over 100K paired videos across 100 semantic conditions. As a single unified model, VAP sets a new state-of-the-art for open-source methods, achieving a 38.7% user preference rate that rivals leading condition-specific commercial models. VAP's strong zero-shot generalization and support for various downstream applications mark a significant advance toward general-purpose, controllable video generation.
Authors:Yihao Meng, Hao Ouyang, Yue Yu, Qiuyu Wang, Wen Wang, Ka Leong Cheng, Hanlin Wang, Yixuan Li, Cheng Chen, Yanhong Zeng, Yujun Shen, Huamin Qu
Abstract:
State-of-the-art text-to-video models excel at generating isolated clips but fall short of creating the coherent, multi-shot narratives, which are the essence of storytelling. We bridge this "narrative gap" with HoloCine, a model that generates entire scenes holistically to ensure global consistency from the first shot to the last. Our architecture achieves precise directorial control through a Window Cross-Attention mechanism that localizes text prompts to specific shots, while a Sparse Inter-Shot Self-Attention pattern (dense within shots but sparse between them) ensures the efficiency required for minute-scale generation. Beyond setting a new state-of-the-art in narrative coherence, HoloCine develops remarkable emergent abilities: a persistent memory for characters and scenes, and an intuitive grasp of cinematic techniques. Our work marks a pivotal shift from clip synthesis towards automated filmmaking, making end-to-end cinematic creation a tangible future. Our code is available at: https://holo-cine.github.io/.
Authors:Bingjie Gao, Qianli Ma, Xiaoxue Wu, Shuai Yang, Guanzhou Lan, Haonan Zhao, Jiaxuan Chen, Qingyang Liu, Yu Qiao, Xinyuan Chen, Yaohui Wang, Li Niu
Abstract:
Prompt design plays a crucial role in text-to-video (T2V) generation, yet user-provided prompts are often short, unstructured, and misaligned with training data, limiting the generative potential of diffusion-based T2V models. We present \textbf{RAPO++}, a cross-stage prompt optimization framework that unifies training-data--aligned refinement, test-time iterative scaling, and large language model (LLM) fine-tuning to substantially improve T2V generation without modifying the underlying generative backbone. In \textbf{Stage 1}, Retrieval-Augmented Prompt Optimization (RAPO) enriches user prompts with semantically relevant modifiers retrieved from a relation graph and refactors them to match training distributions, enhancing compositionality and multi-object fidelity. \textbf{Stage 2} introduces Sample-Specific Prompt Optimization (SSPO), a closed-loop mechanism that iteratively refines prompts using multi-source feedback -- including semantic alignment, spatial fidelity, temporal coherence, and task-specific signals such as optical flow -- yielding progressively improved video generation quality. \textbf{Stage 3} leverages optimized prompt pairs from SSPO to fine-tune the rewriter LLM, internalizing task-specific optimization patterns and enabling efficient, high-quality prompt generation even before inference. Extensive experiments across five state-of-the-art T2V models and five benchmarks demonstrate that RAPO++ achieves significant gains in semantic alignment, compositional reasoning, temporal stability, and physical plausibility, outperforming existing methods by large margins. Our results highlight RAPO++ as a model-agnostic, cost-efficient, and scalable solution that sets a new standard for prompt optimization in T2V generation. The code is available at https://github.com/Vchitect/RAPO.
Authors:Kai Zeng, Zhanqian Wu, Kaixin Xiong, Xiaobao Wei, Xiangyu Guo, Zhenxin Zhu, Kalok Ho, Lijun Zhou, Bohan Zeng, Ming Lu, Haiyang Sun, Bing Wang, Guang Chen, Hangjun Ye, Wentao Zhang
Abstract:
Recent advancements in driving world models enable controllable generation of high-quality RGB videos or multimodal videos. Existing methods primarily focus on metrics related to generation quality and controllability. However, they often overlook the evaluation of downstream perception tasks, which are $\mathbf{really\ crucial}$ for the performance of autonomous driving. Existing methods usually leverage a training strategy that first pretrains on synthetic data and finetunes on real data, resulting in twice the epochs compared to the baseline (real data only). When we double the epochs in the baseline, the benefit of synthetic data becomes negligible. To thoroughly demonstrate the benefit of synthetic data, we introduce Dream4Drive, a novel synthetic data generation framework designed for enhancing the downstream perception tasks. Dream4Drive first decomposes the input video into several 3D-aware guidance maps and subsequently renders the 3D assets onto these guidance maps. Finally, the driving world model is fine-tuned to produce the edited, multi-view photorealistic videos, which can be used to train the downstream perception models. Dream4Drive enables unprecedented flexibility in generating multi-view corner cases at scale, significantly boosting corner case perception in autonomous driving. To facilitate future research, we also contribute a large-scale 3D asset dataset named DriveObj3D, covering the typical categories in driving scenarios and enabling diverse 3D-aware video editing. We conduct comprehensive experiments to show that Dream4Drive can effectively boost the performance of downstream perception models under various training epochs. Page: https://wm-research.github.io/Dream4Drive/ GitHub Link: https://github.com/wm-research/Dream4Drive
Authors:Bohan Li, Zhuang Ma, Dalong Du, Baorui Peng, Zhujin Liang, Zhenqiang Liu, Chao Ma, Yueming Jin, Hao Zhao, Wenjun Zeng, Xin Jin
Abstract:
Autonomous driving world models are expected to work effectively across three core dimensions: state, action, and reward. Existing models, however, are typically restricted to limited state modalities, short video sequences, imprecise action control, and a lack of reward awareness. In this paper, we introduce OmniNWM, an omniscient panoramic navigation world model that addresses all three dimensions within a unified framework. For state, OmniNWM jointly generates panoramic videos of RGB, semantics, metric depth, and 3D occupancy. A flexible forcing strategy enables high-quality long-horizon auto-regressive generation. For action, we introduce a normalized panoramic Plucker ray-map representation that encodes input trajectories into pixel-level signals, enabling highly precise and generalizable control over panoramic video generation. Regarding reward, we move beyond learning reward functions with external image-based models: instead, we leverage the generated 3D occupancy to directly define rule-based dense rewards for driving compliance and safety. Extensive experiments demonstrate that OmniNWM achieves state-of-the-art performance in video generation, control accuracy, and long-horizon stability, while providing a reliable closed-loop evaluation framework through occupancy-grounded rewards. Project page is available at https://arlo0o.github.io/OmniNWM/.
Authors:Yongshun Zhang, Zhongyi Fan, Yonghang Zhang, Zhangzikang Li, Weifeng Chen, Zhongwei Feng, Chaoyue Wang, Peng Hou, Anxiang Zeng
Abstract:
In recent years, large-scale generative models for visual content (\textit{e.g.,} images, videos, and 3D objects/scenes) have made remarkable progress. However, training large-scale video generation models remains particularly challenging and resource-intensive due to cross-modal text-video alignment, the long sequences involved, and the complex spatiotemporal dependencies. To address these challenges, we present a training framework that optimizes four pillars: (i) data processing, (ii) model architecture, (iii) training strategy, and (iv) infrastructure for large-scale video generation models. These optimizations delivered significant efficiency gains and performance improvements across all stages of data preprocessing, video compression, parameter scaling, curriculum-based pretraining, and alignment-focused post-training. Our resulting model, MUG-V 10B, matches recent state-of-the-art video generators overall and, on e-commerce-oriented video generation tasks, surpasses leading open-source baselines in human evaluations. More importantly, we open-source the complete stack, including model weights, Megatron-Core-based large-scale training code, and inference pipelines for video generation and enhancement. To our knowledge, this is the first public release of large-scale video generation training code that exploits Megatron-Core to achieve high training efficiency and near-linear multi-node scaling, details are available in \href{https://github.com/Shopee-MUG/MUG-V}{our webpage}.
Authors:Qingyan Bai, Qiuyu Wang, Hao Ouyang, Yue Yu, Hanlin Wang, Wen Wang, Ka Leong Cheng, Shuailei Ma, Yanhong Zeng, Zichen Liu, Yinghao Xu, Yujun Shen, Qifeng Chen
Abstract:
Instruction-based video editing promises to democratize content creation, yet its progress is severely hampered by the scarcity of large-scale, high-quality training data. We introduce Ditto, a holistic framework designed to tackle this fundamental challenge. At its heart, Ditto features a novel data generation pipeline that fuses the creative diversity of a leading image editor with an in-context video generator, overcoming the limited scope of existing models. To make this process viable, our framework resolves the prohibitive cost-quality trade-off by employing an efficient, distilled model architecture augmented by a temporal enhancer, which simultaneously reduces computational overhead and improves temporal coherence. Finally, to achieve full scalability, this entire pipeline is driven by an intelligent agent that crafts diverse instructions and rigorously filters the output, ensuring quality control at scale. Using this framework, we invested over 12,000 GPU-days to build Ditto-1M, a new dataset of one million high-fidelity video editing examples. We trained our model, Editto, on Ditto-1M with a curriculum learning strategy. The results demonstrate superior instruction-following ability and establish a new state-of-the-art in instruction-based video editing.
Authors:JoungBin Lee, Jaewoo Jung, Jisang Han, Takuya Narihira, Kazumi Fukuda, Junyoung Seo, Sunghwan Hong, Yuki Mitsufuji, Seungryong Kim
Abstract:
We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditioning that reformulates context-view referencing across the input video. Our approach conditions on both temporally adjacent frames for motion continuity and spatially adjacent content for scene consistency. However, when generating beyond temporal boundaries, directly using spatially adjacent frames would incorrectly preserve dynamic elements from the past. We address this by introducing a 3D scene memory that represents exclusively the static geometry extracted from the entire input video. To construct this memory, we leverage dynamic SLAM with our newly introduced dynamic masking strategy that explicitly separates static scene geometry from moving elements. The static scene representation can then be projected to any target viewpoint, providing geometrically consistent warped views that serve as strong 3D spatial prompts while allowing dynamic regions to evolve naturally from temporal context. This enables our model to maintain long-range spatial coherence and precise camera control without sacrificing computational efficiency or motion realism. Extensive experiments demonstrate that our framework significantly outperforms existing methods in scene consistency, camera controllability, and generation quality. Project page : https://cvlab-kaist.github.io/3DScenePrompt/
Authors:Zhifei Chen, Tianshuo Xu, Leyi Wu, Luozhou Wang, Dongyu Yan, Zihan You, Wenting Luo, Guo Zhang, Yingcong Chen
Abstract:
Video generation has recently made striking visual progress, but maintaining coherent object motion and interactions remains difficult. We trace two practical bottlenecks: (i) human-provided motion hints (e.g., small 2D maps) often collapse to too few effective tokens after encoding, weakening guidance; and (ii) optimizing for appearance and motion in a single head can favor texture over temporal consistency. We present STANCE, an image-to-video framework that addresses both issues with two simple components. First, we introduce Instance Cues -- a pixel-aligned control signal that turns sparse, user-editable hints into a dense 2.5D (camera-relative) motion field by averaging per-instance flow and augmenting with monocular depth over the instance mask. This reduces depth ambiguity compared to 2D arrow inputs while remaining easy to use. Second, we preserve the salience of these cues in token space with Dense RoPE, which tags a small set of motion tokens (anchored on the first frame) with spatial-addressable rotary embeddings. Paired with joint RGB \(+\) auxiliary-map prediction (segmentation or depth), our model anchors structure while RGB handles appearance, stabilizing optimization and improving temporal coherence without requiring per-frame trajectory scripts.
Authors:Liao Shen, Wentao Jiang, Yiran Zhu, Tiezheng Ge, Zhiguo Cao, Bo Zheng
Abstract:
Recent advances in image-to-video (I2V) generation have achieved remarkable progress in synthesizing high-quality, temporally coherent videos from static images. Among all the applications of I2V, human-centric video generation includes a large portion. However, existing I2V models encounter difficulties in maintaining identity consistency between the input human image and the generated video, especially when the person in the video exhibits significant expression changes and movements. This issue becomes critical when the human face occupies merely a small fraction of the image. Since humans are highly sensitive to identity variations, this poses a critical yet under-explored challenge in I2V generation. In this paper, we propose Identity-Preserving Reward-guided Optimization (IPRO), a novel video diffusion framework based on reinforcement learning to enhance identity preservation. Instead of introducing auxiliary modules or altering model architectures, our approach introduces a direct and effective tuning algorithm that optimizes diffusion models using a face identity scorer. To improve performance and accelerate convergence, our method backpropagates the reward signal through the last steps of the sampling chain, enabling richer gradient feedback. We also propose a novel facial scoring mechanism that treats faces in ground-truth videos as facial feature pools, providing multi-angle facial information to enhance generalization. A KL-divergence regularization is further incorporated to stabilize training and prevent overfitting to the reward signal. Extensive experiments on Wan 2.2 I2V model and our in-house I2V model demonstrate the effectiveness of our method. Our project and code are available at \href{https://ipro-alimama.github.io/}{https://ipro-alimama.github.io/}.
Authors:Yuancheng Xu, Wenqi Xian, Li Ma, Julien Philip, Ahmet Levent Taşel, Yiwei Zhao, Ryan Burgert, Mingming He, Oliver Hermann, Oliver Pilarski, Rahul Garg, Paul Debevec, Ning Yu
Abstract:
We introduce a framework that enables both multi-view character consistency and 3D camera control in video diffusion models through a novel customization data pipeline. We train the character consistency component with recorded volumetric capture performances re-rendered with diverse camera trajectories via 4D Gaussian Splatting (4DGS), lighting variability obtained with a video relighting model. We fine-tune state-of-the-art open-source video diffusion models on this data to provide strong multi-view identity preservation, precise camera control, and lighting adaptability. Our framework also supports core capabilities for virtual production, including multi-subject generation using two approaches: joint training and noise blending, the latter enabling efficient composition of independently customized models at inference time; it also achieves scene and real-life video customization as well as control over motion and spatial layout during customization. Extensive experiments show improved video quality, higher personalization accuracy, and enhanced camera control and lighting adaptability, advancing the integration of video generation into virtual production. Our project page is available at: https://eyeline-labs.github.io/Virtually-Being.
Authors:Sihui Ji, Xi Chen, Xin Tao, Pengfei Wan, Hengshuang Zhao
Abstract:
Video generation models nowadays are capable of generating visually realistic videos, but often fail to adhere to physical laws, limiting their ability to generate physically plausible videos and serve as ''world models''. To address this issue, we propose PhysMaster, which captures physical knowledge as a representation for guiding video generation models to enhance their physics-awareness. Specifically, PhysMaster is based on the image-to-video task where the model is expected to predict physically plausible dynamics from the input image. Since the input image provides physical priors like relative positions and potential interactions of objects in the scenario, we devise PhysEncoder to encode physical information from it as an extra condition to inject physical knowledge into the video generation process. The lack of proper supervision on the model's physical performance beyond mere appearance motivates PhysEncoder to apply reinforcement learning with human feedback to physical representation learning, which leverages feedback from generation models to optimize physical representations with Direct Preference Optimization (DPO) in an end-to-end manner. PhysMaster provides a feasible solution for improving physics-awareness of PhysEncoder and thus of video generation, proving its ability on a simple proxy task and generalizability to wide-ranging physical scenarios. This implies that our PhysMaster, which unifies solutions for various physical processes via representation learning in the reinforcement learning paradigm, can act as a generic and plug-in solution for physics-aware video generation and broader applications.
Authors:Minjung Shin, Hyunin Cho, Sooyeon Go, Jin-Hwa Kim, Youngjung Uh
Abstract:
Multi-view generation with camera pose control and prompt-based customization are both essential elements for achieving controllable generative models. However, existing multi-view generation models do not support customization with geometric consistency, whereas customization models lack explicit viewpoint control, making them challenging to unify. Motivated by these gaps, we introduce a novel task, multi-view customization, which aims to jointly achieve multi-view camera pose control and customization. Due to the scarcity of training data in customization, existing multi-view generation models, which inherently rely on large-scale datasets, struggle to generalize to diverse prompts. To address this, we propose MVCustom, a novel diffusion-based framework explicitly designed to achieve both multi-view consistency and customization fidelity. In the training stage, MVCustom learns the subject's identity and geometry using a feature-field representation, incorporating the text-to-video diffusion backbone enhanced with dense spatio-temporal attention, which leverages temporal coherence for multi-view consistency. In the inference stage, we introduce two novel techniques: depth-aware feature rendering explicitly enforces geometric consistency, and consistent-aware latent completion ensures accurate perspective alignment of the customized subject and surrounding backgrounds. Extensive experiments demonstrate that MVCustom is the only framework that simultaneously achieves faithful multi-view generation and customization.
Authors:Huaizhi Qu, Ruichen Zhang, Shuqing Luo, Luchao Qi, Zhihao Zhang, Xiaoming Liu, Roni Sengupta, Tianlong Chen
Abstract:
Recent advances in foundation models have driven remarkable progress in image editing, yet their extension to 3D editing remains underexplored. A natural approach is to replace the image editing modules in existing workflows with foundation models. However, their heavy computational demands and the restrictions and costs of closed-source APIs make plugging these models into existing iterative editing strategies impractical. To address this limitation, we propose EditCast3D, a pipeline that employs video generation foundation models to propagate edits from a single first frame across the entire dataset prior to reconstruction. While editing propagation enables dataset-level editing via video models, its consistency remains suboptimal for 3D reconstruction, where multi-view alignment is essential. To overcome this, EditCast3D introduces a view selection strategy that explicitly identifies consistent and reconstruction-friendly views and adopts feedforward reconstruction without requiring costly refinement. In combination, the pipeline both minimizes reliance on expensive image editing and mitigates prompt ambiguities that arise when applying foundation models independently across images. We evaluate EditCast3D on commonly used 3D editing datasets and compare it against state-of-the-art 3D editing baselines, demonstrating superior editing quality and high efficiency. These results establish EditCast3D as a scalable and general paradigm for integrating foundation models into 3D editing pipelines. The code is available at https://github.com/UNITES-Lab/EditCast3D
Authors:Hyojun Go, Dominik Narnhofer, Goutam Bhat, Prune Truong, Federico Tombari, Konrad Schindler
Abstract:
The rapid progress of large, pretrained models for both visual content generation and 3D reconstruction opens up new possibilities for text-to-3D generation. Intuitively, one could obtain a formidable 3D scene generator if one were able to combine the power of a modern latent text-to-video model as "generator" with the geometric abilities of a recent (feedforward) 3D reconstruction system as "decoder". We introduce VIST3A, a general framework that does just that, addressing two main challenges. First, the two components must be joined in a way that preserves the rich knowledge encoded in their weights. We revisit model stitching, i.e., we identify the layer in the 3D decoder that best matches the latent representation produced by the text-to-video generator and stitch the two parts together. That operation requires only a small dataset and no labels. Second, the text-to-video generator must be aligned with the stitched 3D decoder, to ensure that the generated latents are decodable into consistent, perceptually convincing 3D scene geometry. To that end, we adapt direct reward finetuning, a popular technique for human preference alignment. We evaluate the proposed VIST3A approach with different video generators and 3D reconstruction models. All tested pairings markedly improve over prior text-to-3D models that output Gaussian splats. Moreover, by choosing a suitable 3D base model, VIST3A also enables high-quality text-to-pointmap generation.
Authors:Zhengxu Tang, Zizheng Wang, Luning Wang, Zitao Shuai, Chenhao Zhang, Siyu Qian, Yirui Wu, Bohao Wang, Haosong Rao, Zhenyu Yang, Chenwei Wu
Abstract:
Text-to-video (T2V) generation models have made significant progress in creating visually appealing videos. However, they struggle with generating coherent sequential narratives that require logical progression through multiple events. Existing T2V benchmarks primarily focus on visual quality metrics but fail to evaluate narrative coherence over extended sequences. To bridge this gap, we present SeqBench, a comprehensive benchmark for evaluating sequential narrative coherence in T2V generation. SeqBench includes a carefully designed dataset of 320 prompts spanning various narrative complexities, with 2,560 human-annotated videos generated from 8 state-of-the-art T2V models. Additionally, we design a Dynamic Temporal Graphs (DTG)-based automatic evaluation metric, which can efficiently capture long-range dependencies and temporal ordering while maintaining computational efficiency. Our DTG-based metric demonstrates a strong correlation with human annotations. Through systematic evaluation using SeqBench, we reveal critical limitations in current T2V models: failure to maintain consistent object states across multi-action sequences, physically implausible results in multi-object scenarios, and difficulties in preserving realistic timing and ordering relationships between sequential actions. SeqBench provides the first systematic framework for evaluating narrative coherence in T2V generation and offers concrete insights for improving sequential reasoning capabilities in future models. Please refer to https://videobench.github.io/SeqBench.github.io/ for more details.
Authors:Jianfeng Dong, Lei Huang, Daizong Liu, Xianke Chen, Xun Yang, Changting Lin, Xun Wang, Meng Wang
Abstract:
Almost all previous text-to-video retrieval works ideally assume that videos are pre-trimmed with short durations containing solely text-related content. However, in practice, videos are typically untrimmed in long durations with much more complicated background content. Therefore, in this paper, we focus on the more practical yet challenging task of Partially Relevant Video Retrieval (PRVR), which aims to retrieve partially relevant untrimmed videos with the given query. To tackle this task, we propose a novel framework that distills generalization knowledge from a powerful large-scale vision-language pre-trained model and transfers it to a lightweight, task-specific PRVR network. Specifically, we introduce a Dual Learning framework with Dynamic Knowledge Distillation (DL-DKD++), where a large teacher model provides supervision to a compact dual-branch student network. The student model comprises two branches: an inheritance branch that absorbs transferable knowledge from the teacher, and an exploration branch that learns task-specific information from the PRVR dataset to address domain gaps. To further enhance learning, we incorporate a dynamic soft-target construction mechanism. By replacing rigid hard-target supervision with adaptive soft targets that evolve during training, our method enables the model to better capture the fine-grained, partial relevance between videos and queries. Experiment results demonstrate that our proposed model achieves state-of-the-art performance on TVR, ActivityNet, and Charades-STA datasets for PRVR. The code is available at https://github.com/HuiGuanLab/DL-DKD.
Authors:Sandeep Mishra, Oindrila Saha, Alan C. Bovik
Abstract:
Motion-preserved video editing is crucial for creators, particularly in scenarios that demand flexibility in both the structure and semantics of swapped objects. Despite its potential, this area remains underexplored. Existing diffusion-based editing methods excel in structure-preserving tasks, using dense guidance signals to ensure content integrity. While some recent methods attempt to address structure-variable editing, they often suffer from issues such as temporal inconsistency, subject identity drift, and the need for human intervention. To address these challenges, we introduce VidMP3, a novel approach that leverages pose and position priors to learn a generalized motion representation from source videos. Our method enables the generation of new videos that maintain the original motion while allowing for structural and semantic flexibility. Both qualitative and quantitative evaluations demonstrate the superiority of our approach over existing methods. The code will be made publicly available at https://github.com/sandeep-sm/VidMP3.
Authors:Yinan Chen, Jiangning Zhang, Teng Hu, Yuxiang Zeng, Zhucun Xue, Qingdong He, Chengjie Wang, Yong Liu, Xiaobin Hu, Shuicheng Yan
Abstract:
Instruction-guided video editing has emerged as a rapidly advancing research direction, offering new opportunities for intuitive content transformation while also posing significant challenges for systematic evaluation. Existing video editing benchmarks fail to support the evaluation of instruction-guided video editing adequately and further suffer from limited source diversity, narrow task coverage and incomplete evaluation metrics. To address the above limitations, we introduce IVEBench, a modern benchmark suite specifically designed for instruction-guided video editing assessment. IVEBench comprises a diverse database of 600 high-quality source videos, spanning seven semantic dimensions, and covering video lengths ranging from 32 to 1,024 frames. It further includes 8 categories of editing tasks with 35 subcategories, whose prompts are generated and refined through large language models and expert review. Crucially, IVEBench establishes a three-dimensional evaluation protocol encompassing video quality, instruction compliance and video fidelity, integrating both traditional metrics and multimodal large language model-based assessments. Extensive experiments demonstrate the effectiveness of IVEBench in benchmarking state-of-the-art instruction-guided video editing methods, showing its ability to provide comprehensive and human-aligned evaluation outcomes.
Authors:Wuyang Li, Wentao Pan, Po-Chien Luan, Yang Gao, Alexandre Alahi
Abstract:
We propose Stable Video Infinity (SVI) that is able to generate infinite-length videos with high temporal consistency, plausible scene transitions, and controllable streaming storylines. While existing long-video methods attempt to mitigate accumulated errors via handcrafted anti-drifting (e.g., modified noise scheduler, frame anchoring), they remain limited to single-prompt extrapolation, producing homogeneous scenes with repetitive motions. We identify that the fundamental challenge extends beyond error accumulation to a critical discrepancy between the training assumption (seeing clean data) and the test-time autoregressive reality (conditioning on self-generated, error-prone outputs). To bridge this hypothesis gap, SVI incorporates Error-Recycling Fine-Tuning, a new type of efficient training that recycles the Diffusion Transformer (DiT)'s self-generated errors into supervisory prompts, thereby encouraging DiT to actively identify and correct its own errors. This is achieved by injecting, collecting, and banking errors through closed-loop recycling, autoregressively learning from error-injected feedback. Specifically, we (i) inject historical errors made by DiT to intervene on clean inputs, simulating error-accumulated trajectories in flow matching; (ii) efficiently approximate predictions with one-step bidirectional integration and calculate errors with residuals; (iii) dynamically bank errors into replay memory across discretized timesteps, which are resampled for new input. SVI is able to scale videos from seconds to infinite durations with no additional inference cost, while remaining compatible with diverse conditions (e.g., audio, skeleton, and text streams). We evaluate SVI on three benchmarks, including consistent, creative, and conditional settings, thoroughly verifying its versatility and state-of-the-art role.
Authors:Rohan Choudhury, Shanchuan Lin, Jianyi Wang, Hao Chen, Qi Zhao, Feng Cheng, Lu Jiang, Kris Kitani, Laszlo A. Jeni
Abstract:
Diffusion-based super-resolution (SR) is a key component in video generation and video restoration, but is slow and expensive, limiting scalability to higher resolutions and longer videos. Our key insight is that many regions in video are inherently low-detail and gain little from refinement, yet current methods process all pixels uniformly. To take advantage of this, we propose SkipSR, a simple framework for accelerating video SR by identifying low-detail regions directly from low-resolution input, then skipping computation on them entirely, only super-resolving the areas that require refinement. This simple yet effective strategy preserves perceptual quality in both standard and one-step diffusion SR models while significantly reducing computation. In standard SR benchmarks, our method achieves up to 60% faster end-to-end latency than prior models on 720p videos with no perceptible loss in quality. Video demos are available at https://rccchoudhury.github.io/skipsr/
Authors:Maham Tanveer, Yang Zhou, Simon Niklaus, Ali Mahdavi Amiri, Hao Zhang, Krishna Kumar Singh, Nanxuan Zhao
Abstract:
Video inbetweening creates smooth and natural transitions between two image frames, making it an indispensable tool for video editing and long-form video synthesis. Existing works in this domain are unable to generate large, complex, or intricate motions. In particular, they cannot accommodate the versatility of user intents and generally lack fine control over the details of intermediate frames, leading to misalignment with the creative mind. To fill these gaps, we introduce \modelname{}, a video inbetweening framework that allows multi-modal controls, including depth transition and layering, motion trajectories, text prompts, and target regions for movement localization, while achieving a balance between flexibility, ease of use, and precision for fine-grained video interpolation. To achieve this, we adopt the Diffusion Transformer (DiT) architecture as our video generative model, due to its proven capability to generate high-quality long videos. To ensure compatibility between DiT and our multi-modal controls, we map all motion controls into a common sparse and user-friendly point-based representation as the video/noise input. Further, to respect the variety of controls which operate at varying levels of granularity and influence, we separate content controls and motion controls into two branches to encode the required features before guiding the denoising process, resulting in two generators, one for motion and the other for content. Finally, we propose a stage-wise training strategy to ensure that our model learns the multi-modal controls smoothly. Extensive qualitative and quantitative experiments demonstrate that multi-modal controls enable a more dynamic, customizable, and contextually accurate visual narrative.
Authors:Minghong Cai, Qiulin Wang, Zongli Ye, Wenze Liu, Quande Liu, Weicai Ye, Xintao Wang, Pengfei Wan, Kun Gai, Xiangyu Yue
Abstract:
We introduce the task of arbitrary spatio-temporal video completion, where a video is generated from arbitrary, user-specified patches placed at any spatial location and timestamp, akin to painting on a video canvas. This flexible formulation naturally unifies many existing controllable video generation tasks--including first-frame image-to-video, inpainting, extension, and interpolation--under a single, cohesive paradigm. Realizing this vision, however, faces a fundamental obstacle in modern latent video diffusion models: the temporal ambiguity introduced by causal VAEs, where multiple pixel frames are compressed into a single latent representation, making precise frame-level conditioning structurally difficult. We address this challenge with VideoCanvas, a novel framework that adapts the In-Context Conditioning (ICC) paradigm to this fine-grained control task with zero new parameters. We propose a hybrid conditioning strategy that decouples spatial and temporal control: spatial placement is handled via zero-padding, while temporal alignment is achieved through Temporal RoPE Interpolation, which assigns each condition a continuous fractional position within the latent sequence. This resolves the VAE's temporal ambiguity and enables pixel-frame-aware control on a frozen backbone. To evaluate this new capability, we develop VideoCanvasBench, the first benchmark for arbitrary spatio-temporal video completion, covering both intra-scene fidelity and inter-scene creativity. Experiments demonstrate that VideoCanvas significantly outperforms existing conditioning paradigms, establishing a new state of the art in flexible and unified video generation.
Authors:Zhitong Huang, Mohan Zhang, Renhan Wang, Rui Tang, Hao Zhu, Jing Liao
Abstract:
We present X2Video, the first diffusion model for rendering photorealistic videos guided by intrinsic channels including albedo, normal, roughness, metallicity, and irradiance, while supporting intuitive multi-modal controls with reference images and text prompts for both global and local regions. The intrinsic guidance allows accurate manipulation of color, material, geometry, and lighting, while reference images and text prompts provide intuitive adjustments in the absence of intrinsic information. To enable these functionalities, we extend the intrinsic-guided image generation model XRGB to video generation by employing a novel and efficient Hybrid Self-Attention, which ensures temporal consistency across video frames and also enhances fidelity to reference images. We further develop a Masked Cross-Attention to disentangle global and local text prompts, applying them effectively onto respective local and global regions. For generating long videos, our novel Recursive Sampling method incorporates progressive frame sampling, combining keyframe prediction and frame interpolation to maintain long-range temporal consistency while preventing error accumulation. To support the training of X2Video, we assembled a video dataset named InteriorVideo, featuring 1,154 rooms from 295 interior scenes, complete with reliable ground-truth intrinsic channel sequences and smooth camera trajectories. Both qualitative and quantitative evaluations demonstrate that X2Video can produce long, temporally consistent, and photorealistic videos guided by intrinsic conditions. Additionally, X2Video effectively accommodates multi-modal controls with reference images, global and local text prompts, and simultaneously supports editing on color, material, geometry, and lighting through parametric tuning. Project page: https://luckyhzt.github.io/x2video
Authors:Zhiyuan Zhang, Can Wang, Dongdong Chen, Jing Liao
Abstract:
We present FlexTraj, a framework for image-to-video generation with flexible point trajectory control. FlexTraj introduces a unified point-based motion representation that encodes each point with a segmentation ID, a temporally consistent trajectory ID, and an optional color channel for appearance cues, enabling both dense and sparse trajectory control. Instead of injecting trajectory conditions into the video generator through token concatenation or ControlNet, FlexTraj employs an efficient sequence-concatenation scheme that achieves faster convergence, stronger controllability, and more efficient inference, while maintaining robustness under unaligned conditions. To train such a unified point trajectory-controlled video generator, FlexTraj adopts an annealing training strategy that gradually reduces reliance on complete supervision and aligned condition. Experimental results demonstrate that FlexTraj enables multi-granularity, alignment-agnostic trajectory control for video generation, supporting various applications such as motion cloning, drag-based image-to-video, motion interpolation, camera redirection, flexible action control and mesh animations.
Authors:Cong Wei, Quande Liu, Zixuan Ye, Qiulin Wang, Xintao Wang, Pengfei Wan, Kun Gai, Wenhu Chen
Abstract:
Unified multimodal models have shown promising results in multimodal content generation and editing but remain largely limited to the image domain. In this work, we present UniVideo, a versatile framework that extends unified modeling to the video domain. UniVideo adopts a dual-stream design, combining a Multimodal Large Language Model (MLLM) for instruction understanding with a Multimodal DiT (MMDiT) for video generation. This design enables accurate interpretation of complex multimodal instructions while preserving visual consistency. Built on this architecture, UniVideo unifies diverse video generation and editing tasks under a single multimodal instruction paradigm and is jointly trained across them. Extensive experiments demonstrate that UniVideo matches or surpasses state-of-the-art task-specific baselines in text/image-to-video generation, in-context video generation and in-context video editing. Notably, the unified design of UniVideo enables two forms of generalization. First, UniVideo supports task composition, such as combining editing with style transfer, by integrating multiple capabilities within a single instruction. Second, even without explicit training on free-form video editing, UniVideo transfers its editing capability from large-scale image editing data to this setting, handling unseen instructions such as green-screening characters or changing materials within a video. Beyond these core capabilities, UniVideo also supports visual-prompt-based video generation, where the MLLM interprets visual prompts and guides the MMDiT during synthesis. To foster future research, we will release our model and code.
Authors:Kesen Zhao, Jiaxin Shi, Beier Zhu, Junbao Zhou, Xiaolong Shen, Yuan Zhou, Qianru Sun, Hanwang Zhang
Abstract:
Real-time motion-controllable video generation remains challenging due to the inherent latency of bidirectional diffusion models and the lack of effective autoregressive (AR) approaches. Existing AR video diffusion models are limited to simple control signals or text-to-video generation, and often suffer from quality degradation and motion artifacts in few-step generation. To address these challenges, we propose AR-Drag, the first RL-enhanced few-step AR video diffusion model for real-time image-to-video generation with diverse motion control. We first fine-tune a base I2V model to support basic motion control, then further improve it via reinforcement learning with a trajectory-based reward model. Our design preserves the Markov property through a Self-Rollout mechanism and accelerates training by selectively introducing stochasticity in denoising steps. Extensive experiments demonstrate that AR-Drag achieves high visual fidelity and precise motion alignment, significantly reducing latency compared with state-of-the-art motion-controllable VDMs, while using only 1.3B parameters. Additional visualizations can be found on our project page: https://kesenzhao.github.io/AR-Drag.github.io/.
Authors:Nithin C. Babu, Aniruddha Mahapatra, Harsh Rangwani, Rajiv Soundararajan, Kuldeep Kulkarni
Abstract:
Existing text-to-video (T2V) evaluation benchmarks, such as VBench and EvalCrafter, suffer from two limitations. (i) While the emphasis is on subject-centric prompts or static camera scenes, camera motion essential for producing cinematic shots and existing metrics under dynamic motion are largely unexplored. (ii) These benchmarks typically aggregate video-level scores into a single model-level score for ranking generative models. Such aggregation, however, overlook video-level evaluation, which is vital to selecting the better video among the candidate videos generated for a given prompt. To address these gaps, we introduce DynamicEval, a benchmark consisting of systematically curated prompts emphasizing dynamic camera motion, paired with 45k human annotations on video pairs from 3k videos generated by ten T2V models. DynamicEval evaluates two key dimensions of video quality: background scene consistency and foreground object consistency. For background scene consistency, we obtain the interpretable error maps based on the Vbench motion smoothness metric. We observe that while the Vbench motion smoothness metric shows promising alignment with human judgments, it fails in two cases: occlusions/disocclusions arising from camera and foreground object movements. Building on this, we propose a new background consistency metric that leverages object error maps to correct two failure cases in a principled manner. Our second innovation is the introduction of a foreground consistency metric that tracks points and their neighbors within each object instance to assess object fidelity. Extensive experiments demonstrate that our proposed metrics achieve stronger correlations with human preferences at both the video level and the model level (an improvement of more than 2% points), establishing DynamicEval as a more comprehensive benchmark for evaluating T2V models under dynamic camera motion.
Authors:Siyoon Jin, Seongchan Kim, Dahyun Chung, Jaeho Lee, Hyunwook Choi, Jisu Nam, Jiyoung Kim, Seungryong Kim
Abstract:
Video DiTs have advanced video generation, yet they still struggle to model multi-instance or subject-object interactions. This raises a key question: How do these models internally represent interactions? To answer this, we curate MATRIX-11K, a video dataset with interaction-aware captions and multi-instance mask tracks. Using this dataset, we conduct a systematic analysis that formalizes two perspectives of video DiTs: semantic grounding, via video-to-text attention, which evaluates whether noun and verb tokens capture instances and their relations; and semantic propagation, via video-to-video attention, which assesses whether instance bindings persist across frames. We find both effects concentrate in a small subset of interaction-dominant layers. Motivated by this, we introduce MATRIX, a simple and effective regularization that aligns attention in specific layers of video DiTs with multi-instance mask tracks from the MATRIX-11K dataset, enhancing both grounding and propagation. We further propose InterGenEval, an evaluation protocol for interaction-aware video generation. In experiments, MATRIX improves both interaction fidelity and semantic alignment while reducing drift and hallucination. Extensive ablations validate our design choices. Codes and weights will be released.
Authors:Yang Xiao, Gen Li, Kaiyuan Deng, Yushu Wu, Zheng Zhan, Yanzhi Wang, Xiaolong Ma, Bo Hui
Abstract:
Training-free acceleration has emerged as an advanced research area in video generation based on diffusion models. The redundancy of latents in diffusion model inference provides a natural entry point for acceleration. In this paper, we decompose the inference process into the encoding, denoising, and decoding stages, and observe that cache-based acceleration methods often lead to substantial memory surges in the latter two stages. To address this problem, we analyze the characteristics of inference across different stages and propose stage-specific strategies for reducing memory consumption: 1) Asynchronous Cache Swapping. 2) Feature chunk. 3) Slicing latents to decode. At the same time, we ensure that the time overhead introduced by these three strategies remains lower than the acceleration gains themselves. Compared with the baseline, our approach achieves faster inference speed and lower memory usage, while maintaining quality degradation within an acceptable range. The Code is available at https://github.com/NKUShaw/LightCache .
Authors:Zeyu Zhu, Kevin Qinghong Lin, Mike Zheng Shou
Abstract:
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce Paper2Video, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.
Authors:Ziqi Huang, Ning Yu, Gordon Chen, Haonan Qiu, Paul Debevec, Ziwei Liu
Abstract:
Recent video generation models can produce smooth and visually appealing clips, but they often struggle to synthesize complex dynamics with a coherent chain of consequences. Accurately modeling visual outcomes and state transitions over time remains a core challenge. In contrast, large language and multimodal models (e.g., GPT-4o) exhibit strong visual state reasoning and future prediction capabilities. To bridge these strengths, we introduce VChain, a novel inference-time chain-of-visual-thought framework that injects visual reasoning signals from multimodal models into video generation. Specifically, VChain contains a dedicated pipeline that leverages large multimodal models to generate a sparse set of critical keyframes as snapshots, which are then used to guide the sparse inference-time tuning of a pre-trained video generator only at these key moments. Our approach is tuning-efficient, introduces minimal overhead and avoids dense supervision. Extensive experiments on complex, multi-step scenarios show that VChain significantly enhances the quality of generated videos.
Authors:Tingting Liao, Chongjian Ge, Guangyi Liu, Hao Li, Yi Zhou
Abstract:
Imagine Mr. Bean stepping into Tom and Jerry--can we generate videos where characters interact naturally across different worlds? We study inter-character interaction in text-to-video generation, where the key challenge is to preserve each character's identity and behaviors while enabling coherent cross-context interaction. This is difficult because characters may never have coexisted and because mixing styles often causes style delusion, where realistic characters appear cartoonish or vice versa. We introduce a framework that tackles these issues with Cross-Character Embedding (CCE), which learns identity and behavioral logic across multimodal sources, and Cross-Character Augmentation (CCA), which enriches training with synthetic co-existence and mixed-style data. Together, these techniques allow natural interactions between previously uncoexistent characters without losing stylistic fidelity. Experiments on a curated benchmark of cartoons and live-action series with 10 characters show clear improvements in identity preservation, interaction quality, and robustness to style delusion, enabling new forms of generative storytelling.Additional results and videos are available on our project page: https://tingtingliao.github.io/mimix/.
Authors:Xuehai He, Shijie Zhou, Thivyanth Venkateswaran, Kaizhi Zheng, Ziyu Wan, Achuta Kadambi, Xin Eric Wang
Abstract:
World models that support controllable and editable spatiotemporal environments are valuable for robotics, enabling scalable training data, repro ducible evaluation, and flexible task design. While recent text-to-video models generate realistic dynam ics, they are constrained to 2D views and offer limited interaction. We introduce MorphoSim, a language guided framework that generates 4D scenes with multi-view consistency and object-level controls. From natural language instructions, MorphoSim produces dynamic environments where objects can be directed, recolored, or removed, and scenes can be observed from arbitrary viewpoints. The framework integrates trajectory-guided generation with feature field dis tillation, allowing edits to be applied interactively without full re-generation. Experiments show that Mor phoSim maintains high scene fidelity while enabling controllability and editability. The code is available at https://github.com/eric-ai-lab/Morph4D.
Authors:Hyelin Nam, Hyojun Go, Byeongjun Park, Byung-Hoon Kim, Hyungjin Chung
Abstract:
Human video generation is becoming an increasingly important task with broad applications in graphics, entertainment, and embodied AI. Despite the rapid progress of video diffusion models (VDMs), their use for general-purpose human video generation remains underexplored, with most works constrained to image-to-video setups or narrow domains like dance videos. In this work, we propose CAMEO, a cascaded framework for general human motion video generation. It seamlessly bridges Text-to-Motion (T2M) models and conditional VDMs, mitigating suboptimal factors that may arise in this process across both training and inference through carefully designed components. Specifically, we analyze and prepare both textual prompts and visual conditions to effectively train the VDM, ensuring robust alignment between motion descriptions, conditioning signals, and the generated videos. Furthermore, we introduce a camera-aware conditioning module that connects the two stages, automatically selecting viewpoints aligned with the input text to enhance coherence and reduce manual intervention. We demonstrate the effectiveness of our approach on both the MovieGen benchmark and a newly introduced benchmark tailored to the T2M-VDM combination, while highlighting its versatility across diverse use cases.
Authors:Gen Li, Bo Zhao, Jianfei Yang, Laura Sevilla-Lara
Abstract:
Generating interaction-centric videos, such as those depicting humans or robots interacting with objects, is crucial for embodied intelligence, as they provide rich and diverse visual priors for robot learning, manipulation policy training, and affordance reasoning. However, existing methods often struggle to model such complex and dynamic interactions. While recent studies show that masks can serve as effective control signals and enhance generation quality, obtaining dense and precise mask annotations remains a major challenge for real-world use. To overcome this limitation, we introduce Mask2IV, a novel framework specifically designed for interaction-centric video generation. It adopts a decoupled two-stage pipeline that first predicts plausible motion trajectories for both actor and object, then generates a video conditioned on these trajectories. This design eliminates the need for dense mask inputs from users while preserving the flexibility to manipulate the interaction process. Furthermore, Mask2IV supports versatile and intuitive control, allowing users to specify the target object of interaction and guide the motion trajectory through action descriptions or spatial position cues. To support systematic training and evaluation, we curate two benchmarks covering diverse action and object categories across both human-object interaction and robotic manipulation scenarios. Extensive experiments demonstrate that our method achieves superior visual realism and controllability compared to existing baselines.
Authors:Beijia Lu, Ziyi Chen, Jing Xiao, Jun-Yan Zhu
Abstract:
Diffusion models can synthesize realistic co-speech video from audio for various applications, such as video creation and virtual agents. However, existing diffusion-based methods are slow due to numerous denoising steps and costly attention mechanisms, preventing real-time deployment. In this work, we distill a many-step diffusion video model into a few-step student model. Unfortunately, directly applying recent diffusion distillation methods degrades video quality and falls short of real-time performance. To address these issues, our new video distillation method leverages input human pose conditioning for both attention and loss functions. We first propose using accurate correspondence between input human pose keypoints to guide attention to relevant regions, such as the speaker's face, hands, and upper body. This input-aware sparse attention reduces redundant computations and strengthens temporal correspondences of body parts, improving inference efficiency and motion coherence. To further enhance visual quality, we introduce an input-aware distillation loss that improves lip synchronization and hand motion realism. By integrating our input-aware sparse attention and distillation loss, our method achieves real-time performance with improved visual quality compared to recent audio-driven and input-driven methods. We also conduct extensive experiments showing the effectiveness of our algorithmic design choices.
Authors:Thomas Gravier, Thomas Boyer, Auguste Genovesio
Abstract:
Many natural dynamic processes -- such as in vivo cellular differentiation or disease progression -- can only be observed through the lens of static sample snapshots. While challenging, reconstructing their temporal evolution to decipher underlying dynamic properties is of major interest to scientific research. Existing approaches enable data transport along a temporal axis but are poorly scalable in high dimension and require restrictive assumptions to be met. To address these issues, we propose \textit{\textbf{Multi-Marginal temporal Schrödinger Bridge Matching}} (\textbf{MMtSBM}) \textit{for video generation from unpaired data}, extending the theoretical guarantees and empirical efficiency of Diffusion Schrödinger Bridge Matching (arXiv:archive/2303.16852) by deriving the Iterative Markovian Fitting algorithm to multiple marginals in a novel factorized fashion. Experiments show that MMtSBM retains theoretical properties on toy examples, achieves state-of-the-art performance on real world datasets such as transcriptomic trajectory inference in 100 dimensions, and for the first time recovers couplings and dynamics in very high dimensional image settings. Our work establishes multi-marginal Schrödinger bridges as a practical and principled approach for recovering hidden dynamics from static data.
Authors:Chetwin Low, Weimin Wang, Calder Katyal
Abstract:
Audio-video generation has often relied on complex multi-stage architectures or sequential synthesis of sound and visuals. We introduce Ovi, a unified paradigm for audio-video generation that models the two modalities as a single generative process. By using blockwise cross-modal fusion of twin-DiT modules, Ovi achieves natural synchronization and removes the need for separate pipelines or post hoc alignment. To facilitate fine-grained multimodal fusion modeling, we initialize an audio tower with an architecture identical to that of a strong pretrained video model. Trained from scratch on hundreds of thousands of hours of raw audio, the audio tower learns to generate realistic sound effects, as well as speech that conveys rich speaker identity and emotion. Fusion is obtained by jointly training the identical video and audio towers via blockwise exchange of timing (via scaled-RoPE embeddings) and semantics (through bidirectional cross-attention) on a vast video corpus. Our model enables cinematic storytelling with natural speech and accurate, context-matched sound effects, producing movie-grade video clips. All the demos, code and model weights are published at https://aaxwaz.github.io/Ovi
Authors:Fei Shen, Weihao Xu, Rui Yan, Dong Zhang, Xiangbo Shu, Jinhui Tang
Abstract:
In this paper, we present IMAGEdit, a training-free framework for any number of video subject editing that manipulates the appearances of multiple designated subjects while preserving non-target regions, without finetuning or retraining. We achieve this by providing robust multimodal conditioning and precise mask sequences through a prompt-guided multimodal alignment module and a prior-based mask retargeting module. We first leverage large models' understanding and generation capabilities to produce multimodal information and mask motion sequences for multiple subjects across various types. Then, the obtained prior mask sequences are fed into a pretrained mask-driven video generation model to synthesize the edited video. With strong generalization capability, IMAGEdit remedies insufficient prompt-side multimodal conditioning and overcomes mask boundary entanglement in videos with any number of subjects, thereby significantly expanding the applicability of video editing. More importantly, IMAGEdit is compatible with any mask-driven video generation model, significantly improving overall performance. Extensive experiments on our newly constructed multi-subject benchmark MSVBench verify that IMAGEdit consistently surpasses state-of-the-art methods. Code, models, and datasets are publicly available at https://github.com/XWH-A/IMAGEdit.
Authors:Jiahao Wang, Luoxin Ye, TaiMing Lu, Junfei Xiao, Jiahan Zhang, Yuxiang Guo, Xijun Liu, Rama Chellappa, Cheng Peng, Alan Yuille, Jieneng Chen
Abstract:
Humans possess a remarkable ability to mentally explore and replay 3D environments they have previously experienced. Inspired by this mental process, we present EvoWorld: a world model that bridges panoramic video generation with evolving 3D memory to enable spatially consistent long-horizon exploration. Given a single panoramic image as input, EvoWorld first generates future video frames by leveraging a video generator with fine-grained view control, then evolves the scene's 3D reconstruction using a feedforward plug-and-play transformer, and finally synthesizes futures by conditioning on geometric reprojections from this evolving explicit 3D memory. Unlike prior state-of-the-arts that synthesize videos only, our key insight lies in exploiting this evolving 3D reconstruction as explicit spatial guidance for the video generation process, projecting the reconstructed geometry onto target viewpoints to provide rich spatial cues that significantly enhance both visual realism and geometric consistency. To evaluate long-range exploration capabilities, we introduce the first comprehensive benchmark spanning synthetic outdoor environments, Habitat indoor scenes, and challenging real-world scenarios, with particular emphasis on loop-closure detection and spatial coherence over extended trajectories. Extensive experiments demonstrate that our evolving 3D memory substantially improves visual fidelity and maintains spatial scene coherence compared to existing approaches, representing a significant advance toward long-horizon spatially consistent world modeling.
Authors:Yanzhe Chen, Kevin Qinghong Lin, Mike Zheng Shou
Abstract:
While recent generative models advance pixel-space video synthesis, they remain limited in producing professional educational videos, which demand disciplinary knowledge, precise visual structures, and coherent transitions, limiting their applicability in educational scenarios. Intuitively, such requirements are better addressed through the manipulation of a renderable environment, which can be explicitly controlled via logical commands (e.g., code). In this work, we propose Code2Video, a code-centric agent framework for generating educational videos via executable Python code. The framework comprises three collaborative agents: (i) Planner, which structures lecture content into temporally coherent flows and prepares corresponding visual assets; (ii) Coder, which converts structured instructions into executable Python codes while incorporating scope-guided auto-fix to enhance efficiency; and (iii) Critic, which leverages vision-language models (VLM) with visual anchor prompts to refine spatial layout and ensure clarity. To support systematic evaluation, we build MMMC, a benchmark of professionally produced, discipline-specific educational videos. We evaluate MMMC across diverse dimensions, including VLM-as-a-Judge aesthetic scores, code efficiency, and particularly, TeachQuiz, a novel end-to-end metric that quantifies how well a VLM, after unlearning, can recover knowledge by watching the generated videos. Our results demonstrate the potential of Code2Video as a scalable, interpretable, and controllable approach, achieving 40% improvement over direct code generation and producing videos comparable to human-crafted tutorials. The code and datasets are available at https://github.com/showlab/Code2Video.
Authors:Guozhen Zhang, Haiguang Wang, Chunyu Wang, Yuan Zhou, Qinglin Lu, Limin Wang
Abstract:
Video frame interpolation (VFI), which generates intermediate frames from given start and end frames, has become a fundamental function in video generation applications. However, existing generative VFI methods are constrained to synthesize a fixed number of intermediate frames, lacking the flexibility to adjust generated frame rates or total sequence duration. In this work, we present ArbInterp, a novel generative VFI framework that enables efficient interpolation at any timestamp and of any length. Specifically, to support interpolation at any timestamp, we propose the Timestamp-aware Rotary Position Embedding (TaRoPE), which modulates positions in temporal RoPE to align generated frames with target normalized timestamps. This design enables fine-grained control over frame timestamps, addressing the inflexibility of fixed-position paradigms in prior work. For any-length interpolation, we decompose long-sequence generation into segment-wise frame synthesis. We further design a novel appearance-motion decoupled conditioning strategy: it leverages prior segment endpoints to enforce appearance consistency and temporal semantics to maintain motion coherence, ensuring seamless spatiotemporal transitions across segments. Experimentally, we build comprehensive benchmarks for multi-scale frame interpolation (2x to 32x) to assess generalizability across arbitrary interpolation factors. Results show that ArbInterp outperforms prior methods across all scenarios with higher fidelity and more seamless spatiotemporal continuity. Project website: https://mcg-nju.github.io/ArbInterp-Web/.
Authors:Youquan Fu, Ruiyang Si, Hongfa Wang, Dongzhan Zhou, Jiacheng Sun, Ping Luo, Di Hu, Hongyuan Zhang, Xuelong Li
Abstract:
There is a high demand for audio-visual editing in video post-production and the film making field. While numerous models have explored audio and video editing, they struggle with object-level audio-visual operations. Specifically, object-level audio-visual editing requires the ability to perform object addition, replacement, and removal across both audio and visual modalities, while preserving the structural information of the source instances during the editing process. In this paper, we present \textbf{Object-AVEdit}, achieving the object-level audio-visual editing based on the inversion-regeneration paradigm. To achieve the object-level controllability during editing, we develop a word-to-sounding-object well-aligned audio generation model, bridging the gap in object-controllability between audio and current video generation models. Meanwhile, to achieve the better structural information preservation and object-level editing effect, we propose an inversion-regeneration holistically-optimized editing algorithm, ensuring both information retention during the inversion and better regeneration effect. Extensive experiments demonstrate that our editing model achieved advanced results in both audio-video object-level editing tasks with fine audio-visual semantic alignment. In addition, our developed audio generation model also achieved advanced performance. More results on our project page: https://gewu-lab.github.io/Object_AVEdit-website/.
Authors:Yunyang Ge, Xinhua Cheng, Chengshu Zhao, Xianyi He, Shenghai Yuan, Bin Lin, Bin Zhu, Li Yuan
Abstract:
In Image-to-Video (I2V) generation, a video is created using an input image as the first-frame condition. Existing I2V methods concatenate the full information of the conditional image with noisy latents to achieve high fidelity. However, the denoisers in these methods tend to shortcut the conditional image, which is known as conditional image leakage, leading to performance degradation issues such as slow motion and color inconsistency. In this work, we further clarify that conditional image leakage leads to overfitting to in-domain data and decreases the performance in out-of-domain scenarios. Moreover, we introduce Fourier-Guided Latent Shifting I2V, named FlashI2V, to prevent conditional image leakage. Concretely, FlashI2V consists of: (1) Latent Shifting. We modify the source and target distributions of flow matching by subtracting the conditional image information from the noisy latents, thereby incorporating the condition implicitly. (2) Fourier Guidance. We use high-frequency magnitude features obtained by the Fourier Transform to accelerate convergence and enable the adjustment of detail levels in the generated video. Experimental results show that our method effectively overcomes conditional image leakage and achieves the best generalization and performance on out-of-domain data among various I2V paradigms. With only 1.3B parameters, FlashI2V achieves a dynamic degree score of 53.01 on Vbench-I2V, surpassing CogVideoX1.5-5B-I2V and Wan2.1-I2V-14B-480P. Github page: https://pku-yuangroup.github.io/FlashI2V/
Authors:Junyu Chen, Wenkun He, Yuchao Gu, Yuyang Zhao, Jincheng Yu, Junsong Chen, Dongyun Zou, Yujun Lin, Zhekai Zhang, Muyang Li, Haocheng Xi, Ligeng Zhu, Enze Xie, Song Han, Han Cai
Abstract:
We introduce DC-VideoGen, a post-training acceleration framework for efficient video generation. DC-VideoGen can be applied to any pre-trained video diffusion model, improving efficiency by adapting it to a deep compression latent space with lightweight fine-tuning. The framework builds on two key innovations: (i) a Deep Compression Video Autoencoder with a novel chunk-causal temporal design that achieves 32x/64x spatial and 4x temporal compression while preserving reconstruction quality and generalization to longer videos; and (ii) AE-Adapt-V, a robust adaptation strategy that enables rapid and stable transfer of pre-trained models into the new latent space. Adapting the pre-trained Wan-2.1-14B model with DC-VideoGen requires only 10 GPU days on the NVIDIA H100 GPU. The accelerated models achieve up to 14.8x lower inference latency than their base counterparts without compromising quality, and further enable 2160x3840 video generation on a single GPU. Code: https://github.com/dc-ai-projects/DC-VideoGen.
Authors:Kunhao Liu, Wenbo Hu, Jiale Xu, Ying Shan, Shijian Lu
Abstract:
Streaming video generation, as one fundamental component in interactive world models and neural game engines, aims to generate high-quality, low-latency, and temporally coherent long video streams. However, most existing work suffers from severe error accumulation that often significantly degrades the generated stream videos over long horizons. We design Rolling Forcing, a novel video generation technique that enables streaming long videos with minimal error accumulation. Rolling Forcing comes with three novel designs. First, instead of iteratively sampling individual frames, which accelerates error propagation, we design a joint denoising scheme that simultaneously denoises multiple frames with progressively increasing noise levels. This design relaxes the strict causality across adjacent frames, effectively suppressing error growth. Second, we introduce the attention sink mechanism into the long-horizon stream video generation task, which allows the model to keep key value states of initial frames as a global context anchor and thereby enhances long-term global consistency. Third, we design an efficient training algorithm that enables few-step distillation over largely extended denoising windows. This algorithm operates on non-overlapping windows and mitigates exposure bias conditioned on self-generated histories. Extensive experiments show that Rolling Forcing enables real-time streaming generation of multi-minute videos on a single GPU, with substantially reduced error accumulation.
Authors:Yuyang Yin, HaoXiang Guo, Fangfu Liu, Mengyu Wang, Hanwen Liang, Eric Li, Yikai Wang, Xiaojie Jin, Yao Zhao, Yunchao Wei
Abstract:
Generating a complete and explorable 360-degree visual world enables a wide range of downstream applications. While prior works have advanced the field, they remain constrained by either narrow field-of-view limitations, which hinder the synthesis of continuous and holistic scenes, or insufficient camera controllability that restricts free exploration by users or autonomous agents. To address this, we propose PanoWorld-X, a novel framework for high-fidelity and controllable panoramic video generation with diverse camera trajectories. Specifically, we first construct a large-scale dataset of panoramic video-exploration route pairs by simulating camera trajectories in virtual 3D environments via Unreal Engine. As the spherical geometry of panoramic data misaligns with the inductive priors from conventional video diffusion, we then introduce a Sphere-Aware Diffusion Transformer architecture that reprojects equirectangular features onto the spherical surface to model geometric adjacency in latent space, significantly enhancing visual fidelity and spatiotemporal continuity. Extensive experiments demonstrate that our PanoWorld-X achieves superior performance in various aspects, including motion range, control precision, and visual quality, underscoring its potential for real-world applications.
Authors:Haotian Dong, Wenjing Wang, Chen Li, Di Lin
Abstract:
RGBA video generation, which includes an alpha channel to represent transparency, is gaining increasing attention across a wide range of applications. However, existing methods often neglect visual quality, limiting their practical usability. In this paper, we propose Wan-Alpha, a new framework that generates transparent videos by learning both RGB and alpha channels jointly. We design an effective variational autoencoder (VAE) that encodes the alpha channel into the RGB latent space. Then, to support the training of our diffusion transformer, we construct a high-quality and diverse RGBA video dataset. Compared with state-of-the-art methods, our model demonstrates superior performance in visual quality, motion realism, and transparency rendering. Notably, our model can generate a wide variety of semi-transparent objects, glowing effects, and fine-grained details such as hair strands. The released model is available on our website: https://donghaotian123.github.io/Wan-Alpha/.
Authors:Kai Liu, Shaoqiu Zhang, Linghe Kong, Yulun Zhang
Abstract:
Visual generation quality has been greatly promoted with the rapid advances in diffusion transformers (DiTs), which is attributed to the scaling of model size and complexity. However, these attributions also hinder the practical deployment of DiTs on edge devices, limiting their development and application. Serve as an efficient model compression technique, model post-training quantization (PTQ) can reduce the memory consumption and speed up the inference, with inevitable performance degradation. To alleviate the degradation, we propose CLQ, a cross-layer guided orthogonal-based quantization method for DiTs. To be specific, CLQ consists of three key designs. First, we observe that the calibration data used by most of the PTQ methods can not honestly represent the distribution of the activations. Therefore, we propose cross-block calibration (CBC) to obtain accurate calibration data, with which the quantization can be better guided. Second, we propose orthogonal-based smoothing (OBS), which quantifies the outlier score of each channel and leverages block Hadamard matrix to smooth the outliers with negligible overhead. Third, we propose cross-layer parameter searching (CLPS) to search. We evaluate CLQ with both image generation and video generation models and successfully compress the model into W4A4 with negligible degradation in visual quality and metrics. CLQ achieves 3.98x memory saving and 3.95x speedup. Our code is available at \hyperlink{https://github.com/Kai-Liu001/CLQ}{https://github.com/Kai-Liu001/CLQ}.
Authors:Weilun Feng, Chuanguang Yang, Haotong Qin, Mingqiang Wu, Yuqi Li, Xiangqi Li, Zhulin An, Libo Huang, Yulun Zhang, Michele Magno, Yongjun Xu
Abstract:
Diffusion transformers exhibit remarkable video generation capability, yet their prohibitive computational and memory costs hinder practical deployment. Model quantization and attention sparsification are two promising directions for compression, but each alone suffers severe performance degradation under aggressive compression. Combining them promises compounded efficiency gains, but naive integration is ineffective. The sparsity-induced information loss exacerbates quantization noise, leading to amplified attention shifts. To address this, we propose \textbf{QuantSparse}, a unified framework that integrates model quantization with attention sparsification. Specifically, we introduce \textit{Multi-Scale Salient Attention Distillation}, which leverages both global structural guidance and local salient supervision to mitigate quantization-induced bias. In addition, we develop \textit{Second-Order Sparse Attention Reparameterization}, which exploits the temporal stability of second-order residuals to efficiently recover information lost under sparsity. Experiments on HunyuanVideo-13B demonstrate that QuantSparse achieves 20.88 PSNR, substantially outperforming the state-of-the-art quantization baseline Q-VDiT (16.85 PSNR), while simultaneously delivering a \textbf{3.68$\times$} reduction in storage and \textbf{1.88$\times$} acceleration in end-to-end inference. Our code will be released in https://github.com/wlfeng0509/QuantSparse.
Authors:Xuan He, Dongfu Jiang, Ping Nie, Minghao Liu, Zhengxuan Jiang, Mingyi Su, Wentao Ma, Junru Lin, Chun Ye, Yi Lu, Keming Wu, Benjamin Schneider, Quy Duc Do, Zhuofeng Li, Yiming Jia, Yuxuan Zhang, Guo Cheng, Haozhe Wang, Wangchunshu Zhou, Qunshu Lin, Yuanxing Zhang, Ge Zhang, Wenhao Huang, Wenhu Chen
Abstract:
Recent advances in text-to-video generation have produced increasingly realistic and diverse content, yet evaluating such videos remains a fundamental challenge due to their multi-faceted nature encompassing visual quality, semantic alignment, and physical consistency. Existing evaluators and reward models are limited to single opaque scores, lack interpretability, or provide only coarse analysis, making them insufficient for capturing the comprehensive nature of video quality assessment. We present VideoScore2, a multi-dimensional, interpretable, and human-aligned framework that explicitly evaluates visual quality, text-to-video alignment, and physical/common-sense consistency while producing detailed chain-of-thought rationales. Our model is trained on a large-scale dataset VideoFeedback2 containing 27,168 human-annotated videos with both scores and reasoning traces across three dimensions, using a two-stage pipeline of supervised fine-tuning followed by reinforcement learning with Group Relative Policy Optimization (GRPO) to enhance analytical robustness. Extensive experiments demonstrate that VideoScore2 achieves superior performance with 44.35 (+5.94) accuracy on our in-domain benchmark VideoScore-Bench-v2 and 50.37 (+4.32) average performance across four out-of-domain benchmarks (VideoGenReward-Bench, VideoPhy2, etc), while providing interpretable assessments that bridge the gap between evaluation and controllable generation through effective reward modeling for Best-of-N sampling. Project Page: https://tiger-ai-lab.github.io/VideoScore2/
Authors:Shuai Yang, Wei Huang, Ruihang Chu, Yicheng Xiao, Yuyang Zhao, Xianbang Wang, Muyang Li, Enze Xie, Yingcong Chen, Yao Lu, Song Han, Yukang Chen
Abstract:
We present LongLive, a frame-level autoregressive (AR) framework for real-time and interactive long video generation. Long video generation presents challenges in both efficiency and quality. Diffusion and Diffusion-Forcing models can produce high-quality videos but suffer from low efficiency due to bidirectional attention. Causal attention AR models support KV caching for faster inference, but often degrade in quality on long videos due to memory challenges during long-video training. In addition, beyond static prompt-based generation, interactive capabilities, such as streaming prompt inputs, are critical for dynamic content creation, enabling users to guide narratives in real time. This interactive requirement significantly increases complexity, especially in ensuring visual consistency and semantic coherence during prompt transitions. To address these challenges, LongLive adopts a causal, frame-level AR design that integrates a KV-recache mechanism that refreshes cached states with new prompts for smooth, adherent switches; streaming long tuning to enable long video training and to align training and inference (train-long-test-long); and short window attention paired with a frame-level attention sink, shorten as frame sink, preserving long-range consistency while enabling faster generation. With these key designs, LongLive fine-tunes a 1.3B-parameter short-clip model to minute-long generation in just 32 GPU-days. At inference, LongLive sustains 20.7 FPS on a single NVIDIA H100, achieves strong performance on VBench in both short and long videos. LongLive supports up to 240-second videos on a single H100 GPU. LongLive further supports INT8-quantized inference with only marginal quality loss.
Authors:Jibin Song, Mingi Kwon, Jaeseok Jeong, Youngjung Uh
Abstract:
Text-to-video and image-to-video generation have made rapid progress in visual quality, but they remain limited in controlling the precise timing of motion. In contrast, audio provides temporal cues aligned with video motion, making it a promising condition for temporally controlled video generation. However, existing audio-to-video (A2V) models struggle with fine-grained synchronization due to indirect conditioning mechanisms or limited temporal modeling capacity. We present Syncphony, which generates 380x640 resolution, 24fps videos synchronized with diverse audio inputs. Our approach builds upon a pre-trained video backbone and incorporates two key components to improve synchronization: (1) Motion-aware Loss, which emphasizes learning at high-motion regions; (2) Audio Sync Guidance, which guides the full model using a visually aligned off-sync model without audio layers to better exploit audio cues at inference while maintaining visual quality. To evaluate synchronization, we propose CycleSync, a video-to-audio-based metric that measures the amount of motion cues in the generated video to reconstruct the original audio. Experiments on AVSync15 and The Greatest Hits datasets demonstrate that Syncphony outperforms existing methods in both synchronization accuracy and visual quality. Project page is available at: https://jibin86.github.io/syncphony_project_page
Authors:Yu Shang, Yangcheng Yu, Xin Zhang, Xin Jin, Haisheng Su, Wei Wu, Yong Li
Abstract:
Embodied action planning is a core challenge in robotics, requiring models to generate precise actions from visual observations and language instructions. While video generation world models are promising, their reliance on pixel-level reconstruction often introduces visual redundancies that hinder action decoding and generalization. Latent world models offer a compact, motion-aware representation, but overlook the fine-grained details critical for precise manipulation. To overcome these limitations, we propose MoWM, a mixture-of-world-model framework that fuses representations from hybrid world models for embodied action planning. Our approach uses motion-aware representations from a latent model as a high-level prior, which guides the extraction of fine-grained visual features from the pixel space model. This design allows MoWM to highlight the informative visual details needed for action decoding. Extensive evaluations on the CALVIN benchmark demonstrate that our method achieves state-of-the-art task success rates and superior generalization. We also provide a comprehensive analysis of the strengths of each feature space, offering valuable insights for future research in embodied planning. The code is available at: https://github.com/tsinghua-fib-lab/MoWM.
Authors:Yu Shang, Lei Jin, Yiding Ma, Xin Zhang, Chen Gao, Wei Wu, Yong Li
Abstract:
Video-based world models hold significant potential for generating high-quality embodied manipulation data. However, current video generation methods struggle to achieve stable long-horizon generation: classical diffusion-based approaches often suffer from temporal inconsistency and visual drift over multiple rollouts, while autoregressive methods tend to compromise on visual detail. To solve this, we introduce LongScape, a hybrid framework that adaptively combines intra-chunk diffusion denoising with inter-chunk autoregressive causal generation. Our core innovation is an action-guided, variable-length chunking mechanism that partitions video based on the semantic context of robotic actions. This ensures each chunk represents a complete, coherent action, enabling the model to flexibly generate diverse dynamics. We further introduce a Context-aware Mixture-of-Experts (CMoE) framework that adaptively activates specialized experts for each chunk during generation, guaranteeing high visual quality and seamless chunk transitions. Extensive experimental results demonstrate that our method achieves stable and consistent long-horizon generation over extended rollouts. Our code is available at: https://github.com/tsinghua-fib-lab/Longscape.
Authors:Lan Chen, Yuchao Gu, Qi Mao
Abstract:
Large language models, trained on extensive corpora, successfully unify diverse linguistic tasks within a single generative framework. Inspired by this, recent works like Large Vision Model (LVM) extend this paradigm to vision by organizing tasks into sequential visual sentences, where visual prompts serve as the context to guide outputs. However, such modeling requires task-specific pre-training across modalities and sources, which is costly and limits scalability to unseen tasks. Given that pre-trained video generation models inherently capture temporal sequence dependencies, we explore a more unified and scalable alternative: can a pre-trained video generation model adapt to diverse image and video tasks? To answer this, we propose UniVid, a framework that fine-tunes a video diffusion transformer to handle various vision tasks without task-specific modifications. Tasks are represented as visual sentences, where the context sequence defines both the task and the expected output modality. We evaluate the generalization of UniVid from two perspectives: (1) cross-modal inference with contexts composed of both images and videos, extending beyond LVM's uni-modal setting; (2) cross-source tasks from natural to annotated data, without multi-source pre-training. Despite being trained solely on natural video data, UniVid generalizes well in both settings. Notably, understanding and generation tasks can easily switch by simply reversing the visual sentence order in this paradigm. These findings highlight the potential of pre-trained video generation models to serve as a scalable and unified foundation for vision modeling. Our code will be released at https://github.com/CUC-MIPG/UniVid.
Authors:Prasanna Reddy Pulakurthi, Jiamian Wang, Majid Rabbani, Sohail Dianat, Raghuveer Rao, Zhiqiang Tao
Abstract:
Prevalent text-to-video retrieval systems mainly adopt embedding models for feature extraction and compute cosine similarities for ranking. However, this design presents two limitations. Low-quality text-video data pairs could compromise the retrieval, yet are hard to identify and examine. Cosine similarity alone provides no explanation for the ranking results, limiting the interpretability. We ask that can we interpret the ranking results, so as to assess the retrieval models and examine the text-video data? This work proposes X-CoT, an explainable retrieval framework upon LLM CoT reasoning in place of the embedding model-based similarity ranking. We first expand the existing benchmarks with additional video annotations to support semantic understanding and reduce data bias. We also devise a retrieval CoT consisting of pairwise comparison steps, yielding detailed reasoning and complete ranking. X-CoT empirically improves the retrieval performance and produces detailed rationales. It also facilitates the model behavior and data quality analysis. Code and data are available at: https://github.com/PrasannaPulakurthi/X-CoT.
Authors:Yu Yuan, Xijun Wang, Tharindu Wickremasinghe, Zeeshan Nadir, Bole Ma, Stanley H. Chan
Abstract:
A primary bottleneck in large-scale text-to-video generation today is physical consistency and controllability. Despite recent advances, state-of-the-art models often produce unrealistic motions, such as objects falling upward, or abrupt changes in velocity and direction. Moreover, these models lack precise parameter control, struggling to generate physically consistent dynamics under different initial conditions. We argue that this fundamental limitation stems from current models learning motion distributions solely from appearance, while lacking an understanding of the underlying dynamics. In this work, we propose NewtonGen, a framework that integrates data-driven synthesis with learnable physical principles. At its core lies trainable Neural Newtonian Dynamics (NND), which can model and predict a variety of Newtonian motions, thereby injecting latent dynamical constraints into the video generation process. By jointly leveraging data priors and dynamical guidance, NewtonGen enables physically consistent video synthesis with precise parameter control.
Authors:Chen Wang, Chuhao Chen, Yiming Huang, Zhiyang Dou, Yuan Liu, Jiatao Gu, Lingjie Liu
Abstract:
Existing video generation models excel at producing photo-realistic videos from text or images, but often lack physical plausibility and 3D controllability. To overcome these limitations, we introduce PhysCtrl, a novel framework for physics-grounded image-to-video generation with physical parameters and force control. At its core is a generative physics network that learns the distribution of physical dynamics across four materials (elastic, sand, plasticine, and rigid) via a diffusion model conditioned on physics parameters and applied forces. We represent physical dynamics as 3D point trajectories and train on a large-scale synthetic dataset of 550K animations generated by physics simulators. We enhance the diffusion model with a novel spatiotemporal attention block that emulates particle interactions and incorporates physics-based constraints during training to enforce physical plausibility. Experiments show that PhysCtrl generates realistic, physics-grounded motion trajectories which, when used to drive image-to-video models, yield high-fidelity, controllable videos that outperform existing methods in both visual quality and physical plausibility. Project Page: https://cwchenwang.github.io/physctrl
Authors:Hao Lu, Zhuang Ma, Guangfeng Jiang, Wenhang Ge, Bohan Li, Yuzhan Cai, Wenzhao Zheng, Yunpeng Zhang, Yingcong Chen
Abstract:
Current generative models struggle to synthesize dynamic 4D driving scenes that simultaneously support temporal extrapolation and spatial novel view synthesis (NVS) without per-scene optimization. Bridging generation and novel view synthesis remains a major challenge. We present PhiGenesis, a unified framework for 4D scene generation that extends video generation techniques with geometric and temporal consistency. Given multi-view image sequences and camera parameters, PhiGenesis produces temporally continuous 4D Gaussian splatting representations along target 3D trajectories. In its first stage, PhiGenesis leverages a pre-trained video VAE with a novel range-view adapter to enable feed-forward 4D reconstruction from multi-view images. This architecture supports single-frame or video inputs and outputs complete 4D scenes including geometry, semantics, and motion. In the second stage, PhiGenesis introduces a geometric-guided video diffusion model, using rendered historical 4D scenes as priors to generate future views conditioned on trajectories. To address geometric exposure bias in novel views, we propose Stereo Forcing, a novel conditioning strategy that integrates geometric uncertainty during denoising. This method enhances temporal coherence by dynamically adjusting generative influence based on uncertainty-aware perturbations. Our experimental results demonstrate that our method achieves state-of-the-art performance in both appearance and geometric reconstruction, temporal generation and novel view synthesis (NVS) tasks, while simultaneously delivering competitive performance in downstream evaluations. Homepage is at \href{https://jiangxb98.github.io/PhiGensis}{PhiGensis}.
Authors:Geonung Kim, Janghyeok Han, Sunghyun Cho
Abstract:
In this paper, we propose VideoFrom3D, a novel framework for synthesizing high-quality 3D scene videos from coarse geometry, a camera trajectory, and a reference image. Our approach streamlines the 3D graphic design workflow, enabling flexible design exploration and rapid production of deliverables. A straightforward approach to synthesizing a video from coarse geometry might condition a video diffusion model on geometric structure. However, existing video diffusion models struggle to generate high-fidelity results for complex scenes due to the difficulty of jointly modeling visual quality, motion, and temporal consistency. To address this, we propose a generative framework that leverages the complementary strengths of image and video diffusion models. Specifically, our framework consists of a Sparse Anchor-view Generation (SAG) and a Geometry-guided Generative Inbetweening (GGI) module. The SAG module generates high-quality, cross-view consistent anchor views using an image diffusion model, aided by Sparse Appearance-guided Sampling. Building on these anchor views, GGI module faithfully interpolates intermediate frames using a video diffusion model, enhanced by flow-based camera control and structural guidance. Notably, both modules operate without any paired dataset of 3D scene models and natural images, which is extremely difficult to obtain. Comprehensive experiments show that our method produces high-quality, style-consistent scene videos under diverse and challenging scenarios, outperforming simple and extended baselines.
Authors:Guanjie Wang, Zehua Ma, Han Fang, Weiming Zhang
Abstract:
The rapid progress of image-guided video generation (I2V) has raised concerns about its potential misuse in misinformation and fraud, underscoring the urgent need for effective digital watermarking. While existing watermarking methods demonstrate robustness within a single modality, they fail to trace source images in I2V settings. To address this gap, we introduce the concept of Robust Diffusion Distance, which measures the temporal persistence of watermark signals in generated videos. Building on this, we propose I2VWM, a cross-modal watermarking framework designed to enhance watermark robustness across time. I2VWM leverages a video-simulation noise layer during training and employs an optical-flow-based alignment module during inference. Experiments on both open-source and commercial I2V models demonstrate that I2VWM significantly improves robustness while maintaining imperceptibility, establishing a new paradigm for cross-modal watermarking in the era of generative video. \href{https://github.com/MrCrims/I2VWM-Robust-Watermarking-for-Image-to-Video-Generation}{Code Released.}
Authors:Kabir Hamzah Muhammad, Marawan Elbatel, Yi Qin, Xiaomeng Li
Abstract:
Cardiovascular diseases (CVDs) remain the leading cause of mortality globally, and echocardiography is critical for diagnosis of both common and congenital cardiac conditions. However, echocardiographic data for certain pathologies are scarce, hindering the development of robust automated diagnosis models. In this work, we propose Echo-Path, a novel generative framework to produce echocardiogram videos conditioned on specific cardiac pathologies. Echo-Path can synthesize realistic ultrasound video sequences that exhibit targeted abnormalities, focusing here on atrial septal defect (ASD) and pulmonary arterial hypertension (PAH). Our approach introduces a pathology-conditioning mechanism into a state-of-the-art echo video generator, allowing the model to learn and control disease-specific structural and motion patterns in the heart. Quantitative evaluation demonstrates that the synthetic videos achieve low distribution distances, indicating high visual fidelity. Clinically, the generated echoes exhibit plausible pathology markers. Furthermore, classifiers trained on our synthetic data generalize well to real data and, when used to augment real training sets, it improves downstream diagnosis of ASD and PAH by 7\% and 8\% respectively. Code, weights and dataset are available here https://github.com/Marshall-mk/EchoPathv1
Authors:Mohamed Eltahir, Osamah Sarraj, Abdulrahman Alfrihidi, Taha Alshatiri, Mohammed Khurd, Mohammed Bremoo, Tanveer Hussain
Abstract:
Video-to-text and text-to-video retrieval are dominated by English benchmarks (e.g. DiDeMo, MSR-VTT) and recent multilingual corpora (e.g. RUDDER), yet Arabic remains underserved, lacking localized evaluation metrics. We introduce a three-stage framework, AutoArabic, utilizing state-of-the-art large language models (LLMs) to translate non-Arabic benchmarks into Modern Standard Arabic, reducing the manual revision required by nearly fourfold. The framework incorporates an error detection module that automatically flags potential translation errors with 97% accuracy. Applying the framework to DiDeMo, a video retrieval benchmark produces DiDeMo-AR, an Arabic variant with 40,144 fluent Arabic descriptions. An analysis of the translation errors is provided and organized into an insightful taxonomy to guide future Arabic localization efforts. We train a CLIP-style baseline with identical hyperparameters on the Arabic and English variants of the benchmark, finding a moderate performance gap (about 3 percentage points at Recall@1), indicating that Arabic localization preserves benchmark difficulty. We evaluate three post-editing budgets (zero/ flagged-only/ full) and find that performance improves monotonically with more post-editing, while the raw LLM output (zero-budget) remains usable. To ensure reproducibility to other languages, we made the code available at https://github.com/Tahaalshatiri/AutoArabic.
Authors:Chang Soo Lim, Joonyoung Moon, Donghyeon Cho
Abstract:
Video object segmentation (VOS) is a challenging task with wide applications such as video editing and autonomous driving. While Cutie provides strong query-based segmentation and SAM2 offers enriched representations via a pretrained ViT encoder, each has limitations in feature capacity and temporal modeling. In this report, we propose a framework that integrates their complementary strengths by replacing the encoder of Cutie with the ViT encoder of SAM2 and introducing a motion prediction module for temporal stability. We further adopt an ensemble strategy combining Cutie, SAM2, and our variant, achieving 3rd place in the MOSEv2 track of the 7th LSVOS Challenge. We refer to our final model as SCOPE (SAM2-CUTIE Object Prediction Ensemble). This demonstrates the effectiveness of enriched feature representation and motion prediction for robust video object segmentation. The code is available at https://github.com/2025-LSVOS-3rd-place/MOSEv2_3rd_place.
Authors:Kazuma Nagata, Naoshi Kaneko
Abstract:
Automatic colorization of line drawings has been widely studied to reduce the labor cost of hand-drawn anime production. Deep learning approaches, including image/video generation and feature-based correspondence, have improved accuracy but struggle with occlusions, pose variations, and viewpoint changes. To address these challenges, we propose DACoN, a framework that leverages foundation models to capture part-level semantics, even in line drawings. Our method fuses low-resolution semantic features from foundation models with high-resolution spatial features from CNNs for fine-grained yet robust feature extraction. In contrast to previous methods that rely on the Multiplex Transformer and support only one or two reference images, DACoN removes this constraint, allowing any number of references. Quantitative and qualitative evaluations demonstrate the benefits of using multiple reference images, achieving superior colorization performance. Our code and model are available at https://github.com/kzmngt/DACoN.
Authors:Yang Zhou, Yifan Wang, Jianjun Zhou, Wenzheng Chang, Haoyu Guo, Zizun Li, Kaijing Ma, Xinyue Li, Yating Wang, Haoyi Zhu, Mingyu Liu, Dingning Liu, Jiange Yang, Zhoujie Fu, Junyi Chen, Chunhua Shen, Jiangmiao Pang, Kaipeng Zhang, Tong He
Abstract:
The field of 4D world modeling - aiming to jointly capture spatial geometry and temporal dynamics - has witnessed remarkable progress in recent years, driven by advances in large-scale generative models and multimodal learning. However, the development of truly general 4D world models remains fundamentally constrained by the availability of high-quality data. Existing datasets and benchmarks often lack the dynamic complexity, multi-domain diversity, and spatial-temporal annotations required to support key tasks such as 4D geometric reconstruction, future prediction, and camera-control video generation. To address this gap, we introduce OmniWorld, a large-scale, multi-domain, multi-modal dataset specifically designed for 4D world modeling. OmniWorld consists of a newly collected OmniWorld-Game dataset and several curated public datasets spanning diverse domains. Compared with existing synthetic datasets, OmniWorld-Game provides richer modality coverage, larger scale, and more realistic dynamic interactions. Based on this dataset, we establish a challenging benchmark that exposes the limitations of current state-of-the-art (SOTA) approaches in modeling complex 4D environments. Moreover, fine-tuning existing SOTA methods on OmniWorld leads to significant performance gains across 4D reconstruction and video generation tasks, strongly validating OmniWorld as a powerful resource for training and evaluation. We envision OmniWorld as a catalyst for accelerating the development of general-purpose 4D world models, ultimately advancing machines' holistic understanding of the physical world.
Authors:Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Fei Ren, Shaobo Wang, Kaixin Li, Linfeng Zhang
Abstract:
Diffusion models have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. These models face two fundamental challenges: strict temporal dependencies preventing parallelization, and computationally intensive forward passes required at each denoising step. Drawing inspiration from speculative decoding in large language models, we present SpeCa, a novel 'Forecast-then-verify' acceleration framework that effectively addresses both limitations. SpeCa's core innovation lies in introducing Speculative Sampling to diffusion models, predicting intermediate features for subsequent timesteps based on fully computed reference timesteps. Our approach implements a parameter-free verification mechanism that efficiently evaluates prediction reliability, enabling real-time decisions to accept or reject each prediction while incurring negligible computational overhead. Furthermore, SpeCa introduces sample-adaptive computation allocation that dynamically modulates resources based on generation complexity, allocating reduced computation for simpler samples while preserving intensive processing for complex instances. Experiments demonstrate 6.34x acceleration on FLUX with minimal quality degradation (5.5% drop), 7.3x speedup on DiT while preserving generation fidelity, and 79.84% VBench score at 6.1x acceleration for HunyuanVideo. The verification mechanism incurs minimal overhead (1.67%-3.5% of full inference costs), establishing a new paradigm for efficient diffusion model inference while maintaining generation quality even at aggressive acceleration ratios. Our codes have been released in Github: \textbf{https://github.com/Shenyi-Z/Cache4Diffusion}
Authors:Yanyun Pu, Kehan Li, Zeyi Huang, Zhijie Zhong, Kaixiang Yang
Abstract:
With the rapid advancement of video generation models such as Sora, video quality assessment (VQA) is becoming increasingly crucial for selecting high-quality videos from large-scale datasets used in pre-training. Traditional VQA methods, typically producing single numerical scores, often lack comprehensiveness and interpretability. To address these challenges, we introduce MVQA-68K, a novel multi-dimensional VQA dataset comprising over 68,000 carefully annotated videos, covering seven essential quality dimensions: overall aesthetics, camera movement, dynamic degree, texture detail, composition, visual quality, and factual consistency. Each annotation includes detailed chain-of-thought reasoning to facilitate interpretability and comprehensive understanding. Extensive experiments demonstrate that MVQA-68K significantly enhances the performance of various multimodal large language models (MLLMs) on the VQA task, achieving state-of-the-art results not only on our internal test set (Fig.1) but also on public benchmarks including LSVQ-test, LSVQ-1080p, and LIVE-VQC. Meantime, incorporating explicit reasoning process during VQA training substantially boosts the zero-shot generalization. Code and dataset will be available at github: https://github.com/Controller01-ai/MVQA-68K
Authors:Zhixin Zheng, Xinyu Wang, Chang Zou, Shaobo Wang, Linfeng Zhang
Abstract:
Diffusion transformers have gained significant attention in recent years for their ability to generate high-quality images and videos, yet still suffer from a huge computational cost due to their iterative denoising process. Recently, feature caching has been introduced to accelerate diffusion transformers by caching the feature computation in previous timesteps and reusing it in the following timesteps, which leverage the temporal similarity of diffusion models while ignoring the similarity in the spatial dimension. In this paper, we introduce Cluster-Driven Feature Caching (ClusCa) as an orthogonal and complementary perspective for previous feature caching. Specifically, ClusCa performs spatial clustering on tokens in each timestep, computes only one token in each cluster and propagates their information to all the other tokens, which is able to reduce the number of tokens by over 90%. Extensive experiments on DiT, FLUX and HunyuanVideo demonstrate its effectiveness in both text-to-image and text-to-video generation. Besides, it can be directly applied to any diffusion transformer without requirements for training. For instance, ClusCa achieves 4.96x acceleration on FLUX with an ImageReward of 99.49%, surpassing the original model by 0.51%. The code is available at https://github.com/Shenyi-Z/Cache4Diffusion.
Authors:Dohun Lee, Hyeonho Jeong, Jiwook Kim, Duygu Ceylan, Jong Chul Ye
Abstract:
Video diffusion models have advanced rapidly in the recent years as a result of series of architectural innovations (e.g., diffusion transformers) and use of novel training objectives (e.g., flow matching). In contrast, less attention has been paid to improving the feature representation power of such models. In this work, we show that training video diffusion models can benefit from aligning the intermediate features of the video generator with feature representations of pre-trained vision encoders. We propose a new metric and conduct an in-depth analysis of various vision encoders to evaluate their discriminability and temporal consistency, thereby assessing their suitability for video feature alignment. Based on the analysis, we present Align4Gen which provides a novel multi-feature fusion and alignment method integrated into video diffusion model training. We evaluate Align4Gen both for unconditional and class-conditional video generation tasks and show that it results in improved video generation as quantified by various metrics. Full video results are available on our project page: https://align4gen.github.io/align4gen/
Authors:Liyang Chen, Tianxiang Ma, Jiawei Liu, Bingchuan Li, Zhuowei Chen, Lijie Liu, Xu He, Gen Li, Qian He, Zhiyong Wu
Abstract:
Human-Centric Video Generation (HCVG) methods seek to synthesize human videos from multimodal inputs, including text, image, and audio. Existing methods struggle to effectively coordinate these heterogeneous modalities due to two challenges: the scarcity of training data with paired triplet conditions and the difficulty of collaborating the sub-tasks of subject preservation and audio-visual sync with multimodal inputs. In this work, we present HuMo, a unified HCVG framework for collaborative multimodal control. For the first challenge, we construct a high-quality dataset with diverse and paired text, reference images, and audio. For the second challenge, we propose a two-stage progressive multimodal training paradigm with task-specific strategies. For the subject preservation task, to maintain the prompt following and visual generation abilities of the foundation model, we adopt the minimal-invasive image injection strategy. For the audio-visual sync task, besides the commonly adopted audio cross-attention layer, we propose a focus-by-predicting strategy that implicitly guides the model to associate audio with facial regions. For joint learning of controllabilities across multimodal inputs, building on previously acquired capabilities, we progressively incorporate the audio-visual sync task. During inference, for flexible and fine-grained multimodal control, we design a time-adaptive Classifier-Free Guidance strategy that dynamically adjusts guidance weights across denoising steps. Extensive experimental results demonstrate that HuMo surpasses specialized state-of-the-art methods in sub-tasks, establishing a unified framework for collaborative multimodal-conditioned HCVG. Project Page: https://phantom-video.github.io/HuMo.
Authors:Wenshuo Gao, Xicheng Lan, Luyao Zhang, Shuai Yang
Abstract:
Vector graphics, known for their scalability and user-friendliness, provide a unique approach to visual content compared to traditional pixel-based images. Animation of these graphics, driven by the motion of their elements, offers enhanced comprehensibility and controllability but often requires substantial manual effort. To automate this process, we propose a novel method that integrates implicit neural representations with text-to-video diffusion models for vector graphic animation. Our approach employs layered implicit neural representations to reconstruct vector graphics, preserving their inherent properties such as infinite resolution and precise color and shape constraints, which effectively bridges the large domain gap between vector graphics and diffusion models. The neural representations are then optimized using video score distillation sampling, which leverages motion priors from pretrained text-to-video diffusion models. Finally, the vector graphics are warped to match the representations resulting in smooth animation. Experimental results validate the effectiveness of our method in generating vivid and natural vector graphic animations, demonstrating significant improvement over existing techniques that suffer from limitations in flexibility and animation quality.
Authors:Wenshuo Gao, Xicheng Lan, Shuai Yang
Abstract:
Despite the rapid advancements in video generation technology, creating high-quality videos that precisely align with user intentions remains a significant challenge. Existing methods often fail to achieve fine-grained control over video details, limiting their practical applicability. We introduce ANYPORTAL, a novel zero-shot framework for video background replacement that leverages pre-trained diffusion models. Our framework collaboratively integrates the temporal prior of video diffusion models with the relighting capabilities of image diffusion models in a zero-shot setting. To address the critical challenge of foreground consistency, we propose a Refinement Projection Algorithm, which enables pixel-level detail manipulation to ensure precise foreground preservation. ANYPORTAL is training-free and overcomes the challenges of achieving foreground consistency and temporally coherent relighting. Experimental results demonstrate that ANYPORTAL achieves high-quality results on consumer-grade GPUs, offering a practical and efficient solution for video content creation and editing.
Authors:Duomin Wang, Wei Zuo, Aojie Li, Ling-Hao Chen, Xinyao Liao, Deyu Zhou, Zixin Yin, Xili Dai, Daxin Jiang, Gang Yu
Abstract:
We introduce UniVerse-1, a unified, Veo-3-like model capable of simultaneously generating coordinated audio and video. To enhance training efficiency, we bypass training from scratch and instead employ a stitching of experts (SoE) technique. This approach deeply fuses the corresponding blocks of pre-trained video and music generation experts models, thereby fully leveraging their foundational capabilities. To ensure accurate annotations and temporal alignment for both ambient sounds and speech with video content, we developed an online annotation pipeline that processes the required training data and generates labels during training process. This strategy circumvents the performance degradation often caused by misalignment text-based annotations. Through the synergy of these techniques, our model, after being finetuned on approximately 7,600 hours of audio-video data, produces results with well-coordinated audio-visuals for ambient sounds generation and strong alignment for speech generation. To systematically evaluate our proposed method, we introduce Verse-Bench, a new benchmark dataset. In an effort to advance research in audio-video generation and to close the performance gap with state-of-the-art models such as Veo3, we make our model and code publicly available. We hope this contribution will benefit the broader research community. Project page: https://dorniwang.github.io/UniVerse-1/.
Authors:Yuming Li, Yikai Wang, Yuying Zhu, Zhongyu Zhao, Ming Lu, Qi She, Shanghang Zhang
Abstract:
Recent progress in aligning image and video generative models with Group Relative Policy Optimization (GRPO) has improved human preference alignment, but existing variants remain inefficient due to sequential rollouts and large numbers of sampling steps, unreliable credit assignment: sparse terminal rewards are uniformly propagated across timesteps, failing to capture the varying criticality of decisions during denoising. In this paper, we present BranchGRPO, a method that restructures the rollout process into a branching tree, where shared prefixes amortize computation and pruning removes low-value paths and redundant depths. BranchGRPO introduces three contributions: (1) a branching scheme that amortizes rollout cost through shared prefixes while preserving exploration diversity; (2) a reward fusion and depth-wise advantage estimator that transforms sparse terminal rewards into dense step-level signals; and (3) pruning strategies that cut gradient computation but leave forward rollouts and exploration unaffected. On HPDv2.1 image alignment, BranchGRPO improves alignment scores by up to \textbf{16\%} over DanceGRPO, while reducing per-iteration training time by nearly \textbf{55\%}. A hybrid variant, BranchGRPO-Mix, further accelerates training to 4.7x faster than DanceGRPO without degrading alignment. On WanX video generation, it further achieves higher Video-Align scores with sharper and temporally consistent frames compared to DanceGRPO. Codes are available at \href{https://fredreic1849.github.io/BranchGRPO-Webpage/}{BranchGRPO}.
Authors:Feng Wang, Zihao Yu
Abstract:
Reinforcement Learning (RL) has recently emerged as a powerful technique for improving image and video generation in Diffusion and Flow Matching models, specifically for enhancing output quality and alignment with prompts. A critical step for applying online RL methods on Flow Matching is the introduction of stochasticity into the deterministic framework, commonly realized by Stochastic Differential Equation (SDE). Our investigation reveals a significant drawback to this approach: SDE-based sampling introduces pronounced noise artifacts in the generated images, which we found to be detrimental to the reward learning process. A rigorous theoretical analysis traces the origin of this noise to an excess of stochasticity injected during inference. To address this, we draw inspiration from Denoising Diffusion Implicit Models (DDIM) to reformulate the sampling process. Our proposed method, Coefficients-Preserving Sampling (CPS), eliminates these noise artifacts. This leads to more accurate reward modeling, ultimately enabling faster and more stable convergence for reinforcement learning-based optimizers like Flow-GRPO and Dance-GRPO. Code will be released at https://github.com/IamCreateAI/FlowCPS
Authors:Jun-Kun Chen, Aayush Bansal, Minh Phuoc Vo, Yu-Xiong Wang
Abstract:
We introduce the Virtual Fitting Room (VFR), a novel video generative model that produces arbitrarily long virtual try-on videos. Our VFR models long video generation tasks as an auto-regressive, segment-by-segment generation process, eliminating the need for resource-intensive generation and lengthy video data, while providing the flexibility to generate videos of arbitrary length. The key challenges of this task are twofold: ensuring local smoothness between adjacent segments and maintaining global temporal consistency across different segments. To address these challenges, we propose our VFR framework, which ensures smoothness through a prefix video condition and enforces consistency with the anchor video -- a 360-degree video that comprehensively captures the human's wholebody appearance. Our VFR generates minute-scale virtual try-on videos with both local smoothness and global temporal consistency under various motions, making it a pioneering work in long virtual try-on video generation.
Authors:Haiwei Xue, Xiangyang Luo, Zhanghao Hu, Xin Zhang, Xunzhi Xiang, Yuqin Dai, Jianzhuang Liu, Zhensong Zhang, Minglei Li, Jian Yang, Fei Ma, Zhiyong Wu, Changpeng Yang, Zonghong Dai, Fei Richard Yu
Abstract:
Human motion video generation has garnered significant research interest due to its broad applications, enabling innovations such as photorealistic singing heads or dynamic avatars that seamlessly dance to music. However, existing surveys in this field focus on individual methods, lacking a comprehensive overview of the entire generative process. This paper addresses this gap by providing an in-depth survey of human motion video generation, encompassing over ten sub-tasks, and detailing the five key phases of the generation process: input, motion planning, motion video generation, refinement, and output. Notably, this is the first survey that discusses the potential of large language models in enhancing human motion video generation. Our survey reviews the latest developments and technological trends in human motion video generation across three primary modalities: vision, text, and audio. By covering over two hundred papers, we offer a thorough overview of the field and highlight milestone works that have driven significant technological breakthroughs. Our goal for this survey is to unveil the prospects of human motion video generation and serve as a valuable resource for advancing the comprehensive applications of digital humans. A complete list of the models examined in this survey is available in Our Repository https://github.com/Winn1y/Awesome-Human-Motion-Video-Generation.
Authors:Yuqing Chen, Junjie Wang, Lin Liu, Ruihang Chu, Xiaopeng Zhang, Qi Tian, Yujiu Yang
Abstract:
Diffusion models have recently advanced video editing, yet controllable editing remains challenging due to the need for precise manipulation of diverse object properties. Current methods require different control signal for diverse editing tasks, which complicates model design and demands significant training resources. To address this, we propose O-DisCo-Edit, a unified framework that incorporates a novel object distortion control (O-DisCo). This signal, based on random and adaptive noise, flexibly encapsulates a wide range of editing cues within a single representation. Paired with a "copy-form" preservation module for preserving non-edited regions, O-DisCo-Edit enables efficient, high-fidelity editing through an effective training paradigm. Extensive experiments and comprehensive human evaluations consistently demonstrate that O-DisCo-Edit surpasses both specialized and multitask state-of-the-art methods across various video editing tasks. https://cyqii.github.io/O-DisCo-Edit.github.io/
Authors:Jiayi Gao, Changcheng Hua, Qingchao Chen, Yuxin Peng, Yang Liu
Abstract:
Identity-preserving text-to-video (IPT2V) generation creates videos faithful to both a reference subject image and a text prompt. While fine-tuning large pretrained video diffusion models on ID-matched data achieves state-of-the-art results on IPT2V, data scarcity and high tuning costs hinder broader improvement. We thus introduce a Training-Free Prompt, Image, and Guidance Enhancement (TPIGE) framework that bridges the semantic gap between the video description and the reference image and design sampling guidance that enhances identity preservation and video quality, achieving performance gains at minimal cost.Specifically, we first propose Face Aware Prompt Enhancement, using GPT-4o to enhance the text prompt with facial details derived from the reference image. We then propose Prompt Aware Reference Image Enhancement, leveraging an identity-preserving image generator to refine the reference image, rectifying conflicts with the text prompt. The above mutual refinement significantly improves input quality before video generation. Finally, we propose ID-Aware Spatiotemporal Guidance Enhancement, utilizing unified gradients to optimize identity preservation and video quality jointly during generation.Our method outperforms prior work and is validated by automatic and human evaluations on a 1000 video test set, winning first place in the ACM Multimedia 2025 Identity-Preserving Video Generation Challenge, demonstrating state-of-the-art performance and strong generality. The code is available at https://github.com/Andyplus1/IPT2V.git.
Authors:Lingzhou Mu, Qiang Wang, Fan Jiang, Mengchao Wang, Yaqi Fan, Mu Xu, Kai Zhang
Abstract:
Human-Scene Interaction (HSI) seeks to generate realistic human behaviors within complex environments, yet it faces significant challenges in handling long-horizon, high-level tasks and generalizing to unseen scenes. To address these limitations, we introduce FantasyHSI, a novel HSI framework centered on video generation and multi-agent systems that operates without paired data. We model the complex interaction process as a dynamic directed graph, upon which we build a collaborative multi-agent system. This system comprises a scene navigator agent for environmental perception and high-level path planning, and a planning agent that decomposes long-horizon goals into atomic actions. Critically, we introduce a critic agent that establishes a closed-loop feedback mechanism by evaluating the deviation between generated actions and the planned path. This allows for the dynamic correction of trajectory drifts caused by the stochasticity of the generative model, thereby ensuring long-term logical consistency. To enhance the physical realism of the generated motions, we leverage Direct Preference Optimization (DPO) to train the action generator, significantly reducing artifacts such as limb distortion and foot-sliding. Extensive experiments on our custom SceneBench benchmark demonstrate that FantasyHSI significantly outperforms existing methods in terms of generalization, long-horizon task completion, and physical realism. Ours project page: https://fantasy-amap.github.io/fantasy-hsi/
Authors:Xurui Peng, Hong Liu, Chenqian Yan, Rui Ma, Fangmin Chen, Xing Wang, Zhihua Wu, Songwei Liu, Mingbao Lin
Abstract:
Diffusion models suffer from substantial computational overhead due to their inherently iterative inference process. While feature caching offers a promising acceleration strategy by reusing intermediate outputs across timesteps, naive reuse often incurs noticeable quality degradation. In this work, we formally analyze the cumulative error introduced by caching and decompose it into two principal components: feature shift error, caused by inaccuracies in cached outputs, and step amplification error, which arises from error propagation under fixed timestep schedules. To address these issues, we propose ERTACache, a principled caching framework that jointly rectifies both error types. Our method employs an offline residual profiling stage to identify reusable steps, dynamically adjusts integration intervals via a trajectory-aware correction coefficient, and analytically approximates cache-induced errors through a closed-form residual linearization model. Together, these components enable accurate and efficient sampling under aggressive cache reuse. Extensive experiments across standard image and video generation benchmarks show that ERTACache achieves up to 2x inference speedup while consistently preserving or even improving visual quality. Notably, on the state-of-the-art Wan2.1 video diffusion model, ERTACache delivers 2x acceleration with minimal VBench degradation, effectively maintaining baseline fidelity while significantly improving efficiency. The code is available at https://github.com/bytedance/ERTACache.
Authors:Shengqu Cai, Ceyuan Yang, Lvmin Zhang, Yuwei Guo, Junfei Xiao, Ziyan Yang, Yinghao Xu, Zhenheng Yang, Alan Yuille, Leonidas Guibas, Maneesh Agrawala, Lu Jiang, Gordon Wetzstein
Abstract:
Long video generation is fundamentally a long context memory problem: models must retain and retrieve salient events across a long range without collapsing or drifting. However, scaling diffusion transformers to generate long-context videos is fundamentally limited by the quadratic cost of self-attention, which makes memory and computation intractable and difficult to optimize for long sequences. We recast long-context video generation as an internal information retrieval task and propose a simple, learnable sparse attention routing module, Mixture of Contexts (MoC), as an effective long-term memory retrieval engine. In MoC, each query dynamically selects a few informative chunks plus mandatory anchors (caption, local windows) to attend to, with causal routing that prevents loop closures. As we scale the data and gradually sparsify the routing, the model allocates compute to salient history, preserving identities, actions, and scenes over minutes of content. Efficiency follows as a byproduct of retrieval (near-linear scaling), which enables practical training and synthesis, and the emergence of memory and consistency at the scale of minutes.
Authors:Ming Chen, Liyuan Cui, Wenyuan Zhang, Haoxian Zhang, Yan Zhou, Xiaohan Li, Songlin Tang, Jiwen Liu, Borui Liao, Hejia Chen, Xiaoqiang Liu, Pengfei Wan
Abstract:
Recently, interactive digital human video generation has attracted widespread attention and achieved remarkable progress. However, building such a practical system that can interact with diverse input signals in real time remains challenging to existing methods, which often struggle with heavy computational cost and limited controllability. In this work, we introduce an autoregressive video generation framework that enables interactive multimodal control and low-latency extrapolation in a streaming manner. With minimal modifications to a standard large language model (LLM), our framework accepts multimodal condition encodings including audio, pose, and text, and outputs spatially and semantically coherent representations to guide the denoising process of a diffusion head. To support this, we construct a large-scale dialogue dataset of approximately 20,000 hours from multiple sources, providing rich conversational scenarios for training. We further introduce a deep compression autoencoder with up to 64$\times$ reduction ratio, which effectively alleviates the long-horizon inference burden of the autoregressive model. Extensive experiments on duplex conversation, multilingual human synthesis, and interactive world model highlight the advantages of our approach in low latency, high efficiency, and fine-grained multimodal controllability.
Authors:Haitang Feng, Jie Liu, Jie Tang, Gangshan Wu, Beiqi Chen, Jianhuang Lai, Guangcong Wang
Abstract:
3D inpainting often relies on multi-view 2D image inpainting, where the inherent inconsistencies across different inpainted views can result in blurred textures, spatial discontinuities, and distracting visual artifacts. These inconsistencies pose significant challenges when striving for accurate and realistic 3D object completion, particularly in applications that demand high fidelity and structural coherence. To overcome these limitations, we propose ObjFiller-3D, a novel method designed for the completion and editing of high-quality and consistent 3D objects. Instead of employing a conventional 2D image inpainting model, our approach leverages a curated selection of state-of-the-art video editing model to fill in the masked regions of 3D objects. We analyze the representation gap between 3D and videos, and propose an adaptation of a video inpainting model for 3D scene inpainting. In addition, we introduce a reference-based 3D inpainting method to further enhance the quality of reconstruction. Experiments across diverse datasets show that compared to previous methods, ObjFiller-3D produces more faithful and fine-grained reconstructions (PSNR of 26.6 vs. NeRFiller (15.9) and LPIPS of 0.19 vs. Instant3dit (0.25)). Moreover, it demonstrates strong potential for practical deployment in real-world 3D editing applications. Project page: https://objfiller3d.github.io/ Code: https://github.com/objfiller3d/ObjFiller-3D .
Authors:Haoyu Wang, Hao Tang, Donglin Di, Zhilu Zhang, Wangmeng Zuo, Feng Gao, Siwei Ma, Shiliang Zhang
Abstract:
Generating human videos with consistent motion from text prompts remains a significant challenge, particularly for whole-body or long-range motion. Existing video generation models prioritize appearance fidelity, resulting in unrealistic or physically implausible human movements with poor structural coherence. Additionally, most existing human video datasets primarily focus on facial or upper-body motions, or consist of vertically oriented dance videos, limiting the scope of corresponding generation methods to simple movements. To overcome these challenges, we propose MoCo, which decouples the process of human video generation into two components: structure generation and appearance generation. Specifically, our method first employs an efficient 3D structure generator to produce a human motion sequence from a text prompt. The remaining video appearance is then synthesized under the guidance of the generated structural sequence. To improve fine-grained control over sparse human structures, we introduce Human-Aware Dynamic Control modules and integrate dense tracking constraints during training. Furthermore, recognizing the limitations of existing datasets, we construct a large-scale whole-body human video dataset featuring complex and diverse motions. Extensive experiments demonstrate that MoCo outperforms existing approaches in generating realistic and structurally coherent human videos.
Authors:Sizhe Shan, Qiulin Li, Yutao Cui, Miles Yang, Yuehai Wang, Qun Yang, Jin Zhou, Zhao Zhong
Abstract:
Recent advances in video generation produce visually realistic content, yet the absence of synchronized audio severely compromises immersion. To address key challenges in video-to-audio generation, including multimodal data scarcity, modality imbalance and limited audio quality in existing methods, we propose HunyuanVideo-Foley, an end-to-end text-video-to-audio framework that synthesizes high-fidelity audio precisely aligned with visual dynamics and semantic context. Our approach incorporates three core innovations: (1) a scalable data pipeline curating 100k-hour multimodal datasets through automated annotation; (2) a representation alignment strategy using self-supervised audio features to guide latent diffusion training, efficiently improving audio quality and generation stability; (3) a novel multimodal diffusion transformer resolving modal competition, containing dual-stream audio-video fusion through joint attention, and textual semantic injection via cross-attention. Comprehensive evaluations demonstrate that HunyuanVideo-Foley achieves new state-of-the-art performance across audio fidelity, visual-semantic alignment, temporal alignment and distribution matching. The demo page is available at: https://szczesnys.github.io/hunyuanvideo-foley/.
Authors:Yijun Liu, Yuwei Liu, Yuan Meng, Jieheng Zhang, Yuwei Zhou, Ye Li, Jiacheng Jiang, Kangye Ji, Shijia Ge, Zhi Wang, Wenwu Zhu
Abstract:
Vision-centric hierarchical embodied models have demonstrated strong potential for long-horizon robotic control. However, existing methods lack spatial awareness capabilities, limiting their effectiveness in bridging visual plans to actionable control in complex environments. To address this problem, we propose Spatial Policy (SP), a unified spatial-aware visuomotor robotic manipulation framework via explicit spatial modeling and reasoning. Specifically, we first design a spatial-conditioned embodied video generation module to model spatially guided predictions through a spatial plan table. Then, we propose a spatial-based action prediction module to infer executable actions with coordination. Finally, we propose a spatial reasoning feedback policy to refine the spatial plan table via dual-stage replanning. Extensive experiments show that SP significantly outperforms state-of-the-art baselines, achieving a 33.0% average improvement over the best baseline. With an 86.7% average success rate across 11 diverse tasks, SP substantially enhances the practicality of embodied models for robotic control applications. Code and checkpoints are maintained at https://plantpotatoonmoon.github.io/SpatialPolicy/.
Authors:Haonan Qiu, Ning Yu, Ziqi Huang, Paul Debevec, Ziwei Liu
Abstract:
Visual diffusion models achieve remarkable progress, yet they are typically trained at limited resolutions due to the lack of high-resolution data and constrained computation resources, hampering their ability to generate high-fidelity images or videos at higher resolutions. Recent efforts have explored tuning-free strategies to exhibit the untapped potential higher-resolution visual generation of pre-trained models. However, these methods are still prone to producing low-quality visual content with repetitive patterns. The key obstacle lies in the inevitable increase in high-frequency information when the model generates visual content exceeding its training resolution, leading to undesirable repetitive patterns deriving from the accumulated errors. In this work, we propose CineScale, a novel inference paradigm to enable higher-resolution visual generation. To tackle the various issues introduced by the two types of video generation architectures, we propose dedicated variants tailored to each. Unlike existing baseline methods that are confined to high-resolution T2I and T2V generation, CineScale broadens the scope by enabling high-resolution I2V and V2V synthesis, built atop state-of-the-art open-source video generation frameworks. Extensive experiments validate the superiority of our paradigm in extending the capabilities of higher-resolution visual generation for both image and video models. Remarkably, our approach enables 8k image generation without any fine-tuning, and achieves 4k video generation with only minimal LoRA fine-tuning. Generated video samples are available at our website: https://eyeline-labs.github.io/CineScale/.
Authors:Gaurav Parmar, Or Patashnik, Daniil Ostashev, Kuan-Chieh Wang, Kfir Aberman, Srinivasa Narasimhan, Jun-Yan Zhu
Abstract:
Generative models typically sample outputs independently, and recent inference-time guidance and scaling algorithms focus on improving the quality of individual samples. However, in real-world applications, users are often presented with a set of multiple images (e.g., 4-8) for each prompt, where independent sampling tends to lead to redundant results, limiting user choices and hindering idea exploration. In this work, we introduce a scalable group inference method that improves both the diversity and quality of a group of samples. We formulate group inference as a quadratic integer assignment problem: candidate outputs are modeled as graph nodes, and a subset is selected to optimize sample quality (unary term) while maximizing group diversity (binary term). To substantially improve runtime efficiency, we progressively prune the candidate set using intermediate predictions, allowing our method to scale up to large candidate sets. Extensive experiments show that our method significantly improves group diversity and quality compared to independent sampling baselines and recent inference algorithms. Our framework generalizes across a wide range of tasks, including text-to-image, image-to-image, image prompting, and video generation, enabling generative models to treat multiple outputs as cohesive groups rather than independent samples.
Authors:Yifu Zhang, Hao Yang, Yuqi Zhang, Yifei Hu, Fengda Zhu, Chuang Lin, Xiaofeng Mei, Yi Jiang, Bingyue Peng, Zehuan Yuan
Abstract:
We present Waver, a high-performance foundation model for unified image and video generation. Waver can directly generate videos with durations ranging from 5 to 10 seconds at a native resolution of 720p, which are subsequently upscaled to 1080p. The model simultaneously supports text-to-video (T2V), image-to-video (I2V), and text-to-image (T2I) generation within a single, integrated framework. We introduce a Hybrid Stream DiT architecture to enhance modality alignment and accelerate training convergence. To ensure training data quality, we establish a comprehensive data curation pipeline and manually annotate and train an MLLM-based video quality model to filter for the highest-quality samples. Furthermore, we provide detailed training and inference recipes to facilitate the generation of high-quality videos. Building on these contributions, Waver excels at capturing complex motion, achieving superior motion amplitude and temporal consistency in video synthesis. Notably, it ranks among the Top 3 on both the T2V and I2V leaderboards at Artificial Analysis (data as of 2025-07-30 10:00 GMT+8), consistently outperforming existing open-source models and matching or surpassing state-of-the-art commercial solutions. We hope this technical report will help the community more efficiently train high-quality video generation models and accelerate progress in video generation technologies. Official page: https://github.com/FoundationVision/Waver.
Authors:Zhiheng Liu, Xueqing Deng, Shoufa Chen, Angtian Wang, Qiushan Guo, Mingfei Han, Zeyue Xue, Mengzhao Chen, Ping Luo, Linjie Yang
Abstract:
Generative video modeling has made significant strides, yet ensuring structural and temporal consistency over long sequences remains a challenge. Current methods predominantly rely on RGB signals, leading to accumulated errors in object structure and motion over extended durations. To address these issues, we introduce WorldWeaver, a robust framework for long video generation that jointly models RGB frames and perceptual conditions within a unified long-horizon modeling scheme. Our training framework offers three key advantages. First, by jointly predicting perceptual conditions and color information from a unified representation, it significantly enhances temporal consistency and motion dynamics. Second, by leveraging depth cues, which we observe to be more resistant to drift than RGB, we construct a memory bank that preserves clearer contextual information, improving quality in long-horizon video generation. Third, we employ segmented noise scheduling for training prediction groups, which further mitigates drift and reduces computational cost. Extensive experiments on both diffusion- and rectified flow-based models demonstrate the effectiveness of WorldWeaver in reducing temporal drift and improving the fidelity of generated videos.
Authors:Zichi Liu, Yinggui Wang, Tao Wei, Chao Ma
Abstract:
Editing long videos remains a challenging task due to the need for maintaining both global consistency and temporal coherence across thousands of frames. Existing methods often suffer from structural drift or temporal artifacts, particularly in minute-long sequences. We introduce AnchorSync, a novel diffusion-based framework that enables high-quality, long-term video editing by decoupling the task into sparse anchor frame editing and smooth intermediate frame interpolation. Our approach enforces structural consistency through a progressive denoising process and preserves temporal dynamics via multimodal guidance. Extensive experiments show that AnchorSync produces coherent, high-fidelity edits, surpassing prior methods in visual quality and temporal stability.
Authors:Haoran Bai, Xiaoxu Chen, Canqian Yang, Zongyao He, Sibin Deng, Ying Chen
Abstract:
We present Vivid-VR, a DiT-based generative video restoration method built upon an advanced T2V foundation model, where ControlNet is leveraged to control the generation process, ensuring content consistency. However, conventional fine-tuning of such controllable pipelines frequently suffers from distribution drift due to limitations in imperfect multimodal alignment, resulting in compromised texture realism and temporal coherence. To tackle this challenge, we propose a concept distillation training strategy that utilizes the pretrained T2V model to synthesize training samples with embedded textual concepts, thereby distilling its conceptual understanding to preserve texture and temporal quality. To enhance generation controllability, we redesign the control architecture with two key components: 1) a control feature projector that filters degradation artifacts from input video latents to minimize their propagation through the generation pipeline, and 2) a new ControlNet connector employing a dual-branch design. This connector synergistically combines MLP-based feature mapping with cross-attention mechanism for dynamic control feature retrieval, enabling both content preservation and adaptive control signal modulation. Extensive experiments show that Vivid-VR performs favorably against existing approaches on both synthetic and real-world benchmarks, as well as AIGC videos, achieving impressive texture realism, visual vividness, and temporal consistency. The codes and checkpoints are publicly available at https://github.com/csbhr/Vivid-VR.
Authors:Yuang Wang, Chao Wen, Haoyu Guo, Sida Peng, Minghan Qin, Hujun Bao, Xiaowei Zhou, Ruizhen Hu
Abstract:
We present visual action prompts, a unified action representation for action-to-video generation of complex high-DoF interactions while maintaining transferable visual dynamics across domains. Action-driven video generation faces a precision-generality trade-off: existing methods using text, primitive actions, or coarse masks offer generality but lack precision, while agent-centric action signals provide precision at the cost of cross-domain transferability. To balance action precision and dynamic transferability, we propose to "render" actions into precise visual prompts as domain-agnostic representations that preserve both geometric precision and cross-domain adaptability for complex actions; specifically, we choose visual skeletons for their generality and accessibility. We propose robust pipelines to construct skeletons from two interaction-rich data sources - human-object interactions (HOI) and dexterous robotic manipulation - enabling cross-domain training of action-driven generative models. By integrating visual skeletons into pretrained video generation models via lightweight fine-tuning, we enable precise action control of complex interaction while preserving the learning of cross-domain dynamics. Experiments on EgoVid, RT-1 and DROID demonstrate the effectiveness of our proposed approach. Project page: https://zju3dv.github.io/VAP/.
Authors:Qirui Li, Guangcong Zheng, Qi Zhao, Jie Li, Bin Dong, Yiwu Yao, Xi Li
Abstract:
The computational demands of self-attention mechanisms pose a critical challenge for transformer-based video generation, particularly in synthesizing ultra-long sequences. Current approaches, such as factorized attention and fixed sparse patterns, fail to fully exploit the inherent spatio-temporal redundancies in video data. Through systematic analysis of video diffusion transformers (DiT), we uncover a key insight: Attention matrices exhibit structured, yet heterogeneous sparsity patterns, where specialized heads dynamically attend to distinct spatiotemporal regions (e.g., local pattern, cross-shaped pattern, or global pattern). Existing sparse attention methods either impose rigid constraints or introduce significant overhead, limiting their effectiveness. To address this, we propose Compact Attention, a hardware-aware acceleration framework featuring three innovations: 1) Adaptive tiling strategies that approximate diverse spatial interaction patterns via dynamic tile grouping, 2) Temporally varying windows that adjust sparsity levels based on frame proximity, and 3) An automated configuration search algorithm that optimizes sparse patterns while preserving critical attention pathways. Our method achieves 1.6~2.5x acceleration in attention computation on single-GPU setups while maintaining comparable visual quality with full-attention baselines. This work provides a principled approach to unlocking efficient long-form video generation through structured sparsity exploitation. Project Page: https://yo-ava.github.io/Compact-Attention.github.io/
Authors:Ke Xing, Hanwen Liang, Dejia Xu, Yuyang Yin, Konstantinos N. Plataniotis, Yao Zhao, Yunchao Wei
Abstract:
With the rapid advancement and widespread adoption of VR/AR technologies, there is a growing demand for the creation of high-quality, immersive dynamic scenes. However, existing generation works predominantly concentrate on the creation of static scenes or narrow perspective-view dynamic scenes, falling short of delivering a truly 360-degree immersive experience from any viewpoint. In this paper, we introduce \textbf{TiP4GEN}, an advanced text-to-dynamic panorama scene generation framework that enables fine-grained content control and synthesizes motion-rich, geometry-consistent panoramic 4D scenes. TiP4GEN integrates panorama video generation and dynamic scene reconstruction to create 360-degree immersive virtual environments. For video generation, we introduce a \textbf{Dual-branch Generation Model} consisting of a panorama branch and a perspective branch, responsible for global and local view generation, respectively. A bidirectional cross-attention mechanism facilitates comprehensive information exchange between the branches. For scene reconstruction, we propose a \textbf{Geometry-aligned Reconstruction Model} based on 3D Gaussian Splatting. By aligning spatial-temporal point clouds using metric depth maps and initializing scene cameras with estimated poses, our method ensures geometric consistency and temporal coherence for the reconstructed scenes. Extensive experiments demonstrate the effectiveness of our proposed designs and the superiority of TiP4GEN in generating visually compelling and motion-coherent dynamic panoramic scenes. Our project page is at https://ke-xing.github.io/TiP4GEN/.
Authors:Haomin Zhang, Kristin Qi, Shuxin Yang, Zihao Chen, Chaofan Ding, Xinhan Di
Abstract:
Generating high-quality and temporally synchronized audio from video content is essential for video editing and post-production tasks, enabling the creation of semantically aligned audio for silent videos. However, most existing approaches focus on short-form audio generation for video segments under 10 seconds or rely on noisy datasets for long-form video-to-audio zsynthesis. To address these limitations, we introduce LD-LAudio-V1, an extension of state-of-the-art video-to-audio models and it incorporates dual lightweight adapters to enable long-form audio generation. In addition, we release a clean and human-annotated video-to-audio dataset that contains pure sound effects without noise or artifacts. Our method significantly reduces splicing artifacts and temporal inconsistencies while maintaining computational efficiency. Compared to direct fine-tuning with short training videos, LD-LAudio-V1 achieves significant improvements across multiple metrics: $FD_{\text{passt}}$ 450.00 $\rightarrow$ 327.29 (+27.27%), $FD_{\text{panns}}$ 34.88 $\rightarrow$ 22.68 (+34.98%), $FD_{\text{vgg}}$ 3.75 $\rightarrow$ 1.28 (+65.87%), $KL_{\text{panns}}$ 2.49 $\rightarrow$ 2.07 (+16.87%), $KL_{\text{passt}}$ 1.78 $\rightarrow$ 1.53 (+14.04%), $IS_{\text{panns}}$ 4.17 $\rightarrow$ 4.30 (+3.12%), $IB_{\text{score}}$ 0.25 $\rightarrow$ 0.28 (+12.00%), $Energy\Delta10\text{ms}$ 0.3013 $\rightarrow$ 0.1349 (+55.23%), $Energy\Delta10\text{ms(vs.GT)}$ 0.0531 $\rightarrow$ 0.0288 (+45.76%), and $Sem.\,Rel.$ 2.73 $\rightarrow$ 3.28 (+20.15%). Our dataset aims to facilitate further research in long-form video-to-audio generation and is available at https://github.com/deepreasonings/long-form-video2audio.
Authors:Kelin Yu, Sheng Zhang, Harshit Soora, Furong Huang, Heng Huang, Pratap Tokekar, Ruohan Gao
Abstract:
Recent advances have shown that video generation models can enhance robot learning by deriving effective robot actions through inverse dynamics. However, these methods heavily depend on the quality of generated data and struggle with fine-grained manipulation due to the lack of environment feedback. While video-based reinforcement learning improves policy robustness, it remains constrained by the uncertainty of video generation and the challenges of collecting large-scale robot datasets for training diffusion models. To address these limitations, we propose GenFlowRL, which derives shaped rewards from generated flow trained from diverse cross-embodiment datasets. This enables learning generalizable and robust policies from diverse demonstrations using low-dimensional, object-centric features. Experiments on 10 manipulation tasks, both in simulation and real-world cross-embodiment evaluations, demonstrate that GenFlowRL effectively leverages manipulation features extracted from generated object-centric flow, consistently achieving superior performance across diverse and challenging scenarios. Our Project Page: https://colinyu1.github.io/genflowrl
Authors:Wenqi Guo, Shan Du
Abstract:
We introduce Value Sign Flip (VSF), a simple and efficient method for incorporating negative prompt guidance in few-step diffusion and flow-matching image generation models. Unlike existing approaches such as classifier-free guidance (CFG), NASA, and NAG, VSF dynamically suppresses undesired content by flipping the sign of attention values from negative prompts. Our method requires only small computational overhead and integrates effectively with MMDiT-style architectures such as Stable Diffusion 3.5 Turbo, as well as cross-attention-based models like Wan. We validate VSF on challenging datasets with complex prompt pairs and demonstrate superior performance in both static image and video generation tasks. Experimental results show that VSF significantly improves negative prompt adherence compared to prior methods in few-step models, and even CFG in non-few-step models, while maintaining competitive image quality. Code and ComfyUI node are available in https://github.com/weathon/VSF/tree/main.
Authors:Harold Haodong Chen, Haojian Huang, Qifeng Chen, Harry Yang, Ser-Nam Lim
Abstract:
Recent advancements in video generation have enabled the creation of high-quality, visually compelling videos. However, generating videos that adhere to the laws of physics remains a critical challenge for applications requiring realism and accuracy. In this work, we propose PhysHPO, a novel framework for Hierarchical Cross-Modal Direct Preference Optimization, to tackle this challenge by enabling fine-grained preference alignment for physically plausible video generation. PhysHPO optimizes video alignment across four hierarchical granularities: a) Instance Level, aligning the overall video content with the input prompt; b) State Level, ensuring temporal consistency using boundary frames as anchors; c) Motion Level, modeling motion trajectories for realistic dynamics; and d) Semantic Level, maintaining logical consistency between narrative and visuals. Recognizing that real-world videos are the best reflections of physical phenomena, we further introduce an automated data selection pipeline to efficiently identify and utilize "good data" from existing large-scale text-video datasets, thereby eliminating the need for costly and time-intensive dataset construction. Extensive experiments on both physics-focused and general capability benchmarks demonstrate that PhysHPO significantly improves physical plausibility and overall video generation quality of advanced models. To the best of our knowledge, this is the first work to explore fine-grained preference alignment and data selection for video generation, paving the way for more realistic and human-preferred video generation paradigms.
Authors:Yaohui Wang, Di Yang, Xinyuan Chen, Francois Bremond, Yu Qiao, Antitza Dantcheva
Abstract:
We introduce LIA-X, a novel interpretable portrait animator designed to transfer facial dynamics from a driving video to a source portrait with fine-grained control. LIA-X is an autoencoder that models motion transfer as a linear navigation of motion codes in latent space. Crucially, it incorporates a novel Sparse Motion Dictionary that enables the model to disentangle facial dynamics into interpretable factors. Deviating from previous 'warp-render' approaches, the interpretability of the Sparse Motion Dictionary allows LIA-X to support a highly controllable 'edit-warp-render' strategy, enabling precise manipulation of fine-grained facial semantics in the source portrait. This helps to narrow initial differences with the driving video in terms of pose and expression. Moreover, we demonstrate the scalability of LIA-X by successfully training a large-scale model with approximately 1 billion parameters on extensive datasets. Experimental results show that our proposed method outperforms previous approaches in both self-reenactment and cross-reenactment tasks across several benchmarks. Additionally, the interpretable and controllable nature of LIA-X supports practical applications such as fine-grained, user-guided image and video editing, as well as 3D-aware portrait video manipulation.
Authors:Zijian Song, Sihan Qin, Tianshui Chen, Liang Lin, Guangrun Wang
Abstract:
The scarcity of manipulation data has motivated the use of pretrained large models from other modalities in robotics. In this work, we build upon autoregressive video generation models to propose a Physical Autoregressive Model (PAR), where physical tokens combine frames and actions to represent the joint evolution of the robot and its environment. PAR leverages the world knowledge embedded in video pretraining to understand physical dynamics without requiring action pretraining, enabling accurate video prediction and consistent action trajectories. It also adopts a DiT-based de-tokenizer to model frames and actions as continuous tokens, mitigating quantization errors and facilitating mutual enhancement. Furthermore, we incorporate a causal mask with inverse kinematics, parallel training, and the KV-cache mechanism to further improve performance and efficiency. Experiments on the ManiSkill benchmark show that PAR achieves a 100\% success rate on the PushCube task, matches the performance of action-pretrained baselines on other tasks, and accurately predicts future videos with tightly aligned action trajectories. These findings underscore a promising direction for robotic manipulation by transferring world knowledge from autoregressive video pretraining. The project page is here: https://hcplab-sysu.github.io/PhysicalAutoregressiveModel/
Authors:Jingwei Liu, Ling Yang, Hao Luo, Fan Wang, Hongyan Li, Mengdi Wang
Abstract:
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/Gen-Verse/Paper2Video
Authors:Yuji Wang, Moran Li, Xiaobin Hu, Ran Yi, Jiangning Zhang, Chengming Xu, Weijian Cao, Yabiao Wang, Chengjie Wang, Lizhuang Ma
Abstract:
Current video generation models struggle with identity preservation under large facial angles, primarily facing two challenges: the difficulty in exploring an effective mechanism to integrate identity features into DiT structure, and the lack of targeted coverage of large facial angles in existing open-source video datasets. To address these, we present two key innovations. First, we introduce a Mixture of Facial Experts (MoFE) that dynamically combines complementary cues from three specialized experts, each designed to capture distinct but mutually reinforcing aspects of facial attributes. The identity expert captures cross-pose identity-sensitive features, the semantic expert extracts high-level visual semantxics, and the detail expert preserves pixel-level features (e.g., skin texture, color gradients). Furthermore, to mitigate dataset limitations, we have tailored a data processing pipeline centered on two key aspects: Face Constraints and Identity Consistency. Face Constraints ensure facial angle diversity and a high proportion of facial regions, while Identity Consistency preserves coherent person-specific features across temporal sequences, collectively addressing the scarcity of large facial angles and identity-stable training data in existing datasets. Leveraging this pipeline, we have curated and refined a Large Face Angles (LFA) Dataset from existing open-source human video datasets, comprising 460K video clips with annotated facial angles. Experimental results on the LFA benchmark demonstrate that our method, empowered by the LFA dataset, significantly outperforms prior SOTA methods in face similarity, face FID, and CLIP semantic alignment. The code and dataset will be made publicly available at https://github.com/rain152/LFA-Video-Generation.
Authors:Deheng Ye, Fangyun Zhou, Jiacheng Lv, Jianqi Ma, Jun Zhang, Junyan Lv, Junyou Li, Minwen Deng, Mingyu Yang, Qiang Fu, Wei Yang, Wenkai Lv, Yangbin Yu, Yewen Wang, Yonghang Guan, Zhihao Hu, Zhongbin Fang, Zhongqian Sun
Abstract:
We present Yan, a foundational framework for interactive video generation, covering the entire pipeline from simulation and generation to editing. Specifically, Yan comprises three core modules. AAA-level Simulation: We design a highly-compressed, low-latency 3D-VAE coupled with a KV-cache-based shift-window denoising inference process, achieving real-time 1080P/60FPS interactive simulation. Multi-Modal Generation: We introduce a hierarchical autoregressive caption method that injects game-specific knowledge into open-domain multi-modal video diffusion models (VDMs), then transforming the VDM into a frame-wise, action-controllable, real-time infinite interactive video generator. Notably, when the textual and visual prompts are sourced from different domains, the model demonstrates strong generalization, allowing it to blend and compose the style and mechanics across domains flexibly according to user prompts. Multi-Granularity Editing: We propose a hybrid model that explicitly disentangles interactive mechanics simulation from visual rendering, enabling multi-granularity video content editing during interaction through text. Collectively, Yan offers an integration of these modules, pushing interactive video generation beyond isolated capabilities toward a comprehensive AI-driven interactive creation paradigm, paving the way for the next generation of creative tools, media, and entertainment. The project page is: https://greatx3.github.io/Yan/.
Authors:Jingyun Liang, Jingkai Zhou, Shikai Li, Chenjie Cao, Lei Sun, Yichen Qian, Weihua Chen, Fan Wang
Abstract:
Generating human videos with realistic and controllable motions is a challenging task. While existing methods can generate visually compelling videos, they lack separate control over four key video elements: foreground subject, background video, human trajectory and action patterns. In this paper, we propose a decomposed human motion control and video generation framework that explicitly decouples motion from appearance, subject from background, and action from trajectory, enabling flexible mix-and-match composition of these elements. Concretely, we first build a ground-aware 3D world coordinate system and perform motion editing directly in the 3D space. Trajectory control is implemented by unprojecting edited 2D trajectories into 3D with focal-length calibration and coordinate transformation, followed by speed alignment and orientation adjustment; actions are supplied by a motion bank or generated via text-to-motion methods. Then, based on modern text-to-video diffusion transformer models, we inject the subject as tokens for full attention, concatenate the background along the channel dimension, and add motion (trajectory and action) control signals by addition. Such a design opens up the possibility for us to generate realistic videos of anyone doing anything anywhere. Extensive experiments on benchmark datasets and real-world cases demonstrate that our method achieves state-of-the-art performance on both element-wise controllability and overall video quality.
Authors:Peng Dai, Feitong Tan, Qiangeng Xu, Yihua Huang, David Futschik, Ruofei Du, Sean Fanello, Yinda Zhang, Xiaojuan Qi
Abstract:
While video generation models excel at producing high-quality monocular videos, generating 3D stereoscopic and spatial videos for immersive applications remains an underexplored challenge. We present a pose-free and training-free method that leverages an off-the-shelf monocular video generation model to produce immersive 3D videos. Our approach first warps the generated monocular video into pre-defined camera viewpoints using estimated depth information, then applies a novel \textit{frame matrix} inpainting framework. This framework utilizes the original video generation model to synthesize missing content across different viewpoints and timestamps, ensuring spatial and temporal consistency without requiring additional model fine-tuning. Moreover, we develop a \dualupdate~scheme that further improves the quality of video inpainting by alleviating the negative effects propagated from disoccluded areas in the latent space. The resulting multi-view videos are then adapted into stereoscopic pairs or optimized into 4D Gaussians for spatial video synthesis. We validate the efficacy of our proposed method by conducting experiments on videos from various generative models, such as Sora, Lumiere, WALT, and Zeroscope. The experiments demonstrate that our method has a significant improvement over previous methods. Project page at: https://daipengwa.github.io/S-2VG_ProjectPage/
Authors:Xiaoyan Liu, Kangrui Li, Jiaxin Liu
Abstract:
The synthesis of spatiotemporally coherent 4D content presents fundamental challenges in computer vision, requiring simultaneous modeling of high-fidelity spatial representations and physically plausible temporal dynamics. Current approaches often struggle to maintain view consistency while handling complex scene dynamics, particularly in large-scale environments with multiple interacting elements. This work introduces Dream4D, a novel framework that bridges this gap through a synergy of controllable video generation and neural 4D reconstruction. Our approach seamlessly combines a two-stage architecture: it first predicts optimal camera trajectories from a single image using few-shot learning, then generates geometrically consistent multi-view sequences via a specialized pose-conditioned diffusion process, which are finally converted into a persistent 4D representation. This framework is the first to leverage both rich temporal priors from video diffusion models and geometric awareness of the reconstruction models, which significantly facilitates 4D generation and shows higher quality (e.g., mPSNR, mSSIM) over existing methods.
Authors:Wenhui Song, Hanhui Li, Jiehui Huang, Panwen Hu, Yuhao Cheng, Long Chen, Yiqiang Yan, Xiaodan Liang
Abstract:
In this paper, we present LaVieID, a novel \underline{l}ocal \underline{a}utoregressive \underline{vi}d\underline{e}o diffusion framework designed to tackle the challenging \underline{id}entity-preserving text-to-video task. The key idea of LaVieID is to mitigate the loss of identity information inherent in the stochastic global generation process of diffusion transformers (DiTs) from both spatial and temporal perspectives. Specifically, unlike the global and unstructured modeling of facial latent states in existing DiTs, LaVieID introduces a local router to explicitly represent latent states by weighted combinations of fine-grained local facial structures. This alleviates undesirable feature interference and encourages DiTs to capture distinctive facial characteristics. Furthermore, a temporal autoregressive module is integrated into LaVieID to refine denoised latent tokens before video decoding. This module divides latent tokens temporally into chunks, exploiting their long-range temporal dependencies to predict biases for rectifying tokens, thereby significantly enhancing inter-frame identity consistency. Consequently, LaVieID can generate high-fidelity personalized videos and achieve state-of-the-art performance. Our code and models are available at https://github.com/ssugarwh/LaVieID.
Authors:Xin Ma, Yaohui Wang, Genyun Jia, Xinyuan Chen, Tien-Tsin Wong, Cunjian Chen
Abstract:
Image animation has seen significant progress, driven by the powerful generative capabilities of diffusion models. However, maintaining appearance consistency with static input images and mitigating abrupt motion transitions in generated animations remain persistent challenges. While text-to-video (T2V) generation has demonstrated impressive performance with diffusion transformer models, the image animation field still largely relies on U-Net-based diffusion models, which lag behind the latest T2V approaches. Moreover, the quadratic complexity of vanilla self-attention mechanisms in Transformers imposes heavy computational demands, making image animation particularly resource-intensive. To address these issues, we propose MiraMo, a framework designed to enhance efficiency, appearance consistency, and motion smoothness in image animation. Specifically, MiraMo introduces three key elements: (1) A foundational text-to-video architecture replacing vanilla self-attention with efficient linear attention to reduce computational overhead while preserving generation quality; (2) A novel motion residual learning paradigm that focuses on modeling motion dynamics rather than directly predicting frames, improving temporal consistency; and (3) A DCT-based noise refinement strategy during inference to suppress sudden motion artifacts, complemented by a dynamics control module to balance motion smoothness and expressiveness. Extensive experiments against state-of-the-art methods validate the superiority of MiraMo in generating consistent, smooth, and controllable animations with accelerated inference speed. Additionally, we demonstrate the versatility of MiraMo through applications in motion transfer and video editing tasks.
Authors:Qiwei Tian, Chenhao Lin, Zhengyu Zhao, Qian Li, Shuai Liu, Chao Shen
Abstract:
Thanks to the development of cross-modal models, text-to-video retrieval (T2VR) is advancing rapidly, but its robustness remains largely unexamined. Existing attacks against T2VR are designed to push videos away from queries, i.e., suppressing the ranks of videos, while the attacks that pull videos towards selected queries, i.e., promoting the ranks of videos, remain largely unexplored. These attacks can be more impactful as attackers may gain more views/clicks for financial benefits and widespread (mis)information. To this end, we pioneer the first attack against T2VR to promote videos adversarially, dubbed the Video Promotion attack (ViPro). We further propose Modal Refinement (MoRe) to capture the finer-grained, intricate interaction between visual and textual modalities to enhance black-box transferability. Comprehensive experiments cover 2 existing baselines, 3 leading T2VR models, 3 prevailing datasets with over 10k videos, evaluated under 3 scenarios. All experiments are conducted in a multi-target setting to reflect realistic scenarios where attackers seek to promote the video regarding multiple queries simultaneously. We also evaluated our attacks for defences and imperceptibility. Overall, ViPro surpasses other baselines by over $30/10/4\%$ for white/grey/black-box settings on average. Our work highlights an overlooked vulnerability, provides a qualitative analysis on the upper/lower bound of our attacks, and offers insights into potential counterplays. Code will be publicly available at https://github.com/michaeltian108/ViPro.
Authors:Kangrui Cen, Baixuan Zhao, Yi Xin, Siqi Luo, Guangtao Zhai, Xiaohong Liu
Abstract:
Controlling object motion trajectories in Text-to-Video (T2V) generation is a challenging and relatively under-explored area, particularly in scenarios involving multiple moving objects. Most community models and datasets in the T2V domain are designed for single-object motion, limiting the performance of current generative models in multi-object tasks. Additionally, existing motion control methods in T2V either lack support for multi-object motion scenes or experience severe performance degradation when object trajectories intersect, primarily due to the semantic conflicts in colliding regions. To address these limitations, we introduce LayerT2V, the first approach for generating video by compositing background and foreground objects layer by layer. This layered generation enables flexible integration of multiple independent elements within a video, positioning each element on a distinct "layer" and thus facilitating coherent multi-object synthesis while enhancing control over the generation process. Extensive experiments demonstrate the superiority of LayerT2V in generating complex multi-object scenarios, showcasing 1.4x and 4.5x improvements in mIoU and AP50 metrics over state-of-the-art (SOTA) methods. Project page and code are available at https://kr-panghu.github.io/LayerT2V/ .
Authors:Weilun Feng, Haotong Qin, Chuanguang Yang, Xiangqi Li, Han Yang, Yuqi Li, Zhulin An, Libo Huang, Michele Magno, Yongjun Xu
Abstract:
Diffusion transformers have emerged as the mainstream paradigm for video generation models. However, the use of up to billions of parameters incurs significant computational costs. Quantization offers a promising solution by reducing memory usage and accelerating inference. Nonetheless, we observe that the joint modeling of spatial and temporal information in video diffusion models (V-DMs) leads to extremely long token sequences, which introduces high calibration variance and learning challenges. To address these issues, we propose S$^2$Q-VDiT, a post-training quantization framework for V-DMs that leverages Salient data and Sparse token distillation. During the calibration phase, we identify that quantization performance is highly sensitive to the choice of calibration data. To mitigate this, we introduce \textit{Hessian-aware Salient Data Selection}, which constructs high-quality calibration datasets by considering both diffusion and quantization characteristics unique to V-DMs. To tackle the learning challenges, we further analyze the sparse attention patterns inherent in V-DMs. Based on this observation, we propose \textit{Attention-guided Sparse Token Distillation}, which exploits token-wise attention distributions to emphasize tokens that are more influential to the model's output. Under W4A6 quantization, S$^2$Q-VDiT achieves lossless performance while delivering $3.9\times$ model compression and $1.3\times$ inference acceleration. Code will be available at https://github.com/wlfeng0509/s2q-vdit.
Authors:Jianxiong Gao, Zhaoxi Chen, Xian Liu, Jianfeng Feng, Chenyang Si, Yanwei Fu, Yu Qiao, Ziwei Liu
Abstract:
Controllable ultra-long video generation is a fundamental yet challenging task. Although existing methods are effective for short clips, they struggle to scale due to issues such as temporal inconsistency and visual degradation. In this paper, we initially investigate and identify three key factors: separate noise initialization, independent control signal normalization, and the limitations of single-modality guidance. To address these issues, we propose LongVie, an end-to-end autoregressive framework for controllable long video generation. LongVie introduces two core designs to ensure temporal consistency: 1) a unified noise initialization strategy that maintains consistent generation across clips, and 2) global control signal normalization that enforces alignment in the control space throughout the entire video. To mitigate visual degradation, LongVie employs 3) a multi-modal control framework that integrates both dense (e.g., depth maps) and sparse (e.g., keypoints) control signals, complemented by 4) a degradation-aware training strategy that adaptively balances modality contributions over time to preserve visual quality. We also introduce LongVGenBench, a comprehensive benchmark consisting of 100 high-resolution videos spanning diverse real-world and synthetic environments, each lasting over one minute. Extensive experiments show that LongVie achieves state-of-the-art performance in long-range controllability, consistency, and quality.
Authors:Jisoo Kim, Wooseok Seo, Junwan Kim, Seungho Park, Sooyeon Park, Youngjae Yu
Abstract:
With growing interest in deploying text-to-video (T2V) models in resource-constrained environments, reducing their high computational cost has become crucial, leading to extensive research on pruning and knowledge distillation methods while maintaining performance. However, existing distillation methods primarily rely on supervised fine-tuning (SFT), which often leads to mode collapse as pruned models with reduced capacity fail to directly match the teacher's outputs, ultimately resulting in degraded quality. To address this challenge, we propose an effective distillation method, ReDPO, that integrates DPO and SFT. Our approach leverages DPO to guide the student model to focus on recovering only the targeted properties, rather than passively imitating the teacher, while also utilizing SFT to enhance overall performance. We additionally propose V.I.P., a novel framework for filtering and curating high-quality pair datasets, along with a step-by-step online approach for calibrated training. We validate our method on two leading T2V models, VideoCrafter2 and AnimateDiff, achieving parameter reduction of 36.2% and 67.5% each, while maintaining or even surpassing the performance of full models. Further experiments demonstrate the effectiveness of both ReDPO and V.I.P. framework in enabling efficient and high-quality video generation. Our code and videos are available at https://jiiiisoo.github.io/VIP.github.io/.
Authors:Zeyu Zhu, Weijia Wu, Mike Zheng Shou
Abstract:
Existing studies on talking video generation have predominantly focused on single-person monologues or isolated facial animations, limiting their applicability to realistic multi-human interactions. To bridge this gap, we introduce MIT, a large-scale dataset specifically designed for multi-human talking video generation. To this end, we develop an automatic pipeline that collects and annotates multi-person conversational videos. The resulting dataset comprises 12 hours of high-resolution footage, each featuring two to four speakers, with fine-grained annotations of body poses and speech interactions. It captures natural conversational dynamics in multi-speaker scenario, offering a rich resource for studying interactive visual behaviors. To demonstrate the potential of MIT, we furthur propose CovOG, a baseline model for this novel task. It integrates a Multi-Human Pose Encoder (MPE) to handle varying numbers of speakers by aggregating individual pose embeddings, and an Interactive Audio Driver (IAD) to modulate head dynamics based on speaker-specific audio features. Together, these components showcase the feasibility and challenges of generating realistic multi-human talking videos, establishing MIT as a valuable benchmark for future research. The code is avalibale at: https://github.com/showlab/Multi-human-Talking-Video-Dataset.
Authors:Chenxu Zhang, Zenan Li, Hongyi Xu, You Xie, Xiaochen Zhao, Tianpei Gu, Guoxian Song, Xin Chen, Chao Liang, Jianwen Jiang, Linjie Luo
Abstract:
We present X-Actor, a novel audio-driven portrait animation framework that generates lifelike, emotionally expressive talking head videos from a single reference image and an input audio clip. Unlike prior methods that emphasize lip synchronization and short-range visual fidelity in constrained speaking scenarios, X-Actor enables actor-quality, long-form portrait performance capturing nuanced, dynamically evolving emotions that flow coherently with the rhythm and content of speech. Central to our approach is a two-stage decoupled generation pipeline: an audio-conditioned autoregressive diffusion model that predicts expressive yet identity-agnostic facial motion latent tokens within a long temporal context window, followed by a diffusion-based video synthesis module that translates these motions into high-fidelity video animations. By operating in a compact facial motion latent space decoupled from visual and identity cues, our autoregressive diffusion model effectively captures long-range correlations between audio and facial dynamics through a diffusion-forcing training paradigm, enabling infinite-length emotionally-rich motion prediction without error accumulation. Extensive experiments demonstrate that X-Actor produces compelling, cinematic-style performances that go beyond standard talking head animations and achieves state-of-the-art results in long-range, audio-driven emotional portrait acting.
Authors:Sheng Wu, Fei Teng, Hao Shi, Qi Jiang, Kai Luo, Kaiwei Wang, Kailun Yang
Abstract:
Panoramic cameras, capturing comprehensive 360-degree environmental data, are suitable for quadruped robots in surrounding perception and interaction with complex environments. However, the scarcity of high-quality panoramic training data-caused by inherent kinematic constraints and complex sensor calibration challenges-fundamentally limits the development of robust perception systems tailored to these embodied platforms. To address this issue, we propose QuaDreamer-the first panoramic data generation engine specifically designed for quadruped robots. QuaDreamer focuses on mimicking the motion paradigm of quadruped robots to generate highly controllable, realistic panoramic videos, providing a data source for downstream tasks. Specifically, to effectively capture the unique vertical vibration characteristics exhibited during quadruped locomotion, we introduce Vertical Jitter Encoding (VJE). VJE extracts controllable vertical signals through frequency-domain feature filtering and provides high-quality prompts. To facilitate high-quality panoramic video generation under jitter signal control, we propose a Scene-Object Controller (SOC) that effectively manages object motion and boosts background jitter control through the attention mechanism. To address panoramic distortions in wide-FoV video generation, we propose the Panoramic Enhancer (PE)-a dual-stream architecture that synergizes frequency-texture refinement for local detail enhancement with spatial-structure correction for global geometric consistency. We further demonstrate that the generated video sequences can serve as training data for the quadruped robot's panoramic visual perception model, enhancing the performance of multi-object tracking in 360-degree scenes. The source code and model weights will be publicly available at https://github.com/losehu/QuaDreamer.
Authors:Bowen Yang, Yun Cao, Chen He, Xiaosu Su
Abstract:
Text-to-video retrieval requires precise alignment between language and temporally rich video signals. Existing methods predominantly exploit visual cues and often overlook complementary audio semantics or adopt coarse fusion strategies, leading to suboptimal multimodal representations. We present GAID, a framework that jointly address this gap via two key components: (i) a Frame-level Gated Fusion (FGF) that adaptively integrates audio and visual features under textual guidance, enabling fine-grained temporal alignment; and (ii) a Directional Adaptive Semantic Perturbation (DASP) that injects structure-aware perturbations into text embeddings, enhancing robustness and discrimination without incurring multi-pass inference. These modules complement each other -- fusion reduces modality gaps while perturbation regularizes cross-modal matching -- yielding more stable and expressive representations. Extensive experiments on MSR-VTT, DiDeMo, LSMDC, and VATEX show consistent state-of-the-art results across all retrieval metrics with notable efficiency gains. Our code is available at https://github.com/YangBowenn/GAID.
Authors:Chende Zheng, Ruiqi suo, Chenhao Lin, Zhengyu Zhao, Le Yang, Shuai Liu, Minghui Yang, Cong Wang, Chao Shen
Abstract:
The evolution of video generation techniques, such as Sora, has made it increasingly easy to produce high-fidelity AI-generated videos, raising public concern over the dissemination of synthetic content. However, existing detection methodologies remain limited by their insufficient exploration of temporal artifacts in synthetic videos. To bridge this gap, we establish a theoretical framework through second-order dynamical analysis under Newtonian mechanics, subsequently extending the Second-order Central Difference features tailored for temporal artifact detection. Building on this theoretical foundation, we reveal a fundamental divergence in second-order feature distributions between real and AI-generated videos. Concretely, we propose Detection by Difference of Differences (D3), a novel training-free detection method that leverages the above second-order temporal discrepancies. We validate the superiority of our D3 on 4 open-source datasets (Gen-Video, VideoPhy, EvalCrafter, VidProM), 40 subsets in total. For example, on GenVideo, D3 outperforms the previous best method by 10.39% (absolute) mean Average Precision. Additional experiments on time cost and post-processing operations demonstrate D3's exceptional computational efficiency and strong robust performance. Our code is available at https://github.com/Zig-HS/D3.
Authors:Suhang Cai, Xiaohao Peng, Chong Wang, Xiaojie Cai, Jiangbo Qian
Abstract:
Video anomaly detection (VAD) plays a critical role in public safety applications such as intelligent surveillance. However, the rarity, unpredictability, and high annotation cost of real-world anomalies make it difficult to scale VAD datasets, which limits the performance and generalization ability of existing models. To address this challenge, we propose a generative video-enhanced weakly-supervised video anomaly detection (GV-VAD) framework that leverages text-conditioned video generation models to produce semantically controllable and physically plausible synthetic videos. These virtual videos are used to augment training data at low cost. In addition, a synthetic sample loss scaling strategy is utilized to control the influence of generated synthetic samples for efficient training. The experiments show that the proposed framework outperforms state-of-the-art methods on UCF-Crime datasets. The code is available at https://github.com/Sumutan/GV-VAD.git.
Authors:Xinhan Di, Kristin Qi, Pengqian Yu
Abstract:
Recent advances in diffusion-based video generation have enabled photo-realistic short clips, but current methods still struggle to achieve multi-modal consistency when jointly generating whole-body motion and natural speech. Current approaches lack comprehensive evaluation frameworks that assess both visual and audio quality, and there are insufficient benchmarks for region-specific performance analysis. To address these gaps, we introduce the Joint Whole-Body Talking Avatar and Speech Generation Version I(JWB-DH-V1), comprising a large-scale multi-modal dataset with 10,000 unique identities across 2 million video samples, and an evaluation protocol for assessing joint audio-video generation of whole-body animatable avatars. Our evaluation of SOTA models reveals consistent performance disparities between face/hand-centric and whole-body performance, which incidates essential areas for future research. The dataset and evaluation tools are publicly available at https://github.com/deepreasonings/WholeBodyBenchmark.
Authors:Yili Li, Gang Xiong, Gaopeng Gou, Xiangyan Qu, Jiamin Zhuang, Zhen Li, Junzheng Shi
Abstract:
Text-to-video retrieval essentially aims to train models to align visual content with textual descriptions accurately. Due to the impressive general multimodal knowledge demonstrated by image-text pretrained models such as CLIP, existing work has primarily focused on extending CLIP knowledge for video-text tasks. However, videos typically contain richer information than images. In current video-text datasets, textual descriptions can only reflect a portion of the video content, leading to partial misalignment in video-text matching. Therefore, directly aligning text representations with video representations can result in incorrect supervision, ignoring the inequivalence of information. In this work, we propose T2VParser to extract multiview semantic representations from text and video, achieving adaptive semantic alignment rather than aligning the entire representation. To extract corresponding representations from different modalities, we introduce Adaptive Decomposition Tokens, which consist of a set of learnable tokens shared across modalities. The goal of T2VParser is to emphasize precise alignment between text and video while retaining the knowledge of pretrained models. Experimental results demonstrate that T2VParser achieves accurate partial alignment through effective cross-modal content decomposition. The code is available at https://github.com/Lilidamowang/T2VParser.
Authors:Chenjian Gao, Lihe Ding, Rui Han, Zhanpeng Huang, Zibin Wang, Tianfan Xue
Abstract:
Inserting 3D objects into videos is a longstanding challenge in computer graphics with applications in augmented reality, virtual try-on, and video composition. Achieving both temporal consistency, or realistic lighting remains difficult, particularly in dynamic scenarios with complex object motion, perspective changes, and varying illumination. While 2D diffusion models have shown promise for producing photorealistic edits, they often struggle with maintaining temporal coherence across frames. Conversely, traditional 3D rendering methods excel in spatial and temporal consistency but fall short in achieving photorealistic lighting. In this work, we propose a hybrid object insertion pipeline that combines the strengths of both paradigms. Specifically, we focus on inserting bracelets into dynamic wrist scenes, leveraging the high temporal consistency of 3D Gaussian Splatting (3DGS) for initial rendering and refining the results using a 2D diffusion-based enhancement model to ensure realistic lighting interactions. Our method introduces a shading-driven pipeline that separates intrinsic object properties (albedo, shading, reflectance) and refines both shading and sRGB images for photorealism. To maintain temporal coherence, we optimize the 3DGS model with multi-frame weighted adjustments. This is the first approach to synergize 3D rendering and 2D diffusion for video object insertion, offering a robust solution for realistic and consistent video editing. Project Page: https://cjeen.github.io/BraceletPaper/
Authors:Chang Liu, Yunfan Ye, Fan Zhang, Qingyang Zhou, Yuchuan Luo, Zhiping Cai
Abstract:
Numerous synthesized videos from generative models, especially human-centric ones that simulate realistic human actions, pose significant threats to human information security and authenticity. While progress has been made in binary forgery video detection, the lack of fine-grained understanding of forgery types raises concerns regarding both reliability and interpretability, which are critical for real-world applications. To address this limitation, we propose HumanSAM, a new framework that builds upon the fundamental challenges of video generation models. Specifically, HumanSAM aims to classify human-centric forgeries into three distinct types of artifacts commonly observed in generated content: spatial, appearance, and motion anomaly. To better capture the features of geometry, semantics and spatiotemporal consistency, we propose to generate the human forgery representation by fusing two branches of video understanding and spatial depth. We also adopt a rank-based confidence enhancement strategy during the training process to learn more robust representation by introducing three prior scores. For training and evaluation, we construct the first public benchmark, the Human-centric Forgery Video (HFV) dataset, with all types of forgeries carefully annotated semi-automatically. In our experiments, HumanSAM yields promising results in comparison with state-of-the-art methods, both in binary and multi-class forgery classification.
Authors:Chong Xia, Shengjun Zhang, Fangfu Liu, Chang Liu, Khodchaphun Hirunyaratsameewong, Yueqi Duan
Abstract:
Perpetual 3D scene generation aims to produce long-range and coherent 3D view sequences, which is applicable for long-term video synthesis and 3D scene reconstruction. Existing methods follow a "navigate-and-imagine" fashion and rely on outpainting for successive view expansion. However, the generated view sequences suffer from semantic drift issue derived from the accumulated deviation of the outpainting module. To tackle this challenge, we propose ScenePainter, a new framework for semantically consistent 3D scene generation, which aligns the outpainter's scene-specific prior with the comprehension of the current scene. To be specific, we introduce a hierarchical graph structure dubbed SceneConceptGraph to construct relations among multi-level scene concepts, which directs the outpainter for consistent novel views and can be dynamically refined to enhance diversity. Extensive experiments demonstrate that our framework overcomes the semantic drift issue and generates more consistent and immersive 3D view sequences. Project Page: https://xiac20.github.io/ScenePainter/.
Authors:Simin Huo, Ning Li
Abstract:
We introduce Iwin Transformer, a novel position-embedding-free hierarchical vision transformer, which can be fine-tuned directly from low to high resolution, through the collaboration of innovative interleaved window attention and depthwise separable convolution. This approach uses attention to connect distant tokens and applies convolution to link neighboring tokens, enabling global information exchange within a single module, overcoming Swin Transformer's limitation of requiring two consecutive blocks to approximate global attention. Extensive experiments on visual benchmarks demonstrate that Iwin Transformer exhibits strong competitiveness in tasks such as image classification (87.4 top-1 accuracy on ImageNet-1K), semantic segmentation and video action recognition. We also validate the effectiveness of the core component in Iwin as a standalone module that can seamlessly replace the self-attention module in class-conditional image generation. The concepts and methods introduced by the Iwin Transformer have the potential to inspire future research, like Iwin 3D Attention in video generation. The code and models are available at https://github.com/cominder/Iwin-Transformer.
Authors:Rameen Abdal, Or Patashnik, Ekaterina Deyneka, Hao Chen, Aliaksandr Siarohin, Sergey Tulyakov, Daniel Cohen-Or, Kfir Aberman
Abstract:
Recent advances in text-to-video generation have enabled high-quality synthesis from text and image prompts. While the personalization of dynamic concepts, which capture subject-specific appearance and motion from a single video, is now feasible, most existing methods require per-instance fine-tuning, limiting scalability. We introduce a fully zero-shot framework for dynamic concept personalization in text-to-video models. Our method leverages structured 2x2 video grids that spatially organize input and output pairs, enabling the training of lightweight Grid-LoRA adapters for editing and composition within these grids. At inference, a dedicated Grid Fill module completes partially observed layouts, producing temporally coherent and identity preserving outputs. Once trained, the entire system operates in a single forward pass, generalizing to previously unseen dynamic concepts without any test-time optimization. Extensive experiments demonstrate high-quality and consistent results across a wide range of subjects beyond trained concepts and editing scenarios.
Authors:Xiaofeng Mao, Shaoheng Lin, Zhen Li, Chuanhao Li, Wenshuo Peng, Tong He, Jiangmiao Pang, Mingmin Chi, Yu Qiao, Kaipeng Zhang
Abstract:
Yume aims to use images, text, or videos to create an interactive, realistic, and dynamic world, which allows exploration and control using peripheral devices or neural signals. In this report, we present a preview version of \method, which creates a dynamic world from an input image and allows exploration of the world using keyboard actions. To achieve this high-fidelity and interactive video world generation, we introduce a well-designed framework, which consists of four main components, including camera motion quantization, video generation architecture, advanced sampler, and model acceleration. First, we quantize camera motions for stable training and user-friendly interaction using keyboard inputs. Then, we introduce the Masked Video Diffusion Transformer~(MVDT) with a memory module for infinite video generation in an autoregressive manner. After that, training-free Anti-Artifact Mechanism (AAM) and Time Travel Sampling based on Stochastic Differential Equations (TTS-SDE) are introduced to the sampler for better visual quality and more precise control. Moreover, we investigate model acceleration by synergistic optimization of adversarial distillation and caching mechanisms. We use the high-quality world exploration dataset \sekai to train \method, and it achieves remarkable results in diverse scenes and applications. All data, codebase, and model weights are available on https://github.com/stdstu12/YUME. Yume will update monthly to achieve its original goal. Project page: https://stdstu12.github.io/YUME-Project/.
Authors:Yue Ma, Kunyu Feng, Zhongyuan Hu, Xinyu Wang, Yucheng Wang, Mingzhe Zheng, Xuanhua He, Chenyang Zhu, Hongyu Liu, Yingqing He, Zeyu Wang, Zhifeng Li, Xiu Li, Wei Liu, Dan Xu, Linfeng Zhang, Qifeng Chen
Abstract:
With the rapid development of AI-generated content (AIGC), video generation has emerged as one of its most dynamic and impactful subfields. In particular, the advancement of video generation foundation models has led to growing demand for controllable video generation methods that can more accurately reflect user intent. Most existing foundation models are designed for text-to-video generation, where text prompts alone are often insufficient to express complex, multi-modal, and fine-grained user requirements. This limitation makes it challenging for users to generate videos with precise control using current models. To address this issue, recent research has explored the integration of additional non-textual conditions, such as camera motion, depth maps, and human pose, to extend pretrained video generation models and enable more controllable video synthesis. These approaches aim to enhance the flexibility and practical applicability of AIGC-driven video generation systems. In this survey, we provide a systematic review of controllable video generation, covering both theoretical foundations and recent advances in the field. We begin by introducing the key concepts and commonly used open-source video generation models. We then focus on control mechanisms in video diffusion models, analyzing how different types of conditions can be incorporated into the denoising process to guide generation. Finally, we categorize existing methods based on the types of control signals they leverage, including single-condition generation, multi-condition generation, and universal controllable generation. For a complete list of the literature on controllable video generation reviewed, please visit our curated repository at https://github.com/mayuelala/Awesome-Controllable-Video-Generation.
Authors:Yanchen Liu, Yanan Sun, Zhening Xing, Junyao Gao, Kai Chen, Wenjie Pei
Abstract:
Existing text-to-video methods struggle to transfer motion smoothly from a reference object to a target object with significant differences in appearance or structure between them. To address this challenge, we introduce MotionShot, a training-free framework capable of parsing reference-target correspondences in a fine-grained manner, thereby achieving high-fidelity motion transfer while preserving coherence in appearance. To be specific, MotionShot first performs semantic feature matching to ensure high-level alignments between the reference and target objects. It then further establishes low-level morphological alignments through reference-to-target shape retargeting. By encoding motion with temporal attention, our MotionShot can coherently transfer motion across objects, even in the presence of significant appearance and structure disparities, demonstrated by extensive experiments. The project page is available at: https://motionshot.github.io/.
Authors:Yaofang Liu, Yumeng Ren, Aitor Artola, Yuxuan Hu, Xiaodong Cun, Xiaotong Zhao, Alan Zhao, Raymond H. Chan, Suiyun Zhang, Rui Liu, Dandan Tu, Jean-Michel Morel
Abstract:
The rapid advancement of video diffusion models has been hindered by fundamental limitations in temporal modeling, particularly the rigid synchronization of frame evolution imposed by conventional scalar timestep variables. While task-specific adaptations and autoregressive models have sought to address these challenges, they remain constrained by computational inefficiency, catastrophic forgetting, or narrow applicability. In this work, we present Pusa, a groundbreaking paradigm that leverages vectorized timestep adaptation (VTA) to enable fine-grained temporal control within a unified video diffusion framework. Besides, VTA is a non-destructive adaptation, which means it fully preserves the capabilities of the base model. By finetuning the SOTA Wan2.1-T2V-14B model with VTA, we achieve unprecedented efficiency -- surpassing the performance of Wan-I2V-14B with $\leq$ 1/200 of the training cost (\$500 vs. $\geq$ \$100,000) and $\leq$ 1/2500 of the dataset size (4K vs. $\geq$ 10M samples). Pusa not only sets a new standard for image-to-video (I2V) generation, achieving a VBench-I2V total score of 87.32\% (vs. 86.86\% of Wan-I2V-14B), but also unlocks many zero-shot multi-task capabilities such as start-end frames and video extension -- all without task-specific training. Meanwhile, Pusa can still perform text-to-video generation. Mechanistic analyses reveal that our approach preserves the foundation model's generative priors while surgically injecting temporal dynamics, avoiding the combinatorial explosion inherent to vectorized timesteps. This work establishes a scalable, efficient, and versatile paradigm for next-generation video synthesis, democratizing high-fidelity video generation for research and industry alike. Code is open-sourced at https://github.com/Yaofang-Liu/Pusa-VidGen
Authors:Wenqi Ouyang, Zeqi Xiao, Danni Yang, Yifan Zhou, Shuai Yang, Lei Yang, Jianlou Si, Xingang Pan
Abstract:
Generating consistent long videos is a complex challenge: while diffusion-based generative models generate visually impressive short clips, extending them to longer durations often leads to memory bottlenecks and long-term inconsistency. In this paper, we propose TokensGen, a novel two-stage framework that leverages condensed tokens to address these issues. Our method decomposes long video generation into three core tasks: (1) inner-clip semantic control, (2) long-term consistency control, and (3) inter-clip smooth transition. First, we train To2V (Token-to-Video), a short video diffusion model guided by text and video tokens, with a Video Tokenizer that condenses short clips into semantically rich tokens. Second, we introduce T2To (Text-to-Token), a video token diffusion transformer that generates all tokens at once, ensuring global consistency across clips. Finally, during inference, an adaptive FIFO-Diffusion strategy seamlessly connects adjacent clips, reducing boundary artifacts and enhancing smooth transitions. Experimental results demonstrate that our approach significantly enhances long-term temporal and content coherence without incurring prohibitive computational overhead. By leveraging condensed tokens and pre-trained short video models, our method provides a scalable, modular solution for long video generation, opening new possibilities for storytelling, cinematic production, and immersive simulations. Please see our project page at https://vicky0522.github.io/tokensgen-webpage/ .
Authors:Xiaojie Li, Chu Li, Shi-Zhe Chen, Xi Chen
Abstract:
Universal multimodal retrieval (UMR), which aims to address complex retrieval tasks where both queries and candidates span diverse modalities, has been significantly advanced by the emergence of MLLMs. While state-of-the-art MLLM-based methods in the literature predominantly adopt contrastive learning principles, they often differ in their specific training recipes. Despite their success, the mechanisms underlying their retrieval capabilities remain largely unexplored, potentially resulting in suboptimal performance and limited generalization ability. To address these issues, we present a comprehensive study aimed at uncovering the key factors that drive effective embedding learning for UMR using MLLMs. We begin by implementing a general MLLM-based embedding learning pipeline, and systematically analyze the primary contributors to high-performing universal retrieval systems. Based on this, we explore various aspects of the details in embedding generation and training strategies, including progressive transition, hard negative mining and re-ranker distillation. Notably, our findings reveal that often-overlooked factors can have a substantial impact on model performance. Building on these discoveries, we introduce a unified framework termed U-MARVEL (\textbf{U}niversal \textbf{M}ultimod\textbf{A}l \textbf{R}etrie\textbf{V}al via \textbf{E}mbedding \textbf{L}earning), which outperforms state-of-the-art competitors on the M-BEIR benchmark by a large margin in supervised settings, and also exihibits strong zero-shot performance on several tasks such as composed image retrieval and text-to-video retrieval. These results underscore the generalization potential of our framework across various embedding-based retrieval tasks. Code is available at https://github.com/chaxjli/U-MARVEL
Authors:Tongtong Su, Chengyu Wang, Bingyan Liu, Jun Huang, Dongming Lu
Abstract:
In recent years, large text-to-video (T2V) synthesis models have garnered considerable attention for their abilities to generate videos from textual descriptions. However, achieving both high imaging quality and effective motion representation remains a significant challenge for these T2V models. Existing approaches often adapt pre-trained text-to-image (T2I) models to refine video frames, leading to issues such as flickering and artifacts due to inconsistencies across frames. In this paper, we introduce EVS, a training-free Encapsulated Video Synthesizer that composes T2I and T2V models to enhance both visual fidelity and motion smoothness of generated videos. Our approach utilizes a well-trained diffusion-based T2I model to refine low-quality video frames by treating them as out-of-distribution samples, effectively optimizing them with noising and denoising steps. Meanwhile, we employ T2V backbones to ensure consistent motion dynamics. By encapsulating the T2V temporal-only prior into the T2I generation process, EVS successfully leverages the strengths of both types of models, resulting in videos of improved imaging and motion quality. Experimental results validate the effectiveness of our approach compared to previous approaches. Our composition process also leads to a significant improvement of 1.6x-4.5x speedup in inference time. Source codes: https://github.com/Tonniia/EVS.
Authors:Dmitrii Mikhailov, Aleksey Letunovskiy, Maria Kovaleva, Vladimir Arkhipkin, Vladimir Korviakov, Vladimir Polovnikov, Viacheslav Vasilev, Evelina Sidorova, Denis Dimitrov
Abstract:
Recent progress in transformer-based architectures has demonstrated remarkable success in video generation tasks. However, the quadratic complexity of full attention mechanisms remains a critical bottleneck, particularly for high-resolution and long-duration video sequences. In this paper, we propose NABLA, a novel Neighborhood Adaptive Block-Level Attention mechanism that dynamically adapts to sparsity patterns in video diffusion transformers (DiTs). By leveraging block-wise attention with adaptive sparsity-driven threshold, NABLA reduces computational overhead while preserving generative quality. Our method does not require custom low-level operator design and can be seamlessly integrated with PyTorch's Flex Attention operator. Experiments demonstrate that NABLA achieves up to 2.7x faster training and inference compared to baseline almost without compromising quantitative metrics (CLIP score, VBench score, human evaluation score) and visual quality drop. The code and model weights are available here: https://github.com/gen-ai-team/Wan2.1-NABLA
Authors:Jiaxiu Jiang, Wenbo Li, Jingjing Ren, Yuping Qiu, Yong Guo, Xiaogang Xu, Han Wu, Wangmeng Zuo
Abstract:
Despite recent advances in diffusion transformers (DiTs) for text-to-video generation, scaling to long-duration content remains challenging due to the quadratic complexity of self-attention. While prior efforts -- such as sparse attention and temporally autoregressive models -- offer partial relief, they often compromise temporal coherence or scalability. We introduce LoViC, a DiT-based framework trained on million-scale open-domain videos, designed to produce long, coherent videos through a segment-wise generation process. At the core of our approach is FlexFormer, an expressive autoencoder that jointly compresses video and text into unified latent representations. It supports variable-length inputs with linearly adjustable compression rates, enabled by a single query token design based on the Q-Former architecture. Additionally, by encoding temporal context through position-aware mechanisms, our model seamlessly supports prediction, retradiction, interpolation, and multi-shot generation within a unified paradigm. Extensive experiments across diverse tasks validate the effectiveness and versatility of our approach.
Authors:Jiajian Xie, Shengyu Zhang, Zhou Zhao, Fan Wu, Fei Wu
Abstract:
Diffusion Models have shown remarkable proficiency in image and video synthesis. As model size and latency increase limit user experience, hybrid edge-cloud collaborative framework was recently proposed to realize fast inference and high-quality generation, where the cloud model initiates high-quality semantic planning and the edge model expedites later-stage refinement. However, excessive cloud denoising prolongs inference time, while insufficient steps cause semantic ambiguity, leading to inconsistency in edge model output. To address these challenges, we propose EC-Diff that accelerates cloud inference through gradient-based noise estimation while identifying the optimal point for cloud-edge handoff to maintain generation quality. Specifically, we design a K-step noise approximation strategy to reduce cloud inference frequency by using noise gradients between steps and applying cloud inference periodically to adjust errors. Then we design a two-stage greedy search algorithm to efficiently find the optimal parameters for noise approximation and edge model switching. Extensive experiments demonstrate that our method significantly enhances generation quality compared to edge inference, while achieving up to an average $2\times$ speedup in inference compared to cloud inference. Video samples and source code are available at https://ec-diff.github.io/.
Authors:X. Feng, H. Yu, M. Wu, S. Hu, J. Chen, C. Zhu, J. Wu, X. Chu, K. Huang
Abstract:
With the rapid development of foundation video generation technologies, long video generation models have exhibited promising research potential thanks to expanded content creation space. Recent studies reveal that the goal of long video generation tasks is not only to extend video duration but also to accurately express richer narrative content within longer videos. However, due to the lack of evaluation benchmarks specifically designed for long video generation models, the current assessment of these models primarily relies on benchmarks with simple narrative prompts (e.g., VBench). To the best of our knowledge, our proposed NarrLV is the first benchmark to comprehensively evaluate the Narrative expression capabilities of Long Video generation models. Inspired by film narrative theory, (i) we first introduce the basic narrative unit maintaining continuous visual presentation in videos as Temporal Narrative Atom (TNA), and use its count to quantitatively measure narrative richness. Guided by three key film narrative elements influencing TNA changes, we construct an automatic prompt generation pipeline capable of producing evaluation prompts with a flexibly expandable number of TNAs. (ii) Then, based on the three progressive levels of narrative content expression, we design an effective evaluation metric using the MLLM-based question generation and answering framework. (iii) Finally, we conduct extensive evaluations on existing long video generation models and the foundation generation models. Experimental results demonstrate that our metric aligns closely with human judgments. The derived evaluation outcomes reveal the detailed capability boundaries of current video generation models in narrative content expression.
Authors:Zhimin Liao, Ping Wei, Ruijie Zhang, Shuaijia Chen, Haoxuan Wang, Ziyang Ren
Abstract:
Forecasting the evolution of 3D scenes and generating unseen scenarios via occupancy-based world models offers substantial potential for addressing corner cases in autonomous driving systems. While tokenization has revolutionized image and video generation, efficiently tokenizing complex 3D scenes remains a critical challenge for 3D world models. To address this, we propose $I^{2}$-World, an efficient framework for 4D occupancy forecasting. Our method decouples scene tokenization into intra-scene and inter-scene tokenizers. The intra-scene tokenizer employs a multi-scale residual quantization strategy to hierarchically compress 3D scenes while preserving spatial details. The inter-scene tokenizer residually aggregates temporal dependencies across timesteps. This dual design preserves the compactness of 3D tokenizers while retaining the dynamic expressiveness of 4D tokenizers. Unlike decoder-only GPT-style autoregressive models, $I^{2}$-World adopts an encoder-decoder architecture. The encoder aggregates spatial context from the current scene and predicts a transformation matrix to enable high-level control over scene generation. The decoder, conditioned on this matrix and historical tokens, ensures temporal consistency during generation. Experiments demonstrate that $I^{2}$-World achieves state-of-the-art performance, outperforming existing methods by 25.1\% in mIoU and 36.9\% in IoU for 4D occupancy forecasting while exhibiting exceptional computational efficiency: it requires merely 2.9 GB of training memory and achieves real-time inference at 37.0 FPS. Our code is available on https://github.com/lzzzzzm/II-World.
Authors:Hangjie Yuan, Weihua Chen, Jun Cen, Hu Yu, Jingyun Liang, Shuning Chang, Zhihui Lin, Tao Feng, Pengwei Liu, Jiazheng Xing, Hao Luo, Jiasheng Tang, Fan Wang, Yi Yang
Abstract:
Autoregressive large language models (LLMs) have unified a vast range of language tasks, inspiring preliminary efforts in autoregressive video generation. Existing autoregressive video generators either diverge from standard LLM architectures, depend on bulky external text encoders, or incur prohibitive latency due to next-token decoding. In this paper, we introduce Lumos-1, an autoregressive video generator that retains the LLM architecture with minimal architectural modifications. To inject spatiotemporal correlations in LLMs, we identify the efficacy of incorporating 3D RoPE and diagnose its imbalanced frequency spectrum ranges. Therefore, we propose MM-RoPE, a RoPE scheme that preserves the original textual RoPE while providing comprehensive frequency spectra and scaled 3D positions for modeling multimodal spatiotemporal data. Moreover, Lumos-1 resorts to a token dependency strategy that obeys intra-frame bidirectionality and inter-frame temporal causality. Based on this dependency strategy, we identify the issue of frame-wise loss imbalance caused by spatial information redundancy and solve it by proposing Autoregressive Discrete Diffusion Forcing (AR-DF). AR-DF introduces temporal tube masking during training with a compatible inference-time masking policy to avoid quality degradation. By using memory-efficient training techniques, we pre-train Lumos-1 on only 48 GPUs, achieving performance comparable to EMU3 on GenEval, COSMOS-Video2World on VBench-I2V, and OpenSoraPlan on VBench-T2V. Code and models are available at https://github.com/alibaba-damo-academy/Lumos.
Authors:Kui Jiang, Shiyu Liu, Junjun Jiang, Hongxun Yao, Xiaopeng Fan
Abstract:
Audio-driven talking head generation holds significant potential for film production. While existing 3D methods have advanced motion modeling and content synthesis, they often produce rendering artifacts, such as motion blur, temporal jitter, and local penetration, due to limitations in representing stable, fine-grained motion fields. Through systematic analysis, we reformulate talking head generation into a unified framework comprising three steps: video preprocessing, motion representation, and rendering reconstruction. This framework underpins our proposed M2DAO-Talker, which addresses current limitations via multi-granular motion decoupling and alternating optimization. Specifically, we devise a novel 2D portrait preprocessing pipeline to extract frame-wise deformation control conditions (motion region segmentation masks, and camera parameters) to facilitate motion representation. To ameliorate motion modeling, we elaborate a multi-granular motion decoupling strategy, which independently models non-rigid (oral and facial) and rigid (head) motions for improved reconstruction accuracy. Meanwhile, a motion consistency constraint is developed to ensure head-torso kinematic consistency, thereby mitigating penetration artifacts caused by motion aliasing. In addition, an alternating optimization strategy is designed to iteratively refine facial and oral motion parameters, enabling more realistic video generation. Experiments across multiple datasets show that M2DAO-Talker achieves state-of-the-art performance, with the 2.43 dB PSNR improvement in generation quality and 0.64 gain in user-evaluated video realness versus TalkingGaussian while with 150 FPS inference speed. Our project homepage is https://m2dao-talker.github.io/M2DAO-Talk.github.io.
Authors:Yukang Chen, Wei Huang, Baifeng Shi, Qinghao Hu, Hanrong Ye, Ligeng Zhu, Zhijian Liu, Pavlo Molchanov, Jan Kautz, Xiaojuan Qi, Sifei Liu, Hongxu Yin, Yao Lu, Song Han
Abstract:
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 104K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In our experiments, LongVILA-R1-7B achieves strong performance on video benchmarks, reaching 65.1% and 71.1% accuracy on VideoMME without and with subtitles, respectively, and consistently outperforming LongVILA-7B across multiple benchmarks. Moreover, LongVILA-R1-7B supports processing up to 8,192 video frames per video, and configurable FPS settings. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames).
Authors:Xu Yang, Shaoli Huang, Shenbo Xie, Xuelin Chen, Yifei Liu, Changxing Ding
Abstract:
Co-speech gesture video generation aims to synthesize realistic, audio-aligned videos of speakers, complete with synchronized facial expressions and body gestures. This task presents challenges due to the significant one-to-many mapping between audio and visual content, further complicated by the scarcity of large-scale public datasets and high computational demands. We propose a lightweight framework that utilizes 2D full-body skeletons as an efficient auxiliary condition to bridge audio signals with visual outputs. Our approach introduces a diffusion model conditioned on fine-grained audio segments and a skeleton extracted from the speaker's reference image, predicting skeletal motions through skeleton-audio feature fusion to ensure strict audio coordination and body shape consistency. The generated skeletons are then fed into an off-the-shelf human video generation model with the speaker's reference image to synthesize high-fidelity videos. To democratize research, we present CSG-405-the first public dataset with 405 hours of high-resolution videos across 71 speech types, annotated with 2D skeletons and diverse speaker demographics. Experiments show that our method exceeds state-of-the-art approaches in visual quality and synchronization while generalizing across speakers and contexts. Code, models, and CSG-405 are publicly released at https://mpi-lab.github.io/Democratizing-CSG/
Authors:Qianyu Zhang, Bolun Zheng, Lingyu Zhu, Hangjia Pan, Zunjie Zhu, Zongpeng Li, Shiqi Wang
Abstract:
High Dynamic Range (HDR) video acquisition using the alternating exposure (AE) paradigm has garnered significant attention due to its cost-effectiveness with a single consumer camera. However, despite progress driven by deep neural networks, these methods remain prone to temporal flicker in real-world applications due to inter-frame exposure inconsistencies. To address this challenge while maintaining the cost-effectiveness of the AE paradigm, we propose a novel learning-based HDR video generation solution. Specifically, we propose a dual-stream HDR video generation paradigm that decouples temporal luminance anchoring from exposure-variant detail reconstruction, overcoming the inherent limitations of the AE paradigm. To support this, we design an asynchronous dual-camera system (DCS), which enables independent exposure control across two cameras, eliminating the need for synchronization typically required in traditional multi-camera setups. Furthermore, an exposure-adaptive fusion network (EAFNet) is formulated for the DCS system. EAFNet integrates a pre-alignment subnetwork that aligns features across varying exposures, ensuring robust feature extraction for subsequent fusion, an asymmetric cross-feature fusion subnetwork that emphasizes reference-based attention to effectively merge these features across exposures, and a reconstruction subnetwork to mitigate ghosting artifacts and preserve fine details. Extensive experimental evaluations demonstrate that the proposed method achieves state-of-the-art performance across various datasets, showing the remarkable potential of our solution in HDR video reconstruction. The codes and data captured by DCS will be available at https://zqqqyu.github.io/DCS-HDR/.
Authors:Zhiyu Tan, Hao Yang, Luozheng Qin, Jia Gong, Mengping Yang, Hao Li
Abstract:
Notable breakthroughs in unified understanding and generation modeling have led to remarkable advancements in image understanding, reasoning, production and editing, yet current foundational models predominantly focus on processing images, creating a gap in the development of unified models for video understanding and generation. This report presents Omni-Video, an efficient and effective unified framework for video understanding, generation, as well as instruction-based editing. Our key insight is to teach existing multimodal large language models (MLLMs) to produce continuous visual clues that are used as the input of diffusion decoders, which produce high-quality videos conditioned on these visual clues. To fully unlock the potential of our system for unified video modeling, we integrate several technical improvements: 1) a lightweight architectural design that respectively attaches a vision head on the top of MLLMs and a adapter before the input of diffusion decoders, the former produce visual tokens for the latter, which adapts these visual tokens to the conditional space of diffusion decoders; and 2) an efficient multi-stage training scheme that facilitates a fast connection between MLLMs and diffusion decoders with limited data and computational resources. We empirically demonstrate that our model exhibits satisfactory generalization abilities across video generation, editing and understanding tasks.
Authors:Zhenghao Zhang, Junchao Liao, Xiangyu Meng, Long Qin, Weizhi Wang
Abstract:
Recent advances in diffusion transformer models for motion-guided video generation, such as Tora, have shown significant progress. In this paper, we present Tora2, an enhanced version of Tora, which introduces several design improvements to expand its capabilities in both appearance and motion customization. Specifically, we introduce a decoupled personalization extractor that generates comprehensive personalization embeddings for multiple open-set entities, better preserving fine-grained visual details compared to previous methods. Building on this, we design a gated self-attention mechanism to integrate trajectory, textual description, and visual information for each entity. This innovation significantly reduces misalignment in multimodal conditioning during training. Moreover, we introduce a contrastive loss that jointly optimizes trajectory dynamics and entity consistency through explicit mapping between motion and personalization embeddings. Tora2 is, to our best knowledge, the first method to achieve simultaneous multi-entity customization of appearance and motion for video generation. Experimental results demonstrate that Tora2 achieves competitive performance with state-of-the-art customization methods while providing advanced motion control capabilities, which marks a critical advancement in multi-condition video generation. Project page: https://ali-videoai.github.io/Tora2_page/.
Authors:Rongsheng Wang, Junying Chen, Ke Ji, Zhenyang Cai, Shunian Chen, Yunjin Yang, Benyou Wang
Abstract:
Recent advances in video generation have shown remarkable progress in open-domain settings, yet medical video generation remains largely underexplored. Medical videos are critical for applications such as clinical training, education, and simulation, requiring not only high visual fidelity but also strict medical accuracy. However, current models often produce unrealistic or erroneous content when applied to medical prompts, largely due to the lack of large-scale, high-quality datasets tailored to the medical domain. To address this gap, we introduce MedVideoCap-55K, the first large-scale, diverse, and caption-rich dataset for medical video generation. It comprises over 55,000 curated clips spanning real-world medical scenarios, providing a strong foundation for training generalist medical video generation models. Built upon this dataset, we develop MedGen, which achieves leading performance among open-source models and rivals commercial systems across multiple benchmarks in both visual quality and medical accuracy. We hope our dataset and model can serve as a valuable resource and help catalyze further research in medical video generation. Our code and data is available at https://github.com/FreedomIntelligence/MedGen
Authors:Jingwei Shi, Zeyu Zhang, Biao Wu, Yanjie Liang, Meng Fang, Ling Chen, Yang Zhao
Abstract:
We present PresentAgent, a multimodal agent that transforms long-form documents into narrated presentation videos. While existing approaches are limited to generating static slides or text summaries, our method advances beyond these limitations by producing fully synchronized visual and spoken content that closely mimics human-style presentations. To achieve this integration, PresentAgent employs a modular pipeline that systematically segments the input document, plans and renders slide-style visual frames, generates contextual spoken narration with large language models and Text-to-Speech models, and seamlessly composes the final video with precise audio-visual alignment. Given the complexity of evaluating such multimodal outputs, we introduce PresentEval, a unified assessment framework powered by Vision-Language Models that comprehensively scores videos across three critical dimensions: content fidelity, visual clarity, and audience comprehension through prompt-based evaluation. Our experimental validation on a curated dataset of 30 document-presentation pairs demonstrates that PresentAgent approaches human-level quality across all evaluation metrics. These results highlight the significant potential of controllable multimodal agents in transforming static textual materials into dynamic, effective, and accessible presentation formats. Code will be available at https://github.com/AIGeeksGroup/PresentAgent.
Authors:Akio Kodaira, Tingbo Hou, Ji Hou, Masayoshi Tomizuka, Yue Zhao
Abstract:
Recently, great progress has been achieved in text-to-video (T2V) generation by scaling transformer-based diffusion models to billions of parameters, which can generate high-quality videos. However, existing models typically produce only short clips offline, restricting their use cases in interactive and real-time applications. This paper addresses these challenges by proposing StreamDiT, a streaming video generation model. StreamDiT training is based on flow matching by adding a moving buffer. We design mixed training with different partitioning schemes of buffered frames to boost both content consistency and visual quality. StreamDiT modeling is based on adaLN DiT with varying time embedding and window attention. To practice the proposed method, we train a StreamDiT model with 4B parameters. In addition, we propose a multistep distillation method tailored for StreamDiT. Sampling distillation is performed in each segment of a chosen partitioning scheme. After distillation, the total number of function evaluations (NFEs) is reduced to the number of chunks in a buffer. Finally, our distilled model reaches real-time performance at 16 FPS on one GPU, which can generate video streams at 512p resolution. We evaluate our method through both quantitative metrics and human evaluation. Our model enables real-time applications, e.g. streaming generation, interactive generation, and video-to-video. We provide video results and more examples in our project website: https://cumulo-autumn.github.io/StreamDiT/
Authors:Xin Zhou, Dingkang Liang, Kaijin Chen, Tianrui Feng, Xiwu Chen, Hongkai Lin, Yikang Ding, Feiyang Tan, Hengshuang Zhao, Xiang Bai
Abstract:
Video generation models have demonstrated remarkable performance, yet their broader adoption remains constrained by slow inference speeds and substantial computational costs, primarily due to the iterative nature of the denoising process. Addressing this bottleneck is essential for democratizing advanced video synthesis technologies and enabling their integration into real-world applications. This work proposes EasyCache, a training-free acceleration framework for video diffusion models. EasyCache introduces a lightweight, runtime-adaptive caching mechanism that dynamically reuses previously computed transformation vectors, avoiding redundant computations during inference. Unlike prior approaches, EasyCache requires no offline profiling, pre-computation, or extensive parameter tuning. We conduct comprehensive studies on various large-scale video generation models, including OpenSora, Wan2.1, and HunyuanVideo. Our method achieves leading acceleration performance, reducing inference time by up to 2.1-3.3$\times$ compared to the original baselines while maintaining high visual fidelity with a significant up to 36% PSNR improvement compared to the previous SOTA method. This improvement makes our EasyCache a efficient and highly accessible solution for high-quality video generation in both research and practical applications. The code is available at https://github.com/H-EmbodVis/EasyCache.
Authors:Zecheng Zhao, Selena Song, Tong Chen, Zhi Chen, Shazia Sadiq, Yadan Luo
Abstract:
Text-to-video (T2V) synthesis has advanced rapidly, yet current evaluation metrics primarily capture visual quality and temporal consistency, offering limited insight into how synthetic videos perform in downstream tasks such as text-to-video retrieval (TVR). In this work, we introduce SynTVA, a new dataset and benchmark designed to evaluate the utility of synthetic videos for building retrieval models. Based on 800 diverse user queries derived from MSRVTT training split, we generate synthetic videos using state-of-the-art T2V models and annotate each video-text pair along four key semantic alignment dimensions: Object \& Scene, Action, Attribute, and Prompt Fidelity. Our evaluation framework correlates general video quality assessment (VQA) metrics with these alignment scores, and examines their predictive power for downstream TVR performance. To explore pathways of scaling up, we further develop an Auto-Evaluator to estimate alignment quality from existing metrics. Beyond benchmarking, our results show that SynTVA is a valuable asset for dataset augmentation, enabling the selection of high-utility synthetic samples that measurably improve TVR outcomes. Project page and dataset can be found at https://jasoncodemaker.github.io/SynTVA/.
Authors:Nan Chen, Mengqi Huang, Yihao Meng, Zhendong Mao
Abstract:
Animation colorization is a crucial part of real animation industry production. Long animation colorization has high labor costs. Therefore, automated long animation colorization based on the video generation model has significant research value. Existing studies are limited to short-term colorization. These studies adopt a local paradigm, fusing overlapping features to achieve smooth transitions between local segments. However, the local paradigm neglects global information, failing to maintain long-term color consistency. In this study, we argue that ideal long-term color consistency can be achieved through a dynamic global-local paradigm, i.e., dynamically extracting global color-consistent features relevant to the current generation. Specifically, we propose LongAnimation, a novel framework, which mainly includes a SketchDiT, a Dynamic Global-Local Memory (DGLM), and a Color Consistency Reward. The SketchDiT captures hybrid reference features to support the DGLM module. The DGLM module employs a long video understanding model to dynamically compress global historical features and adaptively fuse them with the current generation features. To refine the color consistency, we introduce a Color Consistency Reward. During inference, we propose a color consistency fusion to smooth the video segment transition. Extensive experiments on both short-term (14 frames) and long-term (average 500 frames) animations show the effectiveness of LongAnimation in maintaining short-term and long-term color consistency for open-domain animation colorization task. The code can be found at https://cn-makers.github.io/long_animation_web/.
Authors:Yiming Ju, Jijin Hu, Zhengxiong Luo, Haoge Deng, hanyu Zhao, Li Du, Chengwei Wu, Donglin Hao, Xinlong Wang, Tengfei Pan
Abstract:
Text-to-video (T2V) generation has recently attracted considerable attention, resulting in the development of numerous high-quality datasets that have propelled progress in this area. However, existing public datasets are primarily composed of isolated text-video (T-V) pairs and thus fail to support the modeling of coherent multi-clip video sequences. To address this limitation, we introduce CI-VID, a dataset that moves beyond isolated text-to-video (T2V) generation toward text-and-video-to-video (TV2V) generation, enabling models to produce coherent, multi-scene video sequences. CI-VID contains over 340,000 samples, each featuring a coherent sequence of video clips with text captions that capture both the individual content of each clip and the transitions between them, enabling visually and textually grounded generation. To further validate the effectiveness of CI-VID, we design a comprehensive, multi-dimensional benchmark incorporating human evaluation, VLM-based assessment, and similarity-based metrics. Experimental results demonstrate that models trained on CI-VID exhibit significant improvements in both accuracy and content consistency when generating video sequences. This facilitates the creation of story-driven content with smooth visual transitions and strong temporal coherence, underscoring the quality and practical utility of the CI-VID dataset We release the CI-VID dataset and the accompanying code for data construction and evaluation at: https://github.com/ymju-BAAI/CI-VID
Authors:Mengyi Shan, Zecheng He, Haoyu Ma, Felix Juefei-Xu, Peizhao Zhang, Tingbo Hou, Ching-Yao Chuang
Abstract:
Can a video generation model be repurposed as an interactive world simulator? We explore the affordance perception potential of text-to-video models by teaching them to predict human-environment interaction. Given a scene image and a prompt describing human actions, we fine-tune the model to insert a person into the scene, while ensuring coherent behavior, appearance, harmonization, and scene affordance. Unlike prior work, we infer human affordance for video generation (i.e., where to insert a person and how they should behave) from a single scene image, without explicit conditions like bounding boxes or body poses. An in-depth study of cross-attention heatmaps demonstrates that we can uncover the inherent affordance perception of a pre-trained video model without labeled affordance datasets.
Authors:Kaiwen Zhang, Zhenyu Tang, Xiaotao Hu, Xingang Pan, Xiaoyang Guo, Yuan Liu, Jingwei Huang, Li Yuan, Qian Zhang, Xiao-Xiao Long, Xun Cao, Wei Yin
Abstract:
Diffusion models have demonstrated exceptional visual quality in video generation, making them promising for autonomous driving world modeling. However, existing video diffusion-based world models struggle with flexible-length, long-horizon predictions and integrating trajectory planning. This is because conventional video diffusion models rely on global joint distribution modeling of fixed-length frame sequences rather than sequentially constructing localized distributions at each timestep. In this work, we propose Epona, an autoregressive diffusion world model that enables localized spatiotemporal distribution modeling through two key innovations: 1) Decoupled spatiotemporal factorization that separates temporal dynamics modeling from fine-grained future world generation, and 2) Modular trajectory and video prediction that seamlessly integrate motion planning with visual modeling in an end-to-end framework. Our architecture enables high-resolution, long-duration generation while introducing a novel chain-of-forward training strategy to address error accumulation in autoregressive loops. Experimental results demonstrate state-of-the-art performance with 7.4\% FVD improvement and minutes longer prediction duration compared to prior works. The learned world model further serves as a real-time motion planner, outperforming strong end-to-end planners on NAVSIM benchmarks. Code will be publicly available at \href{https://github.com/Kevin-thu/Epona/}{https://github.com/Kevin-thu/Epona/}.
Authors:Jianzong Wu, Liang Hou, Haotian Yang, Xin Tao, Ye Tian, Pengfei Wan, Di Zhang, Yunhai Tong
Abstract:
The quadratic complexity of full attention mechanisms poses a significant bottleneck for Video Diffusion Models (VDMs) aiming to generate long-duration, high-resolution videos. While various sparse attention methods have been proposed, many are designed as training-free inference accelerators or do not optimally capture the unique spatio-temporal characteristics inherent in video data when trained natively. This paper introduces Video Mixture of Block Attention (VMoBA), a novel sparse attention mechanism specifically adapted for VDMs. Motivated by an in-depth analysis of attention patterns within pre-trained video transformers, which revealed strong spatio-temporal locality, varying query importance, and head-specific concentration levels, VMoBA enhances the original MoBA framework with three key modifications: (1) a layer-wise recurrent block partition scheme (1D-2D-3D) to dynamically adapt to diverse spatio-temporal attention patterns and improve efficiency; (2) global block selection to prioritize the most salient query-key block interactions across an entire attention head; and (3) threshold-based block selection to dynamically determine the number of attended blocks based on their cumulative similarity. Extensive experiments demonstrate that VMoBA significantly accelerates the training of VDMs on longer sequences, achieving 2.92x FLOPs and 1.48x latency speedup, while attaining comparable or even superior generation quality to full attention. Furthermore, VMoBA exhibits competitive performance in training-free inference, offering 2.40x FLOPs and 1.35x latency speedup for high-res video generation.
Authors:Shuai Tan, Biao Gong, Yujie Wei, Shiwei Zhang, Zhuoxin Liu, Dandan Zheng, Jingdong Chen, Yan Wang, Hao Ouyang, Kecheng Zheng, Yujun Shen
Abstract:
Diffusion-based video motion customization facilitates the acquisition of human motion representations from a few video samples, while achieving arbitrary subjects transfer through precise textual conditioning. Existing approaches often rely on semantic-level alignment, expecting the model to learn new motion concepts and combine them with other entities (e.g., ''cats'' or ''dogs'') to produce visually appealing results. However, video data involve complex spatio-temporal patterns, and focusing solely on semantics cause the model to overlook the visual complexity of motion. Conversely, tuning only the visual representation leads to semantic confusion in representing the intended action. To address these limitations, we propose SynMotion, a new motion-customized video generation model that jointly leverages semantic guidance and visual adaptation. At the semantic level, we introduce the dual-embedding semantic comprehension mechanism which disentangles subject and motion representations, allowing the model to learn customized motion features while preserving its generative capabilities for diverse subjects. At the visual level, we integrate parameter-efficient motion adapters into a pre-trained video generation model to enhance motion fidelity and temporal coherence. Furthermore, we introduce a new embedding-specific training strategy which \textbf{alternately optimizes} subject and motion embeddings, supported by the manually constructed Subject Prior Video (SPV) training dataset. This strategy promotes motion specificity while preserving generalization across diverse subjects. Lastly, we introduce MotionBench, a newly curated benchmark with diverse motion patterns. Experimental results across both T2V and I2V settings demonstrate that \method outperforms existing baselines. Project page: https://lucaria-academy.github.io/SynMotion/
Authors:Zixun Fang, Kai Zhu, Zhiheng Liu, Yu Liu, Wei Zhai, Yang Cao, Zheng-Jun Zha
Abstract:
Panoramic video generation aims to synthesize 360-degree immersive videos, holding significant importance in the fields of VR, world models, and spatial intelligence. Existing works fail to synthesize high-quality panoramic videos due to the inherent modality gap between panoramic data and perspective data, which constitutes the majority of the training data for modern diffusion models. In this paper, we propose a novel framework utilizing pretrained perspective video models for generating panoramic videos. Specifically, we design a novel panorama representation named ViewPoint map, which possesses global spatial continuity and fine-grained visual details simultaneously. With our proposed Pano-Perspective attention mechanism, the model benefits from pretrained perspective priors and captures the panoramic spatial correlations of the ViewPoint map effectively. Extensive experiments demonstrate that our method can synthesize highly dynamic and spatially consistent panoramic videos, achieving state-of-the-art performance and surpassing previous methods.
Authors:Yu Shang, Xin Zhang, Yinzhou Tang, Lei Jin, Chen Gao, Wei Wu, Yong Li
Abstract:
World models have become indispensable tools for embodied intelligence, serving as powerful simulators capable of generating realistic robotic videos while addressing critical data scarcity challenges. However, current embodied world models exhibit limited physical awareness, particularly in modeling 3D geometry and motion dynamics, resulting in unrealistic video generation for contact-rich robotic scenarios. In this paper, we present RoboScape, a unified physics-informed world model that jointly learns RGB video generation and physics knowledge within an integrated framework. We introduce two key physics-informed joint training tasks: temporal depth prediction that enhances 3D geometric consistency in video rendering, and keypoint dynamics learning that implicitly encodes physical properties (e.g., object shape and material characteristics) while improving complex motion modeling. Extensive experiments demonstrate that RoboScape generates videos with superior visual fidelity and physical plausibility across diverse robotic scenarios. We further validate its practical utility through downstream applications including robotic policy training with generated data and policy evaluation. Our work provides new insights for building efficient physics-informed world models to advance embodied intelligence research. The code is available at: https://github.com/tsinghua-fib-lab/RoboScape.
Authors:Jiahao Lin, Weixuan Peng, Bojia Zi, Yifeng Gao, Xianbiao Qi, Xingjun Ma, Yu-Gang Jiang
Abstract:
Recent advances in deep generative models have led to significant progress in video generation, yet the fidelity of AI-generated videos remains limited. Synthesized content often exhibits visual artifacts such as temporally inconsistent motion, physically implausible trajectories, unnatural object deformations, and local blurring that undermine realism and user trust. Accurate detection and spatial localization of these artifacts are crucial for both automated quality control and for guiding the development of improved generative models. However, the research community currently lacks a comprehensive benchmark specifically designed for artifact localization in AI generated videos. Existing datasets either restrict themselves to video or frame level detection or lack the fine-grained spatial annotations necessary for evaluating localization methods. To address this gap, we introduce BrokenVideos, a benchmark dataset of 3,254 AI-generated videos with meticulously annotated, pixel-level masks highlighting regions of visual corruption. Each annotation is validated through detailed human inspection to ensure high quality ground truth. Our experiments show that training state of the art artifact detection models and multi modal large language models (MLLMs) on BrokenVideos significantly improves their ability to localize corrupted regions. Through extensive evaluation, we demonstrate that BrokenVideos establishes a critical foundation for benchmarking and advancing research on artifact localization in generative video models. The dataset is available at: https://broken-video-detection-datetsets.github.io/Broken-Video-Detection-Datasets.github.io/.
Authors:Xingyang Li, Muyang Li, Tianle Cai, Haocheng Xi, Shuo Yang, Yujun Lin, Lvmin Zhang, Songlin Yang, Jinbo Hu, Kelly Peng, Maneesh Agrawala, Ion Stoica, Kurt Keutzer, Song Han
Abstract:
Recent advances in diffusion models have enabled high-quality video generation, but the additional temporal dimension significantly increases computational costs, making training and inference on long videos prohibitively expensive. In this paper, we identify a phenomenon we term Spatiotemporal Energy Decay in video diffusion models: post-softmax attention scores diminish as spatial and temporal distance between tokens increase, akin to the physical decay of signal or waves over space and time in nature. Motivated by this, we propose Radial Attention, a scalable sparse attention mechanism with $O(n \log n)$ complexity that translates energy decay into exponentially decaying compute density, which is significantly more efficient than standard $O(n^2)$ dense attention and more expressive than linear attention. Specifically, Radial Attention employs a simple, static attention mask where each token attends to spatially nearby tokens, with the attention window size shrinking with temporal distance. Moreover, it allows pre-trained video diffusion models to extend their generation length with efficient LoRA-based fine-tuning. Extensive experiments show that Radial Attention maintains video quality across Wan2.1-14B, HunyuanVideo, and Mochi 1, achieving up to a 1.9$\times$ speedup over the original dense attention. With minimal tuning, it enables video generation up to 4$\times$ longer while reducing training costs by up to 4.4$\times$ compared to direct fine-tuning and accelerating inference by up to 3.7$\times$ compared to dense attention inference.
Authors:Zekun Li, Rui Zhou, Rahul Sajnani, Xiaoyan Cong, Daniel Ritchie, Srinath Sridhar
Abstract:
Large-scale pre-trained video diffusion models have exhibited remarkable capabilities in diverse video generation. However, existing solutions face several challenges in using these models to generate long movie-like videos with rich human-object interactions that include unrealistic human-scene interaction, lack of subject identity preservation, and require expensive training. We propose GenHSI, a training-free method for controllable generation of long human-scene interaction videos (HSI). Taking inspiration from movie animation, our key insight is to overcome the limitations of previous work by subdividing the long video generation task into three stages: (1) script writing, (2) pre-visualization, and (3) animation. Given an image of a scene, a user description, and multiple images of a person, we use these three stages to generate long-videos that preserve human-identity and provide rich human-scene interactions. Script writing converts complex human tasks into simple atomic tasks that are used in the pre-visualization stage to generate 3D keyframes (storyboards). These 3D keyframes are rendered and animated by off-the-shelf video diffusion models for consistent long video generation with rich contacts in a 3D-aware manner. A key advantage of our work is that we alleviate the need for scanned, accurate scenes and create 3D keyframes from single-view images. We are the first to generate a long video sequence with a consistent camera pose that contains arbitrary numbers of character actions without training. Experiments demonstrate that our method can generate long videos that effectively preserve scene content and character identity with plausible human-scene interaction from a single image scene. Visit our project homepage https://kunkun0w0.github.io/project/GenHSI/ for more information.
Authors:Jintao Rong, Xin Xie, Xinyi Yu, Linlin Ou, Xinyu Zhang, Chunhua Shen, Dong Gong
Abstract:
Distilled video generation models offer fast and efficient synthesis but struggle with motion customization when guided by reference videos, especially under training-free settings. Existing training-free methods, originally designed for standard diffusion models, fail to generalize due to the accelerated generative process and large denoising steps in distilled models. To address this, we propose MotionEcho, a novel training-free test-time distillation framework that enables motion customization by leveraging diffusion teacher forcing. Our approach uses high-quality, slow teacher models to guide the inference of fast student models through endpoint prediction and interpolation. To maintain efficiency, we dynamically allocate computation across timesteps according to guidance needs. Extensive experiments across various distilled video generation models and benchmark datasets demonstrate that our method significantly improves motion fidelity and generation quality while preserving high efficiency. Project page: https://euminds.github.io/motionecho/
Authors:Wenqiang Sun, Fangyun Wei, Jinjing Zhao, Xi Chen, Zilong Chen, Hongyang Zhang, Jun Zhang, Yan Lu
Abstract:
We introduce RealPlay, a neural network-based real-world game engine that enables interactive video generation from user control signals. Unlike prior works focused on game-style visuals, RealPlay aims to produce photorealistic, temporally consistent video sequences that resemble real-world footage. It operates in an interactive loop: users observe a generated scene, issue a control command, and receive a short video chunk in response. To enable such realistic and responsive generation, we address key challenges including iterative chunk-wise prediction for low-latency feedback, temporal consistency across iterations, and accurate control response. RealPlay is trained on a combination of labeled game data and unlabeled real-world videos, without requiring real-world action annotations. Notably, we observe two forms of generalization: (1) control transfer-RealPlay effectively maps control signals from virtual to real-world scenarios; and (2) entity transfer-although training labels originate solely from a car racing game, RealPlay generalizes to control diverse real-world entities, including bicycles and pedestrians, beyond vehicles. Project page can be found: https://wenqsun.github.io/RealPlay/
Authors:Xinyu Zhang, Dong Gong, Zicheng Duan, Anton van den Hengel, Lingqiao Liu
Abstract:
Aligning the rhythm of visual motion in a video with a given music track is a practical need in multimedia production, yet remains an underexplored task in autonomous video editing. Effective alignment between motion and musical beats enhances viewer engagement and visual appeal, particularly in music videos, promotional content, and cinematic editing. Existing methods typically depend on labor-intensive manual cutting, speed adjustments, or heuristic-based editing techniques to achieve synchronization. While some generative models handle joint video and music generation, they often entangle the two modalities, limiting flexibility in aligning video to music beats while preserving the full visual content. In this paper, we propose a novel and efficient framework, termed MVAA (Music-Video Auto-Alignment), that automatically edits video to align with the rhythm of a given music track while preserving the original visual content. To enhance flexibility, we modularize the task into a two-step process in our MVAA: aligning motion keyframes with audio beats, followed by rhythm-aware video inpainting. Specifically, we first insert keyframes at timestamps aligned with musical beats, then use a frame-conditioned diffusion model to generate coherent intermediate frames, preserving the original video's semantic content. Since comprehensive test-time training can be time-consuming, we adopt a two-stage strategy: pretraining the inpainting module on a small video set to learn general motion priors, followed by rapid inference-time fine-tuning for video-specific adaptation. This hybrid approach enables adaptation within 10 minutes with one epoch on a single NVIDIA 4090 GPU using CogVideoX-5b-I2V as the backbone. Extensive experiments show that our approach can achieve high-quality beat alignment and visual smoothness.
Authors:Qijun Gan, Ruizi Yang, Jianke Zhu, Shaofei Xue, Steven Hoi
Abstract:
Significant progress has been made in audio-driven human animation, while most existing methods focus mainly on facial movements, limiting their ability to create full-body animations with natural synchronization and fluidity. They also struggle with precise prompt control for fine-grained generation. To tackle these challenges, we introduce OmniAvatar, an innovative audio-driven full-body video generation model that enhances human animation with improved lip-sync accuracy and natural movements. OmniAvatar introduces a pixel-wise multi-hierarchical audio embedding strategy to better capture audio features in the latent space, enhancing lip-syncing across diverse scenes. To preserve the capability for prompt-driven control of foundation models while effectively incorporating audio features, we employ a LoRA-based training approach. Extensive experiments show that OmniAvatar surpasses existing models in both facial and semi-body video generation, offering precise text-based control for creating videos in various domains, such as podcasts, human interactions, dynamic scenes, and singing. Our project page is https://omni-avatar.github.io/.
Authors:Zhuowei Chen, Bingchuan Li, Tianxiang Ma, Lijie Liu, Mingcong Liu, Yi Zhang, Gen Li, Xinghui Li, Siyu Zhou, Qian He, Xinglong Wu
Abstract:
Subject-to-video generation has witnessed substantial progress in recent years. However, existing models still face significant challenges in faithfully following textual instructions. This limitation, commonly known as the copy-paste problem, arises from the widely used in-pair training paradigm. This approach inherently entangles subject identity with background and contextual attributes by sampling reference images from the same scene as the target video. To address this issue, we introduce \textbf{Phantom-Data, the first general-purpose cross-pair subject-to-video consistency dataset}, containing approximately one million identity-consistent pairs across diverse categories. Our dataset is constructed via a three-stage pipeline: (1) a general and input-aligned subject detection module, (2) large-scale cross-context subject retrieval from more than 53 million videos and 3 billion images, and (3) prior-guided identity verification to ensure visual consistency under contextual variation. Comprehensive experiments show that training with Phantom-Data significantly improves prompt alignment and visual quality while preserving identity consistency on par with in-pair baselines.
Authors:Yifan Zhang, Chunli Peng, Boyang Wang, Puyi Wang, Qingcheng Zhu, Fei Kang, Biao Jiang, Zedong Gao, Eric Li, Yang Liu, Yahui Zhou
Abstract:
We introduce Matrix-Game, an interactive world foundation model for controllable game world generation. Matrix-Game is trained using a two-stage pipeline that first performs large-scale unlabeled pretraining for environment understanding, followed by action-labeled training for interactive video generation. To support this, we curate Matrix-Game-MC, a comprehensive Minecraft dataset comprising over 2,700 hours of unlabeled gameplay video clips and over 1,000 hours of high-quality labeled clips with fine-grained keyboard and mouse action annotations. Our model adopts a controllable image-to-world generation paradigm, conditioned on a reference image, motion context, and user actions. With over 17 billion parameters, Matrix-Game enables precise control over character actions and camera movements, while maintaining high visual quality and temporal coherence. To evaluate performance, we develop GameWorld Score, a unified benchmark measuring visual quality, temporal quality, action controllability, and physical rule understanding for Minecraft world generation. Extensive experiments show that Matrix-Game consistently outperforms prior open-source Minecraft world models (including Oasis and MineWorld) across all metrics, with particularly strong gains in controllability and physical consistency. Double-blind human evaluations further confirm the superiority of Matrix-Game, highlighting its ability to generate perceptually realistic and precisely controllable videos across diverse game scenarios. To facilitate future research on interactive image-to-world generation, we will open-source the Matrix-Game model weights and the GameWorld Score benchmark at https://github.com/SkyworkAI/Matrix-Game.
Authors:Wenxu Qian, Chaoyue Wang, Hou Peng, Zhiyu Tan, Hao Li, Anxiang Zeng
Abstract:
Video generation techniques have achieved remarkable advancements in visual quality, yet faithfully reproducing real-world physics remains elusive. Preference-based model post-training may improve physical consistency, but requires costly human-annotated datasets or reward models that are not yet feasible. To address these challenges, we present Real Data Preference Optimisation (RDPO), an annotation-free framework that distills physical priors directly from real-world videos. Specifically, the proposed RDPO reverse-samples real video sequences with a pre-trained generator to automatically build preference pairs that are statistically distinguishable in terms of physical correctness. A multi-stage iterative training schedule then guides the generator to obey physical laws increasingly well. Benefiting from the dynamic information explored from real videos, our proposed RDPO significantly improves the action coherence and physical realism of the generated videos. Evaluations on multiple benchmarks and human evaluations have demonstrated that RDPO achieves improvements across multiple dimensions. The source code and demonstration of this paper are available at: https://wwenxu.github.io/RDPO/
Authors:Jisu Nam, Soowon Son, Dahyun Chung, Jiyoung Kim, Siyoon Jin, Junhwa Hur, Seungryong Kim
Abstract:
Recent advancements in video diffusion models based on Diffusion Transformers (DiTs) have achieved remarkable success in generating temporally coherent videos. Yet, a fundamental question persists: how do these models internally establish and represent temporal correspondences across frames? We introduce DiffTrack, the first quantitative analysis framework designed to answer this question. DiffTrack constructs a dataset of prompt-generated video with pseudo ground-truth tracking annotations and proposes novel evaluation metrics to systematically analyze how each component within the full 3D attention mechanism of DiTs (e.g., representations, layers, and timesteps) contributes to establishing temporal correspondences. Our analysis reveals that query-key similarities in specific, but not all, layers play a critical role in temporal matching, and that this matching becomes increasingly prominent during the denoising process. We demonstrate practical applications of DiffTrack in zero-shot point tracking, where it achieves state-of-the-art performance compared to existing vision foundation and self-supervised video models. Further, we extend our findings to motion-enhanced video generation with a novel guidance method that improves temporal consistency of generated videos without additional training. We believe our work offers crucial insights into the inner workings of video DiTs and establishes a foundation for further research and applications leveraging their temporal understanding.
Authors:Cong Wang, Zexuan Deng, Zhiwei Jiang, Fei Shen, Yafeng Yin, Shiwei Gan, Zifeng Cheng, Shiping Ge, Qing Gu
Abstract:
Sign Language Video Generation (SLVG) seeks to generate identity-preserving sign language videos from spoken language texts. Existing methods primarily rely on the single coarse condition (\eg, skeleton sequences) as the intermediary to bridge the translation model and the video generation model, which limits both the naturalness and expressiveness of the generated videos. To overcome these limitations, we propose SignViP, a novel SLVG framework that incorporates multiple fine-grained conditions for improved generation fidelity. Rather than directly translating error-prone high-dimensional conditions, SignViP adopts a discrete tokenization paradigm to integrate and represent fine-grained conditions (\ie, fine-grained poses and 3D hands). SignViP contains three core components. (1) Sign Video Diffusion Model is jointly trained with a multi-condition encoder to learn continuous embeddings that encapsulate fine-grained motion and appearance. (2) Finite Scalar Quantization (FSQ) Autoencoder is further trained to compress and quantize these embeddings into discrete tokens for compact representation of the conditions. (3) Multi-Condition Token Translator is trained to translate spoken language text to discrete multi-condition tokens. During inference, Multi-Condition Token Translator first translates the spoken language text into discrete multi-condition tokens. These tokens are then decoded to continuous embeddings by FSQ Autoencoder, which are subsequently injected into Sign Video Diffusion Model to guide video generation. Experimental results show that SignViP achieves state-of-the-art performance across metrics, including video quality, temporal coherence, and semantic fidelity. The code is available at https://github.com/umnooob/signvip/.
Authors:Zhen Li, Chuanhao Li, Xiaofeng Mao, Shaoheng Lin, Ming Li, Shitian Zhao, Zhaopan Xu, Xinyue Li, Yukang Feng, Jianwen Sun, Zizhen Li, Fanrui Zhang, Jiaxin Ai, Zhixiang Wang, Yuwei Wu, Tong He, Jiangmiao Pang, Yu Qiao, Yunde Jia, Kaipeng Zhang
Abstract:
Video generation techniques have made remarkable progress, promising to be the foundation of interactive world exploration. However, existing video generation datasets are not well-suited for world exploration training as they suffer from some limitations: limited locations, short duration, static scenes, and a lack of annotations about exploration and the world. In this paper, we introduce Sekai (meaning ``world'' in Japanese), a high-quality first-person view worldwide video dataset with rich annotations for world exploration. It consists of over 5,000 hours of walking or drone view (FPV and UVA) videos from over 100 countries and regions across 750 cities. We develop an efficient and effective toolbox to collect, pre-process and annotate videos with location, scene, weather, crowd density, captions, and camera trajectories. Experiments demonstrate the quality of the dataset. And, we use a subset to train an interactive video world exploration model, named YUME (meaning ``dream'' in Japanese). We believe Sekai will benefit the area of video generation and world exploration, and motivate valuable applications. The project page is https://lixsp11.github.io/sekai-project/.
Authors:Jinheng Xie, Zhenheng Yang, Mike Zheng Shou
Abstract:
This paper presents improved native unified multimodal models, \emph{i.e.,} Show-o2, that leverage autoregressive modeling and flow matching. Built upon a 3D causal variational autoencoder space, unified visual representations are constructed through a dual-path of spatial (-temporal) fusion, enabling scalability across image and video modalities while ensuring effective multimodal understanding and generation. Based on a language model, autoregressive modeling and flow matching are natively applied to the language head and flow head, respectively, to facilitate text token prediction and image/video generation. A two-stage training recipe is designed to effectively learn and scale to larger models. The resulting Show-o2 models demonstrate versatility in handling a wide range of multimodal understanding and generation tasks across diverse modalities, including text, images, and videos. Code and models are released at https://github.com/showlab/Show-o.
Authors:Zhucun Xue, Jiangning Zhang, Teng Hu, Haoyang He, Yinan Chen, Yuxuan Cai, Yabiao Wang, Chengjie Wang, Yong Liu, Xiangtai Li, Dacheng Tao
Abstract:
The quality of the video dataset (image quality, resolution, and fine-grained caption) greatly influences the performance of the video generation model. The growing demand for video applications sets higher requirements for high-quality video generation models. For example, the generation of movie-level Ultra-High Definition (UHD) videos and the creation of 4K short video content. However, the existing public datasets cannot support related research and applications. In this paper, we first propose a high-quality open-sourced UHD-4K (22.4\% of which are 8K) text-to-video dataset named UltraVideo, which contains a wide range of topics (more than 100 kinds), and each video has 9 structured captions with one summarized caption (average of 824 words). Specifically, we carefully design a highly automated curation process with four stages to obtain the final high-quality dataset: \textit{i)} collection of diverse and high-quality video clips. \textit{ii)} statistical data filtering. \textit{iii)} model-based data purification. \textit{iv)} generation of comprehensive, structured captions. In addition, we expand Wan to UltraWan-1K/-4K, which can natively generate high-quality 1K/4K videos with more consistent text controllability, demonstrating the effectiveness of our data curation.We believe that this work can make a significant contribution to future research on UHD video generation. UltraVideo dataset and UltraWan models are available at https://xzc-zju.github.io/projects/UltraVideo.
Authors:Chao Liang, Jianwen Jiang, Wang Liao, Jiaqi Yang, Zerong zheng, Weihong Zeng, Han Liang
Abstract:
Recent advancements in human video generation and animation tasks, driven by diffusion models, have achieved significant progress. However, expressive and realistic human animation remains challenging due to the trade-off between motion naturalness and visual fidelity. To address this, we propose \textbf{AlignHuman}, a framework that combines Preference Optimization as a post-training technique with a divide-and-conquer training strategy to jointly optimize these competing objectives. Our key insight stems from an analysis of the denoising process across timesteps: (1) early denoising timesteps primarily control motion dynamics, while (2) fidelity and human structure can be effectively managed by later timesteps, even if early steps are skipped. Building on this observation, we propose timestep-segment preference optimization (TPO) and introduce two specialized LoRAs as expert alignment modules, each targeting a specific dimension in its corresponding timestep interval. The LoRAs are trained using their respective preference data and activated in the corresponding intervals during inference to enhance motion naturalness and fidelity. Extensive experiments demonstrate that AlignHuman improves strong baselines and reduces NFEs during inference, achieving a 3.3$\times$ speedup (from 100 NFEs to 30 NFEs) with minimal impact on generation quality. Homepage: \href{https://alignhuman.github.io/}{https://alignhuman.github.io/}
Authors:Weiliang Chen, Wenzhao Zheng, Yu Zheng, Lei Chen, Jie Zhou, Jiwen Lu, Yueqi Duan
Abstract:
The flourishing of video generation technologies has endangered the credibility of real-world information and intensified the demand for AI-generated video detectors. Despite some progress, the lack of high-quality real-world datasets hinders the development of trustworthy detectors. In this paper, we propose GenWorld, a large-scale, high-quality, and real-world simulation dataset for AI-generated video detection. GenWorld features the following characteristics: (1) Real-world Simulation: GenWorld focuses on videos that replicate real-world scenarios, which have a significant impact due to their realism and potential influence; (2) High Quality: GenWorld employs multiple state-of-the-art video generation models to provide realistic and high-quality forged videos; (3) Cross-prompt Diversity: GenWorld includes videos generated from diverse generators and various prompt modalities (e.g., text, image, video), offering the potential to learn more generalizable forensic features. We analyze existing methods and find they fail to detect high-quality videos generated by world models (i.e., Cosmos), revealing potential drawbacks of ignoring real-world clues. To address this, we propose a simple yet effective model, SpannDetector, to leverage multi-view consistency as a strong criterion for real-world AI-generated video detection. Experiments show that our method achieves superior results, highlighting a promising direction for explainable AI-generated video detection based on physical plausibility. We believe that GenWorld will advance the field of AI-generated video detection. Project Page: https://chen-wl20.github.io/GenWorld
Authors:Jiancheng Huang, Gengwei Zhang, Zequn Jie, Siyu Jiao, Yinlong Qian, Ling Chen, Yunchao Wei, Lin Ma
Abstract:
Text-to-video generation has significantly enriched content creation and holds the potential to evolve into powerful world simulators. However, modeling the vast spatiotemporal space remains computationally demanding, particularly when employing Transformers, which incur quadratic complexity in sequence processing and thus limit practical applications. Recent advancements in linear-time sequence modeling, particularly the Mamba architecture, offer a more efficient alternative. Nevertheless, its plain design limits its direct applicability to multi-modal and spatiotemporal video generation tasks. To address these challenges, we introduce M4V, a Multi-Modal Mamba framework for text-to-video generation. Specifically, we propose a multi-modal diffusion Mamba (MM-DiM) block that enables seamless integration of multi-modal information and spatiotemporal modeling through a multi-modal token re-composition design. As a result, the Mamba blocks in M4V reduce FLOPs by 45% compared to the attention-based alternative when generating videos at 768$\times$1280 resolution. Additionally, to mitigate the visual quality degradation in long-context autoregressive generation processes, we introduce a reward learning strategy that further enhances per-frame visual realism. Extensive experiments on text-to-video benchmarks demonstrate M4V's ability to produce high-quality videos while significantly lowering computational costs. Code and models will be publicly available at https://huangjch526.github.io/M4V_project.
Authors:Lizhen Wang, Zhurong Xia, Tianshu Hu, Pengrui Wang, Pengfei Wei, Zerong Zheng, Ming Zhou, Yuan Zhang, Mingyuan Gao
Abstract:
In e-commerce and digital marketing, generating high-fidelity human-product demonstration videos is important for effective product presentation. However, most existing frameworks either fail to preserve the identities of both humans and products or lack an understanding of human-product spatial relationships, leading to unrealistic representations and unnatural interactions. To address these challenges, we propose a Diffusion Transformer (DiT)-based framework. Our method simultaneously preserves human identities and product-specific details, such as logos and textures, by injecting paired human-product reference information and utilizing an additional masked cross-attention mechanism. We employ a 3D body mesh template and product bounding boxes to provide precise motion guidance, enabling intuitive alignment of hand gestures with product placements. Additionally, structured text encoding is used to incorporate category-level semantics, enhancing 3D consistency during small rotational changes across frames. Trained on a hybrid dataset with extensive data augmentation strategies, our approach outperforms state-of-the-art techniques in maintaining the identity integrity of both humans and products and generating realistic demonstration motions. Project page: https://lizhenwangt.github.io/DreamActor-H1/.
Authors:Chenjian Gao, Lihe Ding, Xin Cai, Zhanpeng Huang, Zibin Wang, Tianfan Xue
Abstract:
Video editing using diffusion models has achieved remarkable results in generating high-quality edits for videos. However, current methods often rely on large-scale pretraining, limiting flexibility for specific edits. First-frame-guided editing provides control over the first frame, but lacks flexibility over subsequent frames. To address this, we propose a mask-based LoRA (Low-Rank Adaptation) tuning method that adapts pretrained Image-to-Video (I2V) models for flexible video editing. Our key innovation is using a spatiotemporal mask to strategically guide the LoRA fine-tuning process. This teaches the model two distinct skills: first, to interpret the mask as a command to either preserve content from the source video or generate new content in designated regions. Second, for these generated regions, LoRA learns to synthesize either temporally consistent motion inherited from the video or novel appearances guided by user-provided reference frames. This dual-capability LoRA grants users control over the edit's entire temporal evolution, allowing complex transformations like an object rotating or a flower blooming. Experimental results show our method achieves superior video editing performance compared to baseline methods. Project Page: https://cjeen.github.io/LoRAEdit
Authors:Zheqi He, Yesheng Liu, Jing-shu Zheng, Xuejing Li, Jin-Ge Yao, Bowen Qin, Richeng Xuan, Xi Yang
Abstract:
We present FlagEvalMM, an open-source evaluation framework designed to comprehensively assess multimodal models across a diverse range of vision-language understanding and generation tasks, such as visual question answering, text-to-image/video generation, and image-text retrieval. We decouple model inference from evaluation through an independent evaluation service, thus enabling flexible resource allocation and seamless integration of new tasks and models. Moreover, FlagEvalMM utilizes advanced inference acceleration tools (e.g., vLLM, SGLang) and asynchronous data loading to significantly enhance evaluation efficiency. Extensive experiments show that FlagEvalMM offers accurate and efficient insights into model strengths and limitations, making it a valuable tool for advancing multimodal research. The framework is publicly accessible at https://github.com/flageval-baai/FlagEvalMM.
Authors:Zehong Ma, Longhui Wei, Feng Wang, Shiliang Zhang, Qi Tian
Abstract:
Existing acceleration techniques for video diffusion models often rely on uniform heuristics or time-embedding variants to skip timesteps and reuse cached features. These approaches typically require extensive calibration with curated prompts and risk inconsistent outputs due to prompt-specific overfitting. In this paper, we introduce a novel and robust discovery: a unified magnitude law observed across different models and prompts. Specifically, the magnitude ratio of successive residual outputs decreases monotonically and steadily in most timesteps while rapidly in the last several steps. Leveraging this insight, we introduce a Magnitude-aware Cache (MagCache) that adaptively skips unimportant timesteps using an error modeling mechanism and adaptive caching strategy. Unlike existing methods requiring dozens of curated samples for calibration, MagCache only requires a single sample for calibration. Experimental results show that MagCache achieves 2.1x and 2.68x speedups on Open-Sora and Wan 2.1, respectively, while preserving superior visual fidelity. It significantly outperforms existing methods in LPIPS, SSIM, and PSNR, under comparable computational budgets.
Authors:June Suk Choi, Kyungmin Lee, Sihyun Yu, Yisol Choi, Jinwoo Shin, Kimin Lee
Abstract:
Recent text-to-video (T2V) models have demonstrated strong capabilities in producing high-quality, dynamic videos. To improve the visual controllability, recent works have considered fine-tuning pre-trained T2V models to support image-to-video (I2V) generation. However, such adaptation frequently suppresses motion dynamics of generated outputs, resulting in more static videos compared to their T2V counterparts. In this work, we analyze this phenomenon and identify that it stems from the premature exposure to high-frequency details in the input image, which biases the sampling process toward a shortcut trajectory that overfits to the static appearance of the reference image. To address this, we propose adaptive low-pass guidance (ALG), a simple fix to the I2V model sampling procedure to generate more dynamic videos without compromising per-frame image quality. Specifically, ALG adaptively modulates the frequency content of the conditioning image by applying low-pass filtering at the early stage of denoising. Extensive experiments demonstrate that ALG significantly improves the temporal dynamics of generated videos, while preserving image fidelity and text alignment. Especially, under VBench-I2V test suite, ALG achieves an average improvement of 36% in dynamic degree without a significant drop in video quality or image fidelity.
Authors:Boya Zeng, Yida Yin, Zhiqiu Xu, Zhuang Liu
Abstract:
Generative models, with their success in image and video generation, have recently been explored for synthesizing effective neural network weights. These approaches take trained neural network checkpoints as training data, and aim to generate high-performing neural network weights during inference. In this work, we examine four representative methods on their ability to generate novel model weights, i.e., weights that are different from the checkpoints seen during training. Surprisingly, we find that these methods synthesize weights largely by memorization: they produce either replicas, or at best simple interpolations, of the training checkpoints. Current methods fail to outperform simple baselines, such as adding noise to the weights or taking a simple weight ensemble, in obtaining different and simultaneously high-performing models. We further show that this memorization cannot be effectively mitigated by modifying modeling factors commonly associated with memorization in image diffusion models, or applying data augmentations. Our findings provide a realistic assessment of what types of data current generative models can model, and highlight the need for more careful evaluation of generative models in new domains. Our code is available at https://github.com/boyazeng/weight_memorization.
Authors:Gen Li, Yutong Chen, Yiqian Wu, Kaifeng Zhao, Marc Pollefeys, Siyu Tang
Abstract:
Understanding multimodal signals in egocentric vision, such as RGB video, depth, camera poses, and gaze, is essential for applications in augmented reality, robotics, and human-computer interaction, enabling systems to better interpret the camera wearer's actions, intentions, and surrounding environment. However, building large-scale egocentric multimodal and multitask models presents unique challenges. Egocentric data are inherently heterogeneous, with large variations in modality coverage across devices and settings. Generating pseudo-labels for missing modalities, such as gaze or head-mounted camera trajectories, is often infeasible, making standard supervised learning approaches difficult to scale. Furthermore, dynamic camera motion and the complex temporal and spatial structure of first-person video pose additional challenges for the direct application of existing multimodal foundation models.
To address these challenges, we introduce a set of efficient temporal tokenizers and propose EgoM2P, a masked modeling framework that learns from temporally-aware multimodal tokens to train a large, general-purpose model for egocentric 4D understanding. This unified design supports multitasking across diverse egocentric perception and synthesis tasks, including gaze prediction, egocentric camera tracking, and monocular depth estimation from egocentric video, and also serves as a generative model for conditional egocentric video synthesis. Across these tasks, EgoM2P matches or outperforms specialist models while being an order of magnitude faster. We will fully open-source EgoM2P to support the community and advance egocentric vision research. Project page: https://egom2p.github.io/.
Authors:Pablo Acuaviva, Aram Davtyan, Mariam Hassan, Sebastian Stapf, Ahmad Rahimi, Alexandre Alahi, Paolo Favaro
Abstract:
Video Diffusion Models (VDMs) have emerged as powerful generative tools, capable of synthesizing high-quality spatiotemporal content. Yet, their potential goes far beyond mere video generation. We argue that the training dynamics of VDMs, driven by the need to model coherent sequences, naturally pushes them to internalize structured representations and an implicit understanding of the visual world. To probe the extent of this internal knowledge, we introduce a few-shot fine-tuning framework that repurposes VDMs for new tasks using only a handful of examples. Our method transforms each task into a visual transition, enabling the training of LoRA weights on short input-output sequences without altering the generative interface of a frozen VDM. Despite minimal supervision, the model exhibits strong generalization across diverse tasks, from low-level vision (for example, segmentation and pose estimation) to high-level reasoning (for example, on ARC-AGI). These results reframe VDMs as more than generative engines. They are adaptable visual learners with the potential to serve as the backbone for future foundation models in vision.
Authors:Min-Jung Kim, Dongjin Kim, Seokju Yun, Jaegul Choo
Abstract:
Video editing has garnered increasing attention alongside the rapid progress of diffusion-based video generation models. As part of these advancements, there is a growing demand for more accessible and controllable forms of video editing, such as prompt-based editing. Previous studies have primarily focused on tasks such as style transfer, background replacement, object substitution, and attribute modification, while maintaining the content structure of the source video. However, more complex tasks, including the addition of novel objects and nonrigid transformations, remain relatively unexplored. In this paper, we present TV-LiVE, a Training-free and text-guided Video editing framework via Layerinformed Vitality Exploitation. We empirically identify vital layers within the video generation model that significantly influence the quality of generated outputs. Notably, these layers are closely associated with Rotary Position Embeddings (RoPE). Based on this observation, our method enables both object addition and non-rigid video editing by selectively injecting key and value features from the source model into the corresponding layers of the target model guided by the layer vitality. For object addition, we further identify prominent layers to extract the mask regions corresponding to the newly added target prompt. We found that the extracted masks from the prominent layers faithfully indicate the region to be edited. Experimental results demonstrate that TV-LiVE outperforms existing approaches for both object addition and non-rigid video editing. Project Page: https://emjay73.github.io/TV_LiVE/
Authors:Yixuan Zhu, Haolin Wang, Shilin Ma, Wenliang Zhao, Yansong Tang, Lei Chen, Jie Zhou
Abstract:
Recent advancements in diffusion frameworks have significantly enhanced video editing, achieving high fidelity and strong alignment with textual prompts. However, conventional approaches using image diffusion models fall short in handling video dynamics, particularly for challenging temporal edits like motion adjustments. While current video diffusion models produce high-quality results, adapting them for efficient editing remains difficult due to the heavy computational demands that prevent the direct application of previous image editing techniques. To overcome these limitations, we introduce FADE, a training-free yet highly effective video editing approach that fully leverages the inherent priors from pre-trained video diffusion models via frequency-aware factorization. Rather than simply using these models, we first analyze the attention patterns within the video model to reveal how video priors are distributed across different components. Building on these insights, we propose a factorization strategy to optimize each component's specialized role. Furthermore, we devise spectrum-guided modulation to refine the sampling trajectory with frequency domain cues, preventing information leakage and supporting efficient, versatile edits while preserving the basic spatial and temporal structure. Extensive experiments on real-world videos demonstrate that our method consistently delivers high-quality, realistic and temporally coherent editing results both qualitatively and quantitatively. Code is available at https://github.com/EternalEvan/FADE .
Authors:Huihan Wang, Zhiwen Yang, Hui Zhang, Dan Zhao, Bingzheng Wei, Yan Xu
Abstract:
Synthesizing high-quality dynamic medical videos remains a significant challenge due to the need for modeling both spatial consistency and temporal dynamics. Existing Transformer-based approaches face critical limitations, including insufficient channel interactions, high computational complexity from self-attention, and coarse denoising guidance from timestep embeddings when handling varying noise levels. In this work, we propose FEAT, a full-dimensional efficient attention Transformer, which addresses these issues through three key innovations: (1) a unified paradigm with sequential spatial-temporal-channel attention mechanisms to capture global dependencies across all dimensions, (2) a linear-complexity design for attention mechanisms in each dimension, utilizing weighted key-value attention and global channel attention, and (3) a residual value guidance module that provides fine-grained pixel-level guidance to adapt to different noise levels. We evaluate FEAT on standard benchmarks and downstream tasks, demonstrating that FEAT-S, with only 23\% of the parameters of the state-of-the-art model Endora, achieves comparable or even superior performance. Furthermore, FEAT-L surpasses all comparison methods across multiple datasets, showcasing both superior effectiveness and scalability. Code is available at https://github.com/Yaziwel/FEAT.
Authors:Sihui Ji, Hao Luo, Xi Chen, Yuanpeng Tu, Yiyang Wang, Hengshuang Zhao
Abstract:
We present LayerFlow, a unified solution for layer-aware video generation. Given per-layer prompts, LayerFlow generates videos for the transparent foreground, clean background, and blended scene. It also supports versatile variants like decomposing a blended video or generating the background for the given foreground and vice versa. Starting from a text-to-video diffusion transformer, we organize the videos for different layers as sub-clips, and leverage layer embeddings to distinguish each clip and the corresponding layer-wise prompts. In this way, we seamlessly support the aforementioned variants in one unified framework. For the lack of high-quality layer-wise training videos, we design a multi-stage training strategy to accommodate static images with high-quality layer annotations. Specifically, we first train the model with low-quality video data. Then, we tune a motion LoRA to make the model compatible with static frames. Afterward, we train the content LoRA on the mixture of image data with high-quality layered images along with copy-pasted video data. During inference, we remove the motion LoRA thus generating smooth videos with desired layers.
Authors:Zixuan Ye, Xuanhua He, Quande Liu, Qiulin Wang, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, Qifeng Chen, Wenhan Luo
Abstract:
Recent advances in text-to-video generation have sparked interest in generative video editing tasks. Previous methods often rely on task-specific architectures (e.g., additional adapter modules) or dedicated customizations (e.g., DDIM inversion), which limit the integration of versatile editing conditions and the unification of various editing tasks. In this paper, we introduce UNified In-Context Video Editing (UNIC), a simple yet effective framework that unifies diverse video editing tasks within a single model in an in-context manner. To achieve this unification, we represent the inputs of various video editing tasks as three types of tokens: the source video tokens, the noisy video latent, and the multi-modal conditioning tokens that vary according to the specific editing task. Based on this formulation, our key insight is to integrate these three types into a single consecutive token sequence and jointly model them using the native attention operations of DiT, thereby eliminating the need for task-specific adapter designs. Nevertheless, direct task unification under this framework is challenging, leading to severe token collisions and task confusion due to the varying video lengths and diverse condition modalities across tasks. To address these, we introduce task-aware RoPE to facilitate consistent temporal positional encoding, and condition bias that enables the model to clearly differentiate different editing tasks. This allows our approach to adaptively perform different video editing tasks by referring the source video and varying condition tokens "in context", and support flexible task composition. To validate our method, we construct a unified video editing benchmark containing six representative video editing tasks. Results demonstrate that our unified approach achieves superior performance on each task and exhibits emergent task composition abilities.
Authors:Xuanhua He, Quande Liu, Zixuan Ye, Weicai Ye, Qiulin Wang, Xintao Wang, Qifeng Chen, Pengfei Wan, Di Zhang, Kun Gai
Abstract:
Fine-grained and efficient controllability on video diffusion transformers has raised increasing desires for the applicability. Recently, In-context Conditioning emerged as a powerful paradigm for unified conditional video generation, which enables diverse controls by concatenating varying context conditioning signals with noisy video latents into a long unified token sequence and jointly processing them via full-attention, e.g., FullDiT. Despite their effectiveness, these methods face quadratic computation overhead as task complexity increases, hindering practical deployment. In this paper, we study the efficiency bottleneck neglected in original in-context conditioning video generation framework. We begin with systematic analysis to identify two key sources of the computation inefficiencies: the inherent redundancy within context condition tokens and the computational redundancy in context-latent interactions throughout the diffusion process. Based on these insights, we propose FullDiT2, an efficient in-context conditioning framework for general controllability in both video generation and editing tasks, which innovates from two key perspectives. Firstly, to address the token redundancy, FullDiT2 leverages a dynamic token selection mechanism to adaptively identify important context tokens, reducing the sequence length for unified full-attention. Additionally, a selective context caching mechanism is devised to minimize redundant interactions between condition tokens and video latents. Extensive experiments on six diverse conditional video editing and generation tasks demonstrate that FullDiT2 achieves significant computation reduction and 2-3 times speedup in averaged time cost per diffusion step, with minimal degradation or even higher performance in video generation quality. The project page is at \href{https://fulldit2.github.io/}{https://fulldit2.github.io/}.
Authors:Ziyi Wu, Anil Kag, Ivan Skorokhodov, Willi Menapace, Ashkan Mirzaei, Igor Gilitschenski, Sergey Tulyakov, Aliaksandr Siarohin
Abstract:
Direct Preference Optimization (DPO) has recently been applied as a post-training technique for text-to-video diffusion models. To obtain training data, annotators are asked to provide preferences between two videos generated from independent noise. However, this approach prohibits fine-grained comparisons, and we point out that it biases the annotators towards low-motion clips as they often contain fewer visual artifacts. In this work, we introduce DenseDPO, a method that addresses these shortcomings by making three contributions. First, we create each video pair for DPO by denoising corrupted copies of a ground truth video. This results in aligned pairs with similar motion structures while differing in local details, effectively neutralizing the motion bias. Second, we leverage the resulting temporal alignment to label preferences on short segments rather than entire clips, yielding a denser and more precise learning signal. With only one-third of the labeled data, DenseDPO greatly improves motion generation over vanilla DPO, while matching it in text alignment, visual quality, and temporal consistency. Finally, we show that DenseDPO unlocks automatic preference annotation using off-the-shelf Vision Language Models (VLMs): GPT accurately predicts segment-level preferences similar to task-specifically fine-tuned video reward models, and DenseDPO trained on these labels achieves performance close to using human labels.
Authors:Jiwen Yu, Jianhong Bai, Yiran Qin, Quande Liu, Xintao Wang, Pengfei Wan, Di Zhang, Xihui Liu
Abstract:
Recent advances in interactive video generation have shown promising results, yet existing approaches struggle with scene-consistent memory capabilities in long video generation due to limited use of historical context. In this work, we propose Context-as-Memory, which utilizes historical context as memory for video generation. It includes two simple yet effective designs: (1) storing context in frame format without additional post-processing; (2) conditioning by concatenating context and frames to be predicted along the frame dimension at the input, requiring no external control modules. Furthermore, considering the enormous computational overhead of incorporating all historical context, we propose the Memory Retrieval module to select truly relevant context frames by determining FOV (Field of View) overlap between camera poses, which significantly reduces the number of candidate frames without substantial information loss. Experiments demonstrate that Context-as-Memory achieves superior memory capabilities in interactive long video generation compared to SOTAs, even generalizing effectively to open-domain scenarios not seen during training. The link of our project page is https://context-as-memory.github.io/.
Authors:Lu Qiu, Yizhuo Li, Yuying Ge, Yixiao Ge, Ying Shan, Xihui Liu
Abstract:
Recent advances in AI-generated content (AIGC) have significantly accelerated animation production. To produce engaging animations, it is essential to generate coherent multi-shot video clips with narrative scripts and character references. However, existing public datasets primarily focus on real-world scenarios with global descriptions, and lack reference images for consistent character guidance. To bridge this gap, we present AnimeShooter, a reference-guided multi-shot animation dataset. AnimeShooter features comprehensive hierarchical annotations and strong visual consistency across shots through an automated pipeline. Story-level annotations provide an overview of the narrative, including the storyline, key scenes, and main character profiles with reference images, while shot-level annotations decompose the story into consecutive shots, each annotated with scene, characters, and both narrative and descriptive visual captions. Additionally, a dedicated subset, AnimeShooter-audio, offers synchronized audio tracks for each shot, along with audio descriptions and sound sources. To demonstrate the effectiveness of AnimeShooter and establish a baseline for the reference-guided multi-shot video generation task, we introduce AnimeShooterGen, which leverages Multimodal Large Language Models (MLLMs) and video diffusion models. The reference image and previously generated shots are first processed by MLLM to produce representations aware of both reference and context, which are then used as the condition for the diffusion model to decode the subsequent shot. Experimental results show that the model trained on AnimeShooter achieves superior cross-shot visual consistency and adherence to reference visual guidance, which highlight the value of our dataset for coherent animated video generation.
Authors:Zhengyao Lv, Chenyang Si, Tianlin Pan, Zhaoxi Chen, Kwan-Yee K. Wong, Yu Qiao, Ziwei Liu
Abstract:
Diffusion Models have achieved remarkable results in video synthesis but require iterative denoising steps, leading to substantial computational overhead. Consistency Models have made significant progress in accelerating diffusion models. However, directly applying them to video diffusion models often results in severe degradation of temporal consistency and appearance details. In this paper, by analyzing the training dynamics of Consistency Models, we identify a key conflicting learning dynamics during the distillation process: there is a significant discrepancy in the optimization gradients and loss contributions across different timesteps. This discrepancy prevents the distilled student model from achieving an optimal state, leading to compromised temporal consistency and degraded appearance details. To address this issue, we propose a parameter-efficient \textbf{Dual-Expert Consistency Model~(DCM)}, where a semantic expert focuses on learning semantic layout and motion, while a detail expert specializes in fine detail refinement. Furthermore, we introduce Temporal Coherence Loss to improve motion consistency for the semantic expert and apply GAN and Feature Matching Loss to enhance the synthesis quality of the detail expert.Our approach achieves state-of-the-art visual quality with significantly reduced sampling steps, demonstrating the effectiveness of expert specialization in video diffusion model distillation. Our code and models are available at \href{https://github.com/Vchitect/DCM}{https://github.com/Vchitect/DCM}.
Authors:Chetwin Low, Weimin Wang
Abstract:
In this paper, we present TalkingMachines -- an efficient framework that transforms pretrained video generation models into real-time, audio-driven character animators. TalkingMachines enables natural conversational experiences by integrating an audio large language model (LLM) with our video generation foundation model. Our primary contributions include: (1) We adapt a pretrained SOTA image-to-video DiT into an audio-driven avatar generation model of 18 billion parameters; (2) We enable infinite video streaming without error accumulation through asymmetric knowledge distillation from a bidirectional teacher model into a sparse causal, autoregressive student model; (3) We design a high-throughput, low-latency inference pipeline incorporating several key engineering optimizations such as: (a) disaggregation of the DiT and VAE decoder across separate devices, (b) efficient overlap of inter-device communication and computation using CUDA streams, (c) elimination of redundant recomputations to maximize frame-generation throughput. Please see demo videos here - https://aaxwaz.github.io/TalkingMachines/
Authors:Xiuyu Yang, Bohan Li, Shaocong Xu, Nan Wang, Chongjie Ye, Zhaoxi Chen, Minghan Qin, Yikang Ding, Xin Jin, Hang Zhao, Hao Zhao
Abstract:
Acquiring real-world robotic simulation data through teleoperation is notoriously time-consuming and labor-intensive. Recently, action-driven generative models have gained widespread adoption in robot learning and simulation, as they eliminate safety concerns and reduce maintenance efforts. However, the action sequences used in these methods often result in limited control precision and poor generalization due to their globally coarse alignment. To address these limitations, we propose ORV, an Occupancy-centric Robot Video generation framework, which utilizes 4D semantic occupancy sequences as a fine-grained representation to provide more accurate semantic and geometric guidance for video generation. By leveraging occupancy-based representations, ORV enables seamless translation of simulation data into photorealistic robot videos, while ensuring high temporal consistency and precise controllability. Furthermore, our framework supports the simultaneous generation of multi-view videos of robot gripping operations - an important capability for downstream robotic learning tasks. Extensive experimental results demonstrate that ORV consistently outperforms existing baseline methods across various datasets and sub-tasks. Demo, Code and Model: https://orangesodahub.github.io/ORV
Authors:Jiahao Chen, Hangjie Yuan, Yichen Qian, Jingyun Liang, Jiazheng Xing, Pengwei Liu, Weihua Chen, Fan Wang, Bing Su
Abstract:
Long video generation has gained increasing attention due to its widespread applications in fields such as entertainment and simulation. Despite advances, synthesizing temporally coherent and visually compelling long sequences remains a formidable challenge. Conventional approaches often synthesize long videos by sequentially generating and concatenating short clips, or generating key frames and then interpolate the intermediate frames in a hierarchical manner. However, both of them still remain significant challenges, leading to issues such as temporal repetition or unnatural transitions. In this paper, we revisit the hierarchical long video generation pipeline and introduce LumosFlow, a framework introduce motion guidance explicitly. Specifically, we first employ the Large Motion Text-to-Video Diffusion Model (LMTV-DM) to generate key frames with larger motion intervals, thereby ensuring content diversity in the generated long videos. Given the complexity of interpolating contextual transitions between key frames, we further decompose the intermediate frame interpolation into motion generation and post-hoc refinement. For each pair of key frames, the Latent Optical Flow Diffusion Model (LOF-DM) synthesizes complex and large-motion optical flows, while MotionControlNet subsequently refines the warped results to enhance quality and guide intermediate frame generation. Compared with traditional video frame interpolation, we achieve 15x interpolation, ensuring reasonable and continuous motion between adjacent frames. Experiments show that our method can generate long videos with consistent motion and appearance. Code and models will be made publicly available upon acceptance. Our project page: https://jiahaochen1.github.io/LumosFlow/
Authors:Lingwei Dang, Ruizhi Shao, Hongwen Zhang, Wei Min, Yebin Liu, Qingyao Wu
Abstract:
Hand-Object Interaction (HOI) generation has significant application potential. However, current 3D HOI motion generation approaches heavily rely on predefined 3D object models and lab-captured motion data, limiting generalization capabilities. Meanwhile, HOI video generation methods prioritize pixel-level visual fidelity, often sacrificing physical plausibility. Recognizing that visual appearance and motion patterns share fundamental physical laws in the real world, we propose a novel framework that combines visual priors and dynamic constraints within a synchronized diffusion process to generate the HOI video and motion simultaneously. To integrate the heterogeneous semantics, appearance, and motion features, our method implements tri-modal adaptive modulation for feature aligning, coupled with 3D full-attention for modeling inter- and intra-modal dependencies. Furthermore, we introduce a vision-aware 3D interaction diffusion model that generates explicit 3D interaction sequences directly from the synchronized diffusion outputs, then feeds them back to establish a closed-loop feedback cycle. This architecture eliminates dependencies on predefined object models or explicit pose guidance while significantly enhancing video-motion consistency. Experimental results demonstrate our method's superiority over state-of-the-art approaches in generating high-fidelity, dynamically plausible HOI sequences, with notable generalization capabilities in unseen real-world scenarios. Project page at https://github.com/Droliven/SViMo_project.
Authors:Xiao Fu, Xintao Wang, Xian Liu, Jianhong Bai, Runsen Xu, Pengfei Wan, Di Zhang, Dahua Lin
Abstract:
Recent advances in video diffusion models have demonstrated strong potential for generating robotic decision-making data, with trajectory conditions further enabling fine-grained control. However, existing trajectory-based methods primarily focus on individual object motion and struggle to capture multi-object interaction crucial in complex robotic manipulation. This limitation arises from multi-feature entanglement in overlapping regions, which leads to degraded visual fidelity. To address this, we present RoboMaster, a novel framework that models inter-object dynamics through a collaborative trajectory formulation. Unlike prior methods that decompose objects, our core is to decompose the interaction process into three sub-stages: pre-interaction, interaction, and post-interaction. Each stage is modeled using the feature of the dominant object, specifically the robotic arm in the pre- and post-interaction phases and the manipulated object during interaction, thereby mitigating the drawback of multi-object feature fusion present during interaction in prior work. To further ensure subject semantic consistency throughout the video, we incorporate appearance- and shape-aware latent representations for objects. Extensive experiments on the challenging Bridge V2 dataset, as well as in-the-wild evaluation, demonstrate that our method outperforms existing approaches, establishing new state-of-the-art performance in trajectory-controlled video generation for robotic manipulation.
Authors:Tao Yang, Ruibin Li, Yangming Shi, Yuqi Zhang, Qide Dong, Haoran Cheng, Weiguo Feng, Shilei Wen, Bingyue Peng, Lei Zhang
Abstract:
Diffusion models have shown impressive performance in many visual generation and manipulation tasks. Many existing methods focus on training a model for a specific task, especially, text-to-video (T2V) generation, while many other works focus on finetuning the pretrained T2V model for image-to-video (I2V), video-to-video (V2V), image and video manipulation tasks, etc. However, training a strong T2V foundation model requires a large amount of high-quality annotations, which is very costly. In addition, many existing models can perform only one or several tasks. In this work, we introduce a unified framework, namely many-for-many, which leverages the available training data from many different visual generation and manipulation tasks to train a single model for those different tasks. Specifically, we design a lightweight adapter to unify the different conditions in different tasks, then employ a joint image-video learning strategy to progressively train the model from scratch. Our joint learning leads to a unified visual generation and manipulation model with improved video generation performance. In addition, we introduce depth maps as a condition to help our model better perceive the 3D space in visual generation. Two versions of our model are trained with different model sizes (8B and 2B), each of which can perform more than 10 different tasks. In particular, our 8B model demonstrates highly competitive performance in video generation tasks compared to open-source and even commercial engines. Our models and source codes are available at https://github.com/leeruibin/MfM.git.
Authors:Xiaodong Wang, Zhirong Wu, Peixi Peng
Abstract:
Driving world models are used to simulate futures by video generation based on the condition of the current state and actions. However, current models often suffer serious error accumulations when predicting the long-term future, which limits the practical application. Recent studies utilize the Diffusion Transformer (DiT) as the backbone of driving world models to improve learning flexibility. However, these models are always trained on short video clips (high fps and short duration), and multiple roll-out generations struggle to produce consistent and reasonable long videos due to the training-inference gap. To this end, we propose several solutions to build a simple yet effective long-term driving world model. First, we hierarchically decouple world model learning into large motion learning and bidirectional continuous motion learning. Then, considering the continuity of driving scenes, we propose a simple distillation method where fine-grained video flows are self-supervised signals for coarse-grained flows. The distillation is designed to improve the coherence of infinite video generation. The coarse-grained and fine-grained modules are coordinated to generate long-term and temporally coherent videos. In the public benchmark NuScenes, compared with the state-of-the-art front-view model, our model improves FVD by $27\%$ and reduces inference time by $85\%$ for the video task of generating 110+ frames. More videos (including 90s duration) are available at https://Wang-Xiaodong1899.github.io/longdwm/.
Authors:Kinam Kim, Junha Hyung, Jaegul Choo
Abstract:
Recent advances in text-to-video diffusion models have enabled high-quality video synthesis, but controllable generation remains challenging, particularly under limited data and compute. Existing fine-tuning methods for conditional generation often rely on external encoders or architectural modifications, which demand large datasets and are typically restricted to spatially aligned conditioning, limiting flexibility and scalability. In this work, we introduce Temporal In-Context Fine-Tuning (TIC-FT), an efficient and versatile approach for adapting pretrained video diffusion models to diverse conditional generation tasks. Our key idea is to concatenate condition and target frames along the temporal axis and insert intermediate buffer frames with progressively increasing noise levels. These buffer frames enable smooth transitions, aligning the fine-tuning process with the pretrained model's temporal dynamics. TIC-FT requires no architectural changes and achieves strong performance with as few as 10-30 training samples. We validate our method across a range of tasks, including image-to-video and video-to-video generation, using large-scale base models such as CogVideoX-5B and Wan-14B. Extensive experiments show that TIC-FT outperforms existing baselines in both condition fidelity and visual quality, while remaining highly efficient in both training and inference. For additional results, visit https://kinam0252.github.io/TIC-FT/
Authors:Yu Huang, Junhao Chen, Shuliang Liu, Hanqian Li, Qi Zheng, Yi R. Fung, Xuming Hu
Abstract:
The rapid development of Artificial Intelligence Generated Content (AIGC) has led to significant progress in video generation but also raises serious concerns about intellectual property protection and reliable content tracing. Watermarking is a widely adopted solution to this issue, but existing methods for video generation mainly follow a post-generation paradigm, which introduces additional computational overhead and often fails to effectively balance the trade-off between video quality and watermark extraction. To address these issues, we propose Video Signature (VIDSIG), an in-generation watermarking method for latent video diffusion models, which enables implicit and adaptive watermark integration during generation. Specifically, we achieve this by partially fine-tuning the latent decoder, where Perturbation-Aware Suppression (PAS) pre-identifies and freezes perceptually sensitive layers to preserve visual quality. Beyond spatial fidelity, we further enhance temporal consistency by introducing a lightweight Temporal Alignment module that guides the decoder to generate coherent frame sequences during fine-tuning. Experimental results show that VIDSIG achieves the best overall performance in watermark extraction, visual quality, and generation efficiency. It also demonstrates strong robustness against both spatial and temporal tampering, highlighting its practicality in real-world scenarios. Our code is available at \href{https://github.com/hardenyu21/Video-Signature}{here}
Authors:Muhammad Adnan, Nithesh Kurella, Akhil Arunkumar, Prashant J. Nair
Abstract:
Diffusion Transformers (DiTs) achieve state-of-the-art results in text-to-image, text-to-video generation, and editing. However, their large model size and the quadratic cost of spatial-temporal attention over multiple denoising steps make video generation computationally expensive. Static caching mitigates this by reusing features across fixed steps but fails to adapt to generation dynamics, leading to suboptimal trade-offs between speed and quality. We propose Foresight, an adaptive layer-reuse technique that reduces computational redundancy across denoising steps while preserving baseline performance. Foresight dynamically identifies and reuses DiT block outputs for all layers across steps, adapting to generation parameters such as resolution and denoising schedules to optimize efficiency. Applied to OpenSora, Latte, and CogVideoX, Foresight achieves up to \latencyimprv end-to-end speedup, while maintaining video quality. The source code of Foresight is available at \href{https://github.com/STAR-Laboratory/foresight}{https://github.com/STAR-Laboratory/foresight}.
Authors:Yang-Tian Sun, Xin Yu, Zehuan Huang, Yi-Hua Huang, Yuan-Chen Guo, Ziyi Yang, Yan-Pei Cao, Xiaojuan Qi
Abstract:
Recently, methods leveraging diffusion model priors to assist monocular geometric estimation (e.g., depth and normal) have gained significant attention due to their strong generalization ability. However, most existing works focus on estimating geometric properties within the camera coordinate system of individual video frames, neglecting the inherent ability of diffusion models to determine inter-frame correspondence. In this work, we demonstrate that, through appropriate design and fine-tuning, the intrinsic consistency of video generation models can be effectively harnessed for consistent geometric estimation. Specifically, we 1) select geometric attributes in the global coordinate system that share the same correspondence with video frames as the prediction targets, 2) introduce a novel and efficient conditioning method by reusing positional encodings, and 3) enhance performance through joint training on multiple geometric attributes that share the same correspondence. Our results achieve superior performance in predicting global geometric attributes in videos and can be directly applied to reconstruction tasks. Even when trained solely on static video data, our approach exhibits the potential to generalize to dynamic video scenes.
Authors:Zheng Tan, Weizhen Wang, Andrea L. Bertozzi, Ernest K. Ryu
Abstract:
Diffusion models (DMs) have demonstrated remarkable performance in high-fidelity image and video generation. Because high-quality generations with DMs typically require a large number of function evaluations (NFEs), resulting in slow sampling, there has been extensive research successfully reducing the NFE to a small range (<10) while maintaining acceptable image quality. However, many practical applications, such as those involving Stable Diffusion 3.5, FLUX, and SANA, commonly operate in the mid-NFE regime (20-50 NFE) to achieve superior results, and, despite the practical relevance, research on the effective sampling within this mid-NFE regime remains underexplored. In this work, we propose a novel, training-free, and structure-independent DM ODE solver called the Stabilized Taylor Orthogonal Runge--Kutta (STORK) method, based on a class of stiff ODE solvers with a Taylor expansion adaptation. Unlike prior work such as DPM-Solver, which is dependent on the semi-linear structure of the DM ODE, STORK is applicable to any DM sampling, including noise-based and flow matching-based models. Within the 20-50 NFE range, STORK achieves improved generation quality, as measured by FID scores, across unconditional pixel-level generation and conditional latent-space generation tasks using models like Stable Diffusion 3.5 and SANA. Code is available at https://github.com/ZT220501/STORK.
Authors:Yufan Deng, Xun Guo, Yuanyang Yin, Jacob Zhiyuan Fang, Yiding Yang, Yizhi Wang, Shenghai Yuan, Angtian Wang, Bo Liu, Haibin Huang, Chongyang Ma
Abstract:
Video generation has made substantial strides with the emergence of deep generative models, especially diffusion-based approaches. However, video generation based on multiple reference subjects still faces significant challenges in maintaining multi-subject consistency and ensuring high generation quality. In this paper, we propose MAGREF, a unified framework for any-reference video generation that introduces masked guidance to enable coherent multi-subject video synthesis conditioned on diverse reference images and a textual prompt. Specifically, we propose (1) a region-aware dynamic masking mechanism that enables a single model to flexibly handle various subject inference, including humans, objects, and backgrounds, without architectural changes, and (2) a pixel-wise channel concatenation mechanism that operates on the channel dimension to better preserve appearance features. Our model delivers state-of-the-art video generation quality, generalizing from single-subject training to complex multi-subject scenarios with coherent synthesis and precise control over individual subjects, outperforming existing open-source and commercial baselines. To facilitate evaluation, we also introduce a comprehensive multi-subject video benchmark. Extensive experiments demonstrate the effectiveness of our approach, paving the way for scalable, controllable, and high-fidelity multi-subject video synthesis. Code and model can be found at: https://github.com/MAGREF-Video/MAGREF
Authors:Xiangdong Zhang, Jiaqi Liao, Shaofeng Zhang, Fanqing Meng, Xiangpeng Wan, Junchi Yan, Yu Cheng
Abstract:
Recent advancements in text-to-video (T2V) diffusion models have enabled high-fidelity and realistic video synthesis. However, current T2V models often struggle to generate physically plausible content due to their limited inherent ability to accurately understand physics. We found that while the representations within T2V models possess some capacity for physics understanding, they lag significantly behind those from recent video self-supervised learning methods. To this end, we propose a novel framework called VideoREPA, which distills physics understanding capability from video understanding foundation models into T2V models by aligning token-level relations. This closes the physics understanding gap and enable more physics-plausible generation. Specifically, we introduce the Token Relation Distillation (TRD) loss, leveraging spatio-temporal alignment to provide soft guidance suitable for finetuning powerful pre-trained T2V models, a critical departure from prior representation alignment (REPA) methods. To our knowledge, VideoREPA is the first REPA method designed for finetuning T2V models and specifically for injecting physical knowledge. Empirical evaluations show that VideoREPA substantially enhances the physics commonsense of baseline method, CogVideoX, achieving significant improvement on relevant benchmarks and demonstrating a strong capacity for generating videos consistent with intuitive physics. More video results are available at https://videorepa.github.io/.
Authors:Shi-Xue Zhang, Hongfa Wang, Duojun Huang, Xin Li, Xiaobin Zhu, Xu-Cheng Yin
Abstract:
Video captions play a crucial role in text-to-video generation tasks, as their quality directly influences the semantic coherence and visual fidelity of the generated videos. Although large vision-language models (VLMs) have demonstrated significant potential in caption generation, existing benchmarks inadequately address fine-grained evaluation, particularly in capturing spatial-temporal details critical for video generation. To address this gap, we introduce the Fine-grained Video Caption Evaluation Benchmark (VCapsBench), the first large-scale fine-grained benchmark comprising 5,677 (5K+) videos and 109,796 (100K+) question-answer pairs. These QA-pairs are systematically annotated across 21 fine-grained dimensions (e.g., camera movement, and shot type) that are empirically proven critical for text-to-video generation. We further introduce three metrics (Accuracy (AR), Inconsistency Rate (IR), Coverage Rate (CR)), and an automated evaluation pipeline leveraging large language model (LLM) to verify caption quality via contrastive QA-pairs analysis. By providing actionable insights for caption optimization, our benchmark can advance the development of robust text-to-video models. The dataset and codes are available at website: https://github.com/GXYM/VCapsBench.
Authors:Liu Liu, Xiaofeng Wang, Guosheng Zhao, Keyu Li, Wenkang Qin, Jiaxiong Qiu, Zheng Zhu, Guan Huang, Zhizhong Su
Abstract:
Imitation Learning has become a fundamental approach in robotic manipulation. However, collecting large-scale real-world robot demonstrations is prohibitively expensive. Simulators offer a cost-effective alternative, but the sim-to-real gap make it extremely challenging to scale. Therefore, we introduce RoboTransfer, a diffusion-based video generation framework for robotic data synthesis. Unlike previous methods, RoboTransfer integrates multi-view geometry with explicit control over scene components, such as background and object attributes. By incorporating cross-view feature interactions and global depth/normal conditions, RoboTransfer ensures geometry consistency across views. This framework allows fine-grained control, including background edits and object swaps. Experiments demonstrate that RoboTransfer is capable of generating multi-view videos with enhanced geometric consistency and visual fidelity. In addition, policies trained on the data generated by RoboTransfer achieve a 33.3% relative improvement in the success rate in the DIFF-OBJ setting and a substantial 251% relative improvement in the more challenging DIFF-ALL scenario. Explore more demos on our project page: https://horizonrobotics.github.io/robot_lab/robotransfer
Authors:Tongtong Su, Chengyu Wang, Jun Huang, Dongming Lu
Abstract:
Appearance editing according to user needs is a pivotal task in video editing. Existing text-guided methods often lead to ambiguities regarding user intentions and restrict fine-grained control over editing specific aspects of objects. To overcome these limitations, this paper introduces a novel approach named {Zero-to-Hero}, which focuses on reference-based video editing that disentangles the editing process into two distinct problems. It achieves this by first editing an anchor frame to satisfy user requirements as a reference image and then consistently propagating its appearance across other frames. We leverage correspondence within the original frames to guide the attention mechanism, which is more robust than previously proposed optical flow or temporal modules in memory-friendly video generative models, especially when dealing with objects exhibiting large motions. It offers a solid ZERO-shot initialization that ensures both accuracy and temporal consistency. However, intervention in the attention mechanism results in compounded imaging degradation with over-saturated colors and unknown blurring issues. Starting from Zero-Stage, our Hero-Stage Holistically learns a conditional generative model for vidEo RestOration. To accurately evaluate the consistency of the appearance, we construct a set of videos with multiple appearances using Blender, enabling a fine-grained and deterministic evaluation. Our method outperforms the best-performing baseline with a PSNR improvement of 2.6 dB. The project page is at https://github.com/Tonniia/Zero2Hero.
Authors:Siyuan Wang, Jiawei Liu, Wei Wang, Yeying Jin, Jinsong Du, Zhi Han
Abstract:
Co-Speech Gesture Video Generation aims to generate vivid speech videos from audio-driven still images, which is challenging due to the diversity of different parts of the body in terms of amplitude of motion, audio relevance, and detailed features. Relying solely on audio as the control signal often fails to capture large gesture movements in video, leading to more pronounced artifacts and distortions. Existing approaches typically address this issue by introducing additional a priori information, but this can limit the practical application of the task. Specifically, we propose a Motion Mask-Guided Two-Stage Network (MMGT) that uses audio, as well as motion masks and motion features generated from the audio signal to jointly drive the generation of synchronized speech gesture videos. In the first stage, the Spatial Mask-Guided Audio Pose Generation (SMGA) Network generates high-quality pose videos and motion masks from audio, effectively capturing large movements in key regions such as the face and gestures. In the second stage, we integrate the Motion Masked Hierarchical Audio Attention (MM-HAA) into the Stabilized Diffusion Video Generation model, overcoming limitations in fine-grained motion generation and region-specific detail control found in traditional methods. This guarantees high-quality, detailed upper-body video generation with accurate texture and motion details. Evaluations show improved video quality, lip-sync, and gesture. The model and code are available at https://github.com/SIA-IDE/MMGT.
Authors:Angtian Wang, Haibin Huang, Jacob Zhiyuan Fang, Yiding Yang, Chongyang Ma
Abstract:
We propose a unified framework for motion control in video generation that seamlessly integrates camera movement, object-level translation, and fine-grained local motion using trajectory-based inputs. In contrast to prior methods that address these motion types through separate modules or task-specific designs, our approach offers a cohesive solution by projecting user-defined trajectories into the latent space of pre-trained image-to-video generation models via a lightweight motion injector. Users can specify keypoints and their motion paths to control localized deformations, entire object motion, virtual camera dynamics, or combinations of these. The injected trajectory signals guide the generative process to produce temporally consistent and semantically aligned motion sequences. Our framework demonstrates superior performance across multiple video motion control tasks, including stylized motion effects (e.g., motion brushes), dynamic viewpoint changes, and precise local motion manipulation. Experiments show that our method provides significantly better controllability and visual quality compared to prior approaches and commercial solutions, while remaining broadly compatible with various state-of-the-art video generation backbones. Project page: https://anytraj.github.io/.
Authors:Zhe Kong, Feng Gao, Yong Zhang, Zhuoliang Kang, Xiaoming Wei, Xunliang Cai, Guanying Chen, Wenhan Luo
Abstract:
Audio-driven human animation methods, such as talking head and talking body generation, have made remarkable progress in generating synchronized facial movements and appealing visual quality videos. However, existing methods primarily focus on single human animation and struggle with multi-stream audio inputs, facing incorrect binding problems between audio and persons. Additionally, they exhibit limitations in instruction-following capabilities. To solve this problem, in this paper, we propose a novel task: Multi-Person Conversational Video Generation, and introduce a new framework, MultiTalk, to address the challenges during multi-person generation. Specifically, for audio injection, we investigate several schemes and propose the Label Rotary Position Embedding (L-RoPE) method to resolve the audio and person binding problem. Furthermore, during training, we observe that partial parameter training and multi-task training are crucial for preserving the instruction-following ability of the base model. MultiTalk achieves superior performance compared to other methods on several datasets, including talking head, talking body, and multi-person datasets, demonstrating the powerful generation capabilities of our approach.
Authors:Weilun Feng, Chuanguang Yang, Haotong Qin, Xiangqi Li, Yu Wang, Zhulin An, Libo Huang, Boyu Diao, Zixiang Zhao, Yongjun Xu, Michele Magno
Abstract:
Diffusion transformers (DiT) have demonstrated exceptional performance in video generation. However, their large number of parameters and high computational complexity limit their deployment on edge devices. Quantization can reduce storage requirements and accelerate inference by lowering the bit-width of model parameters. Yet, existing quantization methods for image generation models do not generalize well to video generation tasks. We identify two primary challenges: the loss of information during quantization and the misalignment between optimization objectives and the unique requirements of video generation. To address these challenges, we present Q-VDiT, a quantization framework specifically designed for video DiT models. From the quantization perspective, we propose the Token-aware Quantization Estimator (TQE), which compensates for quantization errors in both the token and feature dimensions. From the optimization perspective, we introduce Temporal Maintenance Distillation (TMD), which preserves the spatiotemporal correlations between frames and enables the optimization of each frame with respect to the overall video context. Our W3A6 Q-VDiT achieves a scene consistency of 23.40, setting a new benchmark and outperforming current state-of-the-art quantization methods by 1.9$\times$. Code will be available at https://github.com/cantbebetter2/Q-VDiT.
Authors:Guanwen Feng, Zhiyuan Ma, Yunan Li, Jiahao Yang, Junwei Jing, Qiguang Miao
Abstract:
Recent advances in audio-driven talking head generation have achieved impressive results in lip synchronization and emotional expression. However, they largely overlook the crucial task of facial attribute editing. This capability is indispensable for achieving deep personalization and expanding the range of practical applications, including user-tailored digital avatars, engaging online education content, and brand-specific digital customer service. In these key domains, flexible adjustment of visual attributes, such as hairstyle, accessories, and subtle facial features, is essential for aligning with user preferences, reflecting diverse brand identities and adapting to varying contextual demands. In this paper, we present FaceEditTalker, a unified framework that enables controllable facial attribute manipulation while generating high-quality, audio-synchronized talking head videos. Our method consists of two key components: an image feature space editing module, which extracts semantic and detail features and allows flexible control over attributes like expression, hairstyle, and accessories; and an audio-driven video generation module, which fuses these edited features with audio-guided facial landmarks to drive a diffusion-based generator. This design ensures temporal coherence, visual fidelity, and identity preservation across frames. Extensive experiments on public datasets demonstrate that our method achieves comparable or superior performance to representative baseline methods in lip-sync accuracy, video quality, and attribute controllability. Project page: https://peterfanfan.github.io/FaceEditTalker/
Authors:Ke Zhang, Cihan Xiao, Jiacong Xu, Yiqun Mei, Vishal M. Patel
Abstract:
Recent video diffusion models have demonstrated their great capability in generating visually-pleasing results, while synthesizing the correct physical effects in generated videos remains challenging. The complexity of real-world motions, interactions, and dynamics introduce great difficulties when learning physics from data. In this work, we propose DiffPhy, a generic framework that enables physically-correct and photo-realistic video generation by fine-tuning a pre-trained video diffusion model. Our method leverages large language models (LLMs) to infer rich physical context from the text prompt. To incorporate this context into the video diffusion model, we use a multimodal large language model (MLLM) to verify intermediate latent variables against the inferred physical rules, guiding the gradient updates of model accordingly. Textual output of LLM is transformed into continuous signals. We then formulate a set of training objectives that jointly ensure physical accuracy and semantic alignment with the input text. Additionally, failure facts of physical phenomena are corrected via attention injection. We also establish a high-quality physical video dataset containing diverse phyiscal actions and events to facilitate effective finetuning. Extensive experiments on public benchmarks demonstrate that DiffPhy is able to produce state-of-the-art results across diverse physics-related scenarios. Our project page is available at https://bwgzk-keke.github.io/DiffPhy/.
Authors:Yang Yang, Siming Zheng, Jinwei Chen, Boxi Wu, Xiaofei He, Deng Cai, Bo Li, Peng-Tao Jiang
Abstract:
Recent advances in diffusion based editing models have enabled realistic camera simulation and image-based bokeh, but video bokeh remains largely unexplored. Existing video editing models cannot explicitly control focus planes or adjust bokeh intensity, limiting their applicability for controllable optical effects. Moreover, naively extending image-based bokeh methods to video often results in temporal flickering and unsatisfactory edge blur transitions due to the lack of temporal modeling and generalization capability. To address these challenges, we propose a novel one-step video bokeh framework that converts arbitrary input videos into temporally coherent, depth-aware bokeh effects. Our method leverages a multi-plane image (MPI) representation constructed through a progressively widening depth sampling function, providing explicit geometric guidance for depth-dependent blur synthesis. By conditioning a single-step video diffusion model on MPI layers and utilizing the strong 3D priors from pre-trained models such as Stable Video Diffusion, our approach achieves realistic and consistent bokeh effects across diverse scenes. Additionally, we introduce a progressive training strategy to enhance temporal consistency, depth robustness, and detail preservation. Extensive experiments demonstrate that our method produces high-quality, controllable bokeh effects and achieves state-of-the-art performance on multiple evaluation benchmarks.
Authors:Chika Maduabuchi, Hao Chen, Yujin Han, Jindong Wang
Abstract:
Latent Video Diffusion Models (LVDMs) achieve high-quality generation but are sensitive to imperfect conditioning, which causes semantic drift and temporal incoherence on noisy, web-scale video-text datasets. We introduce CAT-LVDM, the first corruption-aware training framework for LVDMs that improves robustness through structured, data-aligned noise injection. Our method includes Batch-Centered Noise Injection (BCNI), which perturbs embeddings along intra-batch semantic directions to preserve temporal consistency. BCNI is especially effective on caption-rich datasets like WebVid-2M, MSR-VTT, and MSVD. We also propose Spectrum-Aware Contextual Noise (SACN), which injects noise along dominant spectral directions to improve low-frequency smoothness, showing strong results on UCF-101. On average, BCNI reduces FVD by 31.9% across WebVid-2M, MSR-VTT, and MSVD, while SACN yields a 12.3% improvement on UCF-101. Ablation studies confirm the benefit of low-rank, data-aligned noise. Our theoretical analysis further explains how such perturbations tighten entropy, Wasserstein, score-drift, mixing-time, and generalization bounds. CAT-LVDM establishes a principled, scalable training approach for robust video diffusion under multimodal noise. Code and models: https://github.com/chikap421/catlvdm
Authors:Jintao Zhang, Xiaoming Xu, Jia Wei, Haofeng Huang, Pengle Zhang, Chendong Xiang, Jun Zhu, Jianfei Chen
Abstract:
The efficiency of attention is critical because its time complexity grows quadratically with sequence length. SageAttention2 addresses this by utilizing quantization to accelerate matrix multiplications (Matmul) in attention. To further accelerate SageAttention2, we propose to utilize the faster instruction of FP8 Matmul accumulated in FP16. The instruction is 2x faster than the FP8 Matmul used in SageAttention2. Our experiments show that SageAttention2++ achieves a 3.9x speedup over FlashAttention while maintaining the same attention accuracy as SageAttention2. This means SageAttention2++ effectively accelerates various models, including those for language, image, and video generation, with negligible end-to-end metrics loss. The code will be available at https://github.com/thu-ml/SageAttention.
Authors:Zeqing Wang, Bowen Zheng, Xingyi Yang, Zhenxiong Tan, Yuecong Xu, Xinchao Wang
Abstract:
Diffusion Transformer (DiT)-based video diffusion models generate high-quality videos at scale but incur prohibitive processing latency and memory costs for long videos. To address this, we propose a novel distributed inference strategy, termed DualParal. The core idea is that, instead of generating an entire video on a single GPU, we parallelize both temporal frames and model layers across GPUs. However, a naive implementation of this division faces a key limitation: since diffusion models require synchronized noise levels across frames, this implementation leads to the serialization of original parallelisms. We leverage a block-wise denoising scheme to handle this. Namely, we process a sequence of frame blocks through the pipeline with progressively decreasing noise levels. Each GPU handles a specific block and layer subset while passing previous results to the next GPU, enabling asynchronous computation and communication. To further optimize performance, we incorporate two key enhancements. Firstly, a feature cache is implemented on each GPU to store and reuse features from the prior block as context, minimizing inter-GPU communication and redundant computation. Secondly, we employ a coordinated noise initialization strategy, ensuring globally consistent temporal dynamics by sharing initial noise patterns across GPUs without extra resource costs. Together, these enable fast, artifact-free, and infinitely long video generation. Applied to the latest diffusion transformer video generator, our method efficiently produces 1,025-frame videos with up to 6.54$\times$ lower latency and 1.48$\times$ lower memory cost on 8$\times$RTX 4090 GPUs.
Authors:Guangcong Zheng, Jianlong Yuan, Bo Wang, Haoyang Huang, Guoqing Ma, Nan Duan
Abstract:
Generating long videos that can show complex stories, like movie scenes from scripts, has great promise and offers much more than short clips. However, current methods that use autoregression with diffusion models often struggle because their step-by-step process naturally leads to a serious error accumulation (drift). Also, many existing ways to make long videos focus on single, continuous scenes, making them less useful for stories with many events and changes. This paper introduces a new approach to solve these problems. First, we propose a novel way to annotate datasets at the frame-level, providing detailed text guidance needed for making complex, multi-scene long videos. This detailed guidance works with a Frame-Level Attention Mechanism to make sure text and video match precisely. A key feature is that each part (frame) within these windows can be guided by its own distinct text prompt. Our training uses Diffusion Forcing to provide the model with the ability to handle time flexibly. We tested our approach on difficult VBench 2.0 benchmarks ("Complex Plots" and "Complex Landscapes") based on the WanX2.1-T2V-1.3B model. The results show our method is better at following instructions in complex, changing scenes and creates high-quality long videos. We plan to share our dataset annotation methods and trained models with the research community. Project page: https://zgctroy.github.io/frame-level-captions .
Authors:Shenghai Yuan, Xianyi He, Yufan Deng, Yang Ye, Jinfa Huang, Bin Lin, Jiebo Luo, Li Yuan
Abstract:
Subject-to-Video (S2V) generation aims to create videos that faithfully incorporate reference content, providing enhanced flexibility in the production of videos. To establish the infrastructure for S2V generation, we propose OpenS2V-Nexus, consisting of (i) OpenS2V-Eval, a fine-grained benchmark, and (ii) OpenS2V-5M, a million-scale dataset. In contrast to existing S2V benchmarks inherited from VBench that focus on global and coarse-grained assessment of generated videos, OpenS2V-Eval focuses on the model's ability to generate subject-consistent videos with natural subject appearance and identity fidelity. For these purposes, OpenS2V-Eval introduces 180 prompts from seven major categories of S2V, which incorporate both real and synthetic test data. Furthermore, to accurately align human preferences with S2V benchmarks, we propose three automatic metrics, NexusScore, NaturalScore and GmeScore, to separately quantify subject consistency, naturalness, and text relevance in generated videos. Building on this, we conduct a comprehensive evaluation of 18 representative S2V models, highlighting their strengths and weaknesses across different content. Moreover, we create the first open-source large-scale S2V generation dataset OpenS2V-5M, which consists of five million high-quality 720P subject-text-video triples. Specifically, we ensure subject-information diversity in our dataset by (1) segmenting subjects and building pairing information via cross-video associations and (2) prompting GPT-Image-1 on raw frames to synthesize multi-view representations. Through OpenS2V-Nexus, we deliver a robust infrastructure to accelerate future S2V generation research.
Authors:Zhongwei Zhang, Fuchen Long, Zhaofan Qiu, Yingwei Pan, Wu Liu, Ting Yao, Tao Mei
Abstract:
Animating images with interactive motion control has garnered popularity for image-to-video (I2V) generation. Modern approaches typically rely on large Gaussian kernels to extend motion trajectories as condition without explicitly defining movement region, leading to coarse motion control and failing to disentangle object and camera moving. To alleviate these, we present MotionPro, a precise motion controller that novelly leverages region-wise trajectory and motion mask to regulate fine-grained motion synthesis and identify target motion category (i.e., object or camera moving), respectively. Technically, MotionPro first estimates the flow maps on each training video via a tracking model, and then samples the region-wise trajectories to simulate inference scenario. Instead of extending flow through large Gaussian kernels, our region-wise trajectory approach enables more precise control by directly utilizing trajectories within local regions, thereby effectively characterizing fine-grained movements. A motion mask is simultaneously derived from the predicted flow maps to capture the holistic motion dynamics of the movement regions. To pursue natural motion control, MotionPro further strengthens video denoising by incorporating both region-wise trajectories and motion mask through feature modulation. More remarkably, we meticulously construct a benchmark, i.e., MC-Bench, with 1.1K user-annotated image-trajectory pairs, for the evaluation of both fine-grained and object-level I2V motion control. Extensive experiments conducted on WebVid-10M and MC-Bench demonstrate the effectiveness of MotionPro. Please refer to our project page for more results: https://zhw-zhang.github.io/MotionPro-page/.
Authors:Wenchao Sun, Xuewu Lin, Keyu Chen, Zixiang Pei, Yining Shi, Chuang Zhang, Sifa Zheng
Abstract:
Camera sensor simulation serves as a critical role for autonomous driving (AD), e.g. evaluating vision-based AD algorithms. While existing approaches have leveraged generative models for controllable image/video generation, they remain constrained to generating multi-view video sequences with fixed camera viewpoints and video frequency, significantly limiting their downstream applications. To address this, we present a generalizable camera simulation framework DriveCamSim, whose core innovation lies in the proposed Explicit Camera Modeling (ECM) mechanism. Instead of implicit interaction through vanilla attention, ECM establishes explicit pixel-wise correspondences across multi-view and multi-frame dimensions, decoupling the model from overfitting to the specific camera configurations (intrinsic/extrinsic parameters, number of views) and temporal sampling rates presented in the training data. For controllable generation, we identify the issue of information loss inherent in existing conditional encoding and injection pipelines, proposing an information-preserving control mechanism. This control mechanism not only improves conditional controllability, but also can be extended to be identity-aware to enhance temporal consistency in foreground object rendering. With above designs, our model demonstrates superior performance in both visual quality and controllability, as well as generalization capability across spatial-level (camera parameters variations) and temporal-level (video frame rate variations), enabling flexible user-customizable camera simulation tailored to diverse application scenarios. Code will be avaliable at https://github.com/swc-17/DriveCamSim for facilitating future research.
Authors:Hyunho Ha, Lei Xiao, Christian Richardt, Thu Nguyen-Phuoc, Changil Kim, Min H. Kim, Douglas Lanman, Numair Khan
Abstract:
We introduce a novel geometry-guided online video view synthesis method with enhanced view and temporal consistency. Traditional approaches achieve high-quality synthesis from dense multi-view camera setups but require significant computational resources. In contrast, selective-input methods reduce this cost but often compromise quality, leading to multi-view and temporal inconsistencies such as flickering artifacts. Our method addresses this challenge to deliver efficient, high-quality novel-view synthesis with view and temporal consistency. The key innovation of our approach lies in using global geometry to guide an image-based rendering pipeline. To accomplish this, we progressively refine depth maps using color difference masks across time. These depth maps are then accumulated through truncated signed distance fields in the synthesized view's image space. This depth representation is view and temporally consistent, and is used to guide a pre-trained blending network that fuses multiple forward-rendered input-view images. Thus, the network is encouraged to output geometrically consistent synthesis results across multiple views and time. Our approach achieves consistent, high-quality video synthesis, while running efficiently in an online manner.
Authors:Shuo Yang, Haocheng Xi, Yilong Zhao, Muyang Li, Jintao Zhang, Han Cai, Yujun Lin, Xiuyu Li, Chenfeng Xu, Kelly Peng, Jianfei Chen, Song Han, Kurt Keutzer, Ion Stoica
Abstract:
Diffusion Transformers (DiTs) are essential for video generation but suffer from significant latency due to the quadratic complexity of attention. By computing only critical tokens, sparse attention reduces computational costs and offers a promising acceleration approach. However, we identify that existing methods fail to approach optimal generation quality under the same computation budget for two reasons: (1) Inaccurate critical token identification: current methods cluster tokens based on position rather than semantics, leading to imprecise aggregated representations. (2) Excessive computation waste: critical tokens are scattered among non-critical ones, leading to wasted computation on GPUs, which are optimized for processing contiguous tokens. In this paper, we propose SVG2, a training-free framework that maximizes identification accuracy and minimizes computation waste, achieving a Pareto frontier trade-off between generation quality and efficiency. The core of SVG2 is semantic-aware permutation, which clusters and reorders tokens based on semantic similarity using k-means. This approach ensures both a precise cluster representation, improving identification accuracy, and a densified layout of critical tokens, enabling efficient computation without padding. Additionally, SVG2 integrates top-p dynamic budget control and customized kernel implementations, achieving up to 2.30x and 1.89x speedup while maintaining a PSNR of up to 30 and 26 on HunyuanVideo and Wan 2.1, respectively. Our code is open-sourced at \href{https://github.com/svg-project/Sparse-VideoGen}{https://github.com/svg-project/Sparse-VideoGen}.
Authors:Wenhao Sun, Rong-Cheng Tu, Yifu Ding, Zhao Jin, Jingyi Liao, Shunyu Liu, Dacheng Tao
Abstract:
Video Diffusion Transformers (VDiTs) have achieved remarkable progress in high-quality video generation, but remain computationally expensive due to the quadratic complexity of attention over high-dimensional video sequences. Recent attention acceleration methods leverage the sparsity of attention patterns to improve efficiency; however, they often overlook inefficiencies of redundant long-range interactions. To address this problem, we propose \textbf{VORTA}, an acceleration framework with two novel components: 1) a sparse attention mechanism that efficiently captures long-range dependencies, and 2) a routing strategy that adaptively replaces full 3D attention with specialized sparse attention variants throughout the sampling process. It achieves a $1.76\times$ end-to-end speedup without quality loss on VBench. Furthermore, VORTA can seamlessly integrate with various other acceleration methods, such as caching and step distillation, reaching up to $14.41\times$ speedup with negligible performance degradation. VORTA demonstrates its efficiency and enhances the practicality of VDiTs in real-world settings.
Authors:Zhiteng Li, Hanxuan Li, Junyi Wu, Kai Liu, Linghe Kong, Guihai Chen, Yulun Zhang, Xiaokang Yang
Abstract:
Diffusion Transformers (DiTs) have emerged as the state-of-the-art architecture for video generation, yet their computational and memory demands hinder practical deployment. While post-training quantization (PTQ) presents a promising approach to accelerate Video DiT models, existing methods suffer from two critical limitations: (1) dependence on lengthy, computation-heavy calibration procedures, and (2) considerable performance deterioration after quantization. To address these challenges, we propose DVD-Quant, a novel Data-free quantization framework for Video DiTs. Our approach integrates three key innovations: (1) Progressive Bounded Quantization (PBQ) and (2) Auto-scaling Rotated Quantization (ARQ) for calibration data-free quantization error reduction, as well as (3) $δ$-Guided Bit Switching ($δ$-GBS) for adaptive bit-width allocation. Extensive experiments across multiple video generation benchmarks demonstrate that DVD-Quant achieves an approximately 2$\times$ speedup over full-precision baselines on HunyuanVideo while maintaining visual fidelity. Notably, DVD-Quant is the first to enable W4A4 PTQ for Video DiTs without compromising video quality. Code and models will be available at https://github.com/lhxcs/DVD-Quant.
Authors:Zizhang Li, Hong-Xing Yu, Wei Liu, Yin Yang, Charles Herrmann, Gordon Wetzstein, Jiajun Wu
Abstract:
WonderPlay is a novel framework integrating physics simulation with video generation for generating action-conditioned dynamic 3D scenes from a single image. While prior works are restricted to rigid body or simple elastic dynamics, WonderPlay features a hybrid generative simulator to synthesize a wide range of 3D dynamics. The hybrid generative simulator first uses a physics solver to simulate coarse 3D dynamics, which subsequently conditions a video generator to produce a video with finer, more realistic motion. The generated video is then used to update the simulated dynamic 3D scene, closing the loop between the physics solver and the video generator. This approach enables intuitive user control to be combined with the accurate dynamics of physics-based simulators and the expressivity of diffusion-based video generators. Experimental results demonstrate that WonderPlay enables users to interact with various scenes of diverse content, including cloth, sand, snow, liquid, smoke, elastic, and rigid bodies -- all using a single image input. Code will be made public. Project website: https://kyleleey.github.io/WonderPlay/
Authors:Junhao Chen, Mingjin Chen, Jianjin Xu, Xiang Li, Junting Dong, Mingze Sun, Puhua Jiang, Hongxiang Li, Yuhang Yang, Hao Zhao, Xiaoxiao Long, Ruqi Huang
Abstract:
Controllable video generation (CVG) has advanced rapidly, yet current systems falter when more than one actor must move, interact, and exchange positions under noisy control signals. We address this gap with DanceTogether, the first end-to-end diffusion framework that turns a single reference image plus independent pose-mask streams into long, photorealistic videos while strictly preserving every identity. A novel MaskPoseAdapter binds "who" and "how" at every denoising step by fusing robust tracking masks with semantically rich-but noisy-pose heat-maps, eliminating the identity drift and appearance bleeding that plague frame-wise pipelines. To train and evaluate at scale, we introduce (i) PairFS-4K, 26 hours of dual-skater footage with 7,000+ distinct IDs, (ii) HumanRob-300, a one-hour humanoid-robot interaction set for rapid cross-domain transfer, and (iii) TogetherVideoBench, a three-track benchmark centered on the DanceTogEval-100 test suite covering dance, boxing, wrestling, yoga, and figure skating. On TogetherVideoBench, DanceTogether outperforms the prior arts by a significant margin. Moreover, we show that a one-hour fine-tune yields convincing human-robot videos, underscoring broad generalization to embodied-AI and HRI tasks. Extensive ablations confirm that persistent identity-action binding is critical to these gains. Together, our model, datasets, and benchmark lift CVG from single-subject choreography to compositionally controllable, multi-actor interaction, opening new avenues for digital production, simulation, and embodied intelligence. Our video demos and code are available at https://DanceTog.github.io/.
Authors:Jiawei Zhou, Linye Lyu, Zhuotao Tian, Cheng Zhuo, Yu Li
Abstract:
Safety-critical scenarios are rare yet pivotal for evaluating and enhancing the robustness of autonomous driving systems. While existing methods generate safety-critical driving trajectories, simulations, or single-view videos, they fall short of meeting the demands of advanced end-to-end autonomous systems (E2E AD), which require real-world, multi-view video data. To bridge this gap, we introduce SafeMVDrive, the first framework designed to generate high-quality, safety-critical, multi-view driving videos grounded in real-world domains. SafeMVDrive strategically integrates a safety-critical trajectory generator with an advanced multi-view video generator. To tackle the challenges inherent in this integration, we first enhance scene understanding ability of the trajectory generator by incorporating visual context -- which is previously unavailable to such generator -- and leveraging a GRPO-finetuned vision-language model to achieve more realistic and context-aware trajectory generation. Second, recognizing that existing multi-view video generators struggle to render realistic collision events, we introduce a two-stage, controllable trajectory generation mechanism that produces collision-evasion trajectories, ensuring both video quality and safety-critical fidelity. Finally, we employ a diffusion-based multi-view video generator to synthesize high-quality safety-critical driving videos from the generated trajectories. Experiments conducted on an E2E AD planner demonstrate a significant increase in collision rate when tested with our generated data, validating the effectiveness of SafeMVDrive in stress-testing planning modules. Our code, examples, and datasets are publicly available at: https://zhoujiawei3.github.io/SafeMVDrive/.
Authors:Shuang Zeng, Xinyuan Chang, Mengwei Xie, Xinran Liu, Yifan Bai, Zheng Pan, Mu Xu, Xing Wei, Ning Guo
Abstract:
Vision-Language-Action (VLA) models offer significant potential for end-to-end driving, yet their reasoning is often constrained by textual Chains-of-Thought (CoT). This symbolic compression of visual information creates a modality gap between perception and planning by blurring spatio-temporal relations and discarding fine-grained cues. We introduce FSDrive, a framework that empowers VLAs to "think visually" using a novel visual spatio-temporal CoT. FSDrive first operates as a world model, generating a unified future frame that combines a predicted background with explicit, physically-plausible priors like future lane dividers and 3D object boxes. This imagined scene serves as the visual spatio-temporal CoT, capturing both spatial structure and temporal evolution in a single representation. The same VLA then functions as an inverse-dynamics model to plan trajectories conditioned on current observations and this visual CoT. We enable this with a unified pre-training paradigm that expands the model's vocabulary with visual tokens and jointly optimizes for semantic understanding (VQA) and future-frame prediction. A progressive curriculum first generates structural priors to enforce physical laws before rendering the full scene. Evaluations on nuScenes and NAVSIM show FSDrive improves trajectory accuracy and reduces collisions, while also achieving competitive FID for video generation with a lightweight autoregressive model and advancing scene understanding on DriveLM. These results confirm that our visual spatio-temporal CoT bridges the perception-planning gap, enabling safer, more anticipatory autonomous driving. Code is available at https://github.com/MIV-XJTU/FSDrive.
Authors:Haoran He, Jiajun Liang, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, Ling Pan
Abstract:
As the marginal cost of scaling computation (data and parameters) during model pre-training continues to increase substantially, test-time scaling (TTS) has emerged as a promising direction for improving generative model performance by allocating additional computation at inference time. While TTS has demonstrated significant success across multiple language tasks, there remains a notable gap in understanding the test-time scaling behaviors of image and video generative models (diffusion-based or flow-based models). Although recent works have initiated exploration into inference-time strategies for vision tasks, these approaches face critical limitations: being constrained to task-specific domains, exhibiting poor scalability, or falling into reward over-optimization that sacrifices sample diversity. In this paper, we propose \textbf{Evo}lutionary \textbf{Search} (EvoSearch), a novel, generalist, and efficient TTS method that effectively enhances the scalability of both image and video generation across diffusion and flow models, without requiring additional training or model expansion. EvoSearch reformulates test-time scaling for diffusion and flow models as an evolutionary search problem, leveraging principles from biological evolution to efficiently explore and refine the denoising trajectory. By incorporating carefully designed selection and mutation mechanisms tailored to the stochastic differential equation denoising process, EvoSearch iteratively generates higher-quality offspring while preserving population diversity. Through extensive evaluation across both diffusion and flow architectures for image and video generation tasks, we demonstrate that our method consistently outperforms existing approaches, achieves higher diversity, and shows strong generalizability to unseen evaluation metrics. Our project is available at the website https://tinnerhrhe.github.io/evosearch.
Authors:Xueji Fang, Liyuan Ma, Zhiyang Chen, Mingyuan Zhou, Guo-jun Qi
Abstract:
Recent advances in text-to-video generation, particularly with autoregressive models, have enabled the synthesis of high-quality videos depicting individual scenes. However, extending these models to generate long, cross-scene videos remains a significant challenge. As the context length grows during autoregressive decoding, computational costs rise sharply, and the model's ability to maintain consistency and adhere to evolving textual prompts deteriorates. We introduce InfLVG, an inference-time framework that enables coherent long video generation without requiring additional long-form video data. InfLVG leverages a learnable context selection policy, optimized via Group Relative Policy Optimization (GRPO), to dynamically identify and retain the most semantically relevant context throughout the generation process. Instead of accumulating the entire generation history, the policy ranks and selects the top-$K$ most contextually relevant tokens, allowing the model to maintain a fixed computational budget while preserving content consistency and prompt alignment. To optimize the policy, we design a hybrid reward function that jointly captures semantic alignment, cross-scene consistency, and artifact reduction. To benchmark performance, we introduce the Cross-scene Video Benchmark (CsVBench) along with an Event Prompt Set (EPS) that simulates complex multi-scene transitions involving shared subjects and varied actions/backgrounds. Experimental results show that InfLVG can extend video length by up to 9$\times$, achieving strong consistency and semantic fidelity across scenes. Our code is available at https://github.com/MAPLE-AIGC/InfLVG.
Authors:Xiaoyu Ye, Songjie Cheng, Yongtao Wang, Yajiao Xiong, Yishen Li
Abstract:
Recent advances in text-to-video (T2V) diffusion models have significantly enhanced the quality of generated videos. However, their ability to produce explicit or harmful content raises concerns about misuse and potential rights violations. Inspired by the success of unlearning techniques in erasing undesirable concepts from text-to-image (T2I) models, we extend unlearning to T2V models and propose a robust and precise unlearning method. Specifically, we adopt negatively-guided velocity prediction fine-tuning and enhance it with prompt augmentation to ensure robustness against LLM-refined prompts. To achieve precise unlearning, we incorporate a localization and a preservation regularization to preserve the model's ability to generate non-target concepts. Extensive experiments demonstrate that our method effectively erases a specific concept while preserving the model's generation capability for all other concepts, outperforming existing methods. We provide the unlearned models in \href{https://github.com/VDIGPKU/T2VUnlearning.git}{https://github.com/VDIGPKU/T2VUnlearning.git}.
Authors:Yuechen Zhang, Jinbo Xing, Bin Xia, Shaoteng Liu, Bohao Peng, Xin Tao, Pengfei Wan, Eric Lo, Jiaya Jia
Abstract:
Despite the remarkable generation quality of video Diffusion Transformer (DiT) models, their practical deployment is severely hindered by extensive computational requirements. This inefficiency stems from two key challenges: the quadratic complexity of self-attention with respect to token length and the multi-step nature of diffusion models. To address these limitations, we present Jenga, a novel inference pipeline that combines dynamic attention carving with progressive resolution generation. Our approach leverages two key insights: (1) early denoising steps do not require high-resolution latents, and (2) later steps do not require dense attention. Jenga introduces a block-wise attention mechanism that dynamically selects relevant token interactions using 3D space-filling curves, alongside a progressive resolution strategy that gradually increases latent resolution during generation. Experimental results demonstrate that Jenga achieves substantial speedups across multiple state-of-the-art video diffusion models while maintaining comparable generation quality (8.83$\times$ speedup with 0.01\% performance drop on VBench). As a plug-and-play solution, Jenga enables practical, high-quality video generation on modern hardware by reducing inference time from minutes to seconds -- without requiring model retraining. Code: https://github.com/dvlab-research/Jenga
Authors:Zhiyuan Xu, Bohan Li, Huan-ang Gao, Mingju Gao, Yong Chen, Ming Liu, Chenxu Yan, Hang Zhao, Shuo Feng, Hao Zhao
Abstract:
Generating photorealistic driving videos has seen significant progress recently, but current methods largely focus on ordinary, non-adversarial scenarios. Meanwhile, efforts to generate adversarial driving scenarios often operate on abstract trajectory or BEV representations, falling short of delivering realistic sensor data that can truly stress-test autonomous driving (AD) systems. In this work, we introduce Challenger, a framework that produces physically plausible yet photorealistic adversarial driving videos. Generating such videos poses a fundamental challenge: it requires jointly optimizing over the space of traffic interactions and high-fidelity sensor observations. Challenger makes this affordable through two techniques: (1) a physics-aware multi-round trajectory refinement process that narrows down candidate adversarial maneuvers, and (2) a tailored trajectory scoring function that encourages realistic yet adversarial behavior while maintaining compatibility with downstream video synthesis. As tested on the nuScenes dataset, Challenger generates a diverse range of aggressive driving scenarios-including cut-ins, sudden lane changes, tailgating, and blind spot intrusions-and renders them into multiview photorealistic videos. Extensive evaluations show that these scenarios significantly increase the collision rate of state-of-the-art end-to-end AD models (UniAD, VAD, SparseDrive, and DiffusionDrive), and importantly, adversarial behaviors discovered for one model often transfer to others.
Authors:Ruizhi Shao, Yinghao Xu, Yujun Shen, Ceyuan Yang, Yang Zheng, Changan Chen, Yebin Liu, Gordon Wetzstein
Abstract:
Generating photorealistic videos of digital humans in a controllable manner is crucial for a plethora of applications. Existing approaches either build on methods that employ template-based 3D representations or emerging video generation models but suffer from poor quality or limited consistency and identity preservation when generating individual or multiple digital humans. In this paper, we introduce a new interspatial attention (ISA) mechanism as a scalable building block for modern diffusion transformer (DiT)--based video generation models. ISA is a new type of cross attention that uses relative positional encodings tailored for the generation of human videos. Leveraging a custom-developed video variation autoencoder, we train a latent ISA-based diffusion model on a large corpus of video data. Our model achieves state-of-the-art performance for 4D human video synthesis, demonstrating remarkable motion consistency and identity preservation while providing precise control of the camera and body poses. Our code and model are publicly released at https://dsaurus.github.io/isa4d/.
Authors:Xinran Wang, Songyu Xu, Xiangxuan Shan, Yuxuan Zhang, Muxi Diao, Xueyan Duan, Yanhua Huang, Kongming Liang, Zhanyu Ma
Abstract:
Cinematography is a cornerstone of film production and appreciation, shaping mood, emotion, and narrative through visual elements such as camera movement, shot composition, and lighting. Despite recent progress in multimodal large language models (MLLMs) and video generation models, the capacity of current models to grasp and reproduce cinematographic techniques remains largely uncharted, hindered by the scarcity of expert-annotated data. To bridge this gap, we present CineTechBench, a pioneering benchmark founded on precise, manual annotation by seasoned cinematography experts across key cinematography dimensions. Our benchmark covers seven essential aspects-shot scale, shot angle, composition, camera movement, lighting, color, and focal length-and includes over 600 annotated movie images and 120 movie clips with clear cinematographic techniques. For the understanding task, we design question answer pairs and annotated descriptions to assess MLLMs' ability to interpret and explain cinematographic techniques. For the generation task, we assess advanced video generation models on their capacity to reconstruct cinema-quality camera movements given conditions such as textual prompts or keyframes. We conduct a large-scale evaluation on 15+ MLLMs and 5+ video generation models. Our results offer insights into the limitations of current models and future directions for cinematography understanding and generation in automatically film production and appreciation. The code and benchmark can be accessed at https://github.com/PRIS-CV/CineTechBench.
Authors:Xuan Shen, Weize Ma, Yufa Zhou, Enhao Tang, Yanyue Xie, Zhengang Li, Yifan Gong, Quanyi Wang, Henghui Ding, Yiwei Wang, Yanzhi Wang, Pu Zhao, Jun Lin, Jiuxiang Gu
Abstract:
Auto-regressive (AR) models, initially successful in language generation, have recently shown promise in visual generation tasks due to their superior sampling efficiency. Unlike image generation, video generation requires a substantially larger number of tokens to produce coherent temporal frames, resulting in significant overhead during the decoding phase. Our key observations are: (i) MLP modules in the decode phase dominate the inference latency, and (ii) there exists high temporal redundancy in MLP outputs of adjacent frames. In this paper, we propose the \textbf{FastCar} framework to accelerate the decode phase for the AR video generation by exploring the temporal redundancy. The Temporal Attention Score (TAS) is proposed to determine whether to apply the replay strategy (\textit{i.e.}, reusing cached MLP outputs from the previous frame to reduce redundant computations) with detailed theoretical analysis and justification. Also, we develop a hardware accelerator on FPGA with Dynamic Resource Scheduling (DRS) based on TAS to enable better resource utilization and faster inference. Experimental results demonstrate the effectiveness of our method, which outperforms traditional sparse attention approaches with more than 2.1x decoding speedup and higher energy efficiency on the edge. Furthermore, by combining FastCar and sparse attention, FastCar can boost the performance of sparse attention with alleviated drifting, demonstrating our unique advantages for high-resolution and long-duration video generation. Code: https://github.com/shawnricecake/fast-car
Authors:Xuan Shen, Chenxia Han, Yufa Zhou, Yanyue Xie, Yifan Gong, Quanyi Wang, Yiwei Wang, Yanzhi Wang, Pu Zhao, Jiuxiang Gu
Abstract:
Diffusion transformer-based video generation models (DiTs) have recently attracted widespread attention for their excellent generation quality. However, their computational cost remains a major bottleneck-attention alone accounts for over 80% of total latency, and generating just 8 seconds of 720p video takes tens of minutes-posing serious challenges to practical application and scalability. To address this, we propose the DraftAttention, a training-free framework for the acceleration of video diffusion transformers with dynamic sparse attention on GPUs. We apply down-sampling to each feature map across frames in the compressed latent space, enabling a higher-level receptive field over the latent composed of hundreds of thousands of tokens. The low-resolution draft attention map, derived from draft query and key, exposes redundancy both spatially within each feature map and temporally across frames. We reorder the query, key, and value based on the draft attention map to guide the sparse attention computation in full resolution, and subsequently restore their original order after the attention computation. This reordering enables structured sparsity that aligns with hardware-optimized execution. Our theoretical analysis demonstrates that the low-resolution draft attention closely approximates the full attention, providing reliable guidance for constructing accurate sparse attention. Experimental results show that our method outperforms existing sparse attention approaches in video generation quality and achieves up to 1.75x end-to-end speedup on GPUs. Code: https://github.com/shawnricecake/draft-attention
Authors:Changgu Chen, Xiaoyan Yang, Junwei Shu, Changbo Wang, Yang Li
Abstract:
In recent years, large-scale pre-trained diffusion transformer models have made significant progress in video generation. While current DiT models can produce high-definition, high-frame-rate, and highly diverse videos, there is a lack of fine-grained control over the video content. Controlling the motion of subjects in videos using only prompts is challenging, especially when it comes to describing complex movements. Further, existing methods fail to control the motion in image-to-video generation, as the subject in the reference image often differs from the subject in the reference video in terms of initial position, size, and shape. To address this, we propose the Leveraging Motion Prior (LMP) framework for zero-shot video generation. Our framework harnesses the powerful generative capabilities of pre-trained diffusion transformers to enable motion in the generated videos to reference user-provided motion videos in both text-to-video and image-to-video generation. To this end, we first introduce a foreground-background disentangle module to distinguish between moving subjects and backgrounds in the reference video, preventing interference in the target video generation. A reweighted motion transfer module is designed to allow the target video to reference the motion from the reference video. To avoid interference from the subject in the reference video, we propose an appearance separation module to suppress the appearance of the reference subject in the target video. We annotate the DAVIS dataset with detailed prompts for our experiments and design evaluation metrics to validate the effectiveness of our method. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in generation quality, prompt-video consistency, and control capability. Our homepage is available at https://vpx-ecnu.github.io/LMP-Website/
Authors:Sand. ai, Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tianning Zhang, W. Q. Zhang, Weifeng Luo, Xiaoyang Kang, Yuchen Sun, Yue Cao, Yunpeng Huang, Yutong Lin, Yuxin Fang, Zewei Tao, Zheng Zhang, Zhongshu Wang, Zixun Liu, Dai Shi, Guoli Su, Hanwen Sun, Hong Pan, Jie Wang, Jiexin Sheng, Min Cui, Min Hu, Ming Yan, Shucheng Yin, Siran Zhang, Tingting Liu, Xianping Yin, Xiaoyu Yang, Xin Song, Xuan Hu, Yankai Zhang, Yuqiao Li
Abstract:
We present MAGI-1, a world model that generates videos by autoregressively predicting a sequence of video chunks, defined as fixed-length segments of consecutive frames. Trained to denoise per-chunk noise that increases monotonically over time, MAGI-1 enables causal temporal modeling and naturally supports streaming generation. It achieves strong performance on image-to-video (I2V) tasks conditioned on text instructions, providing high temporal consistency and scalability, which are made possible by several algorithmic innovations and a dedicated infrastructure stack. MAGI-1 facilitates controllable generation via chunk-wise prompting and supports real-time, memory-efficient deployment by maintaining constant peak inference cost, regardless of video length. The largest variant of MAGI-1 comprises 24 billion parameters and supports context lengths of up to 4 million tokens, demonstrating the scalability and robustness of our approach. The code and models are available at https://github.com/SandAI-org/MAGI-1 and https://github.com/SandAI-org/MagiAttention. The product can be accessed at https://sand.ai.
Authors:Joel Jang, Seonghyeon Ye, Zongyu Lin, Jiannan Xiang, Johan Bjorck, Yu Fang, Fengyuan Hu, Spencer Huang, Kaushil Kundalia, Yen-Chen Lin, Loic Magne, Ajay Mandlekar, Avnish Narayan, You Liang Tan, Guanzhi Wang, Jing Wang, Qi Wang, Yinzhen Xu, Xiaohui Zeng, Kaiyuan Zheng, Ruijie Zheng, Ming-Yu Liu, Luke Zettlemoyer, Dieter Fox, Jan Kautz, Scott Reed, Yuke Zhu, Linxi Fan
Abstract:
We introduce DreamGen, a simple yet highly effective 4-stage pipeline for training robot policies that generalize across behaviors and environments through neural trajectories - synthetic robot data generated from video world models. DreamGen leverages state-of-the-art image-to-video generative models, adapting them to the target robot embodiment to produce photorealistic synthetic videos of familiar or novel tasks in diverse environments. Since these models generate only videos, we recover pseudo-action sequences using either a latent action model or an inverse-dynamics model (IDM). Despite its simplicity, DreamGen unlocks strong behavior and environment generalization: a humanoid robot can perform 22 new behaviors in both seen and unseen environments, while requiring teleoperation data from only a single pick-and-place task in one environment. To evaluate the pipeline systematically, we introduce DreamGen Bench, a video generation benchmark that shows a strong correlation between benchmark performance and downstream policy success. Our work establishes a promising new axis for scaling robot learning well beyond manual data collection. Code available at https://github.com/NVIDIA/GR00T-Dreams.
Authors:Zihan Su, Xuerui Qiu, Hongbin Xu, Tangyu Jiang, Junhao Zhuang, Chun Yuan, Ming Li, Shengfeng He, Fei Richard Yu
Abstract:
The explosive growth of generative video models has amplified the demand for reliable copyright preservation of AI-generated content. Despite its popularity in image synthesis, invisible generative watermarking remains largely underexplored in video generation. To address this gap, we propose Safe-Sora, the first framework to embed graphical watermarks directly into the video generation process. Motivated by the observation that watermarking performance is closely tied to the visual similarity between the watermark and cover content, we introduce a hierarchical coarse-to-fine adaptive matching mechanism. Specifically, the watermark image is divided into patches, each assigned to the most visually similar video frame, and further localized to the optimal spatial region for seamless embedding. To enable spatiotemporal fusion of watermark patches across video frames, we develop a 3D wavelet transform-enhanced Mamba architecture with a novel spatiotemporal local scanning strategy, effectively modeling long-range dependencies during watermark embedding and retrieval. To the best of our knowledge, this is the first attempt to apply state space models to watermarking, opening new avenues for efficient and robust watermark protection. Extensive experiments demonstrate that Safe-Sora achieves state-of-the-art performance in terms of video quality, watermark fidelity, and robustness, which is largely attributed to our proposals. Code is publicly available at https://github.com/Sugewud/Safe-Sora
Authors:Shaobin Zhuang, Zhipeng Huang, Ying Zhang, Fangyikang Wang, Canmiao Fu, Binxin Yang, Chong Sun, Chen Li, Yali Wang
Abstract:
GPT has shown its remarkable success in natural language processing. However, the language sequence is not sufficient to describe spatial-temporal details in the visual world. Alternatively, the video sequence is good at capturing such details. Motivated by this fact, we propose a concise Video-GPT in this paper by treating video as new language for visual world modeling. By analogy to next token prediction in GPT, we introduce a novel next clip diffusion paradigm for pretraining Video-GPT. Different from the previous works, this distinct paradigm allows Video-GPT to tackle both short-term generation and long-term prediction, by autoregressively denoising the noisy clip according to the clean clips in the history. Extensive experiments show our Video-GPT achieves the state-of-the-art performance on video prediction, which is the key factor towards world modeling (Physics-IQ Benchmark: Video-GPT 34.97 vs. Kling 23.64 vs. Wan 20.89). Moreover, it can be well adapted on 6 mainstream video tasks in both video generation and understanding, showing its great generalization capacity in downstream. The project page is at https://zhuangshaobin.github.io/Video-GPT.github.io/.
Authors:Jiarui Wang, Huiyu Duan, Ziheng Jia, Yu Zhao, Woo Yi Yang, Zicheng Zhang, Zijian Chen, Juntong Wang, Yuke Xing, Guangtao Zhai, Xiongkuo Min
Abstract:
Recent advancements in large multimodal models (LMMs) have driven substantial progress in both text-to-video (T2V) generation and video-to-text (V2T) interpretation tasks. However, current AI-generated videos (AIGVs) still exhibit limitations in terms of perceptual quality and text-video alignment. Therefore, a reliable and scalable automatic model for AIGV evaluation is desirable, which heavily relies on the scale and quality of human annotations. To this end, we present AIGVE-60K, a comprehensive dataset and benchmark for AI-Generated Video Evaluation, which features (i) comprehensive tasks, encompassing 3,050 extensive prompts across 20 fine-grained task dimensions, (ii) the largest human annotations, including 120K mean-opinion scores (MOSs) and 60K question-answering (QA) pairs annotated on 58,500 videos generated from 30 T2V models, and (iii) bidirectional benchmarking and evaluating for both T2V generation and V2T interpretation capabilities. Based on AIGVE-60K, we propose LOVE, a LMM-based metric for AIGV Evaluation from multiple dimensions including perceptual preference, text-video correspondence, and task-specific accuracy in terms of both instance level and model level. Comprehensive experiments demonstrate that LOVE not only achieves state-of-the-art performance on the AIGVE-60K dataset, but also generalizes effectively to a wide range of other AIGV evaluation benchmarks. These findings highlight the significance of the AIGVE-60K dataset. Database and codes are anonymously available at https://github.com/IntMeGroup/LOVE.
Authors:Yanbo Ding, Xirui Hu, Zhizhi Guo, Chi Zhang, Yali Wang
Abstract:
Human image animation has gained increasing attention and developed rapidly due to its broad applications in digital humans. However, existing methods rely largely on 2D-rendered pose images for motion guidance, which limits generalization and discards essential 3D information for open-world animation. To tackle this problem, we propose MTVCrafter (Motion Tokenization Video Crafter), the first framework that directly models raw 3D motion sequences (i.e., 4D motion) for human image animation. Specifically, we introduce 4DMoT (4D motion tokenizer) to quantize 3D motion sequences into 4D motion tokens. Compared to 2D-rendered pose images, 4D motion tokens offer more robust spatio-temporal cues and avoid strict pixel-level alignment between pose image and character, enabling more flexible and disentangled control. Then, we introduce MV-DiT (Motion-aware Video DiT). By designing unique motion attention with 4D positional encodings, MV-DiT can effectively leverage motion tokens as 4D compact yet expressive context for human image animation in the complex 3D world. Hence, it marks a significant step forward in this field and opens a new direction for pose-guided human video generation. Experiments show that our MTVCrafter achieves state-of-the-art results with an FID-VID of 6.98, surpassing the second-best by 65%. Powered by robust motion tokens, MTVCrafter also generalizes well to diverse open-world characters (single/multiple, full/half-body) across various styles and scenarios. Our video demos and code are on: https://github.com/DINGYANB/MTVCrafter.
Authors:Hu Yue, Siyuan Huang, Yue Liao, Shengcong Chen, Pengfei Zhou, Liliang Chen, Maoqing Yao, Guanghui Ren
Abstract:
Recent advances in creative AI have enabled the synthesis of high-fidelity images and videos conditioned on language instructions. Building on these developments, text-to-video diffusion models have evolved into embodied world models (EWMs) capable of generating physically plausible scenes from language commands, effectively bridging vision and action in embodied AI applications. This work addresses the critical challenge of evaluating EWMs beyond general perceptual metrics to ensure the generation of physically grounded and action-consistent behaviors. We propose the Embodied World Model Benchmark (EWMBench), a dedicated framework designed to evaluate EWMs based on three key aspects: visual scene consistency, motion correctness, and semantic alignment. Our approach leverages a meticulously curated dataset encompassing diverse scenes and motion patterns, alongside a comprehensive multi-dimensional evaluation toolkit, to assess and compare candidate models. The proposed benchmark not only identifies the limitations of existing video generation models in meeting the unique requirements of embodied tasks but also provides valuable insights to guide future advancements in the field. The dataset and evaluation tools are publicly available at https://github.com/AgibotTech/EWMBench.
Authors:Yuping Wang, Shuo Xing, Cui Can, Renjie Li, Hongyuan Hua, Kexin Tian, Zhaobin Mo, Xiangbo Gao, Keshu Wu, Sulong Zhou, Hengxu You, Juntong Peng, Junge Zhang, Zehao Wang, Rui Song, Mingxuan Yan, Walter Zimmer, Xingcheng Zhou, Peiran Li, Zhaohan Lu, Chia-Ju Chen, Yue Huang, Ryan A. Rossi, Lichao Sun, Hongkai Yu, Zhiwen Fan, Frank Hao Yang, Yuhao Kang, Ross Greer, Chenxi Liu, Eun Hak Lee, Xuan Di, Xinyue Ye, Liu Ren, Alois Knoll, Xiaopeng Li, Shuiwang Ji, Masayoshi Tomizuka, Marco Pavone, Tianbao Yang, Jing Du, Ming-Hsuan Yang, Hua Wei, Ziran Wang, Yang Zhou, Jiachen Li, Zhengzhong Tu
Abstract:
Generative Artificial Intelligence (GenAI) constitutes a transformative technological wave that reconfigures industries through its unparalleled capabilities for content creation, reasoning, planning, and multimodal understanding. This revolutionary force offers the most promising path yet toward solving one of engineering's grandest challenges: achieving reliable, fully autonomous driving, particularly the pursuit of Level 5 autonomy. This survey delivers a comprehensive and critical synthesis of the emerging role of GenAI across the autonomous driving stack. We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models (LLMs). We then map their frontier applications in image, LiDAR, trajectory, occupancy, video generation as well as LLM-guided reasoning and decision making. We categorize practical applications, such as synthetic data workflows, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI. We identify key obstacles and possibilities such as comprehensive generalization across rare cases, evaluation and safety checks, budget-limited implementation, regulatory compliance, ethical concerns, and environmental effects, while proposing research plans across theoretical assurances, trust metrics, transport integration, and socio-technical influence. By unifying these threads, the survey provides a forward-looking reference for researchers, engineers, and policymakers navigating the convergence of generative AI and advanced autonomous mobility. An actively maintained repository of cited works is available at https://github.com/taco-group/GenAI4AD.
Authors:Wei Li, Ming Hu, Guoan Wang, Lihao Liu, Kaijing Zhou, Junzhi Ning, Xin Guo, Zongyuan Ge, Lixu Gu, Junjun He
Abstract:
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/uni-medical/Ophora.
Authors:Beichen Wen, Haozhe Xie, Zhaoxi Chen, Fangzhou Hong, Ziwei Liu
Abstract:
3D scene generation seeks to synthesize spatially structured, semantically meaningful, and photorealistic environments for applications such as immersive media, robotics, autonomous driving, and embodied AI. Early methods based on procedural rules offered scalability but limited diversity. Recent advances in deep generative models (e.g., GANs, diffusion models) and 3D representations (e.g., NeRF, 3D Gaussians) have enabled the learning of real-world scene distributions, improving fidelity, diversity, and view consistency. Recent advances like diffusion models bridge 3D scene synthesis and photorealism by reframing generation as image or video synthesis problems. This survey provides a systematic overview of state-of-the-art approaches, organizing them into four paradigms: procedural generation, neural 3D-based generation, image-based generation, and video-based generation. We analyze their technical foundations, trade-offs, and representative results, and review commonly used datasets, evaluation protocols, and downstream applications. We conclude by discussing key challenges in generation capacity, 3D representation, data and annotations, and evaluation, and outline promising directions including higher fidelity, physics-aware and interactive generation, and unified perception-generation models. This review organizes recent advances in 3D scene generation and highlights promising directions at the intersection of generative AI, 3D vision, and embodied intelligence. To track ongoing developments, we maintain an up-to-date project page: https://github.com/hzxie/Awesome-3D-Scene-Generation.
Authors:Wenchuan Wang, Mengqi Huang, Yijing Tu, Zhendong Mao
Abstract:
Customized text-to-video generation with pre-trained large-scale models has recently garnered significant attention by focusing on identity and motion consistency. Existing works typically follow the isolated customized paradigm, where the subject identity or motion dynamics are customized exclusively. However, this paradigm completely ignores the intrinsic mutual constraints and synergistic interdependencies between identity and motion, resulting in identity-motion conflicts throughout the generation process that systematically degrade. To address this, we introduce DualReal, a novel framework that employs adaptive joint training to construct interdependencies between dimensions collaboratively. Specifically, DualReal is composed of two units: (1) Dual-aware Adaptation dynamically switches the training step (i.e., identity or motion), learns the current information guided by the frozen dimension prior, and employs a regularization strategy to avoid knowledge leakage; (2) StageBlender Controller leverages the denoising stages and Diffusion Transformer depths to guide different dimensions with adaptive granularity, avoiding conflicts at various stages and ultimately achieving lossless fusion of identity and motion patterns. We constructed a more comprehensive evaluation benchmark than existing methods. The experimental results show that DualReal improves CLIP-I and DINO-I metrics by 21.7% and 31.8% on average, and achieves top performance on nearly all motion metrics. Page: https://wenc-k.github.io/dualreal-customization
Authors:Zongxia Li, Xiyang Wu, Guangyao Shi, Yubin Qin, Hongyang Du, Tianyi Zhou, Dinesh Manocha, Jordan Lee Boyd-Graber
Abstract:
Synthetic video generation has gained significant attention for its realism and broad applications, but remains prone to violations of common sense and physical laws. This highlights the need for reliable abnormality detectors that understand such principles and are robust to hallucinations. To address this, we introduce VideoHallu, a benchmark of over 3,000 video QA pairs built from synthetic videos generated by models like Veo2, Sora, and Kling, paired with expert-crafted counterintuitive QA to evaluate the critical thinking abilities of Multi-modal Large Language Models (MLLMs) on abnormalities that are perceptually obvious to humans but often hallucinated due to language priors. VideoHallu evaluates MLLMs' abnormality detection abilities with examples across alignment, consistency, commonsense, and physics. We benchmark SOTA MLLMs, including GPT-4o, Gemini-2.5-Pro, Qwen2.5-VL, Video-R1, and VideoChat-R1. We observe that these models perform well on many real-world benchmarks like MVBench and MovieChat, but still struggle with basic physics-based and commonsense reasoning in synthetic videos. We further show that post-training with Group Relative Policy Optimization (GRPO), using curriculum learning on datasets combining video QA with counterintuitive commonsense and physics reasoning over real and synthetic videos, improves MLLMs' abnormality detection and critical thinking, demonstrating the value of targeted training for improving their understanding of commonsense and physical laws. Our code is available at https://github.com/zli12321/VideoHallu.git.
Authors:Jiangtong Tan, Hu Yu, Jie Huang, Jie Xiao, Feng Zhao
Abstract:
Long video generation involves generating extended videos using models trained on short videos, suffering from distribution shifts due to varying frame counts. It necessitates the use of local information from the original short frames to enhance visual and motion quality, and global information from the entire long frames to ensure appearance consistency. Existing training-free methods struggle to effectively integrate the benefits of both, as appearance and motion in videos are closely coupled, leading to motion inconsistency and visual quality. In this paper, we reveal that global and local information can be precisely decoupled into consistent appearance and motion intensity information by applying Principal Component Analysis (PCA), allowing for refined complementary integration of global consistency and local quality. With this insight, we propose FreePCA, a training-free long video generation paradigm based on PCA that simultaneously achieves high consistency and quality. Concretely, we decouple consistent appearance and motion intensity features by measuring cosine similarity in the principal component space. Critically, we progressively integrate these features to preserve original quality and ensure smooth transitions, while further enhancing consistency by reusing the mean statistics of the initial noise. Experiments demonstrate that FreePCA can be applied to various video diffusion models without requiring training, leading to substantial improvements. Code is available at https://github.com/JosephTiTan/FreePCA.
Authors:Yeonsang Shin, Jihwan Kim, Yumin Song, Kyungseung Lee, Hyunhee Chung, Taeyoung Na
Abstract:
Despite the remarkable progress in text-to-video models, achieving precise control over text elements and animated graphics remains a significant challenge, especially in applications such as video advertisements. To address this limitation, we introduce Animated Layout Generation, a novel approach to extend static graphic layouts with temporal dynamics. We propose a Structured Text Representation for fine-grained video control through hierarchical visual elements. To demonstrate the effectiveness of our approach, we present VAKER (Video Ad maKER), a text-to-video advertisement generation pipeline that combines a three-stage generation process with Unstructured Text Reasoning for seamless integration with LLMs. VAKER fully automates video advertisement generation by incorporating dynamic layout trajectories for objects and graphics across specific video frames. Through extensive evaluations, we demonstrate that VAKER significantly outperforms existing methods in generating video advertisements. Project Page: https://yeonsangshin.github.io/projects/Vaker
Authors:Haiyang Zhou, Wangbo Yu, Jiawen Guan, Xinhua Cheng, Yonghong Tian, Li Yuan
Abstract:
The rapid advancement of diffusion models holds the promise of revolutionizing the application of VR and AR technologies, which typically require scene-level 4D assets for user experience. Nonetheless, existing diffusion models predominantly concentrate on modeling static 3D scenes or object-level dynamics, constraining their capacity to provide truly immersive experiences. To address this issue, we propose HoloTime, a framework that integrates video diffusion models to generate panoramic videos from a single prompt or reference image, along with a 360-degree 4D scene reconstruction method that seamlessly transforms the generated panoramic video into 4D assets, enabling a fully immersive 4D experience for users. Specifically, to tame video diffusion models for generating high-fidelity panoramic videos, we introduce the 360World dataset, the first comprehensive collection of panoramic videos suitable for downstream 4D scene reconstruction tasks. With this curated dataset, we propose Panoramic Animator, a two-stage image-to-video diffusion model that can convert panoramic images into high-quality panoramic videos. Following this, we present Panoramic Space-Time Reconstruction, which leverages a space-time depth estimation method to transform the generated panoramic videos into 4D point clouds, enabling the optimization of a holistic 4D Gaussian Splatting representation to reconstruct spatially and temporally consistent 4D scenes. To validate the efficacy of our method, we conducted a comparative analysis with existing approaches, revealing its superiority in both panoramic video generation and 4D scene reconstruction. This demonstrates our method's capability to create more engaging and realistic immersive environments, thereby enhancing user experiences in VR and AR applications.
Authors:Jong Inn Park, Maanas Taneja, Qianwen Wang, Dongyeop Kang
Abstract:
Generating engaging, accurate short-form videos from scientific papers is challenging due to content complexity and the gap between expert authors and readers. Existing end-to-end methods often suffer from factual inaccuracies and visual artifacts, limiting their utility for scientific dissemination. To address these issues, we propose SciTalk, a novel multi-LLM agentic framework, grounding videos in various sources, such as text, figures, visual styles, and avatars. Inspired by content creators' workflows, SciTalk uses specialized agents for content summarization, visual scene planning, and text and layout editing, and incorporates an iterative feedback mechanism where video agents simulate user roles to give feedback on generated videos from previous iterations and refine generation prompts. Experimental evaluations show that SciTalk outperforms simple prompting methods in generating scientifically accurate and engaging content over the refined loop of video generation. Although preliminary results are still not yet matching human creators' quality, our framework provides valuable insights into the challenges and benefits of feedback-driven video generation. Our code, data, and generated videos will be publicly available.
Authors:Daneul Kim, Jingxu Zhang, Wonjoon Jin, Sunghyun Cho, Qi Dai, Jaesik Park, Chong Luo
Abstract:
We propose to train a subject-driven customized video generation model through decoupling the subject-specific learning from temporal dynamics in zero-shot without additional tuning. A traditional method for video customization that is tuning-free often relies on large, annotated video datasets, which are computationally expensive and require extensive annotation. In contrast to the previous approach, we introduce the use of an image customization dataset directly on training video customization models, factorizing the video customization into two folds: (1) identity injection through image customization dataset and (2) temporal modeling preservation with a small set of unannotated videos through the image-to-video training method. Additionally, we employ random image token dropping with randomized image initialization during image-to-video fine-tuning to mitigate the copy-and-paste issue. To further enhance learning, we introduce stochastic switching during joint optimization of subject-specific and temporal features, mitigating catastrophic forgetting. Our method achieves strong subject consistency and scalability, outperforming existing video customization models in zero-shot settings, demonstrating the effectiveness of our framework.
Authors:Yinqi Li, Hong Chang, Ruibing Hou, Shiguang Shan, Xilin Chen
Abstract:
Diffusion models have shown remarkable progress in various generative tasks such as image and video generation. This paper studies the problem of leveraging pretrained diffusion models for performing discriminative tasks. Specifically, we extend the discriminative capability of pretrained frozen generative diffusion models from the classification task to the more complex object detection task, by "inverting" a pretrained layout-to-image diffusion model. To this end, a gradient-based discrete optimization approach for replacing the heavy prediction enumeration process, and a prior distribution model for making more accurate use of the Bayes' rule, are proposed respectively. Empirical results show that this method is on par with basic discriminative object detection baselines on COCO dataset. In addition, our method can greatly speed up the previous diffusion-based method for classification without sacrificing accuracy. Code and models are available at https://github.com/LiYinqi/DIVE .
Authors:Ning Li, Antai Andy Liu, Jingran Zhang, Justin Cui
Abstract:
Dataset distillation has demonstrated remarkable effectiveness in high-compression scenarios for image datasets. While video datasets inherently contain greater redundancy, existing video dataset distillation methods primarily focus on compression in the pixel space, overlooking advances in the latent space that have been widely adopted in modern text-to-image and text-to-video models. In this work, we bridge this gap by introducing a novel video dataset distillation approach that operates in the latent space using a state-of-the-art variational encoder. Furthermore, we employ a diversity-aware data selection strategy to select both representative and diverse samples. Additionally, we introduce a simple, training-free method to further compress the distilled latent dataset. By combining these techniques, our approach achieves a new state-of-the-art performance in dataset distillation, outperforming prior methods on all datasets, e.g. on HMDB51 IPC 1, we achieve a 2.6% performance increase; on MiniUCF IPC 5, we achieve a 7.8% performance increase. Our code is available at https://github.com/liningresearch/Latent_Video_Dataset_Distillation.
Authors:Ruotong Wang, Mingli Zhu, Jiarong Ou, Rui Chen, Xin Tao, Pengfei Wan, Baoyuan Wu
Abstract:
Text-to-video (T2V) generative models have rapidly advanced and found widespread applications across fields like entertainment, education, and marketing. However, the adversarial vulnerabilities of these models remain rarely explored. We observe that in T2V generation tasks, the generated videos often contain substantial redundant information not explicitly specified in the text prompts, such as environmental elements, secondary objects, and additional details, providing opportunities for malicious attackers to embed hidden harmful content. Exploiting this inherent redundancy, we introduce BadVideo, the first backdoor attack framework tailored for T2V generation. Our attack focuses on designing target adversarial outputs through two key strategies: (1) Spatio-Temporal Composition, which combines different spatiotemporal features to encode malicious information; (2) Dynamic Element Transformation, which introduces transformations in redundant elements over time to convey malicious information. Based on these strategies, the attacker's malicious target seamlessly integrates with the user's textual instructions, providing high stealthiness. Moreover, by exploiting the temporal dimension of videos, our attack successfully evades traditional content moderation systems that primarily analyze spatial information within individual frames. Extensive experiments demonstrate that BadVideo achieves high attack success rates while preserving original semantics and maintaining excellent performance on clean inputs. Overall, our work reveals the adversarial vulnerability of T2V models, calling attention to potential risks and misuse. Our project page is at https://wrt2000.github.io/BadVideo2025/.
Authors:Xuming Hu, Hanqian Li, Jungang Li, Yu Huang, Aiwei Liu
Abstract:
This work introduces \textbf{VideoMark}, a distortion-free robust watermarking framework for video diffusion models. As diffusion models excel in generating realistic videos, reliable content attribution is increasingly critical. However, existing video watermarking methods often introduce distortion by altering the initial distribution of diffusion variables and are vulnerable to temporal attacks, such as frame deletion, due to variable video lengths. VideoMark addresses these challenges by employing a \textbf{pure pseudorandom initialization} to embed watermarks, avoiding distortion while ensuring uniform noise distribution in the latent space to preserve generation quality. To enhance robustness, we adopt a frame-wise watermarking strategy with pseudorandom error correction (PRC) codes, using a fixed watermark sequence with randomly selected starting indices for each video. For watermark extraction, we propose a Temporal Matching Module (TMM) that leverages edit distance to align decoded messages with the original watermark sequence, ensuring resilience against temporal attacks. Experimental results show that VideoMark achieves higher decoding accuracy than existing methods while maintaining video quality comparable to watermark-free generation. The watermark remains imperceptible to attackers without the secret key, offering superior invisibility compared to other frameworks. VideoMark provides a practical, training-free solution for content attribution in diffusion-based video generation. Code and data are available at \href{https://github.com/KYRIE-LI11/VideoMark}{https://github.com/KYRIE-LI11/VideoMark}{Project Page}.
Authors:Yimu Wang, Xuye Liu, Wei Pang, Li Ma, Shuai Yuan, Paul Debevec, Ning Yu
Abstract:
Recent advances in diffusion models have revolutionized video generation, offering superior temporal consistency and visual quality compared to traditional generative adversarial networks-based approaches. While this emerging field shows tremendous promise in applications, it faces significant challenges in motion consistency, computational efficiency, and ethical considerations. This survey provides a comprehensive review of diffusion-based video generation, examining its evolution, technical foundations, and practical applications. We present a systematic taxonomy of current methodologies, analyze architectural innovations and optimization strategies, and investigate applications across low-level vision tasks such as denoising and super-resolution. Additionally, we explore the synergies between diffusionbased video generation and related domains, including video representation learning, question answering, and retrieval. Compared to the existing surveys (Lei et al., 2024a;b; Melnik et al., 2024; Cao et al., 2023; Xing et al., 2024c) which focus on specific aspects of video generation, such as human video synthesis (Lei et al., 2024a) or long-form content generation (Lei et al., 2024b), our work provides a broader, more updated, and more fine-grained perspective on diffusion-based approaches with a special section for evaluation metrics, industry solutions, and training engineering techniques in video generation. This survey serves as a foundational resource for researchers and practitioners working at the intersection of diffusion models and video generation, providing insights into both the theoretical frameworks and practical implementations that drive this rapidly evolving field. A structured list of related works involved in this survey is also available on https://github.com/Eyeline-Research/Survey-Video-Diffusion.
Authors:Xianpan Zhou
Abstract:
The recent surge in open-source text-to-video generation models has significantly energized the research community, yet their dependence on proprietary training datasets remains a key constraint. While existing open datasets like Koala-36M employ algorithmic filtering of web-scraped videos from early platforms, they still lack the quality required for fine-tuning advanced video generation models. We present Tiger200K, a manually curated high visual quality video dataset sourced from User-Generated Content (UGC) platforms. By prioritizing visual fidelity and aesthetic quality, Tiger200K underscores the critical role of human expertise in data curation, and providing high-quality, temporally consistent video-text pairs for fine-tuning and optimizing video generation architectures through a simple but effective pipeline including shot boundary detection, OCR, border detecting, motion filter and fine bilingual caption. The dataset will undergo ongoing expansion and be released as an open-source initiative to advance research and applications in video generative models. Project page: https://tinytigerpan.github.io/tiger200k/
Authors:Weijie He, Mushui Liu, Yunlong Yu, Zhao Wang, Chao Wu
Abstract:
Compositional text-to-video generation, which requires synthesizing dynamic scenes with multiple interacting entities and precise spatial-temporal relationships, remains a critical challenge for diffusion-based models. Existing methods struggle with layout discontinuity, entity identity drift, and implausible interaction dynamics due to unconstrained cross-attention mechanisms and inadequate physics-aware reasoning. To address these limitations, we propose DyST-XL, a \textbf{training-free} framework that enhances off-the-shelf text-to-video models (e.g., CogVideoX-5B) through frame-aware control. DyST-XL integrates three key innovations: (1) A Dynamic Layout Planner that leverages large language models (LLMs) to parse input prompts into entity-attribute graphs and generates physics-aware keyframe layouts, with intermediate frames interpolated via trajectory optimization; (2) A Dual-Prompt Controlled Attention Mechanism that enforces localized text-video alignment through frame-aware attention masking, achieving precise control over individual entities; and (3) An Entity-Consistency Constraint strategy that propagates first-frame feature embeddings to subsequent frames during denoising, preserving object identity without manual annotation. Experiments demonstrate that DyST-XL excels in compositional text-to-video generation, significantly improving performance on complex prompts and bridging a crucial gap in training-free video synthesis. The code is released in https://github.com/XiaoBuL/DyST-XL.
Authors:Chenjie Cao, Jingkai Zhou, Shikai Li, Jingyun Liang, Chaohui Yu, Fan Wang, Xiangyang Xue, Yanwei Fu
Abstract:
Camera and human motion controls have been extensively studied for video generation, but existing approaches typically address them separately, suffering from limited data with high-quality annotations for both aspects. To overcome this, we present Uni3C, a unified 3D-enhanced framework for precise control of both camera and human motion in video generation. Uni3C includes two key contributions. First, we propose a plug-and-play control module trained with a frozen video generative backbone, PCDController, which utilizes unprojected point clouds from monocular depth to achieve accurate camera control. By leveraging the strong 3D priors of point clouds and the powerful capacities of video foundational models, PCDController shows impressive generalization, performing well regardless of whether the inference backbone is frozen or fine-tuned. This flexibility enables different modules of Uni3C to be trained in specific domains, i.e., either camera control or human motion control, reducing the dependency on jointly annotated data. Second, we propose a jointly aligned 3D world guidance for the inference phase that seamlessly integrates both scenic point clouds and SMPL-X characters to unify the control signals for camera and human motion, respectively. Extensive experiments confirm that PCDController enjoys strong robustness in driving camera motion for fine-tuned backbones of video generation. Uni3C substantially outperforms competitors in both camera controllability and human motion quality. Additionally, we collect tailored validation sets featuring challenging camera movements and human actions to validate the effectiveness of our method.
Authors:Jingjing Ren, Wenbo Li, Zhongdao Wang, Haoze Sun, Bangzhen Liu, Haoyu Chen, Jiaqi Xu, Aoxue Li, Shifeng Zhang, Bin Shao, Yong Guo, Lei Zhu
Abstract:
Demand for 2K video synthesis is rising with increasing consumer expectations for ultra-clear visuals. While diffusion transformers (DiTs) have demonstrated remarkable capabilities in high-quality video generation, scaling them to 2K resolution remains computationally prohibitive due to quadratic growth in memory and processing costs. In this work, we propose Turbo2K, an efficient and practical framework for generating detail-rich 2K videos while significantly improving training and inference efficiency. First, Turbo2K operates in a highly compressed latent space, reducing computational complexity and memory footprint, making high-resolution video synthesis feasible. However, the high compression ratio of the VAE and limited model size impose constraints on generative quality. To mitigate this, we introduce a knowledge distillation strategy that enables a smaller student model to inherit the generative capacity of a larger, more powerful teacher model. Our analysis reveals that, despite differences in latent spaces and architectures, DiTs exhibit structural similarities in their internal representations, facilitating effective knowledge transfer. Second, we design a hierarchical two-stage synthesis framework that first generates multi-level feature at lower resolutions before guiding high-resolution video generation. This approach ensures structural coherence and fine-grained detail refinement while eliminating redundant encoding-decoding overhead, further enhancing computational efficiency.Turbo2K achieves state-of-the-art efficiency, generating 5-second, 24fps, 2K videos with significantly reduced computational cost. Compared to existing methods, Turbo2K is up to 20$\times$ faster for inference, making high-resolution video generation more scalable and practical for real-world applications.
Authors:Minho Park, Taewoong Kang, Jooyeol Yun, Sungwon Hwang, Jaegul Choo
Abstract:
The increasing demand for AR/VR applications has highlighted the need for high-quality 360-degree panoramic content. However, generating high-quality 360-degree panoramic images and videos remains a challenging task due to the severe distortions introduced by equirectangular projection (ERP). Existing approaches either fine-tune pretrained diffusion models on limited ERP datasets or attempt tuning-free methods that still rely on ERP latent representations, leading to discontinuities near the poles. In this paper, we introduce SphereDiff, a novel approach for seamless 360-degree panoramic image and video generation using state-of-the-art diffusion models without additional tuning. We define a spherical latent representation that ensures uniform distribution across all perspectives, mitigating the distortions inherent in ERP. We extend MultiDiffusion to spherical latent space and propose a spherical latent sampling method to enable direct use of pretrained diffusion models. Moreover, we introduce distortion-aware weighted averaging to further improve the generation quality in the projection process. Our method outperforms existing approaches in generating 360-degree panoramic content while maintaining high fidelity, making it a robust solution for immersive AR/VR applications. The code is available here. https://github.com/pmh9960/SphereDiff
Authors:Guibin Chen, Dixuan Lin, Jiangping Yang, Chunze Lin, Junchen Zhu, Mingyuan Fan, Hao Zhang, Sheng Chen, Zheng Chen, Chengcheng Ma, Weiming Xiong, Wei Wang, Nuo Pang, Kang Kang, Zhiheng Xu, Yuzhe Jin, Yupeng Liang, Yubing Song, Peng Zhao, Boyuan Xu, Di Qiu, Debang Li, Zhengcong Fei, Yang Li, Yahui Zhou
Abstract:
Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at https://github.com/SkyworkAI/SkyReels-V2.
Authors:Lvmin Zhang, Maneesh Agrawala
Abstract:
We present a neural network structure, FramePack, to train next-frame (or next-frame-section) prediction models for video generation. The FramePack compresses input frames to make the transformer context length a fixed number regardless of the video length. As a result, we are able to process a large number of frames using video diffusion with computation bottleneck similar to image diffusion. This also makes the training video batch sizes significantly higher (batch sizes become comparable to image diffusion training). We also propose an anti-drifting sampling method that generates frames in inverted temporal order with early-established endpoints to avoid exposure bias (error accumulation over iterations). Finally, we show that existing video diffusion models can be finetuned with FramePack, and their visual quality may be improved because the next-frame prediction supports more balanced diffusion schedulers with less extreme flow shift timesteps.
Authors:Mengshi Qi, Pengfei Zhu, Xiangtai Li, Xiaoyang Bi, Lu Qi, Huadong Ma, Ming-Hsuan Yang
Abstract:
Given a single labeled example, in-context segmentation aims to segment corresponding objects. This setting, known as one-shot segmentation in few-shot learning, explores the segmentation model's generalization ability and has been applied to various vision tasks, including scene understanding and image/video editing. While recent Segment Anything Models have achieved state-of-the-art results in interactive segmentation, these approaches are not directly applicable to in-context segmentation. In this work, we propose the Dual Consistency SAM (DC-SAM) method based on prompt-tuning to adapt SAM and SAM2 for in-context segmentation of both images and videos. Our key insights are to enhance the features of the SAM's prompt encoder in segmentation by providing high-quality visual prompts. When generating a mask prior, we fuse the SAM features to better align the prompt encoder. Then, we design a cycle-consistent cross-attention on fused features and initial visual prompts. Next, a dual-branch design is provided by using the discriminative positive and negative prompts in the prompt encoder. Furthermore, we design a simple mask-tube training strategy to adopt our proposed dual consistency method into the mask tube. Although the proposed DC-SAM is primarily designed for images, it can be seamlessly extended to the video domain with the support of SAM2. Given the absence of in-context segmentation in the video domain, we manually curate and construct the first benchmark from existing video segmentation datasets, named In-Context Video Object Segmentation (IC-VOS), to better assess the in-context capability of the model. Extensive experiments demonstrate that our method achieves 55.5 (+1.4) mIoU on COCO-20i, 73.0 (+1.1) mIoU on PASCAL-5i, and a J&F score of 71.52 on the proposed IC-VOS benchmark. Our source code and benchmark are available at https://github.com/zaplm/DC-SAM.
Authors:Bingjie Gao, Xinyu Gao, Xiaoxue Wu, Yujie Zhou, Yu Qiao, Li Niu, Xinyuan Chen, Yaohui Wang
Abstract:
The evolution of Text-to-video (T2V) generative models, trained on large-scale datasets, has been marked by significant progress. However, the sensitivity of T2V generative models to input prompts highlights the critical role of prompt design in influencing generative outcomes. Prior research has predominantly relied on Large Language Models (LLMs) to align user-provided prompts with the distribution of training prompts, albeit without tailored guidance encompassing prompt vocabulary and sentence structure nuances. To this end, we introduce RAPO, a novel Retrieval-Augmented Prompt Optimization framework. In order to address potential inaccuracies and ambiguous details generated by LLM-generated prompts. RAPO refines the naive prompts through dual optimization branches, selecting the superior prompt for T2V generation. The first branch augments user prompts with diverse modifiers extracted from a learned relational graph, refining them to align with the format of training prompts via a fine-tuned LLM. Conversely, the second branch rewrites the naive prompt using a pre-trained LLM following a well-defined instruction set. Extensive experiments demonstrate that RAPO can effectively enhance both the static and dynamic dimensions of generated videos, demonstrating the significance of prompt optimization for user-provided prompts.
Authors:Jiaxin Huang, Sheng Miao, BangBang Yang, Yuewen Ma, Yiyi Liao
Abstract:
Reconstructing 4D dynamic scenes from casually captured monocular videos is valuable but highly challenging, as each timestamp is observed from a single viewpoint. We introduce Vivid4D, a novel approach that enhances 4D monocular video synthesis by augmenting observation views - synthesizing multi-view videos from a monocular input. Unlike existing methods that either solely leverage geometric priors for supervision or use generative priors while overlooking geometry, we integrate both. This reformulates view augmentation as a video inpainting task, where observed views are warped into new viewpoints based on monocular depth priors. To achieve this, we train a video inpainting model on unposed web videos with synthetically generated masks that mimic warping occlusions, ensuring spatially and temporally consistent completion of missing regions. To further mitigate inaccuracies in monocular depth priors, we introduce an iterative view augmentation strategy and a robust reconstruction loss. Experiments demonstrate that our method effectively improves monocular 4D scene reconstruction and completion. See our project page: https://xdimlab.github.io/Vivid4D/.
Authors:Peipei Song, Long Zhang, Long Lan, Weidong Chen, Dan Guo, Xun Yang, Meng Wang
Abstract:
Partially relevant video retrieval (PRVR) is a practical yet challenging task in text-to-video retrieval, where videos are untrimmed and contain much background content. The pursuit here is of both effective and efficient solutions to capture the partial correspondence between text queries and untrimmed videos. Existing PRVR methods, which typically focus on modeling multi-scale clip representations, however, suffer from content independence and information redundancy, impairing retrieval performance. To overcome these limitations, we propose a simple yet effective approach with active moment discovering (AMDNet). We are committed to discovering video moments that are semantically consistent with their queries. By using learnable span anchors to capture distinct moments and applying masked multi-moment attention to emphasize salient moments while suppressing redundant backgrounds, we achieve more compact and informative video representations. To further enhance moment modeling, we introduce a moment diversity loss to encourage different moments of distinct regions and a moment relevance loss to promote semantically query-relevant moments, which cooperate with a partially relevant retrieval loss for end-to-end optimization. Extensive experiments on two large-scale video datasets (\ie, TVR and ActivityNet Captions) demonstrate the superiority and efficiency of our AMDNet. In particular, AMDNet is about 15.5 times smaller (\#parameters) while 6.0 points higher (SumR) than the up-to-date method GMMFormer on TVR.
Authors:Dianbing Xi, Jiepeng Wang, Yuanzhi Liang, Xi Qiu, Yuchi Huo, Rui Wang, Chi Zhang, Xuelong Li
Abstract:
In this paper, we propose a novel framework for controllable video diffusion, OmniVDiff, aiming to synthesize and comprehend multiple video visual content in a single diffusion model. To achieve this, OmniVDiff treats all video visual modalities in the color space to learn a joint distribution, while employing an adaptive control strategy that dynamically adjusts the role of each visual modality during the diffusion process, either as a generation modality or a conditioning modality. This allows flexible manipulation of each modality's role, enabling support for a wide range of tasks. Consequently, our model supports three key functionalities: (1) Text-conditioned video generation: multi-modal visual video sequences (i.e., rgb, depth, canny, segmentaion) are generated based on the text conditions in one diffusion process; (2) Video understanding: OmniVDiff can estimate the depth, canny map, and semantic segmentation across the input rgb frames while ensuring coherence with the rgb input; and (3) X-conditioned video generation: OmniVDiff generates videos conditioned on fine-grained attributes (e.g., depth maps or segmentation maps). By integrating these diverse tasks into a unified video diffusion framework, OmniVDiff enhances the flexibility and scalability for controllable video diffusion, making it an effective tool for a variety of downstream applications, such as video-to-video translation. Extensive experiments demonstrate the effectiveness of our approach, highlighting its potential for various video-related applications.
Authors:Bingwen Zhu, Yudong Jiang, Baohan Xu, Siqian Yang, Mingyu Yin, Yidi Wu, Huyang Sun, Zuxuan Wu
Abstract:
Anime video generation faces significant challenges due to the scarcity of anime data and unusual motion patterns, leading to issues such as motion distortion and flickering artifacts, which result in misalignment with human preferences. Existing reward models, designed primarily for real-world videos, fail to capture the unique appearance and consistency requirements of anime. In this work, we propose a pipeline to enhance anime video generation by leveraging human feedback for better alignment. Specifically, we construct the first multi-dimensional reward dataset for anime videos, comprising 30k human-annotated samples that incorporating human preferences for both visual appearance and visual consistency. Based on this, we develop AnimeReward, a powerful reward model that employs specialized vision-language models for different evaluation dimensions to guide preference alignment. Furthermore, we introduce Gap-Aware Preference Optimization (GAPO), a novel training method that explicitly incorporates preference gaps into the optimization process, enhancing alignment performance and efficiency. Extensive experiment results show that AnimeReward outperforms existing reward models, and the inclusion of GAPO leads to superior alignment in both quantitative benchmarks and human evaluations, demonstrating the effectiveness of our pipeline in enhancing anime video quality. Our code and dataset are publicly available at https://github.com/bilibili/Index-anisora.
Authors:Guangcong Zheng, Teng Li, Xianpan Zhou, Xi Li
Abstract:
Recent advances in camera-controllable video generation have been constrained by the reliance on static-scene datasets with relative-scale camera annotations, such as RealEstate10K. While these datasets enable basic viewpoint control, they fail to capture dynamic scene interactions and lack metric-scale geometric consistency-critical for synthesizing realistic object motions and precise camera trajectories in complex environments. To bridge this gap, we introduce the first fully open-source, high-resolution dynamic-scene dataset with metric-scale camera annotations in https://github.com/ZGCTroy/RealCam-Vid.
Authors:Rundong Luo, Matthew Wallingford, Ali Farhadi, Noah Snavely, Wei-Chiu Ma
Abstract:
360° videos have emerged as a promising medium to represent our dynamic visual world. Compared to the "tunnel vision" of standard cameras, their borderless field of view offers a more complete perspective of our surroundings. While existing video models excel at producing standard videos, their ability to generate full panoramic videos remains elusive. In this paper, we investigate the task of video-to-360° generation: given a perspective video as input, our goal is to generate a full panoramic video that is consistent with the original video. Unlike conventional video generation tasks, the output's field of view is significantly larger, and the model is required to have a deep understanding of both the spatial layout of the scene and the dynamics of objects to maintain spatio-temporal consistency. To address these challenges, we first leverage the abundant 360° videos available online and develop a high-quality data filtering pipeline to curate pairwise training data. We then carefully design a series of geometry- and motion-aware operations to facilitate the learning process and improve the quality of 360° video generation. Experimental results demonstrate that our model can generate realistic and coherent 360° videos from in-the-wild perspective video. In addition, we showcase its potential applications, including video stabilization, camera viewpoint control, and interactive visual question answering.
Authors:Gene Chou, Wenqi Xian, Guandao Yang, Mohamed Abdelfattah, Bharath Hariharan, Noah Snavely, Ning Yu, Paul Debevec
Abstract:
A versatile video depth estimation model should (1) be accurate and consistent across frames, (2) produce high-resolution depth maps, and (3) support real-time streaming. We propose FlashDepth, a method that satisfies all three requirements, performing depth estimation on a 2044x1148 streaming video at 24 FPS. We show that, with careful modifications to pretrained single-image depth models, these capabilities are enabled with relatively little data and training. We evaluate our approach across multiple unseen datasets against state-of-the-art depth models, and find that ours outperforms them in terms of boundary sharpness and speed by a significant margin, while maintaining competitive accuracy. We hope our model will enable various applications that require high-resolution depth, such as video editing, and online decision-making, such as robotics. We release all code and model weights at https://github.com/Eyeline-Research/FlashDepth
Authors:Elia Peruzzo, Dejia Xu, Xingqian Xu, Humphrey Shi, Nicu Sebe
Abstract:
Video generation is experiencing rapid growth, driven by advances in diffusion models and the development of better and larger datasets. However, producing high-quality videos remains challenging due to the high-dimensional data and the complexity of the task. Recent efforts have primarily focused on enhancing visual quality and addressing temporal inconsistencies, such as flickering. Despite progress in these areas, the generated videos often fall short in terms of motion complexity and physical plausibility, with many outputs either appearing static or exhibiting unrealistic motion. In this work, we propose a framework to improve the realism of motion in generated videos, exploring a complementary direction to much of the existing literature. Specifically, we advocate for the incorporation of a retrieval mechanism during the generation phase. The retrieved videos act as grounding signals, providing the model with demonstrations of how the objects move. Our pipeline is designed to apply to any text-to-video diffusion model, conditioning a pretrained model on the retrieved samples with minimal fine-tuning. We demonstrate the superiority of our approach through established metrics, recently proposed benchmarks, and qualitative results, and we highlight additional applications of the framework.
Authors:Ruotian Peng, Haiying He, Yake Wei, Yandong Wen, Di Hu
Abstract:
High-quality image captions play a crucial role in improving the performance of cross-modal applications such as text-to-image generation, text-to-video generation, and text-image retrieval. To generate long-form, high-quality captions, many recent studies have employed multimodal large language models (MLLMs). However, current MLLMs often produce captions that lack fine-grained details or suffer from hallucinations, a challenge that persists in both open-source and closed-source models. Inspired by Feature-Integration theory, which suggests that attention must focus on specific regions to integrate visual information effectively, we propose a \textbf{divide-then-aggregate} strategy. Our method first divides the image into semantic and spatial patches to extract fine-grained details, enhancing the model's local perception of the image. These local details are then hierarchically aggregated to generate a comprehensive global description. To address hallucinations and inconsistencies in the generated captions, we apply a semantic-level filtering process during hierarchical aggregation. This training-free pipeline can be applied to both open-source models (LLaVA-1.5, LLaVA-1.6, Mini-Gemini) and closed-source models (Claude-3.5-Sonnet, GPT-4o, GLM-4V-Plus). Extensive experiments demonstrate that our method generates more detailed, reliable captions, advancing multimodal description generation without requiring model retraining. The source code are available at https://github.com/GeWu-Lab/Patch-Matters
Authors:Artem Zholus, Carl Doersch, Yi Yang, Skanda Koppula, Viorica Patraucean, Xu Owen He, Ignacio Rocco, Mehdi S. M. Sajjadi, Sarath Chandar, Ross Goroshin
Abstract:
Tracking Any Point (TAP) in a video is a challenging computer vision problem with many demonstrated applications in robotics, video editing, and 3D reconstruction. Existing methods for TAP rely heavily on complex tracking-specific inductive biases and heuristics, limiting their generality and potential for scaling. To address these challenges, we present TAPNext, a new approach that casts TAP as sequential masked token decoding. Our model is causal, tracks in a purely online fashion, and removes tracking-specific inductive biases. This enables TAPNext to run with minimal latency, and removes the temporal windowing required by many existing state of art trackers. Despite its simplicity, TAPNext achieves a new state-of-the-art tracking performance among both online and offline trackers. Finally, we present evidence that many widely used tracking heuristics emerge naturally in TAPNext through end-to-end training. The TAPNext model and code can be found at https://tap-next.github.io/.
Authors:Karan Dalal, Daniel Koceja, Gashon Hussein, Jiarui Xu, Yue Zhao, Youjin Song, Shihao Han, Ka Chun Cheung, Jan Kautz, Carlos Guestrin, Tatsunori Hashimoto, Sanmi Koyejo, Yejin Choi, Yu Sun, Xiaolong Wang
Abstract:
Transformers today still struggle to generate one-minute videos because self-attention layers are inefficient for long context. Alternatives such as Mamba layers struggle with complex multi-scene stories because their hidden states are less expressive. We experiment with Test-Time Training (TTT) layers, whose hidden states themselves can be neural networks, therefore more expressive. Adding TTT layers into a pre-trained Transformer enables it to generate one-minute videos from text storyboards. For proof of concept, we curate a dataset based on Tom and Jerry cartoons. Compared to baselines such as Mamba~2, Gated DeltaNet, and sliding-window attention layers, TTT layers generate much more coherent videos that tell complex stories, leading by 34 Elo points in a human evaluation of 100 videos per method. Although promising, results still contain artifacts, likely due to the limited capability of the pre-trained 5B model. The efficiency of our implementation can also be improved. We have only experimented with one-minute videos due to resource constraints, but the approach can be extended to longer videos and more complex stories. Sample videos, code and annotations are available at: https://test-time-training.github.io/video-dit
Authors:Xiaolun Jing, Genke Yang, Jian Chu
Abstract:
Motivated by the success of coarse-grained or fine-grained contrast in text-video retrieval, there emerge multi-grained contrastive learning methods which focus on the integration of contrasts with different granularity. However, due to the wider semantic range of videos, the text-agnostic video representations might encode misleading information not described in texts, thus impeding the model from capturing precise cross-modal semantic correspondence. To this end, we propose a Text-Conditioned Multi-Grained Contrast framework, dubbed TC-MGC. Specifically, our model employs a language-video attention block to generate aggregated frame and video representations conditioned on the word's and text's attention weights over frames. To filter unnecessary similarity interactions and decrease trainable parameters in the Interactive Similarity Aggregation (ISA) module, we design a Similarity Reorganization (SR) module to identify attentive similarities and reorganize cross-modal similarity vectors and matrices. Next, we argue that the imbalance problem among multigrained similarities may result in over- and under-representation issues. We thereby introduce an auxiliary Similarity Decorrelation Regularization (SDR) loss to facilitate cooperative relationship utilization by similarity variance minimization on matching text-video pairs. Finally, we present a Linear Softmax Aggregation (LSA) module to explicitly encourage the interactions between multiple similarities and promote the usage of multi-grained information. Empirically, TC-MGC achieves competitive results on multiple text-video retrieval benchmarks, outperforming X-CLIP model by +2.8% (+1.3%), +2.2% (+1.0%), +1.5% (+0.9%) relative (absolute) improvements in text-to-video retrieval R@1 on MSR-VTT, DiDeMo and VATEX, respectively. Our code is publicly available at https://github.com/JingXiaolun/TC-MGC.
Authors:Yikai Wang, Guangce Liu, Xinzhou Wang, Zilong Chen, Jiafang Li, Xin Liang, Fuchun Sun, Jun Zhu
Abstract:
The advancement of 4D (i.e., sequential 3D) generation opens up new possibilities for lifelike experiences in various applications, where users can explore dynamic objects or characters from any viewpoint. Meanwhile, video generative models are receiving particular attention given their ability to produce realistic and imaginative frames. These models are also observed to exhibit strong 3D consistency, indicating the potential to act as world simulators. In this work, we present Video4DGen, a novel framework that excels in generating 4D representations from single or multiple generated videos as well as generating 4D-guided videos. This framework is pivotal for creating high-fidelity virtual contents that maintain both spatial and temporal coherence. The 4D outputs generated by Video4DGen are represented using our proposed Dynamic Gaussian Surfels (DGS), which optimizes time-varying warping functions to transform Gaussian surfels (surface elements) from a static state to a dynamically warped state. We design warped-state geometric regularization and refinements on Gaussian surfels, to preserve the structural integrity and fine-grained appearance details. To perform 4D generation from multiple videos and capture representation across spatial, temporal, and pose dimensions, we design multi-video alignment, root pose optimization, and pose-guided frame sampling strategies. The leveraging of continuous warping fields also enables a precise depiction of pose, motion, and deformation over per-video frames. Further, to improve the overall fidelity from the observation of all camera poses, Video4DGen performs novel-view video generation guided by the 4D content, with the proposed confidence-filtered DGS to enhance the quality of generated sequences. With the ability of 4D and video generation, Video4DGen offers a powerful tool for applications in virtual reality, animation, and beyond.
Authors:Maksim Siniukov, Di Chang, Minh Tran, Hongkun Gong, Ashutosh Chaubey, Mohammad Soleymani
Abstract:
Generating naturalistic and nuanced listener motions for extended interactions remains an open problem. Existing methods often rely on low-dimensional motion codes for facial behavior generation followed by photorealistic rendering, limiting both visual fidelity and expressive richness. To address these challenges, we introduce DiTaiListener, powered by a video diffusion model with multimodal conditions. Our approach first generates short segments of listener responses conditioned on the speaker's speech and facial motions with DiTaiListener-Gen. It then refines the transitional frames via DiTaiListener-Edit for a seamless transition. Specifically, DiTaiListener-Gen adapts a Diffusion Transformer (DiT) for the task of listener head portrait generation by introducing a Causal Temporal Multimodal Adapter (CTM-Adapter) to process speakers' auditory and visual cues. CTM-Adapter integrates speakers' input in a causal manner into the video generation process to ensure temporally coherent listener responses. For long-form video generation, we introduce DiTaiListener-Edit, a transition refinement video-to-video diffusion model. The model fuses video segments into smooth and continuous videos, ensuring temporal consistency in facial expressions and image quality when merging short video segments produced by DiTaiListener-Gen. Quantitatively, DiTaiListener achieves the state-of-the-art performance on benchmark datasets in both photorealism (+73.8% in FID on RealTalk) and motion representation (+6.1% in FD metric on VICO) spaces. User studies confirm the superior performance of DiTaiListener, with the model being the clear preference in terms of feedback, diversity, and smoothness, outperforming competitors by a significant margin.
Authors:Fa-Ting Hong, Zunnan Xu, Zixiang Zhou, Jun Zhou, Xiu Li, Qin Lin, Qinglin Lu, Dan Xu
Abstract:
Talking head synthesis is vital for virtual avatars and human-computer interaction. However, most existing methods are typically limited to accepting control from a single primary modality, restricting their practical utility. To this end, we introduce \textbf{ACTalker}, an end-to-end video diffusion framework that supports both multi-signals control and single-signal control for talking head video generation. For multiple control, we design a parallel mamba structure with multiple branches, each utilizing a separate driving signal to control specific facial regions. A gate mechanism is applied across all branches, providing flexible control over video generation. To ensure natural coordination of the controlled video both temporally and spatially, we employ the mamba structure, which enables driving signals to manipulate feature tokens across both dimensions in each branch. Additionally, we introduce a mask-drop strategy that allows each driving signal to independently control its corresponding facial region within the mamba structure, preventing control conflicts. Experimental results demonstrate that our method produces natural-looking facial videos driven by diverse signals and that the mamba layer seamlessly integrates multiple driving modalities without conflict. The project website can be found at https://harlanhong.github.io/publications/actalker/index.html.
Authors:Jiayi Gao, Zijin Yin, Changcheng Hua, Yuxin Peng, Kongming Liang, Zhanyu Ma, Jun Guo, Yang Liu
Abstract:
The development of Text-to-Video (T2V) generation has made motion transfer possible, enabling the control of video motion based on existing footage. However, current methods have two limitations: 1) struggle to handle multi-subjects videos, failing to transfer specific subject motion; 2) struggle to preserve the diversity and accuracy of motion as transferring to subjects with varying shapes. To overcome these, we introduce \textbf{ConMo}, a zero-shot framework that disentangle and recompose the motions of subjects and camera movements. ConMo isolates individual subject and background motion cues from complex trajectories in source videos using only subject masks, and reassembles them for target video generation. This approach enables more accurate motion control across diverse subjects and improves performance in multi-subject scenarios. Additionally, we propose soft guidance in the recomposition stage which controls the retention of original motion to adjust shape constraints, aiding subject shape adaptation and semantic transformation. Unlike previous methods, ConMo unlocks a wide range of applications, including subject size and position editing, subject removal, semantic modifications, and camera motion simulation. Extensive experiments demonstrate that ConMo significantly outperforms state-of-the-art methods in motion fidelity and semantic consistency. The code is available at https://github.com/Andyplus1/ConMo.
Authors:Zhongjian Wang, Peng Zhang, Jinwei Qi, Guangyuan Wang, Chaonan Ji, Sheng Xu, Bang Zhang, Liefeng Bo
Abstract:
Although significant progress has been made in audio-driven talking head generation, text-driven methods remain underexplored. In this work, we present OmniTalker, a unified framework that jointly generates synchronized talking audio-video content from input text while emulating the speaking and facial movement styles of the target identity, including speech characteristics, head motion, and facial dynamics. Our framework adopts a dual-branch diffusion transformer (DiT) architecture, with one branch dedicated to audio generation and the other to video synthesis. At the shallow layers, cross-modal fusion modules are introduced to integrate information between the two modalities. In deeper layers, each modality is processed independently, with the generated audio decoded by a vocoder and the video rendered using a GAN-based high-quality visual renderer. Leveraging the in-context learning capability of DiT through a masked-infilling strategy, our model can simultaneously capture both audio and visual styles without requiring explicit style extraction modules. Thanks to the efficiency of the DiT backbone and the optimized visual renderer, OmniTalker achieves real-time inference at 25 FPS. To the best of our knowledge, OmniTalker is the first one-shot framework capable of jointly modeling speech and facial styles in real time. Extensive experiments demonstrate its superiority over existing methods in terms of generation quality, particularly in preserving style consistency and ensuring precise audio-video synchronization, all while maintaining efficient inference.
Authors:Takahiro Shirakawa, Tomoyuki Suzuki, Takuto Narumoto, Daichi Haraguchi
Abstract:
We introduce MG-Gen, a framework that generates motion graphics directly from a single raster image. MG-Gen decompose a single raster image into layered structures represented as HTML, generate animation scripts for each layer, and then render them into a video. Experiments confirm MG-Gen generates dynamic motion graphics while preserving text readability and fidelity to the input conditions, whereas state-of-the-art image-to-video generation methods struggle with them. The code is available at https://github.com/CyberAgentAILab/MG-GEN.
Authors:Chao Huang, Susan Liang, Yunlong Tang, Jing Bi, Li Ma, Yapeng Tian, Chenliang Xu
Abstract:
Latent diffusion models (LDMs) have achieved remarkable success in a variety of image tasks, yet achieving fine-grained, disentangled control over global structures versus fine details remains challenging. This paper explores frequency-based control within latent diffusion models. We first systematically analyze frequency characteristics across pixel space, VAE latent space, and internal LDM representations. This reveals that the "noise difference" term, derived from classifier-free guidance at each step t, is a uniquely effective and semantically rich target for manipulation. Building on this insight, we introduce FreSca, a novel and plug-and-play framework that decomposes noise difference into low- and high-frequency components and applies independent scaling factors to them via spatial or energy-based cutoffs. Essentially, FreSca operates without any model retraining or architectural change, offering model- and task-agnostic control. We demonstrate its versatility and effectiveness in improving generation quality and structural emphasis on multiple architectures (e.g., SD3, SDXL) and across applications including image generation, editing, depth estimation, and video synthesis, thereby unlocking a new dimension of expressive control within LDMs.
Authors:Zhaoyang Zhang, Yannick Hold-Geoffroy, Miloš Hašan, Ziwen Chen, Fujun Luan, Julie Dorsey, Yiwei Hu
Abstract:
Generating 3D scenes is still a challenging task due to the lack of readily available scene data. Most existing methods only produce partial scenes and provide limited navigational freedom. We introduce a practical and scalable solution that uses 360° video as an intermediate scene representation, capturing the full-scene context and ensuring consistent visual content throughout the generation. We propose WorldPrompter, a generative pipeline that synthesizes traversable 3D scenes from text prompts. WorldPrompter incorporates a conditional 360° panoramic video generator, capable of producing a 128-frame video that simulates a person walking through and capturing a virtual environment. The resulting video is then reconstructed as Gaussian splats by a fast feedforward 3D reconstructor, enabling a true walkable experience within the 3D scene. Experiments demonstrate that our panoramic video generation model, trained with a mix of image and video data, achieves convincing spatial and temporal consistency for static scenes. This is validated by an average COLMAP matching rate of 94.6\%, allowing for high-quality panoramic Gaussian splat reconstruction and improved navigation throughout the scene. Qualitative and quantitative results also show it outperforms the state-of-the-art 360° video generators and 3D scene generation models.
Authors:Junhao Cheng, Yuying Ge, Yixiao Ge, Jing Liao, Ying Shan
Abstract:
Recent advancements in image and video synthesis have opened up new promise in generative games. One particularly intriguing application is transforming characters from anime films into interactive, playable entities. This allows players to immerse themselves in the dynamic anime world as their favorite characters for life simulation through language instructions. Such games are defined as infinite game since they eliminate predetermined boundaries and fixed gameplay rules, where players can interact with the game world through open-ended language and experience ever-evolving storylines and environments. Recently, a pioneering approach for infinite anime life simulation employs large language models (LLMs) to translate multi-turn text dialogues into language instructions for image generation. However, it neglects historical visual context, leading to inconsistent gameplay. Furthermore, it only generates static images, failing to incorporate the dynamics necessary for an engaging gaming experience. In this work, we propose AnimeGamer, which is built upon Multimodal Large Language Models (MLLMs) to generate each game state, including dynamic animation shots that depict character movements and updates to character states, as illustrated in Figure 1. We introduce novel action-aware multimodal representations to represent animation shots, which can be decoded into high-quality video clips using a video diffusion model. By taking historical animation shot representations as context and predicting subsequent representations, AnimeGamer can generate games with contextual consistency and satisfactory dynamics. Extensive evaluations using both automated metrics and human evaluations demonstrate that AnimeGamer outperforms existing methods in various aspects of the gaming experience. Codes and checkpoints are available at https://github.com/TencentARC/AnimeGamer.
Authors:Haoyi Duan, Hong-Xing Yu, Sirui Chen, Li Fei-Fei, Jiajun Wu
Abstract:
We introduce the WorldScore benchmark, the first unified benchmark for world generation. We decompose world generation into a sequence of next-scene generation tasks with explicit camera trajectory-based layout specifications, enabling unified evaluation of diverse approaches from 3D and 4D scene generation to video generation models. The WorldScore benchmark encompasses a curated dataset of 3,000 test examples that span diverse worlds: static and dynamic, indoor and outdoor, photorealistic and stylized. The WorldScore metrics evaluate generated worlds through three key aspects: controllability, quality, and dynamics. Through extensive evaluation of 19 representative models, including both open-source and closed-source ones, we reveal key insights and challenges for each category of models. Our dataset, evaluation code, and leaderboard can be found at https://haoyi-duan.github.io/WorldScore/
Authors:Chong Li, Jingyang Huo, Weikang Gong, Yanwei Fu, Xiangyang Xue, Jianfeng Feng
Abstract:
Decoding visual experiences from brain activity is a significant challenge. Existing fMRI-to-video methods often focus on semantic content while overlooking spatial and motion information. However, these aspects are all essential and are processed through distinct pathways in the brain. Motivated by this, we propose DecoFuse, a novel brain-inspired framework for decoding videos from fMRI signals. It first decomposes the video into three components - semantic, spatial, and motion - then decodes each component separately before fusing them to reconstruct the video. This approach not only simplifies the complex task of video decoding by decomposing it into manageable sub-tasks, but also establishes a clearer connection between learned representations and their biological counterpart, as supported by ablation studies. Further, our experiments show significant improvements over previous state-of-the-art methods, achieving 82.4% accuracy for semantic classification, 70.6% accuracy in spatial consistency, a 0.212 cosine similarity for motion prediction, and 21.9% 50-way accuracy for video generation. Additionally, neural encoding analyses for semantic and spatial information align with the two-streams hypothesis, further validating the distinct roles of the ventral and dorsal pathways. Overall, DecoFuse provides a strong and biologically plausible framework for fMRI-to-video decoding. Project page: https://chongjg.github.io/DecoFuse/.
Authors:Fangda Chen, Shanshan Zhao, Chuanfu Xu, Long Lan
Abstract:
Recent advancements in customized video generation have led to significant improvements in the simultaneous adaptation of appearance and motion. While prior methods typically decouple appearance and motion training, the stage-wise strategy often introduces concept interference, resulting in inaccurate rendering of appearance features or motion patterns. Another challenge is appearance contamination, where background and foreground elements from reference videos distort the customized subject. In this work, we propose JointTuner, a novel framework that enables joint optimization of both appearance and motion components by leveraging two key innovations: Synaptic Low-Rank Adaptation (Synaptic LoRA) and Appearance-independent Temporal Loss (AiT Loss). Synaptic LoRA introduces a synaptic regulator, implemented as a context-aware linear activation layer, to dynamically guide LoRA modules to focus on either subject appearance or motion patterns, thereby enabling consistent optimization across spatial and temporal dimensions. AiT Loss disrupts the gradient flow of appearance-related components, guiding the model to focus exclusively on motion learning and minimizing appearance interference. JointTuner is compatible with both UNet-based models (e.g., ZeroScope) and Diffusion Transformer-based models (e.g., CogVideoX), supporting the generation of longer and higher-quality customized videos. Additionally, we present a systematic evaluation framework for appearance-motion combined customization, covering 90 combinations evaluated along four critical dimensions: semantic alignment, motion dynamism, temporal consistency, and perceptual quality. Our project homepage can be found at https://fdchen24.github.io/JointTuner-Website.
Authors:Bosung Kim, Kyuhwan Lee, Isu Jeong, Jungmin Cheon, Yeojin Lee, Seulki Lee
Abstract:
We present On-device Sora, the first model training-free solution for diffusion-based on-device text-to-video generation that operates efficiently on smartphone-grade devices. To address the challenges of diffusion-based text-to-video generation on computation- and memory-limited mobile devices, the proposed On-device Sora applies three novel techniques to pre-trained video generative models. First, Linear Proportional Leap (LPL) reduces the excessive denoising steps required in video diffusion through an efficient leap-based approach. Second, Temporal Dimension Token Merging (TDTM) minimizes intensive token-processing computation in attention layers by merging consecutive tokens along the temporal dimension. Third, Concurrent Inference with Dynamic Loading (CI-DL) dynamically partitions large models into smaller blocks and loads them into memory for concurrent model inference, effectively addressing the challenges of limited device memory. We implement On-device Sora on the iPhone 15 Pro, and the experimental evaluations show that it is capable of generating high-quality videos on the device, comparable to those produced by high-end GPUs. These results show that On-device Sora enables efficient and high-quality video generation on resource-constrained mobile devices. We envision the proposed On-device Sora as a significant first step toward democratizing state-of-the-art generative technologies, enabling video generation on commodity mobile and embedded devices without resource-intensive re-training for model optimization (compression). The code implementation is available at a GitHub repository(https://github.com/eai-lab/On-device-Sora).
Authors:Kun Liu, Qi Liu, Xinchen Liu, Jie Li, Yongdong Zhang, Jiebo Luo, Xiaodong He, Wu Liu
Abstract:
Text-to-video (T2V) generation has made tremendous progress in generating complicated scenes based on texts. However, human-object interaction (HOI) often cannot be precisely generated by current T2V models due to the lack of large-scale videos with accurate captions for HOI. To address this issue, we introduce HOIGen-1M, the first largescale dataset for HOI Generation, consisting of over one million high-quality videos collected from diverse sources. In particular, to guarantee the high quality of videos, we first design an efficient framework to automatically curate HOI videos using the powerful multimodal large language models (MLLMs), and then the videos are further cleaned by human annotators. Moreover, to obtain accurate textual captions for HOI videos, we design a novel video description method based on a Mixture-of-Multimodal-Experts (MoME) strategy that not only generates expressive captions but also eliminates the hallucination by individual MLLM. Furthermore, due to the lack of an evaluation framework for generated HOI videos, we propose two new metrics to assess the quality of generated videos in a coarse-to-fine manner. Extensive experiments reveal that current T2V models struggle to generate high-quality HOI videos and confirm that our HOIGen-1M dataset is instrumental for improving HOI video generation. Project webpage is available at https://liuqi-creat.github.io/HOIGen.github.io.
Authors:Tianming Liang, Haichao Jiang, Wei-Shi Zheng, Jian-Fang Hu
Abstract:
Referring Video Object Segmentation (RVOS) aims to segment target objects throughout a video based on a text description. This task has attracted increasing attention in the field of computer vision due to its promising applications in video editing and human-agent interaction. Recently, ReferDINO has demonstrated promising performance in this task by adapting object-level vision-language knowledge from pretrained foundational image models. In this report, we further enhance its capabilities by incorporating the advantages of SAM2 in mask quality and object consistency. In addition, to effectively balance performance between single-object and multi-object scenarios, we introduce a conditional mask fusion strategy that adaptively fuses the masks from ReferDINO and SAM2. Our solution, termed ReferDINO-Plus, achieves 60.43 \(\mathcal{J}\&\mathcal{F}\) on MeViS test set, securing 2nd place in the MeViS PVUW challenge at CVPR 2025. The code is available at: https://github.com/iSEE-Laboratory/ReferDINO-Plus.
Authors:Yuhang Yang, Ke Fan, Shangkun Sun, Hongxiang Li, Ailing Zeng, FeiLin Han, Wei Zhai, Wei Liu, Yang Cao, Zheng-Jun Zha
Abstract:
The rapid advancement of video generation has rendered existing evaluation systems inadequate for assessing state-of-the-art models, primarily due to simple prompts that cannot showcase the model's capabilities, fixed evaluation operators struggling with Out-of-Distribution (OOD) cases, and misalignment between computed metrics and human preferences. To bridge the gap, we propose VideoGen-Eval, an agent evaluation system that integrates LLM-based content structuring, MLLM-based content judgment, and patch tools designed for temporal-dense dimensions, to achieve a dynamic, flexible, and expandable video generation evaluation. Additionally, we introduce a video generation benchmark to evaluate existing cutting-edge models and verify the effectiveness of our evaluation system. It comprises 700 structured, content-rich prompts (both T2V and I2V) and over 12,000 videos generated by 20+ models, among them, 8 cutting-edge models are selected as quantitative evaluation for the agent and human. Extensive experiments validate that our proposed agent-based evaluation system demonstrates strong alignment with human preferences and reliably completes the evaluation, as well as the diversity and richness of the benchmark.
Authors:Kai Liu, Wei Li, Lai Chen, Shengqiong Wu, Yanhao Zheng, Jiayi Ji, Fan Zhou, Rongxin Jiang, Jiebo Luo, Hao Fei, Tat-Seng Chua
Abstract:
This paper introduces JavisDiT, a novel Joint Audio-Video Diffusion Transformer designed for synchronized audio-video generation (JAVG). Built upon the powerful Diffusion Transformer (DiT) architecture, JavisDiT is able to generate high-quality audio and video content simultaneously from open-ended user prompts. To ensure optimal synchronization, we introduce a fine-grained spatio-temporal alignment mechanism through a Hierarchical Spatial-Temporal Synchronized Prior (HiST-Sypo) Estimator. This module extracts both global and fine-grained spatio-temporal priors, guiding the synchronization between the visual and auditory components. Furthermore, we propose a new benchmark, JavisBench, consisting of 10,140 high-quality text-captioned sounding videos spanning diverse scenes and complex real-world scenarios. Further, we specifically devise a robust metric for evaluating the synchronization between generated audio-video pairs in real-world complex content. Experimental results demonstrate that JavisDiT significantly outperforms existing methods by ensuring both high-quality generation and precise synchronization, setting a new standard for JAVG tasks. Our code, model, and dataset will be made publicly available at https://javisdit.github.io/.
Authors:Xindi Yang, Baolu Li, Yiming Zhang, Zhenfei Yin, Lei Bai, Liqian Ma, Zhiyong Wang, Jianfei Cai, Tien-Tsin Wong, Huchuan Lu, Xu Jia
Abstract:
Video diffusion models (VDMs) have advanced significantly in recent years, enabling the generation of highly realistic videos and drawing the attention of the community in their potential as world simulators. However, despite their capabilities, VDMs often fail to produce physically plausible videos due to an inherent lack of understanding of physics, resulting in incorrect dynamics and event sequences. To address this limitation, we propose a novel two-stage image-to-video generation framework that explicitly incorporates physics with vision and language informed physical prior. In the first stage, we employ a Vision Language Model (VLM) as a coarse-grained motion planner, integrating chain-of-thought and physics-aware reasoning to predict a rough motion trajectories/changes that approximate real-world physical dynamics while ensuring the inter-frame consistency. In the second stage, we use the predicted motion trajectories/changes to guide the video generation of a VDM. As the predicted motion trajectories/changes are rough, noise is added during inference to provide freedom to the VDM in generating motion with more fine details. Extensive experimental results demonstrate that our framework can produce physically plausible motion, and comparative evaluations highlight the notable superiority of our approach over existing methods. More video results are available on our Project Page: https://madaoer.github.io/projects/physically_plausible_video_generation.
Authors:Cong Wei, Bo Sun, Haoyu Ma, Ji Hou, Felix Juefei-Xu, Zecheng He, Xiaoliang Dai, Luxin Zhang, Kunpeng Li, Tingbo Hou, Animesh Sinha, Peter Vajda, Wenhu Chen
Abstract:
Recent advancements in video generation have achieved impressive motion realism, yet they often overlook character-driven storytelling, a crucial task for automated film, animation generation. We introduce Talking Characters, a more realistic task to generate talking character animations directly from speech and text. Unlike talking head, Talking Characters aims at generating the full portrait of one or more characters beyond the facial region. In this paper, we propose MoCha, the first of its kind to generate talking characters. To ensure precise synchronization between video and speech, we propose a speech-video window attention mechanism that effectively aligns speech and video tokens. To address the scarcity of large-scale speech-labeled video datasets, we introduce a joint training strategy that leverages both speech-labeled and text-labeled video data, significantly improving generalization across diverse character actions. We also design structured prompt templates with character tags, enabling, for the first time, multi-character conversation with turn-based dialogue-allowing AI-generated characters to engage in context-aware conversations with cinematic coherence. Extensive qualitative and quantitative evaluations, including human preference studies and benchmark comparisons, demonstrate that MoCha sets a new standard for AI-generated cinematic storytelling, achieving superior realism, expressiveness, controllability and generalization.
Authors:Haitong Liu, Kuofeng Gao, Yang Bai, Jinmin Li, Jinxiao Shan, Tao Dai, Shu-Tao Xia
Abstract:
Recently, video-based large language models (video-based LLMs) have achieved impressive performance across various video comprehension tasks. However, this rapid advancement raises significant privacy and security concerns, particularly regarding the unauthorized use of personal video data in automated annotation by video-based LLMs. These unauthorized annotated video-text pairs can then be used to improve the performance of downstream tasks, such as text-to-video generation. To safeguard personal videos from unauthorized use, we propose two series of protective video watermarks with imperceptible adversarial perturbations, named Ramblings and Mutes. Concretely, Ramblings aim to mislead video-based LLMs into generating inaccurate captions for the videos, thereby degrading the quality of video annotations through inconsistencies between video content and captions. Mutes, on the other hand, are designed to prompt video-based LLMs to produce exceptionally brief captions, lacking descriptive detail. Extensive experiments demonstrate that our video watermarking methods effectively protect video data by significantly reducing video annotation performance across various video-based LLMs, showcasing both stealthiness and robustness in protecting personal video content. Our code is available at https://github.com/ttthhl/Protecting_Your_Video_Content.
Authors:Chi-Pin Huang, Yen-Siang Wu, Hung-Kai Chung, Kai-Po Chang, Fu-En Yang, Yu-Chiang Frank Wang
Abstract:
Customized text-to-video generation aims to produce high-quality videos that incorporate user-specified subject identities or motion patterns. However, existing methods mainly focus on personalizing a single concept, either subject identity or motion pattern, limiting their effectiveness for multiple subjects with the desired motion patterns. To tackle this challenge, we propose a unified framework VideoMage for video customization over both multiple subjects and their interactive motions. VideoMage employs subject and motion LoRAs to capture personalized content from user-provided images and videos, along with an appearance-agnostic motion learning approach to disentangle motion patterns from visual appearance. Furthermore, we develop a spatial-temporal composition scheme to guide interactions among subjects within the desired motion patterns. Extensive experiments demonstrate that VideoMage outperforms existing methods, generating coherent, user-controlled videos with consistent subject identities and interactions.
Authors:Minghui Lin, Xiang Wang, Yishan Wang, Shu Wang, Fengqi Dai, Pengxiang Ding, Cunxiang Wang, Zhengrong Zuo, Nong Sang, Siteng Huang, Donglin Wang
Abstract:
Recent advancements in video generation have witnessed significant progress, especially with the rapid advancement of diffusion models. Despite this, their deficiencies in physical cognition have gradually received widespread attention - generated content often violates the fundamental laws of physics, falling into the dilemma of ''visual realism but physical absurdity". Researchers began to increasingly recognize the importance of physical fidelity in video generation and attempted to integrate heuristic physical cognition such as motion representations and physical knowledge into generative systems to simulate real-world dynamic scenarios. Considering the lack of a systematic overview in this field, this survey aims to provide a comprehensive summary of architecture designs and their applications to fill this gap. Specifically, we discuss and organize the evolutionary process of physical cognition in video generation from a cognitive science perspective, while proposing a three-tier taxonomy: 1) basic schema perception for generation, 2) passive cognition of physical knowledge for generation, and 3) active cognition for world simulation, encompassing state-of-the-art methods, classical paradigms, and benchmarks. Subsequently, we emphasize the inherent key challenges in this domain and delineate potential pathways for future research, contributing to advancing the frontiers of discussion in both academia and industry. Through structured review and interdisciplinary analysis, this survey aims to provide directional guidance for developing interpretable, controllable, and physically consistent video generation paradigms, thereby propelling generative models from the stage of ''visual mimicry'' towards a new phase of ''human-like physical comprehension''.
Authors:Dian Zheng, Ziqi Huang, Hongbo Liu, Kai Zou, Yinan He, Fan Zhang, Lulu Gu, Yuanhan Zhang, Jingwen He, Wei-Shi Zheng, Yu Qiao, Ziwei Liu
Abstract:
Video generation has advanced significantly, evolving from producing unrealistic outputs to generating videos that appear visually convincing and temporally coherent. To evaluate these video generative models, benchmarks such as VBench have been developed to assess their faithfulness, measuring factors like per-frame aesthetics, temporal consistency, and basic prompt adherence. However, these aspects mainly represent superficial faithfulness, which focus on whether the video appears visually convincing rather than whether it adheres to real-world principles. While recent models perform increasingly well on these metrics, they still struggle to generate videos that are not just visually plausible but fundamentally realistic. To achieve real "world models" through video generation, the next frontier lies in intrinsic faithfulness to ensure that generated videos adhere to physical laws, commonsense reasoning, anatomical correctness, and compositional integrity. Achieving this level of realism is essential for applications such as AI-assisted filmmaking and simulated world modeling. To bridge this gap, we introduce VBench-2.0, a next-generation benchmark designed to automatically evaluate video generative models for their intrinsic faithfulness. VBench-2.0 assesses five key dimensions: Human Fidelity, Controllability, Creativity, Physics, and Commonsense, each further broken down into fine-grained capabilities. Tailored to individual dimensions, our evaluation framework integrates generalists such as SOTA VLMs and LLMs, and specialists, including anomaly detection methods proposed for video generation. We conduct extensive human annotations to ensure evaluation alignment with human judgment. By pushing beyond superficial faithfulness toward intrinsic faithfulness, VBench-2.0 aims to set a new standard for the next generation of video generative models in pursuit of intrinsic faithfulness.
Authors:Haoyu Zhao, Zhongang Qi, Cong Wang, Qingping Zheng, Guansong Lu, Fei Chen, Hang Xu, Zuxuan Wu
Abstract:
With diffusion transformer (DiT) excelling in video generation, its use in specific tasks has drawn increasing attention. However, adapting DiT for pose-guided human image animation faces two core challenges: (a) existing U-Net-based pose control methods may be suboptimal for the DiT backbone; and (b) removing text guidance, as in previous approaches, often leads to semantic loss and model degradation. To address these issues, we propose DynamiCtrl, a novel framework for human animation in video DiT architecture. Specifically, we use a shared VAE encoder for human images and driving poses, unifying them into a common latent space, maintaining pose fidelity, and eliminating the need for an expert pose encoder during video denoising. To integrate pose control into the DiT backbone effectively, we propose a novel Pose-adaptive Layer Norm model. It injects normalized pose features into the denoising process via conditioning on visual tokens, enabling seamless and scalable pose control across DiT blocks. Furthermore, to overcome the shortcomings of text removal, we introduce the "Joint-text" paradigm, which preserves the role of text embeddings to provide global semantic context. Through full-attention blocks, image and pose features are aligned with text features, enhancing semantic consistency, leveraging pretrained knowledge, and enabling multi-level control. Experiments verify the superiority of DynamiCtrl on benchmark and self-collected data (e.g., achieving the best LPIPS of 0.166), demonstrating strong character control and high-quality synthesis. The project page is available at https://gulucaptain.github.io/DynamiCtrl/.
Authors:Jinwei Qi, Chaonan Ji, Sheng Xu, Peng Zhang, Bang Zhang, Liefeng Bo
Abstract:
Real-time interactive video-chat portraits have been increasingly recognized as the future trend, particularly due to the remarkable progress made in text and voice chat technologies. However, existing methods primarily focus on real-time generation of head movements, but struggle to produce synchronized body motions that match these head actions. Additionally, achieving fine-grained control over the speaking style and nuances of facial expressions remains a challenge. To address these limitations, we introduce a novel framework for stylized real-time portrait video generation, enabling expressive and flexible video chat that extends from talking head to upper-body interaction. Our approach consists of the following two stages. The first stage involves efficient hierarchical motion diffusion models, that take both explicit and implicit motion representations into account based on audio inputs, which can generate a diverse range of facial expressions with stylistic control and synchronization between head and body movements. The second stage aims to generate portrait video featuring upper-body movements, including hand gestures. We inject explicit hand control signals into the generator to produce more detailed hand movements, and further perform face refinement to enhance the overall realism and expressiveness of the portrait video. Additionally, our approach supports efficient and continuous generation of upper-body portrait video in maximum 512 * 768 resolution at up to 30fps on 4090 GPU, supporting interactive video-chat in real-time. Experimental results demonstrate the capability of our approach to produce portrait videos with rich expressiveness and natural upper-body movements.
Authors:Qi Zhao, Xingyu Ni, Ziyu Wang, Feng Cheng, Ziyan Yang, Lu Jiang, Bohan Wang
Abstract:
We investigate how to enhance the physical fidelity of video generation models by leveraging synthetic videos derived from computer graphics pipelines. These rendered videos respect real-world physics, such as maintaining 3D consistency, and serve as a valuable resource that can potentially improve video generation models. To harness this potential, we propose a solution that curates and integrates synthetic data while introducing a method to transfer its physical realism to the model, significantly reducing unwanted artifacts. Through experiments on three representative tasks emphasizing physical consistency, we demonstrate its efficacy in enhancing physical fidelity. While our model still lacks a deep understanding of physics, our work offers one of the first empirical demonstrations that synthetic video enhances physical fidelity in video synthesis. Website: https://kevinz8866.github.io/simulation/
Authors:Yan-Bo Lin, Kevin Lin, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Chung-Ching Lin, Xiaofei Wang, Gedas Bertasius, Lijuan Wang
Abstract:
In this paper, we introduce zero-shot audio-video editing, a novel task that requires transforming original audio-visual content to align with a specified textual prompt without additional model training. To evaluate this task, we curate a benchmark dataset, AvED-Bench, designed explicitly for zero-shot audio-video editing. AvED-Bench includes 110 videos, each with a 10-second duration, spanning 11 categories from VGGSound. It offers diverse prompts and scenarios that require precise alignment between auditory and visual elements, enabling robust evaluation. We identify limitations in existing zero-shot audio and video editing methods, particularly in synchronization and coherence between modalities, which often result in inconsistent outcomes. To address these challenges, we propose AvED, a zero-shot cross-modal delta denoising framework that leverages audio-video interactions to achieve synchronized and coherent edits. AvED demonstrates superior results on both AvED-Bench and the recent OAVE dataset to validate its generalization capabilities. Results are available at https://genjib.github.io/project_page/AVED/index.html
Authors:Masane Fuchi, Tomohiro Takagi
Abstract:
Score-based or diffusion models generate high-quality tabular data, surpassing GAN-based and VAE-based models. However, these methods require substantial training time. In this paper, we introduce RecTable, which uses the rectified flow modeling, applied in such as text-to-image generation and text-to-video generation. RecTable features a simple architecture consisting of a few stacked gated linear unit blocks. Additionally, our training strategies are also simple, incorporating a mixed-type noise distribution and a logit-normal timestep distribution. Our experiments demonstrate that RecTable achieves competitive performance compared to the several state-of-the-art diffusion and score-based models while reducing the required training time. Our code is available at https://github.com/fmp453/rectable.
Authors:Jiale Cheng, Ruiliang Lyu, Xiaotao Gu, Xiao Liu, Jiazheng Xu, Yida Lu, Jiayan Teng, Zhuoyi Yang, Yuxiao Dong, Jie Tang, Hongning Wang, Minlie Huang
Abstract:
Video generation models have achieved remarkable progress in text-to-video tasks. These models are typically trained on text-video pairs with highly detailed and carefully crafted descriptions, while real-world user inputs during inference are often concise, vague, or poorly structured. This gap makes prompt optimization crucial for generating high-quality videos. Current methods often rely on large language models (LLMs) to refine prompts through in-context learning, but suffer from several limitations: they may distort user intent, omit critical details, or introduce safety risks. Moreover, they optimize prompts without considering the impact on the final video quality, which can lead to suboptimal results. To address these issues, we introduce VPO, a principled framework that optimizes prompts based on three core principles: harmlessness, accuracy, and helpfulness. The generated prompts faithfully preserve user intents and, more importantly, enhance the safety and quality of generated videos. To achieve this, VPO employs a two-stage optimization approach. First, we construct and refine a supervised fine-tuning (SFT) dataset based on principles of safety and alignment. Second, we introduce both text-level and video-level feedback to further optimize the SFT model with preference learning. Our extensive experiments demonstrate that VPO significantly improves safety, alignment, and video quality compared to baseline methods. Moreover, VPO shows strong generalization across video generation models. Furthermore, we demonstrate that VPO could outperform and be combined with RLHF methods on video generation models, underscoring the effectiveness of VPO in aligning video generation models. Our code and data are publicly available at https://github.com/thu-coai/VPO.
Authors:Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han, Zhi-Fan Wu, Ziyu Liu
Abstract:
This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at https://github.com/Wan-Video/Wan2.1.
Authors:Yuhui Wu, Liyi Chen, Ruibin Li, Shihao Wang, Chenxi Xie, Lei Zhang
Abstract:
Instruction-based video editing allows effective and interactive editing of videos using only instructions without extra inputs such as masks or attributes. However, collecting high-quality training triplets (source video, edited video, instruction) is a challenging task. Existing datasets mostly consist of low-resolution, short duration, and limited amount of source videos with unsatisfactory editing quality, limiting the performance of trained editing models. In this work, we present a high-quality Instruction-based Video Editing dataset with 1M triplets, namely InsViE-1M. We first curate high-resolution and high-quality source videos and images, then design an effective editing-filtering pipeline to construct high-quality editing triplets for model training. For a source video, we generate multiple edited samples of its first frame with different intensities of classifier-free guidance, which are automatically filtered by GPT-4o with carefully crafted guidelines. The edited first frame is propagated to subsequent frames to produce the edited video, followed by another round of filtering for frame quality and motion evaluation. We also generate and filter a variety of video editing triplets from high-quality images. With the InsViE-1M dataset, we propose a multi-stage learning strategy to train our InsViE model, progressively enhancing its instruction following and editing ability. Extensive experiments demonstrate the advantages of our InsViE-1M dataset and the trained model over state-of-the-art works. Codes are available at \href{https://github.com/langmanbusi/InsViE}{InsViE}.
Authors:Haiyang Liu, Zhan Xu, Fa-Ting Hong, Hsin-Ping Huang, Yi Zhou, Yang Zhou
Abstract:
We present Video Motion Graphs, a system designed to generate realistic human motion videos. Using a reference video and conditional signals such as music or motion tags, the system synthesizes new videos by first retrieving video clips with gestures matching the conditions and then generating interpolation frames to seamlessly connect clip boundaries. The core of our approach is HMInterp, a robust Video Frame Interpolation (VFI) model that enables seamless interpolation of discontinuous frames, even for complex motion scenarios like dancing. HMInterp i) employs a dual-branch interpolation approach, combining a Motion Diffusion Model for human skeleton motion interpolation with a diffusion-based video frame interpolation model for final frame generation. ii) adopts condition progressive training to effectively leverage identity strong and weak conditions, such as images and pose. These designs ensure both high video texture quality and accurate motion trajectory. Results show that our Video Motion Graphs outperforms existing generative- and retrieval-based methods for multi-modal conditioned human motion video generation. Project page can be found at https://h-liu1997.github.io/Video-Motion-Graphs/
Authors:Stefan Stojanov, David Wendt, Seungwoo Kim, Rahul Venkatesh, Kevin Feigelis, Jiajun Wu, Daniel LK Yamins
Abstract:
Estimating motion in videos is an essential computer vision problem with many downstream applications, including controllable video generation and robotics. Current solutions are primarily trained using synthetic data or require tuning of situation-specific heuristics, which inherently limits these models' capabilities in real-world contexts. Despite recent developments in large-scale self-supervised learning from videos, leveraging such representations for motion estimation remains relatively underexplored. In this work, we develop Opt-CWM, a self-supervised technique for flow and occlusion estimation from a pre-trained next-frame prediction model. Opt-CWM works by learning to optimize counterfactual probes that extract motion information from a base video model, avoiding the need for fixed heuristics while training on unrestricted video inputs. We achieve state-of-the-art performance for motion estimation on real-world videos while requiring no labeled data.
Authors:Tianhao Qi, Jianlong Yuan, Wanquan Feng, Shancheng Fang, Jiawei Liu, SiYu Zhou, Qian He, Hongtao Xie, Yongdong Zhang
Abstract:
Sora has unveiled the immense potential of the Diffusion Transformer (DiT) architecture in single-scene video generation. However, the more challenging task of multi-scene video generation, which offers broader applications, remains relatively underexplored. To bridge this gap, we propose Mask$^2$DiT, a novel approach that establishes fine-grained, one-to-one alignment between video segments and their corresponding text annotations. Specifically, we introduce a symmetric binary mask at each attention layer within the DiT architecture, ensuring that each text annotation applies exclusively to its respective video segment while preserving temporal coherence across visual tokens. This attention mechanism enables precise segment-level textual-to-visual alignment, allowing the DiT architecture to effectively handle video generation tasks with a fixed number of scenes. To further equip the DiT architecture with the ability to generate additional scenes based on existing ones, we incorporate a segment-level conditional mask, which conditions each newly generated segment on the preceding video segments, thereby enabling auto-regressive scene extension. Both qualitative and quantitative experiments confirm that Mask$^2$DiT excels in maintaining visual consistency across segments while ensuring semantic alignment between each segment and its corresponding text description. Our project page is https://tianhao-qi.github.io/Mask2DiTProject.
Authors:Jiazhi Guan, Kaisiyuan Wang, Zhiliang Xu, Quanwei Yang, Yasheng Sun, Shengyi He, Borong Liang, Yukang Cao, Yingying Li, Haocheng Feng, Errui Ding, Jingdong Wang, Youjian Zhao, Hang Zhou, Ziwei Liu
Abstract:
Despite the recent progress of audio-driven video generation, existing methods mostly focus on driving facial movements, leading to non-coherent head and body dynamics. Moving forward, it is desirable yet challenging to generate holistic human videos with both accurate lip-sync and delicate co-speech gestures w.r.t. given audio. In this work, we propose AudCast, a generalized audio-driven human video generation framework adopting a cascade Diffusion-Transformers (DiTs) paradigm, which synthesizes holistic human videos based on a reference image and a given audio. 1) Firstly, an audio-conditioned Holistic Human DiT architecture is proposed to directly drive the movements of any human body with vivid gesture dynamics. 2) Then to enhance hand and face details that are well-knownly difficult to handle, a Regional Refinement DiT leverages regional 3D fitting as the bridge to reform the signals, producing the final results. Extensive experiments demonstrate that our framework generates high-fidelity audio-driven holistic human videos with temporal coherence and fine facial and hand details. Resources can be found at https://guanjz20.github.io/projects/AudCast.
Authors:Haiyu Zhang, Xinyuan Chen, Yaohui Wang, Xihui Liu, Yunhong Wang, Yu Qiao
Abstract:
Diffusion models have achieved remarkable progress in the field of video generation. However, their iterative denoising nature requires a large number of inference steps to generate a video, which is slow and computationally expensive. In this paper, we begin with a detailed analysis of the challenges present in existing diffusion distillation methods and propose a novel efficient method, namely AccVideo, to reduce the inference steps for accelerating video diffusion models with synthetic dataset. We leverage the pretrained video diffusion model to generate multiple valid denoising trajectories as our synthetic dataset, which eliminates the use of useless data points during distillation. Based on the synthetic dataset, we design a trajectory-based few-step guidance that utilizes key data points from the denoising trajectories to learn the noise-to-video mapping, enabling video generation in fewer steps. Furthermore, since the synthetic dataset captures the data distribution at each diffusion timestep, we introduce an adversarial training strategy to align the output distribution of the student model with that of our synthetic dataset, thereby enhancing the video quality. Extensive experiments demonstrate that our model achieves 8.5x improvements in generation speed compared to the teacher model while maintaining comparable performance. Compared to previous accelerating methods, our approach is capable of generating videos with higher quality and resolution, i.e., 5-seconds, 720x1280, 24fps.
Authors:Yufei Cai, Hu Han, Yuxiang Wei, Shiguang Shan, Xilin Chen
Abstract:
The progress on generative models has led to significant advances on text-to-video (T2V) generation, yet the motion controllability of generated videos remains limited. Existing motion transfer methods explored the motion representations of reference videos to guide generation. Nevertheless, these methods typically rely on sample-specific optimization strategy, resulting in high computational burdens. In this paper, we propose EfficientMT, a novel and efficient end-to-end framework for video motion transfer. By leveraging a small set of synthetic paired motion transfer samples, EfficientMT effectively adapts a pretrained T2V model into a general motion transfer framework that can accurately capture and reproduce diverse motion patterns. Specifically, we repurpose the backbone of the T2V model to extract temporal information from reference videos, and further propose a scaler module to distill motion-related information. Subsequently, we introduce a temporal integration mechanism that seamlessly incorporates reference motion features into the video generation process. After training on our self-collected synthetic paired samples, EfficientMT enables general video motion transfer without requiring test-time optimization. Extensive experiments demonstrate that our EfficientMT outperforms existing methods in efficiency while maintaining flexible motion controllability. Our code will be available https://github.com/PrototypeNx/EfficientMT.
Authors:Fangfu Liu, Hanyang Wang, Yimo Cai, Kaiyan Zhang, Xiaohang Zhan, Yueqi Duan
Abstract:
With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
Authors:Ye Tian, Xin Xia, Yuxi Ren, Shanchuan Lin, Xing Wang, Xuefeng Xiao, Yunhai Tong, Ling Yang, Bin Cui
Abstract:
Diffusion models have demonstrated remarkable capabilities in visual content generation but remain challenging to deploy due to their high computational cost during inference. This computational burden primarily arises from the quadratic complexity of self-attention with respect to image or video resolution. While existing acceleration methods often compromise output quality or necessitate costly retraining, we observe that most diffusion models are pre-trained at lower resolutions, presenting an opportunity to exploit these low-resolution priors for more efficient inference without degrading performance. In this work, we introduce Bottleneck Sampling, a training-free framework that leverages low-resolution priors to reduce computational overhead while preserving output fidelity. Bottleneck Sampling follows a high-low-high denoising workflow: it performs high-resolution denoising in the initial and final stages while operating at lower resolutions in intermediate steps. To mitigate aliasing and blurring artifacts, we further refine the resolution transition points and adaptively shift the denoising timesteps at each stage. We evaluate Bottleneck Sampling on both image and video generation tasks, where extensive experiments demonstrate that it accelerates inference by up to 3$\times$ for image generation and 2.5$\times$ for video generation, all while maintaining output quality comparable to the standard full-resolution sampling process across multiple evaluation metrics.
Authors:Weichen Fan, Amber Yijia Zheng, Raymond A. Yeh, Ziwei Liu
Abstract:
Classifier-Free Guidance (CFG) is a widely adopted technique in diffusion/flow models to improve image fidelity and controllability. In this work, we first analytically study the effect of CFG on flow matching models trained on Gaussian mixtures where the ground-truth flow can be derived. We observe that in the early stages of training, when the flow estimation is inaccurate, CFG directs samples toward incorrect trajectories. Building on this observation, we propose CFG-Zero*, an improved CFG with two contributions: (a) optimized scale, where a scalar is optimized to correct for the inaccuracies in the estimated velocity, hence the * in the name; and (b) zero-init, which involves zeroing out the first few steps of the ODE solver. Experiments on both text-to-image (Lumina-Next, Stable Diffusion 3, and Flux) and text-to-video (Wan-2.1) generation demonstrate that CFG-Zero* consistently outperforms CFG, highlighting its effectiveness in guiding Flow Matching models. (Code is available at github.com/WeichenFan/CFG-Zero-star)
Authors:Takashi Isobe, He Cui, Dong Zhou, Mengmeng Ge, Dong Li, Emad Barsoum
Abstract:
Text-to-Video (T2V) generation has attracted significant attention for its ability to synthesize realistic videos from textual descriptions. However, existing models struggle to balance computational efficiency and high visual quality, particularly on resource-limited devices, e.g.,iGPUs and mobile phones. Most prior work prioritizes visual fidelity while overlooking the need for smaller, more efficient models suitable for real-world deployment. To address this challenge, we propose a lightweight T2V framework, termed Hummingbird, which prunes existing models and enhances visual quality through visual feedback learning. Our approach reduces the size of the U-Net from 1.4 billion to 0.7 billion parameters, significantly improving efficiency while preserving high-quality video generation. Additionally, we introduce a novel data processing pipeline that leverages Large Language Models (LLMs) and Video Quality Assessment (VQA) models to enhance the quality of both text prompts and video data. To support user-driven training and style customization, we publicly release the full training code, including data processing and model training. Extensive experiments show that our method achieves a 31X speedup compared to state-of-the-art models such as VideoCrafter2, while also attaining the highest overall score on VBench. Moreover, our method supports the generation of videos with up to 26 frames, addressing the limitations of existing U-Net-based methods in long video generation. Notably, the entire training process requires only four GPUs, yet delivers performance competitive with existing leading methods. Hummingbird presents a practical and efficient solution for T2V generation, combining high performance, scalability, and flexibility for real-world applications.
Authors:Luca Zanella, Massimiliano Mancini, Willi Menapace, Sergey Tulyakov, Yiming Wang, Elisa Ricci
Abstract:
Recent video-language alignment models are trained on sets of videos, each with an associated positive caption and a negative caption generated by large language models. A problem with this procedure is that negative captions may introduce linguistic biases, i.e., concepts are seen only as negatives and never associated with a video. While a solution would be to collect videos for the negative captions, existing databases lack the fine-grained variations needed to cover all possible negatives. In this work, we study whether synthetic videos can help to overcome this issue. Our preliminary analysis with multiple generators shows that, while promising on some tasks, synthetic videos harm the performance of the model on others. We hypothesize this issue is linked to noise (semantic and visual) in the generated videos and develop a method, SynViTA, that accounts for those. SynViTA dynamically weights the contribution of each synthetic video based on how similar its target caption is w.r.t. the real counterpart. Moreover, a semantic consistency loss makes the model focus on fine-grained differences across captions, rather than differences in video appearance. Experiments show that, on average, SynViTA improves over existing methods on VideoCon test sets and SSv2-Temporal, SSv2-Events, and ATP-Hard benchmarks, being a first promising step for using synthetic videos when learning video-language models.
Authors:Yuzhi Li, Haojun Xu, Feng Tian
Abstract:
With the rising popularity of short video platforms, the demand for video production has increased substantially. However, high-quality video creation continues to rely heavily on professional editing skills and a nuanced understanding of visual language. To address this challenge, the Shot Sequence Ordering (SSO) task in AI-assisted video editing has emerged as a pivotal approach for enhancing video storytelling and the overall viewing experience. Nevertheless, the progress in this field has been impeded by a lack of publicly available benchmark datasets. In response, this paper introduces two novel benchmark datasets, AVE-Order and ActivityNet-Order. Additionally, we employ the Kendall Tau distance as an evaluation metric for the SSO task and propose the Kendall Tau Distance-Cross Entropy Loss. We further introduce the concept of Cinematology Embedding, which incorporates movie metadata and shot labels as prior knowledge into the SSO model, and constructs the AVE-Meta dataset to validate the method's effectiveness. Experimental results indicate that the proposed loss function and method substantially enhance SSO task accuracy. All datasets are publicly accessible at https://github.com/litchiar/ShotSeqBench.
Authors:Chi Zhang, Chengjian Feng, Feng Yan, Qiming Zhang, Mingjin Zhang, Yujie Zhong, Jing Zhang, Lin Ma
Abstract:
Video editing according to instructions is a highly challenging task due to the difficulty in collecting large-scale, high-quality edited video pair data. This scarcity not only limits the availability of training data but also hinders the systematic exploration of model architectures and training strategies. While prior work has improved specific aspects of video editing (e.g., synthesizing a video dataset using image editing techniques or decomposed video editing training), a holistic framework addressing the above challenges remains underexplored. In this study, we introduce InstructVEdit, a full-cycle instructional video editing approach that: (1) establishes a reliable dataset curation workflow to initialize training, (2) incorporates two model architectural improvements to enhance edit quality while preserving temporal consistency, and (3) proposes an iterative refinement strategy leveraging real-world data to enhance generalization and minimize train-test discrepancies. Extensive experiments show that InstructVEdit achieves state-of-the-art performance in instruction-based video editing, demonstrating robust adaptability to diverse real-world scenarios. Project page: https://o937-blip.github.io/InstructVEdit.
Authors:Xu Zhang, Hao Zhou, Haoming Qin, Xiaobin Lu, Jiaxing Yan, Guanzhong Wang, Zeyu Chen, Yi Liu
Abstract:
Despite substantial progress in text-to-video generation, achieving precise and flexible control over fine-grained spatiotemporal attributes remains a significant unresolved challenge in video generation research. To address these limitations, we introduce VCtrl (also termed PP-VCtrl), a novel framework designed to enable fine-grained control over pre-trained video diffusion models in a unified manner. VCtrl integrates diverse user-specified control signals-such as Canny edges, segmentation masks, and human keypoints-into pretrained video diffusion models via a generalizable conditional module capable of uniformly encoding multiple types of auxiliary signals without modifying the underlying generator. Additionally, we design a unified control signal encoding pipeline and a sparse residual connection mechanism to efficiently incorporate control representations. Comprehensive experiments and human evaluations demonstrate that VCtrl effectively enhances controllability and generation quality. The source code and pre-trained models are publicly available and implemented using the PaddlePaddle framework at http://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl.
Authors:Yingying Fan, Quanwei Yang, Kaisiyuan Wang, Hang Zhou, Yingying Li, Haocheng Feng, Errui Ding, Yu Wu, Jingdong Wang
Abstract:
Current digital human studies focusing on lip-syncing and body movement are no longer sufficient to meet the growing industrial demand, while human video generation techniques that support interacting with real-world environments (e.g., objects) have not been well investigated. Despite human hand synthesis already being an intricate problem, generating objects in contact with hands and their interactions presents an even more challenging task, especially when the objects exhibit obvious variations in size and shape. To tackle these issues, we present a novel video Reenactment framework focusing on Human-Object Interaction (HOI) via an adaptive Layout-instructed Diffusion model (Re-HOLD). Our key insight is to employ specialized layout representation for hands and objects, respectively. Such representations enable effective disentanglement of hand modeling and object adaptation to diverse motion sequences. To further improve the generation quality of HOI, we design an interactive textural enhancement module for both hands and objects by introducing two independent memory banks. We also propose a layout adjustment strategy for the cross-object reenactment scenario to adaptively adjust unreasonable layouts caused by diverse object sizes during inference. Comprehensive qualitative and quantitative evaluations demonstrate that our proposed framework significantly outperforms existing methods. Project page: https://fyycs.github.io/Re-HOLD.
Authors:Katja Schwarz, Denys Rozumnyi, Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder
Abstract:
We introduce a recipe for generating immersive 3D worlds from a single image by framing the task as an in-context learning problem for 2D inpainting models. This approach requires minimal training and uses existing generative models. Our process involves two steps: generating coherent panoramas using a pre-trained diffusion model and lifting these into 3D with a metric depth estimator. We then fill unobserved regions by conditioning the inpainting model on rendered point clouds, requiring minimal fine-tuning. Tested on both synthetic and real images, our method produces high-quality 3D environments suitable for VR display. By explicitly modeling the 3D structure of the generated environment from the start, our approach consistently outperforms state-of-the-art, video synthesis-based methods along multiple quantitative image quality metrics. Project Page: https://katjaschwarz.github.io/worlds/
Authors:Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, Song Han
Abstract:
Long-Context Transformer Models (LCTMs) are vital for real-world applications but suffer high computational costs due to attention's quadratic complexity. Block-sparse attention mitigates this by focusing computation on critical regions, yet existing methods struggle with balancing accuracy and efficiency due to costly block importance measurements. In this paper, we introduce XAttention, a plug-and-play framework that dramatically accelerates long-context inference in Transformers models using sparse attention. XAttention's key innovation is the insight that the sum of antidiagonal values (i.e., from the lower-left to upper-right) in the attention matrix provides a powerful proxy for block importance. This allows for precise identification and pruning of non-essential blocks, resulting in high sparsity and dramatically accelerated inference. Across comprehensive evaluations on demanding long-context benchmarks-including RULER and LongBench for language, VideoMME for video understanding, and VBench for video generation. XAttention achieves accuracy comparable to full attention while delivering substantial computational gains. We demonstrate up to 13.5x acceleration in attention computation. These results underscore XAttention's ability to unlock the practical potential of block sparse attention, paving the way for scalable and efficient deployment of LCTMs in real-world applications. Code is available at https://github.com/mit-han-lab/x-attention.
Authors:Quanhao Li, Zhen Xing, Rui Wang, Hui Zhang, Qi Dai, Zuxuan Wu
Abstract:
Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.
Authors:Longbin Ji, Lei Zhong, Pengfei Wei, Changjian Li
Abstract:
Recent advancements in trajectory-guided video generation have achieved notable progress. However, existing models still face challenges in generating object motions with potentially changing 6D poses under wide-range rotations, due to limited 3D understanding. To address this problem, we introduce PoseTraj, a pose-aware video dragging model for generating 3D-aligned motion from 2D trajectories. Our method adopts a novel two-stage pose-aware pretraining framework, improving 3D understanding across diverse trajectories. Specifically, we propose a large-scale synthetic dataset PoseTraj-10K, containing 10k videos of objects following rotational trajectories, and enhance the model perception of object pose changes by incorporating 3D bounding boxes as intermediate supervision signals. Following this, we fine-tune the trajectory-controlling module on real-world videos, applying an additional camera-disentanglement module to further refine motion accuracy. Experiments on various benchmark datasets demonstrate that our method not only excels in 3D pose-aligned dragging for rotational trajectories but also outperforms existing baselines in trajectory accuracy and video quality.
Authors:Haiguang Wang, Daqi Liu, Hongwei Xie, Haisong Liu, Enhui Ma, Kaicheng Yu, Limin Wang, Bing Wang
Abstract:
In recent years, data-driven techniques have greatly advanced autonomous driving systems, but the need for rare and diverse training data remains a challenge, requiring significant investment in equipment and labor. World models, which predict and generate future environmental states, offer a promising solution by synthesizing annotated video data for training. However, existing methods struggle to generate long, consistent videos without accumulating errors, especially in dynamic scenes. To address this, we propose MiLA, a novel framework for generating high-fidelity, long-duration videos up to one minute. MiLA utilizes a Coarse-to-Re(fine) approach to both stabilize video generation and correct distortion of dynamic objects. Additionally, we introduce a Temporal Progressive Denoising Scheduler and Joint Denoising and Correcting Flow modules to improve the quality of generated videos. Extensive experiments on the nuScenes dataset show that MiLA achieves state-of-the-art performance in video generation quality. For more information, visit the project website: https://github.com/xiaomi-mlab/mila.github.io.
Authors:Hyojun Go, Byeongjun Park, Hyelin Nam, Byung-Hoon Kim, Hyungjin Chung, Changick Kim
Abstract:
We propose VideoRFSplat, a direct text-to-3D model leveraging a video generation model to generate realistic 3D Gaussian Splatting (3DGS) for unbounded real-world scenes. To generate diverse camera poses and unbounded spatial extent of real-world scenes, while ensuring generalization to arbitrary text prompts, previous methods fine-tune 2D generative models to jointly model camera poses and multi-view images. However, these methods suffer from instability when extending 2D generative models to joint modeling due to the modality gap, which necessitates additional models to stabilize training and inference. In this work, we propose an architecture and a sampling strategy to jointly model multi-view images and camera poses when fine-tuning a video generation model. Our core idea is a dual-stream architecture that attaches a dedicated pose generation model alongside a pre-trained video generation model via communication blocks, generating multi-view images and camera poses through separate streams. This design reduces interference between the pose and image modalities. Additionally, we propose an asynchronous sampling strategy that denoises camera poses faster than multi-view images, allowing rapidly denoised poses to condition multi-view generation, reducing mutual ambiguity and enhancing cross-modal consistency. Trained on multiple large-scale real-world datasets (RealEstate10K, MVImgNet, DL3DV-10K, ACID), VideoRFSplat outperforms existing text-to-3D direct generation methods that heavily depend on post-hoc refinement via score distillation sampling, achieving superior results without such refinement.
Authors:Harold Haodong Chen, Haojian Huang, Xianfeng Wu, Yexin Liu, Yajing Bai, Wen-Jie Shu, Harry Yang, Ser-Nam Lim
Abstract:
Temporal quality is a critical aspect of video generation, as it ensures consistent motion and realistic dynamics across frames. However, achieving high temporal coherence and diversity remains challenging. In this work, we explore temporal augmentation in video generation for the first time, and introduce FluxFlow for initial investigation, a strategy designed to enhance temporal quality. Operating at the data level, FluxFlow applies controlled temporal perturbations without requiring architectural modifications. Extensive experiments on UCF-101 and VBench benchmarks demonstrate that FluxFlow significantly improves temporal coherence and diversity across various video generation models, including U-Net, DiT, and AR-based architectures, while preserving spatial fidelity. These findings highlight the potential of temporal augmentation as a simple yet effective approach to advancing video generation quality.
Authors:Tingxiu Chen, Yilei Shi, Zixuan Zheng, Bingcong Yan, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou
Abstract:
Ultrasound video classification enables automated diagnosis and has emerged as an important research area. However, publicly available ultrasound video datasets remain scarce, hindering progress in developing effective video classification models. We propose addressing this shortage by synthesizing plausible ultrasound videos from readily available, abundant ultrasound images. To this end, we introduce a latent dynamic diffusion model (LDDM) to efficiently translate static images to dynamic sequences with realistic video characteristics. We demonstrate strong quantitative results and visually appealing synthesized videos on the BUSV benchmark. Notably, training video classification models on combinations of real and LDDM-synthesized videos substantially improves performance over using real data alone, indicating our method successfully emulates dynamics critical for discrimination. Our image-to-video approach provides an effective data augmentation solution to advance ultrasound video analysis. Code is available at https://github.com/MedAITech/U_I2V.
Authors:Yu Fang, Yue Yang, Xinghao Zhu, Kaiyuan Zheng, Gedas Bertasius, Daniel Szafir, Mingyu Ding
Abstract:
Vision-language-action (VLA) models present a promising paradigm by training policies directly on real robot datasets like Open X-Embodiment. However, the high cost of real-world data collection hinders further data scaling, thereby restricting the generalizability of VLAs. In this paper, we introduce ReBot, a novel real-to-sim-to-real approach for scaling real robot datasets and adapting VLA models to target domains, which is the last-mile deployment challenge in robot manipulation. Specifically, ReBot replays real-world robot trajectories in simulation to diversify manipulated objects (real-to-sim), and integrates the simulated movements with inpainted real-world background to synthesize physically realistic and temporally consistent robot videos (sim-to-real). Our approach has several advantages: 1) it enjoys the benefit of real data to minimize the sim-to-real gap; 2) it leverages the scalability of simulation; and 3) it can generalize a pretrained VLA to a target domain with fully automated data pipelines. Extensive experiments in both simulation and real-world environments show that ReBot significantly enhances the performance and robustness of VLAs. For example, in SimplerEnv with the WidowX robot, ReBot improved the in-domain performance of Octo by 7.2% and OpenVLA by 21.8%, and out-of-domain generalization by 19.9% and 9.4%, respectively. For real-world evaluation with a Franka robot, ReBot increased the success rates of Octo by 17% and OpenVLA by 20%. More information can be found at: https://yuffish.github.io/rebot/
Authors:Susung Hong, Ira Kemelmacher-Shlizerman, Brian Curless, Steven M. Seitz
Abstract:
We introduce MusicInfuser, an approach for generating high-quality dance videos that are synchronized to a specified music track. Rather than attempting to design and train a new multimodal audio-video model, we show how existing video diffusion models can be adapted to align with musical inputs by introducing lightweight music-video cross-attention and a low-rank adapter. Unlike prior work requiring motion capture data, our approach fine-tunes only on dance videos. MusicInfuser achieves high-quality music-driven video generation while preserving the flexibility and generative capabilities of the underlying models. We introduce an evaluation framework using Video-LLMs to assess multiple dimensions of dance generation quality. The project page and code are available at https://susunghong.github.io/MusicInfuser.
Authors:Hongyu Zhang, Yufan Deng, Shenghai Yuan, Peng Jin, Zesen Cheng, Yian Zhao, Chang Liu, Jie Chen
Abstract:
Text-to-video (T2V) generation has made significant strides with diffusion models. However, existing methods still struggle with accurately binding attributes, determining spatial relationships, and capturing complex action interactions between multiple subjects. To address these limitations, we propose MagicComp, a training-free method that enhances compositional T2V generation through dual-phase refinement. Specifically, (1) During the Conditioning Stage: We introduce the Semantic Anchor Disambiguation to reinforces subject-specific semantics and resolve inter-subject ambiguity by progressively injecting the directional vectors of semantic anchors into original text embedding; (2) During the Denoising Stage: We propose Dynamic Layout Fusion Attention, which integrates grounding priors and model-adaptive spatial perception to flexibly bind subjects to their spatiotemporal regions through masked attention modulation. Furthermore, MagicComp is a model-agnostic and versatile approach, which can be seamlessly integrated into existing T2V architectures. Extensive experiments on T2V-CompBench and VBench demonstrate that MagicComp outperforms state-of-the-art methods, highlighting its potential for applications such as complex prompt-based and trajectory-controllable video generation. Project page: https://hong-yu-zhang.github.io/MagicComp-Page/.
Authors:Yu Cheng, Fajie Yuan
Abstract:
Recent advances in Latent Video Diffusion Models (LVDMs) have revolutionized video generation by leveraging Video Variational Autoencoders (Video VAEs) to compress intricate video data into a compact latent space. However, as LVDM training scales, the computational overhead of Video VAEs becomes a critical bottleneck, particularly for encoding high-resolution videos. To address this, we propose LeanVAE, a novel and ultra-efficient Video VAE framework that introduces two key innovations: (1) a lightweight architecture based on a Neighborhood-Aware Feedforward (NAF) module and non-overlapping patch operations, drastically reducing computational cost, and (2) the integration of wavelet transforms and compressed sensing techniques to enhance reconstruction quality. Extensive experiments validate LeanVAE's superiority in video reconstruction and generation, particularly in enhancing efficiency over existing Video VAEs. Our model offers up to 50x fewer FLOPs and 44x faster inference speed while maintaining competitive reconstruction quality, providing insights for scalable, efficient video generation. Our models and code are available at https://github.com/westlake-repl/LeanVAE
Authors:Shitong Shao, Hongwei Yi, Hanzhong Guo, Tian Ye, Daquan Zhou, Michael Lingelbach, Zhiqiang Xu, Zeke Xie
Abstract:
Recently, open-source video diffusion models (VDMs), such as WanX, Magic141 and HunyuanVideo, have been scaled to over 10 billion parameters. These large-scale VDMs have demonstrated significant improvements over smaller-scale VDMs across multiple dimensions, including enhanced visual quality and more natural motion dynamics. However, these models face two major limitations: (1) High inference overhead: Large-scale VDMs require approximately 10 minutes to synthesize a 28-step video on a single H100 GPU. (2) Limited in portrait video synthesis: Models like WanX-I2V and HunyuanVideo-I2V often produce unnatural facial expressions and movements in portrait videos. To address these challenges, we propose MagicDistillation, a novel framework designed to reduce inference overhead while ensuring the generalization of VDMs for portrait video synthesis. Specifically, we primarily use sufficiently high-quality talking video to fine-tune Magic141, which is dedicated to portrait video synthesis. We then employ LoRA to effectively and efficiently fine-tune the fake DiT within the step distillation framework known as distribution matching distillation (DMD). Following this, we apply weak-to-strong (W2S) distribution matching and minimize the discrepancy between the fake data distribution and the ground truth distribution, thereby improving the visual fidelity and motion dynamics of the synthesized videos. Experimental results on portrait video synthesis demonstrate the effectiveness of MagicDistillation, as our method surpasses Euler, LCM, and DMD baselines in both FID/FVD metrics and VBench. Moreover, MagicDistillation, requiring only 4 steps, also outperforms WanX-I2V (14B) and HunyuanVideo-I2V (13B) on visualization and VBench. Our project page is https://magicdistillation.github.io/MagicDistillation/.
Authors:Zheyuan Liu, Junyan Wang, Zicheng Duan, Cristian Rodriguez-Opazo, Anton van den Hengel
Abstract:
Text-video prediction (TVP) is a downstream video generation task that requires a model to produce subsequent video frames given a series of initial video frames and text describing the required motion. In practice TVP methods focus on a particular category of videos depicting manipulations of objects carried out by human beings or robot arms. Previous methods adapt models pre-trained on text-to-image tasks, and thus tend to generate video that lacks the required continuity. A natural progression would be to leverage more recent pre-trained text-to-video (T2V) models. This approach is rendered more challenging by the fact that the most common fine-tuning technique, low-rank adaptation (LoRA), yields undesirable results. In this work, we propose an adaptation-based strategy we label Frame-wise Conditioning Adaptation (FCA). Within the module, we devise a sub-module that produces frame-wise text embeddings from the input text, which acts as an additional text condition to aid generation. We use FCA to fine-tune the T2V model, which incorporates the initial frame(s) as an extra condition. We compare and discuss the more effective strategy for injecting such embeddings into the T2V model. We conduct extensive ablation studies on our design choices with quantitative and qualitative performance analysis. Our approach establishes a new state-of-the-art for the task of TVP. The project page is at https://github.com/Cuberick-Orion/FCA .
Authors:Guibiao Liao, Qing Li, Zhenyu Bao, Guoping Qiu, Kanglin Liu
Abstract:
3D Gaussian Splatting-based indoor open-world free-view synthesis approaches have shown significant performance with dense input images. However, they exhibit poor performance when confronted with sparse inputs, primarily due to the sparse distribution of Gaussian points and insufficient view supervision. To relieve these challenges, we propose SPC-GS, leveraging Scene-layout-based Gaussian Initialization (SGI) and Semantic-Prompt Consistency (SPC) Regularization for open-world free view synthesis with sparse inputs. Specifically, SGI provides a dense, scene-layout-based Gaussian distribution by utilizing view-changed images generated from the video generation model and view-constraint Gaussian points densification. Additionally, SPC mitigates limited view supervision by employing semantic-prompt-based consistency constraints developed by SAM2. This approach leverages available semantics from training views, serving as instructive prompts, to optimize visually overlapping regions in novel views with 2D and 3D consistency constraints. Extensive experiments demonstrate the superior performance of SPC-GS across Replica and ScanNet benchmarks. Notably, our SPC-GS achieves a 3.06 dB gain in PSNR for reconstruction quality and a 7.3% improvement in mIoU for open-world semantic segmentation.
Authors:Byeongjun Park, Hyojun Go, Hyelin Nam, Byung-Hoon Kim, Hyungjin Chung, Changick Kim
Abstract:
Recent progress in 3D/4D scene generation emphasizes the importance of physical alignment throughout video generation and scene reconstruction. However, existing methods improve the alignment separately at each stage, making it difficult to manage subtle misalignments arising from another stage. Here, we present SteerX, a zero-shot inference-time steering method that unifies scene reconstruction into the generation process, tilting data distributions toward better geometric alignment. To this end, we introduce two geometric reward functions for 3D/4D scene generation by using pose-free feed-forward scene reconstruction models. Through extensive experiments, we demonstrate the effectiveness of SteerX in improving 3D/4D scene generation.
Authors:Jianhong Bai, Menghan Xia, Xiao Fu, Xintao Wang, Lianrui Mu, Jinwen Cao, Zuozhu Liu, Haoji Hu, Xiang Bai, Pengfei Wan, Di Zhang
Abstract:
Camera control has been actively studied in text or image conditioned video generation tasks. However, altering camera trajectories of a given video remains under-explored, despite its importance in the field of video creation. It is non-trivial due to the extra constraints of maintaining multiple-frame appearance and dynamic synchronization. To address this, we present ReCamMaster, a camera-controlled generative video re-rendering framework that reproduces the dynamic scene of an input video at novel camera trajectories. The core innovation lies in harnessing the generative capabilities of pre-trained text-to-video models through a simple yet powerful video conditioning mechanism--its capability is often overlooked in current research. To overcome the scarcity of qualified training data, we construct a comprehensive multi-camera synchronized video dataset using Unreal Engine 5, which is carefully curated to follow real-world filming characteristics, covering diverse scenes and camera movements. It helps the model generalize to in-the-wild videos. Lastly, we further improve the robustness to diverse inputs through a meticulously designed training strategy. Extensive experiments show that our method substantially outperforms existing state-of-the-art approaches. Our method also finds promising applications in video stabilization, super-resolution, and outpainting. Our code and dataset are publicly available at: https://github.com/KwaiVGI/ReCamMaster.
Authors:Tianrui Pan, Lin Liu, Jie Liu, Xiaopeng Zhang, Jie Tang, Gangshan Wu, Qi Tian
Abstract:
Portrait video editing focuses on modifying specific attributes of portrait videos, guided by audio or video streams. Previous methods typically either concentrate on lip-region reenactment or require training specialized models to extract keypoints for motion transfer to a new identity. In this paper, we introduce a training-free universal portrait video editing framework that provides a versatile and adaptable editing strategy. This framework supports portrait appearance editing conditioned on the changed first reference frame, as well as lip editing conditioned on varied speech, or a combination of both. It is based on a Unified Animation Control (UAC) mechanism with source inversion latents to edit the entire portrait, including visual-driven shape control, audio-driven speaking control, and inter-frame temporal control. Furthermore, our method can be adapted to different scenarios by adjusting the initial reference frame, enabling detailed editing of portrait videos with specific head rotations and facial expressions. This comprehensive approach ensures a holistic and flexible solution for portrait video editing. The experimental results show that our model can achieve more accurate and synchronized lip movements for the lip editing task, as well as more flexible motion transfer for the appearance editing task. Demo is available at https://alice01010101.github.io/RASA/.
Authors:Ziqin Zhou, Yifan Yang, Yuqing Yang, Tianyu He, Houwen Peng, Kai Qiu, Qi Dai, Lili Qiu, Chong Luo, Lingqiao Liu
Abstract:
Text-to-video generation poses significant challenges due to the inherent complexity of video data, which spans both temporal and spatial dimensions. It introduces additional redundancy, abrupt variations, and a domain gap between language and vision tokens while generation. Addressing these challenges requires an effective video tokenizer that can efficiently encode video data while preserving essential semantic and spatiotemporal information, serving as a critical bridge between text and vision. Inspired by the observation in VQ-VAE-2 and workflows of traditional animation, we propose HiTVideo for text-to-video generation with hierarchical tokenizers. It utilizes a 3D causal VAE with a multi-layer discrete token framework, encoding video content into hierarchically structured codebooks. Higher layers capture semantic information with higher compression, while lower layers focus on fine-grained spatiotemporal details, striking a balance between compression efficiency and reconstruction quality. Our approach efficiently encodes longer video sequences (e.g., 8 seconds, 64 frames), reducing bits per pixel (bpp) by approximately 70\% compared to baseline tokenizers, while maintaining competitive reconstruction quality. We explore the trade-offs between compression and reconstruction, while emphasizing the advantages of high-compressed semantic tokens in text-to-video tasks. HiTVideo aims to address the potential limitations of existing video tokenizers in text-to-video generation tasks, striving for higher compression ratios and simplify LLMs modeling under language guidance, offering a scalable and promising framework for advancing text to video generation. Demo page: https://ziqinzhou66.github.io/project/HiTVideo.
Authors:Shiyuan Yang, Zheng Gu, Liang Hou, Xin Tao, Pengfei Wan, Xiaodong Chen, Jing Liao
Abstract:
Video inpainting involves modifying local regions within a video, ensuring spatial and temporal consistency. Most existing methods focus primarily on scene completion (i.e., filling missing regions) and lack the capability to insert new objects into a scene in a controllable manner. Fortunately, recent advancements in text-to-video (T2V) diffusion models pave the way for text-guided video inpainting. However, directly adapting T2V models for inpainting remains limited in unifying completion and insertion tasks, lacks input controllability, and struggles with long videos, thereby restricting their applicability and flexibility. To address these challenges, we propose MTV-Inpaint, a unified multi-task video inpainting framework capable of handling both traditional scene completion and novel object insertion tasks. To unify these distinct tasks, we design a dual-branch spatial attention mechanism in the T2V diffusion U-Net, enabling seamless integration of scene completion and object insertion within a single framework. In addition to textual guidance, MTV-Inpaint supports multimodal control by integrating various image inpainting models through our proposed image-to-video (I2V) inpainting mode. Additionally, we propose a two-stage pipeline that combines keyframe inpainting with in-between frame propagation, enabling MTV-Inpaint to effectively handle long videos with hundreds of frames. Extensive experiments demonstrate that MTV-Inpaint achieves state-of-the-art performance in both scene completion and object insertion tasks. Furthermore, it demonstrates versatility in derived applications such as multi-modal inpainting, object editing, removal, image object brush, and the ability to handle long videos. Project page: https://mtv-inpaint.github.io/.
Authors:Haoyang Huang, Guoqing Ma, Nan Duan, Xing Chen, Changyi Wan, Ranchen Ming, Tianyu Wang, Bo Wang, Zhiying Lu, Aojie Li, Xianfang Zeng, Xinhao Zhang, Gang Yu, Yuhe Yin, Qiling Wu, Wen Sun, Kang An, Xin Han, Deshan Sun, Wei Ji, Bizhu Huang, Brian Li, Chenfei Wu, Guanzhe Huang, Huixin Xiong, Jiaxin He, Jianchang Wu, Jianlong Yuan, Jie Wu, Jiashuai Liu, Junjing Guo, Kaijun Tan, Liangyu Chen, Qiaohui Chen, Ran Sun, Shanshan Yuan, Shengming Yin, Sitong Liu, Wei Chen, Yaqi Dai, Yuchu Luo, Zheng Ge, Zhisheng Guan, Xiaoniu Song, Yu Zhou, Binxing Jiao, Jiansheng Chen, Jing Li, Shuchang Zhou, Xiangyu Zhang, Yi Xiu, Yibo Zhu, Heung-Yeung Shum, Daxin Jiang
Abstract:
We present Step-Video-TI2V, a state-of-the-art text-driven image-to-video generation model with 30B parameters, capable of generating videos up to 102 frames based on both text and image inputs. We build Step-Video-TI2V-Eval as a new benchmark for the text-driven image-to-video task and compare Step-Video-TI2V with open-source and commercial TI2V engines using this dataset. Experimental results demonstrate the state-of-the-art performance of Step-Video-TI2V in the image-to-video generation task. Both Step-Video-TI2V and Step-Video-TI2V-Eval are available at https://github.com/stepfun-ai/Step-Video-TI2V.
Authors:Haonan Wang, Qixiang Zhang, Lehan Wang, Xuanqi Huang, Xiaomeng Li
Abstract:
Decoding visual stimuli from neural activity is essential for understanding the human brain. While fMRI methods have successfully reconstructed static images, fMRI-to-video reconstruction faces challenges due to the need for capturing spatiotemporal dynamics like motion and scene transitions. Recent approaches have improved semantic and perceptual alignment but struggle to integrate coarse fMRI data with detailed visual features. Inspired by the hierarchical organization of the visual system, we propose NEURONS, a novel framework that decouples learning into four correlated sub-tasks: key object segmentation, concept recognition, scene description, and blurry video reconstruction. This approach simulates the visual cortex's functional specialization, allowing the model to capture diverse video content. In the inference stage, NEURONS generates robust conditioning signals for a pre-trained text-to-video diffusion model to reconstruct the videos. Extensive experiments demonstrate that NEURONS outperforms state-of-the-art baselines, achieving solid improvements in video consistency (26.6%) and semantic-level accuracy (19.1%). Notably, NEURONS shows a strong functional correlation with the visual cortex, highlighting its potential for brain-computer interfaces and clinical applications. Code and model weights are available at: https://github.com/xmed-lab/NEURONS.
Authors:Yefei He, Yuanyu He, Shaoxuan He, Feng Chen, Hong Zhou, Kaipeng Zhang, Bohan Zhuang
Abstract:
Visual autoregressive models typically adhere to a raster-order ``next-token prediction" paradigm, which overlooks the spatial and temporal locality inherent in visual content. Specifically, visual tokens exhibit significantly stronger correlations with their spatially or temporally adjacent tokens compared to those that are distant. In this paper, we propose Neighboring Autoregressive Modeling (NAR), a novel paradigm that formulates autoregressive visual generation as a progressive outpainting procedure, following a near-to-far ``next-neighbor prediction" mechanism. Starting from an initial token, the remaining tokens are decoded in ascending order of their Manhattan distance from the initial token in the spatial-temporal space, progressively expanding the boundary of the decoded region. To enable parallel prediction of multiple adjacent tokens in the spatial-temporal space, we introduce a set of dimension-oriented decoding heads, each predicting the next token along a mutually orthogonal dimension. During inference, all tokens adjacent to the decoded tokens are processed in parallel, substantially reducing the model forward steps for generation. Experiments on ImageNet$256\times 256$ and UCF101 demonstrate that NAR achieves 2.4$\times$ and 8.6$\times$ higher throughput respectively, while obtaining superior FID/FVD scores for both image and video generation tasks compared to the PAR-4X approach. When evaluating on text-to-image generation benchmark GenEval, NAR with 0.8B parameters outperforms Chameleon-7B while using merely 0.4 of the training data. Code is available at https://github.com/ThisisBillhe/NAR.
Authors:Lehan Yang, Jincen Song, Tianlong Wang, Daiqing Qi, Weili Shi, Yuheng Liu, Sheng Li
Abstract:
We propose a new task, video referring matting, which obtains the alpha matte of a specified instance by inputting a referring caption. We treat the dense prediction task of matting as video generation, leveraging the text-to-video alignment prior of video diffusion models to generate alpha mattes that are temporally coherent and closely related to the corresponding semantic instances. Moreover, we propose a new Latent-Constructive loss to further distinguish different instances, enabling more controllable interactive matting. Additionally, we introduce a large-scale video referring matting dataset with 10,000 videos. To the best of our knowledge, this is the first dataset that concurrently contains captions, videos, and instance-level alpha mattes. Extensive experiments demonstrate the effectiveness of our method. The dataset and code are available at https://github.com/Hansxsourse/VRMDiff.
Authors:Yanming Zhang, Jun-Kun Chen, Jipeng Lyu, Yu-Xiong Wang
Abstract:
This paper introduces V$^2$Edit, a novel training-free framework for instruction-guided video and 3D scene editing. Addressing the critical challenge of balancing original content preservation with editing task fulfillment, our approach employs a progressive strategy that decomposes complex editing tasks into a sequence of simpler subtasks. Each subtask is controlled through three key synergistic mechanisms: the initial noise, noise added at each denoising step, and cross-attention maps between text prompts and video content. This ensures robust preservation of original video elements while effectively applying the desired edits. Beyond its native video editing capability, we extend V$^2$Edit to 3D scene editing via a "render-edit-reconstruct" process, enabling high-quality, 3D-consistent edits even for tasks involving substantial geometric changes such as object insertion. Extensive experiments demonstrate that our V$^2$Edit achieves high-quality and successful edits across various challenging video editing tasks and complex 3D scene editing tasks, thereby establishing state-of-the-art performance in both domains.
Authors:Yuwei Guo, Ceyuan Yang, Ziyan Yang, Zhibei Ma, Zhijie Lin, Zhenheng Yang, Dahua Lin, Lu Jiang
Abstract:
Recent advances in video generation can produce realistic, minute-long single-shot videos with scalable diffusion transformers. However, real-world narrative videos require multi-shot scenes with visual and dynamic consistency across shots. In this work, we introduce Long Context Tuning (LCT), a training paradigm that expands the context window of pre-trained single-shot video diffusion models to learn scene-level consistency directly from data. Our method expands full attention mechanisms from individual shots to encompass all shots within a scene, incorporating interleaved 3D position embedding and an asynchronous noise strategy, enabling both joint and auto-regressive shot generation without additional parameters. Models with bidirectional attention after LCT can further be fine-tuned with context-causal attention, facilitating auto-regressive generation with efficient KV-cache. Experiments demonstrate single-shot models after LCT can produce coherent multi-shot scenes and exhibit emerging capabilities, including compositional generation and interactive shot extension, paving the way for more practical visual content creation. See https://guoyww.github.io/projects/long-context-video/ for more details.
Authors:Zecheng Zhao, Zhi Chen, Zi Huang, Shazia Sadiq, Tong Chen
Abstract:
Text-to-Video Retrieval (TVR) aims to retrieve relevant videos based on textual queries. However, as video content evolves continuously, adapting TVR systems to new data remains a critical yet under-explored challenge. In this paper, we introduce the first benchmark for Continual Text-to-Video Retrieval (CTVR) to address the limitations of existing approaches. Current Pre-Trained Model (PTM)-based TVR methods struggle with maintaining model plasticity when adapting to new tasks, while existing Continual Learning (CL) methods suffer from catastrophic forgetting, leading to semantic misalignment between historical queries and stored video features. To address these two challenges, we propose FrameFusionMoE, a novel CTVR framework that comprises two key components: (1) the Frame Fusion Adapter (FFA), which captures temporal video dynamics while preserving model plasticity, and (2) the Task-Aware Mixture-of-Experts (TAME), which ensures consistent semantic alignment between queries across tasks and the stored video features. Thus, FrameFusionMoE enables effective adaptation to new video content while preserving historical text-video relevance to mitigate catastrophic forgetting. We comprehensively evaluate FrameFusionMoE on two benchmark datasets under various task settings. Results demonstrate that FrameFusionMoE outperforms existing CL and TVR methods, achieving superior retrieval performance with minimal degradation on earlier tasks when handling continuous video streams. Our code is available at: https://github.com/JasonCodeMaker/CTVR.
Authors:Xinran Ling, Chen Zhu, Meiqi Wu, Hangyu Li, Xiaokun Feng, Cundian Yang, Aiming Hao, Jiashu Zhu, Jiahong Wu, Xiangxiang Chu
Abstract:
Video generation has advanced rapidly, improving evaluation methods, yet assessing video's motion remains a major challenge. Specifically, there are two key issues: 1) current motion metrics do not fully align with human perceptions; 2) the existing motion prompts are limited. Based on these findings, we introduce VMBench--a comprehensive Video Motion Benchmark that has perception-aligned motion metrics and features the most diverse types of motion. VMBench has several appealing properties: 1) Perception-Driven Motion Evaluation Metrics, we identify five dimensions based on human perception in motion video assessment and develop fine-grained evaluation metrics, providing deeper insights into models' strengths and weaknesses in motion quality. 2) Meta-Guided Motion Prompt Generation, a structured method that extracts meta-information, generates diverse motion prompts with LLMs, and refines them through human-AI validation, resulting in a multi-level prompt library covering six key dynamic scene dimensions. 3) Human-Aligned Validation Mechanism, we provide human preference annotations to validate our benchmarks, with our metrics achieving an average 35.3% improvement in Spearman's correlation over baseline methods. This is the first time that the quality of motion in videos has been evaluated from the perspective of human perception alignment. Additionally, we will soon release VMBench at https://github.com/GD-AIGC/VMBench, setting a new standard for evaluating and advancing motion generation models.
Authors:Yasheng Sun, Zhiliang Xu, Hang Zhou, Jiazhi Guan, Quanwei Yang, Kaisiyuan Wang, Borong Liang, Yingying Li, Haocheng Feng, Jingdong Wang, Ziwei Liu, Koike Hideki
Abstract:
Co-speech gesture video synthesis is a challenging task that requires both probabilistic modeling of human gestures and the synthesis of realistic images that align with the rhythmic nuances of speech. To address these challenges, we propose Cosh-DiT, a Co-speech gesture video system with hybrid Diffusion Transformers that perform audio-to-motion and motion-to-video synthesis using discrete and continuous diffusion modeling, respectively. First, we introduce an audio Diffusion Transformer (Cosh-DiT-A) to synthesize expressive gesture dynamics synchronized with speech rhythms. To capture upper body, facial, and hand movement priors, we employ vector-quantized variational autoencoders (VQ-VAEs) to jointly learn their dependencies within a discrete latent space. Then, for realistic video synthesis conditioned on the generated speech-driven motion, we design a visual Diffusion Transformer (Cosh-DiT-V) that effectively integrates spatial and temporal contexts. Extensive experiments demonstrate that our framework consistently generates lifelike videos with expressive facial expressions and natural, smooth gestures that align seamlessly with speech.
Authors:Zhiyuan Zhang, Dongdong Chen, Jing Liao
Abstract:
We present I2V3D, a novel framework for animating static images into dynamic videos with precise 3D control, leveraging the strengths of both 3D geometry guidance and advanced generative models. Our approach combines the precision of a computer graphics pipeline, enabling accurate control over elements such as camera movement, object rotation, and character animation, with the visual fidelity of generative AI to produce high-quality videos from coarsely rendered inputs. To support animations with any initial start point and extended sequences, we adopt a two-stage generation process guided by 3D geometry: 1) 3D-Guided Keyframe Generation, where a customized image diffusion model refines rendered keyframes to ensure consistency and quality, and 2) 3D-Guided Video Interpolation, a training-free approach that generates smooth, high-quality video frames between keyframes using bidirectional guidance. Experimental results highlight the effectiveness of our framework in producing controllable, high-quality animations from single input images by harmonizing 3D geometry with generative models. The code for our framework will be publicly released.
Authors:Xiangyu Peng, Zangwei Zheng, Chenhui Shen, Tom Young, Xinying Guo, Binluo Wang, Hang Xu, Hongxin Liu, Mingyan Jiang, Wenjun Li, Yuhui Wang, Anbang Ye, Gang Ren, Qianran Ma, Wanying Liang, Xiang Lian, Xiwen Wu, Yuting Zhong, Zhuangyan Li, Chaoyu Gong, Guojun Lei, Leijun Cheng, Limin Zhang, Minghao Li, Ruijie Zhang, Silan Hu, Shijie Huang, Xiaokang Wang, Yuanheng Zhao, Yuqi Wang, Ziang Wei, Yang You
Abstract:
Video generation models have achieved remarkable progress in the past year. The quality of AI video continues to improve, but at the cost of larger model size, increased data quantity, and greater demand for training compute. In this report, we present Open-Sora 2.0, a commercial-level video generation model trained for only $200k. With this model, we demonstrate that the cost of training a top-performing video generation model is highly controllable. We detail all techniques that contribute to this efficiency breakthrough, including data curation, model architecture, training strategy, and system optimization. According to human evaluation results and VBench scores, Open-Sora 2.0 is comparable to global leading video generation models including the open-source HunyuanVideo and the closed-source Runway Gen-3 Alpha. By making Open-Sora 2.0 fully open-source, we aim to democratize access to advanced video generation technology, fostering broader innovation and creativity in content creation. All resources are publicly available at: https://github.com/hpcaitech/Open-Sora.
Authors:Jianqi Chen, Biao Zhang, Xiangjun Tang, Peter Wonka
Abstract:
We present V2M4, a novel 4D reconstruction method that directly generates a usable 4D mesh animation asset from a single monocular video. Unlike existing approaches that rely on priors from multi-view image and video generation models, our method is based on native 3D mesh generation models. Naively applying 3D mesh generation models to generate a mesh for each frame in a 4D task can lead to issues such as incorrect mesh poses, misalignment of mesh appearance, and inconsistencies in mesh geometry and texture maps. To address these problems, we propose a structured workflow that includes camera search and mesh reposing, condition embedding optimization for mesh appearance refinement, pairwise mesh registration for topology consistency, and global texture map optimization for texture consistency. Our method outputs high-quality 4D animated assets that are compatible with mainstream graphics and game software. Experimental results across a variety of animation types and motion amplitudes demonstrate the generalization and effectiveness of our method. Project page: https://windvchen.github.io/V2M4/.
Authors:Yifan Zhou, Zeqi Xiao, Shuai Yang, Xingang Pan
Abstract:
Latent Diffusion Models (LDMs) are known to have an unstable generation process, where even small perturbations or shifts in the input noise can lead to significantly different outputs. This hinders their applicability in applications requiring consistent results. In this work, we redesign LDMs to enhance consistency by making them shift-equivariant. While introducing anti-aliasing operations can partially improve shift-equivariance, significant aliasing and inconsistency persist due to the unique challenges in LDMs, including 1) aliasing amplification during VAE training and multiple U-Net inferences, and 2) self-attention modules that inherently lack shift-equivariance. To address these issues, we redesign the attention modules to be shift-equivariant and propose an equivariance loss that effectively suppresses the frequency bandwidth of the features in the continuous domain. The resulting alias-free LDM (AF-LDM) achieves strong shift-equivariance and is also robust to irregular warping. Extensive experiments demonstrate that AF-LDM produces significantly more consistent results than vanilla LDM across various applications, including video editing and image-to-image translation.
Authors:Chengshu Zhao, Yunyang Ge, Xinhua Cheng, Bin Zhu, Yatian Pang, Bin Lin, Fan Yang, Feng Gao, Li Yuan
Abstract:
Video body-swapping aims to replace the body in an existing video with a new body from arbitrary sources, which has garnered more attention in recent years. Existing methods treat video body-swapping as a composite of multiple tasks instead of an independent task and typically rely on various models to achieve video body-swapping sequentially. However, these methods fail to achieve end-to-end optimization for the video body-swapping which causes issues such as variations in luminance among frames, disorganized occlusion relationships, and the noticeable separation between bodies and background. In this work, we define video body-swapping as an independent task and propose three critical consistencies: identity consistency, motion consistency, and environment consistency. We introduce an end-to-end model named SwapAnyone, treating video body-swapping as a video inpainting task with reference fidelity and motion control. To improve the ability to maintain environmental harmony, particularly luminance harmony in the resulting video, we introduce a novel EnvHarmony strategy for training our model progressively. Additionally, we provide a dataset named HumanAction-32K covering various videos about human actions. Extensive experiments demonstrate that our method achieves State-Of-The-Art (SOTA) performance among open-source methods while approaching or surpassing closed-source models across multiple dimensions. All code, model weights, and the HumanAction-32K dataset will be open-sourced at https://github.com/PKU-YuanGroup/SwapAnyone.
Authors:Hyeonho Jeong, Suhyeon Lee, Jong Chul Ye
Abstract:
We introduce Reangle-A-Video, a unified framework for generating synchronized multi-view videos from a single input video. Unlike mainstream approaches that train multi-view video diffusion models on large-scale 4D datasets, our method reframes the multi-view video generation task as video-to-videos translation, leveraging publicly available image and video diffusion priors. In essence, Reangle-A-Video operates in two stages. (1) Multi-View Motion Learning: An image-to-video diffusion transformer is synchronously fine-tuned in a self-supervised manner to distill view-invariant motion from a set of warped videos. (2) Multi-View Consistent Image-to-Images Translation: The first frame of the input video is warped and inpainted into various camera perspectives under an inference-time cross-view consistency guidance using DUSt3R, generating multi-view consistent starting images. Extensive experiments on static view transport and dynamic camera control show that Reangle-A-Video surpasses existing methods, establishing a new solution for multi-view video generation. We will publicly release our code and data. Project page: https://hyeonho99.github.io/reangle-a-video/
Authors:Alex Ergasti, Giuseppe Gabriele Tarollo, Filippo Botti, Tomaso Fontanini, Claudio Ferrari, Massimo Bertozzi, Andrea Prati
Abstract:
Joint audio-video (AV) generation is still a significant challenge in generative AI, primarily due to three critical requirements: quality of the generated samples, seamless multimodal synchronization and temporal coherence, with audio tracks that match the visual data and vice versa, and limitless video duration. In this paper, we present $^R$-FLAV, a novel transformer-based architecture that addresses all the key challenges of AV generation. We explore three distinct cross modality interaction modules, with our lightweight temporal fusion module emerging as the most effective and computationally efficient approach for aligning audio and visual modalities. Our experimental results demonstrate that $^R$-FLAV outperforms existing state-of-the-art models in multimodal AV generation tasks. Our code and checkpoints are available at https://github.com/ErgastiAlex/R-FLAV.
Authors:Jing Wang, Ao Ma, Ke Cao, Jun Zheng, Zhanjie Zhang, Jiasong Feng, Shanyuan Liu, Yuhang Ma, Bo Cheng, Dawei Leng, Yuhui Yin, Xiaodan Liang
Abstract:
Recent rapid advancements in text-to-video (T2V) generation, such as SoRA and Kling, have shown great potential for building world simulators. However, current T2V models struggle to grasp abstract physical principles and generate videos that adhere to physical laws. This challenge arises primarily from a lack of clear guidance on physical information due to a significant gap between abstract physical principles and generation models. To this end, we introduce the World Simulator Assistant (WISA), an effective framework for decomposing and incorporating physical principles into T2V models. Specifically, WISA decomposes physical principles into textual physical descriptions, qualitative physical categories, and quantitative physical properties. To effectively embed these physical attributes into the generation process, WISA incorporates several key designs, including Mixture-of-Physical-Experts Attention (MoPA) and a Physical Classifier, enhancing the model's physics awareness. Furthermore, most existing datasets feature videos where physical phenomena are either weakly represented or entangled with multiple co-occurring processes, limiting their suitability as dedicated resources for learning explicit physical principles. We propose a novel video dataset, WISA-32K, collected based on qualitative physical categories. It consists of 32,000 videos, representing 17 physical laws across three domains of physics: dynamics, thermodynamics, and optics. Experimental results demonstrate that WISA can effectively enhance the compatibility of T2V models with real-world physical laws, achieving a considerable improvement on the VideoPhy benchmark. The visual exhibitions of WISA and WISA-32K are available in the https://360cvgroup.github.io/WISA/.
Authors:Xin Yu, Tianyu Wang, Soo Ye Kim, Paul Guerrero, Xi Chen, Qing Liu, Zhe Lin, Xiaojuan Qi
Abstract:
Simple as it seems, moving an object to another location within an image is, in fact, a challenging image-editing task that requires re-harmonizing the lighting, adjusting the pose based on perspective, accurately filling occluded regions, and ensuring coherent synchronization of shadows and reflections while maintaining the object identity. In this paper, we present ObjectMover, a generative model that can perform object movement in highly challenging scenes. Our key insight is that we model this task as a sequence-to-sequence problem and fine-tune a video generation model to leverage its knowledge of consistent object generation across video frames. We show that with this approach, our model is able to adjust to complex real-world scenarios, handling extreme lighting harmonization and object effect movement. As large-scale data for object movement are unavailable, we construct a data generation pipeline using a modern game engine to synthesize high-quality data pairs. We further propose a multi-task learning strategy that enables training on real-world video data to improve the model generalization. Through extensive experiments, we demonstrate that ObjectMover achieves outstanding results and adapts well to real-world scenarios.
Authors:Zeyinzi Jiang, Zhen Han, Chaojie Mao, Jingfeng Zhang, Yulin Pan, Yu Liu
Abstract:
Diffusion Transformer has demonstrated powerful capability and scalability in generating high-quality images and videos. Further pursuing the unification of generation and editing tasks has yielded significant progress in the domain of image content creation. However, due to the intrinsic demands for consistency across both temporal and spatial dynamics, achieving a unified approach for video synthesis remains challenging. We introduce VACE, which enables users to perform Video tasks within an All-in-one framework for Creation and Editing. These tasks include reference-to-video generation, video-to-video editing, and masked video-to-video editing. Specifically, we effectively integrate the requirements of various tasks by organizing video task inputs, such as editing, reference, and masking, into a unified interface referred to as the Video Condition Unit (VCU). Furthermore, by utilizing a Context Adapter structure, we inject different task concepts into the model using formalized representations of temporal and spatial dimensions, allowing it to handle arbitrary video synthesis tasks flexibly. Extensive experiments demonstrate that the unified model of VACE achieves performance on par with task-specific models across various subtasks. Simultaneously, it enables diverse applications through versatile task combinations. Project page: https://ali-vilab.github.io/VACE-Page/.
Authors:Weijia Wu, Zeyu Zhu, Mike Zheng Shou
Abstract:
Existing long-form video generation frameworks lack automated planning, requiring manual input for storylines, scenes, cinematography, and character interactions, resulting in high costs and inefficiencies. To address these challenges, we present MovieAgent, an automated movie generation via multi-agent Chain of Thought (CoT) planning. MovieAgent offers two key advantages: 1) We firstly explore and define the paradigm of automated movie/long-video generation. Given a script and character bank, our MovieAgent can generates multi-scene, multi-shot long-form videos with a coherent narrative, while ensuring character consistency, synchronized subtitles, and stable audio throughout the film. 2) MovieAgent introduces a hierarchical CoT-based reasoning process to automatically structure scenes, camera settings, and cinematography, significantly reducing human effort. By employing multiple LLM agents to simulate the roles of a director, screenwriter, storyboard artist, and location manager, MovieAgent streamlines the production pipeline. Experiments demonstrate that MovieAgent achieves new state-of-the-art results in script faithfulness, character consistency, and narrative coherence. Our hierarchical framework takes a step forward and provides new insights into fully automated movie generation. The code and project website are available at: https://github.com/showlab/MovieAgent and https://weijiawu.github.io/MovieAgent.
Authors:Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, Linfeng Zhang
Abstract:
Diffusion Transformers (DiT) have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. To solve this problem, feature caching has been proposed to accelerate diffusion models by caching the features in the previous timesteps and then reusing them in the following timesteps. However, at timesteps with significant intervals, the feature similarity in diffusion models decreases substantially, leading to a pronounced increase in errors introduced by feature caching, significantly harming the generation quality. To solve this problem, we propose TaylorSeer, which firstly shows that features of diffusion models at future timesteps can be predicted based on their values at previous timesteps. Based on the fact that features change slowly and continuously across timesteps, TaylorSeer employs a differential method to approximate the higher-order derivatives of features and predict features in future timesteps with Taylor series expansion. Extensive experiments demonstrate its significant effectiveness in both image and video synthesis, especially in high acceleration ratios. For instance, it achieves an almost lossless acceleration of 4.99$\times$ on FLUX and 5.00$\times$ on HunyuanVideo without additional training. On DiT, it achieves $3.41$ lower FID compared with previous SOTA at $4.53$$\times$ acceleration. %Our code is provided in the supplementary materials and will be made publicly available on GitHub. Our codes have been released in Github:https://github.com/Shenyi-Z/TaylorSeer
Authors:Hritik Bansal, Clark Peng, Yonatan Bitton, Roman Goldenberg, Aditya Grover, Kai-Wei Chang
Abstract:
Large-scale video generative models, capable of creating realistic videos of diverse visual concepts, are strong candidates for general-purpose physical world simulators. However, their adherence to physical commonsense across real-world actions remains unclear (e.g., playing tennis, backflip). Existing benchmarks suffer from limitations such as limited size, lack of human evaluation, sim-to-real gaps, and absence of fine-grained physical rule analysis. To address this, we introduce VideoPhy-2, an action-centric dataset for evaluating physical commonsense in generated videos. We curate 200 diverse actions and detailed prompts for video synthesis from modern generative models. We perform human evaluation that assesses semantic adherence, physical commonsense, and grounding of physical rules in the generated videos. Our findings reveal major shortcomings, with even the best model achieving only 22% joint performance (i.e., high semantic and physical commonsense adherence) on the hard subset of VideoPhy-2. We find that the models particularly struggle with conservation laws like mass and momentum. Finally, we also train VideoPhy-AutoEval, an automatic evaluator for fast, reliable assessment on our dataset. Overall, VideoPhy-2 serves as a rigorous benchmark, exposing critical gaps in video generative models and guiding future research in physically-grounded video generation. The data and code is available at https://videophy2.github.io/.
Authors:Junyi Wu, Zhiteng Li, Zheng Hui, Yulun Zhang, Linghe Kong, Xiaokang Yang
Abstract:
Recently, Diffusion Transformers (DiTs) have emerged as a dominant architecture in video generation, surpassing U-Net-based models in terms of performance. However, the enhanced capabilities of DiTs come with significant drawbacks, including increased computational and memory costs, which hinder their deployment on resource-constrained devices. Current acceleration techniques, such as quantization and cache mechanism, offer limited speedup and are often applied in isolation, failing to fully address the complexities of DiT architectures. In this paper, we propose QuantCache, a novel training-free inference acceleration framework that jointly optimizes hierarchical latent caching, adaptive importance-guided quantization, and structural redundancy-aware pruning. QuantCache achieves an end-to-end latency speedup of 6.72$\times$ on Open-Sora with minimal loss in generation quality. Extensive experiments across multiple video generation benchmarks demonstrate the effectiveness of our method, setting a new standard for efficient DiT inference. The code and models will be available at https://github.com/JunyiWuCode/QuantCache.
Authors:Chen Liu, Tobias Ritschel
Abstract:
We propose a novel generative video model to robustly learn temporal change as a neural Ordinary Differential Equation (ODE) flow with a bilinear objective which combines two aspects: The first is to map from the past into future video frames directly. Previous work has mapped the noise to new frames, a more computationally expensive process. Unfortunately, starting from the previous frame, instead of noise, is more prone to drifting errors. Hence, second, we additionally learn how to remove the accumulated errors as the joint objective by adding noise during training. We demonstrate unconditional video generation in a streaming manner for various video datasets, all at competitive quality compared to a conditional diffusion baseline but with higher speed, i.e., fewer ODE solver steps.
Authors:Shaobin Zhuang, Zhipeng Huang, Binxin Yang, Ying Zhang, Fangyikang Wang, Canmiao Fu, Chong Sun, Zheng-Jun Zha, Chen Li, Yali Wang
Abstract:
Video editing increasingly demands the ability to incorporate specific real-world instances into existing footage, yet current approaches fundamentally fail to capture the unique visual characteristics of particular subjects and ensure natural instance/scene interactions. We formalize this overlooked yet critical editing paradigm as "Get-In-Video Editing", where users provide reference images to precisely specify visual elements they wish to incorporate into videos. Addressing this task's dual challenges, severe training data scarcity and technical challenges in maintaining spatiotemporal coherence, we introduce three key contributions. First, we develop GetIn-1M dataset created through our automated Recognize-Track-Erase pipeline, which sequentially performs video captioning, salient instance identification, object detection, temporal tracking, and instance removal to generate high-quality video editing pairs with comprehensive annotations (reference image, tracking mask, instance prompt). Second, we present GetInVideo, a novel end-to-end framework that leverages a diffusion transformer architecture with 3D full attention to process reference images, condition videos, and masks simultaneously, maintaining temporal coherence, preserving visual identity, and ensuring natural scene interactions when integrating reference objects into videos. Finally, we establish GetInBench, the first comprehensive benchmark for Get-In-Video Editing scenario, demonstrating our approach's superior performance through extensive evaluations. Our work enables accessible, high-quality incorporation of specific real-world subjects into videos, significantly advancing personalized video editing capabilities.
Authors:Hongwei Yi, Tian Ye, Shitong Shao, Xuancheng Yang, Jiantong Zhao, Hanzhong Guo, Terrance Wang, Qingyu Yin, Zeke Xie, Lei Zhu, Wei Li, Michael Lingelbach, Daquan Zhou
Abstract:
We present MagicInfinite, a novel diffusion Transformer (DiT) framework that overcomes traditional portrait animation limitations, delivering high-fidelity results across diverse character types-realistic humans, full-body figures, and stylized anime characters. It supports varied facial poses, including back-facing views, and animates single or multiple characters with input masks for precise speaker designation in multi-character scenes. Our approach tackles key challenges with three innovations: (1) 3D full-attention mechanisms with a sliding window denoising strategy, enabling infinite video generation with temporal coherence and visual quality across diverse character styles; (2) a two-stage curriculum learning scheme, integrating audio for lip sync, text for expressive dynamics, and reference images for identity preservation, enabling flexible multi-modal control over long sequences; and (3) region-specific masks with adaptive loss functions to balance global textual control and local audio guidance, supporting speaker-specific animations. Efficiency is enhanced via our innovative unified step and cfg distillation techniques, achieving a 20x inference speed boost over the basemodel: generating a 10 second 540x540p video in 10 seconds or 720x720p in 30 seconds on 8 H100 GPUs, without quality loss. Evaluations on our new benchmark demonstrate MagicInfinite's superiority in audio-lip synchronization, identity preservation, and motion naturalness across diverse scenarios. It is publicly available at https://www.hedra.com/, with examples at https://magicinfinite.github.io/.
Authors:Yuxuan Bian, Zhaoyang Zhang, Xuan Ju, Mingdeng Cao, Liangbin Xie, Ying Shan, Qiang Xu
Abstract:
Video inpainting, which aims to restore corrupted video content, has experienced substantial progress. Despite these advances, existing methods, whether propagating unmasked region pixels through optical flow and receptive field priors, or extending image-inpainting models temporally, face challenges in generating fully masked objects or balancing the competing objectives of background context preservation and foreground generation in one model, respectively. To address these limitations, we propose a novel dual-stream paradigm VideoPainter that incorporates an efficient context encoder (comprising only 6% of the backbone parameters) to process masked videos and inject backbone-aware background contextual cues to any pre-trained video DiT, producing semantically consistent content in a plug-and-play manner. This architectural separation significantly reduces the model's learning complexity while enabling nuanced integration of crucial background context. We also introduce a novel target region ID resampling technique that enables any-length video inpainting, greatly enhancing our practical applicability. Additionally, we establish a scalable dataset pipeline leveraging current vision understanding models, contributing VPData and VPBench to facilitate segmentation-based inpainting training and assessment, the largest video inpainting dataset and benchmark to date with over 390K diverse clips. Using inpainting as a pipeline basis, we also explore downstream applications including video editing and video editing pair data generation, demonstrating competitive performance and significant practical potential. Extensive experiments demonstrate VideoPainter's superior performance in both any-length video inpainting and editing, across eight key metrics, including video quality, mask region preservation, and textual coherence.
Authors:Yibin Wang, Yuhang Zang, Hao Li, Cheng Jin, Jiaqi Wang
Abstract:
Recent advances in human preference alignment have significantly enhanced multimodal generation and understanding. A key approach is training reward models to guide preference optimization. However, existing models are often task-specific, limiting their adaptability across diverse visual applications. We also argue that jointly learning to assess multiple tasks may foster a synergistic effect, where improved image understanding enhances image generation assessment, and refined image evaluation benefits video assessment through better frame analysis. To this end, this paper proposes UnifiedReward, the first unified reward model for multimodal understanding and generation assessment, enabling both pairwise ranking and pointwise scoring, which can be employed for vision model preference alignment. Specifically, (1) we first develop UnifiedReward on our constructed large-scale human preference dataset, including both image and video generation/understanding tasks. (2) Then, it is utilized to automatically construct high-quality preference pair data based on the vision models, fine-gradually filtering their outputs through pair ranking and point sifting. (3) Finally, these data are used for their preference alignment through Direct Preference Optimization (DPO). Experimental results demonstrate that joint learning to assess diverse visual tasks can lead to substantial mutual benefits and we apply our pipeline to both image and video understanding/generation tasks, significantly improving the performance in each domain.
Authors:Emanuele Bugliarello, Anurag Arnab, Roni Paiss, Pieter-Jan Kindermans, Cordelia Schmid
Abstract:
High-quality benchmarks are crucial for driving progress in machine learning research. However, despite the growing interest in video generation, there is no comprehensive dataset to evaluate human generation. Humans can perform a wide variety of actions and interactions, but existing datasets, like TikTok and TED-Talks, lack the diversity and complexity to fully capture the capabilities of video generation models. We close this gap by introducing `What Are You Doing?' (WYD): a new benchmark for fine-grained evaluation of controllable image-to-video generation of humans. WYD consists of 1{,}544 captioned videos that have been meticulously collected and annotated with 56 fine-grained categories. These allow us to systematically measure performance across 9 aspects of human generation, including actions, interactions and motion. We also propose and validate automatic metrics that leverage our annotations and better capture human evaluations. Equipped with our dataset and metrics, we perform in-depth analyses of seven state-of-the-art models in controllable image-to-video generation, showing how WYD provides novel insights about the capabilities of these models. We release our data and code to drive forward progress in human video generation modeling at https://github.com/google-deepmind/wyd-benchmark.
Authors:Aoxiong Yin, Kai Shen, Yichong Leng, Xu Tan, Xinyu Zhou, Juncheng Li, Siliang Tang
Abstract:
Recent advancements in text-to-video (T2V) generation have been driven by two competing paradigms: autoregressive language models and diffusion models. However, each paradigm has intrinsic limitations: language models struggle with visual quality and error accumulation, while diffusion models lack semantic understanding and causal modeling. In this work, we propose LanDiff, a hybrid framework that synergizes the strengths of both paradigms through coarse-to-fine generation. Our architecture introduces three key innovations: (1) a semantic tokenizer that compresses 3D visual features into compact 1D discrete representations through efficient semantic compression, achieving a $\sim$14,000$\times$ compression ratio; (2) a language model that generates semantic tokens with high-level semantic relationships; (3) a streaming diffusion model that refines coarse semantics into high-fidelity videos. Experiments show that LanDiff, a 5B model, achieves a score of 85.43 on the VBench T2V benchmark, surpassing the state-of-the-art open-source models Hunyuan Video (13B) and other commercial models such as Sora, Kling, and Hailuo. Furthermore, our model also achieves state-of-the-art performance in long video generation, surpassing other open-source models in this field. Our demo can be viewed at https://landiff.github.io/.
Authors:Nianzu Yang, Pandeng Li, Liming Zhao, Yang Li, Chen-Wei Xie, Yehui Tang, Xudong Lu, Zhihang Liu, Yun Zheng, Yu Liu, Junchi Yan
Abstract:
Existing video tokenizers typically use the traditional Variational Autoencoder (VAE) architecture for video compression and reconstruction. However, to achieve good performance, its training process often relies on complex multi-stage training tricks that go beyond basic reconstruction loss and KL regularization. Among these tricks, the most challenging is the precise tuning of adversarial training with additional Generative Adversarial Networks (GANs) in the final stage, which can hinder stable convergence. In contrast to GANs, diffusion models offer more stable training processes and can generate higher-quality results. Inspired by these advantages, we propose CDT, a novel Conditioned Diffusion-based video Tokenizer, that replaces the GAN-based decoder with a conditional causal diffusion model. The encoder compresses spatio-temporal information into compact latents, while the decoder reconstructs videos through a reverse diffusion process conditioned on these latents. During inference, we incorporate a feature cache mechanism to generate videos of arbitrary length while maintaining temporal continuity and adopt sampling acceleration technique to enhance efficiency. Trained using only a basic MSE diffusion loss for reconstruction, along with KL term and LPIPS perceptual loss from scratch, extensive experiments demonstrate that CDT achieves state-of-the-art performance in video reconstruction tasks with just a single-step sampling. Even a scaled-down version of CDT (3$\times$ inference speedup) still performs comparably with top baselines. Moreover, the latent video generation model trained with CDT also exhibits superior performance. The source code and pretrained weights are available at https://github.com/ali-vilab/CDT.
Authors:Zhao Yang, Zezhong Qian, Xiaofan Li, Weixiang Xu, Gongpeng Zhao, Ruohong Yu, Lingsi Zhu, Longjun Liu
Abstract:
Accurate and high-fidelity driving scene reconstruction demands the effective utilization of comprehensive scene information as conditional inputs. Existing methods predominantly rely on 3D bounding boxes and BEV road maps for foreground and background control, which fail to capture the full complexity of driving scenes and adequately integrate multimodal information. In this work, we present DualDiff, a dual-branch conditional diffusion model designed to enhance driving scene generation across multiple views and video sequences. Specifically, we introduce Occupancy Ray-shape Sampling (ORS) as a conditional input, offering rich foreground and background semantics alongside 3D spatial geometry to precisely control the generation of both elements. To improve the synthesis of fine-grained foreground objects, particularly complex and distant ones, we propose a Foreground-Aware Mask (FGM) denoising loss function. Additionally, we develop the Semantic Fusion Attention (SFA) mechanism to dynamically prioritize relevant information and suppress noise, enabling more effective multimodal fusion. Finally, to ensure high-quality image-to-video generation, we introduce the Reward-Guided Diffusion (RGD) framework, which maintains global consistency and semantic coherence in generated videos. Extensive experiments demonstrate that DualDiff achieves state-of-the-art (SOTA) performance across multiple datasets. On the NuScenes dataset, DualDiff reduces the FID score by 4.09% compared to the best baseline. In downstream tasks, such as BEV segmentation, our method improves vehicle mIoU by 4.50% and road mIoU by 1.70%, while in BEV 3D object detection, the foreground mAP increases by 1.46%. Code will be made available at https://github.com/yangzhaojason/DualDiff.
Authors:Zhen Yang, Guibao Shen, Minyang Li, Liang Hou, Mushui Liu, Luozhou Wang, Xin Tao, Pengfei Wan, Di Zhang, Ying-Cong Chen
Abstract:
Diffusion models have achieved remarkable progress across various visual generation tasks. However, their performance significantly declines when generating content at resolutions higher than those used during training. Although numerous methods have been proposed to enable high-resolution generation, they all suffer from inefficiency. In this paper, we propose RectifiedHR, a straightforward and efficient solution for training-free high-resolution synthesis. Specifically, we propose a noise refresh strategy that unlocks the model's training-free high-resolution synthesis capability and improves efficiency. Additionally, we are the first to observe the phenomenon of energy decay, which may cause image blurriness during the high-resolution synthesis process. To address this issue, we introduce average latent energy analysis and find that tuning the classifier-free guidance hyperparameter can significantly improve generation performance. Our method is entirely training-free and demonstrates efficient performance. Furthermore, we show that RectifiedHR is compatible with various diffusion model techniques, enabling advanced features such as image editing, customized generation, and video synthesis. Extensive comparisons with numerous baseline methods validate the superior effectiveness and efficiency of RectifiedHR.
Authors:Zicheng Zhang, Tengchuan Kou, Shushi Wang, Chunyi Li, Wei Sun, Wei Wang, Xiaoyu Li, Zongyu Wang, Xuezhi Cao, Xiongkuo Min, Xiaohong Liu, Guangtao Zhai
Abstract:
Evaluating text-to-vision content hinges on two crucial aspects: visual quality and alignment. While significant progress has been made in developing objective models to assess these dimensions, the performance of such models heavily relies on the scale and quality of human annotations. According to Scaling Law, increasing the number of human-labeled instances follows a predictable pattern that enhances the performance of evaluation models. Therefore, we introduce a comprehensive dataset designed to Evaluate Visual quality and Alignment Level for text-to-vision content (Q-EVAL-100K), featuring the largest collection of human-labeled Mean Opinion Scores (MOS) for the mentioned two aspects. The Q-EVAL-100K dataset encompasses both text-to-image and text-to-video models, with 960K human annotations specifically focused on visual quality and alignment for 100K instances (60K images and 40K videos). Leveraging this dataset with context prompt, we propose Q-Eval-Score, a unified model capable of evaluating both visual quality and alignment with special improvements for handling long-text prompt alignment. Experimental results indicate that the proposed Q-Eval-Score achieves superior performance on both visual quality and alignment, with strong generalization capabilities across other benchmarks. These findings highlight the significant value of the Q-EVAL-100K dataset. Data and codes will be available at https://github.com/zzc-1998/Q-Eval.
Authors:Wenhao Wang, Yi Yang
Abstract:
Text-to-video generative models convert textual prompts into dynamic visual content, offering wide-ranging applications in film production, gaming, and education. However, their real-world performance often falls short of user expectations. One key reason is that these models have not been trained on videos related to some topics users want to create. In this paper, we propose VideoUFO, the first Video dataset specifically curated to align with Users' FOcus in real-world scenarios. Beyond this, our VideoUFO also features: (1) minimal (0.29%) overlap with existing video datasets, and (2) videos searched exclusively via YouTube's official API under the Creative Commons license. These two attributes provide future researchers with greater freedom to broaden their training sources. The VideoUFO comprises over 1.09 million video clips, each paired with both a brief and a detailed caption (description). Specifically, through clustering, we first identify 1,291 user-focused topics from the million-scale real text-to-video prompt dataset, VidProM. Then, we use these topics to retrieve videos from YouTube, split the retrieved videos into clips, and generate both brief and detailed captions for each clip. After verifying the clips with specified topics, we are left with about 1.09 million video clips. Our experiments reveal that (1) current 16 text-to-video models do not achieve consistent performance across all user-focused topics; and (2) a simple model trained on VideoUFO outperforms others on worst-performing topics. The dataset and code are publicly available at https://huggingface.co/datasets/WenhaoWang/VideoUFO and https://github.com/WangWenhao0716/BenchUFO under the CC BY 4.0 License.
Authors:Shuang Li, Yihuai Gao, Dorsa Sadigh, Shuran Song
Abstract:
A unified video and action model holds significant promise for robotics, where videos provide rich scene information for action prediction, and actions provide dynamics information for video prediction. However, effectively combining video generation and action prediction remains challenging, and current video generation-based methods struggle to match the performance of direct policy learning in action accuracy and inference speed. To bridge this gap, we introduce the Unified Video Action model (UVA), which jointly optimizes video and action predictions to achieve both high accuracy and efficient action inference. The key lies in learning a joint video-action latent representation and decoupling video-action decoding. The joint latent representation bridges the visual and action domains, effectively modeling the relationship between video and action sequences. Meanwhile, the decoupled decoding, powered by two lightweight diffusion heads, enables high-speed action inference by bypassing video generation during inference. Such a unified framework further enables versatile functionality through masked input training. By selectively masking actions or videos, a single model can tackle diverse tasks beyond policy learning, such as forward and inverse dynamics modeling and video generation. Via an extensive set of experiments, we demonstrate that UVA can serve as a general-purpose solution for a wide range of robotics tasks, such as policy learning, forward/inverse dynamics and video observation prediction, without compromising performance compared to methods tailored for specific applications. Results are best viewed on https://unified-video-action-model.github.io/.
Authors:Xiuli Bi, Jianfei Yuan, Bo Liu, Yong Zhang, Xiaodong Cun, Chi-Man Pun, Bin Xiao
Abstract:
We present Mobius, a novel method to generate seamlessly looping videos from text descriptions directly without any user annotations, thereby creating new visual materials for the multi-media presentation. Our method repurposes the pre-trained video latent diffusion model for generating looping videos from text prompts without any training. During inference, we first construct a latent cycle by connecting the starting and ending noise of the videos. Given that the temporal consistency can be maintained by the context of the video diffusion model, we perform multi-frame latent denoising by gradually shifting the first-frame latent to the end in each step. As a result, the denoising context varies in each step while maintaining consistency throughout the inference process. Moreover, the latent cycle in our method can be of any length. This extends our latent-shifting approach to generate seamless looping videos beyond the scope of the video diffusion model's context. Unlike previous cinemagraphs, the proposed method does not require an image as appearance, which will restrict the motions of the generated results. Instead, our method can produce more dynamic motion and better visual quality. We conduct multiple experiments and comparisons to verify the effectiveness of the proposed method, demonstrating its efficacy in different scenarios. All the code will be made available.
Authors:Yuhao Li, Mirana Claire Angel, Salman Khan, Yu Zhu, Jinqiu Sun, Yanning Zhang, Fahad Shahbaz Khan
Abstract:
Trajectory-based motion control has emerged as an intuitive and efficient approach for controllable video generation. However, the existing trajectory-based approaches are usually limited to only generating the motion trajectory of the controlled object and ignoring the dynamic interactions between the controlled object and its surroundings. To address this limitation, we propose a Chain-of-Thought-based motion controller for controllable video generation, named C-Drag. Instead of directly generating the motion of some objects, our C-Drag first performs object perception and then reasons the dynamic interactions between different objects according to the given motion control of the objects. Specifically, our method includes an object perception module and a Chain-of-Thought-based motion reasoning module. The object perception module employs visual language models to capture the position and category information of various objects within the image. The Chain-of-Thought-based motion reasoning module takes this information as input and conducts a stage-wise reasoning process to generate motion trajectories for each of the affected objects, which are subsequently fed to the diffusion model for video synthesis. Furthermore, we introduce a new video object interaction (VOI) dataset to evaluate the generation quality of motion controlled video generation methods. Our VOI dataset contains three typical types of interactions and provides the motion trajectories of objects that can be used for accurate performance evaluation. Experimental results show that C-Drag achieves promising performance across multiple metrics, excelling in object motion control. Our benchmark, codes, and models will be available at https://github.com/WesLee88524/C-Drag-Official-Repo.
Authors:Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, Jianfei Chen
Abstract:
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
Authors:Xiangpeng Yang, Linchao Zhu, Hehe Fan, Yi Yang
Abstract:
Recent advancements in diffusion models have significantly improved video generation and editing capabilities. However, multi-grained video editing, which encompasses class-level, instance-level, and part-level modifications, remains a formidable challenge. The major difficulties in multi-grained editing include semantic misalignment of text-to-region control and feature coupling within the diffusion model. To address these difficulties, we present VideoGrain, a zero-shot approach that modulates space-time (cross- and self-) attention mechanisms to achieve fine-grained control over video content. We enhance text-to-region control by amplifying each local prompt's attention to its corresponding spatial-disentangled region while minimizing interactions with irrelevant areas in cross-attention. Additionally, we improve feature separation by increasing intra-region awareness and reducing inter-region interference in self-attention. Extensive experiments demonstrate our method achieves state-of-the-art performance in real-world scenarios. Our code, data, and demos are available at https://knightyxp.github.io/VideoGrain_project_page/
Authors:Zhong Li, Qi Huang, Lincen Yang, Jiayang Shi, Zhao Yang, Niki van Stein, Thomas Bäck, Matthijs van Leeuwen
Abstract:
In recent years, generative models have achieved remarkable performance across diverse applications, including image generation, text synthesis, audio creation, video generation, and data augmentation. Diffusion models have emerged as superior alternatives to Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) by addressing their limitations, such as training instability, mode collapse, and poor representation of multimodal distributions. This success has spurred widespread research interest. In the domain of tabular data, diffusion models have begun to showcase similar advantages over GANs and VAEs, achieving significant performance breakthroughs and demonstrating their potential for addressing unique challenges in tabular data modeling. However, while domains like images and time series have numerous surveys summarizing advancements in diffusion models, there remains a notable gap in the literature for tabular data. Despite the increasing interest in diffusion models for tabular data, there has been little effort to systematically review and summarize these developments. This lack of a dedicated survey limits a clear understanding of the challenges, progress, and future directions in this critical area. This survey addresses this gap by providing a comprehensive review of diffusion models for tabular data. Covering works from June 2015, when diffusion models emerged, to December 2024, we analyze nearly all relevant studies, with updates maintained in a \href{https://github.com/Diffusion-Model-Leiden/awesome-diffusion-models-for-tabular-data}{GitHub repository}. Assuming readers possess foundational knowledge of statistics and diffusion models, we employ mathematical formulations to deliver a rigorous and detailed review, aiming to promote developments in this emerging and exciting area.
Authors:Min Zhao, Guande He, Yixiao Chen, Hongzhou Zhu, Chongxuan Li, Jun Zhu
Abstract:
Recent advancements in video generation have enabled models to synthesize high-quality, minute-long videos. However, generating even longer videos with temporal coherence remains a major challenge and existing length extrapolation methods lead to temporal repetition or motion deceleration. In this work, we systematically analyze the role of frequency components in positional embeddings and identify an intrinsic frequency that primarily governs extrapolation behavior. Based on this insight, we propose RIFLEx, a minimal yet effective approach that reduces the intrinsic frequency to suppress repetition while preserving motion consistency, without requiring any additional modifications. RIFLEx offers a true free lunch--achieving high-quality 2x extrapolation on state-of-the-art video diffusion transformers in a completely training-free manner. Moreover, it enhances quality and enables 3x extrapolation by minimal fine-tuning without long videos. Project page and codes: https://riflex-video.github.io/.
Authors:Florent Bartoccioni, Elias Ramzi, Victor Besnier, Shashanka Venkataramanan, Tuan-Hung Vu, Yihong Xu, Loick Chambon, Spyros Gidaris, Serkan Odabas, David Hurych, Renaud Marlet, Alexandre Boulch, Mickael Chen, Ãloi Zablocki, Andrei Bursuc, Eduardo Valle, Matthieu Cord
Abstract:
We explore the potential of large-scale generative video models for autonomous driving, introducing an open-source auto-regressive video model (VaViM) and its companion video-action model (VaVAM) to investigate how video pre-training transfers to real-world driving. VaViM is a simple auto-regressive video model that predicts frames using spatio-temporal token sequences. We show that it captures the semantics and dynamics of driving scenes. VaVAM, the video-action model, leverages the learned representations of VaViM to generate driving trajectories through imitation learning. Together, the models form a complete perception-to-action pipeline. We evaluate our models in open- and closed-loop driving scenarios, revealing that video-based pre-training holds promise for autonomous driving. Key insights include the semantic richness of the learned representations, the benefits of scaling for video synthesis, and the complex relationship between model size, data, and safety metrics in closed-loop evaluations. We release code and model weights at https://github.com/valeoai/VideoActionModel
Authors:Rameen Abdal, Or Patashnik, Ivan Skorokhodov, Willi Menapace, Aliaksandr Siarohin, Sergey Tulyakov, Daniel Cohen-Or, Kfir Aberman
Abstract:
Personalizing generative text-to-image models has seen remarkable progress, but extending this personalization to text-to-video models presents unique challenges. Unlike static concepts, personalizing text-to-video models has the potential to capture dynamic concepts, i.e., entities defined not only by their appearance but also by their motion. In this paper, we introduce Set-and-Sequence, a novel framework for personalizing Diffusion Transformers (DiTs)-based generative video models with dynamic concepts. Our approach imposes a spatio-temporal weight space within an architecture that does not explicitly separate spatial and temporal features. This is achieved in two key stages. First, we fine-tune Low-Rank Adaptation (LoRA) layers using an unordered set of frames from the video to learn an identity LoRA basis that represents the appearance, free from temporal interference. In the second stage, with the identity LoRAs frozen, we augment their coefficients with Motion Residuals and fine-tune them on the full video sequence, capturing motion dynamics. Our Set-and-Sequence framework results in a spatio-temporal weight space that effectively embeds dynamic concepts into the video model's output domain, enabling unprecedented editability and compositionality while setting a new benchmark for personalizing dynamic concepts.
Authors:Ivan Skorokhodov, Sharath Girish, Benran Hu, Willi Menapace, Yanyu Li, Rameen Abdal, Sergey Tulyakov, Aliaksandr Siarohin
Abstract:
Latent diffusion models have emerged as the leading approach for generating high-quality images and videos, utilizing compressed latent representations to reduce the computational burden of the diffusion process. While recent advancements have primarily focused on scaling diffusion backbones and improving autoencoder reconstruction quality, the interaction between these components has received comparatively less attention. In this work, we perform a spectral analysis of modern autoencoders and identify inordinate high-frequency components in their latent spaces, which are especially pronounced in the autoencoders with a large bottleneck channel size. We hypothesize that this high-frequency component interferes with the coarse-to-fine nature of the diffusion synthesis process and hinders the generation quality. To mitigate the issue, we propose scale equivariance: a simple regularization strategy that aligns latent and RGB spaces across frequencies by enforcing scale equivariance in the decoder. It requires minimal code changes and only up to 20K autoencoder fine-tuning steps, yet significantly improves generation quality, reducing FID by 19% for image generation on ImageNet-1K $256^2$ and FVD by at least 44% for video generation on Kinetics-700 $17 \times 256^2$. The source code is available at https://github.com/snap-research/diffusability.
Authors:Hai Wang, Xiaoyu Xiang, Weihao Xia, Jing-Hao Xue
Abstract:
The advent of text-driven 360-degree panorama generation, enabling the synthesis of 360-degree panoramic images directly from textual descriptions, marks a transformative advancement in immersive visual content creation. This innovation significantly simplifies the traditionally complex process of producing such content. Recent progress in text-to-image diffusion models has accelerated the rapid development in this emerging field. This survey presents a comprehensive review of text-driven 360-degree panorama generation, offering an in-depth analysis of state-of-the-art algorithms. We extend our analysis to two closely related domains: text-driven 360-degree 3D scene generation and text-driven 360-degree panoramic video generation. Furthermore, we critically examine current limitations and propose promising directions for future research. A curated project page with relevant resources and research papers is available at https://littlewhitesea.github.io/Text-Driven-Pano-Gen/.
Authors:Ke Cao, Jing Wang, Ao Ma, Jiasong Feng, Zhanjie Zhang, Xuanhua He, Shanyuan Liu, Bo Cheng, Dawei Leng, Yuhui Yin, Jie Zhang
Abstract:
The Diffusion Transformer plays a pivotal role in advancing text-to-image and text-to-video generation, owing primarily to its inherent scalability. However, existing controlled diffusion transformer methods incur significant parameter and computational overheads and suffer from inefficient resource allocation due to their failure to account for the varying relevance of control information across different transformer layers. To address this, we propose the Relevance-Guided Efficient Controllable Generation framework, RelaCtrl, enabling efficient and resource-optimized integration of control signals into the Diffusion Transformer. First, we evaluate the relevance of each layer in the Diffusion Transformer to the control information by assessing the "ControlNet Relevance Score"-i.e., the impact of skipping each control layer on both the quality of generation and the control effectiveness during inference. Based on the strength of the relevance, we then tailor the positioning, parameter scale, and modeling capacity of the control layers to reduce unnecessary parameters and redundant computations. Additionally, to further improve efficiency, we replace the self-attention and FFN in the commonly used copy block with the carefully designed Two-Dimensional Shuffle Mixer (TDSM), enabling efficient implementation of both the token mixer and channel mixer. Both qualitative and quantitative experimental results demonstrate that our approach achieves superior performance with only 15% of the parameters and computational complexity compared to PixArt-delta.
Authors:Xinlong Chen, Yuanxing Zhang, Chongling Rao, Yushuo Guan, Jiaheng Liu, Fuzheng Zhang, Chengru Song, Qiang Liu, Di Zhang, Tieniu Tan
Abstract:
The training of controllable text-to-video (T2V) models relies heavily on the alignment between videos and captions, yet little existing research connects video caption evaluation with T2V generation assessment. This paper introduces VidCapBench, a video caption evaluation scheme specifically designed for T2V generation, agnostic to any particular caption format. VidCapBench employs a data annotation pipeline, combining expert model labeling and human refinement, to associate each collected video with key information spanning video aesthetics, content, motion, and physical laws. VidCapBench then partitions these key information attributes into automatically assessable and manually assessable subsets, catering to both the rapid evaluation needs of agile development and the accuracy requirements of thorough validation. By evaluating numerous state-of-the-art captioning models, we demonstrate the superior stability and comprehensiveness of VidCapBench compared to existing video captioning evaluation approaches. Verification with off-the-shelf T2V models reveals a significant positive correlation between scores on VidCapBench and the T2V quality evaluation metrics, indicating that VidCapBench can provide valuable guidance for training T2V models. The project is available at https://github.com/VidCapBench/VidCapBench.
Authors:Florian Sestak, Artur Toshev, Andreas Fürst, Günter Klambauer, Andreas Mayr, Johannes Brandstetter
Abstract:
Generative models are spearheading recent progress in deep learning, showcasing strong promise for trajectory sampling in dynamical systems as well. However, whereas latent space modeling paradigms have transformed image and video generation, similar approaches are more difficult for most dynamical systems. Such systems -- from chemical molecule structures to collective human behavior -- are described by interactions of entities, making them inherently linked to connectivity patterns, entity conservation, and the traceability of entities over time. Our approach, LaM-SLidE (Latent Space Modeling of Spatial Dynamical Systems via Linked Entities), bridges the gap between: (1) keeping the traceability of individual entities in a latent system representation, and (2) leveraging the efficiency and scalability of recent advances in image and video generation, where pre-trained encoder and decoder enable generative modeling directly in latent space. The core idea of LaM-SLidE is the introduction of identifier representations (IDs) that enable the retrieval of entity properties and entity composition from latent system representations, thus fostering traceability. Experimentally, across different domains, we show that LaM-SLidE performs favorably in terms of speed, accuracy, and generalizability. Code is available at https://github.com/ml-jku/LaM-SLidE .
Authors:Michael Fuest, Vincent Tao Hu, Björn Ommer
Abstract:
Generating long, high-quality videos remains a challenge due to the complex interplay of spatial and temporal dynamics and hardware limitations. In this work, we introduce MaskFlow, a unified video generation framework that combines discrete representations with flow-matching to enable efficient generation of high-quality long videos. By leveraging a frame-level masking strategy during training, MaskFlow conditions on previously generated unmasked frames to generate videos with lengths ten times beyond that of the training sequences. MaskFlow does so very efficiently by enabling the use of fast Masked Generative Model (MGM)-style sampling and can be deployed in both fully autoregressive as well as full-sequence generation modes. We validate the quality of our method on the FaceForensics (FFS) and Deepmind Lab (DMLab) datasets and report Frechet Video Distance (FVD) competitive with state-of-the-art approaches. We also provide a detailed analysis on the sampling efficiency of our method and demonstrate that MaskFlow can be applied to both timestep-dependent and timestep-independent models in a training-free manner.
Authors:Guoqing Ma, Haoyang Huang, Kun Yan, Liangyu Chen, Nan Duan, Shengming Yin, Changyi Wan, Ranchen Ming, Xiaoniu Song, Xing Chen, Yu Zhou, Deshan Sun, Deyu Zhou, Jian Zhou, Kaijun Tan, Kang An, Mei Chen, Wei Ji, Qiling Wu, Wen Sun, Xin Han, Yanan Wei, Zheng Ge, Aojie Li, Bin Wang, Bizhu Huang, Bo Wang, Brian Li, Changxing Miao, Chen Xu, Chenfei Wu, Chenguang Yu, Dapeng Shi, Dingyuan Hu, Enle Liu, Gang Yu, Ge Yang, Guanzhe Huang, Gulin Yan, Haiyang Feng, Hao Nie, Haonan Jia, Hanpeng Hu, Hanqi Chen, Haolong Yan, Heng Wang, Hongcheng Guo, Huilin Xiong, Huixin Xiong, Jiahao Gong, Jianchang Wu, Jiaoren Wu, Jie Wu, Jie Yang, Jiashuai Liu, Jiashuo Li, Jingyang Zhang, Junjing Guo, Junzhe Lin, Kaixiang Li, Lei Liu, Lei Xia, Liang Zhao, Liguo Tan, Liwen Huang, Liying Shi, Ming Li, Mingliang Li, Muhua Cheng, Na Wang, Qiaohui Chen, Qinglin He, Qiuyan Liang, Quan Sun, Ran Sun, Rui Wang, Shaoliang Pang, Shiliang Yang, Sitong Liu, Siqi Liu, Shuli Gao, Tiancheng Cao, Tianyu Wang, Weipeng Ming, Wenqing He, Xu Zhao, Xuelin Zhang, Xianfang Zeng, Xiaojia Liu, Xuan Yang, Yaqi Dai, Yanbo Yu, Yang Li, Yineng Deng, Yingming Wang, Yilei Wang, Yuanwei Lu, Yu Chen, Yu Luo, Yuchu Luo, Yuhe Yin, Yuheng Feng, Yuxiang Yang, Zecheng Tang, Zekai Zhang, Zidong Yang, Binxing Jiao, Jiansheng Chen, Jing Li, Shuchang Zhou, Xiangyu Zhang, Xinhao Zhang, Yibo Zhu, Heung-Yeung Shum, Daxin Jiang
Abstract:
We present Step-Video-T2V, a state-of-the-art text-to-video pre-trained model with 30B parameters and the ability to generate videos up to 204 frames in length. A deep compression Variational Autoencoder, Video-VAE, is designed for video generation tasks, achieving 16x16 spatial and 8x temporal compression ratios, while maintaining exceptional video reconstruction quality. User prompts are encoded using two bilingual text encoders to handle both English and Chinese. A DiT with 3D full attention is trained using Flow Matching and is employed to denoise input noise into latent frames. A video-based DPO approach, Video-DPO, is applied to reduce artifacts and improve the visual quality of the generated videos. We also detail our training strategies and share key observations and insights. Step-Video-T2V's performance is evaluated on a novel video generation benchmark, Step-Video-T2V-Eval, demonstrating its state-of-the-art text-to-video quality when compared with both open-source and commercial engines. Additionally, we discuss the limitations of current diffusion-based model paradigm and outline future directions for video foundation models. We make both Step-Video-T2V and Step-Video-T2V-Eval available at https://github.com/stepfun-ai/Step-Video-T2V. The online version can be accessed from https://yuewen.cn/videos as well. Our goal is to accelerate the innovation of video foundation models and empower video content creators.
Authors:Teng Li, Guangcong Zheng, Rui Jiang, Shuigen Zhan, Tao Wu, Yehao Lu, Yining Lin, Chuanyun Deng, Yepan Xiong, Min Chen, Lin Cheng, Xi Li
Abstract:
Recent advancements in camera-trajectory-guided image-to-video generation offer higher precision and better support for complex camera control compared to text-based approaches. However, they also introduce significant usability challenges, as users often struggle to provide precise camera parameters when working with arbitrary real-world images without knowledge of their depth nor scene scale. To address these real-world application issues, we propose RealCam-I2V, a novel diffusion-based video generation framework that integrates monocular metric depth estimation to establish 3D scene reconstruction in a preprocessing step. During training, the reconstructed 3D scene enables scaling camera parameters from relative to metric scales, ensuring compatibility and scale consistency across diverse real-world images. In inference, RealCam-I2V offers an intuitive interface where users can precisely draw camera trajectories by dragging within the 3D scene. To further enhance precise camera control and scene consistency, we propose scene-constrained noise shaping, which shapes high-level noise and also allows the framework to maintain dynamic and coherent video generation in lower noise stages. RealCam-I2V achieves significant improvements in controllability and video quality on the RealEstate10K and out-of-domain images. We further enables applications like camera-controlled looping video generation and generative frame interpolation. Project page: https://zgctroy.github.io/RealCam-I2V.
Authors:Qinghe Wang, Yawen Luo, Xiaoyu Shi, Xu Jia, Huchuan Lu, Tianfan Xue, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai
Abstract:
In this work, we present CineMaster, a novel framework for 3D-aware and controllable text-to-video generation. Our goal is to empower users with comparable controllability as professional film directors: precise placement of objects within the scene, flexible manipulation of both objects and camera in 3D space, and intuitive layout control over the rendered frames. To achieve this, CineMaster operates in two stages. In the first stage, we design an interactive workflow that allows users to intuitively construct 3D-aware conditional signals by positioning object bounding boxes and defining camera movements within the 3D space. In the second stage, these control signals--comprising rendered depth maps, camera trajectories and object class labels--serve as the guidance for a text-to-video diffusion model, ensuring to generate the user-intended video content. Furthermore, to overcome the scarcity of in-the-wild datasets with 3D object motion and camera pose annotations, we carefully establish an automated data annotation pipeline that extracts 3D bounding boxes and camera trajectories from large-scale video data. Extensive qualitative and quantitative experiments demonstrate that CineMaster significantly outperforms existing methods and implements prominent 3D-aware text-to-video generation. Project page: https://cinemaster-dev.github.io/.
Authors:Wonjoon Jin, Qi Dai, Chong Luo, Seung-Hwan Baek, Sunghyun Cho
Abstract:
We present FloVD, a novel video diffusion model for camera-controllable video generation. FloVD leverages optical flow to represent the motions of the camera and moving objects. This approach offers two key benefits. Since optical flow can be directly estimated from videos, our approach allows for the use of arbitrary training videos without ground-truth camera parameters. Moreover, as background optical flow encodes 3D correlation across different viewpoints, our method enables detailed camera control by leveraging the background motion. To synthesize natural object motion while supporting detailed camera control, our framework adopts a two-stage video synthesis pipeline consisting of optical flow generation and flow-conditioned video synthesis. Extensive experiments demonstrate the superiority of our method over previous approaches in terms of accurate camera control and natural object motion synthesis.
Authors:Yilu Wu, Chenhui Zhu, Shuai Wang, Hanlin Wang, Jing Wang, Zhaoxiang Zhang, Limin Wang
Abstract:
We are committed to learning human skill generators at key-step levels. The generation of skills is a challenging endeavor, but its successful implementation could greatly facilitate human skill learning and provide more experience for embodied intelligence. Although current video generation models can synthesis simple and atomic human operations, they struggle with human skills due to their complex procedure process. Human skills involve multi-step, long-duration actions and complex scene transitions, so the existing naive auto-regressive methods for synthesizing long videos cannot generate human skills. To address this, we propose a novel task, the Key-step Skill Generation (KS-Gen), aimed at reducing the complexity of generating human skill videos. Given the initial state and a skill description, the task is to generate video clips of key steps to complete the skill, rather than a full-length video. To support this task, we introduce a carefully curated dataset and define multiple evaluation metrics to assess performance. Considering the complexity of KS-Gen, we propose a new framework for this task. First, a multimodal large language model (MLLM) generates descriptions for key steps using retrieval argument. Subsequently, we use a Key-step Image Generator (KIG) to address the discontinuity between key steps in skill videos. Finally, a video generation model uses these descriptions and key-step images to generate video clips of the key steps with high temporal consistency. We offer a detailed analysis of the results, hoping to provide more insights on human skill generation. All models and data are available at https://github.com/MCG-NJU/KS-Gen.
Authors:Shuhuai Ren, Shuming Ma, Xu Sun, Furu Wei
Abstract:
Next-Token Prediction (NTP) is a de facto approach for autoregressive (AR) video generation, but it suffers from suboptimal unidirectional dependencies and slow inference speed. In this work, we propose a semi-autoregressive (semi-AR) framework, called Next-Block Prediction (NBP), for video generation. By uniformly decomposing video content into equal-sized blocks (e.g., rows or frames), we shift the generation unit from individual tokens to blocks, allowing each token in the current block to simultaneously predict the corresponding token in the next block. Unlike traditional AR modeling, our framework employs bidirectional attention within each block, enabling tokens to capture more robust spatial dependencies. By predicting multiple tokens in parallel, NBP models significantly reduce the number of generation steps, leading to faster and more efficient inference. Our model achieves FVD scores of 103.3 on UCF101 and 25.5 on K600, outperforming the vanilla NTP model by an average of 4.4. Furthermore, thanks to the reduced number of inference steps, the NBP model generates 8.89 frames (128x128 resolution) per second, achieving an 11x speedup. We also explored model scales ranging from 700M to 3B parameters, observing significant improvements in generation quality, with FVD scores dropping from 103.3 to 55.3 on UCF101 and from 25.5 to 19.5 on K600, demonstrating the scalability of our approach.
Authors:Hongwei Yi, Shitong Shao, Tian Ye, Jiantong Zhao, Qingyu Yin, Michael Lingelbach, Li Yuan, Yonghong Tian, Enze Xie, Daquan Zhou
Abstract:
In this technical report, we present Magic 1-For-1 (Magic141), an efficient video generation model with optimized memory consumption and inference latency. The key idea is simple: factorize the text-to-video generation task into two separate easier tasks for diffusion step distillation, namely text-to-image generation and image-to-video generation. We verify that with the same optimization algorithm, the image-to-video task is indeed easier to converge over the text-to-video task. We also explore a bag of optimization tricks to reduce the computational cost of training the image-to-video (I2V) models from three aspects: 1) model convergence speedup by using a multi-modal prior condition injection; 2) inference latency speed up by applying an adversarial step distillation, and 3) inference memory cost optimization with parameter sparsification. With those techniques, we are able to generate 5-second video clips within 3 seconds. By applying a test time sliding window, we are able to generate a minute-long video within one minute with significantly improved visual quality and motion dynamics, spending less than 1 second for generating 1 second video clips on average. We conduct a series of preliminary explorations to find out the optimal tradeoff between computational cost and video quality during diffusion step distillation and hope this could be a good foundation model for open-source explorations. The code and the model weights are available at https://github.com/DA-Group-PKU/Magic-1-For-1.
Authors:Pinxin Liu, Pengfei Zhang, Hyeongwoo Kim, Pablo Garrido, Ari Shapiro, Kyle Olszewski
Abstract:
Co-speech gesture generation is crucial for creating lifelike avatars and enhancing human-computer interactions by synchronizing gestures with speech. Despite recent advancements, existing methods struggle with accurately identifying the rhythmic or semantic triggers from audio for generating contextualized gesture patterns and achieving pixel-level realism. To address these challenges, we introduce Contextual Gesture, a framework that improves co-speech gesture video generation through three innovative components: (1) a chronological speech-gesture alignment that temporally connects two modalities, (2) a contextualized gesture tokenization that incorporate speech context into motion pattern representation through distillation, and (3) a structure-aware refinement module that employs edge connection to link gesture keypoints to improve video generation. Our extensive experiments demonstrate that Contextual Gesture not only produces realistic and speech-aligned gesture videos but also supports long-sequence generation and video gesture editing applications, shown in Fig.1.
Authors:Behzad Hejrati, Soumyanil Banerjee, Carri Glide-Hurst, Ming Dong
Abstract:
Diffusion models have been used extensively for high quality image and video generation tasks. In this paper, we propose a novel conditional diffusion model with spatial attention and latent embedding (cDAL) for medical image segmentation. In cDAL, a convolutional neural network (CNN) based discriminator is used at every time-step of the diffusion process to distinguish between the generated labels and the real ones. A spatial attention map is computed based on the features learned by the discriminator to help cDAL generate more accurate segmentation of discriminative regions in an input image. Additionally, we incorporated a random latent embedding into each layer of our model to significantly reduce the number of training and sampling time-steps, thereby making it much faster than other diffusion models for image segmentation. We applied cDAL on 3 publicly available medical image segmentation datasets (MoNuSeg, Chest X-ray and Hippocampus) and observed significant qualitative and quantitative improvements with higher Dice scores and mIoU over the state-of-the-art algorithms. The source code is publicly available at https://github.com/Hejrati/cDAL/.
Authors:Yongfan Chen, Xiuwen Zhu, Tianyu Li
Abstract:
Recent advances in video generation models demonstrate their potential as world simulators, but they often struggle with videos deviating from physical laws, a key concern overlooked by most text-to-video benchmarks. We introduce a benchmark designed specifically to assess the Physical Coherence of generated videos, PhyCoBench. Our benchmark includes 120 prompts covering 7 categories of physical principles, capturing key physical laws observable in video content. We evaluated four state-of-the-art (SoTA) T2V models on PhyCoBench and conducted manual assessments. Additionally, we propose an automated evaluation model: PhyCoPredictor, a diffusion model that generates optical flow and video frames in a cascade manner. Through a consistency evaluation comparing automated and manual sorting, the experimental results show that PhyCoPredictor currently aligns most closely with human evaluation. Therefore, it can effectively evaluate the physical coherence of videos, providing insights for future model optimization. Our benchmark, including physical coherence prompts, the automatic evaluation tool PhyCoPredictor, and the generated video dataset, has been released on GitHub at https://github.com/Jeckinchen/PhyCoBench.
Authors:Shuheng Zhang, Yuqi Liu, Hongbo Zhou, Jun Peng, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji
Abstract:
Despite great progress, text-driven long video editing is still notoriously challenging mainly due to excessive memory overhead. Although recent efforts have simplified this task into a two-step process of keyframe translation and interpolation generation, the token-wise keyframe translation still plagues the upper limit of video length. In this paper, we propose a novel and training-free approach towards efficient and effective long video editing, termed AdaFlow. We first reveal that not all tokens of video frames hold equal importance for keyframe translation, based on which we propose an Adaptive Attention Slimming scheme for AdaFlow to squeeze the $KV$ sequence, thus increasing the number of keyframes for translations by an order of magnitude. In addition, an Adaptive Keyframe Selection scheme is also equipped to select the representative frames for joint editing, further improving generation quality. With these innovative designs, AdaFlow achieves high-quality long video editing of minutes in one inference, i.e., more than 1$k$ frames on one A800 GPU, which is about ten times longer than the compared methods, e.g., TokenFlow. To validate AdaFlow, we also build a new benchmark for long video editing with high-quality annotations, termed LongV-EVAL. Our code is released at: https://github.com/jidantang55/AdaFlow.
Authors:Shilong Zhang, Wenbo Li, Shoufa Chen, Chongjian Ge, Peize Sun, Yida Zhang, Yi Jiang, Zehuan Yuan, Binyue Peng, Ping Luo
Abstract:
DiT diffusion models have achieved great success in text-to-video generation, leveraging their scalability in model capacity and data scale. High content and motion fidelity aligned with text prompts, however, often require large model parameters and a substantial number of function evaluations (NFEs). Realistic and visually appealing details are typically reflected in high resolution outputs, further amplifying computational demands especially for single stage DiT models. To address these challenges, we propose a novel two stage framework, FlashVideo, which strategically allocates model capacity and NFEs across stages to balance generation fidelity and quality. In the first stage, prompt fidelity is prioritized through a low resolution generation process utilizing large parameters and sufficient NFEs to enhance computational efficiency. The second stage establishes flow matching between low and high resolutions, effectively generating fine details with minimal NFEs. Quantitative and visual results demonstrate that FlashVideo achieves state-of-the-art high resolution video generation with superior computational efficiency. Additionally, the two-stage design enables users to preview the initial output and accordingly adjust the prompt before committing to full-resolution generation, thereby significantly reducing computational costs and wait times as well as enhancing commercial viability.
Authors:Shoufa Chen, Chongjian Ge, Yuqi Zhang, Yida Zhang, Fengda Zhu, Hao Yang, Hongxiang Hao, Hui Wu, Zhichao Lai, Yifei Hu, Ting-Che Lin, Shilong Zhang, Fu Li, Chuan Li, Xing Wang, Yanghua Peng, Peize Sun, Ping Luo, Yi Jiang, Zehuan Yuan, Bingyue Peng, Xiaobing Liu
Abstract:
This paper introduces Goku, a state-of-the-art family of joint image-and-video generation models leveraging rectified flow Transformers to achieve industry-leading performance. We detail the foundational elements enabling high-quality visual generation, including the data curation pipeline, model architecture design, flow formulation, and advanced infrastructure for efficient and robust large-scale training. The Goku models demonstrate superior performance in both qualitative and quantitative evaluations, setting new benchmarks across major tasks. Specifically, Goku achieves 0.76 on GenEval and 83.65 on DPG-Bench for text-to-image generation, and 84.85 on VBench for text-to-video tasks. We believe that this work provides valuable insights and practical advancements for the research community in developing joint image-and-video generation models.
Authors:Qijun Gan, Yi Ren, Chen Zhang, Zhenhui Ye, Pan Xie, Xiang Yin, Zehuan Yuan, Bingyue Peng, Jianke Zhu
Abstract:
Human motion video generation has advanced significantly, while existing methods still struggle with accurately rendering detailed body parts like hands and faces, especially in long sequences and intricate motions. Current approaches also rely on fixed resolution and struggle to maintain visual consistency. To address these limitations, we propose HumanDiT, a pose-guided Diffusion Transformer (DiT)-based framework trained on a large and wild dataset containing 14,000 hours of high-quality video to produce high-fidelity videos with fine-grained body rendering. Specifically, (i) HumanDiT, built on DiT, supports numerous video resolutions and variable sequence lengths, facilitating learning for long-sequence video generation; (ii) we introduce a prefix-latent reference strategy to maintain personalized characteristics across extended sequences. Furthermore, during inference, HumanDiT leverages Keypoint-DiT to generate subsequent pose sequences, facilitating video continuation from static images or existing videos. It also utilizes a Pose Adapter to enable pose transfer with given sequences. Extensive experiments demonstrate its superior performance in generating long-form, pose-accurate videos across diverse scenarios.
Authors:Peiyuan Zhang, Yongqi Chen, Runlong Su, Hangliang Ding, Ion Stoica, Zhengzhong Liu, Hao Zhang
Abstract:
Diffusion Transformers (DiTs) with 3D full attention power state-of-the-art video generation, but suffer from prohibitive compute cost -- when generating just a 5-second 720P video, attention alone takes 800 out of 945 seconds of total inference time. This paper introduces sliding tile attention (STA) to address this challenge. STA leverages the observation that attention scores in pretrained video diffusion models predominantly concentrate within localized 3D windows. By sliding and attending over the local spatial-temporal region, STA eliminates redundancy from full attention. Unlike traditional token-wise sliding window attention (SWA), STA operates tile-by-tile with a novel hardware-aware sliding window design, preserving expressiveness while being hardware-efficient. With careful kernel-level optimizations, STA offers the first efficient 2D/3D sliding-window-like attention implementation, achieving 58.79% MFU. Precisely, STA accelerates attention by 2.8-17x over FlashAttention-2 (FA2) and 1.6-10x over FlashAttention-3 (FA3). On the leading video DiT, HunyuanVideo, STA reduces end-to-end latency from 945s (FA3) to 685s without quality degradation, requiring no training. Enabling finetuning further lowers latency to 268s with only a 0.09% drop on VBench. We make our codebase public at https://github.com/hao-ai-lab/FastVideo.
Authors:Bosung Kim, Kyuhwan Lee, Isu Jeong, Jungmin Cheon, Yeojin Lee, Seulki Lee
Abstract:
We present On-device Sora, the first model training-free solution for diffusion-based on-device text-to-video generation that operates efficiently on smartphone-grade devices. To address the challenges of diffusion-based text-to-video generation on computation- and memory-limited mobile devices, the proposed On-device Sora applies three novel techniques to pre-trained video generative models. First, Linear Proportional Leap (LPL) reduces the excessive denoising steps required in video diffusion through an efficient leap-based approach. Second, Temporal Dimension Token Merging (TDTM) minimizes intensive token-processing computation in attention layers by merging consecutive tokens along the temporal dimension. Third, Concurrent Inference with Dynamic Loading (CI-DL) dynamically partitions large models into smaller blocks and loads them into memory for concurrent model inference, effectively addressing the challenges of limited device memory. We implement On-device Sora on the iPhone 15 Pro, and the experimental evaluations show that it is capable of generating high-quality videos on the device, comparable to those produced by high-end GPUs. These results show that On-device Sora enables efficient and high-quality video generation on resource-constrained mobile devices. We envision the proposed On-device Sora as a significant first step toward democratizing state-of-the-art generative technologies, enabling video generation on commodity mobile and embedded devices without resource-intensive re-training for model optimization (compression). The code implementation is available at a GitHub repository(https://github.com/eai-lab/On-device-Sora).
Authors:Lirui Wang, Kevin Zhao, Chaoqi Liu, Xinlei Chen
Abstract:
We propose Heterogeneous Masked Autoregression (HMA) for modeling action-video dynamics to generate high-quality data and evaluation in scaling robot learning. Building interactive video world models and policies for robotics is difficult due to the challenge of handling diverse settings while maintaining computational efficiency to run in real time. HMA uses heterogeneous pre-training from observations and action sequences across different robotic embodiments, domains, and tasks. HMA uses masked autoregression to generate quantized or soft tokens for video predictions. \ourshort achieves better visual fidelity and controllability than the previous robotic video generation models with 15 times faster speed in the real world. After post-training, this model can be used as a video simulator from low-level action inputs for evaluating policies and generating synthetic data. See this link https://liruiw.github.io/hma for more information.
Authors:Shangkun Sun, Xiaoyu Liang, Bowen Qu, Wei Gao
Abstract:
The advent of next-generation video generation models like \textit{Sora} poses challenges for AI-generated content (AIGC) video quality assessment (VQA). These models substantially mitigate flickering artifacts prevalent in prior models, enable longer and complex text prompts and generate longer videos with intricate, diverse motion patterns. Conventional VQA methods designed for simple text and basic motion patterns struggle to evaluate these content-rich videos. To this end, we propose \textbf{CRAVE} (\underline{C}ontent-\underline{R}ich \underline{A}IGC \underline{V}ideo \underline{E}valuator), specifically for the evaluation of Sora-era AIGC videos. CRAVE proposes the multi-granularity text-temporal fusion that aligns long-form complex textual semantics with video dynamics. Additionally, CRAVE leverages the hybrid motion-fidelity modeling to assess temporal artifacts. Furthermore, given the straightforward prompts and content in current AIGC VQA datasets, we introduce \textbf{CRAVE-DB}, a benchmark featuring content-rich videos from next-generation models paired with elaborate prompts. Extensive experiments have shown that the proposed CRAVE achieves excellent results on multiple AIGC VQA benchmarks, demonstrating a high degree of alignment with human perception. All data and code will be publicly available at https://github.com/littlespray/CRAVE.
Authors:Yunuo Chen, Junli Cao, Anil Kag, Vidit Goel, Sergei Korolev, Chenfanfu Jiang, Sergey Tulyakov, Jian Ren
Abstract:
We present a novel video generation framework that integrates 3-dimensional geometry and dynamic awareness. To achieve this, we augment 2D videos with 3D point trajectories and align them in pixel space. The resulting 3D-aware video dataset, PointVid, is then used to fine-tune a latent diffusion model, enabling it to track 2D objects with 3D Cartesian coordinates. Building on this, we regularize the shape and motion of objects in the video to eliminate undesired artifacts, \eg, nonphysical deformation. Consequently, we enhance the quality of generated RGB videos and alleviate common issues like object morphing, which are prevalent in current video models due to a lack of shape awareness. With our 3D augmentation and regularization, our model is capable of handling contact-rich scenarios such as task-oriented videos. These videos involve complex interactions of solids, where 3D information is essential for perceiving deformation and contact. Furthermore, our model improves the overall quality of video generation by promoting the 3D consistency of moving objects and reducing abrupt changes in shape and motion.
Authors:Hila Chefer, Uriel Singer, Amit Zohar, Yuval Kirstain, Adam Polyak, Yaniv Taigman, Lior Wolf, Shelly Sheynin
Abstract:
Despite tremendous recent progress, generative video models still struggle to capture real-world motion, dynamics, and physics. We show that this limitation arises from the conventional pixel reconstruction objective, which biases models toward appearance fidelity at the expense of motion coherence. To address this, we introduce VideoJAM, a novel framework that instills an effective motion prior to video generators, by encouraging the model to learn a joint appearance-motion representation. VideoJAM is composed of two complementary units. During training, we extend the objective to predict both the generated pixels and their corresponding motion from a single learned representation. During inference, we introduce Inner-Guidance, a mechanism that steers the generation toward coherent motion by leveraging the model's own evolving motion prediction as a dynamic guidance signal. Notably, our framework can be applied to any video model with minimal adaptations, requiring no modifications to the training data or scaling of the model. VideoJAM achieves state-of-the-art performance in motion coherence, surpassing highly competitive proprietary models while also enhancing the perceived visual quality of the generations. These findings emphasize that appearance and motion can be complementary and, when effectively integrated, enhance both the visual quality and the coherence of video generation. Project website: https://hila-chefer.github.io/videojam-paper.github.io/
Authors:Rohit Girmaji, Bhav Beri, Ramanathan Subramanian, Vineet Gandhi
Abstract:
We present EditIQ, a completely automated framework for cinematically editing scenes captured via a stationary, large field-of-view and high-resolution camera. From the static camera feed, EditIQ initially generates multiple virtual feeds, emulating a team of cameramen. These virtual camera shots termed rushes are subsequently assembled using an automated editing algorithm, whose objective is to present the viewer with the most vivid scene content. To understand key scene elements and guide the editing process, we employ a two-pronged approach: (1) a large language model (LLM)-based dialogue understanding module to analyze conversational flow, coupled with (2) visual saliency prediction to identify meaningful scene elements and camera shots therefrom. We then formulate cinematic video editing as an energy minimization problem over shot selection, where cinematic constraints determine shot choices, transitions, and continuity. EditIQ synthesizes an aesthetically and visually compelling representation of the original narrative while maintaining cinematic coherence and a smooth viewing experience. Efficacy of EditIQ against competing baselines is demonstrated via a psychophysical study involving twenty participants on the BBC Old School dataset plus eleven theatre performance videos. Video samples from EditIQ can be found at https://editiq-ave.github.io/.
Authors:Zhengtong Xu, Qiang Qiu, Yu She
Abstract:
In the era of generative AI, integrating video generation models into robotics opens new possibilities for the general-purpose robot agent. This paper introduces imitation learning with latent video planning (VILP). We propose a latent video diffusion model to generate predictive robot videos that adhere to temporal consistency to a good degree. Our method is able to generate highly time-aligned videos from multiple views, which is crucial for robot policy learning. Our video generation model is highly time-efficient. For example, it can generate videos from two distinct perspectives, each consisting of six frames with a resolution of 96x160 pixels, at a rate of 5 Hz. In the experiments, we demonstrate that VILP outperforms the existing video generation robot policy across several metrics: training costs, inference speed, temporal consistency of generated videos, and the performance of the policy. We also compared our method with other imitation learning methods. Our findings indicate that VILP can rely less on extensive high-quality task-specific robot action data while still maintaining robust performance. In addition, VILP possesses robust capabilities in representing multi-modal action distributions. Our paper provides a practical example of how to effectively integrate video generation models into robot policies, potentially offering insights for related fields and directions. For more details, please refer to our open-source repository https://github.com/ZhengtongXu/VILP.
Authors:Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai, Jintao Zhang, Dacheng Li, Jianfei Chen, Ion Stoica, Kurt Keutzer, Song Han
Abstract:
Diffusion Transformers (DiTs) dominate video generation but their high computational cost severely limits real-world applicability, usually requiring tens of minutes to generate a few seconds of video even on high-performance GPUs. This inefficiency primarily arises from the quadratic computational complexity of 3D Full Attention with respect to the context length. In this paper, we propose a training-free framework termed Sparse VideoGen (SVG) that leverages the inherent sparsity in 3D Full Attention to boost inference efficiency. We reveal that the attention heads can be dynamically classified into two groups depending on distinct sparse patterns: (1) Spatial Head, where only spatially-related tokens within each frame dominate the attention output, and (2) Temporal Head, where only temporally-related tokens across different frames dominate. Based on this insight, SVG proposes an online profiling strategy to capture the dynamic sparse patterns and predicts the type of attention head. Combined with a novel hardware-efficient tensor layout transformation and customized kernel implementations, SVG achieves up to 2.28x and 2.33x end-to-end speedup on CogVideoX-v1.5 and HunyuanVideo, respectively, while preserving generation quality. Our code is open-sourced and is available at https://github.com/svg-project/Sparse-VideoGen
Authors:Haibo Tong, Zhaoyang Wang, Zhaorun Chen, Haonian Ji, Shi Qiu, Siwei Han, Kexin Geng, Zhongkai Xue, Yiyang Zhou, Peng Xia, Mingyu Ding, Rafael Rafailov, Chelsea Finn, Huaxiu Yao
Abstract:
Recent advancements in video generation have significantly improved the ability to synthesize videos from text instructions. However, existing models still struggle with key challenges such as instruction misalignment, content hallucination, safety concerns, and bias. Addressing these limitations, we introduce MJ-BENCH-VIDEO, a large-scale video preference benchmark designed to evaluate video generation across five critical aspects: Alignment, Safety, Fineness, Coherence & Consistency, and Bias & Fairness. This benchmark incorporates 28 fine-grained criteria to provide a comprehensive evaluation of video preference. Building upon this dataset, we propose MJ-VIDEO, a Mixture-of-Experts (MoE)-based video reward model designed to deliver fine-grained reward. MJ-VIDEO can dynamically select relevant experts to accurately judge the preference based on the input text-video pair. This architecture enables more precise and adaptable preference judgments. Through extensive benchmarking on MJ-BENCH-VIDEO, we analyze the limitations of existing video reward models and demonstrate the superior performance of MJ-VIDEO in video preference assessment, achieving 17.58% and 15.87% improvements in overall and fine-grained preference judgments, respectively. Additionally, introducing MJ-VIDEO for preference tuning in video generation enhances the alignment performance. All our code, data, and models are available at https://aiming-lab.github.io/MJ-VIDEO.github.io/.
Authors:Lifan Jiang, Boxi Wu, Jiahui Zhang, Xiaotong Guan, Shuang Chen
Abstract:
With the rapid development of AIGC technology, significant progress has been made in diffusion model-based technologies for text-to-image (T2I) and text-to-video (T2V). In recent years, a few studies have introduced the strategy of Direct Preference Optimization (DPO) into T2I tasks, significantly enhancing human preferences in generated images. However, existing T2V generation methods lack a well-formed pipeline with exact loss function to guide the alignment of generated videos with human preferences using DPO strategies. Additionally, challenges such as the scarcity of paired video preference data hinder effective model training. At the same time, the lack of training datasets poses a risk of insufficient flexibility and poor video generation quality in the generated videos. Based on those problems, our work proposes three targeted solutions in sequence. 1) Our work is the first to introduce the DPO strategy into the T2V tasks. By deriving a carefully structured loss function, we utilize human feedback to align video generation with human preferences. We refer to this new method as HuViDPO. 2) Our work constructs small-scale human preference datasets for each action category and fine-tune this model, improving the aesthetic quality of the generated videos while reducing training costs. 3) We adopt a First-Frame-Conditioned strategy, leveraging the rich in formation from the first frame to guide the generation of subsequent frames, enhancing flexibility in video generation. At the same time, we employ a SparseCausal Attention mechanism to enhance the quality of the generated videos.More details and examples can be accessed on our website: https://tankowa.github.io/HuViDPO. github.io/.
Authors:Quan Dao, Khanh Doan, Di Liu, Trung Le, Dimitris Metaxas
Abstract:
Consistency models are a new family of generative models capable of producing high-quality samples in either a single step or multiple steps. Recently, consistency models have demonstrated impressive performance, achieving results on par with diffusion models in the pixel space. However, the success of scaling consistency training to large-scale datasets, particularly for text-to-image and video generation tasks, is determined by performance in the latent space. In this work, we analyze the statistical differences between pixel and latent spaces, discovering that latent data often contains highly impulsive outliers, which significantly degrade the performance of iCT in the latent space. To address this, we replace Pseudo-Huber losses with Cauchy losses, effectively mitigating the impact of outliers. Additionally, we introduce a diffusion loss at early timesteps and employ optimal transport (OT) coupling to further enhance performance. Lastly, we introduce the adaptive scaling-$c$ scheduler to manage the robust training process and adopt Non-scaling LayerNorm in the architecture to better capture the statistics of the features and reduce outlier impact. With these strategies, we successfully train latent consistency models capable of high-quality sampling with one or two steps, significantly narrowing the performance gap between latent consistency and diffusion models. The implementation is released here: https://github.com/quandao10/sLCT/
Authors:Yuta Oshima, Masahiro Suzuki, Yutaka Matsuo, Hiroki Furuta
Abstract:
The remarkable progress in text-to-video diffusion models enables photorealistic generations, although the contents of the generated video often include unnatural movement or deformation, reverse playback, and motionless scenes. Recently, an alignment problem has attracted huge attention, where we steer the output of diffusion models based on some quantity on the goodness of the content. Because there is a large room for improvement of perceptual quality along the frame direction, we should address which metrics we should optimize and how we can optimize them in the video generation. In this paper, we propose diffusion latent beam search with lookahead estimator, which can select a better diffusion latent to maximize a given alignment reward, at inference time. We then point out that the improvement of perceptual video quality considering the alignment to prompts requires reward calibration by weighting existing metrics. This is because when humans or vision language models evaluate outputs, many previous metrics to quantify the naturalness of video do not always correlate with evaluation. We demonstrate that our method improves the perceptual quality evaluated on the calibrated reward, VLMs, and human assessment, without model parameter update, and outputs the best generation compared to greedy search and best-of-N sampling under much more efficient computational cost. The experiments highlight that our method is beneficial to many capable generative models, and provide a practical guideline that we should prioritize the inference-time compute allocation into lookahead steps for reward estimation over search budget or denoising steps.
Authors:Wenfeng Lin, Jiangchuan Wei, Boyuan Liu, Yichen Zhang, Shiyue Yan, Mingyu Guo
Abstract:
Recently, with the tremendous success of diffusion models in the field of text-to-image (T2I) generation, increasing attention has been directed toward their potential in text-to-video (T2V) applications. However, the computational demands of diffusion models pose significant challenges, particularly in generating high-resolution videos with high frame rates. In this paper, we propose CascadeV, a cascaded latent diffusion model (LDM), that is capable of producing state-of-the-art 2K resolution videos. Experiments demonstrate that our cascaded model achieves a higher compression ratio, substantially reducing the computational challenges associated with high-quality video generation. We also implement a spatiotemporal alternating grid 3D attention mechanism, which effectively integrates spatial and temporal information, ensuring superior consistency across the generated video frames. Furthermore, our model can be cascaded with existing T2V models, theoretically enabling a 4$\times$ increase in resolution or frames per second without any fine-tuning. Our code is available at https://github.com/bytedance/CascadeV.
Authors:Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, Tianwei Zhang
Abstract:
Artificial Intelligence Generated Content (AIGC) has advanced significantly, particularly with the development of video generation models such as text-to-video (T2V) models and image-to-video (I2V) models. However, like other AIGC types, video generation requires robust content control. A common approach is to embed watermarks, but most research has focused on images, with limited attention given to videos. Traditional methods, which embed watermarks frame-by-frame in a post-processing manner, often degrade video quality. In this paper, we propose VideoShield, a novel watermarking framework specifically designed for popular diffusion-based video generation models. Unlike post-processing methods, VideoShield embeds watermarks directly during video generation, eliminating the need for additional training. To ensure video integrity, we introduce a tamper localization feature that can detect changes both temporally (across frames) and spatially (within individual frames). Our method maps watermark bits to template bits, which are then used to generate watermarked noise during the denoising process. Using DDIM Inversion, we can reverse the video to its original watermarked noise, enabling straightforward watermark extraction. Additionally, template bits allow precise detection for potential temporal and spatial modification. Extensive experiments across various video models (both T2V and I2V models) demonstrate that our method effectively extracts watermarks and detects tamper without compromising video quality. Furthermore, we show that this approach is applicable to image generation models, enabling tamper detection in generated images as well. Codes and models are available at https://github.com/hurunyi/VideoShield.
Authors:Jie Liu, Gongye Liu, Jiajun Liang, Ziyang Yuan, Xiaokun Liu, Mingwu Zheng, Xiele Wu, Qiulin Wang, Wenyu Qin, Menghan Xia, Xintao Wang, Xiaohong Liu, Fei Yang, Pengfei Wan, Di Zhang, Kun Gai, Yujiu Yang, Wanli Ouyang
Abstract:
Video generation has achieved significant advances through rectified flow techniques, but issues like unsmooth motion and misalignment between videos and prompts persist. In this work, we develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model. Specifically, we begin by constructing a large-scale human preference dataset focused on modern video generation models, incorporating pairwise annotations across multi-dimensions. We then introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy. From a unified reinforcement learning perspective aimed at maximizing reward with KL regularization, we introduce three alignment algorithms for flow-based models by extending those from diffusion models. These include two training-time strategies: direct preference optimization for flow (Flow-DPO) and reward weighted regression for flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies reward guidance directly to noisy videos. Experimental results indicate that VideoReward significantly outperforms existing reward models, and Flow-DPO demonstrates superior performance compared to both Flow-RWR and standard supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom weights to multiple objectives during inference, meeting personalized video quality needs. Project page: https://gongyeliu.github.io/videoalign.
Authors:Inès Hyeonsu Kim, Seokju Cho, Jiahui Huang, Jung Yi, Joon-Young Lee, Seungryong Kim
Abstract:
Point tracking in videos is a fundamental task with applications in robotics, video editing, and more. While many vision tasks benefit from pre-trained feature backbones to improve generalizability, point tracking has primarily relied on simpler backbones trained from scratch on synthetic data, which may limit robustness in real-world scenarios. Additionally, point tracking requires temporal awareness to ensure coherence across frames, but using temporally-aware features is still underexplored. Most current methods often employ a two-stage process: an initial coarse prediction followed by a refinement stage to inject temporal information and correct errors from the coarse stage. These approach, however, is computationally expensive and potentially redundant if the feature backbone itself captures sufficient temporal information.
In this work, we introduce Chrono, a feature backbone specifically designed for point tracking with built-in temporal awareness. Leveraging pre-trained representations from self-supervised learner DINOv2 and enhanced with a temporal adapter, Chrono effectively captures long-term temporal context, enabling precise prediction even without the refinement stage. Experimental results demonstrate that Chrono achieves state-of-the-art performance in a refiner-free setting on the TAP-Vid-DAVIS and TAP-Vid-Kinetics datasets, among common feature backbones used in point tracking as well as DINOv2, with exceptional efficiency. Project page: https://cvlab-kaist.github.io/Chrono/
Authors:Zhongwei Ren, Yunchao Wei, Xun Guo, Yao Zhao, Bingyi Kang, Jiashi Feng, Xiaojie Jin
Abstract:
This work explores whether a deep generative model can learn complex knowledge solely from visual input, in contrast to the prevalent focus on text-based models like large language models (LLMs). We develop VideoWorld, an auto-regressive video generation model trained on unlabeled video data, and test its knowledge acquisition abilities in video-based Go and robotic control tasks. Our experiments reveal two key findings: (1) video-only training provides sufficient information for learning knowledge, including rules, reasoning and planning capabilities, and (2) the representation of visual change is crucial for knowledge acquisition. To improve both the efficiency and efficacy of this process, we introduce the Latent Dynamics Model (LDM) as a key component of VideoWorld. Remarkably, VideoWorld reaches a 5-dan professional level in the Video-GoBench with just a 300-million-parameter model, without relying on search algorithms or reward mechanisms typical in reinforcement learning. In robotic tasks, VideoWorld effectively learns diverse control operations and generalizes across environments, approaching the performance of oracle models in CALVIN and RLBench. This study opens new avenues for knowledge acquisition from visual data, with all code, data, and models open-sourced for further research.
Authors:Saman Motamed, Laura Culp, Kevin Swersky, Priyank Jaini, Robert Geirhos
Abstract:
AI video generation is undergoing a revolution, with quality and realism advancing rapidly. These advances have led to a passionate scientific debate: Do video models learn "world models" that discover laws of physics -- or, alternatively, are they merely sophisticated pixel predictors that achieve visual realism without understanding the physical principles of reality? We address this question by developing Physics-IQ, a comprehensive benchmark dataset that can only be solved by acquiring a deep understanding of various physical principles, like fluid dynamics, optics, solid mechanics, magnetism and thermodynamics. We find that across a range of current models (Sora, Runway, Pika, Lumiere, Stable Video Diffusion, and VideoPoet), physical understanding is severely limited, and unrelated to visual realism. At the same time, some test cases can already be successfully solved. This indicates that acquiring certain physical principles from observation alone may be possible, but significant challenges remain. While we expect rapid advances ahead, our work demonstrates that visual realism does not imply physical understanding. Our project page is at https://physics-iq.github.io; code at https://github.com/google-deepmind/physics-IQ-benchmark.
Authors:Chenyang Si, Weichen Fan, Zhengyao Lv, Ziqi Huang, Yu Qiao, Ziwei Liu
Abstract:
Video generation has achieved remarkable progress with the introduction of diffusion models, which have significantly improved the quality of generated videos. However, recent research has primarily focused on scaling up model training, while offering limited insights into the direct impact of representations on the video generation process. In this paper, we initially investigate the characteristics of features in intermediate layers, finding substantial variations in attention maps across different layers. These variations lead to unstable semantic representations and contribute to cumulative differences between features, which ultimately reduce the similarity between adjacent frames and negatively affect temporal coherence. To address this, we propose RepVideo, an enhanced representation framework for text-to-video diffusion models. By accumulating features from neighboring layers to form enriched representations, this approach captures more stable semantic information. These enhanced representations are then used as inputs to the attention mechanism, thereby improving semantic expressiveness while ensuring feature consistency across adjacent frames. Extensive experiments demonstrate that our RepVideo not only significantly enhances the ability to generate accurate spatial appearances, such as capturing complex spatial relationships between multiple objects, but also improves temporal consistency in video generation.
Authors:Anant Khandelwal
Abstract:
Animating clipart images with seamless motion while maintaining visual fidelity and temporal coherence presents significant challenges. Existing methods, such as AniClipart, effectively model spatial deformations but often fail to ensure smooth temporal transitions, resulting in artifacts like abrupt motions and geometric distortions. Similarly, text-to-video (T2V) and image-to-video (I2V) models struggle to handle clipart due to the mismatch in statistical properties between natural video and clipart styles. This paper introduces FlexiClip, a novel approach designed to overcome these limitations by addressing the intertwined challenges of temporal consistency and geometric integrity. FlexiClip extends traditional Bézier curve-based trajectory modeling with key innovations: temporal Jacobians to correct motion dynamics incrementally, continuous-time modeling via probability flow ODEs (pfODEs) to mitigate temporal noise, and a flow matching loss inspired by GFlowNet principles to optimize smooth motion transitions. These enhancements ensure coherent animations across complex scenarios involving rapid movements and non-rigid deformations. Extensive experiments validate the effectiveness of FlexiClip in generating animations that are not only smooth and natural but also structurally consistent across diverse clipart types, including humans and animals. By integrating spatial and temporal modeling with pre-trained video diffusion models, FlexiClip sets a new standard for high-quality clipart animation, offering robust performance across a wide range of visual content. Project Page: https://creative-gen.github.io/flexiclip.github.io/
Authors:Jiwen Yu, Yiran Qin, Xintao Wang, Pengfei Wan, Di Zhang, Xihui Liu
Abstract:
Generative videos have the potential to revolutionize game development by autonomously creating new content. In this paper, we present GameFactory, a framework for action-controlled scene-generalizable game video generation. We first address the fundamental challenge of action controllability by introducing GF-Minecraft, an action-annotated game video dataset without human bias, and developing an action control module that enables precise control over both keyboard and mouse inputs. We further extend to support autoregressive generation for unlimited-length interactive videos. More importantly, GameFactory tackles the critical challenge of scene-generalizable action control, which most existing methods fail to address. To enable the creation of entirely new and diverse games beyond fixed styles and scenes, we leverage the open-domain generative priors from pre-trained video diffusion models. To bridge the domain gap between open-domain priors and small-scale game datasets, we propose a multi-phase training strategy with a domain adapter that decouples game style learning from action control. This decoupling ensures that action control learning is no longer bound to specific game styles, thereby achieving scene-generalizable action control. Experimental results demonstrate that GameFactory effectively generates open-domain action-controllable game videos, representing a significant step forward in AI-driven game generation.
Authors:Yabo Zhang, Xinpeng Zhou, Yihan Zeng, Hang Xu, Hui Li, Wangmeng Zuo
Abstract:
Interactive image editing allows users to modify images through visual interaction operations such as drawing, clicking, and dragging. Existing methods construct such supervision signals from videos, as they capture how objects change with various physical interactions. However, these models are usually built upon text-to-image diffusion models, so necessitate (i) massive training samples and (ii) an additional reference encoder to learn real-world dynamics and visual consistency. In this paper, we reformulate this task as an image-to-video generation problem, so that inherit powerful video diffusion priors to reduce training costs and ensure temporal consistency. Specifically, we introduce FramePainter as an efficient instantiation of this formulation. Initialized with Stable Video Diffusion, it only uses a lightweight sparse control encoder to inject editing signals. Considering the limitations of temporal attention in handling large motion between two frames, we further propose matching attention to enlarge the receptive field while encouraging dense correspondence between edited and source image tokens. We highlight the effectiveness and efficiency of FramePainter across various of editing signals: it domainantly outperforms previous state-of-the-art methods with far less training data, achieving highly seamless and coherent editing of images, \eg, automatically adjust the reflection of the cup. Moreover, FramePainter also exhibits exceptional generalization in scenarios not present in real-world videos, \eg, transform the clownfish into shark-like shape. Our code will be available at https://github.com/YBYBZhang/FramePainter.
Authors:Xinyu Zhang, Zicheng Duan, Dong Gong, Lingqiao Liu
Abstract:
In this paper, we address the challenge of generating temporally consistent videos with motion guidance. While many existing methods depend on additional control modules or inference-time fine-tuning, recent studies suggest that effective motion guidance is achievable without altering the model architecture or requiring extra training. Such approaches offer promising compatibility with various video generation foundation models. However, existing training-free methods often struggle to maintain consistent temporal coherence across frames or to follow guided motion accurately. In this work, we propose a simple yet effective solution that combines an initial-noise-based approach with a novel motion consistency loss, the latter being our key innovation. Specifically, we capture the inter-frame feature correlation patterns of intermediate features from a video diffusion model to represent the motion pattern of the reference video. We then design a motion consistency loss to maintain similar feature correlation patterns in the generated video, using the gradient of this loss in the latent space to guide the generation process for precise motion control. This approach improves temporal consistency across various motion control tasks while preserving the benefits of a training-free setup. Extensive experiments show that our method sets a new standard for efficient, temporally coherent video generation.
Authors:Varun Biyyala, Bharat Chanderprakash Kathuria, Jialu Li, Youshan Zhang
Abstract:
Video editing models have advanced significantly, but evaluating their performance remains challenging. Traditional metrics, such as CLIP text and image scores, often fall short: text scores are limited by inadequate training data and hierarchical dependencies, while image scores fail to assess temporal consistency. We present SST-EM (Semantic, Spatial, and Temporal Evaluation Metric), a novel evaluation framework that leverages modern Vision-Language Models (VLMs), Object Detection, and Temporal Consistency checks. SST-EM comprises four components: (1) semantic extraction from frames using a VLM, (2) primary object tracking with Object Detection, (3) focused object refinement via an LLM agent, and (4) temporal consistency assessment using a Vision Transformer (ViT). These components are integrated into a unified metric with weights derived from human evaluations and regression analysis. The name SST-EM reflects its focus on Semantic, Spatial, and Temporal aspects of video evaluation. SST-EM provides a comprehensive evaluation of semantic fidelity and temporal smoothness in video editing. The source code is available in the \textbf{\href{https://github.com/custommetrics-sst/SST_CustomEvaluationMetrics.git}{GitHub Repository}}.
Authors:Maomao Li, Lijian Lin, Yunfei Liu, Ye Zhu, Yu Li
Abstract:
This paper presents Qffusion, a dual-frame-guided framework for portrait video editing. Specifically, we consider a design principle of ``animation for editing'', and train Qffusion as a general animation framework from two still reference images while we can use it for portrait video editing easily by applying modified start and end frames as references during inference. Leveraging the powerful generative power of Stable Diffusion, we propose a Quadrant-grid Arrangement (QGA) scheme for latent re-arrangement, which arranges the latent codes of two reference images and that of four facial conditions into a four-grid fashion, separately. Then, we fuse features of these two modalities and use self-attention for both appearance and temporal learning, where representations at different times are jointly modeled under QGA. Our Qffusion can achieve stable video editing without additional networks or complex training stages, where only the input format of Stable Diffusion is modified. Further, we propose a Quadrant-grid Propagation (QGP) inference strategy, which enjoys a unique advantage on stable arbitrary-length video generation by processing reference and condition frames recursively. Through extensive experiments, Qffusion consistently outperforms state-of-the-art techniques on portrait video editing. Project page: https://qffusion.github.io/page/.
Authors:Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Yuwei Fang, Kwot Sin Lee, Ivan Skorokhodov, Kfir Aberman, Jun-Yan Zhu, Ming-Hsuan Yang, Sergey Tulyakov
Abstract:
Video personalization methods allow us to synthesize videos with specific concepts such as people, pets, and places. However, existing methods often focus on limited domains, require time-consuming optimization per subject, or support only a single subject. We present Video Alchemist $-$ a video model with built-in multi-subject, open-set personalization capabilities for both foreground objects and background, eliminating the need for time-consuming test-time optimization. Our model is built on a new Diffusion Transformer module that fuses each conditional reference image and its corresponding subject-level text prompt with cross-attention layers. Developing such a large model presents two main challenges: dataset and evaluation. First, as paired datasets of reference images and videos are extremely hard to collect, we sample selected video frames as reference images and synthesize a clip of the target video. However, while models can easily denoise training videos given reference frames, they fail to generalize to new contexts. To mitigate this issue, we design a new automatic data construction pipeline with extensive image augmentations. Second, evaluating open-set video personalization is a challenge in itself. To address this, we introduce a personalization benchmark that focuses on accurate subject fidelity and supports diverse personalization scenarios. Finally, our extensive experiments show that our method significantly outperforms existing personalization methods in both quantitative and qualitative evaluations.
Authors:Junfei Xiao, Feng Cheng, Lu Qi, Liangke Gui, Jiepeng Cen, Zhibei Ma, Alan Yuille, Lu Jiang
Abstract:
Recent video generation models have shown promising results in producing high-quality video clips lasting several seconds. However, these models face challenges in generating long sequences that convey clear and informative events, limiting their ability to support coherent narrations. In this paper, we present a large-scale cooking video dataset designed to advance long-form narrative generation in the cooking domain. We validate the quality of our proposed dataset in terms of visual fidelity and textual caption accuracy using state-of-the-art Vision-Language Models (VLMs) and video generation models, respectively. We further introduce a Long Narrative Video Director to enhance both visual and semantic coherence in generated videos and emphasize the role of aligning visual embeddings to achieve improved overall video quality. Our method demonstrates substantial improvements in generating visually detailed and semantically aligned keyframes, supported by finetuning techniques that integrate text and image embeddings within the video generation process. Project page: https://videoauteur.github.io/
Authors:Aniruddha Mahapatra, Long Mai, David Bourgin, Yitian Zhang, Feng Liu
Abstract:
Video tokenizers are essential for latent video diffusion models, converting raw video data into spatiotemporally compressed latent spaces for efficient training. However, extending state-of-the-art video tokenizers to achieve a temporal compression ratio beyond 4x without increasing channel capacity poses significant challenges. In this work, we propose an alternative approach to enhance temporal compression. We find that the reconstruction quality of temporally subsampled videos from a low-compression encoder surpasses that of high-compression encoders applied to original videos. This indicates that high-compression models can leverage representations from lower-compression models. Building on this insight, we develop a bootstrapped high-temporal-compression model that progressively trains high-compression blocks atop well-trained lower-compression models. Our method includes a cross-level feature-mixing module to retain information from the pretrained low-compression model and guide higher-compression blocks to capture the remaining details from the full video sequence. Evaluation of video benchmarks shows that our method significantly improves reconstruction quality while increasing temporal compression compared to directly training the full model. Furthermore, the resulting compact latent space effectively trains a video diffusion model for high-quality video generation with a significantly reduced token budget.
Authors:Yingjie Chen, Yifang Men, Yuan Yao, Miaomiao Cui, Liefeng Bo
Abstract:
Motion-controllable image animation is a fundamental task with a wide range of potential applications. Recent works have made progress in controlling camera or object motion via various motion representations, while they still struggle to support collaborative camera and object motion control with adaptive control granularity. To this end, we introduce 3D-aware motion representation and propose an image animation framework, called Perception-as-Control, to achieve fine-grained collaborative motion control. Specifically, we construct 3D-aware motion representation from a reference image, manipulate it based on interpreted user instructions, and perceive it from different viewpoints. In this way, camera and object motions are transformed into intuitive and consistent visual changes. Then, our framework leverages the perception results as motion control signals, enabling it to support various motion-related video synthesis tasks in a unified and flexible way. Experiments demonstrate the superiority of the proposed approach. For more details and qualitative results, please refer to our anonymous project webpage: https://chen-yingjie.github.io/projects/Perception-as-Control.
Authors:Yuzhou Huang, Ziyang Yuan, Quande Liu, Qiulin Wang, Xintao Wang, Ruimao Zhang, Pengfei Wan, Di Zhang, Kun Gai
Abstract:
Text-to-video generation has made remarkable advancements through diffusion models. However, Multi-Concept Video Customization (MCVC) remains a significant challenge. We identify two key challenges for this task: 1) the identity decoupling issue, where directly adopting existing customization methods inevitably mix identity attributes when handling multiple concepts simultaneously, and 2) the scarcity of high-quality video-entity pairs, which is crucial for training a model that can well represent and decouple various customized concepts in video generation. To address these challenges, we introduce ConceptMaster, a novel framework that effectively addresses the identity decoupling issues while maintaining concept fidelity in video customization. Specifically, we propose to learn decoupled multi-concept embeddings and inject them into diffusion models in a standalone manner, which effectively guarantees the quality of customized videos with multiple identities, even for highly similar visual concepts. To overcome the scarcity of high-quality MCVC data, we establish a data construction pipeline, which enables collection of high-quality multi-concept video-entity data pairs across diverse scenarios. A multi-concept video evaluation set is further devised to comprehensively validate our method from three dimensions, including concept fidelity, identity decoupling ability, and video generation quality, across six different concept composition scenarios. Extensive experiments demonstrate that ConceptMaster significantly outperforms previous methods for video customization tasks, showing great potential to generate personalized and semantically accurate content for video diffusion models.
Authors:Yuechen Zhang, Yaoyang Liu, Bin Xia, Bohao Peng, Zexin Yan, Eric Lo, Jiaya Jia
Abstract:
We present Magic Mirror, a framework for generating identity-preserved videos with cinematic-level quality and dynamic motion. While recent advances in video diffusion models have shown impressive capabilities in text-to-video generation, maintaining consistent identity while producing natural motion remains challenging. Previous methods either require person-specific fine-tuning or struggle to balance identity preservation with motion diversity. Built upon Video Diffusion Transformers, our method introduces three key components: (1) a dual-branch facial feature extractor that captures both identity and structural features, (2) a lightweight cross-modal adapter with Conditioned Adaptive Normalization for efficient identity integration, and (3) a two-stage training strategy combining synthetic identity pairs with video data. Extensive experiments demonstrate that Magic Mirror effectively balances identity consistency with natural motion, outperforming existing methods across multiple metrics while requiring minimal parameters added. The code and model will be made publicly available at: https://github.com/dvlab-research/MagicMirror/
Authors:Zekai Gu, Rui Yan, Jiahao Lu, Peng Li, Zhiyang Dou, Chenyang Si, Zhen Dong, Qifeng Liu, Cheng Lin, Ziwei Liu, Wenping Wang, Yuan Liu
Abstract:
Diffusion models have demonstrated impressive performance in generating high-quality videos from text prompts or images. However, precise control over the video generation process, such as camera manipulation or content editing, remains a significant challenge. Existing methods for controlled video generation are typically limited to a single control type, lacking the flexibility to handle diverse control demands. In this paper, we introduce Diffusion as Shader (DaS), a novel approach that supports multiple video control tasks within a unified architecture. Our key insight is that achieving versatile video control necessitates leveraging 3D control signals, as videos are fundamentally 2D renderings of dynamic 3D content. Unlike prior methods limited to 2D control signals, DaS leverages 3D tracking videos as control inputs, making the video diffusion process inherently 3D-aware. This innovation allows DaS to achieve a wide range of video controls by simply manipulating the 3D tracking videos. A further advantage of using 3D tracking videos is their ability to effectively link frames, significantly enhancing the temporal consistency of the generated videos. With just 3 days of fine-tuning on 8 H800 GPUs using less than 10k videos, DaS demonstrates strong control capabilities across diverse tasks, including mesh-to-video generation, camera control, motion transfer, and object manipulation.
Authors:Guy Yariv, Yuval Kirstain, Amit Zohar, Shelly Sheynin, Yaniv Taigman, Yossi Adi, Sagie Benaim, Adam Polyak
Abstract:
We consider the task of Image-to-Video (I2V) generation, which involves transforming static images into realistic video sequences based on a textual description. While recent advancements produce photorealistic outputs, they frequently struggle to create videos with accurate and consistent object motion, especially in multi-object scenarios. To address these limitations, we propose a two-stage compositional framework that decomposes I2V generation into: (i) An explicit intermediate representation generation stage, followed by (ii) A video generation stage that is conditioned on this representation. Our key innovation is the introduction of a mask-based motion trajectory as an intermediate representation, that captures both semantic object information and motion, enabling an expressive but compact representation of motion and semantics. To incorporate the learned representation in the second stage, we utilize object-level attention objectives. Specifically, we consider a spatial, per-object, masked-cross attention objective, integrating object-specific prompts into corresponding latent space regions and a masked spatio-temporal self-attention objective, ensuring frame-to-frame consistency for each object. We evaluate our method on challenging benchmarks with multi-object and high-motion scenarios and empirically demonstrate that the proposed method achieves state-of-the-art results in temporal coherence, motion realism, and text-prompt faithfulness. Additionally, we introduce \benchmark, a new challenging benchmark for single-object and multi-object I2V generation, and demonstrate our method's superiority on this benchmark. Project page is available at https://guyyariv.github.io/TTM/.
Authors:Luozhou Wang, Yijun Li, Zhifei Chen, Jui-Hsien Wang, Zhifei Zhang, He Zhang, Zhe Lin, Yingcong Chen
Abstract:
Text-to-video generative models have made significant strides, enabling diverse applications in entertainment, advertising, and education. However, generating RGBA video, which includes alpha channels for transparency, remains a challenge due to limited datasets and the difficulty of adapting existing models. Alpha channels are crucial for visual effects (VFX), allowing transparent elements like smoke and reflections to blend seamlessly into scenes. We introduce TransPixeler, a method to extend pretrained video models for RGBA generation while retaining the original RGB capabilities. TransPixar leverages a diffusion transformer (DiT) architecture, incorporating alpha-specific tokens and using LoRA-based fine-tuning to jointly generate RGB and alpha channels with high consistency. By optimizing attention mechanisms, TransPixar preserves the strengths of the original RGB model and achieves strong alignment between RGB and alpha channels despite limited training data. Our approach effectively generates diverse and consistent RGBA videos, advancing the possibilities for VFX and interactive content creation.
Authors:Weikang Bian, Zhaoyang Huang, Xiaoyu Shi, Yijin Li, Fu-Yun Wang, Hongsheng Li
Abstract:
4D video control is essential in video generation as it enables the use of sophisticated lens techniques, such as multi-camera shooting and dolly zoom, which are currently unsupported by existing methods. Training a video Diffusion Transformer (DiT) directly to control 4D content requires expensive multi-view videos. Inspired by Monocular Dynamic novel View Synthesis (MDVS) that optimizes a 4D representation and renders videos according to different 4D elements, such as camera pose and object motion editing, we bring pseudo 4D Gaussian fields to video generation. Specifically, we propose a novel framework that constructs a pseudo 4D Gaussian field with dense 3D point tracking and renders the Gaussian field for all video frames. Then we finetune a pretrained DiT to generate videos following the guidance of the rendered video, dubbed as GS-DiT. To boost the training of the GS-DiT, we also propose an efficient Dense 3D Point Tracking (D3D-PT) method for the pseudo 4D Gaussian field construction. Our D3D-PT outperforms SpatialTracker, the state-of-the-art sparse 3D point tracking method, in accuracy and accelerates the inference speed by two orders of magnitude. During the inference stage, GS-DiT can generate videos with the same dynamic content while adhering to different camera parameters, addressing a significant limitation of current video generation models. GS-DiT demonstrates strong generalization capabilities and extends the 4D controllability of Gaussian splatting to video generation beyond just camera poses. It supports advanced cinematic effects through the manipulation of the Gaussian field and camera intrinsics, making it a powerful tool for creative video production. Demos are available at https://wkbian.github.io/Projects/GS-DiT/.
Authors:Xincheng Shuai, Henghui Ding, Zhenyuan Qin, Hao Luo, Xingjun Ma, Dacheng Tao
Abstract:
Controlling the movements of dynamic objects and the camera within generated videos is a meaningful yet challenging task. Due to the lack of datasets with comprehensive 6D pose annotations, existing text-to-video methods can not simultaneously control the motions of both camera and objects in 3D-aware manner, resulting in limited controllability over generated contents. To address this issue and facilitate the research in this field, we introduce a Synthetic Dataset for Free-Form Motion Control (SynFMC). The proposed SynFMC dataset includes diverse object and environment categories and covers various motion patterns according to specific rules, simulating common and complex real-world scenarios. The complete 6D pose information facilitates models learning to disentangle the motion effects from objects and the camera in a video.~To provide precise 3D-aware motion control, we further propose a method trained on SynFMC, Free-Form Motion Control (FMC). FMC can control the 6D poses of objects and camera independently or simultaneously, producing high-fidelity videos. Moreover, it is compatible with various personalized text-to-image (T2I) models for different content styles. Extensive experiments demonstrate that the proposed FMC outperforms previous methods across multiple scenarios.
Authors:Jiageng Mao, Boyi Li, Boris Ivanovic, Yuxiao Chen, Yan Wang, Yurong You, Chaowei Xiao, Danfei Xu, Marco Pavone, Yue Wang
Abstract:
Synthesizing photo-realistic visual observations from an ego vehicle's driving trajectory is a critical step towards scalable training of self-driving models. Reconstruction-based methods create 3D scenes from driving logs and synthesize geometry-consistent driving videos through neural rendering, but their dependence on costly object annotations limits their ability to generalize to in-the-wild driving scenarios. On the other hand, generative models can synthesize action-conditioned driving videos in a more generalizable way but often struggle with maintaining 3D visual consistency. In this paper, we present DreamDrive, a 4D spatial-temporal scene generation approach that combines the merits of generation and reconstruction, to synthesize generalizable 4D driving scenes and dynamic driving videos with 3D consistency. Specifically, we leverage the generative power of video diffusion models to synthesize a sequence of visual references and further elevate them to 4D with a novel hybrid Gaussian representation. Given a driving trajectory, we then render 3D-consistent driving videos via Gaussian splatting. The use of generative priors allows our method to produce high-quality 4D scenes from in-the-wild driving data, while neural rendering ensures 3D-consistent video generation from the 4D scenes. Extensive experiments on nuScenes and street view images demonstrate that DreamDrive can generate controllable and generalizable 4D driving scenes, synthesize novel views of driving videos with high fidelity and 3D consistency, decompose static and dynamic elements in a self-supervised manner, and enhance perception and planning tasks for autonomous driving.
Authors:Yifei Huang, Jilan Xu, Baoqi Pei, Yuping He, Guo Chen, Lijin Yang, Xinyuan Chen, Yaohui Wang, Zheng Nie, Jinyao Liu, Guoshun Fan, Dechen Lin, Fang Fang, Kunpeng Li, Chang Yuan, Yali Wang, Yu Qiao, Limin Wang
Abstract:
We introduce Vinci, a real-time embodied smart assistant built upon an egocentric vision-language model. Designed for deployment on portable devices such as smartphones and wearable cameras, Vinci operates in an "always on" mode, continuously observing the environment to deliver seamless interaction and assistance. Users can wake up the system and engage in natural conversations to ask questions or seek assistance, with responses delivered through audio for hands-free convenience. With its ability to process long video streams in real-time, Vinci can answer user queries about current observations and historical context while also providing task planning based on past interactions. To further enhance usability, Vinci integrates a video generation module that creates step-by-step visual demonstrations for tasks that require detailed guidance. We hope that Vinci can establish a robust framework for portable, real-time egocentric AI systems, empowering users with contextual and actionable insights. We release the complete implementation for the development of the device in conjunction with a demo web platform to test uploaded videos at https://github.com/OpenGVLab/vinci.
Authors:Jiazheng Xu, Yu Huang, Jiale Cheng, Yuanming Yang, Jiajun Xu, Yuan Wang, Wenbo Duan, Shen Yang, Qunlin Jin, Shurun Li, Jiayan Teng, Zhuoyi Yang, Wendi Zheng, Xiao Liu, Ming Ding, Xiaohan Zhang, Xiaotao Gu, Shiyu Huang, Minlie Huang, Jie Tang, Yuxiao Dong
Abstract:
Visual generative models have achieved remarkable progress in synthesizing photorealistic images and videos, yet aligning their outputs with human preferences across critical dimensions remains a persistent challenge. Though reinforcement learning from human feedback offers promise for preference alignment, existing reward models for visual generation face limitations, including black-box scoring without interpretability and potentially resultant unexpected biases. We present VisionReward, a general framework for learning human visual preferences in both image and video generation. Specifically, we employ a hierarchical visual assessment framework to capture fine-grained human preferences, and leverages linear weighting to enable interpretable preference learning. Furthermore, we propose a multi-dimensional consistent strategy when using VisionReward as a reward model during preference optimization for visual generation. Experiments show that VisionReward can significantly outperform existing image and video reward models on both machine metrics and human evaluation. Notably, VisionReward surpasses VideoScore by 17.2% in preference prediction accuracy, and text-to-video models with VisionReward achieve a 31.6% higher pairwise win rate compared to the same models using VideoScore. All code and datasets are provided at https://github.com/THUDM/VisionReward.
Authors:Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou, Tianyi Li, Yang You
Abstract:
Vision and language are the two foundational senses for humans, and they build up our cognitive ability and intelligence. While significant breakthroughs have been made in AI language ability, artificial visual intelligence, especially the ability to generate and simulate the world we see, is far lagging behind. To facilitate the development and accessibility of artificial visual intelligence, we created Open-Sora, an open-source video generation model designed to produce high-fidelity video content. Open-Sora supports a wide spectrum of visual generation tasks, including text-to-image generation, text-to-video generation, and image-to-video generation. The model leverages advanced deep learning architectures and training/inference techniques to enable flexible video synthesis, which could generate video content of up to 15 seconds, up to 720p resolution, and arbitrary aspect ratios. Specifically, we introduce Spatial-Temporal Diffusion Transformer (STDiT), an efficient diffusion framework for videos that decouples spatial and temporal attention. We also introduce a highly compressive 3D autoencoder to make representations compact and further accelerate training with an ad hoc training strategy. Through this initiative, we aim to foster innovation, creativity, and inclusivity within the community of AI content creation. By embracing the open-source principle, Open-Sora democratizes full access to all the training/inference/data preparation codes as well as model weights. All resources are publicly available at: https://github.com/hpcaitech/Open-Sora.
Authors:Tao Wu, Yong Zhang, Xiaodong Cun, Zhongang Qi, Junfu Pu, Huanzhang Dou, Guangcong Zheng, Ying Shan, Xi Li
Abstract:
Zero-shot customized video generation has gained significant attention due to its substantial application potential. Existing methods rely on additional models to extract and inject reference subject features, assuming that the Video Diffusion Model (VDM) alone is insufficient for zero-shot customized video generation. However, these methods often struggle to maintain consistent subject appearance due to suboptimal feature extraction and injection techniques. In this paper, we reveal that VDM inherently possesses the force to extract and inject subject features. Departing from previous heuristic approaches, we introduce a novel framework that leverages VDM's inherent force to enable high-quality zero-shot customized video generation. Specifically, for feature extraction, we directly input reference images into VDM and use its intrinsic feature extraction process, which not only provides fine-grained features but also significantly aligns with VDM's pre-trained knowledge. For feature injection, we devise an innovative bidirectional interaction between subject features and generated content through spatial self-attention within VDM, ensuring that VDM has better subject fidelity while maintaining the diversity of the generated video. Experiments on both customized human and object video generation validate the effectiveness of our framework.
Authors:Xiaomin Li, Yixuan Liu, Takashi Isobe, Xu Jia, Qinpeng Cui, Dong Zhou, Dong Li, You He, Huchuan Lu, Zhongdao Wang, Emad Barsoum
Abstract:
In text-to-image (T2I) generation applications, negative embeddings have proven to be a simple yet effective approach for enhancing generation quality. Typically, these negative embeddings are derived from user-defined negative prompts, which, while being functional, are not necessarily optimal. In this paper, we introduce ReNeg, an end-to-end method designed to learn improved Negative embeddings guided by a Reward model. We employ a reward feedback learning framework and integrate classifier-free guidance (CFG) into the training process, which was previously utilized only during inference, thus enabling the effective learning of negative embeddings. We also propose two strategies for learning both global and per-sample negative embeddings. Extensive experiments show that the learned negative embedding significantly outperforms null-text and handcrafted counterparts, achieving substantial improvements in human preference alignment. Additionally, the negative embedding learned within the same text embedding space exhibits strong generalization capabilities. For example, using the same CLIP text encoder, the negative embedding learned on SD1.5 can be seamlessly transferred to text-to-image or even text-to-video models such as ControlNet, ZeroScope, and VideoCrafter2, resulting in consistent performance improvements across the board.
Authors:Xiaotao Hu, Wei Yin, Mingkai Jia, Junyuan Deng, Xiaoyang Guo, Qian Zhang, Xiaoxiao Long, Ping Tan
Abstract:
Recent successes in autoregressive (AR) generation models, such as the GPT series in natural language processing, have motivated efforts to replicate this success in visual tasks. Some works attempt to extend this approach to autonomous driving by building video-based world models capable of generating realistic future video sequences and predicting ego states. However, prior works tend to produce unsatisfactory results, as the classic GPT framework is designed to handle 1D contextual information, such as text, and lacks the inherent ability to model the spatial and temporal dynamics essential for video generation. In this paper, we present DrivingWorld, a GPT-style world model for autonomous driving, featuring several spatial-temporal fusion mechanisms. This design enables effective modeling of both spatial and temporal dynamics, facilitating high-fidelity, long-duration video generation. Specifically, we propose a next-state prediction strategy to model temporal coherence between consecutive frames and apply a next-token prediction strategy to capture spatial information within each frame. To further enhance generalization ability, we propose a novel masking strategy and reweighting strategy for token prediction to mitigate long-term drifting issues and enable precise control. Our work demonstrates the ability to produce high-fidelity and consistent video clips of over 40 seconds in duration, which is over 2 times longer than state-of-the-art driving world models. Experiments show that, in contrast to prior works, our method achieves superior visual quality and significantly more accurate controllable future video generation. Our code is available at https://github.com/YvanYin/DrivingWorld.
Authors:Yiyuan Liang, Zhiying Yan, Liqun Chen, Jiahuan Zhou, Luxin Yan, Sheng Zhong, Xu Zou
Abstract:
Vision-centric autonomous driving systems require diverse data for robust training and evaluation, which can be augmented by manipulating object positions and appearances within existing scene captures. While recent advancements in diffusion models have shown promise in video editing, their application to object manipulation in driving scenarios remains challenging due to imprecise positional control and difficulties in preserving high-fidelity object appearances. To address these challenges in position and appearance control, we introduce DriveEditor, a diffusion-based framework for object editing in driving videos. DriveEditor offers a unified framework for comprehensive object editing operations, including repositioning, replacement, deletion, and insertion. These diverse manipulations are all achieved through a shared set of varying inputs, processed by identical position control and appearance maintenance modules. The position control module projects the given 3D bounding box while preserving depth information and hierarchically injects it into the diffusion process, enabling precise control over object position and orientation. The appearance maintenance module preserves consistent attributes with a single reference image by employing a three-tiered approach: low-level detail preservation, high-level semantic maintenance, and the integration of 3D priors from a novel view synthesis model. Extensive qualitative and quantitative evaluations on the nuScenes dataset demonstrate DriveEditor's exceptional fidelity and controllability in generating diverse driving scene edits, as well as its remarkable ability to facilitate downstream tasks. Project page: https://yvanliang.github.io/DriveEditor.
Authors:Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, Linfeng Zhang
Abstract:
Diffusion Transformers (DiT) have become the dominant methods in image and video generation yet still suffer substantial computational costs. As an effective approach for DiT acceleration, feature caching methods are designed to cache the features of DiT in previous timesteps and reuse them in the next timesteps, allowing us to skip the computation in the next timesteps. However, on the one hand, aggressively reusing all the features cached in previous timesteps leads to a severe drop in generation quality. On the other hand, conservatively caching only the features in the redundant layers or tokens but still computing the important ones successfully preserves the generation quality but results in reductions in acceleration ratios. Observing such a tradeoff between generation quality and acceleration performance, this paper begins by quantitatively studying the accumulated error from cached features. Surprisingly, we find that aggressive caching does not introduce significantly more caching errors in the caching step, and the conservative feature caching can fix the error introduced by aggressive caching. Thereby, we propose a dual caching strategy that adopts aggressive and conservative caching iteratively, leading to significant acceleration and high generation quality at the same time. Besides, we further introduce a V-caching strategy for token-wise conservative caching, which is compatible with flash attention and requires no training and calibration data.
Our codes have been released in Github: \textbf{Code: \href{https://github.com/Shenyi-Z/DuCa}{\texttt{\textcolor{cyan}{https://github.com/Shenyi-Z/DuCa}}}}
Authors:Hongjie Li, Hong-Xing Yu, Jiaman Li, Jiajun Wu
Abstract:
Human-scene interaction (HSI) generation is crucial for applications in embodied AI, virtual reality, and robotics. Yet, existing methods cannot synthesize interactions in unseen environments such as in-the-wild scenes or reconstructed scenes, as they rely on paired 3D scenes and captured human motion data for training, which are unavailable for unseen environments. We present ZeroHSI, a novel approach that enables zero-shot 4D human-scene interaction synthesis, eliminating the need for training on any MoCap data. Our key insight is to distill human-scene interactions from state-of-the-art video generation models, which have been trained on vast amounts of natural human movements and interactions, and use differentiable rendering to reconstruct human-scene interactions. ZeroHSI can synthesize realistic human motions in both static scenes and environments with dynamic objects, without requiring any ground-truth motion data. We evaluate ZeroHSI on a curated dataset of different types of various indoor and outdoor scenes with different interaction prompts, demonstrating its ability to generate diverse and contextually appropriate human-scene interactions.
Authors:Minghong Cai, Xiaodong Cun, Xiaoyu Li, Wenze Liu, Zhaoyang Zhang, Yong Zhang, Ying Shan, Xiangyu Yue
Abstract:
Sora-like video generation models have achieved remarkable progress with a Multi-Modal Diffusion Transformer MM-DiT architecture. However, the current video generation models predominantly focus on single-prompt, struggling to generate coherent scenes with multiple sequential prompts that better reflect real-world dynamic scenarios. While some pioneering works have explored multi-prompt video generation, they face significant challenges including strict training data requirements, weak prompt following, and unnatural transitions. To address these problems, we propose DiTCtrl, a training-free multi-prompt video generation method under MM-DiT architectures for the first time. Our key idea is to take the multi-prompt video generation task as temporal video editing with smooth transitions. To achieve this goal, we first analyze MM-DiT's attention mechanism, finding that the 3D full attention behaves similarly to that of the cross/self-attention blocks in the UNet-like diffusion models, enabling mask-guided precise semantic control across different prompts with attention sharing for multi-prompt video generation. Based on our careful design, the video generated by DiTCtrl achieves smooth transitions and consistent object motion given multiple sequential prompts without additional training. Besides, we also present MPVBench, a new benchmark specially designed for multi-prompt video generation to evaluate the performance of multi-prompt generation. Extensive experiments demonstrate that our method achieves state-of-the-art performance without additional training.
Authors:Yazhou Xing, Yang Fei, Yingqing He, Jingye Chen, Jiaxin Xie, Xiaowei Chi, Qifeng Chen
Abstract:
Learning a robust video Variational Autoencoder (VAE) is essential for reducing video redundancy and facilitating efficient video generation. Directly applying image VAEs to individual frames in isolation can result in temporal inconsistencies and suboptimal compression rates due to a lack of temporal compression. Existing Video VAEs have begun to address temporal compression; however, they often suffer from inadequate reconstruction performance. In this paper, we present a novel and powerful video autoencoder capable of high-fidelity video encoding. First, we observe that entangling spatial and temporal compression by merely extending the image VAE to a 3D VAE can introduce motion blur and detail distortion artifacts. Thus, we propose temporal-aware spatial compression to better encode and decode the spatial information. Additionally, we integrate a lightweight motion compression model for further temporal compression. Second, we propose to leverage the textual information inherent in text-to-video datasets and incorporate text guidance into our model. This significantly enhances reconstruction quality, particularly in terms of detail preservation and temporal stability. Third, we further improve the versatility of our model through joint training on both images and videos, which not only enhances reconstruction quality but also enables the model to perform both image and video autoencoding. Extensive evaluations against strong recent baselines demonstrate the superior performance of our method. The project website can be found at~\href{https://yzxing87.github.io/vae/}{https://yzxing87.github.io/vae/}.
Authors:Yuchi Wang, Junliang Guo, Xinyi Xie, Tianyu He, Xu Sun, Jiang Bian
Abstract:
Recent advancements in video autoencoders (Video AEs) have significantly improved the quality and efficiency of video generation. In this paper, we propose a novel and compact video autoencoder, VidTwin, that decouples video into two distinct latent spaces: Structure latent vectors, which capture overall content and global movement, and Dynamics latent vectors, which represent fine-grained details and rapid movements. Specifically, our approach leverages an Encoder-Decoder backbone, augmented with two submodules for extracting these latent spaces, respectively. The first submodule employs a Q-Former to extract low-frequency motion trends, followed by downsampling blocks to remove redundant content details. The second averages the latent vectors along the spatial dimension to capture rapid motion. Extensive experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality (PSNR of 28.14 on the MCL-JCV dataset), and performs efficiently and effectively in downstream generative tasks. Moreover, our model demonstrates explainability and scalability, paving the way for future research in video latent representation and generation. Check our project page for more details: https://vidtwin.github.io/.
Authors:Yiping Wang, Xuehai He, Kuan Wang, Luyao Ma, Jianwei Yang, Shuohang Wang, Simon Shaolei Du, Yelong Shen
Abstract:
The current state-of-the-art video generative models can produce commercial-grade videos with highly realistic details. However, they still struggle to coherently present multiple sequential events in the stories specified by the prompts, which is foreseeable an essential capability for future long video generation scenarios. For example, top T2V generative models still fail to generate a video of the short simple story 'how to put an elephant into a refrigerator.' While existing detail-oriented benchmarks primarily focus on fine-grained metrics like aesthetic quality and spatial-temporal consistency, they fall short of evaluating models' abilities to handle event-level story presentation. To address this gap, we introduce StoryEval, a story-oriented benchmark specifically designed to assess text-to-video (T2V) models' story-completion capabilities. StoryEval features 423 prompts spanning 7 classes, each representing short stories composed of 2-4 consecutive events. We employ advanced vision-language models, such as GPT-4V and LLaVA-OV-Chat-72B, to verify the completion of each event in the generated videos, applying a unanimous voting method to enhance reliability. Our methods ensure high alignment with human evaluations, and the evaluation of 11 models reveals its challenge, with none exceeding an average story-completion rate of 50%. StoryEval provides a new benchmark for advancing T2V models and highlights the challenges and opportunities in developing next-generation solutions for coherent story-driven video generation.
Authors:Xiuli Bi, Jian Lu, Bo Liu, Xiaodong Cun, Yong Zhang, Weisheng Li, Bin Xiao
Abstract:
Benefiting from large-scale pre-training of text-video pairs, current text-to-video (T2V) diffusion models can generate high-quality videos from the text description. Besides, given some reference images or videos, the parameter-efficient fine-tuning method, i.e. LoRA, can generate high-quality customized concepts, e.g., the specific subject or the motions from a reference video. However, combining the trained multiple concepts from different references into a single network shows obvious artifacts. To this end, we propose CustomTTT, where we can joint custom the appearance and the motion of the given video easily. In detail, we first analyze the prompt influence in the current video diffusion model and find the LoRAs are only needed for the specific layers for appearance and motion customization. Besides, since each LoRA is trained individually, we propose a novel test-time training technique to update parameters after combination utilizing the trained customized models. We conduct detailed experiments to verify the effectiveness of the proposed methods. Our method outperforms several state-of-the-art works in both qualitative and quantitative evaluations.
Authors:Vahid Zehtab, David B. Lindell, Marcus A. Brubaker, Michael S. Brown
Abstract:
3D color lookup tables (LUTs) enable precise color manipulation by mapping input RGB values to specific output RGB values. 3D LUTs are instrumental in various applications, including video editing, in-camera processing, photographic filters, computer graphics, and color processing for displays. While an individual LUT does not incur a high memory overhead, software and devices may need to store dozens to hundreds of LUTs that can take over 100 MB. This work aims to develop a neural network architecture that can encode hundreds of LUTs in a single compact representation. To this end, we propose a model with a memory footprint of less than 0.25 MB that can reconstruct 512 LUTs with only minor color distortion ($\barÎE_M$ $\leq$ 2.0) over the entire color gamut. We also show that our network can weight colors to provide further quality gains on natural image colors ($\barÎ{E}_M$ $\leq$ 1.0). Finally, we show that minor modifications to the network architecture enable a bijective encoding that produces LUTs that are invertible, allowing for reverse color processing. Our code is available at https://github.com/vahidzee/ennelut.
Authors:Hanlin Wang, Hao Ouyang, Qiuyu Wang, Wen Wang, Ka Leong Cheng, Qifeng Chen, Yujun Shen, Limin Wang
Abstract:
The intuitive nature of drag-based interaction has led to its growing adoption for controlling object trajectories in image-to-video synthesis. Still, existing methods that perform dragging in the 2D space usually face ambiguity when handling out-of-plane movements. In this work, we augment the interaction with a new dimension, i.e., the depth dimension, such that users are allowed to assign a relative depth for each point on the trajectory. That way, our new interaction paradigm not only inherits the convenience from 2D dragging, but facilitates trajectory control in the 3D space, broadening the scope of creativity. We propose a pioneering method for 3D trajectory control in image-to-video synthesis by abstracting object masks into a few cluster points. These points, accompanied by the depth information and the instance information, are finally fed into a video diffusion model as the control signal. Extensive experiments validate the effectiveness of our approach, dubbed LeviTor, in precisely manipulating the object movements when producing photo-realistic videos from static images. Our code is available at: https://github.com/ant-research/LeviTor.
Authors:Yuqing Wang, Shuhuai Ren, Zhijie Lin, Yujin Han, Haoyuan Guo, Zhenheng Yang, Difan Zou, Jiashi Feng, Xihui Liu
Abstract:
Autoregressive models have emerged as a powerful approach for visual generation but suffer from slow inference speed due to their sequential token-by-token prediction process. In this paper, we propose a simple yet effective approach for parallelized autoregressive visual generation that improves generation efficiency while preserving the advantages of autoregressive modeling. Our key insight is that parallel generation depends on visual token dependencies-tokens with weak dependencies can be generated in parallel, while strongly dependent adjacent tokens are difficult to generate together, as their independent sampling may lead to inconsistencies. Based on this observation, we develop a parallel generation strategy that generates distant tokens with weak dependencies in parallel while maintaining sequential generation for strongly dependent local tokens. Our approach can be seamlessly integrated into standard autoregressive models without modifying the architecture or tokenizer. Experiments on ImageNet and UCF-101 demonstrate that our method achieves a 3.6x speedup with comparable quality and up to 9.5x speedup with minimal quality degradation across both image and video generation tasks. We hope this work will inspire future research in efficient visual generation and unified autoregressive modeling. Project page: https://yuqingwang1029.github.io/PAR-project.
Authors:Mingdeng Cao, Chong Mou, Ziyang Yuan, Xintao Wang, Zhaoyang Zhang, Ying Shan, Yinqiang Zheng
Abstract:
Consistent human-centric image and video synthesis aims to generate images or videos with new poses while preserving appearance consistency with a given reference image, which is crucial for low-cost visual content creation. Recent advances based on diffusion models typically rely on separate networks for reference appearance feature extraction and target visual generation, leading to inconsistent domain gaps between references and targets. In this paper, we frame the task as a spatially-conditioned inpainting problem, where the target image is inpainted to maintain appearance consistency with the reference. This approach enables the reference features to guide the generation of pose-compliant targets within a unified denoising network, thereby mitigating domain gaps. Additionally, to better maintain the reference appearance information, we impose a causal feature interaction framework, in which reference features can only query from themselves, while target features can query appearance information from both the reference and the target. To further enhance computational efficiency and flexibility, in practical implementation, we decompose the spatially-conditioned generation process into two stages: reference appearance extraction and conditioned target generation. Both stages share a single denoising network, with interactions restricted to self-attention layers. This proposed method ensures flexible control over the appearance of generated human images and videos. By fine-tuning existing base diffusion models on human video data, our method demonstrates strong generalization to unseen human identities and poses without requiring additional per-instance fine-tuning. Experimental results validate the effectiveness of our approach, showing competitive performance compared to existing methods for consistent human image and video synthesis.
Authors:Haoge Deng, Ting Pan, Haiwen Diao, Zhengxiong Luo, Yufeng Cui, Huchuan Lu, Shiguang Shan, Yonggang Qi, Xinlong Wang
Abstract:
This paper presents a novel approach that enables autoregressive video generation with high efficiency. We propose to reformulate the video generation problem as a non-quantized autoregressive modeling of temporal frame-by-frame prediction and spatial set-by-set prediction. Unlike raster-scan prediction in prior autoregressive models or joint distribution modeling of fixed-length tokens in diffusion models, our approach maintains the causal property of GPT-style models for flexible in-context capabilities, while leveraging bidirectional modeling within individual frames for efficiency. With the proposed approach, we train a novel video autoregressive model without vector quantization, termed NOVA. Our results demonstrate that NOVA surpasses prior autoregressive video models in data efficiency, inference speed, visual fidelity, and video fluency, even with a much smaller model capacity, i.e., 0.6B parameters. NOVA also outperforms state-of-the-art image diffusion models in text-to-image generation tasks, with a significantly lower training cost. Additionally, NOVA generalizes well across extended video durations and enables diverse zero-shot applications in one unified model. Code and models are publicly available at https://github.com/baaivision/NOVA.
Authors:Runtao Liu, Haoyu Wu, Zheng Ziqiang, Chen Wei, Yingqing He, Renjie Pi, Qifeng Chen
Abstract:
Recent progress in generative diffusion models has greatly advanced text-to-video generation. While text-to-video models trained on large-scale, diverse datasets can produce varied outputs, these generations often deviate from user preferences, highlighting the need for preference alignment on pre-trained models. Although Direct Preference Optimization (DPO) has demonstrated significant improvements in language and image generation, we pioneer its adaptation to video diffusion models and propose a VideoDPO pipeline by making several key adjustments. Unlike previous image alignment methods that focus solely on either (i) visual quality or (ii) semantic alignment between text and videos, we comprehensively consider both dimensions and construct a preference score accordingly, which we term the OmniScore. We design a pipeline to automatically collect preference pair data based on the proposed OmniScore and discover that re-weighting these pairs based on the score significantly impacts overall preference alignment. Our experiments demonstrate substantial improvements in both visual quality and semantic alignment, ensuring that no preference aspect is neglected. Code and data will be shared at https://videodpo.github.io/.
Authors:Tong Chen, Shuya Yang, Junyi Wang, Long Bai, Hongliang Ren, Luping Zhou
Abstract:
Surgical video generation can enhance medical education and research, but existing methods lack fine-grained motion control and realism. We introduce SurgSora, a framework that generates high-fidelity, motion-controllable surgical videos from a single input frame and user-specified motion cues. Unlike prior approaches that treat objects indiscriminately or rely on ground-truth segmentation masks, SurgSora leverages self-predicted object features and depth information to refine RGB appearance and optical flow for precise video synthesis. It consists of three key modules: (1) the Dual Semantic Injector, which extracts object-specific RGB-D features and segmentation cues to enhance spatial representations; (2) the Decoupled Flow Mapper, which fuses multi-scale optical flow with semantic features for realistic motion dynamics; and (3) the Trajectory Controller, which estimates sparse optical flow and enables user-guided object movement. By conditioning these enriched features within the Stable Video Diffusion, SurgSora achieves state-of-the-art visual authenticity and controllability in advancing surgical video synthesis, as demonstrated by extensive quantitative and qualitative comparisons. Our human evaluation in collaboration with expert surgeons further demonstrates the high realism of SurgSora-generated videos, highlighting the potential of our method for surgical training and education. Our project is available at https://surgsora.github.io/surgsora.github.io.
Authors:Maham Tanveer, Yang Zhou, Simon Niklaus, Ali Mahdavi Amiri, Hao Zhang, Krishna Kumar Singh, Nanxuan Zhao
Abstract:
By generating plausible and smooth transitions between two image frames, video inbetweening is an essential tool for video editing and long video synthesis. Traditional works lack the capability to generate complex large motions. While recent video generation techniques are powerful in creating high-quality results, they often lack fine control over the details of intermediate frames, which can lead to results that do not align with the creative mind. We introduce MotionBridge, a unified video inbetweening framework that allows flexible controls, including trajectory strokes, keyframes, masks, guide pixels, and text. However, learning such multi-modal controls in a unified framework is a challenging task. We thus design two generators to extract the control signal faithfully and encode feature through dual-branch embedders to resolve ambiguities. We further introduce a curriculum training strategy to smoothly learn various controls. Extensive qualitative and quantitative experiments have demonstrated that such multi-modal controls enable a more dynamic, customizable, and contextually accurate visual narrative.
Authors:Hsin-Ping Huang, Yang Zhou, Jui-Hsien Wang, Difan Liu, Feng Liu, Ming-Hsuan Yang, Zhan Xu
Abstract:
Generating realistic human videos remains a challenging task, with the most effective methods currently relying on a human motion sequence as a control signal. Existing approaches often use existing motion extracted from other videos, which restricts applications to specific motion types and global scene matching. We propose Move-in-2D, a novel approach to generate human motion sequences conditioned on a scene image, allowing for diverse motion that adapts to different scenes. Our approach utilizes a diffusion model that accepts both a scene image and text prompt as inputs, producing a motion sequence tailored to the scene. To train this model, we collect a large-scale video dataset featuring single-human activities, annotating each video with the corresponding human motion as the target output. Experiments demonstrate that our method effectively predicts human motion that aligns with the scene image after projection. Furthermore, we show that the generated motion sequence improves human motion quality in video synthesis tasks.
Authors:Anni Tang, Tianyu He, Junliang Guo, Xinle Cheng, Li Song, Jiang Bian
Abstract:
Encoding video content into compact latent tokens has become a fundamental step in video generation and understanding, driven by the need to address the inherent redundancy in pixel-level representations. Consequently, there is a growing demand for high-performance, open-source video tokenizers as video-centric research gains prominence. We introduce VidTok, a versatile video tokenizer that delivers state-of-the-art performance in both continuous and discrete tokenizations. VidTok incorporates several key advancements over existing approaches: 1) model architecture such as convolutional layers and up/downsampling modules; 2) to address the training instability and codebook collapse commonly associated with conventional Vector Quantization (VQ), we integrate Finite Scalar Quantization (FSQ) into discrete video tokenization; 3) improved training strategies, including a two-stage training process and the use of reduced frame rates. By integrating these advancements, VidTok achieves substantial improvements over existing methods, demonstrating superior performance across multiple metrics, including PSNR, SSIM, LPIPS, and FVD, under standardized evaluation settings.
Authors:Samuel Teodoro, Agus Gunawan, Soo Ye Kim, Jihyong Oh, Munchurl Kim
Abstract:
Recent AI-based video editing has enabled users to edit videos through simple text prompts, significantly simplifying the editing process. However, recent zero-shot video editing techniques primarily focus on global or single-object edits, which can lead to unintended changes in other parts of the video. When multiple objects require localized edits, existing methods face challenges, such as unfaithful editing, editing leakage, and lack of suitable evaluation datasets and metrics. To overcome these limitations, we propose $\textbf{P}$robability $\textbf{R}$edistribution for $\textbf{I}$nstance-aware $\textbf{M}$ulti-object Video $\textbf{Edit}$ing ($\textbf{PRIMEdit}$). PRIMEdit is a zero-shot framework that introduces two key modules: (i) Instance-centric Probability Redistribution (IPR) to ensure precise localization and faithful editing and (ii) Disentangled Multi-instance Sampling (DMS) to prevent editing leakage. Additionally, we present our new MIVE Dataset for video editing featuring diverse video scenarios, and introduce the Cross-Instance Accuracy (CIA) Score to evaluate editing leakage in multi-instance video editing tasks. Our extensive qualitative, quantitative, and user study evaluations demonstrate that PRIMEdit significantly outperforms recent state-of-the-art methods in terms of editing faithfulness, accuracy, and leakage prevention, setting a new benchmark for multi-instance video editing.
Authors:Tianyi Zhu, Dongwei Ren, Qilong Wang, Xiaohe Wu, Wangmeng Zuo
Abstract:
Generative inbetweening aims to generate intermediate frame sequences by utilizing two key frames as input. Although remarkable progress has been made in video generation models, generative inbetweening still faces challenges in maintaining temporal stability due to the ambiguous interpolation path between two key frames. This issue becomes particularly severe when there is a large motion gap between input frames. In this paper, we propose a straightforward yet highly effective Frame-wise Conditions-driven Video Generation (FCVG) method that significantly enhances the temporal stability of interpolated video frames. Specifically, our FCVG provides an explicit condition for each frame, making it much easier to identify the interpolation path between two input frames and thus ensuring temporally stable production of visually plausible video frames. To achieve this, we suggest extracting matched lines from two input frames that can then be easily interpolated frame by frame, serving as frame-wise conditions seamlessly integrated into existing video generation models. In extensive evaluations covering diverse scenarios such as natural landscapes, complex human poses, camera movements and animations, existing methods often exhibit incoherent transitions across frames. In contrast, our FCVG demonstrates the capability to generate temporally stable videos using both linear and non-linear interpolation curves. Our project page and code are available at \url{https://fcvg-inbetween.github.io/}.
Authors:Yuanzhi Wang, Yong Li, Mengyi Liu, Xiaoya Zhang, Xin Liu, Zhen Cui, Antoni B. Chan
Abstract:
Editing videos with textual guidance has garnered popularity due to its streamlined process which mandates users to solely edit the text prompt corresponding to the source video. Recent studies have explored and exploited large-scale text-to-image diffusion models for text-guided video editing, resulting in remarkable video editing capabilities. However, they may still suffer from some limitations such as mislocated objects, incorrect number of objects. Therefore, the controllability of video editing remains a formidable challenge. In this paper, we aim to challenge the above limitations by proposing a Re-Attentional Controllable Video Diffusion Editing (ReAtCo) method. Specially, to align the spatial placement of the target objects with the edited text prompt in a training-free manner, we propose a Re-Attentional Diffusion (RAD) to refocus the cross-attention activation responses between the edited text prompt and the target video during the denoising stage, resulting in a spatially location-aligned and semantically high-fidelity manipulated video. In particular, to faithfully preserve the invariant region content with less border artifacts, we propose an Invariant Region-guided Joint Sampling (IRJS) strategy to mitigate the intrinsic sampling errors w.r.t the invariant regions at each denoising timestep and constrain the generated content to be harmonized with the invariant region content. Experimental results verify that ReAtCo consistently improves the controllability of video diffusion editing and achieves superior video editing performance.
Authors:Zichen Tang, Hongyu Yang, Hanchen Zhang, Jiaxin Chen, Di Huang
Abstract:
Advancements in neural implicit representations and differentiable rendering have markedly improved the ability to learn animatable 3D avatars from sparse multi-view RGB videos. However, current methods that map observation space to canonical space often face challenges in capturing pose-dependent details and generalizing to novel poses. While diffusion models have demonstrated remarkable zero-shot capabilities in 2D image generation, their potential for creating animatable 3D avatars from 2D inputs remains underexplored. In this work, we introduce 3D$^2$-Actor, a novel approach featuring a pose-conditioned 3D-aware human modeling pipeline that integrates iterative 2D denoising and 3D rectifying steps. The 2D denoiser, guided by pose cues, generates detailed multi-view images that provide the rich feature set necessary for high-fidelity 3D reconstruction and pose rendering. Complementing this, our Gaussian-based 3D rectifier renders images with enhanced 3D consistency through a two-stage projection strategy and a novel local coordinate representation. Additionally, we propose an innovative sampling strategy to ensure smooth temporal continuity across frames in video synthesis. Our method effectively addresses the limitations of traditional numerical solutions in handling ill-posed mappings, producing realistic and animatable 3D human avatars. Experimental results demonstrate that 3D$^2$-Actor excels in high-fidelity avatar modeling and robustly generalizes to novel poses. Code is available at: https://github.com/silence-tang/GaussianActor.
Authors:Zhengcong Fei, Di Qiu, Debang Li, Changqian Yu, Mingyuan Fan
Abstract:
This paper investigates a solution for enabling in-context capabilities of video diffusion transformers, with minimal tuning required for activation. Specifically, we propose a simple pipeline to leverage in-context generation: ($\textbf{i}$) concatenate videos along spacial or time dimension, ($\textbf{ii}$) jointly caption multi-scene video clips from one source, and ($\textbf{iii}$) apply task-specific fine-tuning using carefully curated small datasets. Through a series of diverse controllable tasks, we demonstrate qualitatively that existing advanced text-to-video models can effectively perform in-context generation. Notably, it allows for the creation of consistent multi-scene videos exceeding 30 seconds in duration, without additional computational overhead. Importantly, this method requires no modifications to the original models, results in high-fidelity video outputs that better align with prompt specifications and maintain role consistency. Our framework presents a valuable tool for the research community and offers critical insights for advancing product-level controllable video generation systems. The data, code, and model weights are publicly available at: https://github.com/feizc/Video-In-Context.
Authors:Cong Wan, Xiangyang Luo, Hao Luo, Zijian Cai, Yiren Song, Yunlong Zhao, Yifan Bai, Fan Wang, Yuhang He, Yihong Gong
Abstract:
Visual generation has witnessed remarkable progress in single-image tasks, yet extending these capabilities to temporal sequences remains challenging. Current approaches either build specialized video models from scratch with enormous computational costs or add separate motion modules to image generators, both requiring learning temporal dynamics anew. We observe that modern image generation models possess underutilized potential in handling structured layouts with implicit temporal understanding. Building on this insight, we introduce GRID, which reformulates temporal sequences as grid layouts, enabling holistic processing of visual sequences while leveraging existing model capabilities. Through a parallel flow-matching training strategy with coarse-to-fine scheduling, our approach achieves up to 67 faster inference speeds while using <1/1000 of the computational resources compared to specialized models. Extensive experiments demonstrate that GRID not only excels in temporal tasks from Text-to-Video to 3D Editing but also preserves strong performance in image generation, establishing itself as an efficient and versatile omni-solution for visual generation.
Authors:Yushu Wu, Zhixing Zhang, Yanyu Li, Yanwu Xu, Anil Kag, Yang Sui, Huseyin Coskun, Ke Ma, Aleksei Lebedev, Ju Hu, Dimitris Metaxas, Yanzhi Wang, Sergey Tulyakov, Jian Ren
Abstract:
We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality.
Authors:Yudong Jiang, Baohan Xu, Siqian Yang, Mingyu Yin, Jing Liu, Chao Xu, Siqi Wang, Yidi Wu, Bingwen Zhu, Xinwen Zhang, Xingyu Zheng, Jixuan Xu, Yue Zhang, Jinlong Hou, Huyang Sun
Abstract:
Animation has gained significant interest in the recent film and TV industry. Despite the success of advanced video generation models like Sora, Kling, and CogVideoX in generating natural videos, they lack the same effectiveness in handling animation videos. Evaluating animation video generation is also a great challenge due to its unique artist styles, violating the laws of physics and exaggerated motions. In this paper, we present a comprehensive system, AniSora, designed for animation video generation, which includes a data processing pipeline, a controllable generation model, and an evaluation benchmark. Supported by the data processing pipeline with over 10M high-quality data, the generation model incorporates a spatiotemporal mask module to facilitate key animation production functions such as image-to-video generation, frame interpolation, and localized image-guided animation. We also collect an evaluation benchmark of 948 various animation videos, with specifically developed metrics for animation video generation. Our entire project is publicly available on https://github.com/bilibili/Index-anisora/tree/main.
Authors:Hongjie Wang, Chih-Yao Ma, Yen-Cheng Liu, Ji Hou, Tao Xu, Jialiang Wang, Felix Juefei-Xu, Yaqiao Luo, Peizhao Zhang, Tingbo Hou, Peter Vajda, Niraj K. Jha, Xiaoliang Dai
Abstract:
Text-to-video generation enhances content creation but is highly computationally intensive: The computational cost of Diffusion Transformers (DiTs) scales quadratically in the number of pixels. This makes minute-length video generation extremely expensive, limiting most existing models to generating videos of only 10-20 seconds length. We propose a Linear-complexity text-to-video Generation (LinGen) framework whose cost scales linearly in the number of pixels. For the first time, LinGen enables high-resolution minute-length video generation on a single GPU without compromising quality. It replaces the computationally-dominant and quadratic-complexity block, self-attention, with a linear-complexity block called MATE, which consists of an MA-branch and a TE-branch. The MA-branch targets short-to-long-range correlations, combining a bidirectional Mamba2 block with our token rearrangement method, Rotary Major Scan, and our review tokens developed for long video generation. The TE-branch is a novel TEmporal Swin Attention block that focuses on temporal correlations between adjacent tokens and medium-range tokens. The MATE block addresses the adjacency preservation issue of Mamba and improves the consistency of generated videos significantly. Experimental results show that LinGen outperforms DiT (with a 75.6% win rate) in video quality with up to 15$\times$ (11.5$\times$) FLOPs (latency) reduction. Furthermore, both automatic metrics and human evaluation demonstrate our LinGen-4B yields comparable video quality to state-of-the-art models (with a 50.5%, 52.1%, 49.1% win rate with respect to Gen-3, LumaLabs, and Kling, respectively). This paves the way to hour-length movie generation and real-time interactive video generation. We provide 68s video generation results and more examples in our project website: https://lineargen.github.io/.
Authors:Fan Zhang, Shulin Tian, Ziqi Huang, Yu Qiao, Ziwei Liu
Abstract:
Recent advancements in visual generative models have enabled high-quality image and video generation, opening diverse applications. However, evaluating these models often demands sampling hundreds or thousands of images or videos, making the process computationally expensive, especially for diffusion-based models with inherently slow sampling. Moreover, existing evaluation methods rely on rigid pipelines that overlook specific user needs and provide numerical results without clear explanations. In contrast, humans can quickly form impressions of a model's capabilities by observing only a few samples. To mimic this, we propose the Evaluation Agent framework, which employs human-like strategies for efficient, dynamic, multi-round evaluations using only a few samples per round, while offering detailed, user-tailored analyses. It offers four key advantages: 1) efficiency, 2) promptable evaluation tailored to diverse user needs, 3) explainability beyond single numerical scores, and 4) scalability across various models and tools. Experiments show that Evaluation Agent reduces evaluation time to 10% of traditional methods while delivering comparable results. The Evaluation Agent framework is fully open-sourced to advance research in visual generative models and their efficient evaluation.
Authors:Wenzhao Zheng, Zetian Xia, Yuanhui Huang, Sicheng Zuo, Jie Zhou, Jiwen Lu
Abstract:
End-to-end autonomous driving has received increasing attention due to its potential to learn from large amounts of data. However, most existing methods are still open-loop and suffer from weak scalability, lack of high-order interactions, and inefficient decision-making. In this paper, we explore a closed-loop framework for autonomous driving and propose a large Driving wOrld modEl (Doe-1) for unified perception, prediction, and planning. We formulate autonomous driving as a next-token generation problem and use multi-modal tokens to accomplish different tasks. Specifically, we use free-form texts (i.e., scene descriptions) for perception and generate future predictions directly in the RGB space with image tokens. For planning, we employ a position-aware tokenizer to effectively encode action into discrete tokens. We train a multi-modal transformer to autoregressively generate perception, prediction, and planning tokens in an end-to-end and unified manner. Experiments on the widely used nuScenes dataset demonstrate the effectiveness of Doe-1 in various tasks including visual question-answering, action-conditioned video generation, and motion planning. Code: https://github.com/wzzheng/Doe.
Authors:Weiqi Li, Shijie Zhao, Chong Mou, Xuhan Sheng, Zhenyu Zhang, Qian Wang, Junlin Li, Li Zhang, Jian Zhang
Abstract:
As virtual reality gains popularity, the demand for controllable creation of immersive and dynamic omnidirectional videos (ODVs) is increasing. While previous text-to-ODV generation methods achieve impressive results, they struggle with content inaccuracies and inconsistencies due to reliance solely on textual inputs. Although recent motion control techniques provide fine-grained control for video generation, directly applying these methods to ODVs often results in spatial distortion and unsatisfactory performance, especially with complex spherical motions. To tackle these challenges, we propose OmniDrag, the first approach enabling both scene- and object-level motion control for accurate, high-quality omnidirectional image-to-video generation. Building on pretrained video diffusion models, we introduce an omnidirectional control module, which is jointly fine-tuned with temporal attention layers to effectively handle complex spherical motion. In addition, we develop a novel spherical motion estimator that accurately extracts motion-control signals and allows users to perform drag-style ODV generation by simply drawing handle and target points. We also present a new dataset, named Move360, addressing the scarcity of ODV data with large scene and object motions. Experiments demonstrate the significant superiority of OmniDrag in achieving holistic scene-level and fine-grained object-level control for ODV generation. The project page is available at https://lwq20020127.github.io/OmniDrag.
Authors:Yuanhui Huang, Wenzhao Zheng, Yuan Gao, Xin Tao, Pengfei Wan, Di Zhang, Jie Zhou, Jiwen Lu
Abstract:
Video generation models (VGMs) have received extensive attention recently and serve as promising candidates for general-purpose large vision models. While they can only generate short videos each time, existing methods achieve long video generation by iteratively calling the VGMs, using the last-frame output as the condition for the next-round generation. However, the last frame only contains short-term fine-grained information about the scene, resulting in inconsistency in the long horizon. To address this, we propose an Omni World modeL (Owl-1) to produce long-term coherent and comprehensive conditions for consistent long video generation. As videos are observations of the underlying evolving world, we propose to model the long-term developments in a latent space and use VGMs to film them into videos. Specifically, we represent the world with a latent state variable which can be decoded into explicit video observations. These observations serve as a basis for anticipating temporal dynamics which in turn update the state variable. The interaction between evolving dynamics and persistent state enhances the diversity and consistency of the long videos. Extensive experiments show that Owl-1 achieves comparable performance with SOTA methods on VBench-I2V and VBench-Long, validating its ability to generate high-quality video observations. Code: https://github.com/huang-yh/Owl.
Authors:Yihong Sun, Hao Zhou, Liangzhe Yuan, Jennifer J. Sun, Yandong Li, Xuhui Jia, Hartwig Adam, Bharath Hariharan, Long Zhao, Ting Liu
Abstract:
We explore a novel video creation experience, namely Video Creation by Demonstration. Given a demonstration video and a context image from a different scene, we generate a physically plausible video that continues naturally from the context image and carries out the action concepts from the demonstration. To enable this capability, we present $δ$-Diffusion, a self-supervised training approach that learns from unlabeled videos by conditional future frame prediction. Unlike most existing video generation controls that are based on explicit signals, we adopts the form of implicit latent control for maximal flexibility and expressiveness required by general videos. By leveraging a video foundation model with an appearance bottleneck design on top, we extract action latents from demonstration videos for conditioning the generation process with minimal appearance leakage. Empirically, $δ$-Diffusion outperforms related baselines in terms of both human preference and large-scale machine evaluations, and demonstrates potentials towards interactive world simulation. Sampled video generation results are available at https://delta-diffusion.github.io/.
Authors:Pierre Fernandez, Hady Elsahar, I. Zeki Yalniz, Alexandre Mourachko
Abstract:
The proliferation of AI-generated content and sophisticated video editing tools has made it both important and challenging to moderate digital platforms. Video watermarking addresses these challenges by embedding imperceptible signals into videos, allowing for identification. However, the rare open tools and methods often fall short on efficiency, robustness, and flexibility. To reduce these gaps, this paper introduces Video Seal, a comprehensive framework for neural video watermarking and a competitive open-sourced model. Our approach jointly trains an embedder and an extractor, while ensuring the watermark robustness by applying transformations in-between, e.g., video codecs. This training is multistage and includes image pre-training, hybrid post-training and extractor fine-tuning. We also introduce temporal watermark propagation, a technique to convert any image watermarking model to an efficient video watermarking model without the need to watermark every high-resolution frame. We present experimental results demonstrating the effectiveness of the approach in terms of speed, imperceptibility, and robustness. Video Seal achieves higher robustness compared to strong baselines especially under challenging distortions combining geometric transformations and video compression. Additionally, we provide new insights such as the impact of video compression during training, and how to compare methods operating on different payloads. Contributions in this work - including the codebase, models, and a public demo - are open-sourced under permissive licenses to foster further research and development in the field.
Authors:Delong Liu, Zhaohui Hou, Mingjie Zhan, Shihao Han, Zhicheng Zhao, Fei Su
Abstract:
Recently, diffusion-based video generation models have achieved significant success. However, existing models often suffer from issues like weak consistency and declining image quality over time. To overcome these challenges, inspired by aesthetic principles, we propose a non-invasive plug-in called Uniform Frame Organizer (UFO), which is compatible with any diffusion-based video generation model. The UFO comprises a series of adaptive adapters with adjustable intensities, which can significantly enhance the consistency between the foreground and background of videos and improve image quality without altering the original model parameters when integrated. The training for UFO is simple, efficient, requires minimal resources, and supports stylized training. Its modular design allows for the combination of multiple UFOs, enabling the customization of personalized video generation models. Furthermore, the UFO also supports direct transferability across different models of the same specification without the need for specific retraining. The experimental results indicate that UFO effectively enhances video generation quality and demonstrates its superiority in public video generation benchmarks. The code will be publicly available at https://github.com/Delong-liu-bupt/UFO.
Authors:Zhuoran Yang, Xi Guo, Chenjing Ding, Chiyu Wang, Wei Wu
Abstract:
Autonomous driving requires robust perception models trained on high-quality, large-scale multi-view driving videos for tasks like 3D object detection, segmentation and trajectory prediction. While world models provide a cost-effective solution for generating realistic driving videos, challenges remain in ensuring these videos adhere to fundamental physical principles, such as relative and absolute motion, spatial relationship like occlusion and spatial consistency, and temporal consistency. To address these, we propose DrivePhysica, an innovative model designed to generate realistic multi-view driving videos that accurately adhere to essential physical principles through three key advancements: (1) a Coordinate System Aligner module that integrates relative and absolute motion features to enhance motion interpretation, (2) an Instance Flow Guidance module that ensures precise temporal consistency via efficient 3D flow extraction, and (3) a Box Coordinate Guidance module that improves spatial relationship understanding and accurately resolves occlusion hierarchies. Grounded in physical principles, we achieve state-of-the-art performance in driving video generation quality (3.96 FID and 38.06 FVD on the Nuscenes dataset) and downstream perception tasks. Our project homepage: https://metadrivescape.github.io/papers_project/DrivePhysica/page.html
Authors:Chongkai Gao, Haozhuo Zhang, Zhixuan Xu, Zhehao Cai, Lin Shao
Abstract:
We aim to develop a model-based planning framework for world models that can be scaled with increasing model and data budgets for general-purpose manipulation tasks with only language and vision inputs. To this end, we present FLow-centric generative Planning (FLIP), a model-based planning algorithm on visual space that features three key modules: 1. a multi-modal flow generation model as the general-purpose action proposal module; 2. a flow-conditioned video generation model as the dynamics module; and 3. a vision-language representation learning model as the value module. Given an initial image and language instruction as the goal, FLIP can progressively search for long-horizon flow and video plans that maximize the discounted return to accomplish the task. FLIP is able to synthesize long-horizon plans across objects, robots, and tasks with image flows as the general action representation, and the dense flow information also provides rich guidance for long-horizon video generation. In addition, the synthesized flow and video plans can guide the training of low-level control policies for robot execution. Experiments on diverse benchmarks demonstrate that FLIP can improve both the success rates and quality of long-horizon video plan synthesis and has the interactive world model property, opening up wider applications for future works.Video demos are on our website: https://nus-lins-lab.github.io/flipweb/.
Authors:Xi Chen, Zhifei Zhang, He Zhang, Yuqian Zhou, Soo Ye Kim, Qing Liu, Yijun Li, Jianming Zhang, Nanxuan Zhao, Yilin Wang, Hui Ding, Zhe Lin, Hengshuang Zhao
Abstract:
We introduce UniReal, a unified framework designed to address various image generation and editing tasks. Existing solutions often vary by tasks, yet share fundamental principles: preserving consistency between inputs and outputs while capturing visual variations. Inspired by recent video generation models that effectively balance consistency and variation across frames, we propose a unifying approach that treats image-level tasks as discontinuous video generation. Specifically, we treat varying numbers of input and output images as frames, enabling seamless support for tasks such as image generation, editing, customization, composition, etc. Although designed for image-level tasks, we leverage videos as a scalable source for universal supervision. UniReal learns world dynamics from large-scale videos, demonstrating advanced capability in handling shadows, reflections, pose variation, and object interaction, while also exhibiting emergent capability for novel applications.
Authors:Jianhong Bai, Menghan Xia, Xintao Wang, Ziyang Yuan, Xiao Fu, Zuozhu Liu, Haoji Hu, Pengfei Wan, Di Zhang
Abstract:
Recent advancements in video diffusion models have shown exceptional abilities in simulating real-world dynamics and maintaining 3D consistency. This progress inspires us to investigate the potential of these models to ensure dynamic consistency across various viewpoints, a highly desirable feature for applications such as virtual filming. Unlike existing methods focused on multi-view generation of single objects for 4D reconstruction, our interest lies in generating open-world videos from arbitrary viewpoints, incorporating 6 DoF camera poses. To achieve this, we propose a plug-and-play module that enhances a pre-trained text-to-video model for multi-camera video generation, ensuring consistent content across different viewpoints. Specifically, we introduce a multi-view synchronization module to maintain appearance and geometry consistency across these viewpoints. Given the scarcity of high-quality training data, we design a hybrid training scheme that leverages multi-camera images and monocular videos to supplement Unreal Engine-rendered multi-camera videos. Furthermore, our method enables intriguing extensions, such as re-rendering a video from novel viewpoints. We also release a multi-view synchronized video dataset, named SynCamVideo-Dataset. Project page: https://jianhongbai.github.io/SynCamMaster/.
Authors:Xiao Fu, Xian Liu, Xintao Wang, Sida Peng, Menghan Xia, Xiaoyu Shi, Ziyang Yuan, Pengfei Wan, Di Zhang, Dahua Lin
Abstract:
This paper aims to manipulate multi-entity 3D motions in video generation. Previous methods on controllable video generation primarily leverage 2D control signals to manipulate object motions and have achieved remarkable synthesis results. However, 2D control signals are inherently limited in expressing the 3D nature of object motions. To overcome this problem, we introduce 3DTrajMaster, a robust controller that regulates multi-entity dynamics in 3D space, given user-desired 6DoF pose (location and rotation) sequences of entities. At the core of our approach is a plug-and-play 3D-motion grounded object injector that fuses multiple input entities with their respective 3D trajectories through a gated self-attention mechanism. In addition, we exploit an injector architecture to preserve the video diffusion prior, which is crucial for generalization ability. To mitigate video quality degradation, we introduce a domain adaptor during training and employ an annealed sampling strategy during inference. To address the lack of suitable training data, we construct a 360-Motion Dataset, which first correlates collected 3D human and animal assets with GPT-generated trajectory and then captures their motion with 12 evenly-surround cameras on diverse 3D UE platforms. Extensive experiments show that 3DTrajMaster sets a new state-of-the-art in both accuracy and generalization for controlling multi-entity 3D motions. Project page: http://fuxiao0719.github.io/projects/3dtrajmaster
Authors:Zixuan Ye, Huijuan Huang, Xintao Wang, Pengfei Wan, Di Zhang, Wenhan Luo
Abstract:
Style control has been popular in video generation models. Existing methods often generate videos far from the given style, cause content leakage, and struggle to transfer one video to the desired style. Our first observation is that the style extraction stage matters, whereas existing methods emphasize global style but ignore local textures. In order to bring texture features while preventing content leakage, we filter content-related patches while retaining style ones based on prompt-patch similarity; for global style extraction, we generate a paired style dataset through model illusion to facilitate contrastive learning, which greatly enhances the absolute style consistency. Moreover, to fill in the image-to-video gap, we train a lightweight motion adapter on still videos, which implicitly enhances stylization extent, and enables our image-trained model to be seamlessly applied to videos. Benefited from these efforts, our approach, StyleMaster, not only achieves significant improvement in both style resemblance and temporal coherence, but also can easily generalize to video style transfer with a gray tile ControlNet. Extensive experiments and visualizations demonstrate that StyleMaster significantly outperforms competitors, effectively generating high-quality stylized videos that align with textual content and closely resemble the style of reference images. Our project page is at https://zixuan-ye.github.io/stylemaster
Authors:Adil Karjauv, Noor Fathima, Ioannis Lelekas, Fatih Porikli, Amir Ghodrati, Amirhossein Habibian
Abstract:
Recent progress in diffusion-based video editing has shown remarkable potential for practical applications. However, these methods remain prohibitively expensive and challenging to deploy on mobile devices. In this study, we introduce a series of optimizations that render mobile video editing feasible. Building upon the existing image editing model, we first optimize its architecture and incorporate a lightweight autoencoder. Subsequently, we extend classifier-free guidance distillation to multiple modalities, resulting in a threefold on-device speedup. Finally, we reduce the number of sampling steps to one by introducing a novel adversarial distillation scheme which preserves the controllability of the editing process. Collectively, these optimizations enable video editing at 12 frames per second on mobile devices, while maintaining high quality. Our results are available at https://qualcomm-ai-research.github.io/mobile-video-editing/
Authors:Lening Wang, Wenzhao Zheng, Dalong Du, Yunpeng Zhang, Yilong Ren, Han Jiang, Zhiyong Cui, Haiyang Yu, Jie Zhou, Jiwen Lu, Shanghang Zhang
Abstract:
4D driving simulation is essential for developing realistic autonomous driving simulators. Despite advancements in existing methods for generating driving scenes, significant challenges remain in view transformation and spatial-temporal dynamic modeling. To address these limitations, we propose a Spatial-Temporal simulAtion for drivinG (Stag-1) model to reconstruct real-world scenes and design a controllable generative network to achieve 4D simulation. Stag-1 constructs continuous 4D point cloud scenes using surround-view data from autonomous vehicles. It decouples spatial-temporal relationships and produces coherent keyframe videos. Additionally, Stag-1 leverages video generation models to obtain photo-realistic and controllable 4D driving simulation videos from any perspective. To expand the range of view generation, we train vehicle motion videos based on decomposed camera poses, enhancing modeling capabilities for distant scenes. Furthermore, we reconstruct vehicle camera trajectories to integrate 3D points across consecutive views, enabling comprehensive scene understanding along the temporal dimension. Following extensive multi-level scene training, Stag-1 can simulate from any desired viewpoint and achieve a deep understanding of scene evolution under static spatial-temporal conditions. Compared to existing methods, our approach shows promising performance in multi-view scene consistency, background coherence, and accuracy, and contributes to the ongoing advancements in realistic autonomous driving simulation. Code: https://github.com/wzzheng/Stag.
Authors:Yibin Wang, Zhiyu Tan, Junyan Wang, Xiaomeng Yang, Cheng Jin, Hao Li
Abstract:
Recent advances in text-to-video (T2V) generative models have shown impressive capabilities. However, these models are still inadequate in aligning synthesized videos with human preferences (e.g., accurately reflecting text descriptions), which is particularly difficult to address, as human preferences are subjective and challenging to formalize as objective functions. Existing studies train video quality assessment models that rely on human-annotated ratings for video evaluation but overlook the reasoning behind evaluations, limiting their ability to capture nuanced human criteria. Moreover, aligning T2V model using video-based human feedback remains unexplored. Therefore, this paper proposes LiFT, the first method designed to leverage human feedback for T2V model alignment. Specifically, we first construct a Human Rating Annotation dataset, LiFT-HRA, consisting of approximately 10k human annotations, each including a score and its corresponding rationale. Based on this, we train a reward model LiFT-Critic to learn reward function effectively, which serves as a proxy for human judgment, measuring the alignment between given videos and human expectations. Lastly, we leverage the learned reward function to align the T2V model by maximizing the reward-weighted likelihood. As a case study, we apply our pipeline to CogVideoX-2B, showing that the fine-tuned model outperforms the CogVideoX-5B across all 16 metrics, highlighting the potential of human feedback in improving the alignment and quality of synthesized videos.
Authors:Yizhuo Li, Yuying Ge, Yixiao Ge, Ping Luo, Ying Shan
Abstract:
Videos are inherently temporal sequences by their very nature. In this work, we explore the potential of modeling videos in a chronological and scalable manner with autoregressive (AR) language models, inspired by their success in natural language processing. We introduce DiCoDe, a novel approach that leverages Diffusion-Compressed Deep Tokens to generate videos with a language model in an autoregressive manner. Unlike existing methods that employ low-level representations with limited compression rates, DiCoDe utilizes deep tokens with a considerable compression rate (a 1000x reduction in token count). This significant compression is made possible by a tokenizer trained through leveraging the prior knowledge of video diffusion models. Deep tokens enable DiCoDe to employ vanilla AR language models for video generation, akin to translating one visual "language" into another. By treating videos as temporal sequences, DiCoDe fully harnesses the capabilities of language models for autoregressive generation. DiCoDe is scalable using readily available AR architectures, and is capable of generating videos ranging from a few seconds to one minute using only 4 A100 GPUs for training. We evaluate DiCoDe both quantitatively and qualitatively, demonstrating that it performs comparably to existing methods in terms of quality while ensuring efficient training. To showcase its scalability, we release a series of DiCoDe configurations with varying parameter sizes and observe a consistent improvement in performance as the model size increases from 100M to 3B. We believe that DiCoDe's exploration in academia represents a promising initial step toward scalable video modeling with AR language models, paving the way for the development of larger and more powerful video generation models.
Authors:Kaiyi Huang, Yukun Huang, Xuefei Ning, Zinan Lin, Yu Wang, Xihui Liu
Abstract:
Text-to-video generation models have shown significant progress in the recent years. However, they still struggle with generating complex dynamic scenes based on compositional text prompts, such as attribute binding for multiple objects, temporal dynamics associated with different objects, and interactions between objects. Our key motivation is that complex tasks can be decomposed into simpler ones, each handled by a role-specialized MLLM agent. Multiple agents can collaborate together to achieve collective intelligence for complex goals. We propose GenMAC, an iterative, multi-agent framework that enables compositional text-to-video generation. The collaborative workflow includes three stages: Design, Generation, and Redesign, with an iterative loop between the Generation and Redesign stages to progressively verify and refine the generated videos. The Redesign stage is the most challenging stage that aims to verify the generated videos, suggest corrections, and redesign the text prompts, frame-wise layouts, and guidance scales for the next iteration of generation. To avoid hallucination of a single MLLM agent, we decompose this stage to four sequentially-executed MLLM-based agents: verification agent, suggestion agent, correction agent, and output structuring agent. Furthermore, to tackle diverse scenarios of compositional text-to-video generation, we design a self-routing mechanism to adaptively select the proper correction agent from a collection of correction agents each specialized for one scenario. Extensive experiments demonstrate the effectiveness of GenMAC, achieving state-of-the art performance in compositional text-to-video generation.
Authors:Yuying Ge, Yizhuo Li, Yixiao Ge, Ying Shan
Abstract:
In recent years, there has been a significant surge of interest in unifying image comprehension and generation within Large Language Models (LLMs). This growing interest has prompted us to explore extending this unification to videos. The core challenge lies in developing a versatile video tokenizer that captures both the spatial characteristics and temporal dynamics of videos to obtain representations for LLMs, and the representations can be further decoded into realistic video clips to enable video generation. In this work, we introduce Divot, a Diffusion-Powered Video Tokenizer, which leverages the diffusion process for self-supervised video representation learning. We posit that if a video diffusion model can effectively de-noise video clips by taking the features of a video tokenizer as the condition, then the tokenizer has successfully captured robust spatial and temporal information. Additionally, the video diffusion model inherently functions as a de-tokenizer, decoding videos from their representations. Building upon the Divot tokenizer, we present Divot-Vicuna through video-to-text autoregression and text-to-video generation by modeling the distributions of continuous-valued Divot features with a Gaussian Mixture Model. Experimental results demonstrate that our diffusion-based video tokenizer, when integrated with a pre-trained LLM, achieves competitive performance across various video comprehension and generation benchmarks. The instruction tuned Divot-Vicuna also excels in video storytelling, generating interleaved narratives and corresponding videos.
Authors:Yayuan Li, Zhi Cao, Jason J. Corso
Abstract:
Despite the recent strides in video generation, state-of-the-art methods still struggle with elements of visual detail. One particularly challenging case is the class of videos in which the intricate motion of the hand coupled with a mostly stable and otherwise distracting environment is necessary to convey the execution of some complex action and its effects. To address these challenges, we introduce a new method for video generation that focuses on hand-centric actions. Our diffusion-based method incorporates two distinct innovations. First, we propose an automatic method to generate the motion area -- the region in the video in which the detailed activities occur -- guided by both the visual context and the action text prompt, rather than assuming this region can be provided manually as is now commonplace. Second, we introduce a critical Hand Refinement Loss to guide the diffusion model to focus on smooth and consistent hand poses. We evaluate our method on challenging augmented datasets based on EpicKitchens and Ego4D, demonstrating significant improvements over state-of-the-art methods in terms of action clarity, especially of the hand motion in the target region, across diverse environments and actions. Video results can be found in https://excitedbutter.github.io/project_page
Authors:Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang, Kathrina Wu, Qin Lin, Junkun Yuan, Yanxin Long, Aladdin Wang, Andong Wang, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song, Jiawang Bai, Jianbing Wu, Jinbao Xue, Joey Wang, Kai Wang, Mengyang Liu, Pengyu Li, Shuai Li, Weiyan Wang, Wenqing Yu, Xinchi Deng, Yang Li, Yi Chen, Yutao Cui, Yuanbo Peng, Zhentao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu Tao, Qinglin Lu, Songtao Liu, Dax Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, Caesar Zhong
Abstract:
Recent advancements in video generation have significantly impacted daily life for both individuals and industries. However, the leading video generation models remain closed-source, resulting in a notable performance gap between industry capabilities and those available to the public. In this report, we introduce HunyuanVideo, an innovative open-source video foundation model that demonstrates performance in video generation comparable to, or even surpassing, that of leading closed-source models. HunyuanVideo encompasses a comprehensive framework that integrates several key elements, including data curation, advanced architectural design, progressive model scaling and training, and an efficient infrastructure tailored for large-scale model training and inference. As a result, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models. We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion dynamics, text-video alignment, and advanced filming techniques. According to evaluations by professionals, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and three top-performing Chinese video generative models. By releasing the code for the foundation model and its applications, we aim to bridge the gap between closed-source and open-source communities. This initiative will empower individuals within the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem. The code is publicly available at https://github.com/Tencent/HunyuanVideo.
Authors:Jing Tan, Shuai Yang, Tong Wu, Jingwen He, Yuwei Guo, Ziwei Liu, Dahua Lin
Abstract:
$360^\circ$ videos offer a hyper-immersive experience that allows the viewers to explore a dynamic scene from full 360 degrees. To achieve more user-friendly and personalized content creation in $360^\circ$ video format, we seek to lift standard perspective videos into $360^\circ$ equirectangular videos. To this end, we introduce Imagine360, the first perspective-to-$360^\circ$ video generation framework that creates high-quality $360^\circ$ videos with rich and diverse motion patterns from video anchors. Imagine360 learns fine-grained spherical visual and motion patterns from limited $360^\circ$ video data with several key designs. 1) Firstly we adopt the dual-branch design, including a perspective and a panorama video denoising branch to provide local and global constraints for $360^\circ$ video generation, with motion module and spatial LoRA layers fine-tuned on extended web $360^\circ$ videos. 2) Additionally, an antipodal mask is devised to capture long-range motion dependencies, enhancing the reversed camera motion between antipodal pixels across hemispheres. 3) To handle diverse perspective video inputs, we propose elevation-aware designs that adapt to varying video masking due to changing elevations across frames. Extensive experiments show Imagine360 achieves superior graphics quality and motion coherence among state-of-the-art $360^\circ$ video generation methods. We believe Imagine360 holds promise for advancing personalized, immersive $360^\circ$ video creation.
Authors:Hannan Lu, Xiaohe Wu, Shudong Wang, Xiameng Qin, Xinyu Zhang, Junyu Han, Wangmeng Zuo, Ji Tao
Abstract:
Generating multi-view videos for autonomous driving training has recently gained much attention, with the challenge of addressing both cross-view and cross-frame consistency. Existing methods typically apply decoupled attention mechanisms for spatial, temporal, and view dimensions. However, these approaches often struggle to maintain consistency across dimensions, particularly when handling fast-moving objects that appear at different times and viewpoints. In this paper, we present CogDriving, a novel network designed for synthesizing high-quality multi-view driving videos. CogDriving leverages a Diffusion Transformer architecture with holistic-4D attention modules, enabling simultaneous associations across the spatial, temporal, and viewpoint dimensions. We also propose a lightweight controller tailored for CogDriving, i.e., Micro-Controller, which uses only 1.1% of the parameters of the standard ControlNet, enabling precise control over Bird's-Eye-View layouts. To enhance the generation of object instances crucial for autonomous driving, we propose a re-weighted learning objective, dynamically adjusting the learning weights for object instances during training. CogDriving demonstrates strong performance on the nuScenes validation set, achieving an FVD score of 37.8, highlighting its ability to generate realistic driving videos. The project can be found at https://luhannan.github.io/CogDrivingPage/.
Authors:Shuai Tan, Biao Gong, Yutong Feng, Kecheng Zheng, Dandan Zheng, Shuwei Shi, Yujun Shen, Jingdong Chen, Ming Yang
Abstract:
Text serves as the key control signal in video generation due to its narrative nature. To render text descriptions into video clips, current video diffusion models borrow features from text encoders yet struggle with limited text comprehension. The recent success of large language models (LLMs) showcases the power of decoder-only transformers, which offers three clear benefits for text-to-video (T2V) generation, namely, precise text understanding resulting from the superior scalability, imagination beyond the input text enabled by next token prediction, and flexibility to prioritize user interests through instruction tuning. Nevertheless, the feature distribution gap emerging from the two different text modeling paradigms hinders the direct use of LLMs in established T2V models. This work addresses this challenge with Mimir, an end-to-end training framework featuring a carefully tailored token fuser to harmonize the outputs from text encoders and LLMs. Such a design allows the T2V model to fully leverage learned video priors while capitalizing on the text-related capability of LLMs. Extensive quantitative and qualitative results demonstrate the effectiveness of Mimir in generating high-quality videos with excellent text comprehension, especially when processing short captions and managing shifting motions. Project page: https://lucaria-academy.github.io/Mimir/
Authors:Lingteng Qiu, Shenhao Zhu, Qi Zuo, Xiaodong Gu, Yuan Dong, Junfei Zhang, Chao Xu, Zhe Li, Weihao Yuan, Liefeng Bo, Guanying Chen, Zilong Dong
Abstract:
Generating animatable human avatars from a single image is essential for various digital human modeling applications. Existing 3D reconstruction methods often struggle to capture fine details in animatable models, while generative approaches for controllable animation, though avoiding explicit 3D modeling, suffer from viewpoint inconsistencies in extreme poses and computational inefficiencies. In this paper, we address these challenges by leveraging the power of generative models to produce detailed multi-view canonical pose images, which help resolve ambiguities in animatable human reconstruction. We then propose a robust method for 3D reconstruction of inconsistent images, enabling real-time rendering during inference. Specifically, we adapt a transformer-based video generation model to generate multi-view canonical pose images and normal maps, pretraining on a large-scale video dataset to improve generalization. To handle view inconsistencies, we recast the reconstruction problem as a 4D task and introduce an efficient 3D modeling approach using 4D Gaussian Splatting. Experiments demonstrate that our method achieves photorealistic, real-time animation of 3D human avatars from in-the-wild images, showcasing its effectiveness and generalization capability.
Authors:Mingzhe Zheng, Yongqi Xu, Haojian Huang, Xuran Ma, Yexin Liu, Wenjie Shu, Yatian Pang, Feilong Tang, Qifeng Chen, Harry Yang, Ser-Nam Lim
Abstract:
Current video generation models excel at short clips but fail to produce cohesive multi-shot narratives due to disjointed visual dynamics and fractured storylines. Existing solutions either rely on extensive manual scripting/editing or prioritize single-shot fidelity over cross-scene continuity, limiting their practicality for movie-like content. We introduce VideoGen-of-Thought (VGoT), a step-by-step framework that automates multi-shot video synthesis from a single sentence by systematically addressing three core challenges: (1) Narrative Fragmentation: Existing methods lack structured storytelling. We propose dynamic storyline modeling, which first converts the user prompt into concise shot descriptions, then elaborates them into detailed, cinematic specifications across five domains (character dynamics, background continuity, relationship evolution, camera movements, HDR lighting), ensuring logical narrative progression with self-validation. (2) Visual Inconsistency: Existing approaches struggle with maintaining visual consistency across shots. Our identity-aware cross-shot propagation generates identity-preserving portrait (IPP) tokens that maintain character fidelity while allowing trait variations (expressions, aging) dictated by the storyline. (3) Transition Artifacts: Abrupt shot changes disrupt immersion. Our adjacent latent transition mechanisms implement boundary-aware reset strategies that process adjacent shots' features at transition points, enabling seamless visual flow while preserving narrative continuity. VGoT generates multi-shot videos that outperform state-of-the-art baselines by 20.4% in within-shot face consistency and 17.4% in style consistency, while achieving over 100% better cross-shot consistency and 10x fewer manual adjustments than alternatives.
Authors:Harold Haodong Chen, Harry Yang, Ser-Nam Lim
Abstract:
Recent advances in video generation have outpaced progress in video editing, which remains constrained by several limiting factors, namely: (a) the task's dependency on supervision severely limits generality, (b) an unnecessary artificial separation between the generation and editing task, and (c) the high computational costs of training a video model. In this work, we propose UES (Unlocking Universal Editing via Self-Supervision), a lightweight self-supervised fine-tuning strategy that transforms generation models into unified generation-editing systems through self-supervised semantic alignment. Our approach establishes a dual-conditioning mechanism where original video-text pairs jointly provide visual and textual semantics, enabling structured learning of intrinsic spatiotemporal correspondences. Key advantages include: (i) Universality through supervision-free adaptation to diverse editing tasks, (ii) Unification of generation and editing applicable to most text(+image)-to-video model, and (iii) Efficiency via lightweight fine-tune that reduces tunable parameters by 92.67%. To enable systematic evaluation, we introduce OmniBench-99, a comprehensive benchmark spanning 99 videos across humans/animals, environments, and objects, comprising 4 editing types and 8 scenarios. Extensive experiments show UES enables models without inherent editing capability to perform powerful and universal editing while preserving or even enhancing their original generation performance.
Authors:Xi Guo, Chenjing Ding, Haoxuan Dou, Xin Zhang, Weixuan Tang, Wei Wu
Abstract:
Autonomous driving systems struggle with complex scenarios due to limited access to diverse, extensive, and out-of-distribution driving data which are critical for safe navigation. World models offer a promising solution to this challenge; however, current driving world models are constrained by short time windows and limited scenario diversity. To bridge this gap, we introduce InfinityDrive, the first driving world model with exceptional generalization capabilities, delivering state-of-the-art performance in high fidelity, consistency, and diversity with minute-scale video generation. InfinityDrive introduces an efficient spatio-temporal co-modeling module paired with an extended temporal training strategy, enabling high-resolution (576$\times$1024) video generation with consistent spatial and temporal coherence. By incorporating memory injection and retention mechanisms alongside an adaptive memory curve loss to minimize cumulative errors, achieving consistent video generation lasting over 1500 frames (more than 2 minutes). Comprehensive experiments in multiple datasets validate InfinityDrive's ability to generate complex and varied scenarios, highlighting its potential as a next-generation driving world model built for the evolving demands of autonomous driving. Our project homepage: https://metadrivescape.github.io/papers_project/InfinityDrive/page.html
Authors:Xiaomin Li, Xu Jia, Qinghe Wang, Haiwen Diao, Mengmeng Ge, Pengxiang Li, You He, Huchuan Lu
Abstract:
Existing pretrained text-to-video (T2V) models have demonstrated impressive abilities in generating realistic videos with basic motion or camera movement. However, these models exhibit significant limitations when generating intricate, human-centric motions. Current efforts primarily focus on fine-tuning models on a small set of videos containing a specific motion. They often fail to effectively decouple motion and the appearance in the limited reference videos, thereby weakening the modeling capability of motion patterns. To this end, we propose MoTrans, a customized motion transfer method enabling video generation of similar motion in new context. Specifically, we introduce a multimodal large language model (MLLM)-based recaptioner to expand the initial prompt to focus more on appearance and an appearance injection module to adapt appearance prior from video frames to the motion modeling process. These complementary multimodal representations from recaptioned prompt and video frames promote the modeling of appearance and facilitate the decoupling of appearance and motion. In addition, we devise a motion-specific embedding for further enhancing the modeling of the specific motion. Experimental results demonstrate that our method effectively learns specific motion pattern from singular or multiple reference videos, performing favorably against existing methods in customized video generation.
Authors:Xin Yan, Yuxuan Cai, Qiuyue Wang, Yuan Zhou, Wenhao Huang, Huan Yang
Abstract:
We introduce Presto, a novel video diffusion model designed to generate 15-second videos with long-range coherence and rich content. Extending video generation methods to maintain scenario diversity over long durations presents significant challenges. To address this, we propose a Segmented Cross-Attention (SCA) strategy, which splits hidden states into segments along the temporal dimension, allowing each segment to cross-attend to a corresponding sub-caption. SCA requires no additional parameters, enabling seamless incorporation into current DiT-based architectures. To facilitate high-quality long video generation, we build the LongTake-HD dataset, consisting of 261k content-rich videos with scenario coherence, annotated with an overall video caption and five progressive sub-captions. Experiments show that our Presto achieves 78.5% on the VBench Semantic Score and 100% on the Dynamic Degree, outperforming existing state-of-the-art video generation methods. This demonstrates that our proposed Presto significantly enhances content richness, maintains long-range coherence, and captures intricate textual details. More details are displayed on our project page: https://presto-video.github.io/.
Authors:Taekyung Ki, Dongchan Min, Gyeongsu Chae
Abstract:
With the rapid advancement of diffusion-based generative models, portrait image animation has achieved remarkable results. However, it still faces challenges in temporally consistent video generation and fast sampling due to its iterative sampling nature. This paper presents FLOAT, an audio-driven talking portrait video generation method based on flow matching generative model. Instead of a pixel-based latent space, we take advantage of a learned orthogonal motion latent space, enabling efficient generation and editing of temporally consistent motion. To achieve this, we introduce a transformer-based vector field predictor with an effective frame-wise conditioning mechanism. Additionally, our method supports speech-driven emotion enhancement, enabling a natural incorporation of expressive motions. Extensive experiments demonstrate that our method outperforms state-of-the-art audio-driven talking portrait methods in terms of visual quality, motion fidelity, and efficiency.
Authors:Mingyu Yang, Junyou Li, Zhongbin Fang, Sheng Chen, Yangbin Yu, Qiang Fu, Wei Yang, Deheng Ye
Abstract:
In recent years, Artificial Intelligence Generated Content (AIGC) has advanced from text-to-image generation to text-to-video and multimodal video synthesis. However, generating playable games presents significant challenges due to the stringent requirements for real-time interaction, high visual quality, and accurate simulation of game mechanics. Existing approaches often fall short, either lacking real-time capabilities or failing to accurately simulate interactive mechanics. To tackle the playability issue, we propose a novel method called \emph{PlayGen}, which encompasses game data generation, an autoregressive DiT-based diffusion model, and a comprehensive playability-based evaluation framework. Validated on well-known 2D and 3D games, PlayGen achieves real-time interaction, ensures sufficient visual quality, and provides accurate interactive mechanics simulation. Notably, these results are sustained even after over 1000 frames of gameplay on an NVIDIA RTX 2060 GPU. Our code is publicly available: https://github.com/GreatX3/Playable-Game-Generation. Our playable demo generated by AI is: http://124.156.151.207.
Authors:Shuling Zhao, Fa-Ting Hong, Xiaoshui Huang, Dan Xu
Abstract:
Talking head video generation aims to generate a realistic talking head video that preserves the person's identity from a source image and the motion from a driving video. Despite the promising progress made in the field, it remains a challenging and critical problem to generate videos with accurate poses and fine-grained facial details simultaneously. Essentially, facial motion is often highly complex to model precisely, and the one-shot source face image cannot provide sufficient appearance guidance during generation due to dynamic pose changes. To tackle the problem, we propose to jointly learn motion and appearance codebooks and perform multi-scale codebook compensation to effectively refine both the facial motion conditions and appearance features for talking face image decoding. Specifically, the designed multi-scale motion and appearance codebooks are learned simultaneously in a unified framework to store representative global facial motion flow and appearance patterns. Then, we present a novel multi-scale motion and appearance compensation module, which utilizes a transformer-based codebook retrieval strategy to query complementary information from the two codebooks for joint motion and appearance compensation. The entire process produces motion flows of greater flexibility and appearance features with fewer distortions across different scales, resulting in a high-quality talking head video generation framework. Extensive experiments on various benchmarks validate the effectiveness of our approach and demonstrate superior generation results from both qualitative and quantitative perspectives when compared to state-of-the-art competitors.
Authors:Qiyao Xue, Xiangyu Yin, Boyuan Yang, Wei Gao
Abstract:
Text-to-video (T2V) generation has been recently enabled by transformer-based diffusion models, but current T2V models lack capabilities in adhering to the real-world common knowledge and physical rules, due to their limited understanding of physical realism and deficiency in temporal modeling. Existing solutions are either data-driven or require extra model inputs, but cannot be generalizable to out-of-distribution domains. In this paper, we present PhyT2V, a new data-independent T2V technique that expands the current T2V model's capability of video generation to out-of-distribution domains, by enabling chain-of-thought and step-back reasoning in T2V prompting. Our experiments show that PhyT2V improves existing T2V models' adherence to real-world physical rules by 2.3x, and achieves 35% improvement compared to T2V prompt enhancers. The source codes are available at: https://github.com/pittisl/PhyT2V.
Authors:Tianshuo Xu, Zhifei Chen, Leyi Wu, Hao Lu, Yuying Chen, Lihui Jiang, Bingbing Liu, Yingcong Chen
Abstract:
Recent advances in video generation have shown promise for generating future scenarios, critical for planning and control in autonomous driving and embodied intelligence. However, real-world applications demand more than visually plausible predictions; they require reasoning about object motions based on explicitly defined boundary conditions, such as initial scene image and partial object motion. We term this capability Boundary Conditional Motion Reasoning. Current approaches either neglect explicit user-defined motion constraints, producing physically inconsistent motions, or conversely demand complete motion inputs, which are rarely available in practice. Here we introduce Motion Dreamer, a two-stage framework that explicitly separates motion reasoning from visual synthesis, addressing these limitations. Our approach introduces instance flow, a sparse-to-dense motion representation enabling effective integration of partial user-defined motions, and the motion inpainting strategy to robustly enable reasoning motions of other objects. Extensive experiments demonstrate that Motion Dreamer significantly outperforms existing methods, achieving superior motion plausibility and visual realism, thus bridging the gap towards practical boundary conditional motion reasoning. Our webpage is available: https://envision-research.github.io/MotionDreamer/.
Authors:Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye, Shenghai Yuan, Liuhan Chen, Tanghui Jia, Junwu Zhang, Zhenyu Tang, Yatian Pang, Bin She, Cen Yan, Zhiheng Hu, Xiaoyi Dong, Lin Chen, Zhang Pan, Xing Zhou, Shaoling Dong, Yonghong Tian, Li Yuan
Abstract:
We introduce Open-Sora Plan, an open-source project that aims to contribute a large generation model for generating desired high-resolution videos with long durations based on various user inputs. Our project comprises multiple components for the entire video generation process, including a Wavelet-Flow Variational Autoencoder, a Joint Image-Video Skiparse Denoiser, and various condition controllers. Moreover, many assistant strategies for efficient training and inference are designed, and a multi-dimensional data curation pipeline is proposed for obtaining desired high-quality data. Benefiting from efficient thoughts, our Open-Sora Plan achieves impressive video generation results in both qualitative and quantitative evaluations. We hope our careful design and practical experience can inspire the video generation research community. All our codes and model weights are publicly available at \url{https://github.com/PKU-YuanGroup/Open-Sora-Plan}.
Authors:Hui Li, Mingwang Xu, Yun Zhan, Shan Mu, Jiaye Li, Kaihui Cheng, Yuxuan Chen, Tan Chen, Mao Ye, Jingdong Wang, Siyu Zhu
Abstract:
Recent advancements in visual generation technologies have markedly increased the scale and availability of video datasets, which are crucial for training effective video generation models. However, a significant lack of high-quality, human-centric video datasets presents a challenge to progress in this field. To bridge this gap, we introduce OpenHumanVid, a large-scale and high-quality human-centric video dataset characterized by precise and detailed captions that encompass both human appearance and motion states, along with supplementary human motion conditions, including skeleton sequences and speech audio. To validate the efficacy of this dataset and the associated training strategies, we propose an extension of existing classical diffusion transformer architectures and conduct further pretraining of our models on the proposed dataset. Our findings yield two critical insights: First, the incorporation of a large-scale, high-quality dataset substantially enhances evaluation metrics for generated human videos while preserving performance in general video generation tasks. Second, the effective alignment of text with human appearance, human motion, and facial motion is essential for producing high-quality video outputs. Based on these insights and corresponding methodologies, the straightforward extended network trained on the proposed dataset demonstrates an obvious improvement in the generation of human-centric videos. Project page https://fudan-generative-vision.github.io/OpenHumanVid
Authors:Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang, Qixiang Ye, Fang Wan
Abstract:
As a fundamental backbone for video generation, diffusion models are challenged by low inference speed due to the sequential nature of denoising. Previous methods speed up the models by caching and reusing model outputs at uniformly selected timesteps. However, such a strategy neglects the fact that differences among model outputs are not uniform across timesteps, which hinders selecting the appropriate model outputs to cache, leading to a poor balance between inference efficiency and visual quality. In this study, we introduce Timestep Embedding Aware Cache (TeaCache), a training-free caching approach that estimates and leverages the fluctuating differences among model outputs across timesteps. Rather than directly using the time-consuming model outputs, TeaCache focuses on model inputs, which have a strong correlation with the modeloutputs while incurring negligible computational cost. TeaCache first modulates the noisy inputs using the timestep embeddings to ensure their differences better approximating those of model outputs. TeaCache then introduces a rescaling strategy to refine the estimated differences and utilizes them to indicate output caching. Experiments show that TeaCache achieves up to 4.41x acceleration over Open-Sora-Plan with negligible (-0.07% Vbench score) degradation of visual quality.
Authors:Sherwin Bahmani, Ivan Skorokhodov, Guocheng Qian, Aliaksandr Siarohin, Willi Menapace, Andrea Tagliasacchi, David B. Lindell, Sergey Tulyakov
Abstract:
Numerous works have recently integrated 3D camera control into foundational text-to-video models, but the resulting camera control is often imprecise, and video generation quality suffers. In this work, we analyze camera motion from a first principles perspective, uncovering insights that enable precise 3D camera manipulation without compromising synthesis quality. First, we determine that motion induced by camera movements in videos is low-frequency in nature. This motivates us to adjust train and test pose conditioning schedules, accelerating training convergence while improving visual and motion quality. Then, by probing the representations of an unconditional video diffusion transformer, we observe that they implicitly perform camera pose estimation under the hood, and only a sub-portion of their layers contain the camera information. This suggested us to limit the injection of camera conditioning to a subset of the architecture to prevent interference with other video features, leading to a 4x reduction of training parameters, improved training speed, and 10% higher visual quality. Finally, we complement the typical dataset for camera control learning with a curated dataset of 20K diverse, dynamic videos with stationary cameras. This helps the model distinguish between camera and scene motion and improves the dynamics of generated pose-conditioned videos. We compound these findings to design the Advanced 3D Camera Control (AC3D) architecture, the new state-of-the-art model for generative video modeling with camera control.
Authors:Zhaofang Qian, Abolfazl Sharifi, Tucker Carroll, Ser-Nam Lim
Abstract:
Video generation has achieved impressive quality, but it still suffers from artifacts such as temporal inconsistency and violation of physical laws. Leveraging 3D scenes can fundamentally resolve these issues by providing precise control over scene entities. To facilitate the easy generation of diverse photorealistic scenes, we propose Scene Copilot, a framework combining large language models (LLMs) with a procedural 3D scene generator. Specifically, Scene Copilot consists of Scene Codex, BlenderGPT, and Human in the loop. Scene Codex is designed to translate textual user input into commands understandable by the 3D scene generator. BlenderGPT provides users with an intuitive and direct way to precisely control the generated 3D scene and the final output video. Furthermore, users can utilize Blender UI to receive instant visual feedback. Additionally, we have curated a procedural dataset of objects in code format to further enhance our system's capabilities. Each component works seamlessly together to support users in generating desired 3D scenes. Extensive experiments demonstrate the capability of our framework in customizing 3D scenes and video generation.
Authors:Xinyu Hou, Zongsheng Yue, Xiaoming Li, Chen Change Loy
Abstract:
In this work, we show that we only need a single parameter $Ï$ to effectively control granularity in diffusion-based synthesis. This parameter is incorporated during the denoising steps of the diffusion model's reverse process. This simple approach does not require model retraining or architectural modifications and incurs negligible computational overhead, yet enables precise control over the level of details in the generated outputs. Moreover, spatial masks or denoising schedules with varying $Ï$ values can be applied to achieve region-specific or timestep-specific granularity control. External control signals or reference images can guide the creation of precise $Ï$ masks, allowing targeted granularity adjustments. Despite its simplicity, the method demonstrates impressive performance across various image and video synthesis tasks and is adaptable to advanced diffusion models. The code is available at https://github.com/itsmag11/Omegance.
Authors:Wanquan Feng, Tianhao Qi, Jiawei Liu, Mingzhen Sun, Pengqi Tu, Tianxiang Ma, Fei Dai, Songtao Zhao, Siyu Zhou, Qian He
Abstract:
Motion controllability is crucial in video synthesis. However, most previous methods are limited to single control types, and combining them often results in logical conflicts. In this paper, we propose a disentangled and unified framework, namely I2VControl, to overcome the logical conflicts. We rethink camera control, object dragging, and motion brush, reformulating all tasks into a consistent representation based on point trajectories, each managed by a dedicated formulation. Accordingly, we propose a spatial partitioning strategy, where each unit is assigned to a concomitant control category, enabling diverse control types to be dynamically orchestrated within a single synthesis pipeline without conflicts. Furthermore, we design an adapter structure that functions as a plug-in for pre-trained models and is agnostic to specific model architectures. We conduct extensive experiments, achieving excellent performance on various control tasks, and our method further facilitates user-driven creative combinations, enhancing innovation and creativity. Project page: https://wanquanf.github.io/I2VControl .
Authors:Guanjie Chen, Xinyu Zhao, Yucheng Zhou, Xiaoye Qu, Tianlong Chen, Yu Cheng
Abstract:
Diffusion Transformers (DiT) have emerged as a powerful architecture for image and video generation, offering superior quality and scalability. However, their practical application suffers from inherent dynamic feature instability, leading to error amplification during cached inference. Through systematic analysis, we identify the absence of long-range feature preservation mechanisms as the root cause of unstable feature propagation and perturbation sensitivity. To this end, we propose Skip-DiT, an image and video generative DiT variant enhanced with Long-Skip-Connections (LSCs) - the key efficiency component in U-Nets. Theoretical spectral norm and visualization analysis demonstrate how LSCs stabilize feature dynamics. Skip-DiT architecture and its stabilized dynamic feature enable an efficient statical caching mechanism that reuses deep features across timesteps while updating shallow components. Extensive experiments across the image and video generation tasks demonstrate that Skip-DiT achieves: (1) 4.4 times training acceleration and faster convergence, (2) 1.5-2 times inference acceleration with negligible quality loss and high fidelity to the original output, outperforming existing DiT caching methods across various quantitative metrics. Our findings establish Long-Skip-Connections as critical architectural components for stable and efficient diffusion transformers. Codes are provided in the https://github.com/OpenSparseLLMs/Skip-DiT.
Authors:Shenghai Yuan, Jinfa Huang, Xianyi He, Yunyuan Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, Li Yuan
Abstract:
Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity. It is an important task in video generation but remains an open problem for generative models. This paper pushes the technical frontier of IPT2V in two directions that have not been resolved in literature: (1) A tuning-free pipeline without tedious case-by-case finetuning, and (2) A frequency-aware heuristic identity-preserving DiT-based control scheme. We propose ConsisID, a tuning-free DiT-based controllable IPT2V model to keep human identity consistent in the generated video. Inspired by prior findings in frequency analysis of diffusion transformers, it employs identity-control signals in the frequency domain, where facial features can be decomposed into low-frequency global features and high-frequency intrinsic features. First, from a low-frequency perspective, we introduce a global facial extractor, which encodes reference images and facial key points into a latent space, generating features enriched with low-frequency information. These features are then integrated into shallow layers of the network to alleviate training challenges associated with DiT. Second, from a high-frequency perspective, we design a local facial extractor to capture high-frequency details and inject them into transformer blocks, enhancing the model's ability to preserve fine-grained features. We propose a hierarchical training strategy to leverage frequency information for identity preservation, transforming a vanilla pre-trained video generation model into an IPT2V model. Extensive experiments demonstrate that our frequency-aware heuristic scheme provides an optimal control solution for DiT-based models. Thanks to this scheme, our ConsisID generates high-quality, identity-preserving videos, making strides towards more effective IPT2V. Code: https://github.com/PKU-YuanGroup/ConsisID.
Authors:Ziyi Xu, Ziyao Huang, Juan Cao, Yong Zhang, Xiaodong Cun, Qing Shuai, Yuchen Wang, Linchao Bao, Jintao Li, Fan Tang
Abstract:
The generation of anchor-style product promotion videos presents promising opportunities in e-commerce, advertising, and consumer engagement. Despite advancements in pose-guided human video generation, creating product promotion videos remains challenging. In addressing this challenge, we identify the integration of human-object interactions (HOI) into pose-guided human video generation as a core issue. To this end, we introduce AnchorCrafter, a novel diffusion-based system designed to generate 2D videos featuring a target human and a customized object, achieving high visual fidelity and controllable interactions. Specifically, we propose two key innovations: the HOI-appearance perception, which enhances object appearance recognition from arbitrary multi-view perspectives and disentangles object and human appearance, and the HOI-motion injection, which enables complex human-object interactions by overcoming challenges in object trajectory conditioning and inter-occlusion management. Extensive experiments show that our system improves object appearance preservation by 7.5\% and doubles the object localization accuracy compared to existing state-of-the-art approaches. It also outperforms existing approaches in maintaining human motion consistency and high-quality video generation. Project page including data, code, and Huggingface demo: https://github.com/cangcz/AnchorCrafter.
Authors:Xiyang Tan, Ying Jiang, Xuan Li, Zeshun Zong, Tianyi Xie, Yin Yang, Chenfanfu Jiang
Abstract:
We introduce PhysMotion, a novel framework that leverages principled physics-based simulations to guide intermediate 3D representations generated from a single image and input conditions (e.g., applied force and torque), producing high-quality, physically plausible video generation. By utilizing continuum mechanics-based simulations as a prior knowledge, our approach addresses the limitations of traditional data-driven generative models and result in more consistent physically plausible motions. Our framework begins by reconstructing a feed-forward 3D Gaussian from a single image through geometry optimization. This representation is then time-stepped using a differentiable Material Point Method (MPM) with continuum mechanics-based elastoplasticity models, which provides a strong foundation for realistic dynamics, albeit at a coarse level of detail. To enhance the geometry, appearance and ensure spatiotemporal consistency, we refine the initial simulation using a text-to-image (T2I) diffusion model with cross-frame attention, resulting in a physically plausible video that retains intricate details comparable to the input image. We conduct comprehensive qualitative and quantitative evaluations to validate the efficacy of our method. Our project page is available at: https://supertan0204.github.io/physmotion_website/.
Authors:Noam Rotstein, Gal Yona, Daniel Silver, Roy Velich, David Bensaïd, Ron Kimmel
Abstract:
Recent advances in image editing, driven by image diffusion models, have shown remarkable progress. However, significant challenges remain, as these models often struggle to follow complex edit instructions accurately and frequently compromise fidelity by altering key elements of the original image. Simultaneously, video generation has made remarkable strides, with models that effectively function as consistent and continuous world simulators. In this paper, we propose merging these two fields by utilizing image-to-video models for image editing. We reformulate image editing as a temporal process, using pretrained video models to create smooth transitions from the original image to the desired edit. This approach traverses the image manifold continuously, ensuring consistent edits while preserving the original image's key aspects. Our approach achieves state-of-the-art results on text-based image editing, demonstrating significant improvements in both edit accuracy and image preservation. Visit our project page at https://rotsteinnoam.github.io/Frame2Frame.
Authors:Zuhao Liu, Aleksandar Yanev, Ahmad Mahmood, Ivan Nikolov, Saman Motamed, Wei-Shi Zheng, Xi Wang, Luc Van Gool, Danda Pani Paudel
Abstract:
Advances in video generation have significantly improved the realism and quality of created scenes. This has fueled interest in developing intuitive tools that let users leverage video generation as world simulators. Text-to-video (T2V) generation is one such approach, enabling video creation from text descriptions only. Yet, due to the inherent ambiguity in texts and the limited temporal information offered by text prompts, researchers have explored additional control signals like trajectory-guided systems, for more accurate T2V generation. Nonetheless, methods to evaluate whether T2V models can generate realistic interactions between multiple objects are lacking. We introduce InTraGen, a pipeline for improved trajectory-based generation of object interaction scenarios. We propose 4 new datasets and a novel trajectory quality metric to evaluate the performance of the proposed InTraGen. To achieve object interaction, we introduce a multi-modal interaction encoding pipeline with an object ID injection mechanism that enriches object-environment interactions. Our results demonstrate improvements in both visual fidelity and quantitative performance. Code and datasets are available at https://github.com/insait-institute/InTraGen
Authors:Zun Wang, Jialu Li, Han Lin, Jaehong Yoon, Mohit Bansal
Abstract:
Storytelling video generation (SVG) aims to produce coherent and visually rich multi-scene videos that follow a structured narrative. Existing methods primarily employ LLM for high-level planning to decompose a story into scene-level descriptions, which are then independently generated and stitched together. However, these approaches struggle with generating high-quality videos aligned with the complex single-scene description, as visualizing such complex description involves coherent composition of multiple characters and events, complex motion synthesis and muti-character customization. To address these challenges, we propose DreamRunner, a novel story-to-video generation method: First, we structure the input script using a large language model (LLM) to facilitate both coarse-grained scene planning as well as fine-grained object-level layout and motion planning. Next, DreamRunner presents retrieval-augmented test-time adaptation to capture target motion priors for objects in each scene, supporting diverse motion customization based on retrieved videos, thus facilitating the generation of new videos with complex, scripted motions. Lastly, we propose a novel spatial-temporal region-based 3D attention and prior injection module SR3AI for fine-grained object-motion binding and frame-by-frame semantic control. We compare DreamRunner with various SVG baselines, demonstrating state-of-the-art performance in character consistency, text alignment, and smooth transitions. Additionally, DreamRunner exhibits strong fine-grained condition-following ability in compositional text-to-video generation, significantly outperforming baselines on T2V-ComBench. Finally, we validate DreamRunner's robust ability to generate multi-object interactions with qualitative examples.
Authors:Zhichao Zhang, Wei Sun, Xinyue Li, Yunhao Li, Qihang Ge, Jun Jia, Zicheng Zhang, Zhongpeng Ji, Fengyu Sun, Shangling Jui, Xiongkuo Min, Guangtao Zhai
Abstract:
AI-driven video generation techniques have made significant progress in recent years. However, AI-generated videos (AGVs) involving human activities often exhibit substantial visual and semantic distortions, hindering the practical application of video generation technologies in real-world scenarios. To address this challenge, we conduct a pioneering study on human activity AGV quality assessment, focusing on visual quality evaluation and the identification of semantic distortions. First, we construct the AI-Generated Human activity Video Quality Assessment (Human-AGVQA) dataset, consisting of 6,000 AGVs derived from 15 popular text-to-video (T2V) models using 400 text prompts that describe diverse human activities. We conduct a subjective study to evaluate the human appearance quality, action continuity quality, and overall video quality of AGVs, and identify semantic issues of human body parts. Based on Human-AGVQA, we benchmark the performance of T2V models and analyze their strengths and weaknesses in generating different categories of human activities. Second, we develop an objective evaluation metric, named AI-Generated Human activity Video Quality metric (GHVQ), to automatically analyze the quality of human activity AGVs. GHVQ systematically extracts human-focused quality features, AI-generated content-aware quality features, and temporal continuity features, making it a comprehensive and explainable quality metric for human activity AGVs. The extensive experimental results show that GHVQ outperforms existing quality metrics on the Human-AGVQA dataset by a large margin, demonstrating its efficacy in assessing the quality of human activity AGVs. The Human-AGVQA dataset and GHVQ metric will be released at https://github.com/zczhang-sjtu/GHVQ.git.
Authors:Kaifeng Gao, Jiaxin Shi, Hanwang Zhang, Chunping Wang, Jun Xiao, Long Chen
Abstract:
With the advance of diffusion models, today's video generation has achieved impressive quality. To extend the generation length and facilitate real-world applications, a majority of video diffusion models (VDMs) generate videos in an autoregressive manner, i.e., generating subsequent clips conditioned on the last frame(s) of the previous clip. However, existing autoregressive VDMs are highly inefficient and redundant: The model must re-compute all the conditional frames that are overlapped between adjacent clips. This issue is exacerbated when the conditional frames are extended autoregressively to provide the model with long-term context. In such cases, the computational demands increase significantly (i.e., with a quadratic complexity w.r.t. the autoregression step). In this paper, we propose Ca2-VDM, an efficient autoregressive VDM with Causal generation and Cache sharing. For causal generation, it introduces unidirectional feature computation, which ensures that the cache of conditional frames can be precomputed in previous autoregression steps and reused in every subsequent step, eliminating redundant computations. For cache sharing, it shares the cache across all denoising steps to avoid the huge cache storage cost. Extensive experiments demonstrated that our Ca2-VDM achieves state-of-the-art quantitative and qualitative video generation results and significantly improves the generation speed. Code is available: https://github.com/Dawn-LX/CausalCache-VDM
Authors:Ryugo Morita, Stanislav Frolov, Brian Bernhard Moser, Takahiro Shirakawa, Ko Watanabe, Andreas Dengel, Jinjia Zhou
Abstract:
Diffusion models have enabled the generation of high-quality images with a strong focus on realism and textual fidelity. Yet, large-scale text-to-image models, such as Stable Diffusion, struggle to generate images where foreground objects are placed over a chroma key background, limiting their ability to separate foreground and background elements without fine-tuning. To address this limitation, we present a novel Training-Free Chroma Key Content Generation Diffusion Model (TKG-DM), which optimizes the initial random noise to produce images with foreground objects on a specifiable color background. Our proposed method is the first to explore the manipulation of the color aspects in initial noise for controlled background generation, enabling precise separation of foreground and background without fine-tuning. Extensive experiments demonstrate that our training-free method outperforms existing methods in both qualitative and quantitative evaluations, matching or surpassing fine-tuned models. Finally, we successfully extend it to other tasks (e.g., consistency models and text-to-video), highlighting its transformative potential across various generative applications where independent control of foreground and background is crucial.
Authors:Weijia Wu, Mingyu Liu, Zeyu Zhu, Xi Xia, Haoen Feng, Wen Wang, Kevin Qinghong Lin, Chunhua Shen, Mike Zheng Shou
Abstract:
Recent advancements in video generation models, like Stable Video Diffusion, show promising results, but primarily focus on short, single-scene videos. These models struggle with generating long videos that involve multiple scenes, coherent narratives, and consistent characters. Furthermore, there is no publicly available dataset tailored for the analysis, evaluation, and training of long video generation models. In this paper, we present MovieBench: A Hierarchical Movie-Level Dataset for Long Video Generation, which addresses these challenges by providing unique contributions: (1) movie-length videos featuring rich, coherent storylines and multi-scene narratives, (2) consistency of character appearance and audio across scenes, and (3) hierarchical data structure contains high-level movie information and detailed shot-level descriptions. Experiments demonstrate that MovieBench brings some new insights and challenges, such as maintaining character ID consistency across multiple scenes for various characters. The dataset will be public and continuously maintained, aiming to advance the field of long video generation. Data can be found at: https://weijiawu.github.io/MovieBench/.
Authors:Jiahao Hu, Tianxiong Zhong, Xuebo Wang, Boyuan Jiang, Xingye Tian, Fei Yang, Pengfei Wan, Di Zhang
Abstract:
Diffusion-based image editing models have made remarkable progress in recent years. However, achieving high-quality video editing remains a significant challenge. One major hurdle is the absence of open-source, large-scale video editing datasets based on real-world data, as constructing such datasets is both time-consuming and costly. Moreover, video data requires a significantly larger number of tokens for representation, which substantially increases the training costs for video editing models. Lastly, current video editing models offer limited interactivity, often making it difficult for users to express their editing requirements effectively in a single attempt. To address these challenges, this paper introduces a dataset VIVID-10M and a baseline model VIVID. VIVID-10M is the first large-scale hybrid image-video local editing dataset aimed at reducing data construction and model training costs, which comprises 9.7M samples that encompass a wide range of video editing tasks. VIVID is a Versatile and Interactive VIdeo local eDiting model trained on VIVID-10M, which supports entity addition, modification, and deletion. At its core, a keyframe-guided interactive video editing mechanism is proposed, enabling users to iteratively edit keyframes and propagate it to other frames, thereby reducing latency in achieving desired outcomes. Extensive experimental evaluations show that our approach achieves state-of-the-art performance in video local editing, surpassing baseline methods in both automated metrics and user studies. The VIVID-10M dataset are open-sourced at https://kwaivgi.github.io/VIVID/.
Authors:Zhonghua Yi, Hao Shi, Qi Jiang, Yao Gao, Ze Wang, Yufan Zhang, Kailun Yang, Kaiwei Wang
Abstract:
Optical flow estimation is extensively used in autonomous driving and video editing. While existing models demonstrate state-of-the-art performance across various benchmarks, the robustness of these methods has been infrequently investigated. Despite some research focusing on the robustness of optical flow models against adversarial attacks, there has been a lack of studies investigating their robustness to common corruptions. Taking into account the unique temporal characteristics of optical flow, we introduce 7 temporal corruptions specifically designed for benchmarking the robustness of optical flow models, in addition to 17 classical single-image corruptions, in which advanced PSF Blur simulation method is performed. Two robustness benchmarks, KITTI-FC and GoPro-FC, are subsequently established as the first corruption robustness benchmark for optical flow estimation, with Out-Of-Domain (OOD) and In-Domain (ID) settings to facilitate comprehensive studies. Robustness metrics, Corruption Robustness Error (CRE), Corruption Robustness Error ratio (CREr), and Relative Corruption Robustness Error (RCRE) are further introduced to quantify the optical flow estimation robustness. 29 model variants from 15 optical flow methods are evaluated, yielding 10 intriguing observations, such as 1) the absolute robustness of the model is heavily dependent on the estimation performance; 2) the corruptions that diminish local information are more serious than that reduce visual effects. We also give suggestions for the design and application of optical flow models. We anticipate that our benchmark will serve as a foundational resource for advancing research in robust optical flow estimation. The benchmarks and source code will be released at https://github.com/ZhonghuaYi/optical_flow_robustness_benchmark.
Authors:Jingtao Ding, Yunke Zhang, Yu Shang, Yuheng Zhang, Zefang Zong, Jie Feng, Yuan Yuan, Hongyuan Su, Nian Li, Nicholas Sukiennik, Fengli Xu, Yong Li
Abstract:
The concept of world models has garnered significant attention due to advancements in multimodal large language models such as GPT-4 and video generation models such as Sora, which are central to the pursuit of artificial general intelligence. This survey offers a comprehensive review of the literature on world models. Generally, world models are regarded as tools for either understanding the present state of the world or predicting its future dynamics. This review presents a systematic categorization of world models, emphasizing two primary functions: (1) constructing internal representations to understand the mechanisms of the world, and (2) predicting future states to simulate and guide decision-making. Initially, we examine the current progress in these two categories. We then explore the application of world models in key domains, including autonomous driving, robotics, and social simulacra, with a focus on how each domain utilizes these aspects. Finally, we outline key challenges and provide insights into potential future research directions. We summarize the representative papers along with their code repositories in https://github.com/tsinghua-fib-lab/World-Model.
Authors:Jian Shi, Qian Wang, Zhenyu Li, Ramzi Idoughi, Peter Wonka
Abstract:
Generating high-quality stereo videos that mimic human binocular vision requires consistent depth perception and temporal coherence across frames. Despite advances in image and video synthesis using diffusion models, producing high-quality stereo videos remains a challenging task due to the difficulty of maintaining consistent temporal and spatial coherence between left and right views. We introduce StereoCrafter-Zero, a novel framework for zero-shot stereo video generation that leverages video diffusion priors without requiring paired training data. Our key innovations include a noisy restart strategy to initialize stereo-aware latent representations and an iterative refinement process that progressively harmonizes the latent space, addressing issues like temporal flickering and view inconsistencies. In addition, we propose the use of dissolved depth maps to streamline latent space operations by reducing high-frequency depth information. Our comprehensive evaluations, including quantitative metrics and user studies, demonstrate that StereoCrafter-Zero produces high-quality stereo videos with enhanced depth consistency and temporal smoothness, even when depth estimations are imperfect. Our framework is robust and adaptable across various diffusion models, setting a new benchmark for zero-shot stereo video generation and enabling more immersive visual experiences. Our code is in https://github.com/shijianjian/StereoCrafter-Zero.
Authors:Ruiyuan Gao, Kai Chen, Bo Xiao, Lanqing Hong, Zhenguo Li, Qiang Xu
Abstract:
The rapid advancement of diffusion models has greatly improved video synthesis, especially in controllable video generation, which is vital for applications like autonomous driving. Although DiT with 3D VAE has become a standard framework for video generation, it introduces challenges in controllable driving video generation, especially for geometry control, rendering existing control methods ineffective. To address these issues, we propose MagicDrive-V2, a novel approach that integrates the MVDiT block and spatial-temporal conditional encoding to enable multi-view video generation and precise geometric control. Additionally, we introduce an efficient method for obtaining contextual descriptions for videos to support diverse textual control, along with a progressive training strategy using mixed video data to enhance training efficiency and generalizability. Consequently, MagicDrive-V2 enables multi-view driving video synthesis with $3.3\times$ resolution and $4\times$ frame count (compared to current SOTA), rich contextual control, and geometric controls. Extensive experiments demonstrate MagicDrive-V2's ability, unlocking broader applications in autonomous driving.
Authors:Rui Tian, Qi Dai, Jianmin Bao, Kai Qiu, Yifan Yang, Chong Luo, Zuxuan Wu, Yu-Gang Jiang
Abstract:
Commercial video generation models have exhibited realistic, high-fidelity results but are still restricted to limited access. One crucial obstacle for large-scale applications is the expensive training and inference cost. In this paper, we argue that videos contain significantly more redundant information than images, allowing them to be encoded with very few motion latents. Towards this goal, we design an image-conditioned VAE that projects videos into extremely compressed latent space and decode them based on content images. This magic Reducio charm enables 64x reduction of latents compared to a common 2D VAE, without sacrificing the quality. Building upon Reducio-VAE, we can train diffusion models for high-resolution video generation efficiently. Specifically, we adopt a two-stage generation paradigm, first generating a condition image via text-to-image generation, followed by text-image-to-video generation with the proposed Reducio-DiT. Extensive experiments show that our model achieves strong performance in evaluation. More importantly, our method significantly boosts the training and inference efficiency of video LDMs. Reducio-DiT is trained in just 3.2K A100 GPU hours in total and can generate a 16-frame 1024$\times$1024 video clip within 15.5 seconds on a single A100 GPU. Code released at https://github.com/microsoft/Reducio-VAE .
Authors:Ziqi Huang, Fan Zhang, Xiaojie Xu, Yinan He, Jiashuo Yu, Ziyue Dong, Qianli Ma, Nattapol Chanpaisit, Chenyang Si, Yuming Jiang, Yaohui Wang, Xinyuan Chen, Ying-Cong Chen, Limin Wang, Dahua Lin, Yu Qiao, Ziwei Liu
Abstract:
Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human perceptions; 2) An ideal evaluation system should provide insights to inform future developments of video generation. To this end, we present VBench, a comprehensive benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions, each with tailored prompts and evaluation methods. VBench has several appealing properties: 1) Comprehensive Dimensions: VBench comprises 16 dimensions in video generation (e.g., subject identity inconsistency, motion smoothness, temporal flickering, and spatial relationship, etc). The evaluation metrics with fine-grained levels reveal individual models' strengths and weaknesses. 2) Human Alignment: We also provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception, for each evaluation dimension respectively. 3) Valuable Insights: We look into current models' ability across various evaluation dimensions, and various content types. We also investigate the gaps between video and image generation models. 4) Versatile Benchmarking: VBench++ supports evaluating text-to-video and image-to-video. We introduce a high-quality Image Suite with an adaptive aspect ratio to enable fair evaluations across different image-to-video generation settings. Beyond assessing technical quality, VBench++ evaluates the trustworthiness of video generative models, providing a more holistic view of model performance. 5) Full Open-Sourcing: We fully open-source VBench++ and continually add new video generation models to our leaderboard to drive forward the field of video generation.
Authors:David Picard, Nicolas Dufour
Abstract:
Diffusion models based on Multi-Head Attention (MHA) have become ubiquitous to generate high quality images and videos. However, encoding an image or a video as a sequence of patches results in costly attention patterns, as the requirements both in terms of memory and compute grow quadratically. To alleviate this problem, we propose a drop-in replacement for MHA called the Polynomial Mixer (PoM) that has the benefit of encoding the entire sequence into an explicit state. PoM has a linear complexity with respect to the number of tokens. This explicit state also allows us to generate frames in a sequential fashion, minimizing memory and compute requirement, while still being able to train in parallel. We show the Polynomial Mixer is a universal sequence-to-sequence approximator, just like regular MHA. We adapt several Diffusion Transformers (DiT) for generating images and videos with PoM replacing MHA, and we obtain high quality samples while using less computational resources. The code is available at https://github.com/davidpicard/HoMM.
Authors:Boyao Zhou, Shunyuan Zheng, Hanzhang Tu, Ruizhi Shao, Boning Liu, Shengping Zhang, Liqiang Nie, Yebin Liu
Abstract:
Differentiable rendering techniques have recently shown promising results for free-viewpoint video synthesis of characters. However, such methods, either Gaussian Splatting or neural implicit rendering, typically necessitate per-subject optimization which does not meet the requirement of real-time rendering in an interactive application. We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting. To this end, we introduce Gaussian parameter maps defined on the source views and directly regress Gaussian properties for instant novel view synthesis without any fine-tuning or optimization. We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space. The proposed framework is fully differentiable with both depth and rendering supervision or with only rendering supervision. We further introduce a regularization term and an epipolar attention mechanism to preserve geometry consistency between two source views, especially when neglecting depth supervision. Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
Authors:Chang Liu, Rui Li, Kaidong Zhang, Yunwei Lan, Dong Liu
Abstract:
Recent advancements of generative AI have significantly promoted content creation and editing, where prevailing studies further extend this exciting progress to video editing. In doing so, these studies mainly transfer the inherent motion patterns from the source videos to the edited ones, where results with inferior consistency to user prompts are often observed, due to the lack of particular alignments between the delivered motions and edited contents. To address this limitation, we present a shape-consistent video editing method, namely StableV2V, in this paper. Our method decomposes the entire editing pipeline into several sequential procedures, where it edits the first video frame, then establishes an alignment between the delivered motions and user prompts, and eventually propagates the edited contents to all other frames based on such alignment. Furthermore, we curate a testing benchmark, namely DAVIS-Edit, for a comprehensive evaluation of video editing, considering various types of prompts and difficulties. Experimental results and analyses illustrate the outperforming performance, visual consistency, and inference efficiency of our method compared to existing state-of-the-art studies.
Authors:Jintao Zhang, Haofeng Huang, Pengle Zhang, Jia Wei, Jun Zhu, Jianfei Chen
Abstract:
Although quantization for linear layers has been widely used, its application to accelerate the attention process remains limited. To further enhance the efficiency of attention computation compared to SageAttention while maintaining precision, we propose SageAttention2, which utilizes significantly faster 4-bit matrix multiplication (Matmul) alongside additional precision-enhancing techniques. First, we propose to quantize matrices $(Q, K)$ to INT4 in a hardware-friendly thread-level granularity and quantize matrices $(\widetilde P, V)$ to FP8. Second, we propose a method to smooth $Q$, enhancing the accuracy of INT4 $QK^\top$. Third, we propose a two-level accumulation strategy for $\widetilde PV$ to enhance the accuracy of FP8 $\widetilde PV$. The operations per second (OPS) of SageAttention2 surpass FlashAttention2 and xformers by about 3x and 4.5x on RTX4090, respectively. Moreover, SageAttention2 matches the speed of FlashAttention3(fp8) on the Hopper GPUs, while delivering much higher accuracy. Comprehensive experiments confirm that our approach incurs negligible end-to-end metrics loss across diverse models, including those for language, image, and video generation. The code is available at https://github.com/thu-ml/SageAttention.
Authors:Guojun Lei, Chi Wang, Hong Li, Rong Zhang, Yikai Wang, Weiwei Xu
Abstract:
We present a unified controllable video generation approach AnimateAnything that facilitates precise and consistent video manipulation across various conditions, including camera trajectories, text prompts, and user motion annotations. Specifically, we carefully design a multi-scale control feature fusion network to construct a common motion representation for different conditions. It explicitly converts all control information into frame-by-frame optical flows. Then we incorporate the optical flows as motion priors to guide final video generation. In addition, to reduce the flickering issues caused by large-scale motion, we propose a frequency-based stabilization module. It can enhance temporal coherence by ensuring the video's frequency domain consistency. Experiments demonstrate that our method outperforms the state-of-the-art approaches. For more details and videos, please refer to the webpage: https://yu-shaonian.github.io/Animate_Anything/.
Authors:Hmrishav Bandyopadhyay, Yi-Zhe Song
Abstract:
Sketch animations offer a powerful medium for visual storytelling, from simple flip-book doodles to professional studio productions. While traditional animation requires teams of skilled artists to draw key frames and in-between frames, existing automation attempts still demand significant artistic effort through precise motion paths or keyframe specification. We present FlipSketch, a system that brings back the magic of flip-book animation -- just draw your idea and describe how you want it to move! Our approach harnesses motion priors from text-to-video diffusion models, adapting them to generate sketch animations through three key innovations: (i) fine-tuning for sketch-style frame generation, (ii) a reference frame mechanism that preserves visual integrity of input sketch through noise refinement, and (iii) a dual-attention composition that enables fluid motion without losing visual consistency. Unlike constrained vector animations, our raster frames support dynamic sketch transformations, capturing the expressive freedom of traditional animation. The result is an intuitive system that makes sketch animation as simple as doodling and describing, while maintaining the artistic essence of hand-drawn animation.
Authors:Jeonghyeok Do, Munchurl Kim
Abstract:
In zero-shot skeleton-based action recognition (ZSAR), aligning skeleton features with the text features of action labels is essential for accurately predicting unseen actions. ZSAR faces a fundamental challenge in bridging the modality gap between the two-kind features, which severely limits generalization to unseen actions. Previous methods focus on direct alignment between skeleton and text latent spaces, but the modality gaps between these spaces hinder robust generalization learning. Motivated by the success of diffusion models in multi-modal alignment (e.g., text-to-image, text-to-video), we firstly present a diffusion-based skeleton-text alignment framework for ZSAR. Our approach, Triplet Diffusion for Skeleton-Text Matching (TDSM), focuses on cross-alignment power of diffusion models rather than their generative capability. Specifically, TDSM aligns skeleton features with text prompts by incorporating text features into the reverse diffusion process, where skeleton features are denoised under text guidance, forming a unified skeleton-text latent space for robust matching. To enhance discriminative power, we introduce a triplet diffusion (TD) loss that encourages our TDSM to correct skeleton-text matches while pushing them apart for different action classes. Our TDSM significantly outperforms very recent state-of-the-art methods with significantly large margins of 2.36%-point to 13.05%-point, demonstrating superior accuracy and scalability in zero-shot settings through effective skeleton-text matching.
Authors:Joseph Liu, Joshua Geddes, Ziyu Guo, Haomiao Jiang, Mahesh Kumar Nandwana
Abstract:
Diffusion Transformers (DiT) have emerged as powerful generative models for various tasks, including image, video, and speech synthesis. However, their inference process remains computationally expensive due to the repeated evaluation of resource-intensive attention and feed-forward modules. To address this, we introduce SmoothCache, a model-agnostic inference acceleration technique for DiT architectures. SmoothCache leverages the observed high similarity between layer outputs across adjacent diffusion timesteps. By analyzing layer-wise representation errors from a small calibration set, SmoothCache adaptively caches and reuses key features during inference. Our experiments demonstrate that SmoothCache achieves 8% to 71% speed up while maintaining or even improving generation quality across diverse modalities. We showcase its effectiveness on DiT-XL for image generation, Open-Sora for text-to-video, and Stable Audio Open for text-to-audio, highlighting its potential to enable real-time applications and broaden the accessibility of powerful DiT models.
Authors:Thanh Tam Nguyen, Zhao Ren, Trinh Pham, Thanh Trung Huynh, Phi Le Nguyen, Hongzhi Yin, Quoc Viet Hung Nguyen
Abstract:
The rapid advancement of large language models (LLMs) and multimodal learning has transformed digital content creation and manipulation. Traditional visual editing tools require significant expertise, limiting accessibility. Recent strides in instruction-based editing have enabled intuitive interaction with visual content, using natural language as a bridge between user intent and complex editing operations. This survey provides an overview of these techniques, focusing on how LLMs and multimodal models empower users to achieve precise visual modifications without deep technical knowledge. By synthesizing over 100 publications, we explore methods from generative adversarial networks to diffusion models, examining multimodal integration for fine-grained content control. We discuss practical applications across domains such as fashion, 3D scene manipulation, and video synthesis, highlighting increased accessibility and alignment with human intuition. Our survey compares existing literature, emphasizing LLM-empowered editing, and identifies key challenges to stimulate further research. We aim to democratize powerful visual editing across various industries, from entertainment to education. Interested readers are encouraged to access our repository at https://github.com/tamlhp/awesome-instruction-editing.
Authors:Qiang Zhou, Shaofeng Zhang, Nianzu Yang, Ye Qian, Hao Li
Abstract:
Existing text-to-video (T2V) models often struggle with generating videos with sufficiently pronounced or complex actions. A key limitation lies in the text prompt's inability to precisely convey intricate motion details. To address this, we propose a novel framework, MVideo, designed to produce long-duration videos with precise, fluid actions. MVideo overcomes the limitations of text prompts by incorporating mask sequences as an additional motion condition input, providing a clearer, more accurate representation of intended actions. Leveraging foundational vision models such as GroundingDINO and SAM2, MVideo automatically generates mask sequences, enhancing both efficiency and robustness. Our results demonstrate that, after training, MVideo effectively aligns text prompts with motion conditions to produce videos that simultaneously meet both criteria. This dual control mechanism allows for more dynamic video generation by enabling alterations to either the text prompt or motion condition independently, or both in tandem. Furthermore, MVideo supports motion condition editing and composition, facilitating the generation of videos with more complex actions. MVideo thus advances T2V motion generation, setting a strong benchmark for improved action depiction in current video diffusion models. Our project page is available at https://mvideo-v1.github.io/.
Authors:Linyuan Li, Jianing Qiu, Anujit Saha, Lin Li, Poyuan Li, Mengxian He, Ziyu Guo, Wu Yuan
Abstract:
As a prominent subfield of Artificial Intelligence Generated Content (AIGC), video generation has achieved notable advancements in recent years. The introduction of Sora-alike models represents a pivotal breakthrough in video generation technologies, significantly enhancing the quality of synthesized videos. Particularly in the realm of biomedicine, video generation technology has shown immense potential such as medical concept explanation, disease simulation, and biomedical data augmentation. In this article, we thoroughly examine the latest developments in video generation models and explore their applications, challenges, and future opportunities in the biomedical sector. We have conducted an extensive review and compiled a comprehensive list of datasets from various sources to facilitate the development and evaluation of video generative models in biomedicine. Given the rapid progress in this field, we have also created a github repository to regularly update the advances of biomedical video generation at: https://github.com/Lee728243228/Biomedical-Video-Generation
Authors:Qiankun Gao, Jiarui Meng, Chengxiang Wen, Jie Chen, Jian Zhang
Abstract:
The online reconstruction of dynamic scenes from multi-view streaming videos faces significant challenges in training, rendering and storage efficiency. Harnessing superior learning speed and real-time rendering capabilities, 3D Gaussian Splatting (3DGS) has recently demonstrated considerable potential in this field. However, 3DGS can be inefficient in terms of storage and prone to overfitting by excessively growing Gaussians, particularly with limited views. This paper proposes an efficient framework, dubbed HiCoM, with three key components. First, we construct a compact and robust initial 3DGS representation using a perturbation smoothing strategy. Next, we introduce a Hierarchical Coherent Motion mechanism that leverages the inherent non-uniform distribution and local consistency of 3D Gaussians to swiftly and accurately learn motions across frames. Finally, we continually refine the 3DGS with additional Gaussians, which are later merged into the initial 3DGS to maintain consistency with the evolving scene. To preserve a compact representation, an equivalent number of low-opacity Gaussians that minimally impact the representation are removed before processing subsequent frames. Extensive experiments conducted on two widely used datasets show that our framework improves learning efficiency of the state-of-the-art methods by about $20\%$ and reduces the data storage by $85\%$, achieving competitive free-viewpoint video synthesis quality but with higher robustness and stability. Moreover, by parallel learning multiple frames simultaneously, our HiCoM decreases the average training wall time to $<2$ seconds per frame with negligible performance degradation, substantially boosting real-world applicability and responsiveness.
Authors:Wanquan Feng, Jiawei Liu, Pengqi Tu, Tianhao Qi, Mingzhen Sun, Tianxiang Ma, Songtao Zhao, Siyu Zhou, Qian He
Abstract:
Video generation technologies are developing rapidly and have broad potential applications. Among these technologies, camera control is crucial for generating professional-quality videos that accurately meet user expectations. However, existing camera control methods still suffer from several limitations, including control precision and the neglect of the control for subject motion dynamics. In this work, we propose I2VControl-Camera, a novel camera control method that significantly enhances controllability while providing adjustability over the strength of subject motion. To improve control precision, we employ point trajectory in the camera coordinate system instead of only extrinsic matrix information as our control signal. To accurately control and adjust the strength of subject motion, we explicitly model the higher-order components of the video trajectory expansion, not merely the linear terms, and design an operator that effectively represents the motion strength. We use an adapter architecture that is independent of the base model structure. Experiments on static and dynamic scenes show that our framework outperformances previous methods both quantitatively and qualitatively. The project page is: https://wanquanf.github.io/I2VControlCamera .
Authors:Jing Xiong, Gongye Liu, Lun Huang, Chengyue Wu, Taiqiang Wu, Yao Mu, Yuan Yao, Hui Shen, Zhongwei Wan, Jinfa Huang, Chaofan Tao, Shen Yan, Huaxiu Yao, Lingpeng Kong, Hongxia Yang, Mi Zhang, Guillermo Sapiro, Jiebo Luo, Ping Luo, Ngai Wong
Abstract:
Autoregressive modeling has been a huge success in the field of natural language processing (NLP). Recently, autoregressive models have emerged as a significant area of focus in computer vision, where they excel in producing high-quality visual content. Autoregressive models in NLP typically operate on subword tokens. However, the representation strategy in computer vision can vary in different levels, i.e., pixel-level, token-level, or scale-level, reflecting the diverse and hierarchical nature of visual data compared to the sequential structure of language. This survey comprehensively examines the literature on autoregressive models applied to vision. To improve readability for researchers from diverse research backgrounds, we start with preliminary sequence representation and modeling in vision. Next, we divide the fundamental frameworks of visual autoregressive models into three general sub-categories, including pixel-based, token-based, and scale-based models based on the representation strategy. We then explore the interconnections between autoregressive models and other generative models. Furthermore, we present a multifaceted categorization of autoregressive models in computer vision, including image generation, video generation, 3D generation, and multimodal generation. We also elaborate on their applications in diverse domains, including emerging domains such as embodied AI and 3D medical AI, with about 250 related references. Finally, we highlight the current challenges to autoregressive models in vision with suggestions about potential research directions. We have also set up a Github repository to organize the papers included in this survey at: https://github.com/ChaofanTao/Autoregressive-Models-in-Vision-Survey.
Authors:Koichi Namekata, Sherwin Bahmani, Ziyi Wu, Yash Kant, Igor Gilitschenski, David B. Lindell
Abstract:
Methods for image-to-video generation have achieved impressive, photo-realistic quality. However, adjusting specific elements in generated videos, such as object motion or camera movement, is often a tedious process of trial and error, e.g., involving re-generating videos with different random seeds. Recent techniques address this issue by fine-tuning a pre-trained model to follow conditioning signals, such as bounding boxes or point trajectories. Yet, this fine-tuning procedure can be computationally expensive, and it requires datasets with annotated object motion, which can be difficult to procure. In this work, we introduce SG-I2V, a framework for controllable image-to-video generation that is self-guided$\unicode{x2013}$offering zero-shot control by relying solely on the knowledge present in a pre-trained image-to-video diffusion model without the need for fine-tuning or external knowledge. Our zero-shot method outperforms unsupervised baselines while significantly narrowing down the performance gap with supervised models in terms of visual quality and motion fidelity. Additional details and video results are available on our project page: https://kmcode1.github.io/Projects/SG-I2V
Authors:Wenqiang Sun, Shuo Chen, Fangfu Liu, Zilong Chen, Yueqi Duan, Jun Zhang, Yikai Wang
Abstract:
In this paper, we introduce \textbf{DimensionX}, a framework designed to generate photorealistic 3D and 4D scenes from just a single image with video diffusion. Our approach begins with the insight that both the spatial structure of a 3D scene and the temporal evolution of a 4D scene can be effectively represented through sequences of video frames. While recent video diffusion models have shown remarkable success in producing vivid visuals, they face limitations in directly recovering 3D/4D scenes due to limited spatial and temporal controllability during generation. To overcome this, we propose ST-Director, which decouples spatial and temporal factors in video diffusion by learning dimension-aware LoRAs from dimension-variant data. This controllable video diffusion approach enables precise manipulation of spatial structure and temporal dynamics, allowing us to reconstruct both 3D and 4D representations from sequential frames with the combination of spatial and temporal dimensions. Additionally, to bridge the gap between generated videos and real-world scenes, we introduce a trajectory-aware mechanism for 3D generation and an identity-preserving denoising strategy for 4D generation. Extensive experiments on various real-world and synthetic datasets demonstrate that DimensionX achieves superior results in controllable video generation, as well as in 3D and 4D scene generation, compared with previous methods.
Authors:Yuedong Chen, Chuanxia Zheng, Haofei Xu, Bohan Zhuang, Andrea Vedaldi, Tat-Jen Cham, Jianfei Cai
Abstract:
We introduce MVSplat360, a feed-forward approach for 360° novel view synthesis (NVS) of diverse real-world scenes, using only sparse observations. This setting is inherently ill-posed due to minimal overlap among input views and insufficient visual information provided, making it challenging for conventional methods to achieve high-quality results. Our MVSplat360 addresses this by effectively combining geometry-aware 3D reconstruction with temporally consistent video generation. Specifically, it refactors a feed-forward 3D Gaussian Splatting (3DGS) model to render features directly into the latent space of a pre-trained Stable Video Diffusion (SVD) model, where these features then act as pose and visual cues to guide the denoising process and produce photorealistic 3D-consistent views. Our model is end-to-end trainable and supports rendering arbitrary views with as few as 5 sparse input views. To evaluate MVSplat360's performance, we introduce a new benchmark using the challenging DL3DV-10K dataset, where MVSplat360 achieves superior visual quality compared to state-of-the-art methods on wide-sweeping or even 360° NVS tasks. Experiments on the existing benchmark RealEstate10K also confirm the effectiveness of our model. The video results are available on our project page: https://donydchen.github.io/mvsplat360.
Authors:Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li, Ying Shan
Abstract:
Rectified-flow-based diffusion transformers like FLUX and OpenSora have demonstrated outstanding performance in the field of image and video generation. Despite their robust generative capabilities, these models often struggle with inversion inaccuracies, which could further limit their effectiveness in downstream tasks such as image and video editing. To address this issue, we propose RF-Solver, a novel training-free sampler that effectively enhances inversion precision by mitigating the errors in the ODE-solving process of rectified flow. Specifically, we derive the exact formulation of the rectified flow ODE and apply the high-order Taylor expansion to estimate its nonlinear components, significantly enhancing the precision of ODE solutions at each timestep. Building upon RF-Solver, we further propose RF-Edit, a general feature-sharing-based framework for image and video editing. By incorporating self-attention features from the inversion process into the editing process, RF-Edit effectively preserves the structural information of the source image or video while achieving high-quality editing results. Our approach is compatible with any pre-trained rectified-flow-based models for image and video tasks, requiring no additional training or optimization. Extensive experiments across generation, inversion, and editing tasks in both image and video modalities demonstrate the superiority and versatility of our method. The source code is available at https://github.com/wangjiangshan0725/RF-Solver-Edit.
Authors:Hao-Yu Hsu, Zhi-Hao Lin, Albert Zhai, Hongchi Xia, Shenlong Wang
Abstract:
Modern visual effects (VFX) software has made it possible for skilled artists to create imagery of virtually anything. However, the creation process remains laborious, complex, and largely inaccessible to everyday users. In this work, we present AutoVFX, a framework that automatically creates realistic and dynamic VFX videos from a single video and natural language instructions. By carefully integrating neural scene modeling, LLM-based code generation, and physical simulation, AutoVFX is able to provide physically-grounded, photorealistic editing effects that can be controlled directly using natural language instructions. We conduct extensive experiments to validate AutoVFX's efficacy across a diverse spectrum of videos and instructions. Quantitative and qualitative results suggest that AutoVFX outperforms all competing methods by a large margin in generative quality, instruction alignment, editing versatility, and physical plausibility.
Authors:Zhenbin Wang, Lei Zhang, Lituan Wang, Minjuan Zhu, Zhenwei Zhang
Abstract:
Medical video generation models are expected to have a profound impact on the healthcare industry, including but not limited to medical education and training, surgical planning, and simulation. Current video diffusion models typically build on image diffusion architecture by incorporating temporal operations (such as 3D convolution and temporal attention). Although this approach is effective, its oversimplification limits spatio-temporal performance and consumes substantial computational resources. To counter this, we propose Medical Simulation Video Generator (MedSora), which incorporates three key elements: i) a video diffusion framework integrates the advantages of attention and Mamba, balancing low computational load with high-quality video generation, ii) an optical flow representation alignment method that implicitly enhances attention to inter-frame pixels, and iii) a video variational autoencoder (VAE) with frequency compensation addresses the information loss of medical features that occurs when transforming pixel space into latent features and then back to pixel frames. Extensive experiments and applications demonstrate that MedSora exhibits superior visual quality in generating medical videos, outperforming the most advanced baseline methods. Further results and code are available at https://wongzbb.github.io/MedSora
Authors:Haoxuan Che, Xuanhua He, Quande Liu, Cheng Jin, Hao Chen
Abstract:
We introduce GameGen-X, the first diffusion transformer model specifically designed for both generating and interactively controlling open-world game videos. This model facilitates high-quality, open-domain generation by simulating an extensive array of game engine features, such as innovative characters, dynamic environments, complex actions, and diverse events. Additionally, it provides interactive controllability, predicting and altering future content based on the current clip, thus allowing for gameplay simulation. To realize this vision, we first collected and built an Open-World Video Game Dataset from scratch. It is the first and largest dataset for open-world game video generation and control, which comprises over a million diverse gameplay video clips sampling from over 150 games with informative captions from GPT-4o. GameGen-X undergoes a two-stage training process, consisting of foundation model pre-training and instruction tuning. Firstly, the model was pre-trained via text-to-video generation and video continuation, endowing it with the capability for long-sequence, high-quality open-domain game video generation. Further, to achieve interactive controllability, we designed InstructNet to incorporate game-related multi-modal control signal experts. This allows the model to adjust latent representations based on user inputs, unifying character interaction and scene content control for the first time in video generation. During instruction tuning, only the InstructNet is updated while the pre-trained foundation model is frozen, enabling the integration of interactive controllability without loss of diversity and quality of generated video content.
Authors:Johanna Karras, Yingwei Li, Nan Liu, Luyang Zhu, Innfarn Yoo, Andreas Lugmayr, Chris Lee, Ira Kemelmacher-Shlizerman
Abstract:
We present Fashion-VDM, a video diffusion model (VDM) for generating virtual try-on videos. Given an input garment image and person video, our method aims to generate a high-quality try-on video of the person wearing the given garment, while preserving the person's identity and motion. Image-based virtual try-on has shown impressive results; however, existing video virtual try-on (VVT) methods are still lacking garment details and temporal consistency. To address these issues, we propose a diffusion-based architecture for video virtual try-on, split classifier-free guidance for increased control over the conditioning inputs, and a progressive temporal training strategy for single-pass 64-frame, 512px video generation. We also demonstrate the effectiveness of joint image-video training for video try-on, especially when video data is limited. Our qualitative and quantitative experiments show that our approach sets the new state-of-the-art for video virtual try-on. For additional results, visit our project page: https://johannakarras.github.io/Fashion-VDM.
Authors:Penghui Ruan, Pichao Wang, Divya Saxena, Jiannong Cao, Yuhui Shi
Abstract:
Despite advancements in Text-to-Video (T2V) generation, producing videos with realistic motion remains challenging. Current models often yield static or minimally dynamic outputs, failing to capture complex motions described by text. This issue stems from the internal biases in text encoding, which overlooks motions, and inadequate conditioning mechanisms in T2V generation models. To address this, we propose a novel framework called DEcomposed MOtion (DEMO), which enhances motion synthesis in T2V generation by decomposing both text encoding and conditioning into content and motion components. Our method includes a content encoder for static elements and a motion encoder for temporal dynamics, alongside separate content and motion conditioning mechanisms. Crucially, we introduce text-motion and video-motion supervision to improve the model's understanding and generation of motion. Evaluations on benchmarks such as MSR-VTT, UCF-101, WebVid-10M, EvalCrafter, and VBench demonstrate DEMO's superior ability to produce videos with enhanced motion dynamics while maintaining high visual quality. Our approach significantly advances T2V generation by integrating comprehensive motion understanding directly from textual descriptions. Project page: https://PR-Ryan.github.io/DEMO-project/
Authors:Shengkai Zhang, Nianhong Jiao, Tian Li, Chaojie Yang, Chenhui Xue, Boya Niu, Jun Gao
Abstract:
We propose an effective method for inserting adapters into text-to-image foundation models, which enables the execution of complex downstream tasks while preserving the generalization ability of the base model. The core idea of this method is to optimize the attention mechanism related to 2D feature maps, which enhances the performance of the adapter. This approach was validated on the task of meme video generation and achieved significant results. We hope this work can provide insights for post-training tasks of large text-to-image models. Additionally, as this method demonstrates good compatibility with SD1.5 derivative models, it holds certain value for the open-source community. Therefore, we will release the related code (\url{https://songkey.github.io/hellomeme}).
Authors:Hanyu Wang, Saksham Suri, Yixuan Ren, Hao Chen, Abhinav Shrivastava
Abstract:
We present LARP, a novel video tokenizer designed to overcome limitations in current video tokenization methods for autoregressive (AR) generative models. Unlike traditional patchwise tokenizers that directly encode local visual patches into discrete tokens, LARP introduces a holistic tokenization scheme that gathers information from the visual content using a set of learned holistic queries. This design allows LARP to capture more global and semantic representations, rather than being limited to local patch-level information. Furthermore, it offers flexibility by supporting an arbitrary number of discrete tokens, enabling adaptive and efficient tokenization based on the specific requirements of the task. To align the discrete token space with downstream AR generation tasks, LARP integrates a lightweight AR transformer as a training-time prior model that predicts the next token on its discrete latent space. By incorporating the prior model during training, LARP learns a latent space that is not only optimized for video reconstruction but is also structured in a way that is more conducive to autoregressive generation. Moreover, this process defines a sequential order for the discrete tokens, progressively pushing them toward an optimal configuration during training, ensuring smoother and more accurate AR generation at inference time. Comprehensive experiments demonstrate LARP's strong performance, achieving state-of-the-art FVD on the UCF101 class-conditional video generation benchmark. LARP enhances the compatibility of AR models with videos and opens up the potential to build unified high-fidelity multimodal large language models (MLLMs).
Authors:Wen Wang, Qiuyu Wang, Kecheng Zheng, Hao Ouyang, Zhekai Chen, Biao Gong, Hao Chen, Yujun Shen, Chunhua Shen
Abstract:
We propose Framer for interactive frame interpolation, which targets producing smoothly transitioning frames between two images as per user creativity. Concretely, besides taking the start and end frames as inputs, our approach supports customizing the transition process by tailoring the trajectory of some selected keypoints. Such a design enjoys two clear benefits. First, incorporating human interaction mitigates the issue arising from numerous possibilities of transforming one image to another, and in turn enables finer control of local motions. Second, as the most basic form of interaction, keypoints help establish the correspondence across frames, enhancing the model to handle challenging cases (e.g., objects on the start and end frames are of different shapes and styles). It is noteworthy that our system also offers an "autopilot" mode, where we introduce a module to estimate the keypoints and refine the trajectory automatically, to simplify the usage in practice. Extensive experimental results demonstrate the appealing performance of Framer on various applications, such as image morphing, time-lapse video generation, cartoon interpolation, etc. The code, the model, and the interface will be released to facilitate further research.
Authors:Shilin Lu, Zihan Zhou, Jiayou Lu, Yuanzhi Zhu, Adams Wai-Kin Kong
Abstract:
Current image watermarking methods are vulnerable to advanced image editing techniques enabled by large-scale text-to-image models. These models can distort embedded watermarks during editing, posing significant challenges to copyright protection. In this work, we introduce W-Bench, the first comprehensive benchmark designed to evaluate the robustness of watermarking methods against a wide range of image editing techniques, including image regeneration, global editing, local editing, and image-to-video generation. Through extensive evaluations of eleven representative watermarking methods against prevalent editing techniques, we demonstrate that most methods fail to detect watermarks after such edits. To address this limitation, we propose VINE, a watermarking method that significantly enhances robustness against various image editing techniques while maintaining high image quality. Our approach involves two key innovations: (1) we analyze the frequency characteristics of image editing and identify that blurring distortions exhibit similar frequency properties, which allows us to use them as surrogate attacks during training to bolster watermark robustness; (2) we leverage a large-scale pretrained diffusion model SDXL-Turbo, adapting it for the watermarking task to achieve more imperceptible and robust watermark embedding. Experimental results show that our method achieves outstanding watermarking performance under various image editing techniques, outperforming existing methods in both image quality and robustness. Code is available at https://github.com/Shilin-LU/VINE.
Authors:Xi Liu, Chaoyi Zhou, Siyu Huang
Abstract:
Novel-view synthesis aims to generate novel views of a scene from multiple input images or videos, and recent advancements like 3D Gaussian splatting (3DGS) have achieved notable success in producing photorealistic renderings with efficient pipelines. However, generating high-quality novel views under challenging settings, such as sparse input views, remains difficult due to insufficient information in under-sampled areas, often resulting in noticeable artifacts. This paper presents 3DGS-Enhancer, a novel pipeline for enhancing the representation quality of 3DGS representations. We leverage 2D video diffusion priors to address the challenging 3D view consistency problem, reformulating it as achieving temporal consistency within a video generation process. 3DGS-Enhancer restores view-consistent latent features of rendered novel views and integrates them with the input views through a spatial-temporal decoder. The enhanced views are then used to fine-tune the initial 3DGS model, significantly improving its rendering performance. Extensive experiments on large-scale datasets of unbounded scenes demonstrate that 3DGS-Enhancer yields superior reconstruction performance and high-fidelity rendering results compared to state-of-the-art methods. The project webpage is https://xiliu8006.github.io/3DGS-Enhancer-project .
Authors:Yuan Zhou, Qiuyue Wang, Yuxuan Cai, Huan Yang
Abstract:
Significant advancements have been made in the field of video generation, with the open-source community contributing a wealth of research papers and tools for training high-quality models. However, despite these efforts, the available information and resources remain insufficient for achieving commercial-level performance. In this report, we open the black box and introduce $\textbf{Allegro}$, an advanced video generation model that excels in both quality and temporal consistency. We also highlight the current limitations in the field and present a comprehensive methodology for training high-performance, commercial-level video generation models, addressing key aspects such as data, model architecture, training pipeline, and evaluation. Our user study shows that Allegro surpasses existing open-source models and most commercial models, ranking just behind Hailuo and Kling. Code: https://github.com/rhymes-ai/Allegro , Model: https://huggingface.co/rhymes-ai/Allegro , Gallery: https://rhymes.ai/allegro_gallery .
Authors:Yuji Wang, Zehua Chen, Xiaoyu Chen, Yixiang Wei, Jun Zhu, Jianfei Chen
Abstract:
Diffusion models have achieved remarkable progress on image-to-video (I2V) generation, while their noise-to-data generation process is inherently mismatched with this task, which may lead to suboptimal synthesis quality. In this work, we present FrameBridge. By modeling the frame-to-frames generation process with a bridge model based data-to-data generative process, we are able to fully exploit the information contained in the given image and improve the consistency between the generation process and I2V task. Moreover, we propose two novel techniques toward the two popular settings of training I2V models, respectively. Firstly, we propose SNR-Aligned Fine-tuning (SAF), making the first attempt to fine-tune a diffusion model to a bridge model and, therefore, allowing us to utilize the pre-trained diffusion-based text-to-video (T2V) models. Secondly, we propose neural prior, further improving the synthesis quality of FrameBridge when training from scratch. Experiments conducted on WebVid-2M and UCF-101 demonstrate the superior quality of FrameBridge in comparison with the diffusion counterpart (zero-shot FVD 95 vs. 192 on MSR-VTT and non-zero-shot FVD 122 vs. 171 on UCF-101), and the advantages of our proposed SAF and neural prior for bridge-based I2V models. The project page: https://framebridge-icml.github.io/.
Authors:Jingwei Ma, Erika Lu, Roni Paiss, Shiran Zada, Aleksander Holynski, Tali Dekel, Brian Curless, Michael Rubinstein, Forrester Cole
Abstract:
Panoramic image stitching provides a unified, wide-angle view of a scene that extends beyond the camera's field of view. Stitching frames of a panning video into a panoramic photograph is a well-understood problem for stationary scenes, but when objects are moving, a still panorama cannot capture the scene. We present a method for synthesizing a panoramic video from a casually-captured panning video, as if the original video were captured with a wide-angle camera. We pose panorama synthesis as a space-time outpainting problem, where we aim to create a full panoramic video of the same length as the input video. Consistent completion of the space-time volume requires a powerful, realistic prior over video content and motion, for which we adapt generative video models. Existing generative models do not, however, immediately extend to panorama completion, as we show. We instead apply video generation as a component of our panorama synthesis system, and demonstrate how to exploit the strengths of the models while minimizing their limitations. Our system can create video panoramas for a range of in-the-wild scenes including people, vehicles, and flowing water, as well as stationary background features.
Authors:Hanbo Cheng, Limin Lin, Chenyu Liu, Pengcheng Xia, Pengfei Hu, Jiefeng Ma, Jun Du, Jia Pan
Abstract:
Talking head generation intends to produce vivid and realistic talking head videos from a single portrait and speech audio clip. Although significant progress has been made in diffusion-based talking head generation, almost all methods rely on autoregressive strategies, which suffer from limited context utilization beyond the current generation step, error accumulation, and slower generation speed. To address these challenges, we present DAWN (Dynamic frame Avatar With Non-autoregressive diffusion), a framework that enables all-at-once generation of dynamic-length video sequences. Specifically, it consists of two main components: (1) audio-driven holistic facial dynamics generation in the latent motion space, and (2) audio-driven head pose and blink generation. Extensive experiments demonstrate that our method generates authentic and vivid videos with precise lip motions, and natural pose/blink movements. Additionally, with a high generation speed, DAWN possesses strong extrapolation capabilities, ensuring the stable production of high-quality long videos. These results highlight the considerable promise and potential impact of DAWN in the field of talking head video generation. Furthermore, we hope that DAWN sparks further exploration of non-autoregressive approaches in diffusion models. Our code will be publicly available at https://github.com/Hanbo-Cheng/DAWN-pytorch.
Authors:Zhiyuan Ma, Yuzhu Zhang, Guoli Jia, Liangliang Zhao, Yichao Ma, Mingjie Ma, Gaofeng Liu, Kaiyan Zhang, Jianjun Li, Bowen Zhou
Abstract:
As one of the most popular and sought-after generative models in the recent years, diffusion models have sparked the interests of many researchers and steadily shown excellent advantage in various generative tasks such as image synthesis, video generation, molecule design, 3D scene rendering and multimodal generation, relying on their dense theoretical principles and reliable application practices. The remarkable success of these recent efforts on diffusion models comes largely from progressive design principles and efficient architecture, training, inference, and deployment methodologies. However, there has not been a comprehensive and in-depth review to summarize these principles and practices to help the rapid understanding and application of diffusion models. In this survey, we provide a new efficiency-oriented perspective on these existing efforts, which mainly focuses on the profound principles and efficient practices in architecture designs, model training, fast inference and reliable deployment, to guide further theoretical research, algorithm migration and model application for new scenarios in a reader-friendly way. \url{https://github.com/ponyzym/Efficient-DMs-Survey}
Authors:Toby Perrett, Tengda Han, Dima Damen, Andrew Zisserman
Abstract:
Long videos contain many repeating actions, events and shots. These repetitions are frequently given identical captions, which makes it difficult to retrieve the exact desired clip using a text search. In this paper, we formulate the problem of unique captioning: Given multiple clips with the same caption, we generate a new caption for each clip that uniquely identifies it. We propose Captioning by Discriminative Prompting (CDP), which predicts a property that can separate identically captioned clips, and use it to generate unique captions. We introduce two benchmarks for unique captioning, based on egocentric footage and timeloop movies - where repeating actions are common. We demonstrate that captions generated by CDP improve text-to-video R@1 by 15% for egocentric videos and 10% in timeloop movies.
Authors:Tianwei Xiong, Yuqing Wang, Daquan Zhou, Zhijie Lin, Jiashi Feng, Xihui Liu
Abstract:
The efficacy of video generation models heavily depends on the quality of their training datasets. Most previous video generation models are trained on short video clips, while recently there has been increasing interest in training long video generation models directly on longer videos. However, the lack of such high-quality long videos impedes the advancement of long video generation. To promote research in long video generation, we desire a new dataset with four key features essential for training long video generation models: (1) long videos covering at least 10 seconds, (2) long-take videos without cuts, (3) large motion and diverse contents, and (4) temporally dense captions. To achieve this, we introduce a new pipeline for selecting high-quality long-take videos and generating temporally dense captions. Specifically, we define a set of metrics to quantitatively assess video quality including scene cuts, dynamic degrees, and semantic-level quality, enabling us to filter high-quality long-take videos from a large amount of source videos. Subsequently, we develop a hierarchical video captioning pipeline to annotate long videos with temporally-dense captions. With this pipeline, we curate the first long-take video dataset, LVD-2M, comprising 2 million long-take videos, each covering more than 10 seconds and annotated with temporally dense captions. We further validate the effectiveness of LVD-2M by fine-tuning video generation models to generate long videos with dynamic motions. We believe our work will significantly contribute to future research in long video generation.
Authors:Dejia Xu, Yifan Jiang, Chen Huang, Liangchen Song, Thorsten Gernoth, Liangliang Cao, Zhangyang Wang, Hao Tang
Abstract:
In recent years there have been remarkable breakthroughs in image-to-video generation. However, the 3D consistency and camera controllability of generated frames have remained unsolved. Recent studies have attempted to incorporate camera control into the generation process, but their results are often limited to simple trajectories or lack the ability to generate consistent videos from multiple distinct camera paths for the same scene. To address these limitations, we introduce Cavia, a novel framework for camera-controllable, multi-view video generation, capable of converting an input image into multiple spatiotemporally consistent videos. Our framework extends the spatial and temporal attention modules into view-integrated attention modules, improving both viewpoint and temporal consistency. This flexible design allows for joint training with diverse curated data sources, including scene-level static videos, object-level synthetic multi-view dynamic videos, and real-world monocular dynamic videos. To our best knowledge, Cavia is the first of its kind that allows the user to precisely specify camera motion while obtaining object motion. Extensive experiments demonstrate that Cavia surpasses state-of-the-art methods in terms of geometric consistency and perceptual quality. Project Page: https://ir1d.github.io/Cavia/
Authors:Qiuheng Wang, Yukai Shi, Jiarong Ou, Rui Chen, Ke Lin, Jiahao Wang, Boyuan Jiang, Haotian Yang, Mingwu Zheng, Xin Tao, Fei Yang, Pengfei Wan, Di Zhang
Abstract:
With the continuous progress of visual generation technologies, the scale of video datasets has grown exponentially. The quality of these datasets plays a pivotal role in the performance of video generation models. We assert that temporal splitting, detailed captions, and video quality filtering are three crucial determinants of dataset quality. However, existing datasets exhibit various limitations in these areas. To address these challenges, we introduce Koala-36M, a large-scale, high-quality video dataset featuring accurate temporal splitting, detailed captions, and superior video quality. The essence of our approach lies in improving the consistency between fine-grained conditions and video content. Specifically, we employ a linear classifier on probability distributions to enhance the accuracy of transition detection, ensuring better temporal consistency. We then provide structured captions for the splitted videos, with an average length of 200 words, to improve text-video alignment. Additionally, we develop a Video Training Suitability Score (VTSS) that integrates multiple sub-metrics, allowing us to filter high-quality videos from the original corpus. Finally, we incorporate several metrics into the training process of the generation model, further refining the fine-grained conditions. Our experiments demonstrate the effectiveness of our data processing pipeline and the quality of the proposed Koala-36M dataset. Our dataset and code have been released at https://koala36m.github.io/.
Authors:Desai Xie, Zhan Xu, Yicong Hong, Hao Tan, Difan Liu, Feng Liu, Arie Kaufman, Yang Zhou
Abstract:
Current frontier video diffusion models have demonstrated remarkable results at generating high-quality videos. However, they can only generate short video clips, normally around 10 seconds or 240 frames, due to computation limitations during training. Existing methods naively achieve autoregressive long video generation by directly placing the ending of the previous clip at the front of the attention window as conditioning, which leads to abrupt scene changes, unnatural motion, and error accumulation. In this work, we introduce a more natural formulation of autoregressive long video generation by revisiting the noise level assumption in video diffusion models. Our key idea is to 1. assign the frames with per-frame, progressively increasing noise levels rather than a single noise level and 2. denoise and shift the frames in small intervals rather than all at once. This allows for smoother attention correspondence among frames with adjacent noise levels, larger overlaps between the attention windows, and better propagation of information from the earlier to the later frames. Video diffusion models equipped with our progressive noise schedule can autoregressively generate long videos with much improved fidelity compared to the baselines and minimal quality degradation over time. We present the first results on text-conditioned 60-second (1440 frames) long video generation at a quality close to frontier models. Code and video results are available at https://desaixie.github.io/pa-vdm/.
Authors:Mingi Kwon, Seoung Wug Oh, Yang Zhou, Difan Liu, Joon-Young Lee, Haoran Cai, Baqiao Liu, Feng Liu, Youngjung Uh
Abstract:
We present a method to create diffusion-based video models from pretrained Text-to-Image (T2I) models. Recently, AnimateDiff proposed freezing the T2I model while only training temporal layers. We advance this method by proposing a unique architecture, incorporating a mapping network and frame-wise tokens, tailored for video generation while maintaining the diversity and creativity of the original T2I model. Key innovations include novel loss functions for temporal smoothness and a mitigating gradient sampling technique, ensuring realistic and temporally consistent video generation despite limited public video data. We have successfully integrated video-specific inductive biases into the architecture and loss functions. Our method, built on the frozen StableDiffusion model, simplifies training processes and allows for seamless integration with off-the-shelf models like ControlNet and DreamBooth. project page: https://kwonminki.github.io/HARIVO
Authors:Jiahao Cui, Hui Li, Yao Yao, Hao Zhu, Hanlin Shang, Kaihui Cheng, Hang Zhou, Siyu Zhu, Jingdong Wang
Abstract:
Recent advances in latent diffusion-based generative models for portrait image animation, such as Hallo, have achieved impressive results in short-duration video synthesis. In this paper, we present updates to Hallo, introducing several design enhancements to extend its capabilities. First, we extend the method to produce long-duration videos. To address substantial challenges such as appearance drift and temporal artifacts, we investigate augmentation strategies within the image space of conditional motion frames. Specifically, we introduce a patch-drop technique augmented with Gaussian noise to enhance visual consistency and temporal coherence over long duration. Second, we achieve 4K resolution portrait video generation. To accomplish this, we implement vector quantization of latent codes and apply temporal alignment techniques to maintain coherence across the temporal dimension. By integrating a high-quality decoder, we realize visual synthesis at 4K resolution. Third, we incorporate adjustable semantic textual labels for portrait expressions as conditional inputs. This extends beyond traditional audio cues to improve controllability and increase the diversity of the generated content. To the best of our knowledge, Hallo2, proposed in this paper, is the first method to achieve 4K resolution and generate hour-long, audio-driven portrait image animations enhanced with textual prompts. We have conducted extensive experiments to evaluate our method on publicly available datasets, including HDTF, CelebV, and our introduced "Wild" dataset. The experimental results demonstrate that our approach achieves state-of-the-art performance in long-duration portrait video animation, successfully generating rich and controllable content at 4K resolution for duration extending up to tens of minutes. Project page https://fudan-generative-vision.github.io/hallo2
Authors:Bohan Zeng, Ling Yang, Siyu Li, Jiaming Liu, Zixiang Zhang, Juanxi Tian, Kaixin Zhu, Yongzhen Guo, Fu-Yun Wang, Minkai Xu, Stefano Ermon, Wentao Zhang
Abstract:
Recent advances in diffusion models have demonstrated exceptional capabilities in image and video generation, further improving the effectiveness of 4D synthesis. Existing 4D generation methods can generate high-quality 4D objects or scenes based on user-friendly conditions, benefiting the gaming and video industries. However, these methods struggle to synthesize significant object deformation of complex 4D transitions and interactions within scenes. To address this challenge, we propose Trans4D, a novel text-to-4D synthesis framework that enables realistic complex scene transitions. Specifically, we first use multi-modal large language models (MLLMs) to produce a physic-aware scene description for 4D scene initialization and effective transition timing planning. Then we propose a geometry-aware 4D transition network to realize a complex scene-level 4D transition based on the plan, which involves expressive geometrical object deformation. Extensive experiments demonstrate that Trans4D consistently outperforms existing state-of-the-art methods in generating 4D scenes with accurate and high-quality transitions, validating its effectiveness. Code: https://github.com/YangLing0818/Trans4D
Authors:Donglin Di, He Feng, Wenzhang Sun, Yongjia Ma, Hao Li, Wei Chen, Lei Fan, Tonghua Su, Xun Yang
Abstract:
Human-centric generative models are becoming increasingly popular, giving rise to various innovative tools and applications, such as talking face videos conditioned on text or audio prompts. The core of these capabilities lies in powerful pre-trained foundation models, trained on large-scale, high-quality datasets. However, many advanced methods rely on in-house data subject to various constraints, and other current studies fail to generate high-resolution face videos, which is mainly attributed to the significant lack of large-scale, high-quality face video datasets. In this paper, we introduce a human face video dataset, \textbf{DH-FaceVid-1K}. Our collection spans 1,200 hours in total, encompassing 270,043 video clips from over 20,000 individuals. Each sample includes corresponding speech audio, facial keypoints, and text annotations. Compared to other publicly available datasets, ours distinguishes itself through its multi-ethnic coverage and high-quality, comprehensive individual attributes. We establish multiple face video generation models supporting tasks such as text-to-video and image-to-video generation. In addition, we develop comprehensive benchmarks to validate the scaling law when using different proportions of proposed dataset. Our primary aim is to contribute a face video dataset, particularly addressing the underrepresentation of Asian faces in existing curated datasets and thereby enriching the global spectrum of face-centric data and mitigating demographic biases. \textbf{Project Page:} https://luna-ai-lab.github.io/DH-FaceVid-1K/
Authors:Qi Tang, Yao Zhao, Meiqin Liu, Chao Yao
Abstract:
Diffusion-based Video Super-Resolution (VSR) is renowned for generating perceptually realistic videos, yet it grapples with maintaining detail consistency across frames due to stochastic fluctuations. The traditional approach of pixel-level alignment is ineffective for diffusion-processed frames because of iterative disruptions. To overcome this, we introduce SeeClear--a novel VSR framework leveraging conditional video generation, orchestrated by instance-centric and channel-wise semantic controls. This framework integrates a Semantic Distiller and a Pixel Condenser, which synergize to extract and upscale semantic details from low-resolution frames. The Instance-Centric Alignment Module (InCAM) utilizes video-clip-wise tokens to dynamically relate pixels within and across frames, enhancing coherency. Additionally, the Channel-wise Texture Aggregation Memory (CaTeGory) infuses extrinsic knowledge, capitalizing on long-standing semantic textures. Our method also innovates the blurring diffusion process with the ResShift mechanism, finely balancing between sharpness and diffusion effects. Comprehensive experiments confirm our framework's advantage over state-of-the-art diffusion-based VSR techniques. The code is available: https://github.com/Tang1705/SeeClear-NeurIPS24.
Authors:Gihyun Kwon, Jong Chul Ye
Abstract:
Despite significant advancements in customizing text-to-image and video generation models, generating images and videos that effectively integrate multiple personalized concepts remains a challenging task. To address this, we present TweedieMix, a novel method for composing customized diffusion models during the inference phase. By analyzing the properties of reverse diffusion sampling, our approach divides the sampling process into two stages. During the initial steps, we apply a multiple object-aware sampling technique to ensure the inclusion of the desired target objects. In the later steps, we blend the appearances of the custom concepts in the de-noised image space using Tweedie's formula. Our results demonstrate that TweedieMix can generate multiple personalized concepts with higher fidelity than existing methods. Moreover, our framework can be effortlessly extended to image-to-video diffusion models, enabling the generation of videos that feature multiple personalized concepts. Results and source code are in our anonymous project page.
Authors:Fanqing Meng, Jiaqi Liao, Xinyu Tan, Wenqi Shao, Quanfeng Lu, Kaipeng Zhang, Yu Cheng, Dianqi Li, Yu Qiao, Ping Luo
Abstract:
Text-to-video (T2V) models like Sora have made significant strides in visualizing complex prompts, which is increasingly viewed as a promising path towards constructing the universal world simulator. Cognitive psychologists believe that the foundation for achieving this goal is the ability to understand intuitive physics. However, the capacity of these models to accurately represent intuitive physics remains largely unexplored. To bridge this gap, we introduce PhyGenBench, a comprehensive \textbf{Phy}sics \textbf{Gen}eration \textbf{Ben}chmark designed to evaluate physical commonsense correctness in T2V generation. PhyGenBench comprises 160 carefully crafted prompts across 27 distinct physical laws, spanning four fundamental domains, which could comprehensively assesses models' understanding of physical commonsense. Alongside PhyGenBench, we propose a novel evaluation framework called PhyGenEval. This framework employs a hierarchical evaluation structure utilizing appropriate advanced vision-language models and large language models to assess physical commonsense. Through PhyGenBench and PhyGenEval, we can conduct large-scale automated assessments of T2V models' understanding of physical commonsense, which align closely with human feedback. Our evaluation results and in-depth analysis demonstrate that current models struggle to generate videos that comply with physical commonsense. Moreover, simply scaling up models or employing prompt engineering techniques is insufficient to fully address the challenges presented by PhyGenBench (e.g., dynamic scenarios). We hope this study will inspire the community to prioritize the learning of physical commonsense in these models beyond entertainment applications. We will release the data and codes at https://github.com/OpenGVLab/PhyGenBench
Authors:Ailing Zeng, Yuhang Yang, Weidong Chen, Wei Liu
Abstract:
High-quality video generation, encompassing text-to-video (T2V), image-to-video (I2V), and video-to-video (V2V) generation, holds considerable significance in content creation to benefit anyone express their inherent creativity in new ways and world simulation to modeling and understanding the world. Models like SORA have advanced generating videos with higher resolution, more natural motion, better vision-language alignment, and increased controllability, particularly for long video sequences. These improvements have been driven by the evolution of model architectures, shifting from UNet to more scalable and parameter-rich DiT models, along with large-scale data expansion and refined training strategies. However, despite the emergence of DiT-based closed-source and open-source models, a comprehensive investigation into their capabilities and limitations remains lacking. Furthermore, the rapid development has made it challenging for recent benchmarks to fully cover SORA-like models and recognize their significant advancements. Additionally, evaluation metrics often fail to align with human preferences.
Authors:Dohun Lee, Bryan S Kim, Geon Yeong Park, Jong Chul Ye
Abstract:
Text-to-image (T2I) diffusion models have revolutionized visual content creation, but extending these capabilities to text-to-video (T2V) generation remains a challenge, particularly in preserving temporal consistency. Existing methods that aim to improve consistency often cause trade-offs such as reduced imaging quality and impractical computational time. To address these issues we introduce VideoGuide, a novel framework that enhances the temporal consistency of pretrained T2V models without the need for additional training or fine-tuning. Instead, VideoGuide leverages any pretrained video diffusion model (VDM) or itself as a guide during the early stages of inference, improving temporal quality by interpolating the guiding model's denoised samples into the sampling model's denoising process. The proposed method brings about significant improvement in temporal consistency and image fidelity, providing a cost-effective and practical solution that synergizes the strengths of various video diffusion models. Furthermore, we demonstrate prior distillation, revealing that base models can achieve enhanced text coherence by utilizing the superior data prior of the guiding model through the proposed method. Project Page: https://dohunlee1.github.io/videoguide.github.io/
Authors:Yaofang Liu, Yumeng Ren, Xiaodong Cun, Aitor Artola, Yang Liu, Tieyong Zeng, Raymond H. Chan, Jean-michel Morel
Abstract:
Diffusion models have revolutionized image generation, and their extension to video generation has shown promise. However, current video diffusion models~(VDMs) rely on a scalar timestep variable applied at the clip level, which limits their ability to model complex temporal dependencies needed for various tasks like image-to-video generation. To address this limitation, we propose a frame-aware video diffusion model~(FVDM), which introduces a novel vectorized timestep variable~(VTV). Unlike conventional VDMs, our approach allows each frame to follow an independent noise schedule, enhancing the model's capacity to capture fine-grained temporal dependencies. FVDM's flexibility is demonstrated across multiple tasks, including standard video generation, image-to-video generation, video interpolation, and long video synthesis. Through a diverse set of VTV configurations, we achieve superior quality in generated videos, overcoming challenges such as catastrophic forgetting during fine-tuning and limited generalizability in zero-shot methods.Our empirical evaluations show that FVDM outperforms state-of-the-art methods in video generation quality, while also excelling in extended tasks. By addressing fundamental shortcomings in existing VDMs, FVDM sets a new paradigm in video synthesis, offering a robust framework with significant implications for generative modeling and multimedia applications.
Authors:Yiwei Li, Sekeun Kim, Zihao Wu, Hanqi Jiang, Yi Pan, Pengfei Jin, Sifan Song, Yucheng Shi, Tianming Liu, Quanzheng Li, Xiang Li
Abstract:
Echocardiography (ECHO) is essential for cardiac assessments, but its video quality and interpretation heavily relies on manual expertise, leading to inconsistent results from clinical and portable devices. ECHO video generation offers a solution by improving automated monitoring through synthetic data and generating high-quality videos from routine health data. However, existing models often face high computational costs, slow inference, and rely on complex conditional prompts that require experts' annotations. To address these challenges, we propose ECHOPULSE, an ECG-conditioned ECHO video generation model. ECHOPULSE introduces two key advancements: (1) it accelerates ECHO video generation by leveraging VQ-VAE tokenization and masked visual token modeling for fast decoding, and (2) it conditions on readily accessible ECG signals, which are highly coherent with ECHO videos, bypassing complex conditional prompts. To the best of our knowledge, this is the first work to use time-series prompts like ECG signals for ECHO video generation. ECHOPULSE not only enables controllable synthetic ECHO data generation but also provides updated cardiac function information for disease monitoring and prediction beyond ECG alone. Evaluations on three public and private datasets demonstrate state-of-the-art performance in ECHO video generation across both qualitative and quantitative measures. Additionally, ECHOPULSE can be easily generalized to other modality generation tasks, such as cardiac MRI, fMRI, and 3D CT generation. Demo can seen from \url{https://github.com/levyisthebest/ECHOPulse_Prelease}.
Authors:Yuqing Wang, Tianwei Xiong, Daquan Zhou, Zhijie Lin, Yang Zhao, Bingyi Kang, Jiashi Feng, Xihui Liu
Abstract:
It is desirable but challenging to generate content-rich long videos in the scale of minutes. Autoregressive large language models (LLMs) have achieved great success in generating coherent and long sequences of tokens in the domain of natural language processing, while the exploration of autoregressive LLMs for video generation is limited to generating short videos of several seconds. In this work, we conduct a deep analysis of the challenges that prevent autoregressive LLM-based video generators from generating long videos. Based on the observations and analysis, we propose Loong, a new autoregressive LLM-based video generator that can generate minute-long videos. Specifically, we model the text tokens and video tokens as a unified sequence for autoregressive LLMs and train the model from scratch. We propose progressive short-to-long training with a loss re-weighting scheme to mitigate the loss imbalance problem for long video training. We further investigate inference strategies, including video token re-encoding and sampling strategies, to diminish error accumulation during inference. Our proposed Loong can be trained on 10-second videos and be extended to generate minute-level long videos conditioned on text prompts, as demonstrated by the results. More samples are available at: https://yuqingwang1029.github.io/Loong-video.
Authors:Jintao Zhang, Jia Wei, Haofeng Huang, Pengle Zhang, Jun Zhu, Jianfei Chen
Abstract:
The transformer architecture predominates across various models. As the heart of the transformer, attention has a computational complexity of $O(N^2)$, compared to $O(N)$ for linear transformations. When handling large sequence lengths, attention becomes the primary time-consuming component. Although quantization has proven to be an effective method for accelerating model inference, existing quantization methods primarily focus on optimizing the linear layer. In response, we first analyze the feasibility of quantization in attention detailedly. Following that, we propose SageAttention, a highly efficient and accurate quantization method for attention. The OPS (operations per second) of our approach outperforms FlashAttention2 and xformers by about 2.1 times and 2.7 times, respectively. SageAttention also achieves superior accuracy performance over FlashAttention3. Comprehensive experiments confirm that our approach incurs almost no end-to-end metrics loss across diverse models, including those for large language processing, image generation, and video generation. The codes are available at https://github.com/thu-ml/SageAttention.
Authors:Jie Cheng, Ruixi Qiao, Yingwei Ma, Binhua Li, Gang Xiong, Qinghai Miao, Yongbin Li, Yisheng Lv
Abstract:
A significant aspiration of offline reinforcement learning (RL) is to develop a generalist agent with high capabilities from large and heterogeneous datasets. However, prior approaches that scale offline RL either rely heavily on expert trajectories or struggle to generalize to diverse unseen tasks. Inspired by the excellent generalization of world model in conditional video generation, we explore the potential of image observation-based world model for scaling offline RL and enhancing generalization on novel tasks. In this paper, we introduce JOWA: Jointly-Optimized World-Action model, an offline model-based RL agent pretrained on multiple Atari games with 6 billion tokens data to learn general-purpose representation and decision-making ability. Our method jointly optimizes a world-action model through a shared transformer backbone, which stabilize temporal difference learning with large models during pretraining. Moreover, we propose a provably efficient and parallelizable planning algorithm to compensate for the Q-value estimation error and thus search out better policies. Experimental results indicate that our largest agent, with 150 million parameters, achieves 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange. Furthermore, JOWA scales favorably with model capacity and can sample-efficiently transfer to novel games using only 5k offline fine-tuning data (approximately 4 trajectories) per game, demonstrating superior generalization. We will release codes and model weights at https://github.com/CJReinforce/JOWA
Authors:Xiang Wang, Shiwei Zhang, Haonan Qiu, Ruihang Chu, Zekun Li, Yingya Zhang, Changxin Gao, Yuehuan Wang, Chunhua Shen, Nong Sang
Abstract:
The field of controllable human-centric video generation has witnessed remarkable progress, particularly with the advent of diffusion models. However, achieving precise and localized control over human motion in videos, such as replacing or inserting individuals while preserving desired motion patterns, still remains a formidable challenge. In this work, we present the ReplaceAnyone framework, which focuses on localized human replacement and insertion featuring intricate backgrounds. Specifically, we formulate this task as an image-conditioned video inpainting paradigm with pose guidance, utilizing a unified end-to-end video diffusion architecture that facilitates image-conditioned video inpainting within masked regions. To prevent shape leakage and enable granular local control, we introduce diverse mask forms involving both regular and irregular shapes. Furthermore, we implement an enriched visual guidance mechanism to enhance appearance alignment, a hybrid inpainting encoder to further preserve the detailed background information in the masked video, and a two-phase optimization methodology to simplify the training difficulty. ReplaceAnyone enables seamless replacement or insertion of characters while maintaining the desired pose motion and reference appearance within a single framework. Extensive experimental results demonstrate the effectiveness of our method in generating realistic and coherent video content. The proposed ReplaceAnyone can be seamlessly applied not only to traditional 3D-UNet base models but also to DiT-based video models such as Wan2.1. The code will be available at https://github.com/ali-vilab/UniAnimate-DiT.
Authors:Shaowei Liu, Zhongzheng Ren, Saurabh Gupta, Shenlong Wang
Abstract:
We present PhysGen, a novel image-to-video generation method that converts a single image and an input condition (e.g., force and torque applied to an object in the image) to produce a realistic, physically plausible, and temporally consistent video. Our key insight is to integrate model-based physical simulation with a data-driven video generation process, enabling plausible image-space dynamics. At the heart of our system are three core components: (i) an image understanding module that effectively captures the geometry, materials, and physical parameters of the image; (ii) an image-space dynamics simulation model that utilizes rigid-body physics and inferred parameters to simulate realistic behaviors; and (iii) an image-based rendering and refinement module that leverages generative video diffusion to produce realistic video footage featuring the simulated motion. The resulting videos are realistic in both physics and appearance and are even precisely controllable, showcasing superior results over existing data-driven image-to-video generation works through quantitative comparison and comprehensive user study. PhysGen's resulting videos can be used for various downstream applications, such as turning an image into a realistic animation or allowing users to interact with the image and create various dynamics. Project page: https://stevenlsw.github.io/physgen/
Authors:Masato Ishii, Akio Hayakawa, Takashi Shibuya, Yuki Mitsufuji
Abstract:
In this work, we build a simple but strong baseline for sounding video generation. Given base diffusion models for audio and video, we integrate them with additional modules into a single model and train it to make the model jointly generate audio and video. To enhance alignment between audio-video pairs, we introduce two novel mechanisms in our model. The first one is timestep adjustment, which provides different timestep information to each base model. It is designed to align how samples are generated along with timesteps across modalities. The second one is a new design of the additional modules, termed Cross-Modal Conditioning as Positional Encoding (CMC-PE). In CMC-PE, cross-modal information is embedded as if it represents temporal position information, and the embeddings are fed into the model like positional encoding. Compared with the popular cross-attention mechanism, CMC-PE provides a better inductive bias for temporal alignment in the generated data. Experimental results validate the effectiveness of the two newly introduced mechanisms and also demonstrate that our method outperforms existing methods.
Authors:Homanga Bharadhwaj, Debidatta Dwibedi, Abhinav Gupta, Shubham Tulsiani, Carl Doersch, Ted Xiao, Dhruv Shah, Fei Xia, Dorsa Sadigh, Sean Kirmani
Abstract:
How can robot manipulation policies generalize to novel tasks involving unseen object types and new motions? In this paper, we provide a solution in terms of predicting motion information from web data through human video generation and conditioning a robot policy on the generated video. Instead of attempting to scale robot data collection which is expensive, we show how we can leverage video generation models trained on easily available web data, for enabling generalization. Our approach Gen2Act casts language-conditioned manipulation as zero-shot human video generation followed by execution with a single policy conditioned on the generated video. To train the policy, we use an order of magnitude less robot interaction data compared to what the video prediction model was trained on. Gen2Act doesn't require fine-tuning the video model at all and we directly use a pre-trained model for generating human videos. Our results on diverse real-world scenarios show how Gen2Act enables manipulating unseen object types and performing novel motions for tasks not present in the robot data. Videos are at https://homangab.github.io/gen2act/
Authors:Yifang Men, Yuan Yao, Miaomiao Cui, Liefeng Bo
Abstract:
Character video synthesis aims to produce realistic videos of animatable characters within lifelike scenes. As a fundamental problem in the computer vision and graphics community, 3D works typically require multi-view captures for per-case training, which severely limits their applicability of modeling arbitrary characters in a short time. Recent 2D methods break this limitation via pre-trained diffusion models, but they struggle for pose generality and scene interaction. To this end, we propose MIMO, a novel framework which can not only synthesize character videos with controllable attributes (i.e., character, motion and scene) provided by simple user inputs, but also simultaneously achieve advanced scalability to arbitrary characters, generality to novel 3D motions, and applicability to interactive real-world scenes in a unified framework. The core idea is to encode the 2D video to compact spatial codes, considering the inherent 3D nature of video occurrence. Concretely, we lift the 2D frame pixels into 3D using monocular depth estimators, and decompose the video clip to three spatial components (i.e., main human, underlying scene, and floating occlusion) in hierarchical layers based on the 3D depth. These components are further encoded to canonical identity code, structured motion code and full scene code, which are utilized as control signals of synthesis process. The design of spatial decomposed modeling enables flexible user control, complex motion expression, as well as 3D-aware synthesis for scene interactions. Experimental results demonstrate effectiveness and robustness of the proposed method.
Authors:Xuan Gao, Haiyao Xiao, Chenglai Zhong, Shimin Hu, Yudong Guo, Juyong Zhang
Abstract:
We introduce PortraitGen, a powerful portrait video editing method that achieves consistent and expressive stylization with multimodal prompts. Traditional portrait video editing methods often struggle with 3D and temporal consistency, and typically lack in rendering quality and efficiency. To address these issues, we lift the portrait video frames to a unified dynamic 3D Gaussian field, which ensures structural and temporal coherence across frames. Furthermore, we design a novel Neural Gaussian Texture mechanism that not only enables sophisticated style editing but also achieves rendering speed over 100FPS. Our approach incorporates multimodal inputs through knowledge distilled from large-scale 2D generative models. Our system also incorporates expression similarity guidance and a face-aware portrait editing module, effectively mitigating degradation issues associated with iterative dataset updates. Extensive experiments demonstrate the temporal consistency, editing efficiency, and superior rendering quality of our method. The broad applicability of the proposed approach is demonstrated through various applications, including text-driven editing, image-driven editing, and relighting, highlighting its great potential to advance the field of video editing. Demo videos and released code are provided in our project page: https://ustc3dv.github.io/PortraitGen/
Authors:Sheng Shi, Xuyang Cao, Jun Zhao, Guoxin Wang
Abstract:
In audio-driven video generation, creating Mandarin videos presents significant challenges. Collecting comprehensive Mandarin datasets is difficult, and the complex lip movements in Mandarin further complicate model training compared to English. In this study, we collected 29 hours of Mandarin speech video from JD Health International Inc. employees, resulting in the jdh-Hallo dataset. This dataset includes a diverse range of ages and speaking styles, encompassing both conversational and specialized medical topics. To adapt the JoyHallo model for Mandarin, we employed the Chinese wav2vec2 model for audio feature embedding. A semi-decoupled structure is proposed to capture inter-feature relationships among lip, expression, and pose features. This integration not only improves information utilization efficiency but also accelerates inference speed by 14.3%. Notably, JoyHallo maintains its strong ability to generate English videos, demonstrating excellent cross-language generation capabilities. The code and models are available at https://jdh-algo.github.io/JoyHallo.
Authors:Zhitong Huang, Mohan Zhang, Jing Liao
Abstract:
We propose the first video diffusion framework for reference-based lineart video colorization. Unlike previous works that rely solely on image generative models to colorize lineart frame by frame, our approach leverages a large-scale pretrained video diffusion model to generate colorized animation videos. This approach leads to more temporally consistent results and is better equipped to handle large motions. Firstly, we introduce Sketch-guided ControlNet which provides additional control to finetune an image-to-video diffusion model for controllable video synthesis, enabling the generation of animation videos conditioned on lineart. We then propose Reference Attention to facilitate the transfer of colors from the reference frame to other frames containing fast and expansive motions. Finally, we present a novel scheme for sequential sampling, incorporating the Overlapped Blending Module and Prev-Reference Attention, to extend the video diffusion model beyond its original fixed-length limitation for long video colorization. Both qualitative and quantitative results demonstrate that our method significantly outperforms state-of-the-art techniques in terms of frame and video quality, as well as temporal consistency. Moreover, our method is capable of generating high-quality, long temporal-consistent animation videos with large motions, which is not achievable in previous works. Our code and model are available at https://luckyhzt.github.io/lvcd.
Authors:Xinyi Ying, Li Liu, Zaipin Lin, Yangsi Shi, Yingqian Wang, Ruojing Li, Xu Cao, Boyang Li, Shilin Zhou, Wei An
Abstract:
Multi-frame infrared small target (MIRST) detection in satellite videos is a long-standing, fundamental yet challenging task for decades, and the challenges can be summarized as: First, extremely small target size, highly complex clutters & noises, various satellite motions result in limited feature representation, high false alarms, and difficult motion analyses. Second, the lack of large-scale public available MIRST dataset in satellite videos greatly hinders the algorithm development. To address the aforementioned challenges, in this paper, we first build a large-scale dataset for MIRST detection in satellite videos (namely IRSatVideo-LEO), and then develop a recurrent feature refinement (RFR) framework as the baseline method. Specifically, IRSatVideo-LEO is a semi-simulated dataset with synthesized satellite motion, target appearance, trajectory and intensity, which can provide a standard toolbox for satellite video generation and a reliable evaluation platform to facilitate the algorithm development. For baseline method, RFR is proposed to be equipped with existing powerful CNN-based methods for long-term temporal dependency exploitation and integrated motion compensation & MIRST detection. Specifically, a pyramid deformable alignment (PDA) module and a temporal-spatial-frequency modulation (TSFM) module are proposed to achieve effective and efficient feature alignment, propagation, aggregation and refinement. Extensive experiments have been conducted to demonstrate the effectiveness and superiority of our scheme. The comparative results show that ResUNet equipped with RFR outperforms the state-of-the-art MIRST detection methods. Dataset and code are released at https://github.com/XinyiYing/RFR.
Authors:Yong Ren, Chenxing Li, Manjie Xu, Wei Liang, Yu Gu, Rilin Chen, Dong Yu
Abstract:
Visual and auditory perception are two crucial ways humans experience the world. Text-to-video generation has made remarkable progress over the past year, but the absence of harmonious audio in generated video limits its broader applications. In this paper, we propose Semantic and Temporal Aligned Video-to-Audio (STA-V2A), an approach that enhances audio generation from videos by extracting both local temporal and global semantic video features and combining these refined video features with text as cross-modal guidance. To address the issue of information redundancy in videos, we propose an onset prediction pretext task for local temporal feature extraction and an attentive pooling module for global semantic feature extraction. To supplement the insufficient semantic information in videos, we propose a Latent Diffusion Model with Text-to-Audio priors initialization and cross-modal guidance. We also introduce Audio-Audio Align, a new metric to assess audio-temporal alignment. Subjective and objective metrics demonstrate that our method surpasses existing Video-to-Audio models in generating audio with better quality, semantic consistency, and temporal alignment. The ablation experiment validated the effectiveness of each module. Audio samples are available at https://y-ren16.github.io/STAV2A.
Authors:Haibo Yang, Yang Chen, Yingwei Pan, Ting Yao, Zhineng Chen, Chong-Wah Ngo, Tao Mei
Abstract:
Despite having tremendous progress in image-to-3D generation, existing methods still struggle to produce multi-view consistent images with high-resolution textures in detail, especially in the paradigm of 2D diffusion that lacks 3D awareness. In this work, we present High-resolution Image-to-3D model (Hi3D), a new video diffusion based paradigm that redefines a single image to multi-view images as 3D-aware sequential image generation (i.e., orbital video generation). This methodology delves into the underlying temporal consistency knowledge in video diffusion model that generalizes well to geometry consistency across multiple views in 3D generation. Technically, Hi3D first empowers the pre-trained video diffusion model with 3D-aware prior (camera pose condition), yielding multi-view images with low-resolution texture details. A 3D-aware video-to-video refiner is learnt to further scale up the multi-view images with high-resolution texture details. Such high-resolution multi-view images are further augmented with novel views through 3D Gaussian Splatting, which are finally leveraged to obtain high-fidelity meshes via 3D reconstruction. Extensive experiments on both novel view synthesis and single view reconstruction demonstrate that our Hi3D manages to produce superior multi-view consistency images with highly-detailed textures. Source code and data are available at \url{https://github.com/yanghb22-fdu/Hi3D-Official}.
Authors:Yining Yao, Xi Guo, Chenjing Ding, Wei Wu
Abstract:
High-quality driving video generation is crucial for providing training data for autonomous driving models. However, current generative models rarely focus on enhancing camera motion control under multi-view tasks, which is essential for driving video generation. Therefore, we propose MyGo, an end-to-end framework for video generation, introducing motion of onboard cameras as conditions to make progress in camera controllability and multi-view consistency. MyGo employs additional plug-in modules to inject camera parameters into the pre-trained video diffusion model, which retains the extensive knowledge of the pre-trained model as much as possible. Furthermore, we use epipolar constraints and neighbor view information during the generation process of each view to enhance spatial-temporal consistency. Experimental results show that MyGo has achieved state-of-the-art results in both general camera-controlled video generation and multi-view driving video generation tasks, which lays the foundation for more accurate environment simulation in autonomous driving. Project page: https://metadrivescape.github.io/papers_project/MyGo/page.html
Authors:Wei Wu, Xi Guo, Weixuan Tang, Tingxuan Huang, Chiyu Wang, Dongyue Chen, Chenjing Ding
Abstract:
Recent advancements in generative models have provided promising solutions for synthesizing realistic driving videos, which are crucial for training autonomous driving perception models. However, existing approaches often struggle with multi-view video generation due to the challenges of integrating 3D information while maintaining spatial-temporal consistency and effectively learning from a unified model. We propose DriveScape, an end-to-end framework for multi-view, 3D condition-guided video generation, capable of producing 1024 x 576 high-resolution videos at 10Hz. Unlike other methods limited to 2Hz due to the 3D box annotation frame rate, DriveScape overcomes this with its ability to operate under sparse conditions. Our Bi-Directional Modulated Transformer (BiMot) ensures precise alignment of 3D structural information, maintaining spatial-temporal consistency. DriveScape excels in video generation performance, achieving state-of-the-art results on the nuScenes dataset with an FID score of 8.34 and an FVD score of 76.39. Our project homepage: https://metadrivescape.github.io/papers_project/drivescapev1/index.html
Authors:Jing Wang, Ao Ma, Jiasong Feng, Dawei Leng, Yuhui Yin, Xiaodan Liang
Abstract:
The global self-attention mechanism in diffusion transformers involves redundant computation due to the sparse and redundant nature of visual information, and the attention map of tokens within a spatial window shows significant similarity. To address this redundancy, we propose the Proxy-Tokenized Diffusion Transformer (PT-DiT), which employs sparse representative token attention (where the number of representative tokens is much smaller than the total number of tokens) to model global visual information efficiently. Specifically, within each transformer block, we compute an averaging token from each spatial-temporal window to serve as a proxy token for that region. The global semantics are captured through the self-attention of these proxy tokens and then injected into all latent tokens via cross-attention. Simultaneously, we introduce window and shift window attention to address the limitations in detail modeling caused by the sparse attention mechanism. Building on the well-designed PT-DiT, we further develop the Qihoo-T2X family, which includes a variety of models for T2I, T2V, and T2MV tasks. Experimental results show that PT-DiT achieves competitive performance while reducing the computational complexity in both image and video generation tasks (e.g., a 49% reduction compared to DiT and a 34% reduction compared to PixArt-$α$). The visual exhibition and source code of Qihoo-T2X is available at https://360cvgroup.github.io/Qihoo-T2X/.
Authors:Jianbiao Mei, Tao Hu, Xuemeng Yang, Licheng Wen, Yu Yang, Tiantian Wei, Yukai Ma, Min Dou, Botian Shi, Yong Liu
Abstract:
Recent advances in diffusion models have improved controllable streetscape generation and supported downstream perception and planning tasks. However, challenges remain in accurately modeling driving scenes and generating long videos. To alleviate these issues, we propose DreamForge, an advanced diffusion-based autoregressive video generation model tailored for 3D-controllable long-term generation. To enhance the lane and foreground generation, we introduce perspective guidance and integrate object-wise position encoding to incorporate local 3D correlation and improve foreground object modeling. We also propose motion-aware temporal attention to capture motion cues and appearance changes in videos. By leveraging motion frames and an autoregressive generation paradigm,we can autoregressively generate long videos (over 200 frames) using a model trained in short sequences, achieving superior quality compared to the baseline in 16-frame video evaluations. Finally, we integrate our method with the realistic simulator DriveArena to provide more reliable open-loop and closed-loop evaluations for vision-based driving agents. Project Page: https://pjlab-adg.github.io/DriveArena/dreamforge.
Authors:Xiaowei Hu, Zhenghao Xing, Tianyu Wang, Chi-Wing Fu, Pheng-Ann Heng
Abstract:
Shadows are created when light encounters obstacles, resulting in regions of reduced illumination. In computer vision, detecting, removing, and generating shadows are critical tasks for improving scene understanding, enhancing image quality, ensuring visual consistency in video editing, and optimizing virtual environments. This paper offers a comprehensive survey and evaluation benchmark on shadow detection, removal, and generation in both images and videos, focusing on the deep learning approaches of the past decade. It covers key aspects such as tasks, deep models, datasets, evaluation metrics, and comparative results under consistent experimental settings. Our main contributions include a thorough survey of shadow analysis, the standardization of experimental comparisons, an exploration of the relationships between model size, speed, and performance, a cross-dataset generalization study, the identification of open challenges and future research directions, and the provision of publicly available resources to support further research in this field.
Authors:Zhangsihao Yang, Mengyi Shan, Mohammad Farazi, Wenhui Zhu, Yanxi Chen, Xuanzhao Dong, Yalin Wang
Abstract:
Human video generation task has gained significant attention with the advancement of deep generative models. Generating realistic videos with human movements is challenging in nature, due to the intricacies of human body topology and sensitivity to visual artifacts. The extensively studied 2D media generation methods take advantage of massive human media datasets, but struggle with 3D-aware control; whereas 3D avatar-based approaches, while offering more freedom in control, lack photorealism and cannot be harmonized seamlessly with background scene. We propose AMG, a method that combines the 2D photorealism and 3D controllability by conditioning video diffusion models on controlled rendering of 3D avatars. We additionally introduce a novel data processing pipeline that reconstructs and renders human avatar movements from dynamic camera videos. AMG is the first method that enables multi-person diffusion video generation with precise control over camera positions, human motions, and background style. We also demonstrate through extensive evaluation that it outperforms existing human video generation methods conditioned on pose sequences or driving videos in terms of realism and adaptability.
Authors:Ishan Rajendrakumar Dave, Fabian Caba Heilbron, Mubarak Shah, Simon Jenni
Abstract:
Temporal video alignment aims to synchronize the key events like object interactions or action phase transitions in two videos. Such methods could benefit various video editing, processing, and understanding tasks. However, existing approaches operate under the restrictive assumption that a suitable video pair for alignment is given, significantly limiting their broader applicability. To address this, we re-pose temporal alignment as a search problem and introduce the task of Alignable Video Retrieval (AVR). Given a query video, our approach can identify well-alignable videos from a large collection of clips and temporally synchronize them to the query. To achieve this, we make three key contributions: 1) we introduce DRAQ, a video alignability indicator to identify and re-rank the best alignable video from a set of candidates; 2) we propose an effective and generalizable frame-level video feature design to improve the alignment performance of several off-the-shelf feature representations, and 3) we propose a novel benchmark and evaluation protocol for AVR using cycle-consistency metrics. Our experiments on 3 datasets, including large-scale Kinetics700, demonstrate the effectiveness of our approach in identifying alignable video pairs from diverse datasets. Project Page: https://daveishan.github.io/avr-webpage/.
Authors:Liuhan Chen, Zongjian Li, Bin Lin, Bin Zhu, Qian Wang, Shenghai Yuan, Xing Zhou, Xinhua Cheng, Li Yuan
Abstract:
Variational Autoencoder (VAE), compressing videos into latent representations, is a crucial preceding component of Latent Video Diffusion Models (LVDMs). With the same reconstruction quality, the more sufficient the VAE's compression for videos is, the more efficient the LVDMs are. However, most LVDMs utilize 2D image VAE, whose compression for videos is only in the spatial dimension and often ignored in the temporal dimension. How to conduct temporal compression for videos in a VAE to obtain more concise latent representations while promising accurate reconstruction is seldom explored. To fill this gap, we propose an omni-dimension compression VAE, named OD-VAE, which can temporally and spatially compress videos. Although OD-VAE's more sufficient compression brings a great challenge to video reconstruction, it can still achieve high reconstructed accuracy by our fine design. To obtain a better trade-off between video reconstruction quality and compression speed, four variants of OD-VAE are introduced and analyzed. In addition, a novel tail initialization is designed to train OD-VAE more efficiently, and a novel inference strategy is proposed to enable OD-VAE to handle videos of arbitrary length with limited GPU memory. Comprehensive experiments on video reconstruction and LVDM-based video generation demonstrate the effectiveness and efficiency of our proposed methods.
Authors:Jinyi Hu, Shengding Hu, Yuxuan Song, Yufei Huang, Mingxuan Wang, Hao Zhou, Zhiyuan Liu, Wei-Ying Ma, Maosong Sun
Abstract:
We present ACDiT, a novel Autoregressive blockwise Conditional Diffusion Transformer, that innovatively combines autoregressive and diffusion paradigms for modeling continuous visual information. By introducing a block-wise autoregressive unit, ACDiT offers a flexible interpolation between token-wise autoregression and full-sequence diffusion, bypassing the limitations of discrete tokenization. The generation of each block is formulated as a conditional diffusion process, conditioned on prior blocks. ACDiT is easy to implement, as simple as creating a Skip-Causal Attention Mask (SCAM) on standard diffusion transformer during training. During inference, the process iterates between diffusion denoising and autoregressive decoding that can make full use of KV-Cache. We show that ACDiT performs best among all autoregressive baselines under similar model scales on image and video generation tasks. We also demonstrate that benefiting from autoregressive modeling, pretrained ACDiT can be transferred in visual understanding tasks despite being trained with the diffusion objective. The analysis of the trade-off between autoregressive modeling and diffusion demonstrates the potential of ACDiT to be used in long-horizon visual generation tasks. We hope that ACDiT offers a novel perspective on visual autoregressive generation and unlocks new avenues for unified models.
Authors:Xiaohong Liu, Xiongkuo Min, Qiang Hu, Xiaoyun Zhang, Jie Guo, Guangtao Zhai, Shushi Wang, Yingjie Zhou, Lu Liu, Jingxin Li, Liu Yang, Farong Wen, Li Xu, Yanwei Jiang, Xilei Zhu, Chunyi Li, Zicheng Zhang, Huiyu Duan, Xiele Wu, Yixuan Gao, Yuqin Cao, Jun Jia, Wei Sun, Jiezhang Cao, Radu Timofte, Baojun Li, Jiamian Huang, Dan Luo, Tao Liu, Weixia Zhang, Bingkun Zheng, Junlin Chen, Ruikai Zhou, Meiya Chen, Yu Wang, Hao Jiang, Xiantao Li, Yuxiang Jiang, Jun Tang, Yimeng Zhao, Bo Hu, Zelu Qi, Chaoyang Zhang, Fei Zhao, Ping Shi, Lingzhi Fu, Heng Cong, Shuai He, Rongyu Zhang, Jiarong He, Zongyao Hu, Wei Luo, Zihao Yu, Fengbin Guan, Yiting Lu, Xin Li, Zhibo Chen, Mengjing Su, Yi Wang, Tuo Chen, Chunxiao Li, Shuaiyu Zhao, Jiaxin Wen, Chuyi Lin, Sitong Liu, Ningxin Chu, Jing Wan, Yu Zhou, Baoying Chen, Jishen Zeng, Jiarui Liu, Xianjin Liu, Xin Chen, Lanzhi Zhou, Hangyu Li, You Han, Bibo Xiang, Zhenjie Liu, Jianzhang Lu, Jialin Gui, Renjie Lu, Shangfei Wang, Donghao Zhou, Jingyu Lin, Quanjian Song, Jiancheng Huang, Yufeng Yang, Changwei Wang, Shupeng Zhong, Yang Yang, Lihuo He, Jia Liu, Yuting Xing, Tida Fang, Yuchun Jin
Abstract:
This paper reports on the NTIRE 2025 XGC Quality Assessment Challenge, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2025. This challenge is to address a major challenge in the field of video and talking head processing. The challenge is divided into three tracks, including user generated video, AI generated video and talking head. The user-generated video track uses the FineVD-GC, which contains 6,284 user generated videos. The user-generated video track has a total of 125 registered participants. A total of 242 submissions are received in the development phase, and 136 submissions are received in the test phase. Finally, 5 participating teams submitted their models and fact sheets. The AI generated video track uses the Q-Eval-Video, which contains 34,029 AI-Generated Videos (AIGVs) generated by 11 popular Text-to-Video (T2V) models. A total of 133 participants have registered in this track. A total of 396 submissions are received in the development phase, and 226 submissions are received in the test phase. Finally, 6 participating teams submitted their models and fact sheets. The talking head track uses the THQA-NTIRE, which contains 12,247 2D and 3D talking heads. A total of 89 participants have registered in this track. A total of 225 submissions are received in the development phase, and 118 submissions are received in the test phase. Finally, 8 participating teams submitted their models and fact sheets. Each participating team in every track has proposed a method that outperforms the baseline, which has contributed to the development of fields in three tracks.
Authors:Juntong Wang, Jiarui Wang, Huiyu Duan, Guangtao Zhai, Xiongkuo Min
Abstract:
Text-driven video editing is rapidly advancing, yet its rigorous evaluation remains challenging due to the absence of dedicated video quality assessment (VQA) models capable of discerning the nuances of editing quality. To address this critical gap, we introduce TDVE-DB, a large-scale benchmark dataset for text-driven video editing. TDVE-DB consists of 3,857 edited videos generated from 12 diverse models across 8 editing categories, and is annotated with 173,565 human subjective ratings along three crucial dimensions, i.e., edited video quality, editing alignment, and structural consistency. Based on TDVE-DB, we first conduct a comprehensive evaluation for the 12 state-of-the-art editing models revealing the strengths and weaknesses of current video techniques, and then benchmark existing VQA methods in the context of text-driven video editing evaluation. Building on these insights, we propose TDVE-Assessor, a novel VQA model specifically designed for text-driven video editing assessment. TDVE-Assessor integrates both spatial and temporal video features into a large language model (LLM) for rich contextual understanding to provide comprehensive quality assessment. Extensive experiments demonstrate that TDVE-Assessor substantially outperforms existing VQA models on TDVE-DB across all three evaluation dimensions, setting a new state-of-the-art. Both TDVE-DB and TDVE-Assessor will be released upon the publication.
Authors:Jiarui Wang, Huiyu Duan, Guangtao Zhai, Juntong Wang, Xiongkuo Min
Abstract:
The rapid advancement of large multimodal models (LMMs) has led to the rapid expansion of artificial intelligence generated videos (AIGVs), which highlights the pressing need for effective video quality assessment (VQA) models designed specifically for AIGVs. Current VQA models generally fall short in accurately assessing the perceptual quality of AIGVs due to the presence of unique distortions, such as unrealistic objects, unnatural movements, or inconsistent visual elements. To address this challenge, we first present AIGVQA-DB, a large-scale dataset comprising 36,576 AIGVs generated by 15 advanced text-to-video models using 1,048 diverse prompts. With these AIGVs, a systematic annotation pipeline including scoring and ranking processes is devised, which collects 370k expert ratings to date. Based on AIGVQA-DB, we further introduce AIGV-Assessor, a novel VQA model that leverages spatiotemporal features and LMM frameworks to capture the intricate quality attributes of AIGVs, thereby accurately predicting precise video quality scores and video pair preferences. Through comprehensive experiments on both AIGVQA-DB and existing AIGV databases, AIGV-Assessor demonstrates state-of-the-art performance, significantly surpassing existing scoring or evaluation methods in terms of multiple perceptual quality dimensions.
Authors:Zicheng Zhang, Ziheng Jia, Haoning Wu, Chunyi Li, Zijian Chen, Yingjie Zhou, Wei Sun, Xiaohong Liu, Xiongkuo Min, Weisi Lin, Guangtao Zhai
Abstract:
With the rising interest in research on Large Multi-modal Models (LMMs) for video understanding, many studies have emphasized general video comprehension capabilities, neglecting the systematic exploration into video quality understanding. To address this oversight, we introduce Q-Bench-Video in this paper, a new benchmark specifically designed to evaluate LMMs' proficiency in discerning video quality. a) To ensure video source diversity, Q-Bench-Video encompasses videos from natural scenes, AI-generated Content (AIGC), and Computer Graphics (CG). b) Building on the traditional multiple-choice questions format with the Yes-or-No and What-How categories, we include Open-ended questions to better evaluate complex scenarios. Additionally, we incorporate the video pair quality comparison question to enhance comprehensiveness. c) Beyond the traditional Technical, Aesthetic, and Temporal distortions, we have expanded our evaluation aspects to include the dimension of AIGC distortions, which addresses the increasing demand for video generation. Finally, we collect a total of 2,378 question-answer pairs and test them on 12 open-source & 5 proprietary LMMs. Our findings indicate that while LMMs have a foundational understanding of video quality, their performance remains incomplete and imprecise, with a notable discrepancy compared to human performance. Through Q-Bench-Video, we seek to catalyze community interest, stimulate further research, and unlock the untapped potential of LMMs to close the gap in video quality understanding.
Authors:Wanghan Xu, Xiaoyu Yue, Zidong Wang, Yao Teng, Wenlong Zhang, Xihui Liu, Luping Zhou, Wanli Ouyang, Lei Bai
Abstract:
Generative models serve as powerful tools for modeling the real world, with mainstream diffusion models, particularly those based on the latent diffusion model paradigm, achieving remarkable progress across various tasks, such as image and video synthesis. Latent diffusion models are typically trained using Variational Autoencoders (VAEs), interacting with VAE latents rather than the real samples. While this generative paradigm speeds up training and inference, the quality of the generated outputs is limited by the latents' quality. Traditional VAE latents are often seen as spatial compression in pixel space and lack explicit semantic representations, which are essential for modeling the real world. In this paper, we introduce ReaLS (Representation-Aligned Latent Space), which integrates semantic priors to improve generation performance. Extensive experiments show that fundamental DiT and SiT trained on ReaLS can achieve a 15% improvement in FID metric. Furthermore, the enhanced semantic latent space enables more perceptual downstream tasks, such as segmentation and depth estimation.
Authors:Yiran Qin, Zhelun Shi, Jiwen Yu, Xijun Wang, Enshen Zhou, Lijun Li, Zhenfei Yin, Xihui Liu, Lu Sheng, Jing Shao, Lei Bai, Wanli Ouyang, Ruimao Zhang
Abstract:
Recent advancements in predictive models have demonstrated exceptional capabilities in predicting the future state of objects and scenes. However, the lack of categorization based on inherent characteristics continues to hinder the progress of predictive model development. Additionally, existing benchmarks are unable to effectively evaluate higher-capability, highly embodied predictive models from an embodied perspective. In this work, we classify the functionalities of predictive models into a hierarchy and take the first step in evaluating World Simulators by proposing a dual evaluation framework called WorldSimBench. WorldSimBench includes Explicit Perceptual Evaluation and Implicit Manipulative Evaluation, encompassing human preference assessments from the visual perspective and action-level evaluations in embodied tasks, covering three representative embodied scenarios: Open-Ended Embodied Environment, Autonomous, Driving, and Robot Manipulation. In the Explicit Perceptual Evaluation, we introduce the HF-Embodied Dataset, a video assessment dataset based on fine-grained human feedback, which we use to train a Human Preference Evaluator that aligns with human perception and explicitly assesses the visual fidelity of World Simulators. In the Implicit Manipulative Evaluation, we assess the video-action consistency of World Simulators by evaluating whether the generated situation-aware video can be accurately translated into the correct control signals in dynamic environments. Our comprehensive evaluation offers key insights that can drive further innovation in video generation models, positioning World Simulators as a pivotal advancement toward embodied artificial intelligence.
Authors:Kanchana Ranasinghe, Honglu Zhou, Yu Fang, Luyu Yang, Le Xue, Ran Xu, Caiming Xiong, Silvio Savarese, Michael S Ryoo, Juan Carlos Niebles
Abstract:
Future motion representations, such as optical flow, offer immense value for control and generative tasks. However, forecasting generalizable spatially dense motion representations remains a key challenge, and learning such forecasting from noisy, real-world data remains relatively unexplored. We introduce FOFPred, a novel language-conditioned optical flow forecasting model featuring a unified Vision-Language Model (VLM) and Diffusion architecture. This unique combination enables strong multimodal reasoning with pixel-level generative fidelity for future motion prediction. Our model is trained on web-scale human activity data-a highly scalable but unstructured source. To extract meaningful signals from this noisy video-caption data, we employ crucial data preprocessing techniques and our unified architecture with strong image pretraining. The resulting trained model is then extended to tackle two distinct downstream tasks in control and generation. Evaluations across robotic manipulation and video generation under language-driven settings establish the cross-domain versatility of FOFPred, confirming the value of a unified VLM-Diffusion architecture and scalable learning from diverse web data for future optical flow prediction.
Authors:Mohammad Mahdi, Yuqian Fu, Nedko Savov, Jiancheng Pan, Danda Pani Paudel, Luc Van Gool
Abstract:
Foundation video generation models such as WAN 2.2 exhibit strong text- and image-conditioned synthesis abilities but remain constrained to the same-view generation setting. In this work, we introduce Exo2EgoSyn, an adaptation of WAN 2.2 that unlocks Exocentric-to-Egocentric(Exo2Ego) cross-view video synthesis. Our framework consists of three key modules. Ego-Exo View Alignment(EgoExo-Align) enforces latent-space alignment between exocentric and egocentric first-frame representations, reorienting the generative space from the given exo view toward the ego view. Multi-view Exocentric Video Conditioning (MultiExoCon) aggregates multi-view exocentric videos into a unified conditioning signal, extending WAN2.2 beyond its vanilla single-image or text conditioning. Furthermore, Pose-Aware Latent Injection (PoseInj) injects relative exo-to-ego camera pose information into the latent state, guiding geometry-aware synthesis across viewpoints. Together, these modules enable high-fidelity ego view video generation from third-person observations without retraining from scratch. Experiments on ExoEgo4D validate that Exo2EgoSyn significantly improves Ego2Exo synthesis, paving the way for scalable cross-view video generation with foundation models. Source code and models will be released publicly.
Authors:Weilun Li, Lei Sun, Ruixi Gao, Qi Jiang, Yuqin Ma, Kaiwei Wang, Ming-Hsuan Yang, Luc Van Gool, Danda Pani Paudel
Abstract:
As neuromorphic sensors, event cameras asynchronously record changes in brightness as streams of sparse events with the advantages of high temporal resolution and high dynamic range. Reconstructing intensity images from events is a highly ill-posed task due to the inherent ambiguity of absolute brightness. Early methods generally follow an end-to-end regression paradigm, directly mapping events to intensity frames in a deterministic manner. While effective to some extent, these approaches often yield perceptually inferior results and struggle to scale up in model capacity and training data. In this work, we propose EvDiff, an event-based diffusion model that follows a surrogate training framework to produce high-quality videos. To reduce the heavy computational cost of high-frame-rate video generation, we design an event-based diffusion model that performs only a single forward diffusion step, equipped with a temporally consistent EvEncoder. Furthermore, our novel Surrogate Training Framework eliminates the dependence on paired event-image datasets, allowing the model to leverage large-scale image datasets for higher capacity. The proposed EvDiff is capable of generating high-quality colorful videos solely from monochromatic event streams. Experiments on real-world datasets demonstrate that our method strikes a sweet spot between fidelity and realism, outperforming existing approaches on both pixel-level and perceptual metrics.
Authors:Xiaoxuan Tang, Xinping Lei, Chaoran Zhu, Shiyun Chen, Ruibin Yuan, Yizhi Li, Changjae Oh, Ge Zhang, Wenhao Huang, Emmanouil Benetos, Yang Liu, Jiaheng Liu, Yinghao Ma
Abstract:
Music-to-Video (M2V) generation for full-length songs faces significant challenges. Existing methods produce short, disjointed clips, failing to align visuals with musical structure, beats, or lyrics, and lack temporal consistency. We propose AutoMV, a multi-agent system that generates full music videos (MVs) directly from a song. AutoMV first applies music processing tools to extract musical attributes, such as structure, vocal tracks, and time-aligned lyrics, and constructs these features as contextual inputs for following agents. The screenwriter Agent and director Agent then use this information to design short script, define character profiles in a shared external bank, and specify camera instructions. Subsequently, these agents call the image generator for keyframes and different video generators for "story" or "singer" scenes. A Verifier Agent evaluates their output, enabling multi-agent collaboration to produce a coherent longform MV. To evaluate M2V generation, we further propose a benchmark with four high-level categories (Music Content, Technical, Post-production, Art) and twelve ine-grained criteria. This benchmark was applied to compare commercial products, AutoMV, and human-directed MVs with expert human raters: AutoMV outperforms current baselines significantly across all four categories, narrowing the gap to professional MVs. Finally, we investigate using large multimodal models as automatic MV judges; while promising, they still lag behind human expert, highlighting room for future work.
Authors:Xijie Huang, Chengming Xu, Donghao Luo, Xiaobin Hu, Peng Tang, Xu Peng, Jiangning Zhang, Chengjie Wang, Yanwei Fu
Abstract:
First-Frame Propagation (FFP) offers a promising paradigm for controllable video editing, but existing methods are hampered by a reliance on cumbersome run-time guidance. We identify the root cause of this limitation as the inadequacy of current training datasets, which are often too short, low-resolution, and lack the task diversity required to teach robust temporal priors. To address this foundational data gap, we first introduce FFP-300K, a new large-scale dataset comprising 300K high-fidelity video pairs at 720p resolution and 81 frames in length, constructed via a principled two-track pipeline for diverse local and global edits. Building on this dataset, we propose a novel framework designed for true guidance-free FFP that resolves the critical tension between maintaining first-frame appearance and preserving source video motion. Architecturally, we introduce Adaptive Spatio-Temporal RoPE (AST-RoPE), which dynamically remaps positional encodings to disentangle appearance and motion references. At the objective level, we employ a self-distillation strategy where an identity propagation task acts as a powerful regularizer, ensuring long-term temporal stability and preventing semantic drift. Comprehensive experiments on the EditVerseBench benchmark demonstrate that our method significantly outperforming existing academic and commercial models by receiving about 0.2 PickScore and 0.3 VLM score improvement against these competitors.
Authors:Qingdong He, Xueqin Chen, Yanjie Pan, Peng Tang, Pengcheng Xu, Zhenye Gan, Chengjie Wang, Xiaobin Hu, Jiangning Zhang, Yabiao Wang
Abstract:
Although diffusion transformer (DiT)-based video virtual try-on (VVT) has made significant progress in synthesizing realistic videos, existing methods still struggle to capture fine-grained garment dynamics and preserve background integrity across video frames. They also incur high computational costs due to additional interaction modules introduced into DiTs, while the limited scale and quality of existing public datasets also restrict model generalization and effective training. To address these challenges, we propose a novel framework, KeyTailor, along with a large-scale, high-definition dataset, ViT-HD. The core idea of KeyTailor is a keyframe-driven details injection strategy, motivated by the fact that keyframes inherently contain both foreground dynamics and background consistency. Specifically, KeyTailor adopts an instruction-guided keyframe sampling strategy to filter informative frames from the input video. Subsequently,two tailored keyframe-driven modules, the garment details enhancement module and the collaborative background optimization module, are employed to distill garment dynamics into garment-related latents and to optimize the integrity of background latents, both guided by keyframes.These enriched details are then injected into standard DiT blocks together with pose, mask, and noise latents, enabling efficient and realistic try-on video synthesis. This design ensures consistency without explicitly modifying the DiT architecture, while simultaneously avoiding additional complexity. In addition, our dataset ViT-HD comprises 15, 070 high-quality video samples at a resolution of 810*1080, covering diverse garments. Extensive experiments demonstrate that KeyTailor outperforms state-of-the-art baselines in terms of garment fidelity and background integrity across both dynamic and static scenarios.
Authors:Yongqi Yang, Huayang Huang, Xu Peng, Xiaobin Hu, Donghao Luo, Jiangning Zhang, Chengjie Wang, Yu Wu
Abstract:
Recent hybrid video generation models combine autoregressive temporal dynamics with diffusion-based spatial denoising, but their sequential, iterative nature leads to error accumulation and long inference times. In this work, we propose a distillation-based framework for efficient causal video generation that enables high-quality synthesis with extremely limited denoising steps. Our approach builds upon the Distribution Matching Distillation (DMD) framework and proposes a novel Adversarial Self-Distillation (ASD) strategy, which aligns the outputs of the student model's n-step denoising process with its (n+1)-step version at the distribution level. This design provides smoother supervision by bridging small intra-student gaps and more informative guidance by combining teacher knowledge with locally consistent student behavior, substantially improving training stability and generation quality in extremely few-step scenarios (e.g., 1-2 steps). In addition, we present a First-Frame Enhancement (FFE) strategy, which allocates more denoising steps to the initial frames to mitigate error propagation while applying larger skipping steps to later frames. Extensive experiments on VBench demonstrate that our method surpasses state-of-the-art approaches in both one-step and two-step video generation. Notably, our framework produces a single distilled model that flexibly supports multiple inference-step settings, eliminating the need for repeated re-distillation and enabling efficient, high-quality video synthesis.
Authors:Yuxuan Cai, Jiangning Zhang, Zhenye Gan, Qingdong He, Xiaobin Hu, Junwei Zhu, Yabiao Wang, Chengjie Wang, Zhucun Xue, Xinwei He, Xiang Bai
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated significant advances in visual understanding tasks involving both images and videos. However, their capacity to comprehend human-centric video data remains underexplored, primarily due to the absence of comprehensive and high-quality evaluation benchmarks. Existing human-centric benchmarks predominantly emphasize video generation quality and action recognition, while overlooking essential perceptual and cognitive abilities required in human-centered scenarios. Furthermore, they are often limited by single-question paradigms and overly simplistic evaluation metrics. To address above limitations, we propose a modern HV-MMBench, a rigorously curated benchmark designed to provide a more holistic evaluation of MLLMs in human-centric video understanding. Compared to existing human-centric video benchmarks, our work offers the following key features: (1) Diverse evaluation dimensions: HV-MMBench encompasses 15 tasks, ranging from basic attribute perception (e.g., age estimation, emotion recognition) to advanced cognitive reasoning (e.g., social relationship prediction, intention prediction), enabling comprehensive assessment of model capabilities; (2) Varied data types: The benchmark includes multiple-choice, fill-in-blank, true/false, and open-ended question formats, combined with diverse evaluation metrics, to more accurately and robustly reflect model performance; (3) Multi-domain video coverage: The benchmark spans 50 distinct visual scenarios, enabling comprehensive evaluation across fine-grained scene variations; (4) Temporal coverage: The benchmark covers videos from short-term (10 seconds) to long-term (up to 30min) durations, supporting systematic analysis of models temporal reasoning abilities across diverse contextual lengths.
Authors:Yuji Wang, Moran Li, Xiaobin Hu, Ran Yi, Jiangning Zhang, Han Feng, Weijian Cao, Yabiao Wang, Chengjie Wang, Lizhuang Ma
Abstract:
Identity-preserving text-to-video (IPT2V) generation, which aims to create high-fidelity videos with consistent human identity, has become crucial for downstream applications. However, current end-to-end frameworks suffer a critical spatial-temporal trade-off: optimizing for spatially coherent layouts of key elements (e.g., character identity preservation) often compromises instruction-compliant temporal smoothness, while prioritizing dynamic realism risks disrupting the spatial coherence of visual structures. To tackle this issue, we propose a simple yet effective spatial-temporal decoupled framework that decomposes representations into spatial features for layouts and temporal features for motion dynamics. Specifically, our paper proposes a semantic prompt optimization mechanism and stage-wise decoupled generation paradigm. The former module decouples the prompt into spatial and temporal components. Aligned with the subsequent stage-wise decoupled approach, the spatial prompts guide the text-to-image (T2I) stage to generate coherent spatial features, while the temporal prompts direct the sequential image-to-video (I2V) stage to ensure motion consistency. Experimental results validate that our approach achieves excellent spatiotemporal consistency, demonstrating outstanding performance in identity preservation, text relevance, and video quality. By leveraging this simple yet robust mechanism, our algorithm secures the runner-up position in 2025 ACM MultiMedia Challenge.
Authors:Haowen Gao, Liang Pang, Shicheng Xu, Leigang Qu, Tat-Seng Chua, Huawei Shen, Xueqi Cheng
Abstract:
With the rapid development of AI-generated content (AIGC), the creation of high-quality AI-generated videos has become faster and easier, resulting in the Internet being flooded with all kinds of video content. However, the impact of these videos on the content ecosystem remains largely unexplored. Video information retrieval remains a fundamental approach for accessing video content. Building on the observation that retrieval models often favor AI-generated content in ad-hoc and image retrieval tasks, we investigate whether similar biases emerge in the context of challenging video retrieval, where temporal and visual factors may further influence model behavior. To explore this, we first construct a comprehensive benchmark dataset containing both real and AI-generated videos, along with a set of fair and rigorous metrics to assess bias. This benchmark consists of 13,000 videos generated by two state-of-the-art open-source video generation models. We meticulously design a suite of rigorous metrics to accurately measure this preference, accounting for potential biases arising from the limited frame rate and suboptimal quality of AIGC videos. We then applied three off-the-shelf video retrieval models to perform retrieval tasks on this hybrid dataset. Our findings reveal a clear preference for AI-generated videos in retrieval. Further investigation shows that incorporating AI-generated videos into the training set of retrieval models exacerbates this bias. Unlike the preference observed in image modalities, we find that video retrieval bias arises from both unseen visual and temporal information, making the root causes of video bias a complex interplay of these two factors. To mitigate this bias, we fine-tune the retrieval models using a contrastive learning approach. The results of this study highlight the potential implications of AI-generated videos on retrieval systems.
Authors:Yabo Chen, Yuanzhi Liang, Jiepeng Wang, Tingxi Chen, Junfei Cheng, Zixiao Gu, Yuyang Huang, Zicheng Jiang, Wei Li, Tian Li, Weichen Li, Zuoxin Li, Guangce Liu, Jialun Liu, Junqi Liu, Haoyuan Wang, Qizhen Weng, Xuan'er Wu, Xunzhi Xiang, Xiaoyan Yang, Xin Zhang, Shiwen Zhang, Junyu Zhou, Chengcheng Zhou, Haibin Huang, Chi Zhang, Xuelong Li
Abstract:
World models aim to endow AI systems with the ability to represent, generate, and interact with dynamic environments in a coherent and temporally consistent manner. While recent video generation models have demonstrated impressive visual quality, they remain limited in real-time interaction, long-horizon consistency, and persistent memory of dynamic scenes, hindering their evolution into practical world models. In this report, we present TeleWorld, a real-time multimodal 4D world modeling framework that unifies video generation, dynamic scene reconstruction, and long-term world memory within a closed-loop system. TeleWorld introduces a novel generation-reconstruction-guidance paradigm, where generated video streams are continuously reconstructed into a dynamic 4D spatio-temporal representation, which in turn guides subsequent generation to maintain spatial, temporal, and physical consistency. To support long-horizon generation with low latency, we employ an autoregressive diffusion-based video model enhanced with Macro-from-Micro Planning (MMPL)--a hierarchical planning method that reduces error accumulation from frame-level to segment-level-alongside efficient Distribution Matching Distillation (DMD), enabling real-time synthesis under practical computational budgets. Our approach achieves seamless integration of dynamic object modeling and static scene representation within a unified 4D framework, advancing world models toward practical, interactive, and computationally accessible systems. Extensive experiments demonstrate that TeleWorld achieves strong performance in both static and dynamic world understanding, long-term consistency, and real-time generation efficiency, positioning it as a practical step toward interactive, memory-enabled world models for multimodal generation and embodied intelligence.
Authors:Rui Li, Yuanzhi Liang, Ziqi Ni, Haibing Huang, Chi Zhang, Xuelong Li
Abstract:
Group Relative Policy Optimization (GRPO) has emerged as a powerful reinforcement learning paradigm for post-training video generation models. However, existing GRPO pipelines rely on static, fixed-capacity reward models whose evaluation behavior is frozen during training. Such rigid rewards introduce distributional bias, saturate quickly as the generator improves, and ultimately limit the stability and effectiveness of reinforcement-based alignment. We propose Self-Paced GRPO, a competence-aware GRPO framework in which reward feedback co-evolves with the generator. Our method introduces a progressive reward mechanism that automatically shifts its emphasis from coarse visual fidelity to temporal coherence and fine-grained text-video semantic alignment as generation quality increases. This self-paced curriculum alleviates reward-policy mismatch, mitigates reward exploitation, and yields more stable optimization. Experiments on VBench across multiple video generation backbones demonstrate consistent improvements in both visual quality and semantic alignment over GRPO baselines with static rewards, validating the effectiveness and generality of Self-Paced GRPO.
Authors:Yukuo Ma, Cong Liu, Junke Wang, Junqi Liu, Haibin Huang, Zuxuan Wu, Chi Zhang, Xuelong Li
Abstract:
We present TempoMaster, a novel framework that formulates long video generation as next-frame-rate prediction. Specifically, we first generate a low-frame-rate clip that serves as a coarse blueprint of the entire video sequence, and then progressively increase the frame rate to refine visual details and motion continuity. During generation, TempoMaster employs bidirectional attention within each frame-rate level while performing autoregression across frame rates, thus achieving long-range temporal coherence while enabling efficient and parallel synthesis. Extensive experiments demonstrate that TempoMaster establishes a new state-of-the-art in long video generation, excelling in both visual and temporal quality.
Authors:Xunzhi Xiang, Yabo Chen, Guiyu Zhang, Zhongyu Wang, Zhe Gao, Quanming Xiang, Gonghu Shang, Junqi Liu, Haibin Huang, Yang Gao, Chi Zhang, Qi Fan, Xuelong Li
Abstract:
Current autoregressive diffusion models excel at video generation but are generally limited to short temporal durations. Our theoretical analysis indicates that the autoregressive modeling typically suffers from temporal drift caused by error accumulation and hinders parallelization in long video synthesis. To address these limitations, we propose a novel planning-then-populating framework centered on Macro-from-Micro Planning (MMPL) for long video generation. MMPL sketches a global storyline for the entire video through two hierarchical stages: Micro Planning and Macro Planning. Specifically, Micro Planning predicts a sparse set of future keyframes within each short video segment, offering motion and appearance priors to guide high-quality video segment generation. Macro Planning extends the in-segment keyframes planning across the entire video through an autoregressive chain of micro plans, ensuring long-term consistency across video segments. Subsequently, MMPL-based Content Populating generates all intermediate frames in parallel across segments, enabling efficient parallelization of autoregressive generation. The parallelization is further optimized by Adaptive Workload Scheduling for balanced GPU execution and accelerated autoregressive video generation. Extensive experiments confirm that our method outperforms existing long video generation models in quality and stability. Generated videos and comparison results are in our project page.
Authors:Fangqiu Yi, Jingyu Xu, Jiawei Shao, Chi Zhang, Xuelong Li
Abstract:
Perceptual studies demonstrate that conditional diffusion models excel at reconstructing video content aligned with human visual perception. Building on this insight, we propose a video compression framework that leverages conditional diffusion models for perceptually optimized reconstruction. Specifically, we reframe video compression as a conditional generation task, where a generative model synthesizes video from sparse, yet informative signals. Our approach introduces three key modules: (1) Multi-granular conditioning that captures both static scene structure and dynamic spatio-temporal cues; (2) Compact representations designed for efficient transmission without sacrificing semantic richness; (3) Multi-condition training with modality dropout and role-aware embeddings, which prevent over-reliance on any single modality and enhance robustness. Extensive experiments show that our method significantly outperforms both traditional and neural codecs on perceptual quality metrics such as Fréchet Video Distance (FVD) and LPIPS, especially under high compression ratios.
Authors:Chenyou Fan, Fangzheng Yan, Chenjia Bai, Jiepeng Wang, Chi Zhang, Zhen Wang, Xuelong Li
Abstract:
Learning a generalizable bimanual manipulation policy is extremely challenging for embodied agents due to the large action space and the need for coordinated arm movements. Existing approaches rely on Vision-Language-Action (VLA) models to acquire bimanual policies. However, transferring knowledge from single-arm datasets or pre-trained VLA models often fails to generalize effectively, primarily due to the scarcity of bimanual data and the fundamental differences between single-arm and bimanual manipulation. In this paper, we propose a novel bimanual foundation policy by fine-tuning the leading text-to-video models to predict robot trajectories and training a lightweight diffusion policy for action generation. Given the lack of embodied knowledge in text-to-video models, we introduce a two-stage paradigm that fine-tunes independent text-to-flow and flow-to-video models derived from a pre-trained text-to-video model. Specifically, optical flow serves as an intermediate variable, providing a concise representation of subtle movements between images. The text-to-flow model predicts optical flow to concretize the intent of language instructions, and the flow-to-video model leverages this flow for fine-grained video prediction. Our method mitigates the ambiguity of language in single-stage text-to-video prediction and significantly reduces the robot-data requirement by avoiding direct use of low-level actions. In experiments, we collect high-quality manipulation data for real dual-arm robot, and the results of simulation and real-world experiments demonstrate the effectiveness of our method.
Authors:Lei Zhao, Linfeng Feng, Dongxu Ge, Rujin Chen, Fangqiu Yi, Chi Zhang, Xiao-Lei Zhang, Xuelong Li
Abstract:
With the rise of diffusion models, audio-video generation has been revolutionized. However, most existing methods rely on separate modules for each modality, with limited exploration of unified generative architectures. In addition, many are confined to a single task and small-scale datasets. To overcome these limitations, we introduce UniForm, a unified multi-task diffusion transformer that generates both audio and visual modalities in a shared latent space. By using a unified denoising network, UniForm captures the inherent correlations between sound and vision. Additionally, we propose task-specific noise schemes and task tokens, enabling the model to support multiple tasks with a single set of parameters, including video-to-audio, audio-to-video and text-to-audio-video generation. Furthermore, by leveraging large language models and a large-scale text-audio-video combined dataset, UniForm achieves greater generative diversity than prior approaches. Experiments show that UniForm achieves performance close to the state-of-the-art single-task models across three generation tasks, with generated content that is not only highly aligned with real-world data distributions but also enables more diverse and fine-grained generation.
Authors:Chi Zhang, Yuanzhi Liang, Xi Qiu, Fangqiu Yi, Xuelong Li
Abstract:
Generating high-quality videos from textual descriptions poses challenges in maintaining temporal coherence and control over subject motion. We propose VAST (Video As Storyboard from Text), a two-stage framework to address these challenges and enable high-quality video generation. In the first stage, StoryForge transforms textual descriptions into detailed storyboards, capturing human poses and object layouts to represent the structural essence of the scene. In the second stage, VisionForge generates videos from these storyboards, producing high-quality videos with smooth motion, temporal consistency, and spatial coherence. By decoupling text understanding from video generation, VAST enables precise control over subject dynamics and scene composition. Experiments on the VBench benchmark demonstrate that VAST outperforms existing methods in both visual quality and semantic expression, setting a new standard for dynamic and coherent video generation.
Authors:Hongzhe Bi, Hengkai Tan, Shenghao Xie, Zeyuan Wang, Shuhe Huang, Haitian Liu, Ruowen Zhao, Yao Feng, Chendong Xiang, Yinze Rong, Hongyan Zhao, Hanyu Liu, Zhizhong Su, Lei Ma, Hang Su, Jun Zhu
Abstract:
While a general embodied agent must function as a unified system, current methods are built on isolated models for understanding, world modeling, and control. This fragmentation prevents unifying multimodal generative capabilities and hinders learning from large-scale, heterogeneous data. In this paper, we propose Motus, a unified latent action world model that leverages existing general pretrained models and rich, sharable motion information. Motus introduces a Mixture-of-Transformer (MoT) architecture to integrate three experts (i.e., understanding, video generation, and action) and adopts a UniDiffuser-style scheduler to enable flexible switching between different modeling modes (i.e., world models, vision-language-action models, inverse dynamics models, video generation models, and video-action joint prediction models). Motus further leverages the optical flow to learn latent actions and adopts a recipe with three-phase training pipeline and six-layer data pyramid, thereby extracting pixel-level "delta action" and enabling large-scale action pretraining. Experiments show that Motus achieves superior performance against state-of-the-art methods in both simulation (a +15% improvement over X-VLA and a +45% improvement over Pi0.5) and real-world scenarios(improved by +11~48%), demonstrating unified modeling of all functionalities and priors significantly benefits downstream robotic tasks.
Authors:Tianqi Zhang, Ziyi Wang, Wenzhao Zheng, Weiliang Chen, Yuanhui Huang, Zhengyang Huang, Jie Zhou, Jiwen Lu
Abstract:
Video diffusion models, trained on large-scale datasets, naturally capture correspondences of shared features across frames. Recent works have exploited this property for tasks such as optical flow prediction and tracking in a zero-shot setting. Motivated by these findings, we investigate whether supervised training can more fully harness the tracking capability of video diffusion models. To this end, we propose Moaw, a framework that unleashes motion awareness for video diffusion models and leverages it to facilitate motion transfer. Specifically, we train a diffusion model for motion perception, shifting its modality from image-to-video generation to video-to-dense-tracking. We then construct a motion-labeled dataset to identify features that encode the strongest motion information, and inject them into a structurally identical video generation model. Owing to the homogeneity between the two networks, these features can be naturally adapted in a zero-shot manner, enabling motion transfer without additional adapters. Our work provides a new paradigm for bridging generative modeling and motion understanding, paving the way for more unified and controllable video learning frameworks.
Authors:Tianze Xia, Yongkang Li, Lijun Zhou, Jingfeng Yao, Kaixin Xiong, Haiyang Sun, Bing Wang, Kun Ma, Guang Chen, Hangjun Ye, Wenyu Liu, Xinggang Wang
Abstract:
World models have become crucial for autonomous driving, as they learn how scenarios evolve over time to address the long-tail challenges of the real world. However, current approaches relegate world models to limited roles: they operate within ostensibly unified architectures that still keep world prediction and motion planning as decoupled processes. To bridge this gap, we propose DriveLaW, a novel paradigm that unifies video generation and motion planning. By directly injecting the latent representation from its video generator into the planner, DriveLaW ensures inherent consistency between high-fidelity future generation and reliable trajectory planning. Specifically, DriveLaW consists of two core components: DriveLaW-Video, our powerful world model that generates high-fidelity forecasting with expressive latent representations, and DriveLaW-Act, a diffusion planner that generates consistent and reliable trajectories from the latent of DriveLaW-Video, with both components optimized by a three-stage progressive training strategy. The power of our unified paradigm is demonstrated by new state-of-the-art results across both tasks. DriveLaW not only advances video prediction significantly, surpassing best-performing work by 33.3% in FID and 1.8% in FVD, but also achieves a new record on the NAVSIM planning benchmark.
Authors:Jiazi Bu, Pengyang Ling, Yujie Zhou, Yibin Wang, Yuhang Zang, Tong Wu, Dahua Lin, Jiaqi Wang
Abstract:
Recent years have witnessed the rapid development of acceleration techniques for diffusion models, especially caching-based acceleration methods. These studies seek to answer two fundamental questions: "When to cache" and "How to use cache", typically relying on predefined empirical laws or dataset-level priors to determine the timing of caching and utilizing handcrafted rules for leveraging multi-step caches. However, given the highly dynamic nature of the diffusion process, they often exhibit limited generalizability and fail on outlier samples. In this paper, a strong correlation is revealed between the variation patterns of the shallow-layer feature differences in the diffusion model and those of final model outputs. Moreover, we have observed that the features from different model layers form similar trajectories. Based on these observations, we present DiCache, a novel training-free adaptive caching strategy for accelerating diffusion models at runtime, answering both when and how to cache within a unified framework. Specifically, DiCache is composed of two principal components: (1) Online Probe Profiling Scheme leverages a shallow-layer online probe to obtain a stable prior for the caching error in real time, enabling the model to autonomously determine caching schedules. (2) Dynamic Cache Trajectory Alignment combines multi-step caches based on shallow-layer probe feature trajectory to better approximate the current feature, facilitating higher visual quality. Extensive experiments validate DiCache's capability in achieving higher efficiency and improved visual fidelity over state-of-the-art methods on various leading diffusion models including WAN 2.1, HunyuanVideo for video generation, and Flux for image generation.
Authors:Jiazi Bu, Pengyang Ling, Pan Zhang, Tong Wu, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Dahua Lin, Jiaqi Wang
Abstract:
The text-to-video (T2V) generation models, offering convenient visual creation, have recently garnered increasing attention. Despite their substantial potential, the generated videos may present artifacts, including structural implausibility, temporal inconsistency, and a lack of motion, often resulting in near-static video. In this work, we have identified a correlation between the disparity of temporal attention maps across different blocks and the occurrence of temporal inconsistencies. Additionally, we have observed that the energy contained within the temporal attention maps is directly related to the magnitude of motion amplitude in the generated videos. Based on these observations, we present ByTheWay, a training-free method to improve the quality of text-to-video generation without introducing additional parameters, augmenting memory or sampling time. Specifically, ByTheWay is composed of two principal components: 1) Temporal Self-Guidance improves the structural plausibility and temporal consistency of generated videos by reducing the disparity between the temporal attention maps across various decoder blocks. 2) Fourier-based Motion Enhancement enhances the magnitude and richness of motion by amplifying the energy of the map. Extensive experiments demonstrate that ByTheWay significantly improves the quality of text-to-video generation with negligible additional cost.
Authors:Kling Team, Jialu Chen, Yuanzheng Ci, Xiangyu Du, Zipeng Feng, Kun Gai, Sainan Guo, Feng Han, Jingbin He, Kang He, Xiao Hu, Xiaohua Hu, Boyuan Jiang, Fangyuan Kong, Hang Li, Jie Li, Qingyu Li, Shen Li, Xiaohan Li, Yan Li, Jiajun Liang, Borui Liao, Yiqiao Liao, Weihong Lin, Quande Liu, Xiaokun Liu, Yilun Liu, Yuliang Liu, Shun Lu, Hangyu Mao, Yunyao Mao, Haodong Ouyang, Wenyu Qin, Wanqi Shi, Xiaoyu Shi, Lianghao Su, Haozhi Sun, Peiqin Sun, Pengfei Wan, Chao Wang, Chenyu Wang, Meng Wang, Qiulin Wang, Runqi Wang, Xintao Wang, Xuebo Wang, Zekun Wang, Min Wei, Tiancheng Wen, Guohao Wu, Xiaoshi Wu, Zhenhua Wu, Da Xie, Yingtong Xiong, Yulong Xu, Sile Yang, Zikang Yang, Weicai Ye, Ziyang Yuan, Shenglong Zhang, Shuaiyu Zhang, Yuanxing Zhang, Yufan Zhang, Wenzheng Zhao, Ruiliang Zhou, Yan Zhou, Guosheng Zhu, Yongjie Zhu
Abstract:
We present Kling-Omni, a generalist generative framework designed to synthesize high-fidelity videos directly from multimodal visual language inputs. Adopting an end-to-end perspective, Kling-Omni bridges the functional separation among diverse video generation, editing, and intelligent reasoning tasks, integrating them into a holistic system. Unlike disjointed pipeline approaches, Kling-Omni supports a diverse range of user inputs, including text instructions, reference images, and video contexts, processing them into a unified multimodal representation to deliver cinematic-quality and highly-intelligent video content creation. To support these capabilities, we constructed a comprehensive data system that serves as the foundation for multimodal video creation. The framework is further empowered by efficient large-scale pre-training strategies and infrastructure optimizations for inference. Comprehensive evaluations reveal that Kling-Omni demonstrates exceptional capabilities in in-context generation, reasoning-based editing, and multimodal instruction following. Moving beyond a content creation tool, we believe Kling-Omni is a pivotal advancement toward multimodal world simulators capable of perceiving, reasoning, generating and interacting with the dynamic and complex worlds.
Authors:Shengqiong Wu, Weicai Ye, Yuanxing Zhang, Jiahao Wang, Quande Liu, Xintao Wang, Pengfei Wan, Kun Gai, Hao Fei, Tat-Seng Chua
Abstract:
Diffusion Transformers have significantly improved video fidelity and temporal coherence, however, practical controllability remains limited. Concise, ambiguous, and compositionally complex user inputs contrast with the detailed prompts used in training, yielding an intent-output mismatch. We propose ReaDe, a universal, model-agnostic interpreter that converts raw instructions into precise, actionable specifications for downstream video generators. ReaDe follows a reason-then-describe paradigm: it first analyzes the user request to identify core requirements and resolve ambiguities, then produces detailed guidance that enables faithful, controllable generation. We train ReaDe via a two-stage optimization: (i) reasoning-augmented supervision imparts analytic parsing with stepwise traces and dense captions, and (ii) a multi-dimensional reward assigner enables stable, feedback-driven refinement for natural-style captions. Experiments across single- and multi-condition scenarios show consistent gains in instruction fidelity, caption accuracy, and downstream video quality, with strong generalization to reasoning-intensive and unseen inputs. ReaDe offers a practical route to aligning controllable video generation with accurately interpreted user intent. Project Page: https://sqwu.top/ReaDe/.
Authors:Yu Li, Menghan Xia, Gongye Liu, Jianhong Bai, Xintao Wang, Conglang Zhang, Yuxuan Lin, Ruihang Chu, Pengfei Wan, Yujiu Yang
Abstract:
Recent Text-to-Video (T2V) models have demonstrated powerful capability in visual simulation of real-world geometry and physical laws, indicating its potential as implicit world models. Inspired by this, we explore the feasibility of leveraging the video generation prior for viewpoint planning from given 4D scenes, since videos internally accompany dynamic scenes with natural viewpoints. To this end, we propose a two-stage paradigm to adapt pre-trained T2V models for viewpoint prediction, in a compatible manner. First, we inject the 4D scene representation into the pre-trained T2V model via an adaptive learning branch, where the 4D scene is viewpoint-agnostic and the conditional generated video embeds the viewpoints visually. Then, we formulate viewpoint extraction as a hybrid-condition guided camera extrinsic denoising process. Specifically, a camera extrinsic diffusion branch is further introduced onto the pre-trained T2V model, by taking the generated video and 4D scene as input. Experimental results show the superiority of our proposed method over existing competitors, and ablation studies validate the effectiveness of our key technical designs. To some extent, this work proves the potential of video generation models toward 4D interaction in real world.
Authors:Shian Du, Menghan Xia, Chang Liu, Quande Liu, Xintao Wang, Pengfei Wan, Xiangyang Ji
Abstract:
Cascaded video super-resolution has emerged as a promising technique for decoupling the computational burden associated with generating high-resolution videos using large foundation models. Existing studies, however, are largely confined to text-to-video tasks and fail to leverage additional generative conditions beyond text, which are crucial for ensuring fidelity in multi-modal video generation. We address this limitation by presenting UniMMVSR, the first unified generative video super-resolution framework to incorporate hybrid-modal conditions, including text, images, and videos. We conduct a comprehensive exploration of condition injection strategies, training schemes, and data mixture techniques within a latent video diffusion model. A key challenge was designing distinct data construction and condition utilization methods to enable the model to precisely utilize all condition types, given their varied correlations with the target video. Our experiments demonstrate that UniMMVSR significantly outperforms existing methods, producing videos with superior detail and a higher degree of conformity to multi-modal conditions. We also validate the feasibility of combining UniMMVSR with a base model to achieve multi-modal guided generation of 4K video, a feat previously unattainable with existing techniques.
Authors:Shian Du, Menghan Xia, Chang Liu, Xintao Wang, Jing Wang, Pengfei Wan, Di Zhang, Xiangyang Ji
Abstract:
Pre-trained video generation models hold great potential for generative video super-resolution (VSR). However, adapting them for full-size VSR, as most existing methods do, suffers from unnecessary intensive full-attention computation and fixed output resolution. To overcome these limitations, we make the first exploration into utilizing video diffusion priors for patch-wise VSR. This is non-trivial because pre-trained video diffusion models are not native for patch-level detail generation. To mitigate this challenge, we propose an innovative approach, called PatchVSR, which integrates a dual-stream adapter for conditional guidance. The patch branch extracts features from input patches to maintain content fidelity while the global branch extracts context features from the resized full video to bridge the generation gap caused by incomplete semantics of patches. Particularly, we also inject the patch's location information into the model to better contextualize patch synthesis within the global video frame. Experiments demonstrate that our method can synthesize high-fidelity, high-resolution details at the patch level. A tailor-made multi-patch joint modulation is proposed to ensure visual consistency across individually enhanced patches. Due to the flexibility of our patch-based paradigm, we can achieve highly competitive 4K VSR based on a 512x512 resolution base model, with extremely high efficiency.
Authors:Liangbin Xie, Yu Li, Shian Du, Menghan Xia, Xintao Wang, Fanghua Yu, Ziyan Chen, Pengfei Wan, Jiantao Zhou, Chao Dong
Abstract:
Latent diffusion models have emerged as a leading paradigm for efficient video generation. However, as user expectations shift toward higher-resolution outputs, relying solely on latent computation becomes inadequate. A promising approach involves decoupling the process into two stages: semantic content generation and detail synthesis. The former employs a computationally intensive base model at lower resolutions, while the latter leverages a lightweight cascaded video super-resolution (VSR) model to achieve high-resolution output. In this work, we focus on studying key design principles for latter cascaded VSR models, which are underexplored currently. First, we propose two degradation strategies to generate training pairs that better mimic the output characteristics of the base model, ensuring alignment between the VSR model and its upstream generator. Second, we provide critical insights into VSR model behavior through systematic analysis of (1) timestep sampling strategies, (2) noise augmentation effects on low-resolution (LR) inputs. These findings directly inform our architectural and training innovations. Finally, we introduce interleaving temporal unit and sparse local attention to achieve efficient training and inference, drastically reducing computational overhead. Extensive experiments demonstrate the superiority of our framework over existing methods, with ablation studies confirming the efficacy of each design choice. Our work establishes a simple yet effective baseline for cascaded video super-resolution generation, offering practical insights to guide future advancements in efficient cascaded synthesis systems.
Authors:Kaiyi Huang, Yukun Huang, Xintao Wang, Zinan Lin, Xuefei Ning, Pengfei Wan, Di Zhang, Yu Wang, Xihui Liu
Abstract:
AI-driven content creation has shown potential in film production. However, existing film generation systems struggle to implement cinematic principles and thus fail to generate professional-quality films, particularly lacking diverse camera language and cinematic rhythm. This results in templated visuals and unengaging narratives. To address this, we introduce FilMaster, an end-to-end AI system that integrates real-world cinematic principles for professional-grade film generation, yielding editable, industry-standard outputs. FilMaster is built on two key principles: (1) learning cinematography from extensive real-world film data and (2) emulating professional, audience-centric post-production workflows. Inspired by these principles, FilMaster incorporates two stages: a Reference-Guided Generation Stage which transforms user input to video clips, and a Generative Post-Production Stage which transforms raw footage into audiovisual outputs by orchestrating visual and auditory elements for cinematic rhythm. Our generation stage highlights a Multi-shot Synergized RAG Camera Language Design module to guide the AI in generating professional camera language by retrieving reference clips from a vast corpus of 440,000 film clips. Our post-production stage emulates professional workflows by designing an Audience-Centric Cinematic Rhythm Control module, including Rough Cut and Fine Cut processes informed by simulated audience feedback, for effective integration of audiovisual elements to achieve engaging content. The system is empowered by generative AI models like (M)LLMs and video generation models. Furthermore, we introduce FilmEval, a comprehensive benchmark for evaluating AI-generated films. Extensive experiments show FilMaster's superior performance in camera language design and cinematic rhythm control, advancing generative AI in professional filmmaking.
Authors:Yawen Luo, Jianhong Bai, Xiaoyu Shi, Menghan Xia, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, Tianfan Xue
Abstract:
Camera control is crucial for generating expressive and cinematic videos. Existing methods rely on explicit sequences of camera parameters as control conditions, which can be cumbersome for users to construct, particularly for intricate camera movements. To provide a more intuitive camera control method, we propose CamCloneMaster, a framework that enables users to replicate camera movements from reference videos without requiring camera parameters or test-time fine-tuning. CamCloneMaster seamlessly supports reference-based camera control for both Image-to-Video and Video-to-Video tasks within a unified framework. Furthermore, we present the Camera Clone Dataset, a large-scale synthetic dataset designed for camera clone learning, encompassing diverse scenes, subjects, and camera movements. Extensive experiments and user studies demonstrate that CamCloneMaster outperforms existing methods in terms of both camera controllability and visual quality.
Authors:Shengqiong Wu, Weicai Ye, Jiahao Wang, Quande Liu, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, Shuicheng Yan, Hao Fei, Tat-Seng Chua
Abstract:
To address the bottleneck of accurate user intent interpretation within the current video generation community, we present Any2Caption, a novel framework for controllable video generation under any condition. The key idea is to decouple various condition interpretation steps from the video synthesis step. By leveraging modern multimodal large language models (MLLMs), Any2Caption interprets diverse inputs--text, images, videos, and specialized cues such as region, motion, and camera poses--into dense, structured captions that offer backbone video generators with better guidance. We also introduce Any2CapIns, a large-scale dataset with 337K instances and 407K conditions for any-condition-to-caption instruction tuning. Comprehensive evaluations demonstrate significant improvements of our system in controllability and video quality across various aspects of existing video generation models. Project Page: https://sqwu.top/Any2Cap/
Authors:Feng-Lin Liu, Hongbo Fu, Xintao Wang, Weicai Ye, Pengfei Wan, Di Zhang, Lin Gao
Abstract:
Video generation and editing conditioned on text prompts or images have undergone significant advancements. However, challenges remain in accurately controlling global layout and geometry details solely by texts, and supporting motion control and local modification through images. In this paper, we aim to achieve sketch-based spatial and motion control for video generation and support fine-grained editing of real or synthetic videos. Based on the DiT video generation model, we propose a memory-efficient control structure with sketch control blocks that predict residual features of skipped DiT blocks. Sketches are drawn on one or two keyframes (at arbitrary time points) for easy interaction. To propagate such temporally sparse sketch conditions across all frames, we propose an inter-frame attention mechanism to analyze the relationship between the keyframes and each video frame. For sketch-based video editing, we design an additional video insertion module that maintains consistency between the newly edited content and the original video's spatial feature and dynamic motion. During inference, we use latent fusion for the accurate preservation of unedited regions. Extensive experiments demonstrate that our SketchVideo achieves superior performance in controllable video generation and editing.
Authors:Xuan Ju, Weicai Ye, Quande Liu, Qiulin Wang, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, Qiang Xu
Abstract:
Current video generative foundation models primarily focus on text-to-video tasks, providing limited control for fine-grained video content creation. Although adapter-based approaches (e.g., ControlNet) enable additional controls with minimal fine-tuning, they encounter challenges when integrating multiple conditions, including: branch conflicts between independently trained adapters, parameter redundancy leading to increased computational cost, and suboptimal performance compared to full fine-tuning. To address these challenges, we introduce FullDiT, a unified foundation model for video generation that seamlessly integrates multiple conditions via unified full-attention mechanisms. By fusing multi-task conditions into a unified sequence representation and leveraging the long-context learning ability of full self-attention to capture condition dynamics, FullDiT reduces parameter overhead, avoids conditions conflict, and shows scalability and emergent ability. We further introduce FullBench for multi-task video generation evaluation. Experiments demonstrate that FullDiT achieves state-of-the-art results, highlighting the efficacy of full-attention in complex multi-task video generation.
Authors:Jiwen Yu, Yiran Qin, Haoxuan Che, Quande Liu, Xintao Wang, Pengfei Wan, Di Zhang, Xihui Liu
Abstract:
Modern game development faces significant challenges in creativity and cost due to predetermined content in traditional game engines. Recent breakthroughs in video generation models, capable of synthesizing realistic and interactive virtual environments, present an opportunity to revolutionize game creation. In this position paper, we propose Interactive Generative Video (IGV) as the foundation for Generative Game Engines (GGE), enabling unlimited novel content generation in next-generation gaming. GGE leverages IGV's unique strengths in unlimited high-quality content synthesis, physics-aware world modeling, user-controlled interactivity, long-term memory capabilities, and causal reasoning. We present a comprehensive framework detailing GGE's core modules and a hierarchical maturity roadmap (L0-L4) to guide its evolution. Our work charts a new course for game development in the AI era, envisioning a future where AI-powered generative systems fundamentally reshape how games are created and experienced.
Authors:Shuyuan Tu, Yueming Pan, Yinming Huang, Xintong Han, Zhen Xing, Qi Dai, Chong Luo, Zuxuan Wu, Yu-Gang Jiang
Abstract:
Current diffusion models for audio-driven avatar video generation struggle to synthesize long videos with natural audio synchronization and identity consistency. This paper presents StableAvatar, the first end-to-end video diffusion transformer that synthesizes infinite-length high-quality videos without post-processing. Conditioned on a reference image and audio, StableAvatar integrates tailored training and inference modules to enable infinite-length video generation. We observe that the main reason preventing existing models from generating long videos lies in their audio modeling. They typically rely on third-party off-the-shelf extractors to obtain audio embeddings, which are then directly injected into the diffusion model via cross-attention. Since current diffusion backbones lack any audio-related priors, this approach causes severe latent distribution error accumulation across video clips, leading the latent distribution of subsequent segments to drift away from the optimal distribution gradually. To address this, StableAvatar introduces a novel Time-step-aware Audio Adapter that prevents error accumulation via time-step-aware modulation. During inference, we propose a novel Audio Native Guidance Mechanism to further enhance the audio synchronization by leveraging the diffusion's own evolving joint audio-latent prediction as a dynamic guidance signal. To enhance the smoothness of the infinite-length videos, we introduce a Dynamic Weighted Sliding-window Strategy that fuses latent over time. Experiments on benchmarks show the effectiveness of StableAvatar both qualitatively and quantitatively.
Authors:Sicheng Xie, Haidong Cao, Zejia Weng, Zhen Xing, Haoran Chen, Shiwei Shen, Jiaqi Leng, Zuxuan Wu, Yu-Gang Jiang
Abstract:
Distilling knowledge from human demonstrations is a promising way for robots to learn and act. Existing methods, which often rely on coarsely-aligned video pairs, are typically constrained to learning global or task-level features. As a result, they tend to neglect the fine-grained frame-level dynamics required for complex manipulation and generalization to novel tasks. We posit that this limitation stems from a vicious circle of inadequate datasets and the methods they inspire. To break this cycle, we propose a paradigm shift that treats fine-grained human-robot alignment as a conditional video generation problem. To this end, we first introduce H&R, a novel third-person dataset containing 2,600 episodes of precisely synchronized human and robot motions, collected using a VR teleoperation system. We then present Human2Robot, a framework designed to leverage this data. Human2Robot employs a Video Prediction Model to learn a rich and implicit representation of robot dynamics by generating robot videos from human input, which in turn guides a decoupled action decoder. Our real-world experiments demonstrate that this approach not only achieves high performance on seen tasks but also exhibits significant one-shot generalization to novel positions, objects, instances, and even new task categories.
Authors:Vipula Rawte, Sarthak Jain, Aarush Sinha, Garv Kaushik, Aman Bansal, Prathiksha Rumale Vishwanath, Samyak Rajesh Jain, Aishwarya Naresh Reganti, Vinija Jain, Aman Chadha, Amit P. Sheth, Amitava Das
Abstract:
Recent advances in Large Multimodal Models (LMMs) have expanded their capabilities to video understanding, with Text-to-Video (T2V) models excelling in generating videos from textual prompts. However, they still frequently produce hallucinated content, revealing AI-generated inconsistencies. We introduce ViBe (https://vibe-t2v-bench.github.io/): a large-scale dataset of hallucinated videos from open-source T2V models. We identify five major hallucination types: Vanishing Subject, Omission Error, Numeric Variability, Subject Dysmorphia, and Visual Incongruity. Using ten T2V models, we generated and manually annotated 3,782 videos from 837 diverse MS COCO captions. Our proposed benchmark includes a dataset of hallucinated videos and a classification framework using video embeddings. ViBe serves as a critical resource for evaluating T2V reliability and advancing hallucination detection. We establish classification as a baseline, with the TimeSFormer + CNN ensemble achieving the best performance (0.345 accuracy, 0.342 F1 score). While initial baselines proposed achieve modest accuracy, this highlights the difficulty of automated hallucination detection and the need for improved methods. Our research aims to drive the development of more robust T2V models and evaluate their outputs based on user preferences.
Authors:Zhiyu Yin, Zhipeng Liu, Kehai Chen, Lemao Liu, Jin Liu, Hong-Dong Li, Yang Xiang, Min Zhang
Abstract:
While current video generation focuses on text or image conditions, practical applications like video editing and vlogging often need to seamlessly connect separate clips. In our work, we introduce Video Connecting, an innovative task that aims to generate smooth intermediate video content between given start and end clips. However, the absence of standardized evaluation benchmarks has hindered the development of this task. To bridge this gap, we proposed VC-Bench, a novel benchmark specifically designed for video connecting. It includes 1,579 high-quality videos collected from public platforms, covering 15 main categories and 72 subcategories to ensure diversity and structure. VC-Bench focuses on three core aspects: Video Quality Score VQS, Start-End Consistency Score SECS, and Transition Smoothness Score TSS. Together, they form a comprehensive framework that moves beyond conventional quality-only metrics. We evaluated multiple state-of-the-art video generation models on VC-Bench. Experimental results reveal significant limitations in maintaining start-end consistency and transition smoothness, leading to lower overall coherence and fluidity. We expect that VC-Bench will serve as a pioneering benchmark to inspire and guide future research in video connecting. The evaluation metrics and dataset are publicly available at: https://anonymous.4open.science/r/VC-Bench-1B67/.
Authors:Bingzheng Qu, Kehai Chen, Xuefeng Bai, Jun Yu, Min Zhang
Abstract:
Despite the remarkable progress in text-driven video editing, generating coherent non-rigid deformations remains a critical challenge, often plagued by physical distortion and temporal flicker. To bridge this gap, we propose NRVBench, the first dedicated and comprehensive benchmark designed to evaluate non-rigid video editing. First, we curate a high-quality dataset consisting of 180 non-rigid motion videos from six physics-based categories, equipped with 2,340 fine-grained task instructions and 360 multiple-choice questions. Second, we propose NRVE-Acc, a novel evaluation metric based on Vision-Language Models that can rigorously assess physical compliance, temporal consistency, and instruction alignment, overcoming the limitations of general metrics in capturing complex dynamics. Third, we introduce a training-free baseline, VM-Edit, which utilizes a dual-region denoising mechanism to achieve structure-aware control, balancing structural preservation and dynamic deformation. Extensive experiments demonstrate that while current methods have shortcomings in maintaining physical plausibility, our method achieves excellent performance across both standard and proposed metrics. We believe the benchmark could serve as a standard testing platform for advancing physics-aware video editing.
Authors:Xiangqing Zheng, Chengyue Wu, Kehai Chen, Min Zhang
Abstract:
Recently text-to-video generation has made impressive progress in producing short, high-quality clips, but evaluating long-form outputs remains a major challenge especially when processing complex prompts. Existing benchmarks mostly rely on simplified prompts and focus on low-level metrics, overlooking fine-grained alignment with prompts and abstract dimensions such as narrative coherence and thematic expression. To address these gaps, we propose LoCoT2V-Bench, a benchmark specifically designed for long video generation (LVG) under complex input conditions. Based on various real-world videos, LoCoT2V-Bench introduces a suite of realistic and complex prompts incorporating elements like scene transitions and event dynamics. Moreover, it constructs a multi-dimensional evaluation framework that includes our newly proposed metrics such as event-level alignment, fine-grained temporal consistency, content clarity, and the Human Expectation Realization Degree (HERD) that focuses on more abstract attributes like narrative flow, emotional response, and character development. Using this framework, we conduct a comprehensive evaluation of nine representative LVG models, finding that while current methods perform well on basic visual and temporal aspects, they struggle with inter-event consistency, fine-grained alignment, and high-level thematic adherence, etc. Overall, LoCoT2V-Bench provides a comprehensive and reliable platform for evaluating long-form complex text-to-video generation and highlights critical directions for future method improvement.
Authors:Zhiyu Yin, Kehai Chen, Xuefeng Bai, Ruili Jiang, Juntao Li, Hongdong Li, Jin Liu, Yang Xiang, Jun Yu, Min Zhang
Abstract:
Video generation, by leveraging a dynamic visual generation method, pushes the boundaries of Artificial Intelligence Generated Content (AIGC). Video generation presents unique challenges beyond static image generation, requiring both high-quality individual frames and temporal coherence to maintain consistency across the spatiotemporal sequence. Recent works have aimed at addressing the spatiotemporal consistency issue in video generation, while few literature review has been organized from this perspective. This gap hinders a deeper understanding of the underlying mechanisms for high-quality video generation. In this survey, we systematically review the recent advances in video generation, covering five key aspects: foundation models, information representations, generation schemes, post-processing techniques, and evaluation metrics. We particularly focus on their contributions to maintaining spatiotemporal consistency. Finally, we discuss the future directions and challenges in this field, hoping to inspire further efforts to advance the development of video generation.
Authors:Yining Hong, Beide Liu, Maxine Wu, Yuanhao Zhai, Kai-Wei Chang, Linjie Li, Kevin Lin, Chung-Ching Lin, Jianfeng Wang, Zhengyuan Yang, Yingnian Wu, Lijuan Wang
Abstract:
Human beings are endowed with a complementary learning system, which bridges the slow learning of general world dynamics with fast storage of episodic memory from a new experience. Previous video generation models, however, primarily focus on slow learning by pre-training on vast amounts of data, overlooking the fast learning phase crucial for episodic memory storage. This oversight leads to inconsistencies across temporally distant frames when generating longer videos, as these frames fall beyond the model's context window. To this end, we introduce SlowFast-VGen, a novel dual-speed learning system for action-driven long video generation. Our approach incorporates a masked conditional video diffusion model for the slow learning of world dynamics, alongside an inference-time fast learning strategy based on a temporal LoRA module. Specifically, the fast learning process updates its temporal LoRA parameters based on local inputs and outputs, thereby efficiently storing episodic memory in its parameters. We further propose a slow-fast learning loop algorithm that seamlessly integrates the inner fast learning loop into the outer slow learning loop, enabling the recall of prior multi-episode experiences for context-aware skill learning. To facilitate the slow learning of an approximate world model, we collect a large-scale dataset of 200k videos with language action annotations, covering a wide range of scenarios. Extensive experiments show that SlowFast-VGen outperforms baselines across various metrics for action-driven video generation, achieving an FVD score of 514 compared to 782, and maintaining consistency in longer videos, with an average of 0.37 scene cuts versus 0.89. The slow-fast learning loop algorithm significantly enhances performances on long-horizon planning tasks as well. Project Website: https://slowfast-vgen.github.io
Authors:Yanxiao Sun, Jiafu Wu, Yun Cao, Chengming Xu, Yabiao Wang, Weijian Cao, Donghao Luo, Chengjie Wang, Yanwei Fu
Abstract:
Diffusion-based or flow-based models have achieved significant progress in video synthesis but require multiple iterative sampling steps, which incurs substantial computational overhead. While many distillation methods that are solely based on trajectory-preserving or distribution-matching have been developed to accelerate video generation models, these approaches often suffer from performance breakdown or increased artifacts under few-step settings. To address these limitations, we propose \textbf{\emph{SwiftVideo}}, a unified and stable distillation framework that combines the advantages of trajectory-preserving and distribution-matching strategies. Our approach introduces continuous-time consistency distillation to ensure precise preservation of ODE trajectories. Subsequently, we propose a dual-perspective alignment that includes distribution alignment between synthetic and real data along with trajectory alignment across different inference steps. Our method maintains high-quality video generation while substantially reducing the number of inference steps. Quantitative evaluations on the OpenVid-1M benchmark demonstrate that our method significantly outperforms existing approaches in few-step video generation.
Authors:Xiaowei Chi, Kuangzhi Ge, Jiaming Liu, Siyuan Zhou, Peidong Jia, Zichen He, Yuzhen Liu, Tingguang Li, Lei Han, Sirui Han, Shanghang Zhang, Yike Guo
Abstract:
Video Generation Models (VGMs) have become powerful backbones for Vision-Language-Action (VLA) models, leveraging large-scale pretraining for robust dynamics modeling. However, current methods underutilize their distribution modeling capabilities for predicting future states. Two challenges hinder progress: integrating generative processes into feature learning is both technically and conceptually underdeveloped, and naive frame-by-frame video diffusion is computationally inefficient for real-time robotics. To address these, we propose Manipulate in Dream (MinD), a dual-system world model for real-time, risk-aware planning. MinD uses two asynchronous diffusion processes: a low-frequency visual generator (LoDiff) that predicts future scenes and a high-frequency diffusion policy (HiDiff) that outputs actions. Our key insight is that robotic policies do not require fully denoised frames but can rely on low-resolution latents generated in a single denoising step. To connect early predictions to actions, we introduce DiffMatcher, a video-action alignment module with a novel co-training strategy that synchronizes the two diffusion models. MinD achieves a 63% success rate on RL-Bench, 60% on real-world Franka tasks, and operates at 11.3 FPS, demonstrating the efficiency of single-step latent features for control signals. Furthermore, MinD identifies 74% of potential task failures in advance, providing real-time safety signals for monitoring and intervention. This work establishes a new paradigm for efficient and reliable robotic manipulation using generative world models.
Authors:Xiaofeng Mao, Zhengkai Jiang, Fu-Yun Wang, Jiangning Zhang, Hao Chen, Mingmin Chi, Yabiao Wang, Wenhan Luo
Abstract:
Video diffusion models have shown great potential in generating high-quality videos, making them an increasingly popular focus. However, their inherent iterative nature leads to substantial computational and time costs. While efforts have been made to accelerate video diffusion by reducing inference steps (through techniques like consistency distillation) and GAN training (these approaches often fall short in either performance or training stability). In this work, we introduce a two-stage training framework that effectively combines consistency distillation with GAN training to address these challenges. Additionally, we propose a novel video discriminator design, which eliminates the need for decoding the video latents and improves the final performance. Our model is capable of producing high-quality videos in merely one-step, with the flexibility to perform multi-step refinement for further performance enhancement. Our quantitative evaluation on the OpenWebVid-1M benchmark shows that our model significantly outperforms existing methods. Notably, our 1-step performance(FVD 171.15) exceeds the 8-step performance of the consistency distillation based method, AnimateLCM (FVD 184.79), and approaches the 25-step performance of advanced Stable Video Diffusion (FVD 156.94).
Authors:Teng Hu, Jiangning Zhang, Ran Yi, Hongrui Huang, Yabiao Wang, Lizhuang Ma
Abstract:
In recent years, the development of diffusion models has led to significant progress in image and video generation tasks, with pre-trained models like the Stable Diffusion series playing a crucial role. Inspired by model pruning which lightens large pre-trained models by removing unimportant parameters, we propose a novel model fine-tuning method to make full use of these ineffective parameters and enable the pre-trained model with new task-specified capabilities. In this work, we first investigate the importance of parameters in pre-trained diffusion models, and discover that the smallest 10% to 20% of parameters by absolute values do not contribute to the generation process. Based on this observation, we propose a method termed SaRA that re-utilizes these temporarily ineffective parameters, equating to optimizing a sparse weight matrix to learn the task-specific knowledge. To mitigate overfitting, we propose a nuclear-norm-based low-rank sparse training scheme for efficient fine-tuning. Furthermore, we design a new progressive parameter adjustment strategy to make full use of the re-trained/finetuned parameters. Finally, we propose a novel unstructural backpropagation strategy, which significantly reduces memory costs during fine-tuning. Our method enhances the generative capabilities of pre-trained models in downstream applications and outperforms traditional fine-tuning methods like LoRA in maintaining model's generalization ability. We validate our approach through fine-tuning experiments on SD models, demonstrating significant improvements. SaRA also offers a practical advantage that requires only a single line of code modification for efficient implementation and is seamlessly compatible with existing methods.
Authors:Yifan Shen, Peiyuan Zhu, Zijian Li, Shaoan Xie, Zeyu Tang, Namrata Deka, Zongfang Liu, Guangyi Chen, Kun Zhang
Abstract:
Controllable video generation remains a significant challenge, despite recent advances in generating high-quality and consistent videos. Most existing methods for controlling video generation treat the video as a whole, neglecting intricate fine-grained spatiotemporal relationships, which limits both control precision and efficiency. In this paper, we propose Controllable Video Generative Adversarial Networks (CoVoGAN) to disentangle the video concepts, thus facilitating efficient and independent control over individual concepts. Specifically, following the minimal change principle, we first disentangle static and dynamic latent variables. We then leverage the sufficient change property to achieve component-wise identifiability of dynamic latent variables, enabling disentangled control of video generation. To establish the theoretical foundation, we provide a rigorous analysis demonstrating the identifiability of our approach. Building on these theoretical insights, we design a Temporal Transition Module to disentangle latent dynamics. To enforce the minimal change principle and sufficient change property, we minimize the dimensionality of latent dynamic variables and impose temporal conditional independence. To validate our approach, we integrate this module as a plug-in for GANs. Extensive qualitative and quantitative experiments on various video generation benchmarks demonstrate that our method significantly improves generation quality and controllability across diverse real-world scenarios.
Authors:Xiangyang Luo, Qingyu Li, Xiaokun Liu, Wenyu Qin, Miao Yang, Meng Wang, Pengfei Wan, Di Zhang, Kun Gai, Shao-Lun Huang
Abstract:
Current video generation models perform well at single-shot synthesis but struggle with multi-shot videos, facing critical challenges in maintaining character and background consistency across shots and flexibly generating videos of arbitrary length and shot count. To address these limitations, we introduce \textbf{FilmWeaver}, a novel framework designed to generate consistent, multi-shot videos of arbitrary length. First, it employs an autoregressive diffusion paradigm to achieve arbitrary-length video generation. To address the challenge of consistency, our key insight is to decouple the problem into inter-shot consistency and intra-shot coherence. We achieve this through a dual-level cache mechanism: a shot memory caches keyframes from preceding shots to maintain character and scene identity, while a temporal memory retains a history of frames from the current shot to ensure smooth, continuous motion. The proposed framework allows for flexible, multi-round user interaction to create multi-shot videos. Furthermore, due to this decoupled design, our method demonstrates high versatility by supporting downstream tasks such as multi-concept injection and video extension. To facilitate the training of our consistency-aware method, we also developed a comprehensive pipeline to construct a high-quality multi-shot video dataset. Extensive experimental results demonstrate that our method surpasses existing approaches on metrics for both consistency and aesthetic quality, opening up new possibilities for creating more consistent, controllable, and narrative-driven video content. Project Page: https://filmweaver.github.io
Authors:Daili Hua, Xizhi Wang, Bohan Zeng, Xinyi Huang, Hao Liang, Junbo Niu, Xinlong Chen, Quanqing Xu, Wentao Zhang
Abstract:
Recent advances in video generation have been remarkable, enabling models to produce visually compelling videos with synchronized audio. While existing video generation benchmarks provide comprehensive metrics for visual quality, they lack convincing evaluations for audio-video generation, especially for models aiming to generate synchronized audio-video outputs. To address this gap, we introduce VABench, a comprehensive and multi-dimensional benchmark framework designed to systematically evaluate the capabilities of synchronous audio-video generation. VABench encompasses three primary task types: text-to-audio-video (T2AV), image-to-audio-video (I2AV), and stereo audio-video generation. It further establishes two major evaluation modules covering 15 dimensions. These dimensions specifically assess pairwise similarities (text-video, text-audio, video-audio), audio-video synchronization, lip-speech consistency, and carefully curated audio and video question-answering (QA) pairs, among others. Furthermore, VABench covers seven major content categories: animals, human sounds, music, environmental sounds, synchronous physical sounds, complex scenes, and virtual worlds. We provide a systematic analysis and visualization of the evaluation results, aiming to establish a new standard for assessing video generation models with synchronous audio capabilities and to promote the comprehensive advancement of the field.
Authors:Jingqi Tong, Yurong Mou, Hangcheng Li, Mingzhe Li, Yongzhuo Yang, Ming Zhang, Qiguang Chen, Tianyi Liang, Xiaomeng Hu, Yining Zheng, Xinchi Chen, Jun Zhao, Xuanjing Huang, Xipeng Qiu
Abstract:
"Thinking with Text" and "Thinking with Images" paradigm significantly improve the reasoning ability of large language models (LLMs) and Vision Language Models (VLMs). However, these paradigms have inherent limitations. (1) Images capture only single moments and fail to represent dynamic processes or continuous changes, and (2) The separation of text and vision as distinct modalities, hindering unified multimodal understanding and generation. To overcome these limitations, we introduce "Thinking with Video", a new paradigm that leverages video generation models, such as Sora-2, to bridge visual and textual reasoning in a unified temporal framework. To support this exploration, we developed the Video Thinking Benchmark (VideoThinkBench). VideoThinkBench encompasses two task categories: (1) vision-centric tasks (e.g., Eyeballing Puzzles), and (2) text-centric tasks (e.g., subsets of GSM8K, MMMU). Our evaluation establishes Sora-2 as a capable reasoner. On vision-centric tasks, Sora-2 is generally comparable to state-of-the-art (SOTA) VLMs, and even surpasses VLMs on several tasks, such as Eyeballing Games. On text-centric tasks, Sora-2 achieves 92% accuracy on MATH, and 75.53% accuracy on MMMU. Furthermore, we systematically analyse the source of these abilities. We also find that self-consistency and in-context learning can improve Sora-2's performance. In summary, our findings demonstrate that the video generation model is the potential unified multimodal understanding and generation model, positions "thinking with video" as a unified multimodal reasoning paradigm.
Authors:Dongyue Lu, Ao Liang, Tianxin Huang, Xiao Fu, Yuyang Zhao, Baorui Ma, Liang Pan, Wei Yin, Lingdong Kong, Wei Tsang Ooi, Ziwei Liu
Abstract:
Immersive applications call for synthesizing spatiotemporal 4D content from casual videos without costly 3D supervision. Existing video-to-4D methods typically rely on manually annotated camera poses, which are labor-intensive and brittle for in-the-wild footage. Recent warp-then-inpaint approaches mitigate the need for pose labels by warping input frames along a novel camera trajectory and using an inpainting model to fill missing regions, thereby depicting the 4D scene from diverse viewpoints. However, this trajectory-to-trajectory formulation often entangles camera motion with scene dynamics and complicates both modeling and inference. We introduce SEE4D, a pose-free, trajectory-to-camera framework that replaces explicit trajectory prediction with rendering to a bank of fixed virtual cameras, thereby separating camera control from scene modeling. A view-conditional video inpainting model is trained to learn a robust geometry prior by denoising realistically synthesized warped images and to inpaint occluded or missing regions across virtual viewpoints, eliminating the need for explicit 3D annotations. Building on this inpainting core, we design a spatiotemporal autoregressive inference pipeline that traverses virtual-camera splines and extends videos with overlapping windows, enabling coherent generation at bounded per-step complexity. We validate See4D on cross-view video generation and sparse reconstruction benchmarks. Across quantitative metrics and qualitative assessments, our method achieves superior generalization and improved performance relative to pose- or trajectory-conditioned baselines, advancing practical 4D world modeling from casual videos.
Authors:Zhaoxi Chen, Tianqi Liu, Long Zhuo, Jiawei Ren, Zeng Tao, He Zhu, Fangzhou Hong, Liang Pan, Ziwei Liu
Abstract:
We present 4DNeX, the first feed-forward framework for generating 4D (i.e., dynamic 3D) scene representations from a single image. In contrast to existing methods that rely on computationally intensive optimization or require multi-frame video inputs, 4DNeX enables efficient, end-to-end image-to-4D generation by fine-tuning a pretrained video diffusion model. Specifically, 1) to alleviate the scarcity of 4D data, we construct 4DNeX-10M, a large-scale dataset with high-quality 4D annotations generated using advanced reconstruction approaches. 2) we introduce a unified 6D video representation that jointly models RGB and XYZ sequences, facilitating structured learning of both appearance and geometry. 3) we propose a set of simple yet effective adaptation strategies to repurpose pretrained video diffusion models for 4D modeling. 4DNeX produces high-quality dynamic point clouds that enable novel-view video synthesis. Extensive experiments demonstrate that 4DNeX outperforms existing 4D generation methods in efficiency and generalizability, offering a scalable solution for image-to-4D modeling and laying the foundation for generative 4D world models that simulate dynamic scene evolution.
Authors:Jingqiao Xiu, Fangzhou Hong, Yicong Li, Mengze Li, Wentao Wang, Sirui Han, Liang Pan, Ziwei Liu
Abstract:
While exocentric video synthesis has achieved great progress, egocentric video generation remains largely underexplored, which requires modeling first-person view content along with camera motion patterns induced by the wearer's body movements. To bridge this gap, we introduce a novel task of joint egocentric video and human motion generation, characterized by two key challenges: 1) Viewpoint Alignment: the camera trajectory in the generated video must accurately align with the head trajectory derived from human motion; 2) Causal Interplay: the synthesized human motion must causally align with the observed visual dynamics across adjacent video frames. To address these challenges, we propose EgoTwin, a joint video-motion generation framework built on the diffusion transformer architecture. Specifically, EgoTwin introduces a head-centric motion representation that anchors the human motion to the head joint and incorporates a cybernetics-inspired interaction mechanism that explicitly captures the causal interplay between video and motion within attention operations. For comprehensive evaluation, we curate a large-scale real-world dataset of synchronized text-video-motion triplets and design novel metrics to assess video-motion consistency. Extensive experiments demonstrate the effectiveness of the EgoTwin framework.
Authors:Junhao Song, Yichao Zhang, Ziqian Bi, Tianyang Wang, Keyu Chen, Ming Li, Qian Niu, Junyu Liu, Benji Peng, Sen Zhang, Ming Liu, Jiawei Xu, Xuanhe Pan, Jinlang Wang, Pohsun Feng, Yizhu Wen, Lawrence K. Q. Yan, Hong-Ming Tseng, Xinyuan Song, Jintao Ren, Silin Chen, Yunze Wang, Weiche Hsieh, Bowen Jing, Junjie Yang, Jun Zhou, Zheyu Yao, Chia Xin Liang
Abstract:
Generative Adversarial Networks (GAN) have greatly influenced the development of computer vision and artificial intelligence in the past decade and also connected art and machine intelligence together. This book begins with a detailed introduction to the fundamental principles and historical development of GANs, contrasting them with traditional generative models and elucidating the core adversarial mechanisms through illustrative Python examples. The text systematically addresses the mathematical and theoretical underpinnings including probability theory, statistics, and game theory providing a solid framework for understanding the objectives, loss functions, and optimisation challenges inherent to GAN training. Subsequent chapters review classic variants such as Conditional GANs, DCGANs, InfoGAN, and LAPGAN before progressing to advanced training methodologies like Wasserstein GANs, GANs with gradient penalty, least squares GANs, and spectral normalisation techniques. The book further examines architectural enhancements and task-specific adaptations in generators and discriminators, showcasing practical implementations in high resolution image generation, artistic style transfer, video synthesis, text to image generation and other multimedia applications. The concluding sections offer insights into emerging research trends, including self-attention mechanisms, transformer-based generative models, and a comparative analysis with diffusion models, thus charting promising directions for future developments in both academic and applied settings.
Authors:Tiehan Fan, Kepan Nan, Rui Xie, Penghao Zhou, Zhenheng Yang, Chaoyou Fu, Xiang Li, Jian Yang, Ying Tai
Abstract:
Text-to-video generation has evolved rapidly in recent years, delivering remarkable results. Training typically relies on video-caption paired data, which plays a crucial role in enhancing generation performance. However, current video captions often suffer from insufficient details, hallucinations and imprecise motion depiction, affecting the fidelity and consistency of generated videos. In this work, we propose a novel instance-aware structured caption framework, termed InstanceCap, to achieve instance-level and fine-grained video caption for the first time. Based on this scheme, we design an auxiliary models cluster to convert original video into instances to enhance instance fidelity. Video instances are further used to refine dense prompts into structured phrases, achieving concise yet precise descriptions. Furthermore, a 22K InstanceVid dataset is curated for training, and an enhancement pipeline that tailored to InstanceCap structure is proposed for inference. Experimental results demonstrate that our proposed InstanceCap significantly outperform previous models, ensuring high fidelity between captions and videos while reducing hallucinations.
Authors:Pengtao Chen, Xianfang Zeng, Maosen Zhao, Peng Ye, Mingzhu Shen, Wei Cheng, Gang Yu, Tao Chen
Abstract:
While Diffusion Transformers (DiTs) have achieved breakthroughs in video generation, this long sequence generation task remains constrained by the quadratic complexity of attention mechanisms, resulting in significant inference latency. Through detailed analysis of attention maps in Video Diffusion Transformer (vDiT), we identify three recurring sparsity patterns: diagonal, multi-diagonal, and vertical-stripe structures. And even 3-6\% attention heads can be skipped. Crucially, these patterns exhibit strong layer-depth and head-position correlations but show limited dependence on the input content. Leveraging these findings, we propose Sparse-vDiT, a sparsity acceleration framework for vDiT comprising: 1) Pattern-optimized sparse kernels that replace dense attention with computationally efficient implementations for each identified sparsity pattern. 2) An offline sparse diffusion search algorithm that selects the optimal sparse computation strategy per layer and head via hardware-aware cost modeling. After determining the optimal configuration, we fuse heads within the same layer that share the same attention strategy, enhancing inference efficiency. Integrated into state-of-the-art vDiT models (CogVideoX1.5, HunyuanVideo, and Wan2.1), Sparse-vDiT achieves 2.09$\times$, 2.38$\times$, and 1.67$\times$ theoretical FLOP reduction, and actual inference speedups of 1.76$\times$, 1.85$\times$, and 1.58$\times$, respectively, while maintaining high visual fidelity, with PSNR values reaching 24.13, 27.09, and 22.59. Our work demonstrates that latent structural sparsity in vDiTs can be systematically exploited for long video synthesis.
Authors:Zhihang Yuan, Rui Xie, Yuzhang Shang, Hanling Zhang, Siyuan Wang, Shengen Yan, Guohao Dai, Yu Wang
Abstract:
Diffusion Transformer(DiT)-based generation models have achieved remarkable success in video generation. However, their inherent computational demands pose significant efficiency challenges. In this paper, we exploit the inherent temporal non-uniformity of real-world videos and observe that videos exhibit dynamic information density, with high-motion segments demanding greater detail preservation than static scenes. Inspired by this temporal non-uniformity, we propose VGDFR, a training-free approach for Diffusion-based Video Generation with Dynamic Latent Frame Rate. VGDFR adaptively adjusts the number of elements in latent space based on the motion frequency of the latent space content, using fewer tokens for low-frequency segments while preserving detail in high-frequency segments. Specifically, our key contributions are: (1) A dynamic frame rate scheduler for DiT video generation that adaptively assigns frame rates for video segments. (2) A novel latent-space frame merging method to align latent representations with their denoised counterparts before merging those redundant in low-resolution space. (3) A preference analysis of Rotary Positional Embeddings (RoPE) across DiT layers, informing a tailored RoPE strategy optimized for semantic and local information capture. Experiments show that VGDFR can achieve a speedup up to 3x for video generation with minimal quality degradation.
Authors:Jie Tian, Xiaoye Qu, Zhenyi Lu, Wei Wei, Sichen Liu, Yu Cheng
Abstract:
Image-to-Video (I2V) generation aims to synthesize a video clip according to a given image and condition (e.g., text). The key challenge of this task lies in simultaneously generating natural motions while preserving the original appearance of the images. However, current I2V diffusion models (I2V-DMs) often produce videos with limited motion degrees or exhibit uncontrollable motion that conflicts with the textual condition. To address these limitations, we propose a novel Extrapolating and Decoupling framework, which introduces model merging techniques to the I2V domain for the first time. Specifically, our framework consists of three separate stages: (1) Starting with a base I2V-DM, we explicitly inject the textual condition into the temporal module using a lightweight, learnable adapter and fine-tune the integrated model to improve motion controllability. (2) We introduce a training-free extrapolation strategy to amplify the dynamic range of the motion, effectively reversing the fine-tuning process to enhance the motion degree significantly. (3) With the above two-stage models excelling in motion controllability and degree, we decouple the relevant parameters associated with each type of motion ability and inject them into the base I2V-DM. Since the I2V-DM handles different levels of motion controllability and dynamics at various denoising time steps, we adjust the motion-aware parameters accordingly over time. Extensive qualitative and quantitative experiments have been conducted to demonstrate the superiority of our framework over existing methods.
Authors:Zhihang Yuan, Siyuan Wang, Rui Xie, Hanling Zhang, Tongcheng Fang, Yuzhang Shang, Shengen Yan, Guohao Dai, Yu Wang
Abstract:
In this paper, we propose the Dynamic Latent Frame Rate VAE (DLFR-VAE), a training-free paradigm that can make use of adaptive temporal compression in latent space. While existing video generative models apply fixed compression rates via pretrained VAE, we observe that real-world video content exhibits substantial temporal non-uniformity, with high-motion segments containing more information than static scenes. Based on this insight, DLFR-VAE dynamically adjusts the latent frame rate according to the content complexity. Specifically, DLFR-VAE comprises two core innovations: (1) A Dynamic Latent Frame Rate Scheduler that partitions videos into temporal chunks and adaptively determines optimal frame rates based on information-theoretic content complexity, and (2) A training-free adaptation mechanism that transforms pretrained VAE architectures into a dynamic VAE that can process features with variable frame rates. Our simple but effective DLFR-VAE can function as a plug-and-play module, seamlessly integrating with existing video generation models and accelerating the video generation process.
Authors:Hongyin Zhang, Pengxiang Ding, Shangke Lyu, Ying Peng, Donglin Wang
Abstract:
With the rapid development of embodied artificial intelligence, significant progress has been made in vision-language-action (VLA) models for general robot decision-making. However, the majority of existing VLAs fail to account for the inevitable external perturbations encountered during deployment. These perturbations introduce unforeseen state information to the VLA, resulting in inaccurate actions and consequently, a significant decline in generalization performance. The classic internal model control (IMC) principle demonstrates that a closed-loop system with an internal model that includes external input signals can accurately track the reference input and effectively offset the disturbance. We propose a novel closed-loop VLA method GEVRM that integrates the IMC principle to enhance the robustness of robot visual manipulation. The text-guided video generation model in GEVRM can generate highly expressive future visual planning goals. Simultaneously, we evaluate perturbations by simulating responses, which are called internal embeddings and optimized through prototype contrastive learning. This allows the model to implicitly infer and distinguish perturbations from the external environment. The proposed GEVRM achieves state-of-the-art performance on both standard and perturbed CALVIN benchmarks and shows significant improvements in realistic robot tasks.
Authors:Longfei Li, Zhiwen Fan, Wenyan Cong, Xinhang Liu, Yuyang Yin, Matt Foutter, Panwang Pan, Chenyu You, Yue Wang, Zhangyang Wang, Yao Zhao, Marco Pavone, Yunchao Wei
Abstract:
Synthesizing realistic Martian landscape videos is crucial for mission rehearsal and robotic simulation. However, this task poses unique challenges due to the scarcity of high-quality Martian data and the significant domain gap between Martian and terrestrial imagery. To address these challenges, we propose a holistic solution composed of two key components: 1) A data curation pipeline Multimodal Mars Synthesis (M3arsSynth), which reconstructs 3D Martian environments from real stereo navigation images, sourced from NASA's Planetary Data System (PDS), and renders high-fidelity multiview 3D video sequences. 2) A Martian terrain video generator, MarsGen, which synthesizes novel videos visually realistic and geometrically consistent with the 3D structure encoded in the data. Our M3arsSynth engine spans a wide range of Martian terrains and acquisition dates, enabling the generation of physically accurate 3D surface models at metric-scale resolution. MarsGen, fine-tuned on M3arsSynth data, synthesizes videos conditioned on an initial image frame and, optionally, camera trajectories or textual prompts, allowing for video generation in novel environments. Experimental results show that our approach outperforms video synthesis models trained on terrestrial datasets, achieving superior visual fidelity and 3D structural consistency.
Authors:Jintao Zhang, Haoxu Wang, Kai Jiang, Shuo Yang, Kaiwen Zheng, Haocheng Xi, Ziteng Wang, Hongzhou Zhu, Min Zhao, Ion Stoica, Joseph E. Gonzalez, Jun Zhu, Jianfei Chen
Abstract:
In Diffusion Transformer (DiT) models, particularly for video generation, attention latency is a major bottleneck due to the long sequence length and the quadratic complexity. We find that attention weights can be separated into two parts: a small fraction of large weights with high rank and the remaining weights with very low rank. This naturally suggests applying sparse acceleration to the first part and low-rank acceleration to the second. Based on this finding, we propose SLA (Sparse-Linear Attention), a trainable attention method that fuses sparse and linear attention to accelerate diffusion models. SLA classifies attention weights into critical, marginal, and negligible categories, applying O(N^2) attention to critical weights, O(N) attention to marginal weights, and skipping negligible ones. SLA combines these computations into a single GPU kernel and supports both forward and backward passes. With only a few fine-tuning steps using SLA, DiT models achieve a 20x reduction in attention computation, resulting in significant acceleration without loss of generation quality. Experiments show that SLA reduces attention computation by 95% without degrading end-to-end generation quality, outperforming baseline methods. In addition, we implement an efficient GPU kernel for SLA, which yields a 13.7x speedup in attention computation and a 2.2x end-to-end speedup in video generation on Wan2.1-1.3B.
Authors:Haoyu Zheng, Wenqiao Zhang, Zheqi Lv, Yu Zhong, Yang Dai, Jianxiang An, Yongliang Shen, Juncheng Li, Dongping Zhang, Siliang Tang, Yueting Zhuang
Abstract:
Diffusion-based text-to-image (T2I) models have demonstrated remarkable results in global video editing tasks. However, their focus is primarily on global video modifications, and achieving desired attribute-specific changes remains a challenging task, specifically in multi-attribute editing (MAE) in video. Contemporary video editing approaches either require extensive fine-tuning or rely on additional networks (such as ControlNet) for modeling multi-object appearances, yet they remain in their infancy, offering only coarse-grained MAE solutions. In this paper, we present MAKIMA, a tuning-free MAE framework built upon pretrained T2I models for open-domain video editing. Our approach preserves video structure and appearance information by incorporating attention maps and features from the inversion process during denoising. To facilitate precise editing of multiple attributes, we introduce mask-guided attention modulation, enhancing correlations between spatially corresponding tokens and suppressing cross-attribute interference in both self-attention and cross-attention layers. To balance video frame generation quality and efficiency, we implement consistent feature propagation, which generates frame sequences by editing keyframes and propagating their features throughout the sequence. Extensive experiments demonstrate that MAKIMA outperforms existing baselines in open-domain multi-attribute video editing tasks, achieving superior results in both editing accuracy and temporal consistency while maintaining computational efficiency.
Authors:Dacheng Li, Yunhao Fang, Yukang Chen, Shuo Yang, Shiyi Cao, Justin Wong, Michael Luo, Xiaolong Wang, Hongxu Yin, Joseph E. Gonzalez, Ion Stoica, Song Han, Yao Lu
Abstract:
Video generation models have rapidly progressed, positioning themselves as video world models capable of supporting decision-making applications like robotics and autonomous driving. However, current benchmarks fail to rigorously evaluate these claims, focusing only on general video quality, ignoring important factors to world models such as physics adherence. To bridge this gap, we propose WorldModelBench, a benchmark designed to evaluate the world modeling capabilities of video generation models in application-driven domains. WorldModelBench offers two key advantages: (1) Against to nuanced world modeling violations: By incorporating instruction-following and physics-adherence dimensions, WorldModelBench detects subtle violations, such as irregular changes in object size that breach the mass conservation law - issues overlooked by prior benchmarks. (2) Aligned with large-scale human preferences: We crowd-source 67K human labels to accurately measure 14 frontier models. Using our high-quality human labels, we further fine-tune an accurate judger to automate the evaluation procedure, achieving 8.6% higher average accuracy in predicting world modeling violations than GPT-4o with 2B parameters. In addition, we demonstrate that training to align human annotations by maximizing the rewards from the judger noticeably improve the world modeling capability. The website is available at https://worldmodelbench-team.github.io.
Authors:Haoyuan Shi, Yunxin Li, Xinyu Chen, Longyue Wang, Baotian Hu, Min Zhang
Abstract:
Despite rapid advancements in video generation models, generating coherent storytelling videos that span multiple scenes and characters remains challenging. Current methods often rigidly convert pre-generated keyframes into fixed-length clips, resulting in disjointed narratives and pacing issues. Furthermore, the inherent instability of video generation models means that even a single low-quality clip can significantly degrade the entire output animation's logical coherence and visual continuity. To overcome these obstacles, we introduce AniMaker, a multi-agent framework enabling efficient multi-candidate clip generation and storytelling-aware clip selection, thus creating globally consistent and story-coherent animation solely from text input. The framework is structured around specialized agents, including the Director Agent for storyboard generation, the Photography Agent for video clip generation, the Reviewer Agent for evaluation, and the Post-Production Agent for editing and voiceover. Central to AniMaker's approach are two key technical components: MCTS-Gen in Photography Agent, an efficient Monte Carlo Tree Search (MCTS)-inspired strategy that intelligently navigates the candidate space to generate high-potential clips while optimizing resource usage; and AniEval in Reviewer Agent, the first framework specifically designed for multi-shot animation evaluation, which assesses critical aspects such as story-level consistency, action completion, and animation-specific features by considering each clip in the context of its preceding and succeeding clips. Experiments demonstrate that AniMaker achieves superior quality as measured by popular metrics including VBench and our proposed AniEval framework, while significantly improving the efficiency of multi-candidate generation, pushing AI-generated storytelling animation closer to production standards.
Authors:Xuenan Xu, Jiahao Mei, Chenliang Li, Yuning Wu, Ming Yan, Shaopeng Lai, Ji Zhang, Mengyue Wu
Abstract:
The rapid advancement of large language models (LLMs) and artificial intelligence-generated content (AIGC) has accelerated AI-native applications, such as AI-based storybooks that automate engaging story production for children. However, challenges remain in improving story attractiveness, enriching storytelling expressiveness, and developing open-source evaluation benchmarks and frameworks. Therefore, we propose and opensource MM-StoryAgent, which creates immersive narrated video storybooks with refined plots, role-consistent images, and multi-channel audio. MM-StoryAgent designs a multi-agent framework that employs LLMs and diverse expert tools (generative models and APIs) across several modalities to produce expressive storytelling videos. The framework enhances story attractiveness through a multi-stage writing pipeline. In addition, it improves the immersive storytelling experience by integrating sound effects with visual, music and narrative assets. MM-StoryAgent offers a flexible, open-source platform for further development, where generative modules can be substituted. Both objective and subjective evaluation regarding textual story quality and alignment between modalities validate the effectiveness of our proposed MM-StoryAgent system. The demo and source code are available.
Authors:Zhenran Xu, Longyue Wang, Jifang Wang, Zhouyi Li, Senbao Shi, Xue Yang, Yiyu Wang, Baotian Hu, Jun Yu, Min Zhang
Abstract:
Virtual film production requires intricate decision-making processes, including scriptwriting, virtual cinematography, and precise actor positioning and actions. Motivated by recent advances in automated decision-making with language agent-based societies, this paper introduces FilmAgent, a novel LLM-based multi-agent collaborative framework for end-to-end film automation in our constructed 3D virtual spaces. FilmAgent simulates various crew roles, including directors, screenwriters, actors, and cinematographers, and covers key stages of a film production workflow: (1) idea development transforms brainstormed ideas into structured story outlines; (2) scriptwriting elaborates on dialogue and character actions for each scene; (3) cinematography determines the camera setups for each shot. A team of agents collaborates through iterative feedback and revisions, thereby verifying intermediate scripts and reducing hallucinations. We evaluate the generated videos on 15 ideas and 4 key aspects. Human evaluation shows that FilmAgent outperforms all baselines across all aspects and scores 3.98 out of 5 on average, showing the feasibility of multi-agent collaboration in filmmaking. Further analysis reveals that FilmAgent, despite using the less advanced GPT-4o model, surpasses the single-agent o1, showing the advantage of a well-coordinated multi-agent system. Lastly, we discuss the complementary strengths and weaknesses of OpenAI's text-to-video model Sora and our FilmAgent in filmmaking.
Authors:Zonghao Ying, Moyang Chen, Nizhang Li, Zhiqiang Wang, Wenxin Zhang, Quanchen Zou, Zonglei Jing, Aishan Liu, Xianglong Liu
Abstract:
Jailbreak attacks can circumvent model safety guardrails and reveal critical blind spots. Prior attacks on text-to-video (T2V) models typically add adversarial perturbations to obviously unsafe prompts, which are often easy to detect and defend. In contrast, we show that benign-looking prompts containing rich, implicit cues can induce T2V models to generate semantically unsafe videos that both violate policy and preserve the original (blocked) intent. To realize this, we propose VEIL, a jailbreak framework that leverages T2V models' cross-modal associative patterns via a modular prompt design. Specifically, our prompts combine three components: neutral scene anchors, which provide the surface-level scene description extracted from the blocked intent to maintain plausibility; latent auditory triggers, textual descriptions of innocuous-sounding audio events (e.g., creaking, muffled noises) that exploit learned audio-visual co-occurrence priors to bias the model toward particular unsafe visual concepts; and stylistic modulators, cinematic directives (e.g., camera framing, atmosphere) that amplify and stabilize the latent trigger's effect. We formalize attack generation as a constrained optimization over the above modular prompt space and solve it with a guided search procedure that balances stealth and effectiveness. Extensive experiments over 7 T2V models demonstrate the efficacy of our attack, achieving a 23 percent improvement in average attack success rate in commercial models.
Authors:Leigang Qu, Ziyang Wang, Na Zheng, Wenjie Wang, Liqiang Nie, Tat-Seng Chua
Abstract:
Video Foundation Models (VFMs) exhibit remarkable visual generation performance, but struggle in compositional scenarios (e.g., motion, numeracy, and spatial relation). In this work, we introduce Test-Time Optimization and Memorization (TTOM), a training-free framework that aligns VFM outputs with spatiotemporal layouts during inference for better text-image alignment. Rather than direct intervention to latents or attention per-sample in existing work, we integrate and optimize new parameters guided by a general layout-attention objective. Furthermore, we formulate video generation within a streaming setting, and maintain historical optimization contexts with a parametric memory mechanism that supports flexible operations, such as insert, read, update, and delete. Notably, we found that TTOM disentangles compositional world knowledge, showing powerful transferability and generalization. Experimental results on the T2V-CompBench and Vbench benchmarks establish TTOM as an effective, practical, scalable, and efficient framework to achieve cross-modal alignment for compositional video generation on the fly.
Authors:Xuyang Guo, Zekai Huang, Jiayan Huo, Yingyu Liang, Zhenmei Shi, Zhao Song, Jiahao Zhang
Abstract:
Generative models have driven significant progress in a variety of AI tasks, including text-to-video generation, where models like Video LDM and Stable Video Diffusion can produce realistic, movie-level videos from textual instructions. Despite these advances, current text-to-video models still face fundamental challenges in reliably following human commands, particularly in adhering to simple numerical constraints. In this work, we present T2VCountBench, a specialized benchmark aiming at evaluating the counting capability of SOTA text-to-video models as of 2025. Our benchmark employs rigorous human evaluations to measure the number of generated objects and covers a diverse range of generators, covering both open-source and commercial models. Extensive experiments reveal that all existing models struggle with basic numerical tasks, almost always failing to generate videos with an object count of 9 or fewer. Furthermore, our comprehensive ablation studies explore how factors like video style, temporal dynamics, and multilingual inputs may influence counting performance. We also explore prompt refinement techniques and demonstrate that decomposing the task into smaller subtasks does not easily alleviate these limitations. Our findings highlight important challenges in current text-to-video generation and provide insights for future research aimed at improving adherence to basic numerical constraints.
Authors:Xinyu Liu, Ailing Zeng, Wei Xue, Harry Yang, Wenhan Luo, Qifeng Liu, Yike Guo
Abstract:
Crafting magic and illusions is one of the most thrilling aspects of filmmaking, with visual effects (VFX) serving as the powerhouse behind unforgettable cinematic experiences. While recent advances in generative artificial intelligence have driven progress in generic image and video synthesis, the domain of controllable VFX generation remains relatively underexplored. In this work, we propose a novel paradigm for animated VFX generation as image animation, where dynamic effects are generated from user-friendly textual descriptions and static reference images. Our work makes two primary contributions: (i) Open-VFX, the first high-quality VFX video dataset spanning 15 diverse effect categories, annotated with textual descriptions, instance segmentation masks for spatial conditioning, and start-end timestamps for temporal control. (ii) VFX Creator, a simple yet effective controllable VFX generation framework based on a Video Diffusion Transformer. The model incorporates a spatial and temporal controllable LoRA adapter, requiring minimal training videos. Specifically, a plug-and-play mask control module enables instance-level spatial manipulation, while tokenized start-end motion timestamps embedded in the diffusion process, alongside the text encoder, allow precise temporal control over effect timing and pace. Extensive experiments on the Open-VFX test set demonstrate the superiority of the proposed system in generating realistic and dynamic effects, achieving state-of-the-art performance and generalization ability in both spatial and temporal controllability. Furthermore, we introduce a specialized metric to evaluate the precision of temporal control. By bridging traditional VFX techniques with generative approaches, VFX Creator unlocks new possibilities for efficient and high-quality video effect generation, making advanced VFX accessible to a broader audience.
Authors:Yuefan Cao, Chengyue Gong, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song
Abstract:
Text-to-video generation models have made impressive progress, but they still struggle with generating videos with complex features. This limitation often arises from the inability of the text encoder to produce accurate embeddings, which hinders the video generation model. In this work, we propose a novel approach to overcome this challenge by selecting the optimal text embedding through interpolation in the embedding space. We demonstrate that this method enables the video generation model to produce the desired videos. Additionally, we introduce a simple algorithm using perpendicular foot embeddings and cosine similarity to identify the optimal interpolation embedding. Our findings highlight the importance of accurate text embeddings and offer a pathway for improving text-to-video generation performance.
Authors:Yan Li, Ziya Zhou, Zhiqiang Wang, Wei Xue, Wenhan Luo, Yike Guo
Abstract:
Recent advancements in generative models have significantly enhanced talking face video generation, yet singing video generation remains underexplored. The differences between human talking and singing limit the performance of existing talking face video generation models when applied to singing. The fundamental differences between talking and singing-specifically in audio characteristics and behavioral expressions-limit the effectiveness of existing models. We observe that the differences between singing and talking audios manifest in terms of frequency and amplitude. To address this, we have designed a multi-scale spectral module to help the model learn singing patterns in the spectral domain. Additionally, we develop a spectral-filtering module that aids the model in learning the human behaviors associated with singing audio. These two modules are integrated into the diffusion model to enhance singing video generation performance, resulting in our proposed model, SINGER. Furthermore, the lack of high-quality real-world singing face videos has hindered the development of the singing video generation community. To address this gap, we have collected an in-the-wild audio-visual singing dataset to facilitate research in this area. Our experiments demonstrate that SINGER is capable of generating vivid singing videos and outperforms state-of-the-art methods in both objective and subjective evaluations.
Authors:Xiaowei Chi, Chun-Kai Fan, Hengyuan Zhang, Xingqun Qi, Rongyu Zhang, Anthony Chen, Chi-min Chan, Wei Xue, Qifeng Liu, Shanghang Zhang, Yike Guo
Abstract:
Video generation models have made significant progress in simulating future states, showcasing their potential as world simulators in embodied scenarios. However, existing models often lack robust understanding, limiting their ability to perform multi-step predictions or handle Out-of-Distribution (OOD) scenarios. To address this challenge, we propose the Reflection of Generation (RoG), a set of intermediate reasoning strategies designed to enhance video prediction. It leverages the complementary strengths of pre-trained vision-language and video generation models, enabling them to function as a world model in embodied scenarios. To support RoG, we introduce Embodied Video Anticipation Benchmark(EVA-Bench), a comprehensive benchmark that evaluates embodied world models across diverse tasks and scenarios, utilizing both in-domain and OOD datasets. Building on this foundation, we devise a world model, Embodied Video Anticipator (EVA), that follows a multistage training paradigm to generate high-fidelity video frames and apply an autoregressive strategy to enable adaptive generalization for longer video sequences. Extensive experiments demonstrate the efficacy of EVA in various downstream tasks like video generation and robotics, thereby paving the way for large-scale pre-trained models in real-world video prediction applications. The video demos are available at \hyperlink{https://sites.google.com/view/icml-eva}{https://sites.google.com/view/icml-eva}.
Authors:Luozhou Wang, Zhifei Chen, Yihua Du, Dongyu Yan, Wenhang Ge, Guibao Shen, Xinli Xu, Leyi Wu, Man Chen, Tianshuo Xu, Peiran Ren, Xin Tao, Pengfei Wan, Ying-Cong Chen
Abstract:
Large-scale video generation models have demonstrated emergent physical coherence, positioning them as potential world models. However, a gap remains between contemporary "stateless" video architectures and classic state-centric world model theories. This work bridges this gap by proposing a novel taxonomy centered on two pillars: State Construction and Dynamics Modeling. We categorize state construction into implicit paradigms (context management) and explicit paradigms (latent compression), while dynamics modeling is analyzed through knowledge integration and architectural reformulation. Furthermore, we advocate for a transition in evaluation from visual fidelity to functional benchmarks, testing physical persistence and causal reasoning. We conclude by identifying two critical frontiers: enhancing persistence via data-driven memory and compressed fidelity, and advancing causality through latent factor decoupling and reasoning-prior integration. By addressing these challenges, the field can evolve from generating visually plausible videos to building robust, general-purpose world simulators.
Authors:Tongcheng Fang, Hanling Zhang, Ruiqi Xie, Zhuo Han, Xin Tao, Tianchen Zhao, Pengfei Wan, Wenbo Ding, Wanli Ouyang, Xuefei Ning, Yu Wang
Abstract:
Diffusion Transformers have recently demonstrated remarkable performance in video generation. However, the long input sequences result in high computational latency due to the quadratic complexity of full attention. Various sparse attention mechanisms have been proposed. Training-free sparse attention is constrained by limited sparsity and thus offers modest acceleration, whereas training-based methods can reach much higher sparsity but demand substantial data and computation for training. In this work, we propose SALAD, introducing a lightweight linear attention branch in parallel with the sparse attention. By incorporating an input-dependent gating mechanism to finely balance the two branches, our method attains 90% sparsity and 1.72x inference speedup, while maintaining generation quality comparable to the full attention baseline. Moreover, our finetuning process is highly efficient, requiring only 2,000 video samples and 1,600 training steps with a batch size of 8.
Authors:Lin Zhao, Yushu Wu, Aleksei Lebedev, Dishani Lahiri, Meng Dong, Arpit Sahni, Michael Vasilkovsky, Hao Chen, Ju Hu, Aliaksandr Siarohin, Sergey Tulyakov, Yanzhi Wang, Anil Kag, Yanyu Li
Abstract:
Diffusion Transformers (DiTs) have recently improved video generation quality. However, their heavy computational cost makes real-time or on-device generation infeasible. In this work, we introduce S2DiT, a Streaming Sandwich Diffusion Transformer designed for efficient, high-fidelity, and streaming video generation on mobile hardware. S2DiT generates more tokens but maintains efficiency with novel efficient attentions: a mixture of LinConv Hybrid Attention (LCHA) and Stride Self-Attention (SSA). Based on this, we uncover the sandwich design via a budget-aware dynamic programming search, achieving superior quality and efficiency. We further propose a 2-in-1 distillation framework that transfers the capacity of large teacher models (e.g., Wan 2.2-14B) to the compact few-step sandwich model. Together, S2DiT achieves quality on par with state-of-the-art server video models, while streaming at over 10 FPS on an iPhone.
Authors:Yushu Wu, Yanyu Li, Anil Kag, Ivan Skorokhodov, Willi Menapace, Ke Ma, Arpit Sahni, Ju Hu, Aliaksandr Siarohin, Dhritiman Sagar, Yanzhi Wang, Sergey Tulyakov
Abstract:
Diffusion Transformers (DiT) have shown strong performance in video generation tasks, but their high computational cost makes them impractical for resource-constrained devices like smartphones, and real-time generation is even more challenging. In this work, we propose a series of novel optimizations to significantly accelerate video generation and enable real-time performance on mobile platforms. First, we employ a highly compressed variational autoencoder (VAE) to reduce the dimensionality of the input data without sacrificing visual quality. Second, we introduce a KD-guided, sensitivity-aware tri-level pruning strategy to shrink the model size to suit mobile platform while preserving critical performance characteristics. Third, we develop an adversarial step distillation technique tailored for DiT, which allows us to reduce the number of inference steps to four. Combined, these optimizations enable our model to achieve over 10 frames per second (FPS) generation on an iPhone 16 Pro Max, demonstrating the feasibility of real-time, high-quality video generation on mobile devices.
Authors:Tianxiong Zhong, Xingye Tian, Boyuan Jiang, Xuebo Wang, Xin Tao, Pengfei Wan, Zhiwei Zhang
Abstract:
Modern video generation frameworks based on Latent Diffusion Models suffer from inefficiencies in tokenization due to the Frame-Proportional Information Assumption. Existing tokenizers provide fixed temporal compression rates, causing the computational cost of the diffusion model to scale linearly with the frame rate. The paper proposes the Duration-Proportional Information Assumption: the upper bound on the information capacity of a video is proportional to the duration rather than the number of frames. Based on this insight, the paper introduces VFRTok, a Transformer-based video tokenizer, that enables variable frame rate encoding and decoding through asymmetric frame rate training between the encoder and decoder. Furthermore, the paper proposes Partial Rotary Position Embeddings (RoPE) to decouple position and content modeling, which groups correlated patches into unified tokens. The Partial RoPE effectively improves content-awareness, enhancing the video generation capability. Benefiting from the compact and continuous spatio-temporal representation, VFRTok achieves competitive reconstruction quality and state-of-the-art generation fidelity while using only 1/8 tokens compared to existing tokenizers.
Authors:Zirui Pan, Xin Wang, Yipeng Zhang, Hong Chen, Kwan Man Cheng, Yaofei Wu, Wenwu Zhu
Abstract:
Text-to-Video generation, which utilizes the provided text prompt to generate high-quality videos, has drawn increasing attention and achieved great success due to the development of diffusion models recently. Existing methods mainly rely on a pre-trained text encoder to capture the semantic information and perform cross attention with the encoded text prompt to guide the generation of video. However, when it comes to complex prompts that contain dynamic scenes and multiple camera-view transformations, these methods can not decompose the overall information into separate scenes, as well as fail to smoothly change scenes based on the corresponding camera-views. To solve these problems, we propose a novel method, i.e., Modular-Cam. Specifically, to better understand a given complex prompt, we utilize a large language model to analyze user instructions and decouple them into multiple scenes together with transition actions. To generate a video containing dynamic scenes that match the given camera-views, we incorporate the widely-used temporal transformer into the diffusion model to ensure continuity within a single scene and propose CamOperator, a modular network based module that well controls the camera movements. Moreover, we propose AdaControlNet, which utilizes ControlNet to ensure consistency across scenes and adaptively adjusts the color tone of the generated video. Extensive qualitative and quantitative experiments prove our proposed Modular-Cam's strong capability of generating multi-scene videos together with its ability to achieve fine-grained control of camera movements. Generated results are available at https://modular-cam.github.io.
Authors:Yushu Wu, Yanyu Li, Ivan Skorokhodov, Anil Kag, Willi Menapace, Sharath Girish, Aliaksandr Siarohin, Yanzhi Wang, Sergey Tulyakov
Abstract:
Autoencoder (AE) is the key to the success of latent diffusion models for image and video generation, reducing the denoising resolution and improving efficiency. However, the power of AE has long been underexplored in terms of network design, compression ratio, and training strategy. In this work, we systematically examine the architecture design choices and optimize the computation distribution to obtain a series of efficient and high-compression video AEs that can decode in real time on mobile devices. We also unify the design of plain Autoencoder and image-conditioned I2V VAE, achieving multifunctionality in a single network. In addition, we find that the widely adopted discriminative losses, i.e., GAN, LPIPS, and DWT losses, provide no significant improvements when training AEs at scale. We propose a novel latent consistency loss that does not require complicated discriminator design or hyperparameter tuning, but provides stable improvements in reconstruction quality. Our AE achieves an ultra-high compression ratio and real-time decoding speed on mobile while outperforming prior art in terms of reconstruction metrics by a large margin. We finally validate our AE by training a DiT on its latent space and demonstrate fast, high-quality text-to-video generation capability.
Authors:Moayed Haji-Ali, Willi Menapace, Aliaksandr Siarohin, Ivan Skorokhodov, Alper Canberk, Kwot Sin Lee, Vicente Ordonez, Sergey Tulyakov
Abstract:
We propose AV-Link, a unified framework for Video-to-Audio (A2V) and Audio-to-Video (A2V) generation that leverages the activations of frozen video and audio diffusion models for temporally-aligned cross-modal conditioning. The key to our framework is a Fusion Block that facilitates bidirectional information exchange between video and audio diffusion models through temporally-aligned self attention operations. Unlike prior work that uses dedicated models for A2V and V2A tasks and relies on pretrained feature extractors, AV-Link achieves both tasks in a single self-contained framework, directly leveraging features obtained by the complementary modality (i.e. video features to generate audio, or audio features to generate video). Extensive automatic and subjective evaluations demonstrate that our method achieves a substantial improvement in audio-video synchronization, outperforming more expensive baselines such as the MovieGen video-to-audio model.
Authors:Ziyi Wu, Aliaksandr Siarohin, Willi Menapace, Ivan Skorokhodov, Yuwei Fang, Varnith Chordia, Igor Gilitschenski, Sergey Tulyakov
Abstract:
Real-world videos consist of sequences of events. Generating such sequences with precise temporal control is infeasible with existing video generators that rely on a single paragraph of text as input. When tasked with generating multiple events described using a single prompt, such methods often ignore some of the events or fail to arrange them in the correct order. To address this limitation, we present MinT, a multi-event video generator with temporal control. Our key insight is to bind each event to a specific period in the generated video, which allows the model to focus on one event at a time. To enable time-aware interactions between event captions and video tokens, we design a time-based positional encoding method, dubbed ReRoPE. This encoding helps to guide the cross-attention operation. By fine-tuning a pre-trained video diffusion transformer on temporally grounded data, our approach produces coherent videos with smoothly connected events. For the first time in the literature, our model offers control over the timing of events in generated videos. Extensive experiments demonstrate that MinT outperforms existing commercial and open-source models by a large margin.
Authors:Xin Wang, Yuwei Zhou, Bin Huang, Hong Chen, Wenwu Zhu
Abstract:
Multi-modal generative AI (Artificial Intelligence) has attracted increasing attention from both academia and industry. Particularly, two dominant families of techniques have emerged: i) Multi-modal large language models (LLMs) demonstrate impressive ability for multi-modal understanding; and ii) Diffusion models exhibit remarkable multi-modal powers in terms of multi-modal generation. Therefore, this paper provides a comprehensive overview of multi-modal generative AI, including multi-modal LLMs, diffusions, and the unification for understanding and generation. To lay a solid foundation for unified models, we first provide a detailed review of both multi-modal LLMs and diffusion models respectively, including their probabilistic modeling procedure, multi-modal architecture design, and advanced applications to image/video LLMs as well as text-to-image/video generation. Furthermore, we explore the emerging efforts toward unified models for understanding and generation. To achieve the unification of understanding and generation, we investigate key designs including autoregressive-based and diffusion-based modeling, as well as dense and Mixture-of-Experts (MoE) architectures. We then introduce several strategies for unified models, analyzing their potential advantages and disadvantages. In addition, we summarize the common datasets widely used for multi-modal generative AI pretraining. Last but not least, we present several challenging future research directions which may contribute to the ongoing advancement of multi-modal generative AI.
Authors:Wangbo Zhao, Yizeng Han, Jiasheng Tang, Kai Wang, Hao Luo, Yibing Song, Gao Huang, Fan Wang, Yang You
Abstract:
Diffusion Transformer (DiT), an emerging diffusion model for visual generation, has demonstrated superior performance but suffers from substantial computational costs. Our investigations reveal that these costs primarily stem from the \emph{static} inference paradigm, which inevitably introduces redundant computation in certain \emph{diffusion timesteps} and \emph{spatial regions}. To overcome this inefficiency, we propose \textbf{Dy}namic \textbf{Di}ffusion \textbf{T}ransformer (DyDiT), an architecture that \emph{dynamically} adjusts its computation along both \emph{timestep} and \emph{spatial} dimensions. Specifically, we introduce a \emph{Timestep-wise Dynamic Width} (TDW) approach that adapts model width conditioned on the generation timesteps. In addition, we design a \emph{Spatial-wise Dynamic Token} (SDT) strategy to avoid redundant computation at unnecessary spatial locations. TDW and SDT can be seamlessly integrated into DiT and significantly accelerates the generation process. Building on these designs, we further enhance DyDiT in three key aspects. First, DyDiT is integrated seamlessly with flow matching-based generation, enhancing its versatility. Furthermore, we enhance DyDiT to tackle more complex visual generation tasks, including video generation and text-to-image generation, thereby broadening its real-world applications. Finally, to address the high cost of full fine-tuning and democratize technology access, we investigate the feasibility of training DyDiT in a parameter-efficient manner and introduce timestep-based dynamic LoRA (TD-LoRA). Extensive experiments on diverse visual generation models, including DiT, SiT, Latte, and FLUX, demonstrate the effectiveness of DyDiT.
Authors:Yang Luo, Xuanlei Zhao, Mengzhao Chen, Kaipeng Zhang, Wenqi Shao, Kai Wang, Zhangyang Wang, Yang You
Abstract:
DiT-based video generation has achieved remarkable results, but research into enhancing existing models remains relatively unexplored. In this work, we introduce a training-free approach to enhance the coherence and quality of DiT-based generated videos, named Enhance-A-Video. The core idea is enhancing the cross-frame correlations based on non-diagonal temporal attention distributions. Thanks to its simple design, our approach can be easily applied to most DiT-based video generation frameworks without any retraining or fine-tuning. Across various DiT-based video generation models, our approach demonstrates promising improvements in both temporal consistency and visual quality. We hope this research can inspire future explorations in video generation enhancement.
Authors:Youpeng Wen, Junfan Lin, Yi Zhu, Jianhua Han, Hang Xu, Shen Zhao, Xiaodan Liang
Abstract:
Recent advancements utilizing large-scale video data for learning video generation models demonstrate significant potential in understanding complex physical dynamics. It suggests the feasibility of leveraging diverse robot trajectory data to develop a unified, dynamics-aware model to enhance robot manipulation. However, given the relatively small amount of available robot data, directly fitting data without considering the relationship between visual observations and actions could lead to suboptimal data utilization. To this end, we propose VidMan (Video Diffusion for Robot Manipulation), a novel framework that employs a two-stage training mechanism inspired by dual-process theory from neuroscience to enhance stability and improve data utilization efficiency. Specifically, in the first stage, VidMan is pre-trained on the Open X-Embodiment dataset (OXE) for predicting future visual trajectories in a video denoising diffusion manner, enabling the model to develop a long horizontal awareness of the environment's dynamics. In the second stage, a flexible yet effective layer-wise self-attention adapter is introduced to transform VidMan into an efficient inverse dynamics model that predicts action modulated by the implicit dynamics knowledge via parameter sharing. Our VidMan framework outperforms state-of-the-art baseline model GR-1 on the CALVIN benchmark, achieving a 11.7% relative improvement, and demonstrates over 9% precision gains on the OXE small-scale dataset. These results provide compelling evidence that world models can significantly enhance the precision of robot action prediction. Codes and models will be public.
Authors:Jiayang Liu, Siyuan Liang, Shiqian Zhao, Rongcheng Tu, Wenbo Zhou, Aishan Liu, Dacheng Tao, Siew Kei Lam
Abstract:
In recent years, fueled by the rapid advancement of diffusion models, text-to-video (T2V) generation models have achieved remarkable progress, with notable examples including Pika, Luma, Kling, and Open-Sora. Although these models exhibit impressive generative capabilities, they also expose significant security risks due to their vulnerability to jailbreak attacks, where the models are manipulated to produce unsafe content such as pornography, violence, or discrimination. Existing works such as T2VSafetyBench provide preliminary benchmarks for safety evaluation, but lack systematic methods for thoroughly exploring model vulnerabilities. To address this gap, we are the first to formalize the T2V jailbreak attack as a discrete optimization problem and propose a joint objective-based optimization framework, called T2V-OptJail. This framework consists of two key optimization goals: bypassing the built-in safety filtering mechanisms to increase the attack success rate, preserving semantic consistency between the adversarial prompt and the unsafe input prompt, as well as between the generated video and the unsafe input prompt, to enhance content controllability. In addition, we introduce an iterative optimization strategy guided by prompt variants, where multiple semantically equivalent candidates are generated in each round, and their scores are aggregated to robustly guide the search toward optimal adversarial prompts. We conduct large-scale experiments on several T2V models, covering both open-source models and real commercial closed-source models. The experimental results show that the proposed method improves 11.4% and 10.0% over the existing state-of-the-art method in terms of attack success rate assessed by GPT-4, attack success rate assessed by human accessors, respectively, verifying the significant advantages of the method in terms of attack effectiveness and content control.
Authors:Siyuan Liang, Jiayang Liu, Jiecheng Zhai, Tianmeng Fang, Rongcheng Tu, Aishan Liu, Xiaochun Cao, Dacheng Tao
Abstract:
The rapid development of generative artificial intelligence has made text to video models essential for building future multimodal world simulators. However, these models remain vulnerable to jailbreak attacks, where specially crafted prompts bypass safety mechanisms and lead to the generation of harmful or unsafe content. Such vulnerabilities undermine the reliability and security of simulation based applications. In this paper, we propose T2VShield, a comprehensive and model agnostic defense framework designed to protect text to video models from jailbreak threats. Our method systematically analyzes the input, model, and output stages to identify the limitations of existing defenses, including semantic ambiguities in prompts, difficulties in detecting malicious content in dynamic video outputs, and inflexible model centric mitigation strategies. T2VShield introduces a prompt rewriting mechanism based on reasoning and multimodal retrieval to sanitize malicious inputs, along with a multi scope detection module that captures local and global inconsistencies across time and modalities. The framework does not require access to internal model parameters and works with both open and closed source systems. Extensive experiments on five platforms show that T2VShield can reduce jailbreak success rates by up to 35 percent compared to strong baselines. We further develop a human centered audiovisual evaluation protocol to assess perceptual safety, emphasizing the importance of visual level defense in enhancing the trustworthiness of next generation multimodal simulators.
Authors:Haolin Yang, Feilong Tang, Ming Hu, Qingyu Yin, Yulong Li, Yexin Liu, Zelin Peng, Peng Gao, Junjun He, Zongyuan Ge, Imran Razzak
Abstract:
Video diffusion models (VDMs) facilitate the generation of high-quality videos, with current research predominantly concentrated on scaling efforts during training through improvements in data quality, computational resources, and model complexity. However, inference-time scaling has received less attention, with most approaches restricting models to a single generation attempt. Recent studies have uncovered the existence of "golden noises" that can enhance video quality during generation. Building on this, we find that guiding the scaling inference-time search of VDMs to identify better noise candidates not only evaluates the quality of the frames generated in the current step but also preserves the high-level object features by referencing the anchor frame from previous multi-chunks, thereby delivering long-term value. Our analysis reveals that diffusion models inherently possess flexible adjustments of computation by varying denoising steps, and even a one-step denoising approach, when guided by a reward signal, yields significant long-term benefits. Based on the observation, we proposeScalingNoise, a plug-and-play inference-time search strategy that identifies golden initial noises for the diffusion sampling process to improve global content consistency and visual diversity. Specifically, we perform one-step denoising to convert initial noises into a clip and subsequently evaluate its long-term value, leveraging a reward model anchored by previously generated content. Moreover, to preserve diversity, we sample candidates from a tilted noise distribution that up-weights promising noises. In this way, ScalingNoise significantly reduces noise-induced errors, ensuring more coherent and spatiotemporally consistent video generation. Extensive experiments on benchmark datasets demonstrate that the proposed ScalingNoise effectively improves long video generation.
Authors:Nan Zhou, Huandong Wang, Jiahao Li, Yang Li, Xiao-Ping Zhang, Yong Li, Xinlei Chen
Abstract:
Fine-grained fire prediction plays a crucial role in emergency response. Infrared images and fire masks provide complementary thermal and boundary information, yet current methods are predominantly limited to binary mask modeling with inherent signal sparsity, failing to capture the complex dynamics of fire. While world models show promise in video generation, their physical inconsistencies pose significant challenges for fire forecasting. This paper introduces PhysFire-WM, a Physics-informed World Model for emulating Fire spread dynamics. Our approach internalizes combustion dynamics by encoding structured priors from a Physical Simulator to rectify physical discrepancies, coupled with a Cross-task Collaborative Training strategy (CC-Train) that alleviates the issue of limited information in mask-based modeling. Through parameter sharing and gradient coordination, CC-Train effectively integrates thermal radiation dynamics and spatial boundary delineation, enhancing both physical realism and geometric accuracy. Extensive experiments on a fine-grained multimodal fire dataset demonstrate the superior accuracy of PhysFire-WM in fire spread prediction. Validation underscores the importance of physical priors and cross-task collaboration, providing new insights for applying physics-informed world models to disaster prediction.
Authors:Kongxin Wang, Jie Zhang, Peigui Qi, Kunsheng Tang, Tianwei Zhang, Wenbo Zhou
Abstract:
Pose-guided video generation has become a powerful tool in creative industries, exemplified by frameworks like Animate Anyone. However, conditioning generation on specific poses introduces serious risks, such as impersonation, privacy violations, and NSFW content creation. To address these challenges, we propose $\textbf{PoseGuard}$, a safety alignment framework for pose-guided generation. PoseGuard is designed to suppress unsafe generations by degrading output quality when encountering malicious poses, while maintaining high-fidelity outputs for benign inputs. We categorize unsafe poses into three representative types: discriminatory gestures such as kneeling or offensive salutes, sexually suggestive poses that lead to NSFW content, and poses imitating copyrighted celebrity movements. PoseGuard employs a dual-objective training strategy combining generation fidelity with safety alignment, and uses LoRA-based fine-tuning for efficient, parameter-light updates. To ensure adaptability to evolving threats, PoseGuard supports pose-specific LoRA fusion, enabling flexible and modular updates when new unsafe poses are identified. We further demonstrate the generalizability of PoseGuard to facial landmark-guided generation. Extensive experiments validate that PoseGuard effectively blocks unsafe generations, maintains generation quality for benign inputs, and remains robust against slight pose variations.
Authors:Yubo Huang, Weiqiang Wang, Sirui Zhao, Tong Xu, Lin Liu, Enhong Chen
Abstract:
Recent years have witnessed remarkable advances in audio-driven talking head generation. However, existing approaches predominantly focus on single-character scenarios. While some methods can create separate conversation videos between two individuals, the critical challenge of generating unified conversation videos with multiple physically co-present characters sharing the same spatial environment remains largely unaddressed. This setting presents two key challenges: audio-to-character correspondence control and the lack of suitable datasets featuring multi-character talking videos within the same scene. To address these challenges, we introduce Bind-Your-Avatar, an MM-DiT-based model specifically designed for multi-talking-character video generation in the same scene. Specifically, we propose (1) A novel framework incorporating a fine-grained Embedding Router that binds `who' and `speak what' together to address the audio-to-character correspondence control. (2) Two methods for implementing a 3D-mask embedding router that enables frame-wise, fine-grained control of individual characters, with distinct loss functions based on observed geometric priors and a mask refinement strategy to enhance the accuracy and temporal smoothness of the predicted masks. (3) The first dataset, to the best of our knowledge, specifically constructed for multi-talking-character video generation, and accompanied by an open-source data processing pipeline, and (4) A benchmark for the dual-talking-characters video generation, with extensive experiments demonstrating superior performance over multiple state-of-the-art methods.
Authors:Haiquan Wen, Yiwei He, Zhenglin Huang, Tianxiao Li, Zihan Yu, Xingru Huang, Lu Qi, Baoyuan Wu, Xiangtai Li, Guangliang Cheng
Abstract:
Advances in AI generative models facilitate super-realistic video synthesis, amplifying misinformation risks via social media and eroding trust in digital content. Several research works have explored new deepfake detection methods on AI-generated images to alleviate these risks. However, with the fast development of video generation models, such as Sora and WanX, there is currently a lack of large-scale, high-quality AI-generated video datasets for forgery detection. In addition, existing detection approaches predominantly treat the task as binary classification, lacking explainability in model decision-making and failing to provide actionable insights or guidance for the public. To address these challenges, we propose \textbf{GenBuster-200K}, a large-scale AI-generated video dataset featuring 200K high-resolution video clips, diverse latest generative techniques, and real-world scenes. We further introduce \textbf{BusterX}, a novel AI-generated video detection and explanation framework leveraging multimodal large language model (MLLM) and reinforcement learning for authenticity determination and explainable rationale. To our knowledge, GenBuster-200K is the {\it \textbf{first}} large-scale, high-quality AI-generated video dataset that incorporates the latest generative techniques for real-world scenarios. BusterX is the {\it \textbf{first}} framework to integrate MLLM with reinforcement learning for explainable AI-generated video detection. Extensive comparisons with state-of-the-art methods and ablation studies validate the effectiveness and generalizability of BusterX. The code, models, and datasets will be released.
Authors:Lehan Yang, Lu Qi, Xiangtai Li, Sheng Li, Varun Jampani, Ming-Hsuan Yang
Abstract:
We present a unified network for simultaneously generating videos and their corresponding entity segmentation and depth maps from text prompts. We utilize colormap to represent entity masks and depth maps, tightly integrating dense prediction with RGB video generation. Introducing dense prediction information improves video generation's consistency and motion smoothness without increasing computational costs. Incorporating learnable task embeddings brings multiple dense prediction tasks into a single model, enhancing flexibility and further boosting performance. We further propose a large-scale dense prediction video dataset~\datasetname, addressing the issue that existing datasets do not concurrently contain captions, videos, segmentation, or depth maps. Comprehensive experiments demonstrate the high efficiency of our method, surpassing the state-of-the-art in terms of video quality, consistency, and motion smoothness.
Authors:Yatai Ji, Jiacheng Zhang, Jie Wu, Shilong Zhang, Shoufa Chen, Chongjian GE, Peize Sun, Weifeng Chen, Wenqi Shao, Xuefeng Xiao, Weilin Huang, Ping Luo
Abstract:
Text-to-video models have made remarkable advancements through optimization on high-quality text-video pairs, where the textual prompts play a pivotal role in determining quality of output videos. However, achieving the desired output often entails multiple revisions and iterative inference to refine user-provided prompts. Current automatic methods for refining prompts encounter challenges such as Modality-Inconsistency, Cost-Discrepancy, and Model-Unaware when applied to text-to-video diffusion models. To address these problem, we introduce an LLM-based prompt adaptation framework, termed as Prompt-A-Video, which excels in crafting Video-Centric, Labor-Free and Preference-Aligned prompts tailored to specific video diffusion model. Our approach involves a meticulously crafted two-stage optimization and alignment system. Initially, we conduct a reward-guided prompt evolution pipeline to automatically create optimal prompts pool and leverage them for supervised fine-tuning (SFT) of the LLM. Then multi-dimensional rewards are employed to generate pairwise data for the SFT model, followed by the direct preference optimization (DPO) algorithm to further facilitate preference alignment. Through extensive experimentation and comparative analyses, we validate the effectiveness of Prompt-A-Video across diverse generation models, highlighting its potential to push the boundaries of video generation.
Authors:Zheng Zhan, Yushu Wu, Yifan Gong, Zichong Meng, Zhenglun Kong, Changdi Yang, Geng Yuan, Pu Zhao, Wei Niu, Yanzhi Wang
Abstract:
The rapid progress in artificial intelligence-generated content (AIGC), especially with diffusion models, has significantly advanced development of high-quality video generation. However, current video diffusion models exhibit demanding computational requirements and high peak memory usage, especially for generating longer and higher-resolution videos. These limitations greatly hinder the practical application of video diffusion models on standard hardware platforms. To tackle this issue, we present a novel, training-free framework named Streamlined Inference, which leverages the temporal and spatial properties of video diffusion models. Our approach integrates three core components: Feature Slicer, Operator Grouping, and Step Rehash. Specifically, Feature Slicer effectively partitions input features into sub-features and Operator Grouping processes each sub-feature with a group of consecutive operators, resulting in significant memory reduction without sacrificing the quality or speed. Step Rehash further exploits the similarity between adjacent steps in diffusion, and accelerates inference through skipping unnecessary steps. Extensive experiments demonstrate that our approach significantly reduces peak memory and computational overhead, making it feasible to generate high-quality videos on a single consumer GPU (e.g., reducing peak memory of AnimateDiff from 42GB to 11GB, featuring faster inference on 2080Ti).
Authors:Yubin Chen, Xuyang Guo, Zhenmei Shi, Zhao Song, Jiahao Zhang
Abstract:
Text-to-video (T2V) models have shown remarkable performance in generating visually reasonable scenes, while their capability to leverage world knowledge for ensuring semantic consistency and factual accuracy remains largely understudied. In response to this challenge, we propose T2VWorldBench, the first systematic evaluation framework for evaluating the world knowledge generation abilities of text-to-video models, covering 6 major categories, 60 subcategories, and 1,200 prompts across a wide range of domains, including physics, nature, activity, culture, causality, and object. To address both human preference and scalable evaluation, our benchmark incorporates both human evaluation and automated evaluation using vision-language models (VLMs). We evaluated the 10 most advanced text-to-video models currently available, ranging from open source to commercial models, and found that most models are unable to understand world knowledge and generate truly correct videos. These findings point out a critical gap in the capability of current text-to-video models to leverage world knowledge, providing valuable research opportunities and entry points for constructing models with robust capabilities for commonsense reasoning and factual generation.
Authors:Xuyang Guo, Jiayan Huo, Zhenmei Shi, Zhao Song, Jiahao Zhang, Jiale Zhao
Abstract:
Thanks to recent advancements in scalable deep architectures and large-scale pretraining, text-to-video generation has achieved unprecedented capabilities in producing high-fidelity, instruction-following content across a wide range of styles, enabling applications in advertising, entertainment, and education. However, these models' ability to render precise on-screen text, such as captions or mathematical formulas, remains largely untested, posing significant challenges for applications requiring exact textual accuracy. In this work, we introduce T2VTextBench, the first human-evaluation benchmark dedicated to evaluating on-screen text fidelity and temporal consistency in text-to-video models. Our suite of prompts integrates complex text strings with dynamic scene changes, testing each model's ability to maintain detailed instructions across frames. We evaluate ten state-of-the-art systems, ranging from open-source solutions to commercial offerings, and find that most struggle to generate legible, consistent text. These results highlight a critical gap in current video generators and provide a clear direction for future research aimed at enhancing textual manipulation in video synthesis.
Authors:Xuyang Guo, Jiayan Huo, Zhenmei Shi, Zhao Song, Jiahao Zhang, Jiale Zhao
Abstract:
Text-to-video generative models have made significant strides in recent years, producing high-quality videos that excel in both aesthetic appeal and accurate instruction following, and have become central to digital art creation and user engagement online. Yet, despite these advancements, their ability to respect fundamental physical laws remains largely untested: many outputs still violate basic constraints such as rigid-body collisions, energy conservation, and gravitational dynamics, resulting in unrealistic or even misleading content. Existing physical-evaluation benchmarks typically rely on automatic, pixel-level metrics applied to simplistic, life-scenario prompts, and thus overlook both human judgment and first-principles physics. To fill this gap, we introduce \textbf{T2VPhysBench}, a first-principled benchmark that systematically evaluates whether state-of-the-art text-to-video systems, both open-source and commercial, obey twelve core physical laws including Newtonian mechanics, conservation principles, and phenomenological effects. Our benchmark employs a rigorous human evaluation protocol and includes three targeted studies: (1) an overall compliance assessment showing that all models score below 0.60 on average in each law category; (2) a prompt-hint ablation revealing that even detailed, law-specific hints fail to remedy physics violations; and (3) a counterfactual robustness test demonstrating that models often generate videos that explicitly break physical rules when so instructed. The results expose persistent limitations in current architectures and offer concrete insights for guiding future research toward truly physics-aware video generation.
Authors:Zishu Wei, Qixiang Ma, Xavier Hu, Yuhang Liu, Hui Zang, Yudong Zhao, Tao Wang, Shengyu Zhang, Fei Wu
Abstract:
Building AI systems for GUI automation task has attracted remarkable research efforts, where MLLMs are leveraged for processing user requirements and give operations. However, GUI automation includes a wide range of tasks, from document processing to online shopping, from CAD to video editing. Diversity between particular tasks requires MLLMs for GUI automation to have heterogeneous capabilities and master multidimensional expertise, raising problems on constructing such a model. To address such challenge, we propose GAIR: GUI Automation via Information-Joint Reasoning and Group Reflection, a novel MLLM-based GUI automation agent framework designed for integrating knowledge and combining capabilities from heterogeneous models to build GUI automation agent systems with higher performance. Since different GUI-specific MLLMs are trained on different dataset and thus have different strengths, GAIR introduced a general-purpose MLLM for jointly processing the information from multiple GUI-specific models, further enhancing performance of the agent framework. The general-purpose MLLM also serves as decision maker, trying to execute a reasonable operation based on previously gathered information. When the general-purpose model thinks that there isn't sufficient information for a reasonable decision, GAIR would transit into group reflection status, where the general-purpose model would provide GUI-specific models with different instructions and hints based on their strengths and weaknesses, driving them to gather information with more significance and accuracy that can support deeper reasoning and decision. We evaluated the effectiveness and reliability of GAIR through extensive experiments on GUI benchmarks.
Authors:Changzhen Li, Yuecong Min, Jie Zhang, Zheng Yuan, Shiguang Shan, Xilin Chen
Abstract:
The rapid evolution of Text-to-Video (T2V) diffusion models has driven remarkable advancements in generating high-quality, temporally coherent videos from natural language descriptions. Despite these achievements, their vulnerability to adversarial attacks remains largely unexplored. In this paper, we introduce T2VAttack, a comprehensive study of adversarial attacks on T2V diffusion models from both semantic and temporal perspectives. Considering the inherently dynamic nature of video data, we propose two distinct attack objectives: a semantic objective to evaluate video-text alignment and a temporal objective to assess the temporal dynamics. To achieve an effective and efficient attack process, we propose two adversarial attack methods: (i) T2VAttack-S, which identifies semantically or temporally critical words in prompts and replaces them with synonyms via greedy search, and (ii) T2VAttack-I, which iteratively inserts optimized words with minimal perturbation to the prompt. By combining these objectives and strategies, we conduct a comprehensive evaluation on the adversarial robustness of several state-of-the-art T2V models, including ModelScope, CogVideoX, Open-Sora, and HunyuanVideo. Our experiments reveal that even minor prompt modifications, such as the substitution or insertion of a single word, can cause substantial degradation in semantic fidelity and temporal dynamics, highlighting critical vulnerabilities in current T2V diffusion models.
Authors:Weichen Fan, Chenyang Si, Junhao Song, Zhenyu Yang, Yinan He, Long Zhuo, Ziqi Huang, Ziyue Dong, Jingwen He, Dongwei Pan, Yi Wang, Yuming Jiang, Yaohui Wang, Peng Gao, Xinyuan Chen, Hengjie Li, Dahua Lin, Yu Qiao, Ziwei Liu
Abstract:
We present Vchitect-2.0, a parallel transformer architecture designed to scale up video diffusion models for large-scale text-to-video generation. The overall Vchitect-2.0 system has several key designs. (1) By introducing a novel Multimodal Diffusion Block, our approach achieves consistent alignment between text descriptions and generated video frames, while maintaining temporal coherence across sequences. (2) To overcome memory and computational bottlenecks, we propose a Memory-efficient Training framework that incorporates hybrid parallelism and other memory reduction techniques, enabling efficient training of long video sequences on distributed systems. (3) Additionally, our enhanced data processing pipeline ensures the creation of Vchitect T2V DataVerse, a high-quality million-scale training dataset through rigorous annotation and aesthetic evaluation. Extensive benchmarking demonstrates that Vchitect-2.0 outperforms existing methods in video quality, training efficiency, and scalability, serving as a suitable base for high-fidelity video generation.
Authors:Tobia Poppi, Burak Uzkent, Amanmeet Garg, Lucas Porto, Garin Kessler, Yezhou Yang, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara, Florian Schiffers
Abstract:
Video-language models (VLMs) achieve strong multimodal understanding but remain prone to hallucinations, especially when reasoning about actions and temporal order. Existing mitigation strategies, such as textual filtering or random video perturbations, often fail to address the root cause: over-reliance on language priors rather than fine-grained visual dynamics. We propose a scalable framework for counterfactual video generation that synthesizes videos differing only in actions or temporal structure while preserving scene context. Our pipeline combines multimodal LLMs for action proposal and editing guidance with diffusion-based image and video models to generate semantic hard negatives at scale. Using this framework, we build CounterVid, a synthetic dataset of ~26k preference pairs targeting action recognition and temporal reasoning. We further introduce MixDPO, a unified Direct Preference Optimization approach that jointly leverages textual and visual preferences. Fine-tuning Qwen2.5-VL with MixDPO yields consistent improvements, notably in temporal ordering, and transfers effectively to standard video hallucination benchmarks. Code and models will be made publicly available.
Authors:Haojie Zhang, Zhihao Liang, Ruibo Fu, Bingyan Liu, Zhengqi Wen, Xuefei Liu, Jianhua Tao, Yaling Liang
Abstract:
Long-duration talking video synthesis faces persistent challenges in simultaneously achieving high video quality, portrait and temporal consistency, and computational efficiency. As video length increases, issues such as visual degradation, loss of identity consistency, temporal incoherence, and error accumulation become increasingly prominent, severely impacting the realism and reliability of generated results. To address these issues, we present LetsTalk, a diffusion transformer framework that incorporates multimodal guidance and a novel memory bank mechanism, explicitly maintaining contextual continuity and enabling robust, high-quality, and efficient long-duration talking video generation. Specifically, LetsTalk introduces a memory bank combined with a noise-regularized training strategy to mitigate error accumulation and sampling artifacts during long video generation. To further enhance efficiency and spatiotemporal consistency, LetsTalk employs a deep compression autoencoder and a spatiotemporal-aware transformer with linear attention for effective multimodal fusion. Furthermore, we systematically analyze three multimodal fusion schemes, adopting deep (Symbiotic Fusion) for portrait features to ensure visual consistency, and shallow (Direct Fusion) for audio to synchronize animation with speech while preserving motion diversity. Extensive experiments demonstrate that LetsTalk achieves state-of-the-art generation quality, producing temporally coherent and realistic talking videos with enhanced diversity and liveliness, while maintaining remarkable efficiency with 8 fewer parameters than previous approaches.
Authors:Bingyi Kang, Yang Yue, Rui Lu, Zhijie Lin, Yang Zhao, Kaixin Wang, Gao Huang, Jiashi Feng
Abstract:
OpenAI's Sora highlights the potential of video generation for developing world models that adhere to fundamental physical laws. However, the ability of video generation models to discover such laws purely from visual data without human priors can be questioned. A world model learning the true law should give predictions robust to nuances and correctly extrapolate on unseen scenarios. In this work, we evaluate across three key scenarios: in-distribution, out-of-distribution, and combinatorial generalization. We developed a 2D simulation testbed for object movement and collisions to generate videos deterministically governed by one or more classical mechanics laws. This provides an unlimited supply of data for large-scale experimentation and enables quantitative evaluation of whether the generated videos adhere to physical laws. We trained diffusion-based video generation models to predict object movements based on initial frames. Our scaling experiments show perfect generalization within the distribution, measurable scaling behavior for combinatorial generalization, but failure in out-of-distribution scenarios. Further experiments reveal two key insights about the generalization mechanisms of these models: (1) the models fail to abstract general physical rules and instead exhibit "case-based" generalization behavior, i.e., mimicking the closest training example; (2) when generalizing to new cases, models are observed to prioritize different factors when referencing training data: color > size > velocity > shape. Our study suggests that scaling alone is insufficient for video generation models to uncover fundamental physical laws, despite its role in Sora's broader success. See our project page at https://phyworld.github.io
Authors:Zhe Cao, Tao Wang, Jiaming Wang, Yanghai Wang, Yuanxing Zhang, Jialu Chen, Miao Deng, Jiahao Wang, Yubin Guo, Chenxi Liao, Yize Zhang, Zhaoxiang Zhang, Jiaheng Liu
Abstract:
Text-to-Audio-Video (T2AV) generation aims to synthesize temporally coherent video and semantically synchronized audio from natural language, yet its evaluation remains fragmented, often relying on unimodal metrics or narrowly scoped benchmarks that fail to capture cross-modal alignment, instruction following, and perceptual realism under complex prompts. To address this limitation, we present T2AV-Compass, a unified benchmark for comprehensive evaluation of T2AV systems, consisting of 500 diverse and complex prompts constructed via a taxonomy-driven pipeline to ensure semantic richness and physical plausibility. Besides, T2AV-Compass introduces a dual-level evaluation framework that integrates objective signal-level metrics for video quality, audio quality, and cross-modal alignment with a subjective MLLM-as-a-Judge protocol for instruction following and realism assessment. Extensive evaluation of 11 representative T2AVsystems reveals that even the strongest models fall substantially short of human-level realism and cross-modal consistency, with persistent failures in audio realism, fine-grained synchronization, instruction following, etc. These results indicate significant improvement room for future models and highlight the value of T2AV-Compass as a challenging and diagnostic testbed for advancing text-to-audio-video generation.
Authors:Sen Liang, Zhentao Yu, Zhengguang Zhou, Teng Hu, Hongmei Wang, Yi Chen, Qin Lin, Yuan Zhou, Xin Li, Qinglin Lu, Zhibo Chen
Abstract:
The emergence of Diffusion Transformers (DiT) has brought significant advancements to video generation, especially in text-to-video and image-to-video tasks. Although video generation is widely applied in various fields, most existing models are limited to single scenarios and cannot perform diverse video generation and editing through dynamic content manipulation. We propose OmniV2V, a video model capable of generating and editing videos across different scenarios based on various operations, including: object movement, object addition, mask-guided video edit, try-on, inpainting, outpainting, human animation, and controllable character video synthesis. We explore a unified dynamic content manipulation injection module, which effectively integrates the requirements of the above tasks. In addition, we design a visual-text instruction module based on LLaVA, enabling the model to effectively understand the correspondence between visual content and instructions. Furthermore, we build a comprehensive multi-task data processing system. Since there is data overlap among various tasks, this system can efficiently provide data augmentation. Using this system, we construct a multi-type, multi-scenario OmniV2V dataset and its corresponding OmniV2V-Test benchmark. Extensive experiments show that OmniV2V works as well as, and sometimes better than, the best existing open-source and commercial models for many video generation and editing tasks.
Authors:Xingrui Wang, Xin Li, Yaosi Hu, Hanxin Zhu, Chen Hou, Cuiling Lan, Zhibo Chen
Abstract:
Text-driven Image to Video Generation (TI2V) aims to generate controllable video given the first frame and corresponding textual description. The primary challenges of this task lie in two parts: (i) how to identify the target objects and ensure the consistency between the movement trajectory and the textual description. (ii) how to improve the subjective quality of generated videos. To tackle the above challenges, we propose a new diffusion-based TI2V framework, termed TIV-Diffusion, via object-centric textual-visual alignment, intending to achieve precise control and high-quality video generation based on textual-described motion for different objects. Concretely, we enable our TIV-Diffuion model to perceive the textual-described objects and their motion trajectory by incorporating the fused textual and visual knowledge through scale-offset modulation. Moreover, to mitigate the problems of object disappearance and misaligned objects and motion, we introduce an object-centric textual-visual alignment module, which reduces the risk of misaligned objects/motion by decoupling the objects in the reference image and aligning textual features with each object individually. Based on the above innovations, our TIV-Diffusion achieves state-of-the-art high-quality video generation compared with existing TI2V methods.
Authors:GigaWorld Team, Angen Ye, Boyuan Wang, Chaojun Ni, Guan Huang, Guosheng Zhao, Haoyun Li, Jiagang Zhu, Kerui Li, Mengyuan Xu, Qiuping Deng, Siting Wang, Wenkang Qin, Xinze Chen, Xiaofeng Wang, Yankai Wang, Yu Cao, Yifan Chang, Yuan Xu, Yun Ye, Yang Wang, Yukun Zhou, Zhengyuan Zhang, Zhehao Dong, Zheng Zhu
Abstract:
World models are emerging as a foundational paradigm for scalable, data-efficient embodied AI. In this work, we present GigaWorld-0, a unified world model framework designed explicitly as a data engine for Vision-Language-Action (VLA) learning. GigaWorld-0 integrates two synergistic components: GigaWorld-0-Video, which leverages large-scale video generation to produce diverse, texture-rich, and temporally coherent embodied sequences under fine-grained control of appearance, camera viewpoint, and action semantics; and GigaWorld-0-3D, which combines 3D generative modeling, 3D Gaussian Splatting reconstruction, physically differentiable system identification, and executable motion planning to ensure geometric consistency and physical realism. Their joint optimization enables the scalable synthesis of embodied interaction data that is visually compelling, spatially coherent, physically plausible, and instruction-aligned. Training at scale is made feasible through our efficient GigaTrain framework, which exploits FP8-precision and sparse attention to drastically reduce memory and compute requirements. We conduct comprehensive evaluations showing that GigaWorld-0 generates high-quality, diverse, and controllable data across multiple dimensions. Critically, VLA model (e.g., GigaBrain-0) trained on GigaWorld-0-generated data achieve strong real-world performance, significantly improving generalization and task success on physical robots without any real-world interaction during training.
Authors:GigaBrain Team, Angen Ye, Boyuan Wang, Chaojun Ni, Guan Huang, Guosheng Zhao, Haoyun Li, Jie Li, Jiagang Zhu, Lv Feng, Peng Li, Qiuping Deng, Runqi Ouyang, Wenkang Qin, Xinze Chen, Xiaofeng Wang, Yang Wang, Yifan Li, Yilong Li, Yiran Ding, Yuan Xu, Yun Ye, Yukun Zhou, Zhehao Dong, Zhenan Wang, Zhichao Liu, Zheng Zhu
Abstract:
Training Vision-Language-Action (VLA) models for generalist robots typically requires large-scale real-world robot data, which is expensive and time-consuming to collect. The inefficiency of physical data collection severely limits the scalability, and generalization capacity of current VLA systems. To address this challenge, we introduce GigaBrain-0, a novel VLA foundation model empowered by world model-generated data (e.g., video generation, real2real transfer, human transfer, view transfer, sim2real transfer data). By leveraging world models to generate diverse data at scale, GigaBrain-0 significantly reduces reliance on real robot data while improving cross-task generalization. Our approach further improves policy robustness through RGBD input modeling and embodied Chain-of-Thought (CoT) supervision, enabling the model to reason about spatial geometry, object states, and long-horizon dependencies during task execution. This leads to substantial gains in real-world performance on dexterous, long-horizon, and mobile manipulation tasks. Extensive experiments demonstrate that GigaBrain-0 achieves superior generalization across variations in appearances (e.g., textures, colors), object placements, and camera viewpoints. Additionally, we present GigaBrain-0-Small, an optimized lightweight variant designed to run efficiently on devices such as the NVIDIA Jetson AGX Orin.
Authors:Weijie Wang, Jiagang Zhu, Zeyu Zhang, Xiaofeng Wang, Zheng Zhu, Guosheng Zhao, Chaojun Ni, Haoxiao Wang, Guan Huang, Xinze Chen, Yukun Zhou, Wenkang Qin, Duochao Shi, Haoyun Li, Guanghong Jia, Jiwen Lu
Abstract:
We present DriveGen3D, a novel framework for generating high-quality and highly controllable dynamic 3D driving scenes that addresses critical limitations in existing methodologies. Current approaches to driving scene synthesis either suffer from prohibitive computational demands for extended temporal generation, focus exclusively on prolonged video synthesis without 3D representation, or restrict themselves to static single-scene reconstruction. Our work bridges this methodological gap by integrating accelerated long-term video generation with large-scale dynamic scene reconstruction through multimodal conditional control. DriveGen3D introduces a unified pipeline consisting of two specialized components: FastDrive-DiT, an efficient video diffusion transformer for high-resolution, temporally coherent video synthesis under text and Bird's-Eye-View (BEV) layout guidance; and FastRecon3D, a feed-forward reconstruction module that rapidly builds 3D Gaussian representations across time, ensuring spatial-temporal consistency. Together, these components enable real-time generation of extended driving videos (up to $424\times800$ at 12 FPS) and corresponding dynamic 3D scenes, achieving SSIM of 0.811 and PSNR of 22.84 on novel view synthesis, all while maintaining parameter efficiency.
Authors:Yuan Xu, Jiabing Yang, Xiaofeng Wang, Yixiang Chen, Zheng Zhu, Bowen Fang, Guan Huang, Xinze Chen, Yun Ye, Qiang Zhang, Peiyan Li, Xiangnan Wu, Kai Wang, Bing Zhan, Shuo Lu, Jing Liu, Nianfeng Liu, Yan Huang, Liang Wang
Abstract:
Imitation learning based policies perform well in robotic manipulation, but they often degrade under *egocentric viewpoint shifts* when trained from a single egocentric viewpoint. To address this issue, we present **EgoDemoGen**, a framework that generates *paired* novel egocentric demonstrations by retargeting actions in the novel egocentric frame and synthesizing the corresponding egocentric observation videos with proposed generative video repair model **EgoViewTransfer**, which is conditioned by a novel-viewpoint reprojected scene video and a robot-only video rendered from the retargeted joint actions. EgoViewTransfer is finetuned from a pretrained video generation model using self-supervised double reprojection strategy. We evaluate EgoDemoGen on both simulation (RoboTwin2.0) and real-world robot. After training with a mixture of EgoDemoGen-generated novel egocentric demonstrations and original standard egocentric demonstrations, policy success rate improves **absolutely** by **+17.0%** for standard egocentric viewpoint and by **+17.7%** for novel egocentric viewpoints in simulation. On real-world robot, the **absolute** improvements are **+18.3%** and **+25.8%**. Moreover, performance continues to improve as the proportion of EgoDemoGen-generated demonstrations increases, with diminishing returns. These results demonstrate that EgoDemoGen provides a practical route to egocentric viewpoint-robust robotic manipulation.
Authors:Zhehao Dong, Xiaofeng Wang, Zheng Zhu, Yirui Wang, Yang Wang, Yukun Zhou, Boyuan Wang, Chaojun Ni, Runqi Ouyang, Wenkang Qin, Xinze Chen, Yun Ye, Guan Huang
Abstract:
Vision-language-action (VLA) models increasingly rely on diverse training data to achieve robust generalization. However, collecting large-scale real-world robot manipulation data across varied object appearances and environmental conditions remains prohibitively time-consuming and expensive. To overcome this bottleneck, we propose Embodied Manipulation Media Adaptation (EMMA), a VLA policy enhancement framework that integrates a generative data engine with an effective training pipeline. We introduce DreamTransfer, a diffusion Transformer-based framework for generating multi-view consistent, geometrically grounded embodied manipulation videos. DreamTransfer enables text-controlled visual editing of robot videos, transforming foreground, background, and lighting conditions without compromising 3D structure or geometrical plausibility. Furthermore, we explore hybrid training with real and generated data, and introduce AdaMix, a hard-sample-aware training strategy that dynamically reweights training batches to focus optimization on perceptually or kinematically challenging samples. Extensive experiments show that videos generated by DreamTransfer significantly outperform prior video generation methods in multi-view consistency, geometric fidelity, and text-conditioning accuracy. Crucially, VLAs trained with generated data enable robots to generalize to unseen object categories and novel visual domains using only demonstrations from a single appearance. In real-world robotic manipulation tasks with zero-shot visual domains, our approach achieves over a 200% relative performance gain compared to training on real data alone, and further improves by 13% with AdaMix, demonstrating its effectiveness in boosting policy generalization.
Authors:Xiaoyi Bao, Jindi Lv, Xiaofeng Wang, Zheng Zhu, Xinze Chen, YuKun Zhou, Jiancheng Lv, Xingang Wang, Guan Huang
Abstract:
Recent progress in diffusion models has greatly enhanced video generation quality, yet these models still require fine-tuning to improve specific dimensions like instance preservation, motion rationality, composition, and physical plausibility. Existing fine-tuning approaches often rely on human annotations and large-scale computational resources, limiting their practicality. In this work, we propose GigaVideo-1, an efficient fine-tuning framework that advances video generation without additional human supervision. Rather than injecting large volumes of high-quality data from external sources, GigaVideo-1 unlocks the latent potential of pre-trained video diffusion models through automatic feedback. Specifically, we focus on two key aspects of the fine-tuning process: data and optimization. To improve fine-tuning data, we design a prompt-driven data engine that constructs diverse, weakness-oriented training samples. On the optimization side, we introduce a reward-guided training strategy, which adaptively weights samples using feedback from pre-trained vision-language models with a realism constraint. We evaluate GigaVideo-1 on the VBench-2.0 benchmark using Wan2.1 as the baseline across 17 evaluation dimensions. Experiments show that GigaVideo-1 consistently improves performance on almost all the dimensions with an average gain of about 4% using only 4 GPU-hours. Requiring no manual annotations and minimal real data, GigaVideo-1 demonstrates both effectiveness and efficiency. Code, model, and data will be publicly available.
Authors:Boyuan Wang, Xiaofeng Wang, Chaojun Ni, Guosheng Zhao, Zhiqin Yang, Zheng Zhu, Muyang Zhang, Yukun Zhou, Xinze Chen, Guan Huang, Lihong Liu, Xingang Wang
Abstract:
Human-motion video generation has been a challenging task, primarily due to the difficulty inherent in learning human body movements. While some approaches have attempted to drive human-centric video generation explicitly through pose control, these methods typically rely on poses derived from existing videos, thereby lacking flexibility. To address this, we propose HumanDreamer, a decoupled human video generation framework that first generates diverse poses from text prompts and then leverages these poses to generate human-motion videos. Specifically, we propose MotionVid, the largest dataset for human-motion pose generation. Based on the dataset, we present MotionDiT, which is trained to generate structured human-motion poses from text prompts. Besides, a novel LAMA loss is introduced, which together contribute to a significant improvement in FID by 62.4%, along with respective enhancements in R-precision for top1, top2, and top3 by 41.8%, 26.3%, and 18.3%, thereby advancing both the Text-to-Pose control accuracy and FID metrics. Our experiments across various Pose-to-Video baselines demonstrate that the poses generated by our method can produce diverse and high-quality human-motion videos. Furthermore, our model can facilitate other downstream tasks, such as pose sequence prediction and 2D-3D motion lifting.
Authors:Xiaofeng Wang, Kang Zhao, Feng Liu, Jiayu Wang, Guosheng Zhao, Xiaoyi Bao, Zheng Zhu, Yingya Zhang, Xingang Wang
Abstract:
Video generation has emerged as a promising tool for world simulation, leveraging visual data to replicate real-world environments. Within this context, egocentric video generation, which centers on the human perspective, holds significant potential for enhancing applications in virtual reality, augmented reality, and gaming. However, the generation of egocentric videos presents substantial challenges due to the dynamic nature of egocentric viewpoints, the intricate diversity of actions, and the complex variety of scenes encountered. Existing datasets are inadequate for addressing these challenges effectively. To bridge this gap, we present EgoVid-5M, the first high-quality dataset specifically curated for egocentric video generation. EgoVid-5M encompasses 5 million egocentric video clips and is enriched with detailed action annotations, including fine-grained kinematic control and high-level textual descriptions. To ensure the integrity and usability of the dataset, we implement a sophisticated data cleaning pipeline designed to maintain frame consistency, action coherence, and motion smoothness under egocentric conditions. Furthermore, we introduce EgoDreamer, which is capable of generating egocentric videos driven simultaneously by action descriptions and kinematic control signals. The EgoVid-5M dataset, associated action annotations, and all data cleansing metadata will be released for the advancement of research in egocentric video generation.
Authors:Guosheng Zhao, Chaojun Ni, Xiaofeng Wang, Zheng Zhu, Xueyang Zhang, Yida Wang, Guan Huang, Xinze Chen, Boyuan Wang, Youyi Zhang, Wenjun Mei, Xingang Wang
Abstract:
Closed-loop simulation is essential for advancing end-to-end autonomous driving systems. Contemporary sensor simulation methods, such as NeRF and 3DGS, rely predominantly on conditions closely aligned with training data distributions, which are largely confined to forward-driving scenarios. Consequently, these methods face limitations when rendering complex maneuvers (e.g., lane change, acceleration, deceleration). Recent advancements in autonomous-driving world models have demonstrated the potential to generate diverse driving videos. However, these approaches remain constrained to 2D video generation, inherently lacking the spatiotemporal coherence required to capture intricacies of dynamic driving environments. In this paper, we introduce DriveDreamer4D, which enhances 4D driving scene representation leveraging world model priors. Specifically, we utilize the world model as a data machine to synthesize novel trajectory videos, where structured conditions are explicitly leveraged to control the spatial-temporal consistency of traffic elements. Besides, the cousin data training strategy is proposed to facilitate merging real and synthetic data for optimizing 4DGS. To our knowledge, DriveDreamer4D is the first to utilize video generation models for improving 4D reconstruction in driving scenarios. Experimental results reveal that DriveDreamer4D significantly enhances generation quality under novel trajectory views, achieving a relative improvement in FID by 32.1%, 46.4%, and 16.3% compared to PVG, S3Gaussian, and Deformable-GS. Moreover, DriveDreamer4D markedly enhances the spatiotemporal coherence of driving agents, which is verified by a comprehensive user study and the relative increases of 22.6%, 43.5%, and 15.6% in the NTA-IoU metric.
Authors:Ruiyan Wang, Teng Hu, Kaihui Huang, Zihan Su, Ran Yi, Lizhuang Ma
Abstract:
Pose-guided video generation refers to controlling the motion of subjects in generated video through a sequence of poses. It enables precise control over subject motion and has important applications in animation. However, current pose-guided video generation methods are limited to accepting only human poses as input, thus generalizing poorly to pose of other subjects. To address this issue, we propose PoseAnything, the first universal pose-guided video generation framework capable of handling both human and non-human characters, supporting arbitrary skeletal inputs. To enhance consistency preservation during motion, we introduce Part-aware Temporal Coherence Module, which divides the subject into different parts, establishes part correspondences, and computes cross-attention between corresponding parts across frames to achieve fine-grained part-level consistency. Additionally, we propose Subject and Camera Motion Decoupled CFG, a novel guidance strategy that, for the first time, enables independent camera movement control in pose-guided video generation, by separately injecting subject and camera motion control information into the positive and negative anchors of CFG. Furthermore, we present XPose, a high-quality public dataset containing 50,000 non-human pose-video pairs, along with an automated pipeline for annotation and filtering. Extensive experiments demonstrate that Pose-Anything significantly outperforms state-of-the-art methods in both effectiveness and generalization.
Authors:Yuheng Chen, Teng Hu, Jiangning Zhang, Zhucun Xue, Ran Yi, Lizhuang Ma
Abstract:
Recent advances in text-to-video diffusion models have enabled the generation of high-quality videos conditioned on textual descriptions. However, most existing text-to-video models rely solely on textual conditions, lacking general fine-grained controllability over video generation. To address this challenge, we propose InstanceV, a video generation framework that enables i) instance-level control and ii) global semantic consistency. Specifically, with the aid of proposed Instance-aware Masked Cross-Attention mechanism, InstanceV maximizes the utilization of additional instance-level grounding information to generate correctly attributed instances at designated spatial locations. To improve overall consistency, We introduce the Shared Timestep-Adaptive Prompt Enhancement module, which connects local instances with global semantics in a parameter-efficient manner. Furthermore, we incorporate Spatially-Aware Unconditional Guidance during both training and inference to alleviate the disappearance of small instances. Finally, we propose a new benchmark, named InstanceBench, which combines general video quality metrics with instance-aware metrics for more comprehensive evaluation on instance-level video generation. Extensive experiments demonstrate that InstanceV not only achieves remarkable instance-level controllability in video generation, but also outperforms existing state-of-the-art models in both general quality and instance-aware metrics across qualitative and quantitative evaluations.
Authors:Yuanpeng Tu, Hao Luo, Xi Chen, Xiang Bai, Fan Wang, Hengshuang Zhao
Abstract:
We introduce PlayerOne, the first egocentric realistic world simulator, facilitating immersive and unrestricted exploration within vividly dynamic environments. Given an egocentric scene image from the user, PlayerOne can accurately construct the corresponding world and generate egocentric videos that are strictly aligned with the real scene human motion of the user captured by an exocentric camera. PlayerOne is trained in a coarse-to-fine pipeline that first performs pretraining on large-scale egocentric text-video pairs for coarse-level egocentric understanding, followed by finetuning on synchronous motion-video data extracted from egocentric-exocentric video datasets with our automatic construction pipeline. Besides, considering the varying importance of different components, we design a part-disentangled motion injection scheme, enabling precise control of part-level movements. In addition, we devise a joint reconstruction framework that progressively models both the 4D scene and video frames, ensuring scene consistency in the long-form video generation. Experimental results demonstrate its great generalization ability in precise control of varying human movements and worldconsistent modeling of diverse scenarios. It marks the first endeavor into egocentric real-world simulation and can pave the way for the community to delve into fresh frontiers of world modeling and its diverse applications.
Authors:Yuanpeng Tu, Hao Luo, Xi Chen, Sihui Ji, Xiang Bai, Hengshuang Zhao
Abstract:
Despite significant advancements in video generation, inserting a given object into videos remains a challenging task. The difficulty lies in preserving the appearance details of the reference object and accurately modeling coherent motions at the same time. In this paper, we propose VideoAnydoor, a zero-shot video object insertion framework with high-fidelity detail preservation and precise motion control. Starting from a text-to-video model, we utilize an ID extractor to inject the global identity and leverage a box sequence to control the overall motion. To preserve the detailed appearance and meanwhile support fine-grained motion control, we design a pixel warper. It takes the reference image with arbitrary key-points and the corresponding key-point trajectories as inputs. It warps the pixel details according to the trajectories and fuses the warped features with the diffusion U-Net, thus improving detail preservation and supporting users in manipulating the motion trajectories. In addition, we propose a training strategy involving both videos and static images with a weighted loss to enhance insertion quality. VideoAnydoor demonstrates significant superiority over existing methods and naturally supports various downstream applications (e.g., talking head generation, video virtual try-on, multi-region editing) without task-specific fine-tuning.
Authors:Boyu Chen, Siran Chen, Kunchang Li, Qinglin Xu, Yu Qiao, Yali Wang
Abstract:
Video understanding has been considered as one critical step towards world modeling, which is an important long-term problem in AI research. Recently, multi-modal foundation models have shown such potential via large-scale pretraining. However, these models simply align encoders of different modalities via contrastive learning, while lacking deeper multi-modal interactions, which is critical for understanding complex target movements with diversified video scenes. To fill this gap, we propose a unified Super Encoding Network (SEN) for video understanding, which builds up such distinct interactions through recursive association of multi-modal encoders in the foundation models. Specifically, we creatively treat those well-trained encoders as "super neurons" in our SEN. Via designing a Recursive Association (RA) block, we progressively fuse multi-modalities with the input video, based on knowledge integrating, distributing, and prompting of super neurons in a recursive manner. In this way, our SEN can effectively encode deeper multi-modal interactions, for prompting various video understanding tasks in downstream. Extensive experiments show that, our SEN can remarkably boost the four most representative video tasks, including tracking, recognition, chatting, and editing, e.g., for pixel-level tracking, the average jaccard index improves 2.7%, temporal coherence(TC) drops 8.8% compared to the popular CaDeX++ approach. For one-shot video editing, textual alignment improves 6.4%, and frame consistency increases 4.1% compared to the popular TuneA-Video approach.
Authors:Jiajun jiao, Haowei Zhu, Puyuan Yang, Jianghui Wang, Ji Liu, Ziqiong Liu, Dong Li, Yuejian Fang, Junhai Yong, Bin Wang, Emad Barsoum
Abstract:
Diffusion models have achieved remarkable success in image and video generation. However, their inherently multiple step inference process imposes substantial computational overhead, hindering real-world deployment. Accelerating diffusion models is therefore essential, yet determining how to combine multiple model acceleration techniques remains a significant challenge. To address this issue, we introduce a framework driven by large language models (LLMs) for automated acceleration code generation and evaluation. First, we present DiffBench, a comprehensive benchmark that implements a three stage automated evaluation pipeline across diverse diffusion architectures, optimization combinations and deployment scenarios. Second, we propose DiffAgent, an agent that generates optimal acceleration strategies and codes for arbitrary diffusion models. DiffAgent employs a closed-loop workflow in which a planning component and a debugging component iteratively refine the output of a code generation component, while a genetic algorithm extracts performance feedback from the execution environment to guide subsequent code refinements. We provide a detailed explanation of the DiffBench construction and the design principles underlying DiffAgent. Extensive experiments show that DiffBench offers a thorough evaluation of generated codes and that DiffAgent significantly outperforms existing LLMs in producing effective diffusion acceleration strategies.
Authors:Quanjian Song, Zhihang Lin, Zhanpeng Zeng, Ziyue Zhang, Liujuan Cao, Rongrong Ji
Abstract:
Existing camera motion-controlled video generation methods face computational bottlenecks in fine-tuning and inference. This paper proposes LightMotion, a light and tuning-free method for simulating camera motion in video generation. Operating in the latent space, it eliminates additional fine-tuning, inpainting, and depth estimation, making it more streamlined than existing methods. The endeavors of this paper comprise: (i) The latent space permutation operation effectively simulates various camera motions like panning, zooming, and rotation. (ii) The latent space resampling strategy combines background-aware sampling and cross-frame alignment to accurately fill new perspectives while maintaining coherence across frames. (iii) Our in-depth analysis shows that the permutation and resampling cause an SNR shift in latent space, leading to poor-quality generation. To address this, we propose latent space correction, which reintroduces noise during denoising to mitigate SNR shift and enhance video generation quality. Exhaustive experiments show that our LightMotion outperforms existing methods, both quantitatively and qualitatively.
Authors:Zhi-Lin Huang, Yixuan Liu, Chujun Qin, Zhongdao Wang, Dong Zhou, Dong Li, Emad Barsoum
Abstract:
Recent advancements in diffusion models have significantly facilitated text-guided video editing. However, there is a relative scarcity of research on image-guided video editing, a method that empowers users to edit videos by merely indicating a target object in the initial frame and providing an RGB image as reference, without relying on the text prompts. In this paper, we propose a novel Image-guided Video Editing Diffusion model, termed IVEDiff for the image-guided video editing. IVEDiff is built on top of image editing models, and is equipped with learnable motion modules to maintain the temporal consistency of edited video. Inspired by self-supervised learning concepts, we introduce a masked motion modeling fine-tuning strategy that empowers the motion module's capabilities for capturing inter-frame motion dynamics, while preserving the capabilities for intra-frame semantic correlations modeling of the base image editing model. Moreover, an optical-flow-guided motion reference network is proposed to ensure the accurate propagation of information between edited video frames, alleviating the misleading effects of invalid information. We also construct a benchmark to facilitate further research. The comprehensive experiments demonstrate that our method is able to generate temporally smooth edited videos while robustly dealing with various editing objects with high quality.
Authors:Nantheera Anantrasirichai, Fan Zhang, David Bull
Abstract:
The rapid advancements in artificial intelligence (AI), particularly in generative AI and large language models (LLMs), have profoundly impacted the creative industries, enabling more innovative content creation, enhancing workflows, and democratizing access to creative tools. This paper explores these technological shifts, with particular focus on how those that have emerged since our previous review in 2022 have expanded creative opportunities and improved efficiency. These technological advancements have enhanced the capabilities of text-to-image, text-to-video, and multimodal generation technologies. In particular, key breakthroughs in LLMs have established new benchmarks in conversational AI, while advancements in image generators have revolutionized content creation. We also discuss the integration of AI into post-production workflows, which has significantly accelerated and improved traditional processes. Once content has been created, it must be delivered to its audiences; the media industry is now facing the demands of increased communication traffic due to creative content. We therefore include a discussion of how AI is beginning to transform the way we represent and compress media content. We highlight the trend toward unified AI frameworks capable of addressing and integrating multiple creative tasks, and we underscore the importance of human insight to drive the creative process and oversight to mitigate AI-generated inaccuracies. Finally, we explore AI's future potential in the creative sector, stressing the need to navigate emerging challenges and to maximize its benefits while addressing the associated risks.
Authors:Yaoru Li, Heyu Si, Federico Landi, Pilar Oplustil Gallegos, Ioannis Koutsoumpas, O. Ricardo Cortez Vazquez, Ruiju Fu, Qi Guo, Xin Jin, Shunyu Liu, Mingli Song
Abstract:
Text-to-video (T2V) diffusion models have recently achieved impressive visual quality, yet most systems still generate silent clips and treat audio as a secondary concern. Existing audio-video generation pipelines typically decompose the task into cascaded stages, which accumulate errors across modalities and are trained under separate objectives. Recent joint audio-video generators alleviate this issue but often rely on dual-tower architectures with ad-hoc cross-modal bridges and static, single-shot text conditioning, making it difficult to both reuse T2V backbones and to reason about how audio, video and language interact over time. To address these challenges, we propose 3MDiT, a unified tri-modal diffusion transformer for text-driven synchronized audio-video generation. Our framework models video, audio and text as jointly evolving streams: an isomorphic audio branch mirrors a T2V backbone, tri-modal omni-blocks perform feature-level fusion across the three modalities, and an optional dynamic text conditioning mechanism updates the text representation as audio and video evidence co-evolve. The design supports two regimes: training from scratch on audio-video data, and orthogonally adapting a pretrained T2V model without modifying its backbone. Experiments show that our approach generates high-quality videos and realistic audio while consistently improving audio-video synchronization and tri-modal alignment across a range of quantitative metrics.
Authors:Gongfan Fang, Xinyin Ma, Xinchao Wang
Abstract:
Large-scale video generative models have recently demonstrated strong visual capabilities, enabling the prediction of future frames that adhere to the logical and physical cues in the current observation. In this work, we investigate whether such capabilities can be harnessed for controllable image-to-video generation by interpreting visual signals embedded within the frames as instructions, a paradigm we term In-Video Instruction. In contrast to prompt-based control, which provides textual descriptions that are inherently global and coarse, In-Video Instruction encodes user guidance directly into the visual domain through elements such as overlaid text, arrows, or trajectories. This enables explicit, spatial-aware, and unambiguous correspondences between visual subjects and their intended actions by assigning distinct instructions to different objects. Extensive experiments on three state-of-the-art generators, including Veo 3.1, Kling 2.5, and Wan 2.2, show that video models can reliably interpret and execute such visually embedded instructions, particularly in complex multi-object scenarios.
Authors:Dongyang Liu, Shicheng Li, Yutong Liu, Zhen Li, Kai Wang, Xinyue Li, Qi Qin, Yufei Liu, Yi Xin, Zhongyu Li, Bin Fu, Chenyang Si, Yuewen Cao, Conghui He, Ziwei Liu, Yu Qiao, Qibin Hou, Hongsheng Li, Peng Gao
Abstract:
Recent advancements have established Diffusion Transformers (DiTs) as a dominant framework in generative modeling. Building on this success, Lumina-Next achieves exceptional performance in the generation of photorealistic images with Next-DiT. However, its potential for video generation remains largely untapped, with significant challenges in modeling the spatiotemporal complexity inherent to video data. To address this, we introduce Lumina-Video, a framework that leverages the strengths of Next-DiT while introducing tailored solutions for video synthesis. Lumina-Video incorporates a Multi-scale Next-DiT architecture, which jointly learns multiple patchifications to enhance both efficiency and flexibility. By incorporating the motion score as an explicit condition, Lumina-Video also enables direct control of generated videos' dynamic degree. Combined with a progressive training scheme with increasingly higher resolution and FPS, and a multi-source training scheme with mixed natural and synthetic data, Lumina-Video achieves remarkable aesthetic quality and motion smoothness at high training and inference efficiency. We additionally propose Lumina-V2A, a video-to-audio model based on Next-DiT, to create synchronized sounds for generated videos. Codes are released at https://www.github.com/Alpha-VLLM/Lumina-Video.
Authors:Qinglin Zeng, Kaitong Cai, Ruiqi Chen, Qinhan Lv, Keze Wang
Abstract:
Maintaining narrative coherence and visual consistency remains a central challenge in open-domain video generation. Existing text-to-video models often treat each shot independently, resulting in identity drift, scene inconsistency, and unstable temporal structure. We propose CoAgent, a collaborative and closed-loop framework for coherent video generation that formulates the process as a plan-synthesize-verify pipeline. Given a user prompt, style reference, and pacing constraints, a Storyboard Planner decomposes the input into structured shot-level plans with explicit entities, spatial relations, and temporal cues. A Global Context Manager maintains entity-level memory to preserve appearance and identity consistency across shots. Each shot is then generated by a Synthesis Module under the guidance of a Visual Consistency Controller, while a Verifier Agent evaluates intermediate results using vision-language reasoning and triggers selective regeneration when inconsistencies are detected. Finally, a pacing-aware editor refines temporal rhythm and transitions to match the desired narrative flow. Extensive experiments demonstrate that CoAgent significantly improves coherence, visual consistency, and narrative quality in long-form video generation.
Authors:Ruiqi Chen, Kaitong Cai, Yijia Fan, Keze Wang
Abstract:
Traditional animation production involves complex pipelines and significant manual labor cost. While recent video generation models such as Sora, Kling, and CogVideoX achieve impressive results on natural video synthesis, they exhibit notable limitations when applied to animation generation. Recent efforts, such as AniSora, demonstrate promising performance by fine-tuning image-to-video models for animation styles, yet analogous exploration in the text-to-video setting remains limited. In this work, we present PTTA, a pure text-to-animation framework for high-quality animation creation. We first construct a small-scale but high-quality paired dataset of animation videos and textual descriptions. Building upon the pretrained text-to-video model HunyuanVideo, we perform fine-tuning to adapt it to animation-style generation. Extensive visual evaluations across multiple dimensions show that the proposed approach consistently outperforms comparable baselines in animation video synthesis.
Authors:Zhenxing Zhang, Jiayan Teng, Zhuoyi Yang, Tiankun Cao, Cheng Wang, Xiaotao Gu, Jie Tang, Dan Guo, Meng Wang
Abstract:
We present Kaleido, a subject-to-video~(S2V) generation framework, which aims to synthesize subject-consistent videos conditioned on multiple reference images of target subjects. Despite recent progress in S2V generation models, existing approaches remain inadequate at maintaining multi-subject consistency and at handling background disentanglement, often resulting in lower reference fidelity and semantic drift under multi-image conditioning. These shortcomings can be attributed to several factors. Primarily, the training dataset suffers from a lack of diversity and high-quality samples, as well as cross-paired data, i.e., paired samples whose components originate from different instances. In addition, the current mechanism for integrating multiple reference images is suboptimal, potentially resulting in the confusion of multiple subjects. To overcome these limitations, we propose a dedicated data construction pipeline, incorporating low-quality sample filtering and diverse data synthesis, to produce consistency-preserving training data. Moreover, we introduce Reference Rotary Positional Encoding (R-RoPE) to process reference images, enabling stable and precise multi-image integration. Extensive experiments across numerous benchmarks demonstrate that Kaleido significantly outperforms previous methods in consistency, fidelity, and generalization, marking an advance in S2V generation.
Authors:Junsong Chen, Yuyang Zhao, Jincheng Yu, Ruihang Chu, Junyu Chen, Shuai Yang, Xianbang Wang, Yicheng Pan, Daquan Zhou, Huan Ling, Haozhe Liu, Hongwei Yi, Hao Zhang, Muyang Li, Yukang Chen, Han Cai, Sanja Fidler, Ping Luo, Song Han, Enze Xie
Abstract:
We introduce SANA-Video, a small diffusion model that can efficiently generate videos up to 720x1280 resolution and minute-length duration. SANA-Video synthesizes high-resolution, high-quality and long videos with strong text-video alignment at a remarkably fast speed, deployable on RTX 5090 GPU. Two core designs ensure our efficient, effective and long video generation: (1) Linear DiT: We leverage linear attention as the core operation, which is more efficient than vanilla attention given the large number of tokens processed in video generation. (2) Constant-Memory KV cache for Block Linear Attention: we design block-wise autoregressive approach for long video generation by employing a constant-memory state, derived from the cumulative properties of linear attention. This KV cache provides the Linear DiT with global context at a fixed memory cost, eliminating the need for a traditional KV cache and enabling efficient, minute-long video generation. In addition, we explore effective data filters and model training strategies, narrowing the training cost to 12 days on 64 H100 GPUs, which is only 1% of the cost of MovieGen. Given its low cost, SANA-Video achieves competitive performance compared to modern state-of-the-art small diffusion models (e.g., Wan 2.1-1.3B and SkyReel-V2-1.3B) while being 16x faster in measured latency. Moreover, SANA-Video can be deployed on RTX 5090 GPUs with NVFP4 precision, accelerating the inference speed of generating a 5-second 720p video from 71s to 29s (2.4x speedup). In summary, SANA-Video enables low-cost, high-quality video generation.
Authors:Shulian Zhang, Yong Guo, Long Peng, Ziyang Wang, Ye Chen, Wenbo Li, Xiao Zhang, Yulun Zhang, Jian Chen
Abstract:
Video Face Enhancement (VFE) seeks to reconstruct high-quality facial regions from degraded video sequences, a capability that underpins numerous applications including video conferencing, film restoration, and surveillance. Despite substantial progress in the field, current methods that primarily rely on video super-resolution and generative frameworks continue to face three fundamental challenges: (1) faithfully modeling intricate facial textures while preserving temporal consistency; (2) restricted model generalization due to the lack of high-quality face video training data; and (3) low efficiency caused by repeated denoising steps during inference. To address these challenges, we propose VividFace, a novel and efficient one-step diffusion framework for video face enhancement. Built upon the pretrained WANX video generation model, our method leverages powerful spatiotemporal priors through a single-step flow matching paradigm, enabling direct mapping from degraded inputs to high-quality outputs with significantly reduced inference time. To further boost efficiency, we propose a Joint Latent-Pixel Face-Focused Training strategy that employs stochastic switching between facial region optimization and global reconstruction, providing explicit supervision in both latent and pixel spaces through a progressive two-stage training process. Additionally, we introduce an MLLM-driven data curation pipeline for automated selection of high-quality video face datasets, enhancing model generalization. Extensive experiments demonstrate that VividFace achieves state-of-the-art results in perceptual quality, identity preservation, and temporal stability, while offering practical resources for the research community.
Authors:Zhuoyuan Mao, Mengjie Zhao, Qiyu Wu, Zhi Zhong, Wei-Hsiang Liao, Hiromi Wakaki, Yuki Mitsufuji
Abstract:
Music-to-music-video generation is a challenging task due to the intrinsic differences between the music and video modalities. The advent of powerful text-to-video diffusion models has opened a promising pathway for music-video (MV) generation by first addressing the music-to-MV description task and subsequently leveraging these models for video generation. In this study, we focus on the MV description generation task and propose a comprehensive pipeline encompassing training data construction and multimodal model fine-tuning. We fine-tune existing pre-trained multimodal models on our newly constructed music-to-MV description dataset based on the Music4All dataset, which integrates both musical and visual information. Our experimental results demonstrate that music representations can be effectively mapped to textual domains, enabling the generation of meaningful MV description directly from music inputs. We also identify key components in the dataset construction pipeline that critically impact the quality of MV description and highlight specific musical attributes that warrant greater focus for improved MV description generation.
Authors:Yulong Li, Yuxuan Zhang, Feilong Tang, Ming Hu, Zhixiang Lu, Haochen Xue, Jianghao Wu, Mian Zhou, Kang Dang, Chong Li, Yifang Wang, Imran Razzak, Jionglong Su
Abstract:
Sign language is the primary communication mode for 72 million hearing-impaired individuals worldwide, necessitating effective bidirectional Sign Language Production and Sign Language Translation systems. However, functional bidirectional systems require a unified linguistic environment, hindered by the lack of suitable unified datasets, particularly those providing the necessary pose information for accurate Sign Language Production (SLP) evaluation. Concurrently, current SLP evaluation methods like back-translation ignore pose accuracy, and high-quality coordinated generation remains challenging. To create this crucial environment and overcome these challenges, we introduce CNText2Sign and CNSign, which together constitute the first unified dataset aimed at supporting bidirectional accessibility systems for Chinese sign language; CNText2Sign provides 15,000 natural language-to-sign mappings and standardized skeletal keypoints for 8,643 vocabulary items supporting pose assessment. Building upon this foundation, we propose the AuraLLM model, which leverages a decoupled architecture with CNText2Sign's pose data for novel direct gesture accuracy assessment. The model employs retrieval augmentation and Cascading Vocabulary Resolution to handle semantic mapping and out-of-vocabulary words and achieves all-scenario production with controllable coordination of gestures and facial expressions via pose-conditioned video synthesis. Concurrently, our Sign Language Translation model SignMST-C employs targeted self-supervised pretraining for dynamic feature capture, achieving new SOTA results on PHOENIX2014-T with BLEU-4 scores up to 32.08. AuraLLM establishes a strong performance baseline on CNText2Sign with a BLEU-4 score of 50.41 under direct evaluation.
Authors:Masato Ishii, Akio Hayakawa, Takashi Shibuya, Yuki Mitsufuji
Abstract:
We introduce a novel pipeline for joint audio-visual editing that enhances the coherence between edited video and its accompanying audio. Our approach first applies state-of-the-art video editing techniques to produce the target video, then performs audio editing to align with the visual changes. To achieve this, we present a new video-to-audio generation model that conditions on the source audio, target video, and a text prompt. We extend the model architecture to incorporate conditional audio input and propose a data augmentation strategy that improves training efficiency. Furthermore, our model dynamically adjusts the influence of the source audio based on the complexity of the edits, preserving the original audio structure where possible. Experimental results demonstrate that our method outperforms existing approaches in maintaining audio-visual alignment and content integrity.
Authors:Shuai Fu, Jian Zhou, Qi Chen, Huang Jing, Huy Anh Nguyen, Xiaohan Liu, Zhixiong Zeng, Lin Ma, Quanshi Zhang, Qi Wu
Abstract:
Diffusion probabilistic models (DPMs) have demonstrated remarkable progress in generative tasks, such as image and video synthesis. However, they still often produce hallucinated samples (hallucinations) that conflict with real-world knowledge, such as generating an implausible duplicate cup floating beside another cup. Despite their prevalence, the lack of feasible methodologies for systematically quantifying such hallucinations hinders progress in addressing this challenge and obscures potential pathways for designing next-generation generative models under factual constraints. In this work, we bridge this gap by focusing on a specific form of hallucination, which we term counting hallucination, referring to the generation of an incorrect number of instances or structured objects, such as a hand image with six fingers, despite such patterns being absent from the training data. To this end, we construct a dataset suite CountHalluSet, with well-defined counting criteria, comprising ToyShape, SimObject, and RealHand. Using these datasets, we develop a standardized evaluation protocol for quantifying counting hallucinations, and systematically examine how different sampling conditions in DPMs, including solver type, ODE solver order, sampling steps, and initial noise, affect counting hallucination levels. Furthermore, we analyze their correlation with common evaluation metrics such as FID, revealing that this widely used image quality metric fails to capture counting hallucinations consistently. This work aims to take the first step toward systematically quantifying hallucinations in diffusion models and offer new insights into the investigation of hallucination phenomena in image generation.
Authors:Christian Simon, Masato Ishii, Akio Hayakawa, Zhi Zhong, Shusuke Takahashi, Takashi Shibuya, Yuki Mitsufuji
Abstract:
In the recent development of conditional diffusion models still require heavy supervised fine-tuning for performing control on a category of tasks. Training-free conditioning via guidance with off-the-shelf models is a favorable alternative to avoid further fine-tuning on the base model. However, the existing training-free guidance frameworks either have heavy memory requirements or offer sub-optimal control due to rough estimation. These shortcomings limit the applicability to control diffusion models that require intense computation, such as Text-to-Video (T2V) diffusion models. In this work, we propose Taming Inference Time Alignment for Guided Text-to-Video Diffusion Model, so-called TITAN-Guide, which overcomes memory space issues, and provides more optimal control in the guidance process compared to the counterparts. In particular, we develop an efficient method for optimizing diffusion latents without backpropagation from a discriminative guiding model. In particular, we study forward gradient descents for guided diffusion tasks with various options on directional directives. In our experiments, we demonstrate the effectiveness of our approach in efficiently managing memory during latent optimization, while previous methods fall short. Our proposed approach not only minimizes memory requirements but also significantly enhances T2V performance across a range of diffusion guidance benchmarks. Code, models, and demo are available at https://titanguide.github.io.
Authors:Bingyan Liu, Chengyu Wang, Tongtong Su, Huan Ten, Jun Huang, Kailing Guo, Kui Jia
Abstract:
Text-to-video (T2V) synthesis models, such as OpenAI's Sora, have garnered significant attention due to their ability to generate high-quality videos from a text prompt. In diffusion-based T2V models, the attention mechanism is a critical component. However, it remains unclear what intermediate features are learned and how attention blocks in T2V models affect various aspects of video synthesis, such as image quality and temporal consistency. In this paper, we conduct an in-depth perturbation analysis of the spatial and temporal attention blocks of T2V models using an information-theoretic approach. Our results indicate that temporal and spatial attention maps affect not only the timing and layout of the videos but also the complexity of spatiotemporal elements and the aesthetic quality of the synthesized videos. Notably, high-entropy attention maps are often key elements linked to superior video quality, whereas low-entropy attention maps are associated with the video's intra-frame structure. Based on our findings, we propose two novel methods to enhance video quality and enable text-guided video editing. These methods rely entirely on lightweight manipulation of the attention matrices in T2V models. The efficacy and effectiveness of our methods are further validated through experimental evaluation across multiple datasets.
Authors:Yifei Xia, Suhan Ling, Fangcheng Fu, Yujie Wang, Huixia Li, Xuefeng Xiao, Bin Cui
Abstract:
Generating high-fidelity long videos with Diffusion Transformers (DiTs) is often hindered by significant latency, primarily due to the computational demands of attention mechanisms. For instance, generating an 8-second 720p video (110K tokens) with HunyuanVideo takes about 600 PFLOPs, with around 500 PFLOPs consumed by attention computations. To address this issue, we propose AdaSpa, the first Dynamic Pattern and Online Precise Search sparse attention method. Firstly, to realize the Dynamic Pattern, we introduce a blockified pattern to efficiently capture the hierarchical sparsity inherent in DiTs. This is based on our observation that sparse characteristics of DiTs exhibit hierarchical and blockified structures between and within different modalities. This blockified approach significantly reduces the complexity of attention computation while maintaining high fidelity in the generated videos. Secondly, to enable Online Precise Search, we propose the Fused LSE-Cached Search with Head-adaptive Hierarchical Block Sparse Attention. This method is motivated by our finding that DiTs' sparse pattern and LSE vary w.r.t. inputs, layers, and heads, but remain invariant across denoising steps. By leveraging this invariance across denoising steps, it adapts to the dynamic nature of DiTs and allows for precise, real-time identification of sparse indices with minimal overhead. AdaSpa is implemented as an adaptive, plug-and-play solution and can be integrated seamlessly with existing DiTs, requiring neither additional fine-tuning nor a dataset-dependent profiling. Extensive experiments validate that AdaSpa delivers substantial acceleration across various models while preserving video quality, establishing itself as a robust and scalable approach to efficient video generation.
Authors:Kazuki Shimada, Christian Simon, Takashi Shibuya, Shusuke Takahashi, Yuki Mitsufuji
Abstract:
This work addresses the lack of multimodal generative models capable of producing high-quality videos with spatially aligned audio. While recent advancements in generative models have been successful in video generation, they often overlook the spatial alignment between audio and visuals, which is essential for immersive experiences. To tackle this problem, we establish a new research direction in benchmarking Spatially Aligned Audio-Video Generation (SAVG). We propose three key components for the benchmark: dataset, baseline, and metrics. We introduce a spatially aligned audio-visual dataset, derived from an audio-visual dataset consisting of multichannel audio, video, and spatiotemporal annotations of sound events. We propose a baseline audio-visual diffusion model focused on stereo audio-visual joint learning to accommodate spatial sound. Finally, we present metrics to evaluate video and spatial audio quality, including a new spatial audio-visual alignment metric. Our experimental result demonstrates that gaps exist between the baseline model and ground truth in terms of video and audio quality, and spatial alignment between both modalities.
Authors:Cheng Lei, Jiayu Zhang, Yue Ma, Xinyu Wang, Long Chen, Liang Tang, Yiqiang Yan, Fei Su, Zhicheng Zhao
Abstract:
Diffusion Transformers (DiT)-based video generation models with 3D full attention exhibit strong generative capabilities. Trajectory control represents a user-friendly task in the field of controllable video generation. However, existing methods either require substantial training resources or are specifically designed for U-Net, do not take advantage of the superior performance of DiT. To address these issues, we propose DiTraj, a simple but effective training-free framework for trajectory control in text-to-video generation, tailored for DiT. Specifically, first, to inject the object's trajectory, we propose foreground-background separation guidance: we use the Large Language Model (LLM) to convert user-provided prompts into foreground and background prompts, which respectively guide the generation of foreground and background regions in the video. Then, we analyze 3D full attention and explore the tight correlation between inter-token attention scores and position embedding. Based on this, we propose inter-frame Spatial-Temporal Decoupled 3D-RoPE (STD-RoPE). By modifying only foreground tokens' position embedding, STD-RoPE eliminates their cross-frame spatial discrepancies, strengthening cross-frame attention among them and thus enhancing trajectory control. Additionally, we achieve 3D-aware trajectory control by regulating the density of position embedding. Extensive experiments demonstrate that our method outperforms previous methods in both video quality and trajectory controllability.
Authors:Bangxiang Lan, Ruobing Xie, Ruixiang Zhao, Xingwu Sun, Zhanhui Kang, Gang Yang, Xirong Li
Abstract:
The Text-to-Video Retrieval (T2VR) task aims to retrieve unlabeled videos by textual queries with the same semantic meanings. Recent CLIP-based approaches have explored two frameworks: Two-Tower versus Single-Tower framework, yet the former suffers from low effectiveness, while the latter suffers from low efficiency. In this study, we explore a new Hybrid-Tower framework that can hybridize the advantages of the Two-Tower and Single-Tower framework, achieving high effectiveness and efficiency simultaneously. We propose a novel hybrid method, Fine-grained Pseudo-query Interaction and Generation for T2VR, ie, PIG, which includes a new pseudo-query generator designed to generate a pseudo-query for each video. This enables the video feature and the textual features of pseudo-query to interact in a fine-grained manner, similar to the Single-Tower approaches to hold high effectiveness, even before the real textual query is received. Simultaneously, our method introduces no additional storage or computational overhead compared to the Two-Tower framework during the inference stage, thus maintaining high efficiency. Extensive experiments on five commonly used text-video retrieval benchmarks demonstrate that our method achieves a significant improvement over the baseline, with an increase of $1.6\% \sim 3.9\%$ in R@1. Furthermore, our method matches the efficiency of Two-Tower models while achieving near state-of-the-art performance, highlighting the advantages of the Hybrid-Tower framework.
Authors:Chengyu Bai, Yuming Li, Zhongyu Zhao, Jintao Chen, Peidong Jia, Qi She, Ming Lu, Shanghang Zhang
Abstract:
Video generation has made significant strides with the development of diffusion models; however, achieving high temporal consistency remains a challenging task. Recently, FreeInit identified a training-inference gap and introduced a method to iteratively refine the initial noise during inference. However, iterative refinement significantly increases the computational cost associated with video generation. In this paper, we introduce FastInit, a fast noise initialization method that eliminates the need for iterative refinement. FastInit learns a Video Noise Prediction Network (VNPNet) that takes random noise and a text prompt as input, generating refined noise in a single forward pass. Therefore, FastInit greatly enhances the efficiency of video generation while achieving high temporal consistency across frames. To train the VNPNet, we create a large-scale dataset consisting of pairs of text prompts, random noise, and refined noise. Extensive experiments with various text-to-video models show that our method consistently improves the quality and temporal consistency of the generated videos. FastInit not only provides a substantial improvement in video generation but also offers a practical solution that can be applied directly during inference. The code and dataset will be released.
Authors:Ying Li, Xiaobao Wei, Xiaowei Chi, Yuming Li, Zhongyu Zhao, Hao Wang, Ningning Ma, Ming Lu, Shanghang Zhang
Abstract:
While recent advancements in robotic manipulation video synthesis have shown promise, significant challenges persist in ensuring effective instruction-following and achieving high visual quality. Recent methods, like RoboDreamer, utilize linguistic decomposition to divide instructions into separate lower-level primitives, conditioning the world model on these primitives to achieve compositional instruction-following. However, these separate primitives do not consider the relationships that exist between them. Furthermore, recent methods neglect valuable visual guidance, including depth and semantic guidance, both crucial for enhancing visual quality. This paper introduces ManipDreamer, an advanced world model based on the action tree and visual guidance. To better learn the relationships between instruction primitives, we represent the instruction as the action tree and assign embeddings to tree nodes, each instruction can acquire its embeddings by navigating through the action tree. The instruction embeddings can be used to guide the world model. To enhance visual quality, we combine depth and semantic guidance by introducing a visual guidance adapter compatible with the world model. This visual adapter enhances both the temporal and physical consistency of video generation. Based on the action tree and visual guidance, ManipDreamer significantly boosts the instruction-following ability and visual quality. Comprehensive evaluations on robotic manipulation benchmarks reveal that ManipDreamer achieves large improvements in video quality metrics in both seen and unseen tasks, with PSNR improved from 19.55 to 21.05, SSIM improved from 0.7474 to 0.7982 and reduced Flow Error from 3.506 to 3.201 in unseen tasks, compared to the recent RoboDreamer model. Additionally, our method increases the success rate of robotic manipulation tasks by 2.5% in 6 RLbench tasks on average.
Authors:Yifan Li, Yukai Gu, Yingqian Min, Zikang Liu, Yifan Du, Kun Zhou, Min Yang, Wayne Xin Zhao, Minghui Qiu
Abstract:
Recent breakthroughs in video generation have demonstrated an emerging capability termed Chain-of-Frames (CoF) reasoning, where models resolve complex tasks through the generation of continuous frames. While these models show promise for Generative Video Reasoning (GVR), existing evaluation frameworks often rely on single-frame assessments, which can lead to outcome-hacking, where a model reaches a correct conclusion through an erroneous process. To address this, we propose a process-aware evaluation paradigm. We introduce VIPER, a comprehensive benchmark spanning 16 tasks across temporal, structural, symbolic, spatial, physics, and planning reasoning. Furthermore, we propose Process-outcome Consistency (POC@r), a new metric that utilizes VLM-as-Judge with a hierarchical rubric to evaluate both the validity of the intermediate steps and the final result. Our experiments reveal that state-of-the-art video models achieve only about 20% POC@1.0 and exhibit a significant outcome-hacking. We further explore the impact of test-time scaling and sampling robustness, highlighting a substantial gap between current video generation and true generalized visual reasoning. Our benchmark will be publicly released.
Authors:Tianxin Xie, Wentao Lei, Guanjie Huang, Pengfei Zhang, Kai Jiang, Chunhui Zhang, Fengji Ma, Haoyu He, Han Zhang, Jiangshan He, Jinting Wang, Linghan Fang, Lufei Gao, Orkesh Ablet, Peihua Zhang, Ruolin Hu, Shengyu Li, Weilin Lin, Xiaoyang Feng, Xinyue Yang, Yan Rong, Yanyun Wang, Zihang Shao, Zelin Zhao, Chenxing Li, Shan Yang, Wenfu Wang, Meng Yu, Dong Yu, Li Liu
Abstract:
Text-to-audio-video (T2AV) generation underpins a wide range of applications demanding realistic audio-visual content, including virtual reality, world modeling, gaming, and filmmaking. However, existing T2AV models remain incapable of generating physically plausible sounds, primarily due to their limited understanding of physical principles. To situate current research progress, we present PhyAVBench, a challenging audio physics-sensitivity benchmark designed to systematically evaluate the audio physics grounding capabilities of existing T2AV models. PhyAVBench comprises 1,000 groups of paired text prompts with controlled physical variables that implicitly induce sound variations, enabling a fine-grained assessment of models' sensitivity to changes in underlying acoustic conditions. We term this evaluation paradigm the Audio-Physics Sensitivity Test (APST). Unlike prior benchmarks that primarily focus on audio-video synchronization, PhyAVBench explicitly evaluates models' understanding of the physical mechanisms underlying sound generation, covering 6 major audio physics dimensions, 4 daily scenarios (music, sound effects, speech, and their mix), and 50 fine-grained test points, ranging from fundamental aspects such as sound diffraction to more complex phenomena, e.g., Helmholtz resonance. Each test point consists of multiple groups of paired prompts, where each prompt is grounded by at least 20 newly recorded or collected real-world videos, thereby minimizing the risk of data leakage during model pre-training. Both prompts and videos are iteratively refined through rigorous human-involved error correction and quality control to ensure high quality. We argue that only models with a genuine grasp of audio-related physical principles can generate physically consistent audio-visual content. We hope PhyAVBench will stimulate future progress in this critical yet largely unexplored domain.
Authors:Run Ling, Ke Cao, Jian Lu, Ao Ma, Haowei Liu, Runze He, Changwei Wang, Rongtao Xu, Yihua Shao, Zhanjie Zhang, Peng Wu, Guibing Guo, Wei Feng, Zheng Zhang, Jingjing Lv, Junjie Shen, Ching Law, Xingwei Wang
Abstract:
Multi-subject video generation aims to synthesize videos from textual prompts and multiple reference images, ensuring that each subject preserves natural scale and visual fidelity. However, current methods face two challenges: scale inconsistency, where variations in subject size lead to unnatural generation, and permutation sensitivity, where the order of reference inputs causes subject distortion. In this paper, we propose MoFu, a unified framework that tackles both challenges. For scale inconsistency, we introduce Scale-Aware Modulation (SMO), an LLM-guided module that extracts implicit scale cues from the prompt and modulates features to ensure consistent subject sizes. To address permutation sensitivity, we present a simple yet effective Fourier Fusion strategy that processes the frequency information of reference features via the Fast Fourier Transform to produce a unified representation. Besides, we design a Scale-Permutation Stability Loss to jointly encourage scale-consistent and permutation-invariant generation. To further evaluate these challenges, we establish a dedicated benchmark with controlled variations in subject scale and reference permutation. Extensive experiments demonstrate that MoFu significantly outperforms existing methods in preserving natural scale, subject fidelity, and overall visual quality.
Authors:Bin Xia, Jiyang Liu, Yuechen Zhang, Bohao Peng, Ruihang Chu, Yitong Wang, Xinglong Wu, Bei Yu, Jiaya Jia
Abstract:
Instruction-based editing holds vast potential due to its simple and efficient interactive editing format. However, instruction-based editing, particularly for video, has been constrained by limited training data, hindering its practical application. To this end, we introduce DreamVE, a unified model for instruction-based image and video editing. Specifically, We propose a two-stage training strategy: first image editing, then video editing. This offers two main benefits: (1) Image data scales more easily, and models are more efficient to train, providing useful priors for faster and better video editing training. (2) Unifying image and video generation is natural and aligns with current trends. Moreover, we present comprehensive training data synthesis pipelines, including collage-based and generative model-based data synthesis. The collage-based data synthesis combines foreground objects and backgrounds to generate diverse editing data, such as object manipulation, background changes, and text modifications. It can easily generate billions of accurate, consistent, realistic, and diverse editing pairs. We pretrain DreamVE on extensive collage-based data to achieve strong performance in key editing types and enhance generalization and transfer capabilities. However, collage-based data lacks some attribute editing cases, leading to a relative drop in performance. In contrast, the generative model-based pipeline, despite being hard to scale up, offers flexibility in handling attribute editing cases. Therefore, we use generative model-based data to further fine-tune DreamVE. Besides, we design an efficient and powerful editing framework for DreamVE. We build on the SOTA T2V model and use a token concatenation with early drop approach to inject source image guidance, ensuring strong consistency and editability. The codes and models will be released.
Authors:Mohamed Elmoghany, Ryan Rossi, Seunghyun Yoon, Subhojyoti Mukherjee, Eslam Bakr, Puneet Mathur, Gang Wu, Viet Dac Lai, Nedim Lipka, Ruiyi Zhang, Varun Manjunatha, Chien Nguyen, Daksh Dangi, Abel Salinas, Mohammad Taesiri, Hongjie Chen, Xiaolei Huang, Joe Barrow, Nesreen Ahmed, Hoda Eldardiry, Namyong Park, Yu Wang, Jaemin Cho, Anh Totti Nguyen, Zhengzhong Tu, Thien Nguyen, Dinesh Manocha, Mohamed Elhoseiny, Franck Dernoncourt
Abstract:
Despite the significant progress that has been made in video generative models, existing state-of-the-art methods can only produce videos lasting 5-16 seconds, often labeled "long-form videos". Furthermore, videos exceeding 16 seconds struggle to maintain consistent character appearances and scene layouts throughout the narrative. In particular, multi-subject long videos still fail to preserve character consistency and motion coherence. While some methods can generate videos up to 150 seconds long, they often suffer from frame redundancy and low temporal diversity. Recent work has attempted to produce long-form videos featuring multiple characters, narrative coherence, and high-fidelity detail. We comprehensively studied 32 papers on video generation to identify key architectural components and training strategies that consistently yield these qualities. We also construct a comprehensive novel taxonomy of existing methods and present comparative tables that categorize papers by their architectural designs and performance characteristics.
Authors:Shuolin Xu, Siming Zheng, Ziyi Wang, HC Yu, Jinwei Chen, Huaqi Zhang, Bo Li, Peng-Tao Jiang
Abstract:
Recent advances in diffusion models have significantly improved conditional video generation, particularly in the pose-guided human image animation task. Although existing methods are capable of generating high-fidelity and time-consistent animation sequences in regular motions and static scenes, there are still obvious limitations when facing complex human body motions (Hypermotion) that contain highly dynamic, non-standard motions, and the lack of a high-quality benchmark for evaluation of complex human motion animations. To address this challenge, we introduce the \textbf{Open-HyperMotionX Dataset} and \textbf{HyperMotionX Bench}, which provide high-quality human pose annotations and curated video clips for evaluating and improving pose-guided human image animation models under complex human motion conditions. Furthermore, we propose a simple yet powerful DiT-based video generation baseline and design spatial low-frequency enhanced RoPE, a novel module that selectively enhances low-frequency spatial feature modeling by introducing learnable frequency scaling. Our method significantly improves structural stability and appearance consistency in highly dynamic human motion sequences. Extensive experiments demonstrate the effectiveness of our dataset and proposed approach in advancing the generation quality of complex human motion image animations. Code and dataset will be made publicly available.
Authors:Lujian Yao, Siming Zheng, Xinbin Yuan, Zhuoxuan Cai, Pu Wu, Jinwei Chen, Bo Li, Peng-Tao Jiang
Abstract:
Traditional photography composition approaches are dominated by 2D cropping-based methods. However, these methods fall short when scenes contain poorly arranged subjects. Professional photographers often employ perspective adjustment as a form of 3D recomposition, modifying the projected 2D relationships between subjects while maintaining their actual spatial positions to achieve better compositional balance. Inspired by this artistic practice, we propose photography perspective composition (PPC), extending beyond traditional cropping-based methods. However, implementing the PPC faces significant challenges: the scarcity of perspective transformation datasets and undefined assessment criteria for perspective quality. To address these challenges, we present three key contributions: (1) An automated framework for building PPC datasets through expert photographs. (2) A video generation approach that demonstrates the transformation process from less favorable to aesthetically enhanced perspectives. (3) A perspective quality assessment (PQA) model constructed based on human performance. Our approach is concise and requires no additional prompt instructions or camera trajectories, helping and guiding ordinary users to enhance their composition skills.
Authors:Shaoteng Liu, Tianyu Wang, Jui-Hsien Wang, Qing Liu, Zhifei Zhang, Joon-Young Lee, Yijun Li, Bei Yu, Zhe Lin, Soo Ye Kim, Jiaya Jia
Abstract:
Large-scale video generation models have the inherent ability to realistically model natural scenes. In this paper, we demonstrate that through a careful design of a generative video propagation framework, various video tasks can be addressed in a unified way by leveraging the generative power of such models. Specifically, our framework, GenProp, encodes the original video with a selective content encoder and propagates the changes made to the first frame using an image-to-video generation model. We propose a data generation scheme to cover multiple video tasks based on instance-level video segmentation datasets. Our model is trained by incorporating a mask prediction decoder head and optimizing a region-aware loss to aid the encoder to preserve the original content while the generation model propagates the modified region. This novel design opens up new possibilities: In editing scenarios, GenProp allows substantial changes to an object's shape; for insertion, the inserted objects can exhibit independent motion; for removal, GenProp effectively removes effects like shadows and reflections from the whole video; for tracking, GenProp is capable of tracking objects and their associated effects together. Experiment results demonstrate the leading performance of our model in various video tasks, and we further provide in-depth analyses of the proposed framework.
Authors:Yuchen Hu, Yu Gu, Chenxing Li, Rilin Chen, Dong Yu
Abstract:
With recent advances of AIGC, video generation have gained a surge of research interest in both academia and industry (e.g., Sora). However, it remains a challenge to produce temporally aligned audio to synchronize the generated video, considering the complicated semantic information included in the latter. In this work, inspired by the recent success of text-to-audio (TTA) generation, we first investigate the video-to-audio (VTA) generation framework based on latent diffusion model (LDM). Similar to latest pioneering exploration in VTA, our preliminary results also show great potentials of LDM in VTA task, but it still suffers from sub-optimal temporal alignment. To this end, we propose to enhance the temporal alignment of VTA with frame-level semantic information. With the recently popular grounding segment anything model (Grounding SAM), we can extract the fine-grained semantics in video frames to enable VTA to produce better-aligned audio signal. Extensive experiments demonstrate the effectiveness of our system on both objective and subjective evaluation metrics, which shows both better audio quality and fine-grained temporal alignment.
Authors:Kling Team, Jialu Chen, Yikang Ding, Zhixue Fang, Kun Gai, Yuan Gao, Kang He, Jingyun Hua, Boyuan Jiang, Mingming Lao, Xiaohan Li, Hui Liu, Jiwen Liu, Xiaoqiang Liu, Yuan Liu, Shun Lu, Yongsen Mao, Yingchao Shao, Huafeng Shi, Xiaoyu Shi, Peiqin Sun, Songlin Tang, Pengfei Wan, Chao Wang, Xuebo Wang, Haoxian Zhang, Yuanxing Zhang, Yan Zhou
Abstract:
Avatar video generation models have achieved remarkable progress in recent years. However, prior work exhibits limited efficiency in generating long-duration high-resolution videos, suffering from temporal drifting, quality degradation, and weak prompt following as video length increases. To address these challenges, we propose KlingAvatar 2.0, a spatio-temporal cascade framework that performs upscaling in both spatial resolution and temporal dimension. The framework first generates low-resolution blueprint video keyframes that capture global semantics and motion, and then refines them into high-resolution, temporally coherent sub-clips using a first-last frame strategy, while retaining smooth temporal transitions in long-form videos. To enhance cross-modal instruction fusion and alignment in extended videos, we introduce a Co-Reasoning Director composed of three modality-specific large language model (LLM) experts. These experts reason about modality priorities and infer underlying user intent, converting inputs into detailed storylines through multi-turn dialogue. A Negative Director further refines negative prompts to improve instruction alignment. Building on these components, we extend the framework to support ID-specific multi-character control. Extensive experiments demonstrate that our model effectively addresses the challenges of efficient, multimodally aligned long-form high-resolution video generation, delivering enhanced visual clarity, realistic lip-teeth rendering with accurate lip synchronization, strong identity preservation, and coherent multimodal instruction following.
Authors:Yidong Huang, Zun Wang, Han Lin, Dong-Ki Kim, Shayegan Omidshafiei, Jaehong Yoon, Yue Zhang, Mohit Bansal
Abstract:
Recent video generation approaches increasingly rely on planning intermediate control signals such as object trajectories to improve temporal coherence and motion fidelity. However, these methods mostly employ single-shot plans that are typically limited to simple motions, or iterative refinement which requires multiple calls to the video generator, incuring high computational cost. To overcome these limitations, we propose SketchVerify, a training-free, sketch-verification-based planning framework that improves motion planning quality with more dynamically coherent trajectories (i.e., physically plausible and instruction-consistent motions) prior to full video generation by introducing a test-time sampling and verification loop. Given a prompt and a reference image, our method predicts multiple candidate motion plans and ranks them using a vision-language verifier that jointly evaluates semantic alignment with the instruction and physical plausibility. To efficiently score candidate motion plans, we render each trajectory as a lightweight video sketch by compositing objects over a static background, which bypasses the need for expensive, repeated diffusion-based synthesis while achieving comparable performance. We iteratively refine the motion plan until a satisfactory one is identified, which is then passed to the trajectory-conditioned generator for final synthesis. Experiments on WorldModelBench and PhyWorldBench demonstrate that our method significantly improves motion quality, physical realism, and long-term consistency compared to competitive baselines while being substantially more efficient. Our ablation study further shows that scaling up the number of trajectory candidates consistently enhances overall performance.
Authors:Tianrui Feng, Zhi Li, Shuo Yang, Haocheng Xi, Muyang Li, Xiuyu Li, Lvmin Zhang, Keting Yang, Kelly Peng, Song Han, Maneesh Agrawala, Kurt Keutzer, Akio Kodaira, Chenfeng Xu
Abstract:
Generative models are reshaping the live-streaming industry by redefining how content is created, styled, and delivered. Previous image-based streaming diffusion models have powered efficient and creative live streaming products but have hit limits on temporal consistency due to the foundation of image-based designs. Recent advances in video diffusion have markedly improved temporal consistency and sampling efficiency for offline generation. However, offline generation systems primarily optimize throughput by batching large workloads. In contrast, live online streaming operates under strict service-level objectives (SLOs): time-to-first-frame must be minimal, and every frame must meet a per-frame deadline with low jitter. Besides, scalable multi-GPU serving for real-time streams remains largely unresolved so far. To address this, we present StreamDiffusionV2, a training-free pipeline for interactive live streaming with video diffusion models. StreamDiffusionV2 integrates an SLO-aware batching scheduler and a block scheduler, together with a sink-token--guided rolling KV cache, a motion-aware noise controller, and other system-level optimizations. Moreover, we introduce a scalable pipeline orchestration that parallelizes the diffusion process across denoising steps and network layers, achieving near-linear FPS scaling without violating latency guarantees. The system scales seamlessly across heterogeneous GPU environments and supports flexible denoising steps (e.g., 1--4), enabling both ultra-low-latency and higher-quality modes. Without TensorRT or quantization, StreamDiffusionV2 renders the first frame within 0.5s and attains 58.28 FPS with a 14B-parameter model and 64.52 FPS with a 1.3B-parameter model on four H100 GPUs, making state-of-the-art generative live streaming practical and accessible--from individual creators to enterprise-scale platforms.
Authors:Agneet Chatterjee, Rahim Entezari, Maksym Zhuravinskyi, Maksim Lapin, Reshinth Adithyan, Amit Raj, Chitta Baral, Yezhou Yang, Varun Jampani
Abstract:
Recent advances in video generation have enabled high-fidelity video synthesis from user provided prompts. However, existing models and benchmarks fail to capture the complexity and requirements of professional video generation. Towards that goal, we introduce Stable Cinemetrics, a structured evaluation framework that formalizes filmmaking controls into four disentangled, hierarchical taxonomies: Setup, Event, Lighting, and Camera. Together, these taxonomies define 76 fine-grained control nodes grounded in industry practices. Using these taxonomies, we construct a benchmark of prompts aligned with professional use cases and develop an automated pipeline for prompt categorization and question generation, enabling independent evaluation of each control dimension. We conduct a large-scale human study spanning 10+ models and 20K videos, annotated by a pool of 80+ film professionals. Our analysis, both coarse and fine-grained reveal that even the strongest current models exhibit significant gaps, particularly in Events and Camera-related controls. To enable scalable evaluation, we train an automatic evaluator, a vision-language model aligned with expert annotations that outperforms existing zero-shot baselines. SCINE is the first approach to situate professional video generation within the landscape of video generative models, introducing taxonomies centered around cinematic controls and supporting them with structured evaluation pipelines and detailed analyses to guide future research.
Authors:Yushuo Chen, Ruizhi Shao, Youxin Pang, Hongwen Zhang, Xinyi Wu, Rihui Wu, Yebin Liu
Abstract:
We present a novel framework to reconstruct human avatars from monocular videos. Recent approaches have struggled either to capture the fine-grained dynamic details from the input or to generate plausible details at novel viewpoints, which mainly stem from the limited representational capacity of the avatar model and insufficient observational data. To overcome these challenges, we propose to leverage the advanced video generative model, Human4DiT, to generate the human motions from alternative perspective as an additional supervision signal. This approach not only enriches the details in previously unseen regions but also effectively regularizes the avatar representation to mitigate artifacts. Furthermore, we introduce two complementary strategies to enhance video generation: To ensure consistent reproduction of human motion, we inject the physical identity into the model through video fine-tuning. For higher-resolution outputs with finer details, a patch-based denoising algorithm is employed. Experimental results demonstrate that our method outperforms recent state-of-the-art approaches and validate the effectiveness of our proposed strategies.
Authors:Jialu Li, Shoubin Yu, Han Lin, Jaemin Cho, Jaehong Yoon, Mohit Bansal
Abstract:
Recent advancements in text-to-video (T2V) diffusion models have significantly enhanced the visual quality of the generated videos. However, even recent T2V models find it challenging to follow text descriptions accurately, especially when the prompt requires accurate control of spatial layouts or object trajectories. A recent line of research uses layout guidance for T2V models that require fine-tuning or iterative manipulation of the attention map during inference time. This significantly increases the memory requirement, making it difficult to adopt a large T2V model as a backbone. To address this, we introduce Video-MSG, a training-free Guidance method for T2V generation based on Multimodal planning and Structured noise initialization. Video-MSG consists of three steps, where in the first two steps, Video-MSG creates Video Sketch, a fine-grained spatio-temporal plan for the final video, specifying background, foreground, and object trajectories, in the form of draft video frames. In the last step, Video-MSG guides a downstream T2V diffusion model with Video Sketch through noise inversion and denoising. Notably, Video-MSG does not need fine-tuning or attention manipulation with additional memory during inference time, making it easier to adopt large T2V models. Video-MSG demonstrates its effectiveness in enhancing text alignment with multiple T2V backbones (VideoCrafter2 and CogVideoX-5B) on popular T2V generation benchmarks (T2VCompBench and VBench). We provide comprehensive ablation studies about noise inversion ratio, different background generators, background object detection, and foreground object segmentation.
Authors:Priyaranjan Pattnayak, Hitesh Laxmichand Patel, Bhargava Kumar, Amit Agarwal, Ishan Banerjee, Srikant Panda, Tejaswini Kumar
Abstract:
Multimodal learning, a rapidly evolving field in artificial intelligence, seeks to construct more versatile and robust systems by integrating and analyzing diverse types of data, including text, images, audio, and video. Inspired by the human ability to assimilate information through many senses, this method enables applications such as text-to-video conversion, visual question answering, and image captioning. Recent developments in datasets that support multimodal language models (MLLMs) are highlighted in this overview. Large-scale multimodal datasets are essential because they allow for thorough testing and training of these models. With an emphasis on their contributions to the discipline, the study examines a variety of datasets, including those for training, domain-specific tasks, and real-world applications. It also emphasizes how crucial benchmark datasets are for assessing models' performance in a range of scenarios, scalability, and applicability. Since multimodal learning is always changing, overcoming these obstacles will help AI research and applications reach new heights.
Authors:Youxin Pang, Ruizhi Shao, Jiajun Zhang, Hanzhang Tu, Yun Liu, Boyao Zhou, Hongwen Zhang, Yebin Liu
Abstract:
In this paper, we introduce ManiVideo, a novel method for generating consistent and temporally coherent bimanual hand-object manipulation videos from given motion sequences of hands and objects. The core idea of ManiVideo is the construction of a multi-layer occlusion (MLO) representation that learns 3D occlusion relationships from occlusion-free normal maps and occlusion confidence maps. By embedding the MLO structure into the UNet in two forms, the model enhances the 3D consistency of dexterous hand-object manipulation. To further achieve the generalizable grasping of objects, we integrate Objaverse, a large-scale 3D object dataset, to address the scarcity of video data, thereby facilitating the learning of extensive object consistency. Additionally, we propose an innovative training strategy that effectively integrates multiple datasets, supporting downstream tasks such as human-centric hand-object manipulation video generation. Through extensive experiments, we demonstrate that our approach not only achieves video generation with plausible hand-object interaction and generalizable objects, but also outperforms existing SOTA methods.
Authors:Daeun Lee, Jaehong Yoon, Jaemin Cho, Mohit Bansal
Abstract:
Recent text-to-video (T2V) diffusion models have demonstrated impressive generation capabilities across various domains. However, these models often generate videos that have misalignments with text prompts, especially when the prompts describe complex scenes with multiple objects and attributes. To address this, we introduce VideoRepair, a novel model-agnostic, training-free video refinement framework that automatically identifies fine-grained text-video misalignments and generates explicit spatial and textual feedback, enabling a T2V diffusion model to perform targeted, localized refinements. VideoRepair consists of two stages: In (1) video refinement planning, we first detect misalignments by generating fine-grained evaluation questions and answering them using an MLLM. Based on video evaluation outputs, we identify accurately generated objects and construct localized prompts to precisely refine misaligned regions. In (2) localized refinement, we enhance video alignment by 'repairing' the misaligned regions from the original video while preserving the correctly generated areas. This is achieved by frame-wise region decomposition using our Region-Preserving Segmentation (RPS) module. On two popular video generation benchmarks (EvalCrafter and T2V-CompBench), VideoRepair substantially outperforms recent baselines across various text-video alignment metrics. We provide a comprehensive analysis of VideoRepair components and qualitative examples.
Authors:Xiang Deng, Youxin Pang, Xiaochen Zhao, Chao Xu, Lizhen Wang, Hongjiang Xiao, Shi Yan, Hongwen Zhang, Yebin Liu
Abstract:
This paper introduces Stereo-Talker, a novel one-shot audio-driven human video synthesis system that generates 3D talking videos with precise lip synchronization, expressive body gestures, temporally consistent photo-realistic quality, and continuous viewpoint control. The process follows a two-stage approach. In the first stage, the system maps audio input to high-fidelity motion sequences, encompassing upper-body gestures and facial expressions. To enrich motion diversity and authenticity, large language model (LLM) priors are integrated with text-aligned semantic audio features, leveraging LLMs' cross-modal generalization power to enhance motion quality. In the second stage, we improve diffusion-based video generation models by incorporating a prior-guided Mixture-of-Experts (MoE) mechanism: a view-guided MoE focuses on view-specific attributes, while a mask-guided MoE enhances region-based rendering stability. Additionally, a mask prediction module is devised to derive human masks from motion data, enhancing the stability and accuracy of masks and enabling mask guiding during inference. We also introduce a comprehensive human video dataset with 2,203 identities, covering diverse body gestures and detailed annotations, facilitating broad generalization. The code, data, and pre-trained models will be released for research purposes.
Authors:Jaehong Yoon, Shoubin Yu, Vaidehi Patil, Huaxiu Yao, Mohit Bansal
Abstract:
Recent advances in diffusion models have significantly enhanced their ability to generate high-quality images and videos, but they have also increased the risk of producing unsafe content. Existing unlearning/editing-based methods for safe generation remove harmful concepts from models but face several challenges: (1) They cannot instantly remove harmful concepts without training. (2) Their safe generation capabilities depend on collected training data. (3) They alter model weights, risking degradation in quality for content unrelated to toxic concepts. To address these, we propose SAFREE, a novel, training-free approach for safe T2I and T2V, that does not alter the model's weights. Specifically, we detect a subspace corresponding to a set of toxic concepts in the text embedding space and steer prompt embeddings away from this subspace, thereby filtering out harmful content while preserving intended semantics. To balance the trade-off between filtering toxicity and preserving safe concepts, SAFREE incorporates a novel self-validating filtering mechanism that dynamically adjusts the denoising steps when applying the filtered embeddings. Additionally, we incorporate adaptive re-attention mechanisms within the diffusion latent space to selectively diminish the influence of features related to toxic concepts at the pixel level. In the end, SAFREE ensures coherent safety checking, preserving the fidelity, quality, and safety of the output. SAFREE achieves SOTA performance in suppressing unsafe content in T2I generation compared to training-free baselines and effectively filters targeted concepts while maintaining high-quality images. It also shows competitive results against training-based methods. We extend SAFREE to various T2I backbones and T2V tasks, showcasing its flexibility and generalization. SAFREE provides a robust and adaptable safeguard for ensuring safe visual generation.
Authors:Xiaofeng Mao, Zhen Li, Chuanhao Li, Xiaojie Xu, Kaining Ying, Tong He, Jiangmiao Pang, Yu Qiao, Kaipeng Zhang
Abstract:
Recent approaches have demonstrated the promise of using diffusion models to generate interactive and explorable worlds. However, most of these methods face critical challenges such as excessively large parameter sizes, reliance on lengthy inference steps, and rapidly growing historical context, which severely limit real-time performance and lack text-controlled generation capabilities. To address these challenges, we propose \method, a novel framework designed to generate realistic, interactive, and continuous worlds from a single image or text prompt. \method achieves this through a carefully designed framework that supports keyboard-based exploration of the generated worlds. The framework comprises three core components: (1) a long-video generation framework integrating unified context compression with linear attention; (2) a real-time streaming acceleration strategy powered by bidirectional attention distillation and an enhanced text embedding scheme; (3) a text-controlled method for generating world events. We have provided the codebase in the supplementary material.
Authors:Eleonora Grassucci, Giuliano Galadini, Giordano Cicchetti, Aurelio Uncini, Fabio Antonacci, Danilo Comminiello
Abstract:
Video-to-audio (V2A) generation aims to synthesize realistic and semantically aligned audio from silent videos, with potential applications in video editing, Foley sound design, and assistive multimedia. Although the excellent results, existing approaches either require costly joint training on large-scale paired datasets or rely on pairwise similarities that may fail to capture global multimodal coherence. In this work, we propose a novel training-free multimodal guidance mechanism for V2A diffusion that leverages the volume spanned by the modality embeddings to enforce unified alignment across video, audio, and text. The proposed multimodal diffusion guidance (MDG) provides a lightweight, plug-and-play control signal that can be applied on top of any pretrained audio diffusion model without retraining. Experiments on VGGSound and AudioCaps demonstrate that our MDG consistently improves perceptual quality and multimodal alignment compared to baselines, proving the effectiveness of a joint multimodal guidance for V2A.
Authors:Bu Jin, Weize Li, Baihan Yang, Zhenxin Zhu, Junpeng Jiang, Huan-ang Gao, Haiyang Sun, Kun Zhan, Hengtong Hu, Xueyang Zhang, Peng Jia, Hao Zhao
Abstract:
Recent advancements in autonomous driving (AD) systems have highlighted the potential of world models in achieving robust and generalizable performance across both ordinary and challenging driving conditions. However, a key challenge remains: precise and flexible camera pose control, which is crucial for accurate viewpoint transformation and realistic simulation of scene dynamics. In this paper, we introduce PosePilot, a lightweight yet powerful framework that significantly enhances camera pose controllability in generative world models. Drawing inspiration from self-supervised depth estimation, PosePilot leverages structure-from-motion principles to establish a tight coupling between camera pose and video generation. Specifically, we incorporate self-supervised depth and pose readouts, allowing the model to infer depth and relative camera motion directly from video sequences. These outputs drive pose-aware frame warping, guided by a photometric warping loss that enforces geometric consistency across synthesized frames. To further refine camera pose estimation, we introduce a reverse warping step and a pose regression loss, improving viewpoint precision and adaptability. Extensive experiments on autonomous driving and general-domain video datasets demonstrate that PosePilot significantly enhances structural understanding and motion reasoning in both diffusion-based and auto-regressive world models. By steering camera pose with self-supervised depth, PosePilot sets a new benchmark for pose controllability, enabling physically consistent, reliable viewpoint synthesis in generative world models.
Authors:Ziqi Gao, Weikai Huang, Jieyu Zhang, Aniruddha Kembhavi, Ranjay Krishna
Abstract:
DALL-E and Sora have gained attention by producing implausible images, such as "astronauts riding a horse in space." Despite the proliferation of text-to-vision models that have inundated the internet with synthetic visuals, from images to 3D assets, current benchmarks predominantly evaluate these models on real-world scenes paired with captions. We introduce Generate Any Scene, a framework that systematically enumerates scene graphs representing a vast array of visual scenes, spanning realistic to imaginative compositions. Generate Any Scene leverages 'scene graph programming', a method for dynamically constructing scene graphs of varying complexity from a structured taxonomy of visual elements. This taxonomy includes numerous objects, attributes, and relations, enabling the synthesis of an almost infinite variety of scene graphs. Using these structured representations, Generate Any Scene translates each scene graph into a caption, enabling scalable evaluation of text-to-vision models through standard metrics. We conduct extensive evaluations across multiple text-to-image, text-to-video, and text-to-3D models, presenting key findings on model performance. We find that DiT-backbone text-to-image models align more closely with input captions than UNet-backbone models. Text-to-video models struggle with balancing dynamics and consistency, while both text-to-video and text-to-3D models show notable gaps in human preference alignment. We demonstrate the effectiveness of Generate Any Scene by conducting three practical applications leveraging captions generated by Generate Any Scene: 1) a self-improving framework where models iteratively enhance their performance using generated data, 2) a distillation process to transfer specific strengths from proprietary models to open-source counterparts, and 3) improvements in content moderation by identifying and generating challenging synthetic data.
Authors:Chengzhuo Tong, Mingkun Chang, Shenglong Zhang, Yuran Wang, Cheng Liang, Zhizheng Zhao, Ruichuan An, Bohan Zeng, Yang Shi, Yifan Dai, Ziming Zhao, Guanbin Li, Pengfei Wan, Yuanxing Zhang, Wentao Zhang
Abstract:
Recent video generation models have revealed the emergence of Chain-of-Frame (CoF) reasoning, enabling frame-by-frame visual inference. With this capability, video models have been successfully applied to various visual tasks (e.g., maze solving, visual puzzles). However, their potential to enhance text-to-image (T2I) generation remains largely unexplored due to the absence of a clearly defined visual reasoning starting point and interpretable intermediate states in the T2I generation process. To bridge this gap, we propose CoF-T2I, a model that integrates CoF reasoning into T2I generation via progressive visual refinement, where intermediate frames act as explicit reasoning steps and the final frame is taken as output. To establish such an explicit generation process, we curate CoF-Evol-Instruct, a dataset of CoF trajectories that model the generation process from semantics to aesthetics. To further improve quality and avoid motion artifacts, we enable independent encoding operation for each frame. Experiments show that CoF-T2I significantly outperforms the base video model and achieves competitive performance on challenging benchmarks, reaching 0.86 on GenEval and 7.468 on Imagine-Bench. These results indicate the substantial promise of video models for advancing high-quality text-to-image generation.
Authors:Ziyu Guo, Xinyan Chen, Renrui Zhang, Ruichuan An, Yu Qi, Dongzhi Jiang, Xiangtai Li, Manyuan Zhang, Hongsheng Li, Pheng-Ann Heng
Abstract:
Recent video generation models can produce high-fidelity, temporally coherent videos, indicating that they may encode substantial world knowledge. Beyond realistic synthesis, they also exhibit emerging behaviors indicative of visual perception, modeling, and manipulation. Yet, an important question still remains: Are video models ready to serve as zero-shot reasoners in challenging visual reasoning scenarios? In this work, we conduct an empirical study to comprehensively investigate this question, focusing on the leading and popular Veo-3. We evaluate its reasoning behavior across 12 dimensions, including spatial, geometric, physical, temporal, and embodied logic, systematically characterizing both its strengths and failure modes. To standardize this study, we curate the evaluation data into MME-CoF, a compact benchmark that enables in-depth and thorough assessment of Chain-of-Frame (CoF) reasoning. Our findings reveal that while current video models demonstrate promising reasoning patterns on short-horizon spatial coherence, fine-grained grounding, and locally consistent dynamics, they remain limited in long-horizon causal reasoning, strict geometric constraints, and abstract logic. Overall, they are not yet reliable as standalone zero-shot reasoners, but exhibit encouraging signs as complementary visual engines alongside dedicated reasoning models. Project page: https://video-cof.github.io
Authors:Jiusi Li, Jackson Jiang, Jinyu Miao, Miao Long, Tuopu Wen, Peijin Jia, Shengxiang Liu, Chunlei Yu, Maolin Liu, Yuzhan Cai, Kun Jiang, Mengmeng Yang, Diange Yang
Abstract:
Corner cases are crucial for training and validating autonomous driving systems, yet collecting them from the real world is often costly and hazardous. Editing objects within captured sensor data offers an effective alternative for generating diverse scenarios, commonly achieved through 3D Gaussian Splatting or image generative models. However, these approaches often suffer from limited visual fidelity or imprecise pose control. To address these issues, we propose G^2Editor, a framework designed for photorealistic and precise object editing in driving videos. Our method leverages a 3D Gaussian representation of the edited object as a dense prior, injected into the denoising process to ensure accurate pose control and spatial consistency. A scene-level 3D bounding box layout is employed to reconstruct occluded areas of non-target objects. Furthermore, to guide the appearance details of the edited object, we incorporate hierarchical fine-grained features as additional conditions during generation. Experiments on the Waymo Open Dataset demonstrate that G^2Editor effectively supports object repositioning, insertion, and deletion within a unified framework, outperforming existing methods in both pose controllability and visual quality, while also benefiting downstream data-driven tasks.
Authors:Yujie Wei, Shiwei Zhang, Hangjie Yuan, Biao Gong, Longxiang Tang, Xiang Wang, Haonan Qiu, Hengjia Li, Shuai Tan, Yingya Zhang, Hongming Shan
Abstract:
Relational video customization refers to the creation of personalized videos that depict user-specified relations between two subjects, a crucial task for comprehending real-world visual content. While existing methods can personalize subject appearances and motions, they still struggle with complex relational video customization, where precise relational modeling and high generalization across subject categories are essential. The primary challenge arises from the intricate spatial arrangements, layout variations, and nuanced temporal dynamics inherent in relations; consequently, current models tend to overemphasize irrelevant visual details rather than capturing meaningful interactions. To address these challenges, we propose DreamRelation, a novel approach that personalizes relations through a small set of exemplar videos, leveraging two key components: Relational Decoupling Learning and Relational Dynamics Enhancement. First, in Relational Decoupling Learning, we disentangle relations from subject appearances using relation LoRA triplet and hybrid mask training strategy, ensuring better generalization across diverse relationships. Furthermore, we determine the optimal design of relation LoRA triplet by analyzing the distinct roles of the query, key, and value features within MM-DiT's attention mechanism, making DreamRelation the first relational video generation framework with explainable components. Second, in Relational Dynamics Enhancement, we introduce space-time relational contrastive loss, which prioritizes relational dynamics while minimizing the reliance on detailed subject appearances. Extensive experiments demonstrate that DreamRelation outperforms state-of-the-art methods in relational video customization. Code and models will be made publicly available.
Authors:Rui Xie, Yinhong Liu, Penghao Zhou, Chen Zhao, Jun Zhou, Kai Zhang, Zhenyu Zhang, Jian Yang, Zhenheng Yang, Ying Tai
Abstract:
Image diffusion models have been adapted for real-world video super-resolution to tackle over-smoothing issues in GAN-based methods. However, these models struggle to maintain temporal consistency, as they are trained on static images, limiting their ability to capture temporal dynamics effectively. Integrating text-to-video (T2V) models into video super-resolution for improved temporal modeling is straightforward. However, two key challenges remain: artifacts introduced by complex degradations in real-world scenarios, and compromised fidelity due to the strong generative capacity of powerful T2V models (\textit{e.g.}, CogVideoX-5B). To enhance the spatio-temporal quality of restored videos, we introduce\textbf{~\name} (\textbf{S}patial-\textbf{T}emporal \textbf{A}ugmentation with T2V models for \textbf{R}eal-world video super-resolution), a novel approach that leverages T2V models for real-world video super-resolution, achieving realistic spatial details and robust temporal consistency. Specifically, we introduce a Local Information Enhancement Module (LIEM) before the global attention block to enrich local details and mitigate degradation artifacts. Moreover, we propose a Dynamic Frequency (DF) Loss to reinforce fidelity, guiding the model to focus on different frequency components across diffusion steps. Extensive experiments demonstrate\textbf{~\name}~outperforms state-of-the-art methods on both synthetic and real-world datasets.
Authors:Hengjia Li, Haonan Qiu, Shiwei Zhang, Xiang Wang, Yujie Wei, Zekun Li, Yingya Zhang, Boxi Wu, Deng Cai
Abstract:
The current text-to-video (T2V) generation has made significant progress in synthesizing realistic general videos, but it is still under-explored in identity-specific human video generation with customized ID images. The key challenge lies in maintaining high ID fidelity consistently while preserving the original motion dynamic and semantic following after the identity injection. Current video identity customization methods mainly rely on reconstructing given identity images on text-to-image models, which have a divergent distribution with the T2V model. This process introduces a tuning-inference gap, leading to dynamic and semantic degradation. To tackle this problem, we propose a novel framework, dubbed $\textbf{PersonalVideo}$, that applies a mixture of reward supervision on synthesized videos instead of the simple reconstruction objective on images. Specifically, we first incorporate identity consistency reward to effectively inject the reference's identity without the tuning-inference gap. Then we propose a novel semantic consistency reward to align the semantic distribution of the generated videos with the original T2V model, which preserves its dynamic and semantic following capability during the identity injection. With the non-reconstructive reward training, we further employ simulated prompt augmentation to reduce overfitting by supervising generated results in more semantic scenarios, gaining good robustness even with only a single reference image. Extensive experiments demonstrate our method's superiority in delivering high identity faithfulness while preserving the inherent video generation qualities of the original T2V model, outshining prior methods.
Authors:Yujie Wei, Shiwei Zhang, Hangjie Yuan, Xiang Wang, Haonan Qiu, Rui Zhao, Yutong Feng, Feng Liu, Zhizhong Huang, Jiaxin Ye, Yingya Zhang, Hongming Shan
Abstract:
Recent advances in customized video generation have enabled users to create videos tailored to both specific subjects and motion trajectories. However, existing methods often require complicated test-time fine-tuning and struggle with balancing subject learning and motion control, limiting their real-world applications. In this paper, we present DreamVideo-2, a zero-shot video customization framework capable of generating videos with a specific subject and motion trajectory, guided by a single image and a bounding box sequence, respectively, and without the need for test-time fine-tuning. Specifically, we introduce reference attention, which leverages the model's inherent capabilities for subject learning, and devise a mask-guided motion module to achieve precise motion control by fully utilizing the robust motion signal of box masks derived from bounding boxes. While these two components achieve their intended functions, we empirically observe that motion control tends to dominate over subject learning. To address this, we propose two key designs: 1) the masked reference attention, which integrates a blended latent mask modeling scheme into reference attention to enhance subject representations at the desired positions, and 2) a reweighted diffusion loss, which differentiates the contributions of regions inside and outside the bounding boxes to ensure a balance between subject and motion control. Extensive experimental results on a newly curated dataset demonstrate that DreamVideo-2 outperforms state-of-the-art methods in both subject customization and motion control. The dataset, code, and models will be made publicly available.
Authors:Lingling Cai, Kang Zhao, Hangjie Yuan, Yingya Zhang, Shiwei Zhang, Kejie Huang
Abstract:
Text-to-video diffusion models have made remarkable advancements. Driven by their ability to generate temporally coherent videos, research on zero-shot video editing using these fundamental models has expanded rapidly. To enhance editing quality, structural controls are frequently employed in video editing. Among these techniques, cross-attention mask control stands out for its effectiveness and efficiency. However, when cross-attention masks are naively applied to video editing, they can introduce artifacts such as blurring and flickering. Our experiments uncover a critical factor overlooked in previous video editing research: cross-attention masks are not consistently clear but vary with model structure and denoising timestep. To address this issue, we propose the metric Mask Matching Cost (MMC) that quantifies this variability and propose FreeMask, a method for selecting optimal masks tailored to specific video editing tasks. Using MMC-selected masks, we further improve the masked fusion mechanism within comprehensive attention features, e.g., temp, cross, and self-attention modules. Our approach can be seamlessly integrated into existing zero-shot video editing frameworks with better performance, requiring no control assistance or parameter fine-tuning but enabling adaptive decoupling of unedited semantic layouts with mask precision control. Extensive experiments demonstrate that FreeMask achieves superior semantic fidelity, temporal consistency, and editing quality compared to state-of-the-art methods.
Authors:Haoxuan Wang, Jiachen Tao, Junyi Wu, Gaowen Liu, Ramana Rao Kompella, Yan Yan
Abstract:
We present Motion Marionette, a zero-shot framework for rigid motion transfer from monocular source videos to single-view target images. Previous works typically employ geometric, generative, or simulation priors to guide the transfer process, but these external priors introduce auxiliary constraints that lead to trade-offs between generalizability and temporal consistency. To address these limitations, we propose guiding the motion transfer process through an internal prior that exclusively captures the spatial-temporal transformations and is shared between the source video and any transferred target video. Specifically, we first lift both the source video and the target image into a unified 3D representation space. Motion trajectories are then extracted from the source video to construct a spatial-temporal (SpaT) prior that is independent of object geometry and semantics, encoding relative spatial variations over time. This prior is further integrated with the target object to synthesize a controllable velocity field, which is subsequently refined using Position-Based Dynamics to mitigate artifacts and enhance visual coherence. The resulting velocity field can be flexibly employed for efficient video production. Empirical results demonstrate that Motion Marionette generalizes across diverse objects, produces temporally consistent videos that align well with the source motion, and supports controllable video generation.
Authors:Shuo Xing, Soumik Dey, Mingyang Wu, Ashirbad Mishra, Naveen Ravipati, Binbin Li, Hansi Wu, Zhengzhong Tu
Abstract:
Video quality assessment (VQA) is a fundamental computer vision task that aims to predict the perceptual quality of a given video in alignment with human judgments. Existing performant VQA models trained with direct score supervision suffer from (1) poor generalization across diverse content and tasks, ranging from user-generated content (UGC), short-form videos, to AI-generated content (AIGC), (2) limited interpretability, and (3) lack of extensibility to novel use cases or content types. We propose Q-Router, an agentic framework for universal VQA with a multi-tier model routing system. Q-Router integrates a diverse set of expert models and employs vision--language models (VLMs) as real-time routers that dynamically reason and then ensemble the most appropriate experts conditioned on the input video semantics. We build a multi-tiered routing system based on the computing budget, with the heaviest tier involving a specific spatiotemporal artifacts localization for interpretability. This agentic design enables Q-Router to combine the complementary strengths of specialized experts, achieving both flexibility and robustness in delivering consistent performance across heterogeneous video sources and tasks. Extensive experiments demonstrate that Q-Router matches or surpasses state-of-the-art VQA models on a variety of benchmarks, while substantially improving generalization and interpretability. Moreover, Q-Router excels on the quality-based question answering benchmark, Q-Bench-Video, highlighting its promise as a foundation for next-generation VQA systems. Finally, we show that Q-Router capably localizes spatiotemporal artifacts, showing potential as a reward function for post-training video generation models.
Authors:Zhenliang Ni, Qiangyu Yan, Mouxiao Huang, Tianning Yuan, Yehui Tang, Hailin Hu, Xinghao Chen, Yunhe Wang
Abstract:
The rapid advancement of video generation models has made it increasingly challenging to distinguish AI-generated videos from real ones. This issue underscores the urgent need for effective AI-generated video detectors to prevent the dissemination of false information through such videos. However, the development of high-performance generative video detectors is currently impeded by the lack of large-scale, high-quality datasets specifically designed for generative video detection. To this end, we introduce GenVidBench, a challenging AI-generated video detection dataset with several key advantages: 1) Cross Source and Cross Generator: The cross-generation source mitigates the interference of video content on the detection. The cross-generator ensures diversity in video attributes between the training and test sets, preventing them from being overly similar. 2) State-of-the-Art Video Generators: The dataset includes videos from 8 state-of-the-art AI video generators, ensuring that it covers the latest advancements in the field of video generation. 3) Rich Semantics: The videos in GenVidBench are analyzed from multiple dimensions and classified into various semantic categories based on their content. This classification ensures that the dataset is not only large but also diverse, aiding in the development of more generalized and effective detection models. We conduct a comprehensive evaluation of different advanced video generators and present a challenging setting. Additionally, we present rich experimental results including advanced video classification models as baselines. With the GenVidBench, researchers can efficiently develop and evaluate AI-generated video detection models. Datasets and code are available at https://genvidbench.github.io.
Authors:Yuelei Wang, Jian Zhang, Pengtao Jiang, Hao Zhang, Jinwei Chen, Bo Li
Abstract:
Despite the significant advancements made by Diffusion Transformer (DiT)-based methods in video generation, there remains a notable gap with controllable camera pose perspectives. Existing works such as OpenSora do NOT adhere precisely to anticipated trajectories and physical interactions, thereby limiting the flexibility in downstream applications. To alleviate this issue, we introduce CPA, a unified camera-pose-awareness text-to-video generation approach that elaborates the camera movement and integrates the textual, visual, and spatial conditions. Specifically, we deploy the Sparse Motion Encoding (SME) module to transform camera pose information into a spatial-temporal embedding and activate the Temporal Attention Injection (TAI) module to inject motion patches into each ST-DiT block. Our plug-in architecture accommodates the original DiT parameters, facilitating diverse types of camera poses and flexible object movement. Extensive qualitative and quantitative experiments demonstrate that our method outperforms LDM-based methods for long video generation while achieving optimal performance in trajectory consistency and object consistency.
Authors:Bolin Chen, Ru-Ling Liao, Yan Ye, Jie Chen, Shanzhi Yin, Xinrui Ju, Shiqi Wang, Yibo Fan
Abstract:
For bandwidth-constrained multimedia applications, simultaneously achieving ultra-low bitrate human video compression and accurate vertex prediction remains a critical challenge, as it demands the harmonization of dynamic motion modeling, detailed appearance synthesis, and geometric consistency. To address this challenge, we propose Sparse2Dense, a keypoint-driven generative framework that leverages extremely sparse 3D keypoints as compact transmitted symbols to enable ultra-low bitrate human video compression and precise human vertex prediction. The key innovation is the multi-task learning-based and keypoint-aware deep generative model, which could encode complex human motion via compact 3D keypoints and leverage these sparse keypoints to estimate dense motion for video synthesis with temporal coherence and realistic textures. Additionally, a vertex predictor is integrated to learn human vertex geometry through joint optimization with video generation, ensuring alignment between visual content and geometric structure. Extensive experiments demonstrate that the proposed Sparse2Dense framework achieves competitive compression performance for human video over traditional/generative video codecs, whilst enabling precise human vertex prediction for downstream geometry applications. As such, Sparse2Dense is expected to facilitate bandwidth-efficient human-centric media transmission, such as real-time motion analysis, virtual human animation, and immersive entertainment.
Authors:Tao Feng, Xianbing Zhao, Zhenhua Chen, Tien Tsin Wong, Hamid Rezatofighi, Gholamreza Haffari, Lizhen Qu
Abstract:
Recent advances in diffusion-based and autoregressive video generation models have achieved remarkable visual realism. However, these models typically lack accurate physical alignment, failing to replicate real-world dynamics in object motion. This limitation arises primarily from their reliance on learned statistical correlations rather than capturing mechanisms adhering to physical laws. To address this issue, we introduce a novel framework that integrates symbolic regression (SR) and trajectory-guided image-to-video (I2V) models for physics-grounded video forecasting. Our approach extracts motion trajectories from input videos, uses a retrieval-based pre-training mechanism to enhance symbolic regression, and discovers equations of motion to forecast physically accurate future trajectories. These trajectories then guide video generation without requiring fine-tuning of existing models. Evaluated on scenarios in Classical Mechanics, including spring-mass, pendulums, and projectile motions, our method successfully recovers ground-truth analytical equations and improves the physical alignment of generated videos over baseline methods.
Authors:Jiamin Wang, Yichen Yao, Xiang Feng, Hang Wu, Yaming Wang, Qingqiu Huang, Yuexin Ma, Xinge Zhu
Abstract:
The generation of temporally consistent, high-fidelity driving videos over extended horizons presents a fundamental challenge in autonomous driving world modeling. Existing approaches often suffer from error accumulation and feature misalignment due to inadequate decoupling of spatio-temporal dynamics and limited cross-frame feature propagation mechanisms. To address these limitations, we present STAGE (Streaming Temporal Attention Generative Engine), a novel auto-regressive framework that pioneers hierarchical feature coordination and multi-phase optimization for sustainable video synthesis. To achieve high-quality long-horizon driving video generation, we introduce Hierarchical Temporal Feature Transfer (HTFT) and a novel multi-stage training strategy. HTFT enhances temporal consistency between video frames throughout the video generation process by modeling the temporal and denoising process separately and transferring denoising features between frames. The multi-stage training strategy is to divide the training into three stages, through model decoupling and auto-regressive inference process simulation, thereby accelerating model convergence and reducing error accumulation. Experiments on the Nuscenes dataset show that STAGE has significantly surpassed existing methods in the long-horizon driving video generation task. In addition, we also explored STAGE's ability to generate unlimited-length driving videos. We generated 600 frames of high-quality driving videos on the Nuscenes dataset, which far exceeds the maximum length achievable by existing methods.
Authors:Aimon Rahman, Jiang Liu, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Yusheng Su, Vishal M. Patel, Zicheng Liu, Emad Barsoum
Abstract:
Recent advances in diffusion-based text-to-video (T2V) models have demonstrated remarkable progress, but these models still face challenges in generating videos with multiple objects. Most models struggle with accurately capturing complex object interactions, often treating some objects as static background elements and limiting their movement. In addition, they often fail to generate multiple distinct objects as specified in the prompt, resulting in incorrect generations or mixed features across objects. In this paper, we present a novel training-free approach for multi-object video generation that leverages the open world knowledge of diffusion models and large language models (LLMs). We use an LLM as the ``director'' of object trajectories, and apply the trajectories through noise re-initialization to achieve precise control of realistic movements. We further refine the generation process by manipulating the attention mechanism to better capture object-specific features and motion patterns, and prevent cross-object feature interference. Extensive experiments validate the effectiveness of our training free approach in significantly enhancing the multi-object generation capabilities of existing video diffusion models, resulting in 42% absolute improvement in motion dynamics and object generation accuracy, while also maintaining high fidelity and motion smoothness.
Authors:Haohe Liu, Gael Le Lan, Xinhao Mei, Zhaoheng Ni, Anurag Kumar, Varun Nagaraja, Wenwu Wang, Mark D. Plumbley, Yangyang Shi, Vikas Chandra
Abstract:
Video and audio are closely correlated modalities that humans naturally perceive together. While recent advancements have enabled the generation of audio or video from text, producing both modalities simultaneously still typically relies on either a cascaded process or multi-modal contrastive encoders. These approaches, however, often lead to suboptimal results due to inherent information losses during inference and conditioning. In this paper, we introduce SyncFlow, a system that is capable of simultaneously generating temporally synchronized audio and video from text. The core of SyncFlow is the proposed dual-diffusion-transformer (d-DiT) architecture, which enables joint video and audio modelling with proper information fusion. To efficiently manage the computational cost of joint audio and video modelling, SyncFlow utilizes a multi-stage training strategy that separates video and audio learning before joint fine-tuning. Our empirical evaluations demonstrate that SyncFlow produces audio and video outputs that are more correlated than baseline methods with significantly enhanced audio quality and audio-visual correspondence. Moreover, we demonstrate strong zero-shot capabilities of SyncFlow, including zero-shot video-to-audio generation and adaptation to novel video resolutions without further training.
Authors:Yabo Chen, Chen Yang, Jiemin Fang, Xiaopeng Zhang, Lingxi Xie, Wei Shen, Wenrui Dai, Hongkai Xiong, Qi Tian
Abstract:
Single-image 3D reconstruction remains a fundamental challenge in computer vision due to inherent geometric ambiguities and limited viewpoint information. Recent advances in Latent Video Diffusion Models (LVDMs) offer promising 3D priors learned from large-scale video data. However, leveraging these priors effectively faces three key challenges: (1) degradation in quality across large camera motions, (2) difficulties in achieving precise camera control, and (3) geometric distortions inherent to the diffusion process that damage 3D consistency. We address these challenges by proposing LiftImage3D, a framework that effectively releases LVDMs' generative priors while ensuring 3D consistency. Specifically, we design an articulated trajectory strategy to generate video frames, which decomposes video sequences with large camera motions into ones with controllable small motions. Then we use robust neural matching models, i.e. MASt3R, to calibrate the camera poses of generated frames and produce corresponding point clouds. Finally, we propose a distortion-aware 3D Gaussian splatting representation, which can learn independent distortions between frames and output undistorted canonical Gaussians. Extensive experiments demonstrate that LiftImage3D achieves state-of-the-art performance on two challenging datasets, i.e. LLFF, DL3DV, and Tanks and Temples, and generalizes well to diverse in-the-wild images, from cartoon illustrations to complex real-world scenes.
Authors:Weishi Mi, Yong Bao, Xiaowei Chi, Xiaozhu Ju, Zhiyuan Qin, Kuangzhi Ge, Kai Tang, Peidong Jia, Shanghang Zhang, Jian Tang
Abstract:
The vision-language-action (VLA) paradigm has enabled powerful robotic control by leveraging vision-language models, but its reliance on large-scale, high-quality robot data limits its generalization. Generative world models offer a promising alternative for general-purpose embodied AI, yet a critical gap remains between their pixel-level plans and physically executable actions. To this end, we propose the Tool-Centric Inverse Dynamics Model (TC-IDM). By focusing on the tool's imagined trajectory as synthesized by the world model, TC-IDM establishes a robust intermediate representation that bridges the gap between visual planning and physical control. TC-IDM extracts the tool's point cloud trajectories via segmentation and 3D motion estimation from generated videos. Considering diverse tool attributes, our architecture employs decoupled action heads to project these planned trajectories into 6-DoF end-effector motions and corresponding control signals. This plan-and-translate paradigm not only supports a wide range of end-effectors but also significantly improves viewpoint invariance. Furthermore, it exhibits strong generalization capabilities across long-horizon and out-of-distribution tasks, including interacting with deformable objects. In real-world evaluations, the world model with TC-IDM achieves an average success rate of 61.11 percent, with 77.7 percent on simple tasks and 38.46 percent on zero-shot deformable object tasks. It substantially outperforms end-to-end VLA-style baselines and other inverse dynamics models.
Authors:Chak-Wing Mak, Guanyu Zhu, Boyi Zhang, Hongji Li, Xiaowei Chi, Kevin Zhang, Yichen Wu, Yangfan He, Chun-Kai Fan, Wentao Lu, Kuangzhi Ge, Xinyu Fang, Hongyang He, Kuan Lu, Tianxiang Xu, Li Zhang, Yongxin Ni, Youhua Li, Shanghang Zhang
Abstract:
Modern foundational Multimodal Large Language Models (MLLMs) and video world models have advanced significantly in mathematical, common-sense, and visual reasoning, but their grasp of the underlying physics remains underexplored. Existing benchmarks attempting to measure this matter rely on synthetic, Visual Question Answer templates or focus on perceptual video quality that is tangential to measuring how well the video abides by physical laws. To address this fragmentation, we introduce PhysicsMind, a unified benchmark with both real and simulation environments that evaluates law-consistent reasoning and generation over three canonical principles: Center of Mass, Lever Equilibrium, and Newton's First Law. PhysicsMind comprises two main tasks: i) VQA tasks, testing whether models can reason and determine physical quantities and values from images or short videos, and ii) Video Generation(VG) tasks, evaluating if predicted motion trajectories obey the same center-of-mass, torque, and inertial constraints as the ground truth. A broad range of recent models and video generation models is evaluated on PhysicsMind and found to rely on appearance heuristics while often violating basic mechanics. These gaps indicate that current scaling and training are still insufficient for robust physical understanding, underscoring PhysicsMind as a focused testbed for physics-aware multimodal models. Our data will be released upon acceptance.
Authors:Yuxue Yang, Lue Fan, Ziqi Shi, Junran Peng, Feng Wang, Zhaoxiang Zhang
Abstract:
In this paper, we propose NeoVerse, a versatile 4D world model that is capable of 4D reconstruction, novel-trajectory video generation, and rich downstream applications. We first identify a common limitation of scalability in current 4D world modeling methods, caused either by expensive and specialized multi-view 4D data or by cumbersome training pre-processing. In contrast, our NeoVerse is built upon a core philosophy that makes the full pipeline scalable to diverse in-the-wild monocular videos. Specifically, NeoVerse features pose-free feed-forward 4D reconstruction, online monocular degradation pattern simulation, and other well-aligned techniques. These designs empower NeoVerse with versatility and generalization to various domains. Meanwhile, NeoVerse achieves state-of-the-art performance in standard reconstruction and generation benchmarks. Our project page is available at https://neoverse-4d.github.io
Authors:Jing Lin, Ruisi Wang, Junzhe Lu, Ziqi Huang, Guorui Song, Ailing Zeng, Xian Liu, Chen Wei, Wanqi Yin, Qingping Sun, Zhongang Cai, Lei Yang, Ziwei Liu
Abstract:
Despite recent advances in 3D human motion generation (MoGen) on standard benchmarks, existing models still face a fundamental bottleneck in their generalization capability. In contrast, adjacent generative fields, most notably video generation (ViGen), have demonstrated remarkable generalization in modeling human behaviors, highlighting transferable insights that MoGen can leverage. Motivated by this observation, we present a comprehensive framework that systematically transfers knowledge from ViGen to MoGen across three key pillars: data, modeling, and evaluation. First, we introduce ViMoGen-228K, a large-scale dataset comprising 228,000 high-quality motion samples that integrates high-fidelity optical MoCap data with semantically annotated motions from web videos and synthesized samples generated by state-of-the-art ViGen models. The dataset includes both text-motion pairs and text-video-motion triplets, substantially expanding semantic diversity. Second, we propose ViMoGen, a flow-matching-based diffusion transformer that unifies priors from MoCap data and ViGen models through gated multimodal conditioning. To enhance efficiency, we further develop ViMoGen-light, a distilled variant that eliminates video generation dependencies while preserving strong generalization. Finally, we present MBench, a hierarchical benchmark designed for fine-grained evaluation across motion quality, prompt fidelity, and generalization ability. Extensive experiments show that our framework significantly outperforms existing approaches in both automatic and human evaluations. The code, data, and benchmark will be made publicly available.
Authors:Do Xuan Long, Xingchen Wan, Hootan Nakhost, Chen-Yu Lee, Tomas Pfister, Sercan Ö. Arık
Abstract:
Despite rapid advances in text-to-video synthesis, generated video quality remains critically dependent on precise user prompts. Existing test-time optimization methods, successful in other domains, struggle with the multi-faceted nature of video. In this work, we introduce VISTA (Video Iterative Self-improvemenT Agent), a novel multi-agent system that autonomously improves video generation through refining prompts in an iterative loop. VISTA first decomposes a user idea into a structured temporal plan. After generation, the best video is identified through a robust pairwise tournament. This winning video is then critiqued by a trio of specialized agents focusing on visual, audio, and contextual fidelity. Finally, a reasoning agent synthesizes this feedback to introspectively rewrite and enhance the prompt for the next generation cycle. Experiments on single- and multi-scene video generation scenarios show that while prior methods yield inconsistent gains, VISTA consistently improves video quality and alignment with user intent, achieving up to 60% pairwise win rate against state-of-the-art baselines. Human evaluators concur, preferring VISTA outputs in 66.4% of comparisons.
Authors:Zezhong Qian, Xiaowei Chi, Yuming Li, Shizun Wang, Zhiyuan Qin, Xiaozhu Ju, Sirui Han, Shanghang Zhang
Abstract:
Wrist-view observations are crucial for VLA models as they capture fine-grained hand-object interactions that directly enhance manipulation performance. Yet large-scale datasets rarely include such recordings, resulting in a substantial gap between abundant anchor views and scarce wrist views. Existing world models cannot bridge this gap, as they require a wrist-view first frame and thus fail to generate wrist-view videos from anchor views alone. Amid this gap, recent visual geometry models such as VGGT emerge with geometric and cross-view priors that make it possible to address extreme viewpoint shifts. Inspired by these insights, we propose WristWorld, the first 4D world model that generates wrist-view videos solely from anchor views. WristWorld operates in two stages: (i) Reconstruction, which extends VGGT and incorporates our Spatial Projection Consistency (SPC) Loss to estimate geometrically consistent wrist-view poses and 4D point clouds; (ii) Generation, which employs our video generation model to synthesize temporally coherent wrist-view videos from the reconstructed perspective. Experiments on Droid, Calvin, and Franka Panda demonstrate state-of-the-art video generation with superior spatial consistency, while also improving VLA performance, raising the average task completion length on Calvin by 3.81% and closing 42.4% of the anchor-wrist view gap.
Authors:Tianyi Yan, Wencheng Han, Xia Zhou, Xueyang Zhang, Kun Zhan, Cheng-zhong Xu, Jianbing Shen
Abstract:
Synthetic data is crucial for advancing autonomous driving (AD) systems, yet current state-of-the-art video generation models, despite their visual realism, suffer from subtle geometric distortions that limit their utility for downstream perception tasks. We identify and quantify this critical issue, demonstrating a significant performance gap in 3D object detection when using synthetic versus real data. To address this, we introduce Reinforcement Learning with Geometric Feedback (RLGF), RLGF uniquely refines video diffusion models by incorporating rewards from specialized latent-space AD perception models. Its core components include an efficient Latent-Space Windowing Optimization technique for targeted feedback during diffusion, and a Hierarchical Geometric Reward (HGR) system providing multi-level rewards for point-line-plane alignment, and scene occupancy coherence. To quantify these distortions, we propose GeoScores. Applied to models like DiVE on nuScenes, RLGF substantially reduces geometric errors (e.g., VP error by 21\%, Depth error by 57\%) and dramatically improves 3D object detection mAP by 12.7\%, narrowing the gap to real-data performance. RLGF offers a plug-and-play solution for generating geometrically sound and reliable synthetic videos for AD development.
Authors:Artem Lykov, Jeffrin Sam, Hung Khang Nguyen, Vladislav Kozlovskiy, Yara Mahmoud, Valerii Serpiva, Miguel Altamirano Cabrera, Mikhail Konenkov, Dzmitry Tsetserukou
Abstract:
We introduce PhysicalAgent, an agentic framework for robotic manipulation that integrates iterative reasoning, diffusion-based video generation, and closed-loop execution. Given a textual instruction, our method generates short video demonstrations of candidate trajectories, executes them on the robot, and iteratively re-plans in response to failures. This approach enables robust recovery from execution errors. We evaluate PhysicalAgent across multiple perceptual modalities (egocentric, third-person, and simulated) and robotic embodiments (bimanual UR3, Unitree G1 humanoid, simulated GR1), comparing against state-of-the-art task-specific baselines. Experiments demonstrate that our method consistently outperforms prior approaches, achieving up to 83% success on human-familiar tasks. Physical trials reveal that first-attempt success is limited (20-30%), yet iterative correction increases overall success to 80% across platforms. These results highlight the potential of video-based generative reasoning for general-purpose robotic manipulation and underscore the importance of iterative execution for recovering from initial failures. Our framework paves the way for scalable, adaptable, and robust robot control.
Authors:Haosong Liu, Yuge Cheng, Zihan Liu, Aiyue Chen, Jing Lin, Yiwu Yao, Chen Chen, Jingwen Leng, Yu Feng, Minyi Guo
Abstract:
Video diffusion transformers (vDiTs) have made impressive progress in text-to-video generation, but their high computational demands present major challenges for practical deployment. While existing acceleration methods reduce workload at various granularities, they often rely on heuristics, limiting their applicability.
We introduce ASTRAEA, an automatic framework that searches for near-optimal configurations for vDiT-based video generation. At its core, ASTRAEA proposes a lightweight token selection mechanism and a memory-efficient, GPU-parallel sparse attention strategy, enabling linear reductions in execution time with minimal impact on generation quality. To determine optimal token reduction for different timesteps, we further design a search framework that leverages a classic evolutionary algorithm to automatically determine the distribution of the token budget effectively. Together, ASTRAEA achieves up to 2.4x inference speedup on a single GPU with great scalability (up to 13.2x speedup on 8 GPUs) while retaining better video quality compared to the state-of-the-art methods (<0.5% loss on the VBench score compared to the baseline vDiT models).
Authors:Chenyu Wang, Shuo Yan, Yixuan Chen, Yujiang Wang, Mingzhi Dong, Xiaochen Yang, Dongsheng Li, Robert P. Dick, Qin Lv, Fan Yang, Tun Lu, Ning Gu, Li Shang
Abstract:
Video generation using diffusion-based models is constrained by high computational costs due to the frame-wise iterative diffusion process. This work presents a Diffusion Reuse MOtion (Dr. Mo) network to accelerate latent video generation. Our key discovery is that coarse-grained noises in earlier denoising steps have demonstrated high motion consistency across consecutive video frames. Following this observation, Dr. Mo propagates those coarse-grained noises onto the next frame by incorporating carefully designed, lightweight inter-frame motions, eliminating massive computational redundancy in frame-wise diffusion models. The more sensitive and fine-grained noises are still acquired via later denoising steps, which can be essential to retain visual qualities. As such, deciding which intermediate steps should switch from motion-based propagations to denoising can be a crucial problem and a key tradeoff between efficiency and quality. Dr. Mo employs a meta-network named Denoising Step Selector (DSS) to dynamically determine desirable intermediate steps across video frames. Extensive evaluations on video generation and editing tasks have shown that Dr. Mo can substantially accelerate diffusion models in video tasks with improved visual qualities.
Authors:Haotian Ye, Kaiwen Zheng, Jiashu Xu, Puheng Li, Huayu Chen, Jiaqi Han, Sheng Liu, Qinsheng Zhang, Hanzi Mao, Zekun Hao, Prithvijit Chattopadhyay, Dinghao Yang, Liang Feng, Maosheng Liao, Junjie Bai, Ming-Yu Liu, James Zou, Stefano Ermon
Abstract:
Aligning generative diffusion models with human preferences via reinforcement learning (RL) is critical yet challenging. Most existing algorithms are often vulnerable to reward hacking, such as quality degradation, over-stylization, or reduced diversity. Our analysis demonstrates that this can be attributed to the inherent limitations of their regularization, which provides unreliable penalties. We introduce Data-regularized Diffusion Reinforcement Learning (DDRL), a novel framework that uses the forward KL divergence to anchor the policy to an off-policy data distribution. Theoretically, DDRL enables robust, unbiased integration of RL with standard diffusion training. Empirically, this translates into a simple yet effective algorithm that combines reward maximization with diffusion loss minimization. With over a million GPU hours of experiments and ten thousand double-blind human evaluations, we demonstrate on high-resolution video generation tasks that DDRL significantly improves rewards while alleviating the reward hacking seen in baselines, achieving the highest human preference and establishing a robust and scalable paradigm for diffusion post-training.
Authors:Hongbo Liu, Jingwen He, Yi Jin, Dian Zheng, Yuhao Dong, Fan Zhang, Ziqi Huang, Yinan He, Yangguang Li, Weichao Chen, Yu Qiao, Wanli Ouyang, Shengjie Zhao, Ziwei Liu
Abstract:
Cinematography, the fundamental visual language of film, is essential for conveying narrative, emotion, and aesthetic quality. While recent Vision-Language Models (VLMs) demonstrate strong general visual understanding, their proficiency in comprehending the nuanced cinematic grammar embedded within individual shots remains largely unexplored and lacks robust evaluation. This critical gap limits both fine-grained visual comprehension and the precision of AI-assisted video generation. To address this, we introduce ShotBench, a comprehensive benchmark specifically designed for cinematic language understanding. It features over 3.5k expert-annotated QA pairs from images and video clips, meticulously curated from over 200 acclaimed (predominantly Oscar-nominated) films and spanning eight key cinematography dimensions. Our evaluation of 24 leading VLMs on ShotBench reveals their substantial limitations: even the top-performing model achieves less than 60% average accuracy, particularly struggling with fine-grained visual cues and complex spatial reasoning. To catalyze advancement in this domain, we construct ShotQA, a large-scale multimodal dataset comprising approximately 70k cinematic QA pairs. Leveraging ShotQA, we develop ShotVL through supervised fine-tuning and Group Relative Policy Optimization. ShotVL significantly outperforms all existing open-source and proprietary models on ShotBench, establishing new state-of-the-art performance. We open-source our models, data, and code to foster rapid progress in this crucial area of AI-driven cinematic understanding and generation.
Authors:Yifan Wang, Yanyu Li, Sergey Tulyakov, Yun Fu, Anil Kag
Abstract:
Direct Preference Optimization (DPO) has recently improved Text-to-Video (T2V) generation by enhancing visual fidelity and text alignment. However, current methods rely on non-differentiable preference signals from human annotations or learned reward models. This reliance makes training label-intensive, bias-prone, and easy-to-game, which often triggers reward hacking and unstable training. We propose Diffusion-DRF, a differentiable reward flow for fine-tuning video diffusion models using a frozen, off-the-shelf Vision-Language Model (VLM) as a training-free critic. Diffusion-DRF directly backpropagates VLM feedback through the diffusion denoising chain, converting logit-level responses into token-aware gradients for optimization. We propose an automated, aspect-structured prompting pipeline to obtain reliable multi-dimensional VLM feedback, while gradient checkpointing enables efficient updates through the final denoising steps. Diffusion-DRF improves video quality and semantic alignment while mitigating reward hacking and collapse -- without additional reward models or preference datasets. It is model-agnostic and readily generalizes to other diffusion-based generative tasks.
Authors:Tianqi Liu, Zhaoxi Chen, Zihao Huang, Shaocong Xu, Saining Zhang, Chongjie Ye, Bohan Li, Zhiguo Cao, Wei Li, Hao Zhao, Ziwei Liu
Abstract:
Recent advances in illumination control extend image-based methods to video, yet still facing a trade-off between lighting fidelity and temporal consistency. Moving beyond relighting, a key step toward generative modeling of real-world scenes is the joint control of camera trajectory and illumination, since visual dynamics are inherently shaped by both geometry and lighting. To this end, we present Light-X, a video generation framework that enables controllable rendering from monocular videos with both viewpoint and illumination control. 1) We propose a disentangled design that decouples geometry and lighting signals: geometry and motion are captured via dynamic point clouds projected along user-defined camera trajectories, while illumination cues are provided by a relit frame consistently projected into the same geometry. These explicit, fine-grained cues enable effective disentanglement and guide high-quality illumination. 2) To address the lack of paired multi-view and multi-illumination videos, we introduce Light-Syn, a degradation-based pipeline with inverse-mapping that synthesizes training pairs from in-the-wild monocular footage. This strategy yields a dataset covering static, dynamic, and AI-generated scenes, ensuring robust training. Extensive experiments show that Light-X outperforms baseline methods in joint camera-illumination control and surpasses prior video relighting methods under both text- and background-conditioned settings.
Authors:Jay Zhangjie Wu, Xuanchi Ren, Tianchang Shen, Tianshi Cao, Kai He, Yifan Lu, Ruiyuan Gao, Enze Xie, Shiyi Lan, Jose M. Alvarez, Jun Gao, Sanja Fidler, Zian Wang, Huan Ling
Abstract:
Recent advances in large generative models have significantly advanced image editing and in-context image generation, yet a critical gap remains in ensuring physical consistency, where edited objects must remain coherent. This capability is especially vital for world simulation related tasks. In this paper, we present ChronoEdit, a framework that reframes image editing as a video generation problem. First, ChronoEdit treats the input and edited images as the first and last frames of a video, allowing it to leverage large pretrained video generative models that capture not only object appearance but also the implicit physics of motion and interaction through learned temporal consistency. Second, ChronoEdit introduces a temporal reasoning stage that explicitly performs editing at inference time. Under this setting, the target frame is jointly denoised with reasoning tokens to imagine a plausible editing trajectory that constrains the solution space to physically viable transformations. The reasoning tokens are then dropped after a few steps to avoid the high computational cost of rendering a full video. To validate ChronoEdit, we introduce PBench-Edit, a new benchmark of image-prompt pairs for contexts that require physical consistency, and demonstrate that ChronoEdit surpasses state-of-the-art baselines in both visual fidelity and physical plausibility. Code and models for both the 14B and 2B variants of ChronoEdit will be released on the project page: https://research.nvidia.com/labs/toronto-ai/chronoedit
Authors:Xingyu Fu, Siyi Liu, Yinuo Xu, Pan Lu, Guangqiuse Hu, Tianbo Yang, Taran Anantasagar, Christopher Shen, Yikai Mao, Yuanzhe Liu, Keyush Shah, Chung Un Lee, Yejin Choi, James Zou, Dan Roth, Chris Callison-Burch
Abstract:
Can humans identify AI-generated (fake) videos and provide grounded reasons? While video generation models have advanced rapidly, a critical dimension -- whether humans can detect deepfake traces within a generated video, i.e., spatiotemporal grounded visual artifacts that reveal a video as machine generated -- has been largely overlooked. We introduce DeeptraceReward, the first fine-grained, spatially- and temporally- aware benchmark that annotates human-perceived fake traces for video generation reward. The dataset comprises 4.3K detailed annotations across 3.3K high-quality generated videos. Each annotation provides a natural-language explanation, pinpoints a bounding-box region containing the perceived trace, and marks precise onset and offset timestamps. We consolidate these annotations into 9 major categories of deepfake traces that lead humans to identify a video as AI-generated, and train multimodal language models (LMs) as reward models to mimic human judgments and localizations. On DeeptraceReward, our 7B reward model outperforms GPT-5 by 34.7% on average across fake clue identification, grounding, and explanation. Interestingly, we observe a consistent difficulty gradient: binary fake v.s. real classification is substantially easier than fine-grained deepfake trace detection; within the latter, performance degrades from natural language explanations (easiest), to spatial grounding, to temporal labeling (hardest). By foregrounding human-perceived deepfake traces, DeeptraceReward provides a rigorous testbed and training signal for socially aware and trustworthy video generation.
Authors:Xuanchi Ren, Yifan Lu, Tianshi Cao, Ruiyuan Gao, Shengyu Huang, Amirmojtaba Sabour, Tianchang Shen, Tobias Pfaff, Jay Zhangjie Wu, Runjian Chen, Seung Wook Kim, Jun Gao, Laura Leal-Taixe, Mike Chen, Sanja Fidler, Huan Ling
Abstract:
Collecting and annotating real-world data for safety-critical physical AI systems, such as Autonomous Vehicle (AV), is time-consuming and costly. It is especially challenging to capture rare edge cases, which play a critical role in training and testing of an AV system. To address this challenge, we introduce the Cosmos-Drive-Dreams - a synthetic data generation (SDG) pipeline that aims to generate challenging scenarios to facilitate downstream tasks such as perception and driving policy training. Powering this pipeline is Cosmos-Drive, a suite of models specialized from NVIDIA Cosmos world foundation model for the driving domain and are capable of controllable, high-fidelity, multi-view, and spatiotemporally consistent driving video generation. We showcase the utility of these models by applying Cosmos-Drive-Dreams to scale the quantity and diversity of driving datasets with high-fidelity and challenging scenarios. Experimentally, we demonstrate that our generated data helps in mitigating long-tail distribution problems and enhances generalization in downstream tasks such as 3D lane detection, 3D object detection and driving policy learning. We open source our pipeline toolkit, dataset and model weights through the NVIDIA's Cosmos platform.
Project page: https://research.nvidia.com/labs/toronto-ai/cosmos_drive_dreams
Authors:Xuanchi Ren, Tianchang Shen, Jiahui Huang, Huan Ling, Yifan Lu, Merlin Nimier-David, Thomas Müller, Alexander Keller, Sanja Fidler, Jun Gao
Abstract:
We present GEN3C, a generative video model with precise Camera Control and temporal 3D Consistency. Prior video models already generate realistic videos, but they tend to leverage little 3D information, leading to inconsistencies, such as objects popping in and out of existence. Camera control, if implemented at all, is imprecise, because camera parameters are mere inputs to the neural network which must then infer how the video depends on the camera. In contrast, GEN3C is guided by a 3D cache: point clouds obtained by predicting the pixel-wise depth of seed images or previously generated frames. When generating the next frames, GEN3C is conditioned on the 2D renderings of the 3D cache with the new camera trajectory provided by the user. Crucially, this means that GEN3C neither has to remember what it previously generated nor does it have to infer the image structure from the camera pose. The model, instead, can focus all its generative power on previously unobserved regions, as well as advancing the scene state to the next frame. Our results demonstrate more precise camera control than prior work, as well as state-of-the-art results in sparse-view novel view synthesis, even in challenging settings such as driving scenes and monocular dynamic video. Results are best viewed in videos. Check out our webpage! https://research.nvidia.com/labs/toronto-ai/GEN3C/
Authors:Deyu Zhou, Quan Sun, Yuang Peng, Kun Yan, Runpei Dong, Duomin Wang, Zheng Ge, Nan Duan, Xiangyu Zhang, Lionel M. Ni, Heung-Yeung Shum
Abstract:
We introduce MAGI, a hybrid video generation framework that combines masked modeling for intra-frame generation with causal modeling for next-frame generation. Our key innovation, Complete Teacher Forcing (CTF), conditions masked frames on complete observation frames rather than masked ones (namely Masked Teacher Forcing, MTF), enabling a smooth transition from token-level (patch-level) to frame-level autoregressive generation. CTF significantly outperforms MTF, achieving a +23% improvement in FVD scores on first-frame conditioned video prediction. To address issues like exposure bias, we employ targeted training strategies, setting a new benchmark in autoregressive video generation. Experiments show that MAGI can generate long, coherent video sequences exceeding 100 frames, even when trained on as few as 16 frames, highlighting its potential for scalable, high-quality video generation.
Authors:Gabrijel Boduljak, Yushi Lan, Christian Rupprecht, Andrea Vedaldi
Abstract:
Forecasting from partial observations is central to world modeling. Many recent methods represent the world through images, and reduce forecasting to stochastic video generation. Although such methods excel at realism and visual fidelity, predicting pixels is computationally intensive and not directly useful in many applications, as it requires translating RGB into signals useful for decision making. An alternative approach uses features from vision foundation models (VFMs) as world representations, performing deterministic regression to predict future world states. These features can be directly translated into actionable signals such as semantic segmentation and depth, while remaining computationally efficient. However, deterministic regression averages over multiple plausible futures, undermining forecast accuracy by failing to capture uncertainty. To address this crucial limitation, we introduce a generative forecaster that performs autoregressive flow matching in VFM feature space. Our key insight is that generative modeling in this space requires encoding VFM features into a compact latent space suitable for diffusion. We show that this latent space preserves information more effectively than previously used PCA-based alternatives, both for forecasting and other applications, such as image generation. Our latent predictions can be easily decoded into multiple useful and interpretable output modalities: semantic segmentation, depth, surface normals, and even RGB. With matched architecture and compute, our method produces sharper and more accurate predictions than regression across all modalities. Our results suggest that stochastic conditional generation of VFM features offers a promising and scalable foundation for future world models.
Authors:Shikang Zheng, Guantao Chen, Qinming Zhou, Yuqi Lin, Lixuan He, Chang Zou, Peiliang Cai, Jiacheng Liu, Linfeng Zhang
Abstract:
Diffusion Transformers offer state-of-the-art fidelity in image and video synthesis, but their iterative sampling process remains a major bottleneck due to the high cost of transformer forward passes at each timestep. To mitigate this, feature caching has emerged as a training-free acceleration technique that reuses or forecasts hidden representations. However, existing methods often apply a uniform caching strategy across all feature dimensions, ignoring their heterogeneous dynamic behaviors. Therefore, we adopt a new perspective by modeling hidden feature evolution as a mixture of ODEs across dimensions, and introduce HyCa, a Hybrid ODE solver inspired caching framework that applies dimension-wise caching strategies. HyCa achieves near-lossless acceleration across diverse domains and models, including 5.55 times speedup on FLUX, 5.56 times speedup on HunyuanVideo, 6.24 times speedup on Qwen-Image and Qwen-Image-Edit without retraining.
Authors:Liang Feng, Shikang Zheng, Jiacheng Liu, Yuqi Lin, Qinming Zhou, Peiliang Cai, Xinyu Wang, Junjie Chen, Chang Zou, Yue Ma, Linfeng Zhang
Abstract:
Diffusion models have achieved remarkable success in content generation but suffer from prohibitive computational costs due to iterative sampling. While recent feature caching methods tend to accelerate inference through temporal extrapolation, these methods still suffer from server quality loss due to the failure in modeling the complex dynamics of feature evolution. To solve this problem, this paper presents HiCache, a training-free acceleration framework that fundamentally improves feature prediction by aligning mathematical tools with empirical properties. Our key insight is that feature derivative approximations in Diffusion Transformers exhibit multivariate Gaussian characteristics, motivating the use of Hermite polynomials-the potentially theoretically optimal basis for Gaussian-correlated processes. Besides, We further introduce a dual-scaling mechanism that ensures numerical stability while preserving predictive accuracy. Extensive experiments demonstrate HiCache's superiority: achieving 6.24x speedup on FLUX.1-dev while exceeding baseline quality, maintaining strong performance across text-to-image, video generation, and super-resolution tasks. Core implementation is provided in the appendix, with complete code to be released upon acceptance.
Authors:Shikang Zheng, Liang Feng, Xinyu Wang, Qinming Zhou, Peiliang Cai, Chang Zou, Jiacheng Liu, Yuqi Lin, Junjie Chen, Yue Ma, Linfeng Zhang
Abstract:
Diffusion Transformers (DiTs) have demonstrated exceptional performance in high-fidelity image and video generation. To reduce their substantial computational costs, feature caching techniques have been proposed to accelerate inference by reusing hidden representations from previous timesteps. However, current methods often struggle to maintain generation quality at high acceleration ratios, where prediction errors increase sharply due to the inherent instability of long-step forecasting. In this work, we adopt an ordinary differential equation (ODE) perspective on the hidden-feature sequence, modeling layer representations along the trajectory as a feature-ODE. We attribute the degradation of existing caching strategies to their inability to robustly integrate historical features under large skipping intervals. To address this, we propose FoCa (Forecast-then-Calibrate), which treats feature caching as a feature-ODE solving problem. Extensive experiments on image synthesis, video generation, and super-resolution tasks demonstrate the effectiveness of FoCa, especially under aggressive acceleration. Without additional training, FoCa achieves near-lossless speedups of 5.50 times on FLUX, 6.45 times on HunyuanVideo, 3.17 times on Inf-DiT, and maintains high quality with a 4.53 times speedup on DiT.
Authors:Yanzuo Lu, Yuxi Ren, Xin Xia, Shanchuan Lin, Xing Wang, Xuefeng Xiao, Andy J. Ma, Xiaohua Xie, Jian-Huang Lai
Abstract:
Distribution Matching Distillation (DMD) is a promising score distillation technique that compresses pre-trained teacher diffusion models into efficient one-step or multi-step student generators. Nevertheless, its reliance on the reverse Kullback-Leibler (KL) divergence minimization potentially induces mode collapse (or mode-seeking) in certain applications. To circumvent this inherent drawback, we propose Adversarial Distribution Matching (ADM), a novel framework that leverages diffusion-based discriminators to align the latent predictions between real and fake score estimators for score distillation in an adversarial manner. In the context of extremely challenging one-step distillation, we further improve the pre-trained generator by adversarial distillation with hybrid discriminators in both latent and pixel spaces. Different from the mean squared error used in DMD2 pre-training, our method incorporates the distributional loss on ODE pairs collected from the teacher model, and thus providing a better initialization for score distillation fine-tuning in the next stage. By combining the adversarial distillation pre-training with ADM fine-tuning into a unified pipeline termed DMDX, our proposed method achieves superior one-step performance on SDXL compared to DMD2 while consuming less GPU time. Additional experiments that apply multi-step ADM distillation on SD3-Medium, SD3.5-Large, and CogVideoX set a new benchmark towards efficient image and video synthesis.
Authors:Jiahui Zhang, Yuelei Li, Anpei Chen, Muyu Xu, Kunhao Liu, Jianyuan Wang, Xiao-Xiao Long, Hanxue Liang, Zexiang Xu, Hao Su, Christian Theobalt, Christian Rupprecht, Andrea Vedaldi, Hanspeter Pfister, Shijian Lu, Fangneng Zhan
Abstract:
3D reconstruction and view synthesis are foundational problems in computer vision, graphics, and immersive technologies such as augmented reality (AR), virtual reality (VR), and digital twins. Traditional methods rely on computationally intensive iterative optimization in a complex chain, limiting their applicability in real-world scenarios. Recent advances in feed-forward approaches, driven by deep learning, have revolutionized this field by enabling fast and generalizable 3D reconstruction and view synthesis. This survey offers a comprehensive review of feed-forward techniques for 3D reconstruction and view synthesis, with a taxonomy according to the underlying representation architectures including point cloud, 3D Gaussian Splatting (3DGS), Neural Radiance Fields (NeRF), etc. We examine key tasks such as pose-free reconstruction, dynamic 3D reconstruction, and 3D-aware image and video synthesis, highlighting their applications in digital humans, SLAM, robotics, and beyond. In addition, we review commonly used datasets with detailed statistics, along with evaluation protocols for various downstream tasks. We conclude by discussing open research challenges and promising directions for future work, emphasizing the potential of feed-forward approaches to advance the state of the art in 3D vision.
Authors:Shanchuan Lin, Ceyuan Yang, Hao He, Jianwen Jiang, Yuxi Ren, Xin Xia, Yang Zhao, Xuefeng Xiao, Lu Jiang
Abstract:
Existing large-scale video generation models are computationally intensive, preventing adoption in real-time and interactive applications. In this work, we propose autoregressive adversarial post-training (AAPT) to transform a pre-trained latent video diffusion model into a real-time, interactive video generator. Our model autoregressively generates a latent frame at a time using a single neural function evaluation (1NFE). The model can stream the result to the user in real time and receive interactive responses as controls to generate the next latent frame. Unlike existing approaches, our method explores adversarial training as an effective paradigm for autoregressive generation. This not only allows us to design an architecture that is more efficient for one-step generation while fully utilizing the KV cache, but also enables training the model in a student-forcing manner that proves to be effective in reducing error accumulation during long video generation. Our experiments demonstrate that our 8B model achieves real-time, 24fps, streaming video generation at 736x416 resolution on a single H100, or 1280x720 on 8xH100 up to a minute long (1440 frames). Visit our research website at https://seaweed-apt.com/2
Authors:Yukang Lin, Yan Hong, Zunnan Xu, Xindi Li, Chao Xu, Chuanbiao Song, Ronghui Li, Haoxing Chen, Jun Lan, Huijia Zhu, Weiqiang Wang, Jianfu Zhang, Xiu Li
Abstract:
Recent video generation research has focused heavily on isolated actions, leaving interactive motions-such as hand-face interactions-largely unexamined. These interactions are essential for emerging biometric authentication systems, which rely on interactive motion-based anti-spoofing approaches. From a security perspective, there is a growing need for large-scale, high-quality interactive videos to train and strengthen authentication models. In this work, we introduce a novel paradigm for animating realistic hand-face interactions. Our approach simultaneously learns spatio-temporal contact dynamics and biomechanically plausible deformation effects, enabling natural interactions where hand movements induce anatomically accurate facial deformations while maintaining collision-free contact. To facilitate this research, we present InterHF, a large-scale hand-face interaction dataset featuring 18 interaction patterns and 90,000 annotated videos. Additionally, we propose InterAnimate, a region-aware diffusion model designed specifically for interaction animation. InterAnimate leverages learnable spatial and temporal latents to effectively capture dynamic interaction priors and integrates a region-aware interaction mechanism that injects these priors into the denoising process. To the best of our knowledge, this work represents the first large-scale effort to systematically study human hand-face interactions. Qualitative and quantitative results show InterAnimate produces highly realistic animations, setting a new benchmark. Code and data will be made public to advance research.
Authors:Team Seawead, Ceyuan Yang, Zhijie Lin, Yang Zhao, Shanchuan Lin, Zhibei Ma, Haoyuan Guo, Hao Chen, Lu Qi, Sen Wang, Feng Cheng, Feilong Zuo, Xuejiao Zeng, Ziyan Yang, Fangyuan Kong, Meng Wei, Zhiwu Qing, Fei Xiao, Tuyen Hoang, Siyu Zhang, Peihao Zhu, Qi Zhao, Jiangqiao Yan, Liangke Gui, Sheng Bi, Jiashi Li, Yuxi Ren, Rui Wang, Huixia Li, Xuefeng Xiao, Shu Liu, Feng Ling, Heng Zhang, Houmin Wei, Huafeng Kuang, Jerry Duncan, Junda Zhang, Junru Zheng, Li Sun, Manlin Zhang, Renfei Sun, Xiaobin Zhuang, Xiaojie Li, Xin Xia, Xuyan Chi, Yanghua Peng, Yuping Wang, Yuxuan Wang, Zhongkai Zhao, Zhuo Chen, Zuquan Song, Zhenheng Yang, Jiashi Feng, Jianchao Yang, Lu Jiang
Abstract:
This technical report presents a cost-efficient strategy for training a video generation foundation model. We present a mid-sized research model with approximately 7 billion parameters (7B) called Seaweed-7B trained from scratch using 665,000 H100 GPU hours. Despite being trained with moderate computational resources, Seaweed-7B demonstrates highly competitive performance compared to contemporary video generation models of much larger size. Design choices are especially crucial in a resource-constrained setting. This technical report highlights the key design decisions that enhance the performance of the medium-sized diffusion model. Empirically, we make two observations: (1) Seaweed-7B achieves performance comparable to, or even surpasses, larger models trained on substantially greater GPU resources, and (2) our model, which exhibits strong generalization ability, can be effectively adapted across a wide range of downstream applications either by lightweight fine-tuning or continue training. See the project page at https://seaweed.video/
Authors:Shanchuan Lin, Xin Xia, Yuxi Ren, Ceyuan Yang, Xuefeng Xiao, Lu Jiang
Abstract:
The diffusion models are widely used for image and video generation, but their iterative generation process is slow and expansive. While existing distillation approaches have demonstrated the potential for one-step generation in the image domain, they still suffer from significant quality degradation. In this work, we propose Adversarial Post-Training (APT) against real data following diffusion pre-training for one-step video generation. To improve the training stability and quality, we introduce several improvements to the model architecture and training procedures, along with an approximated R1 regularization objective. Empirically, our experiments show that our adversarial post-trained model, Seaweed-APT, can generate 2-second, 1280x720, 24fps videos in real time using a single forward evaluation step. Additionally, our model is capable of generating 1024px images in a single step, achieving quality comparable to state-of-the-art methods.
Authors:Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, Linfeng Zhang
Abstract:
Diffusion transformers have shown significant effectiveness in both image and video synthesis at the expense of huge computation costs. To address this problem, feature caching methods have been introduced to accelerate diffusion transformers by caching the features in previous timesteps and reusing them in the following timesteps. However, previous caching methods ignore that different tokens exhibit different sensitivities to feature caching, and feature caching on some tokens may lead to 10$\times$ more destruction to the overall generation quality compared with other tokens. In this paper, we introduce token-wise feature caching, allowing us to adaptively select the most suitable tokens for caching, and further enable us to apply different caching ratios to neural layers in different types and depths. Extensive experiments on PixArt-$α$, OpenSora, and DiT demonstrate our effectiveness in both image and video generation with no requirements for training. For instance, 2.36$\times$ and 1.93$\times$ acceleration are achieved on OpenSora and PixArt-$α$ with almost no drop in generation quality.
Authors:Weiqi Li, Zehao Zhang, Liang Lin, Guangrun Wang
Abstract:
Controllability is a fundamental requirement in video synthesis, where accurate alignment with conditioning signals is essential. Existing classifier-free guidance methods typically achieve conditioning indirectly by modeling the joint distribution of data and conditions, which often results in limited controllability over the specified conditions. Classifier-based guidance enforces conditions through an external classifier, but the model may exploit this mechanism to raise the classifier score without genuinely satisfying the intended condition, resulting in adversarial artifacts and limited effective controllability. In this paper, we propose Attention-Conditional Diffusion (ACD), a novel framework for direct conditional control in video diffusion models via attention supervision. By aligning the model's attention maps with external control signals, ACD achieves better controllability. To support this, we introduce a sparse 3D-aware object layout as an efficient conditioning signal, along with a dedicated Layout ControlNet and an automated annotation pipeline for scalable layout integration. Extensive experiments on benchmark video generation datasets demonstrate that ACD delivers superior alignment with conditioning inputs while preserving temporal coherence and visual fidelity, establishing an effective paradigm for conditional video synthesis.
Authors:Xinyao Liao, Xianfang Zeng, Ziye Song, Zhoujie Fu, Gang Yu, Guosheng Lin
Abstract:
Despite the rapid progress of instruction-based image editing, its extension to video remains underexplored, primarily due to the prohibitive cost and complexity of constructing large-scale paired video editing datasets. To address this challenge, we introduce a low-cost pretraining strategy for instruction-based video editing that leverages in-context learning from unpaired video clips. We show that pretraining a foundation video generation model with this strategy endows it with general editing capabilities, such as adding, replacing, or deleting operations, according to input editing instructions. The pretrained model can then be efficiently refined with a small amount of high-quality paired editing data. Built upon HunyuanVideoT2V, our framework first pretrains on approximately 1M real video clips to learn basic editing concepts, and subsequently fine-tunes on fewer than 150k curated editing pairs to extend more editing tasks and improve the editing quality. Comparative experiments show that our method surpasses existing instruction-based video editing approaches in both instruction alignment and visual fidelity, achieving a 12\% improvement in editing instruction following and a 15\% improvement in editing quality.
Authors:Jiaxu Zhang, Xianfang Zeng, Xin Chen, Wei Zuo, Gang Yu, Guosheng Lin, Zhigang Tu
Abstract:
This paper presents DreamDance, a novel character art animation framework capable of producing stable, consistent character and scene motion conditioned on precise camera trajectories. To achieve this, we re-formulate the animation task as two inpainting-based steps: Camera-aware Scene Inpainting and Pose-aware Video Inpainting. The first step leverages a pre-trained image inpainting model to generate multi-view scene images from the reference art and optimizes a stable large-scale Gaussian field, which enables coarse background video rendering with camera trajectories. However, the rendered video is rough and only conveys scene motion. To resolve this, the second step trains a pose-aware video inpainting model that injects the dynamic character into the scene video while enhancing background quality. Specifically, this model is a DiT-based video generation model with a gating strategy that adaptively integrates the character's appearance and pose information into the base background video. Through extensive experiments, we demonstrate the effectiveness and generalizability of DreamDance, producing high-quality and consistent character animations with remarkable camera dynamics.
Authors:Xinyao Liao, Xianfang Zeng, Liao Wang, Gang Yu, Guosheng Lin, Chi Zhang
Abstract:
We propose MotionAgent, enabling fine-grained motion control for text-guided image-to-video generation. The key technique is the motion field agent that converts motion information in text prompts into explicit motion fields, providing flexible and precise motion guidance. Specifically, the agent extracts the object movement and camera motion described in the text and converts them into object trajectories and camera extrinsics, respectively. An analytical optical flow composition module integrates these motion representations in 3D space and projects them into a unified optical flow. An optical flow adapter takes the flow to control the base image-to-video diffusion model for generating fine-grained controlled videos. The significant improvement in the Video-Text Camera Motion metrics on VBench indicates that our method achieves precise control over camera motion. We construct a subset of VBench to evaluate the alignment of motion information in the text and the generated video, outperforming other advanced models on motion generation accuracy.
Authors:Xiaoxue Wu, Bingjie Gao, Yu Qiao, Yaohui Wang, Xinyuan Chen
Abstract:
Despite significant advances in video synthesis, research into multi-shot video generation remains in its infancy. Even with scaled-up models and massive datasets, the shot transition capabilities remain rudimentary and unstable, largely confining generated videos to single-shot sequences. In this work, we introduce CineTrans, a novel framework for generating coherent multi-shot videos with cinematic, film-style transitions. To facilitate insights into the film editing style, we construct a multi-shot video-text dataset Cine250K with detailed shot annotations. Furthermore, our analysis of existing video diffusion models uncovers a correspondence between attention maps in the diffusion model and shot boundaries, which we leverage to design a mask-based control mechanism that enables transitions at arbitrary positions and transfers effectively in a training-free setting. After fine-tuning on our dataset with the mask mechanism, CineTrans produces cinematic multi-shot sequences while adhering to the film editing style, avoiding unstable transitions or naive concatenations. Finally, we propose specialized evaluation metrics for transition control, temporal consistency and overall quality, and demonstrate through extensive experiments that CineTrans significantly outperforms existing baselines across all criteria.
Authors:Shiyu Liu, Kui Jiang, Xianming Liu, Hongxun Yao, Xiaocheng Feng
Abstract:
Audio-driven talking head video generation enhances user engagement in human-computer interaction. However, current methods frequently produce videos with motion blur and lip jitter, primarily due to their reliance on implicit modeling of audio-facial motion correlations--an approach lacking explicit articulatory priors (i.e., anatomical guidance for speech-related facial movements). To overcome this limitation, we propose HM-Talker, a novel framework for generating high-fidelity, temporally coherent talking heads. HM-Talker leverages a hybrid motion representation combining both implicit and explicit motion cues. Explicit cues use Action Units (AUs), anatomically defined facial muscle movements, alongside implicit features to minimize phoneme-viseme misalignment. Specifically, our Cross-Modal Disentanglement Module (CMDM) extracts complementary implicit/explicit motion features while predicting AUs directly from audio input aligned to visual cues. To mitigate identity-dependent biases in explicit features and enhance cross-subject generalization, we introduce the Hybrid Motion Modeling Module (HMMM). This module dynamically merges randomly paired implicit/explicit features, enforcing identity-agnostic learning. Together, these components enable robust lip synchronization across diverse identities, advancing personalized talking head synthesis. Extensive experiments demonstrate HM-Talker's superiority over state-of-the-art methods in visual quality and lip-sync accuracy.
Authors:Yanchen Guan, Haicheng Liao, Chengyue Wang, Xingcheng Liu, Jiaxun Zhang, Zhenning Li
Abstract:
Reliable anticipation of traffic accidents is essential for advancing autonomous driving systems. However, this objective is limited by two fundamental challenges: the scarcity of diverse, high-quality training data and the frequent absence of crucial object-level cues due to environmental disruptions or sensor deficiencies. To tackle these issues, we propose a comprehensive framework combining generative scene augmentation with adaptive temporal reasoning. Specifically, we develop a video generation pipeline that utilizes a world model guided by domain-informed prompts to create high-resolution, statistically consistent driving scenarios, particularly enriching the coverage of edge cases and complex interactions. In parallel, we construct a dynamic prediction model that encodes spatio-temporal relationships through strengthened graph convolutions and dilated temporal operators, effectively addressing data incompleteness and transient visual noise. Furthermore, we release a new benchmark dataset designed to better capture diverse real-world driving risks. Extensive experiments on public and newly released datasets confirm that our framework enhances both the accuracy and lead time of accident anticipation, offering a robust solution to current data and modeling limitations in safety-critical autonomous driving applications.
Authors:Hyungjin Chung, Dohun Lee, Jong Chul Ye
Abstract:
Autoregressive models (ARMs) and diffusion models (DMs) represent two leading paradigms in generative modeling, each excelling in distinct areas: ARMs in global context modeling and long-sequence generation, and DMs in generating high-quality local contexts, especially for continuous data such as images and short videos. However, ARMs often suffer from exponential error accumulation over long sequences, leading to physically implausible results, while DMs are limited by their local context generation capabilities. In this work, we introduce Autoregressive Coherent multimodal generation with Diffusion Correction (ACDC), a zero-shot approach that combines the strengths of both ARMs and DMs at the inference stage without the need for additional fine-tuning. ACDC leverages ARMs for global context generation and memory-conditioned DMs for local correction, ensuring high-quality outputs by correcting artifacts in generated multimodal tokens. In particular, we propose a memory module based on large language models (LLMs) that dynamically adjusts the conditioning texts for the DMs, preserving crucial global context information. Our experiments on multimodal tasks, including coherent multi-frame story generation and autoregressive video generation, demonstrate that ACDC effectively mitigates the accumulation of errors and significantly enhances the quality of generated outputs, achieving superior performance while remaining agnostic to specific ARM and DM architectures. Project page: https://acdc2025.github.io/
Authors:Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong Cun, Yong Zhang, Long Quan, Ying Shan
Abstract:
Estimating video depth in open-world scenarios is challenging due to the diversity of videos in appearance, content motion, camera movement, and length. We present DepthCrafter, an innovative method for generating temporally consistent long depth sequences with intricate details for open-world videos, without requiring any supplementary information such as camera poses or optical flow. The generalization ability to open-world videos is achieved by training the video-to-depth model from a pre-trained image-to-video diffusion model, through our meticulously designed three-stage training strategy. Our training approach enables the model to generate depth sequences with variable lengths at one time, up to 110 frames, and harvest both precise depth details and rich content diversity from realistic and synthetic datasets. We also propose an inference strategy that can process extremely long videos through segment-wise estimation and seamless stitching. Comprehensive evaluations on multiple datasets reveal that DepthCrafter achieves state-of-the-art performance in open-world video depth estimation under zero-shot settings. Furthermore, DepthCrafter facilitates various downstream applications, including depth-based visual effects and conditional video generation.
Authors:Zhuoxiong Xu, Xuanchen Li, Yuhao Cheng, Fei Xu, Yichao Yan, Xiaokang Yang
Abstract:
Equipping robotic faces with singing capabilities is crucial for empathetic Human-Robot Interaction. However, existing robotic face driving research primarily focuses on conversations or mimicking static expressions, struggling to meet the high demands for continuous emotional expression and coherence in singing. To address this, we propose a novel avatar-driven framework for appealing robotic singing. We first leverage portrait video generation models embedded with extensive human priors to synthesize vivid singing avatars, providing reliable expression and emotion guidance. Subsequently, these facial features are transferred to the robot via semantic-oriented mapping functions that span a wide expression space. Furthermore, to quantitatively evaluate the emotional richness of robotic singing, we propose the Emotion Dynamic Range metric to measure the emotional breadth within the Valence-Arousal space, revealing that a broad emotional spectrum is crucial for appealing performances. Comprehensive experiments prove that our method achieves rich emotional expressions while maintaining lip-audio synchronization, significantly outperforming existing approaches.
Authors:Shamim Yazdani, Akansha Singh, Nripsuta Saxena, Zichong Wang, Avash Palikhe, Deng Pan, Umapada Pal, Jie Yang, Wenbin Zhang
Abstract:
In recent years, deep learning based generative models, particularly Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Diffusion Models (DMs), have been instrumental in in generating diverse, high-quality content across various domains, such as image and video synthesis. This capability has led to widespread adoption of these models and has captured strong public interest. As they continue to advance at a rapid pace, the growing volume of research, expanding application areas, and unresolved technical challenges make it increasingly difficult to stay current. To address this need, this survey introduces a comprehensive taxonomy that organizes the literature and provides a cohesive framework for understanding the development of GANs, VAEs, and DMs, including their many variants and combined approaches. We highlight key innovations that have improved the quality, diversity, and controllability of generated outputs, reflecting the expanding potential of generative artificial intelligence. In addition to summarizing technical progress, we examine rising ethical concerns, including the risks of misuse and the broader societal impact of synthetic media. Finally, we outline persistent challenges and propose future research directions, offering a structured and forward looking perspective for researchers in this fast evolving field.
Authors:Yi Zuo, Zitao Wang, Lingling Li, Xu Liu, Fang Liu, Licheng Jiao
Abstract:
Text-to-image (T2I) diffusion models have recently demonstrated significant progress in video editing. However, existing video editing methods are severely limited by their high computational overhead and memory consumption. Furthermore, these approaches often sacrifice visual fidelity, leading to undesirable temporal inconsistencies and artifacts such as blurring and pronounced mosaic-like patterns. We propose Edit-Your-Interest, a lightweight, text-driven, zero-shot video editing method. Edit-Your-Interest introduces a spatio-temporal feature memory to cache features from previous frames, significantly reducing computational overhead compared to full-sequence spatio-temporal modeling approaches. Specifically, we first introduce a Spatio-Temporal Feature Memory bank (SFM), which is designed to efficiently cache and retain the crucial image tokens processed by spatial attention. Second, we propose the Feature Most-Similar Propagation (FMP) method. FMP propagates the most relevant tokens from previous frames to subsequent ones, preserving temporal consistency. Finally, we introduce an SFM update algorithm that continuously refreshes the cached features, ensuring their long-term relevance and effectiveness throughout the video sequence. Furthermore, we leverage cross-attention maps to automatically extract masks for the instances of interest. These masks are seamlessly integrated into the diffusion denoising process, enabling fine-grained control over target objects and allowing Edit-Your-Interest to perform highly accurate edits while robustly preserving the background integrity. Extensive experiments decisively demonstrate that the proposed Edit-Your-Interest outperforms state-of-the-art methods in both efficiency and visual fidelity, validating its superior effectiveness and practicality.
Authors:Chenhui Zhu, Yilu Wu, Shuai Wang, Gangshan Wu, Limin Wang
Abstract:
Image-to-video generation has made remarkable progress with the advancements in diffusion models, yet generating videos with realistic motion remains highly challenging. This difficulty arises from the complexity of accurately modeling motion, which involves capturing physical constraints, object interactions, and domain-specific dynamics that are not easily generalized across diverse scenarios. To address this, we propose MotionRAG, a retrieval-augmented framework that enhances motion realism by adapting motion priors from relevant reference videos through Context-Aware Motion Adaptation (CAMA). The key technical innovations include: (i) a retrieval-based pipeline extracting high-level motion features using video encoder and specialized resamplers to distill semantic motion representations; (ii) an in-context learning approach for motion adaptation implemented through a causal transformer architecture; (iii) an attention-based motion injection adapter that seamlessly integrates transferred motion features into pretrained video diffusion models. Extensive experiments demonstrate that our method achieves significant improvements across multiple domains and various base models, all with negligible computational overhead during inference. Furthermore, our modular design enables zero-shot generalization to new domains by simply updating the retrieval database without retraining any components. This research enhances the core capability of video generation systems by enabling the effective retrieval and transfer of motion priors, facilitating the synthesis of realistic motion dynamics.
Authors:Jiayi He, Xu Wang, Shengeng Tang, Yaxiong Wang, Lechao Cheng, Dan Guo
Abstract:
Sign language video generation requires producing natural signing motions with realistic appearances under precise semantic control, yet faces two critical challenges: excessive signer-specific data requirements and poor generalization. We propose a new paradigm for sign language video generation that decouples motion semantics from signer identity through a two-phase synthesis framework. First, we construct a signer-independent multimodal motion lexicon, where each gloss is stored as identity-agnostic pose, gesture, and 3D mesh sequences, requiring only one recording per sign. This compact representation enables our second key innovation: a discrete-to-continuous motion synthesis stage that transforms retrieved gloss sequences into temporally coherent motion trajectories, followed by identity-aware neural rendering to produce photorealistic videos of arbitrary signers. Unlike prior work constrained by signer-specific datasets, our method treats motion as a first-class citizen: the learned latent pose dynamics serve as a portable "choreography layer" that can be visually realized through different human appearances. Extensive experiments demonstrate that disentangling motion from identity is not just viable but advantageous - enabling both high-quality synthesis and unprecedented flexibility in signer personalization.
Authors:Jian Zhu, Zhengyu Jia, Tian Gao, Jiaxin Deng, Shidi Li, Lang Zhang, Fu Liu, Peng Jia, Xianpeng Lang
Abstract:
Advanced end-to-end autonomous driving systems predict other vehicles' motions and plan ego vehicle's trajectory. The world model that can foresee the outcome of the trajectory has been used to evaluate the autonomous driving system. However, existing world models predominantly emphasize the trajectory of the ego vehicle and leave other vehicles uncontrollable. This limitation hinders their ability to realistically simulate the interaction between the ego vehicle and the driving scenario. In this paper, we propose a driving World Model named EOT-WM, unifying Ego-Other vehicle Trajectories in videos for driving simulation. Specifically, it remains a challenge to match multiple trajectories in the BEV space with each vehicle in the video to control the video generation. We first project ego-other vehicle trajectories in the BEV space into the image coordinate for vehicle-trajectory match via pixel positions. Then, trajectory videos are encoded by the Spatial-Temporal Variational Auto Encoder to align with driving video latents spatially and temporally in the unified visual space. A trajectory-injected diffusion Transformer is further designed to denoise the noisy video latents for video generation with the guidance of ego-other vehicle trajectories. In addition, we propose a metric based on control latent similarity to evaluate the controllability of trajectories. Extensive experiments are conducted on the nuScenes dataset, and the proposed model outperforms the state-of-the-art method by 30% in FID and 55% in FVD. The model can also predict unseen driving scenes with self-produced trajectories.
Authors:Yue Gao, Hong-Xing Yu, Bo Zhu, Jiajun Wu
Abstract:
We study reconstructing and predicting 3D fluid appearance and velocity from a single video. Current methods require multi-view videos for fluid reconstruction. We present FluidNexus, a novel framework that bridges video generation and physics simulation to tackle this task. Our key insight is to synthesize multiple novel-view videos as references for reconstruction. FluidNexus consists of two key components: (1) a novel-view video synthesizer that combines frame-wise view synthesis with video diffusion refinement for generating realistic videos, and (2) a physics-integrated particle representation coupling differentiable simulation and rendering to simultaneously facilitate 3D fluid reconstruction and prediction. To evaluate our approach, we collect two new real-world fluid datasets featuring textured backgrounds and object interactions. Our method enables dynamic novel view synthesis, future prediction, and interaction simulation from a single fluid video. Project website: https://yuegao.me/FluidNexus.
Authors:Zongyi Li, Shujie Hu, Shujie Liu, Long Zhou, Jeongsoo Choi, Lingwei Meng, Xun Guo, Jinyu Li, Hefei Ling, Furu Wei
Abstract:
Text-to-video models have recently undergone rapid and substantial advancements. Nevertheless, due to limitations in data and computational resources, achieving efficient generation of long videos with rich motion dynamics remains a significant challenge. To generate high-quality, dynamic, and temporally consistent long videos, this paper presents ARLON, a novel framework that boosts diffusion Transformers with autoregressive models for long video generation, by integrating the coarse spatial and long-range temporal information provided by the AR model to guide the DiT model. Specifically, ARLON incorporates several key innovations: 1) A latent Vector Quantized Variational Autoencoder (VQ-VAE) compresses the input latent space of the DiT model into compact visual tokens, bridging the AR and DiT models and balancing the learning complexity and information density; 2) An adaptive norm-based semantic injection module integrates the coarse discrete visual units from the AR model into the DiT model, ensuring effective guidance during video generation; 3) To enhance the tolerance capability of noise introduced from the AR inference, the DiT model is trained with coarser visual latent tokens incorporated with an uncertainty sampling module. Experimental results demonstrate that ARLON significantly outperforms the baseline OpenSora-V1.2 on eight out of eleven metrics selected from VBench, with notable improvements in dynamic degree and aesthetic quality, while delivering competitive results on the remaining three and simultaneously accelerating the generation process. In addition, ARLON achieves state-of-the-art performance in long video generation. Detailed analyses of the improvements in inference efficiency are presented, alongside a practical application that demonstrates the generation of long videos using progressive text prompts. See demos of ARLON at http://aka.ms/arlon.
Authors:Chenyu Mu, Xin He, Qu Yang, Wanshun Chen, Jiadi Yao, Huang Liu, Zihao Yi, Bo Zhao, Xingyu Chen, Ruotian Ma, Fanghua Ye, Erkun Yang, Cheng Deng, Zhaopeng Tu, Xiaolong Li, Linus
Abstract:
Recent advances in video generation have produced models capable of synthesizing stunning visual content from simple text prompts. However, these models struggle to generate long-form, coherent narratives from high-level concepts like dialogue, revealing a ``semantic gap'' between a creative idea and its cinematic execution. To bridge this gap, we introduce a novel, end-to-end agentic framework for dialogue-to-cinematic-video generation. Central to our framework is ScripterAgent, a model trained to translate coarse dialogue into a fine-grained, executable cinematic script. To enable this, we construct ScriptBench, a new large-scale benchmark with rich multimodal context, annotated via an expert-guided pipeline. The generated script then guides DirectorAgent, which orchestrates state-of-the-art video models using a cross-scene continuous generation strategy to ensure long-horizon coherence. Our comprehensive evaluation, featuring an AI-powered CriticAgent and a new Visual-Script Alignment (VSA) metric, shows our framework significantly improves script faithfulness and temporal fidelity across all tested video models. Furthermore, our analysis uncovers a crucial trade-off in current SOTA models between visual spectacle and strict script adherence, providing valuable insights for the future of automated filmmaking.
Authors:Mustafa Munir, Md Mostafijur Rahman, Kartikeya Bhardwaj, Paul Whatmough, Radu Marculescu
Abstract:
Long-form video editing poses unique challenges due to the exponential increase in the computational cost from joint editing and Denoising Diffusion Implicit Models (DDIM) inversion across extended sequences. To address these limitations, we propose PipeFlow, a scalable, pipelined video editing method that introduces three key innovations: First, based on a motion analysis using Structural Similarity Index Measure (SSIM) and Optical Flow, we identify and propose to skip editing of frames with low motion. Second, we propose a pipelined task scheduling algorithm that splits a video into multiple segments and performs DDIM inversion and joint editing in parallel based on available GPU memory. Lastly, we leverage a neural network-based interpolation technique to smooth out the border frames between segments and interpolate the previously skipped frames. Our method uniquely scales to longer videos by dividing them into smaller segments, allowing PipeFlow's editing time to increase linearly with video length. In principle, this enables editing of infinitely long videos without the growing per-frame computational overhead encountered by other methods. PipeFlow achieves up to a 9.6X speedup compared to TokenFlow and a 31.7X speedup over Diffusion Motion Transfer (DMT).
Authors:James Ni, Zekai Wang, Wei Lin, Amir Bar, Yann LeCun, Trevor Darrell, Jitendra Malik, Roei Herzig
Abstract:
Video generation models are rapidly improving in their ability to synthesize human actions in novel contexts, holding the potential to serve as high-level planners for contextual robot control. To realize this potential, a key research question remains open: how can a humanoid execute the human actions from generated videos in a zero-shot manner? This challenge arises because generated videos are often noisy and exhibit morphological distortions that make direct imitation difficult compared to real video. To address this, we introduce a two-stage pipeline. First, we lift video pixels into a 4D human representation and then retarget to the humanoid morphology. Second, we propose GenMimic-a physics-aware reinforcement learning policy conditioned on 3D keypoints, and trained with symmetry regularization and keypoint-weighted tracking rewards. As a result, GenMimic can mimic human actions from noisy, generated videos. We curate GenMimicBench, a synthetic human-motion dataset generated using two video generation models across a spectrum of actions and contexts, establishing a benchmark for assessing zero-shot generalization and policy robustness. Extensive experiments demonstrate improvements over strong baselines in simulation and confirm coherent, physically stable motion tracking on a Unitree G1 humanoid robot without fine-tuning. This work offers a promising path to realizing the potential of video generation models as high-level policies for robot control.
Authors:Mustafa Munir, Harsh Goel, Xiwen Wei, Minkyu Choi, Sahil Shah, Kartikeya Bhardwaj, Paul Whatmough, Sandeep Chinchali, Radu Marculescu
Abstract:
Video editing and synthesis often introduce object inconsistencies, such as frame flicker and identity drift that degrade perceptual quality. To address these issues, we introduce ObjectAlign, a novel framework that seamlessly blends perceptual metrics with symbolic reasoning to detect, verify, and correct object-level and temporal inconsistencies in edited video sequences. The novel contributions of ObjectAlign are as follows: First, we propose learnable thresholds for metrics characterizing object consistency (i.e. CLIP-based semantic similarity, LPIPS perceptual distance, histogram correlation, and SAM-derived object-mask IoU). Second, we introduce a neuro-symbolic verifier that combines two components: (a) a formal, SMT-based check that operates on masked object embeddings to provably guarantee that object identity does not drift, and (b) a temporal fidelity check that uses a probabilistic model checker to verify the video's formal representation against a temporal logic specification. A frame transition is subsequently deemed "consistent" based on a single logical assertion that requires satisfying both the learned metric thresholds and this unified neuro-symbolic constraint, ensuring both low-level stability and high-level temporal correctness. Finally, for each contiguous block of flagged frames, we propose a neural network based interpolation for adaptive frame repair, dynamically choosing the interpolation depth based on the number of frames to be corrected. This enables reconstruction of the corrupted frames from the last valid and next valid keyframes. Our results show up to 1.4 point improvement in CLIP Score and up to 6.1 point improvement in warp error compared to SOTA baselines on the DAVIS and Pexels video datasets.
Authors:Sucheng Ren, Chen Chen, Zhenbang Wang, Liangchen Song, Xiangxin Zhu, Alan Yuille, Yinfei Yang, Jiasen Lu
Abstract:
Autoregressive models for video generation typically operate frame-by-frame, extending next-token prediction from language to video's temporal dimension. We question that unlike word as token is universally agreed in language if frame is a appropriate prediction unit? To address this, we present VideoAR, a unified framework that supports a spectrum of prediction units including full frames, key-detail frames, multiscale refinements, and spatiotemporal cubes. Among these designs, we find model video generation using \textit{spatiotemporal} cubes as prediction units, which allows autoregressive models to operate across both spatial and temporal dimensions simultaneously. This approach eliminates the assumption that frames are the natural atomic units for video autoregression. We evaluate VideoAR across diverse prediction strategies, finding that cube-based prediction consistently delivers superior quality, speed, and temporal coherence. By removing the frame-by-frame constraint, our video generator surpasses state-of-the-art baselines on VBench while achieving faster inference and enabling seamless scaling to minute-long sequences. We hope this work will motivate rethinking sequence decomposition in video and other spatiotemporal domains.
Authors:Jiasen Lu, Liangchen Song, Mingze Xu, Byeongjoo Ahn, Yanjun Wang, Chen Chen, Afshin Dehghan, Yinfei Yang
Abstract:
We present AToken, the first unified visual tokenizer that achieves both high-fidelity reconstruction and semantic understanding across images, videos, and 3D assets. Unlike existing tokenizers that specialize in either reconstruction or understanding for single modalities, AToken encodes these diverse visual inputs into a shared 4D latent space, unifying both tasks and modalities in a single framework. Specifically, we introduce a pure transformer architecture with 4D rotary position embeddings to process visual inputs of arbitrary resolutions and temporal durations. To ensure stable training, we introduce an adversarial-free training objective that combines perceptual and Gram matrix losses, achieving state-of-the-art reconstruction quality. By employing a progressive training curriculum, AToken gradually expands from single images, videos, and 3D, and supports both continuous and discrete latent tokens. AToken achieves 0.21 rFID with 82.2% ImageNet accuracy for images, 3.01 rFVD with 40.2% MSRVTT retrieval for videos, and 28.28 PSNR with 90.9% classification accuracy for 3D.. In downstream applications, AToken enables both visual generation tasks (e.g., image generation with continuous and discrete tokens, text-to-video generation, image-to-3D synthesis) and understanding tasks (e.g., multimodal LLMs), achieving competitive performance across all benchmarks. These results shed light on the next-generation multimodal AI systems built upon unified visual tokenization.
Authors:Hao Tang, Ling Shao, Zhenyu Zhang, Luc Van Gool, Nicu Sebe
Abstract:
We propose a novel spatial-temporal graph Mamba (STG-Mamba) for the music-guided dance video synthesis task, i.e., to translate the input music to a dance video. STG-Mamba consists of two translation mappings: music-to-skeleton translation and skeleton-to-video translation. In the music-to-skeleton translation, we introduce a novel spatial-temporal graph Mamba (STGM) block to effectively construct skeleton sequences from the input music, capturing dependencies between joints in both the spatial and temporal dimensions. For the skeleton-to-video translation, we propose a novel self-supervised regularization network to translate the generated skeletons, along with a conditional image, into a dance video. Lastly, we collect a new skeleton-to-video translation dataset from the Internet, containing 54,944 video clips. Extensive experiments demonstrate that STG-Mamba achieves significantly better results than existing methods.
Authors:Shoubin Yu, Difan Liu, Ziqiao Ma, Yicong Hong, Yang Zhou, Hao Tan, Joyce Chai, Mohit Bansal
Abstract:
Recent video diffusion models have enhanced video editing, but it remains challenging to handle instructional editing and diverse tasks (e.g., adding, removing, changing) within a unified framework. In this paper, we introduce VEGGIE, a Video Editor with Grounded Generation from Instructions, a simple end-to-end framework that unifies video concept editing, grounding, and reasoning based on diverse user instructions. Specifically, given a video and text query, VEGGIE first utilizes an MLLM to interpret user intentions in instructions and ground them to the video contexts, generating frame-specific grounded task queries for pixel-space responses. A diffusion model then renders these plans and generates edited videos that align with user intent. To support diverse tasks and complex instructions, we employ a curriculum learning strategy: first aligning the MLLM and video diffusion model with large-scale instructional image editing data, followed by end-to-end fine-tuning on high-quality multitask video data. Additionally, we introduce a novel data synthesis pipeline to generate paired instructional video editing data for model training. It transforms static image data into diverse, high-quality video editing samples by leveraging Image-to-Video models to inject dynamics. VEGGIE shows strong performance in instructional video editing with different editing skills, outperforming the best instructional baseline as a versatile model, while other models struggle with multi-tasking. VEGGIE also excels in video object grounding and reasoning segmentation, where other baselines fail. We further reveal how the multiple tasks help each other and highlight promising applications like zero-shot multimodal instructional and in-context video editing.
Authors:Jingyuan Chen, Fuchen Long, Jie An, Zhaofan Qiu, Ting Yao, Jiebo Luo, Tao Mei
Abstract:
The first-in-first-out (FIFO) video diffusion, built on a pre-trained text-to-video model, has recently emerged as an effective approach for tuning-free long video generation. This technique maintains a queue of video frames with progressively increasing noise, continuously producing clean frames at the queue's head while Gaussian noise is enqueued at the tail. However, FIFO-Diffusion often struggles to keep long-range temporal consistency in the generated videos due to the lack of correspondence modeling across frames. In this paper, we propose Ouroboros-Diffusion, a novel video denoising framework designed to enhance structural and content (subject) consistency, enabling the generation of consistent videos of arbitrary length. Specifically, we introduce a new latent sampling technique at the queue tail to improve structural consistency, ensuring perceptually smooth transitions among frames. To enhance subject consistency, we devise a Subject-Aware Cross-Frame Attention (SACFA) mechanism, which aligns subjects across frames within short segments to achieve better visual coherence. Furthermore, we introduce self-recurrent guidance. This technique leverages information from all previous cleaner frames at the front of the queue to guide the denoising of noisier frames at the end, fostering rich and contextual global information interaction. Extensive experiments of long video generation on the VBench benchmark demonstrate the superiority of our Ouroboros-Diffusion, particularly in terms of subject consistency, motion smoothness, and temporal consistency.
Authors:Zongyu Lin, Wei Liu, Chen Chen, Jiasen Lu, Wenze Hu, Tsu-Jui Fu, Jesse Allardice, Zhengfeng Lai, Liangchen Song, Bowen Zhang, Cha Chen, Yiran Fei, Yifan Jiang, Lezhi Li, Yizhou Sun, Kai-Wei Chang, Yinfei Yang
Abstract:
The field of video generation has made remarkable advancements, yet there remains a pressing need for a clear, systematic recipe that can guide the development of robust and scalable models. In this work, we present a comprehensive study that systematically explores the interplay of model architectures, training recipes, and data curation strategies, culminating in a simple and scalable text-image-conditioned video generation method, named STIV. Our framework integrates image condition into a Diffusion Transformer (DiT) through frame replacement, while incorporating text conditioning via a joint image-text conditional classifier-free guidance. This design enables STIV to perform both text-to-video (T2V) and text-image-to-video (TI2V) tasks simultaneously. Additionally, STIV can be easily extended to various applications, such as video prediction, frame interpolation, multi-view generation, and long video generation, etc. With comprehensive ablation studies on T2I, T2V, and TI2V, STIV demonstrate strong performance, despite its simple design. An 8.7B model with 512 resolution achieves 83.1 on VBench T2V, surpassing both leading open and closed-source models like CogVideoX-5B, Pika, Kling, and Gen-3. The same-sized model also achieves a state-of-the-art result of 90.1 on VBench I2V task at 512 resolution. By providing a transparent and extensible recipe for building cutting-edge video generation models, we aim to empower future research and accelerate progress toward more versatile and reliable video generation solutions.
Authors:Cong Cao, Huanjing Yue, Shangbin Xie, Xin Liu, Jingyu Yang
Abstract:
Although diffusion-based zero-shot image restoration and enhancement methods have achieved great success, applying them to video restoration or enhancement will lead to severe temporal flickering. In this paper, we propose the first framework that utilizes the rapidly-developed video diffusion model to assist the image-based method in maintaining more temporal consistency for zero-shot video restoration and enhancement. We propose homologous latents fusion, heterogenous latents fusion, and a COT-based fusion ratio strategy to utilize both homologous and heterogenous text-to-video diffusion models to complement the image method. Moreover, we propose temporal-strengthening post-processing to utilize the image-to-video diffusion model to further improve temporal consistency. Our method is training-free and can be applied to any diffusion-based image restoration and enhancement methods. Experimental results demonstrate the superiority of the proposed method.
Authors:Shaokun Wang, Weili Guan, Jizhou Han, Jianlong Wu, Yupeng Hu, Liqiang Nie
Abstract:
Continual Text-to-Video Retrieval (CTVR) is a challenging multimodal continual learning setting, where models must incrementally learn new semantic categories while maintaining accurate text-video alignment for previously learned ones, thus making it particularly prone to catastrophic forgetting. A key challenge in CTVR is feature drift, which manifests in two forms: intra-modal feature drift caused by continual learning within each modality, and non-cooperative feature drift across modalities that leads to modality misalignment. To mitigate these issues, we propose StructAlign, a structured cross-modal alignment method for CTVR. First, StructAlign introduces a simplex Equiangular Tight Frame (ETF) geometry as a unified geometric prior to mitigate modality misalignment. Building upon this geometric prior, we design a cross-modal ETF alignment loss that aligns text and video features with category-level ETF prototypes, encouraging the learned representations to form an approximate simplex ETF geometry. In addition, to suppress intra-modal feature drift, we design a Cross-modal Relation Preserving loss, which leverages complementary modalities to preserve cross-modal similarity relations, providing stable relational supervision for feature updates. By jointly addressing non-cooperative feature drift across modalities and intra-modal feature drift, StructAlign effectively alleviates catastrophic forgetting in CTVR. Extensive experiments on benchmark datasets demonstrate that our method consistently outperforms state-of-the-art continual retrieval approaches.
Authors:Yixuan Lai, He Wang, Kun Zhou, Tianjia Shao
Abstract:
Producing prompt-faithful videos that preserve a user-specified identity remains challenging: models need to extrapolate facial dynamics from sparse reference while balancing the tension between identity preservation and motion naturalness. Conditioning on a single image completely ignores the temporal signature, which leads to pose-locked motions, unnatural warping, and "average" faces when viewpoints and expressions change. To this end, we introduce an identity-conditioned variant of a diffusion-transformer video generator which uses a short reference video rather than a single portrait. Our key idea is to incorporate the dynamics in the reference. A short clip reveals subject-specific patterns, e.g., how smiles form, across poses and lighting. From this clip, a Sinkhorn-routed encoder learns compact identity tokens that capture characteristic dynamics while remaining pretrained backbone-compatible. Despite adding only lightweight conditioning, the approach consistently improves identity retention under large pose changes and expressive facial behavior, while maintaining prompt faithfulness and visual realism across diverse subjects and prompts.
Authors:Team Seedance, Heyi Chen, Siyan Chen, Xin Chen, Yanfei Chen, Ying Chen, Zhuo Chen, Feng Cheng, Tianheng Cheng, Xinqi Cheng, Xuyan Chi, Jian Cong, Jing Cui, Qinpeng Cui, Qide Dong, Junliang Fan, Jing Fang, Zetao Fang, Chengjian Feng, Han Feng, Mingyuan Gao, Yu Gao, Dong Guo, Qiushan Guo, Boyang Hao, Qingkai Hao, Bibo He, Qian He, Tuyen Hoang, Ruoqing Hu, Xi Hu, Weilin Huang, Zhaoyang Huang, Zhongyi Huang, Donglei Ji, Siqi Jiang, Wei Jiang, Yunpu Jiang, Zhuo Jiang, Ashley Kim, Jianan Kong, Zhichao Lai, Shanshan Lao, Yichong Leng, Ai Li, Feiya Li, Gen Li, Huixia Li, JiaShi Li, Liang Li, Ming Li, Shanshan Li, Tao Li, Xian Li, Xiaojie Li, Xiaoyang Li, Xingxing Li, Yameng Li, Yifu Li, Yiying Li, Chao Liang, Han Liang, Jianzhong Liang, Ying Liang, Zhiqiang Liang, Wang Liao, Yalin Liao, Heng Lin, Kengyu Lin, Shanchuan Lin, Xi Lin, Zhijie Lin, Feng Ling, Fangfang Liu, Gaohong Liu, Jiawei Liu, Jie Liu, Jihao Liu, Shouda Liu, Shu Liu, Sichao Liu, Songwei Liu, Xin Liu, Xue Liu, Yibo Liu, Zikun Liu, Zuxi Liu, Junlin Lyu, Lecheng Lyu, Qian Lyu, Han Mu, Xiaonan Nie, Jingzhe Ning, Xitong Pan, Yanghua Peng, Lianke Qin, Xueqiong Qu, Yuxi Ren, Kai Shen, Guang Shi, Lei Shi, Yan Song, Yinglong Song, Fan Sun, Li Sun, Renfei Sun, Yan Sun, Zeyu Sun, Wenjing Tang, Yaxue Tang, Zirui Tao, Feng Wang, Furui Wang, Jinran Wang, Junkai Wang, Ke Wang, Kexin Wang, Qingyi Wang, Rui Wang, Sen Wang, Shuai Wang, Tingru Wang, Weichen Wang, Xin Wang, Yanhui Wang, Yue Wang, Yuping Wang, Yuxuan Wang, Ziyu Wang, Guoqiang Wei, Wanru Wei, Di Wu, Guohong Wu, Hanjie Wu, Jian Wu, Jie Wu, Ruolan Wu, Xinglong Wu, Yonghui Wu, Ruiqi Xia, Liang Xiang, Fei Xiao, XueFeng Xiao, Pan Xie, Shuangyi Xie, Shuang Xu, Jinlan Xue, Shen Yan, Bangbang Yang, Ceyuan Yang, Jiaqi Yang, Runkai Yang, Tao Yang, Yang Yang, Yihang Yang, ZhiXian Yang, Ziyan Yang, Songting Yao, Yifan Yao, Zilyu Ye, Bowen Yu, Jian Yu, Chujie Yuan, Linxiao Yuan, Sichun Zeng, Weihong Zeng, Xuejiao Zeng, Yan Zeng, Chuntao Zhang, Heng Zhang, Jingjie Zhang, Kuo Zhang, Liang Zhang, Liying Zhang, Manlin Zhang, Ting Zhang, Weida Zhang, Xiaohe Zhang, Xinyan Zhang, Yan Zhang, Yuan Zhang, Zixiang Zhang, Fengxuan Zhao, Huating Zhao, Yang Zhao, Hao Zheng, Jianbin Zheng, Xiaozheng Zheng, Yangyang Zheng, Yijie Zheng, Jiexin Zhou, Jiahui Zhu, Kuan Zhu, Shenhan Zhu, Wenjia Zhu, Benhui Zou, Feilong Zuo
Abstract:
Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.
Authors:Zhen Chen, Qing Xu, Jinlin Wu, Biao Yang, Yuhao Zhai, Geng Guo, Jing Zhang, Yinlu Ding, Nassir Navab, Jiebo Luo
Abstract:
Foundation models in video generation are demonstrating remarkable capabilities as potential world models for simulating the physical world. However, their application in high-stakes domains like surgery, which demand deep, specialized causal knowledge rather than general physical rules, remains a critical unexplored gap. To systematically address this challenge, we present SurgVeo, the first expert-curated benchmark for video generation model evaluation in surgery, and the Surgical Plausibility Pyramid (SPP), a novel, four-tiered framework tailored to assess model outputs from basic appearance to complex surgical strategy. On the basis of the SurgVeo benchmark, we task the advanced Veo-3 model with a zero-shot prediction task on surgical clips from laparoscopic and neurosurgical procedures. A panel of four board-certified surgeons evaluates the generated videos according to the SPP. Our results reveal a distinct "plausibility gap": while Veo-3 achieves exceptional Visual Perceptual Plausibility, it fails critically at higher levels of the SPP, including Instrument Operation Plausibility, Environment Feedback Plausibility, and Surgical Intent Plausibility. This work provides the first quantitative evidence of the chasm between visually convincing mimicry and causal understanding in surgical AI. Our findings from SurgVeo and the SPP establish a crucial foundation and roadmap for developing future models capable of navigating the complexities of specialized, real-world healthcare domains.
Authors:Orest Kupyn, Fabian Manhardt, Federico Tombari, Christian Rupprecht
Abstract:
Video generation models have progressed tremendously through large latent diffusion transformers trained with rectified flow techniques. Yet these models still struggle with geometric inconsistencies, unstable motion, and visual artifacts that break the illusion of realistic 3D scenes. 3D-consistent video generation could significantly impact numerous downstream applications in generation and reconstruction tasks. We explore how epipolar geometry constraints improve modern video diffusion models. Despite massive training data, these models fail to capture fundamental geometric principles underlying visual content. We align diffusion models using pairwise epipolar geometry constraints via preference-based optimization, directly addressing unstable camera trajectories and geometric artifacts through mathematically principled geometric enforcement. Our approach efficiently enforces geometric principles without requiring end-to-end differentiability. Evaluation demonstrates that classical geometric constraints provide more stable optimization signals than modern learned metrics, which produce noisy targets that compromise alignment quality. Training on static scenes with dynamic cameras ensures high-quality measurements while the model generalizes effectively to diverse dynamic content. By bridging data-driven deep learning with classical geometric computer vision, we present a practical method for generating spatially consistent videos without compromising visual quality.
Authors:Haoyi Duan, Yunzhi Zhang, Yilun Du, Jiajun Wu
Abstract:
Many video workflows benefit from a mixture of user controls with varying granularity, from exact 4D object trajectories and camera paths to coarse text prompts, while existing video generative models are typically trained for fixed input formats. We develop a video synthesis method that addresses this need and generates samples with high controllability for specified elements while maintaining diversity for under-specified ones. We cast the task as variational inference to approximate a composed distribution, leveraging multiple video generation backbones to account for all task constraints collectively. To address the optimization challenge, we break down the problem into step-wise KL divergence minimization over an annealed sequence of distributions, and further propose a context-conditioned factorization technique that reduces modes in the solution space to circumvent local optima. Experiments suggest that our method produces samples with improved controllability, diversity, and 3D consistency compared to prior works.
Authors:Avishree Khare, Hideki Okamoto, Bardh Hoxha, Georgios Fainekos, Rajeev Alur
Abstract:
Neural models such as YOLO and HuBERT can be used to detect local properties such as objects ("car") and emotions ("angry") in individual frames of videos and audio clips respectively. The likelihood of these detections is indicated by scores in [0, 1]. Lifting these scores to temporal properties over sequences can be useful for several downstream applications such as query matching (e.g., "does the speaker eventually sound happy in this audio clip?"), and ranked retrieval (e.g., "retrieve top 5 videos with a 10 second scene where a car is detected until a pedestrian is detected"). In this work, we formalize this problem of assigning Scores for TempOral Properties (STOPs) over sequences, given potentially noisy score predictors for local properties. We then propose a scoring function called LogSTOP that can efficiently compute these scores for temporal properties represented in Linear Temporal Logic. Empirically, LogSTOP, with YOLO and HuBERT, outperforms Large Vision / Audio Language Models and other Temporal Logic-based baselines by at least 16% on query matching with temporal properties over objects-in-videos and emotions-in-speech respectively. Similarly, on ranked retrieval with temporal properties over objects and actions in videos, LogSTOP with Grounding DINO and SlowR50 reports at least a 19% and 16% increase in mean average precision and recall over zero-shot text-to-video retrieval baselines respectively.
Authors:Liqiang Jing, Viet Lai, Seunghyun Yoon, Trung Bui, Xinya Du
Abstract:
Video Multimodal Large Language Models (VideoMLLMs) have achieved remarkable progress in both Video-to-Text and Text-to-Video tasks. However, they often suffer fro hallucinations, generating content that contradicts the visual input. Existing evaluation methods are limited to one task (e.g., V2T) and also fail to assess hallucinations in open-ended, free-form responses. To address this gap, we propose FIFA, a unified FaIthFulness evAluation framework that extracts comprehensive descriptive facts, models their semantic dependencies via a Spatio-Temporal Semantic Dependency Graph, and verifies them using VideoQA models. We further introduce Post-Correction, a tool-based correction framework that revises hallucinated content. Extensive experiments demonstrate that FIFA aligns more closely with human judgment than existing evaluation methods, and that Post-Correction effectively improves factual consistency in both text and video generation.
Authors:Xuanyu Zhang, Weiqi Li, Shijie Zhao, Junlin Li, Li Zhang, Jian Zhang
Abstract:
Recent advances in AI-generated content (AIGC) have led to the emergence of powerful text-to-video generation models. Despite these successes, evaluating the quality of AIGC-generated videos remains challenging due to limited generalization, lack of temporal awareness, heavy reliance on large-scale annotated datasets, and the lack of effective interaction with generation models. Most current approaches rely on supervised finetuning of vision-language models (VLMs), which often require large-scale annotated datasets and tend to decouple understanding and generation. To address these shortcomings, we propose VQ-Insight, a novel reasoning-style VLM framework for AIGC video quality assessment. Our approach features: (1) a progressive video quality learning scheme that combines image quality warm-up, general task-specific temporal learning, and joint optimization with the video generation model; (2) the design of multi-dimension scoring rewards, preference comparison rewards, and temporal modeling rewards to enhance both generalization and specialization in video quality evaluation. Extensive experiments demonstrate that VQ-Insight consistently outperforms state-of-the-art baselines in preference comparison, multi-dimension scoring, and natural video scoring, bringing significant improvements for video generation tasks.
Authors:Yu Gao, Haoyuan Guo, Tuyen Hoang, Weilin Huang, Lu Jiang, Fangyuan Kong, Huixia Li, Jiashi Li, Liang Li, Xiaojie Li, Xunsong Li, Yifu Li, Shanchuan Lin, Zhijie Lin, Jiawei Liu, Shu Liu, Xiaonan Nie, Zhiwu Qing, Yuxi Ren, Li Sun, Zhi Tian, Rui Wang, Sen Wang, Guoqiang Wei, Guohong Wu, Jie Wu, Ruiqi Xia, Fei Xiao, Xuefeng Xiao, Jiangqiao Yan, Ceyuan Yang, Jianchao Yang, Runkai Yang, Tao Yang, Yihang Yang, Zilyu Ye, Xuejiao Zeng, Yan Zeng, Heng Zhang, Yang Zhao, Xiaozheng Zheng, Peihao Zhu, Jiaxin Zou, Feilong Zuo
Abstract:
Notable breakthroughs in diffusion modeling have propelled rapid improvements in video generation, yet current foundational model still face critical challenges in simultaneously balancing prompt following, motion plausibility, and visual quality. In this report, we introduce Seedance 1.0, a high-performance and inference-efficient video foundation generation model that integrates several core technical improvements: (i) multi-source data curation augmented with precision and meaningful video captioning, enabling comprehensive learning across diverse scenarios; (ii) an efficient architecture design with proposed training paradigm, which allows for natively supporting multi-shot generation and jointly learning of both text-to-video and image-to-video tasks. (iii) carefully-optimized post-training approaches leveraging fine-grained supervised fine-tuning, and video-specific RLHF with multi-dimensional reward mechanisms for comprehensive performance improvements; (iv) excellent model acceleration achieving ~10x inference speedup through multi-stage distillation strategies and system-level optimizations. Seedance 1.0 can generate a 5-second video at 1080p resolution only with 41.4 seconds (NVIDIA-L20). Compared to state-of-the-art video generation models, Seedance 1.0 stands out with high-quality and fast video generation having superior spatiotemporal fluidity with structural stability, precise instruction adherence in complex multi-subject contexts, native multi-shot narrative coherence with consistent subject representation.
Authors:Yunzhi Zhang, Carson Murtuza-Lanier, Zizhang Li, Yilun Du, Jiajun Wu
Abstract:
Modern neural models capture rich priors and have complementary knowledge over shared data domains, e.g., images and videos. Integrating diverse knowledge from multiple sources -- including visual generative models, visual language models, and sources with human-crafted knowledge such as graphics engines and physics simulators -- remains under-explored. We propose a Product of Experts (PoE) framework that performs inference-time knowledge composition from heterogeneous models. This training-free approach samples from the product distribution across experts via Annealed Importance Sampling (AIS). Our framework shows practical benefits in image and video synthesis tasks, yielding better controllability than monolithic methods and additionally providing flexible user interfaces for specifying visual generation goals.
Authors:Zhipei Xu, Xuanyu Zhang, Qing Huang, Xing Zhou, Jian Zhang
Abstract:
Recent advances in Artificial Intelligence Generated Content have led to highly realistic synthetic videos, particularly in human-centric scenarios involving speech, gestures, and full-body motion, posing serious threats to information authenticity and public trust. Unlike DeepFake techniques that focus on localized facial manipulation, human-centric video generation methods can synthesize entire human bodies with controllable movements, enabling complex interactions with environments, objects, and even other people. However, existing detection methods largely overlook the growing risks posed by such full-body synthetic content. Meanwhile, a growing body of research has explored leveraging LLMs for interpretable fake detection, aiming to explain decisions in natural language. Yet these approaches heavily depend on supervised fine-tuning, which introduces limitations such as annotation bias, hallucinated supervision, and weakened generalization. To address these challenges, we propose AvatarShield, a novel multimodal human-centric synthetic video detection framework that eliminates the need for dense textual supervision by adopting Group Relative Policy Optimization, enabling LLMs to develop reasoning capabilities from simple binary labels. Our architecture combines a discrete vision tower for high-level semantic inconsistencies and a residual extractor for fine-grained artifact analysis. We further introduce FakeHumanVid, a large-scale benchmark containing 15K real and synthetic videos across nine state-of-the-art human generation methods driven by text, pose, or audio. Extensive experiments demonstrate that AvatarShield outperforms existing methods in both in-domain and cross-domain settings.
Authors:Ziqi Ding, Qian Fu, Junchen Ding, Gelei Deng, Yi Liu, Yuekang Li
Abstract:
Recent advancements in large language models (LLMs) have spurred the development of diverse AI applications from code generation and video editing to text generation; however, AI supply chains such as Hugging Face, which host pretrained models and their associated configuration files contributed by the public, face significant security challenges; in particular, configuration files originally intended to set up models by specifying parameters and initial settings can be exploited to execute unauthorized code, yet research has largely overlooked their security compared to that of the models themselves; in this work, we present the first comprehensive study of malicious configurations on Hugging Face, identifying three attack scenarios (file, website, and repository operations) that expose inherent risks; to address these threats, we introduce CONFIGSCAN, an LLM-based tool that analyzes configuration files in the context of their associated runtime code and critical libraries, effectively detecting suspicious elements with low false positive rates and high accuracy; our extensive evaluation uncovers thousands of suspicious repositories and configuration files, underscoring the urgent need for enhanced security validation in AI model hosting platforms.
Authors:Junpeng Jiang, Gangyi Hong, Miao Zhang, Hengtong Hu, Kun Zhan, Rui Shao, Liqiang Nie
Abstract:
Collecting multi-view driving scenario videos to enhance the performance of 3D visual perception tasks presents significant challenges and incurs substantial costs, making generative models for realistic data an appealing alternative. Yet, the videos generated by recent works suffer from poor quality and spatiotemporal consistency, undermining their utility in advancing perception tasks under driving scenarios. To address this gap, we propose DiVE, a diffusion transformer-based generative framework meticulously engineered to produce high-fidelity, temporally coherent, and cross-view consistent multi-view videos, aligning seamlessly with bird's-eye view layouts and textual descriptions. DiVE leverages a unified cross-attention and a SketchFormer to exert precise control over multimodal data, while incorporating a view-inflated attention mechanism that adds no extra parameters, thereby guaranteeing consistency across views. Despite these advancements, synthesizing high-resolution videos under multimodal constraints introduces dual challenges: investigating the optimal classifier-free guidance coniguration under intricate multi-condition inputs and mitigating excessive computational latency in high-resolution rendering--both of which remain underexplored in prior researches. To resolve these limitations, we introduce two innovations: Multi-Control Auxiliary Branch Distillation, which streamlines multi-condition CFG selection while circumventing high computational overhead, and Resolution Progressive Sampling, a training-free acceleration strategy that staggers resolution scaling to reduce high latency due to high resolution. These innovations collectively achieve a 2.62x speedup with minimal quality degradation. Evaluated on the nuScenes dataset, DiVE achieves SOTA performance in multi-view video generation, yielding photorealistic outputs with exceptional temporal and cross-view coherence.
Authors:Hadrien Reynaud, Alberto Gomez, Paul Leeson, Qingjie Meng, Bernhard Kainz
Abstract:
Advances in deep learning have significantly enhanced medical image analysis, yet the availability of large-scale medical datasets remains constrained by patient privacy concerns. We present EchoFlow, a novel framework designed to generate high-quality, privacy-preserving synthetic echocardiogram images and videos. EchoFlow comprises four key components: an adversarial variational autoencoder for defining an efficient latent representation of cardiac ultrasound images, a latent image flow matching model for generating accurate latent echocardiogram images, a latent re-identification model to ensure privacy by filtering images anatomically, and a latent video flow matching model for animating latent images into realistic echocardiogram videos conditioned on ejection fraction. We rigorously evaluate our synthetic datasets on the clinically relevant task of ejection fraction regression and demonstrate, for the first time, that downstream models trained exclusively on EchoFlow-generated synthetic datasets achieve performance parity with models trained on real datasets. We release our models and synthetic datasets, enabling broader, privacy-compliant research in medical ultrasound imaging at https://huggingface.co/spaces/HReynaud/EchoFlow.
Authors:Yuntao Chen, Yuqi Wang, Zhaoxiang Zhang
Abstract:
World model-based searching and planning are widely recognized as a promising path toward human-level physical intelligence. However, current driving world models primarily rely on video diffusion models, which specialize in visual generation but lack the flexibility to incorporate other modalities like action. In contrast, autoregressive transformers have demonstrated exceptional capability in modeling multimodal data. Our work aims to unify both driving model simulation and trajectory planning into a single sequence modeling problem. We introduce a multimodal driving language based on interleaved image and action tokens, and develop DrivingGPT to learn joint world modeling and planning through standard next-token prediction. Our DrivingGPT demonstrates strong performance in both action-conditioned video generation and end-to-end planning, outperforming strong baselines on large-scale nuPlan and NAVSIM benchmarks.
Authors:Minghao Shao, Abdul Basit, Ramesh Karri, Muhammad Shafique
Abstract:
Large Language Models (LLMs) represent a class of deep learning models adept at understanding natural language and generating coherent responses to various prompts or queries. These models far exceed the complexity of conventional neural networks, often encompassing dozens of neural network layers and containing billions to trillions of parameters. They are typically trained on vast datasets, utilizing architectures based on transformer blocks. Present-day LLMs are multi-functional, capable of performing a range of tasks from text generation and language translation to question answering, as well as code generation and analysis. An advanced subset of these models, known as Multimodal Large Language Models (MLLMs), extends LLM capabilities to process and interpret multiple data modalities, including images, audio, and video. This enhancement empowers MLLMs with capabilities like video editing, image comprehension, and captioning for visual content. This survey provides a comprehensive overview of the recent advancements in LLMs. We begin by tracing the evolution of LLMs and subsequently delve into the advent and nuances of MLLMs. We analyze emerging state-of-the-art MLLMs, exploring their technical features, strengths, and limitations. Additionally, we present a comparative analysis of these models and discuss their challenges, potential limitations, and prospects for future development.
Authors:Kui Ren, Ziqi Yang, Li Lu, Jian Liu, Yiming Li, Jie Wan, Xiaodi Zhao, Xianheng Feng, Shuo Shao
Abstract:
The rapid advancement of AI technology, particularly in generating AI-generated content (AIGC), has transformed numerous fields, e.g., art video generation, but also brings new risks, including the misuse of AI for misinformation and intellectual property theft. To address these concerns, AIGC watermarks offer an effective solution to mitigate malicious activities. However, existing watermarking surveys focus more on traditional watermarks, overlooking AIGC-specific challenges. In this work, we propose a systematic investigation into AIGC watermarking and provide the first formal definition of AIGC watermarking. Different from previous surveys, we provide a taxonomy based on the core properties of the watermark which are summarized through comprehensive literature from various AIGC modalities. Derived from the properties, we discuss the functionality and security threats of AIGC watermarking. In the end, we thoroughly investigate the AIGC governance of different countries and practitioners. We believe this taxonomy better aligns with the practical demands for watermarking in the era of GenAI, thus providing a clearer summary of existing work and uncovering potential future research directions for the community.
Authors:Muhammad Haaris Khan, Hadrien Reynaud, Bernhard Kainz
Abstract:
Although powerful for image generation, consistent and controllable video is a longstanding problem for diffusion models. Video models require extensive training and computational resources, leading to high costs and large environmental impacts. Moreover, video models currently offer limited control of the output motion. This paper introduces a novel approach to video generation by augmenting image diffusion models to create sequential animation frames while maintaining fine detail. These techniques can be applied to existing image models without training any video parameters (zero-shot) by altering the input noise in a latent diffusion model. Two complementary methods are presented. Noise crystallization ensures consistency but is limited to large movements due to reduced latent embedding sizes. Liquid noise trades consistency for greater flexibility without resolution limitations. The core concepts also allow other applications such as relighting, seamless upscaling, and improved video style transfer. Furthermore, an exploration of the VAE embedding used for latent diffusion models is performed, resulting in interesting theoretical insights such as a method for human-interpretable latent spaces.
Authors:Hadrien Reynaud, Matthew Baugh, Mischa Dombrowski, Sarah Cechnicka, Qingjie Meng, Bernhard Kainz
Abstract:
We introduce the Joint Video-Image Diffusion model (JVID), a novel approach to generating high-quality and temporally coherent videos. We achieve this by integrating two diffusion models: a Latent Image Diffusion Model (LIDM) trained on images and a Latent Video Diffusion Model (LVDM) trained on video data. Our method combines these models in the reverse diffusion process, where the LIDM enhances image quality and the LVDM ensures temporal consistency. This unique combination allows us to effectively handle the complex spatio-temporal dynamics in video generation. Our results demonstrate quantitative and qualitative improvements in producing realistic and coherent videos.
Authors:Wanyue Zhang, Lin Geng Foo, Thabo Beeler, Rishabh Dabral, Christian Theobalt
Abstract:
Synthesizing realistic human-object interactions (HOI) in video is challenging due to the complex, instance-specific interaction dynamics of both humans and objects. Incorporating controllability in video generation further adds to the complexity. Existing controllable video generation approaches face a trade-off: sparse controls like keypoint trajectories are easy to specify but lack instance-awareness, while dense signals such as optical flow, depths or 3D meshes are informative but costly to obtain. We propose VHOI, a two-stage framework that first densifies sparse trajectories into HOI mask sequences, and then fine-tunes a video diffusion model conditioned on these dense masks. We introduce a novel HOI-aware motion representation that uses color encodings to distinguish not only human and object motion, but also body-part-specific dynamics. This design incorporates a human prior into the conditioning signal and strengthens the model's ability to understand and generate realistic HOI dynamics. Experiments demonstrate state-of-the-art results in controllable HOI video generation. VHOI is not limited to interaction-only scenarios and can also generate full human navigation leading up to object interactions in an end-to-end manner. Project page: https://vcai.mpi-inf.mpg.de/projects/vhoi/.
Authors:Zixiang Yang, Yue Ma, Yinhan Zhang, Shanhui Mo, Dongrui Liu, Linfeng Zhang
Abstract:
Visual generation includes both image and video generation, training probabilistic models to create coherent, diverse, and semantically faithful content from scratch. While early research focused on unconditional sampling, practitioners now demand controllable generation that allows precise specification of layout, pose, motion, or style. While ControlNet grants precise spatial-temporal control, its auxiliary branch markedly increases latency and introduces redundant computation in both uncontrolled regions and denoising steps, especially for video. To address this problem, we introduce EVCtrl, a lightweight, plug-and-play control adapter that slashes overhead without retraining the model. Specifically, we propose a spatio-temporal dual caching strategy for sparse control information. For spatial redundancy, we first profile how each layer of DiT-ControlNet responds to fine-grained control, then partition the network into global and local functional zones. A locality-aware cache focuses computation on the local zones that truly need the control signal, skipping the bulk of redundant computation in global regions. For temporal redundancy, we selectively omit unnecessary denoising steps to improve efficiency. Extensive experiments on CogVideo-Controlnet, Wan2.1-Controlnet, and Flux demonstrate that our method is effective in image and video control generation without the need for training. For example, it achieves 2.16 and 2.05 times speedups on CogVideo-Controlnet and Wan2.1-Controlnet, respectively, with almost no degradation in generation quality.Codes are available in the supplementary materials.
Authors:Zhenzhi Wang, Yixuan Li, Yanhong Zeng, Yuwei Guo, Dahua Lin, Tianfan Xue, Bo Dai
Abstract:
Generating human videos from a single image while ensuring high visual quality and precise control is a challenging task, especially in complex scenarios involving multiple individuals and interactions with objects. Existing methods, while effective for single-human cases, often fail to handle the intricacies of multi-identity interactions because they struggle to associate the correct pairs of human appearance and pose condition and model the distribution of 3D-aware dynamics. To address these limitations, we present Structural Video Diffusion, a novel framework designed for generating realistic multi-human videos. Our approach introduces two core innovations: identity-specific embeddings to maintain consistent appearances across individuals and a structural learning mechanism that incorporates depth and surface-normal cues to model human-object interactions. Additionally, we expand existing human video dataset with 25K new videos featuring diverse multi-human and object interaction scenarios, providing a robust foundation for training. Experimental results demonstrate that Structural Video Diffusion achieves superior performance in generating lifelike, coherent videos for multiple subjects with dynamic and rich interactions, advancing the state of human-centric video generation.
Authors:Lei Li, Yuanxin Liu, Linli Yao, Peiyuan Zhang, Chenxin An, Lean Wang, Xu Sun, Lingpeng Kong, Qi Liu
Abstract:
Video Large Language Models (Video LLMs) have shown promising capabilities in video comprehension, yet they struggle with tracking temporal changes and reasoning about temporal relationships. While previous research attributed this limitation to the ineffective temporal encoding of visual inputs, our diagnostic study reveals that video representations contain sufficient information for even small probing classifiers to achieve perfect accuracy. Surprisingly, we find that the key bottleneck in Video LLMs' temporal reasoning capability stems from the underlying LLM's inherent difficulty with temporal concepts, as evidenced by poor performance on textual temporal question-answering tasks. Building on this discovery, we introduce the Textual Temporal reasoning Transfer (T3). T3 synthesizes diverse temporal reasoning tasks in pure text format from existing image-text datasets, addressing the scarcity of video samples with complex temporal scenarios. Remarkably, without using any video data, T3 enhances LongVA-7B's temporal understanding, yielding a 5.3 absolute accuracy improvement on the challenging TempCompass benchmark, which enables our model to outperform ShareGPT4Video-8B trained on 28,000 video samples. Additionally, the enhanced LongVA-7B model achieves competitive performance on comprehensive video benchmarks. For example, it achieves a 49.7 accuracy on the Temporal Reasoning task of Video-MME, surpassing powerful large-scale models such as InternVL-Chat-V1.5-20B and VILA1.5-40B. Further analysis reveals a strong correlation between textual and video temporal task performance, validating the efficacy of transferring temporal reasoning abilities from text to video domains.
Authors:Mingzhen Sun, Weining Wang, Yanyuan Qiao, Jiahui Sun, Zihan Qin, Longteng Guo, Xinxin Zhu, Jing Liu
Abstract:
Sounding Video Generation (SVG) is an audio-video joint generation task challenged by high-dimensional signal spaces, distinct data formats, and different patterns of content information. To address these issues, we introduce a novel multi-modal latent diffusion model (MM-LDM) for the SVG task. We first unify the representation of audio and video data by converting them into a single or a couple of images. Then, we introduce a hierarchical multi-modal autoencoder that constructs a low-level perceptual latent space for each modality and a shared high-level semantic feature space. The former space is perceptually equivalent to the raw signal space of each modality but drastically reduces signal dimensions. The latter space serves to bridge the information gap between modalities and provides more insightful cross-modal guidance. Our proposed method achieves new state-of-the-art results with significant quality and efficiency gains. Specifically, our method achieves a comprehensive improvement on all evaluation metrics and a faster training and sampling speed on Landscape and AIST++ datasets. Moreover, we explore its performance on open-domain sounding video generation, long sounding video generation, audio continuation, video continuation, and conditional single-modal generation tasks for a comprehensive evaluation, where our MM-LDM demonstrates exciting adaptability and generalization ability.
Authors:Zijun Wang, Panwen Hu, Jing Wang, Terry Jingchen Zhang, Yuhao Cheng, Long Chen, Yiqiang Yan, Zutao Jiang, Hanhui Li, Xiaodan Liang
Abstract:
Recent advances in video generation have shown remarkable potential for constructing world simulators. However, current models still struggle to produce physically consistent results, particularly when handling large-scale or complex dynamics. This limitation arises primarily because existing approaches respond isotropically to physical prompts and neglect the fine-grained alignment between generated content and localized physical cues. To address these challenges, we propose ProPhy, a Progressive Physical Alignment Framework that enables explicit physics-aware conditioning and anisotropic generation. ProPhy employs a two-stage Mixture-of-Physics-Experts (MoPE) mechanism for discriminative physical prior extraction, where Semantic Experts infer semantic-level physical principles from textual descriptions, and Refinement Experts capture token-level physical dynamics. This mechanism allows the model to learn fine-grained, physics-aware video representations that better reflect underlying physical laws. Furthermore, we introduce a physical alignment strategy that transfers the physical reasoning capabilities of vision-language models (VLMs) into the Refinement Experts, facilitating a more accurate representation of dynamic physical phenomena. Extensive experiments on physics-aware video generation benchmarks demonstrate that ProPhy produces more realistic, dynamic, and physically coherent results than existing state-of-the-art methods.
Authors:Qisen Wang, Yifan Zhao, Peisen Shen, Jialu Li, Jia Li
Abstract:
Although prevailing camera-controlled video generation models can produce cinematic results, lifting them directly to the generation of 3D-consistent and high-fidelity time-synchronized multi-view videos remains challenging, which is a pivotal capability for taming 4D worlds. Some works resort to data augmentation or test-time optimization, but these strategies are constrained by limited model generalization and scalability issues. To this end, we propose ChronosObserver, a training-free method including World State Hyperspace to represent the spatiotemporal constraints of a 4D world scene, and Hyperspace Guided Sampling to synchronize the diffusion sampling trajectories of multiple views using the hyperspace. Experimental results demonstrate that our method achieves high-fidelity and 3D-consistent time-synchronized multi-view videos generation without training or fine-tuning for diffusion models.
Authors:Chenhao Ji, Chaohui Yu, Junyao Gao, Fan Wang, Cairong Zhao
Abstract:
Recently, camera-controlled video generation has seen rapid development, offering more precise control over video generation. However, existing methods predominantly focus on camera control in perspective projection video generation, while geometrically consistent panoramic video generation remains challenging. This limitation is primarily due to the inherent complexities in panoramic pose representation and spherical projection. To address this issue, we propose CamPVG, the first diffusion-based framework for panoramic video generation guided by precise camera poses. We achieve camera position encoding for panoramic images and cross-view feature aggregation based on spherical projection. Specifically, we propose a panoramic Plücker embedding that encodes camera extrinsic parameters through spherical coordinate transformation. This pose encoder effectively captures panoramic geometry, overcoming the limitations of traditional methods when applied to equirectangular projections. Additionally, we introduce a spherical epipolar module that enforces geometric constraints through adaptive attention masking along epipolar lines. This module enables fine-grained cross-view feature aggregation, substantially enhancing the quality and consistency of generated panoramic videos. Extensive experiments demonstrate that our method generates high-quality panoramic videos consistent with camera trajectories, far surpassing existing methods in panoramic video generation.
Authors:Zhitao Wang, Hengyu Man, Wenrui Li, Xingtao Wang, Xiaopeng Fan, Debin Zhao
Abstract:
Recent advances in video generation techniques have given rise to an emerging paradigm of generative video coding for Ultra-Low Bitrate (ULB) scenarios by leveraging powerful generative priors. However, most existing methods are limited by domain specificity (e.g., facial or human videos) or excessive dependence on high-level text guidance, which tend to inadequately capture fine-grained motion details, leading to unrealistic or incoherent reconstructions. To address these challenges, we propose Trajectory-Guided Generative Video Coding (dubbed T-GVC), a novel framework that bridges low-level motion tracking with high-level semantic understanding. T-GVC features a semantic-aware sparse motion sampling pipeline that extracts pixel-wise motion as sparse trajectory points based on their semantic importance, significantly reducing the bitrate while preserving critical temporal semantic information. In addition, by integrating trajectory-aligned loss constraints into diffusion processes, we introduce a training-free guidance mechanism in latent space to ensure physically plausible motion patterns without sacrificing the inherent capabilities of generative models. Experimental results demonstrate that T-GVC outperforms both traditional and neural video codecs under ULB conditions. Furthermore, additional experiments confirm that our framework achieves more precise motion control than existing text-guided methods, paving the way for a novel direction of generative video coding guided by geometric motion modeling.
Authors:Zhelun Shen, Chenming Wu, Junsheng Zhou, Chen Zhao, Kaisiyuan Wang, Hang Zhou, Yingying Li, Haocheng Feng, Wei He, Jingdong Wang
Abstract:
Digital human video generation is gaining traction in fields like education and e-commerce, driven by advancements in head-body animation and lip-syncing technologies. However, realistic Hand-Object Interaction (HOI) - the complex dynamics between human hands and objects - continues to pose challenges. Generating natural and believable HOI reenactments is difficult due to issues such as occlusion between hands and objects, variations in object shapes and orientations, and the necessity for precise physical interactions, and importantly, the ability to generalize to unseen humans and objects. This paper presents a novel framework iDiT-HOI that enables in-the-wild HOI reenactment generation. Specifically, we propose a unified inpainting-based token process method, called Inp-TPU, with a two-stage video diffusion transformer (DiT) model. The first stage generates a key frame by inserting the designated object into the hand region, providing a reference for subsequent frames. The second stage ensures temporal coherence and fluidity in hand-object interactions. The key contribution of our method is to reuse the pretrained model's context perception capabilities without introducing additional parameters, enabling strong generalization to unseen objects and scenarios, and our proposed paradigm naturally supports long video generation. Comprehensive evaluations demonstrate that our approach outperforms existing methods, particularly in challenging real-world scenes, offering enhanced realism and more seamless hand-object interactions.
Authors:Yufan Deng, Xun Guo, Yizhi Wang, Jacob Zhiyuan Fang, Angtian Wang, Shenghai Yuan, Yiding Yang, Bo Liu, Haibin Huang, Chongyang Ma
Abstract:
Video generation has witnessed remarkable progress with the advent of deep generative models, particularly diffusion models. While existing methods excel in generating high-quality videos from text prompts or single images, personalized multi-subject video generation remains a largely unexplored challenge. This task involves synthesizing videos that incorporate multiple distinct subjects, each defined by separate reference images, while ensuring temporal and spatial consistency. Current approaches primarily rely on mapping subject images to keywords in text prompts, which introduces ambiguity and limits their ability to model subject relationships effectively. In this paper, we propose CINEMA, a novel framework for coherent multi-subject video generation by leveraging Multimodal Large Language Model (MLLM). Our approach eliminates the need for explicit correspondences between subject images and text entities, mitigating ambiguity and reducing annotation effort. By leveraging MLLM to interpret subject relationships, our method facilitates scalability, enabling the use of large and diverse datasets for training. Furthermore, our framework can be conditioned on varying numbers of subjects, offering greater flexibility in personalized content creation. Through extensive evaluations, we demonstrate that our approach significantly improves subject consistency, and overall video coherence, paving the way for advanced applications in storytelling, interactive media, and personalized video generation.
Authors:Xindi Wu, Despoina Paschalidou, Jun Gao, Antonio Torralba, Laura Leal-Taixé, Olga Russakovsky, Sanja Fidler, Jonathan Lorraine
Abstract:
Despite the rapid progress of video generation models, the role of data in influencing motion is poorly understood. We present Motive (MOTIon attribution for Video gEneration), a motion-centric, gradient-based data attribution framework that scales to modern, large, high-quality video datasets and models. We use this to study which fine-tuning clips improve or degrade temporal dynamics. Motive isolates temporal dynamics from static appearance via motion-weighted loss masks, yielding efficient and scalable motion-specific influence computation. On text-to-video models, Motive identifies clips that strongly affect motion and guides data curation that improves temporal consistency and physical plausibility. With Motive-selected high-influence data, our method improves both motion smoothness and dynamic degree on VBench, achieving a 74.1% human preference win rate compared with the pretrained base model. To our knowledge, this is the first framework to attribute motion rather than visual appearance in video generative models and to use it to curate fine-tuning data.
Authors:Daoan Zhang, Wenlin Yao, Xiaoyang Wang, Yebowen Hu, Jiebo Luo, Dong Yu
Abstract:
With the advancement of AIGC (AI-generated content) technologies, an increasing number of generative models are revolutionizing fields such as video editing, music generation, and even film production. However, due to the limitations of current AIGC models, most models can only serve as individual components within specific application scenarios and are not capable of completing tasks end-to-end in real-world applications. In real-world applications, editing experts often work with a wide variety of images and video inputs, producing multimodal outputs -- a video typically includes audio, text, and other elements. This level of integration across multiple modalities is something current models are unable to achieve effectively. However, the rise of agent-based systems has made it possible to use AI tools to tackle complex content generation tasks. To deal with the complex scenarios, in this paper, we propose a MultiMedia-Agent designed to automate complex content creation. Our agent system includes a data generation pipeline, a tool library for content creation, and a set of metrics for evaluating preference alignment. Notably, we introduce the skill acquisition theory to model the training data curation and agent training. We designed a two-stage correlation strategy for plan optimization, including self-correlation and model preference correlation. Additionally, we utilized the generated plans to train the MultiMedia-Agent via a three stage approach including base/success plan finetune and preference optimization. The comparison results demonstrate that the our approaches are effective and the MultiMedia-Agent can generate better multimedia content compared to novel models.
Authors:Wenze Liu, Weicai Ye, Minghong Cai, Quande Liu, Xintao Wang, Xiangyu Yue
Abstract:
Recent advancements in video generation have seen a shift towards unified, transformer-based foundation models that can handle multiple conditional inputs in-context. However, these models have primarily focused on modalities like text, images, and depth maps, while strictly time-synchronous signals like audio have been underexplored. This paper introduces In-Context Audio Control of video diffusion transformers (ICAC), a framework that investigates the integration of audio signals for speech-driven video generation within a unified full-attention architecture, akin to FullDiT. We systematically explore three distinct mechanisms for injecting audio conditions: standard cross-attention, 2D self-attention, and unified 3D self-attention. Our findings reveal that while 3D attention offers the highest potential for capturing spatio-temporal audio-visual correlations, it presents significant training challenges. To overcome this, we propose a Masked 3D Attention mechanism that constrains the attention pattern to enforce temporal alignment, enabling stable training and superior performance. Our experiments demonstrate that this approach achieves strong lip synchronization and video quality, conditioned on an audio stream and reference images.
Authors:Yexin Liu, Wen-Jie Shu, Zile Huang, Haoze Zheng, Yueze Wang, Manyuan Zhang, Ser-Nam Lim, Harry Yang
Abstract:
Text-guided image-to-video (TI2V) generation has recently achieved remarkable progress, particularly in maintaining subject consistency and temporal coherence. However, existing methods still struggle to adhere to fine-grained prompt semantics, especially when prompts entail substantial transformations of the input image (e.g., object addition, deletion, or modification), a shortcoming we term semantic negligence. In a pilot study, we find that applying a Gaussian blur to the input image improves semantic adherence. Analyzing attention maps, we observe clearer foreground-background separation. From an energy perspective, this corresponds to a lower-entropy cross-attention distribution. Motivated by this, we introduce AlignVid, a training-free framework with two components: (i) Attention Scaling Modulation (ASM), which directly reweights attention via lightweight Q or K scaling, and (ii) Guidance Scheduling (GS), which applies ASM selectively across transformer blocks and denoising steps to reduce visual quality degradation. This minimal intervention improves prompt adherence while limiting aesthetic degradation. In addition, we introduce OmitI2V to evaluate semantic negligence in TI2V generation, comprising 367 human-annotated samples that span addition, deletion, and modification scenarios. Extensive experiments demonstrate that AlignVid can enhance semantic fidelity.
Authors:Wenxuan Miao, Yulin Sun, Aiyue Chen, Jing Lin, Yiwu Yao, Yiming Gan, Jieru Zhao, Jingwen Leng, Mingyi Guo, Yu Feng
Abstract:
The recent surge in video generation has shown the growing demand for high-quality video synthesis using large vision models. Existing video generation models are predominantly based on the video diffusion transformer (vDiT), however, they suffer from substantial inference delay due to self-attention. While prior studies have focused on reducing redundant computations in self-attention, they often overlook the inherent spatio-temporal correlations in video streams and directly leverage sparsity patterns from large language models to reduce attention computations. In this work, we take a principled approach to accelerate self-attention in vDiTs by leveraging the spatio-temporal correlations in the latent space. We show that the attention patterns within vDiT are primarily due to the dominant spatial and temporal correlations at the token channel level. Based on this insight, we propose a lightweight and adaptive reuse strategy that approximates attention computations by reusing partial attention scores of spatially or temporally correlated tokens along individual channels. We demonstrate that our method achieves significantly higher computational savings (85\%) compared to state-of-the-art techniques over 4 vDiTs, while preserving almost identical video quality ($<$0.06\% loss on VBench).
Authors:Yucen Wang, Fengming Zhang, De-Chuan Zhan, Li Zhao, Kaixin Wang, Jiang Bian
Abstract:
Adapting pre-trained video generation models into controllable world models via latent actions is a promising step towards creating generalist world models. The dominant paradigm adopts a two-stage approach that trains latent action model (LAM) and the world model separately, resulting in redundant training and limiting their potential for co-adaptation. A conceptually simple and appealing idea is to directly replace the forward dynamic model in LAM with a powerful world model and training them jointly, but it is non-trivial and prone to representational collapse. In this work, we propose CoLA-World, which for the first time successfully realizes this synergistic paradigm, resolving the core challenge in joint learning through a critical warm-up phase that effectively aligns the representations of the from-scratch LAM with the pre-trained world model. This unlocks a co-evolution cycle: the world model acts as a knowledgeable tutor, providing gradients to shape a high-quality LAM, while the LAM offers a more precise and adaptable control interface to the world model. Empirically, CoLA-World matches or outperforms prior two-stage methods in both video simulation quality and downstream visual planning, establishing a robust and efficient new paradigm for the field.
Authors:Yuanzhi Li, Lebin Zhou, Nam Ling, Zhenghao Chen, Wei Wang, Wei Jiang
Abstract:
The gaming and entertainment industry is rapidly evolving, driven by immersive experiences and the integration of generative AI (GAI) technologies. Training such models effectively requires large-scale datasets that capture the diversity and context of gaming environments. However, existing datasets are often limited to specific domains or rely on artificial degradations, which do not accurately capture the unique characteristics of gaming content. Moreover, benchmarks for controllable video generation remain absent. To address these limitations, we introduce $\mathtt{M^3VIR}$, a large-scale, multi-modal, multi-view dataset specifically designed to overcome the shortcomings of current resources. Unlike existing datasets, $\mathtt{M^3VIR}$ provides diverse, high-fidelity gaming content rendered with Unreal Engine 5, offering authentic ground-truth LR-HR paired and multi-view frames across 80 scenes in 8 categories. It includes $\mathtt{M^3VIR\_MR}$ for super-resolution (SR), novel view synthesis (NVS), and combined NVS+SR tasks, and $\mathtt{M^3VIR\_{MS}}$, the first multi-style, object-level ground-truth set enabling research on controlled video generation. Additionally, we benchmark several state-of-the-art SR and NVS methods to establish performance baselines. While no existing approaches directly handle controlled video generation, $\mathtt{M^3VIR}$ provides a benchmark for advancing this area. By releasing the dataset, we aim to facilitate research in AI-powered restoration, compression, and controllable content generation for next-generation cloud gaming and entertainment.
Authors:Pedro Antonio Rabelo Saraiva, Enzo Ferreira de Souza, Joao Manoel Herrera Pinheiro, Thiago H. Segreto, Ricardo V. Godoy, Marcelo Becker
Abstract:
This work addresses the challenges of data scarcity and high acquisition costs for training robust object detection models in complex industrial environments, such as offshore oil platforms. The practical and economic barriers to collecting real-world data in these hazardous settings often hamper the development of autonomous inspection systems. To overcome this, in this work we propose and validate a hybrid data synthesis pipeline that combines procedural rendering with AI-driven video generation. Our methodology leverages BlenderProc to create photorealistic images with precise annotations and controlled domain randomization, and integrates NVIDIA's Cosmos-Predict2 world-foundation model to synthesize physically plausible video sequences with temporal diversity, capturing rare viewpoints and adverse conditions. We demonstrate that a YOLO-based detection network trained on a composite dataset, blending real images with our synthetic data, achieves superior performance compared to models trained exclusively on real-world data. Notably, a 1:1 mixture of real and synthetic data yielded the highest accuracy, surpassing the real-only baseline. These findings highlight the viability of a synthetic-first approach as an efficient, cost-effective, and safe alternative for developing reliable perception systems in safety-critical and resource-constrained industrial applications.
Authors:Naen Xu, Jinghuai Zhang, Changjiang Li, Zhi Chen, Chunyi Zhou, Qingming Li, Tianyu Du, Shouling Ji
Abstract:
The rapid growth of text-to-video (T2V) diffusion models has raised concerns about privacy, copyright, and safety due to their potential misuse in generating harmful or misleading content. These models are often trained on numerous datasets, including unauthorized personal identities, artistic creations, and harmful materials, which can lead to uncontrolled production and distribution of such content. To address this, we propose VideoEraser, a training-free framework that prevents T2V diffusion models from generating videos with undesirable concepts, even when explicitly prompted with those concepts. Designed as a plug-and-play module, VideoEraser can seamlessly integrate with representative T2V diffusion models via a two-stage process: Selective Prompt Embedding Adjustment (SPEA) and Adversarial-Resilient Noise Guidance (ARNG). We conduct extensive evaluations across four tasks, including object erasure, artistic style erasure, celebrity erasure, and explicit content erasure. Experimental results show that VideoEraser consistently outperforms prior methods regarding efficacy, integrity, fidelity, robustness, and generalizability. Notably, VideoEraser achieves state-of-the-art performance in suppressing undesirable content during T2V generation, reducing it by 46% on average across four tasks compared to baselines.
Authors:Xianglong He, Chunli Peng, Zexiang Liu, Boyang Wang, Yifan Zhang, Qi Cui, Fei Kang, Biao Jiang, Mengyin An, Yangyang Ren, Baixin Xu, Hao-Xiang Guo, Kaixiong Gong, Cyrus Wu, Wei Li, Xuchen Song, Yang Liu, Eric Li, Yahui Zhou
Abstract:
Recent advances in interactive video generations have demonstrated diffusion model's potential as world models by capturing complex physical dynamics and interactive behaviors. However, existing interactive world models depend on bidirectional attention and lengthy inference steps, severely limiting real-time performance. Consequently, they are hard to simulate real-world dynamics, where outcomes must update instantaneously based on historical context and current actions. To address this, we present Matrix-Game 2.0, an interactive world model generates long videos on-the-fly via few-step auto-regressive diffusion. Our framework consists of three key components: (1) A scalable data production pipeline for Unreal Engine and GTA5 environments to effectively produce massive amounts (about 1200 hours) of video data with diverse interaction annotations; (2) An action injection module that enables frame-level mouse and keyboard inputs as interactive conditions; (3) A few-step distillation based on the casual architecture for real-time and streaming video generation. Matrix Game 2.0 can generate high-quality minute-level videos across diverse scenes at an ultra-fast speed of 25 FPS. We open-source our model weights and codebase to advance research in interactive world modeling.
Authors:Zhongqi Yang, Wenhang Ge, Yuqi Li, Jiaqi Chen, Haoyuan Li, Mengyin An, Fei Kang, Hua Xue, Baixin Xu, Yuyang Yin, Eric Li, Yang Liu, Yikai Wang, Hao-Xiang Guo, Yahui Zhou
Abstract:
Explorable 3D world generation from a single image or text prompt forms a cornerstone of spatial intelligence. Recent works utilize video model to achieve wide-scope and generalizable 3D world generation. However, existing approaches often suffer from a limited scope in the generated scenes. In this work, we propose Matrix-3D, a framework that utilize panoramic representation for wide-coverage omnidirectional explorable 3D world generation that combines conditional video generation and panoramic 3D reconstruction. We first train a trajectory-guided panoramic video diffusion model that employs scene mesh renders as condition, to enable high-quality and geometrically consistent scene video generation. To lift the panorama scene video to 3D world, we propose two separate methods: (1) a feed-forward large panorama reconstruction model for rapid 3D scene reconstruction and (2) an optimization-based pipeline for accurate and detailed 3D scene reconstruction. To facilitate effective training, we also introduce the Matrix-Pano dataset, the first large-scale synthetic collection comprising 116K high-quality static panoramic video sequences with depth and trajectory annotations. Extensive experiments demonstrate that our proposed framework achieves state-of-the-art performance in panoramic video generation and 3D world generation. See more in https://matrix-3d.github.io.
Authors:Haiquan Wen, Tianxiao Li, Zhenglin Huang, Yiwei He, Guangliang Cheng
Abstract:
Recent advances in generative AI have dramatically improved image and video synthesis capabilities, significantly increasing the risk of misinformation through sophisticated fake content. In response, detection methods have evolved from traditional approaches to multimodal large language models (MLLMs), offering enhanced transparency and interpretability in identifying synthetic media. However, current detection systems remain fundamentally limited by their single-modality design. These approaches analyze images or videos separately, making them ineffective against synthetic content that combines multiple media formats. To address these challenges, we introduce \textbf{BusterX++}, a novel framework designed specifically for cross-modal detection and explanation of synthetic media. Our approach incorporates an advanced reinforcement learning (RL) post-training strategy that eliminates cold-start. Through Multi-stage Training, Thinking Reward, and Hybrid Reasoning, BusterX++ achieves stable and substantial performance improvements. To enable comprehensive evaluation, we also present \textbf{GenBuster++}, a cross-modal benchmark leveraging state-of-the-art image and video generation techniques. This benchmark comprises 4,000 images and video clips, meticulously curated by human experts using a novel filtering methodology to ensure high quality, diversity, and real-world applicability. Extensive experiments demonstrate the effectiveness and generalizability of our approach.
Authors:Yue Ma, Kunyu Feng, Xinhua Zhang, Hongyu Liu, David Junhao Zhang, Jinbo Xing, Yinhan Zhang, Ayden Yang, Zeyu Wang, Qifeng Chen
Abstract:
We introduce Follow-Your-Creation, a novel 4D video creation framework capable of both generating and editing 4D content from a single monocular video input. By leveraging a powerful video inpainting foundation model as a generative prior, we reformulate 4D video creation as a video inpainting task, enabling the model to fill in missing content caused by camera trajectory changes or user edits. To facilitate this, we generate composite masked inpainting video data to effectively fine-tune the model for 4D video generation. Given an input video and its associated camera trajectory, we first perform depth-based point cloud rendering to obtain invisibility masks that indicate the regions that should be completed. Simultaneously, editing masks are introduced to specify user-defined modifications, and these are combined with the invisibility masks to create a composite masks dataset. During training, we randomly sample different types of masks to construct diverse and challenging inpainting scenarios, enhancing the model's generalization and robustness in various 4D editing and generation tasks. To handle temporal consistency under large camera motion, we design a self-iterative tuning strategy that gradually increases the viewing angles during training, where the model is used to generate the next-stage training data after each fine-tuning iteration. Moreover, we introduce a temporal packaging module during inference to enhance generation quality. Our method effectively leverages the prior knowledge of the base model without degrading its original performance, enabling the generation of 4D videos with consistent multi-view coherence. In addition, our approach supports prompt-based content editing, demonstrating strong flexibility and significantly outperforming state-of-the-art methods in both quality and versatility.
Authors:Weiming Zhi, Ziyong Ma, Tianyi Zhang, Matthew Johnson-Roberson
Abstract:
Autonomous robots typically need to construct representations of their surroundings and adapt their motions to the geometry of their environment. Here, we tackle the problem of constructing a policy model for collision-free motion generation, consistent with the environment, from a single input RGB image. Extracting 3D structures from a single image often involves monocular depth estimation. Developments in depth estimation have given rise to large pre-trained models such as DepthAnything. However, using outputs of these models for downstream motion generation is challenging due to frustum-shaped errors that arise. Instead, we propose a framework known as Video-Generation Environment Representation (VGER), which leverages the advances of large-scale video generation models to generate a moving camera video conditioned on the input image. Frames of this video, which form a multiview dataset, are then input into a pre-trained 3D foundation model to produce a dense point cloud. We then introduce a multi-scale noise approach to train an implicit representation of the environment structure and build a motion generation model that complies with the geometry of the representation. We extensively evaluate VGER over a diverse set of indoor and outdoor environments. We demonstrate its ability to produce smooth motions that account for the captured geometry of a scene, all from a single RGB input image.
Authors:Yaxuan Li, Yichen Zhu, Junjie Wen, Chaomin Shen, Yi Xu
Abstract:
The field of robotics has made significant strides toward developing generalist robot manipulation policies. However, evaluating these policies in real-world scenarios remains time-consuming and challenging, particularly as the number of tasks scales and environmental conditions change. In this work, we demonstrate that world models can serve as a scalable, reproducible, and reliable proxy for real-world robot policy evaluation. A key challenge is generating accurate policy videos from world models that faithfully reflect the robot actions. We observe that directly inputting robot actions or using high-dimensional encoding methods often fails to generate action-following videos. To address this, we propose Policy2Vec, a simple yet effective approach to turn a video generation model into a world simulator that follows latent action to generate the robot video. We then introduce WorldEval, an automated pipeline designed to evaluate real-world robot policies entirely online. WorldEval effectively ranks various robot policies and individual checkpoints within a single policy, and functions as a safety detector to prevent dangerous actions by newly developed robot models. Through comprehensive paired evaluations of manipulation policies in real-world environments, we demonstrate a strong correlation between policy performance in WorldEval and real-world scenarios. Furthermore, our method significantly outperforms popular methods such as real-to-sim approach.
Authors:Xuran Ma, Yexin Liu, Yaofu Liu, Xianfeng Wu, Mingzhe Zheng, Zihao Wang, Ser-Nam Lim, Harry Yang
Abstract:
Recent advances in diffusion models have demonstrated remarkable capabilities in video generation. However, the computational intensity remains a significant challenge for practical applications. While feature caching has been proposed to reduce the computational burden of diffusion models, existing methods typically overlook the heterogeneous significance of individual blocks, resulting in suboptimal reuse and degraded output quality. To this end, we address this gap by introducing ProfilingDiT, a novel adaptive caching strategy that explicitly disentangles foreground and background-focused blocks. Through a systematic analysis of attention distributions in diffusion models, we reveal a key observation: 1) Most layers exhibit a consistent preference for either foreground or background regions. 2) Predicted noise shows low inter-step similarity initially, which stabilizes as denoising progresses. This finding inspires us to formulate a selective caching strategy that preserves full computation for dynamic foreground elements while efficiently caching static background features. Our approach substantially reduces computational overhead while preserving visual fidelity. Extensive experiments demonstrate that our framework achieves significant acceleration (e.g., 2.01 times speedup for Wan2.1) while maintaining visual fidelity across comprehensive quality metrics, establishing a viable method for efficient video generation.
Authors:Mingzhe Zheng, Yongqi Xu, Haojian Huang, Xuran Ma, Yexin Liu, Wenjie Shu, Yatian Pang, Feilong Tang, Qifeng Chen, Harry Yang, Ser-Nam Lim
Abstract:
Current video generation models excel at short clips but fail to produce cohesive multi-shot narratives due to disjointed visual dynamics and fractured storylines. Existing solutions either rely on extensive manual scripting/editing or prioritize single-shot fidelity over cross-scene continuity, limiting their practicality for movie-like content. We introduce VideoGen-of-Thought (VGoT), a step-by-step framework that automates multi-shot video synthesis from a single sentence by systematically addressing three core challenges: (1) Narrative Fragmentation: Existing methods lack structured storytelling. We propose dynamic storyline modeling, which first converts the user prompt into concise shot descriptions, then elaborates them into detailed, cinematic specifications across five domains (character dynamics, background continuity, relationship evolution, camera movements, HDR lighting), ensuring logical narrative progression with self-validation. (2) Visual Inconsistency: Existing approaches struggle with maintaining visual consistency across shots. Our identity-aware cross-shot propagation generates identity-preserving portrait (IPP) tokens that maintain character fidelity while allowing trait variations (expressions, aging) dictated by the storyline. (3) Transition Artifacts: Abrupt shot changes disrupt immersion. Our adjacent latent transition mechanisms implement boundary-aware reset strategies that process adjacent shots' features at transition points, enabling seamless visual flow while preserving narrative continuity. VGoT generates multi-shot videos that outperform state-of-the-art baselines by 20.4% in within-shot face consistency and 17.4% in style consistency, while achieving over 100% better cross-shot consistency and 10x fewer manual adjustments than alternatives.
Authors:Siyang Zhang, Harry Yang, Ser-Nam Lim
Abstract:
Long video generation remains a challenging and compelling topic in computer vision. Diffusion based models, among the various approaches to video generation, have achieved state of the art quality with their iterative denoising procedures. However, the intrinsic complexity of the video domain renders the training of such diffusion models exceedingly expensive in terms of both data curation and computational resources. Moreover, these models typically operate on a fixed noise tensor that represents the video, resulting in predetermined spatial and temporal dimensions. Although several high quality open-source pretrained video diffusion models, jointly trained on images and videos of varying lengths and resolutions, are available, it is generally not recommended to specify a video length at inference that was not included in the training set. Consequently, these models are not readily adaptable to the direct generation of longer videos by merely increasing the specified video length. In addition to feasibility challenges, long-video generation also encounters quality issues. The domain of long videos is inherently more complex than that of short videos: extended durations introduce greater variability and necessitate long-range temporal consistency, thereby increasing the overall difficulty of the task. We propose VideoMerge, a training-free method that can be seamlessly adapted to merge short videos generated by pretrained text-to-video diffusion model. Our approach preserves the model's original expressiveness and consistency while allowing for extended duration and dynamic variation as specified by the user. By leveraging the strengths of pretrained models, our method addresses challenges related to smoothness, consistency, and dynamic content through orthogonal strategies that operate collaboratively to achieve superior quality.
Authors:Zhiyu Tan, Junyan Wang, Hao Yang, Luozheng Qin, Hesen Chen, Qiang Zhou, Hao Li
Abstract:
Text-to-video generation has demonstrated promising progress with the advent of diffusion models, yet existing approaches are limited by dataset quality and computational resources. To address these limitations, this paper presents a comprehensive approach that advances both data curation and model design. We introduce CFC-VIDS-1M, a high-quality video dataset constructed through a systematic coarse-to-fine curation pipeline. The pipeline first evaluates video quality across multiple dimensions, followed by a fine-grained stage that leverages vision-language models to enhance text-video alignment and semantic richness. Building upon the curated dataset's emphasis on visual quality and temporal coherence, we develop RACCOON, a transformer-based architecture with decoupled spatial-temporal attention mechanisms. The model is trained through a progressive four-stage strategy designed to efficiently handle the complexities of video generation. Extensive experiments demonstrate that our integrated approach of high-quality data curation and efficient training strategy generates visually appealing and temporally coherent videos while maintaining computational efficiency. We will release our dataset, code, and models.
Authors:Xiaomeng Yang, Zhiyu Tan, Hao Li
Abstract:
Video foundation models have achieved significant advancement with the help of network upgrade as well as model scale-up. However, they are still hard to meet requirements of applications due to unsatisfied generation quality. To solve this problem, we propose to align video foundation models with human preferences from the perspective of post-training in this paper. Consequently, we introduce an Iterative Preference Optimization strategy to enhance generated video quality by incorporating human feedback. Specifically, IPO exploits a critic model to justify video generations for pairwise ranking as in Direct Preference Optimization or point-wise scoring as in Kahneman-Tversky Optimization. Given this, IPO optimizes video foundation models with guidance of signals from preference feedback, which helps improve generated video quality in subject consistency, motion smoothness and aesthetic quality, etc. In addition, IPO incorporates the critic model with the multi-modality large language model, which enables it to automatically assign preference labels without need of retraining or relabeling. In this way, IPO can efficiently perform multi-round preference optimization in an iterative manner, without the need of tediously manual labeling. Comprehensive experiments demonstrate that the proposed IPO can effectively improve the video generation quality of a pretrained model and help a model with only 2B parameters surpass the one with 5B parameters. Besides, IPO achieves new state-of-the-art performance on VBench benchmark.
Authors:Zhiyu Tan, WenXu Qian, Hesen Chen, Mengping Yang, Lei Chen, Hao Li
Abstract:
Diffusion models have established themselves as the de facto primary paradigm in visual generative modeling, revolutionizing the field through remarkable success across various diverse applications ranging from high-quality image synthesis to temporal aware video generation. Despite these advancements, three fundamental limitations persist, including 1) discrepancy between training and inference processes, 2) progressive information leakage throughout the noise corruption procedures, and 3) inherent constraints preventing effective integration of modern optimization criteria like perceptual and adversarial loss. To mitigate these critical challenges, we in this paper present a novel end-to-end learning paradigm that establishes direct optimization from the final generated samples to initial noises. Our proposed End-to-End Differentiable Diffusion, dubbed E2ED^2, introduces several key improvements: it eliminates the sequential training-sampling mismatch and intermediate information leakage via conceptualizing training as a direct transformation from isotropic Gaussian noise to the target data distribution. Additionally, such training framework enables seamless incorporation of adversarial and perceptual losses into the core optimization objective. Comprehensive evaluation across standard benchmarks including COCO30K and HW30K reveals that our method achieves substantial performance gains in terms of Fréchet Inception Distance (FID) and CLIP score, even with fewer sampling steps (less than 4). Our findings highlight that the end-to-end mechanism might pave the way for more robust and efficient solutions, \emph{i.e.,} combining diffusion stability with GAN-like discriminative optimization in an end-to-end manner.
Authors:Liyuan Cui, Xiaogang Xu, Wenqi Dong, Zesong Yang, Hujun Bao, Zhaopeng Cui
Abstract:
Human video synthesis aims to create lifelike characters in various environments, with wide applications in VR, storytelling, and content creation. While 2D diffusion-based methods have made significant progress, they struggle to generalize to complex 3D poses and varying scene backgrounds. To address these limitations, we introduce CFSynthesis, a novel framework for generating high-quality human videos with customizable attributes, including identity, motion, and scene configurations. Our method leverages a texture-SMPL-based representation to ensure consistent and stable character appearances across free viewpoints. Additionally, we introduce a novel foreground-background separation strategy that effectively decomposes the scene as foreground and background, enabling seamless integration of user-defined backgrounds. Experimental results on multiple datasets show that CFSynthesis not only achieves state-of-the-art performance in complex human animations but also adapts effectively to 3D motions in free-view and user-specified scenarios.
Authors:Yizhao Han, Tianxing Shi, Zhao Wang, Zifan Xu, Zhiyuan Pu, Mingxiao Li, Qian Zhang, Wei Yin, Xiao-Xiao Long
Abstract:
Autoregressive (AR) architectures have achieved significant successes in LLMs, inspiring explorations for video generation. In LLMs, top-p/top-k sampling strategies work exceptionally well: language tokens have high semantic density and low redundancy, so a fixed size of token candidates already strikes a balance between semantic accuracy and generation diversity. In contrast, video tokens have low semantic density and high spatio-temporal redundancy. This mismatch makes static top-k/top-p strategies ineffective for video decoders: they either introduce unnecessary randomness for low-uncertainty regions (static backgrounds) or get stuck in early errors for high-uncertainty regions (foreground objects). Prediction errors will accumulate as more frames are generated and eventually severely degrade long-horizon quality. To address this, we propose Entropy-Guided k-Guard (ENkG) sampling, a simple yet effective strategy that adapts sampling to token-wise dispersion, quantified by the entropy of each token's predicted distribution. ENkG uses adaptive token candidate sizes: for low-entropy regions, it employs fewer candidates to suppress redundant noise and preserve structural integrity; for high-entropy regions, it uses more candidates to mitigate error compounding. ENkG is model-agnostic, training-free, and adds negligible overhead. Experiments demonstrate consistent improvements in perceptual quality and structural stability compared to static top-k/top-p strategies.
Authors:Boyang Wang, Haoran Zhang, Shujie Zhang, Jinkun Hao, Mingda Jia, Qi Lv, Yucheng Mao, Zhaoyang Lyu, Jia Zeng, Xudong Xu, Jiangmiao Pang
Abstract:
The diversity, quantity, and quality of manipulation data are critical for training effective robot policies. However, due to hardware and physical setup constraints, collecting large-scale real-world manipulation data remains difficult to scale across diverse environments. Recent work uses text-prompt conditioned image diffusion models to augment manipulation data by altering the backgrounds and tabletop objects in the visual observations. However, these approaches often overlook the practical need for multi-view and temporally coherent observations required by state-of-the-art policy models. Further, text prompts alone cannot reliably specify the scene setup. To provide the diffusion model with explicit visual guidance, we introduce visual identity prompting, which supplies exemplar images as conditioning inputs to guide the generation of the desired scene setup. To this end, we also build a scalable pipeline to curate a visual identity pool from large robotics datasets. Using our augmented manipulation data to train downstream vision-language-action and visuomotor policy models yields consistent performance gains in both simulation and real-robot settings.
Authors:Kaizhi Zheng, Yue Fan, Jing Gu, Zishuo Xu, Xuehai He, Xin Eric Wang
Abstract:
Generating high-quality, textured 3D scenes from a single image remains a fundamental challenge in vision and graphics. Recent image-to-3D generators recover reasonable geometry from single views, but their object-centric training limits generalization to complex, large-scale scenes with faithful structure and texture. We present EvoScene, a self-evolving, training-free framework that progressively reconstructs complete 3D scenes from single images. The key idea is combining the complementary strengths of existing models: geometric reasoning from 3D generation models and visual knowledge from video generation models. Through three iterative stages--Spatial Prior Initialization, Visual-guided 3D Scene Mesh Generation, and Spatial-guided Novel View Generation--EvoScene alternates between 2D and 3D domains, gradually improving both structure and appearance. Experiments on diverse scenes demonstrate that EvoScene achieves superior geometric stability, view-consistent textures, and unseen-region completion compared to strong baselines, producing ready-to-use 3D meshes for practical applications.
Authors:Jinlai Liu, Jian Han, Bin Yan, Hui Wu, Fengda Zhu, Xing Wang, Yi Jiang, Bingyue Peng, Zehuan Yuan
Abstract:
We introduce InfinityStar, a unified spacetime autoregressive framework for high-resolution image and dynamic video synthesis. Building on the recent success of autoregressive modeling in both vision and language, our purely discrete approach jointly captures spatial and temporal dependencies within a single architecture. This unified design naturally supports a variety of generation tasks such as text-to-image, text-to-video, image-to-video, and long interactive video synthesis via straightforward temporal autoregression. Extensive experiments demonstrate that InfinityStar scores 83.74 on VBench, outperforming all autoregressive models by large margins, even surpassing some diffusion competitors like HunyuanVideo. Without extra optimizations, our model generates a 5s, 720p video approximately 10x faster than leading diffusion-based methods. To our knowledge, InfinityStar is the first discrete autoregressive video generator capable of producing industrial level 720p videos. We release all code and models to foster further research in efficient, high-quality video generation.
Authors:Ailing Zhang, Lina Lei, Dehong Kong, Zhixin Wang, Jiaqi Xu, Fenglong Song, Chun-Le Guo, Chang Liu, Fan Li, Jie Chen
Abstract:
Generative diffusion models are developing rapidly and attracting increasing attention due to their wide range of applications. Image-to-Video (I2V) generation has become a major focus in the field of video synthesis. However, existing evaluation benchmarks primarily focus on aspects such as video quality and temporal consistency, while largely overlooking the model's ability to understand the semantics of specific subjects in the input image or to ensure that the generated video aligns with physical laws and human commonsense. To address this gap, we propose UI2V-Bench, a novel benchmark for evaluating I2V models with a focus on semantic understanding and reasoning. It introduces four primary evaluation dimensions: spatial understanding, attribute binding, category understanding, and reasoning. To assess these dimensions, we design two evaluation methods based on Multimodal Large Language Models (MLLMs): an instance-level pipeline for fine-grained semantic understanding, and a feedback-based reasoning pipeline that enables step-by-step causal assessment for more accurate evaluation. UI2V-Bench includes approximately 500 carefully constructed text-image pairs and evaluates a range of both open source and closed-source I2V models across all defined dimensions. We further incorporate human evaluations, which show strong alignment with the proposed MLLM-based metrics. Overall, UI2V-Bench fills a critical gap in I2V evaluation by emphasizing semantic comprehension and reasoning ability, offering a robust framework and dataset to support future research and model development in the field.
Authors:Xuan Ju, Tianyu Wang, Yuqian Zhou, He Zhang, Qing Liu, Nanxuan Zhao, Zhifei Zhang, Yijun Li, Yuanhao Cai, Shaoteng Liu, Daniil Pakhomov, Zhe Lin, Soo Ye Kim, Qiang Xu
Abstract:
Recent advances in foundation models highlight a clear trend toward unification and scaling, showing emergent capabilities across diverse domains. While image generation and editing have rapidly transitioned from task-specific to unified frameworks, video generation and editing remain fragmented due to architectural limitations and data scarcity. In this work, we introduce EditVerse, a unified framework for image and video generation and editing within a single model. By representing all modalities, i.e., text, image, and video, as a unified token sequence, EditVerse leverages self-attention to achieve robust in-context learning, natural cross-modal knowledge transfer, and flexible handling of inputs and outputs with arbitrary resolutions and durations. To address the lack of video editing training data, we design a scalable data pipeline that curates 232K video editing samples and combines them with large-scale image and video datasets for joint training. Furthermore, we present EditVerseBench, the first benchmark for instruction-based video editing covering diverse tasks and resolutions. Extensive experiments and user studies demonstrate that EditVerse achieves state-of-the-art performance, surpassing existing open-source and commercial models, while exhibiting emergent editing and generation abilities across modalities.
Authors:Jing Gu, Xian Liu, Yu Zeng, Ashwin Nagarajan, Fangrui Zhu, Daniel Hong, Yue Fan, Qianqi Yan, Kaiwen Zhou, Ming-Yu Liu, Xin Eric Wang
Abstract:
Video generation models have achieved remarkable progress in creating high-quality, photorealistic content. However, their ability to accurately simulate physical phenomena remains a critical and unresolved challenge. This paper presents PhyWorldBench, a comprehensive benchmark designed to evaluate video generation models based on their adherence to the laws of physics. The benchmark covers multiple levels of physical phenomena, ranging from fundamental principles like object motion and energy conservation to more complex scenarios involving rigid body interactions and human or animal motion. Additionally, we introduce a novel ""Anti-Physics"" category, where prompts intentionally violate real-world physics, enabling the assessment of whether models can follow such instructions while maintaining logical consistency. Besides large-scale human evaluation, we also design a simple yet effective method that could utilize current MLLM to evaluate the physics realism in a zero-shot fashion. We evaluate 12 state-of-the-art text-to-video generation models, including five open-source and five proprietary models, with a detailed comparison and analysis. we identify pivotal challenges models face in adhering to real-world physics. Through systematic testing of their outputs across 1,050 curated prompts-spanning fundamental, composite, and anti-physics scenarios-we identify pivotal challenges these models face in adhering to real-world physics. We then rigorously examine their performance on diverse physical phenomena with varying prompt types, deriving targeted recommendations for crafting prompts that enhance fidelity to physical principles.
Authors:Cheng Zou, Senlin Cheng, Bolei Xu, Dandan Zheng, Xiaobo Li, Jingdong Chen, Ming Yang
Abstract:
Video virtual try-on aims to naturally fit a garment to a target person in consecutive video frames. It is a challenging task, on the one hand, the output video should be in good spatial-temporal consistency, on the other hand, the details of the given garment need to be preserved well in all the frames. Naively using image-based try-on methods frame by frame can get poor results due to severe inconsistency. Recent diffusion-based video try-on methods, though very few, happen to coincide with a similar solution: inserting temporal attention into image-based try-on model to adapt it for video try-on task, which have shown improvements but there still exist inconsistency problems. In this paper, we propose ViTI (Video Try-on Inpainter), formulate and implement video virtual try-on as a conditional video inpainting task, which is different from previous methods. In this way, we start with a video generation problem instead of an image-based try-on problem, which from the beginning has a better spatial-temporal consistency. Specifically, at first we build a video inpainting framework based on Diffusion Transformer with full 3D spatial-temporal attention, and then we progressively adapt it for video garment inpainting, with a collection of masking strategies and multi-stage training. After these steps, the model can inpaint the masked garment area with appropriate garment pixels according to the prompt with good spatial-temporal consistency. Finally, as other try-on methods, garment condition is added to the model to make sure the inpainted garment appearance and details are as expected. Both quantitative and qualitative experimental results show that ViTI is superior to previous works.
Authors:Bin Xie, Yingfei Liu, Tiancai Wang, Jiale Cao, Xiangyu Zhang
Abstract:
The generation and simulation of diverse real-world scenes have significant application value in the field of autonomous driving, especially for the corner cases. Recently, researchers have explored employing neural radiance fields or diffusion models to generate novel views or synthetic data under driving scenes. However, these approaches suffer from unseen scenes or restricted video length, thus lacking sufficient adaptability for data generation and simulation. To address these issues, we propose a simple yet effective framework, named Glad, to generate video data in a frame-by-frame style. To ensure the temporal consistency of synthetic video, we introduce a latent variable propagation module, which views the latent features of previous frame as noise prior and injects it into the latent features of current frame. In addition, we design a streaming data sampler to orderly sample the original image in a video clip at continuous iterations. Given the reference frame, our Glad can be viewed as a streaming simulator by generating the videos for specific scenes. Extensive experiments are performed on the widely-used nuScenes dataset. Experimental results demonstrate that our proposed Glad achieves promising performance, serving as a strong baseline for online video generation. We will release the source code and models publicly.
Authors:Tianwei Yin, Qiang Zhang, Richard Zhang, William T. Freeman, Fredo Durand, Eli Shechtman, Xun Huang
Abstract:
Current video diffusion models achieve impressive generation quality but struggle in interactive applications due to bidirectional attention dependencies. The generation of a single frame requires the model to process the entire sequence, including the future. We address this limitation by adapting a pretrained bidirectional diffusion transformer to an autoregressive transformer that generates frames on-the-fly. To further reduce latency, we extend distribution matching distillation (DMD) to videos, distilling 50-step diffusion model into a 4-step generator. To enable stable and high-quality distillation, we introduce a student initialization scheme based on teacher's ODE trajectories, as well as an asymmetric distillation strategy that supervises a causal student model with a bidirectional teacher. This approach effectively mitigates error accumulation in autoregressive generation, allowing long-duration video synthesis despite training on short clips. Our model achieves a total score of 84.27 on the VBench-Long benchmark, surpassing all previous video generation models. It enables fast streaming generation of high-quality videos at 9.4 FPS on a single GPU thanks to KV caching. Our approach also enables streaming video-to-video translation, image-to-video, and dynamic prompting in a zero-shot manner.
Authors:Shuwei Shi, Biao Gong, Xi Chen, Dandan Zheng, Shuai Tan, Zizheng Yang, Yuyuan Li, Jingwen He, Kecheng Zheng, Jingdong Chen, Ming Yang, Yinqiang Zheng
Abstract:
The image-to-video (I2V) generation is conditioned on the static image, which has been enhanced recently by the motion intensity as an additional control signal. These motion-aware models are appealing to generate diverse motion patterns, yet there lacks a reliable motion estimator for training such models on large-scale video set in the wild. Traditional metrics, e.g., SSIM or optical flow, are hard to generalize to arbitrary videos, while, it is very tough for human annotators to label the abstract motion intensity neither. Furthermore, the motion intensity shall reveal both local object motion and global camera movement, which has not been studied before. This paper addresses the challenge with a new motion estimator, capable of measuring the decoupled motion intensities of objects and cameras in video. We leverage the contrastive learning on randomly paired videos and distinguish the video with greater motion intensity. Such a paradigm is friendly for annotation and easy to scale up to achieve stable performance on motion estimation. We then present a new I2V model, named MotionStone, developed with the decoupled motion estimator. Experimental results demonstrate the stability of the proposed motion estimator and the state-of-the-art performance of MotionStone on I2V generation. These advantages warrant the decoupled motion estimator to serve as a general plug-in enhancer for both data processing and video generation training.
Authors:Yuxin Zhang, Dandan Zheng, Biao Gong, Shiwen Wang, Jingdong Chen, Ming Yang, Weiming Dong, Changsheng Xu
Abstract:
Lighting plays a pivotal role in ensuring the naturalness and aesthetic quality of video generation. However, the impact of lighting is deeply coupled with other factors of videos, e.g., objects and scenes. Thus, it remains challenging to disentangle and model coherent lighting conditions independently, limiting the flexibility to control lighting in video generation. In this paper, inspired by the established controllable T2I models, we propose LumiSculpt, which enables precise and consistent lighting control in T2V generation models. LumiSculpt equips the video generation with new interactive capabilities, allowing the input of reference image sequences with customized lighting conditions. Furthermore, the core learnable plug-and-play module of LumiSculpt facilitates direct control over the intensity, position and trajectory of an assumed light source in video diffusion models. To effectively train LumiSculpt and address the issue of insufficient lighting data, we construct LumiHuman, a new lightweight and flexible dataset for portrait lighting of images and videos. Experimental results demonstrate that LumiSculpt achieves precise and high-quality lighting control in video generation. The analysis demonstrates the flexibility of LumiHuman.
Authors:Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, Kwan-Yee K. Wong
Abstract:
In this paper, we present \textbf{\textit{FasterCache}}, a novel training-free strategy designed to accelerate the inference of video diffusion models with high-quality generation. By analyzing existing cache-based methods, we observe that \textit{directly reusing adjacent-step features degrades video quality due to the loss of subtle variations}. We further perform a pioneering investigation of the acceleration potential of classifier-free guidance (CFG) and reveal significant redundancy between conditional and unconditional features within the same timestep. Capitalizing on these observations, we introduce FasterCache to substantially accelerate diffusion-based video generation. Our key contributions include a dynamic feature reuse strategy that preserves both feature distinction and temporal continuity, and CFG-Cache which optimizes the reuse of conditional and unconditional outputs to further enhance inference speed without compromising video quality. We empirically evaluate FasterCache on recent video diffusion models. Experimental results show that FasterCache can significantly accelerate video generation (\eg 1.67$\times$ speedup on Vchitect-2.0) while keeping video quality comparable to the baseline, and consistently outperform existing methods in both inference speed and video quality.
Authors:Ying Yang, Zhengyao Lv, Tianlin Pan, Haofan Wang, Binxin Yang, Hubery Yin, Chen Li, Ziwei Liu, Chenyang Si
Abstract:
In this paper, we explore the overlooked challenge of stability and temporal consistency in interactive video generation, which synthesizes dynamic and controllable video worlds through interactive behaviors such as camera movements and text prompts. Despite remarkable progress in world modeling, current methods still suffer from severe instability and temporal degradation, often leading to spatial drift and scene collapse during long-horizon interactions. To better understand this issue, we initially investigate the underlying causes of instability and identify that the major source of error accumulation originates from the same scene, where generated frames gradually deviate from the initial clean state and propagate errors to subsequent frames. Building upon this observation, we propose a simple yet effective method, \textbf{StableWorld}, a Dynamic Frame Eviction Mechanism. By continuously filtering out degraded frames while retaining geometrically consistent ones, StableWorld effectively prevents cumulative drift at its source, leading to more stable and temporal consistency of interactive generation. Promising results on multiple interactive video models, \eg, Matrix-Game, Open-Oasis, and Hunyuan-GameCraft, demonstrate that StableWorld is model-agnostic and can be applied to different interactive video generation frameworks to substantially improve stability, temporal consistency, and generalization across diverse interactive scenarios.
Authors:Jiesong Lian, Ruizhe Zhong, Zixiang Zhou, Xiaoyue Mi, Yixue Hao, Yuan Zhou, Qinglin Lu, Long Hu, Junchi Yan
Abstract:
Post-training alignment of video generation models with human preferences is a critical goal. Developing effective Reward Models (RMs) for this process faces significant methodological hurdles. Current data collection paradigms, reliant on in-prompt pairwise annotations, suffer from labeling noise. Concurrently, the architectural design of VLM-based RMs, particularly their output mechanisms, remains underexplored. Furthermore, RM is susceptible to reward hacking in post-training. To mitigate these limitations, we propose SoliReward, a systematic framework for video RM training. Our framework first sources high-quality, cost-efficient data via single-item binary annotations, then constructs preference pairs using a cross-prompt pairing strategy. Architecturally, we employ a Hierarchical Progressive Query Attention mechanism to enhance feature aggregation. Finally, we introduce a modified BT loss that explicitly accommodates win-tie scenarios. This approach regularizes the RM's score distribution for positive samples, providing more nuanced preference signals to alleviate over-focus on a small number of top-scoring samples. Our approach is validated on benchmarks evaluating physical plausibility, subject deformity, and semantic alignment, demonstrating improvements in direct RM evaluation metrics and in the efficacy of post-training on video generation models. Code and benchmark will be publicly available.
Authors:Wenshuo Peng, Gongxuan Wang, Tianmeng Yang, Chuanhao Li, Xiaojie Xu, Hui He, Kaipeng Zhang
Abstract:
Recent text-to-video generation models exhibit remarkable progress in visual realism, motion fidelity, and text-video alignment, yet they remain fundamentally limited in their ability to generate socially coherent behavior. Unlike humans, who effortlessly infer intentions, beliefs, emotions, and social norms from brief visual cues, current models tend to render literal scenes without capturing the underlying causal or psychological logic. To systematically evaluate this gap, we introduce the first benchmark for social reasoning in video generation. Grounded in findings from developmental and social psychology, our benchmark organizes thirty classic social cognition paradigms into seven core dimensions, including mental-state inference, goal-directed action, joint attention, social coordination, prosocial behavior, social norms, and multi-agent strategy. To operationalize these paradigms, we develop a fully training-free agent-based pipeline that (i) distills the reasoning mechanism of each experiment, (ii) synthesizes diverse video-ready scenarios, (iii) enforces conceptual neutrality and difficulty control through cue-based critique, and (iv) evaluates generated videos using a high-capacity VLM judge across five interpretable dimensions of social reasoning. Using this framework, we conduct the first large-scale study across seven state-of-the-art video generation systems. Our results reveal substantial performance gaps: while modern models excel in surface-level plausibility, they systematically fail in intention recognition, belief reasoning, joint attention, and prosocial inference.
Authors:Xinjian Wu, Hongmei Wang, Yuan Zhou, Qinglin Lu
Abstract:
The scalability of high-fidelity video diffusion models (VDMs) is constrained by two key sources of redundancy: the quadratic complexity of global spatio-temporal attention and the computational overhead of long iterative denoising trajectories. Existing accelerators -- such as sparse attention and step-distilled samplers -- typically target a single dimension in isolation and quickly encounter diminishing returns, as the remaining bottlenecks become dominant. In this work, we introduce USV (Unified Sparsification for Video diffusion models), an end-to-end trainable framework that overcomes this limitation by jointly orchestrating sparsification across both the model's internal computation and its sampling process. USV learns a dynamic, data- and timestep-dependent sparsification policy that prunes redundant attention connections, adaptively merges semantically similar tokens, and reduces denoising steps, treating them not as independent tricks but as coordinated actions within a single optimization objective. This multi-dimensional co-design enables strong mutual reinforcement among previously disjoint acceleration strategies. Extensive experiments on large-scale video generation benchmarks demonstrate that USV achieves up to 83.3% speedup in the denoising process and 22.7% end-to-end acceleration, while maintaining high visual fidelity. Our results highlight unified, dynamic sparsification as a practical path toward efficient, high-quality video generation.
Authors:Yunhong Lu, Yanhong Zeng, Haobo Li, Hao Ouyang, Qiuyu Wang, Ka Leong Cheng, Jiapeng Zhu, Hengyuan Cao, Zhipeng Zhang, Xing Zhu, Yujun Shen, Min Zhang
Abstract:
Efficient streaming video generation is critical for simulating interactive and dynamic worlds. Existing methods distill few-step video diffusion models with sliding window attention, using initial frames as sink tokens to maintain attention performance and reduce error accumulation. However, video frames become overly dependent on these static tokens, resulting in copied initial frames and diminished motion dynamics. To address this, we introduce Reward Forcing, a novel framework with two key designs. First, we propose EMA-Sink, which maintains fixed-size tokens initialized from initial frames and continuously updated by fusing evicted tokens via exponential moving average as they exit the sliding window. Without additional computation cost, EMA-Sink tokens capture both long-term context and recent dynamics, preventing initial frame copying while maintaining long-horizon consistency. Second, to better distill motion dynamics from teacher models, we propose a novel Rewarded Distribution Matching Distillation (Re-DMD). Vanilla distribution matching treats every training sample equally, limiting the model's ability to prioritize dynamic content. Instead, Re-DMD biases the model's output distribution toward high-reward regions by prioritizing samples with greater dynamics rated by a vision-language model. Re-DMD significantly enhances motion quality while preserving data fidelity. We include both quantitative and qualitative experiments to show that Reward Forcing achieves state-of-the-art performance on standard benchmarks while enabling high-quality streaming video generation at 23.1 FPS on a single H100 GPU.
Authors:Teng Hu, Zhentao Yu, Guozhen Zhang, Zihan Su, Zhengguang Zhou, Youliang Zhang, Yuan Zhou, Qinglin Lu, Ran Yi
Abstract:
The synthesis of synchronized audio-visual content is a key challenge in generative AI, with open-source models facing challenges in robust audio-video alignment. Our analysis reveals that this issue is rooted in three fundamental challenges of the joint diffusion process: (1) Correspondence Drift, where concurrently evolving noisy latents impede stable learning of alignment; (2) inefficient global attention mechanisms that fail to capture fine-grained temporal cues; and (3) the intra-modal bias of conventional Classifier-Free Guidance (CFG), which enhances conditionality but not cross-modal synchronization. To overcome these challenges, we introduce Harmony, a novel framework that mechanistically enforces audio-visual synchronization. We first propose a Cross-Task Synergy training paradigm to mitigate drift by leveraging strong supervisory signals from audio-driven video and video-driven audio generation tasks. Then, we design a Global-Local Decoupled Interaction Module for efficient and precise temporal-style alignment. Finally, we present a novel Synchronization-Enhanced CFG (SyncCFG) that explicitly isolates and amplifies the alignment signal during inference. Extensive experiments demonstrate that Harmony establishes a new state-of-the-art, significantly outperforming existing methods in both generation fidelity and, critically, in achieving fine-grained audio-visual synchronization.
Authors:Xiaoyue Mi, Wenqing Yu, Jiesong Lian, Shibo Jie, Ruizhe Zhong, Zijun Liu, Guozhen Zhang, Zixiang Zhou, Zhiyong Xu, Yuan Zhou, Qinglin Lu, Fan Tang
Abstract:
Reward feedback learning (ReFL) has proven effective for aligning image generation with human preferences. However, its extension to video generation faces significant challenges. Existing video reward models rely on vision-language models designed for pixel-space inputs, confining ReFL optimization to near-complete denoising steps after computationally expensive VAE decoding. This pixel-space approach incurs substantial memory overhead and increased training time, and its late-stage optimization lacks early-stage supervision, refining only visual quality rather than fundamental motion dynamics and structural coherence. In this work, we show that pre-trained video generation models are naturally suited for reward modeling in the noisy latent space, as they are explicitly designed to process noisy latent representations at arbitrary timesteps and inherently preserve temporal information through their sequential modeling capabilities. Accordingly, we propose Process Reward Feedback Learning~(PRFL), a framework that conducts preference optimization entirely in latent space, enabling efficient gradient backpropagation throughout the full denoising chain without VAE decoding. Extensive experiments demonstrate that PRFL significantly improves alignment with human preferences, while achieving substantial reductions in memory consumption and training time compared to RGB ReFL.
Authors:Jiaming He, Guanyu Hou, Hongwei Li, Zhicong Huang, Kangjie Chen, Yi Yu, Wenbo Jiang, Guowen Xu, Tianwei Zhang
Abstract:
Text-to-Video (T2V) models are capable of synthesizing high-quality, temporally coherent dynamic video content, but the diverse generation also inherently introduces critical safety challenges. Existing safety evaluation methods,which focus on static image and text generation, are insufficient to capture the complex temporal dynamics in video generation. To address this, we propose a TEmporal-aware Automated Red-teaming framework, named TEAR, an automated framework designed to uncover safety risks specifically linked to the dynamic temporal sequencing of T2V models. TEAR employs a temporal-aware test generator optimized via a two-stage approach: initial generator training and temporal-aware online preference learning, to craft textually innocuous prompts that exploit temporal dynamics to elicit policy-violating video output. And a refine model is adopted to improve the prompt stealthiness and adversarial effectiveness cyclically. Extensive experimental evaluation demonstrates the effectiveness of TEAR across open-source and commercial T2V systems with over 80% attack success rate, a significant boost from prior best result of 57%.
Authors:Haoyu Wu, Jingyi Xu, Qiaomu Miao, Dimitris Samaras, Hieu Le
Abstract:
We identify a core failure mode that occurs when using the usual linear interpolation on rotary positional embeddings (RoPE) for mixed-resolution denoising with Diffusion Transformers. When tokens from different spatial grids are mixed, the attention mechanism collapses. The issue is structural. Linear coordinate remapping forces a single attention head to compare RoPE phases sampled at incompatible rates, creating phase aliasing that destabilizes the score landscape. Pretrained DiTs are especially brittle-many heads exhibit extremely sharp, periodic phase selectivity-so even tiny cross-rate inconsistencies reliably cause blur, artifacts, or full collapse. To this end, our main contribution is Cross-Resolution Phase-Aligned Attention (CRPA), a training-free drop-in fix that eliminates this failure at its source. CRPA modifies only the RoPE index map for each attention call: all Q/K positions are expressed on the query's stride so that equal physical distances always induce identical phase increments. This restores the precise phase patterns that DiTs rely on. CRPA is fully compatible with pretrained DiTs, stabilizes all heads and layers uniformly. We demonstrate that CRPA enables high-fidelity and efficient mixed-resolution generation, outperforming previous state-of-the-art methods on image and video generation.
Authors:Guozhen Zhang, Zixiang Zhou, Teng Hu, Ziqiao Peng, Youliang Zhang, Yi Chen, Yuan Zhou, Qinglin Lu, Limin Wang
Abstract:
Due to the lack of effective cross-modal modeling, existing open-source audio-video generation methods often exhibit compromised lip synchronization and insufficient semantic consistency. To mitigate these drawbacks, we propose UniAVGen, a unified framework for joint audio and video generation. UniAVGen is anchored in a dual-branch joint synthesis architecture, incorporating two parallel Diffusion Transformers (DiTs) to build a cohesive cross-modal latent space. At its heart lies an Asymmetric Cross-Modal Interaction mechanism, which enables bidirectional, temporally aligned cross-attention, thus ensuring precise spatiotemporal synchronization and semantic consistency. Furthermore, this cross-modal interaction is augmented by a Face-Aware Modulation module, which dynamically prioritizes salient regions in the interaction process. To enhance generative fidelity during inference, we additionally introduce Modality-Aware Classifier-Free Guidance, a novel strategy that explicitly amplifies cross-modal correlation signals. Notably, UniAVGen's robust joint synthesis design enables seamless unification of pivotal audio-video tasks within a single model, such as joint audio-video generation and continuation, video-to-audio dubbing, and audio-driven video synthesis. Comprehensive experiments validate that, with far fewer training samples (1.3M vs. 30.1M), UniAVGen delivers overall advantages in audio-video synchronization, timbre consistency, and emotion consistency.
Authors:Teng Hu, Jiangning Zhang, Zihan Su, Ran Yi
Abstract:
Recent advances in video generation have made it possible to produce visually compelling videos, with wide-ranging applications in content creation, entertainment, and virtual reality. However, most existing diffusion transformer based video generation models are limited to low-resolution outputs (<=720P) due to the quadratic computational complexity of the attention mechanism with respect to the output width and height. This computational bottleneck makes native high-resolution video generation (1080P/2K/4K) impractical for both training and inference. To address this challenge, we present UltraGen, a novel video generation framework that enables i) efficient and ii) end-to-end native high-resolution video synthesis. Specifically, UltraGen features a hierarchical dual-branch attention architecture based on global-local attention decomposition, which decouples full attention into a local attention branch for high-fidelity regional content and a global attention branch for overall semantic consistency. We further propose a spatially compressed global modeling strategy to efficiently learn global dependencies, and a hierarchical cross-window local attention mechanism to reduce computational costs while enhancing information flow across different local windows. Extensive experiments demonstrate that UltraGen can effectively scale pre-trained low-resolution video models to 1080P and even 4K resolution for the first time, outperforming existing state-of-the-art methods and super-resolution based two-stage pipelines in both qualitative and quantitative evaluations.
Authors:Xiangyu Meng, Zixian Zhang, Zhenghao Zhang, Junchao Liao, Long Qin, Weizhi Wang
Abstract:
While advanced methods like VACE and Phantom have advanced video generation for specific subjects in diverse scenarios, they struggle with multi-human identity preservation in dynamic interactions, where consistent identities across multiple characters are critical. To address this, we propose Identity-GRPO, a human feedback-driven optimization pipeline for refining multi-human identity-preserving video generation. First, we construct a video reward model trained on a large-scale preference dataset containing human-annotated and synthetic distortion data, with pairwise annotations focused on maintaining human consistency throughout the video. We then employ a GRPO variant tailored for multi-human consistency, which greatly enhances both VACE and Phantom. Through extensive ablation studies, we evaluate the impact of annotation quality and design choices on policy optimization. Experiments show that Identity-GRPO achieves up to 18.9% improvement in human consistency metrics over baseline methods, offering actionable insights for aligning reinforcement learning with personalized video generation.
Authors:Xiaofei Wu, Guozhen Zhang, Zhiyong Xu, Yuan Zhou, Qinglin Lu, Xuming He
Abstract:
Long-form video generation presents a dual challenge: models must capture long-range dependencies while preventing the error accumulation inherent in autoregressive decoding. To address these challenges, we make two contributions. First, for dynamic context modeling, we propose MemoryPack, a learnable context-retrieval mechanism that leverages both textual and image information as global guidance to jointly model short- and long-term dependencies, achieving minute-level temporal consistency. This design scales gracefully with video length, preserves computational efficiency, and maintains linear complexity. Second, to mitigate error accumulation, we introduce Direct Forcing, an efficient single-step approximating strategy that improves training-inference alignment and thereby curtails error propagation during inference. Together, MemoryPack and Direct Forcing substantially enhance the context consistency and reliability of long-form video generation, advancing the practical usability of autoregressive video models.
Authors:Yutong Hao, Chen Chen, Ajmal Saeed Mian, Chang Xu, Daochang Liu
Abstract:
Diffusion models can generate realistic videos, but existing methods rely on implicitly learning physical reasoning from large-scale text-video datasets, which is costly, difficult to scale, and still prone to producing implausible motions that violate fundamental physical laws. We introduce a training-free framework that improves physical plausibility at inference time by explicitly reasoning about implausibility and guiding the generation away from it. Specifically, we employ a lightweight physics-aware reasoning pipeline to construct counterfactual prompts that deliberately encode physics-violating behaviors. Then, we propose a novel Synchronized Decoupled Guidance (SDG) strategy, which leverages these prompts through synchronized directional normalization to counteract lagged suppression and trajectory-decoupled denoising to mitigate cumulative trajectory bias, ensuring that implausible content is suppressed immediately and consistently throughout denoising. Experiments across different physical domains show that our approach substantially enhances physical fidelity while maintaining photorealism, despite requiring no additional training. Ablation studies confirm the complementary effectiveness of both the physics-aware reasoning component and SDG. In particular, the aforementioned two designs of SDG are also individually validated to contribute critically to the suppression of implausible content and the overall gains in physical plausibility. This establishes a new and plug-and-play physics-aware paradigm for video generation.
Authors:Jiahao Luo, Chaoyang Wang, Michael Vasilkovsky, Vladislav Shakhrai, Di Liu, Peiye Zhuang, Sergey Tulyakov, Peter Wonka, Hsin-Ying Lee, James Davis, Jian Wang
Abstract:
We present T2Bs, a framework for generating high-quality, animatable character head morphable models from text by combining static text-to-3D generation with video diffusion. Text-to-3D models produce detailed static geometry but lack motion synthesis, while video diffusion models generate motion with temporal and multi-view geometric inconsistencies. T2Bs bridges this gap by leveraging deformable 3D Gaussian splatting to align static 3D assets with video outputs. By constraining motion with static geometry and employing a view-dependent deformation MLP, T2Bs (i) outperforms existing 4D generation methods in accuracy and expressiveness while reducing video artifacts and view inconsistencies, and (ii) reconstructs smooth, coherent, fully registered 3D geometries designed to scale for building morphable models with diverse, realistic facial motions. This enables synthesizing expressive, animatable character heads that surpass current 4D generation techniques.
Authors:Jiaxiang Cheng, Bing Ma, Xuhua Ren, Hongyi Jin, Kai Yu, Peng Zhang, Wenyue Li, Yuan Zhou, Tianxiang Zheng, Qinglin Lu
Abstract:
The field of video diffusion generation faces critical bottlenecks in sampling efficiency, especially for large-scale models and long sequences. Existing video acceleration methods adopt image-based techniques but suffer from fundamental limitations: they neither model the temporal coherence of video frames nor provide single-step distillation for large-scale video models. To bridge this gap, we propose POSE (Phased One-Step Equilibrium), a distillation framework that reduces the sampling steps of large-scale video diffusion models, enabling the generation of high-quality videos in a single step. POSE employs a carefully designed two-phase process to distill video models:(i) stability priming: a warm-up mechanism to stabilize adversarial distillation that adapts the high-quality trajectory of the one-step generator from high to low signal-to-noise ratio regimes, optimizing the video quality of single-step mappings near the endpoints of flow trajectories. (ii) unified adversarial equilibrium: a flexible self-adversarial distillation mechanism that promotes stable single-step adversarial training towards a Nash equilibrium within the Gaussian noise space, generating realistic single-step videos close to real videos. For conditional video generation, we propose (iii) conditional adversarial consistency, a method to improve both semantic consistency and frame consistency between conditional frames and generated frames. Comprehensive experiments demonstrate that POSE outperforms other acceleration methods on VBench-I2V by average 7.15% in semantic alignment, temporal conference and frame quality, reducing the latency of the pre-trained model by 100$\times$, from 1000 seconds to 10 seconds, while maintaining competitive performance.
Authors:Qiao Sun, Liujia Yang, Wei Tang, Wei Huang, Kaixin Xu, Yongchao Chen, Mingyu Liu, Jiange Yang, Haoyi Zhu, Yating Wang, Tong He, Yilun Chen, Xili Dai, Nanyang Ye, Qinying Gu
Abstract:
While video-generation-based embodied world models have gained increasing attention, their reliance on large-scale embodied interaction data remains a key bottleneck. The scarcity, difficulty of collection, and high dimensionality of embodied data fundamentally limit the alignment granularity between language and actions and exacerbate the challenge of long-horizon video generation--hindering generative models from achieving a "GPT moment" in the embodied domain. There is a naive observation: the diversity of embodied data far exceeds the relatively small space of possible primitive motions. Based on this insight, we propose a novel paradigm for world modeling--Primitive Embodied World Models (PEWM). By restricting video generation to fixed short horizons, our approach 1) enables fine-grained alignment between linguistic concepts and visual representations of robotic actions, 2) reduces learning complexity, 3) improves data efficiency in embodied data collection, and 4) decreases inference latency. By equipping with a modular Vision-Language Model (VLM) planner and a Start-Goal heatmap Guidance mechanism (SGG), PEWM further enables flexible closed-loop control and supports compositional generalization of primitive-level policies over extended, complex tasks. Our framework leverages the spatiotemporal vision priors in video models and the semantic awareness of VLMs to bridge the gap between fine-grained physical interaction and high-level reasoning, paving the way toward scalable, interpretable, and general-purpose embodied intelligence.
Authors:Jiaqi Li, Junshu Tang, Zhiyong Xu, Longhuang Wu, Yuan Zhou, Shuai Shao, Tianbao Yu, Zhiguo Cao, Qinglin Lu
Abstract:
Recent advances in diffusion-based and controllable video generation have enabled high-quality and temporally coherent video synthesis, laying the groundwork for immersive interactive gaming experiences. However, current methods face limitations in dynamics, generality, long-term consistency, and efficiency, which limit the ability to create various gameplay videos. To address these gaps, we introduce Hunyuan-GameCraft, a novel framework for high-dynamic interactive video generation in game environments. To achieve fine-grained action control, we unify standard keyboard and mouse inputs into a shared camera representation space, facilitating smooth interpolation between various camera and movement operations. Then we propose a hybrid history-conditioned training strategy that extends video sequences autoregressively while preserving game scene information. Additionally, to enhance inference efficiency and playability, we achieve model distillation to reduce computational overhead while maintaining consistency across long temporal sequences, making it suitable for real-time deployment in complex interactive environments. The model is trained on a large-scale dataset comprising over one million gameplay recordings across over 100 AAA games, ensuring broad coverage and diversity, then fine-tuned on a carefully annotated synthetic dataset to enhance precision and control. The curated game scene data significantly improves the visual fidelity, realism and action controllability. Extensive experiments demonstrate that Hunyuan-GameCraft significantly outperforms existing models, advancing the realism and playability of interactive game video generation.
Authors:Ziyao Huang, Zixiang Zhou, Juan Cao, Yifeng Ma, Yi Chen, Zejing Rao, Zhiyong Xu, Hongmei Wang, Qin Lin, Yuan Zhou, Qinglin Lu, Fan Tang
Abstract:
To address key limitations in human-object interaction (HOI) video generation -- specifically the reliance on curated motion data, limited generalization to novel objects/scenarios, and restricted accessibility -- we introduce HunyuanVideo-HOMA, a weakly conditioned multimodal-driven framework. HunyuanVideo-HOMA enhances controllability and reduces dependency on precise inputs through sparse, decoupled motion guidance. It encodes appearance and motion signals into the dual input space of a multimodal diffusion transformer (MMDiT), fusing them within a shared context space to synthesize temporally consistent and physically plausible interactions. To optimize training, we integrate a parameter-space HOI adapter initialized from pretrained MMDiT weights, preserving prior knowledge while enabling efficient adaptation, and a facial cross-attention adapter for anatomically accurate audio-driven lip synchronization. Extensive experiments confirm state-of-the-art performance in interaction naturalness and generalization under weak supervision. Finally, HunyuanVideo-HOMA demonstrates versatility in text-conditioned generation and interactive object manipulation, supported by a user-friendly demo interface. The project page is at https://anonymous.4open.science/w/homa-page-0FBE/.
Authors:Teng Hu, Zhentao Yu, Zhengguang Zhou, Jiangning Zhang, Yuan Zhou, Qinglin Lu, Ran Yi
Abstract:
Despite recent advances in video generation, existing models still lack fine-grained controllability, especially for multi-subject customization with consistent identity and interaction. In this paper, we propose PolyVivid, a multi-subject video customization framework that enables flexible and identity-consistent generation. To establish accurate correspondences between subject images and textual entities, we design a VLLM-based text-image fusion module that embeds visual identities into the textual space for precise grounding. To further enhance identity preservation and subject interaction, we propose a 3D-RoPE-based enhancement module that enables structured bidirectional fusion between text and image embeddings. Moreover, we develop an attention-inherited identity injection module to effectively inject fused identity features into the video generation process, mitigating identity drift. Finally, we construct an MLLM-based data pipeline that combines MLLM-based grounding, segmentation, and a clique-based subject consolidation strategy to produce high-quality multi-subject data, effectively enhancing subject distinction and reducing ambiguity in downstream video generation. Extensive experiments demonstrate that PolyVivid achieves superior performance in identity fidelity, video realism, and subject alignment, outperforming existing open-source and commercial baselines.
Authors:Akide Liu, Zeyu Zhang, Zhexin Li, Xuehai Bai, Yizeng Han, Jiasheng Tang, Yuanjie Xing, Jichao Wu, Mingyang Yang, Weihua Chen, Jiahao He, Yuanyu He, Fan Wang, Gholamreza Haffari, Bohan Zhuang
Abstract:
Diffusion generative models have become the standard for producing high-quality, coherent video content, yet their slow inference speeds and high computational demands hinder practical deployment. Although both quantization and sparsity can independently accelerate inference while maintaining generation quality, naively combining these techniques in existing training-free approaches leads to significant performance degradation due to the lack of joint optimization. We introduce FPSAttention, a novel training-aware co-design of FP8 quantization and sparsity for video generation, with a focus on the 3D bi-directional attention mechanism. Our approach features three key innovations: 1) A unified 3D tile-wise granularity that simultaneously supports both quantization and sparsity; 2) A denoising step-aware strategy that adapts to the noise schedule, addressing the strong correlation between quantization/sparsity errors and denoising steps; 3) A native, hardware-friendly kernel that leverages FlashAttention and is implemented with optimized Hopper architecture features for highly efficient execution. Trained on Wan2.1's 1.3B and 14B models and evaluated on the VBench benchmark, FPSAttention achieves a 7.09x kernel speedup for attention operations and a 4.96x end-to-end speedup for video generation compared to the BF16 baseline at 720p resolution-without sacrificing generation quality.
Authors:Junyi Chen, Haoyi Zhu, Xianglong He, Yifan Wang, Jianjun Zhou, Wenzheng Chang, Yang Zhou, Zizun Li, Zhoujie Fu, Jiangmiao Pang, Tong He
Abstract:
World models serve as essential building blocks toward Artificial General Intelligence (AGI), enabling intelligent agents to predict future states and plan actions by simulating complex physical interactions. However, existing interactive models primarily predict visual observations, thereby neglecting crucial hidden states like geometric structures and spatial coherence. This leads to rapid error accumulation and temporal inconsistency. To address these limitations, we introduce DeepVerse, a novel 4D interactive world model explicitly incorporating geometric predictions from previous timesteps into current predictions conditioned on actions. Experiments demonstrate that by incorporating explicit geometric constraints, DeepVerse captures richer spatio-temporal relationships and underlying physical dynamics. This capability significantly reduces drift and enhances temporal consistency, enabling the model to reliably generate extended future sequences and achieve substantial improvements in prediction accuracy, visual realism, and scene rationality. Furthermore, our method provides an effective solution for geometry-aware memory retrieval, effectively preserving long-term spatial consistency. We validate the effectiveness of DeepVerse across diverse scenarios, establishing its capacity for high-fidelity, long-horizon predictions grounded in geometry-aware dynamics.
Authors:Ashkan Taghipour, Morteza Ghahremani, Mohammed Bennamoun, Farid Boussaid, Aref Miri Rekavandi, Zinuo Li, Qiuhong Ke, Hamid Laga
Abstract:
Image-to-video (I2V) generation seeks to produce realistic motion sequences from a single reference image. Although recent methods exhibit strong temporal consistency, they often struggle when dealing with complex, non-repetitive human movements, leading to unnatural deformations. To tackle this issue, we present LatentMove, a DiT-based framework specifically tailored for highly dynamic human animation. Our architecture incorporates a conditional control branch and learnable face/body tokens to preserve consistency as well as fine-grained details across frames. We introduce Complex-Human-Videos (CHV), a dataset featuring diverse, challenging human motions designed to benchmark the robustness of I2V systems. We also introduce two metrics to assess the flow and silhouette consistency of generated videos with their ground truth. Experimental results indicate that LatentMove substantially improves human animation quality--particularly when handling rapid, intricate movements--thereby pushing the boundaries of I2V generation. The code, the CHV dataset, and the evaluation metrics will be available at https://github.com/ --.
Authors:Ruihuang Li, Caijin Zhou, Shoujian Zheng, Jianxiang Lu, Jiabin Huang, Comi Chen, Junshu Tang, Guangzheng Xu, Jiale Tao, Hongmei Wang, Donghao Li, Wenqing Yu, Senbo Wang, Zhimin Li, Yetshuan Shi, Haoyu Yang, Yukun Wang, Wenxun Dai, Jiaqi Li, Linqing Wang, Qixun Wang, Zhiyong Xu, Yingfang Zhang, Jiangfeng Xiong, Weijie Kong, Chao Zhang, Hongxin Zhang, Qiaoling Zheng, Weiting Guo, Xinchi Deng, Yixuan Li, Renjia Wei, Yulin Jian, Duojun Huang, Xuhua Ren, Junkun Yuan, Zhengguang Zhou, Jiaxiang Cheng, Bing Ma, Shirui Huang, Jiawang Bai, Chao Li, Sihuan Lin, Yifu Sun, Yuan Zhou, Joey Wang, Qin Lin, Tianxiang Zheng, Jingmiao Yu, Jihong Zhang, Caesar Zhong, Di Wang, Yuhong Liu, Linus, Jie Jiang, Longhuang Wu, Shuai Shao, Qinglin Lu
Abstract:
Intelligent game creation represents a transformative advancement in game development, utilizing generative artificial intelligence to dynamically generate and enhance game content. Despite notable progress in generative models, the comprehensive synthesis of high-quality game assets, including both images and videos, remains a challenging frontier. To create high-fidelity game content that simultaneously aligns with player preferences and significantly boosts designer efficiency, we present Hunyuan-Game, an innovative project designed to revolutionize intelligent game production. Hunyuan-Game encompasses two primary branches: image generation and video generation. The image generation component is built upon a vast dataset comprising billions of game images, leading to the development of a group of customized image generation models tailored for game scenarios: (1) General Text-to-Image Generation. (2) Game Visual Effects Generation, involving text-to-effect and reference image-based game visual effect generation. (3) Transparent Image Generation for characters, scenes, and game visual effects. (4) Game Character Generation based on sketches, black-and-white images, and white models. The video generation component is built upon a comprehensive dataset of millions of game and anime videos, leading to the development of five core algorithmic models, each targeting critical pain points in game development and having robust adaptation to diverse game video scenarios: (1) Image-to-Video Generation. (2) 360 A/T Pose Avatar Video Synthesis. (3) Dynamic Illustration Generation. (4) Generative Video Super-Resolution. (5) Interactive Game Video Generation. These image and video generation models not only exhibit high-level aesthetic expression but also deeply integrate domain-specific knowledge, establishing a systematic understanding of diverse game and anime art styles.
Authors:Teng Hu, Zhentao Yu, Zhengguang Zhou, Sen Liang, Yuan Zhou, Qin Lin, Qinglin Lu
Abstract:
Customized video generation aims to produce videos featuring specific subjects under flexible user-defined conditions, yet existing methods often struggle with identity consistency and limited input modalities. In this paper, we propose HunyuanCustom, a multi-modal customized video generation framework that emphasizes subject consistency while supporting image, audio, video, and text conditions. Built upon HunyuanVideo, our model first addresses the image-text conditioned generation task by introducing a text-image fusion module based on LLaVA for enhanced multi-modal understanding, along with an image ID enhancement module that leverages temporal concatenation to reinforce identity features across frames. To enable audio- and video-conditioned generation, we further propose modality-specific condition injection mechanisms: an AudioNet module that achieves hierarchical alignment via spatial cross-attention, and a video-driven injection module that integrates latent-compressed conditional video through a patchify-based feature-alignment network. Extensive experiments on single- and multi-subject scenarios demonstrate that HunyuanCustom significantly outperforms state-of-the-art open- and closed-source methods in terms of ID consistency, realism, and text-video alignment. Moreover, we validate its robustness across downstream tasks, including audio and video-driven customized video generation. Our results highlight the effectiveness of multi-modal conditioning and identity-preserving strategies in advancing controllable video generation. All the code and models are available at https://hunyuancustom.github.io.
Authors:Chih-Hao Lin, Zian Wang, Ruofan Liang, Yuxuan Zhang, Sanja Fidler, Shenlong Wang, Zan Gojcic
Abstract:
Generating realistic and controllable weather effects in videos is valuable for many applications. Physics-based weather simulation requires precise reconstructions that are hard to scale to in-the-wild videos, while current video editing often lacks realism and control. In this work, we introduce WeatherWeaver, a video diffusion model that synthesizes diverse weather effects -- including rain, snow, fog, and clouds -- directly into any input video without the need for 3D modeling. Our model provides precise control over weather effect intensity and supports blending various weather types, ensuring both realism and adaptability. To overcome the scarcity of paired training data, we propose a novel data strategy combining synthetic videos, generative image editing, and auto-labeled real-world videos. Extensive evaluations show that our method outperforms state-of-the-art methods in weather simulation and removal, providing high-quality, physically plausible, and scene-identity-preserving results over various real-world videos.
Authors:Yishen Ji, Ziyue Zhu, Zhenxin Zhu, Kaixin Xiong, Ming Lu, Zhiqi Li, Lijun Zhou, Haiyang Sun, Bing Wang, Tong Lu
Abstract:
Recent progress in driving video generation has shown significant potential for enhancing self-driving systems by providing scalable and controllable training data. Although pretrained state-of-the-art generation models, guided by 2D layout conditions (e.g., HD maps and bounding boxes), can produce photorealistic driving videos, achieving controllable multi-view videos with high 3D consistency remains a major challenge. To tackle this, we introduce a novel spatial adaptive generation framework, CoGen, which leverages advances in 3D generation to improve performance in two key aspects: (i) To ensure 3D consistency, we first generate high-quality, controllable 3D conditions that capture the geometry of driving scenes. By replacing coarse 2D conditions with these fine-grained 3D representations, our approach significantly enhances the spatial consistency of the generated videos. (ii) Additionally, we introduce a consistency adapter module to strengthen the robustness of the model to multi-condition control. The results demonstrate that this method excels in preserving geometric fidelity and visual realism, offering a reliable video generation solution for autonomous driving.
Authors:Aether Team, Haoyi Zhu, Yifan Wang, Jianjun Zhou, Wenzheng Chang, Yang Zhou, Zizun Li, Junyi Chen, Chunhua Shen, Jiangmiao Pang, Tong He
Abstract:
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates zero-shot synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Notably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
Authors:Yongjia Ma, Donglin Di, Xuan Liu, Xiaokai Chen, Lei Fan, Wei Chen, Tonghua Su
Abstract:
Rectified flow models have achieved remarkable performance in image and video generation tasks. However, existing numerical solvers face a trade-off between fast sampling and high-accuracy solutions, limiting their effectiveness in downstream applications such as reconstruction and editing. To address this challenge, we propose leveraging the Adams-Bashforth-Moulton (ABM) predictor-corrector method to enhance the accuracy of ODE solving in rectified flow models. Specifically, we introduce ABM-Solver, which integrates a multi step predictor corrector approach to reduce local truncation errors and employs Adaptive Step Size Adjustment to improve sampling speed. Furthermore, to effectively preserve non edited regions while facilitating semantic modifications, we introduce a Mask Guided Feature Injection module. We estimate self-similarity to generate a spatial mask that differentiates preserved regions from those available for editing. Extensive experiments on multiple high-resolution image datasets validate that ABM-Solver significantly improves inversion precision and editing quality, outperforming existing solvers without requiring additional training or optimization.
Authors:Menghao Li, Zhenghao Zhang, Junchao Liao, Long Qin, Weizhi Wang
Abstract:
Recent developments in Video Diffusion Models (VDMs) have demonstrated remarkable capability to generate high-quality video content. Nonetheless, the potential of VDMs for creating transparent videos remains largely uncharted. In this paper, we introduce TransVDM, the first diffusion-based model specifically designed for transparent video generation. TransVDM integrates a Transparent Variational Autoencoder (TVAE) and a pretrained UNet-based VDM, along with a novel Alpha Motion Constraint Module (AMCM). The TVAE captures the alpha channel transparency of video frames and encodes it into the latent space of the VDMs, facilitating a seamless transition to transparent video diffusion models. To improve the detection of transparent areas, the AMCM integrates motion constraints from the foreground within the VDM, helping to reduce undesirable artifacts. Moreover, we curate a dataset containing 250K transparent frames for training. Experimental results demonstrate the effectiveness of our approach across various benchmarks.
Authors:Zelu Qi, Ping Shi, Shuqi Wang, Chaoyang Zhang, Fei Zhao, Zefeng Ying, Da Pan, Xi Yang, Zheqi He, Teng Dai
Abstract:
Recent advances in text-to-video (T2V) technology, as demonstrated by models such as Runway Gen-3, Pika, Sora, and Kling, have significantly broadened the applicability and popularity of the technology. This progress has created a growing demand for accurate quality assessment metrics to evaluate the perceptual quality of T2V-generated videos and optimize video generation models. However, assessing the quality of text-to-video outputs remain challenging due to the presence of highly complex distortions, such as unnatural actions and phenomena that defy human cognition. To address these challenges, we constructed T2VEval-Bench, a multi-dimensional benchmark dataset for text-to-video quality evaluation, which contains 148 textual prompts and 1,783 videos generated by 13 T2V models. To ensure a comprehensive evaluation, we scored each video on four dimensions in the subjective experiment, which are overall impression, text-video consistency, realness, and technical quality. Based on T2VEval-Bench, we developed T2VEval, a multi-branch fusion scheme for T2V quality evaluation. T2VEval assesses videos across three branches: text-video consistency, realness, and technical quality. Using an attention-based fusion module, T2VEval effectively integrates features from each branch and predicts scores with the aid of a large language model. Additionally, we implemented a divide-and-conquer training strategy, enabling each branch to learn targeted knowledge while maintaining synergy with the others. Experimental results demonstrate that T2VEval achieves state-of-the-art performance across multiple metrics.
Authors:Yongjia Ma, Junlin Chen, Donglin Di, Qi Xie, Lei Fan, Wei Chen, Xiaofei Gou, Na Zhao, Xun Yang
Abstract:
Creating high-fidelity, coherent long videos is a sought-after aspiration. While recent video diffusion models have shown promising potential, they still grapple with spatiotemporal inconsistencies and high computational resource demands. We propose GLC-Diffusion, a tuning-free method for long video generation. It models the long video denoising process by establishing denoising trajectories through Global-Local Collaborative Denoising to ensure overall content consistency and temporal coherence between frames. Additionally, we introduce a Noise Reinitialization strategy which combines local noise shuffling with frequency fusion to improve global content consistency and visual diversity. Further, we propose a Video Motion Consistency Refinement (VMCR) module that computes the gradient of pixel-wise and frequency-wise losses to enhance visual consistency and temporal smoothness. Extensive experiments, including quantitative and qualitative evaluations on videos of varying lengths (\textit{e.g.}, 3\times and 6\times longer), demonstrate that our method effectively integrates with existing video diffusion models, producing coherent, high-fidelity long videos superior to previous approaches.
Authors:Jiacheng Zhang, Jie Wu, Weifeng Chen, Yatai Ji, Xuefeng Xiao, Weilin Huang, Kai Han
Abstract:
In recent years, the field of text-to-video (T2V) generation has made significant strides. Despite this progress, there is still a gap between theoretical advancements and practical application, amplified by issues like degraded image quality and flickering artifacts. Recent advancements in enhancing the video diffusion model (VDM) through feedback learning have shown promising results. However, these methods still exhibit notable limitations, such as misaligned feedback and inferior scalability. To tackle these issues, we introduce OnlineVPO, a more efficient preference learning approach tailored specifically for video diffusion models. Our method features two novel designs, firstly, instead of directly using image-based reward feedback, we leverage the video quality assessment (VQA) model trained on synthetic data as the reward model to provide distribution and modality-aligned feedback on the video diffusion model. Additionally, we introduce an online DPO algorithm to address the off-policy optimization and scalability issue in existing video preference learning frameworks. By employing the video reward model to offer concise video feedback on the fly, OnlineVPO offers effective and efficient preference guidance. Extensive experiments on the open-source video-diffusion model demonstrate OnlineVPO as a simple yet effective and more importantly scalable preference learning algorithm for video diffusion models, offering valuable insights for future advancements in this domain.
Authors:Haoyu Wu, Jingyi Xu, Hieu Le, Dimitris Samaras
Abstract:
Token merging can effectively accelerate various vision systems by processing groups of similar tokens only once and sharing the results across them. However, existing token grouping methods are often ad hoc and random, disregarding the actual content of the samples. We show that preserving high-information tokens during merging - those essential for semantic fidelity and structural details - significantly improves sample quality, producing finer details and more coherent, realistic generations. Despite being simple and intuitive, this approach remains underexplored.
To do so, we propose an importance-based token merging method that prioritizes the most critical tokens in computational resource allocation, leveraging readily available importance scores, such as those from classifier-free guidance in diffusion models. Experiments show that our approach significantly outperforms baseline methods across multiple applications, including text-to-image synthesis, multi-view image generation, and video generation with various model architectures such as Stable Diffusion, Zero123++, AnimateDiff, or PixArt-$α$.
Authors:Panwen Hu, Jin Jiang, Jianqi Chen, Mingfei Han, Shengcai Liao, Xiaojun Chang, Xiaodan Liang
Abstract:
The advent of AI-Generated Content (AIGC) has spurred research into automated video generation to streamline conventional processes. However, automating storytelling video production, particularly for customized narratives, remains challenging due to the complexity of maintaining subject consistency across shots. While existing approaches like Mora and AesopAgent integrate multiple agents for Story-to-Video (S2V) generation, they fall short in preserving protagonist consistency and supporting Customized Storytelling Video Generation (CSVG). To address these limitations, we propose StoryAgent, a multi-agent framework designed for CSVG. StoryAgent decomposes CSVG into distinct subtasks assigned to specialized agents, mirroring the professional production process. Notably, our framework includes agents for story design, storyboard generation, video creation, agent coordination, and result evaluation. Leveraging the strengths of different models, StoryAgent enhances control over the generation process, significantly improving character consistency. Specifically, we introduce a customized Image-to-Video (I2V) method, LoRA-BE, to enhance intra-shot temporal consistency, while a novel storyboard generation pipeline is proposed to maintain subject consistency across shots. Extensive experiments demonstrate the effectiveness of our approach in synthesizing highly consistent storytelling videos, outperforming state-of-the-art methods. Our contributions include the introduction of StoryAgent, a versatile framework for video generation tasks, and novel techniques for preserving protagonist consistency.
Authors:Chen Chen, Enhuai Liu, Daochang Liu, Mubarak Shah, Chang Xu
Abstract:
Diffusion models, widely used for image and video generation, face a significant limitation: the risk of memorizing and reproducing training data during inference, potentially generating unauthorized copyrighted content. While prior research has focused on image diffusion models (IDMs), video diffusion models (VDMs) remain underexplored. To address this gap, we first formally define the two types of memorization in VDMs (content memorization and motion memorization) in a practical way that focuses on privacy preservation and applies to all generation types. We then introduce new metrics specifically designed to separately assess content and motion memorization in VDMs. Additionally, we curate a dataset of text prompts that are most prone to triggering memorization when used as conditioning in VDMs. By leveraging these prompts, we generate diverse videos from various open-source VDMs, successfully extracting numerous training videos from each tested model. Through the application of our proposed metrics, we systematically analyze memorization across various pretrained VDMs, including text-conditional and unconditional models, on a variety of datasets. Our comprehensive study reveals that memorization is widespread across all tested VDMs, indicating that VDMs can also memorize image training data in addition to video datasets. Finally, we propose efficient and effective detection strategies for both content and motion memorization, offering a foundational approach for improving privacy in VDMs.
Authors:Junpeng Jiang, Gangyi Hong, Lijun Zhou, Enhui Ma, Hengtong Hu, Xia Zhou, Jie Xiang, Fan Liu, Kaicheng Yu, Haiyang Sun, Kun Zhan, Peng Jia, Miao Zhang
Abstract:
Generating high-fidelity, temporally consistent videos in autonomous driving scenarios faces a significant challenge, e.g. problematic maneuvers in corner cases. Despite recent video generation works are proposed to tackcle the mentioned problem, i.e. models built on top of Diffusion Transformers (DiT), works are still missing which are targeted on exploring the potential for multi-view videos generation scenarios. Noticeably, we propose the first DiT-based framework specifically designed for generating temporally and multi-view consistent videos which precisely match the given bird's-eye view layouts control. Specifically, the proposed framework leverages a parameter-free spatial view-inflated attention mechanism to guarantee the cross-view consistency, where joint cross-attention modules and ControlNet-Transformer are integrated to further improve the precision of control. To demonstrate our advantages, we extensively investigate the qualitative comparisons on nuScenes dataset, particularly in some most challenging corner cases. In summary, the effectiveness of our proposed method in producing long, controllable, and highly consistent videos under difficult conditions is proven to be effective.
Authors:Yu-Cheng Chou, Xingrui Wang, Yitong Li, Jiahao Wang, Hanting Liu, Cihang Xie, Alan Yuille, Junfei Xiao
Abstract:
World engines aim to synthesize long, 3D-consistent videos that support interactive exploration of a scene under user-controlled camera motion. However, existing systems struggle under aggressive 6-DoF trajectories and complex outdoor layouts: they lose long-range geometric coherence, deviate from the target path, or collapse into overly conservative motion. To this end, we introduce Captain Safari, a pose-conditioned world engine that generates videos by retrieving from a persistent world memory. Given a camera path, our method maintains a dynamic local memory and uses a retriever to fetch pose-aligned world tokens, which then condition video generation along the trajectory. This design enables the model to maintain stable 3D structure while accurately executing challenging camera maneuvers. To evaluate this setting, we curate OpenSafari, a new in-the-wild FPV dataset containing high-dynamic drone videos with verified camera trajectories, constructed through a multi-stage geometric and kinematic validation pipeline. Across video quality, 3D consistency, and trajectory following, Captain Safari substantially outperforms state-of-the-art camera-controlled generators. It reduces MEt3R from 0.3703 to 0.3690, improves AUC@30 from 0.181 to 0.200, and yields substantially lower FVD than all camera-controlled baselines. More importantly, in a 50-participant, 5-way human study where annotators select the best result among five anonymized models, 67.6% of preferences favor our method across all axes. Our results demonstrate that pose-conditioned world memory is a powerful mechanism for long-horizon, controllable video generation and provide OpenSafari as a challenging new benchmark for future world-engine research.
Authors:Qing Mao, Tianxin Huang, Yu Zhu, Jinqiu Sun, Yanning Zhang, Gim Hee Lee
Abstract:
Pairwise camera pose estimation from sparsely overlapping image pairs remains a critical and unsolved challenge in 3D vision. Most existing methods struggle with image pairs that have small or no overlap. Recent approaches attempt to address this by synthesizing intermediate frames using video interpolation and selecting key frames via a self-consistency score. However, the generated frames are often blurry due to small overlap inputs, and the selection strategies are slow and not explicitly aligned with pose estimation. To solve these cases, we propose Hybrid Video Generation (HVG) to synthesize clearer intermediate frames by coupling a video interpolation model with a pose-conditioned novel view synthesis model, where we also propose a Feature Matching Selector (FMS) based on feature correspondence to select intermediate frames appropriate for pose estimation from the synthesized results. Extensive experiments on Cambridge Landmarks, ScanNet, DL3DV-10K, and NAVI demonstrate that, compared to existing SOTA methods, PoseCrafter can obviously enhance the pose estimation performances, especially on examples with small or no overlap.
Authors:Viacheslav Vasilev, Arseny Ivanov, Nikita Gushchin, Maria Kovaleva, Alexander Korotin
Abstract:
Diffusion models excel in noise-to-data generation tasks, providing a mapping from a Gaussian distribution to a more complex data distribution. However they struggle to model translations between complex distributions, limiting their effectiveness in data-to-data tasks. While Bridge Matching (BM) models address this by finding the translation between data distributions, their application to time-correlated data sequences remains unexplored. This is a critical limitation for video generation and manipulation tasks, where maintaining temporal coherence is particularly important. To address this gap, we propose Time-Correlated Video Bridge Matching (TCVBM), a framework that extends BM to time-correlated data sequences in the video domain. TCVBM explicitly models inter-sequence dependencies within the diffusion bridge, directly incorporating temporal correlations into the sampling process. We compare our approach to classical methods based on bridge matching and diffusion models for three video-related tasks: frame interpolation, image-to-video generation, and video super-resolution. TCVBM achieves superior performance across multiple quantitative metrics, demonstrating enhanced generation quality and reconstruction fidelity.
Authors:Lin Zhang, Zefan Cai, Yufan Zhou, Shentong Mo, Jinhong Lin, Cheng-En Wu, Yibing Wei, Yijing Zhang, Ruiyi Zhang, Wen Xiao, Tong Sun, Junjie Hu, Pedro Morgado
Abstract:
Recent advances in audio-synchronized visual animation enable control of video content using audios from specific classes. However, existing methods rely heavily on expensive manual curation of high-quality, class-specific training videos, posing challenges to scaling up to diverse audio-video classes in the open world. In this work, we propose an efficient two-stage training paradigm to scale up audio-synchronized visual animation using abundant but noisy videos. In stage one, we automatically curate large-scale videos for pretraining, allowing the model to learn diverse but imperfect audio-video alignments. In stage two, we finetune the model on manually curated high-quality examples, but only at a small scale, significantly reducing the required human effort. We further enhance synchronization by allowing each frame to access rich audio context via multi-feature conditioning and window attention. To efficiently train the model, we leverage pretrained text-to-video generator and audio encoders, introducing only 1.9\% additional trainable parameters to learn audio-conditioning capability without compromising the generator's prior knowledge. For evaluation, we introduce AVSync48, a benchmark with videos from 48 classes, which is 3$\times$ more diverse than previous benchmarks. Extensive experiments show that our method significantly reduces reliance on manual curation by over 10$\times$, while generalizing to many open classes.
Authors:Jianhui Wang, Yinda Chen, Yangfan He, Xinyuan Song, Yi Xin, Dapeng Zhang, Zhongwei Wan, Bin Li, Rongchao Zhang
Abstract:
Video editing is a critical component of content creation that transforms raw footage into coherent works aligned with specific visual and narrative objectives. Existing approaches face two major challenges: temporal inconsistencies due to failure in capturing complex motion patterns, and overfitting to simple prompts arising from limitations in UNet backbone architectures. While learning-based methods can enhance editing quality, they typically demand substantial computational resources and are constrained by the scarcity of high-quality annotated data. In this paper, we present Vid-TTA, a lightweight test-time adaptation framework that personalizes optimization for each test video during inference through self-supervised auxiliary tasks. Our approach incorporates a motion-aware frame reconstruction mechanism that identifies and preserves crucial movement regions, alongside a prompt perturbation and reconstruction strategy that strengthens model robustness to diverse textual descriptions. These innovations are orchestrated by a meta-learning driven dynamic loss balancing mechanism that adaptively adjusts the optimization process based on video characteristics. Extensive experiments demonstrate that Vid-TTA significantly improves video temporal consistency and mitigates prompt overfitting while maintaining low computational overhead, offering a plug-and-play performance boost for existing video editing models.
Authors:Junfei Xiao, Ceyuan Yang, Lvmin Zhang, Shengqu Cai, Yang Zhao, Yuwei Guo, Gordon Wetzstein, Maneesh Agrawala, Alan Yuille, Lu Jiang
Abstract:
We present Captain Cinema, a generation framework for short movie generation. Given a detailed textual description of a movie storyline, our approach firstly generates a sequence of keyframes that outline the entire narrative, which ensures long-range coherence in both the storyline and visual appearance (e.g., scenes and characters). We refer to this step as top-down keyframe planning. These keyframes then serve as conditioning signals for a video synthesis model, which supports long context learning, to produce the spatio-temporal dynamics between them. This step is referred to as bottom-up video synthesis. To support stable and efficient generation of multi-scene long narrative cinematic works, we introduce an interleaved training strategy for Multimodal Diffusion Transformers (MM-DiT), specifically adapted for long-context video data. Our model is trained on a specially curated cinematic dataset consisting of interleaved data pairs. Our experiments demonstrate that Captain Cinema performs favorably in the automated creation of visually coherent and narrative consistent short movies in high quality and efficiency. Project page: https://thecinema.ai
Authors:Enes Sanli, Baris Sarper Tezcan, Aykut Erdem, Erkut Erdem
Abstract:
Recent progress in text-to-video (T2V) generation has enabled the synthesis of visually compelling and temporally coherent videos from natural language. However, these models often fall short in basic physical commonsense, producing outputs that violate intuitive expectations around causality, object behavior, and tool use. Addressing this gap, we present PhysVidBench, a benchmark designed to evaluate the physical reasoning capabilities of T2V systems. The benchmark includes 383 carefully curated prompts, emphasizing tool use, material properties, and procedural interactions, and domains where physical plausibility is crucial. For each prompt, we generate videos using diverse state-of-the-art models and adopt a three-stage evaluation pipeline: (1) formulate grounded physics questions from the prompt, (2) caption the generated video with a vision-language model, and (3) task a language model to answer several physics-involved questions using only the caption. This indirect strategy circumvents common hallucination issues in direct video-based evaluation. By highlighting affordances and tool-mediated actions, areas overlooked in current T2V evaluations, PhysVidBench provides a structured, interpretable framework for assessing physical commonsense in generative video models.
Authors:Sangwon Jang, Taekyung Ki, Jaehyeong Jo, Jaehong Yoon, Soo Ye Kim, Zhe Lin, Sung Ju Hwang
Abstract:
Advancements in diffusion models have significantly improved video quality, directing attention to fine-grained controllability. However, many existing methods depend on fine-tuning large-scale video models for specific tasks, which becomes increasingly impractical as model sizes continue to grow. In this work, we present Frame Guidance, a training-free guidance for controllable video generation based on frame-level signals, such as keyframes, style reference images, sketches, or depth maps. For practical training-free guidance, we propose a simple latent processing method that dramatically reduces memory usage, and apply a novel latent optimization strategy designed for globally coherent video generation. Frame Guidance enables effective control across diverse tasks, including keyframe guidance, stylization, and looping, without any training, compatible with any video models. Experimental results show that Frame Guidance can produce high-quality controlled videos for a wide range of tasks and input signals.
Authors:Ruoxuan Zhang, Jidong Gao, Bin Wen, Hongxia Xie, Chenming Zhang, Hong-Han Shuai, Wen-Huang Cheng
Abstract:
Creating recipe images is a key challenge in food computing, with applications in culinary education and multimodal recipe assistants. However, existing datasets lack fine-grained alignment between recipe goals, step-wise instructions, and visual content. We present RecipeGen, the first large-scale, real-world benchmark for recipe-based Text-to-Image (T2I), Image-to-Video (I2V), and Text-to-Video (T2V) generation. RecipeGen contains 26,453 recipes, 196,724 images, and 4,491 videos, covering diverse ingredients, cooking procedures, styles, and dish types. We further propose domain-specific evaluation metrics to assess ingredient fidelity and interaction modeling, benchmark representative T2I, I2V, and T2V models, and provide insights for future recipe generation models. Project page is available now.
Authors:Xinyuan Song, Yangfan He, Sida Li, Jianhui Wang, Hongyang He, Xinhang Yuan, Ruoyu Wang, Jiaqi Chen, Keqin Li, Kuan Lu, Menghao Huo, Binxu Li, Pei Liu
Abstract:
Adapter-based methods are commonly used to enhance model performance with minimal additional complexity, especially in video editing tasks that require frame-to-frame consistency. By inserting small, learnable modules into pretrained diffusion models, these adapters can maintain temporal coherence without extensive retraining. Approaches that incorporate prompt learning with both shared and frame-specific tokens are particularly effective in preserving continuity across frames at low training cost. In this work, we want to provide a general theoretical framework for adapters that maintain frame consistency in DDIM-based models under a temporal consistency loss. First, we prove that the temporal consistency objective is differentiable under bounded feature norms, and we establish a Lipschitz bound on its gradient. Second, we show that gradient descent on this objective decreases the loss monotonically and converges to a local minimum if the learning rate is within an appropriate range. Finally, we analyze the stability of modules in the DDIM inversion procedure, showing that the associated error remains controlled. These theoretical findings will reinforce the reliability of diffusion-based video editing methods that rely on adapter strategies and provide theoretical insights in video generation tasks.
Authors:Zhuoling Li, Hossein Rahmani, Qiuhong Ke, Jun Liu
Abstract:
Video diffusion models have recently achieved remarkable results in video generation. Despite their encouraging performance, most of these models are mainly designed and trained for short video generation, leading to challenges in maintaining temporal consistency and visual details in long video generation. In this paper, we propose LongDiff, a novel training-free method consisting of carefully designed components \ -- Position Mapping (PM) and Informative Frame Selection (IFS) \ -- to tackle two key challenges that hinder short-to-long video generation generalization: temporal position ambiguity and information dilution. Our LongDiff unlocks the potential of off-the-shelf video diffusion models to achieve high-quality long video generation in one go. Extensive experiments demonstrate the efficacy of our method.
Authors:Bojia Zi, Penghui Ruan, Marco Chen, Xianbiao Qi, Shaozhe Hao, Shihao Zhao, Youze Huang, Bin Liang, Rong Xiao, Kam-Fai Wong
Abstract:
Recent advancements in video generation have spurred the development of video editing techniques, which can be divided into inversion-based and end-to-end methods. However, current video editing methods still suffer from several challenges. Inversion-based methods, though training-free and flexible, are time-consuming during inference, struggle with fine-grained editing instructions, and produce artifacts and jitter. On the other hand, end-to-end methods, which rely on edited video pairs for training, offer faster inference speeds but often produce poor editing results due to a lack of high-quality training video pairs. In this paper, to close the gap in end-to-end methods, we introduce Señorita-2M, a high-quality video editing dataset. Señorita-2M consists of approximately 2 millions of video editing pairs. It is built by crafting four high-quality, specialized video editing models, each crafted and trained by our team to achieve state-of-the-art editing results. We also propose a filtering pipeline to eliminate poorly edited video pairs. Furthermore, we explore common video editing architectures to identify the most effective structure based on current pre-trained generative model. Extensive experiments show that our dataset can help to yield remarkably high-quality video editing results. More details are available at https://senorita-2m-dataset.github.io.
Authors:Yangfan He, Sida Li, Jianhui Wang, Kun Li, Xinyuan Song, Xinhang Yuan, Keqin Li, Kuan Lu, Menghao Huo, Jingqun Tang, Yi Xin, Jiaqi Chen, Miao Zhang, Xueqian Wang
Abstract:
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
Authors:Qihang Zhang, Shuangfei Zhai, Miguel Angel Bautista, Kevin Miao, Alexander Toshev, Joshua Susskind, Jiatao Gu
Abstract:
Recent advancements in diffusion models have set new benchmarks in image and video generation, enabling realistic visual synthesis across single- and multi-frame contexts. However, these models still struggle with efficiently and explicitly generating 3D-consistent content. To address this, we propose World-consistent Video Diffusion (WVD), a novel framework that incorporates explicit 3D supervision using XYZ images, which encode global 3D coordinates for each image pixel. More specifically, we train a diffusion transformer to learn the joint distribution of RGB and XYZ frames. This approach supports multi-task adaptability via a flexible inpainting strategy. For example, WVD can estimate XYZ frames from ground-truth RGB or generate novel RGB frames using XYZ projections along a specified camera trajectory. In doing so, WVD unifies tasks like single-image-to-3D generation, multi-view stereo, and camera-controlled video generation. Our approach demonstrates competitive performance across multiple benchmarks, providing a scalable solution for 3D-consistent video and image generation with a single pretrained model.
Authors:Rong-Cheng Tu, Wenhao Sun, Zhao Jin, Jingyi Liao, Jiaxing Huang, Dacheng Tao
Abstract:
While open-source video generation and editing models have made significant progress, individual models are typically limited to specific tasks, failing to meet the diverse needs of users. Effectively coordinating these models can unlock a wide range of video generation and editing capabilities. However, manual coordination is complex and time-consuming, requiring users to deeply understand task requirements and possess comprehensive knowledge of each model's performance, applicability, and limitations, thereby increasing the barrier to entry. To address these challenges, we propose a novel video generation and editing system powered by our Semantic Planning Agent (SPAgent). SPAgent bridges the gap between diverse user intents and the effective utilization of existing generative models, enhancing the adaptability, efficiency, and overall quality of video generation and editing. Specifically, the SPAgent assembles a tool library integrating state-of-the-art open-source image and video generation and editing models as tools. After fine-tuning on our manually annotated dataset, SPAgent can automatically coordinate the tools for video generation and editing, through our novelly designed three-step framework: (1) decoupled intent recognition, (2) principle-guided route planning, and (3) capability-based execution model selection. Additionally, we enhance the SPAgent's video quality evaluation capability, enabling it to autonomously assess and incorporate new video generation and editing models into its tool library without human intervention. Experimental results demonstrate that the SPAgent effectively coordinates models to generate or edit videos, highlighting its versatility and adaptability across various video tasks.
Authors:Jinzhi Zhang, Feng Xiong, Mu Xu
Abstract:
Autoregressive transformers have revolutionized generative models in language processing and shown substantial promise in image and video generation. However, these models face significant challenges when extended to 3D generation tasks due to their reliance on next-token prediction to learn token sequences, which is incompatible with the unordered nature of 3D data. Instead of imposing an artificial order on 3D data, in this paper, we introduce G3PT, a scalable coarse-to-fine 3D generative model utilizing a cross-scale querying transformer. The key is to map point-based 3D data into discrete tokens with different levels of detail, naturally establishing a sequential relationship between different levels suitable for autoregressive modeling. Additionally, the cross-scale querying transformer connects tokens globally across different levels of detail without requiring an ordered sequence. Benefiting from this approach, G3PT features a versatile 3D generation pipeline that effortlessly supports diverse conditional structures, enabling the generation of 3D shapes from various types of conditions. Extensive experiments demonstrate that G3PT achieves superior generation quality and generalization ability compared to previous 3D generation methods. Most importantly, for the first time in 3D generation, scaling up G3PT reveals distinct power-law scaling behaviors.
Authors:Bozhou Li, Sihan Yang, Yushuo Guan, Ruichuan An, Xinlong Chen, Yang Shi, Pengfei Wan, Wentao Zhang, Yuanxing zhang
Abstract:
The text encoder is a critical component of text-to-image and text-to-video diffusion models, fundamentally determining the semantic fidelity of the generated content. However, its development has been hindered by two major challenges: the lack of an efficient evaluation framework that reliably predicts downstream generation performance, and the difficulty of effectively adapting pretrained language models for visual synthesis. To address these issues, we introduce GRAN-TED, a paradigm to Generate Robust, Aligned, and Nuanced Text Embeddings for Diffusion models. Our contribution is twofold. First, we propose TED-6K, a novel text-only benchmark that enables efficient and robust assessment of an encoder's representational quality without requiring costly end-to-end model training. We demonstrate that performance on TED-6K, standardized via a lightweight, unified adapter, strongly correlates with an encoder's effectiveness in downstream generation tasks. Notably, under our experimental setup, compared with training a diffusion model from scratch, evaluating with TED-6K is about \textbf{750$\times$ faster}. Second, guided by this validated framework, we develop a superior text encoder using a novel two-stage training paradigm. This process involves an initial fine-tuning stage on a Multimodal Large Language Model for better visual representation, followed by a layer-wise weighting method to extract more nuanced and potent text features. Our experiments show that the resulting GRAN-TED encoder not only achieves state-of-the-art performance on TED-6K but also leads to demonstrable performance gains in text-to-image and text-to-video generation. Our TED-6K dataset and evaluation code are available at the following link: https://anonymous.4open.science/r/GRAN-TED-4FCC/.
Authors:Samar Fares, Nurbek Tastan, Karthik Nandakumar
Abstract:
The advent of high-quality video generation models has amplified the need for robust watermarking schemes that can be used to reliably detect and track the provenance of generated videos. Existing video watermarking methods based on both post-hoc and in-generation approaches fail to simultaneously achieve imperceptibility, robustness, and computational efficiency. This work introduces a novel framework for in-generation video watermarking called SPDMark (pronounced `SpeedMark') based on selective parameter displacement of a video diffusion model. Watermarks are embedded into the generated videos by modifying a subset of parameters in the generative model. To make the problem tractable, the displacement is modeled as an additive composition of layer-wise basis shifts, where the final composition is indexed by the watermarking key. For parameter efficiency, this work specifically leverages low-rank adaptation (LoRA) to implement the basis shifts. During the training phase, the basis shifts and the watermark extractor are jointly learned by minimizing a combination of message recovery, perceptual similarity, and temporal consistency losses. To detect and localize temporal modifications in the watermarked videos, we use a cryptographic hashing function to derive frame-specific watermark messages from the given base watermarking key. During watermark extraction, maximum bipartite matching is applied to recover the correct frame order, even from temporally tampered videos. Evaluations on both text-to-video and image-to-video generation models demonstrate the ability of SPDMark to generate imperceptible watermarks that can be recovered with high accuracy and also establish its robustness against a variety of common video modifications.
Authors:Yanan Wang, Shengcai Liao, Panwen Hu, Xin Li, Fan Yang, Xiaodan Liang
Abstract:
Video head swapping aims to replace the entire head of a video subject, including facial identity, head shape, and hairstyle, with that of a reference image, while preserving the target body, background, and motion dynamics. Due to the lack of ground-truth paired swapping data, prior methods typically train on cross-frame pairs of the same person within a video and rely on mask-based inpainting to mitigate identity leakage. Beyond potential boundary artifacts, this paradigm struggles to recover essential cues occluded by the mask, such as facial pose, expressions, and motion dynamics. To address these issues, we prompt a video editing model to synthesize new heads for existing videos as fake swapping inputs, while maintaining frame-synchronized facial poses and expressions. This yields HeadSwapBench, the first cross-identity paired dataset for video head swapping, which supports both training (\TrainNum{} videos) and benchmarking (\TestNum{} videos) with genuine outputs. Leveraging this paired supervision, we propose DirectSwap, a mask-free, direct video head-swapping framework that extends an image U-Net into a video diffusion model with a motion module and conditioning inputs. Furthermore, we introduce the Motion- and Expression-Aware Reconstruction (MEAR) loss, which reweights the diffusion loss per pixel using frame-difference magnitudes and facial-landmark proximity, thereby enhancing cross-frame coherence in motion and expressions. Extensive experiments demonstrate that DirectSwap achieves state-of-the-art visual quality, identity fidelity, and motion and expression consistency across diverse in-the-wild video scenes. We will release the source code and the HeadSwapBench dataset to facilitate future research.
Authors:Jianhao Zeng, Yancheng Bai, Ruidong Chen, Xuanpu Zhang, Lei Sun, Dongyang Jin, Ryan Xu, Nannan Zhang, Dan Song, Xiangxiang Chu
Abstract:
Video virtual try-on technology provides a cost-effective solution for creating marketing videos in fashion e-commerce. However, its practical adoption is hindered by two critical limitations. First, the reliance on a single garment image as input in current virtual try-on datasets limits the accurate capture of realistic texture details. Second, most existing methods focus solely on generating full-shot virtual try-on videos, neglecting the business's demand for videos that also provide detailed close-ups. To address these challenges, we introduce a high-resolution dataset for video-based virtual try-on. This dataset offers two key features. First, it provides more detailed information on the garments, which includes high-fidelity images with detailed close-ups and textual descriptions; Second, it uniquely includes full-shot and close-up try-on videos of real human models. Furthermore, accurately assessing consistency becomes significantly more critical for the close-up videos, which demand high-fidelity preservation of garment details. To facilitate such fine-grained evaluation, we propose a new garment consistency metric VGID (Video Garment Inception Distance) that quantifies the preservation of both texture and structure. Our experiments validate these contributions. We demonstrate that by utilizing the detailed images from our dataset, existing video generation models can extract and incorporate texture features, significantly enhancing the realism and detail fidelity of virtual try-on results. Furthermore, we conduct a comprehensive benchmark of recent models. The benchmark effectively identifies the texture and structural preservation problems among current methods.
Authors:Wei-Cheng Tseng, Jinwei Gu, Qinsheng Zhang, Hanzi Mao, Ming-Yu Liu, Florian Shkurti, Lin Yen-Chen
Abstract:
Training generalist policies for robotic manipulation has shown great promise, as they enable language-conditioned, multi-task behaviors across diverse scenarios. However, evaluating these policies remains difficult because real-world testing is expensive, time-consuming, and labor-intensive. It also requires frequent environment resets and carries safety risks when deploying unproven policies on physical robots. Manually creating and populating simulation environments with assets for robotic manipulation has not addressed these issues, primarily due to the significant engineering effort required and the often substantial sim-to-real gap, both in terms of physics and rendering. In this paper, we explore the use of action-conditional video generation models as a scalable way to learn world models for policy evaluation. We demonstrate how to incorporate action conditioning into existing pre-trained video generation models. This allows leveraging internet-scale in-the-wild online videos during the pre-training stage, and alleviates the need for a large dataset of paired video-action data, which is expensive to collect for robotic manipulation. Our paper examines the effect of dataset diversity, pre-trained weight and common failure cases for the proposed evaluation pipeline. Our experiments demonstrate that, across various metrics, including policy ranking and the correlation between actual policy values and predicted policy values, these models offer a promising approach for evaluating policies without requiring real-world interactions.
Authors:Jiaben Chen, Zixin Wang, Ailing Zeng, Yang Fu, Xueyang Yu, Siyuan Cen, Julian Tanke, Yihang Chen, Koichi Saito, Yuki Mitsufuji, Chuang Gan
Abstract:
In this work, we present TalkCuts, a large-scale dataset designed to facilitate the study of multi-shot human speech video generation. Unlike existing datasets that focus on single-shot, static viewpoints, TalkCuts offers 164k clips totaling over 500 hours of high-quality human speech videos with diverse camera shots, including close-up, half-body, and full-body views. The dataset includes detailed textual descriptions, 2D keypoints and 3D SMPL-X motion annotations, covering over 10k identities, enabling multimodal learning and evaluation. As a first attempt to showcase the value of the dataset, we present Orator, an LLM-guided multi-modal generation framework as a simple baseline, where the language model functions as a multi-faceted director, orchestrating detailed specifications for camera transitions, speaker gesticulations, and vocal modulation. This architecture enables the synthesis of coherent long-form videos through our integrated multi-modal video generation module. Extensive experiments in both pose-guided and audio-driven settings show that training on TalkCuts significantly enhances the cinematographic coherence and visual appeal of generated multi-shot speech videos. We believe TalkCuts provides a strong foundation for future work in controllable, multi-shot speech video generation and broader multimodal learning.
Authors:Zhantao Yang, Huangji Wang, Ruili Feng, Han Zhang, Yuting Hu, Shangwen Zhu, Junyan Li, Yu Liu, Fan Cheng
Abstract:
Generating captions for long and complex videos is both critical and challenging, with significant implications for the growing fields of text-to-video generation and multi-modal understanding. One key challenge in long video captioning is accurately recognizing the same individuals who appear in different frames, which we refer to as the ID-Matching problem. Few prior works have focused on this important issue. Those that have, usually suffer from limited generalization and depend on point-wise matching, which limits their overall effectiveness. In this paper, unlike previous approaches, we build upon LVLMs to leverage their powerful priors. We aim to unlock the inherent ID-Matching capabilities within LVLMs themselves to enhance the ID-Matching performance of captions. Specifically, we first introduce a new benchmark for assessing the ID-Matching capabilities of video captions. Using this benchmark, we investigate LVLMs containing GPT-4o, revealing key insights that the performance of ID-Matching can be improved through two methods: 1) enhancing the usage of image information and 2) increasing the quantity of information of individual descriptions. Based on these insights, we propose a novel video captioning method called Recognizing Identities for Captioning Effectively (RICE). Extensive experiments including assessments of caption quality and ID-Matching performance, demonstrate the superiority of our approach. Notably, when implemented on GPT-4o, our RICE improves the precision of ID-Matching from 50% to 90% and improves the recall of ID-Matching from 15% to 80% compared to baseline. RICE makes it possible to continuously track different individuals in the captions of long videos.
Authors:Fan Yang, Zhiyang Chen, Yousong Zhu, Xin Li, Jinqiao Wang
Abstract:
Current video generation models produce physically inconsistent motion that violates real-world dynamics. We propose TrajVLM-Gen, a two-stage framework for physics-aware image-to-video generation. First, we employ a Vision Language Model to predict coarse-grained motion trajectories that maintain consistency with real-world physics. Second, these trajectories guide video generation through attention-based mechanisms for fine-grained motion refinement. We build a trajectory prediction dataset based on video tracking data with realistic motion patterns. Experiments on UCF-101 and MSR-VTT demonstrate that TrajVLM-Gen outperforms existing methods, achieving competitive FVD scores of 545 on UCF-101 and 539 on MSR-VTT.
Authors:Xiao Liang, Bangxin Li, Zixuan Chen, Hanyue Zheng, Zhi Ma, Di Wang, Cong Tian, Quan Wang
Abstract:
Automating the generation of scientific videos is a crucial yet challenging task for effective knowledge dissemination. However, existing works on document automation primarily focus on static media such as posters and slides, lacking mechanisms for personalized dynamic orchestration and multimodal content synchronization. To address these challenges, we introduce VideoAgent, a novel multi-agent framework that synthesizes personalized scientific videos through a conversational interface. VideoAgent parses a source paper into a fine-grained asset library and, guided by user requirements, orchestrates a narrative flow that synthesizes both static slides and dynamic animations to explain complex concepts. To enable rigorous evaluation, we also propose SciVidEval, the first comprehensive suite for this task, which combines automated metrics for multimodal content quality and synchronization with a Video-Quiz-based human evaluation to measure knowledge transfer. Extensive experiments demonstrate that our method significantly outperforms existing commercial scientific video generation services and approaches human-level quality in scientific communication.
Authors:Shangwen Zhu, Qianyu Peng, Yuting Hu, Zhantao Yang, Han Zhang, Zhao Pu, Ruili Feng, Fan Cheng
Abstract:
Flow-based generative models have recently achieved remarkable progress in image and video synthesis, with classifier-free guidance (CFG) becoming the standard tool for high-fidelity, controllable generation. However, despite their practical success, little is known about how guidance interacts with different stages of the sampling process-especially in the fast, low-step regimes typical of modern flow-based pipelines. In this work, we uncover and analyze a fundamental instability: the earliest reverse steps are acutely sensitive to the guidance scale, owing to a pronounced spike in the relative strength (RATIO) of conditional to unconditional predictions. Through rigorous theoretical analysis and empirical validation, we show that this RATIO spike is intrinsic to the data distribution, independent of the model architecture, and causes exponential error amplification when paired with strong guidance. To address this, we propose a simple, theoretically grounded, RATIO-aware adaptive guidance schedule that automatically dampens the guidance scale at early steps based on the evolving RATIO, using a closed-form exponential decay. Our method is lightweight, requires no additional inference overhead, and is compatible with standard flow frameworks. Experiments across state-of-the-art image (SD3.5, Lumina) and video (WAN2.1) models demonstrate that our approach enables up to 3x faster sampling while maintaining or improving generation quality, robustness, and semantic alignment. Extensive ablation studies further confirm the generality and stability of our schedule across models, datasets, and hyperparameters. Our findings highlight the critical role of stepwise guidance adaptation in unlocking the full potential of fast flow-based generative models.
Authors:Sucheng Ren, Qihang Yu, Ju He, Alan Yuille, Liang-Chieh Chen
Abstract:
Diffusion-based Transformers have demonstrated impressive generative capabilities, but their high computational costs hinder practical deployment, for example, generating an $8192\times 8192$ image can take over an hour on an A100 GPU. In this work, we propose GRAT (\textbf{GR}ouping first, \textbf{AT}tending smartly), a training-free attention acceleration strategy for fast image and video generation without compromising output quality. The key insight is to exploit the inherent sparsity in learned attention maps (which tend to be locally focused) in pretrained Diffusion Transformers and leverage better GPU parallelism. Specifically, GRAT first partitions contiguous tokens into non-overlapping groups, aligning both with GPU execution patterns and the local attention structures learned in pretrained generative Transformers. It then accelerates attention by having all query tokens within the same group share a common set of attendable key and value tokens. These key and value tokens are further restricted to structured regions, such as surrounding blocks or criss-cross regions, significantly reducing computational overhead (e.g., attaining a \textbf{35.8$\times$} speedup over full attention when generating $8192\times 8192$ images) while preserving essential attention patterns and long-range context. We validate GRAT on pretrained Flux and HunyuanVideo for image and video generation, respectively. In both cases, GRAT achieves substantially faster inference without any fine-tuning, while maintaining the performance of full attention. We hope GRAT will inspire future research on accelerating Diffusion Transformers for scalable visual generation.
Authors:Qihao Liu, Ju He, Qihang Yu, Liang-Chieh Chen, Alan Yuille
Abstract:
In recent years, video generation has seen significant advancements. However, challenges still persist in generating complex motions and interactions. To address these challenges, we introduce ReVision, a plug-and-play framework that explicitly integrates parameterized 3D physical knowledge into a pretrained conditional video generation model, significantly enhancing its ability to generate high-quality videos with complex motion and interactions. Specifically, ReVision consists of three stages. First, a video diffusion model is used to generate a coarse video. Next, we extract a set of 2D and 3D features from the coarse video to construct a 3D object-centric representation, which is then refined by our proposed parameterized physical prior model to produce an accurate 3D motion sequence. Finally, this refined motion sequence is fed back into the same video diffusion model as additional conditioning, enabling the generation of motion-consistent videos, even in scenarios involving complex actions and interactions. We validate the effectiveness of our approach on Stable Video Diffusion, where ReVision significantly improves motion fidelity and coherence. Remarkably, with only 1.5B parameters, it even outperforms a state-of-the-art video generation model with over 13B parameters on complex video generation by a substantial margin. Our results suggest that, by incorporating 3D physical knowledge, even a relatively small video diffusion model can generate complex motions and interactions with greater realism and controllability, offering a promising solution for physically plausible video generation.
Authors:Rui Chen, Lei Sun, Jing Tang, Geng Li, Xiangxiang Chu
Abstract:
Recent advances in video generation have posed great challenges in the assessment of AI-generated content, particularly with the emergence of increasingly sophisticated models. The various inconsistencies and defects observed in such videos are inherently complex, making overall scoring notoriously difficult. In this paper, we emphasize the critical importance of integrating fine-grained reasoning into video evaluation, and we propose $\textbf{F}$ing$\textbf{ER}$, a novel entity-level reasoning evaluation framework that first automatically generates $\textbf{F}$ine-grained $\textbf{E}$ntity-level questions, and then answers those questions by a $\textbf{R}$easoning model with scores, which can be subsequently weighted summed to an overall score for different applications. Specifically, we leverage LLMs to derive entity-level questions across five distinct perspectives, which (i) often focus on some specific entities of the content, thereby making answering or scoring much easier by MLLMs, and (ii) are more interpretable. Then we construct a FingER dataset, consisting of approximately 3.3k videos and corresponding 60k fine-grained QA annotations, each with detailed reasons. Based on that, we further investigate various training protocols to best incentivize the reasoning capability of MLLMs for correct answer prediction. Extensive experiments demonstrate that a reasoning model trained using Group Relative Policy Optimization (GRPO) with a cold-start strategy achieves the best performance. Notably, our model surpasses existing methods by a relative margin of $11.8\%$ on GenAI-Bench and $5.5\%$ on MonetBench with only 3.3k training videos, which is at most one-tenth of the training samples utilized by other methods. Our code and dataset will be released soon.
Authors:Qiusheng Huang, Xiaohui Zhong, Xu Fan, Lei Chen, Hao Li
Abstract:
Similar to conventional video generation, current deep learning-based weather prediction frameworks often lack explicit physical constraints, leading to unphysical outputs that limit their reliability for operational forecasting. Among various physical processes requiring proper representation, radiation plays a fundamental role as it drives Earth's weather and climate systems. However, accurate simulation of radiative transfer processes remains challenging for traditional numerical weather prediction (NWP) models due to their inherent complexity and high computational costs. Here, we propose FuXi-RTM, a hybrid physics-guided deep learning framework designed to enhance weather forecast accuracy while enforcing physical consistency. FuXi-RTM integrates a primary forecasting model (FuXi) with a fixed deep learning-based radiative transfer model (DLRTM) surrogate that efficiently replaces conventional radiation parameterization schemes. This represents the first deep learning-based weather forecasting framework to explicitly incorporate physical process modeling. Evaluated over a comprehensive 5-year dataset, FuXi-RTM outperforms its unconstrained counterpart in 88.51% of 3320 variable and lead time combinations, with improvements in radiative flux predictions. By incorporating additional physical processes, FuXi-RTM paves the way for next-generation weather forecasting systems that are both accurate and physically consistent.
Authors:Yuchao Gu, Weijia Mao, Mike Zheng Shou
Abstract:
Long-context video modeling is essential for enabling generative models to function as world simulators, as they must maintain temporal coherence over extended time spans. However, most existing models are trained on short clips, limiting their ability to capture long-range dependencies, even with test-time extrapolation. While training directly on long videos is a natural solution, the rapid growth of vision tokens makes it computationally prohibitive. To support exploring efficient long-context video modeling, we first establish a strong autoregressive baseline called Frame AutoRegressive (FAR). FAR models temporal dependencies between continuous frames, converges faster than video diffusion transformers, and outperforms token-level autoregressive models. Based on this baseline, we observe context redundancy in video autoregression. Nearby frames are critical for maintaining temporal consistency, whereas distant frames primarily serve as context memory. To eliminate this redundancy, we propose the long short-term context modeling using asymmetric patchify kernels, which apply large kernels to distant frames to reduce redundant tokens, and standard kernels to local frames to preserve fine-grained detail. This significantly reduces the training cost of long videos. Our method achieves state-of-the-art results on both short and long video generation, providing an effective baseline for long-context autoregressive video modeling.
Authors:Shangwen Zhu, Han Zhang, Zhantao Yang, Qianyu Peng, Zhao Pu, Huangji Wang, Fan Cheng
Abstract:
Text-based diffusion models have made significant breakthroughs in generating high-quality images and videos from textual descriptions. However, the lengthy sampling time of the denoising process remains a significant bottleneck in practical applications. Previous methods either ignore the statistical relationships between adjacent steps or rely on attention or feature similarity between them, which often only works with specific network structures. To address this issue, we discover a new statistical relationship in the transition operator between adjacent steps, focusing on the relationship of the outputs from the network. This relationship does not impose any requirements on the network structure. Based on this observation, we propose a novel training-free acceleration method called LTC-Accel, which uses the identified relationship to estimate the current transition operator based on adjacent steps. Due to no specific assumptions regarding the network structure, LTC-Accel is applicable to almost all diffusion-based methods and orthogonal to almost all existing acceleration techniques, making it easy to combine with them. Experimental results demonstrate that LTC-Accel significantly speeds up sampling in text-to-image and text-to-video synthesis while maintaining competitive sample quality. Specifically, LTC-Accel achieves a speedup of 1.67-fold in Stable Diffusion v2 and a speedup of 1.55-fold in video generation models. When combined with distillation models, LTC-Accel achieves a remarkable 10-fold speedup in video generation, allowing real-time generation of more than 16FPS.
Authors:Zhun Mou, Bin Xia, Zhengchao Huang, Wenming Yang, Jiaya Jia
Abstract:
Recent great advances in video generation models have demonstrated their potential to produce high-quality videos, bringing challenges to effective evaluation. Unlike human evaluation, existing automated evaluation metrics lack high-level semantic understanding and reasoning capabilities for video, thus making them infeasible and unexplainable. To fill this gap, we curate GRADEO-Instruct, a multi-dimensional T2V evaluation instruction tuning dataset, including 3.3k videos from over 10 existing video generation models and multi-step reasoning assessments converted by 16k human annotations. We then introduce GRADEO, one of the first specifically designed video evaluation models, which grades AI-generated videos for explainable scores and assessments through multi-step reasoning. Experiments show that our method aligns better with human evaluations than existing methods. Furthermore, our benchmarking reveals that current video generation models struggle to produce content that aligns with human reasoning and complex real-world scenarios. The models, datasets, and codes will be released soon.
Authors:Xiao Wang, Jingyun Hua, Weihong Lin, Yuanxing Zhang, Fuzheng Zhang, Jianlong Wu, Di Zhang, Liqiang Nie
Abstract:
Recent Multi-modal Large Language Models (MLLMs) have made great progress in video understanding. However, their performance on videos involving human actions is still limited by the lack of high-quality data. To address this, we introduce a two-stage data annotation pipeline. First, we design strategies to accumulate videos featuring clear human actions from the Internet. Second, videos are annotated in a standardized caption format that uses human attributes to distinguish individuals and chronologically details their actions and interactions. Through this pipeline, we curate two datasets, namely HAICTrain and HAICBench. \textbf{HAICTrain} comprises 126K video-caption pairs generated by Gemini-Pro and verified for training purposes. Meanwhile, \textbf{HAICBench} includes 412 manually annotated video-caption pairs and 2,000 QA pairs, for a comprehensive evaluation of human action understanding. Experimental results demonstrate that training with HAICTrain not only significantly enhances human understanding abilities across 4 benchmarks, but can also improve text-to-video generation results. Both the HAICTrain and HAICBench are released at https://huggingface.co/datasets/KuaishouHAIC/HAIC.
Authors:Yunlong Yuan, Yuanfan Guo, Chunwei Wang, Wei Zhang, Hang Xu, Li Zhang
Abstract:
Text-driven video generation has advanced significantly due to developments in diffusion models. Beyond the training and sampling phases, recent studies have investigated noise priors of diffusion models, as improved noise priors yield better generation results. One recent approach employs the Fourier transform to manipulate noise, marking the initial exploration of frequency operations in this context. However, it often generates videos that lack motion dynamics and imaging details. In this work, we provide a comprehensive theoretical analysis of the variance decay issue present in existing methods, contributing to the loss of details and motion dynamics. Recognizing the critical impact of noise distribution on generation quality, we introduce FreqPrior, a novel noise initialization strategy that refines noise in the frequency domain. Our method features a novel filtering technique designed to address different frequency signals while maintaining the noise prior distribution that closely approximates a standard Gaussian distribution. Additionally, we propose a partial sampling process by perturbing the latent at an intermediate timestep during finding the noise prior, significantly reducing inference time without compromising quality. Extensive experiments on VBench demonstrate that our method achieves the highest scores in both quality and semantic assessments, resulting in the best overall total score. These results highlight the superiority of our proposed noise prior.
Authors:Xuehai He, Shuohang Wang, Jianwei Yang, Xiaoxia Wu, Yiping Wang, Kuan Wang, Zheng Zhan, Olatunji Ruwase, Yelong Shen, Xin Eric Wang
Abstract:
Recent advancements in diffusion models have shown great promise in producing high-quality video content. However, efficiently training video diffusion models capable of integrating directional guidance and controllable motion intensity remains a challenging and under-explored area. To tackle these challenges, this paper introduces Mojito, a diffusion model that incorporates both motion trajectory and intensity control for text-to-video generation. Specifically, Mojito features a Directional Motion Control (DMC) module that leverages cross-attention to efficiently direct the generated object's motion without training, alongside a Motion Intensity Modulator (MIM) that uses optical flow maps generated from videos to guide varying levels of motion intensity. Extensive experiments demonstrate Mojito's effectiveness in achieving precise trajectory and intensity control with high computational efficiency, generating motion patterns that closely match specified directions and intensities, providing realistic dynamics that align well with natural motion in real-world scenarios.
Authors:Xu Cao, Kaizhao Liang, Kuei-Da Liao, Tianren Gao, Wenqian Ye, Jintai Chen, Zhiguang Ding, Jianguo Cao, James M. Rehg, Jimeng Sun
Abstract:
Modeling disease progression is crucial for improving the quality and efficacy of clinical diagnosis and prognosis, but it is often hindered by a lack of longitudinal medical image monitoring for individual patients. To address this challenge, we propose the first Medical Video Generation (MVG) framework that enables controlled manipulation of disease-related image and video features, allowing precise, realistic, and personalized simulations of disease progression. Our approach begins by leveraging large language models (LLMs) to recaption prompt for disease trajectory. Next, a controllable multi-round diffusion model simulates the disease progression state for each patient, creating realistic intermediate disease state sequence. Finally, a diffusion-based video transition generation model interpolates disease progression between these states. We validate our framework across three medical imaging domains: chest X-ray, fundus photography, and skin image. Our results demonstrate that MVG significantly outperforms baseline models in generating coherent and clinically plausible disease trajectories. Two user studies by veteran physicians, provide further validation and insights into the clinical utility of the generated sequences. MVG has the potential to assist healthcare providers in modeling disease trajectories, interpolating missing medical image data, and enhancing medical education through realistic, dynamic visualizations of disease progression.
Authors:Xinan He, Kaiqing Lin, Yue Zhou, Jiaming Zhong, Wei Ye, Wenhui Yi, Bing Fan, Feng Ding, Haodong Li, Bo Cao, Bin Li
Abstract:
With the rapid advancement of video generation models such as Veo and Wan, the visual quality of synthetic content has reached a level where macro-level semantic errors and temporal inconsistencies are no longer prominent. However, this does not imply that the distinction between real and cutting-edge high-fidelity fake is untraceable. We argue that AI-generated videos are essentially products of a manifold-fitting process rather than a physical recording. Consequently, the pixel composition logic of consecutive adjacent frames residual in AI videos exhibits a structured and homogenous characteristic. We term this phenomenon `Manifold Projection Fluctuations' (MPF). Driven by this insight, we propose a hierarchical dual-path framework that operates as a sequential filtering process. The first, the Static Manifold Deviation Branch, leverages the refined perceptual boundaries of Large-Scale Vision Foundation Models (VFMs) to capture residual spatial anomalies or physical violations that deviate from the natural real-world manifold (off-manifold). For the remaining high-fidelity videos that successfully reside on-manifold and evade spatial detection, we introduce the Micro-Temporal Fluctuation Branch as a secondary, fine-grained filter. By analyzing the structured MPF that persists even in visually perfect sequences, our framework ensures that forgeries are exposed regardless of whether they manifest as global real-world manifold deviations or subtle computational fingerprints.
Authors:Jianhao Yuan, Xiaofeng Zhang, Felix Friedrich, Nicolas Beltran-Velez, Melissa Hall, Reyhane Askari-Hemmat, Xiaochuang Han, Nicolas Ballas, Michal Drozdzal, Adriana Romero-Soriano
Abstract:
State-of-the-art video generative models produce promising visual content yet often violate basic physics principles, limiting their utility. While some attribute this deficiency to insufficient physics understanding from pre-training, we find that the shortfall in physics plausibility also stems from suboptimal inference strategies. We therefore introduce WMReward and treat improving physics plausibility of video generation as an inference-time alignment problem. In particular, we leverage the strong physics prior of a latent world model (here, VJEPA-2) as a reward to search and steer multiple candidate denoising trajectories, enabling scaling test-time compute for better generation performance. Empirically, our approach substantially improves physics plausibility across image-conditioned, multiframe-conditioned, and text-conditioned generation settings, with validation from human preference study. Notably, in the ICCV 2025 Perception Test PhysicsIQ Challenge, we achieve a final score of 62.64%, winning first place and outperforming the previous state of the art by 7.42%. Our work demonstrates the viability of using latent world models to improve physics plausibility of video generation, beyond this specific instantiation or parameterization.
Authors:Yujie Zhao, Hongwei Fan, Di Chen, Shengcong Chen, Liliang Chen, Xiaoqi Li, Guanghui Ren, Hao Dong
Abstract:
Recent progress in robot learning has been driven by large-scale datasets and powerful visuomotor policy architectures, yet policy robustness remains limited by the substantial cost of collecting diverse demonstrations, particularly for spatial generalization in manipulation tasks. To reduce repetitive data collection, we present Real2Edit2Real, a framework that generates new demonstrations by bridging 3D editability with 2D visual data through a 3D control interface. Our approach first reconstructs scene geometry from multi-view RGB observations with a metric-scale 3D reconstruction model. Based on the reconstructed geometry, we perform depth-reliable 3D editing on point clouds to generate new manipulation trajectories while geometrically correcting the robot poses to recover physically consistent depth, which serves as a reliable condition for synthesizing new demonstrations. Finally, we propose a multi-conditional video generation model guided by depth as the primary control signal, together with action, edge, and ray maps, to synthesize spatially augmented multi-view manipulation videos. Experiments on four real-world manipulation tasks demonstrate that policies trained on data generated from only 1-5 source demonstrations can match or outperform those trained on 50 real-world demonstrations, improving data efficiency by up to 10-50x. Moreover, experimental results on height and texture editing demonstrate the framework's flexibility and extensibility, indicating its potential to serve as a unified data generation framework.
Authors:Ruicheng Zhang, Mingyang Zhang, Jun Zhou, Zhangrui Guo, Xiaofan Liu, Zunnan Xu, Zhizhou Zhong, Puxin Yan, Haocheng Luo, Xiu Li
Abstract:
Embodied imitation learning is constrained by the scarcity of diverse, long-horizon robotic manipulation data. Existing video generation models for this domain are limited to synthesizing short clips of simple actions and often rely on manually defined trajectories. To this end, we introduce MIND-V, a hierarchical framework designed to synthesize physically plausible and logically coherent videos of long-horizon robotic manipulation. Inspired by cognitive science, MIND-V bridges high-level reasoning with pixel-level synthesis through three core components: a Semantic Reasoning Hub (SRH) that leverages a pre-trained vision-language model for task planning; a Behavioral Semantic Bridge (BSB) that translates abstract instructions into domain-invariant representations; and a Motor Video Generator (MVG) for conditional video rendering. MIND-V employs Staged Visual Future Rollouts, a test-time optimization strategy to enhance long-horizon robustness. To align the generated videos with physical laws, we introduce a GRPO reinforcement learning post-training phase guided by a novel Physical Foresight Coherence (PFC) reward. PFC leverages the V-JEPA world model to enforce physical plausibility by aligning the predicted and actual dynamic evolutions in the feature space. MIND-V demonstrates state-of-the-art performance in long-horizon robotic manipulation video generation, establishing a scalable and controllable paradigm for embodied data synthesis.
Authors:Panwang Pan, Chenguo Lin, Jingjing Zhao, Chenxin Li, Yuchen Lin, Haopeng Li, Honglei Yan, Kairun Wen, Yunlong Lin, Yixuan Yuan, Yadong Mu
Abstract:
We introduce Diff4Splat, a feed-forward method that synthesizes controllable and explicit 4D scenes from a single image. Our approach unifies the generative priors of video diffusion models with geometry and motion constraints learned from large-scale 4D datasets. Given a single input image, a camera trajectory, and an optional text prompt, Diff4Splat directly predicts a deformable 3D Gaussian field that encodes appearance, geometry, and motion, all in a single forward pass, without test-time optimization or post-hoc refinement. At the core of our framework lies a video latent transformer, which augments video diffusion models to jointly capture spatio-temporal dependencies and predict time-varying 3D Gaussian primitives. Training is guided by objectives on appearance fidelity, geometric accuracy, and motion consistency, enabling Diff4Splat to synthesize high-quality 4D scenes in 30 seconds. We demonstrate the effectiveness of Diff4Splatacross video generation, novel view synthesis, and geometry extraction, where it matches or surpasses optimization-based methods for dynamic scene synthesis while being significantly more efficient.
Authors:Jianhao Yuan, Xiaofeng Zhang, Felix Friedrich, Nicolas Beltran-Velez, Melissa Hall, Reyhane Askari-Hemmat, Xiaochuang Han, Nicolas Ballas, Michal Drozdzal, Adriana Romero-Soriano
Abstract:
This is a short technical report describing the winning entry of the PhysicsIQ Challenge, presented at the Perception Test Workshop at ICCV 2025. State-of-the-art video generative models exhibit severely limited physical understanding, and often produce implausible videos. The Physics IQ benchmark has shown that visual realism does not imply physics understanding. Yet, intuitive physics understanding has shown to emerge from SSL pretraining on natural videos. In this report, we investigate whether we can leverage SSL-based video world models to improve the physics plausibility of video generative models. In particular, we build ontop of the state-of-the-art video generative model MAGI-1 and couple it with the recently introduced Video Joint Embedding Predictive Architecture 2 (VJEPA-2) to guide the generation process. We show that by leveraging VJEPA-2 as reward signal, we can improve the physics plausibility of state-of-the-art video generative models by ~6%.
Authors:Xianghao Kong, Hansheng Chen, Yuwei Guo, Lvmin Zhang, Gordon Wetzstein, Maneesh Agrawala, Anyi Rao
Abstract:
Although image editing techniques have advanced significantly, video editing, which aims to manipulate videos according to user intent, remains an emerging challenge. Most existing image-conditioned video editing methods either require inversion with model-specific design or need extensive optimization, limiting their capability of leveraging up-to-date image-to-video (I2V) models to transfer the editing capability of image editing models to the video domain. To this end, we propose IF-V2V, an Inversion-Free method that can adapt off-the-shelf flow-matching-based I2V models for video editing without significant computational overhead. To circumvent inversion, we devise Vector Field Rectification with Sample Deviation to incorporate information from the source video into the denoising process by introducing a deviation term into the denoising vector field. To further ensure consistency with the source video in a model-agnostic way, we introduce Structure-and-Motion-Preserving Initialization to generate motion-aware temporally correlated noise with structural information embedded. We also present a Deviation Caching mechanism to minimize the additional computational cost for denoising vector rectification without significantly impacting editing quality. Evaluations demonstrate that our method achieves superior editing quality and consistency over existing approaches, offering a lightweight plug-and-play solution to realize visual creativity.
Authors:Ruicheng Zhang, Jun Zhou, Zunnan Xu, Zihao Liu, Jiehui Huang, Mingyang Zhang, Yu Sun, Xiu Li
Abstract:
Trajectory-Guided image-to-video (I2V) generation aims to synthesize videos that adhere to user-specified motion instructions. Existing methods typically rely on computationally expensive fine-tuning on scarce annotated datasets. Although some zero-shot methods attempt to trajectory control in the latent space, they may yield unrealistic motion by neglecting 3D perspective and creating a misalignment between the manipulated latents and the network's noise predictions. To address these challenges, we introduce Zo3T, a novel zero-shot test-time-training framework for trajectory-guided generation with three core innovations: First, we incorporate a 3D-Aware Kinematic Projection, leveraging inferring scene depth to derive perspective-correct affine transformations for target regions. Second, we introduce Trajectory-Guided Test-Time LoRA, a mechanism that dynamically injects and optimizes ephemeral LoRA adapters into the denoising network alongside the latent state. Driven by a regional feature consistency loss, this co-adaptation effectively enforces motion constraints while allowing the pre-trained model to locally adapt its internal representations to the manipulated latent, thereby ensuring generative fidelity and on-manifold adherence. Finally, we develop Guidance Field Rectification, which refines the denoising evolutionary path by optimizing the conditional guidance field through a one-step lookahead strategy, ensuring efficient generative progression towards the target trajectory. Zo3T significantly enhances 3D realism and motion accuracy in trajectory-controlled I2V generation, demonstrating superior performance over existing training-based and zero-shot approaches.
Authors:Kien T. Pham, Yingqing He, Yazhou Xing, Qifeng Chen, Long Chen
Abstract:
Audio-driven video generation aims to synthesize realistic videos that align with input audio recordings, akin to the human ability to visualize scenes from auditory input. However, existing approaches predominantly focus on exploring semantic information, such as the classes of sounding sources present in the audio, limiting their ability to generate videos with accurate content and spatial composition. In contrast, we humans can not only naturally identify the semantic categories of sounding sources but also determine their deeply encoded spatial attributes, including locations and movement directions. This useful information can be elucidated by considering specific spatial indicators derived from the inherent physical properties of sound, such as loudness or frequency. As prior methods largely ignore this factor, we present SpA2V, the first framework explicitly exploits these spatial auditory cues from audios to generate videos with high semantic and spatial correspondence. SpA2V decomposes the generation process into two stages: 1) Audio-guided Video Planning: We meticulously adapt a state-of-the-art MLLM for a novel task of harnessing spatial and semantic cues from input audio to construct Video Scene Layouts (VSLs). This serves as an intermediate representation to bridge the gap between the audio and video modalities. 2) Layout-grounded Video Generation: We develop an efficient and effective approach to seamlessly integrate VSLs as conditional guidance into pre-trained diffusion models, enabling VSL-grounded video generation in a training-free manner. Extensive experiments demonstrate that SpA2V excels in generating realistic videos with semantic and spatial alignment to the input audios.
Authors:Diego Biagini, Nassir Navab, Azade Farshad
Abstract:
Surgical Video Synthesis has emerged as a promising research direction following the success of diffusion models in general-domain video generation. Although existing approaches achieve high-quality video generation, most are unconditional and fail to maintain consistency with surgical actions and phases, lacking the surgical understanding and fine-grained guidance necessary for factual simulation. We address these challenges by proposing HieraSurg, a hierarchy-aware surgical video generation framework consisting of two specialized diffusion models. Given a surgical phase and an initial frame, HieraSurg first predicts future coarse-grained semantic changes through a segmentation prediction model. The final video is then generated by a second-stage model that augments these temporal segmentation maps with fine-grained visual features, leading to effective texture rendering and integration of semantic information in the video space. Our approach leverages surgical information at multiple levels of abstraction, including surgical phase, action triplets, and panoptic segmentation maps. The experimental results on Cholecystectomy Surgical Video Generation demonstrate that the model significantly outperforms prior work both quantitatively and qualitatively, showing strong generalization capabilities and the ability to generate higher frame-rate videos. The model exhibits particularly fine-grained adherence when provided with existing segmentation maps, suggesting its potential for practical surgical applications.
Authors:Lingling Cai, Kang Zhao, Hangjie Yuan, Xiang Wang, Yingya Zhang, Kejie Huang
Abstract:
The advent of Video Diffusion Transformers (Video DiTs) marks a milestone in video generation. However, directly applying existing video editing methods to Video DiTs often incurs substantial computational overhead, due to resource-intensive attention modification or finetuning. To alleviate this problem, we present DFVEdit, an efficient zero-shot video editing method tailored for Video DiTs. DFVEdit eliminates the need for both attention modification and fine-tuning by directly operating on clean latents via flow transformation. To be more specific, we observe that editing and sampling can be unified under the continuous flow perspective. Building upon this foundation, we propose the Conditional Delta Flow Vector (CDFV) -- a theoretically unbiased estimation of DFV -- and integrate Implicit Cross Attention (ICA) guidance as well as Embedding Reinforcement (ER) to further enhance editing quality. DFVEdit excels in practical efficiency, offering at least 20x inference speed-up and 85% memory reduction on Video DiTs compared to attention-engineering-based editing methods. Extensive quantitative and qualitative experiments demonstrate that DFVEdit can be seamlessly applied to popular Video DiTs (e.g., CogVideoX and Wan2.1), attaining state-of-the-art performance on structural fidelity, spatial-temporal consistency, and editing quality.
Authors:Yuhui Chen, Haoran Li, Zhennan Jiang, Haowei Wen, Dongbin Zhao
Abstract:
Developing scalable and generalizable reward engineering for reinforcement learning (RL) is crucial for creating general-purpose agents, especially in the challenging domain of robotic manipulation. While recent advances in reward engineering with Vision-Language Models (VLMs) have shown promise, their sparse reward nature significantly limits sample efficiency. This paper introduces TeViR, a novel method that leverages a pre-trained text-to-video diffusion model to generate dense rewards by comparing the predicted image sequence with current observations. Experimental results across 11 complex robotic tasks demonstrate that TeViR outperforms traditional methods leveraging sparse rewards and other state-of-the-art (SOTA) methods, achieving better sample efficiency and performance without ground truth environmental rewards. TeViR's ability to efficiently guide agents in complex environments highlights its potential to advance reinforcement learning applications in robotic manipulation.
Authors:Wei Li, Dezhao Luo, Dongbao Yang, Zhenhang Li, Weiping Wang, Yu Zhou
Abstract:
Video action understanding tasks in real-world scenarios always suffer data limitations. In this paper, we address the data-limited action understanding problem by bridging data scarcity. We propose a novel method that employs a text-to-video diffusion transformer to generate annotated data for model training. This paradigm enables the generation of realistic annotated data on an infinite scale without human intervention. We proposed the information enhancement strategy and the uncertainty-based label smoothing tailored to generate sample training. Through quantitative and qualitative analysis, we observed that real samples generally contain a richer level of information than generated samples. Based on this observation, the information enhancement strategy is proposed to enhance the informative content of the generated samples from two aspects: the environments and the characters. Furthermore, we observed that some low-quality generated samples might negatively affect model training. To address this, we devised the uncertainty-based label smoothing strategy to increase the smoothing of these samples, thus reducing their impact. We demonstrate the effectiveness of the proposed method on four datasets across five tasks and achieve state-of-the-art performance for zero-shot action recognition.
Authors:Yuxin Wen, Jim Wu, Ajay Jain, Tom Goldstein, Ashwinee Panda
Abstract:
We conduct an in-depth analysis of attention in video diffusion transformers (VDiTs) and report a number of novel findings. We identify three key properties of attention in VDiTs: Structure, Sparsity, and Sinks. Structure: We observe that attention patterns across different VDiTs exhibit similar structure across different prompts, and that we can make use of the similarity of attention patterns to unlock video editing via self-attention map transfer. Sparse: We study attention sparsity in VDiTs, finding that proposed sparsity methods do not work for all VDiTs, because some layers that are seemingly sparse cannot be sparsified. Sinks: We make the first study of attention sinks in VDiTs, comparing and contrasting them to attention sinks in language models. We propose a number of future directions that can make use of our insights to improve the efficiency-quality Pareto frontier for VDiTs.
Authors:Hangliang Ding, Dacheng Li, Runlong Su, Peiyuan Zhang, Zhijie Deng, Ion Stoica, Hao Zhang
Abstract:
Despite the promise of synthesizing high-fidelity videos, Diffusion Transformers (DiTs) with 3D full attention suffer from expensive inference due to the complexity of attention computation and numerous sampling steps. For example, the popular Open-Sora-Plan model consumes more than 9 minutes for generating a single video of 29 frames. This paper addresses the inefficiency issue from two aspects: 1) Prune the 3D full attention based on the redundancy within video data; We identify a prevalent tile-style repetitive pattern in the 3D attention maps for video data, and advocate a new family of sparse 3D attention that holds a linear complexity w.r.t. the number of video frames. 2) Shorten the sampling process by adopting existing multi-step consistency distillation; We split the entire sampling trajectory into several segments and perform consistency distillation within each one to activate few-step generation capacities. We further devise a three-stage training pipeline to conjoin the low-complexity attention and few-step generation capacities. Notably, with 0.1% pretraining data, we turn the Open-Sora-Plan-1.2 model into an efficient one that is 7.4x -7.8x faster for 29 and 93 frames 720p video generation with a marginal performance trade-off in VBench. In addition, we demonstrate that our approach is amenable to distributed inference, achieving an additional 3.91x speedup when running on 4 GPUs with sequence parallelism.
Authors:Zhefan Rao, Liya Ji, Yazhou Xing, Runtao Liu, Zhaoyang Liu, Jiaxin Xie, Ziqiao Peng, Yingqing He, Qifeng Chen
Abstract:
Text-to-video (T2V) generation has gained significant attention recently. However, the costs of training a T2V model from scratch remain persistently high, and there is considerable room for improving the generation performance, especially under limited computation resources. This work explores the continual general pre-training of text-to-video models, enabling the model to "grow" its abilities based on a pre-trained foundation, analogous to how humans acquire new knowledge based on past experiences. There is a lack of extensive study of the continual pre-training techniques in T2V generation. In this work, we take the initial step toward exploring this task systematically and propose ModelGrow. Specifically, we break this task into two key aspects: increasing model capacity and improving semantic understanding. For model capacity, we introduce several novel techniques to expand the model size, enabling it to store new knowledge and improve generation performance. For semantic understanding, we propose a method that leverages large language models as advanced text encoders, integrating them into T2V models to enhance language comprehension and guide generation results according to detailed prompts. This approach enables the model to achieve better semantic alignment, particularly in response to complex user prompts. Extensive experiments demonstrate the effectiveness of our method across various metrics. The source code and the model of ModelGrow will be publicly available.
Authors:Yukun Wang, Longguang Wang, Zhiyuan Ma, Qibin Hu, Kai Xu, Yulan Guo
Abstract:
Despite the typical inversion-then-editing paradigm using text-to-image (T2I) models has demonstrated promising results, directly extending it to text-to-video (T2V) models still suffers severe artifacts such as color flickering and content distortion. Consequently, current video editing methods primarily rely on T2I models, which inherently lack temporal-coherence generative ability, often resulting in inferior editing results. In this paper, we attribute the failure of the typical editing paradigm to: 1) Tightly Spatial-temporal Coupling. The vanilla pivotal-based inversion strategy struggles to disentangle spatial-temporal information in the video diffusion model; 2) Complicated Spatial-temporal Layout. The vanilla cross-attention control is deficient in preserving the unedited content. To address these limitations, we propose a spatial-temporal decoupled guidance (STDG) and multi-frame null-text optimization strategy to provide pivotal temporal cues for more precise pivotal inversion. Furthermore, we introduce a self-attention control strategy to maintain higher fidelity for precise partial content editing. Experimental results demonstrate that our method (termed VideoDirector) effectively harnesses the powerful temporal generation capabilities of T2V models, producing edited videos with state-of-the-art performance in accuracy, motion smoothness, realism, and fidelity to unedited content.
Authors:Ao Fu, Yi Zhou, Tao Zhou, Yi Yang, Bojun Gao, Qun Li, Guobin Wu, Ling Shao
Abstract:
World models and video generation are pivotal technologies in the domain of autonomous driving, each playing a critical role in enhancing the robustness and reliability of autonomous systems. World models, which simulate the dynamics of real-world environments, and video generation models, which produce realistic video sequences, are increasingly being integrated to improve situational awareness and decision-making capabilities in autonomous vehicles. This paper investigates the relationship between these two technologies, focusing on how their structural parallels, particularly in diffusion-based models, contribute to more accurate and coherent simulations of driving scenarios. We examine leading works such as JEPA, Genie, and Sora, which exemplify different approaches to world model design, thereby highlighting the lack of a universally accepted definition of world models. These diverse interpretations underscore the field's evolving understanding of how world models can be optimized for various autonomous driving tasks. Furthermore, this paper discusses the key evaluation metrics employed in this domain, such as Chamfer distance for 3D scene reconstruction and Fréchet Inception Distance (FID) for assessing the quality of generated video content. By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions, emphasizing the potential of these technologies to jointly advance the performance of autonomous driving systems. The findings presented in this paper aim to provide a comprehensive understanding of how the integration of video generation and world models can drive innovation in the development of safer and more reliable autonomous vehicles.
Authors:Yousef Yeganeh, Rachmadio Lazuardi, Amir Shamseddin, Emine Dari, Yash Thirani, Nassir Navab, Azade Farshad
Abstract:
Surgical data science (SDS) is a field that analyzes patient data before, during, and after surgery to improve surgical outcomes and skills. However, surgical data is scarce, heterogeneous, and complex, which limits the applicability of existing machine learning methods. In this work, we introduce the novel task of future video generation in laparoscopic surgery. This task can augment and enrich the existing surgical data and enable various applications, such as simulation, analysis, and robot-aided surgery. Ultimately, it involves not only understanding the current state of the operation but also accurately predicting the dynamic and often unpredictable nature of surgical procedures. Our proposed method, VISAGE (VIdeo Synthesis using Action Graphs for Surgery), leverages the power of action scene graphs to capture the sequential nature of laparoscopic procedures and utilizes diffusion models to synthesize temporally coherent video sequences. VISAGE predicts the future frames given only a single initial frame, and the action graph triplets. By incorporating domain-specific knowledge through the action graph, VISAGE ensures the generated videos adhere to the expected visual and motion patterns observed in real laparoscopic procedures. The results of our experiments demonstrate high-fidelity video generation for laparoscopy procedures, which enables various applications in SDS.
Authors:Hanmo Chen, Chenghao Xu, Xu Yang, Xuan Chen, Cheng Deng
Abstract:
Video generation is pivotal to digital media creation, and recent advances in autoregressive video generation have markedly enhanced the efficiency of real-time video synthesis. However, existing approaches generally rely on heuristic KV Cache policies, which ignore differences in token importance in long-term video generation. This leads to the loss of critical spatiotemporal information and the accumulation of redundant, invalid cache, thereby degrading video generation quality and efficiency. To address this limitation, we first observe that token contributions to video generation are highly time-heterogeneous and accordingly propose a novel Past- and Future-Informed KV Cache Policy (PaFu-KV). Specifically, PaFu-KV introduces a lightweight Salience Estimation Head distilled from a bidirectional teacher to estimate salience scores, allowing the KV cache to retain informative tokens while discarding less relevant ones. This policy yields a better quality-efficiency trade-off by shrinking KV cache capacity and reducing memory footprint at inference time. Extensive experiments on benchmarks demonstrate that our method preserves high-fidelity video generation quality while enables accelerated inference, thereby enabling more efficient long-horizon video generation. Our code will be released upon paper acceptance.
Authors:Weili Nie, Julius Berner, Nanye Ma, Chao Liu, Saining Xie, Arash Vahdat
Abstract:
Large video diffusion and flow models have achieved remarkable success in high-quality video generation, but their use in real-time interactive applications remains limited due to their inefficient multi-step sampling process. In this work, we present Transition Matching Distillation (TMD), a novel framework for distilling video diffusion models into efficient few-step generators. The central idea of TMD is to match the multi-step denoising trajectory of a diffusion model with a few-step probability transition process, where each transition is modeled as a lightweight conditional flow. To enable efficient distillation, we decompose the original diffusion backbone into two components: (1) a main backbone, comprising the majority of early layers, that extracts semantic representations at each outer transition step; and (2) a flow head, consisting of the last few layers, that leverages these representations to perform multiple inner flow updates. Given a pretrained video diffusion model, we first introduce a flow head to the model, and adapt it into a conditional flow map. We then apply distribution matching distillation to the student model with flow head rollout in each transition step. Extensive experiments on distilling Wan2.1 1.3B and 14B text-to-video models demonstrate that TMD provides a flexible and strong trade-off between generation speed and visual quality. In particular, TMD outperforms existing distilled models under comparable inference costs in terms of visual fidelity and prompt adherence. Project page: https://research.nvidia.com/labs/genair/tmd
Authors:Kaixing Yang, Jiashu Zhu, Xulong Tang, Ziqiao Peng, Xiangyue Zhang, Puwei Wang, Jiahong Wu, Xiangxiang Chu, Hongyan Liu, Jun He
Abstract:
With the rise of online dance-video platforms and rapid advances in AI-generated content (AIGC), music-driven dance generation has emerged as a compelling research direction. Despite substantial progress in related domains such as music-driven 3D dance generation, pose-driven image animation, and audio-driven talking-head synthesis, existing methods cannot be directly adapted to this task. Moreover, the limited studies in this area still struggle to jointly achieve high-quality visual appearance and realistic human motion. Accordingly, we present MACE-Dance, a music-driven dance video generation framework with cascaded Mixture-of-Experts (MoE). The Motion Expert performs music-to-3D motion generation while enforcing kinematic plausibility and artistic expressiveness, whereas the Appearance Expert carries out motion- and reference-conditioned video synthesis, preserving visual identity with spatiotemporal coherence. Specifically, the Motion Expert adopts a diffusion model with a BiMamba-Transformer hybrid architecture and a Guidance-Free Training (GFT) strategy, achieving state-of-the-art (SOTA) performance in 3D dance generation. The Appearance Expert employs a decoupled kinematic-aesthetic fine-tuning strategy, achieving state-of-the-art (SOTA) performance in pose-driven image animation. To better benchmark this task, we curate a large-scale and diverse dataset and design a motion-appearance evaluation protocol. Based on this protocol, MACE-Dance also achieves state-of-the-art performance. Project page: https://macedance.github.io/
Authors:Yiren Song, Cheng Liu, Weijia Mao, Mike Zheng Shou
Abstract:
Learning directly from human demonstration videos is a key milestone toward scalable and generalizable robot learning. Yet existing methods rely on intermediate representations such as keypoints or trajectories, introducing information loss and cumulative errors that harm temporal and visual consistency. We present Mitty, a Diffusion Transformer that enables video In-Context Learning for end-to-end Human2Robot video generation. Built on a pretrained video diffusion model, Mitty leverages strong visual-temporal priors to translate human demonstrations into robot-execution videos without action labels or intermediate abstractions. Demonstration videos are compressed into condition tokens and fused with robot denoising tokens through bidirectional attention during diffusion. To mitigate paired-data scarcity, we also develop an automatic synthesis pipeline that produces high-quality human-robot pairs from large egocentric datasets. Experiments on Human2Robot and EPIC-Kitchens show that Mitty delivers state-of-the-art results, strong generalization to unseen environments, and new insights for scalable robot learning from human observations.
Authors:Yubo Huang, Hailong Guo, Fangtai Wu, Shifeng Zhang, Shijie Huang, Qijun Gan, Lin Liu, Sirui Zhao, Enhong Chen, Jiaming Liu, Steven Hoi
Abstract:
Existing diffusion-based video generation methods are fundamentally constrained by sequential computation and long-horizon inconsistency, limiting their practical adoption in real-time, streaming audio-driven avatar synthesis. We present Live Avatar, an algorithm-system co-designed framework that enables efficient, high-fidelity, and infinite-length avatar generation using a 14-billion-parameter diffusion model. Our approach introduces Timestep-forcing Pipeline Parallelism (TPP), a distributed inference paradigm that pipelines denoising steps across multiple GPUs, effectively breaking the autoregressive bottleneck and ensuring stable, low-latency real-time streaming. To further enhance temporal consistency and mitigate identity drift and color artifacts, we propose the Rolling Sink Frame Mechanism (RSFM), which maintains sequence fidelity by dynamically recalibrating appearance using a cached reference image. Additionally, we leverage Self-Forcing Distribution Matching Distillation to facilitate causal, streamable adaptation of large-scale models without sacrificing visual quality. Live Avatar demonstrates state-of-the-art performance, reaching 20 FPS end-to-end generation on 5 H800 GPUs, and, to the best of our knowledge, is the first to achieve practical, real-time, high-fidelity avatar generation at this scale. Our work establishes a new paradigm for deploying advanced diffusion models in industrial long-form video synthesis applications.
Authors:Pei Yang, Hai Ci, Yiren Song, Mike Zheng Shou
Abstract:
The advancement of embodied AI has unlocked significant potential for intelligent humanoid robots. However, progress in both Vision-Language-Action (VLA) models and world models is severely hampered by the scarcity of large-scale, diverse training data. A promising solution is to "robotize" web-scale human videos, which has been proven effective for policy training. However, these solutions mainly "overlay" robot arms to egocentric videos, which cannot handle complex full-body motions and scene occlusions in third-person videos, making them unsuitable for robotizing humans. To bridge this gap, we introduce X-Humanoid, a generative video editing approach that adapts the powerful Wan 2.2 model into a video-to-video structure and finetunes it for the human-to-humanoid translation task. This finetuning requires paired human-humanoid videos, so we designed a scalable data creation pipeline, turning community assets into 17+ hours of paired synthetic videos using Unreal Engine. We then apply our trained model to 60 hours of the Ego-Exo4D videos, generating and releasing a new large-scale dataset of over 3.6 million "robotized" humanoid video frames. Quantitative analysis and user studies confirm our method's superiority over existing baselines: 69% of users rated it best for motion consistency, and 62.1% for embodiment correctness.
Authors:Quanjian Song, Yiren Song, Kelly Peng, Yuan Gao, Mike Zheng Shou
Abstract:
Video diffusion models have recently achieved remarkable progress in realism and controllability. However, achieving seamless video translation across different perspectives, such as first-person (egocentric) and third-person (exocentric), remains underexplored. Bridging these perspectives is crucial for filmmaking, embodied AI, and world models. Motivated by this, we present WorldWander, an in-context learning framework tailored for translating between egocentric and exocentric worlds in video generation. Building upon advanced video diffusion transformers, WorldWander integrates (i) In-Context Perspective Alignment and (ii) Collaborative Position Encoding to efficiently model cross-view synchronization. To further support our task, we curate EgoExo-8K, a large-scale dataset containing synchronized egocentric-exocentric triplets from both synthetic and real-world scenarios. Experiments demonstrate that WorldWander achieves superior perspective synchronization, character consistency, and generalization, setting a new benchmark for egocentric-exocentric video translation.
Authors:Enhui Ma, Lijun Zhou, Tao Tang, Jiahuan Zhang, Junpeng Jiang, Zhan Zhang, Dong Han, Kun Zhan, Xueyang Zhang, XianPeng Lang, Haiyang Sun, Xia Zhou, Di Lin, Kaicheng Yu
Abstract:
End-to-end planning methods are the de facto standard of the current autonomous driving system, while the robustness of the data-driven approaches suffers due to the notorious long-tail problem (i.e., rare but safety-critical failure cases). In this work, we explore whether recent diffusion-based video generation methods (a.k.a. world models), paired with structured 3D layouts, can enable a fully automated pipeline to self-correct such failure cases. We first introduce an agent to simulate the role of product manager, dubbed PM-Agent, which formulates data requirements to collect data similar to the failure cases. Then, we use a generative model that can simulate both data collection and annotation. However, existing generative models struggle to generate high-fidelity data conditioned on 3D layouts. To address this, we propose DriveSora, which can generate spatiotemporally consistent videos aligned with the 3D annotations requested by PM-Agent. We integrate these components into our self-correcting agentic system, CorrectAD. Importantly, our pipeline is an end-to-end model-agnostic and can be applied to improve any end-to-end planner. Evaluated on both nuScenes and a more challenging in-house dataset across multiple end-to-end planners, CorrectAD corrects 62.5% and 49.8% of failure cases, reducing collision rates by 39% and 27%, respectively.
Authors:Zhaoyang Li, Dongjun Qian, Kai Su, Qishuai Diao, Xiangyang Xia, Chang Liu, Wenfei Yang, Tianzhu Zhang, Zehuan Yuan
Abstract:
Diffusion Transformer has shown remarkable abilities in generating high-fidelity videos, delivering visually coherent frames and rich details over extended durations. However, existing video generation models still fall short in subject-consistent video generation due to an inherent difficulty in parsing prompts that specify complex spatial relationships, temporal logic, and interactions among multiple subjects. To address this issue, we propose BindWeave, a unified framework that handles a broad range of subject-to-video scenarios from single-subject cases to complex multi-subject scenes with heterogeneous entities. To bind complex prompt semantics to concrete visual subjects, we introduce an MLLM-DiT framework in which a pretrained multimodal large language model performs deep cross-modal reasoning to ground entities and disentangle roles, attributes, and interactions, yielding subject-aware hidden states that condition the diffusion transformer for high-fidelity subject-consistent video generation. Experiments on the OpenS2V benchmark demonstrate that our method achieves superior performance across subject consistency, naturalness, and text relevance in generated videos, outperforming existing open-source and commercial models.
Authors:Yikang Ding, Jiwen Liu, Wenyuan Zhang, Zekun Wang, Wentao Hu, Liyuan Cui, Mingming Lao, Yingchao Shao, Hui Liu, Xiaohan Li, Ming Chen, Xiaoqiang Liu, Yu-Shen Liu, Pengfei Wan
Abstract:
Recent advances in audio-driven avatar video generation have significantly enhanced audio-visual realism. However, existing methods treat instruction conditioning merely as low-level tracking driven by acoustic or visual cues, without modeling the communicative purpose conveyed by the instructions. This limitation compromises their narrative coherence and character expressiveness. To bridge this gap, we introduce Kling-Avatar, a novel cascaded framework that unifies multimodal instruction understanding with photorealistic portrait generation. Our approach adopts a two-stage pipeline. In the first stage, we design a multimodal large language model (MLLM) director that produces a blueprint video conditioned on diverse instruction signals, thereby governing high-level semantics such as character motion and emotions. In the second stage, guided by blueprint keyframes, we generate multiple sub-clips in parallel using a first-last frame strategy. This global-to-local framework preserves fine-grained details while faithfully encoding the high-level intent behind multimodal instructions. Our parallel architecture also enables fast and stable generation of long-duration videos, making it suitable for real-world applications such as digital human livestreaming and vlogging. To comprehensively evaluate our method, we construct a benchmark of 375 curated samples covering diverse instructions and challenging scenarios. Extensive experiments demonstrate that Kling-Avatar is capable of generating vivid, fluent, long-duration videos at up to 1080p and 48 fps, achieving superior performance in lip synchronization accuracy, emotion and dynamic expressiveness, instruction controllability, identity preservation, and cross-domain generalization. These results establish Kling-Avatar as a new benchmark for semantically grounded, high-fidelity audio-driven avatar synthesis.
Authors:Fanjiang Ye, Zepeng Zhao, Yi Mu, Jucheng Shen, Renjie Li, Kaijian Wang, Desen Sun, Saurabh Agarwal, Myungjin Lee, Triston Cao, Aditya Akella, Arvind Krishnamurthy, T. S. Eugene Ng, Zhengzhong Tu, Yuke Wang
Abstract:
Diffusion models have recently achieved remarkable success in generative tasks (e.g., image and video generation), and the demand for high-quality content (e.g., 2K/4K videos) is rapidly increasing across various domains. However, generating ultra-high-resolution videos on existing standard-resolution (e.g., 720p) platforms remains challenging due to the excessive re-training requirements and prohibitively high computational and memory costs. To this end, we introduce SuperGen, an efficient tile-based framework for ultra-high-resolution video generation. SuperGen features a novel training-free algorithmic innovation with tiling to successfully support a wide range of resolutions without additional training efforts while significantly reducing both memory footprint and computational complexity. Moreover, SuperGen incorporates a tile-tailored, adaptive, region-aware caching strategy that accelerates video generation by exploiting redundancy across denoising steps and spatial regions. SuperGen also integrates cache-guided, communication-minimized tile parallelism for enhanced throughput and minimized latency. Evaluations demonstrate that SuperGen harvests the maximum performance gains while achieving high output quality across various benchmarks.
Authors:Haoyu Wu, Diankun Wu, Tianyu He, Junliang Guo, Yang Ye, Yueqi Duan, Jiang Bian
Abstract:
Videos inherently represent 2D projections of a dynamic 3D world. However, our analysis suggests that video diffusion models trained solely on raw video data often fail to capture meaningful geometric-aware structure in their learned representations. To bridge this gap between video diffusion models and the underlying 3D nature of the physical world, we propose Geometry Forcing, a simple yet effective method that encourages video diffusion models to internalize latent 3D representations. Our key insight is to guide the model's intermediate representations toward geometry-aware structure by aligning them with features from a pretrained geometric foundation model. To this end, we introduce two complementary alignment objectives: Angular Alignment, which enforces directional consistency via cosine similarity, and Scale Alignment, which preserves scale-related information by regressing unnormalized geometric features from normalized diffusion representation. We evaluate Geometry Forcing on both camera view-conditioned and action-conditioned video generation tasks. Experimental results demonstrate that our method substantially improves visual quality and 3D consistency over the baseline methods. Project page: https://GeometryForcing.github.io.
Authors:Jaewan Park, Farid Ahmed, Kazuma Kobayashi, Seid Koric, Syed Bahauddin Alam, Iwona Jasiuk, Diab Abueidda
Abstract:
Video-diffusion models have recently set the standard in video generation, inpainting, and domain translation thanks to their training stability and high perceptual fidelity. Building on these strengths, we repurpose conditional video diffusion as a physics surrogate for spatio-temporal fields governed by partial differential equations (PDEs). Our two-stage surrogate first applies a Sequential Deep Operator Network (S-DeepONet) to produce a coarse, physics-consistent prior from the prescribed boundary or loading conditions. The prior is then passed to a conditional video diffusion model that learns only the residual: the point-wise difference between the ground truth and the S-DeepONet prediction. By shifting the learning burden from the full solution to its much smaller residual space, diffusion can focus on sharpening high-frequency structures without sacrificing global coherence. The framework is assessed on two disparate benchmarks: (i) vortex-dominated lid-driven cavity flow and (ii) tensile plastic deformation of dogbone specimens. Across these data sets the hybrid surrogate consistently outperforms its single-stage counterpart, cutting the mean relative L2 error from 4.57% to 0.83% for the flow problem and from 4.42% to 2.94% for plasticity, a relative improvements of 81.8% and 33.5% respectively. The hybrid approach not only lowers quantitative errors but also improves visual quality, visibly recovering fine spatial details. These results show that (i) conditioning diffusion on a physics-aware prior enables faithful reconstruction of localized features, (ii) residual learning reduces the problem, accelerating convergence and enhancing accuracy, and (iii) the same architecture transfers seamlessly from incompressible flow to nonlinear elasto-plasticity without problem-specific architectural modifications, highlighting its broad applicability to nonlinear, time-dependent continua.
Authors:Hu Yu, Biao Gong, Hangjie Yuan, DanDan Zheng, Weilong Chai, Jingdong Chen, Kecheng Zheng, Feng Zhao
Abstract:
Masked-based autoregressive models have demonstrated promising image generation capability in continuous space. However, their potential for video generation remains under-explored. In this paper, we propose \textbf{VideoMAR}, a concise and efficient decoder-only autoregressive image-to-video model with continuous tokens, composing temporal frame-by-frame and spatial masked generation. We first identify temporal causality and spatial bi-directionality as the first principle of video AR models, and propose the next-frame diffusion loss for the integration of mask and video generation. Besides, the huge cost and difficulty of long sequence autoregressive modeling is a basic but crucial issue. To this end, we propose the temporal short-to-long curriculum learning and spatial progressive resolution training, and employ progressive temperature strategy at inference time to mitigate the accumulation error. Furthermore, VideoMAR replicates several unique capacities of language models to video generation. It inherently bears high efficiency due to simultaneous temporal-wise KV cache and spatial-wise parallel generation, and presents the capacity of spatial and temporal extrapolation via 3D rotary embeddings. On the VBench-I2V benchmark, VideoMAR surpasses the previous state-of-the-art (Cosmos I2V) while requiring significantly fewer parameters ($9.3\%$), training data ($0.5\%$), and GPU resources ($0.2\%$).
Authors:Xinle Cheng, Tianyu He, Jiayi Xu, Junliang Guo, Di He, Jiang Bian
Abstract:
Autoregressive video models offer distinct advantages over bidirectional diffusion models in creating interactive video content and supporting streaming applications with arbitrary duration. In this work, we present Next-Frame Diffusion (NFD), an autoregressive diffusion transformer that incorporates block-wise causal attention, enabling iterative sampling and efficient inference via parallel token generation within each frame. Nonetheless, achieving real-time video generation remains a significant challenge for such models, primarily due to the high computational cost associated with diffusion sampling and the hardware inefficiencies inherent to autoregressive generation. To address this, we introduce two innovations: (1) We extend consistency distillation to the video domain and adapt it specifically for video models, enabling efficient inference with few sampling steps; (2) To fully leverage parallel computation, motivated by the observation that adjacent frames often share the identical action input, we propose speculative sampling. In this approach, the model generates next few frames using current action input, and discard speculatively generated frames if the input action differs. Experiments on a large-scale action-conditioned video generation benchmark demonstrate that NFD beats autoregressive baselines in terms of both visual quality and sampling efficiency. We, for the first time, achieves autoregressive video generation at over 30 Frames Per Second (FPS) on an A100 GPU using a 310M model.
Authors:Yang Ye, Junliang Guo, Haoyu Wu, Tianyu He, Tim Pearce, Tabish Rashid, Katja Hofmann, Jiang Bian
Abstract:
Autoregressive Transformer models have demonstrated impressive performance in video generation, but their sequential token-by-token decoding process poses a major bottleneck, particularly for long videos represented by tens of thousands of tokens. In this paper, we propose Diagonal Decoding (DiagD), a training-free inference acceleration algorithm for autoregressively pre-trained models that exploits spatial and temporal correlations in videos. Our method generates tokens along diagonal paths in the spatial-temporal token grid, enabling parallel decoding within each frame as well as partially overlapping across consecutive frames. The proposed algorithm is versatile and adaptive to various generative models and tasks, while providing flexible control over the trade-off between inference speed and visual quality. Furthermore, we propose a cost-effective finetuning strategy that aligns the attention patterns of the model with our decoding order, further mitigating the training-inference gap on small-scale models. Experiments on multiple autoregressive video generation models and datasets demonstrate that DiagD achieves up to $10\times$ speedup compared to naive sequential decoding, while maintaining comparable visual fidelity.
Authors:Weixi Feng, Chao Liu, Sifei Liu, William Yang Wang, Arash Vahdat, Weili Nie
Abstract:
Existing video generation models struggle to follow complex text prompts and synthesize multiple objects, raising the need for additional grounding input for improved controllability. In this work, we propose to decompose videos into visual primitives - blob video representation, a general representation for controllable video generation. Based on blob conditions, we develop a blob-grounded video diffusion model named BlobGEN-Vid that allows users to control object motions and fine-grained object appearance. In particular, we introduce a masked 3D attention module that effectively improves regional consistency across frames. In addition, we introduce a learnable module to interpolate text embeddings so that users can control semantics in specific frames and obtain smooth object transitions. We show that our framework is model-agnostic and build BlobGEN-Vid based on both U-Net and DiT-based video diffusion models. Extensive experimental results show that BlobGEN-Vid achieves superior zero-shot video generation ability and state-of-the-art layout controllability on multiple benchmarks. When combined with an LLM for layout planning, our framework even outperforms proprietary text-to-video generators in terms of compositional accuracy.
Authors:Hiroki Furuta, Heiga Zen, Dale Schuurmans, Aleksandra Faust, Yutaka Matsuo, Percy Liang, Sherry Yang
Abstract:
Large text-to-video models hold immense potential for a wide range of downstream applications. However, these models struggle to accurately depict dynamic object interactions, often resulting in unrealistic movements and frequent violations of real-world physics. One solution inspired by large language models is to align generated outputs with desired outcomes using external feedback. This enables the model to refine its responses autonomously, eliminating extensive manual data collection. In this work, we investigate the use of feedback to enhance the object dynamics in text-to-video models. We aim to answer a critical question: what types of feedback, paired with which specific self-improvement algorithms, can most effectively improve text-video alignment and realistic object interactions? We begin by deriving a unified probabilistic objective for offline RL finetuning of text-to-video models. This perspective highlights how design elements in existing algorithms like KL regularization and policy projection emerge as specific choices within a unified framework. We then use derived methods to optimize a set of text-video alignment metrics (e.g., CLIP scores, optical flow), but notice that they often fail to align with human perceptions of generation quality. To address this limitation, we propose leveraging vision-language models to provide more nuanced feedback specifically tailored to object dynamics in videos. Our experiments demonstrate that our method can effectively optimize a wide variety of rewards, with binary AI feedback driving the most significant improvements in video quality for dynamic interactions, as confirmed by both AI and human evaluations. Notably, we observe substantial gains when using reward signals derived from AI feedback, particularly in scenarios involving complex interactions between multiple objects and realistic depictions of objects falling.
Authors:Daoan Zhang, Guangchen Lan, Dong-Jun Han, Wenlin Yao, Xiaoman Pan, Hongming Zhang, Mingxiao Li, Pengcheng Chen, Yu Dong, Christopher Brinton, Jiebo Luo
Abstract:
Existing post-training techniques are broadly categorized into supervised fine-tuning (SFT) and reinforcement learning (RL) methods; the former is stable during training but suffers from limited generalization, while the latter, despite its stronger generalization capability, relies on additional preference data or reward models and carries the risk of reward exploitation. In order to preserve the advantages of both SFT and RL -- namely, eliminating the need for paired data and reward models while retaining the training stability of SFT and the generalization ability of RL -- a new alignment method, Self-Sampling Preference Optimization (SSPO), is proposed in this paper. SSPO introduces a Random Checkpoint Replay (RCR) strategy that utilizes historical checkpoints to construct paired data, thereby effectively mitigating overfitting. Simultaneously, a Self-Sampling Regularization (SSR) strategy is employed to dynamically evaluate the quality of generated samples; when the generated samples are more likely to be winning samples, the approach automatically switches from DPO (Direct Preference Optimization) to SFT, ensuring that the training process accurately reflects the quality of the samples. Experimental results demonstrate that SSPO not only outperforms existing methods on text-to-image benchmarks, but its effectiveness has also been validated in text-to-video tasks. We validate SSPO across both text-to-image and text-to-video benchmarks. SSPO surpasses all previous approaches on the text-to-image benchmarks and demonstrates outstanding performance on the text-to-video benchmarks.
Authors:Hanxin Zhu, Tianyu He, Anni Tang, Junliang Guo, Zhibo Chen, Jiang Bian
Abstract:
Significant progress has been made in text-to-video generation through the use of powerful generative models and large-scale internet data. However, substantial challenges remain in precisely controlling individual concepts within the generated video, such as the motion and appearance of specific characters and the movement of viewpoints. In this work, we propose a novel paradigm that generates each concept in 3D representation separately and then composes them with priors from Large Language Models (LLM) and 2D diffusion models. Specifically, given an input textual prompt, our scheme consists of three stages: 1) We leverage LLM as the director to first decompose the complex query into several sub-prompts that indicate individual concepts within the video~(\textit{e.g.}, scene, objects, motions), then we let LLM to invoke pre-trained expert models to obtain corresponding 3D representations of concepts. 2) To compose these representations, we prompt multi-modal LLM to produce coarse guidance on the scales and coordinates of trajectories for the objects. 3) To make the generated frames adhere to natural image distribution, we further leverage 2D diffusion priors and use Score Distillation Sampling to refine the composition. Extensive experiments demonstrate that our method can generate high-fidelity videos from text with diverse motion and flexible control over each concept. Project page: \url{https://aka.ms/c3v}.
Authors:Meiqi Wu, Bingze Song, Ruimin Lin, Chen Zhu, Xiaokun Feng, Jiahong Wu, Xiangxiang Chu, Kaiqi Huang
Abstract:
Video generation models have achieved notable progress in static scenarios, yet their performance in motion video generation remains limited, with quality degrading under drastic dynamic changes. This is due to noise disrupting temporal coherence and increasing the difficulty of learning dynamic regions. {Unfortunately, existing diffusion models rely on static loss for all scenarios, constraining their ability to capture complex dynamics.} To address this issue, we introduce Latent Temporal Discrepancy (LTD) as a motion prior to guide loss weighting. LTD measures frame-to-frame variation in the latent space, assigning larger penalties to regions with higher discrepancy while maintaining regular optimization for stable regions. This motion-aware strategy stabilizes training and enables the model to better reconstruct high-frequency dynamics. Extensive experiments on the general benchmark VBench and the motion-focused VMBench show consistent gains, with our method outperforming strong baselines by 3.31% on VBench and 3.58% on VMBench, achieving significant improvements in motion quality.
Authors:Chen Zhu, Jiashu Zhu, Yanxun Li, Meiqi Wu, Bingze Song, Chubin Chen, Jiahong Wu, Xiangxiang Chu, Yangang Wang
Abstract:
With the rapid advancement of video generation techniques, evaluating and auditing generated videos has become increasingly crucial. Existing approaches typically offer coarse video quality scores, lacking detailed localization and categorization of specific artifacts. In this work, we introduce a comprehensive evaluation protocol focusing on three key aspects affecting human perception: Appearance, Motion, and Camera. We define these axes through a taxonomy of 10 prevalent artifact categories reflecting common generative failures observed in video generation. To enable robust artifact detection and categorization, we introduce GenVID, a large-scale dataset of 80k videos generated by various state-of-the-art video generation models, each carefully annotated for the defined artifact categories. Leveraging GenVID, we develop DVAR, a Dense Video Artifact Recognition framework for fine-grained identification and classification of generative artifacts. Extensive experiments show that our approach significantly improves artifact detection accuracy and enables effective filtering of low-quality content.
Authors:Zhe Huang, Hao Wen, Aiming Hao, Bingze Song, Meiqi Wu, Jiahong Wu, Xiangxiang Chu, Sheng Lu, Haoqian Wang
Abstract:
Multimodal Large Language Models (MLLMs) have made remarkable progress in video understanding. However, they suffer from a critical vulnerability: an over-reliance on language priors, which can lead to visual ungrounded hallucinations, especially when processing counterfactual videos that defy common sense. This limitation, stemming from the intrinsic data imbalance between text and video, is challenging to address due to the substantial cost of collecting and annotating counterfactual data. To address this, we introduce DualityForge, a novel counterfactual data synthesis framework that employs controllable, diffusion-based video editing to transform real-world videos into counterfactual scenarios. By embedding structured contextual information into the video editing and QA generation processes, the framework automatically produces high-quality QA pairs together with original-edited video pairs for contrastive training. Based on this, we build DualityVidQA, a large-scale video dataset designed to reduce MLLM hallucinations. In addition, to fully exploit the contrastive nature of our paired data, we propose Duality-Normalized Advantage Training (DNA-Train), a two-stage SFT-RL training regime where the RL phase applies pair-wise $\ell_1$ advantage normalization, thereby enabling a more stable and efficient policy optimization. Experiments on DualityVidQA-Test demonstrate that our method substantially reduces model hallucinations on counterfactual videos, yielding a relative improvement of 24.0% over the Qwen2.5-VL-7B baseline. Moreover, our approach achieves significant gains across both hallucination and general-purpose benchmarks, indicating strong generalization capability. We will open-source our dataset and code.
Authors:Max Kamachee, Stephen Casper, Michelle L. Ding, Rui-Jie Yew, Anka Reuel, Stella Biderman, Dylan Hadfield-Menell
Abstract:
In 2022, AI image generators crossed a key threshold, enabling much more efficient and dynamic production of photorealistic deepfake images than before. This enabled opportunities for creative and positive uses of these models. However, it also enabled unprecedented opportunities for the low-effort creation of AI-generated non-consensual intimate imagery (AIG-NCII), including AI-generated child sexual abuse material (AIG-CSAM). Empirically, these harms were principally enabled by a small number of models that were trained on web data with pornographic content, released with open weights, and insufficiently safeguarded. In this paper, we observe ways in which the same patterns are emerging with video generation models in 2025. Specifically, we analyze how a small number of open-weight AI video generation models have become the dominant tools for videorealistic AIG-NCII video generation. We then analyze the literature on model safeguards and conclude that (1) developers who openly release the weights of capable video generation models without appropriate data curation and/or post-training safeguards foreseeably contribute to mitigatable downstream harm, and (2) model distribution platforms that do not proactively moderate individual misuse or models designed for AIG-NCII foreseeably amplify this harm. While there are no perfect defenses against AIG-NCII and AIG-CSAM from open-weight AI models, we argue that risk management by model developers and distributors, informed by emerging safeguard techniques, will substantially affect the future ease of creating AIG-NCII and AIG-CSAM with generative AI video tools.
Authors:Meiqi Wu, Jiashu Zhu, Xiaokun Feng, Chubin Chen, Chen Zhu, Bingze Song, Fangyuan Mao, Jiahong Wu, Xiangxiang Chu, Kaiqi Huang
Abstract:
Video generation models have achieved remarkable progress, particularly excelling in realistic scenarios; however, their performance degrades notably in imaginative scenarios. These prompts often involve rarely co-occurring concepts with long-distance semantic relationships, falling outside training distributions. Existing methods typically apply test-time scaling for improving video quality, but their fixed search spaces and static reward designs limit adaptability to imaginative scenarios. To fill this gap, we propose ImagerySearch, a prompt-guided adaptive test-time search strategy that dynamically adjusts both the inference search space and reward function according to semantic relationships in the prompt. This enables more coherent and visually plausible videos in challenging imaginative settings. To evaluate progress in this direction, we introduce LDT-Bench, the first dedicated benchmark for long-distance semantic prompts, consisting of 2,839 diverse concept pairs and an automated protocol for assessing creative generation capabilities. Extensive experiments show that ImagerySearch consistently outperforms strong video generation baselines and existing test-time scaling approaches on LDT-Bench, and achieves competitive improvements on VBench, demonstrating its effectiveness across diverse prompt types. We will release LDT-Bench and code to facilitate future research on imaginative video generation.
Authors:Chong Mou, Qichao Sun, Yanze Wu, Pengze Zhang, Xinghui Li, Fulong Ye, Songtao Zhao, Qian He
Abstract:
With recent advances in Multimodal Large Language Models (MLLMs) showing strong visual understanding and reasoning, interest is growing in using them to improve the editing performance of diffusion models. Despite rapid progress, most studies lack an in-depth analysis of MLLM design choices. Moreover, the integration of MLLMs and diffusion models remains an open challenge in some difficult tasks, such as video editing. In this paper, we present InstructX, a unified framework for image and video editing. Specifically, we conduct a comprehensive study on integrating MLLMs and diffusion models for instruction-driven editing across diverse tasks. Building on this study, we analyze the cooperation and distinction between images and videos in unified modeling. (1) We show that training on image data can lead to emergent video editing capabilities without explicit supervision, thereby alleviating the constraints imposed by scarce video training data. (2) By incorporating modality-specific MLLM features, our approach effectively unifies image and video editing tasks within a single model. Extensive experiments demonstrate that our method can handle a broad range of image and video editing tasks and achieves state-of-the-art performance.
Authors:Chubin Chen, Jiashu Zhu, Xiaokun Feng, Nisha Huang, Meiqi Wu, Fangyuan Mao, Jiahong Wu, Xiangxiang Chu, Xiu Li
Abstract:
Classifier-free Guidance (CFG) is a widely used technique in modern diffusion models for enhancing sample quality and prompt adherence. However, through an empirical analysis on Gaussian mixture modeling with a closed-form solution, we observe a discrepancy between the suboptimal results produced by CFG and the ground truth. The model's excessive reliance on these suboptimal predictions often leads to semantic incoherence and low-quality outputs. To address this issue, we first empirically demonstrate that the model's suboptimal predictions can be effectively refined using sub-networks of the model itself. Building on this insight, we propose S^2-Guidance, a novel method that leverages stochastic block-dropping during the forward process to construct stochastic sub-networks, effectively guiding the model away from potential low-quality predictions and toward high-quality outputs. Extensive qualitative and quantitative experiments on text-to-image and text-to-video generation tasks demonstrate that S^2-Guidance delivers superior performance, consistently surpassing CFG and other advanced guidance strategies. Our code will be released.
Authors:Qian Wang, Ziqi Huang, Ruoxi Jia, Paul Debevec, Ning Yu
Abstract:
Despite recent advances, long-sequence video generation frameworks still suffer from significant limitations: poor assistive capability, suboptimal visual quality, and limited expressiveness. To mitigate these limitations, we propose MAViS, an end-to-end multi-agent collaborative framework for long-sequence video storytelling. MAViS orchestrates specialized agents across multiple stages, including script writing, shot designing, character modeling, keyframe generation, video animation, and audio generation. In each stage, agents operate under the 3E Principle -- Explore, Examine, and Enhance -- to ensure the completeness of intermediate outputs. Considering the capability limitations of current generative models, we propose the Script Writing Guidelines to optimize compatibility between scripts and generative tools. Experimental results demonstrate that MAViS achieves state-of-the-art performance in assistive capability, visual quality, and video expressiveness. Its modular framework further enables scalability with diverse generative models and tools. With just a brief user prompt, MAViS is capable of producing high-quality, expressive long-sequence video storytelling, enriching inspirations and creativity for users. To the best of our knowledge, MAViS is the only framework that provides multimodal design output -- videos with narratives and background music.
Authors:Fangyuan Mao, Aiming Hao, Jintao Chen, Dongxia Liu, Xiaokun Feng, Jiashu Zhu, Meiqi Wu, Chubin Chen, Jiahong Wu, Xiangxiang Chu
Abstract:
Visual effects (VFX) are essential visual enhancements fundamental to modern cinematic production. Although video generation models offer cost-efficient solutions for VFX production, current methods are constrained by per-effect LoRA training, which limits generation to single effects. This fundamental limitation impedes applications that require spatially controllable composite effects, i.e., the concurrent generation of multiple effects at designated locations. However, integrating diverse effects into a unified framework faces major challenges: interference from effect variations and spatial uncontrollability during multi-VFX joint training. To tackle these challenges, we propose Omni-Effects, a first unified framework capable of generating prompt-guided effects and spatially controllable composite effects. The core of our framework comprises two key innovations: (1) LoRA-based Mixture of Experts (LoRA-MoE), which employs a group of expert LoRAs, integrating diverse effects within a unified model while effectively mitigating cross-task interference. (2) Spatial-Aware Prompt (SAP) incorporates spatial mask information into the text token, enabling precise spatial control. Furthermore, we introduce an Independent-Information Flow (IIF) module integrated within the SAP, isolating the control signals corresponding to individual effects to prevent any unwanted blending. To facilitate this research, we construct a comprehensive VFX dataset Omni-VFX via a novel data collection pipeline combining image editing and First-Last Frame-to-Video (FLF2V) synthesis, and introduce a dedicated VFX evaluation framework for validating model performance. Extensive experiments demonstrate that Omni-Effects achieves precise spatial control and diverse effect generation, enabling users to specify both the category and location of desired effects.
Authors:Amazon AGI, Aaron Langford, Aayush Shah, Abhanshu Gupta, Abhimanyu Bhatter, Abhinav Goyal, Abhinav Mathur, Abhinav Mohanty, Abhishek Kumar, Abhishek Sethi, Abi Komma, Abner Pena, Achin Jain, Adam Kunysz, Adam Opyrchal, Adarsh Singh, Aditya Rawal, Adok Achar Budihal Prasad, Adrià de Gispert, Agnika Kumar, Aishwarya Aryamane, Ajay Nair, Akilan M, Akshaya Iyengar, Akshaya Vishnu Kudlu Shanbhogue, Alan He, Alessandra Cervone, Alex Loeb, Alex Zhang, Alexander Fu, Alexander Lisnichenko, Alexander Zhipa, Alexandros Potamianos, Ali Kebarighotbi, Aliakbar Daronkolaei, Alok Parmesh, Amanjot Kaur Samra, Ameen Khan, Amer Rez, Amir Saffari, Amit Agarwalla, Amit Jhindal, Amith Mamidala, Ammar Asmro, Amulya Ballakur, Anand Mishra, Anand Sridharan, Anastasiia Dubinina, Andre Lenz, Andreas Doerr, Andrew Keating, Andrew Leaver, Andrew Smith, Andrew Wirth, Andy Davey, Andy Rosenbaum, Andy Sohn, Angela Chan, Aniket Chakrabarti, Anil Ramakrishna, Anirban Roy, Anita Iyer, Anjali Narayan-Chen, Ankith Yennu, Anna Dabrowska, Anna Gawlowska, Anna Rumshisky, Anna Turek, Anoop Deoras, Anton Bezruchkin, Anup Prasad, Anupam Dewan, Anwith Kiran, Apoorv Gupta, Aram Galstyan, Aravind Manoharan, Arijit Biswas, Arindam Mandal, Arpit Gupta, Arsamkhan Pathan, Arun Nagarajan, Arushan Rajasekaram, Arvind Sundararajan, Ashwin Ganesan, Ashwin Swaminathan, Athanasios Mouchtaris, Audrey Champeau, Avik Ray, Ayush Jaiswal, Ayush Sharma, Bailey Keefer, Balamurugan Muthiah, Beatriz Leon-Millan, Ben Koopman, Ben Li, Benjamin Biggs, Benjamin Ott, Bhanu Vinzamuri, Bharath Venkatesh, Bhavana Ganesh, Bhoomit Vasani, Bill Byrne, Bill Hsu, Bincheng Wang, Blake King, Blazej Gorny, Bo Feng, Bo Zheng, Bodhisattwa Paul, Bofan Sun, Bofeng Luo, Bowen Chen, Bowen Xie, Boya Yu, Brendan Jugan, Brett Panosh, Brian Collins, Brian Thompson, Can Karakus, Can Liu, Carl Lambrecht, Carly Lin, Carolyn Wang, Carrie Yuan, Casey Loyda, Cezary Walczak, Chalapathi Choppa, Chandana Satya Prakash, Chankrisna Richy Meas, Charith Peris, Charles Recaido, Charlie Xu, Charul Sharma, Chase Kernan, Chayut Thanapirom, Chengwei Su, Chenhao Xu, Chenhao Yin, Chentao Ye, Chenyang Tao, Chethan Parameshwara, Ching-Yun Chang, Chong Li, Chris Hench, Chris Tran, Christophe Dupuy, Christopher Davis, Christopher DiPersio, Christos Christodoulopoulos, Christy Li, Chun Chen, Claudio Delli Bovi, Clement Chung, Cole Hawkins, Connor Harris, Corey Ropell, Cynthia He, DK Joo, Dae Yon Hwang, Dan Rosen, Daniel Elkind, Daniel Pressel, Daniel Zhang, Danielle Kimball, Daniil Sorokin, Dave Goodell, Davide Modolo, Dawei Zhu, Deepikaa Suresh, Deepti Ragha, Denis Filimonov, Denis Foo Kune, Denis Romasanta Rodriguez, Devamanyu Hazarika, Dhananjay Ram, Dhawal Parkar, Dhawal Patel, Dhwanil Desai, Dinesh Singh Rajput, Disha Sule, Diwakar Singh, Dmitriy Genzel, Dolly Goldenberg, Dongyi He, Dumitru Hanciu, Dushan Tharmal, Dzmitry Siankovich, Edi Cikovic, Edwin Abraham, Ekraam Sabir, Elliott Olson, Emmett Steven, Emre Barut, Eric Jackson, Ethan Wu, Evelyn Chen, Ezhilan Mahalingam, Fabian Triefenbach, Fan Yang, Fangyu Liu, Fanzi Wu, Faraz Tavakoli, Farhad Khozeimeh, Feiyang Niu, Felix Hieber, Feng Li, Firat Elbey, Florian Krebs, Florian Saupe, Florian Sprünken, Frank Fan, Furqan Khan, Gabriela De Vincenzo, Gagandeep Kang, George Ding, George He, George Yeung, Ghada Qaddoumi, Giannis Karamanolakis, Goeric Huybrechts, Gokul Maddali, Gonzalo Iglesias, Gordon McShane, Gozde Sahin, Guangtai Huang, Gukyeong Kwon, Gunnar A. Sigurdsson, Gurpreet Chadha, Gururaj Kosuru, Hagen Fuerstenau, Hah Hah, Haja Maideen, Hajime Hosokawa, Han Liu, Han-Kai Hsu, Hann Wang, Hao Li, Hao Yang, Haofeng Zhu, Haozheng Fan, Harman Singh, Harshavardhan Kaluvala, Hashim Saeed, He Xie, Helian Feng, Hendrix Luo, Hengzhi Pei, Henrik Nielsen, Hesam Ilati, Himanshu Patel, Hongshan Li, Hongzhou Lin, Hussain Raza, Ian Cullinan, Imre Kiss, Inbarasan Thangamani, Indrayani Fadnavis, Ionut Teodor Sorodoc, Irem Ertuerk, Iryna Yemialyanava, Ishan Soni, Ismail Jelal, Ivan Tse, Jack FitzGerald, Jack Zhao, Jackson Rothgeb, Jacky Lee, Jake Jung, Jakub Debski, Jakub Tomczak, James Jeun, James Sanders, Jason Crowley, Jay Lee, Jayakrishna Anvesh Paidy, Jayant Tiwari, Jean Farmer, Jeff Solinsky, Jenna Lau, Jeremy Savareese, Jerzy Zagorski, Ji Dai, Jiacheng, Gu, Jiahui Li, Jian, Zheng, Jianhua Lu, Jianhua Wang, Jiawei Dai, Jiawei Mo, Jiaxi Xu, Jie Liang, Jie Yang, Jim Logan, Jimit Majmudar, Jing Liu, Jinghong Miao, Jingru Yi, Jingyang Jin, Jiun-Yu Kao, Jixuan Wang, Jiyang Wang, Joe Pemberton, Joel Carlson, Joey Blundell, John Chin-Jew, John He, Jonathan Ho, Jonathan Hueser, Jonathan Lunt, Jooyoung Lee, Joshua Tan, Joyjit Chatterjee, Judith Gaspers, Jue Wang, Jun Fang, Jun Tang, Jun Wan, Jun Wu, Junlei Wang, Junyi Shi, Justin Chiu, Justin Satriano, Justin Yee, Jwala Dhamala, Jyoti Bansal, Kai Zhen, Kai-Wei Chang, Kaixiang Lin, Kalyan Raman, Kanthashree Mysore Sathyendra, Karabo Moroe, Karan Bhandarkar, Karan Kothari, Karolina Owczarzak, Karthick Gopalswamy, Karthick Ravi, Karthik Ramakrishnan, Karthika Arumugam, Kartik Mehta, Katarzyna Konczalska, Kavya Ravikumar, Ke Tran, Kechen Qin, Kelin Li, Kelvin Li, Ketan Kulkarni, Kevin Angelo Rodrigues, Keyur Patel, Khadige Abboud, Kiana Hajebi, Klaus Reiter, Kris Schultz, Krishna Anisetty, Krishna Kotnana, Kristen Li, Kruthi Channamallikarjuna, Krzysztof Jakubczyk, Kuba Pierewoj, Kunal Pal, Kunwar Srivastav, Kyle Bannerman, Lahari Poddar, Lakshmi Prasad, Larry Tseng, Laxmikant Naik, Leena Chennuru Vankadara, Lenon Minorics, Leo Liu, Leonard Lausen, Leonardo F. R. Ribeiro, Li Zhang, Lili Gehorsam, Ling Qi, Lisa Bauer, Lori Knapp, Lu Zeng, Lucas Tong, Lulu Wong, Luoxin Chen, Maciej Rudnicki, Mahdi Namazifar, Mahesh Jaliminche, Maira Ladeira Tanke, Manasi Gupta, Mandeep Ahlawat, Mani Khanuja, Mani Sundaram, Marcin Leyk, Mariusz Momotko, Markus Boese, Markus Dreyer, Markus Mueller, Mason Fu, Mateusz Górski, Mateusz Mastalerczyk, Matias Mora, Matt Johnson, Matt Scott, Matthew Wen, Max Barysau, Maya Boumerdassi, Maya Krishnan, Mayank Gupta, Mayank Hirani, Mayank Kulkarni, Meganathan Narayanasamy, Melanie Bradford, Melanie Gens, Melissa Burke, Meng Jin, Miao Chen, Michael Denkowski, Michael Heymel, Michael Krestyaninov, Michal Obirek, Michalina Wichorowska, MichaŠMiotk, Milosz Watroba, Mingyi Hong, Mingzhi Yu, Miranda Liu, Mohamed Gouda, Mohammad El-Shabani, Mohammad Ghavamzadeh, Mohit Bansal, Morteza Ziyadi, Nan Xia, Nathan Susanj, Nav Bhasin, Neha Goswami, Nehal Belgamwar, Nicolas Anastassacos, Nicolas Bergeron, Nidhi Jain, Nihal Jain, Niharika Chopparapu, Nik Xu, Nikko Strom, Nikolaos Malandrakis, Nimisha Mishra, Ninad Parkhi, Ninareh Mehrabi, Nishita Sant, Nishtha Gupta, Nitesh Sekhar, Nithin Rajeev, Nithish Raja Chidambaram, Nitish Dhar, Noor Bhagwagar, Noy Konforty, Omar Babu, Omid Razavi, Orchid Majumder, Osama Dar, Oscar Hsu, Pablo Kvitca, Pallavi Pandey, Parker Seegmiller, Patrick Lange, Paul Ferraro, Payal Motwani, Pegah Kharazmi, Pei Wang, Pengfei Liu, Peter Bradtke, Peter Götz, Peter Zhou, Pichao Wang, Piotr Poskart, Pooja Sonawane, Pradeep Natarajan, Pradyun Ramadorai, Pralam Shah, Prasad Nirantar, Prasanthi Chavali, Prashan Wanigasekara, Prashant Saraf, Prashun Dey, Pratyush Pant, Prerak Pradhan, Preyaa Patel, Priyanka Dadlani, Prudhvee Narasimha Sadha, Qi Dong, Qian Hu, Qiaozi, Gao, Qing Liu, Quinn Lam, Quynh Do, R. Manmatha, Rachel Willis, Rafael Liu, Rafal Ellert, Rafal Kalinski, Rafi Al Attrach, Ragha Prasad, Ragini Prasad, Raguvir Kunani, Rahul Gupta, Rahul Sharma, Rahul Tewari, Rajaganesh Baskaran, Rajan Singh, Rajiv Gupta, Rajiv Reddy, Rajshekhar Das, Rakesh Chada, Rakesh Vaideeswaran Mahesh, Ram Chandrasekaran, Ramesh Nallapati, Ran Xue, Rashmi Gangadharaiah, Ravi Rachakonda, Renxian Zhang, Rexhina Blloshmi, Rishabh Agrawal, Robert Enyedi, Robert Lowe, Robik Shrestha, Robinson Piramuthu, Rohail Asad, Rohan Khanna, Rohan Mukherjee, Rohit Mittal, Rohit Prasad, Rohith Mysore Vijaya Kumar, Ron Diamant, Ruchita Gupta, Ruiwen Li, Ruoying Li, Rushabh Fegade, Ruxu Zhang, Ryan Arbow, Ryan Chen, Ryan Gabbard, Ryan Hoium, Ryan King, Sabarishkumar Iyer, Sachal Malick, Sahar Movaghati, Sai Balakavi, Sai Jakka, Sai Kashyap Paruvelli, Sai Muralidhar Jayanthi, Saicharan Shriram Mujumdar, Sainyam Kapoor, Sajjad Beygi, Saket Dingliwal, Saleh Soltan, Sam Ricklin, Sam Tucker, Sameer Sinha, Samridhi Choudhary, Samson Tan, Samuel Broscheit, Samuel Schulter, Sanchit Agarwal, Sandeep Atluri, Sander Valstar, Sanjana Shankar, Sanyukta Sanyukta, Sarthak Khanna, Sarvpriye Khetrapal, Satish Janakiraman, Saumil Shah, Saurabh Akolkar, Saurabh Giri, Saurabh Khandelwal, Saurabh Pawar, Saurabh Sahu, Sean Huang, Sejun Ra, Senthilkumar Gopal, Sergei Dobroshinsky, Shadi Saba, Shamik Roy, Shamit Lal, Shankar Ananthakrishnan, Sharon Li, Shashwat Srijan, Shekhar Bhide, Sheng Long Tang, Sheng Zha, Shereen Oraby, Sherif Mostafa, Shiqi Li, Shishir Bharathi, Shivam Prakash, Shiyuan Huang, Shreya Yembarwar, Shreyas Pansare, Shreyas Subramanian, Shrijeet Joshi, Shuai Liu, Shuai Tang, Shubham Chandak, Shubham Garg, Shubham Katiyar, Shubham Mehta, Shubham Srivastav, Shuo Yang, Siddalingesha D S, Siddharth Choudhary, Siddharth Singh Senger, Simon Babb, Sina Moeini, Siqi Deng, Siva Loganathan, Slawomir Domagala, Sneha Narkar, Sneha Wadhwa, Songyang Zhang, Songyao Jiang, Sony Trenous, Soumajyoti Sarkar, Soumya Saha, Sourabh Reddy, Sourav Dokania, Spurthideepika Sandiri, Spyros Matsoukas, Sravan Bodapati, Sri Harsha Reddy Wdaru, Sridevi Yagati Venkateshdatta, Srikanth Ronanki, Srinivasan R Veeravanallur, Sriram Venkatapathy, Sriramprabhu Sankaraguru, Sruthi Gorantla, Sruthi Karuturi, Stefan Schroedl, Subendhu Rongali, Subhasis Kundu, Suhaila Shakiah, Sukriti Tiwari, Sumit Bharti, Sumita Sami, Sumith Mathew, Sunny Yu, Sunwoo Kim, Suraj Bajirao Malode, Susana Cumplido Riel, Swapnil Palod, Swastik Roy, Syed Furqhan, Tagyoung Chung, Takuma Yoshitani, Taojiannan Yang, Tejaswi Chillakura, Tejwant Bajwa, Temi Lajumoke, Thanh Tran, Thomas Gueudre, Thomas Jung, Tianhui Li, Tim Seemman, Timothy Leffel, Tingting Xiang, Tirth Patel, Tobias Domhan, Tobias Falke, Toby Guo, Tom Li, Tomasz Horszczaruk, Tomasz Jedynak, Tushar Kulkarni, Tyst Marin, Tytus Metrycki, Tzu-Yen Wang, Umang Jain, Upendra Singh, Utkarsh Chirimar, Vaibhav Gupta, Vanshil Shah, Varad Deshpande, Varad Gunjal, Varsha Srikeshava, Varsha Vivek, Varun Bharadwaj, Varun Gangal, Varun Kumar, Venkatesh Elango, Vicente Ordonez, Victor Soto, Vignesh Radhakrishnan, Vihang Patel, Vikram Singh, Vinay Varma Kolanuvada, Vinayshekhar Bannihatti Kumar, Vincent Auvray, Vincent Cartillier, Vincent Ponzo, Violet Peng, Vishal Khandelwal, Vishal Naik, Vishvesh Sahasrabudhe, Vitaliy Korolev, Vivek Gokuladas, Vivek Madan, Vivek Subramanian, Volkan Cevher, Vrinda Gupta, Wael Hamza, Wei Zhang, Weitong Ruan, Weiwei Cheng, Wen Zhang, Wenbo Zhao, Wenyan Yao, Wenzhuo Ouyang, Wesley Dashner, William Campbell, William Lin, Willian Martin, Wyatt Pearson, Xiang Jiang, Xiangxing Lu, Xiangyang Shi, Xianwen Peng, Xiaofeng Gao, Xiaoge Jiang, Xiaohan Fei, Xiaohui Wang, Xiaozhou Joey Zhou, Xin Feng, Xinyan Zhao, Xinyao Wang, Xinyu Li, Xu Zhang, Xuan Wang, Xuandi Fu, Xueling Yuan, Xuning Wang, Yadunandana Rao, Yair Tavizon, Yan Rossiytsev, Yanbei Chen, Yang Liu, Yang Zou, Yangsook Park, Yannick Versley, Yanyan Zhang, Yash Patel, Yen-Cheng Lu, Yi Pan, Yi-Hsiang, Lai, Yichen Hu, Yida Wang, Yiheng Zhou, Yilin Xiang, Ying Shi, Ying Wang, Yishai Galatzer, Yongxin Wang, Yorick Shen, Yuchen Sun, Yudi Purwatama, Yue, Wu, Yue Gu, Yuechun Wang, Yujun Zeng, Yuncong Chen, Yunke Zhou, Yusheng Xie, Yvon Guy, Zbigniew Ambrozinski, Zhaowei Cai, Zhen Zhang, Zheng Wang, Zhenghui Jin, Zhewei Zhao, Zhiheng Li, Zhiheng Luo, Zhikang Zhang, Zhilin Fang, Zhiqi Bu, Zhiyuan Wang, Zhizhong Li, Zijian Wang, Zimeng, Qiu, Zishi Li
Abstract:
We present Amazon Nova, a new generation of state-of-the-art foundation models that deliver frontier intelligence and industry-leading price performance. Amazon Nova Pro is a highly-capable multimodal model with the best combination of accuracy, speed, and cost for a wide range of tasks. Amazon Nova Lite is a low-cost multimodal model that is lightning fast for processing images, video, documents and text. Amazon Nova Micro is a text-only model that delivers our lowest-latency responses at very low cost. Amazon Nova Canvas is an image generation model that creates professional grade images with rich customization controls. Amazon Nova Reel is a video generation model offering high-quality outputs, customization, and motion control. Our models were built responsibly and with a commitment to customer trust, security, and reliability. We report benchmarking results for core capabilities, agentic performance, long context, functional adaptation, runtime performance, and human evaluation.
Authors:Xu Wang, Shengeng Tang, Lechao Cheng, Feng Li, Shuo Wang, Richang Hong
Abstract:
Sign language generation aims to produce diverse sign representations based on spoken language. However, achieving realistic and naturalistic generation remains a significant challenge due to the complexity of sign language, which encompasses intricate hand gestures, facial expressions, and body movements. In this work, we introduce PHOENIX14T+, an extended version of the widely-used RWTH-PHOENIX-Weather 2014T dataset, featuring three new sign representations: Pose, Hamer and Smplerx. We also propose a novel method, SignAligner, for realistic sign language generation, consisting of three stages: text-driven pose modalities co-generation, online collaborative correction of multimodality, and realistic sign video synthesis. First, by incorporating text semantics, we design a joint sign language generator to simultaneously produce posture coordinates, gesture actions, and body movements. The text encoder, based on a Transformer architecture, extracts semantic features, while a cross-modal attention mechanism integrates these features to generate diverse sign language representations, ensuring accurate mapping and controlling the diversity of modal features. Next, online collaborative correction is introduced to refine the generated pose modalities using a dynamic loss weighting strategy and cross-modal attention, facilitating the complementarity of information across modalities, eliminating spatiotemporal conflicts, and ensuring semantic coherence and action consistency. Finally, the corrected pose modalities are fed into a pre-trained video generation network to produce high-fidelity sign language videos. Extensive experiments demonstrate that SignAligner significantly improves both the accuracy and expressiveness of the generated sign videos.
Authors:Haoyu Zhen, Qiao Sun, Hongxin Zhang, Junyan Li, Siyuan Zhou, Yilun Du, Chuang Gan
Abstract:
This paper presents an effective approach for learning novel 4D embodied world models, which predict the dynamic evolution of 3D scenes over time in response to an embodied agent's actions, providing both spatial and temporal consistency. We propose to learn a 4D world model by training on RGB-DN (RGB, Depth, and Normal) videos. This not only surpasses traditional 2D models by incorporating detailed shape, configuration, and temporal changes into their predictions, but also allows us to effectively learn accurate inverse dynamic models for an embodied agent. Specifically, we first extend existing robotic manipulation video datasets with depth and normal information leveraging off-the-shelf models. Next, we fine-tune a video generation model on this annotated dataset, which jointly predicts RGB-DN (RGB, Depth, and Normal) for each frame. We then present an algorithm to directly convert generated RGB, Depth, and Normal videos into a high-quality 4D scene of the world. Our method ensures temporal and spatial coherence in 4D scene predictions from embodied scenarios, enables novel view synthesis for embodied environments, and facilitates policy learning that significantly outperforms those derived from prior video-based world models.
Authors:Junjie Hu, Shuyong Gao, Qianyu Guo, Yan Wang, Qishan Wang, Yuang Feng, Wenqiang Zhang
Abstract:
Humans can intuitively decompose an image into a sequence of strokes to create a painting, yet existing methods for generating drawing processes are limited to specific data types and often rely on expensive human-annotated datasets. We propose a novel self-supervised framework for generating drawing processes from any type of image, treating the task as a video generation problem. Our approach reverses the drawing process by progressively removing strokes from a reference image, simulating a human-like creation sequence. Crucially, our method does not require costly datasets of real human drawing processes; instead, we leverage depth estimation and stroke rendering to construct a self-supervised dataset. We model human drawings as "refinement" and "layering" processes and introduce depth fusion layers to enable video generation models to learn and replicate human drawing behavior. Extensive experiments validate the effectiveness of our approach, demonstrating its ability to generate realistic drawings without the need for real drawing process data.
Authors:Zechen Bai, Hai Ci, Mike Zheng Shou
Abstract:
Synthetic videos nowadays is widely used to complement data scarcity and diversity of real-world videos. Current synthetic datasets primarily replicate real-world scenarios, leaving impossible, counterfactual and anti-reality video concepts underexplored. This work aims to answer two questions: 1) Can today's video generation models effectively follow prompts to create impossible video content? 2) Are today's video understanding models good enough for understanding impossible videos? To this end, we introduce IPV-Bench, a novel benchmark designed to evaluate and foster progress in video understanding and generation. IPV-Bench is underpinned by a comprehensive taxonomy, encompassing 4 domains, 14 categories. It features diverse scenes that defy physical, biological, geographical, or social laws. Based on the taxonomy, a prompt suite is constructed to evaluate video generation models, challenging their prompt following and creativity capabilities. In addition, a video benchmark is curated to assess Video-LLMs on their ability of understanding impossible videos, which particularly requires reasoning on temporal dynamics and world knowledge. Comprehensive evaluations reveal limitations and insights for future directions of video models, paving the way for next-generation video models.
Authors:Yihong Luo, Tianyang Hu, Jiacheng Sun, Yujun Cai, Jing Tang
Abstract:
Accelerating diffusion model sampling is crucial for efficient AIGC deployment. While diffusion distillation methods -- based on distribution matching and trajectory matching -- reduce sampling to as few as one step, they fall short on complex tasks like text-to-image generation. Few-step generation offers a better balance between speed and quality, but existing approaches face a persistent trade-off: distribution matching lacks flexibility for multi-step sampling, while trajectory matching often yields suboptimal image quality. To bridge this gap, we propose learning few-step diffusion models by Trajectory Distribution Matching (TDM), a unified distillation paradigm that combines the strengths of distribution and trajectory matching. Our method introduces a data-free score distillation objective, aligning the student's trajectory with the teacher's at the distribution level. Further, we develop a sampling-steps-aware objective that decouples learning targets across different steps, enabling more adjustable sampling. This approach supports both deterministic sampling for superior image quality and flexible multi-step adaptation, achieving state-of-the-art performance with remarkable efficiency. Our model, TDM, outperforms existing methods on various backbones, such as SDXL and PixArt-$α$, delivering superior quality and significantly reduced training costs. In particular, our method distills PixArt-$α$ into a 4-step generator that outperforms its teacher on real user preference at 1024 resolution. This is accomplished with 500 iterations and 2 A800 hours -- a mere 0.01% of the teacher's training cost. In addition, our proposed TDM can be extended to accelerate text-to-video diffusion. Notably, TDM can outperform its teacher model (CogVideoX-2B) by using only 4 NFE on VBench, improving the total score from 80.91 to 81.65. Project page: https://tdm-t2x.github.io/
Authors:Zhaorun Chen, Francesco Pinto, Minzhou Pan, Bo Li
Abstract:
With the rise of generative AI and rapid growth of high-quality video generation, video guardrails have become more crucial than ever to ensure safety and security across platforms. Current video guardrails, however, are either overly simplistic, relying on pure classification models trained on simple policies with limited unsafe categories, which lack detailed explanations, or prompting multimodal large language models (MLLMs) with long safety guidelines, which are inefficient and impractical for guardrailing real-world content. To bridge this gap, we propose SafeWatch, an efficient MLLM-based video guardrail model designed to follow customized safety policies and provide multi-label video guardrail outputs with content-specific explanations in a zero-shot manner. In particular, unlike traditional MLLM-based guardrails that encode all safety policies autoregressively, causing inefficiency and bias, SafeWatch uniquely encodes each policy chunk in parallel and eliminates their position bias such that all policies are attended simultaneously with equal importance. In addition, to improve efficiency and accuracy, SafeWatch incorporates a policy-aware visual token pruning algorithm that adaptively selects the most relevant video tokens for each policy, discarding noisy or irrelevant information. This allows for more focused, policy-compliant guardrail with significantly reduced computational overhead. Considering the limitations of existing video guardrail benchmarks, we propose SafeWatch-Bench, a large-scale video guardrail benchmark comprising over 2M videos spanning six safety categories which covers over 30 tasks to ensure a comprehensive coverage of all potential safety scenarios. SafeWatch outperforms SOTA by 28.2% on SafeWatch-Bench, 13.6% on benchmarks, cuts costs by 10%, and delivers top-tier explanations validated by LLM and human reviews.
Authors:Alejandro Pardo, Fabio Pizzati, Tong Zhang, Alexander Pondaven, Philip Torr, Juan Camilo Perez, Bernard Ghanem
Abstract:
Match-cuts are powerful cinematic tools that create seamless transitions between scenes, delivering strong visual and metaphorical connections. However, crafting match-cuts is a challenging, resource-intensive process requiring deliberate artistic planning. In MatchDiffusion, we present the first training-free method for match-cut generation using text-to-video diffusion models. MatchDiffusion leverages a key property of diffusion models: early denoising steps define the scene's broad structure, while later steps add details. Guided by this insight, MatchDiffusion employs "Joint Diffusion" to initialize generation for two prompts from shared noise, aligning structure and motion. It then applies "Disjoint Diffusion", allowing the videos to diverge and introduce unique details. This approach produces visually coherent videos suited for match-cuts. User studies and metrics demonstrate MatchDiffusion's effectiveness and potential to democratize match-cut creation.
Authors:Mingce Guo, Jingxuan He, Shengeng Tang, Zhangye Wang, Lechao Cheng
Abstract:
Text-driven video editing utilizing generative diffusion models has garnered significant attention due to their potential applications. However, existing approaches are constrained by the limited word embeddings provided in pre-training, which hinders nuanced editing targeting open concepts with specific attributes. Directly altering the keywords in target prompts often results in unintended disruptions to the attention mechanisms. To achieve more flexible editing easily, this work proposes an improved concept-augmented video editing approach that generates diverse and stable target videos flexibly by devising abstract conceptual pairs. Specifically, the framework involves concept-augmented textual inversion and a dual prior supervision mechanism. The former enables plug-and-play guidance of stable diffusion for video editing, effectively capturing target attributes for more stylized results. The dual prior supervision mechanism significantly enhances video stability and fidelity. Comprehensive evaluations demonstrate that our approach generates more stable and lifelike videos, outperforming state-of-the-art methods.
Authors:Justin Cui, Jie Wu, Ming Li, Tao Yang, Xiaojie Li, Rui Wang, Andrew Bai, Yuanhao Ban, Cho-Jui Hsieh
Abstract:
Recent research in long-form video generation has shifted from bidirectional to autoregressive models, yet these methods commonly suffer from error accumulation and a loss of long-term coherence. While attention sink frames have been introduced to mitigate this performance decay, they often induce a critical failure mode we term sink-collapse: the generated content repeatedly reverts to the sink frame, resulting in abrupt scene resets and cyclic motion patterns. Our analysis reveals that sink-collapse originates from an inherent conflict between the periodic structure of Rotary Position Embedding (RoPE) and the multi-head attention mechanisms prevalent in current generative models. To address it, we propose a lightweight, training-free approach that effectively suppresses this behavior by introducing multi-head RoPE jitter that breaks inter-head attention homogenization and mitigates long-horizon collapse. Extensive experiments show that our method successfully alleviates sink-collapse while preserving generation quality. To the best of our knowledge, this work achieves the first demonstration of real-time, streaming, and infinite-length video generation with little quality decay. As an illustration of this robustness, we generate continuous videos up to 12 hours in length, which, to our knowledge, is among the longest publicly demonstrated results in streaming video generation.
Authors:Jingxi Chen, Zongxia Li, Zhichao Liu, Guangyao Shi, Xiyang Wu, Fuxiao Liu, Cornelia Fermuller, Brandon Y. Feng, Yiannis Aloimonos
Abstract:
What role does the first frame play in video generation models? Traditionally, it's viewed as the spatial-temporal starting point of a video, merely a seed for subsequent animation. In this work, we reveal a fundamentally different perspective: video models implicitly treat the first frame as a conceptual memory buffer that stores visual entities for later reuse during generation. Leveraging this insight, we show that it's possible to achieve robust and generalized video content customization in diverse scenarios, using only 20-50 training examples without architectural changes or large-scale finetuning. This unveils a powerful, overlooked capability of video generation models for reference-based video customization.
Authors:PAN Team, Jiannan Xiang, Yi Gu, Zihan Liu, Zeyu Feng, Qiyue Gao, Yiyan Hu, Benhao Huang, Guangyi Liu, Yichi Yang, Kun Zhou, Davit Abrahamyan, Arif Ahmad, Ganesh Bannur, Junrong Chen, Kimi Chen, Mingkai Deng, Ruobing Han, Xinqi Huang, Haoqiang Kang, Zheqi Liu, Enze Ma, Hector Ren, Yashowardhan Shinde, Rohan Shingre, Ramsundar Tanikella, Kaiming Tao, Dequan Yang, Xinle Yu, Cong Zeng, Binglin Zhou, Zhengzhong Liu, Zhiting Hu, Eric P. Xing
Abstract:
A world model enables an intelligent agent to imagine, predict, and reason about how the world evolves in response to its actions, and accordingly to plan and strategize. While recent video generation models produce realistic visual sequences, they typically operate in the prompt-to-full-video manner without causal control, interactivity, or long-horizon consistency required for purposeful reasoning. Existing world modeling efforts, on the other hand, often focus on restricted domains (e.g., physical, game, or 3D-scene dynamics) with limited depth and controllability, and struggle to generalize across diverse environments and interaction formats. In this work, we introduce PAN, a general, interactable, and long-horizon world model that predicts future world states through high-quality video simulation conditioned on history and natural language actions. PAN employs the Generative Latent Prediction (GLP) architecture that combines an autoregressive latent dynamics backbone based on a large language model (LLM), which grounds simulation in extensive text-based knowledge and enables conditioning on language-specified actions, with a video diffusion decoder that reconstructs perceptually detailed and temporally coherent visual observations, to achieve a unification between latent space reasoning (imagination) and realizable world dynamics (reality). Trained on large-scale video-action pairs spanning diverse domains, PAN supports open-domain, action-conditioned simulation with coherent, long-term dynamics. Extensive experiments show that PAN achieves strong performance in action-conditioned world simulation, long-horizon forecasting, and simulative reasoning compared to other video generators and world models, taking a step towards general world models that enable predictive simulation of future world states for reasoning and acting.
Authors:Justin Cui, Jie Wu, Ming Li, Tao Yang, Xiaojie Li, Rui Wang, Andrew Bai, Yuanhao Ban, Cho-Jui Hsieh
Abstract:
Diffusion models have revolutionized image and video generation, achieving unprecedented visual quality. However, their reliance on transformer architectures incurs prohibitively high computational costs, particularly when extending generation to long videos. Recent work has explored autoregressive formulations for long video generation, typically by distilling from short-horizon bidirectional teachers. Nevertheless, given that teacher models cannot synthesize long videos, the extrapolation of student models beyond their training horizon often leads to pronounced quality degradation, arising from the compounding of errors within the continuous latent space. In this paper, we propose a simple yet effective approach to mitigate quality degradation in long-horizon video generation without requiring supervision from long-video teachers or retraining on long video datasets. Our approach centers on exploiting the rich knowledge of teacher models to provide guidance for the student model through sampled segments drawn from self-generated long videos. Our method maintains temporal consistency while scaling video length by up to 20x beyond teacher's capability, avoiding common issues such as over-exposure and error-accumulation without recomputing overlapping frames like previous methods. When scaling up the computation, our method shows the capability of generating videos up to 4 minutes and 15 seconds, equivalent to 99.9% of the maximum span supported by our base model's position embedding and more than 50x longer than that of our baseline model. Experiments on standard benchmarks and our proposed improved benchmark demonstrate that our approach substantially outperforms baseline methods in both fidelity and consistency. Our long-horizon videos demo can be found at https://self-forcing-plus-plus.github.io/
Authors:Jaechul Roh, Zachary Novack, Yuefeng Peng, Niloofar Mireshghallah, Taylor Berg-Kirkpatrick, Amir Houmansadr
Abstract:
Memorization in generative models extends far beyond verbatim text reproduction--it manifests through non-literal patterns, semantic associations, and surprisingly, across modalities in transcript-conditioned generation tasks such as Lyrics-to-Song (L2S) and Text-to-Video (T2V) models. We reveal a new class of cross-modality memorization where models trained on these tasks leak copyrighted content through indirect, phonetic pathways invisible to traditional text-based analysis. In this work, we introduce Adversarial PhoneTic Prompting (APT), an attack that replaces iconic phrases with homophonic alternatives--e.g., "mom's spaghetti" becomes "Bob's confetti"--preserving the acoustic form while largely changing semantic content. We demonstrate that models can be prompted to regurgitate memorized songs using phonetically similar but semantically unrelated lyrics. Despite the semantic drift, black-box models like SUNO and open-source models like YuE generate outputs that are strikingly similar to the original songs--melodically, rhythmically, and vocally--achieving high scores on AudioJudge, CLAP, and CoverID. These effects persist across genres and languages. More surprisingly, we find that phonetic prompts alone can trigger visual memorization in text-to-video models: when given altered lyrics from Lose Yourself, Veo 3 generates scenes that mirror the original music video--complete with a hooded rapper and dim urban settings--despite no explicit visual cues in the prompt. This cross-modality leakage represents an unprecedented threat: models memorize deep, structural patterns that transcend their training modality, making traditional safety measures like copyright filters ineffective. Our findings reveal a fundamental vulnerability in transcript-conditioned generative models and raise urgent concerns around copyright, provenance, and secure deployment of multimodal generation systems.
Authors:Bingqing Zhang, Zhuo Cao, Heming Du, Yang Li, Xue Li, Jiajun Liu, Sen Wang
Abstract:
Despite recent advances, Text-to-video retrieval (TVR) is still hindered by multiple inherent uncertainties, such as ambiguous textual queries, indistinct text-video mappings, and low-quality video frames. Although interactive systems have emerged to address these challenges by refining user intent through clarifying questions, current methods typically rely on heuristic or ad-hoc strategies without explicitly quantifying these uncertainties, limiting their effectiveness. Motivated by this gap, we propose UMIVR, an Uncertainty-Minimizing Interactive Text-to-Video Retrieval framework that explicitly quantifies three critical uncertainties-text ambiguity, mapping uncertainty, and frame uncertainty-via principled, training-free metrics: semantic entropy-based Text Ambiguity Score (TAS), Jensen-Shannon divergence-based Mapping Uncertainty Score (MUS), and a Temporal Quality-based Frame Sampler (TQFS). By adaptively generating targeted clarifying questions guided by these uncertainty measures, UMIVR iteratively refines user queries, significantly reducing retrieval ambiguity. Extensive experiments on multiple benchmarks validate UMIVR's effectiveness, achieving notable gains in Recall@1 (69.2\% after 10 interactive rounds) on the MSR-VTT-1k dataset, thereby establishing an uncertainty-minimizing foundation for interactive TVR.
Authors:Wenfeng Lin, Renjie Chen, Boyuan Liu, Shiyue Yan, Ruoyu Feng, Jiangchuan Wei, Yichen Zhang, Yimeng Zhou, Chao Feng, Jiao Ran, Qi Wu, Zuotao Liu, Mingyu Guo
Abstract:
Recent advances in video generation demand increasingly efficient training recipes to mitigate escalating computational costs. In this report, we present ContentV, an 8B-parameter text-to-video model that achieves state-of-the-art performance (85.14 on VBench) after training on 256 x 64GB Neural Processing Units (NPUs) for merely four weeks. ContentV generates diverse, high-quality videos across multiple resolutions and durations from text prompts, enabled by three key innovations: (1) A minimalist architecture that maximizes reuse of pre-trained image generation models for video generation; (2) A systematic multi-stage training strategy leveraging flow matching for enhanced efficiency; and (3) A cost-effective reinforcement learning with human feedback framework that improves generation quality without requiring additional human annotations. All the code and models are available at: https://contentv.github.io.
Authors:Bozheng Li, Yongliang Wu, Yi Lu, Jiashuo Yu, Licheng Tang, Jiawang Cao, Wenqing Zhu, Yuyang Sun, Jay Wu, Wenbo Zhu
Abstract:
Widely shared videos on the internet are often edited. Recently, although Video Large Language Models (Vid-LLMs) have made great progress in general video understanding tasks, their capabilities in video editing understanding (VEU) tasks remain unexplored. To address this gap, in this paper, we introduce VEU-Bench (Video Editing Understanding Benchmark), a comprehensive benchmark that categorizes video editing components across various dimensions, from intra-frame features like shot size to inter-shot attributes such as cut types and transitions. Unlike previous video editing understanding benchmarks that focus mainly on editing element classification, VEU-Bench encompasses 19 fine-grained tasks across three stages: recognition, reasoning, and judging. To enhance the annotation of VEU automatically, we built an annotation pipeline integrated with an ontology-based knowledge base. Through extensive experiments with 11 state-of-the-art Vid-LLMs, our findings reveal that current Vid-LLMs face significant challenges in VEU tasks, with some performing worse than random choice. To alleviate this issue, we develop Oscars, a VEU expert model fine-tuned on the curated VEU-Bench dataset. It outperforms existing open-source Vid-LLMs on VEU-Bench by over 28.3% in accuracy and achieves performance comparable to commercial models like GPT-4o. We also demonstrate that incorporating VEU data significantly enhances the performance of Vid-LLMs on general video understanding benchmarks, with an average improvement of 8.3% across nine reasoning tasks.
Authors:Kevin Xie, Amirmojtaba Sabour, Jiahui Huang, Despoina Paschalidou, Greg Klar, Umar Iqbal, Sanja Fidler, Xiaohui Zeng
Abstract:
High resolution panoramic video content is paramount for immersive experiences in Virtual Reality, but is non-trivial to collect as it requires specialized equipment and intricate camera setups. In this work, we introduce VideoPanda, a novel approach for synthesizing 360$^\circ$ videos conditioned on text or single-view video data. VideoPanda leverages multi-view attention layers to augment a video diffusion model, enabling it to generate consistent multi-view videos that can be combined into immersive panoramic content. VideoPanda is trained jointly using two conditions: text-only and single-view video, and supports autoregressive generation of long-videos. To overcome the computational burden of multi-view video generation, we randomly subsample the duration and camera views used during training and show that the model is able to gracefully generalize to generating more frames during inference. Extensive evaluations on both real-world and synthetic video datasets demonstrate that VideoPanda generates more realistic and coherent 360$^\circ$ panoramas across all input conditions compared to existing methods. Visit the project website at https://research.nvidia.com/labs/toronto-ai/VideoPanda/ for results.
Authors:Yihua Shao, Deyang Lin, Fanhu Zeng, Minxi Yan, Muyang Zhang, Siyu Chen, Yuxuan Fan, Ziyang Yan, Haozhe Wang, Jingcai Guo, Yan Wang, Haotong Qin, Hao Tang
Abstract:
Diffusion models have been widely adopted in image and video generation. However, their complex network architecture leads to high inference overhead for its generation process. Existing diffusion quantization methods primarily focus on the quantization of the model structure while ignoring the impact of time-steps variation during sampling. At the same time, most current approaches fail to account for significant activations that cannot be eliminated, resulting in substantial performance degradation after quantization. To address these issues, we propose Time-Rotation Diffusion Quantization (TR-DQ), a novel quantization method incorporating time-step and rotation-based optimization. TR-DQ first divides the sampling process based on time-steps and applies a rotation matrix to smooth activations and weights dynamically. For different time-steps, a dedicated hyperparameter is introduced for adaptive timing modeling, which enables dynamic quantization across different time steps. Additionally, we also explore the compression potential of Classifier-Free Guidance (CFG-wise) to establish a foundation for subsequent work. TR-DQ achieves state-of-the-art (SOTA) performance on image generation and video generation tasks and a 1.38-1.89x speedup and 1.97-2.58x memory reduction in inference compared to existing quantization methods.
Authors:Junchen Fu, Xuri Ge, Kaiwen Zheng, Ioannis Arapakis, Xin Xin, Joemon M. Jose
Abstract:
Popular Micro-videos, dominant on platforms like TikTok and YouTube, hold significant commercial value. The rise of high-quality AI-generated content has spurred interest in AI-driven micro-video creation. However, despite the advanced capabilities of large language models (LLMs) like ChatGPT and DeepSeek in text generation and reasoning, their potential to assist the creation of popular micro-videos remains largely unexplored.
In this paper, we conduct an empirical study on LLM-assisted popular micro-video generation (LLMPopcorn). Specifically, we investigate the following research questions: (i) How can LLMs be effectively utilized to assist popular micro-video generation? (ii) To what extent can prompt-based enhancements optimize the LLM-generated content for higher popularity? (iii) How well do various LLMs and video generators perform in the popular micro-video generation task? By exploring these questions, we show that advanced LLMs like DeepSeek-V3 enable micro-video generation to achieve popularity comparable to human-created content. Prompt enhancements further boost popularity, and benchmarking highlights DeepSeek-V3 and DeepSeek-R1 among LLMs, while LTX-Video and HunyuanVideo lead in video generation. This pioneering work advances AI-assisted micro-video creation, uncovering new research opportunities. We will release the code and datasets to support future studies.
Authors:Mohammad Asim, Christopher Wewer, Thomas Wimmer, Bernt Schiele, Jan Eric Lenssen
Abstract:
We introduce MEt3R, a metric for multi-view consistency in generated images. Large-scale generative models for multi-view image generation are rapidly advancing the field of 3D inference from sparse observations. However, due to the nature of generative modeling, traditional reconstruction metrics are not suitable to measure the quality of generated outputs and metrics that are independent of the sampling procedure are desperately needed. In this work, we specifically address the aspect of consistency between generated multi-view images, which can be evaluated independently of the specific scene. Our approach uses DUSt3R to obtain dense 3D reconstructions from image pairs in a feed-forward manner, which are used to warp image contents from one view into the other. Then, feature maps of these images are compared to obtain a similarity score that is invariant to view-dependent effects. Using MEt3R, we evaluate the consistency of a large set of previous methods for novel view and video generation, including our open, multi-view latent diffusion model.
Authors:Yunlong Yuan, Yuanfan Guo, Chunwei Wang, Hang Xu, Li Zhang
Abstract:
Recent advances in diffusion models have greatly improved text-driven video generation. However, training models for long video generation demands significant computational power and extensive data, leading most video diffusion models to be limited to a small number of frames. Existing training-free methods that attempt to generate long videos using pre-trained short video diffusion models often struggle with issues such as insufficient motion dynamics and degraded video fidelity. In this paper, we present Brick-Diffusion, a novel, training-free approach capable of generating long videos of arbitrary length. Our method introduces a brick-to-wall denoising strategy, where the latent is denoised in segments, with a stride applied in subsequent iterations. This process mimics the construction of a staggered brick wall, where each brick represents a denoised segment, enabling communication between frames and improving overall video quality. Through quantitative and qualitative evaluations, we demonstrate that Brick-Diffusion outperforms existing baseline methods in generating high-fidelity videos.
Authors:Kunpeng Song, Tingbo Hou, Zecheng He, Haoyu Ma, Jialiang Wang, Animesh Sinha, Sam Tsai, Yaqiao Luo, Xiaoliang Dai, Li Chen, Xide Xia, Peizhao Zhang, Peter Vajda, Ahmed Elgammal, Felix Juefei-Xu
Abstract:
In this paper, we introduce DirectorLLM, a novel video generation model that employs a large language model (LLM) to orchestrate human poses within videos. As foundational text-to-video models rapidly evolve, the demand for high-quality human motion and interaction grows. To address this need and enhance the authenticity of human motions, we extend the LLM from a text generator to a video director and human motion simulator. Utilizing open-source resources from Llama 3, we train the DirectorLLM to generate detailed instructional signals, such as human poses, to guide video generation. This approach offloads the simulation of human motion from the video generator to the LLM, effectively creating informative outlines for human-centric scenes. These signals are used as conditions by the video renderer, facilitating more realistic and prompt-following video generation. As an independent LLM module, it can be applied to different video renderers, including UNet and DiT, with minimal effort. Experiments on automatic evaluation benchmarks and human evaluations show that our model outperforms existing ones in generating videos with higher human motion fidelity, improved prompt faithfulness, and enhanced rendered subject naturalness.
Authors:Yintai Ma, Diego Klabjan, Jean Utke
Abstract:
The development of sophisticated models for video-to-video synthesis has been facilitated by recent advances in deep reinforcement learning and generative adversarial networks (GANs). In this paper, we propose RL-V2V-GAN, a new deep neural network approach based on reinforcement learning for unsupervised conditional video-to-video synthesis. While preserving the unique style of the source video domain, our approach aims to learn a mapping from a source video domain to a target video domain. We train the model using policy gradient and employ ConvLSTM layers to capture the spatial and temporal information by designing a fine-grained GAN architecture and incorporating spatio-temporal adversarial goals. The adversarial losses aid in content translation while preserving style. Unlike traditional video-to-video synthesis methods requiring paired inputs, our proposed approach is more general because it does not require paired inputs. Thus, when dealing with limited videos in the target domain, i.e., few-shot learning, it is particularly effective. Our experiments show that RL-V2V-GAN can produce temporally coherent video results. These results highlight the potential of our approach for further advances in video-to-video synthesis.
Authors:Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Jagadeesh, Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu, Mitesh Kumar Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sumbaly, Sai Saketh Rambhatla, Sam Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell, Sharadh Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe Li, Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Carleigh Wood, Ce Liu, Cen Peng, Dimitry Vengertsev, Edgar Schonfeld, Elliot Blanchard, Felix Juefei-Xu, Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar, Lawrence Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K. Sampson, Shikai Li, Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, Yuming Du
Abstract:
We present Movie Gen, a cast of foundation models that generates high-quality, 1080p HD videos with different aspect ratios and synchronized audio. We also show additional capabilities such as precise instruction-based video editing and generation of personalized videos based on a user's image. Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video personalization, video editing, video-to-audio generation, and text-to-audio generation. Our largest video generation model is a 30B parameter transformer trained with a maximum context length of 73K video tokens, corresponding to a generated video of 16 seconds at 16 frames-per-second. We show multiple technical innovations and simplifications on the architecture, latent spaces, training objectives and recipes, data curation, evaluation protocols, parallelization techniques, and inference optimizations that allow us to reap the benefits of scaling pre-training data, model size, and training compute for training large scale media generation models. We hope this paper helps the research community to accelerate progress and innovation in media generation models. All videos from this paper are available at https://go.fb.me/MovieGenResearchVideos.
Authors:Zecheng Zhao, Zhi Chen, Zi Huang, Shazia Sadiq, Tong Chen
Abstract:
Text-to-Video Retrieval (TVR) is essential in video platforms. Dense retrieval with dual-modality encoders leads in accuracy, but its computation and storage scale poorly with corpus size. Thus, real-time large-scale applications adopt two-stage retrieval, where a fast recall model gathers a small candidate pool, which is reranked by an advanced dense retriever. Due to hugely reduced candidates, the reranking model can use any off-the-shelf dense retriever without hurting efficiency, meaning the recall model bounds two-stage TVR performance. Recently, generative retrieval (GR) replaces dense video embeddings with discrete semantic IDs and retrieves by decoding text queries into ID tokens. GR offers near-constant inference and storage complexity, and its semantic IDs capture high-level video features via quantization, making it ideal for quickly eliminating irrelevant candidates during recall. However, as a recall model in two-stage TVR, GR suffers from (i) semantic ambiguity, where each video satisfies diverse queries but is forced into one semantic ID; and (ii) cross-modal misalignment, as semantic IDs are solely derived from visual features without text supervision. We propose Generative Recall and Dense Reranking (GRDR), designing a novel GR method to uplift recalled candidate quality. GRDR assigns multiple semantic IDs to each video using a query-guided multi-view tokenizer exposing diverse semantic access paths, and jointly trains the tokenizer and generative retriever via a shared codebook to cast semantic IDs as the semantic bridge between texts and videos. At inference, trie-constrained decoding generates a compact candidate set reranked by a dense model for fine-grained matching. Experiments on TVR benchmarks show GRDR matches strong dense retrievers in accuracy while reducing index storage by an order of magnitude and accelerating up to 300$\times$ in full-corpus retrieval.
Authors:Moo Jin Kim, Yihuai Gao, Tsung-Yi Lin, Yen-Chen Lin, Yunhao Ge, Grace Lam, Percy Liang, Shuran Song, Ming-Yu Liu, Chelsea Finn, Jinwei Gu
Abstract:
Recent video generation models demonstrate remarkable ability to capture complex physical interactions and scene evolution over time. To leverage their spatiotemporal priors, robotics works have adapted video models for policy learning but introduce complexity by requiring multiple stages of post-training and new architectural components for action generation. In this work, we introduce Cosmos Policy, a simple approach for adapting a large pretrained video model (Cosmos-Predict2) into an effective robot policy through a single stage of post-training on the robot demonstration data collected on the target platform, with no architectural modifications. Cosmos Policy learns to directly generate robot actions encoded as latent frames within the video model's latent diffusion process, harnessing the model's pretrained priors and core learning algorithm to capture complex action distributions. Additionally, Cosmos Policy generates future state images and values (expected cumulative rewards), which are similarly encoded as latent frames, enabling test-time planning of action trajectories with higher likelihood of success. In our evaluations, Cosmos Policy achieves state-of-the-art performance on the LIBERO and RoboCasa simulation benchmarks (98.5% and 67.1% average success rates, respectively) and the highest average score in challenging real-world bimanual manipulation tasks, outperforming strong diffusion policies trained from scratch, video model-based policies, and state-of-the-art vision-language-action models fine-tuned on the same robot demonstrations. Furthermore, given policy rollout data, Cosmos Policy can learn from experience to refine its world model and value function and leverage model-based planning to achieve even higher success rates in challenging tasks. We release code, models, and training data at https://research.nvidia.com/labs/dir/cosmos-policy/
Authors:Li Wang, Wenyu Chen, Ning Yu, Zheng Li, Shanqing Guo
Abstract:
The proliferation of powerful Text-to-Video (T2V) models, trained on massive web-scale datasets, raises urgent concerns about copyright and privacy violations. Membership inference attacks (MIAs) provide a principled tool for auditing such risks, yet existing techniques - designed for static data like images or text - fail to capture the spatio-temporal complexities of video generation. In particular, they overlook the sparsity of memorization signals in keyframes and the instability introduced by stochastic temporal dynamics. In this paper, we conduct the first systematic study of MIAs against T2V models and introduce a novel framework VidLeaks, which probes sparse-temporal memorization through two complementary signals: 1) Spatial Reconstruction Fidelity (SRF), using a Top-K similarity to amplify spatial memorization signals from sparsely memorized keyframes, and 2) Temporal Generative Stability (TGS), which measures semantic consistency across multiple queries to capture temporal leakage. We evaluate VidLeaks under three progressively restrictive black-box settings - supervised, reference-based, and query-only. Experiments on three representative T2V models reveal severe vulnerabilities: VidLeaks achieves AUC of 82.92% on AnimateDiff and 97.01% on InstructVideo even in the strict query-only setting, posing a realistic and exploitable privacy risk. Our work provides the first concrete evidence that T2V models leak substantial membership information through both sparse and temporal memorization, establishing a foundation for auditing video generation systems and motivating the development of new defenses. Code is available at: https://zenodo.org/records/17972831.
Authors:Qiyuan Zhang, Biao Gong, Shuai Tan, Zheng Zhang, Yujun Shen, Xing Zhu, Yuyuan Li, Kelu Yao, Chunhua Shen, Changqing Zou
Abstract:
Physical principles are fundamental to realistic visual simulation, but remain a significant oversight in transformer-based video generation. This gap highlights a critical limitation in rendering rigid body motion, a core tenet of classical mechanics. While computer graphics and physics-based simulators can easily model such collisions using Newton formulas, modern pretrain-finetune paradigms discard the concept of object rigidity during pixel-level global denoising. Even perfectly correct mathematical constraints are treated as suboptimal solutions (i.e., conditions) during model optimization in post-training, fundamentally limiting the physical realism of generated videos. Motivated by these considerations, we introduce, for the first time, a physics-aware reinforcement learning paradigm for video generation models that enforces physical collision rules directly in high-dimensional spaces, ensuring the physics knowledge is strictly applied rather than treated as conditions. Subsequently, we extend this paradigm to a unified framework, termed Mimicry-Discovery Cycle (MDcycle), which allows substantial fine-tuning while fully preserving the model's ability to leverage physics-grounded feedback. To validate our approach, we construct new benchmark PhysRVGBench and perform extensive qualitative and quantitative experiments to thoroughly assess its effectiveness.
Authors:Leslie Gu, Junhwa Hur, Charles Herrmann, Fangneng Zhan, Todd Zickler, Deqing Sun, Hanspeter Pfister
Abstract:
We introduce GeCo, a geometry-grounded metric for jointly detecting geometric deformation and occlusion-inconsistency artifacts in static scenes. By fusing residual motion and depth priors, GeCo produces interpretable, dense consistency maps that reveal these artifacts. We use GeCo to systematically benchmark recent video generation models, uncovering common failure modes, and further employ it as a training-free guidance loss to reduce deformation artifacts during video generation.
Authors:Yifei Yu, Xiaoshan Wu, Xinting Hu, Tao Hu, Yangtian Sun, Xiaoyang Lyu, Bo Wang, Lin Ma, Yuewen Ma, Zhongrui Wang, Xiaojuan Qi
Abstract:
Autoregressive (AR) diffusion enables streaming, interactive long-video generation by producing frames causally, yet maintaining coherence over minute-scale horizons remains challenging due to accumulated errors, motion drift, and content repetition. We approach this problem from a memory perspective, treating video synthesis as a recurrent dynamical process that requires coordinated short- and long-term context. We propose VideoSSM, a Long Video Model that unifies AR diffusion with a hybrid state-space memory. The state-space model (SSM) serves as an evolving global memory of scene dynamics across the entire sequence, while a context window provides local memory for motion cues and fine details. This hybrid design preserves global consistency without frozen, repetitive patterns, supports prompt-adaptive interaction, and scales in linear time with sequence length. Experiments on short- and long-range benchmarks demonstrate state-of-the-art temporal consistency and motion stability among autoregressive video generator especially at minute-scale horizons, enabling content diversity and interactive prompt-based control, thereby establishing a scalable, memory-aware framework for long video generation.
Authors:Pengbo Guo, Junke Wang, Zhen Xing, Chengxu Liu, Daoguo Dong, Xueming Qian, Zuxuan Wu
Abstract:
This paper presents DeRA, a novel 1D video tokenizer that decouples the spatial-temporal representation learning in video tokenization to achieve better training efficiency and performance. Specifically, DeRA maintains a compact 1D latent space while factorizing video encoding into appearance and motion streams, which are aligned with pretrained vision foundation models to capture the spatial semantics and temporal dynamics in videos separately. To address the gradient conflicts introduced by the heterogeneous supervision, we further propose the Symmetric Alignment-Conflict Projection (SACP) module that proactively reformulates gradients by suppressing the components along conflicting directions. Extensive experiments demonstrate that DeRA outperforms LARP, the previous state-of-the-art video tokenizer by 25% on UCF-101 in terms of rFVD. Moreover, using DeRA for autoregressive video generation, we also achieve new state-of-the-art results on both UCF-101 class-conditional generation and K600 frame prediction.
Authors:Yang Liu, Xilin Zhao, Peisong Wen, Siran Dai, Qingming Huang
Abstract:
Recent progress in video generation has led to impressive visual quality, yet current models still struggle to produce results that align with real-world physical principles. To this end, we propose an iterative self-refinement framework that leverages large language models and vision-language models to provide physics-aware guidance for video generation. Specifically, we introduce a multimodal chain-of-thought (MM-CoT) process that refines prompts based on feedback from physical inconsistencies, progressively enhancing generation quality. This method is training-free and plug-and-play, making it readily applicable to a wide range of video generation models. Experiments on the PhyIQ benchmark show that our method improves the Physics-IQ score from 56.31 to 62.38. We hope this work serves as a preliminary exploration of physics-consistent video generation and may offer insights for future research.
Authors:Yiqing Shen, Chenjia Li, Mathias Unberath
Abstract:
Text-driven video editing enables users to modify video content only using text queries. While existing methods can modify video content if explicit descriptions of editing targets with precise spatial locations and temporal boundaries are provided, these requirements become impractical when users attempt to conceptualize edits through implicit queries referencing semantic properties or object relationships. We introduce reasoning video editing, a task where video editing models must interpret implicit queries through multi-hop reasoning to infer editing targets before executing modifications, and a first model attempting to solve this complex task, RIVER (Reasoning-based Implicit Video Editor). RIVER decouples reasoning from generation through digital twin representations of video content that preserve spatial relationships, temporal trajectories, and semantic attributes. A large language model then processes this representation jointly with the implicit query, performing multi-hop reasoning to determine modifications, then outputs structured instructions that guide a diffusion-based editor to execute pixel-level changes. RIVER training uses reinforcement learning with rewards that evaluate reasoning accuracy and generation quality. Finally, we introduce RVEBenchmark, a benchmark of 100 videos with 519 implicit queries spanning three levels and categories of reasoning complexity specifically for reasoning video editing. RIVER demonstrates best performance on the proposed RVEBenchmark and also achieves state-of-the-art performance on two additional video editing benchmarks (VegGIE and FiVE), where it surpasses six baseline methods.
Authors:Yiqing Shen, Chenxiao Fan, Chenjia Li, Mathias Unberath
Abstract:
The goal of text-to-video retrieval is to search large databases for relevant videos based on text queries. Existing methods have progressed to handling explicit queries where the visual content of interest is described explicitly; however, they fail with implicit queries where identifying videos relevant to the query requires reasoning. We introduce reasoning text-to-video retrieval, a paradigm that extends traditional retrieval to process implicit queries through reasoning while providing object-level grounding masks that identify which entities satisfy the query conditions. Instead of relying on vision-language models directly, we propose representing video content as digital twins, i.e., structured scene representations that decompose salient objects through specialist vision models. This approach is beneficial because it enables large language models to reason directly over long-horizon video content without visual token compression. Specifically, our two-stage framework first performs compositional alignment between decomposed sub-queries and digital twin representations for candidate identification, then applies large language model-based reasoning with just-in-time refinement that invokes additional specialist models to address information gaps. We construct a benchmark of 447 manually created implicit queries with 135 videos (ReasonT2VBench-135) and another more challenging version of 1000 videos (ReasonT2VBench-1000). Our method achieves 81.2% R@1 on ReasonT2VBench-135, outperforming the strongest baseline by greater than 50 percentage points, and maintains 81.7% R@1 on the extended configuration while establishing state-of-the-art results in three conventional benchmarks (MSR-VTT, MSVD, and VATEX).
Authors:Dogucan Yaman, Fevziye Irem Eyiokur, Hazım Kemal Ekenel, Alexander Waibel
Abstract:
Inpainting-based talking face generation aims to preserve video details such as pose, lighting, and gestures while modifying only lip motion, often using an identity reference image to maintain speaker consistency. However, this mechanism can introduce lip leaking, where generated lips are influenced by the reference image rather than solely by the driving audio. Such leakage is difficult to detect with standard metrics and conventional test setup. To address this, we propose a systematic evaluation methodology to analyze and quantify lip leakage. Our framework employs three complementary test setups: silent-input generation, mismatched audio-video pairing, and matched audio-video synthesis. We also introduce derived metrics including lip-sync discrepancy and silent-audio-based lip-sync scores. In addition, we study how different identity reference selections affect leakage, providing insights into reference design. The proposed methodology is model-agnostic and establishes a more reliable benchmark for future research in talking face generation.
Authors:Guofeng Zhang, Angtian Wang, Jacob Zhiyuan Fang, Liming Jiang, Haotian Yang, Bo Liu, Yiding Yang, Guang Chen, Longyin Wen, Alan Yuille, Chongyang Ma
Abstract:
Text-to-video generation has advanced rapidly in visual fidelity, whereas standard methods still have limited ability to control the subject composition of generated scenes. Prior work shows that adding localized text control signals, such as bounding boxes or segmentation masks, can help. However, these methods struggle in complex scenarios and degrade in multi-object settings, offering limited precision and lacking a clear correspondence between individual trajectories and visual entities as the number of controllable objects increases. We introduce Text-Grounded Trajectories (TGT), a framework that conditions video generation on trajectories paired with localized text descriptions. We propose Location-Aware Cross-Attention (LACA) to integrate these signals and adopt a dual-CFG scheme to separately modulate local and global text guidance. In addition, we develop a data processing pipeline that produces trajectories with localized descriptions of tracked entities, and we annotate two million high quality video clips to train TGT. Together, these components enable TGT to use point trajectories as intuitive motion handles, pairing each trajectory with text to control both appearance and motion. Extensive experiments show that TGT achieves higher visual quality, more accurate text alignment, and improved motion controllability compared with prior approaches. Website: https://textgroundedtraj.github.io.
Authors:David Romero, Ariana Bermudez, Hao Li, Fabio Pizzati, Ivan Laptev
Abstract:
Recent models for video generation have achieved remarkable progress and are now deployed in film, social media production, and advertising. Beyond their creative potential, such models also hold promise as world simulators for robotics and embodied decision making. Despite strong advances, however, current approaches still struggle to generate physically plausible object interactions and lack physics-grounded control mechanisms. To address this limitation, we introduce KineMask, an approach for physics-guided video generation that enables realistic rigid body control, interactions, and effects. Given a single image and a specified object velocity, our method generates videos with inferred motions and future object interactions. We propose a two-stage training strategy that gradually removes future motion supervision via object masks. Using this strategy we train video diffusion models (VDMs) on synthetic scenes of simple interactions and demonstrate significant improvements of object interactions in real scenes. Furthermore, KineMask integrates low-level motion control with high-level textual conditioning via predictive scene descriptions, leading to effective support for synthesis of complex dynamical phenomena. Extensive experiments show that KineMask achieves strong improvements over recent models of comparable size. Ablation studies further highlight the complementary roles of low- and high-level conditioning in VDMs. Our code, model, and data will be made publicly available.
Authors:Seungwook Kim, Seunghyeon Lee, Minsu Cho
Abstract:
Generating realistic robot videos from explicit action trajectories is a critical step toward building effective world models and robotics foundation models. We introduce two training-free, inference-time techniques that fully exploit explicit action parameters in diffusion-based robot video generation. Instead of treating action vectors as passive conditioning signals, our methods actively incorporate them to guide both the classifier-free guidance process and the initialization of Gaussian latents. First, action-scaled classifier-free guidance dynamically modulates guidance strength in proportion to action magnitude, enhancing controllability over motion intensity. Second, action-scaled noise truncation adjusts the distribution of initially sampled noise to better align with the desired motion dynamics. Experiments on real robot manipulation datasets demonstrate that these techniques significantly improve action coherence and visual quality across diverse robot environments.
Authors:Guojun Lei, Chi Wang, Yikai Wang, Hong Li, Ying Song, Weiwei Xu
Abstract:
Generating videos guided by camera trajectories poses significant challenges in achieving consistency and generalizability, particularly when both camera and object motions are present. Existing approaches often attempt to learn these motions separately, which may lead to confusion regarding the relative motion between the camera and the objects. To address this challenge, we propose a novel approach that integrates both camera and object motions by converting them into the motion of corresponding pixels. Utilizing a stable diffusion network, we effectively learn reference motion maps in relation to the specified camera trajectory. These maps, along with an extracted semantic object prior, are then fed into an image-to-video network to generate the desired video that can accurately follow the designated camera trajectory while maintaining consistent object motions. Extensive experiments verify that our model outperforms SOTA methods by a large margin.
Authors:Zuhao Yang, Jiahui Zhang, Yingchen Yu, Shijian Lu, Song Bai
Abstract:
Leveraging text, images, structure maps, or motion trajectories as conditional guidance, diffusion models have achieved great success in automated and high-quality video generation. However, generating smooth and rational transition videos given the first and last video frames as well as descriptive text prompts is far underexplored. We present VTG, a Versatile Transition video Generation framework that can generate smooth, high-fidelity, and semantically coherent video transitions. VTG introduces interpolation-based initialization that helps preserve object identity and handle abrupt content changes effectively. In addition, it incorporates dual-directional motion fine-tuning and representation alignment regularization to mitigate the limitations of pre-trained image-to-video diffusion models in motion smoothness and generation fidelity, respectively. To evaluate VTG and facilitate future studies on unified transition generation, we collected TransitBench, a comprehensive benchmark for transition generation covering two representative transition tasks: concept blending and scene transition. Extensive experiments show that VTG achieves superior transition performance consistently across all four tasks.
Authors:Xuanchen Wang, Heng Wang, Weidong Cai
Abstract:
Modern artistic productions increasingly demand automated choreography generation that adapts to diverse musical styles and individual dancer characteristics. Existing approaches often fail to produce high-quality dance videos that harmonize with both musical rhythm and user-defined choreography styles, limiting their applicability in real-world creative contexts. To address this gap, we introduce ChoreoMuse, a diffusion-based framework that uses SMPL format parameters and their variation version as intermediaries between music and video generation, thereby overcoming the usual constraints imposed by video resolution. Critically, ChoreoMuse supports style-controllable, high-fidelity dance video generation across diverse musical genres and individual dancer characteristics, including the flexibility to handle any reference individual at any resolution. Our method employs a novel music encoder MotionTune to capture motion cues from audio, ensuring that the generated choreography closely follows the beat and expressive qualities of the input music. To quantitatively evaluate how well the generated dances match both musical and choreographic styles, we introduce two new metrics that measure alignment with the intended stylistic cues. Extensive experiments confirm that ChoreoMuse achieves state-of-the-art performance across multiple dimensions, including video quality, beat alignment, dance diversity, and style adherence, demonstrating its potential as a robust solution for a wide range of creative applications. Video results can be found on our project page: https://choreomuse.github.io.
Authors:Rui Huang, Guangyao Zhai, Zuria Bauer, Marc Pollefeys, Federico Tombari, Leonidas Guibas, Gao Huang, Francis Engelmann
Abstract:
Traditionally, 3D scene synthesis requires expert knowledge and significant manual effort. Automating this process could greatly benefit fields such as architectural design, robotics simulation, virtual reality, and gaming. Recent approaches to 3D scene synthesis often rely on the commonsense reasoning of large language models (LLMs) or strong visual priors of modern image generation models. However, current LLMs demonstrate limited 3D spatial reasoning ability, which restricts their ability to generate realistic and coherent 3D scenes. Meanwhile, image generation-based methods often suffer from constraints in viewpoint selection and multi-view inconsistencies. In this work, we present Video Perception models for 3D Scene synthesis (VIPScene), a novel framework that exploits the encoded commonsense knowledge of the 3D physical world in video generation models to ensure coherent scene layouts and consistent object placements across views. VIPScene accepts both text and image prompts and seamlessly integrates video generation, feedforward 3D reconstruction, and open-vocabulary perception models to semantically and geometrically analyze each object in a scene. This enables flexible scene synthesis with high realism and structural consistency. For more precise analysis, we further introduce First-Person View Score (FPVScore) for coherence and plausibility evaluation, utilizing continuous first-person perspective to capitalize on the reasoning ability of multimodal large language models. Extensive experiments show that VIPScene significantly outperforms existing methods and generalizes well across diverse scenarios. The code will be released.
Authors:Huixuan Zhang, Junzhe Zhang, Xiaojun Wan
Abstract:
With the rapid development of text-to-vision generation diffusion models, classifier-free guidance has emerged as the most prevalent method for conditioning. However, this approach inherently requires twice as many steps for model forwarding compared to unconditional generation, resulting in significantly higher costs. While previous study has introduced the concept of adaptive guidance, it lacks solid analysis and empirical results, making previous method unable to be applied to general diffusion models. In this work, we present another perspective of applying adaptive guidance and propose Step AG, which is a simple, universally applicable adaptive guidance strategy. Our evaluations focus on both image quality and image-text alignment. whose results indicate that restricting classifier-free guidance to the first several denoising steps is sufficient for generating high-quality, well-conditioned images, achieving an average speedup of 20% to 30%. Such improvement is consistent across different settings such as inference steps, and various models including video generation models, highlighting the superiority of our method.
Authors:Julian Quevedo, Percy Liang, Sherry Yang
Abstract:
Robotics has broad applications from automating house chores to taking care of patients. However, evaluating robot control policies is challenging, as real-world testing is expensive, while handcrafted simulations often fail to accurately reflect real-world conditions, resulting in poor correlation between simulated evaluation and real-world outcomes. In this work, we investigate World-model-based Policy Evaluation (WPE). We first train an action-conditioned video generation model as a proxy to real-world environments. To enable efficient rollouts of hundreds of interactive steps while mitigating error accumulation in the world model, we propose an inference scheme which we call Blockwise-Autoregressive Diffusion Transformer with adjustable context and decoding horizon lengths. To ensure that the world model indeed follows action input, we propose metrics based on the agreement between the ground truth video and generated video conditioned on the same sequence of actions to evaluate the world model. We then use the world model for policy evaluation by performing Monte Carlo rollouts in the world model while employing a vision-language model (VLM) as a reward function. Interestingly, we found that WPE tends to underestimate the policy values for in-distribution actions and overestimate policy values for out-of-distribution actions. Nevertheless, WPE preserves the relative rankings of different policies. In emulating real robot executions, WPE achieves high fidelity in mimicing robot arm movements as in real videos, while emulating highly realistic object interaction remains challenging. Despite this limitation, we show that a world model can serve as a starting point for evaluating robot policies before real-world deployment.
Authors:Nate Gillman, Charles Herrmann, Michael Freeman, Daksh Aggarwal, Evan Luo, Deqing Sun, Chen Sun
Abstract:
Recent advances in video generation models have sparked interest in world models capable of simulating realistic environments. While navigation has been well-explored, physically meaningful interactions that mimic real-world forces remain largely understudied. In this work, we investigate using physical forces as a control signal for video generation and propose force prompts which enable users to interact with images through both localized point forces, such as poking a plant, and global wind force fields, such as wind blowing on fabric. We demonstrate that these force prompts can enable videos to respond realistically to physical control signals by leveraging the visual and motion prior in the original pretrained model, without using any 3D asset or physics simulator at inference. The primary challenge of force prompting is the difficulty in obtaining high quality paired force-video training data, both in the real world due to the difficulty of obtaining force signals, and in synthetic data due to limitations in the visual quality and domain diversity of physics simulators. Our key finding is that video generation models can generalize remarkably well when adapted to follow physical force conditioning from videos synthesized by Blender, even with limited demonstrations of few objects. Our method can generate videos which simulate forces across diverse geometries, settings, and materials. We also try to understand the source of this generalization and perform ablations that reveal two key elements: visual diversity and the use of specific text keywords during training. Our approach is trained on only around 15k training examples for a single day on four A100 GPUs, and outperforms existing methods on force adherence and physics realism, bringing world models closer to real-world physics interactions. We release all datasets, code, weights, and interactive video demos at our project page.
Authors:Chris Rockwell, Joseph Tung, Tsung-Yi Lin, Ming-Yu Liu, David F. Fouhey, Chen-Hsuan Lin
Abstract:
Annotating camera poses on dynamic Internet videos at scale is critical for advancing fields like realistic video generation and simulation. However, collecting such a dataset is difficult, as most Internet videos are unsuitable for pose estimation. Furthermore, annotating dynamic Internet videos present significant challenges even for state-of-theart methods. In this paper, we introduce DynPose-100K, a large-scale dataset of dynamic Internet videos annotated with camera poses. Our collection pipeline addresses filtering using a carefully combined set of task-specific and generalist models. For pose estimation, we combine the latest techniques of point tracking, dynamic masking, and structure-from-motion to achieve improvements over the state-of-the-art approaches. Our analysis and experiments demonstrate that DynPose-100K is both large-scale and diverse across several key attributes, opening up avenues for advancements in various downstream applications.
Authors:Arun Reddy, Alexander Martin, Eugene Yang, Andrew Yates, Kate Sanders, Kenton Murray, Reno Kriz, Celso M. de Melo, Benjamin Van Durme, Rama Chellappa
Abstract:
In this work, we tackle the problem of text-to-video retrieval (T2VR). Inspired by the success of late interaction techniques in text-document, text-image, and text-video retrieval, our approach, Video-ColBERT, introduces a simple and efficient mechanism for fine-grained similarity assessment between queries and videos. Video-ColBERT is built upon 3 main components: a fine-grained spatial and temporal token-wise interaction, query and visual expansions, and a dual sigmoid loss during training. We find that this interaction and training paradigm leads to strong individual, yet compatible, representations for encoding video content. These representations lead to increases in performance on common text-to-video retrieval benchmarks compared to other bi-encoder methods.
Authors:Paula Andrea Pérez-Toro, Tomás Arias-Vergara, Fangxu Xing, Xiaofeng Liu, Maureen Stone, Jiachen Zhuo, Juan Rafael Orozco-Arroyave, Elmar Nöth, Jana Hutter, Jerry L. Prince, Andreas Maier, Jonghye Woo
Abstract:
Understanding the relationship between vocal tract motion during speech and the resulting acoustic signal is crucial for aided clinical assessment and developing personalized treatment and rehabilitation strategies. Toward this goal, we introduce an audio-to-video generation framework for creating Real Time/cine-Magnetic Resonance Imaging (RT-/cine-MRI) visuals of the vocal tract from speech signals. Our framework first preprocesses RT-/cine-MRI sequences and speech samples to achieve temporal alignment, ensuring synchronization between visual and audio data. We then employ a modified stable diffusion model, integrating structural and temporal blocks, to effectively capture movement characteristics and temporal dynamics in the synchronized data. This process enables the generation of MRI sequences from new speech inputs, improving the conversion of audio into visual data. We evaluated our framework on healthy controls and tongue cancer patients by analyzing and comparing the vocal tract movements in synthesized videos. Our framework demonstrated adaptability to new speech inputs and effective generalization. In addition, positive human evaluations confirmed its effectiveness, with realistic and accurate visualizations, suggesting its potential for outpatient therapy and personalized simulation of vocal tract visualizations.
Authors:Yitian Zhang, Long Mai, Aniruddha Mahapatra, David Bourgin, Yicong Hong, Jonah Casebeer, Feng Liu, Yun Fu
Abstract:
We present a novel perspective on learning video embedders for generative modeling: rather than requiring an exact reproduction of an input video, an effective embedder should focus on synthesizing visually plausible reconstructions. This relaxed criterion enables substantial improvements in compression ratios without compromising the quality of downstream generative models. Specifically, we propose replacing the conventional encoder-decoder video embedder with an encoder-generator framework that employs a diffusion transformer (DiT) to synthesize missing details from a compact latent space. Therein, we develop a dedicated latent conditioning module to condition the DiT decoder on the encoded video latent embedding. Our experiments demonstrate that our approach enables superior encoding-decoding performance compared to state-of-the-art methods, particularly as the compression ratio increases. To demonstrate the efficacy of our approach, we report results from our video embedders achieving a temporal compression ratio of up to 32x (8x higher than leading video embedders) and validate the robustness of this ultra-compact latent space for text-to-video generation, providing a significant efficiency boost in latent diffusion model training and inference.
Authors:Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu, Yuan-Chen Guo, Ding Liang, Wanli Ouyang, Yan-Pei Cao
Abstract:
Recent advancements in diffusion techniques have propelled image and video generation to unprecedented levels of quality, significantly accelerating the deployment and application of generative AI. However, 3D shape generation technology has so far lagged behind, constrained by limitations in 3D data scale, complexity of 3D data processing, and insufficient exploration of advanced techniques in the 3D domain. Current approaches to 3D shape generation face substantial challenges in terms of output quality, generalization capability, and alignment with input conditions. We present TripoSG, a new streamlined shape diffusion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images. Specifically, we propose: 1) A large-scale rectified flow transformer for 3D shape generation, achieving state-of-the-art fidelity through training on extensive, high-quality data. 2) A hybrid supervised training strategy combining SDF, normal, and eikonal losses for 3D VAE, achieving high-quality 3D reconstruction performance. 3) A data processing pipeline to generate 2 million high-quality 3D samples, highlighting the crucial rules for data quality and quantity in training 3D generative models. Through comprehensive experiments, we have validated the effectiveness of each component in our new framework. The seamless integration of these parts has enabled TripoSG to achieve state-of-the-art performance in 3D shape generation. The resulting 3D shapes exhibit enhanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input images. Moreover, TripoSG demonstrates improved versatility in generating 3D models from diverse image styles and contents, showcasing strong generalization capabilities. To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
Authors:Huijie Liu, Jingyun Wang, Shuai Ma, Jie Hu, Xiaoming Wei, Guoliang Kang
Abstract:
Motion customization aims to adapt the diffusion model (DM) to generate videos with the motion specified by a set of video clips with the same motion concept. To realize this goal, the adaptation of DM should be possible to model the specified motion concept, without compromising the ability to generate diverse appearances. Thus, the key to solving this problem lies in how to separate the motion concept from the appearance in the adaptation process of DM. Typical previous works explore different ways to represent and insert a motion concept into large-scale pretrained text-to-video diffusion models, e.g., learning a motion LoRA, using latent noise residuals, etc. While those methods can encode the motion concept, they also inevitably encode the appearance in the reference videos, resulting in weakened appearance generation capability. In this paper, we follow the typical way to learn a motion LoRA to encode the motion concept, but propose two novel strategies to enhance motion-appearance separation, including temporal attention purification (TAP) and appearance highway (AH). Specifically, we assume that in the temporal attention module, the pretrained Value embeddings are sufficient to serve as basic components needed by producing a new motion. Thus, in TAP, we choose only to reshape the temporal attention with motion LoRAs so that Value embeddings can be reorganized to produce a new motion. Further, in AH, we alter the starting point of each skip connection in U-Net from the output of each temporal attention module to the output of each spatial attention module. Extensive experiments demonstrate that compared to previous works, our method can generate videos with appearance more aligned with the text descriptions and motion more consistent with the reference videos.
Authors:Le Chen, Dahu Feng, Erhu Feng, Rong Zhao, Yingrui Wang, Yubin Xia, Haibo Chen, Pinjie Xu
Abstract:
With the rapid advancement of artificial intelligence technologies such as ChatGPT, AI agents and video generation,contemporary mobile systems have begun integrating these AI capabilities on local devices to enhance privacy and reduce response latency. To meet the computational demands of AI tasks, current mobile SoCs are equipped with diverse AI accelerators, including GPUs and Neural Processing Units (NPUs). However, there has not been a comprehensive characterization of these heterogeneous processors, and existing designs typically only leverage a single AI accelerator for LLM inference, leading to suboptimal use of computational resources and memory bandwidth. In this paper, we first summarize key performance characteristics of mobile SoC, including heterogeneous processors, unified memory, synchronization, etc. Drawing on these observations, we propose different tensor partition strategies to fulfill the distinct requirements of the prefill and decoding phases. We further design a fast synchronization mechanism that leverages the unified memory address provided by mobile SoCs. By employing these techniques, we present HeteroLLM, the fastest LLM inference engine in mobile devices which supports both layer-level and tensor-level heterogeneous execution. Evaluation results show that HeteroLLM achieves 9.99 and 4.36 performance improvement over other mobile-side LLM inference engines: MLC and MNN.
Authors:Bowen Hao, Dongliang Zhou, Xiaojie Li, Xingyu Zhang, Liang Xie, Jianlong Wu, Erwei Yin
Abstract:
Visual speech recognition (VSR), commonly known as lip reading, has garnered significant attention due to its wide-ranging practical applications. The advent of deep learning techniques and advancements in hardware capabilities have significantly enhanced the performance of lip reading models. Despite these advancements, existing datasets predominantly feature stable video recordings with limited variability in lip movements. This limitation results in models that are highly sensitive to variations encountered in real-world scenarios. To address this issue, we propose a novel framework, LipGen, which aims to improve model robustness by leveraging speech-driven synthetic visual data, thereby mitigating the constraints of current datasets. Additionally, we introduce an auxiliary task that incorporates viseme classification alongside attention mechanisms. This approach facilitates the efficient integration of temporal information, directing the model's focus toward the relevant segments of speech, thereby enhancing discriminative capabilities. Our method demonstrates superior performance compared to the current state-of-the-art on the lip reading in the wild (LRW) dataset and exhibits even more pronounced advantages under challenging conditions.
Authors:Xinyuan Wu, Lili Wang, Ruoyu Chen, Bowen Liu, Weiyi Zhang, Xi Yang, Yifan Feng, Mingguang He, Danli Shi
Abstract:
Fundus fluorescein angiography (FFA) is critical for diagnosing retinal vascular diseases, but beginners often struggle with image interpretation. This study develops FFA Sora, a text-to-video model that converts FFA reports into dynamic videos via a Wavelet-Flow Variational Autoencoder (WF-VAE) and a diffusion transformer (DiT). Trained on an anonymized dataset, FFA Sora accurately simulates disease features from the input text, as confirmed by objective metrics: Frechet Video Distance (FVD) = 329.78, Learned Perceptual Image Patch Similarity (LPIPS) = 0.48, and Visual-question-answering Score (VQAScore) = 0.61. Specific evaluations showed acceptable alignment between the generated videos and textual prompts, with BERTScore of 0.35. Additionally, the model demonstrated strong privacy-preserving performance in retrieval evaluations, achieving an average Recall@K of 0.073. Human assessments indicated satisfactory visual quality, with an average score of 1.570(scale: 1 = best, 5 = worst). This model addresses privacy concerns associated with sharing large-scale FFA data and enhances medical education.
Authors:Shuning Chang, Pichao Wang, Jiasheng Tang, Fan Wang, Yi Yang
Abstract:
Diffusion Transformers (DiT) are renowned for their impressive generative performance; however, they are significantly constrained by considerable computational costs due to the quadratic complexity in self-attention and the extensive sampling steps required. While advancements have been made in expediting the sampling process, the underlying architectural inefficiencies within DiT remain underexplored. We introduce SparseDiT, a novel framework that implements token sparsification across spatial and temporal dimensions to enhance computational efficiency while preserving generative quality. Spatially, SparseDiT employs a tri-segment architecture that allocates token density based on feature requirements at each layer: Poolingformer in the bottom layers for efficient global feature extraction, Sparse-Dense Token Modules (SDTM) in the middle layers to balance global context with local detail, and dense tokens in the top layers to refine high-frequency details. Temporally, SparseDiT dynamically modulates token density across denoising stages, progressively increasing token count as finer details emerge in later timesteps. This synergy between SparseDiT spatially adaptive architecture and its temporal pruning strategy enables a unified framework that balances efficiency and fidelity throughout the generation process. Our experiments demonstrate SparseDiT effectiveness, achieving a 55% reduction in FLOPs and a 175% improvement in inference speed on DiT-XL with similar FID score on 512x512 ImageNet, a 56% reduction in FLOPs across video generation datasets, and a 69% improvement in inference speed on PixArt-$α$ on text-to-image generation task with a 0.24 FID score decrease. SparseDiT provides a scalable solution for high-quality diffusion-based generation compatible with sampling optimization techniques.
Authors:Ruibo Ming, Jingwei Wu, Zhewei Huang, Zhuoxuan Ju, Jianming HU, Lihui Peng, Shuchang Zhou
Abstract:
Recent advancements in auto-regressive large language models (LLMs) have led to their application in video generation. This paper explores the use of Large Vision Models (LVMs) for video continuation, a task essential for building world models and predicting future frames. We introduce ARCON, a scheme that alternates between generating semantic and RGB tokens, allowing the LVM to explicitly learn high-level structural video information. We find high consistency in the RGB images and semantic maps generated without special design. Moreover, we employ an optical flow-based texture stitching method to enhance visual quality. Experiments in autonomous driving scenarios show that our model can consistently generate long videos.
Authors:Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester Cole, Serena Zhang, Tobias Pfaff, Tatiana Lopez-Guevara, Carl Doersch, Yusuf Aytar, Michael Rubinstein, Chen Sun, Oliver Wang, Andrew Owens, Deqing Sun
Abstract:
Motion control is crucial for generating expressive and compelling video content; however, most existing video generation models rely mainly on text prompts for control, which struggle to capture the nuances of dynamic actions and temporal compositions. To this end, we train a video generation model conditioned on spatio-temporally sparse or dense motion trajectories. In contrast to prior motion conditioning work, this flexible representation can encode any number of trajectories, object-specific or global scene motion, and temporally sparse motion; due to its flexibility we refer to this conditioning as motion prompts. While users may directly specify sparse trajectories, we also show how to translate high-level user requests into detailed, semi-dense motion prompts, a process we term motion prompt expansion. We demonstrate the versatility of our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing. Our results showcase emergent behaviors, such as realistic physics, suggesting the potential of motion prompts for probing video models and interacting with future generative world models. Finally, we evaluate quantitatively, conduct a human study, and demonstrate strong performance. Video results are available on our webpage: https://motion-prompting.github.io/
Authors:Weiyi Zhang, Jiancheng Yang, Ruoyu Chen, Siyu Huang, Pusheng Xu, Xiaolan Chen, Shanfu Lu, Hongyu Cao, Mingguang He, Danli Shi
Abstract:
Fundus fluorescein angiography (FFA) is crucial for diagnosing and monitoring retinal vascular issues but is limited by its invasive nature and restricted accessibility compared to color fundus (CF) imaging. Existing methods that convert CF images to FFA are confined to static image generation, missing the dynamic lesional changes. We introduce Fundus2Video, an autoregressive generative adversarial network (GAN) model that generates dynamic FFA videos from single CF images. Fundus2Video excels in video generation, achieving an FVD of 1497.12 and a PSNR of 11.77. Clinical experts have validated the fidelity of the generated videos. Additionally, the model's generator demonstrates remarkable downstream transferability across ten external public datasets, including blood vessel segmentation, retinal disease diagnosis, systemic disease prediction, and multimodal retrieval, showcasing impressive zero-shot and few-shot capabilities. These findings position Fundus2Video as a powerful, non-invasive alternative to FFA exams and a versatile retinal generative foundation model that captures both static and temporal retinal features, enabling the representation of complex inter-modality relationships.
Authors:Qian Tao, Wenyuan Yu, Jingren Zhou
Abstract:
Large language models have shown exceptional capabilities in a wide range of tasks, such as text generation and video generation, among others. However, due to their massive parameter count, these models often require substantial storage space, imposing significant constraints on the machines deploying LLMs. To overcome this limitation, one research direction proposes to compress the models using integer replacements for floating-point numbers, in a process known as Quantization. Some recent studies suggest quantizing the key and value cache (KV Cache) of LLMs, and designing quantization techniques that treat the key and value matrices equivalently.
This work delves deeper into the asymmetric structural roles of KV Cache, a phenomenon where the transformer's output loss is more sensitive to the quantization of key matrices. We conduct a systematic examination of the attention output error resulting from key and value quantization. The phenomenon inspires us to propose an asymmetric quantization strategy. Our approach allows for 1-bit quantization of the KV cache by implementing distinct configurations for key and value matrices. We carry out experiments across a variety of datasets, demonstrating that our proposed model allows for the quantization of up to 75% decoder layers with 1 bit, while simultaneously maintaining performance levels comparable to those of the models with floating parameters.
Authors:Achint Soni, Sreyas Venkataraman, Abhranil Chandra, Sebastian Fischmeister, Percy Liang, Bo Dai, Sherry Yang
Abstract:
Video generation has been used to generate visual plans for controlling robotic systems. Given an image observation and a language instruction, previous work has generated video plans which are then converted to robot controls to be executed. However, a major bottleneck in leveraging video generation for control lies in the quality of the generated videos, which often suffer from hallucinatory content and unrealistic physics, resulting in low task success when control actions are extracted from the generated videos. While scaling up dataset and model size provides a partial solution, integrating external feedback is both natural and essential for grounding video generation in the real world. With this observation, we propose VideoAgent for self-improving generated video plans based on external feedback. Instead of directly executing the generated video plan, VideoAgent first refines the generated video plans using a novel procedure which we call self-conditioning consistency, allowing inference-time compute to be turned into better generated video plans. As the refined video plan is being executed, VideoAgent can collect additional data from the environment to further improve video plan generation. Experiments in simulated robotic manipulation from MetaWorld and iTHOR show that VideoAgent drastically reduces hallucination, thereby boosting success rate of downstream manipulation tasks. We further illustrate that VideoAgent can effectively refine real-robot videos, providing an early indicator that robots can be an effective tool in grounding video generation in the physical world. Video demos and code can be found at https://video-as-agent.github.io.
Authors:Zhenglin Cheng, Peng Sun, Jianguo Li, Tao Lin
Abstract:
Recent advances in large multi-modal generative models have demonstrated impressive capabilities in multi-modal generation, including image and video generation. These models are typically built upon multi-step frameworks like diffusion and flow matching, which inherently limits their inference efficiency (requiring 40-100 Number of Function Evaluations (NFEs)). While various few-step methods aim to accelerate the inference, existing solutions have clear limitations. Prominent distillation-based methods, such as progressive and consistency distillation, either require an iterative distillation procedure or show significant degradation at very few steps (< 4-NFE). Meanwhile, integrating adversarial training into distillation (e.g., DMD/DMD2 and SANA-Sprint) to enhance performance introduces training instability, added complexity, and high GPU memory overhead due to the auxiliary trained models. To this end, we propose TwinFlow, a simple yet effective framework for training 1-step generative models that bypasses the need of fixed pretrained teacher models and avoids standard adversarial networks during training, making it ideal for building large-scale, efficient models. On text-to-image tasks, our method achieves a GenEval score of 0.83 in 1-NFE, outperforming strong baselines like SANA-Sprint (a GAN loss-based framework) and RCGM (a consistency-based framework). Notably, we demonstrate the scalability of TwinFlow by full-parameter training on Qwen-Image-20B and transform it into an efficient few-step generator. With just 1-NFE, our approach matches the performance of the original 100-NFE model on both the GenEval and DPG-Bench benchmarks, reducing computational cost by $100\times$ with minor quality degradation. Project page is available at https://zhenglin-cheng.com/twinflow.
Authors:Yafei Song, Peng Zhang, Bang Zhang
Abstract:
Synthesizing synchronized and natural co-speech gesture videos remains a formidable challenge. Recent approaches have leveraged motion graphs to harness the potential of existing video data. To retrieve an appropriate trajectory from the graph, previous methods either utilize the distance between features extracted from the input audio and those associated with the motions in the graph or embed both the input audio and motion into a shared feature space. However, these techniques may not be optimal due to the many-to-many mapping nature between audio and gestures, which cannot be adequately addressed by one-to-one mapping. To alleviate this limitation, we propose a novel framework that initially employs a diffusion model to generate gesture motions. The diffusion model implicitly learns the joint distribution of audio and motion, enabling the generation of contextually appropriate gestures from input audio sequences. Furthermore, our method extracts both low-level and high-level features from the input audio to enrich the training process of the diffusion model. Subsequently, a meticulously designed motion-based retrieval algorithm is applied to identify the most suitable path within the graph by assessing both global and local similarities in motion. Given that not all nodes in the retrieved path are sequentially continuous, the final step involves seamlessly stitching together these segments to produce a coherent video output. Experimental results substantiate the efficacy of our proposed method, demonstrating a significant improvement over prior approaches in terms of synchronization accuracy and naturalness of generated gestures.
Authors:Cheng Yang, Haiyuan Wan, Yiran Peng, Xin Cheng, Zhaoyang Yu, Jiayi Zhang, Junchi Yu, Xinlei Yu, Xiawu Zheng, Dongzhan Zhou, Chenglin Wu
Abstract:
Video Models have achieved remarkable success in high-fidelity video generation with coherent motion dynamics. Analogous to the development from text generation to text-based reasoning in language modeling, the development of video models motivates us to ask: Can video models reason via video generation? Compared with the discrete text corpus, video grounds reasoning in explicit spatial layouts and temporal continuity, which serves as an ideal substrate for spatial reasoning. In this work, we explore the reasoning via video paradigm and introduce VR-Bench -- a comprehensive benchmark designed to systematically evaluate video models' reasoning capabilities. Grounded in maze-solving tasks that inherently require spatial planning and multi-step reasoning, VR-Bench contains 7,920 procedurally generated videos across five maze types and diverse visual styles. Our empirical analysis demonstrates that SFT can efficiently elicit the reasoning ability of video model. Video models exhibit stronger spatial perception during reasoning, outperforming leading VLMs and generalizing well across diverse scenarios, tasks, and levels of complexity. We further discover a test-time scaling effect, where diverse sampling during inference improves reasoning reliability by 10--20%. These findings highlight the unique potential and scalability of reasoning via video for spatial reasoning tasks.
Authors:Xiangyu Fan, Zesong Qiu, Zhuguanyu Wu, Fanzhou Wang, Zhiqian Lin, Tianxiang Ren, Dahua Lin, Ruihao Gong, Lei Yang
Abstract:
Distribution Matching Distillation (DMD) distills score-based generative models into efficient one-step generators, without requiring a one-to-one correspondence with the sampling trajectories of their teachers. However, limited model capacity causes one-step distilled models underperform on complex generative tasks, e.g., synthesizing intricate object motions in text-to-video generation. Directly extending DMD to multi-step distillation increases memory usage and computational depth, leading to instability and reduced efficiency. While prior works propose stochastic gradient truncation as a potential solution, we observe that it substantially reduces the generation diversity of multi-step distilled models, bringing it down to the level of their one-step counterparts. To address these limitations, we propose Phased DMD, a multi-step distillation framework that bridges the idea of phase-wise distillation with Mixture-of-Experts (MoE), reducing learning difficulty while enhancing model capacity. Phased DMD is built upon two key ideas: progressive distribution matching and score matching within subintervals. First, our model divides the SNR range into subintervals, progressively refining the model to higher SNR levels, to better capture complex distributions. Next, to ensure the training objective within each subinterval is accurate, we have conducted rigorous mathematical derivations. We validate Phased DMD by distilling state-of-the-art image and video generation models, including Qwen-Image (20B parameters) and Wan2.2 (28B parameters). Experimental results demonstrate that Phased DMD preserves output diversity better than DMD while retaining key generative capabilities. We will release our code and models.
Authors:Weinan Jia, Yuning Lu, Mengqi Huang, Hualiang Wang, Binyuan Huang, Nan Chen, Mu Liu, Jidong Jiang, Zhendong Mao
Abstract:
Long video generation with Diffusion Transformers (DiTs) is bottlenecked by the quadratic scaling of full attention with sequence length. Since attention is highly redundant, outputs are dominated by a small subset of query-key pairs. Existing sparse methods rely on blockwise coarse estimation, whose accuracy-efficiency trade-offs are constrained by block size. This paper introduces Mixture-of-Groups Attention (MoGA), an efficient sparse attention that uses a lightweight, learnable token router to precisely match tokens without blockwise estimation. Through semantic-aware routing, MoGA enables effective long-range interactions. As a kernel-free method, MoGA integrates seamlessly with modern attention stacks, including FlashAttention and sequence parallelism. Building on MoGA, we develop an efficient long video generation model that end-to-end produces minute-level, multi-shot, 480p videos at 24 fps, with a context length of approximately 580k. Comprehensive experiments on various video generation tasks validate the effectiveness of our approach.
Authors:Zefan Cai, Haoyi Qiu, Haozhe Zhao, Ke Wan, Jiachen Li, Jiuxiang Gu, Wen Xiao, Nanyun Peng, Junjie Hu
Abstract:
Recent advances in video diffusion models have significantly enhanced text-to-video generation, particularly through alignment tuning using reward models trained on human preferences. While these methods improve visual quality, they can unintentionally encode and amplify social biases. To systematically trace how such biases evolve throughout the alignment pipeline, we introduce VideoBiasEval, a comprehensive diagnostic framework for evaluating social representation in video generation. Grounded in established social bias taxonomies, VideoBiasEval employs an event-based prompting strategy to disentangle semantic content (actions and contexts) from actor attributes (gender and ethnicity). It further introduces multi-granular metrics to evaluate (1) overall ethnicity bias, (2) gender bias conditioned on ethnicity, (3) distributional shifts in social attributes across model variants, and (4) the temporal persistence of bias within videos. Using this framework, we conduct the first end-to-end analysis connecting biases in human preference datasets, their amplification in reward models, and their propagation through alignment-tuned video diffusion models. Our results reveal that alignment tuning not only strengthens representational biases but also makes them temporally stable, producing smoother yet more stereotyped portrayals. These findings highlight the need for bias-aware evaluation and mitigation throughout the alignment process to ensure fair and socially responsible video generation.
Authors:Yushi Huang, Xingtong Ge, Ruihao Gong, Chengtao Lv, Jun Zhang
Abstract:
Video diffusion models (DMs) have enabled high-quality video synthesis. However, their computation costs scale quadratically with sequence length because self-attention has quadratic complexity. While linear attention lowers the cost, fully replacing quadratic attention requires expensive pretraining due to the limited expressiveness of linear attention and the complexity of spatiotemporal modeling in video generation. In this paper, we present LinVideo, an efficient data-free post-training framework that replaces a target number of self-attention modules with linear attention while preserving the original model's performance. First, we observe a significant disparity in the replaceability of different layers. Instead of manual or heuristic choices, we frame layer selection as a binary classification problem and propose selective transfer, which automatically and progressively converts layers to linear attention with minimal performance impact. Additionally, to overcome the ineffectiveness and inefficiency of existing objectives for this transfer process, we introduce an anytime distribution matching (ADM) objective that aligns the distributions of samples across any timestep along the sampling trajectory. This objective is efficient and recovers model performance. Extensive experiments show that our method achieves a 1.25-2.00x speedup while preserving generation quality, and our 4-step distilled model further delivers a 15.92x latency reduction with minimal visual quality drop.
Authors:Jiahao Wang, Zhenpei Yang, Yijing Bai, Yingwei Li, Yuliang Zou, Bo Sun, Abhijit Kundu, Jose Lezama, Luna Yue Huang, Zehao Zhu, Jyh-Jing Hwang, Dragomir Anguelov, Mingxing Tan, Chiyu Max Jiang
Abstract:
Recent advances in generative models have sparked exciting new possibilities in the field of autonomous vehicles. Specifically, video generation models are now being explored as controllable virtual testing environments. Simultaneously, end-to-end (E2E) driving models have emerged as a streamlined alternative to conventional modular autonomous driving systems, gaining popularity for their simplicity and scalability. However, the application of these techniques to simulation and planning raises important questions. First, while video generation models can generate increasingly realistic videos, can these videos faithfully adhere to the specified conditions and be realistic enough for E2E autonomous planner evaluation? Second, given that data is crucial for understanding and controlling E2E planners, how can we gain deeper insights into their biases and improve their ability to generalize to out-of-distribution scenarios? In this work, we bridge the gap between the driving models and generative world models (Drive&Gen) to address these questions. We propose novel statistical measures leveraging E2E drivers to evaluate the realism of generated videos. By exploiting the controllability of the video generation model, we conduct targeted experiments to investigate distribution gaps affecting E2E planner performance. Finally, we show that synthetic data produced by the video generation model offers a cost-effective alternative to real-world data collection. This synthetic data effectively improves E2E model generalization beyond existing Operational Design Domains, facilitating the expansion of autonomous vehicle services into new operational contexts.
Authors:Karim Farid, Rajat Sahay, Yumna Ali Alnaggar, Simon Schrodi, Volker Fischer, Cordelia Schmid, Thomas Brox
Abstract:
Compositional generalization, the ability to generate novel combinations of known concepts, is a key ingredient for visual generative models. Yet, not all mechanisms that enable or inhibit it are fully understood. In this work, we conduct a systematic study of how various design choices influence compositional generalization in image and video generation in a positive or negative way. Through controlled experiments, we identify two key factors: (i) whether the training objective operates on a discrete or continuous distribution, and (ii) to what extent conditioning provides information about the constituent concepts during training. Building on these insights, we show that relaxing the MaskGIT discrete loss with an auxiliary continuous JEPA-based objective can improve compositional performance in discrete models like MaskGIT.
Authors:Hao Zhang, Chun-Han Yao, Simon Donné, Narendra Ahuja, Varun Jampani
Abstract:
We present Stable Part Diffusion 4D (SP4D), a framework for generating paired RGB and kinematic part videos from monocular inputs. Unlike conventional part segmentation methods that rely on appearance-based semantic cues, SP4D learns to produce kinematic parts - structural components aligned with object articulation and consistent across views and time. SP4D adopts a dual-branch diffusion model that jointly synthesizes RGB frames and corresponding part segmentation maps. To simplify the architecture and flexibly enable different part counts, we introduce a spatial color encoding scheme that maps part masks to continuous RGB-like images. This encoding allows the segmentation branch to share the latent VAE from the RGB branch, while enabling part segmentation to be recovered via straightforward post-processing. A Bidirectional Diffusion Fusion (BiDiFuse) module enhances cross-branch consistency, supported by a contrastive part consistency loss to promote spatial and temporal alignment of part predictions. We demonstrate that the generated 2D part maps can be lifted to 3D to derive skeletal structures and harmonic skinning weights with few manual adjustments. To train and evaluate SP4D, we construct KinematicParts20K, a curated dataset of over 20K rigged objects selected and processed from Objaverse XL (Deitke et al., 2023), each paired with multi-view RGB and part video sequences. Experiments show that SP4D generalizes strongly to diverse scenarios, including real-world videos, novel generated objects, and rare articulated poses, producing kinematic-aware outputs suitable for downstream animation and motion-related tasks.
Authors:Jie Wu, Yu Gao, Zilyu Ye, Ming Li, Liang Li, Hanzhong Guo, Jie Liu, Zeyue Xue, Xiaoxia Hou, Wei Liu, Yan Zeng, Weilin Huang
Abstract:
Reward Models (RMs) are critical for improving generation models via Reinforcement Learning (RL), yet the RM scaling paradigm in visual generation remains largely unexplored. It primarily due to fundamental limitations in existing approaches: CLIP-based RMs suffer from architectural and input modality constraints, while prevalent Bradley-Terry losses are fundamentally misaligned with the next-token prediction mechanism of Vision-Language Models (VLMs), hindering effective scaling. More critically, the RLHF optimization process is plagued by Reward Hacking issue, where models exploit flaws in the reward signal without improving true quality. To address these challenges, we introduce RewardDance, a scalable reward modeling framework that overcomes these barriers through a novel generative reward paradigm. By reformulating the reward score as the model's probability of predicting a "yes" token, indicating that the generated image outperforms a reference image according to specific criteria, RewardDance intrinsically aligns reward objectives with VLM architectures. This alignment unlocks scaling across two dimensions: (1) Model Scaling: Systematic scaling of RMs up to 26 billion parameters; (2) Context Scaling: Integration of task-specific instructions, reference examples, and chain-of-thought (CoT) reasoning. Extensive experiments demonstrate that RewardDance significantly surpasses state-of-the-art methods in text-to-image, text-to-video, and image-to-video generation. Crucially, we resolve the persistent challenge of "reward hacking": Our large-scale RMs exhibit and maintain high reward variance during RL fine-tuning, proving their resistance to hacking and ability to produce diverse, high-quality outputs. It greatly relieves the mode collapse problem that plagues smaller models.
Authors:Xin Gao, Li Hu, Siqi Hu, Mingyang Huang, Chaonan Ji, Dechao Meng, Jinwei Qi, Penchong Qiao, Zhen Shen, Yafei Song, Ke Sun, Linrui Tian, Guangyuan Wang, Qi Wang, Zhongjian Wang, Jiayu Xiao, Sheng Xu, Bang Zhang, Peng Zhang, Xindi Zhang, Zhe Zhang, Jingren Zhou, Lian Zhuo
Abstract:
Current state-of-the-art (SOTA) methods for audio-driven character animation demonstrate promising performance for scenarios primarily involving speech and singing. However, they often fall short in more complex film and television productions, which demand sophisticated elements such as nuanced character interactions, realistic body movements, and dynamic camera work. To address this long-standing challenge of achieving film-level character animation, we propose an audio-driven model, which we refere to as Wan-S2V, built upon Wan. Our model achieves significantly enhanced expressiveness and fidelity in cinematic contexts compared to existing approaches. We conducted extensive experiments, benchmarking our method against cutting-edge models such as Hunyuan-Avatar and Omnihuman. The experimental results consistently demonstrate that our approach significantly outperforms these existing solutions. Additionally, we explore the versatility of our method through its applications in long-form video generation and precise video lip-sync editing.
Authors:Ge Wang, Songlin Fan, Hangxu Liu, Quanjian Song, Hewei Wang, Jinfeng Xu
Abstract:
With the prosper of video diffusion models, down-stream applications like video editing have been significantly promoted without consuming much computational cost. One particular challenge in this task lies at the motion transfer process from the source video to the edited one, where it requires the consideration of the shape deformation in between, meanwhile maintaining the temporal consistency in the generated video sequence. However, existing methods fail to model complicated motion patterns for video editing, and are fundamentally limited to object replacement, where tasks with non-rigid object motions like multi-object and portrait editing are largely neglected. In this paper, we observe that optical flows offer a promising alternative in complex motion modeling, and present FlowV2V to re-investigate video editing as a task of flow-driven Image-to-Video (I2V) generation. Specifically, FlowV2V decomposes the entire pipeline into first-frame editing and conditional I2V generation, and simulates pseudo flow sequence that aligns with the deformed shape, thus ensuring the consistency during editing. Experimental results on DAVIS-EDIT with improvements of 13.67% and 50.66% on DOVER and warping error illustrate the superior temporal consistency and sample quality of FlowV2V compared to existing state-of-the-art ones. Furthermore, we conduct comprehensive ablation studies to analyze the internal functionalities of the first-frame paradigm and flow alignment in the proposed method.
Authors:Shuo Cao, Yihao Liu, Xiaohui Li, Yuanting Gao, Yu Zhou, Chao Dong
Abstract:
Transformer-based models like ViViT and TimeSformer have advanced video understanding by effectively modeling spatiotemporal dependencies. Recent video generation models, such as Sora and Vidu, further highlight the power of transformers in long-range feature extraction and holistic spatiotemporal modeling. However, directly applying these models to real-world video super-resolution (VSR) is challenging, as VSR demands pixel-level precision, which can be compromised by tokenization and sequential attention mechanisms. While recent transformer-based VSR models attempt to address these issues using smaller patches and local attention, they still face limitations such as restricted receptive fields and dependence on optical flow-based alignment, which can introduce inaccuracies in real-world settings. To overcome these issues, we propose Dual Axial Spatial$\times$Temporal Transformer for Real-World Video Super-Resolution (DualX-VSR), which introduces a novel dual axial spatial$\times$temporal attention mechanism that integrates spatial and temporal information along orthogonal directions. DualX-VSR eliminates the need for motion compensation, offering a simplified structure that provides a cohesive representation of spatiotemporal information. As a result, DualX-VSR achieves high fidelity and superior performance in real-world VSR task.
Authors:Bolin Lai, Sangmin Lee, Xu Cao, Xiang Li, James M. Rehg
Abstract:
Text-image-to-video (TI2V) generation is a critical problem for controllable video generation using both semantic and visual conditions. Most existing methods typically add visual conditions to text-to-video (T2V) foundation models by finetuning, which is costly in resources and only limited to a few predefined conditioning settings. To tackle this issue, we introduce a unified formulation for TI2V generation with flexible visual conditioning. Furthermore, we propose an innovative training-free approach, dubbed FlexTI2V, that can condition T2V foundation models on an arbitrary amount of images at arbitrary positions. Specifically, we firstly invert the condition images to noisy representation in a latent space. Then, in the denoising process of T2V models, our method uses a novel random patch swapping strategy to incorporate visual features into video representations through local image patches. To balance creativity and fidelity, we use a dynamic control mechanism to adjust the strength of visual conditioning to each video frame. Extensive experiments validate that our method surpasses previous training-free image conditioning methods by a notable margin. We also show more insights of our method by detailed ablation study and analysis.
Authors:Peng Liu, Xiaoming Ren, Fengkai Liu, Qingsong Xie, Quanlong Zheng, Yanhao Zhang, Haonan Lu, Yujiu Yang
Abstract:
Recent advancements in image-to-video (I2V) generation have shown promising performance in conventional scenarios. However, these methods still encounter significant challenges when dealing with complex scenes that require a deep understanding of nuanced motion and intricate object-action relationships. To address these challenges, we present Dynamic-I2V, an innovative framework that integrates Multimodal Large Language Models (MLLMs) to jointly encode visual and textual conditions for a diffusion transformer (DiT) architecture. By leveraging the advanced multimodal understanding capabilities of MLLMs, our model significantly improves motion controllability and temporal coherence in synthesized videos. The inherent multimodality of Dynamic-I2V further enables flexible support for diverse conditional inputs, extending its applicability to various downstream generation tasks. Through systematic analysis, we identify a critical limitation in current I2V benchmarks: a significant bias towards favoring low-dynamic videos, stemming from an inadequate balance between motion complexity and visual quality metrics. To resolve this evaluation gap, we propose DIVE - a novel assessment benchmark specifically designed for comprehensive dynamic quality measurement in I2V generation. In conclusion, extensive quantitative and qualitative experiments confirm that Dynamic-I2V attains state-of-the-art performance in image-to-video generation, particularly revealing significant improvements of 42.5%, 7.9%, and 11.8% in dynamic range, controllability, and quality, respectively, as assessed by the DIVE metric in comparison to existing methods.
Authors:Shenggan Cheng, Yuanxin Wei, Lansong Diao, Yong Liu, Bujiao Chen, Lianghua Huang, Yu Liu, Wenyuan Yu, Jiangsu Du, Wei Lin, Yang You
Abstract:
Leveraging the diffusion transformer (DiT) architecture, models like Sora, CogVideoX and Wan have achieved remarkable progress in text-to-video, image-to-video, and video editing tasks. Despite these advances, diffusion-based video generation remains computationally intensive, especially for high-resolution, long-duration videos. Prior work accelerates its inference by skipping computation, usually at the cost of severe quality degradation. In this paper, we propose SRDiffusion, a novel framework that leverages collaboration between large and small models to reduce inference cost. The large model handles high-noise steps to ensure semantic and motion fidelity (Sketching), while the smaller model refines visual details in low-noise steps (Rendering). Experimental results demonstrate that our method outperforms existing approaches, over 3$\times$ speedup for Wan with nearly no quality loss for VBench, and 2$\times$ speedup for CogVideoX. Our method is introduced as a new direction orthogonal to existing acceleration strategies, offering a practical solution for scalable video generation.
Authors:Weihan Xu, Yimeng Ma, Jingyue Huang, Yang Li, Wenye Ma, Taylor Berg-Kirkpatrick, Julian McAuley, Paul Pu Liang, Hao-Wen Dong
Abstract:
Short videos are an effective tool for promoting contents and improving knowledge accessibility. While existing extractive video summarization methods struggle to produce a coherent narrative, existing abstractive methods cannot `quote' from the input videos, i.e., inserting short video clips in their outputs. In this work, we explore novel video editing models for generating shorts that feature a coherent narrative with embedded video insertions extracted from a long input video. We propose a novel retrieval-embedded generation framework that allows a large language model to quote multimodal resources while maintaining a coherent narrative. Our proposed REGen system first generates the output story script with quote placeholders using a finetuned large language model, and then uses a novel retrieval model to replace the quote placeholders by selecting a video clip that best supports the narrative from a pool of candidate quotable video clips. We examine the proposed method on the task of documentary teaser generation, where short interview insertions are commonly used to support the narrative of a documentary. Our objective evaluations show that the proposed method can effectively insert short video clips while maintaining a coherent narrative. In a subjective survey, we show that our proposed method outperforms existing abstractive and extractive approaches in terms of coherence, alignment, and realism in teaser generation.
Authors:Yushi Huang, Ruihao Gong, Jing Liu, Yifu Ding, Chengtao Lv, Haotong Qin, Jun Zhang
Abstract:
Video diffusion models (DMs) have enabled high-quality video synthesis. Yet, their substantial computational and memory demands pose serious challenges to real-world deployment, even on high-end GPUs. As a commonly adopted solution, quantization has proven notable success in reducing cost for image DMs, while its direct application to video DMs remains ineffective. In this paper, we present QVGen, a novel quantization-aware training (QAT) framework tailored for high-performance and inference-efficient video DMs under extremely low-bit quantization (e.g., 4-bit or below). We begin with a theoretical analysis demonstrating that reducing the gradient norm is essential to facilitate convergence for QAT. To this end, we introduce auxiliary modules ($Φ$) to mitigate large quantization errors, leading to significantly enhanced convergence. To eliminate the inference overhead of $Φ$, we propose a rank-decay strategy that progressively eliminates $Φ$. Specifically, we repeatedly employ singular value decomposition (SVD) and a proposed rank-based regularization $\mathbfγ$ to identify and decay low-contributing components. This strategy retains performance while zeroing out additional inference overhead. Extensive experiments across $4$ state-of-the-art (SOTA) video DMs, with parameter sizes ranging from $1.3\text{B}\sim14\text{B}$, show that QVGen is the first to reach full-precision comparable quality under 4-bit settings. Moreover, it significantly outperforms existing methods. For instance, our 3-bit CogVideoX-2B achieves improvements of $+25.28$ in Dynamic Degree and $+8.43$ in Scene Consistency on VBench.
Authors:Chun-Han Yao, Yiming Xie, Vikram Voleti, Huaizu Jiang, Varun Jampani
Abstract:
We present Stable Video 4D 2.0 (SV4D 2.0), a multi-view video diffusion model for dynamic 3D asset generation. Compared to its predecessor SV4D, SV4D 2.0 is more robust to occlusions and large motion, generalizes better to real-world videos, and produces higher-quality outputs in terms of detail sharpness and spatio-temporal consistency. We achieve this by introducing key improvements in multiple aspects: 1) network architecture: eliminating the dependency of reference multi-views and designing blending mechanism for 3D and frame attention, 2) data: enhancing quality and quantity of training data, 3) training strategy: adopting progressive 3D-4D training for better generalization, and 4) 4D optimization: handling 3D inconsistency and large motion via 2-stage refinement and progressive frame sampling. Extensive experiments demonstrate significant performance gain by SV4D 2.0 both visually and quantitatively, achieving better detail (-14\% LPIPS) and 4D consistency (-44\% FV4D) in novel-view video synthesis and 4D optimization (-12\% LPIPS and -24\% FV4D) compared to SV4D. Project page: https://sv4d20.github.io.
Authors:Lei Ke, Haohang Xu, Xuefei Ning, Yu Li, Jiajun Li, Haoling Li, Yuxuan Lin, Dongsheng Jiang, Yujiu Yang, Linfeng Zhang
Abstract:
Diffusion models have achieved significant progress in both image and video generation while still suffering from huge computation costs. As an effective solution, flow matching aims to reflow the diffusion process of diffusion models into a straight line for a few-step and even one-step generation. However, in this paper, we suggest that the original training pipeline of flow matching is not optimal and introduce two techniques to improve it. Firstly, we introduce progressive reflow, which progressively reflows the diffusion models in local timesteps until the whole diffusion progresses, reducing the difficulty of flow matching. Second, we introduce aligned v-prediction, which highlights the importance of direction matching in flow matching over magnitude matching. Experimental results on SDv1.5 and SDXL demonstrate the effectiveness of our method, for example, conducting on SDv1.5 achieves an FID of 10.70 on MSCOCO2014 validation set with only 4 sampling steps, close to our teacher model (32 DDIM steps, FID = 10.05).
Authors:Zeyuan Chen, Hongyi Xu, Guoxian Song, You Xie, Chenxu Zhang, Xin Chen, Chao Wang, Di Chang, Linjie Luo
Abstract:
We present X-Dancer, a novel zero-shot music-driven image animation pipeline that creates diverse and long-range lifelike human dance videos from a single static image. As its core, we introduce a unified transformer-diffusion framework, featuring an autoregressive transformer model that synthesize extended and music-synchronized token sequences for 2D body, head and hands poses, which then guide a diffusion model to produce coherent and realistic dance video frames. Unlike traditional methods that primarily generate human motion in 3D, X-Dancer addresses data limitations and enhances scalability by modeling a wide spectrum of 2D dance motions, capturing their nuanced alignment with musical beats through readily available monocular videos. To achieve this, we first build a spatially compositional token representation from 2D human pose labels associated with keypoint confidences, encoding both large articulated body movements (e.g., upper and lower body) and fine-grained motions (e.g., head and hands). We then design a music-to-motion transformer model that autoregressively generates music-aligned dance pose token sequences, incorporating global attention to both musical style and prior motion context. Finally we leverage a diffusion backbone to animate the reference image with these synthesized pose tokens through AdaIN, forming a fully differentiable end-to-end framework. Experimental results demonstrate that X-Dancer is able to produce both diverse and characterized dance videos, substantially outperforming state-of-the-art methods in term of diversity, expressiveness and realism. Code and model will be available for research purposes.
Authors:Sixiao Zheng, Zimian Peng, Yanpeng Zhou, Yi Zhu, Hang Xu, Xiangru Huang, Yanwei Fu
Abstract:
Recent image-to-video generation methods have demonstrated success in enabling control over one or two visual elements, such as camera motion or object motion. However, these methods are unable to offer control over multiple visual elements due to limitations in data and network efficacy. In this paper, we introduce VidCRAFT3, a novel framework for precise image-to-video generation that enables control over camera motion, object motion, and lighting direction simultaneously. VidCRAFT3 integrates three core components: Image2Cloud generates 3D point cloud from a reference image; ObjMotionNet encodes sparse object trajectories using multi-scale optical flow features; and Spatial Triple-Attention Transformer incorporates lighting direction embeddings via parallel cross-attention modules. Additionally, we introduce the VideoLightingDirection dataset, providing synthetic yet realistic video clips with accurate per-frame lighting direction annotations, effectively mitigating the lack of annotated real-world datasets. We further adopt a three-stage training strategy, ensuring robust learning even without joint multi-element annotations. Extensive experiments show that VidCRAFT3 produces high-quality video content, outperforming state-of-the-art methods in control granularity and visual coherence. Code and data will be publicly available.
Authors:Yang Cao, Zhao Song, Chiwun Yang
Abstract:
This paper considers an efficient video modeling process called Video Latent Flow Matching (VLFM). Unlike prior works, which randomly sampled latent patches for video generation, our method relies on current strong pre-trained image generation models, modeling a certain caption-guided flow of latent patches that can be decoded to time-dependent video frames. We first speculate multiple images of a video are differentiable with respect to time in some latent space. Based on this conjecture, we introduce the HiPPO framework to approximate the optimal projection for polynomials to generate the probability path. Our approach gains the theoretical benefits of the bounded universal approximation error and timescale robustness. Moreover, VLFM processes the interpolation and extrapolation abilities for video generation with arbitrary frame rates. We conduct experiments on several text-to-video datasets to showcase the effectiveness of our method.
Authors:Abul Ehtesham, Saket Kumar, Aditi Singh, Tala Talaei Khoei
Abstract:
Generative AI is reshaping the media landscape, enabling unprecedented capabilities in video creation, personalization, and scalability. This paper presents a comprehensive SWOT analysis of Metas Movie Gen, a cutting-edge generative AI foundation model designed to produce 1080p HD videos with synchronized audio from simple text prompts. We explore its strengths, including high-resolution video generation, precise editing, and seamless audio integration, which make it a transformative tool across industries such as filmmaking, advertising, and education. However, the analysis also addresses limitations, such as constraints on video length and potential biases in generated content, which pose challenges for broader adoption. In addition, we examine the evolving regulatory and ethical considerations surrounding generative AI, focusing on issues like content authenticity, cultural representation, and responsible use. Through comparative insights with leading models like DALL-E and Google Imagen, this paper highlights Movie Gens unique features, such as video personalization and multimodal synthesis, while identifying opportunities for innovation and areas requiring further research. Our findings provide actionable insights for stakeholders, emphasizing both the opportunities and challenges of deploying generative AI in media production. This work aims to guide future advancements in generative AI, ensuring scalability, quality, and ethical integrity in this rapidly evolving field.
Authors:Tongkai Shi, Lianyu Hu, Fanhua Shang, Jichao Feng, Peidong Liu, Wei Feng
Abstract:
Sign language videos are an important medium for spreading and learning sign language. However, most existing human image synthesis methods produce sign language images with details that are distorted, blurred, or structurally incorrect. They also produce sign language video frames with poor temporal consistency, with anomalies such as flickering and abrupt detail changes between the previous and next frames. To address these limitations, we propose a novel Pose-Guided Motion Model (PGMM) for generating fine-grained and motion-consistent sign language videos. Firstly, we propose a new Coarse Motion Module (CMM), which completes the deformation of features by optical flow warping, thus transfering the motion of coarse-grained structures without changing the appearance; Secondly, we propose a new Pose Fusion Module (PFM), which guides the modal fusion of RGB and pose features, thus completing the fine-grained generation. Finally, we design a new metric, Temporal Consistency Difference (TCD) to quantitatively assess the degree of temporal consistency of a video by comparing the difference between the frames of the reconstructed video and the previous and next frames of the target video. Extensive qualitative and quantitative experiments show that our method outperforms state-of-the-art methods in most benchmark tests, with visible improvements in details and temporal consistency.
Authors:Xiaochuang Han, Youssef Emad, Melissa Hall, John Nguyen, Karthik Padthe, Liam Robbins, Amir Bar, Delong Chen, Michal Drozdzal, Maha Elbayad, Yushi Hu, Shang-Wen Li, Sreya Dutta Roy, Jakob Verbeek, XuDong Wang, Marjan Ghazvininejad, Luke Zettlemoyer, Emily Dinan
Abstract:
Video generation models are rapidly advancing, but can still struggle with complex video outputs that require significant semantic branching or repeated high-level reasoning about what should happen next. In this paper, we introduce a new class of omni video-text models that integrate ideas from recent LM reasoning advances to address this challenge. More specifically, we present TV2TV, a unified generative modeling framework which decomposes video generation into an interleaved text and video generation process. TV2TV jointly learns language modeling (next-token prediction) and video flow matching (next-frame prediction) using a Mixture-of-Transformers (MoT) architecture. At inference time, TV2TV decides when to alternate between generating text and video frames, allowing the model to "think in words" about subsequent content before ``acting in pixels'' to produce frames. This design offloads much of the responsibility for deciding what should happen next to the language modeling tower, enabling improved visual quality and prompt alignment of generated videos. It also enables fine-grained controllability, allowing users to modify the video generation trajectory through text interventions at any point in the process. In controlled experiments on video game data, TV2TV demonstrates substantial improvements in both visual quality and controllability. TV2TV also scales to natural videos, as we show by augmenting sports videos with interleaved natural language action descriptions using vision-language models (VLMs). Training TV2TV on this corpus yields strong visual quality and prompt alignment, showcasing the model's ability to reason about and generate complex real-world action sequences. Together, these results highlight TV2TV as a promising step toward video generation with open-ended textual reasoning and control.
Authors:Ruiying Liu, Yuanzhi Liang, Haibin Huang, Tianshu Yu, Chi Zhang
Abstract:
Group Relative Policy Optimization (GRPO) has emerged as an effective and lightweight framework for post-training visual generative models. However, its performance is fundamentally limited by the ambiguity of textual visual correspondence: a single prompt may validly describe diverse visual outputs, and a single image or video may support multiple equally correct interpretations. This many to many relationship leads reward models to generate uncertain and weakly discriminative signals, causing GRPO to underutilize reliable feedback and overfit noisy ones. We introduce Bayesian Prior-Guided Optimization (BPGO), a novel extension of GRPO that explicitly models reward uncertainty through a semantic prior anchor. BPGO adaptively modulates optimization trust at two levels: inter-group Bayesian trust allocation emphasizes updates from groups consistent with the prior while down-weighting ambiguous ones, and intra-group prior-anchored renormalization sharpens sample distinctions by expanding confident deviations and compressing uncertain scores. Across both image and video generation tasks, BPGO delivers consistently stronger semantic alignment, enhanced perceptual fidelity, and faster convergence than standard GRPO and recent variants.
Authors:Kaisi Guan, Xihua Wang, Zhengfeng Lai, Xin Cheng, Peng Zhang, XiaoJiang Liu, Ruihua Song, Meng Cao
Abstract:
This study focuses on a challenging yet promising task, Text-to-Sounding-Video (T2SV) generation, which aims to generate a video with synchronized audio from text conditions, meanwhile ensuring both modalities are aligned with text. Despite progress in joint audio-video training, two critical challenges still remain unaddressed: (1) a single, shared text caption where the text for video is equal to the text for audio often creates modal interference, confusing the pretrained backbones, and (2) the optimal mechanism for cross-modal feature interaction remains unclear. To address these challenges, we first propose the Hierarchical Visual-Grounded Captioning (HVGC) framework that generates pairs of disentangled captions, a video caption, and an audio caption, eliminating interference at the conditioning stage. Based on HVGC, we further introduce BridgeDiT, a novel dual-tower diffusion transformer, which employs a Dual CrossAttention (DCA) mechanism that acts as a robust ``bridge" to enable a symmetric, bidirectional exchange of information, achieving both semantic and temporal synchronization. Extensive experiments on three benchmark datasets, supported by human evaluations, demonstrate that our method achieves state-of-the-art results on most metrics. Comprehensive ablation studies further validate the effectiveness of our contributions, offering key insights for the future T2SV task. All the codes and checkpoints will be publicly released.
Authors:Marcelo Sandoval-Castaneda, Bryan Russell, Josef Sivic, Gregory Shakhnarovich, Fabian Caba Heilbron
Abstract:
Automated tools for video editing and assembly have applications ranging from filmmaking and advertisement to content creation for social media. Previous video editing work has mainly focused on either retrieval or user interfaces, leaving actual editing to the user. In contrast, we propose to automate the core task of video editing, formulating it as sequential decision making process. Ours is a multi-agent approach. We design an Editor agent and a Critic agent. The Editor takes as input a collection of video clips together with natural language instructions and uses tools commonly found in video editing software to produce an edited sequence. On the other hand, the Critic gives natural language feedback to the editor based on the produced sequence or renders it if it is satisfactory. We introduce a learning-based approach for enabling effective communication across specialized agents to address the language-driven video editing task. Finally, we explore an LLM-as-a-judge metric for evaluating the quality of video editing system and compare it with general human preference. We evaluate our system's output video sequences qualitatively and quantitatively through a user study and find that our system vastly outperforms existing approaches in terms of coverage, time constraint satisfaction, and human preference.
Authors:Guotao Liang, Juncheng Hu, Ximing Xing, Jing Zhang, Qian Yu
Abstract:
We introduce GroupSketch, a novel method for vector sketch animation that effectively handles multi-object interactions and complex motions. Existing approaches struggle with these scenarios, either being limited to single-object cases or suffering from temporal inconsistency and poor generalization. To address these limitations, our method adopts a two-stage pipeline comprising Motion Initialization and Motion Refinement. In the first stage, the input sketch is interactively divided into semantic groups and key frames are defined, enabling the generation of a coarse animation via interpolation. In the second stage, we propose a Group-based Displacement Network (GDN), which refines the coarse animation by predicting group-specific displacement fields, leveraging priors from a text-to-video model. GDN further incorporates specialized modules, such as Context-conditioned Feature Enhancement (CCFE), to improve temporal consistency. Extensive experiments demonstrate that our approach significantly outperforms existing methods in generating high-quality, temporally consistent animations for complex, multi-object sketches, thus expanding the practical applications of sketch animation.
Authors:Tianchen Zhao, Ke Hong, Xinhao Yang, Xuefeng Xiao, Huixia Li, Feng Ling, Ruiqi Xie, Siqi Chen, Hongyu Zhu, Yichong Zhang, Yu Wang
Abstract:
In visual generation, the quadratic complexity of attention mechanisms results in high memory and computational costs, especially for longer token sequences required in high-resolution image or multi-frame video generation. To address this, prior research has explored techniques such as sparsification and quantization. However, these techniques face significant challenges under low density and reduced bitwidths. Through systematic analysis, we identify that the core difficulty stems from the dispersed and irregular characteristics of visual attention patterns. Therefore, instead of introducing specialized sparsification and quantization design to accommodate such patterns, we propose an alternative strategy: *reorganizing* the attention pattern to alleviate the challenges. Inspired by the local aggregation nature of visual feature extraction, we design a novel **Pattern-Aware token ReOrdering (PARO)** technique, which unifies the diverse attention patterns into a hardware-friendly block-wise pattern. This unification substantially simplifies and enhances both sparsification and quantization. We evaluate the performance-efficiency trade-offs of various design choices and finalize a methodology tailored for the unified pattern. Our approach, **PAROAttention**, achieves video and image generation with lossless metrics, and nearly identical results from full-precision (FP) baselines, while operating at notably lower density (~20%-30%) and bitwidth (**INT8/INT4**), achieving a **1.9x** to **2.7x** end-to-end latency speedup.
Authors:Qiaowei Miao, Kehan Li, Jinsheng Quan, Zhiyuan Min, Shaojie Ma, Yichao Xu, Yi Yang, Ping Liu, Yawei Luo
Abstract:
Generative artificial intelligence has recently progressed from static image and video synthesis to 3D content generation, culminating in the emergence of 4D generation-the task of synthesizing temporally coherent dynamic 3D assets guided by user input. As a burgeoning research frontier, 4D generation enables richer interactive and immersive experiences, with applications ranging from digital humans to autonomous driving. Despite rapid progress, the field lacks a unified understanding of 4D representations, generative frameworks, basic paradigms, and the core technical challenges it faces. This survey provides a systematic and in-depth review of the 4D generation landscape. To comprehensively characterize 4D generation, we first categorize fundamental 4D representations and outline associated techniques for 4D generation. We then present an in-depth analysis of representative generative pipelines based on conditions and representation methods. Subsequently, we discuss how motion and geometry priors are integrated into 4D outputs to ensure spatio-temporal consistency under various control schemes. From an application perspective, this paper summarizes 4D generation tasks in areas such as dynamic object/scene generation, digital human synthesis, editable 4D content, and embodied AI. Furthermore, we summarize and multi-dimensionally compare four basic paradigms for 4D generation: End-to-End, Generated-Data-Based, Implicit-Distillation-Based, and Explicit-Supervision-Based. Concluding our analysis, we highlight five key challenges-consistency, controllability, diversity, efficiency, and fidelity-and contextualize these with current approaches.By distilling recent advances and outlining open problems, this work offers a comprehensive and forward-looking perspective to guide future research in 4D generation.
Authors:Sili Chen, Hengkai Guo, Shengnan Zhu, Feihu Zhang, Zilong Huang, Jiashi Feng, Bingyi Kang
Abstract:
Depth Anything has achieved remarkable success in monocular depth estimation with strong generalization ability. However, it suffers from temporal inconsistency in videos, hindering its practical applications. Various methods have been proposed to alleviate this issue by leveraging video generation models or introducing priors from optical flow and camera poses. Nonetheless, these methods are only applicable to short videos (< 10 seconds) and require a trade-off between quality and computational efficiency. We propose Video Depth Anything for high-quality, consistent depth estimation in super-long videos (over several minutes) without sacrificing efficiency. We base our model on Depth Anything V2 and replace its head with an efficient spatial-temporal head. We design a straightforward yet effective temporal consistency loss by constraining the temporal depth gradient, eliminating the need for additional geometric priors. The model is trained on a joint dataset of video depth and unlabeled images, similar to Depth Anything V2. Moreover, a novel key-frame-based strategy is developed for long video inference. Experiments show that our model can be applied to arbitrarily long videos without compromising quality, consistency, or generalization ability. Comprehensive evaluations on multiple video benchmarks demonstrate that our approach sets a new state-of-the-art in zero-shot video depth estimation. We offer models of different scales to support a range of scenarios, with our smallest model capable of real-time performance at 30 FPS.
Authors:Xinyang Zhou, Fanyue Wei, Lixin Duan, Angela Yao, Wen Li
Abstract:
Given a textual query along with a corresponding video, the objective of moment retrieval aims to localize the moments relevant to the query within the video. While commendable results have been demonstrated by existing transformer-based approaches, predicting the accurate temporal span of the target moment is still a major challenge. This paper reveals that a crucial reason stems from the spurious correlation between the text query and the moment context. Namely, the model makes predictions by overly associating queries with background frames rather than distinguishing target moments. To address this issue, we propose a dynamic learning approach for moment retrieval, where two strategies are designed to mitigate the spurious correlation. First, we introduce a novel video synthesis approach to construct a dynamic context for the queried moment, enabling the model to attend to the target moment of the corresponding query across dynamic backgrounds. Second, to alleviate the over-association with backgrounds, we enhance representations temporally by incorporating text-dynamics interaction, which encourages the model to align text with target moments through complementary dynamic representations. With the proposed method, our model significantly alleviates the spurious correlation issue in moment retrieval and establishes new state-of-the-art performance on two popular benchmarks, \ie, QVHighlights and Charades-STA. In addition, detailed ablation studies and evaluations across different architectures demonstrate the generalization and effectiveness of the proposed strategies. Our code will be publicly available.
Authors:Xi Wang, Robin Courant, Marc Christie, Vicky Kalogeiton
Abstract:
Recent advances in text-conditioned video diffusion have greatly improved video quality. However, these methods offer limited or sometimes no control to users on camera aspects, including dynamic camera motion, zoom, distorted lens and focus shifts. These motion and optical aspects are crucial for adding controllability and cinematic elements to generation frameworks, ultimately resulting in visual content that draws focus, enhances mood, and guides emotions according to filmmakers' controls. In this paper, we aim to close the gap between controllable video generation and camera optics. To achieve this, we propose AKiRa (Augmentation Kit on Rays), a novel augmentation framework that builds and trains a camera adapter with a complex camera model over an existing video generation backbone. It enables fine-tuned control over camera motion as well as complex optical parameters (focal length, distortion, aperture) to achieve cinematic effects such as zoom, fisheye effect, and bokeh. Extensive experiments demonstrate AKiRa's effectiveness in combining and composing camera optics while outperforming all state-of-the-art methods. This work sets a new landmark in controlled and optically enhanced video generation, paving the way for future optical video generation methods.
Authors:Shrisha Bharadwaj, Haiwen Feng, Giorgio Becherini, Victoria Fernandez Abrevaya, Michael J. Black
Abstract:
Manipulating the illumination of a 3D scene within a single image represents a fundamental challenge in computer vision and graphics. This problem has traditionally been addressed using inverse rendering techniques, which involve explicit 3D asset reconstruction and costly ray-tracing simulations. Meanwhile, recent advancements in visual foundation models suggest that a new paradigm could soon be possible -- one that replaces explicit physical models with networks that are trained on large amounts of image and video data. In this paper, we exploit the physical world understanding of a video diffusion model, particularly Stable Video Diffusion, to relight a single image. We introduce GenLit, a framework that distills the ability of a graphics engine to perform light manipulation into a video-generation model, enabling users to directly insert and manipulate a point light in the 3D world within a given image, and generate results directly as a video sequence. We find that a model fine-tuned on only a small synthetic dataset generalizes to real-world scenes, enabling single-image relighting with plausible and convincing shadows. Our results highlight the ability of video foundation models to capture rich information about lighting, material, and, shape and our findings indicate that such models, with minimal training, can be used to perform relighting without explicit asset reconstruction or complex ray tracing. Project page: https://genlit.is.tue.mpg.de/.
Authors:Jinxiu Liu, Shaoheng Lin, Yinxiao Li, Ming-Hsuan Yang
Abstract:
The increasing demand for immersive AR/VR applications and spatial intelligence has heightened the need to generate high-quality scene-level and 360° panoramic video. However, most video diffusion models are constrained by limited resolution and aspect ratio, which restricts their applicability to scene-level dynamic content synthesis. In this work, we propose the DynamicScaler, addressing these challenges by enabling spatially scalable and panoramic dynamic scene synthesis that preserves coherence across panoramic scenes of arbitrary size. Specifically, we introduce a Offset Shifting Denoiser, facilitating efficient, synchronous, and coherent denoising panoramic dynamic scenes via a diffusion model with fixed resolution through a seamless rotating Window, which ensures seamless boundary transitions and consistency across the entire panoramic space, accommodating varying resolutions and aspect ratios. Additionally, we employ a Global Motion Guidance mechanism to ensure both local detail fidelity and global motion continuity. Extensive experiments demonstrate our method achieves superior content and motion quality in panoramic scene-level video generation, offering a training-free, efficient, and scalable solution for immersive dynamic scene creation with constant VRAM consumption regardless of the output video resolution. Our project page is available at \url{https://dynamic-scaler.pages.dev/}.
Authors:Xin Cheng, Xihua Wang, Yihan Wu, Yuyue Wang, Ruihua Song
Abstract:
Video-to-audio (V2A) generation is important for video editing and post-processing, enabling the creation of semantics-aligned audio for silent video. However, most existing methods focus on generating short-form audio for short video segment (less than 10 seconds), while giving little attention to the scenario of long-form video inputs. For current UNet-based diffusion V2A models, an inevitable problem when handling long-form audio generation is the inconsistencies within the final concatenated audio. In this paper, we first highlight the importance of long-form V2A problem. Besides, we propose LoVA, a novel model for Long-form Video-to-Audio generation. Based on the Diffusion Transformer (DiT) architecture, LoVA proves to be more effective at generating long-form audio compared to existing autoregressive models and UNet-based diffusion models. Extensive objective and subjective experiments demonstrate that LoVA achieves comparable performance on 10-second V2A benchmark and outperforms all other baselines on a benchmark with long-form video input.
Authors:Jiachen Zhou, Mingsi Wang, Tianlin Li, Guozhu Meng, Kai Chen
Abstract:
Pose-driven human image animation has achieved tremendous progress, enabling the generation of vivid and realistic human videos from just one single photo. However, it conversely exacerbates the risk of image misuse, as attackers may use one available image to create videos involving politics, violence, and other illegal content. To counter this threat, we propose Dormant, a novel protection approach tailored to defend against pose-driven human image animation techniques. Dormant applies protective perturbation to one human image, preserving the visual similarity to the original but resulting in poor-quality video generation. The protective perturbation is optimized to induce misextraction of appearance features from the image and create incoherence among the generated video frames. Our extensive evaluation across 8 animation methods and 4 datasets demonstrates the superiority of Dormant over 6 baseline protection methods, leading to misaligned identities, visual distortions, noticeable artifacts, and inconsistent frames in the generated videos. Moreover, Dormant shows effectiveness on 6 real-world commercial services, even with fully black-box access.
Authors:Haonan Zhong, Wei Song, Tingxu Han, Maurice Pagnucco, Jingling Xue, Yang Song
Abstract:
Text-to-video (T2V) diffusion models have achieved rapid progress, yet their demographic biases, particularly gender bias, remain largely unexplored. We present FairT2V, a training-free debiasing framework for text-to-video generation that mitigates encoder-induced bias without finetuning. We first analyze demographic bias in T2V models and show that it primarily originates from pretrained text encoders, which encode implicit gender associations even for neutral prompts. We quantify this effect with a gender-leaning score that correlates with bias in generated videos. Based on this insight, FairT2V mitigates demographic bias by neutralizing prompt embeddings via anchor-based spherical geodesic transformations while preserving semantics. To maintain temporal coherence, we apply debiasing only during early identity-forming steps through a dynamic denoising schedule. We further propose a video-level fairness evaluation protocol combining VideoLLM-based reasoning with human verification. Experiments on the modern T2V model Open-Sora show that FairT2V substantially reduces demographic bias across occupations with minimal impact on video quality.
Authors:Yibo Zhao, Hengjia Li, Xiaofei He, Boxi Wu
Abstract:
Recent diffusion-based video generation models can synthesize visually plausible videos, yet they often struggle to satisfy physical constraints. A key reason is that most existing approaches remain single-stage: they entangle high-level physical understanding with low-level visual synthesis, making it hard to generate content that require explicit physical reasoning. To address this limitation, we propose a training-free three-stage pipeline,\textit{PhyRPR}:\textit{Phy\uline{R}eason}--\textit{Phy\uline{P}lan}--\textit{Phy\uline{R}efine}, which decouples physical understanding from visual synthesis. Specifically, \textit{PhyReason} uses a large multimodal model for physical state reasoning and an image generator for keyframe synthesis; \textit{PhyPlan} deterministically synthesizes a controllable coarse motion scaffold; and \textit{PhyRefine} injects this scaffold into diffusion sampling via a latent fusion strategy to refine appearance while preserving the planned dynamics. This staged design enables explicit physical control during generation. Extensive experiments under physics constraints show that our method consistently improves physical plausibility and motion controllability.
Authors:Zhiting Mei, Tenny Yin, Ola Shorinwa, Apurva Badithela, Zhonghe Zheng, Joseph Bruno, Madison Bland, Lihan Zha, Asher Hancock, Jaime Fernández Fisac, Philip Dames, Anirudha Majumdar
Abstract:
Video generation models have emerged as high-fidelity models of the physical world, capable of synthesizing high-quality videos capturing fine-grained interactions between agents and their environments conditioned on multi-modal user inputs. Their impressive capabilities address many of the long-standing challenges faced by physics-based simulators, driving broad adoption in many problem domains, e.g., robotics. For example, video models enable photorealistic, physically consistent deformable-body simulation without making prohibitive simplifying assumptions, which is a major bottleneck in physics-based simulation. Moreover, video models can serve as foundation world models that capture the dynamics of the world in a fine-grained and expressive way. They thus overcome the limited expressiveness of language-only abstractions in describing intricate physical interactions. In this survey, we provide a review of video models and their applications as embodied world models in robotics, encompassing cost-effective data generation and action prediction in imitation learning, dynamics and rewards modeling in reinforcement learning, visual planning, and policy evaluation. Further, we highlight important challenges hindering the trustworthy integration of video models in robotics, which include poor instruction following, hallucinations such as violations of physics, and unsafe content generation, in addition to fundamental limitations such as significant data curation, training, and inference costs. We present potential future directions to address these open research challenges to motivate research and ultimately facilitate broader applications, especially in safety-critical settings.
Authors:Zhexin Zhang, Yifeng Zhu, Yangyang Xu, Long Chen, Yong Du, Shengfeng He, Jun Yu
Abstract:
Recent advances in diffusion-based text-to-video models, particularly those built on the diffusion transformer architecture, have achieved remarkable progress in generating high-quality and temporally coherent videos. However, transferring complex motions between videos remains challenging. In this work, we present MotionAdapter, a content-aware motion transfer framework that enables robust and semantically aligned motion transfer within DiT-based T2V models. Our key insight is that effective motion transfer requires \romannumeral1) explicit disentanglement of motion from appearance and \romannumeral 2) adaptive customization of motion to target content. MotionAdapter first isolates motion by analyzing cross-frame attention within 3D full-attention modules to extract attention-derived motion fields. To bridge the semantic gap between reference and target videos, we further introduce a DINO-guided motion customization module that rearranges and refines motion fields based on content correspondences. The customized motion field is then used to guide the DiT denoising process, ensuring that the synthesized video inherits the reference motion while preserving target appearance and semantics. Extensive experiments demonstrate that MotionAdapter outperforms state-of-the-art methods in both qualitative and quantitative evaluations. Moreover, MotionAdapter naturally supports complex motion transfer and motion editing tasks such as zooming.
Authors:Ethan Chern, Zhulin Hu, Bohao Tang, Jiadi Su, Steffi Chern, Zhijie Deng, Pengfei Liu
Abstract:
Real-time video generation via diffusion is essential for building general-purpose multimodal interactive AI systems. However, the simultaneous denoising of all video frames with bidirectional attention via an iterative process in diffusion models prevents real-time interaction. While existing distillation methods can make the model autoregressive and reduce sampling steps to mitigate this, they focus primarily on text-to-video generation, leaving the human-AI interaction unnatural and less efficient. This paper targets real-time interactive video diffusion conditioned on a multimodal context, including text, image, and audio, to bridge the gap. Given the observation that the leading on-policy distillation approach Self Forcing encounters challenges (visual artifacts like flickering, black frames, and quality degradation) with multimodal conditioning, we investigate an improved distillation recipe with emphasis on the quality of condition inputs as well as the initialization and schedule for the on-policy optimization. On benchmarks for multimodal-conditioned (audio, image, and text) avatar video generation including HDTF, AVSpeech, and CelebV-HQ, our distilled model matches the visual quality of the full-step, bidirectional baselines of similar or larger size with 20x less inference cost and latency. Further, we integrate our model with audio language models and long-form video inference technique Anchor-Heavy Identity Sinks to build LiveTalk, a real-time multimodal interactive avatar system. System-level evaluation on our curated multi-turn interaction benchmark shows LiveTalk outperforms state-of-the-art models (Sora2, Veo3) in multi-turn video coherence and content quality, while reducing response latency from 1 to 2 minutes to real-time generation, enabling seamless human-AI multimodal interaction.
Authors:Yang Bai, Liudi Yang, George Eskandar, Fengyi Shen, Mohammad Altillawi, Ziyuan Liu, Gitta Kutyniok
Abstract:
Video diffusion models provide powerful real-world simulators for embodied AI but remain limited in controllability for robotic manipulation. Recent works on trajectory-conditioned video generation address this gap but often rely on 2D trajectories or single modality conditioning, which restricts their ability to produce controllable and consistent robotic demonstrations. We present DRAW2ACT, a depth-aware trajectory-conditioned video generation framework that extracts multiple orthogonal representations from the input trajectory, capturing depth, semantics, shape and motion, and injects them into the diffusion model. Moreover, we propose to jointly generate spatially aligned RGB and depth videos, leveraging cross-modality attention mechanisms and depth supervision to enhance the spatio-temporal consistency. Finally, we introduce a multimodal policy model conditioned on the generated RGB and depth sequences to regress the robot's joint angles. Experiments on Bridge V2, Berkeley Autolab, and simulation benchmarks show that DRAW2ACT achieves superior visual fidelity and consistency while yielding higher manipulation success rates compared to existing baselines.
Authors:Zahra Dehghanian, Morteza Abolghasemi, Hamid Beigy, Hamid R. Rabiee
Abstract:
Controllable video synthesis is a central challenge in computer vision, yet current models struggle with fine grained control beyond textual prompts, particularly for cinematic attributes like camera trajectory and genre. Existing datasets often suffer from severe data imbalance, noisy labels, or a significant simulation to real gap. To address this, we introduce CineLOG, a new dataset of 5,000 high quality, balanced, and uncut video clips. Each entry is annotated with a detailed scene description, explicit camera instructions based on a standard cinematic taxonomy, and genre label, ensuring balanced coverage across 17 diverse camera movements and 15 film genres. We also present our novel pipeline designed to create this dataset, which decouples the complex text to video (T2V) generation task into four easier stages with more mature technology. To enable coherent, multi shot sequences, we introduce a novel Trajectory Guided Transition Module that generates smooth spatio-temporal interpolation. Extensive human evaluations show that our pipeline significantly outperforms SOTA end to end T2V models in adhering to specific camera and screenplay instructions, while maintaining professional visual quality. All codes and data are available at https://cine-log.pages.dev.
Authors:Wenjiang Xu, Cindy Wang, Rui Fang, Mingkang Zhang, Lusong Li, Jing Xu, Jiayuan Gu, Zecui Zeng, Rui Chen
Abstract:
World models have emerged as a pivotal component in robot manipulation planning, enabling agents to predict future environmental states and reason about the consequences of actions before execution. While video-generation models are increasingly adopted, they often lack rigorous physical grounding, leading to hallucinations and a failure to maintain consistency in long-horizon physical constraints. To address these limitations, we propose Embodied Tree of Thoughts (EToT), a novel Real2Sim2Real planning framework that leverages a physics-based interactive digital twin as an embodied world model. EToT formulates manipulation planning as a tree search expanded through two synergistic mechanisms: (1) Priori Branching, which generates diverse candidate execution paths based on semantic and spatial analysis; and (2) Reflective Branching, which utilizes VLMs to diagnose execution failures within the simulator and iteratively refine the planning tree with corrective actions. By grounding high-level reasoning in a physics simulator, our framework ensures that generated plans adhere to rigid-body dynamics and collision constraints. We validate EToT on a suite of short- and long-horizon manipulation tasks, where it consistently outperforms baselines by effectively predicting physical dynamics and adapting to potential failures. Website at https://embodied-tree-of-thoughts.github.io .
Authors:Zhiting Mei, Tenny Yin, Micah Baker, Ola Shorinwa, Anirudha Majumdar
Abstract:
Recent advances in generative video models have led to significant breakthroughs in high-fidelity video synthesis, specifically in controllable video generation where the generated video is conditioned on text and action inputs, e.g., in instruction-guided video editing and world modeling in robotics. Despite these exceptional capabilities, controllable video models often hallucinate - generating future video frames that are misaligned with physical reality - which raises serious concerns in many tasks such as robot policy evaluation and planning. However, state-of-the-art video models lack the ability to assess and express their confidence, impeding hallucination mitigation. To rigorously address this challenge, we propose C3, an uncertainty quantification (UQ) method for training continuous-scale calibrated controllable video models for dense confidence estimation at the subpatch level, precisely localizing the uncertainty in each generated video frame. Our UQ method introduces three core innovations to empower video models to estimate their uncertainty. First, our method develops a novel framework that trains video models for correctness and calibration via strictly proper scoring rules. Second, we estimate the video model's uncertainty in latent space, avoiding training instability and prohibitive training costs associated with pixel-space approaches. Third, we map the dense latent-space uncertainty to interpretable pixel-level uncertainty in the RGB space for intuitive visualization, providing high-resolution uncertainty heatmaps that identify untrustworthy regions. Through extensive experiments on large-scale robot learning datasets (Bridge and DROID) and real-world evaluations, we demonstrate that our method not only provides calibrated uncertainty estimates within the training distribution, but also enables effective out-of-distribution detection.
Authors:Zhangkai Wu, Xuhui Fan, Zhongyuan Xie, Kaize Shi, Longbing Cao
Abstract:
Recent advances in training-free video editing have enabled lightweight and precise cross-frame generation by leveraging pre-trained text-to-image diffusion models. However, existing methods often rely on heuristic frame selection to maintain temporal consistency during DDIM inversion, which introduces manual bias and reduces the scalability of end-to-end inference. In this paper, we propose~\textbf{VALA} (\textbf{V}ariational \textbf{A}lignment for \textbf{L}atent \textbf{A}nchors), a variational alignment module that adaptively selects key frames and compresses their latent features into semantic anchors for consistent video editing. To learn meaningful assignments, VALA propose a variational framework with a contrastive learning objective. Therefore, it can transform cross-frame latent representations into compressed latent anchors that preserve both content and temporal coherence. Our method can be fully integrated into training-free text-to-image based video editing models. Extensive experiments on real-world video editing benchmarks show that VALA achieves state-of-the-art performance in inversion fidelity, editing quality, and temporal consistency, while offering improved efficiency over prior methods.
Authors:Zhangkai Wu, Xuhui Fan, Zhongyuan Xie, Kaize Shi, Zhidong Li, Longbing Cao
Abstract:
Training-free video editing (VE) models tend to fall back on gender stereotypes when rendering profession-related prompts. We propose \textbf{FAME} for \textit{Fairness-aware Attention-modulated Video Editing} that mitigates profession-related gender biases while preserving prompt alignment and temporal consistency for coherent VE. We derive fairness embeddings from existing minority representations by softly injecting debiasing tokens into the text encoder. Simultaneously, FAME integrates fairness modulation into both temporal self attention and prompt-to-region cross attention to mitigate the motion corruption and temporal inconsistency caused by directly introducing fairness cues. For temporal self attention, FAME introduces a region constrained attention mask combined with time decay weighting, which enhances intra-region coherence while suppressing irrelevant inter-region interactions. For cross attention, it reweights tokens to region matching scores by incorporating fairness sensitive similarity masks derived from debiasing prompt embeddings. Together, these modulations keep fairness-sensitive semantics tied to the right visual regions and prevent temporal drift across frames. Extensive experiments on new VE fairness-oriented benchmark \textit{FairVE} demonstrate that FAME achieves stronger fairness alignment and semantic fidelity, surpassing existing VE baselines.
Authors:Fatemeh Nazarieh, Zhenhua Feng, Diptesh Kanojia, Muhammad Awais, Josef Kittler
Abstract:
Audio-driven talking face generation has gained significant attention for applications in digital media and virtual avatars. While recent methods improve audio-lip synchronization, they often struggle with temporal consistency, identity preservation, and customization, especially in long video generation. To address these issues, we propose MAGIC-Talk, a one-shot diffusion-based framework for customizable and temporally stable talking face generation. MAGIC-Talk consists of ReferenceNet, which preserves identity and enables fine-grained facial editing via text prompts, and AnimateNet, which enhances motion coherence using structured motion priors. Unlike previous methods requiring multiple reference images or fine-tuning, MAGIC-Talk maintains identity from a single image while ensuring smooth transitions across frames. Additionally, a progressive latent fusion strategy is introduced to improve long-form video quality by reducing motion inconsistencies and flickering. Extensive experiments demonstrate that MAGIC-Talk outperforms state-of-the-art methods in visual quality, identity preservation, and synchronization accuracy, offering a robust solution for talking face generation.
Authors:Zhiting Mei, Ola Shorinwa, Anirudha Majumdar
Abstract:
Generative video models demonstrate impressive text-to-video capabilities, spurring widespread adoption in many real-world applications. However, like large language models (LLMs), video generation models tend to hallucinate, producing plausible videos even when they are factually wrong. Although uncertainty quantification (UQ) of LLMs has been extensively studied in prior work, no UQ method for video models exists, raising critical safety concerns. To our knowledge, this paper represents the first work towards quantifying the uncertainty of video models. We present a framework for uncertainty quantification of generative video models, consisting of: (i) a metric for evaluating the calibration of video models based on robust rank correlation estimation with no stringent modeling assumptions; (ii) a black-box UQ method for video models (termed S-QUBED), which leverages latent modeling to rigorously decompose predictive uncertainty into its aleatoric and epistemic components; and (iii) a UQ dataset to facilitate benchmarking calibration in video models. By conditioning the generation task in the latent space, we disentangle uncertainty arising due to vague task specifications from that arising from lack of knowledge. Through extensive experiments on benchmark video datasets, we demonstrate that S-QUBED computes calibrated total uncertainty estimates that are negatively correlated with the task accuracy and effectively computes the aleatoric and epistemic constituents.
Authors:Mustafa Chasmai, Gauri Jagatap, Gouthaman KV, Grant Van Horn, Subhransu Maji, Andrea Fanelli
Abstract:
Recent advancements in video large language models (Video LLMs) have significantly advanced the field of video question answering (VideoQA). While existing methods perform well on short videos, they often struggle with long-range reasoning in longer videos. To scale Video LLMs for longer video content, frame sub-sampling (selecting frames at regular intervals) is commonly used. However, this approach is suboptimal, often leading to the loss of crucial frames or the inclusion of redundant information from multiple similar frames. Missing key frames impairs the model's ability to answer questions accurately, while redundant frames lead the model to focus on irrelevant video segments and increase computational resource consumption. In this paper, we investigate the use of a general-purpose text-to-video moment retrieval model to guide the frame sampling process. We propose "moment sampling", a novel, model-agnostic approach that enables the model to select the most relevant frames according to the context of the question. Specifically, we employ a lightweight moment retrieval model to prioritize frame selection. By focusing on the frames most pertinent to the given question, our method enhances long-form VideoQA performance in Video LLMs. Through extensive experiments on four long-form VideoQA datasets, using four state-of-the-art Video LLMs, we demonstrate the effectiveness of the proposed approach.
Authors:Liudi Yang, Yang Bai, George Eskandar, Fengyi Shen, Mohammad Altillawi, Dong Chen, Soumajit Majumder, Ziyuan Liu, Gitta Kutyniok, Abhinav Valada
Abstract:
We address the problem of generating long-horizon videos for robotic manipulation tasks. Text-to-video diffusion models have made significant progress in photorealism, language understanding, and motion generation but struggle with long-horizon robotic tasks. Recent works use video diffusion models for high-quality simulation data and predictive rollouts in robot planning. However, these works predict short sequences of the robot achieving one task and employ an autoregressive paradigm to extend to the long horizon, leading to error accumulations in the generated video and in the execution. To overcome these limitations, we propose a novel pipeline that bypasses the need for autoregressive generation. We achieve this through a threefold contribution: 1) we first decompose the high-level goals into smaller atomic tasks and generate keyframes aligned with these instructions. A second diffusion model then interpolates between each of the two generated frames, achieving the long-horizon video. 2) We propose a semantics preserving attention module to maintain consistency between the keyframes. 3) We design a lightweight policy model to regress the robot joint states from generated videos. Our approach achieves state-of-the-art results on two benchmarks in video quality and consistency while outperforming previous policy models on long-horizon tasks.
Authors:Yang Bai, Liudi Yang, George Eskandar, Fengyi Shen, Dong Chen, Mohammad Altillawi, Ziyuan Liu, Gitta Kutyniok
Abstract:
Recent advancements in generative models have revolutionized video synthesis and editing. However, the scarcity of diverse, high-quality datasets continues to hinder video-conditioned robotic learning, limiting cross-platform generalization. In this work, we address the challenge of swapping a robotic arm in one video with another: a key step for crossembodiment learning. Unlike previous methods that depend on paired video demonstrations in the same environmental settings, our proposed framework, RoboSwap, operates on unpaired data from diverse environments, alleviating the data collection needs. RoboSwap introduces a novel video editing pipeline integrating both GANs and diffusion models, combining their isolated advantages. Specifically, we segment robotic arms from their backgrounds and train an unpaired GAN model to translate one robotic arm to another. The translated arm is blended with the original video background and refined with a diffusion model to enhance coherence, motion realism and object interaction. The GAN and diffusion stages are trained independently. Our experiments demonstrate that RoboSwap outperforms state-of-the-art video and image editing models on three benchmarks in terms of both structural coherence and motion consistency, thereby offering a robust solution for generating reliable, cross-embodiment data in robotic learning.
Authors:Wang Lin, Liyu Jia, Wentao Hu, Kaihang Pan, Zhongqi Yue, Wei Zhao, Jingyuan Chen, Fei Wu, Hanwang Zhang
Abstract:
Despite recent progress in video generation, producing videos that adhere to physical laws remains a significant challenge. Traditional diffusion-based methods struggle to extrapolate to unseen physical conditions (eg, velocity) due to their reliance on data-driven approximations. To address this, we propose to integrate symbolic reasoning and reinforcement learning to enforce physical consistency in video generation. We first introduce the Diffusion Timestep Tokenizer (DDT), which learns discrete, recursive visual tokens by recovering visual attributes lost during the diffusion process. The recursive visual tokens enable symbolic reasoning by a large language model. Based on it, we propose the Phys-AR framework, which consists of two stages: The first stage uses supervised fine-tuning to transfer symbolic knowledge, while the second stage applies reinforcement learning to optimize the model's reasoning abilities through reward functions based on physical conditions. Our approach allows the model to dynamically adjust and improve the physical properties of generated videos, ensuring adherence to physical laws. Experimental results demonstrate that PhysAR can generate videos that are physically consistent.
Authors:Zhengcong Fei, Debang Li, Di Qiu, Jiahua Wang, Yikun Dou, Rui Wang, Jingtao Xu, Mingyuan Fan, Guibin Chen, Yang Li, Yahui Zhou
Abstract:
This paper presents SkyReels-A2, a controllable video generation framework capable of assembling arbitrary visual elements (e.g., characters, objects, backgrounds) into synthesized videos based on textual prompts while maintaining strict consistency with reference images for each element. We term this task elements-to-video (E2V), whose primary challenges lie in preserving the fidelity of each reference element, ensuring coherent composition of the scene, and achieving natural outputs. To address these, we first design a comprehensive data pipeline to construct prompt-reference-video triplets for model training. Next, we propose a novel image-text joint embedding model to inject multi-element representations into the generative process, balancing element-specific consistency with global coherence and text alignment. We also optimize the inference pipeline for both speed and output stability. Moreover, we introduce a carefully curated benchmark for systematic evaluation, i.e, A2 Bench. Experiments demonstrate that our framework can generate diverse, high-quality videos with precise element control. SkyReels-A2 is the first open-source commercial grade model for the generation of E2V, performing favorably against advanced closed-source commercial models. We anticipate SkyReels-A2 will advance creative applications such as drama and virtual e-commerce, pushing the boundaries of controllable video generation.
Authors:Zhiqiang Yuan, Ting Zhang, Ying Deng, Jiapei Zhang, Yeshuang Zhu, Zexi Jia, Jie Zhou, Jinchao Zhang
Abstract:
Recently, great progress has been made in video generation technology, attracting the widespread attention of scholars. To apply this technology to downstream applications under resource-constrained conditions, researchers usually fine-tune the pre-trained models based on parameter-efficient tuning methods such as Adapter or Lora. Although these methods can transfer the knowledge from the source domain to the target domain, fewer training parameters lead to poor fitting ability, and the knowledge from the source domain may lead to the inference process deviating from the target domain. In this paper, we argue that under constrained resources, training a smaller video generation model from scratch using only million-level samples can outperform parameter-efficient tuning on larger models in downstream applications: the core lies in the effective utilization of data and curriculum strategy. Take animated sticker generation (ASG) as a case study, we first construct a discrete frame generation network for stickers with low frame rates, ensuring that its parameters meet the requirements of model training under constrained resources. In order to provide data support for models trained from scratch, we come up with a dual-mask based data utilization strategy, which manages to improve the availability and expand the diversity of limited data. To facilitate convergence under dual-mask situation, we propose a difficulty-adaptive curriculum learning method, which decomposes the sample entropy into static and adaptive components so as to obtain samples from easy to difficult. The experiment demonstrates that our resource-efficient dual-mask training framework is quantitatively and qualitatively superior to efficient-parameter tuning methods such as I2V-Adapter and SimDA, verifying the feasibility of our method on downstream tasks under constrained resources. Code will be available.
Authors:Qingyuan Liu, Yun-Yun Tsai, Ruijian Zha, Victoria Li, Pengyuan Shi, Chengzhi Mao, Junfeng Yang
Abstract:
The impressive achievements of generative models in creating high-quality videos have raised concerns about digital integrity and privacy vulnerabilities. Recent works of AI-generated content detection have been widely studied in the image field (e.g., deepfake), yet the video field has been unexplored. Large Vision Language Model (LVLM) has become an emerging tool for AI-generated content detection for its strong reasoning and multimodal capabilities. It breaks the limitations of traditional deep learning based methods faced with like lack of transparency and inability to recognize new artifacts. Motivated by this, we propose LAVID, a novel LVLMs-based ai-generated video detection with explicit knowledge enhancement. Our insight list as follows: (1) The leading LVLMs can call external tools to extract useful information to facilitate its own video detection task; (2) Structuring the prompt can affect LVLM's reasoning ability to interpret information in video content. Our proposed pipeline automatically selects a set of explicit knowledge tools for detection, and then adaptively adjusts the structure prompt by self-rewriting. Different from prior SOTA that trains additional detectors, our method is fully training-free and only requires inference of the LVLM for detection. To facilitate our research, we also create a new benchmark \vidfor with high-quality videos generated from multiple sources of video generation tools. Evaluation results show that LAVID improves F1 scores by 6.2 to 30.2% over the top baselines on our datasets across four SOTA LVLMs.
Authors:Di Qiu, Zhengcong Fei, Rui Wang, Jialin Bai, Changqian Yu, Mingyuan Fan, Guibin Chen, Xiang Wen
Abstract:
We present SkyReels-A1, a simple yet effective framework built upon video diffusion Transformer to facilitate portrait image animation. Existing methodologies still encounter issues, including identity distortion, background instability, and unrealistic facial dynamics, particularly in head-only animation scenarios. Besides, extending to accommodate diverse body proportions usually leads to visual inconsistencies or unnatural articulations. To address these challenges, SkyReels-A1 capitalizes on the strong generative capabilities of video DiT, enhancing facial motion transfer precision, identity retention, and temporal coherence. The system incorporates an expression-aware conditioning module that enables seamless video synthesis driven by expression-guided landmark inputs. Integrating the facial image-text alignment module strengthens the fusion of facial attributes with motion trajectories, reinforcing identity preservation. Additionally, SkyReels-A1 incorporates a multi-stage training paradigm to incrementally refine the correlation between expressions and motion while ensuring stable identity reproduction. Extensive empirical evaluations highlight the model's ability to produce visually coherent and compositionally diverse results, making it highly applicable to domains such as virtual avatars, remote communication, and digital media generation.
Authors:Qiao Jin, Xiaodong Chen, Wu Liu, Tao Mei, Yongdong Zhang
Abstract:
The advent of stereoscopic videos has opened new horizons in multimedia, particularly in extended reality (XR) and virtual reality (VR) applications, where immersive content captivates audiences across various platforms. Despite its growing popularity, producing stereoscopic videos remains challenging due to the technical complexities involved in generating stereo parallax. This refers to the positional differences of objects viewed from two distinct perspectives and is crucial for creating depth perception. This complex process poses significant challenges for creators aiming to deliver convincing and engaging presentations. To address these challenges, this paper introduces the Text-driven Stereoscopic Video Generation (T-SVG) system. This innovative, model-agnostic, zero-shot approach streamlines video generation by using text prompts to create reference videos. These videos are transformed into 3D point cloud sequences, which are rendered from two perspectives with subtle parallax differences, achieving a natural stereoscopic effect. T-SVG represents a significant advancement in stereoscopic content creation by integrating state-of-the-art, training-free techniques in text-to-video generation, depth estimation, and video inpainting. Its flexible architecture ensures high efficiency and user-friendliness, allowing seamless updates with newer models without retraining. By simplifying the production pipeline, T-SVG makes stereoscopic video generation accessible to a broader audience, demonstrating its potential to revolutionize the field.
Authors:Zhiqiang Yuan, Jiapei Zhang, Ying Deng, Yeshuang Zhu, Jie Zhou, Jinchao Zhang
Abstract:
As a common form of communication in social media,stickers win users' love in the internet scenarios, for their ability to convey emotions in a vivid, cute, and interesting way. People prefer to get an appropriate sticker through retrieval rather than creation for the reason that creating a sticker is time-consuming and relies on rule-based creative tools with limited capabilities. Nowadays, advanced text-to-video algorithms have spawned numerous general video generation systems that allow users to customize high-quality, photo-realistic videos by only providing simple text prompts. However, creating customized animated stickers, which have lower frame rates and more abstract semantics than videos, is greatly hindered by difficulties in data acquisition and incomplete benchmarks. To facilitate the exploration of researchers in animated sticker generation (ASG) field, we firstly construct the currently largest vision-language sticker dataset named VSD2M at a two-million scale that contains static and animated stickers. Secondly, to improve the performance of traditional video generation methods on ASG tasks with discrete characteristics, we propose a Spatial Temporal Interaction (STI) layer that utilizes semantic interaction and detail preservation to address the issue of insufficient information utilization. Moreover, we train baselines with several video generation methods (e.g., transformer-based, diffusion-based methods) on VSD2M and conduct a detailed analysis to establish systemic supervision on ASG task. To the best of our knowledge, this is the most comprehensive large-scale benchmark for multi-frame animated sticker generation, and we hope this work can provide valuable inspiration for other scholars in intelligent creation.
Authors:Zhenghong Zhou, Jie An, Jiebo Luo
Abstract:
Precise camera pose control is crucial for video generation with diffusion models. Existing methods require fine-tuning with additional datasets containing paired videos and camera pose annotations, which are both data-intensive and computationally costly, and can disrupt the pre-trained model distribution. We introduce Latent-Reframe, which enables camera control in a pre-trained video diffusion model without fine-tuning. Unlike existing methods, Latent-Reframe operates during the sampling stage, maintaining efficiency while preserving the original model distribution. Our approach reframes the latent code of video frames to align with the input camera trajectory through time-aware point clouds. Latent code inpainting and harmonization then refine the model latent space, ensuring high-quality video generation. Experimental results demonstrate that Latent-Reframe achieves comparable or superior camera control precision and video quality to training-based methods, without the need for fine-tuning on additional datasets.
Authors:Zeqi Xiao, Wenqi Ouyang, Yifan Zhou, Shuai Yang, Lei Yang, Jianlou Si, Xingang Pan
Abstract:
Recent advancements in video generation have been greatly driven by video diffusion models, with camera motion control emerging as a crucial challenge in creating view-customized visual content. This paper introduces trajectory attention, a novel approach that performs attention along available pixel trajectories for fine-grained camera motion control. Unlike existing methods that often yield imprecise outputs or neglect temporal correlations, our approach possesses a stronger inductive bias that seamlessly injects trajectory information into the video generation process. Importantly, our approach models trajectory attention as an auxiliary branch alongside traditional temporal attention. This design enables the original temporal attention and the trajectory attention to work in synergy, ensuring both precise motion control and new content generation capability, which is critical when the trajectory is only partially available. Experiments on camera motion control for images and videos demonstrate significant improvements in precision and long-range consistency while maintaining high-quality generation. Furthermore, we show that our approach can be extended to other video motion control tasks, such as first-frame-guided video editing, where it excels in maintaining content consistency over large spatial and temporal ranges.
Authors:Jaemin Kim, Bryan S Kim, Jong Chul Ye
Abstract:
Diffusion models have achieved impressive results in generative tasks like text-to-image (T2I) and text-to-video (T2V) synthesis. However, achieving accurate text alignment in T2V generation remains challenging due to the complex temporal dependency across frames. Existing reinforcement learning (RL)-based approaches to enhance text alignment often require differentiable reward functions or are constrained to limited prompts, hindering their scalability and applicability. In this paper, we propose Free$^2$Guide, a novel gradient-free framework for aligning generated videos with text prompts without requiring additional model training. Leveraging principles from path integral control, Free$^2$Guide approximates guidance for diffusion models using non-differentiable reward functions, thereby enabling the integration of powerful black-box Large Vision-Language Models (LVLMs) as reward model. Additionally, our framework supports the flexible ensembling of multiple reward models, including large-scale image-based models, to synergistically enhance alignment without incurring substantial computational overhead. We demonstrate that Free$^2$Guide significantly improves text alignment across various dimensions and enhances the overall quality of generated videos.
Authors:Hyelin Nam, Jaemin Kim, Dohun Lee, Jong Chul Ye
Abstract:
While text-to-video diffusion models have made significant strides, many still face challenges in generating videos with temporal consistency. Within diffusion frameworks, guidance techniques have proven effective in enhancing output quality during inference; however, applying these methods to video diffusion models introduces additional complexity of handling computations across entire sequences. To address this, we propose a novel framework called MotionPrompt that guides the video generation process via optical flow. Specifically, we train a discriminator to distinguish optical flow between random pairs of frames from real videos and generated ones. Given that prompts can influence the entire video, we optimize learnable token embeddings during reverse sampling steps by using gradients from a trained discriminator applied to random frame pairs. This approach allows our method to generate visually coherent video sequences that closely reflect natural motion dynamics, without compromising the fidelity of the generated content. We demonstrate the effectiveness of our approach across various models.
Authors:Qinglong Cao, Ding Wang, Xirui Li, Yuntian Chen, Chao Ma, Xiaokang Yang
Abstract:
Video diffusion models have exhibited tremendous progress in various video generation tasks. However, existing models struggle to capture latent physical knowledge, failing to infer physical phenomena that are challenging to articulate with natural language. Generating videos following the fundamental physical laws is still an opening challenge. To address this challenge, we propose a novel method to teach video diffusion models with latent physical phenomenon knowledge, enabling the accurate generation of physically informed phenomena. Specifically, we first pretrain Masked Autoencoders (MAE) to reconstruct the physical phenomena, resulting in output embeddings that encapsulate latent physical phenomenon knowledge. Leveraging these embeddings, we could generate the pseudo-language prompt features based on the aligned spatial relationships between CLIP vision and language encoders. Particularly, given that diffusion models typically use CLIP's language encoder for text prompt embeddings, our approach integrates the CLIP visual features informed by latent physical knowledge into a quaternion hidden space. This enables the modeling of spatial relationships to produce physical knowledge-informed pseudo-language prompts. By incorporating these prompt features and fine-tuning the video diffusion model in a parameter-efficient manner, the physical knowledge-informed videos are successfully generated. We validate our method extensively through both numerical simulations and real-world observations of physical phenomena, demonstrating its remarkable performance across diverse scenarios.
Authors:Chengzu Li, Zanyi Wang, Jiaang Li, Yi Xu, Han Zhou, Huanyu Zhang, Ruichuan An, Dengyang Jiang, Zhaochong An, Ivan Vulić, Serge Belongie, Anna Korhonen
Abstract:
Vision-Language Models have excelled at textual reasoning, but they often struggle with fine-grained spatial understanding and continuous action planning, failing to simulate the dynamics required for complex visual reasoning. In this work, we formulate visual reasoning by means of video generation models, positing that generated frames can act as intermediate reasoning steps between initial states and solutions. We evaluate their capacity in two distinct regimes: Maze Navigation for sequential discrete planning with low visual change and Tangram Puzzle for continuous manipulation with high visual change. Our experiments reveal three critical insights: (1) Robust Zero-Shot Generalization: In both tasks, the model demonstrates strong performance on unseen data distributions without specific finetuning. (2) Visual Context: The model effectively uses visual context as explicit control, such as agent icons and tangram shapes, enabling it to maintain high visual consistency and adapt its planning capability robustly to unseen patterns. (3) Visual Test-Time Scaling: We observe a test-time scaling law in sequential planning; increasing the generated video length (visual inference budget) empowers better zero-shot generalization to spatially and temporally complex paths. These findings suggest that video generation is not merely a media tool, but a scalable, generalizable paradigm for visual reasoning.
Authors:Onkar Susladkar, Tushar Prakash, Adheesh Juvekar, Kiet A. Nguyen, Dong-Hwan Jang, Inderjit S Dhillon, Ismini Lourentzou
Abstract:
Discrete video VAEs underpin modern text-to-video generation and video understanding systems, yet existing tokenizers typically learn visual codebooks at a single scale with limited vocabularies and shallow language supervision, leading to poor cross-modal alignment and zero-shot transfer. We introduce PyraTok, a language-aligned pyramidal tokenizer that learns semantically structured discrete latents across multiple spatiotemporal resolutions. PyraTok builds on a pretrained video VAE and a novel Language aligned Pyramidal Quantization (LaPQ) module that discretizes encoder features at several depths using a shared large binary codebook, yielding compact yet expressive video token sequences. To tightly couple visual tokens with language, PyraTok jointly optimizes multi-scale text-guided quantization and a global autoregressive objective over the token hierarchy. Across ten benchmarks, PyraTok delivers state-of-the-art (SOTA) video reconstruction, consistently improves text-to-video quality, and sets new SOTA zero-shot performance on video segmentation, temporal action localization, and video understanding, scaling robustly to up to 4K/8K resolutions.
Authors:Lizhen Wang, Yongming Zhu, Zhipeng Ge, Youwei Zheng, Longhao Zhang, Tianshu Hu, Shiyang Qin, Mingshuang Luo, Jiaxu Zhang, Xin Chen, Yulong Wang, Zerong Zheng, Jianwen Jiang, Chao Liang, Weifeng Chen, Xing Wang, Yuan Zhang, Mingyuan Gao
Abstract:
Interactive humanoid video generation aims to synthesize lifelike visual agents that can engage with humans through continuous and responsive video. Despite recent advances in video synthesis, existing methods often grapple with the trade-off between high-fidelity synthesis and real-time interaction requirements. In this paper, we propose FlowAct-R1, a framework specifically designed for real-time interactive humanoid video generation. Built upon a MMDiT architecture, FlowAct-R1 enables the streaming synthesis of video with arbitrary durations while maintaining low-latency responsiveness. We introduce a chunkwise diffusion forcing strategy, complemented by a novel self-forcing variant, to alleviate error accumulation and ensure long-term temporal consistency during continuous interaction. By leveraging efficient distillation and system-level optimizations, our framework achieves a stable 25fps at 480p resolution with a time-to-first-frame (TTFF) of only around 1.5 seconds. The proposed method provides holistic and fine-grained full-body control, enabling the agent to transition naturally between diverse behavioral states in interactive scenarios. Experimental results demonstrate that FlowAct-R1 achieves exceptional behavioral vividness and perceptual realism, while maintaining robust generalization across diverse character styles.
Authors:Guantao Chen, Shikang Zheng, Yuqi Lin, Linfeng Zhang
Abstract:
Diffusion Transformer (DiT) models have achieved unprecedented quality in image and video generation, yet their iterative sampling process remains computationally prohibitive. To accelerate inference, feature caching methods have emerged by reusing intermediate representations across timesteps. However, existing caching approaches treat all feature components uniformly. We reveal that DiT feature spaces contain distinct principal and residual subspaces with divergent temporal behavior: the principal subspace evolves smoothly and predictably, while the residual subspace exhibits volatile, low-energy oscillations that resist accurate prediction. Building on this insight, we propose SVD-Cache, a subspace-aware caching framework that decomposes diffusion features via Singular Value Decomposition (SVD), applies exponential moving average (EMA) prediction to the dominant low-rank components, and directly reuses the residual subspace. Extensive experiments demonstrate that SVD-Cache achieves near-lossless across diverse models and methods, including 5.55$\times$ speedup on FLUX and HunyuanVideo, and compatibility with model acceleration techniques including distillation, quantization and sparse attention. Our code is in supplementary material and will be released on Github.
Authors:Peixuan Zhang, Zijian Jia, Kaiqi Liu, Shuchen Weng, Si Li, Boxin Shi
Abstract:
While recent advancements in generative models have achieved remarkable visual fidelity in video synthesis, creating coherent multi-shot narratives remains a significant challenge. To address this, keyframe-based approaches have emerged as a promising alternative to computationally intensive end-to-end methods, offering the advantages of fine-grained control and greater efficiency. However, these methods often fail to maintain cross-shot consistency and capture cinematic language. In this paper, we introduce STAGE, a SToryboard-Anchored GEneration workflow to reformulate the keyframe-based multi-shot video generation task. Instead of using sparse keyframes, we propose STEP2 to predict a structural storyboard composed of start-end frame pairs for each shot. We introduce the multi-shot memory pack to ensure long-range entity consistency, the dual-encoding strategy for intra-shot coherence, and the two-stage training scheme to learn cinematic inter-shot transition. We also contribute the large-scale ConStoryBoard dataset, including high-quality movie clips with fine-grained annotations for story progression, cinematic attributes, and human preferences. Extensive experiments demonstrate that STAGE achieves superior performance in structured narrative control and cross-shot coherence.
Authors:Han Lin, Xichen Pan, Ziqi Huang, Ji Hou, Jialiang Wang, Weifeng Chen, Zecheng He, Felix Juefei-Xu, Junzhe Sun, Zhipeng Fan, Ali Thabet, Mohit Bansal, Chu Wang
Abstract:
Multimodal learning has rapidly advanced visual understanding, largely via multimodal large language models (MLLMs) that use powerful LLMs as cognitive cores. In visual generation, however, these powerful core models are typically reduced to global text encoders for diffusion models, leaving most of their reasoning and planning ability unused. This creates a gap: current multimodal LLMs can parse complex layouts, attributes, and knowledge-intensive scenes, yet struggle to generate images or videos with equally precise and structured control. We propose MetaCanvas, a lightweight framework that lets MLLMs reason and plan directly in spatial and spatiotemporal latent spaces and interface tightly with diffusion generators. We empirically implement MetaCanvas on three different diffusion backbones and evaluate it across six tasks, including text-to-image generation, text/image-to-video generation, image/video editing, and in-context video generation, each requiring precise layouts, robust attribute binding, and reasoning-intensive control. MetaCanvas consistently outperforms global-conditioning baselines, suggesting that treating MLLMs as latent-space planners is a promising direction for narrowing the gap between multimodal understanding and generation.
Authors:Xuming He, Zehao Fan, Hengjia Li, Fan Zhuo, Hankun Xu, Senlin Cheng, Di Weng, Haifeng Liu, Can Ye, Boxi Wu
Abstract:
Recent advances in video generation have enabled the synthesis of videos with strong temporal consistency and impressive visual quality, marking a crucial step toward vision foundation models. To evaluate these video generation models, existing benchmarks primarily focus on factors related to visual perception and understanding, like visual aesthetics, instruction adherence, and temporal coherence. However, the rule-based reasoning capabilities of video generation models remain largely unexplored. Although recent studies have carried out preliminary explorations into whether video models can serve as zero-shot learners, they still lack a fine-grained decomposition of reasoning capabilities and a comprehensive evaluation protocol. To address this gap, we introduce RULER-Bench, a benchmark designed to evaluate the reasoning ability of video generation models from the perspective of cognitive rules. Built upon two fundamental paradigms: text-to-video and image-to-video, RULER-Bench covers 40 representative tasks spanning six rule categories with 622 high-quality annotated instances. For the evaluation of each generated video, we construct a checklist covering four metrics and leverage GPT-o3 to assign scores to each question, achieving 85% alignment with human judgements. Extensive experiments show that the state-of-the-art model achieves only 48.87% on the rule coherence metric, highlighting significant room for improvement in the reasoning capability of next-level video models. We expect that the insight obtained from RULER-Bench will facilitate further development of reasoning-aware video generation, advancing video generation models toward vision foundation intelligence.
Authors:Inferix Team, Tianyu Feng, Yizeng Han, Jiahao He, Yuanyu He, Xi Lin, Teng Liu, Hanfeng Lu, Jiasheng Tang, Wei Wang, Zhiyuan Wang, Jichao Wu, Mingyang Yang, Yinghao Yu, Zeyu Zhang, Bohan Zhuang
Abstract:
World models serve as core simulators for fields such as agentic AI, embodied AI, and gaming, capable of generating long, physically realistic, and interactive high-quality videos. Moreover, scaling these models could unlock emergent capabilities in visual perception, understanding, and reasoning, paving the way for a new paradigm that moves beyond current LLM-centric vision foundation models. A key breakthrough empowering them is the semi-autoregressive (block-diffusion) decoding paradigm, which merges the strengths of diffusion and autoregressive methods by generating video tokens in block-applying diffusion within each block while conditioning on previous ones, resulting in more coherent and stable video sequences. Crucially, it overcomes limitations of standard video diffusion by reintroducing LLM-style KV Cache management, enabling efficient, variable-length, and high-quality generation. Therefore, Inferix is specifically designed as a next-generation inference engine to enable immersive world synthesis through optimized semi-autoregressive decoding processes. This dedicated focus on world simulation distinctly sets it apart from systems engineered for high-concurrency scenarios (like vLLM or SGLang) and from classic video diffusion models (such as xDiTs). Inferix further enhances its offering with interactive video streaming and profiling, enabling real-time interaction and realistic simulation to accurately model world dynamics. Additionally, it supports efficient benchmarking through seamless integration of LV-Bench, a new fine-grained evaluation benchmark tailored for minute-long video generation scenarios. We hope the community will work together to advance Inferix and foster world model exploration.
Authors:Shristi Das Biswas, Arani Roy, Kaushik Roy
Abstract:
Robust concept removal for text-to-image (T2I) and text-to-video (T2V) models is essential for their safe deployment. Existing methods, however, suffer from costly retraining, inference overhead, or vulnerability to adversarial attacks. Crucially, they rarely model the latent semantic overlap between the target erase concept and surrounding content -- causing collateral damage post-erasure -- and even fewer methods work reliably across both T2I and T2V domains. We introduce Instant Concept Erasure (ICE), a training-free, modality-agnostic, one-shot weight modification approach that achieves precise, persistent unlearning with zero overhead. ICE defines erase and preserve subspaces using anisotropic energy-weighted scaling, then explicitly regularises against their intersection using a unique, closed-form overlap projector. We pose a convex and Lipschitz-bounded Spectral Unlearning Objective, balancing erasure fidelity and intersection preservation, that admits a stable and unique analytical solution. This solution defines a dissociation operator that is translated to the model's text-conditioning layers, making the edit permanent and runtime-free. Across targeted removals of artistic styles, objects, identities, and explicit content, ICE efficiently achieves strong erasure with improved robustness to red-teaming, all while causing only minimal degradation of original generative abilities in both T2I and T2V models.
Authors:Zheng Wei, Mingchen Li, Zeqian Zhang, Ruibin Yuan, Pan Hui, Huamin Qu, James Evans, Maneesh Agrawala, Anyi Rao
Abstract:
Recent advancements in multi-agent systems have demonstrated significant potential for enhancing creative task performance, such as long video generation. This study introduces three innovations to improve multi-agent collaboration. First, we propose OmniAgent, a hierarchical, graph-based multi-agent framework for long video generation that leverages a film-production-inspired architecture to enable modular specialization and scalable inter-agent collaboration. Second, inspired by context engineering, we propose hypergraph nodes that enable temporary group discussions among agents lacking sufficient context, reducing individual memory requirements while ensuring adequate contextual information. Third, we transition from directed acyclic graphs (DAGs) to directed cyclic graphs with limited retries, allowing agents to reflect and refine outputs iteratively, thereby improving earlier stages through feedback from subsequent nodes. These contributions lay the groundwork for developing more robust multi-agent systems in creative tasks.
Authors:Hanshuai Cui, Zhiqing Tang, Zhifei Xu, Zhi Yao, Wenyi Zeng, Weijia Jia
Abstract:
Recent advancements in Diffusion Transformers (DiTs) have established them as the state-of-the-art method for video generation. However, their inherently sequential denoising process results in inevitable latency, limiting real-world applicability. Existing acceleration methods either compromise visual quality due to architectural modifications or fail to reuse intermediate features at proper granularity. Our analysis reveals that DiT blocks are the primary contributors to inference latency. Across diffusion timesteps, the feature variations of DiT blocks exhibit a U-shaped pattern with high similarity during intermediate timesteps, which suggests substantial computational redundancy. In this paper, we propose Block-Wise Caching (BWCache), a training-free method to accelerate DiT-based video generation. BWCache dynamically caches and reuses features from DiT blocks across diffusion timesteps. Furthermore, we introduce a similarity indicator that triggers feature reuse only when the differences between block features at adjacent timesteps fall below a threshold, thereby minimizing redundant computations while maintaining visual fidelity. Extensive experiments on several video diffusion models demonstrate that BWCache achieves up to 2.24$\times$ speedup with comparable visual quality.
Authors:Lianwei Yang, Haokun Lin, Tianchen Zhao, Yichen Wu, Hongyu Zhu, Ruiqi Xie, Zhenan Sun, Yu Wang, Qingyi Gu
Abstract:
Diffusion Transformers (DiTs) have achieved impressive performance in text-to-image and text-to-video generation. However, their high computational cost and large parameter sizes pose significant challenges for usage in resource-constrained scenarios. Effective compression of models has become a crucial issue that urgently needs to be addressed. Post-training quantization (PTQ) is a promising solution to reduce memory usage and accelerate inference, but existing PTQ methods suffer from severe performance degradation under extreme low-bit settings. After experiments and analysis, we identify two key obstacles to low-bit PTQ for DiTs: (1) the weights of DiT models follow a Gaussian-like distribution with long tails, causing uniform quantization to poorly allocate intervals and leading to significant quantization errors. This issue has been observed in the linear layer weights of different DiT models, which deeply limits the performance. (2) two types of activation outliers in DiT models: (i) Mild Outliers with slightly elevated values, and (ii) Salient Outliers with large magnitudes concentrated in specific channels, which disrupt activation quantization. To address these issues, we propose LRQ-DiT, an efficient and accurate post-training quantization framework for image and video generation. First, we introduce Twin-Log Quantization (TLQ), a log-based method that allocates more quantization intervals to the intermediate dense regions, effectively achieving alignment with the weight distribution and reducing quantization errors. Second, we propose an Adaptive Rotation Scheme (ARS) that dynamically applies Hadamard or outlier-aware rotations based on activation fluctuation, effectively mitigating the impact of both types of outliers. Extensive experiments on various text-to-image and text-to-video DiT models demonstrate that LRQ-DiT preserves high generation quality.
Authors:Tongchun Zuo, Zaiyu Huang, Shuliang Ning, Ente Lin, Chao Liang, Zerong Zheng, Jianwen Jiang, Yuan Zhang, Mingyuan Gao, Xin Dong
Abstract:
Video virtual try-on (VVT) technology has garnered considerable academic interest owing to its promising applications in e-commerce advertising and entertainment. However, most existing end-to-end methods rely heavily on scarce paired garment-centric datasets and fail to effectively leverage priors of advanced visual models and test-time inputs, making it challenging to accurately preserve fine-grained garment details and maintain temporal consistency in unconstrained scenarios. To address these challenges, we propose DreamVVT, a carefully designed two-stage framework built upon Diffusion Transformers (DiTs), which is inherently capable of leveraging diverse unpaired human-centric data to enhance adaptability in real-world scenarios. To further leverage prior knowledge from pretrained models and test-time inputs, in the first stage, we sample representative frames from the input video and utilize a multi-frame try-on model integrated with a vision-language model (VLM), to synthesize high-fidelity and semantically consistent keyframe try-on images. These images serve as complementary appearance guidance for subsequent video generation. \textbf{In the second stage}, skeleton maps together with fine-grained motion and appearance descriptions are extracted from the input content, and these along with the keyframe try-on images are then fed into a pretrained video generation model enhanced with LoRA adapters. This ensures long-term temporal coherence for unseen regions and enables highly plausible dynamic motions. Extensive quantitative and qualitative experiments demonstrate that DreamVVT surpasses existing methods in preserving detailed garment content and temporal stability in real-world scenarios. Our project page https://virtu-lab.github.io/
Authors:François Rozet, Ruben Ohana, Michael McCabe, Gilles Louppe, François Lanusse, Shirley Ho
Abstract:
The steep computational cost of diffusion models at inference hinders their use as fast physics emulators. In the context of image and video generation, this computational drawback has been addressed by generating in the latent space of an autoencoder instead of the pixel space. In this work, we investigate whether a similar strategy can be effectively applied to the emulation of dynamical systems and at what cost. We find that the accuracy of latent-space emulation is surprisingly robust to a wide range of compression rates (up to 1000x). We also show that diffusion-based emulators are consistently more accurate than non-generative counterparts and compensate for uncertainty in their predictions with greater diversity. Finally, we cover practical design choices, spanning from architectures to optimizers, that we found critical to train latent-space emulators.
Authors:Lei-lei Li, Jianwu Fang, Junbin Xiao, Shanmin Pang, Hongkai Yu, Chen Lv, Jianru Xue, Tat-Seng Chua
Abstract:
Egocentricly comprehending the causes and effects of car accidents is crucial for the safety of self-driving cars, and synthesizing causal-entity reflected accident videos can facilitate the capability test to respond to unaffordable accidents in reality. However, incorporating causal relations as seen in real-world videos into synthetic videos remains challenging. This work argues that precisely identifying the accident participants and capturing their related behaviors are of critical importance. In this regard, we propose a novel diffusion model, Causal-VidSyn, for synthesizing egocentric traffic accident videos. To enable causal entity grounding in video diffusion, Causal-VidSyn leverages the cause descriptions and driver fixations to identify the accident participants and behaviors, facilitated by accident reason answering and gaze-conditioned selection modules. To support Causal-VidSyn, we further construct Drive-Gaze, the largest driver gaze dataset (with 1.54M frames of fixations) in driving accident scenarios. Extensive experiments show that Causal-VidSyn surpasses state-of-the-art video diffusion models in terms of frame quality and causal sensitivity in various tasks, including accident video editing, normal-to-accident video diffusion, and text-to-video generation.
Authors:Yuhao Liu, Tengfei Wang, Fang Liu, Zhenwei Wang, Rynson W. H. Lau
Abstract:
Recent advances in deep generative modeling have unlocked unprecedented opportunities for video synthesis. In real-world applications, however, users often seek tools to faithfully realize their creative editing intentions with precise and consistent control. Despite the progress achieved by existing methods, ensuring fine-grained alignment with user intentions remains an open and challenging problem. In this work, we present Shape-for-Motion, a novel framework that incorporates a 3D proxy for precise and consistent video editing. Shape-for-Motion achieves this by converting the target object in the input video to a time-consistent mesh, i.e., a 3D proxy, allowing edits to be performed directly on the proxy and then inferred back to the video frames. To simplify the editing process, we design a novel Dual-Propagation Strategy that allows users to perform edits on the 3D mesh of a single frame, and the edits are then automatically propagated to the 3D meshes of the other frames. The 3D meshes for different frames are further projected onto the 2D space to produce the edited geometry and texture renderings, which serve as inputs to a decoupled video diffusion model for generating edited results. Our framework supports various precise and physically-consistent manipulations across the video frames, including pose editing, rotation, scaling, translation, texture modification, and object composition. Our approach marks a key step toward high-quality, controllable video editing workflows. Extensive experiments demonstrate the superiority and effectiveness of our approach. Project page: https://shapeformotion.github.io/
Authors:Jianwu Fang, Lei-Lei Li, Zhedong Zheng, Hongkai Yu, Jianru Xue, Zhengguo Li, Tat-Seng Chua
Abstract:
Traffic Accident Anticipation (TAA) in traffic scenes is a challenging problem for achieving zero fatalities in the future. Current approaches typically treat TAA as a supervised learning task needing the laborious annotation of accident occurrence duration. However, the inherent long-tailed, uncertain, and fast-evolving nature of traffic scenes has the problem that real causal parts of accidents are difficult to identify and are easily dominated by data bias, resulting in a background confounding issue. Thus, we propose an Attentive Video Diffusion (AVD) model that synthesizes additional accident video clips by generating the causal part in dashcam videos, i.e., from normal clips to accident clips. AVD aims to generate causal video frames based on accident or accident-free text prompts while preserving the style and content of frames for TAA after video generation. This approach can be trained using datasets collected from various driving scenes without any extra annotations. Additionally, AVD facilitates an Equivariant TAA (EQ-TAA) with an equivariant triple loss for an anchor accident-free video clip, along with the generated pair of contrastive pseudo-normal and pseudo-accident clips. Extensive experiments have been conducted to evaluate the performance of AVD and EQ-TAA, and competitive performance compared to state-of-the-art methods has been obtained.
Authors:Shuchen Weng, Haojie Zheng, Zheng Chang, Si Li, Boxin Shi, Xinlong Wang
Abstract:
Audio is inherently temporal and closely synchronized with the visual world, making it a naturally aligned and expressive control signal for controllable video generation (e.g., movies). Beyond control, directly translating audio into video is essential for understanding and visualizing rich audio narratives (e.g., Podcasts or historical recordings). However, existing approaches fall short in generating high-quality videos with precise audio-visual synchronization, especially across diverse and complex audio types. In this work, we introduce MTV, a versatile framework for audio-sync video generation. MTV explicitly separates audios into speech, effects, and music tracks, enabling disentangled control over lip motion, event timing, and visual mood, respectively -- resulting in fine-grained and semantically aligned video generation. To support the framework, we additionally present DEMIX, a dataset comprising high-quality cinematic videos and demixed audio tracks. DEMIX is structured into five overlapped subsets, enabling scalable multi-stage training for diverse generation scenarios. Extensive experiments demonstrate that MTV achieves state-of-the-art performance across six standard metrics spanning video quality, text-video consistency, and audio-video alignment. Project page: https://hjzheng.net/projects/MTV/.
Authors:Bo Wang, Haoyang Huang, Zhiying Lu, Fengyuan Liu, Guoqing Ma, Jianlong Yuan, Yuan Zhang, Nan Duan, Daxin Jiang
Abstract:
This paper introduces StoryAnchors, a unified framework for generating high-quality, multi-scene story frames with strong temporal consistency. The framework employs a bidirectional story generator that integrates both past and future contexts to ensure temporal consistency, character continuity, and smooth scene transitions throughout the narrative. Specific conditions are introduced to distinguish story frame generation from standard video synthesis, facilitating greater scene diversity and enhancing narrative richness. To further improve generation quality, StoryAnchors integrates Multi-Event Story Frame Labeling and Progressive Story Frame Training, enabling the model to capture both overarching narrative flow and event-level dynamics. This approach supports the creation of editable and expandable story frames, allowing for manual modifications and the generation of longer, more complex sequences. Extensive experiments show that StoryAnchors outperforms existing open-source models in key areas such as consistency, narrative coherence, and scene diversity. Its performance in narrative consistency and story richness is also on par with GPT-4o. Ultimately, StoryAnchors pushes the boundaries of story-driven frame generation, offering a scalable, flexible, and highly editable foundation for future research.
Authors:Minkyu Choi, S P Sharan, Harsh Goel, Sahil Shah, Sandeep Chinchali
Abstract:
Current text-to-video (T2V) generation models are increasingly popular due to their ability to produce coherent videos from textual prompts. However, these models often struggle to generate semantically and temporally consistent videos when dealing with longer, more complex prompts involving multiple objects or sequential events. Additionally, the high computational costs associated with training or fine-tuning make direct improvements impractical. To overcome these limitations, we introduce NeuS-E, a novel zero-training video refinement pipeline that leverages neuro-symbolic feedback to automatically enhance video generation, achieving superior alignment with the prompts. Our approach first derives the neuro-symbolic feedback by analyzing a formal video representation and pinpoints semantically inconsistent events, objects, and their corresponding frames. This feedback then guides targeted edits to the original video. Extensive empirical evaluations on both open-source and proprietary T2V models demonstrate that NeuS-E significantly enhances temporal and logical alignment across diverse prompts by almost 40%
Authors:Pooja Guhan, Divya Kothandaraman, Tsung-Wei Huang, Guan-Ming Su, Dinesh Manocha
Abstract:
We introduce CamMimic, an innovative algorithm tailored for dynamic video editing needs. It is designed to seamlessly transfer the camera motion observed in a given reference video onto any scene of the user's choice in a zero-shot manner without requiring any additional data. Our algorithm achieves this using a two-phase strategy by leveraging a text-to-video diffusion model. In the first phase, we develop a multi-concept learning method using a combination of LoRA layers and an orthogonality loss to capture and understand the underlying spatial-temporal characteristics of the reference video as well as the spatial features of the user's desired scene. The second phase proposes a unique homography-based refinement strategy to enhance the temporal and spatial alignment of the generated video. We demonstrate the efficacy of our method through experiments conducted on a dataset containing combinations of diverse scenes and reference videos containing a variety of camera motions. In the absence of an established metric for assessing camera motion transfer between unrelated scenes, we propose CameraScore, a novel metric that utilizes homography representations to measure camera motion similarity between the reference and generated videos. Extensive quantitative and qualitative evaluations demonstrate that our approach generates high-quality, motion-enhanced videos. Additionally, a user study reveals that 70.31% of participants preferred our method for scene preservation, while 90.45% favored it for motion transfer. We hope this work lays the foundation for future advancements in camera motion transfer across different scenes.
Authors:Xiaoda Yang, Jiayang Xu, Kaixuan Luan, Xinyu Zhan, Hongshun Qiu, Shijun Shi, Hao Li, Shuai Yang, Li Zhang, Checheng Yu, Cewu Lu, Lixin Yang
Abstract:
Camera control, which achieves diverse visual effects by changing camera position and pose, has attracted widespread attention. However, existing methods face challenges such as complex interaction and limited control capabilities. To address these issues, we present OmniCam, a unified multimodal camera control framework. Leveraging large language models and video diffusion models, OmniCam generates spatio-temporally consistent videos. It supports various combinations of input modalities: the user can provide text or video with expected trajectory as camera path guidance, and image or video as content reference, enabling precise control over camera motion. To facilitate the training of OmniCam, we introduce the OmniTr dataset, which contains a large collection of high-quality long-sequence trajectories, videos, and corresponding descriptions. Experimental results demonstrate that our model achieves state-of-the-art performance in high-quality camera-controlled video generation across various metrics.
Authors:Yong Zhong, Zhuoyi Yang, Jiayan Teng, Xiaotao Gu, Chongxuan Li
Abstract:
We present Concat-ID, a unified framework for identity-preserving video generation. Concat-ID employs variational autoencoders to extract image features, which are then concatenated with video latents along the sequence dimension. It relies exclusively on inherent 3D self-attention mechanisms to incorporate them, eliminating the need for additional parameters or modules. A novel cross-video pairing strategy and a multi-stage training regimen are introduced to balance identity consistency and facial editability while enhancing video naturalness. Extensive experiments demonstrate Concat-ID's superiority over existing methods in both single and multi-identity generation, as well as its seamless scalability to multi-subject scenarios, including virtual try-on and background-controllable generation. Concat-ID establishes a new benchmark for identity-preserving video synthesis, providing a versatile and scalable solution for a wide range of applications.
Authors:Jianzheng Huang, Xianyu Mo, Ziling Liu, Jinyu Yang, Feng Zheng
Abstract:
Point tracking is becoming a powerful solver for motion estimation and video editing. Compared to classical feature matching, point tracking methods have the key advantage of robustly tracking points under complex camera motion trajectories and over extended periods. However, despite certain improvements in methodologies, current point tracking methods still struggle to track any position in video frames, especially in areas that are texture-less or weakly textured. In this work, we first introduce metrics for evaluating the texture intensity of a 3D object. Using these metrics, we classify the 3D models in ShapeNet into three levels of texture intensity and create GIFT, a challenging synthetic benchmark comprising 1800 indoor video sequences with rich annotations. Unlike existing datasets that assign ground truth points arbitrarily, GIFT precisely anchors ground truth on classified target objects, ensuring that each video corresponds to a specific texture intensity level. Furthermore, we comprehensively evaluate current methods on GIFT to assess their performance across different texture intensity levels and analyze the impact of texture on point tracking.
Authors:Yen-Siang Wu, Chi-Pin Huang, Fu-En Yang, Yu-Chiang Frank Wang
Abstract:
Text-to-video (T2V) diffusion models have shown promising capabilities in synthesizing realistic videos from input text prompts. However, the input text description alone provides limited control over the precise objects movements and camera framing. In this work, we tackle the motion customization problem, where a reference video is provided as motion guidance. While most existing methods choose to fine-tune pre-trained diffusion models to reconstruct the frame differences of the reference video, we observe that such strategy suffer from content leakage from the reference video, and they cannot capture complex motion accurately. To address this issue, we propose MotionMatcher, a motion customization framework that fine-tunes the pre-trained T2V diffusion model at the feature level. Instead of using pixel-level objectives, MotionMatcher compares high-level, spatio-temporal motion features to fine-tune diffusion models, ensuring precise motion learning. For the sake of memory efficiency and accessibility, we utilize a pre-trained T2V diffusion model, which contains considerable prior knowledge about video motion, to compute these motion features. In our experiments, we demonstrate state-of-the-art motion customization performances, validating the design of our framework.
Authors:Sihyun Yu, Meera Hahn, Dan Kondratyuk, Jinwoo Shin, Agrim Gupta, José Lezama, Irfan Essa, David Ross, Jonathan Huang
Abstract:
Diffusion models are successful for synthesizing high-quality videos but are limited to generating short clips (e.g., 2-10 seconds). Synthesizing sustained footage (e.g. over minutes) still remains an open research question. In this paper, we propose MALT Diffusion (using Memory-Augmented Latent Transformers), a new diffusion model specialized for long video generation. MALT Diffusion (or just MALT) handles long videos by subdividing them into short segments and doing segment-level autoregressive generation. To achieve this, we first propose recurrent attention layers that encode multiple segments into a compact memory latent vector; by maintaining this memory vector over time, MALT is able to condition on it and continuously generate new footage based on a long temporal context. We also present several training techniques that enable the model to generate frames over a long horizon with consistent quality and minimal degradation. We validate the effectiveness of MALT through experiments on long video benchmarks. We first perform extensive analysis of MALT in long-contextual understanding capability and stability using popular long video benchmarks. For example, MALT achieves an FVD score of 220.4 on 128-frame video generation on UCF-101, outperforming the previous state-of-the-art of 648.4. Finally, we explore MALT's capabilities in a text-to-video generation setting and show that it can produce long videos compared with recent techniques for long text-to-video generation.
Authors:Gaojie Lin, Jianwen Jiang, Jiaqi Yang, Zerong Zheng, Chao Liang
Abstract:
End-to-end human animation, such as audio-driven talking human generation, has undergone notable advancements in the recent few years. However, existing methods still struggle to scale up as large general video generation models, limiting their potential in real applications. In this paper, we propose OmniHuman, a Diffusion Transformer-based framework that scales up data by mixing motion-related conditions into the training phase. To this end, we introduce two training principles for these mixed conditions, along with the corresponding model architecture and inference strategy. These designs enable OmniHuman to fully leverage data-driven motion generation, ultimately achieving highly realistic human video generation. More importantly, OmniHuman supports various portrait contents (face close-up, portrait, half-body, full-body), supports both talking and singing, handles human-object interactions and challenging body poses, and accommodates different image styles. Compared to existing end-to-end audio-driven methods, OmniHuman not only produces more realistic videos, but also offers greater flexibility in inputs. It also supports multiple driving modalities (audio-driven, video-driven and combined driving signals). Video samples are provided on the ttfamily project page (https://omnihuman-lab.github.io)
Authors:Linrui Tian, Siqi Hu, Qi Wang, Bang Zhang, Liefeng Bo
Abstract:
In this paper, we propose a novel audio-driven talking head method capable of simultaneously generating highly expressive facial expressions and hand gestures. Unlike existing methods that focus on generating full-body or half-body poses, we investigate the challenges of co-speech gesture generation and identify the weak correspondence between audio features and full-body gestures as a key limitation. To address this, we redefine the task as a two-stage process. In the first stage, we generate hand poses directly from audio input, leveraging the strong correlation between audio signals and hand movements. In the second stage, we employ a diffusion model to synthesize video frames, incorporating the hand poses generated in the first stage to produce realistic facial expressions and body movements. Our experimental results demonstrate that the proposed method outperforms state-of-the-art approaches, such as CyberHost and Vlogger, in terms of both visual quality and synchronization accuracy. This work provides a new perspective on audio-driven gesture generation and a robust framework for creating expressive and natural talking head animations.
Authors:Philippe Hansen-Estruch, David Yan, Ching-Yao Chung, Orr Zohar, Jialiang Wang, Tingbo Hou, Tao Xu, Sriram Vishwanath, Peter Vajda, Xinlei Chen
Abstract:
Visual tokenization via auto-encoding empowers state-of-the-art image and video generative models by compressing pixels into a latent space. Although scaling Transformer-based generators has been central to recent advances, the tokenizer component itself is rarely scaled, leaving open questions about how auto-encoder design choices influence both its objective of reconstruction and downstream generative performance. Our work aims to conduct an exploration of scaling in auto-encoders to fill in this blank. To facilitate this exploration, we replace the typical convolutional backbone with an enhanced Vision Transformer architecture for Tokenization (ViTok). We train ViTok on large-scale image and video datasets far exceeding ImageNet-1K, removing data constraints on tokenizer scaling. We first study how scaling the auto-encoder bottleneck affects both reconstruction and generation -- and find that while it is highly correlated with reconstruction, its relationship with generation is more complex. We next explored the effect of separately scaling the auto-encoders' encoder and decoder on reconstruction and generation performance. Crucially, we find that scaling the encoder yields minimal gains for either reconstruction or generation, while scaling the decoder boosts reconstruction but the benefits for generation are mixed. Building on our exploration, we design ViTok as a lightweight auto-encoder that achieves competitive performance with state-of-the-art auto-encoders on ImageNet-1K and COCO reconstruction tasks (256p and 512p) while outperforming existing auto-encoders on 16-frame 128p video reconstruction for UCF-101, all with 2-5x fewer FLOPs. When integrated with Diffusion Transformers, ViTok demonstrates competitive performance on image generation for ImageNet-1K and sets new state-of-the-art benchmarks for class-conditional video generation on UCF-101.
Authors:Ting Zhang, Zhiqiang Yuan, Yeshuang Zhu, Jinchao Zhang
Abstract:
High-quality animated stickers usually contain transparent channels, which are often ignored by current video generation models. To generate fine-grained animated transparency channels, existing methods can be roughly divided into video matting algorithms and diffusion-based algorithms. The methods based on video matting have poor performance in dealing with semi-open areas in stickers, while diffusion-based methods are often used to model a single image, which will lead to local flicker when modeling animated stickers. In this paper, we firstly propose an ILDiff method to generate animated transparent channels through implicit layout distillation, which solves the problems of semi-open area collapse and no consideration of temporal information in existing methods. Secondly, we create the Transparent Animated Sticker Dataset (TASD), which contains 0.32M high-quality samples with transparent channel, to provide data support for related fields. Extensive experiments demonstrate that ILDiff can produce finer and smoother transparent channels compared to other methods such as Matting Anything and Layer Diffusion. Our code and dataset will be released at link https://xiaoyuan1996.github.io.
Authors:Zhentao Tan, Ben Xue, Jian Jia, Junhao Wang, Wencai Ye, Shaoyun Shi, Mingjie Sun, Wenjin Wu, Quan Chen, Peng Jiang
Abstract:
This paper presents the \textbf{S}emantic-a\textbf{W}ar\textbf{E} spatial-t\textbf{E}mporal \textbf{T}okenizer (SweetTok), a novel video tokenizer to overcome the limitations in current video tokenization methods for compacted yet effective discretization. Unlike previous approaches that process flattened local visual patches via direct discretization or adaptive query tokenization, SweetTok proposes a decoupling framework, compressing visual inputs through distinct spatial and temporal queries via \textbf{D}ecoupled \textbf{Q}uery \textbf{A}uto\textbf{E}ncoder (DQAE). This design allows SweetTok to efficiently compress video token count while achieving superior fidelity by capturing essential information across spatial and temporal dimensions. Furthermore, we design a \textbf{M}otion-enhanced \textbf{L}anguage \textbf{C}odebook (MLC) tailored for spatial and temporal compression to address the differences in semantic representation between appearance and motion information. SweetTok significantly improves video reconstruction results by \textbf{42.8\%} w.r.t rFVD on UCF-101 dataset. With a better token compression strategy, it also boosts downstream video generation results by \textbf{15.1\%} w.r.t gFVD. Additionally, the compressed decoupled tokens are imbued with semantic information, enabling few-shot recognition capabilities powered by LLMs in downstream applications.
Authors:Zhihui Yin, Ye Ma, Xipeng Cao, Bo Wang, Quan Chen, Peng Jiang
Abstract:
The proliferation of online short video platforms has driven a surge in user demand for short video editing. However, manually selecting, cropping, and assembling raw footage into a coherent, high-quality video remains laborious and time-consuming. To accelerate this process, we focus on a user-friendly new task called Video Moment Montage (VMM), which aims to accurately locate the corresponding video segments based on a pre-provided narration text and then arrange these video clips to create a complete video that aligns with the corresponding descriptions. The challenge lies in extracting precise temporal segments while ensuring intra-sentence and inter-sentence context consistency, as a single script sentence may require trimming and assembling multiple video clips. To address this problem, we present a novel \textit{Text-Video Multi-Grained Integration} method (TV-MGI) that efficiently fuses text features from the script with both shot-level and frame-level video features, which enables the global and fine-grained alignment between the video content and the corresponding textual descriptions in the script. To facilitate further research in this area, we introduce the Multiple Sentences with Shots Dataset (MSSD), a large-scale dataset designed explicitly for the VMM task. We conduct extensive experiments on the MSSD dataset to demonstrate the effectiveness of our framework compared to baseline methods.
Authors:S P Sharan, Minkyu Choi, Sahil Shah, Harsh Goel, Mohammad Omama, Sandeep Chinchali
Abstract:
Recent advancements in text-to-video models such as Sora, Gen-3, MovieGen, and CogVideoX are pushing the boundaries of synthetic video generation, with adoption seen in fields like robotics, autonomous driving, and entertainment. As these models become prevalent, various metrics and benchmarks have emerged to evaluate the quality of the generated videos. However, these metrics emphasize visual quality and smoothness, neglecting temporal fidelity and text-to-video alignment, which are crucial for safety-critical applications. To address this gap, we introduce NeuS-V, a novel synthetic video evaluation metric that rigorously assesses text-to-video alignment using neuro-symbolic formal verification techniques. Our approach first converts the prompt into a formally defined Temporal Logic (TL) specification and translates the generated video into an automaton representation. Then, it evaluates the text-to-video alignment by formally checking the video automaton against the TL specification. Furthermore, we present a dataset of temporally extended prompts to evaluate state-of-the-art video generation models against our benchmark. We find that NeuS-V demonstrates a higher correlation by over 5x with human evaluations when compared to existing metrics. Our evaluation further reveals that current video generation models perform poorly on these temporally complex prompts, highlighting the need for future work in improving text-to-video generation capabilities.
Authors:Shuchen Weng, Haojie Zheng, Peixuan Zhang, Yuchen Hong, Han Jiang, Si Li, Boxin Shi
Abstract:
We introduce VIRES, a video instance repainting method with sketch and text guidance, enabling video instance repainting, replacement, generation, and removal. Existing approaches struggle with temporal consistency and accurate alignment with the provided sketch sequence. VIRES leverages the generative priors of text-to-video models to maintain temporal consistency and produce visually pleasing results. We propose the Sequential ControlNet with the standardized self-scaling, which effectively extracts structure layouts and adaptively captures high-contrast sketch details. We further augment the diffusion transformer backbone with the sketch attention to interpret and inject fine-grained sketch semantics. A sketch-aware encoder ensures that repainted results are aligned with the provided sketch sequence. Additionally, we contribute the VireSet, a dataset with detailed annotations tailored for training and evaluating video instance editing methods. Experimental results demonstrate the effectiveness of VIRES, which outperforms state-of-the-art methods in visual quality, temporal consistency, condition alignment, and human ratings. Project page: https://hjzheng.net/projects/VIRES/
Authors:Huan Yang, Jiahui Chen, Chaofan Ding, Runhua Shi, Siyu Xiong, Qingqi Hong, Xiaoqi Mo, Xinhan Di
Abstract:
Gestures are pivotal in enhancing co-speech communication. While recent works have mostly focused on point-level motion transformation or fully supervised motion representations through data-driven approaches, we explore the representation of gestures in co-speech, with a focus on self-supervised representation and pixel-level motion deviation, utilizing a diffusion model which incorporates latent motion features. Our approach leverages self-supervised deviation in latent representation to facilitate hand gestures generation, which are crucial for generating realistic gesture videos. Results of our first experiment demonstrate that our method enhances the quality of generated videos, with an improvement from 2.7 to 4.5% for FGD, DIV, and FVD, and 8.1% for PSNR, 2.5% for SSIM over the current state-of-the-art methods.
Authors:Jianwen Jiang, Chao Liang, Jiaqi Yang, Gaojie Lin, Tianyun Zhong, Yanbo Zheng
Abstract:
With the introduction of diffusion-based video generation techniques, audio-conditioned human video generation has recently achieved significant breakthroughs in both the naturalness of motion and the synthesis of portrait details. Due to the limited control of audio signals in driving human motion, existing methods often add auxiliary spatial signals to stabilize movements, which may compromise the naturalness and freedom of motion. In this paper, we propose an end-to-end audio-only conditioned video diffusion model named Loopy. Specifically, we designed an inter- and intra-clip temporal module and an audio-to-latents module, enabling the model to leverage long-term motion information from the data to learn natural motion patterns and improving audio-portrait movement correlation. This method removes the need for manually specified spatial motion templates used in existing methods to constrain motion during inference. Extensive experiments show that Loopy outperforms recent audio-driven portrait diffusion models, delivering more lifelike and high-quality results across various scenarios.
Authors:Gaojie Lin, Jianwen Jiang, Chao Liang, Tianyun Zhong, Jiaqi Yang, Yanbo Zheng
Abstract:
Diffusion-based video generation technology has advanced significantly, catalyzing a proliferation of research in human animation. However, the majority of these studies are confined to same-modality driving settings, with cross-modality human body animation remaining relatively underexplored. In this paper, we introduce, an end-to-end audio-driven human animation framework that ensures hand integrity, identity consistency, and natural motion. The key design of CyberHost is the Region Codebook Attention mechanism, which improves the generation quality of facial and hand animations by integrating fine-grained local features with learned motion pattern priors. Furthermore, we have developed a suite of human-prior-guided training strategies, including body movement map, hand clarity score, pose-aligned reference feature, and local enhancement supervision, to improve synthesis results. To our knowledge, CyberHost is the first end-to-end audio-driven human diffusion model capable of facilitating zero-shot video generation within the scope of human body. Extensive experiments demonstrate that CyberHost surpasses previous works in both quantitative and qualitative aspects.
Authors:Kumar Ashutosh, XuDong Wang, Xi Yin, Kristen Grauman, Adam Polyak, Ishan Misra, Rohit Girdhar
Abstract:
Video generation models have recently achieved impressive visual fidelity and temporal coherence. Yet, they continue to struggle with complex, non-rigid motions, especially when synthesizing humans performing dynamic actions such as sports, dance, etc. Generated videos often exhibit missing or extra limbs, distorted poses, or physically implausible actions. In this work, we propose a remarkably simple reward model, HuDA, to quantify and improve the human motion in generated videos. HuDA integrates human detection confidence for appearance quality, and a temporal prompt alignment score to capture motion realism. We show this simple reward function that leverages off-the-shelf models without any additional training, outperforms specialized models finetuned with manually annotated data. Using HuDA for Group Reward Policy Optimization (GRPO) post-training of video models, we significantly enhance video generation, especially when generating complex human motions, outperforming state-of-the-art models like Wan 2.1, with win-rate of 73%. Finally, we demonstrate that HuDA improves generation quality beyond just humans, for instance, significantly improving generation of animal videos and human-object interactions.
Authors:Yang Zhou, Hao Shao, Letian Wang, Zhuofan Zong, Hongsheng Li, Steven L. Waslander
Abstract:
Video generation models, as one form of world models, have emerged as one of the most exciting frontiers in AI, promising agents the ability to imagine the future by modeling the temporal evolution of complex scenes. In autonomous driving, this vision gives rise to driving world models: generative simulators that imagine ego and agent futures, enabling scalable simulation, safe testing of corner cases, and rich synthetic data generation. Yet, despite fast-growing research activity, the field lacks a rigorous benchmark to measure progress and guide priorities. Existing evaluations remain limited: generic video metrics overlook safety-critical imaging factors; trajectory plausibility is rarely quantified; temporal and agent-level consistency is neglected; and controllability with respect to ego conditioning is ignored. Moreover, current datasets fail to cover the diversity of conditions required for real-world deployment. To address these gaps, we present DrivingGen, the first comprehensive benchmark for generative driving world models. DrivingGen combines a diverse evaluation dataset curated from both driving datasets and internet-scale video sources, spanning varied weather, time of day, geographic regions, and complex maneuvers, with a suite of new metrics that jointly assess visual realism, trajectory plausibility, temporal coherence, and controllability. Benchmarking 14 state-of-the-art models reveals clear trade-offs: general models look better but break physics, while driving-specific ones capture motion realistically but lag in visual quality. DrivingGen offers a unified evaluation framework to foster reliable, controllable, and deployable driving world models, enabling scalable simulation, planning, and data-driven decision-making.
Authors:Chayan Jain, Rishant Sharma, Archit Garg, Ishan Bhanuka, Pratik Narang, Dhruv Kumar
Abstract:
Generating long, cohesive video stories with consistent characters is a significant challenge for current text-to-video AI. We introduce a method that approaches video generation in a filmmaker-like manner. Instead of creating a video in one step, our proposed pipeline first uses a large language model to generate a detailed production script. This script guides a text-to-image model in creating consistent visuals for each character, which then serve as anchors for a video generation model to synthesize each scene individually. Our baseline comparisons validate the necessity of this multi-stage decomposition; specifically, we observe that removing the visual anchoring mechanism results in a catastrophic drop in character consistency scores (from 7.99 to 0.55), confirming that visual priors are essential for identity preservation. Furthermore, we analyze cultural disparities in current models, revealing distinct biases in subject consistency and dynamic degree between Indian vs Western-themed generations.
Authors:Delong Chen, Mustafa Shukor, Theo Moutakanni, Willy Chung, Jade Yu, Tejaswi Kasarla, Allen Bolourchi, Yann LeCun, Pascale Fung
Abstract:
We introduce VL-JEPA, a vision-language model built on a Joint Embedding Predictive Architecture (JEPA). Instead of autoregressively generating tokens as in classical VLMs, VL-JEPA predicts continuous embeddings of the target texts. By learning in an abstract representation space, the model focuses on task-relevant semantics while abstracting away surface-level linguistic variability. In a strictly controlled comparison against standard token-space VLM training with the same vision encoder and training data, VL-JEPA achieves stronger performance while having 50% fewer trainable parameters. At inference time, a lightweight text decoder is invoked only when needed to translate VL-JEPA predicted embeddings into text. We show that VL-JEPA natively supports selective decoding that reduces the number of decoding operations by 2.85x while maintaining similar performance compared to non-adaptive uniform decoding. Beyond generation, the VL-JEPA's embedding space naturally supports open-vocabulary classification, text-to-video retrieval, and discriminative VQA without any architecture modification. On eight video classification and eight video retrieval datasets, the average performance VL-JEPA surpasses that of CLIP, SigLIP2, and Perception Encoder. At the same time, the model achieves comparable performance as classical VLMs (InstructBLIP, QwenVL) on four VQA datasets: GQA, TallyQA, POPE and POPEv2, despite only having 1.6B parameters.
Authors:Haojie Zheng, Shuchen Weng, Jingqi Liu, Siqi Yang, Boxin Shi, Xinlong Wang
Abstract:
Recent advancements in video generation highlight that realistic audio-visual synchronization is crucial for engaging content creation. However, existing video editing methods largely overlook audio-visual synchronization and lack the fine-grained spatial and temporal controllability required for precise instance-level edits. In this paper, we propose AVI-Edit, a framework for audio-sync video instance editing. We propose a granularity-aware mask refiner that iteratively refines coarse user-provided masks into precise instance-level regions. We further design a self-feedback audio agent to curate high-quality audio guidance, providing fine-grained temporal control. To facilitate this task, we additionally construct a large-scale dataset with instance-centric correspondence and comprehensive annotations. Extensive experiments demonstrate that AVI-Edit outperforms state-of-the-art methods in visual quality, condition following, and audio-visual synchronization. Project page: https://hjzheng.net/projects/AVI-Edit/.
Authors:Songping Wang, Rufan Qian, Yueming Lyu, Qinglong Liu, Linzhuang Zou, Jie Qin, Songhua Liu, Caifeng Shan
Abstract:
Image-to-Video (I2V) generation synthesizes dynamic visual content from image and text inputs, providing significant creative control. However, the security of such multimodal systems, particularly their vulnerability to jailbreak attacks, remains critically underexplored. To bridge this gap, we propose RunawayEvil, the first multimodal jailbreak framework for I2V models with dynamic evolutionary capability. Built on a "Strategy-Tactic-Action" paradigm, our framework exhibits self-amplifying attack through three core components: (1) Strategy-Aware Command Unit that enables the attack to self-evolve its strategies through reinforcement learning-driven strategy customization and LLM-based strategy exploration; (2) Multimodal Tactical Planning Unit that generates coordinated text jailbreak instructions and image tampering guidelines based on the selected strategies; (3) Tactical Action Unit that executes and evaluates the multimodal coordinated attacks. This self-evolving architecture allows the framework to continuously adapt and intensify its attack strategies without human intervention. Extensive experiments demonstrate RunawayEvil achieves state-of-the-art attack success rates on commercial I2V models, such as Open-Sora 2.0 and CogVideoX. Specifically, RunawayEvil outperforms existing methods by 58.5 to 79 percent on COCO2017. This work provides a critical tool for vulnerability analysis of I2V models, thereby laying a foundation for more robust video generation systems.
Authors:Jie Li, Hongyi Cai, Mingkang Dong, Muxin Pu, Shan You, Fei Wang, Tao Huang
Abstract:
Automatically detecting abnormal events in videos is crucial for modern autonomous systems, yet existing Video Anomaly Detection (VAD) benchmarks lack the scene diversity, balanced anomaly coverage, and temporal complexity needed to reliably assess real-world performance. Meanwhile, the community is increasingly moving toward Video Anomaly Understanding (VAU), which requires deeper semantic and causal reasoning but remains difficult to benchmark due to the heavy manual annotation effort it demands. In this paper, we introduce Pistachio, a new VAD/VAU benchmark constructed entirely through a controlled, generation-based pipeline. By leveraging recent advances in video generation models, Pistachio provides precise control over scenes, anomaly types, and temporal narratives, effectively eliminating the biases and limitations of Internet-collected datasets. Our pipeline integrates scene-conditioned anomaly assignment, multi-step storyline generation, and a temporally consistent long-form synthesis strategy that produces coherent 41-second videos with minimal human intervention. Extensive experiments demonstrate the scale, diversity, and complexity of Pistachio, revealing new challenges for existing methods and motivating future research on dynamic and multi-event anomaly understanding.
Authors:Timing Yang, Sucheng Ren, Alan Yuille, Feng Wang
Abstract:
Text-to-video generation has surged in interest since Sora, yet open-source models still face a data bottleneck: there is no large, high-quality, easily obtainable video-text corpus. Existing public datasets typically require manual YouTube crawling, which yields low usable volume due to link rot and access limits, and raises licensing uncertainty. This work addresses this challenge by introducing ViMix-14M, a curated multi-source video-text dataset of around 14 million pairs that provides crawl-free, download-ready access and long-form, high-quality captions tightly aligned to video. ViMix-14M is built by merging diverse open video sources, followed by unified de-duplication and quality filtering, and a multi-granularity, ground-truth-guided re-captioning pipeline that refines descriptions to better match actions, scenes, and temporal structure. We evaluate the dataset by multimodal retrieval, text-to-video generation, and video question answering tasks, observing consistent improvements over counterpart datasets. We hope this work can help removing the key barrier to training and fine-tuning open-source video foundation models, and provide insights of building high-quality and generalizable video-text datasets.
Authors:Joonghyuk Shin, Zhengqi Li, Richard Zhang, Jun-Yan Zhu, Jaesik Park, Eli Schechtman, Xun Huang
Abstract:
Current motion-conditioned video generation methods suffer from prohibitive latency (minutes per video) and non-causal processing that prevents real-time interaction. We present MotionStream, enabling sub-second latency with up to 29 FPS streaming generation on a single GPU. Our approach begins by augmenting a text-to-video model with motion control, which generates high-quality videos that adhere to the global text prompt and local motion guidance, but does not perform inference on the fly. As such, we distill this bidirectional teacher into a causal student through Self Forcing with Distribution Matching Distillation, enabling real-time streaming inference. Several key challenges arise when generating videos of long, potentially infinite time-horizons: (1) bridging the domain gap from training on finite length and extrapolating to infinite horizons, (2) sustaining high quality by preventing error accumulation, and (3) maintaining fast inference, without incurring growth in computational cost due to increasing context windows. A key to our approach is introducing carefully designed sliding-window causal attention, combined with attention sinks. By incorporating self-rollout with attention sinks and KV cache rolling during training, we properly simulate inference-time extrapolations with a fixed context window, enabling constant-speed generation of arbitrarily long videos. Our models achieve state-of-the-art results in motion following and video quality while being two orders of magnitude faster, uniquely enabling infinite-length streaming. With MotionStream, users can paint trajectories, control cameras, or transfer motion, and see results unfold in real-time, delivering a truly interactive experience.
Authors:Meituan LongCat Team, Xunliang Cai, Qilong Huang, Zhuoliang Kang, Hongyu Li, Shijun Liang, Liya Ma, Siyu Ren, Xiaoming Wei, Rixu Xie, Tong Zhang
Abstract:
Video generation is a critical pathway toward world models, with efficient long video inference as a key capability. Toward this end, we introduce LongCat-Video, a foundational video generation model with 13.6B parameters, delivering strong performance across multiple video generation tasks. It particularly excels in efficient and high-quality long video generation, representing our first step toward world models. Key features include: Unified architecture for multiple tasks: Built on the Diffusion Transformer (DiT) framework, LongCat-Video supports Text-to-Video, Image-to-Video, and Video-Continuation tasks with a single model; Long video generation: Pretraining on Video-Continuation tasks enables LongCat-Video to maintain high quality and temporal coherence in the generation of minutes-long videos; Efficient inference: LongCat-Video generates 720p, 30fps videos within minutes by employing a coarse-to-fine generation strategy along both the temporal and spatial axes. Block Sparse Attention further enhances efficiency, particularly at high resolutions; Strong performance with multi-reward RLHF: Multi-reward RLHF training enables LongCat-Video to achieve performance on par with the latest closed-source and leading open-source models. Code and model weights are publicly available to accelerate progress in the field.
Authors:Yihao Zhi, Chenghong Li, Hongjie Liao, Xihe Yang, Zhengwentai Sun, Jiahao Chang, Xiaodong Cun, Wensen Feng, Xiaoguang Han
Abstract:
Recent breakthroughs in video generation, powered by large-scale datasets and diffusion techniques, have shown that video diffusion models can function as implicit 4D novel view synthesizers. Nevertheless, current methods primarily concentrate on redirecting camera trajectory within the front view while struggling to generate 360-degree viewpoint changes. In this paper, we focus on human-centric subdomain and present MV-Performer, an innovative framework for creating synchronized novel view videos from monocular full-body captures. To achieve a 360-degree synthesis, we extensively leverage the MVHumanNet dataset and incorporate an informative condition signal. Specifically, we use the camera-dependent normal maps rendered from oriented partial point clouds, which effectively alleviate the ambiguity between seen and unseen observations. To maintain synchronization in the generated videos, we propose a multi-view human-centric video diffusion model that fuses information from the reference video, partial rendering, and different viewpoints. Additionally, we provide a robust inference procedure for in-the-wild video cases, which greatly mitigates the artifacts induced by imperfect monocular depth estimation. Extensive experiments on three datasets demonstrate our MV-Performer's state-of-the-art effectiveness and robustness, setting a strong model for human-centric 4D novel view synthesis.
Authors:Rohit Chowdhury, Aniruddha Bala, Rohan Jaiswal, Siddharth Roheda
Abstract:
The rapid progress of image-to-video (I2V) generation models has introduced significant risks, enabling video synthesis from static images and facilitating deceptive or malicious content creation. While prior defenses such as I2VGuard attempt to immunize images, effective and principled protection to block motion remains underexplored. In this work, we introduce Vid-Freeze - a novel attention-suppressing adversarial attack that adds carefully crafted adversarial perturbations to images. Our method explicitly targets the attention mechanism of I2V models, completely disrupting motion synthesis while preserving semantic fidelity of the input image. The resulting immunized images generate stand-still or near-static videos, effectively blocking malicious content creation. Our experiments demonstrate the impressive protection provided by the proposed approach, highlighting the importance of attention attacks as a promising direction for robust and proactive defenses against misuse of I2V generation models.
Authors:Yixiang Dai, Fan Jiang, Chiyu Wang, Mu Xu, Yonggang Qi
Abstract:
High-quality 3D world models are pivotal for embodied intelligence and Artificial General Intelligence (AGI), underpinning applications such as AR/VR content creation and robotic navigation. Despite the established strong imaginative priors, current video foundation models lack explicit 3D grounding capabilities, thus being limited in both spatial consistency and their utility for downstream 3D reasoning tasks. In this work, we present FantasyWorld, a geometry-enhanced framework that augments frozen video foundation models with a trainable geometric branch, enabling joint modeling of video latents and an implicit 3D field in a single forward pass. Our approach introduces cross-branch supervision, where geometry cues guide video generation and video priors regularize 3D prediction, thus yielding consistent and generalizable 3D-aware video representations. Notably, the resulting latents from the geometric branch can potentially serve as versatile representations for downstream 3D tasks such as novel view synthesis and navigation, without requiring per-scene optimization or fine-tuning. Extensive experiments show that FantasyWorld effectively bridges video imagination and 3D perception, outperforming recent geometry-consistent baselines in multi-view coherence and style consistency. Ablation studies further confirm that these gains stem from the unified backbone and cross-branch information exchange.
Authors:Luca Zanchetta, Lorenzo Papa, Luca Maiano, Irene Amerini
Abstract:
Text-to-video generation is an emerging field in generative AI, enabling the creation of realistic, semantically accurate videos from text prompts. While current models achieve impressive visual quality and alignment with input text, they typically rely on static knowledge, making it difficult to incorporate new data without retraining from scratch. To address this limitation, we propose VidCLearn, a continual learning framework for diffusion-based text-to-video generation. VidCLearn features a student-teacher architecture where the student model is incrementally updated with new text-video pairs, and the teacher model helps preserve previously learned knowledge through generative replay. Additionally, we introduce a novel temporal consistency loss to enhance motion smoothness and a video retrieval module to provide structural guidance at inference. Our architecture is also designed to be more computationally efficient than existing models while retaining satisfactory generation performance. Experimental results show VidCLearn's superiority over baseline methods in terms of visual quality, semantic alignment, and temporal coherence.
Authors:Junbang Liang, Pavel Tokmakov, Ruoshi Liu, Sruthi Sudhakar, Paarth Shah, Rares Ambrus, Carl Vondrick
Abstract:
Despite tremendous progress in dexterous manipulation, current visuomotor policies remain fundamentally limited by two challenges: they struggle to generalize under perceptual or behavioral distribution shifts, and their performance is constrained by the size of human demonstration data. In this paper, we use video generation as a proxy for robot policy learning to address both limitations simultaneously. We propose Video Policy, a modular framework that combines video and action generation that can be trained end-to-end. Our results demonstrate that learning to generate videos of robot behavior allows for the extraction of policies with minimal demonstration data, significantly improving robustness and sample efficiency. Our method shows strong generalization to unseen objects, backgrounds, and tasks, both in simulation and the real world. We further highlight that task success is closely tied to the generated video, with action-free video data providing critical benefits for generalizing to novel tasks. By leveraging large-scale video generative models, we achieve superior performance compared to traditional behavior cloning, paving the way for more scalable and data-efficient robot policy learning.
Authors:Riccardo Corvi, Davide Cozzolino, Ekta Prashnani, Shalini De Mello, Koki Nagano, Luisa Verdoliva
Abstract:
Synthetic video generation is progressing very rapidly. The latest models can produce very realistic high-resolution videos that are virtually indistinguishable from real ones. Although several video forensic detectors have been recently proposed, they often exhibit poor generalization, which limits their applicability in a real-world scenario. Our key insight to overcome this issue is to guide the detector towards seeing what really matters. In fact, a well-designed forensic classifier should focus on identifying intrinsic low-level artifacts introduced by a generative architecture rather than relying on high-level semantic flaws that characterize a specific model. In this work, first, we study different generative architectures, searching and identifying discriminative features that are unbiased, robust to impairments, and shared across models. Then, we introduce a novel forensic-oriented data augmentation strategy based on the wavelet decomposition and replace specific frequency-related bands to drive the model to exploit more relevant forensic cues. Our novel training paradigm improves the generalizability of AI-generated video detectors, without the need for complex algorithms and large datasets that include multiple synthetic generators. To evaluate our approach, we train the detector using data from a single generative model and test it against videos produced by a wide range of other models. Despite its simplicity, our method achieves a significant accuracy improvement over state-of-the-art detectors and obtains excellent results even on very recent generative models, such as NOVA and FLUX. Code and data will be made publicly available.
Authors:Gwanghyun Kim, Xueting Li, Ye Yuan, Koki Nagano, Tianye Li, Jan Kautz, Se Young Chun, Umar Iqbal
Abstract:
Estimating accurate and temporally consistent 3D human geometry from videos is a challenging problem in computer vision. Existing methods, primarily optimized for single images, often suffer from temporal inconsistencies and fail to capture fine-grained dynamic details. To address these limitations, we present GeoMan, a novel architecture designed to produce accurate and temporally consistent depth and normal estimations from monocular human videos. GeoMan addresses two key challenges: the scarcity of high-quality 4D training data and the need for metric depth estimation to accurately model human size. To overcome the first challenge, GeoMan employs an image-based model to estimate depth and normals for the first frame of a video, which then conditions a video diffusion model, reframing video geometry estimation task as an image-to-video generation problem. This design offloads the heavy lifting of geometric estimation to the image model and simplifies the video model's role to focus on intricate details while using priors learned from large-scale video datasets. Consequently, GeoMan improves temporal consistency and generalizability while requiring minimal 4D training data. To address the challenge of accurate human size estimation, we introduce a root-relative depth representation that retains critical human-scale details and is easier to be estimated from monocular inputs, overcoming the limitations of traditional affine-invariant and metric depth representations. GeoMan achieves state-of-the-art performance in both qualitative and quantitative evaluations, demonstrating its effectiveness in overcoming longstanding challenges in 3D human geometry estimation from videos.
Authors:Yifei Xia, Shuchen Weng, Siqi Yang, Jingqi Liu, Chengxuan Zhu, Minggui Teng, Zijian Jia, Han Jiang, Boxin Shi
Abstract:
Panoramic video generation enables immersive 360° content creation, valuable in applications that demand scene-consistent world exploration. However, existing panoramic video generation models struggle to leverage pre-trained generative priors from conventional text-to-video models for high-quality and diverse panoramic videos generation, due to limited dataset scale and the gap in spatial feature representations. In this paper, we introduce PanoWan to effectively lift pre-trained text-to-video models to the panoramic domain, equipped with minimal modules. PanoWan employs latitude-aware sampling to avoid latitudinal distortion, while its rotated semantic denoising and padded pixel-wise decoding ensure seamless transitions at longitude boundaries. To provide sufficient panoramic videos for learning these lifted representations, we contribute PanoVid, a high-quality panoramic video dataset with captions and diverse scenarios. Consequently, PanoWan achieves state-of-the-art performance in panoramic video generation and demonstrates robustness for zero-shot downstream tasks. Our project page is available at https://panowan.variantconst.com.
Authors:Wenyan Yang, Ahmet Tikna, Yi Zhao, Yuying Zhang, Luigi Palopoli, Marco Roveri, Joni Pajarinen
Abstract:
Visual planning, by offering a sequence of intermediate visual subgoals to a goal-conditioned low-level policy, achieves promising performance on long-horizon manipulation tasks. To obtain the subgoals, existing methods typically resort to video generation models but suffer from model hallucination and computational cost. We present Vis2Plan, an efficient, explainable and white-box visual planning framework powered by symbolic guidance. From raw, unlabeled play data, Vis2Plan harnesses vision foundation models to automatically extract a compact set of task symbols, which allows building a high-level symbolic transition graph for multi-goal, multi-stage planning. At test time, given a desired task goal, our planner conducts planning at the symbolic level and assembles a sequence of physically consistent intermediate sub-goal images grounded by the underlying symbolic representation. Our Vis2Plan outperforms strong diffusion video generation-based visual planners by delivering 53\% higher aggregate success rate in real robot settings while generating visual plans 35$\times$ faster. The results indicate that Vis2Plan is able to generate physically consistent image goals while offering fully inspectable reasoning steps.
Authors:Hui Han, Siyuan Li, Jiaqi Chen, Yiwen Yuan, Yuling Wu, Chak Tou Leong, Hanwen Du, Junchen Fu, Youhua Li, Jie Zhang, Chi Zhang, Li-jia Li, Yongxin Ni
Abstract:
Video generation assessment is essential for ensuring that generative models produce visually realistic, high-quality videos while aligning with human expectations. Current video generation benchmarks fall into two main categories: traditional benchmarks, which use metrics and embeddings to evaluate generated video quality across multiple dimensions but often lack alignment with human judgments; and large language model (LLM)-based benchmarks, though capable of human-like reasoning, are constrained by a limited understanding of video quality metrics and cross-modal consistency. To address these challenges and establish a benchmark that better aligns with human preferences, this paper introduces Video-Bench, a comprehensive benchmark featuring a rich prompt suite and extensive evaluation dimensions. This benchmark represents the first attempt to systematically leverage MLLMs across all dimensions relevant to video generation assessment in generative models. By incorporating few-shot scoring and chain-of-query techniques, Video-Bench provides a structured, scalable approach to generated video evaluation. Experiments on advanced models including Sora demonstrate that Video-Bench achieves superior alignment with human preferences across all dimensions. Moreover, in instances where our framework's assessments diverge from human evaluations, it consistently offers more objective and accurate insights, suggesting an even greater potential advantage over traditional human judgment.
Authors:Kaisi Guan, Zhengfeng Lai, Yuchong Sun, Peng Zhang, Wei Liu, Kieran Liu, Meng Cao, Ruihua Song
Abstract:
Precisely evaluating semantic alignment between text prompts and generated videos remains a challenge in Text-to-Video (T2V) Generation. Existing text-to-video alignment metrics like CLIPScore only generate coarse-grained scores without fine-grained alignment details, failing to align with human preference. To address this limitation, we propose ETVA, a novel Evaluation method of Text-to-Video Alignment via fine-grained question generation and answering. First, a multi-agent system parses prompts into semantic scene graphs to generate atomic questions. Then we design a knowledge-augmented multi-stage reasoning framework for question answering, where an auxiliary LLM first retrieves relevant common-sense knowledge (e.g., physical laws), and then video LLM answers the generated questions through a multi-stage reasoning mechanism. Extensive experiments demonstrate that ETVA achieves a Spearman's correlation coefficient of 58.47, showing a much higher correlation with human judgment than existing metrics which attain only 31.0. We also construct a comprehensive benchmark specifically designed for text-to-video alignment evaluation, featuring 2k diverse prompts and 12k atomic questions spanning 10 categories. Through a systematic evaluation of 15 existing text-to-video models, we identify their key capabilities and limitations, paving the way for next-generation T2V generation.
Authors:Qiyuan Zhang, Chenyu Wu, Wenzhang Sun, Huaize Liu, Donglin Di, Wei Chen, Changqing Zou
Abstract:
Recent advancements in portrait video generation have been noteworthy. However, existing methods rely heavily on human priors and pre-trained generative models, Motion representations based on human priors may introduce unrealistic motion, while methods relying on pre-trained generative models often suffer from inefficient inference. To address these challenges, we propose Semantic Latent Motion (SeMo), a compact and expressive motion representation. Leveraging this representation, our approach achieve both high-quality visual results and efficient inference. SeMo follows an effective three-step framework: Abstraction, Reasoning, and Generation. First, in the Abstraction step, we use a carefully designed Masked Motion Encoder, which leverages a self-supervised learning paradigm to compress the subject's motion state into a compact and abstract latent motion (1D token). Second, in the Reasoning step, we efficiently generate motion sequences based on the driving audio signal. Finally, in the Generation step, the motion dynamics serve as conditional information to guide the motion decoder in synthesizing realistic transitions from reference frame to target video. Thanks to the compact and expressive nature of Semantic Latent Motion, our method achieves efficient motion representation and high-quality video generation. User studies demonstrate that our approach surpasses state-of-the-art models with an 81% win rate in realism. Extensive experiments further highlight its strong compression capability, reconstruction quality, and generative potential.
Authors:Xiaowen Qiu, Yian Wang, Jiting Cai, Zhehuan Chen, Chunru Lin, Tsun-Hsuan Wang, Chuang Gan
Abstract:
Automatically generating training supervision for embodied tasks is crucial, as manual designing is tedious and not scalable. While prior works use large language models (LLMs) or vision-language models (VLMs) to generate rewards, these approaches are largely limited to simple tasks with well-defined rewards, such as pick-and-place. This limitation arises because LLMs struggle to interpret complex scenes compressed into text or code due to their restricted input modality, while VLM-based rewards, though better at visual perception, remain limited by their less expressive output modality. To address these challenges, we leverage the imagination capability of general-purpose video generation models. Given an initial simulation frame and a textual task description, the video generation model produces a video demonstrating task completion with correct semantics. We then extract rich supervisory signals from the generated video, including 6D object pose sequences, 2D segmentations, and estimated depth, to facilitate task learning in simulation. Our approach significantly improves supervision quality for complex embodied tasks, enabling large-scale training in simulators.
Authors:Yunpeng Zhang, Qiang Wang, Fan Jiang, Yaqi Fan, Mu Xu, Yonggang Qi
Abstract:
Tuning-free approaches adapting large-scale pre-trained video diffusion models for identity-preserving text-to-video generation (IPT2V) have gained popularity recently due to their efficacy and scalability. However, significant challenges remain to achieve satisfied facial dynamics while keeping the identity unchanged. In this work, we present a novel tuning-free IPT2V framework by enhancing face knowledge of the pre-trained video model built on diffusion transformers (DiT), dubbed FantasyID. Essentially, 3D facial geometry prior is incorporated to ensure plausible facial structures during video synthesis. To prevent the model from learning copy-paste shortcuts that simply replicate reference face across frames, a multi-view face augmentation strategy is devised to capture diverse 2D facial appearance features, hence increasing the dynamics over the facial expressions and head poses. Additionally, after blending the 2D and 3D features as guidance, instead of naively employing cross-attention to inject guidance cues into DiT layers, a learnable layer-aware adaptive mechanism is employed to selectively inject the fused features into each individual DiT layers, facilitating balanced modeling of identity preservation and motion dynamics. Experimental results validate our model's superiority over the current tuning-free IPT2V methods.
Authors:Lijie Liu, Tianxiang Ma, Bingchuan Li, Zhuowei Chen, Jiawei Liu, Gen Li, Siyu Zhou, Qian He, Xinglong Wu
Abstract:
The continuous development of foundational models for video generation is evolving into various applications, with subject-consistent video generation still in the exploratory stage. We refer to this as Subject-to-Video, which extracts subject elements from reference images and generates subject-consistent videos following textual instructions. We believe that the essence of subject-to-video lies in balancing the dual-modal prompts of text and image, thereby deeply and simultaneously aligning both text and visual content. To this end, we propose Phantom, a unified video generation framework for both single- and multi-subject references. Building on existing text-to-video and image-to-video architectures, we redesign the joint text-image injection model and drive it to learn cross-modal alignment via text-image-video triplet data. The proposed method achieves high-fidelity subject-consistent video generation while addressing issues of image content leakage and multi-subject confusion. Evaluation results indicate that our method outperforms other state-of-the-art closed-source commercial solutions. In particular, we emphasize subject consistency in human generation, covering existing ID-preserving video generation while offering enhanced advantages.
Authors:Guozhen Zhang, Yuhan Zhu, Yutao Cui, Xiaotong Zhao, Kai Ma, Limin Wang
Abstract:
Flow-based frame interpolation methods ensure motion stability through estimated intermediate flow but often introduce severe artifacts in complex motion regions. Recent generative approaches, boosted by large-scale pre-trained video generation models, show promise in handling intricate scenes. However, they frequently produce unstable motion and content inconsistencies due to the absence of explicit motion trajectory constraints. To address these challenges, we propose Motion-aware Generative frame interpolation (MoG) that synergizes intermediate flow guidance with generative capacities to enhance interpolation fidelity. Our key insight is to simultaneously enforce motion smoothness through flow constraints while adaptively correcting flow estimation errors through generative refinement. Specifically, we first introduce a dual guidance injection that propagates condition information using intermediate flow at both latent and feature levels, aligning the generated motion with flow-derived motion trajectories. Meanwhile, we implemented two critical designs, encoder-only guidance injection and selective parameter fine-tuning, which enable dynamic artifact correction in the complex motion regions. Extensive experiments on both real-world and animation benchmarks demonstrate that MoG outperforms state-of-the-art methods in terms of video quality and visual fidelity. Our work bridges the gap between flow-based stability and generative flexibility, offering a versatile solution for frame interpolation across diverse scenarios.
Authors:Xingyao Li, Fengzhuo Zhang, Jiachun Pan, Yunlong Hou, Vincent Y. F. Tan, Zhuoran Yang
Abstract:
Despite the considerable progress achieved in the long video generation problem, there is still significant room to improve the consistency of the generated videos, particularly in terms of their smoothness and transitions between scenes. We address these issues to enhance the consistency and coherence of videos generated with either single or multiple prompts. We propose the Time-frequency based temporal Attention Reweighting Algorithm (TiARA), which judiciously edits the attention score matrix based on the Discrete Short-Time Fourier Transform. This method is supported by a frequency-based analysis, ensuring that the edited attention score matrix achieves improved consistency across frames. It represents the first-of-its-kind for frequency-based methods in video diffusion models. For videos generated by multiple prompts, we further uncover key factors such as the alignment of the prompts affecting prompt interpolation quality. Inspired by our analyses, we propose PromptBlend, an advanced prompt interpolation pipeline that systematically aligns the prompts. Extensive experimental results validate the efficacy of our proposed method, demonstrating consistent and substantial improvements over multiple baselines.
Authors:Rohit Kundu, Hao Xiong, Vishal Mohanty, Athula Balachandran, Amit K. Roy-Chowdhury
Abstract:
Existing DeepFake detection techniques primarily focus on facial manipulations, such as face-swapping or lip-syncing. However, advancements in text-to-video (T2V) and image-to-video (I2V) generative models now allow fully AI-generated synthetic content and seamless background alterations, challenging face-centric detection methods and demanding more versatile approaches. To address this, we introduce the \underline{U}niversal \underline{N}etwork for \underline{I}dentifying \underline{T}ampered and synth\underline{E}tic videos (\texttt{UNITE}) model, which, unlike traditional detectors, captures full-frame manipulations. \texttt{UNITE} extends detection capabilities to scenarios without faces, non-human subjects, and complex background modifications. It leverages a transformer-based architecture that processes domain-agnostic features extracted from videos via the SigLIP-So400M foundation model. Given limited datasets encompassing both facial/background alterations and T2V/I2V content, we integrate task-irrelevant data alongside standard DeepFake datasets in training. We further mitigate the model's tendency to over-focus on faces by incorporating an attention-diversity (AD) loss, which promotes diverse spatial attention across video frames. Combining AD loss with cross-entropy improves detection performance across varied contexts. Comparative evaluations demonstrate that \texttt{UNITE} outperforms state-of-the-art detectors on datasets (in cross-data settings) featuring face/background manipulations and fully synthetic T2V/I2V videos, showcasing its adaptability and generalizable detection capabilities.
Authors:Hyeonho Jeong, Chun-Hao Paul Huang, Jong Chul Ye, Niloy Mitra, Duygu Ceylan
Abstract:
While recent foundational video generators produce visually rich output, they still struggle with appearance drift, where objects gradually degrade or change inconsistently across frames, breaking visual coherence. We hypothesize that this is because there is no explicit supervision in terms of spatial tracking at the feature level. We propose Track4Gen, a spatially aware video generator that combines video diffusion loss with point tracking across frames, providing enhanced spatial supervision on the diffusion features. Track4Gen merges the video generation and point tracking tasks into a single network by making minimal changes to existing video generation architectures. Using Stable Video Diffusion as a backbone, Track4Gen demonstrates that it is possible to unify video generation and point tracking, which are typically handled as separate tasks. Our extensive evaluations show that Track4Gen effectively reduces appearance drift, resulting in temporally stable and visually coherent video generation. Project page: hyeonho99.github.io/track4gen
Authors:Yiming Wu, Zhenghao Chen, Huan Wang, Dong Xu
Abstract:
The high computational cost and slow inference time are major obstacles to deploying Video Diffusion Models (VDMs). To overcome this, we introduce a new Video Diffusion Model Compression approach using individual content and motion dynamics preserved pruning and consistency loss. First, we empirically observe that deeper VDM layers are crucial for maintaining the quality of \textbf{motion dynamics} (\textit{e.g.,} coherence of the entire video), while shallower layers are more focused on \textbf{individual content} (\textit{e.g.,} individual frames). Therefore, we prune redundant blocks from the shallower layers while preserving more of the deeper layers, resulting in a lightweight VDM variant called VDMini. Moreover, we propose an \textbf{Individual Content and Motion Dynamics (ICMD)} Consistency Loss to gain comparable generation performance as larger VDM to VDMini. In particular, we first use the Individual Content Distillation (ICD) Loss to preserve the consistency in the features of each generated frame between the teacher and student models. Next, we introduce a Multi-frame Content Adversarial (MCA) Loss to enhance the motion dynamics across the generated video as a whole. This method significantly accelerates inference time while maintaining high-quality video generation. Extensive experiments demonstrate the effectiveness of our VDMini on two important video generation tasks, Text-to-Video (T2V) and Image-to-Video (I2V), where we respectively achieve an average 2.5 $\times$, 1.4 $\times$, and 1.25 $\times$ speed up for the I2V method SF-V, the T2V method T2V-Turbo-v2, and the T2V method HunyuanVideo, while maintaining the quality of the generated videos on several benchmarks including UCF101, VBench-T2V, and VBench-I2V.
Authors:Haoyu Zhao, Hao Wang, Xingyue Zhao, Hao Fei, Hongqiu Wang, Chengjiang Long, Hua Zou
Abstract:
Recent advancements in 3D generation models have opened new possibilities for simulating dynamic 3D object movements and customizing behaviors, yet creating this content remains challenging. Current methods often require manual assignment of precise physical properties for simulations or rely on video generation models to predict them, which is computationally intensive. In this paper, we rethink the usage of multi-modal large language model (MLLM) in physics-based simulation, and present Sim Anything, a physics-based approach that endows static 3D objects with interactive dynamics. We begin with detailed scene reconstruction and object-level 3D open-vocabulary segmentation, progressing to multi-view image in-painting. Inspired by human visual reasoning, we propose MLLM-based Physical Property Perception (MLLM-P3) to predict mean physical properties of objects in a zero-shot manner. Based on the mean values and the object's geometry, the Material Property Distribution Prediction model (MPDP) model then estimates the full distribution, reformulating the problem as probability distribution estimation to reduce computational costs. Finally, we simulate objects in an open-world scene with particles sampled via the Physical-Geometric Adaptive Sampling (PGAS) strategy, efficiently capturing complex deformations and significantly reducing computational costs. Extensive experiments and user studies demonstrate our Sim Anything achieves more realistic motion than state-of-the-art methods within 2 minutes on a single GPU.
Authors:Sunjae Yoon, Gwanhyeong Koo, Ji Woo Hong, Chang D. Yoo
Abstract:
Text-based diffusion video editing systems have been successful in performing edits with high fidelity and textual alignment. However, this success is limited to rigid-type editing such as style transfer and object overlay, while preserving the original structure of the input video. This limitation stems from an initial latent noise employed in diffusion video editing systems. The diffusion video editing systems prepare initial latent noise to edit by gradually infusing Gaussian noise onto the input video. However, we observed that the visual structure of the input video still persists within this initial latent noise, thereby restricting non-rigid editing such as motion change necessitating structural modifications. To this end, this paper proposes Dilutional Noise Initialization (DNI) framework which enables editing systems to perform precise and dynamic modification including non-rigid editing. DNI introduces a concept of `noise dilution' which adds further noise to the latent noise in the region to be edited to soften the structural rigidity imposed by input video, resulting in more effective edits closer to the target prompt. Extensive experiments demonstrate the effectiveness of the DNI framework.
Authors:Jiaxin Cheng, Zixu Zhao, Tong He, Tianjun Xiao, Yicong Zhou, Zheng Zhang
Abstract:
Recent advancements in generative models have significantly enhanced their capacity for image generation, enabling a wide range of applications such as image editing, completion and video editing. A specialized area within generative modeling is layout-to-image (L2I) generation, where predefined layouts of objects guide the generative process. In this study, we introduce a novel regional cross-attention module tailored to enrich layout-to-image generation. This module notably improves the representation of layout regions, particularly in scenarios where existing methods struggle with highly complex and detailed textual descriptions. Moreover, while current open-vocabulary L2I methods are trained in an open-set setting, their evaluations often occur in closed-set environments. To bridge this gap, we propose two metrics to assess L2I performance in open-vocabulary scenarios. Additionally, we conduct a comprehensive user study to validate the consistency of these metrics with human preferences.
Authors:Jae-Won Chung, Ruofan Wu, Jeff J. Ma, Mosharaf Chowdhury
Abstract:
Energy is now a critical ML computing resource. While measuring energy consumption and observing trends is a valuable first step, accurately understanding and diagnosing why those differences occur is crucial for optimization. To that end, we begin by presenting a large-scale measurement study of inference time and energy across the generative AI landscape with 46 models, 7 tasks, and 1,858 different configurations on NVIDIA H100 and B200 GPUs. Our empirical findings span order-of-magnitude variations: LLM task type can lead to 25$\times$ energy differences, video generation sometimes consumes more than 100$\times$ the energy of images, and GPU utilization differences can result in 3--5$\times$ energy differences. Based on our observations, we present a framework for reasoning about the underlying mechanisms that govern time and energy consumption. The essence is that time and energy are determined by latent metrics like memory and utilization, which are in turn affected by various factors across the algorithm, software, and hardware layers. Our framework also extends directly to throughput per watt, a critical metric for power-constrained datacenters.
Authors:Yuan Wang, Borui Liao, Huijuan Huang, Jinda Lu, Ouxiang Li, Kuien Liu, Meng Wang, Xiang Wang
Abstract:
Recent advances in video reward models and post-training strategies have improved text-to-video (T2V) generation. While these models typically assess visual quality, motion quality, and text alignment, they often overlook key structural distortions, such as abnormal object appearances and interactions, which can degrade the overall quality of the generative video. To address this gap, we introduce REACT, a frame-level reward model designed specifically for structural distortions evaluation in generative videos. REACT assigns point-wise scores and attribution labels by reasoning over video frames, focusing on recognizing distortions. To support this, we construct a large-scale human preference dataset, annotated based on our proposed taxonomy of structural distortions, and generate additional data using a efficient Chain-of-Thought (CoT) synthesis pipeline. REACT is trained with a two-stage framework: ((1) supervised fine-tuning with masked loss for domain knowledge injection, followed by (2) reinforcement learning with Group Relative Policy Optimization (GRPO) and pairwise rewards to enhance reasoning capability and align output scores with human preferences. During inference, a dynamic sampling mechanism is introduced to focus on frames most likely to exhibit distortion. We also present REACT-Bench, a benchmark for generative video distortion evaluation. Experimental results demonstrate that REACT complements existing reward models in assessing structutal distortion, achieving both accurate quantitative evaluations and interpretable attribution analysis.
Authors:Haonan Qiu, Shikun Liu, Zijian Zhou, Zhaochong An, Weiming Ren, Zhiheng Liu, Jonas Schult, Sen He, Shoufa Chen, Yuren Cong, Tao Xiang, Ziwei Liu, Juan-Manuel Perez-Rua
Abstract:
High-resolution video generation, while crucial for digital media and film, is computationally bottlenecked by the quadratic complexity of diffusion models, making practical inference infeasible. To address this, we introduce HiStream, an efficient autoregressive framework that systematically reduces redundancy across three axes: i) Spatial Compression: denoising at low resolution before refining at high resolution with cached features; ii) Temporal Compression: a chunk-by-chunk strategy with a fixed-size anchor cache, ensuring stable inference speed; and iii) Timestep Compression: applying fewer denoising steps to subsequent, cache-conditioned chunks. On 1080p benchmarks, our primary HiStream model (i+ii) achieves state-of-the-art visual quality while demonstrating up to 76.2x faster denoising compared to the Wan2.1 baseline and negligible quality loss. Our faster variant, HiStream+, applies all three optimizations (i+ii+iii), achieving a 107.5x acceleration over the baseline, offering a compelling trade-off between speed and quality, thereby making high-resolution video generation both practical and scalable.
Authors:Dmitrii Torbunov, Onur Okuducu, Yi Huang, Odera Dim, Rebecca Coles, Yonggang Cui, Yihui Ren
Abstract:
Continuous video monitoring in surveillance, robotics, and wearable systems faces a fundamental power constraint: conventional RGB cameras consume substantial energy through fixed-rate capture. Event cameras offer sparse, motion-driven sensing with low power consumption, but produce asynchronous event streams rather than RGB video. We propose a hybrid capture paradigm that records sparse RGB keyframes alongside continuous event streams, then reconstructs full RGB video offline -- reducing capture power consumption while maintaining standard video output for downstream applications. We introduce the Image and Event to Video (IE2Video) task: reconstructing RGB video sequences from a single initial frame and subsequent event camera data. We investigate two architectural strategies: adapting an autoregressive model (HyperE2VID) for RGB generation, and injecting event representations into a pretrained text-to-video diffusion model (LTX) via learned encoders and low-rank adaptation. Our experiments demonstrate that the diffusion-based approach achieves 33\% better perceptual quality than the autoregressive baseline (0.283 vs 0.422 LPIPS). We validate our approach across three event camera datasets (BS-ERGB, HS-ERGB far/close) at varying sequence lengths (32-128 frames), demonstrating robust cross-dataset generalization with strong performance on unseen capture configurations.
Authors:Zhiheng Liu, Weiming Ren, Haozhe Liu, Zijian Zhou, Shoufa Chen, Haonan Qiu, Xiaoke Huang, Zhaochong An, Fanny Yang, Aditya Patel, Viktar Atliha, Tony Ng, Xiao Han, Chuyan Zhu, Chenyang Zhang, Ding Liu, Juan-Manuel Perez-Rua, Sen He, Jürgen Schmidhuber, Wenhu Chen, Ping Luo, Wei Liu, Tao Xiang, Jonas Schult, Yuren Cong
Abstract:
Unified multimodal models (UMMs) aim to jointly perform multimodal understanding and generation within a single framework. We present TUNA, a native UMM that builds a unified continuous visual representation by cascading a VAE encoder with a representation encoder. This unified representation space allows end-to-end processing of images and videos for both understanding and generation tasks. Compared to prior UMMs with decoupled representations, TUNA's unified visual space avoids representation format mismatches introduced by separate encoders, outperforming decoupled alternatives in both understanding and generation. Moreover, we observe that stronger pretrained representation encoders consistently yield better performance across all multimodal tasks, highlighting the importance of the representation encoder. Finally, in this unified setting, jointly training on both understanding and generation data allows the two tasks to benefit from each other rather than interfere. Our extensive experiments on multimodal understanding and generation benchmarks show that TUNA achieves state-of-the-art results in image and video understanding, image and video generation, and image editing, demonstrating the effectiveness and scalability of its unified representation design.
Authors:Zisu Li, Hengye Lyu, Jiaxin Shi, Yufeng Zeng, Mingming Fan, Hanwang Zhang, Chen Liang
Abstract:
Modeling and synthesizing complex hand-object interactions remains a significant challenge, even for state-of-the-art physics engines. Conventional simulation-based approaches rely on explicitly defined rigid object models and pre-scripted hand gestures, making them inadequate for capturing dynamic interactions with non-rigid or articulated entities such as deformable fabrics, elastic materials, hinge-based structures, furry surfaces, or even living creatures. In this paper, we present SpriteHand, an autoregressive video generation framework for real-time synthesis of versatile hand-object interaction videos across a wide range of object types and motion patterns. SpriteHand takes as input a static object image and a video stream in which the hands are imagined to interact with the virtual object embedded in a real-world scene, and generates corresponding hand-object interaction effects in real time. Our model employs a causal inference architecture for autoregressive generation and leverages a hybrid post-training approach to enhance visual realism and temporal coherence. Our 1.3B model supports real-time streaming generation at around 18 FPS and 640x368 resolution, with an approximate 150 ms latency on a single NVIDIA RTX 5090 GPU, and more than a minute of continuous output. Experiments demonstrate superior visual quality, physical plausibility, and interaction fidelity compared to both generative and engine-based baselines.
Authors:Aditya Chinchure, Sahithya Ravi, Pushkar Shukla, Vered Shwartz, Leonid Sigal
Abstract:
Current text-to-video models (T2V) can generate high-quality, temporally coherent, and visually realistic videos. Nonetheless, errors still often occur, and are more nuanced and local compared to the previous generation of T2V models. While current evaluation paradigms assess video models across diverse dimensions, they typically evaluate videos holistically without identifying when specific errors occur or describing their nature. We address this gap by introducing Spotlight, a novel task aimed at localizing and explaining video-generation errors. We generate 600 videos using 200 diverse textual prompts and three state-of-the-art video generators (Veo 3, Seedance, and LTX-2), and annotate over 1600 fine-grained errors across six types, including motion, physics, and prompt adherence. We observe that adherence and physics errors are predominant and persist across longer segments, whereas appearance-disappearance and body pose errors manifest in shorter segments. We then evaluate current VLMs on Spotlight and find that VLMs lag significantly behind humans in error identification and localization in videos. We propose inference-time strategies to probe the limits of current VLMs on our task, improving performance by nearly 2x. Our task paves a way forward to building fine-grained evaluation tools and more sophisticated reward models for video generators.
Authors:Chen Liang, Jiawen Zheng, Yufeng Zeng, Yi Tan, Hengye Lyu, Yuhui Zheng, Zisu Li, Yueting Weng, Jiaxin Shi, Hanwang Zhang
Abstract:
This paper introduces Generative Augmented Reality (GAR) as a next-generation paradigm that reframes augmentation as a process of world re-synthesis rather than world composition by a conventional AR engine. GAR replaces the conventional AR engine's multi-stage modules with a unified generative backbone, where environmental sensing, virtual content, and interaction signals are jointly encoded as conditioning inputs for continuous video generation. We formalize the computational correspondence between AR and GAR, survey the technical foundations that make real-time generative augmentation feasible, and outline prospective applications that leverage its unified inference model. We envision GAR as a future AR paradigm that delivers high-fidelity experiences in terms of realism, interactivity, and immersion, while eliciting new research challenges on technologies, content ecosystems, and the ethical and societal implications.
Authors:Seil Kang, Woojung Han, Dayun Ju, Seong Jae Hwang
Abstract:
Starting from flow- and diffusion-based transformers, Multi-modal Diffusion Transformers (MM-DiTs) have reshaped text-to-vision generation, gaining acclaim for exceptional visual fidelity. As these models advance, users continually push the boundary with imaginative or rare prompts, which advanced models still falter in generating, since their concepts are often too scarce to leave a strong imprint during pre-training. In this paper, we propose a simple yet effective intervention that surfaces rare semantics inside MM-DiTs without additional training steps, data, denoising-time optimization, or reliance on external modules (e.g., large language models). In particular, the joint-attention mechanism intrinsic to MM-DiT sequentially updates text embeddings alongside image embeddings throughout transformer blocks. We find that by mathematically expanding representational basins around text token embeddings via variance scale-up before the joint-attention blocks, rare semantics clearly emerge in MM-DiT's outputs. Furthermore, our results generalize effectively across text-to-vision tasks, including text-to-image, text-to-video, and text-driven image editing. Our work invites generative models to reveal the semantics that users intend, once hidden yet ready to surface.
Authors:Mingyu Kang, Yong Suk Choi
Abstract:
Text-to-image diffusion models have achieved remarkable success in generating high-quality and diverse images. Building on these advancements, diffusion models have also demonstrated exceptional performance in text-guided image editing. A key strategy for effective image editing involves inverting the source image into editable noise maps associated with the target image. However, previous inversion methods face challenges in adhering closely to the target text prompt. The limitation arises because inverted noise maps, while enabling faithful reconstruction of the source image, restrict the flexibility needed for desired edits. To overcome this issue, we propose Editable Noise Map Inversion (ENM Inversion), a novel inversion technique that searches for optimal noise maps to ensure both content preservation and editability. We analyze the properties of noise maps for enhanced editability. Based on this analysis, our method introduces an editable noise refinement that aligns with the desired edits by minimizing the difference between the reconstructed and edited noise maps. Extensive experiments demonstrate that ENM Inversion outperforms existing approaches across a wide range of image editing tasks in both preservation and edit fidelity with target prompts. Our approach can also be easily applied to video editing, enabling temporal consistency and content manipulation across frames.
Authors:Zeyu Dong, Yuyang Yin, Yuqi Li, Eric Li, Hao-Xiang Guo, Yikai Wang
Abstract:
Generating high-quality 360° panoramic videos remains a significant challenge due to the fundamental differences between panoramic and traditional perspective-view projections. While perspective videos rely on a single viewpoint with a limited field of view, panoramic content requires rendering the full surrounding environment, making it difficult for standard video generation models to adapt. Existing solutions often introduce complex architectures or large-scale training, leading to inefficiency and suboptimal results. Motivated by the success of Low-Rank Adaptation (LoRA) in style transfer tasks, we propose treating panoramic video generation as an adaptation problem from perspective views. Through theoretical analysis, we demonstrate that LoRA can effectively model the transformation between these projections when its rank exceeds the degrees of freedom in the task. Our approach efficiently fine-tunes a pretrained video diffusion model using only approximately 1,000 videos while achieving high-quality panoramic generation. Experimental results demonstrate that our method maintains proper projection geometry and surpasses previous state-of-the-art approaches in visual quality, left-right consistency, and motion diversity.
Authors:Guile Wu, David Huang, Dongfeng Bai, Bingbing Liu
Abstract:
Video generation has recently shown superiority in urban scene synthesis for autonomous driving. Existing video generation approaches to autonomous driving primarily focus on RGB video generation and lack the ability to support multi-modal video generation. However, multi-modal data, such as depth maps and semantic maps, are crucial for holistic urban scene understanding in autonomous driving. Although it is feasible to use multiple models to generate different modalities, this increases the difficulty of model deployment and does not leverage complementary cues for multi-modal data generation. To address this problem, in this work, we propose a novel multi-modal multi-view video generation approach to autonomous driving. Specifically, we construct a unified diffusion transformer model composed of modal-shared components and modal-specific components. Then, we leverage diverse conditioning inputs to encode controllable scene structure and content cues into the unified diffusion model for multi-modal multi-view video generation. In this way, our approach is capable of generating multi-modal multi-view driving scene videos in a unified framework. Our experiments on the challenging real-world autonomous driving dataset, nuScenes, show that our approach can generate multi-modal multi-view urban scene videos with high fidelity and controllability, surpassing the state-of-the-art methods.
Authors:Xinyu Liu, Hengyu Liu, Cheng Wang, Tianming Liu, Yixuan Yuan
Abstract:
Endoscopic video generation is crucial for advancing medical imaging and enhancing diagnostic capabilities. However, prior efforts in this field have either focused on static images, lacking the dynamic context required for practical applications, or have relied on unconditional generation that fails to provide meaningful references for clinicians. Therefore, in this paper, we propose the first conditional endoscopic video generation framework, namely EndoGen. Specifically, we build an autoregressive model with a tailored Spatiotemporal Grid-Frame Patterning (SGP) strategy. It reformulates the learning of generating multiple frames as a grid-based image generation pattern, which effectively capitalizes the inherent global dependency modeling capabilities of autoregressive architectures. Furthermore, we propose a Semantic-Aware Token Masking (SAT) mechanism, which enhances the model's ability to produce rich and diverse content by selectively focusing on semantically meaningful regions during the generation process. Through extensive experiments, we demonstrate the effectiveness of our framework in generating high-quality, conditionally guided endoscopic content, and improves the performance of downstream task of polyp segmentation. Code released at https://www.github.com/CUHK-AIM-Group/EndoGen.
Authors:Tingyu Song, Tongyan Hu, Guo Gan, Yilun Zhao
Abstract:
MLLMs have been widely studied for video question answering recently. However, most existing assessments focus on natural videos, overlooking synthetic videos, such as AI-generated content (AIGC). Meanwhile, some works in video generation rely on MLLMs to evaluate the quality of generated videos, but the capabilities of MLLMs on interpreting AIGC videos remain largely underexplored. To address this, we propose a new benchmark, VF-Eval, which introduces four tasks-coherence validation, error awareness, error type detection, and reasoning evaluation-to comprehensively evaluate the abilities of MLLMs on AIGC videos. We evaluate 13 frontier MLLMs on VF-Eval and find that even the best-performing model, GPT-4.1, struggles to achieve consistently good performance across all tasks. This highlights the challenging nature of our benchmark. Additionally, to investigate the practical applications of VF-Eval in improving video generation, we conduct an experiment, RePrompt, demonstrating that aligning MLLMs more closely with human feedback can benefit video generation.
Authors:Xin You, Minghui Zhang, Hanxiao Zhang, Jie Yang, Nassir Navab
Abstract:
Temporal modeling on regular respiration-induced motions is crucial to image-guided clinical applications. Existing methods cannot simulate temporal motions unless high-dose imaging scans including starting and ending frames exist simultaneously. However, in the preoperative data acquisition stage, the slight movement of patients may result in dynamic backgrounds between the first and last frames in a respiratory period. This additional deviation can hardly be removed by image registration, thus affecting the temporal modeling. To address that limitation, we pioneeringly simulate the regular motion process via the image-to-video (I2V) synthesis framework, which animates with the first frame to forecast future frames of a given length. Besides, to promote the temporal consistency of animated videos, we devise the Temporal Differential Diffusion Model to generate temporal differential fields, which measure the relative differential representations between adjacent frames. The prompt attention layer is devised for fine-grained differential fields, and the field augmented layer is adopted to better interact these fields with the I2V framework, promoting more accurate temporal variation of synthesized videos. Extensive results on ACDC cardiac and 4D Lung datasets reveal that our approach simulates 4D videos along the intrinsic motion trajectory, rivaling other competitive methods on perceptual similarity and temporal consistency. Codes will be available soon.
Authors:Taewon Kang, Ming C. Lin
Abstract:
Recent advances in scene-based video generation have enabled systems to synthesize coherent visual narratives from structured prompts. However, a crucial dimension of storytelling -- character-driven dialogue and speech -- remains underexplored. In this paper, we present a modular pipeline that transforms action-level prompts into visually and auditorily grounded narrative dialogue, enriching visual storytelling with natural voice and character expression. Our method takes as input a pair of prompts per scene, where the first defines the setting and the second specifies a character's behavior. While a story generation model such as Text2Story produces the corresponding visual scene, we focus on generating expressive, character-consistent utterances grounded in both the prompts and the scene image. A pretrained vision-language encoder extracts high-level semantic features from a representative frame, capturing salient visual context. These features are then integrated with structured prompts to guide a large language model in synthesizing natural dialogue. To ensure contextual and emotional consistency across scenes, we introduce a Recursive Narrative Bank -- a speaker-aware, temporally structured memory that recursively accumulates each character's dialogue history. Inspired by Script Theory in cognitive psychology, this design enables characters to speak in ways that reflect their evolving goals, social context, and narrative roles throughout the story. Finally, we render each utterance as expressive, character-conditioned speech, resulting in fully-voiced, multimodal video narratives. Our training-free framework generalizes across diverse story settings -- from fantasy adventures to slice-of-life episodes -- offering a scalable solution for coherent, character-grounded audiovisual storytelling.
Authors:Noor B. Tayfor, Tarik A. Rashid, Shko M. Qader, Bryar A. Hassan, Mohammed H. Abdalla, Jafar Majidpour, Aram M. Ahmed, Hussein M. Ali, Aso M. Aladdin, Abdulhady A. Abdullah, Ahmed S. Shamsaldin, Haval M. Sidqi, Abdulrahman Salih, Zaher M. Yaseen, Azad A. Ameen, Janmenjoy Nayak, Mahmood Yashar Hamza
Abstract:
The widespread availability of video recording through smartphones and digital devices has made video-based evidence more accessible than ever. Surveillance footage plays a crucial role in security, law enforcement, and judicial processes. However, with the rise of advanced video editing tools, tampering with digital recordings has become increasingly easy, raising concerns about their authenticity. Ensuring the integrity of surveillance videos is essential, as manipulated footage can lead to misinformation and undermine judicial decisions. This paper provides a comprehensive review of existing forensic techniques used to detect video forgery, focusing on their effectiveness in verifying the authenticity of surveillance recordings. Various methods, including compression-based analysis, frame duplication detection, and machine learning-based approaches, are explored. The findings highlight the growing necessity for more robust forensic techniques to counteract evolving forgery methods. Strengthening video forensic capabilities will ensure that surveillance recordings remain credible and admissible as legal evidence.
Authors:Chuer Chen, Shengqi Dang, Yuqi Liu, Nanxuan Zhao, Yang Shi, Nan Cao
Abstract:
Music videos, as a prevalent form of multimedia entertainment, deliver engaging audio-visual experiences to audiences and have gained immense popularity among singers and fans. Creators can express their interpretations of music naturally through visual elements. However, the creation process of music video demands proficiency in script design, video shooting, and music-video synchronization, posing significant challenges for non-professionals. Previous work has designed automated music video generation frameworks. However, they suffer from complexity in input and poor output quality. In response, we present MV-Crafter, a system capable of producing high-quality music videos with synchronized music-video rhythm and style. Our approach involves three technical modules that simulate the human creation process: the script generation module, video generation module, and music-video synchronization module. MV-Crafter leverages a large language model to generate scripts considering the musical semantics. To address the challenge of synchronizing short video clips with music of varying lengths, we propose a dynamic beat matching algorithm and visual envelope-induced warping method to ensure precise, monotonic music-video synchronization. Besides, we design a user-friendly interface to simplify the creation process with intuitive editing features. Extensive experiments have demonstrated that MV-Crafter provides an effective solution for improving the quality of generated music videos.
Authors:Xiangwen Zhang, Qian Zhang, Longfei Han, Qiang Qu, Xiaoming Chen
Abstract:
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
Authors:Qiang Qu, Ming Li, Xiaoming Chen, Tongliang Liu
Abstract:
Conditional human animation traditionally animates static reference images using pose-based motion cues extracted from video data. However, these video-derived cues often suffer from low temporal resolution, motion blur, and unreliable performance under challenging lighting conditions. In contrast, event cameras inherently provide robust and high temporal-resolution motion information, offering resilience to motion blur, low-light environments, and exposure variations. In this paper, we propose EvAnimate, the first method leveraging event streams as robust and precise motion cues for conditional human image animation. Our approach is fully compatible with diffusion-based generative models, enabled by encoding asynchronous event data into a specialized three-channel representation with adaptive slicing rates and densities. High-quality and temporally coherent animations are achieved through a dual-branch architecture explicitly designed to exploit event-driven dynamics, significantly enhancing performance under challenging real-world conditions. Enhanced cross-subject generalization is further achieved using specialized augmentation strategies. To facilitate future research, we establish a new benchmarking, including simulated event data for training and validation, and a real-world event dataset capturing human actions under normal and challenging scenarios. The experiment results demonstrate that EvAnimate achieves high temporal fidelity and robust performance in scenarios where traditional video-derived cues fall short.
Authors:Hongxiang Zhao, Xingchen Liu, Mutian Xu, Yiming Hao, Weikai Chen, Xiaoguang Han
Abstract:
We address key limitations in existing datasets and models for task-oriented hand-object interaction video generation, a critical approach of generating video demonstrations for robotic imitation learning. Current datasets, such as Ego4D, often suffer from inconsistent view perspectives and misaligned interactions, leading to reduced video quality and limiting their applicability for precise imitation learning tasks. Towards this end, we introduce TASTE-Rob -- a pioneering large-scale dataset of 100,856 ego-centric hand-object interaction videos. Each video is meticulously aligned with language instructions and recorded from a consistent camera viewpoint to ensure interaction clarity. By fine-tuning a Video Diffusion Model (VDM) on TASTE-Rob, we achieve realistic object interactions, though we observed occasional inconsistencies in hand grasping postures. To enhance realism, we introduce a three-stage pose-refinement pipeline that improves hand posture accuracy in generated videos. Our curated dataset, coupled with the specialized pose-refinement framework, provides notable performance gains in generating high-quality, task-oriented hand-object interaction videos, resulting in achieving superior generalizable robotic manipulation. The TASTE-Rob dataset is publicly available to foster further advancements in the field, TASTE-Rob dataset and source code will be made publicly available on our website https://taste-rob.github.io.
Authors:Taewon Kang, Divya Kothandaraman, Ming C. Lin
Abstract:
Generating coherent long-form video sequences from discrete input using only text prompts is a critical task in content creation. While diffusion-based models excel at short video synthesis, long-form storytelling from text remains largely unexplored and a challenge due to challenges pertaining to temporal coherency, preserving semantic meaning and action continuity across the video. We introduce a novel AI-empowered storytelling framework to enable seamless video generation with natural action transitions and structured narratives. We first present a bidirectional time-weighted latent blending strategy to ensure temporal consistency between segments of the long-form video being generated. We then introduce a dynamics-informed prompt weighting (DIPW) mechanism that adaptively adjusts the influence of scene and action prompts at each diffusion timestep by jointly considering CLIP-based alignment, narrative continuity, and temporal smoothness. To further enhance motion continuity, we propose a semantic action representation to encode high-level action semantics into the blending process, dynamically adjusting transitions based on action similarity, ensuring smooth yet adaptable motion changes. Latent space blending maintains spatial coherence between objects in a scene, while time-weighted blending enforces bidirectional constraints for temporal consistency. The resulting integrative system prevents abrupt transitions while ensuring fluid storytelling. Extensive experiments demonstrate significant improvements over baselines, achieving temporally consistent and visually compelling video narratives without any additional training. This approach bridges the gap between short clips and extended video to establish a new paradigm in GenAI-driven video synthesis from text.
Authors:Sotiris Anagnostidis, Gregor Bachmann, Yeongmin Kim, Jonas Kohler, Markos Georgopoulos, Artsiom Sanakoyeu, Yuming Du, Albert Pumarola, Ali Thabet, Edgar Schönfeld
Abstract:
Despite their remarkable performance, modern Diffusion Transformers are hindered by substantial resource requirements during inference, stemming from the fixed and large amount of compute needed for each denoising step. In this work, we revisit the conventional static paradigm that allocates a fixed compute budget per denoising iteration and propose a dynamic strategy instead. Our simple and sample-efficient framework enables pre-trained DiT models to be converted into \emph{flexible} ones -- dubbed FlexiDiT -- allowing them to process inputs at varying compute budgets. We demonstrate how a single \emph{flexible} model can generate images without any drop in quality, while reducing the required FLOPs by more than $40$\% compared to their static counterparts, for both class-conditioned and text-conditioned image generation. Our method is general and agnostic to input and conditioning modalities. We show how our approach can be readily extended for video generation, where FlexiDiT models generate samples with up to $75$\% less compute without compromising performance.
Authors:Tiancheng Li, Weijian Luo, Zhiyang Chen, Liyuan Ma, Guo-Jun Qi
Abstract:
Proper guidance strategies are essential to achieve high-quality generation results without retraining diffusion and flow-based text-to-image models. Existing guidance either requires specific training or strong inductive biases of diffusion model networks, potentially limiting their applications. Motivated by the observation that artifact outliers can be detected by a significant decline in the density from a noisier to a cleaner noise level, we propose Self-Guidance (SG), which improves the image quality by suppressing the generation of low-quality samples. SG only relies on the sampling probabilities of its own diffusion model at different noise levels with no need of any guidance-specific training. This makes it flexible to be used in a plug-and-play manner with other sampling algorithms. We also introduce a more efficient approximation of SG, named SG-prev, which reuses the output from the immediately previous diffusion step to avoid doubling sampling time. We conduct experiments on text-to-image and text-to-video generation with different architectures, including UNet and transformer models. With open-sourced diffusion models such as Stable Diffusion 3.5 and FLUX, SG exceeds existing algorithms on multiple metrics, including both FID and Human Preference Score. SG-prev also achieves strong results over both the baseline and the SG with only one forward pass. Moreover, we find that SG and SG-prev both have a surprisingly positive effect on the generation of physiologically correct human body structures such as hands, faces, and arms, showing their ability of eliminating human body artifacts with minimal efforts. We will release our code along with this paper.
Authors:Haozhe Liu, Shikun Liu, Zijian Zhou, Mengmeng Xu, Yanping Xie, Xiao Han, Juan C. Pérez, Ding Liu, Kumara Kahatapitiya, Menglin Jia, Jui-Chieh Wu, Sen He, Tao Xiang, Jürgen Schmidhuber, Juan-Manuel Pérez-Rúa
Abstract:
We introduce MarDini, a new family of video diffusion models that integrate the advantages of masked auto-regression (MAR) into a unified diffusion model (DM) framework. Here, MAR handles temporal planning, while DM focuses on spatial generation in an asymmetric network design: i) a MAR-based planning model containing most of the parameters generates planning signals for each masked frame using low-resolution input; ii) a lightweight generation model uses these signals to produce high-resolution frames via diffusion de-noising. MarDini's MAR enables video generation conditioned on any number of masked frames at any frame positions: a single model can handle video interpolation (e.g., masking middle frames), image-to-video generation (e.g., masking from the second frame onward), and video expansion (e.g., masking half the frames). The efficient design allocates most of the computational resources to the low-resolution planning model, making computationally expensive but important spatio-temporal attention feasible at scale. MarDini sets a new state-of-the-art for video interpolation; meanwhile, within few inference steps, it efficiently generates videos on par with those of much more expensive advanced image-to-video models.
Authors:Chi-Lam Cheang, Guangzeng Chen, Ya Jing, Tao Kong, Hang Li, Yifeng Li, Yuxiao Liu, Hongtao Wu, Jiafeng Xu, Yichu Yang, Hanbo Zhang, Minzhao Zhu
Abstract:
We present GR-2, a state-of-the-art generalist robot agent for versatile and generalizable robot manipulation. GR-2 is first pre-trained on a vast number of Internet videos to capture the dynamics of the world. This large-scale pre-training, involving 38 million video clips and over 50 billion tokens, equips GR-2 with the ability to generalize across a wide range of robotic tasks and environments during subsequent policy learning. Following this, GR-2 is fine-tuned for both video generation and action prediction using robot trajectories. It exhibits impressive multi-task learning capabilities, achieving an average success rate of 97.7% across more than 100 tasks. Moreover, GR-2 demonstrates exceptional generalization to new, previously unseen scenarios, including novel backgrounds, environments, objects, and tasks. Notably, GR-2 scales effectively with model size, underscoring its potential for continued growth and application. Project page: \url{https://gr2-manipulation.github.io}.
Authors:Jiacheng Yang, Jun Wu, Yaoyao Ding, Zhiying Xu, Yida Wang, Gennady Pekhimenko
Abstract:
Diffusion Transformers (DiTs) have gained increasing adoption in high-quality image and video generation. As demand for higher-resolution images and longer videos increases, single-GPU inference becomes inefficient due to increased latency and large activation sizes. Current frameworks employ sequence parallelism (SP) techniques such as Ulysses Attention and Ring Attention to scale inference. However, these implementations have three primary limitations: (1) suboptimal communication patterns for network topologies on modern GPU machines, (2) latency bottlenecks from all-to-all operations in inter-machine communication, and (3) GPU sender-receiver synchronization and computation overheads from using two-sided communication libraries. To address these issues, we present StreamFusion, a topology-aware efficient DiT serving engine. StreamFusion incorporates three key innovations: (1) a topology-aware sequence parallelism technique that accounts for inter- and intra-machine bandwidth differences, (2) Torus Attention, a novel SP technique enabling overlapping of inter-machine all-to-all operations with computation, and (3) a one-sided communication implementation that minimizes GPU sender-receiver synchronization and computation overheads. Our experiments demonstrate that StreamFusion outperforms the state-of-the-art approach by an average of $1.35\times$ (up to $1.77\times$).
Authors:Aiyue Chen, Yaofu Liu, Junjian Huang, Guang Lian, Yiwu Yao, Wangli Lan, Jing Lin, Zhixin Ma, Tingting Zhou, Harry Yang
Abstract:
In video and image generation tasks, Diffusion Transformer (DiT) models incur extremely high computational costs due to attention mechanisms, which limits their practical applications. Furthermore, with hardware advancements, a wide range of devices besides graphics processing unit (GPU), such as application-specific integrated circuit (ASIC), have been increasingly adopted for model inference. Sparse attention, which leverages the inherent sparsity of attention by skipping computations for insignificant tokens, is an effective approach to mitigate computational costs. However, existing sparse attention methods have two critical limitations: the overhead of sparse pattern prediction and the lack of hardware generality, as most of these methods are designed for GPU. To address these challenges, this study proposes RainFusion2.0, which aims to develop an online adaptive, hardware-efficient, and low-overhead sparse attention mechanism to accelerate both video and image generative models, with robust performance across diverse hardware platforms. Key technical insights include: (1) leveraging block-wise mean values as representative tokens for sparse mask prediction; (2) implementing spatiotemporal-aware token permutation; and (3) introducing a first-frame sink mechanism specifically designed for video generation scenarios. Experimental results demonstrate that RainFusion2.0 can achieve 80% sparsity while achieving an end-to-end speedup of 1.5~1.8x without compromising video quality. Moreover, RainFusion2.0 demonstrates effectiveness across various generative models and validates its generalization across diverse hardware platforms.
Authors:Yuming Gu, Yizhi Wang, Yining Hong, Yipeng Gao, Hao Jiang, Angtian Wang, Bo Liu, Nathaniel S. Dennler, Zhengfei Kuang, Hao Li, Gordon Wetzstein, Chongyang Ma
Abstract:
Embodied visual planning aims to enable manipulation tasks by imagining how a scene evolves toward a desired goal and using the imagined trajectories to guide actions. Video diffusion models, through their image-to-video generation capability, provide a promising foundation for such visual imagination. However, existing approaches are largely forward predictive, generating trajectories conditioned on the initial observation without explicit goal modeling, thus often leading to spatial drift and goal misalignment. To address these challenges, we propose Envision, a diffusion-based framework that performs visual planning for embodied agents. By explicitly constraining the generation with a goal image, our method enforces physical plausibility and goal consistency throughout the generated trajectory. Specifically, Envision operates in two stages. First, a Goal Imagery Model identifies task-relevant regions, performs region-aware cross attention between the scene and the instruction, and synthesizes a coherent goal image that captures the desired outcome. Then, an Env-Goal Video Model, built upon a first-and-last-frame-conditioned video diffusion model (FL2V), interpolates between the initial observation and the goal image, producing smooth and physically plausible video trajectories that connect the start and goal states. Experiments on object manipulation and image editing benchmarks demonstrate that Envision achieves superior goal alignment, spatial consistency, and object preservation compared to baselines. The resulting visual plans can directly support downstream robotic planning and control, providing reliable guidance for embodied agents.
Authors:Xiaoyan Cong, Haotian Yang, Angtian Wang, Yizhi Wang, Yiding Yang, Canyu Zhang, Chongyang Ma
Abstract:
Instruction-based video editing aims to modify an input video according to a natural-language instruction while preserving content fidelity and temporal coherence. However, existing diffusion-based approaches are often trained on paired data of simple editing operations, which fundamentally limits their ability to generalize to diverse and complex, real-world instructions. To address this generalization gap, we propose VIVA, a scalable framework for instruction-based video editing that leverages VLM-guided encoding and reward optimization. First, we introduce a VLM-based instructor that encodes the textual instruction, the first frame of the source video, and an optional reference image into visually-grounded instruction representations, providing fine-grained spatial and semantic context for the diffusion transformer backbone. Second, we propose a post-training stage, Edit-GRPO, which adapts Group Relative Policy Optimization to the domain of video editing, directly optimizing the model for instruction-faithful, content-preserving, and aesthetically pleasing edits using relative rewards. Furthermore, we propose a data construction pipeline designed to synthetically generate diverse, high-fidelity paired video-instruction data of basic editing operations. Extensive experiments show that VIVA achieves superior instruction following, generalization, and editing quality over state-of-the-art methods. Website: https://viva-paper.github.io
Authors:Yupeng Zhu, Xiongzhen Zhang, Ye Chen, Bingbing Ni
Abstract:
3D animation is central to modern visual media, yet traditional production pipelines remain labor-intensive, expertise-demanding, and computationally expensive. Recent AIGC-based approaches partially automate asset creation and rigging, but they either inherit the heavy costs of full 3D pipelines or rely on video-synthesis paradigms that sacrifice 3D controllability and interactivity. We focus on single-image 3D animation generation and argue that progress is fundamentally constrained by a trade-off between rendering quality and 3D control. To address this limitation, we propose a lightweight 3D animation framework that decouples geometric control from appearance synthesis. The core idea is a 2D-3D aligned proxy representation that uses a coarse 3D estimate as a structural carrier, while delegating high-fidelity appearance and view synthesis to learned image-space generative priors. This proxy formulation enables 3D-aware motion control and interaction comparable to classical pipelines, without requiring accurate geometry or expensive optimization, and naturally extends to coherent background animation. Extensive experiments demonstrate that our method achieves efficient animation generation on low-power platforms and outperforms video-based 3D animation generation in identity preservation, geometric and textural consistency, and the level of precise, interactive control it offers to users.
Authors:Zhiyuan Li, Chi-Man Pun, Chen Fang, Jue Wang, Xiaodong Cun
Abstract:
Current diffusion-based portrait animation models predominantly focus on enhancing visual quality and expression realism, while overlooking generation latency and real-time performance, which restricts their application range in the live streaming scenario. We propose PersonaLive, a novel diffusion-based framework towards streaming real-time portrait animation with multi-stage training recipes. Specifically, we first adopt hybrid implicit signals, namely implicit facial representations and 3D implicit keypoints, to achieve expressive image-level motion control. Then, a fewer-step appearance distillation strategy is proposed to eliminate appearance redundancy in the denoising process, greatly improving inference efficiency. Finally, we introduce an autoregressive micro-chunk streaming generation paradigm equipped with a sliding training strategy and a historical keyframe mechanism to enable low-latency and stable long-term video generation. Extensive experiments demonstrate that PersonaLive achieves state-of-the-art performance with up to 7-22x speedup over prior diffusion-based portrait animation models.
Authors:Yichao Shen, Fangyun Wei, Zhiying Du, Yaobo Liang, Yan Lu, Jiaolong Yang, Nanning Zheng, Baining Guo
Abstract:
Generalization in robot manipulation is essential for deploying robots in open-world environments and advancing toward artificial general intelligence. While recent Vision-Language-Action (VLA) models leverage large pre-trained understanding models for perception and instruction following, their ability to generalize to novel tasks, objects, and settings remains limited. In this work, we present VideoVLA, a simple approach that explores the potential of transforming large video generation models into robotic VLA manipulators. Given a language instruction and an image, VideoVLA predicts an action sequence as well as the future visual outcomes. Built on a multi-modal Diffusion Transformer, VideoVLA jointly models video, language, and action modalities, using pre-trained video generative models for joint visual and action forecasting. Our experiments show that high-quality imagined futures correlate with reliable action predictions and task success, highlighting the importance of visual imagination in manipulation. VideoVLA demonstrates strong generalization, including imitating other embodiments' skills and handling novel objects. This dual-prediction strategy - forecasting both actions and their visual consequences - explores a paradigm shift in robot learning and unlocks generalization capabilities in manipulation systems.
Authors:Liyi Chen, Ruihuang Li, Guowen Zhang, Pengfei Wang, Lei Zhang
Abstract:
Text-driven 3D editing enables user-friendly 3D object or scene editing with text instructions. Due to the lack of multi-view consistency priors, existing methods typically resort to employing 2D generation or editing models to process each view individually, followed by iterative 2D-3D-2D updating. However, these methods are not only time-consuming but also prone to over-smoothed results because the different editing signals gathered from different views are averaged during the iterative process. In this paper, we propose generative Video Prior based 3D Editing (ViP3DE) to employ the temporal consistency priors from pre-trained video generation models for multi-view consistent 3D editing in a single forward pass. Our key insight is to condition the video generation model on a single edited view to generate other consistent edited views for 3D updating directly, thereby bypassing the iterative editing paradigm. Since 3D updating requires edited views to be paired with specific camera poses, we propose motion-preserved noise blending for the video model to generate edited views at predefined camera poses. In addition, we introduce geometry-aware denoising to further enhance multi-view consistency by integrating 3D geometric priors into video models. Extensive experiments demonstrate that our proposed ViP3DE can achieve high-quality 3D editing results even within a single forward pass, significantly outperforming existing methods in both editing quality and speed.
Authors:Peiyao Wang, Weining Wang, Qi Li
Abstract:
Recent advances in text-to-video generation have achieved impressive perceptual quality, yet generated content often violates fundamental principles of physical plausibility - manifesting as implausible object dynamics, incoherent interactions, and unrealistic motion patterns. Such failures hinder the deployment of video generation models in embodied AI, robotics, and simulation-intensive domains. To bridge this gap, we propose PhysCorr, a unified framework for modeling, evaluating, and optimizing physical consistency in video generation. Specifically, we introduce PhysicsRM, the first dual-dimensional reward model that quantifies both intra-object stability and inter-object interactions. On this foundation, we develop PhyDPO, a novel direct preference optimization pipeline that leverages contrastive feedback and physics-aware reweighting to guide generation toward physically coherent outputs. Our approach is model-agnostic and scalable, enabling seamless integration into a wide range of video diffusion and transformer-based backbones. Extensive experiments across multiple benchmarks demonstrate that PhysCorr achieves significant improvements in physical realism while preserving visual fidelity and semantic alignment. This work takes a critical step toward physically grounded and trustworthy video generation.
Authors:Aritra Bhowmik, Denis Korzhenkov, Cees G. M. Snoek, Amirhossein Habibian, Mohsen Ghafoorian
Abstract:
Text-to-video diffusion models have enabled high-quality video synthesis, yet often fail to generate temporally coherent and physically plausible motion. A key reason is the models' insufficient understanding of complex motions that natural videos often entail. Recent works tackle this problem by aligning diffusion model features with those from pretrained video encoders. However, these encoders mix video appearance and dynamics into entangled features, limiting the benefit of such alignment. In this paper, we propose a motion-centric alignment framework that learns a disentangled motion subspace from a pretrained video encoder. This subspace is optimized to predict ground-truth optical flow, ensuring it captures true motion dynamics. We then align the latent features of a text-to-video diffusion model to this new subspace, enabling the generative model to internalize motion knowledge and generate more plausible videos. Our method improves the physical commonsense in a state-of-the-art video diffusion model, while preserving adherence to textual prompts, as evidenced by empirical evaluations on VideoPhy, VideoPhy2, VBench, and VBench-2.0, along with a user study.
Authors:Jaihoon Kim, Rajarshi Saha, Minhyuk Sung, Youngsuk Park
Abstract:
Flow Matching (FM) underpins many state-of-the-art generative models, yet recent results indicate that Transition Matching (TM) can achieve higher quality with fewer sampling steps. This work answers the question of when and why TM outperforms FM. First, when the target is a unimodal Gaussian distribution, we prove that TM attains strictly lower KL divergence than FM for finite number of steps. The improvement arises from stochastic difference latent updates in TM, which preserve target covariance that deterministic FM underestimates. We then characterize convergence rates, showing that TM achieves faster convergence than FM under a fixed compute budget, establishing its advantage in the unimodal Gaussian setting. Second, we extend the analysis to Gaussian mixtures and identify local-unimodality regimes in which the sampling dynamics approximate the unimodal case, where TM can outperform FM. The approximation error decreases as the minimal distance between component means increases, highlighting that TM is favored when the modes are well separated. However, when the target variance approaches zero, each TM update converges to the FM update, and the performance advantage of TM diminishes. In summary, we show that TM outperforms FM when the target distribution has well-separated modes and non-negligible variances. We validate our theoretical results with controlled experiments on Gaussian distributions, and extend the comparison to real-world applications in image and video generation.
Authors:Zixin Yin, Ling-Hao Chen, Lionel Ni, Xili Dai
Abstract:
Recent advances in training-free attention control methods have enabled flexible and efficient text-guided editing capabilities for existing generation models. However, current approaches struggle to simultaneously deliver strong editing strength while preserving consistency with the source. This limitation becomes particularly critical in multi-round and video editing, where visual errors can accumulate over time. Moreover, most existing methods enforce global consistency, which limits their ability to modify individual attributes such as texture while preserving others, thereby hindering fine-grained editing. Recently, the architectural shift from U-Net to MM-DiT has brought significant improvements in generative performance and introduced a novel mechanism for integrating text and vision modalities. These advancements pave the way for overcoming challenges that previous methods failed to resolve. Through an in-depth analysis of MM-DiT, we identify three key insights into its attention mechanisms. Building on these, we propose ConsistEdit, a novel attention control method specifically tailored for MM-DiT. ConsistEdit incorporates vision-only attention control, mask-guided pre-attention fusion, and differentiated manipulation of the query, key, and value tokens to produce consistent, prompt-aligned edits. Extensive experiments demonstrate that ConsistEdit achieves state-of-the-art performance across a wide range of image and video editing tasks, including both structure-consistent and structure-inconsistent scenarios. Unlike prior methods, it is the first approach to perform editing across all inference steps and attention layers without handcraft, significantly enhancing reliability and consistency, which enables robust multi-round and multi-region editing. Furthermore, it supports progressive adjustment of structural consistency, enabling finer control.
Authors:Felix Taubner, Ruihang Zhang, Mathieu Tuli, Sherwin Bahmani, David B. Lindell
Abstract:
Digital human avatars aim to simulate the dynamic appearance of humans in virtual environments, enabling immersive experiences across gaming, film, virtual reality, and more. However, the conventional process for creating and animating photorealistic human avatars is expensive and time-consuming, requiring large camera capture rigs and significant manual effort from professional 3D artists. With the advent of capable image and video generation models, recent methods enable automatic rendering of realistic animated avatars from a single casually captured reference image of a target subject. While these techniques significantly lower barriers to avatar creation and offer compelling realism, they lack constraints provided by multi-view information or an explicit 3D representation. So, image quality and realism degrade when rendered from viewpoints that deviate strongly from the reference image. Here, we build a video model that generates animatable multi-view videos of digital humans based on a single reference image and target expressions. Our model, MVP4D, is based on a state-of-the-art pre-trained video diffusion model and generates hundreds of frames simultaneously from viewpoints varying by up to 360 degrees around a target subject. We show how to distill the outputs of this model into a 4D avatar that can be rendered in real-time. Our approach significantly improves the realism, temporal consistency, and 3D consistency of generated avatars compared to previous methods.
Authors:Ye Chen, Liming Tan, Yupeng Zhu, Yuanbin Wang, Bingbing Ni
Abstract:
Current video representations heavily rely on unstable and over-grained priors for motion and appearance modelling, \emph{i.e.}, pixel-level matching and tracking. A tracking error of just a few pixels would lead to the collapse of the visual object representation, not to mention occlusions and large motion frequently occurring in videos. To overcome the above mentioned vulnerability, this work proposes spatio-temporally consistent proxy nodes to represent dynamically changing objects/scenes in the video. On the one hand, the hierarchical proxy nodes have the ability to stably express the multi-scale structure of visual objects, so they are not affected by accumulated tracking error, long-term motion, occlusion, and viewpoint variation. On the other hand, the dynamic representation update mechanism of the proxy nodes adequately leverages spatio-temporal priors of the video to mitigate the impact of inaccurate trackers, thereby effectively handling drastic changes in scenes and objects. Additionally, the decoupled encoding manner of the shape and texture representations across different visual objects in the video facilitates controllable and fine-grained appearance editing capability. Extensive experiments demonstrate that the proposed representation achieves high video reconstruction accuracy with fewer parameters and supports complex video processing tasks, including video in-painting and keyframe-based temporally consistent video editing.
Authors:Yanjie Pan, Qingdong He, Lidong Wang, Bo Peng, Mingmin Chi
Abstract:
Video virtual try-on aims to replace the clothing of a person in a video with a target garment. Current dual-branch architectures have achieved significant success in diffusion models based on the U-Net; however, adapting them to diffusion models built upon the Diffusion Transformer remains challenging. Initially, introducing latent space features from the garment reference branch requires adding or modifying the backbone network, leading to a large number of trainable parameters. Subsequently, the latent space features of garments lack inherent temporal characteristics and thus require additional learning. To address these challenges, we propose a novel approach, OIE (Once is Enough), a virtual try-on strategy based on first-frame clothing replacement: specifically, we employ an image-based clothing transfer model to replace the clothing in the initial frame, and then, under the content control of the edited first frame, utilize pose and mask information to guide the temporal prior of the video generation model in synthesizing the remaining frames sequentially. Experiments show that our method achieves superior parameter efficiency and computational efficiency while still maintaining leading performance under these constraints.
Authors:Mohsen Ghafoorian, Denis Korzhenkov, Amirhossein Habibian
Abstract:
Transformer-based video diffusion models (VDMs) deliver state-of-the-art video generation quality but are constrained by the quadratic cost of self-attention, making long sequences and high resolutions computationally expensive. While linear attention offers sub-quadratic complexity, prior attempts fail to match the expressiveness of softmax attention without costly retraining. We introduce \textit{Attention Surgery}, an efficient framework for \textit{linearizing} or \textit{hybridizing} attention in pretrained VDMs without training from scratch. Inspired by recent advances in language models, our method combines a novel hybrid attention mechanism-mixing softmax and linear tokens-with a lightweight distillation and fine-tuning pipeline requiring only a few GPU-days. Additionally, we incorporate a cost-aware block-rate strategy to balance expressiveness and efficiency across layers. Applied to Wan2.1 1.3B, a state-of-the-art DiT-based VDM, Attention Surgery achieves the first competitive sub-quadratic attention video diffusion models, reducing attention cost by up to 40\% in terms of FLOPs, while maintaining generation quality as measured on the standard VBench and VBench-2.0 benchmarks.
Authors:Yixuan Ren, Hanyu Wang, Hao Chen, Bo He, Abhinav Shrivastava
Abstract:
We present NeRV-Diffusion, an implicit latent video diffusion model that synthesizes videos via generating neural network weights. The generated weights can be rearranged as the parameters of a convolutional neural network, which forms an implicit neural representation (INR), and decodes into videos with frame indices as the input. Our framework consists of two stages: 1) A hypernetworkbased tokenizer that encodes raw videos from pixel space to neural parameter space, where the bottleneck latent serves as INR weights to decode. 2) An implicit diffusion transformer that denoises on the latent INR weights. In contrast to traditional video tokenizers that encode videos into frame-wise feature maps, NeRV-Diffusion compresses and generates a video holistically as a unified neural network. This enables efficient and high-quality video synthesis via obviating temporal cross-frame attentions in the denoiser and decoding video latent with dedicated decoders. To achieve Gaussian-distributed INR weights with high expressiveness, we reuse the bottleneck latent across all NeRV layers, as well as reform its weight assignment, upsampling connection and input coordinates. We also introduce SNR-adaptive loss weighting and scheduled sampling for effective training of the implicit diffusion model. NeRV-Diffusion reaches superior video generation quality over previous INR-based models and comparable performance to most recent state-of-the-art non-implicit models on real-world video benchmarks including UCF-101 and Kinetics-600. It also brings a smooth INR weight space that facilitates seamless interpolations between frames or videos.
Authors:Weikai Lin, Haoxiang Li, Yuhao Zhu
Abstract:
Hair simulation and rendering are challenging due to complex strand dynamics, diverse material properties, and intricate light-hair interactions. Recent video diffusion models can generate high-quality videos, but they lack fine-grained control over hair dynamics. We present ControlHair, a hybrid framework that integrates a physics simulator with conditional video diffusion to enable controllable dynamic hair rendering. ControlHair adopts a three-stage pipeline: it first encodes physics parameters (e.g., hair stiffness, wind) into per-frame geometry using a simulator, then extracts per-frame control signals, and finally feeds control signals into a video diffusion model to generate videos with desired hair dynamics. This cascaded design decouples physics reasoning from video generation, supports diverse physics, and makes training the video diffusion model easy. Trained on a curated 10K video dataset, ControlHair outperforms text- and pose-conditioned baselines, delivering precisely controlled hair dynamics. We further demonstrate three use cases of ControlHair: dynamic hairstyle try-on, bullet-time effects, and cinemagraphic. ControlHair introduces the first physics-informed video diffusion framework for controllable dynamics. We provide a teaser video and experimental results on our website.
Authors:Shen Sang, Tiancheng Zhi, Tianpei Gu, Jing Liu, Linjie Luo
Abstract:
We present Lynx, a high-fidelity model for personalized video synthesis from a single input image. Built on an open-source Diffusion Transformer (DiT) foundation model, Lynx introduces two lightweight adapters to ensure identity fidelity. The ID-adapter employs a Perceiver Resampler to convert ArcFace-derived facial embeddings into compact identity tokens for conditioning, while the Ref-adapter integrates dense VAE features from a frozen reference pathway, injecting fine-grained details across all transformer layers through cross-attention. These modules collectively enable robust identity preservation while maintaining temporal coherence and visual realism. Through evaluation on a curated benchmark of 40 subjects and 20 unbiased prompts, which yielded 800 test cases, Lynx has demonstrated superior face resemblance, competitive prompt following, and strong video quality, thereby advancing the state of personalized video generation.
Authors:Qi Xie, Yongjia Ma, Donglin Di, Xuehao Gao, Xun Yang
Abstract:
Achieving ID-preserving text-to-video (T2V) generation remains challenging despite recent advances in diffusion-based models. Existing approaches often fail to capture fine-grained facial dynamics or maintain temporal identity coherence. To address these limitations, we propose MoCA, a novel Video Diffusion Model built on a Diffusion Transformer (DiT) backbone, incorporating a Mixture of Cross-Attention mechanism inspired by the Mixture-of-Experts paradigm. Our framework improves inter-frame identity consistency by embedding MoCA layers into each DiT block, where Hierarchical Temporal Pooling captures identity features over varying timescales, and Temporal-Aware Cross-Attention Experts dynamically model spatiotemporal relationships. We further incorporate a Latent Video Perceptual Loss to enhance identity coherence and fine-grained details across video frames. To train this model, we collect CelebIPVid, a dataset of 10,000 high-resolution videos from 1,000 diverse individuals, promoting cross-ethnicity generalization. Extensive experiments on CelebIPVid show that MoCA outperforms existing T2V methods by over 5% across Face similarity.
Authors:Alexander Gambashidze, Li Pengyi, Matvey Skripkin, Andrey Galichin, Anton Gusarov, Konstantin Sobolev, Andrey Kuznetsov, Ivan Oseledets
Abstract:
Training robust and generalizable reward models for human visual preferences is essential for aligning text-to-image and text-to-video generative models with human intent. However, current reward models often fail to generalize, and supervised fine-tuning leads to memorization, demanding complex annotation pipelines. While reinforcement learning (RL), specifically Group Relative Policy Optimization (GRPO), improves generalization, we uncover a key failure mode: a significant drop in reasoning accuracy occurs when a model's reasoning trace contradicts that of an independent, frozen vision-language model ("listener") evaluating the same output. To address this, we introduce a listener-augmented GRPO framework. Here, the listener re-evaluates the reasoner's chain-of-thought to provide a dense, calibrated confidence score, shaping the RL reward signal. This encourages the reasoner not only to answer correctly, but to produce explanations that are persuasive to an independent model. Our listener-shaped reward scheme achieves best accuracy on the ImageReward benchmark (67.4%), significantly improves out-of-distribution (OOD) performance on a large-scale human preference dataset (1.2M votes, up to +6% over naive reasoner), and reduces reasoning contradictions compared to strong GRPO and SFT baselines. These results demonstrate that listener-based rewards provide a scalable, data-efficient path to aligning vision-language models with nuanced human preferences. We will release our reasoning model here: https://huggingface.co/alexgambashidze/qwen2.5vl_image_preference_reasoner.
Authors:Adriano Fragomeni, Dima Damen, Michael Wray
Abstract:
Text-to-Video (T2V) retrieval aims to identify the most relevant item from a gallery of videos based on a user's text query. Traditional methods rely solely on aligning video and text modalities to compute the similarity and retrieve relevant items. However, recent advancements emphasise incorporating auxiliary information extracted from video and text modalities to improve retrieval performance and bridge the semantic gap between these modalities. Auxiliary information can include visual attributes, such as objects; temporal and spatial context; and textual descriptions, such as speech and rephrased captions. This survey comprehensively reviews 81 research papers on Text-to-Video retrieval that utilise such auxiliary information. It provides a detailed analysis of their methodologies; highlights state-of-the-art results on benchmark datasets; and discusses available datasets and their auxiliary information. Additionally, it proposes promising directions for future research, focusing on different ways to further enhance retrieval performance using this information.
Authors:Aiyue Chen, Bin Dong, Jingru Li, Jing Lin, Kun Tian, Yiwu Yao, Gongyi Wang
Abstract:
Video generation using diffusion models is highly computationally intensive, with 3D attention in Diffusion Transformer (DiT) models accounting for over 80\% of the total computational resources. In this work, we introduce {\bf RainFusion}, a novel training-free sparse attention method that exploits inherent sparsity nature in visual data to accelerate attention computation while preserving video quality. Specifically, we identify three unique sparse patterns in video generation attention calculations--Spatial Pattern, Temporal Pattern and Textural Pattern. The sparse pattern for each attention head is determined online with negligible overhead (\textasciitilde\,0.2\%) with our proposed {\bf ARM} (Adaptive Recognition Module) during inference. Our proposed {\bf RainFusion} is a plug-and-play method, that can be seamlessly integrated into state-of-the-art 3D-attention video generation models without additional training or calibration. We evaluate our method on leading open-sourced models including HunyuanVideo, OpenSoraPlan-1.2 and CogVideoX-5B, demonstrating its broad applicability and effectiveness. Experimental results show that RainFusion achieves over {\bf 2\(\times\)} speedup in attention computation while maintaining video quality, with only a minimal impact on VBench scores (-0.2\%).
Authors:Xunpeng Huang, Yujin Han, Difan Zou, Yian Ma, Tong Zhang
Abstract:
Diffusion models have demonstrated appealing performance in both image and video generation. However, many works discover that they struggle to capture important, high-level relationships that are present in the real world. For example, they fail to learn physical laws from data, and even fail to understand that the objects in the world exist in a stable fashion. This is due to the fact that important conditional dependence structures are not adequately captured in the vanilla diffusion models. In this work, we initiate an in-depth study on strengthening the diffusion model to capture the conditional dependence structures in the data. In particular, we examine the efficacy of the auto-regressive (AR) diffusion models for such purpose and develop the first theoretical results on the sampling error of AR diffusion models under (possibly) the mildest data assumption. Our theoretical findings indicate that, compared with typical diffusion models, the AR variant produces samples with a reduced gap in approximating the data conditional distribution. On the other hand, the overall inference time of the AR-diffusion models is only moderately larger than that for the vanilla diffusion models, making them still practical for large scale applications. We also provide empirical results showing that when there is clear conditional dependence structure in the data, the AR diffusion models captures such structure, whereas vanilla DDPM fails to do so. On the other hand, when there is no obvious conditional dependence across patches of the data, AR diffusion does not outperform DDPM.
Authors:Ningli Xu, Rongjun Qin
Abstract:
Generating consistent ground-view images from satellite imagery is challenging, primarily due to the large discrepancies in viewing angles and resolution between satellite and ground-level domains. Previous efforts mainly concentrated on single-view generation, often resulting in inconsistencies across neighboring ground views. In this work, we propose a novel cross-view synthesis approach designed to overcome these challenges by ensuring consistency across ground-view images generated from satellite views. Our method, based on a fixed latent diffusion model, introduces two conditioning modules: satellite-guided denoising, which extracts high-level scene layout to guide the denoising process, and satellite-temporal denoising, which captures camera motion to maintain consistency across multiple generated views. We further contribute a large-scale satellite-ground dataset containing over 100,000 perspective pairs to facilitate extensive ground scene or video generation. Experimental results demonstrate that our approach outperforms existing methods on perceptual and temporal metrics, achieving high photorealism and consistency in multi-view outputs.
Authors:Jaywon Koo, Jefferson Hernandez, Moayed Haji-Ali, Ziyan Yang, Vicente Ordonez
Abstract:
Evaluating text-to-image and text-to-video models is challenging due to a fundamental disconnect: established metrics fail to jointly measure visual quality and semantic alignment with text, leading to a poor correlation with human judgments. To address this critical issue, we propose cFreD, a general metric based on a Conditional Fréchet Distance that unifies the assessment of visual fidelity and text-prompt consistency into a single score. Existing metrics such as Fréchet Inception Distance (FID) capture image quality but ignore text conditioning while alignment scores such as CLIPScore are insensitive to visual quality. Furthermore, learned preference models require constant retraining and are unlikely to generalize to novel architectures or out-of-distribution prompts. Through extensive experiments across multiple recently proposed text-to-image models and diverse prompt datasets, cFreD exhibits a higher correlation with human judgments compared to statistical metrics , including metrics trained with human preferences. Our findings validate cFreD as a robust, future-proof metric for the systematic evaluation of text conditioned models, standardizing benchmarking in this rapidly evolving field. We release our evaluation toolkit and benchmark.
Authors:Prin Phunyaphibarn, Phillip Y. Lee, Jaihoon Kim, Minhyuk Sung
Abstract:
Classifier-Free Guidance (CFG) is a fundamental technique in training conditional diffusion models. The common practice for CFG-based training is to use a single network to learn both conditional and unconditional noise prediction, with a small dropout rate for conditioning. However, we observe that the joint learning of unconditional noise with limited bandwidth in training results in poor priors for the unconditional case. More importantly, these poor unconditional noise predictions become a serious reason for degrading the quality of conditional generation. Inspired by the fact that most CFG-based conditional models are trained by fine-tuning a base model with better unconditional generation, we first show that simply replacing the unconditional noise in CFG with that predicted by the base model can significantly improve conditional generation. Furthermore, we show that a diffusion model other than the one the fine-tuned model was trained on can be used for unconditional noise replacement. We experimentally verify our claim with a range of CFG-based conditional models for both image and video generation, including Zero-1-to-3, Versatile Diffusion, DiT, DynamiCrafter, and InstructPix2Pix.
Authors:Quang Trung Truong, Wong Yuk Kwan, Duc Thanh Nguyen, Binh-Son Hua, Sai-Kit Yeung
Abstract:
Underwater video analysis, hampered by the dynamic marine environment and camera motion, remains a challenging task in computer vision. Existing training-free video generation techniques, learning motion dynamics on the frame-by-frame basis, often produce poor results with noticeable motion interruptions and misaligments. To address these issues, we propose AUTV, a framework for synthesizing marine video data with pixel-wise annotations. We demonstrate the effectiveness of this framework by constructing two video datasets, namely UTV, a real-world dataset comprising 2,000 video-text pairs, and SUTV, a synthetic video dataset including 10,000 videos with segmentation masks for marine objects. UTV provides diverse underwater videos with comprehensive annotations including appearance, texture, camera intrinsics, lighting, and animal behavior. SUTV can be used to improve underwater downstream tasks, which are demonstrated in video inpainting and video object segmentation.
Authors:Mingzhen Sun, Weining Wang, Gen Li, Jiawei Liu, Jiahui Sun, Wanquan Feng, Shanshan Lao, SiYu Zhou, Qian He, Jing Liu
Abstract:
The task of video generation requires synthesizing visually realistic and temporally coherent video frames. Existing methods primarily use asynchronous auto-regressive models or synchronous diffusion models to address this challenge. However, asynchronous auto-regressive models often suffer from inconsistencies between training and inference, leading to issues such as error accumulation, while synchronous diffusion models are limited by their reliance on rigid sequence length. To address these issues, we introduce Auto-Regressive Diffusion (AR-Diffusion), a novel model that combines the strengths of auto-regressive and diffusion models for flexible, asynchronous video generation. Specifically, our approach leverages diffusion to gradually corrupt video frames in both training and inference, reducing the discrepancy between these phases. Inspired by auto-regressive generation, we incorporate a non-decreasing constraint on the corruption timesteps of individual frames, ensuring that earlier frames remain clearer than subsequent ones. This setup, together with temporal causal attention, enables flexible generation of videos with varying lengths while preserving temporal coherence. In addition, we design two specialized timestep schedulers: the FoPP scheduler for balanced timestep sampling during training, and the AD scheduler for flexible timestep differences during inference, supporting both synchronous and asynchronous generation. Extensive experiments demonstrate the superiority of our proposed method, which achieves competitive and state-of-the-art results across four challenging benchmarks.
Authors:Aditya Vora, Sauradip Nag, Hao Zhang
Abstract:
We present ATOP (Articulate That Object Part), a novel few-shot method based on motion personalization to articulate a static 3D object with respect to a part and its motion as prescribed in a text prompt. Given the scarcity of available datasets with motion attribute annotations, existing methods struggle to generalize well in this task. In our work, the text input allows us to tap into the power of modern-day diffusion models to generate plausible motion samples for the right object category and part. In turn, the input 3D object provides image prompting to personalize the generated video to that very object we wish to articulate. Our method starts with a few-shot finetuning for category-specific motion generation, a key first step to compensate for the lack of articulation awareness by current diffusion models. For this, we finetune a pre-trained multi-view image generation model for controllable multi-view video generation, using a small collection of video samples obtained for the target object category. This is followed by motion video personalization that is realized by multi-view rendered images of the target 3D object. At last, we transfer the personalized video motion to the target 3D object via differentiable rendering to optimize part motion parameters by a score distillation sampling loss. Experimental results on PartNet-Sapien and ACD datasets show that our method is capable of generating realistic motion videos and predicting 3D motion parameters in a more accurate and generalizable way, compared to prior works in the few-shot setting.
Authors:D. She, Mushui Liu, Jingxuan Pang, Jin Wang, Zhen Yang, Wanggui He, Guanghao Zhang, Yi Wang, Qihan Huang, Haobin Tang, Yunlong Yu, Siming Fu
Abstract:
Customized generation has achieved significant progress in image synthesis, yet personalized video generation remains challenging due to temporal inconsistencies and quality degradation. In this paper, we introduce CustomVideoX, an innovative framework leveraging the video diffusion transformer for personalized video generation from a reference image. CustomVideoX capitalizes on pre-trained video networks by exclusively training the LoRA parameters to extract reference features, ensuring both efficiency and adaptability. To facilitate seamless interaction between the reference image and video content, we propose 3D Reference Attention, which enables direct and simultaneous engagement of reference image features with all video frames across spatial and temporal dimensions. To mitigate the excessive influence of reference image features and textual guidance on generated video content during inference, we implement the Time-Aware Reference Attention Bias (TAB) strategy, dynamically modulating reference bias over different time steps. Additionally, we introduce the Entity Region-Aware Enhancement (ERAE) module, aligning highly activated regions of key entity tokens with reference feature injection by adjusting attention bias. To thoroughly evaluate personalized video generation, we establish a new benchmark, VideoBench, comprising over 50 objects and 100 prompts for extensive assessment. Experimental results show that CustomVideoX significantly outperforms existing methods in terms of video consistency and quality.
Authors:Wenzhang Sun, Qirui Hou, Donglin Di, Jiahui Yang, Yongjia Ma, Jianxun Cui
Abstract:
Diffusion Transformers (DiT) excel in video generation but encounter significant computational challenges due to the quadratic complexity of attention. Notably, attention differences between adjacent diffusion steps follow a U-shaped pattern. Current methods leverage this property by caching attention blocks, however, they still struggle with sudden error spikes and large discrepancies. To address these issues, we propose UniCP a unified caching and pruning framework for efficient video generation. UniCP optimizes both temporal and spatial dimensions through. Error Aware Dynamic Cache Window (EDCW): Dynamically adjusts cache window sizes for different blocks at various timesteps, adapting to abrupt error changes. PCA based Slicing (PCAS) and Dynamic Weight Shift (DWS): PCAS prunes redundant attention components, and DWS integrates caching and pruning by enabling dynamic switching between pruned and cached outputs. By adjusting cache windows and pruning redundant components, UniCP enhances computational efficiency and maintains video detail fidelity. Experimental results show that UniCP outperforms existing methods in both performance and efficiency.
Authors:Rick Akkerman, Haiwen Feng, Michael J. Black, Dimitrios Tzionas, Victoria Fernández Abrevaya
Abstract:
Predicting the dynamics of interacting objects is essential for both humans and intelligent systems. However, existing approaches are limited to simplified, toy settings and lack generalizability to complex, real-world environments. Recent advances in generative models have enabled the prediction of state transitions based on interventions, but focus on generating a single future state which neglects the continuous dynamics resulting from the interaction. To address this gap, we propose InterDyn, a novel framework that generates videos of interactive dynamics given an initial frame and a control signal encoding the motion of a driving object or actor. Our key insight is that large video generation models can act as both neural renderers and implicit physics ``simulators'', having learned interactive dynamics from large-scale video data. To effectively harness this capability, we introduce an interactive control mechanism that conditions the video generation process on the motion of the driving entity. Qualitative results demonstrate that InterDyn generates plausible, temporally consistent videos of complex object interactions while generalizing to unseen objects. Quantitative evaluations show that InterDyn outperforms baselines that focus on static state transitions. This work highlights the potential of leveraging video generative models as implicit physics engines. Project page: https://interdyn.is.tue.mpg.de/
Authors:Yuval Atzmon, Rinon Gal, Yoad Tewel, Yoni Kasten, Gal Chechik
Abstract:
Text-to-video diffusion models have shown remarkable progress in generating coherent video clips from textual descriptions. However, the interplay between motion, structure, and identity representations in these models remains under-explored. Here, we investigate how self-attention query (Q) features simultaneously govern motion, structure, and identity and examine the challenges arising when these representations interact. Our analysis reveals that Q affects not only layout, but that during denoising Q also has a strong effect on subject identity, making it hard to transfer motion without the side-effect of transferring identity. Understanding this dual role enabled us to control query feature injection (Q injection) and demonstrate two applications: (1) a zero-shot motion transfer method - implemented with VideoCrafter2 and WAN 2.1 - that is 10 times more efficient than existing approaches, and (2) a training-free technique for consistent multi-shot video generation, where characters maintain identity across multiple video shots while Q injection enhances motion fidelity.
Authors:Longtao Zheng, Yifan Zhang, Hanzhong Guo, Jiachun Pan, Zhenxiong Tan, Jiahao Lu, Chuanxin Tang, Bo An, Shuicheng Yan
Abstract:
Recent advances in video diffusion models have unlocked new potential for realistic audio-driven talking video generation. However, achieving seamless audio-lip synchronization, maintaining long-term identity consistency, and producing natural, audio-aligned expressions in generated talking videos remain significant challenges. To address these challenges, we propose Memory-guided EMOtion-aware diffusion (MEMO), an end-to-end audio-driven portrait animation approach to generate identity-consistent and expressive talking videos. Our approach is built around two key modules: (1) a memory-guided temporal module, which enhances long-term identity consistency and motion smoothness by developing memory states to store information from a longer past context to guide temporal modeling via linear attention; and (2) an emotion-aware audio module, which replaces traditional cross attention with multi-modal attention to enhance audio-video interaction, while detecting emotions from audio to refine facial expressions via emotion adaptive layer norm. Extensive quantitative and qualitative results demonstrate that MEMO generates more realistic talking videos across diverse image and audio types, outperforming state-of-the-art methods in overall quality, audio-lip synchronization, identity consistency, and expression-emotion alignment.
Authors:Yi Huang, Wei Xiong, He Zhang, Chaoqi Chen, Jianzhuang Liu, Mingfu Yan, Shifeng Chen
Abstract:
Building on the success of diffusion models in image generation and editing, video editing has recently gained substantial attention. However, maintaining temporal consistency and motion alignment still remains challenging. To address these issues, this paper proposes DINO-guided Video Editing (DIVE), a framework designed to facilitate subject-driven editing in source videos conditioned on either target text prompts or reference images with specific identities. The core of DIVE lies in leveraging the powerful semantic features extracted from a pretrained DINOv2 model as implicit correspondences to guide the editing process. Specifically, to ensure temporal motion consistency, DIVE employs DINO features to align with the motion trajectory of the source video. For precise subject editing, DIVE incorporates the DINO features of reference images into a pretrained text-to-image model to learn Low-Rank Adaptations (LoRAs), effectively registering the target subject's identity. Extensive experiments on diverse real-world videos demonstrate that our framework can achieve high-quality editing results with robust motion consistency, highlighting the potential of DINO to contribute to video editing. Project page: https://dino-video-editing.github.io
Authors:Jiachen Li, Qian Long, Jian Zheng, Xiaofeng Gao, Robinson Piramuthu, Wenhu Chen, William Yang Wang
Abstract:
In this paper, we focus on enhancing a diffusion-based text-to-video (T2V) model during the post-training phase by distilling a highly capable consistency model from a pretrained T2V model. Our proposed method, T2V-Turbo-v2, introduces a significant advancement by integrating various supervision signals, including high-quality training data, reward model feedback, and conditional guidance, into the consistency distillation process. Through comprehensive ablation studies, we highlight the crucial importance of tailoring datasets to specific learning objectives and the effectiveness of learning from diverse reward models for enhancing both the visual quality and text-video alignment. Additionally, we highlight the vast design space of conditional guidance strategies, which centers on designing an effective energy function to augment the teacher ODE solver. We demonstrate the potential of this approach by extracting motion guidance from the training datasets and incorporating it into the ODE solver, showcasing its effectiveness in improving the motion quality of the generated videos with the improved motion-related metrics from VBench and T2V-CompBench. Empirically, our T2V-Turbo-v2 establishes a new state-of-the-art result on VBench, with a Total score of 85.13, surpassing proprietary systems such as Gen-3 and Kling.
Authors:Deyin Liu, Lin Yuanbo Wu, Xianghua Xie
Abstract:
Due to lack of fully publicly available text-to-video models, current video editing methods tend to build on pre-trained text-to-image generation models, however, they still face grand challenges in dealing with the local editing of video with temporal information. First, although existing methods attempt to focus on local area editing by a pre-defined mask, the preservation of the outside-area background is non-ideal due to the spatially entire generation of each frame. In addition, specially providing a mask by user is an additional costly undertaking, so an autonomous masking strategy integrated into the editing process is desirable. Last but not least, image-level pretrained model hasn't learned temporal information across frames of a video which is vital for expressing the motion and dynamics. In this paper, we propose to adapt a image-level blended latent diffusion model to perform local video editing tasks. Specifically, we leverage DDIM inversion to acquire the latents as background latents instead of the randomly noised ones to better preserve the background information of the input video. We further introduce an autonomous mask manufacture mechanism derived from cross-attention maps in diffusion steps. Finally, we enhance the temporal consistency across video frames by transforming the self-attention blocks of U-Net into temporal-spatial blocks. Through extensive experiments, our proposed approach demonstrates effectiveness in different real-world video editing tasks.
Authors:Joseph Heyward, Nikhil Pathasarathy, Tyler Zhu, Aravindh Mahendran, João Carreira, Dima Damen, Andrew Zisserman, Viorica Pătrăucean
Abstract:
The Third Perception Test challenge was organised as a full-day workshop alongside the IEEE/CVF International Conference on Computer Vision (ICCV) 2025. Its primary goal is to benchmark state-of-the-art video models and measure the progress in multimodal perception. This year, the workshop featured 2 guest tracks as well: KiVA (an image understanding challenge) and Physic-IQ (a video generation challenge). In this report, we summarise the results from the main Perception Test challenge, detailing both the existing tasks as well as novel additions to the benchmark. In this iteration, we placed an emphasis on task unification, as this poses a more challenging test for current SOTA multimodal models. The challenge included five consolidated tracks: unified video QA, unified object and point tracking, unified action and sound localisation, grounded video QA, and hour-long video QA, alongside an analysis and interpretability track that is still open for submissions. Notably, the unified video QA track introduced a novel subset that reformulates traditional perception tasks (such as point tracking and temporal action localisation) as multiple-choice video QA questions that video-language models can natively tackle. The unified object and point tracking merged the original object tracking and point tracking tasks, whereas the unified action and sound localisation merged the original temporal action localisation and temporal sound localisation tracks. Accordingly, we required competitors to use unified approaches rather than engineered pipelines with task-specific models. By proposing such a unified challenge, Perception Test 2025 highlights the significant difficulties existing models face when tackling diverse perception tasks through unified interfaces.
Authors:Jin Wang, Jianxiang Lu, Guangzheng Xu, Comi Chen, Haoyu Yang, Linqing Wang, Peng Chen, Mingtao Chen, Zhichao Hu, Longhuang Wu, Shuai Shao, Qinglin Lu, Ping Luo
Abstract:
Recent studies have demonstrated the efficacy of integrating Group Relative Policy Optimization (GRPO) into flow matching models, particularly for text-to-image and text-to-video generation. However, we find that directly applying these techniques to image-to-video (I2V) models often fails to yield consistent reward improvements. To address this limitation, we present TAGRPO, a robust post-training framework for I2V models inspired by contrastive learning. Our approach is grounded in the observation that rollout videos generated from identical initial noise provide superior guidance for optimization. Leveraging this insight, we propose a novel GRPO loss applied to intermediate latents, encouraging direct alignment with high-reward trajectories while maximizing distance from low-reward counterparts. Furthermore, we introduce a memory bank for rollout videos to enhance diversity and reduce computational overhead. Despite its simplicity, TAGRPO achieves significant improvements over DanceGRPO in I2V generation.
Authors:Yuheng Wang, Runde Yang, Lin Wu, Jie Zhang, Jingru Fan, Ruoyu Fu, Tianle Zhou, Huatao Li, Siheng Chen, Weinan E, Chen Qian
Abstract:
The scalability of high-quality online education is hindered by the high costs and slow cycles of labor-intensive manual content creation. Despite advancements in video generation, current approaches often fail to ensure pedagogical structure and precise control due to their pixel-level, black-box nature. In this paper, we propose Generative Teaching, a novel paradigm that transitions educators from manual creators to high-level directors, allowing them to focus on pedagogical intent while autonomous agents handle the execution. To realize this vision, we introduce TeachMaster, a multi-agent framework that leverages code as an intermediate semantic medium. Unlike traditional video generation methods, TeachMaster orchestrates a collaborative team of agents--spanning planning, design, and rendering--to automate the production of interpretable, editable, and curriculum-ready educational videos. Experiments validate that TeachMaster significantly boosts production efficiency without compromising structural coherence or visual fidelity, providing a robust solution for scalable education.
Authors:Chaochao Li, Ruikui Wang, Liangbo Zhou, Jinheng Feng, Huaishao Luo, Huan Zhang, Youzheng Wu, Xiaodong He
Abstract:
Existing DiT-based audio-driven avatar generation methods have achieved considerable progress, yet their broader application is constrained by limitations such as high computational overhead and the inability to synthesize long-duration videos. Autoregressive methods address this problem by applying block-wise autoregressive diffusion methods. However, these methods suffer from the problem of error accumulation and quality degradation. To address this, we propose JoyAvatar, an audio-driven autoregressive model capable of real-time inference and infinite-length video generation with the following contributions: (1) Progressive Step Bootstrapping (PSB), which allocates more denoising steps to initial frames to stabilize generation and reduce error accumulation; (2) Motion Condition Injection (MCI), enhancing temporal coherence by injecting noise-corrupted previous frames as motion condition; and (3) Unbounded RoPE via Cache-Resetting (URCR), enabling infinite-length generation through dynamic positional encoding. Our 1.3B-parameter causal model achieves 16 FPS on a single GPU and achieves competitive results in visual quality, temporal consistency, and lip synchronization.
Authors:Taiye Chen, Zihan Ding, Anjian Li, Christina Zhang, Zeqi Xiao, Yisen Wang, Chi Jin
Abstract:
Recent advancements in video generation have demonstrated the potential of using video diffusion models as world models, with autoregressive generation of infinitely long videos through masked conditioning. However, such models, usually with local full attention, lack effective memory compression and retrieval for long-term generation beyond the window size, leading to issues of forgetting and spatiotemporal inconsistencies. To enhance the retention of historical information within a fixed memory budget, we introduce a recurrent neural network (RNN) into the diffusion transformer framework. Specifically, a diffusion model incorporating LSTM with attention achieves comparable performance to state-of-the-art RNN blocks, such as TTT and Mamba2. Moreover, existing diffusion-RNN approaches often suffer from performance degradation due to training-inference gap or the lack of overlap across windows. To address these limitations, we propose a novel Recurrent Autoregressive Diffusion (RAD) framework, which executes frame-wise autoregression for memory update and retrieval, consistently across training and inference time. Experiments on Memory Maze and Minecraft datasets demonstrate the superiority of RAD for long video generation, highlighting the efficiency of LSTM in sequence modeling.
Authors:Zeqing Wang, Xinyu Wei, Bairui Li, Zhen Guo, Jinrui Zhang, Hongyang Wei, Keze Wang, Lei Zhang
Abstract:
The recent rapid advancement of Text-to-Video (T2V) generation technologies, which are critical to build ``world models'', makes the existing benchmarks increasingly insufficient to evaluate state-of-the-art T2V models. First, current evaluation dimensions, such as per-frame aesthetic quality and temporal consistency, are no longer able to differentiate state-of-the-art T2V models. Second, event-level temporal causality, which not only distinguishes video from other modalities but also constitutes a crucial component of world models, is severely underexplored in existing benchmarks. Third, existing benchmarks lack a systematic assessment of world knowledge, which are essential capabilities for building world models. To address these issues, we introduce VideoVerse, a comprehensive benchmark that focuses on evaluating whether a T2V model could understand complex temporal causality and world knowledge in the real world. We collect representative videos across diverse domains (e.g., natural landscapes, sports, indoor scenes, science fiction, chemical and physical experiments) and extract their event-level descriptions with inherent temporal causality, which are then rewritten into text-to-video prompts by independent annotators. For each prompt, we design a suite of binary evaluation questions from the perspective of dynamic and static properties, with a total of ten carefully defined evaluation dimensions. In total, our VideoVerse comprises 300 carefully curated prompts, involving 815 events and 793 binary evaluation questions. Consequently, a human preference aligned QA-based evaluation pipeline is developed by using modern vision-language models. Finally, we perform a systematic evaluation of state-of-the-art open-source and closed-source T2V models on VideoVerse, providing in-depth analysis on how far the current T2V generators are from world models.
Authors:Ruotong Liao, Guowen Huang, Qing Cheng, Thomas Seidl, Daniel Cremers, Volker Tresp
Abstract:
Text-to-video (T2V) generation has surged in response to challenging questions, especially when a long video must depict multiple sequential events with temporal coherence and controllable content. Existing methods that extend to multi-event generation omit an inspection of the intrinsic factor in event shifting. The paper aims to answer the central question: When and where multi-event prompts control event transition during T2V generation. This work introduces MEve, a self-curated prompt suite for evaluating multi-event text-to-video (T2V) generation, and conducts a systematic study of two representative model families, i.e., OpenSora and CogVideoX. Extensive experiments demonstrate the importance of early intervention in denoising steps and block-wise model layers, revealing the essential factor for multi-event video generation and highlighting the possibilities for multi-event conditioning in future models.
Authors:Pin-Yen Chiu, I-Sheng Fang, Jun-Cheng Chen
Abstract:
Recent advances in diffusion models have significantly improved image and video synthesis. In addition, several concept control methods have been proposed to enable fine-grained, continuous, and flexible control over free-form text prompts. However, these methods not only require intensive training time and GPU memory usage to learn the sliders or embeddings but also need to be retrained for different diffusion backbones, limiting their scalability and adaptability. To address these limitations, we introduce Text Slider, a lightweight, efficient and plug-and-play framework that identifies low-rank directions within a pre-trained text encoder, enabling continuous control of visual concepts while significantly reducing training time, GPU memory consumption, and the number of trainable parameters. Furthermore, Text Slider supports multi-concept composition and continuous control, enabling fine-grained and flexible manipulation in both image and video synthesis. We show that Text Slider enables smooth and continuous modulation of specific attributes while preserving the original spatial layout and structure of the input. Text Slider achieves significantly better efficiency: 5$\times$ faster training than Concept Slider and 47$\times$ faster than Attribute Control, while reducing GPU memory usage by nearly 2$\times$ and 4$\times$, respectively.
Authors:Zihan Ding, Xinyi Wang, Junlong Chen, Per Ola Kristensson, Junxiao Shen
Abstract:
Creators struggle to edit long-form, narrative-rich videos not because of UI complexity, but due to the cognitive demands of searching, storyboarding, and sequencing hours of footage. Existing transcript- or embedding-based methods fall short for creative workflows, as models struggle to track characters, infer motivations, and connect dispersed events. We present a prompt-driven, modular editing system that helps creators restructure multi-hour content through free-form prompts rather than timelines. At its core is a semantic indexing pipeline that builds a global narrative via temporal segmentation, guided memory compression, and cross-granularity fusion, producing interpretable traces of plot, dialogue, emotion, and context. Users receive cinematic edits while optionally refining transparent intermediate outputs. Evaluated on 400+ videos with expert ratings, QA, and preference studies, our system scales prompt-driven editing, preserves narrative coherence, and balances automation with creator control.
Authors:Wongi Jeong, Kyungryeol Lee, Hoigi Seo, Se Young Chun
Abstract:
Diffusion transformers have emerged as an alternative to U-net-based diffusion models for high-fidelity image and video generation, offering superior scalability. However, their heavy computation remains a major obstacle to real-world deployment. Existing acceleration methods primarily exploit the temporal dimension such as reusing cached features across diffusion timesteps. Here, we propose Region-Adaptive Latent Upsampling (RALU), a training-free framework that accelerates inference along spatial dimension. RALU performs mixed-resolution sampling across three stages: 1) low-resolution denoising latent diffusion to efficiently capture global semantic structure, 2) region-adaptive upsampling on specific regions prone to artifacts at full-resolution, and 3) all latent upsampling at full-resolution for detail refinement. To stabilize generations across resolution transitions, we leverage noise-timestep rescheduling to adapt the noise level across varying resolutions. Our method significantly reduces computation while preserving image quality by achieving up to 7.0$\times$ speed-up on FLUX and 3.0$\times$ on Stable Diffusion 3 with minimal degradation. Furthermore, RALU is complementary to existing temporal accelerations such as caching methods, thus can be seamlessly integrated to further reduce inference latency without compromising generation quality.
Authors:Shubhashis Roy Dipta, Francis Ferraro
Abstract:
Recent approaches have shown impressive proficiency in extracting and leveraging parametric knowledge from Large-Language Models (LLMs) and Vision-Language Models (VLMs). In this work, we consider how we can improve the identification and retrieval of videos related to complex real-world events by automatically extracting latent parametric knowledge about those events. We present Q2E: a Query-to-Event decomposition method for zero-shot multilingual text-to-video retrieval, adaptable across datasets, domains, LLMs, or VLMs. Our approach demonstrates that we can enhance the understanding of otherwise overly simplified human queries by decomposing the query using the knowledge embedded in LLMs and VLMs. We additionally show how to apply our approach to both visual and speech-based inputs. To combine this varied multimodal knowledge, we adopt entropy-based fusion scoring for zero-shot fusion. Through evaluations on two diverse datasets and multiple retrieval metrics, we demonstrate that Q2E outperforms several state-of-the-art baselines. Our evaluation also shows that integrating audio information can significantly improve text-to-video retrieval. We have released code and data for future research.
Authors:Xun Huang, Zhengqi Li, Guande He, Mingyuan Zhou, Eli Shechtman
Abstract:
We introduce Self Forcing, a novel training paradigm for autoregressive video diffusion models. It addresses the longstanding issue of exposure bias, where models trained on ground-truth context must generate sequences conditioned on their own imperfect outputs during inference. Unlike prior methods that denoise future frames based on ground-truth context frames, Self Forcing conditions each frame's generation on previously self-generated outputs by performing autoregressive rollout with key-value (KV) caching during training. This strategy enables supervision through a holistic loss at the video level that directly evaluates the quality of the entire generated sequence, rather than relying solely on traditional frame-wise objectives. To ensure training efficiency, we employ a few-step diffusion model along with a stochastic gradient truncation strategy, effectively balancing computational cost and performance. We further introduce a rolling KV cache mechanism that enables efficient autoregressive video extrapolation. Extensive experiments demonstrate that our approach achieves real-time streaming video generation with sub-second latency on a single GPU, while matching or even surpassing the generation quality of significantly slower and non-causal diffusion models. Project website: http://self-forcing.github.io/
Authors:Bojia Zi, Weixuan Peng, Xianbiao Qi, Jianan Wang, Shihao Zhao, Rong Xiao, Kam-Fai Wong
Abstract:
Recent advances in video diffusion models have driven rapid progress in video editing techniques. However, video object removal, a critical subtask of video editing, remains challenging due to issues such as hallucinated objects and visual artifacts. Furthermore, existing methods often rely on computationally expensive sampling procedures and classifier-free guidance (CFG), resulting in slow inference. To address these limitations, we propose MiniMax-Remover, a novel two-stage video object removal approach. Motivated by the observation that text condition is not best suited for this task, we simplify the pretrained video generation model by removing textual input and cross-attention layers, resulting in a more lightweight and efficient model architecture in the first stage. In the second stage, we distilled our remover on successful videos produced by the stage-1 model and curated by human annotators, using a minimax optimization strategy to further improve editing quality and inference speed. Specifically, the inner maximization identifies adversarial input noise ("bad noise") that makes failure removals, while the outer minimization step trains the model to generate high-quality removal results even under such challenging conditions. As a result, our method achieves a state-of-the-art video object removal results with as few as 6 sampling steps and doesn't rely on CFG, significantly improving inference efficiency. Extensive experiments demonstrate the effectiveness and superiority of MiniMax-Remover compared to existing methods. Codes and Videos are available at: https://minimax-remover.github.io.
Authors:Taiye Chen, Xun Hu, Zihan Ding, Chi Jin
Abstract:
Foundational world models must be both interactive and preserve spatiotemporal coherence for effective future planning with action choices. However, present models for long video generation have limited inherent world modeling capabilities due to two main challenges: compounding errors and insufficient memory mechanisms. We enhance image-to-video models with interactive capabilities through additional action conditioning and autoregressive framework, and reveal that compounding error is inherently irreducible in autoregressive video generation, while insufficient memory mechanism leads to incoherence of world models. We propose video retrieval augmented generation (VRAG) with explicit global state conditioning, which significantly reduces long-term compounding errors and increases spatiotemporal consistency of world models. In contrast, naive autoregressive generation with extended context windows and retrieval-augmented generation prove less effective for video generation, primarily due to the limited in-context learning capabilities of current video models. Our work illuminates the fundamental challenges in video world models and establishes a comprehensive benchmark for improving video generation models with internal world modeling capabilities.
Authors:Boyang Wang, Xuweiyi Chen, Matheus Gadelha, Zezhou Cheng
Abstract:
Controllability, temporal coherence, and detail synthesis remain the most critical challenges in video generation. In this paper, we focus on a commonly used yet underexplored cinematic technique known as Frame In and Frame Out. Specifically, starting from image-to-video generation, users can control the objects in the image to naturally leave the scene or provide breaking new identity references to enter the scene, guided by user-specified motion trajectory. To support this task, we introduce a new dataset curated semi-automatically, a comprehensive evaluation protocol targeting this setting, and an efficient identity-preserving motion-controllable video Diffusion Transformer architecture. Our evaluation shows that our proposed approach significantly outperforms existing baselines.
Authors:Prajwal Singh, Anupam Sharma, Pankaj Pandey, Krishna Miyapuram, Shanmuganathan Raman
Abstract:
Reconstructing dynamic visual stimuli from brain EEG recordings is challenging due to the non-stationary and noisy nature of EEG signals and the limited availability of EEG-video datasets. Prior work has largely focused on static image reconstruction, leaving the open question of whether EEG carries sufficient information for dynamic video decoding. In this work, we present EEGVid, a framework that reconstructs dynamic video stimuli from EEG signals while systematically probing the information they encode. Our approach first learns the EEG representation and then uses these features for video synthesis with a temporally conditioned StyleGAN-ADA that maps EEG embeddings to specific frame positions. Through experiments on three datasets (SEED, EEG-Video Action, SEED-DV), we demonstrate that EEG supports semantically meaningful reconstruction of dynamic visual content, and we quantify \emph{how much EEG knows}: (i) hemispheric asymmetry, with the left hemisphere more predictive of visual content and the right hemisphere of emotional content, (ii) the temporal lobe as the most informative region, and (iii) EEG timesteps 100--300 as the most critical for dynamic visual encoding. Importantly, while generative priors contribute fine spatial detail, EEG provides the semantic and temporal guidance necessary for reconstructing videos that align with the observed stimuli. This positions video generation not as a standalone generative benchmark, but as a means to visualize and validate the representational content of EEG in the context of dynamic vision.
Authors:Yifan Xie, Fei Ma, Yi Bin, Ying He, Fei Yu
Abstract:
Talking face video generation with arbitrary speech audio is a significant challenge within the realm of digital human technology. The previous studies have emphasized the significance of audio-lip synchronization and visual quality. Currently, limited attention has been given to the learning of visual uncertainty, which creates several issues in existing systems, including inconsistent visual quality and unreliable performance across different input conditions. To address the problem, we propose a Joint Uncertainty Learning Network (JULNet) for high-quality talking face video generation, which incorporates a representation of uncertainty that is directly related to visual error. Specifically, we first design an uncertainty module to individually predict the error map and uncertainty map after obtaining the generated image. The error map represents the difference between the generated image and the ground truth image, while the uncertainty map is used to predict the probability of incorrect estimates. Furthermore, to match the uncertainty distribution with the error distribution through a KL divergence term, we introduce a histogram technique to approximate the distributions. By jointly optimizing error and uncertainty, the performance and robustness of our model can be enhanced. Extensive experiments demonstrate that our method achieves superior high-fidelity and audio-lip synchronization in talking face video generation compared to previous methods.
Authors:Haotian Dong, Xin Wang, Di Lin, Yipeng Wu, Qin Chen, Ruonan Liu, Kairui Yang, Ping Li, Qing Guo
Abstract:
High-quality video generation is crucial for many fields, including the film industry and autonomous driving. However, generating videos with spatiotemporal consistencies remains challenging. Current methods typically utilize attention mechanisms or modify noise to achieve consistent videos, neglecting global spatiotemporal information that could help ensure spatial and temporal consistency during video generation. In this paper, we propose the NoiseController, consisting of Multi-Level Noise Decomposition, Multi-Frame Noise Collaboration, and Joint Denoising, to enhance spatiotemporal consistencies in video generation. In multi-level noise decomposition, we first decompose initial noises into scene-level foreground/background noises, capturing distinct motion properties to model multi-view foreground/background variations. Furthermore, each scene-level noise is further decomposed into individual-level shared and residual components. The shared noise preserves consistency, while the residual component maintains diversity. In multi-frame noise collaboration, we introduce an inter-view spatiotemporal collaboration matrix and an intra-view impact collaboration matrix , which captures mutual cross-view effects and historical cross-frame impacts to enhance video quality. The joint denoising contains two parallel denoising U-Nets to remove each scene-level noise, mutually enhancing video generation. We evaluate our NoiseController on public datasets focusing on video generation and downstream tasks, demonstrating its state-of-the-art performance.
Authors:Vidi Team, Celong Liu, Chia-Wen Kuo, Dawei Du, Fan Chen, Guang Chen, Jiamin Yuan, Lingxi Zhang, Lu Guo, Lusha Li, Longyin Wen, Qingyu Chen, Rachel Deng, Sijie Zhu, Stuart Siew, Tong Jin, Wei Lu, Wen Zhong, Xiaohui Shen, Xin Gu, Xing Mei, Xueqiong Qu, Zhenfang Chen
Abstract:
Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than videos of existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
Authors:Huiming Sun, Yikang Li, Kangning Yang, Ruineng Li, Daitao Xing, Yangbo Xie, Lan Fu, Kaiyu Zhang, Ming Chen, Jiaming Ding, Jiang Geng, Jie Cai, Zibo Meng, Chiuman Ho
Abstract:
Inpainting for real-world human and pedestrian removal in high-resolution video clips presents significant challenges, particularly in achieving high-quality outcomes, ensuring temporal consistency, and managing complex object interactions that involve humans, their belongings, and their shadows. In this paper, we introduce VIP (Video Inpainting Pipeline), a novel promptless video inpainting framework for real-world human removal applications. VIP enhances a state-of-the-art text-to-video model with a motion module and employs a Variational Autoencoder (VAE) for progressive denoising in the latent space. Additionally, we implement an efficient human-and-belongings segmentation for precise mask generation. Sufficient experimental results demonstrate that VIP achieves superior temporal consistency and visual fidelity across diverse real-world scenarios, surpassing state-of-the-art methods on challenging datasets. Our key contributions include the development of the VIP pipeline, a reference frame integration technique, and the Dual-Fusion Latent Segment Refinement method, all of which address the complexities of inpainting in long, high-resolution video sequences.
Authors:Yuke Lou, Yiming Wang, Zhen Wu, Rui Zhao, Wenjia Wang, Mingyi Shi, Taku Komura
Abstract:
Human-object interaction (HOI) synthesis is important for various applications, ranging from virtual reality to robotics. However, acquiring 3D HOI data is challenging due to its complexity and high cost, limiting existing methods to the narrow diversity of object types and interaction patterns in training datasets. This paper proposes a novel zero-shot HOI synthesis framework without relying on end-to-end training on currently limited 3D HOI datasets. The core idea of our method lies in leveraging extensive HOI knowledge from pre-trained Multimodal Models. Given a text description, our system first obtains temporally consistent 2D HOI image sequences using image or video generation models, which are then uplifted to 3D HOI milestones of human and object poses. We employ pre-trained human pose estimation models to extract human poses and introduce a generalizable category-level 6-DoF estimation method to obtain the object poses from 2D HOI images. Our estimation method is adaptive to various object templates obtained from text-to-3D models or online retrieval. A physics-based tracking of the 3D HOI kinematic milestone is further applied to refine both body motions and object poses, yielding more physically plausible HOI generation results. The experimental results demonstrate that our method is capable of generating open-vocabulary HOIs with physical realism and semantic diversity.
Authors:Tao Ren, Zishi Zhang, Zehao Li, Jingyang Jiang, Shentao Qin, Guanghao Li, Yan Li, Yi Zheng, Xinping Li, Min Zhan, Yijie Peng
Abstract:
The probabilistic diffusion model (DM), generating content by inferencing through a recursive chain structure, has emerged as a powerful framework for visual generation. After pre-training on enormous unlabeled data, the model needs to be properly aligned to meet requirements for downstream applications. How to efficiently align the foundation DM is a crucial task. Contemporary methods are either based on Reinforcement Learning (RL) or truncated Backpropagation (BP). However, RL and truncated BP suffer from low sample efficiency and biased gradient estimation respectively, resulting in limited improvement or, even worse, complete training failure. To overcome the challenges, we propose the Recursive Likelihood Ratio (RLR) optimizer, a zeroth-order informed fine-tuning paradigm for DM. The zeroth-order gradient estimator enables the computation graph rearrangement within the recursive diffusive chain, making the RLR's gradient estimator an unbiased one with the lower variance than other methods. We provide theoretical guarantees for the performance of the RLR. Extensive experiments are conducted on image and video generation tasks to validate the superiority of the RLR. Furthermore, we propose a novel prompt technique that is natural for the RLR to achieve a synergistic effect.
Authors:Zheng Chong, Wenqing Zhang, Shiyue Zhang, Jun Zheng, Xiao Dong, Haoxiang Li, Yiling Wu, Dongmei Jiang, Xiaodan Liang
Abstract:
Virtual try-on (VTON) technology has gained attention due to its potential to transform online retail by enabling realistic clothing visualization of images and videos. However, most existing methods struggle to achieve high-quality results across image and video try-on tasks, especially in long video scenarios. In this work, we introduce CatV2TON, a simple and effective vision-based virtual try-on (V2TON) method that supports both image and video try-on tasks with a single diffusion transformer model. By temporally concatenating garment and person inputs and training on a mix of image and video datasets, CatV2TON achieves robust try-on performance across static and dynamic settings. For efficient long-video generation, we propose an overlapping clip-based inference strategy that uses sequential frame guidance and Adaptive Clip Normalization (AdaCN) to maintain temporal consistency with reduced resource demands. We also present ViViD-S, a refined video try-on dataset, achieved by filtering back-facing frames and applying 3D mask smoothing for enhanced temporal consistency. Comprehensive experiments demonstrate that CatV2TON outperforms existing methods in both image and video try-on tasks, offering a versatile and reliable solution for realistic virtual try-ons across diverse scenarios.
Authors:Zihan Ding, Chi Jin, Difan Liu, Haitian Zheng, Krishna Kumar Singh, Qiang Zhang, Yan Kang, Zhe Lin, Yuchen Liu
Abstract:
Diffusion probabilistic models have shown significant progress in video generation; however, their computational efficiency is limited by the large number of sampling steps required. Reducing sampling steps often compromises video quality or generation diversity. In this work, we introduce a distillation method that combines variational score distillation and consistency distillation to achieve few-step video generation, maintaining both high quality and diversity. We also propose a latent reward model fine-tuning approach to further enhance video generation performance according to any specified reward metric. This approach reduces memory usage and does not require the reward to be differentiable. Our method demonstrates state-of-the-art performance in few-step generation for 10-second videos (128 frames at 12 FPS). The distilled student model achieves a score of 82.57 on VBench, surpassing the teacher model as well as baseline models Gen-3, T2V-Turbo, and Kling. One-step distillation accelerates the teacher model's diffusion sampling by up to 278.6 times, enabling near real-time generation. Human evaluations further validate the superior performance of our 4-step student models compared to teacher model using 50-step DDIM sampling.
Authors:Hanzhong Guo, Hongwei Yi, Daquan Zhou, Alexander William Bergman, Michael Lingelbach, Yizhou Yu
Abstract:
Latent diffusion models have made great strides in generating expressive portrait videos with accurate lip-sync and natural motion from a single reference image and audio input. However, these models are far from real-time, often requiring many sampling steps that take minutes to generate even one second of video-significantly limiting practical use. We introduce OSA-LCM (One-Step Avatar Latent Consistency Model), paving the way for real-time diffusion-based avatars. Our method achieves comparable video quality to existing methods but requires only one sampling step, making it more than 10x faster. To accomplish this, we propose a novel avatar discriminator design that guides lip-audio consistency and motion expressiveness to enhance video quality in limited sampling steps. Additionally, we employ a second-stage training architecture using an editing fine-tuned method (EFT), transforming video generation into an editing task during training to effectively address the temporal gap challenge in single-step generation. Experiments demonstrate that OSA-LCM outperforms existing open-source portrait video generation models while operating more efficiently with a single sampling step.
Authors:Vinayak Gupta, Yunze Man, Yu-Xiong Wang
Abstract:
Recent advances in diffusion models have revolutionized 2D and 3D content creation, yet generating photorealistic dynamic 4D scenes remains a significant challenge. Existing dynamic 4D generation methods typically rely on distilling knowledge from pre-trained 3D generative models, often fine-tuned on synthetic object datasets. Consequently, the resulting scenes tend to be object-centric and lack photorealism. While text-to-video models can generate more realistic scenes with motion, they often struggle with spatial understanding and provide limited control over camera viewpoints during rendering. To address these limitations, we present PaintScene4D, a novel text-to-4D scene generation framework that departs from conventional multi-view generative models in favor of a streamlined architecture that harnesses video generative models trained on diverse real-world datasets. Our method first generates a reference video using a video generation model, and then employs a strategic camera array selection for rendering. We apply a progressive warping and inpainting technique to ensure both spatial and temporal consistency across multiple viewpoints. Finally, we optimize multi-view images using a dynamic renderer, enabling flexible camera control based on user preferences. Adopting a training-free architecture, our PaintScene4D efficiently produces realistic 4D scenes that can be viewed from arbitrary trajectories. The code will be made publicly available. Our project page is at https://paintscene4d.github.io/
Authors:Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, Yann LeCun
Abstract:
Navigation is a fundamental skill of agents with visual-motor capabilities. We introduce a Navigation World Model (NWM), a controllable video generation model that predicts future visual observations based on past observations and navigation actions. To capture complex environment dynamics, NWM employs a Conditional Diffusion Transformer (CDiT), trained on a diverse collection of egocentric videos of both human and robotic agents, and scaled up to 1 billion parameters. In familiar environments, NWM can plan navigation trajectories by simulating them and evaluating whether they achieve the desired goal. Unlike supervised navigation policies with fixed behavior, NWM can dynamically incorporate constraints during planning. Experiments demonstrate its effectiveness in planning trajectories from scratch or by ranking trajectories sampled from an external policy. Furthermore, NWM leverages its learned visual priors to imagine trajectories in unfamiliar environments from a single input image, making it a flexible and powerful tool for next-generation navigation systems.
Authors:Zeqing Wang, Qingyang Ma, Wentao Wan, Haojie Li, Keze Wang, Yonghong Tian
Abstract:
Recent improvements in visual synthesis have significantly enhanced the depiction of generated human photos, which are pivotal due to their wide applicability and demand. Nonetheless, the existing text-to-image or text-to-video models often generate low-quality human photos that might differ considerably from real-world body structures, referred to as "abnormal human bodies". Such abnormalities, typically deemed unacceptable, pose considerable challenges in the detection and repair of them within human photos. These challenges require precise abnormality recognition capabilities, which entail pinpointing both the location and the abnormality type. Intuitively, Visual Language Models (VLMs) that have obtained remarkable performance on various visual tasks are quite suitable for this task. However, their performance on abnormality detection in human photos is quite poor. Hence, it is quite important to highlight this task for the research community. In this paper, we first introduce a simple yet challenging task, i.e., \textbf{F}ine-grained \textbf{H}uman-body \textbf{A}bnormality \textbf{D}etection \textbf{(FHAD)}, and construct two high-quality datasets for evaluation. Then, we propose a meticulous framework, named HumanCalibrator, which identifies and repairs abnormalities in human body structures while preserving the other content. Experiments indicate that our HumanCalibrator achieves high accuracy in abnormality detection and accomplishes an increase in visual comparisons while preserving the other visual content.
Authors:Kumara Kahatapitiya, Haozhe Liu, Sen He, Ding Liu, Menglin Jia, Chenyang Zhang, Michael S. Ryoo, Tian Xie
Abstract:
Generating temporally-consistent high-fidelity videos can be computationally expensive, especially over longer temporal spans. More-recent Diffusion Transformers (DiTs) -- despite making significant headway in this context -- have only heightened such challenges as they rely on larger models and heavier attention mechanisms, resulting in slower inference speeds. In this paper, we introduce a training-free method to accelerate video DiTs, termed Adaptive Caching (AdaCache), which is motivated by the fact that "not all videos are created equal": meaning, some videos require fewer denoising steps to attain a reasonable quality than others. Building on this, we not only cache computations through the diffusion process, but also devise a caching schedule tailored to each video generation, maximizing the quality-latency trade-off. We further introduce a Motion Regularization (MoReg) scheme to utilize video information within AdaCache, essentially controlling the compute allocation based on motion content. Altogether, our plug-and-play contributions grant significant inference speedups (e.g. up to 4.7x on Open-Sora 720p - 2s video generation) without sacrificing the generation quality, across multiple video DiT baselines.
Authors:Xinli Yue, Jianhui Sun, Han Kong, Liangchao Yao, Tianyi Wang, Lei Li, Fengyun Rao, Jing Lv, Fan Xia, Yuetang Deng, Qian Wang, Lingchen Zhao
Abstract:
In recent years, AI generative models have made remarkable progress across various domains, including text generation, image generation, and video generation. However, assessing the quality of text-to-video generation is still in its infancy, and existing evaluation frameworks fall short when compared to those for natural videos. Current video quality assessment (VQA) methods primarily focus on evaluating the overall quality of natural videos and fail to adequately account for the substantial quality discrepancies between frames in generated videos. To address this issue, we propose a novel loss function that combines mean absolute error with cross-entropy loss to mitigate inter-frame quality inconsistencies. Additionally, we introduce the innovative S2CNet technique to retain critical content, while leveraging adversarial training to enhance the model's generalization capabilities. Experimental results demonstrate that our method outperforms existing VQA techniques on the AIGC Video dataset, surpassing the previous state-of-the-art by 3.1% in terms of PLCC.
Authors:Xiao Fu, Shitao Tang, Min Shi, Xian Liu, Jinwei Gu, Ming-Yu Liu, Dahua Lin, Chen-Hsuan Lin
Abstract:
Camera-controlled generative video re-rendering methods, such as ReCamMaster, have achieved remarkable progress. However, despite their success in single-view setting, these works often struggle to maintain consistency across multi-view scenarios. Ensuring spatio-temporal coherence in hallucinated regions remains challenging due to the inherent stochasticity of generative models. To address it, we introduce PlenopticDreamer, a framework that synchronizes generative hallucinations to maintain spatio-temporal memory. The core idea is to train a multi-in-single-out video-conditioned model in an autoregressive manner, aided by a camera-guided video retrieval strategy that adaptively selects salient videos from previous generations as conditional inputs. In addition, Our training incorporates progressive context-scaling to improve convergence, self-conditioning to enhance robustness against long-range visual degradation caused by error accumulation, and a long-video conditioning mechanism to support extended video generation. Extensive experiments on the Basic and Agibot benchmarks demonstrate that PlenopticDreamer achieves state-of-the-art video re-rendering, delivering superior view synchronization, high-fidelity visuals, accurate camera control, and diverse view transformations (e.g., third-person to third-person, and head-view to gripper-view in robotic manipulation). Project page: https://research.nvidia.com/labs/dir/plenopticdreamer/
Authors:Yuxiao Yang, Hualian Sheng, Sijia Cai, Jing Lin, Jiahao Wang, Bing Deng, Junzhe Lu, Haoqian Wang, Jieping Ye
Abstract:
Video generation models have advanced significantly, yet they still struggle to synthesize complex human movements due to the high degrees of freedom in human articulation. This limitation stems from the intrinsic constraints of pixel-only training objectives, which inherently bias models toward appearance fidelity at the expense of learning underlying kinematic principles. To address this, we introduce EchoMotion, a framework designed to model the joint distribution of appearance and human motion, thereby improving the quality of complex human action video generation. EchoMotion extends the DiT (Diffusion Transformer) framework with a dual-branch architecture that jointly processes tokens concatenated from different modalities. Furthermore, we propose MVS-RoPE (Motion-Video Syncronized RoPE), which offers unified 3D positional encoding for both video and motion tokens. By providing a synchronized coordinate system for the dual-modal latent sequence, MVS-RoPE establishes an inductive bias that fosters temporal alignment between the two modalities. We also propose a Motion-Video Two-Stage Training Strategy. This strategy enables the model to perform both the joint generation of complex human action videos and their corresponding motion sequences, as well as versatile cross-modal conditional generation tasks. To facilitate the training of a model with these capabilities, we construct HuMoVe, a large-scale dataset of approximately 80,000 high-quality, human-centric video-motion pairs. Our findings reveal that explicitly representing human motion is complementary to appearance, significantly boosting the coherence and plausibility of human-centric video generation.
Authors:Mariam Hassan, Bastien Van Delft, Wuyang Li, Alexandre Alahi
Abstract:
State-of-the-art Text-to-Video (T2V) diffusion models can generate visually impressive results, yet they still frequently fail to compose complex scenes or follow logical temporal instructions. In this paper, we argue that many errors, including apparent motion failures, originate from the model's inability to construct a semantically correct or logically consistent initial frame. We introduce Factorized Video Generation (FVG), a pipeline that decouples these tasks by decomposing the Text-to-Video generation into three specialized stages: (1) Reasoning, where a Large Language Model (LLM) rewrites the video prompt to describe only the initial scene, resolving temporal ambiguities; (2) Composition, where a Text-to-Image (T2I) model synthesizes a high-quality, compositionally-correct anchor frame from this new prompt; and (3) Temporal Synthesis, where a video model, finetuned to understand this anchor, focuses its entire capacity on animating the scene and following the prompt. Our decomposed approach sets a new state-of-the-art on the T2V CompBench benchmark and significantly improves all tested models on VBench2. Furthermore, we show that visual anchoring allows us to cut the number of sampling steps by 70% without any loss in performance, leading to a substantial speed-up in sampling. Factorized Video Generation offers a simple yet practical path toward more efficient, robust, and controllable video synthesis
Authors:Zhiyuan Wu, Shuai Wang, Li Chen, Kaihui Gao, Dan Li, Yanyu Ren, Qiming Zhang, Yong Wang
Abstract:
Video diffusion models (VDMs) perform attention computation over the 3D spatio-temporal domain. Compared to large language models (LLMs) processing 1D sequences, their memory consumption scales cubically, necessitating parallel serving across multiple GPUs. Traditional parallelism strategies partition the computational graph, requiring frequent high-dimensional activation transfers that create severe communication bottlenecks. To tackle this issue, we exploit the local spatio-temporal dependencies inherent in the diffusion denoising process and propose Latent Parallelism (LP), the first parallelism strategy tailored for VDM serving. \textcolor{black}{LP decomposes the global denoising problem into parallelizable sub-problems by dynamically rotating the partitioning dimensions (temporal, height, and width) within the compact latent space across diffusion timesteps, substantially reducing the communication overhead compared to prevailing parallelism strategies.} To ensure generation quality, we design a patch-aligned overlapping partition strategy that matches partition boundaries with visual patches and a position-aware latent reconstruction mechanism for smooth stitching. Experiments on three benchmarks demonstrate that LP reduces communication overhead by up to 97\% over baseline methods while maintaining comparable generation quality. As a non-intrusive plug-in paradigm, LP can be seamlessly integrated with existing parallelism strategies, enabling efficient and scalable video generation services.
Authors:Yu Yuan, Tharindu Wickremasinghe, Zeeshan Nadir, Xijun Wang, Yiheng Chi, Stanley H. Chan
Abstract:
Images and videos are discrete 2D projections of the 4D world (3D space + time). Most visual understanding, prediction, and generation operate directly on 2D observations, leading to suboptimal performance. We propose SeeU, a novel approach that learns the continuous 4D dynamics and generate the unseen visual contents. The principle behind SeeU is a new 2D$\to$4D$\to$2D learning framework. SeeU first reconstructs the 4D world from sparse and monocular 2D frames (2D$\to$4D). It then learns the continuous 4D dynamics on a low-rank representation and physical constraints (discrete 4D$\to$continuous 4D). Finally, SeeU rolls the world forward in time, re-projects it back to 2D at sampled times and viewpoints, and generates unseen regions based on spatial-temporal context awareness (4D$\to$2D). By modeling dynamics in 4D, SeeU achieves continuous and physically-consistent novel visual generation, demonstrating strong potentials in multiple tasks including unseen temporal generation, unseen spatial generation, and video editing.
Authors:Peng Kang, Xijun Wang, Yu Yuan
Abstract:
Recent text-to-video models have demonstrated strong temporal generation capabilities, yet their potential for image restoration remains underexplored. In this work, we repurpose CogVideo for progressive visual restoration tasks by fine-tuning it to generate restoration trajectories rather than natural video motion. Specifically, we construct synthetic datasets for super-resolution, deblurring, and low-light enhancement, where each sample depicts a gradual transition from degraded to clean frames. Two prompting strategies are compared: a uniform text prompt shared across all samples, and a scene-specific prompting scheme generated via LLaVA multi-modal LLM and refined with ChatGPT. Our fine-tuned model learns to associate temporal progression with restoration quality, producing sequences that improve perceptual metrics such as PSNR, SSIM, and LPIPS across frames. Extensive experiments show that CogVideo effectively restores spatial detail and illumination consistency while maintaining temporal coherence. Moreover, the model generalizes to real-world scenarios on the ReLoBlur dataset without additional training, demonstrating strong zero-shot robustness and interpretability through temporal restoration.
Authors:Hidir Yesiltepe, Tuna Han Salih Meral, Adil Kaan Akan, Kaan Oktay, Pinar Yanardag
Abstract:
Current autoregressive video diffusion models are constrained by three core bottlenecks: (i) the finite temporal horizon imposed by the base model's 3D Rotary Positional Embedding (3D-RoPE), (ii) slow prompt responsiveness in maintaining fine-grained action control during long-form rollouts, and (iii) the inability to realize discontinuous cinematic transitions within a single generation stream. We introduce $\infty$-RoPE, a unified inference-time framework that addresses all three limitations through three interconnected components: Block-Relativistic RoPE, KV Flush, and RoPE Cut. Block-Relativistic RoPE reformulates temporal encoding as a moving local reference frame, where each newly generated latent block is rotated relative to the base model's maximum frame horizon while earlier blocks are rotated backward to preserve relative temporal geometry. This relativistic formulation eliminates fixed temporal positions, enabling continuous video generation far beyond the base positional limits. To obtain fine-grained action control without re-encoding, KV Flush renews the KV cache by retaining only two latent frames, the global sink and the last generated latent frame, thereby ensuring immediate prompt responsiveness. Finally, RoPE Cut introduces controlled discontinuities in temporal RoPE coordinates, enabling multi-cut scene transitions within a single continuous rollout. Together, these components establish $\infty$-RoPE as a training-free foundation for infinite-horizon, controllable, and cinematic video diffusion. Comprehensive experiments show that $\infty$-RoPE consistently surpasses previous autoregressive models in overall VBench scores.
Authors:Xinxin Liu, Zhaopan Xu, Ming Li, Kai Wang, Yong Jae Lee, Yuzhang Shang
Abstract:
While Chain-of-Thought (CoT) prompting enables sophisticated symbolic reasoning in LLMs, it remains confined to discrete text and cannot simulate the continuous, physics-governed dynamics of the real world. Recent video generation models have emerged as potential world simulators through Chain-of-Frames (CoF) reasoning -- materializing thought as frame-by-frame visual sequences, with each frame representing a physically-grounded reasoning step. Despite compelling demonstrations, a challenge persists: existing benchmarks, focusing on fidelity or alignment, do not assess CoF reasoning and thus cannot measure core cognitive abilities in multi-step planning, algorithmic logic, or abstract pattern extrapolation. This evaluation void prevents systematic understanding of model capabilities and principled guidance for improvement. We introduce Gen-ViRe (Generative Visual Reasoning Benchmark), a framework grounded in cognitive science and real-world AI applications, which decomposes CoF reasoning into six cognitive dimensions -- from perceptual logic to abstract planning -- and 24 subtasks. Through multi-source data curation, minimal prompting protocols, and hybrid VLM-assisted evaluation with detailed criteria, Gen-ViRe delivers the first quantitative assessment of video models as reasoners. Our experiments on SOTA systems reveal substantial discrepancies between impressive visual quality and actual reasoning depth, establishing baselines and diagnostic tools to advance genuine world simulators.
Authors:Rui Ai, David Simchi-Levi, Haifeng Xu
Abstract:
With the rapid advancement of generative AI (GenAI), mechanism design adapted to its unique characteristics poses new theoretical and practical challenges. Unlike traditional goods, content from one domain can enhance the training and performance of GenAI models in other domains. For example, OpenAI's video generation model Sora (Liu et al., 2024b) relies heavily on image data to improve video generation quality. In this work, we study nonlinear procurement mechanism design under data transferability, where online platforms employ both human creators and GenAI to satisfy cross-domain content demand. We propose optimal mechanisms that maximize either platform revenue or social welfare and identify the specific properties of GenAI that make such high-dimensional design problems tractable. Our analysis further reveals which domains face stronger competitive pressure and which tend to experience overproduction. Moreover, the growing role of data intermediaries, including labeling companies such as Scale AI and creator organizations such as The Wall Street Journal, introduces a third layer into the traditional platform-creator structure. We show that this three-layer market can result in a lose-lose outcome, reducing both platform revenue and social welfare, as large pre-signed contracts distort creators' incentives and lead to inefficiencies in the data market. These findings suggest a need for government regulation of the GenAI data ecosystem, and our theoretical insights are further supported by numerical simulations.
Authors:Panwang Pan, Jingjing Zhao, Yuchen Lin, Chenguo Lin, Chenxin Li, Haopeng Li, Honglei Yan, Tingting Shen, Yadong Mu
Abstract:
Video generative models pretrained on large-scale datasets can produce high-quality videos, but are often conditioned on text or a single image, limiting controllability and applicability. We introduce ID-Composer, a novel framework that addresses this gap by tackling multi-subject video generation from a text prompt and reference images. This task is challenging as it requires preserving subject identities, integrating semantics across subjects and modalities, and maintaining temporal consistency. To faithfully preserve the subject consistency and textual information in synthesized videos, ID-Composer designs a hierarchical identity-preserving attention mechanism, which effectively aggregates features within and across subjects and modalities. To effectively allow for the semantic following of user intention, we introduce semantic understanding via pretrained vision-language model (VLM), leveraging VLM's superior semantic understanding to provide fine-grained guidance and capture complex interactions between multiple subjects. Considering that standard diffusion loss often fails in aligning the critical concepts like subject ID, we employ an online reinforcement learning phase to drive the overall training objective of ID-Composer into RLVR. Extensive experiments demonstrate that our model surpasses existing methods in identity preservation, temporal consistency, and video quality.
Authors:Jiahui Lei, Kyle Genova, George Kopanas, Noah Snavely, Leonidas Guibas
Abstract:
This paper addresses the challenge of learning semantically and functionally meaningful 3D motion priors from real-world videos, in order to enable prediction of future 3D scene motion from a single input image. We propose a novel pixel-aligned Motion Map (MoMap) representation for 3D scene motion, which can be generated from existing generative image models to facilitate efficient and effective motion prediction. To learn meaningful distributions over motion, we create a large-scale database of MoMaps from over 50,000 real videos and train a diffusion model on these representations. Our motion generation not only synthesizes trajectories in 3D but also suggests a new pipeline for 2D video synthesis: first generate a MoMap, then warp an image accordingly and complete the warped point-based renderings. Experimental results demonstrate that our approach generates plausible and semantically consistent 3D scene motion.
Authors:Kai Ye, Yuhang Wu, Shuyuan Hu, Junliang Li, Meng Liu, Yongquan Chen, Rui Huang
Abstract:
Dexterous manipulation remains a challenging robotics problem, largely due to the difficulty of collecting extensive human demonstrations for learning. In this paper, we introduce \textsc{Gen2Real}, which replaces costly human demos with one generated video and drives robot skill from it: it combines demonstration generation that leverages video generation with pose and depth estimation to yield hand-object trajectories, trajectory optimization that uses Physics-aware Interaction Optimization Model (PIOM) to impose physics consistency, and demonstration learning that retargets human motions to a robot hand and stabilizes control with an anchor-based residual Proximal Policy Optimization (PPO) policy. Using only generated videos, the learned policy achieves a 77.3\% success rate on grasping tasks in simulation and demonstrates coherent executions on a real robot. We also conduct ablation studies to validate the contribution of each component and demonstrate the ability to directly specify tasks using natural language, highlighting the flexibility and robustness of \textsc{Gen2Real} in generalizing grasping skills from imagined videos to real-world execution.
Authors:Bowen Xue, Qixin Yan, Wenjing Wang, Hao Liu, Chen Li
Abstract:
Generating high-fidelity human videos that match user-specified identities is important yet challenging in the field of generative AI. Existing methods often rely on an excessive number of training parameters and lack compatibility with other AIGC tools. In this paper, we propose Stand-In, a lightweight and plug-and-play framework for identity preservation in video generation. Specifically, we introduce a conditional image branch into the pre-trained video generation model. Identity control is achieved through restricted self-attentions with conditional position mapping, and can be learned quickly with only 2000 pairs. Despite incorporating and training just $\sim$1% additional parameters, our framework achieves excellent results in video quality and identity preservation, outperforming other full-parameter training methods. Moreover, our framework can be seamlessly integrated for other tasks, such as subject-driven video generation, pose-referenced video generation, stylization, and face swapping.
Authors:Quang-Trung Truong, Yuk-Kwan Wong, Vo Hoang Kim Tuyen Dang, Rinaldi Gotama, Duc Thanh Nguyen, Sai-Kit Yeung
Abstract:
Marine videos present significant challenges for video understanding due to the dynamics of marine objects and the surrounding environment, camera motion, and the complexity of underwater scenes. Existing video captioning datasets, typically focused on generic or human-centric domains, often fail to generalize to the complexities of the marine environment and gain insights about marine life. To address these limitations, we propose a two-stage marine object-oriented video captioning pipeline. We introduce a comprehensive video understanding benchmark that leverages the triplets of video, text, and segmentation masks to facilitate visual grounding and captioning, leading to improved marine video understanding and analysis, and marine video generation. Additionally, we highlight the effectiveness of video splitting in order to detect salient object transitions in scene changes, which significantly enrich the semantics of captioning content. Our dataset and code have been released at https://msc.hkustvgd.com.
Authors:Yuanze Lin, Yi-Wen Chen, Yi-Hsuan Tsai, Ronald Clark, Ming-Hsuan Yang
Abstract:
Although diffusion-based models can generate high-quality and high-resolution video sequences from textual or image inputs, they lack explicit integration of geometric cues when controlling scene lighting and visual appearance across frames. To address this limitation, we propose IllumiCraft, an end-to-end diffusion framework accepting three complementary inputs: (1) high-dynamic-range (HDR) video maps for detailed lighting control; (2) synthetically relit frames with randomized illumination changes (optionally paired with a static background reference image) to provide appearance cues; and (3) 3D point tracks that capture precise 3D geometry information. By integrating the lighting, appearance, and geometry cues within a unified diffusion architecture, IllumiCraft generates temporally coherent videos aligned with user-defined prompts. It supports background-conditioned and text-conditioned video relighting and provides better fidelity than existing controllable video generation methods. Project Page: https://yuanze-lin.me/IllumiCraft_page
Authors:Shuting Wang, Yunqi Liu, Zixin Yang, Ning Hu, Zhicheng Dou, Chenyan Xiong
Abstract:
Querying generative AI models, e.g., large language models (LLMs), has become a prevalent method for information acquisition. However, existing query-answer datasets primarily focus on textual responses, making it challenging to address complex user queries that require visual demonstrations or explanations for better understanding. To bridge this gap, we construct a benchmark, RealVideoQuest, designed to evaluate the abilities of text-to-video (T2V) models in answering real-world, visually grounded queries. It identifies 7.5K real user queries with video response intents from Chatbot-Arena and builds 4.5K high-quality query-video pairs through a multistage video retrieval and refinement process. We further develop a multi-angle evaluation system to assess the quality of generated video answers. Experiments indicate that current T2V models struggle with effectively addressing real user queries, pointing to key challenges and future research opportunities in multimodal AI.
Authors:Xianghui Ze, Beiyi Zhu, Zhenbo Song, Jianfeng Lu, Yujiao Shi
Abstract:
Generating continuous ground-level video from satellite imagery is a challenging task with significant potential for applications in simulation, autonomous navigation, and digital twin cities. Existing approaches primarily focus on synthesizing individual ground-view images, often relying on auxiliary inputs like height maps or handcrafted projections, and fall short in producing temporally consistent sequences. In this paper, we propose {SatDreamer360}, a novel framework that generates geometrically and temporally consistent ground-view video from a single satellite image and a predefined trajectory. To bridge the large viewpoint gap, we introduce a compact tri-plane representation that encodes scene geometry directly from the satellite image. A ray-based pixel attention mechanism retrieves view-dependent features from the tri-plane, enabling accurate cross-view correspondence without requiring additional geometric priors. To ensure multi-frame consistency, we propose an epipolar-constrained temporal attention module that aligns features across frames using the known relative poses along the trajectory. To support evaluation, we introduce {VIGOR++}, a large-scale dataset for cross-view video generation, with dense trajectory annotations and high-quality ground-view sequences. Extensive experiments demonstrate that SatDreamer360 achieves superior performance in fidelity, coherence, and geometric alignment across diverse urban scenes.
Authors:Hao Tang, Kevin Ellis, Suhas Lohit, Michael J. Jones, Moitreya Chatterjee
Abstract:
The task of estimating the world model describing the dynamics of a real world process assumes immense importance for anticipating and preparing for future outcomes. For applications such as video surveillance, robotics applications, autonomous driving, etc. this objective entails synthesizing plausible visual futures, given a few frames of a video to set the visual context. Towards this end, we propose ProgGen, which undertakes the task of video frame prediction by representing the dynamics of the video using a set of neuro-symbolic, human-interpretable set of states (one per frame) by leveraging the inductive biases of Large (Vision) Language Models (LLM/VLM). In particular, ProgGen utilizes LLM/VLM to synthesize programs: (i) to estimate the states of the video, given the visual context (i.e. the frames); (ii) to predict the states corresponding to future time steps by estimating the transition dynamics; (iii) to render the predicted states as visual RGB-frames. Empirical evaluations reveal that our proposed method outperforms competing techniques at the task of video frame prediction in two challenging environments: (i) PhyWorld (ii) Cart Pole. Additionally, ProgGen permits counter-factual reasoning and interpretable video generation attesting to its effectiveness and generalizability for video generation tasks.
Authors:Rosa Wolf, Yitian Shi, Sheng Liu, Rania Rayyes
Abstract:
Diffusion generative models have demonstrated remarkable success in visual domains such as image and video generation. They have also recently emerged as a promising approach in robotics, especially in robot manipulations. Diffusion models leverage a probabilistic framework, and they stand out with their ability to model multi-modal distributions and their robustness to high-dimensional input and output spaces. This survey provides a comprehensive review of state-of-the-art diffusion models in robotic manipulation, including grasp learning, trajectory planning, and data augmentation. Diffusion models for scene and image augmentation lie at the intersection of robotics and computer vision for vision-based tasks to enhance generalizability and data scarcity. This paper also presents the two main frameworks of diffusion models and their integration with imitation learning and reinforcement learning. In addition, it discusses the common architectures and benchmarks and points out the challenges and advantages of current state-of-the-art diffusion-based methods.
Authors:Long Cheng, Qichen Liao, Fan Wu, Junlin Mu, Tengfei Han, Zhe Qiu, Lianqiang Li, Tianyi Liu, Fangzheng Miao, Keming Gao, Liang Wang, Zhen Zhang, Qiande Yin
Abstract:
Attention calculation is extremely time-consuming for long-sequence inference tasks, such as text or image/video generation, in large models. To accelerate this process, we developed a low-precision, mathematically-equivalent algorithm called PASA, based on Flash Attention. PASA introduces two novel techniques: online pseudo-average shifting and global recovering. These techniques enable the use of half-precision computation throughout the Flash Attention process without incurring overflow instability or unacceptable numerical accuracy loss. This algorithm enhances performance on memory-restricted AI hardware architectures, such as the Ascend Neural-network Processing Unit(NPU), by reducing data movement and increasing computational FLOPs. The algorithm is validated using both designed random benchmarks and real large models. We find that the large bias and amplitude of attention input data are critical factors contributing to numerical overflow ($>65504$ for half precision) in two different categories of large models (Qwen2-7B language models and Stable-Video-Diffusion multi-modal models). Specifically, overflow arises due to the large bias in the sequence dimension and the resonance mechanism between the query and key in the head dimension of the Stable-Video-Diffusion models. The resonance mechanism is defined as phase coincidence or 180-degree phase shift between query and key matrices. It will remarkably amplify the element values of attention score matrix. This issue also applies to the Qwen models. Additionally, numerical accuracy is assessed through root mean square error (RMSE) and by comparing the final generated texts and videos to those produced using high-precision attention.
Authors:Mina Huh, Dingzeyu Li, Kim Pimmel, Hijung Valentina Shin, Amy Pavel, Mira Dontcheva
Abstract:
To make an engaging video, people sequence interesting moments and add visuals such as B-rolls or text. While video editing requires time and effort, AI has recently shown strong potential to make editing easier through suggestions and automation. A key strength of generative models is their ability to quickly generate multiple variations, but when provided with many alternatives, creators struggle to compare them to find the best fit. We propose VideoDiff, an AI video editing tool designed for editing with alternatives. With VideoDiff, creators can generate and review multiple AI recommendations for each editing process: creating a rough cut, inserting B-rolls, and adding text effects. VideoDiff simplifies comparisons by aligning videos and highlighting differences through timelines, transcripts, and video previews. Creators have the flexibility to regenerate and refine AI suggestions as they compare alternatives. Our study participants (N=12) could easily compare and customize alternatives, creating more satisfying results.
Authors:Shuting Wang, Haihong Tang, Zhicheng Dou, Chenyan Xiong
Abstract:
The emergence of diffusion models (DMs) has significantly improved the quality of text-to-video generation models (VGMs). However, current VGM optimization primarily emphasizes the global quality of videos, overlooking localized errors, which leads to suboptimal generation capabilities. To address this issue, we propose a post-training strategy for VGMs, HALO, which explicitly incorporates local feedback from a patch reward model, providing detailed and comprehensive training signals with the video reward model for advanced VGM optimization. To develop an effective patch reward model, we distill GPT-4o to continuously train our video reward model, which enhances training efficiency and ensures consistency between video and patch reward distributions. Furthermore, to harmoniously integrate patch rewards into VGM optimization, we introduce a granular DPO (Gran-DPO) algorithm for DMs, allowing collaborative use of both patch and video rewards during the optimization process. Experimental results indicate that our patch reward model aligns well with human annotations and HALO substantially outperforms the baselines across two evaluation methods. Further experiments quantitatively prove the existence of patch defects, and our proposed method could effectively alleviate this issue.
Authors:Xiaozhe Li, Kai WU, Siyi Yang, YiZhan Qu, Guohua. Zhang, Zhiyu Chen, Jiayao Li, Jiangchuan Mu, Xiaobin Hu, Wen Fang, Mingliang Xiong, Hao Deng, Qingwen Liu, Gang Li, Bin He
Abstract:
Recent advancements in text-to-video (T2V) generation have leveraged diffusion models to enhance visual coherence in videos synthesized from textual descriptions. However, existing research primarily focuses on object motion, often overlooking cinematic language, which is crucial for conveying emotion and narrative pacing in cinematography. To address this, we propose a threefold approach to improve cinematic control in T2V models. First, we introduce a meticulously annotated cinematic language dataset with twenty subcategories, covering shot framing, shot angles, and camera movements, enabling models to learn diverse cinematic styles. Second, we present CameraDiff, which employs LoRA for precise and stable cinematic control, ensuring flexible shot generation. Third, we propose CameraCLIP, designed to evaluate cinematic alignment and guide multi-shot composition. Building on CameraCLIP, we introduce CLIPLoRA, a CLIP-guided dynamic LoRA composition method that adaptively fuses multiple pre-trained cinematic LoRAs, enabling smooth transitions and seamless style blending. Experimental results demonstrate that CameraDiff ensures stable and precise cinematic control, CameraCLIP achieves an R@1 score of 0.83, and CLIPLoRA significantly enhances multi-shot composition within a single video, bridging the gap between automated video generation and professional cinematography.\textsuperscript{1}
Authors:Tuna Han Salih Meral, Hidir Yesiltepe, Connor Dunlop, Pinar Yanardag
Abstract:
Text-to-video models have demonstrated impressive capabilities in producing diverse and captivating video content, showcasing a notable advancement in generative AI. However, these models generally lack fine-grained control over motion patterns, limiting their practical applicability. We introduce MotionFlow, a novel framework designed for motion transfer in video diffusion models. Our method utilizes cross-attention maps to accurately capture and manipulate spatial and temporal dynamics, enabling seamless motion transfers across various contexts. Our approach does not require training and works on test-time by leveraging the inherent capabilities of pre-trained video diffusion models. In contrast to traditional approaches, which struggle with comprehensive scene changes while maintaining consistent motion, MotionFlow successfully handles such complex transformations through its attention-based mechanism. Our qualitative and quantitative experiments demonstrate that MotionFlow significantly outperforms existing models in both fidelity and versatility even during drastic scene alterations.
Authors:Panwen Hu, Nan Xiao, Feifei Li, Yongquan Chen, Rui Huang
Abstract:
In this era of videos, automatic video editing techniques attract more and more attention from industry and academia since they can reduce workloads and lower the requirements for human editors. Existing automatic editing systems are mainly scene- or event-specific, e.g., soccer game broadcasting, yet the automatic systems for general editing, e.g., movie or vlog editing which covers various scenes and events, were rarely studied before, and converting the event-driven editing method to a general scene is nontrivial. In this paper, we propose a two-stage scheme for general editing. Firstly, unlike previous works that extract scene-specific features, we leverage the pre-trained Vision-Language Model (VLM) to extract the editing-relevant representations as editing context. Moreover, to close the gap between the professional-looking videos and the automatic productions generated with simple guidelines, we propose a Reinforcement Learning (RL)-based editing framework to formulate the editing problem and train the virtual editor to make better sequential editing decisions. Finally, we evaluate the proposed method on a more general editing task with a real movie dataset. Experimental results demonstrate the effectiveness and benefits of the proposed context representation and the learning ability of our RL-based editing framework.
Authors:Vladimir Arkhipkin, Viacheslav Vasilev, Andrei Filatov, Igor Pavlov, Julia Agafonova, Nikolai Gerasimenko, Anna Averchenkova, Evelina Mironova, Anton Bukashkin, Konstantin Kulikov, Andrey Kuznetsov, Denis Dimitrov
Abstract:
Text-to-image (T2I) diffusion models are popular for introducing image manipulation methods, such as editing, image fusion, inpainting, etc. At the same time, image-to-video (I2V) and text-to-video (T2V) models are also built on top of T2I models. We present Kandinsky 3, a novel T2I model based on latent diffusion, achieving a high level of quality and photorealism. The key feature of the new architecture is the simplicity and efficiency of its adaptation for many types of generation tasks. We extend the base T2I model for various applications and create a multifunctional generation system that includes text-guided inpainting/outpainting, image fusion, text-image fusion, image variations generation, I2V and T2V generation. We also present a distilled version of the T2I model, evaluating inference in 4 steps of the reverse process without reducing image quality and 3 times faster than the base model. We deployed a user-friendly demo system in which all the features can be tested in the public domain. Additionally, we released the source code and checkpoints for the Kandinsky 3 and extended models. Human evaluations show that Kandinsky 3 demonstrates one of the highest quality scores among open source generation systems.
Authors:Di Qiu, Zheng Chen, Rui Wang, Mingyuan Fan, Changqian Yu, Junshi Huang, Xiang Wen
Abstract:
Recent advancements in character video synthesis still depend on extensive fine-tuning or complex 3D modeling processes, which can restrict accessibility and hinder real-time applicability. To address these challenges, we propose a simple yet effective tuning-free framework for character video synthesis, named MovieCharacter, designed to streamline the synthesis process while ensuring high-quality outcomes. Our framework decomposes the synthesis task into distinct, manageable modules: character segmentation and tracking, video object removal, character motion imitation, and video composition. This modular design not only facilitates flexible customization but also ensures that each component operates collaboratively to effectively meet user needs. By leveraging existing open-source models and integrating well-established techniques, MovieCharacter achieves impressive synthesis results without necessitating substantial resources or proprietary datasets. Experimental results demonstrate that our framework enhances the efficiency, accessibility, and adaptability of character video synthesis, paving the way for broader creative and interactive applications.
Authors:Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song, Yadong Mu, Zhouchen Lin
Abstract:
Video generation requires modeling a vast spatiotemporal space, which demands significant computational resources and data usage. To reduce the complexity, the prevailing approaches employ a cascaded architecture to avoid direct training with full resolution latent. Despite reducing computational demands, the separate optimization of each sub-stage hinders knowledge sharing and sacrifices flexibility. This work introduces a unified pyramidal flow matching algorithm. It reinterprets the original denoising trajectory as a series of pyramid stages, where only the final stage operates at the full resolution, thereby enabling more efficient video generative modeling. Through our sophisticated design, the flows of different pyramid stages can be interlinked to maintain continuity. Moreover, we craft autoregressive video generation with a temporal pyramid to compress the full-resolution history. The entire framework can be optimized in an end-to-end manner and with a single unified Diffusion Transformer (DiT). Extensive experiments demonstrate that our method supports generating high-quality 5-second (up to 10-second) videos at 768p resolution and 24 FPS within 20.7k A100 GPU training hours. All code and models are open-sourced at https://pyramid-flow.github.io.
Authors:Shitong Shao, Zikai Zhou, Lichen Bai, Haoyi Xiong, Zeke Xie
Abstract:
The multi-step sampling mechanism, a key feature of visual diffusion models, has significant potential to replicate the success of OpenAI's Strawberry in enhancing performance by increasing the inference computational cost. Sufficient prior studies have demonstrated that correctly scaling up computation in the sampling process can successfully lead to improved generation quality, enhanced image editing, and compositional generalization. While there have been rapid advancements in developing inference-heavy algorithms for improved image generation, relatively little work has explored inference scaling laws in video diffusion models (VDMs). Furthermore, existing research shows only minimal performance gains that are perceptible to the naked eye. To address this, we design a novel training-free algorithm IV-Mixed Sampler that leverages the strengths of image diffusion models (IDMs) to assist VDMs surpass their current capabilities. The core of IV-Mixed Sampler is to use IDMs to significantly enhance the quality of each video frame and VDMs ensure the temporal coherence of the video during the sampling process. Our experiments have demonstrated that IV-Mixed Sampler achieves state-of-the-art performance on 4 benchmarks including UCF-101-FVD, MSR-VTT-FVD, Chronomagic-Bench-150, and Chronomagic-Bench-1649. For example, the open-source Animatediff with IV-Mixed Sampler reduces the UMT-FVD score from 275.2 to 228.6, closing to 223.1 from the closed-source Pika-2.0.
Authors:Steven Hogue, Chenxu Zhang, Hamza Daruger, Yapeng Tian, Xiaohu Guo
Abstract:
Audio-driven talking video generation has advanced significantly, but existing methods often depend on video-to-video translation techniques and traditional generative networks like GANs and they typically generate taking heads and co-speech gestures separately, leading to less coherent outputs. Furthermore, the gestures produced by these methods often appear overly smooth or subdued, lacking in diversity, and many gesture-centric approaches do not integrate talking head generation. To address these limitations, we introduce DiffTED, a new approach for one-shot audio-driven TED-style talking video generation from a single image. Specifically, we leverage a diffusion model to generate sequences of keypoints for a Thin-Plate Spline motion model, precisely controlling the avatar's animation while ensuring temporally coherent and diverse gestures. This innovative approach utilizes classifier-free guidance, empowering the gestures to flow naturally with the audio input without relying on pre-trained classifiers. Experiments demonstrate that DiffTED generates temporally coherent talking videos with diverse co-speech gestures.
Authors:Boyi Pang, Savva Ignatyev, Vladimir Ippolitov, Ramil Khafizov, Yurii Melnik, Oleg Voynov, Maksim Nakhodnov, Aibek Alanov, Xiaopeng Fan, Peter Wonka, Evgeny Burnaev
Abstract:
We suggest a new multi-modal algorithm for joint inference of paired structurally aligned samples with Rectified Flow models. While some existing methods propose a codependent generation process, they do not view the problem of joint generation from a structural alignment perspective. Recent work uses Score Distillation Sampling to generate aligned 3D models, but SDS is known to be time-consuming, prone to mode collapse, and often provides cartoonish results. By contrast, our suggested approach relies on the joint transport of a segment in the sample space, yielding faster computation at inference time. Our approach can be built on top of an arbitrary Rectified Flow model operating on the structured latent space. We show the applicability of our method to the domains of image, video, and 3D shape generation using state-of-the-art baselines and evaluate it against both editing-based and joint inference-based competing approaches. We demonstrate a high degree of structural alignment for the sample pairs obtained with our method and a high visual quality of the samples. Our method improves the state-of-the-art for image and video generation pipelines. For 3D generation, it is able to show comparable quality while working orders of magnitude faster.
Authors:Jin Wang, Jianxiang Lu, Comi Chen, Guangzheng Xu, Haoyu Yang, Peng Chen, Na Zhang, Yifan Xu, Longhuang Wu, Shuai Shao, Qinglin Lu, Ping Luo
Abstract:
Generating high-quality 3D characters from single images remains a significant challenge in digital content creation, particularly due to complex body poses and self-occlusion. In this paper, we present RCM (Rotate your Character Model), an advanced image-to-video diffusion framework tailored for high-quality novel view synthesis (NVS) and 3D character generation. Compared to existing diffusion-based approaches, RCM offers several key advantages: (1) transferring characters with any complex poses into a canonical pose, enabling consistent novel view synthesis across the entire viewing orbit, (2) high-resolution orbital video generation at 1024x1024 resolution, (3) controllable observation positions given different initial camera poses, and (4) multi-view conditioning supporting up to 4 input images, accommodating diverse user scenarios. Extensive experiments demonstrate that RCM outperforms state-of-the-art methods in both novel view synthesis and 3D generation quality.
Authors:Chunyu Qiang, Jun Wang, Xiaopeng Wang, Kang Yin, Yuxin Guo
Abstract:
Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.
Authors:Jiaxu Zhang, Tianshu Hu, Yuan Zhang, Zenan Li, Linjie Luo, Guosheng Lin, Xin Chen
Abstract:
Existing AI-driven video creation systems typically treat script drafting and key-shot design as two disjoint tasks: the former relies on large language models, while the latter depends on image generation models. We argue that these two tasks should be unified within a single framework, as logical reasoning and imaginative thinking are both fundamental qualities of a film director. In this work, we propose UniMAGE, a unified director model that bridges user prompts with well-structured scripts, thereby empowering non-experts to produce long-context, multi-shot films by leveraging existing audio-video generation models. To achieve this, we employ the Mixture-of-Transformers architecture that unifies text and image generation. To further enhance narrative logic and keyframe consistency, we introduce a ``first interleaving, then disentangling'' training paradigm. Specifically, we first perform Interleaved Concept Learning, which utilizes interleaved text-image data to foster the model's deeper understanding and imaginative interpretation of scripts. We then conduct Disentangled Expert Learning, which decouples script writing from keyframe generation, enabling greater flexibility and creativity in storytelling. Extensive experiments demonstrate that UniMAGE achieves state-of-the-art performance among open-source models, generating logically coherent video scripts and visually consistent keyframe images.
Authors:Shen Zheng, Jiaran Cai, Yuansheng Guan, Shenneng Huang, Xingpei Ma, Junjie Cao, Hanfeng Zhao, Qiang Zhang, Shunsi Zhang, Xiao-Ping Zhang
Abstract:
Recent progress in diffusion models has significantly advanced the field of human image animation. While existing methods can generate temporally consistent results for short or regular motions, significant challenges remain, particularly in generating long-duration videos. Furthermore, the synthesis of fine-grained facial and hand details remains under-explored, limiting the applicability of current approaches in real-world, high-quality applications. To address these limitations, we propose a diffusion transformer (DiT)-based framework which focuses on generating high-fidelity and long-duration human animation videos. First, we design a set of hybrid implicit guidance signals and a sharpness guidance factor, enabling our framework to additionally incorporate detailed facial and hand features as guidance. Next, we incorporate the time-aware position shift fusion module, modify the input format within the DiT backbone, and refer to this mechanism as the Position Shift Adaptive Module, which enables video generation of arbitrary length. Finally, we introduce a novel data augmentation strategy and a skeleton alignment model to reduce the impact of human shape variations across different identities. Experimental results demonstrate that our method outperforms existing state-of-the-art approaches, achieving superior performance in both high-fidelity and long-duration human image animation.
Authors:Byungjun Kim, Taeksoo Kim, Junyoung Lee, Hanbyul Joo
Abstract:
Recent progress in 3D reconstruction has made it easy to create realistic digital twins from everyday environments. However, current digital twins remain largely static and are limited to navigation and view synthesis without embodied interactivity. To bridge this gap, we introduce Dexterous World Model (DWM), a scene-action-conditioned video diffusion framework that models how dexterous human actions induce dynamic changes in static 3D scenes. Given a static 3D scene rendering and an egocentric hand motion sequence, DWM generates temporally coherent videos depicting plausible human-scene interactions. Our approach conditions video generation on (1) static scene renderings following a specified camera trajectory to ensure spatial consistency, and (2) egocentric hand mesh renderings that encode both geometry and motion cues to model action-conditioned dynamics directly. To train DWM, we construct a hybrid interaction video dataset. Synthetic egocentric interactions provide fully aligned supervision for joint locomotion and manipulation learning, while fixed-camera real-world videos contribute diverse and realistic object dynamics. Experiments demonstrate that DWM enables realistic and physically plausible interactions, such as grasping, opening, and moving objects, while maintaining camera and scene consistency. This framework represents a first step toward video diffusion-based interactive digital twins and enables embodied simulation from egocentric actions.
Authors:Ryan Po, Eric Ryan Chan, Changan Chen, Gordon Wetzstein
Abstract:
Autoregressive video models are promising for world modeling via next-frame prediction, but they suffer from exposure bias: a mismatch between training on clean contexts and inference on self-generated frames, causing errors to compound and quality to drift over time. We introduce Backwards Aggregation (BAgger), a self-supervised scheme that constructs corrective trajectories from the model's own rollouts, teaching it to recover from its mistakes. Unlike prior approaches that rely on few-step distillation and distribution-matching losses, which can hurt quality and diversity, BAgger trains with standard score or flow matching objectives, avoiding large teachers and long-chain backpropagation through time. We instantiate BAgger on causal diffusion transformers and evaluate on text-to-video, video extension, and multi-prompt generation, observing more stable long-horizon motion and better visual consistency with reduced drift.
Authors:Yang Fei, George Stoica, Jingyuan Liu, Qifeng Chen, Ranjay Krishna, Xiaojuan Wang, Benlin Liu
Abstract:
Reality is a dance between rigid constraints and deformable structures. For video models, that means generating motion that preserves fidelity as well as structure. Despite progress in diffusion models, producing realistic structure-preserving motion remains challenging, especially for articulated and deformable objects such as humans and animals. Scaling training data alone, so far, has failed to resolve physically implausible transitions. Existing approaches rely on conditioning with noisy motion representations, such as optical flow or skeletons extracted using an external imperfect model. To address these challenges, we introduce an algorithm to distill structure-preserving motion priors from an autoregressive video tracking model (SAM2) into a bidirectional video diffusion model (CogVideoX). With our method, we train SAM2VideoX, which contains two innovations: (1) a bidirectional feature fusion module that extracts global structure-preserving motion priors from a recurrent model like SAM2; (2) a Local Gram Flow loss that aligns how local features move together. Experiments on VBench and in human studies show that SAM2VideoX delivers consistent gains (+2.60\% on VBench, 21-22\% lower FVD, and 71.4\% human preference) over prior baselines. Specifically, on VBench, we achieve 95.51\%, surpassing REPA (92.91\%) by 2.60\%, and reduce FVD to 360.57, a 21.20\% and 22.46\% improvement over REPA- and LoRA-finetuning, respectively. The project website can be found at https://sam2videox.github.io/ .
Authors:Xuedeng Liu, Jiabao Guo, Zheng Zhang, Fei Wang, Zhi Liu, Dan Guo
Abstract:
Video Motion Magnification (VMM) amplifies subtle macroscopic motions to a perceptible level. Recently, existing mainstream Eulerian approaches address amplification-induced noise via decoupling representation learning such as texture, shape and frequancey schemes, but they still struggle to separate photon noise from true micro-motion when motion displacements are very small. We propose GeoDiffMM, a novel diffusion-based Lagrangian VMM framework conditioned on optical flow as a geometric cue, enabling structurally consistent motion magnification. Specifically, we design a Noise-free Optical Flow Augmentation strategy that synthesizes diverse nonrigid motion fields without photon noise as supervision, helping the model learn more accurate geometry-aware optial flow and generalize better. Next, we develop a Diffusion Motion Magnifier that conditions the denoising process on (i) optical flow as a geometry prior and (ii) a learnable magnification factor controlling magnitude, thereby selectively amplifying motion components consistent with scene semantics and structure while suppressing content-irrelevant perturbations. Finally, we perform Flow-based Video Synthesis to map the amplified motion back to the image domain with high fidelity. Extensive experiments on real and synthetic datasets show that GeoDiffMM outperforms state-of-the-art methods and significantly improves motion magnification.
Authors:Ozgur Kara, Yujia Chen, Ming-Hsuan Yang, James M. Rehg, Wen-Sheng Chu, Du Tran
Abstract:
We present Split-then-Merge (StM), a novel framework designed to enhance control in generative video composition and address its data scarcity problem. Unlike conventional methods relying on annotated datasets or handcrafted rules, StM splits a large corpus of unlabeled videos into dynamic foreground and background layers, then self-composes them to learn how dynamic subjects interact with diverse scenes. This process enables the model to learn the complex compositional dynamics required for realistic video generation. StM introduces a novel transformation-aware training pipeline that utilizes a multi-layer fusion and augmentation to achieve affordance-aware composition, alongside an identity-preservation loss that maintains foreground fidelity during blending. Experiments show StM outperforms SoTA methods in both quantitative benchmarks and in humans/VLLM-based qualitative evaluations. More details are available at our project page: https://split-then-merge.github.io
Authors:Haoze Zhang, Tianyu Huang, Zichen Wan, Xiaowei Jin, Hongzhi Zhang, Hui Li, Wangmeng Zuo
Abstract:
While recent video generation models have achieved significant visual fidelity, they often suffer from the lack of explicit physical controllability and plausibility. To address this, some recent studies attempted to guide the video generation with physics-based rendering. However, these methods face inherent challenges in accurately modeling complex physical properties and effectively control ling the resulting physical behavior over extended temporal sequences. In this work, we introduce PhysChoreo, a novel framework that can generate videos with diverse controllability and physical realism from a single image. Our method consists of two stages: first, it estimates the static initial physical properties of all objects in the image through part-aware physical property reconstruction. Then, through temporally instructed and physically editable simulation, it synthesizes high-quality videos with rich dynamic behaviors and physical realism. Experimental results show that PhysChoreo can generate videos with rich behaviors and physical realism, outperforming state-of-the-art methods on multiple evaluation metrics.
Authors:Vladimir Arkhipkin, Vladimir Korviakov, Nikolai Gerasimenko, Denis Parkhomenko, Viacheslav Vasilev, Alexey Letunovskiy, Nikolai Vaulin, Maria Kovaleva, Ivan Kirillov, Lev Novitskiy, Denis Koposov, Nikita Kiselev, Alexander Varlamov, Dmitrii Mikhailov, Vladimir Polovnikov, Andrey Shutkin, Julia Agafonova, Ilya Vasiliev, Anastasiia Kargapoltseva, Anna Dmitrienko, Anastasia Maltseva, Anna Averchenkova, Olga Kim, Tatiana Nikulina, Denis Dimitrov
Abstract:
This report introduces Kandinsky 5.0, a family of state-of-the-art foundation models for high-resolution image and 10-second video synthesis. The framework comprises three core line-up of models: Kandinsky 5.0 Image Lite - a line-up of 6B parameter image generation models, Kandinsky 5.0 Video Lite - a fast and lightweight 2B parameter text-to-video and image-to-video models, and Kandinsky 5.0 Video Pro - 19B parameter models that achieves superior video generation quality. We provide a comprehensive review of the data curation lifecycle - including collection, processing, filtering and clustering - for the multi-stage training pipeline that involves extensive pre-training and incorporates quality-enhancement techniques such as self-supervised fine-tuning (SFT) and reinforcement learning (RL)-based post-training. We also present novel architectural, training, and inference optimizations that enable Kandinsky 5.0 to achieve high generation speeds and state-of-the-art performance across various tasks, as demonstrated by human evaluation. As a large-scale, publicly available generative framework, Kandinsky 5.0 leverages the full potential of its pre-training and subsequent stages to be adapted for a wide range of generative applications. We hope that this report, together with the release of our open-source code and training checkpoints, will substantially advance the development and accessibility of high-quality generative models for the research community.
Authors:Jiahui Sun, Weining Wang, Mingzhen Sun, Yirong Yang, Xinxin Zhu, Jing Liu
Abstract:
Sounding Video Generation (SVG) remains a challenging task due to the inherent structural misalignment between audio and video, as well as the high computational cost of multimodal data processing. In this paper, we introduce ProAV-DiT, a Projected Latent Diffusion Transformer designed for efficient and synchronized audio-video generation. To address structural inconsistencies, we preprocess raw audio into video-like representations, aligning both the temporal and spatial dimensions between audio and video. At its core, ProAV-DiT adopts a Multi-scale Dual-stream Spatio-Temporal Autoencoder (MDSA), which projects both modalities into a unified latent space using orthogonal decomposition, enabling fine-grained spatiotemporal modeling and semantic alignment. To further enhance temporal coherence and modality-specific fusion, we introduce a multi-scale attention mechanism, which consists of multi-scale temporal self-attention and group cross-modal attention. Furthermore, we stack the 2D latents from MDSA into a unified 3D latent space, which is processed by a spatio-temporal diffusion Transformer. This design efficiently models spatiotemporal dependencies, enabling the generation of high-fidelity synchronized audio-video content while reducing computational overhead. Extensive experiments conducted on standard benchmarks demonstrate that ProAV-DiT outperforms existing methods in both generation quality and computational efficiency.
Authors:Junhyuk So, Hyunho Kook, Chaeyeon Jang, Eunhyeok Park
Abstract:
While autoregressive (AR) modeling has recently emerged as a new paradigm in visual generation, its practical adoption is severely constrained by the slow inference speed of per-token generation, which often requires thousands of steps to produce a single sample. To address this challenge, we propose MC-SJD, a training-free, lossless parallel decoding framework designed to accelerate AR visual generation by extending the recently introduced Speculative Jacobi Decoding (SJD). Although SJD shows strong potential for accelerating AR generation, we demonstrate that token instability across iterations significantly reduces the acceptance rate, a limitation that primarily arises from the independent sampling process used during draft token generation. To overcome this, we introduce MC-SJD, an information-theoretic approach based on coupling, which substantially accelerates standard SJD by maximizing the probability of sampling identical draft tokens across consecutive iterations, all while preserving its lossless property. Remarkably, this method requires only a single-line modification to the existing algorithm, yet achieves substantial performance gains, delivering up to a ~4.2x acceleration in image generation and ~13.3x acceleration in video generation compared to standard AR decoding, without any degradation in output quality.
Authors:Zian Li, Muhan Zhang
Abstract:
Masked autoregressive models (MAR) have recently emerged as a powerful paradigm for image and video generation, combining the flexibility of masked modeling with the potential of continuous tokenizer. However, video MAR models suffer from two major limitations: the slow-start problem, caused by the lack of a structured global prior at early sampling stages, and error accumulation across the autoregression in both spatial and temporal dimensions. In this work, we propose CanvasMAR, a novel video MAR model that mitigates these issues by introducing a canvas mechanism--a blurred, global prediction of the next frame, used as the starting point for masked generation. The canvas provides global structure early in sampling, enabling faster and more coherent frame synthesis. Furthermore, we introduce compositional classifier-free guidance that jointly enlarges spatial (canvas) and temporal conditioning, and employ noise-based canvas augmentation to enhance robustness. Experiments on the BAIR and Kinetics-600 benchmarks demonstrate that CanvasMAR produces high-quality videos with fewer autoregressive steps. Our approach achieves remarkable performance among autoregressive models on Kinetics-600 dataset and rivals diffusion-based methods.
Authors:Xingpei Ma, Shenneng Huang, Jiaran Cai, Yuansheng Guan, Shen Zheng, Hanfeng Zhao, Qiang Zhang, Shunsi Zhang
Abstract:
Recent advances in diffusion models have significantly improved audio-driven human video generation, surpassing traditional methods in both quality and controllability. However, existing approaches still face challenges in lip-sync accuracy, temporal coherence for long video generation, and multi-character animation. In this work, we propose a diffusion transformer (DiT)-based framework for generating lifelike talking videos of arbitrary length, and introduce a training-free method for multi-character audio-driven animation. First, we employ a LoRA-based training strategy combined with a position shift inference approach, which enables efficient long video generation while preserving the capabilities of the foundation model. Moreover, we combine partial parameter updates with reward feedback to enhance both lip synchronization and natural body motion. Finally, we propose a training-free approach, Mask Classifier-Free Guidance (Mask-CFG), for multi-character animation, which requires no specialized datasets or model modifications and supports audio-driven animation for three or more characters. Experimental results demonstrate that our method outperforms existing state-of-the-art approaches, achieving high-quality, temporally coherent, and multi-character audio-driven video generation in a simple, efficient, and cost-effective manner.
Authors:Shuang Liang, Jing He, Chuanmeizhi Wang, Lejun Liao, Guo Zhang, Yingcong Chen, Yuan Yuan
Abstract:
Pre-trained diffusion models provide rich multi-scale latent features and are emerging as powerful vision backbones. While recent works such as Marigold~\citep{ke2024repurposing} and Lotus~\citep{he2024lotus} adapt diffusion priors for dense prediction with strong cross-domain generalization, their potential for structured outputs (e.g., human pose estimation) remains underexplored. In this paper, we propose \textbf{SDPose}, a fine-tuning framework built upon Stable Diffusion to fully exploit pre-trained diffusion priors for human pose estimation. First, rather than modifying cross-attention modules or introducing learnable embeddings, we directly predict keypoint heatmaps in the SD U-Net's image latent space to preserve the original generative priors. Second, we map these latent features into keypoint heatmaps through a lightweight convolutional pose head, which avoids disrupting the pre-trained backbone. Finally, to prevent overfitting and enhance out-of-distribution robustness, we incorporate an auxiliary RGB reconstruction branch that preserves domain-transferable generative semantics. To evaluate robustness under domain shift, we further construct \textbf{COCO-OOD}, a style-transferred variant of COCO with preserved annotations. With just one-fifth of the training schedule used by Sapiens on COCO, SDPose attains parity with Sapiens-1B/2B on the COCO validation set and establishes a new state of the art on the cross-domain benchmarks HumanArt and COCO-OOD. Furthermore, we showcase SDPose as a zero-shot pose annotator for downstream controllable generation tasks, including ControlNet-based image synthesis and video generation, where it delivers qualitatively superior pose guidance.
Authors:Jenna Kang, Maria Silva, Patsorn Sangkloy, Kenneth Chen, Niall Williams, Qi Sun
Abstract:
Recent advances in probabilistic generative models have extended capabilities from static image synthesis to text-driven video generation. However, the inherent randomness of their generation process can lead to unpredictable artifacts, such as impossible physics and temporal inconsistency. Progress in addressing these challenges requires systematic benchmarks, yet existing datasets primarily focus on generative images due to the unique spatio-temporal complexities of videos. To bridge this gap, we introduce GeneVA, a large-scale artifact dataset with rich human annotations that focuses on spatio-temporal artifacts in videos generated from natural text prompts. We hope GeneVA can enable and assist critical applications, such as benchmarking model performance and improving generative video quality.
Authors:Zixin Zhu, Kevin Duarte, Mamshad Nayeem Rizve, Chengyuan Xu, Ratheesh Kalarot, Junsong Yuan
Abstract:
In text-to-image (T2I) generation, achieving fine-grained control over attributes - such as age or smile - remains challenging, even with detailed text prompts. Slider-based methods offer a solution for precise control of image attributes. Existing approaches typically train individual adapter for each attribute separately, overlooking the entanglement among multiple attributes. As a result, interference occurs among different attributes, preventing precise control of multiple attributes together. To address this challenge, we aim to disentangle multiple attributes in slider-based generation to enbale more reliable and independent attribute manipulation. Our approach, CompSlider, can generate a conditional prior for the T2I foundation model to control multiple attributes simultaneously. Furthermore, we introduce novel disentanglement and structure losses to compose multiple attribute changes while maintaining structural consistency within the image. Since CompSlider operates in the latent space of the conditional prior and does not require retraining the foundation model, it reduces the computational burden for both training and inference. We evaluate our approach on a variety of image attributes and highlight its generality by extending to video generation.
Authors:Shuolin Xu, Bingyuan Wang, Zeyu Cai, Fangteng Fu, Yue Ma, Tongyi Lee, Hongchuan Yu, Zeyu Wang
Abstract:
Generating high-quality cartoon animations multimodal control is challenging due to the complexity of non-human characters, stylistically diverse motions and fine-grained emotions. There is a huge domain gap between real-world videos and cartoon animation, as cartoon animation is usually abstract and has exaggerated motion. Meanwhile, public multimodal cartoon data are extremely scarce due to the difficulty of large-scale automatic annotation processes compared with real-life scenarios. To bridge this gap, We propose the MagicAnime dataset, a large-scale, hierarchically annotated, and multimodal dataset designed to support multiple video generation tasks, along with the benchmarks it includes. Containing 400k video clips for image-to-video generation, 50k pairs of video clips and keypoints for whole-body annotation, 12k pairs of video clips for video-to-video face animation, and 2.9k pairs of video and audio clips for audio-driven face animation. Meanwhile, we also build a set of multi-modal cartoon animation benchmarks, called MagicAnime-Bench, to support the comparisons of different methods in the tasks above. Comprehensive experiments on four tasks, including video-driven face animation, audio-driven face animation, image-to-video animation, and pose-driven character animation, validate its effectiveness in supporting high-fidelity, fine-grained, and controllable generation.
Authors:Jiahao Wang, Hualian Sheng, Sijia Cai, Weizhan Zhang, Caixia Yan, Yachuang Feng, Bing Deng, Jieping Ye
Abstract:
Video diffusion models substantially boost the productivity of artistic workflows with high-quality portrait video generative capacity. However, prevailing pipelines are primarily constrained to single-shot creation, while real-world applications urge for multiple shots with identity consistency and flexible content controllability. In this work, we propose EchoShot, a native and scalable multi-shot framework for portrait customization built upon a foundation video diffusion model. To start with, we propose shot-aware position embedding mechanisms within video diffusion transformer architecture to model inter-shot variations and establish intricate correspondence between multi-shot visual content and their textual descriptions. This simple yet effective design enables direct training on multi-shot video data without introducing additional computational overhead. To facilitate model training within multi-shot scenario, we construct PortraitGala, a large-scale and high-fidelity human-centric video dataset featuring cross-shot identity consistency and fine-grained captions such as facial attributes, outfits, and dynamic motions. To further enhance applicability, we extend EchoShot to perform reference image-based personalized multi-shot generation and long video synthesis with infinite shot counts. Extensive evaluations demonstrate that EchoShot achieves superior identity consistency as well as attribute-level controllability in multi-shot portrait video generation. Notably, the proposed framework demonstrates potential as a foundational paradigm for general multi-shot video modeling.
Authors:Huaize Liu, Wenzhang Sun, Qiyuan Zhang, Donglin Di, Biao Gong, Hao Li, Chen Wei, Changqing Zou
Abstract:
Recent breakthroughs in video autoencoders (Video AEs) have advanced video generation, but existing methods fail to efficiently model spatio-temporal redundancies in dynamics, resulting in suboptimal compression factors. This shortfall leads to excessive training costs for downstream tasks. To address this, we introduce Hi-VAE, an efficient video autoencoding framework that hierarchically encode coarse-to-fine motion representations of video dynamics and formulate the decoding process as a conditional generation task. Specifically, Hi-VAE decomposes video dynamics into two latent spaces: Global Motion, capturing overarching motion patterns, and Detailed Motion, encoding high-frequency spatial details. Using separate self-supervised motion encoders, we compress video latents into compact motion representations to reduce redundancy significantly. A conditional diffusion decoder then reconstructs videos by combining hierarchical global and detailed motions, enabling high-fidelity video reconstructions. Extensive experiments demonstrate that Hi-VAE achieves a high compression factor of 1428$\times$, almost 30$\times$ higher than baseline methods (e.g., Cosmos-VAE at 48$\times$), validating the efficiency of our approach. Meanwhile, Hi-VAE maintains high reconstruction quality at such high compression rates and performs effectively in downstream generative tasks. Moreover, Hi-VAE exhibits interpretability and scalability, providing new perspectives for future exploration in video latent representation and generation.
Authors:Anthony Gosselin, Ge Ya Luo, Luis Lara, Florian Golemo, Derek Nowrouzezahrai, Liam Paull, Alexia Jolicoeur-Martineau, Christopher Pal
Abstract:
Video diffusion techniques have advanced significantly in recent years; however, they struggle to generate realistic imagery of car crashes due to the scarcity of accident events in most driving datasets. Improving traffic safety requires realistic and controllable accident simulations. To tackle the problem, we propose Ctrl-Crash, a controllable car crash video generation model that conditions on signals such as bounding boxes, crash types, and an initial image frame. Our approach enables counterfactual scenario generation where minor variations in input can lead to dramatically different crash outcomes. To support fine-grained control at inference time, we leverage classifier-free guidance with independently tunable scales for each conditioning signal. Ctrl-Crash achieves state-of-the-art performance across quantitative video quality metrics (e.g., FVD and JEDi) and qualitative measurements based on a human-evaluation of physical realism and video quality compared to prior diffusion-based methods.
Authors:Siwei Meng, Yawei Luo, Ping Liu
Abstract:
Recent advances in static 3D generation have intensified the demand for physically consistent dynamic 3D content. However, existing video generation models, including diffusion-based methods, often prioritize visual realism while neglecting physical plausibility, resulting in implausible object dynamics. Prior approaches for physics-aware dynamic generation typically rely on large-scale annotated datasets or extensive model fine-tuning, which imposes significant computational and data collection burdens and limits scalability across scenarios. To address these challenges, we present MAGIC, a training-free framework for single-image physical property inference and dynamic generation, integrating pretrained image-to-video diffusion models with iterative LLM-based reasoning. Our framework generates motion-rich videos from a static image and closes the visual-to-physical gap through a confidence-driven LLM feedback loop that adaptively steers the diffusion model toward physics-relevant motion. To translate visual dynamics into controllable physical behavior, we further introduce a differentiable MPM simulator operating directly on 3D Gaussians reconstructed from the single image, enabling physically grounded, simulation-ready outputs without any supervision or model tuning. Experiments show that MAGIC outperforms existing physics-aware generative methods in inference accuracy and achieves greater temporal coherence than state-of-the-art video diffusion models.
Authors:Katharina Winter, Abhishek Vivekanandan, Rupert Polley, Yinzhe Shen, Christian Schlauch, Mohamed-Khalil Bouzidi, Bojan Derajic, Natalie Grabowsky, Annajoyce Mariani, Dennis Rochau, Giovanni Lucente, Harsh Yadav, Firas Mualla, Adam Molin, Sebastian Bernhard, Christian Wirth, Ãmer Åahin TaÅ, Nadja Klein, Fabian B. Flohr, Hanno Gottschalk
Abstract:
Generative AI (GenAI) is rapidly advancing the field of Autonomous Driving (AD), extending beyond traditional applications in text, image, and video generation. We explore how generative models can enhance automotive tasks, such as static map creation, dynamic scenario generation, trajectory forecasting, and vehicle motion planning. By examining multiple generative approaches ranging from Variational Autoencoder (VAEs) over Generative Adversarial Networks (GANs) and Invertible Neural Networks (INNs) to Generative Transformers (GTs) and Diffusion Models (DMs), we highlight and compare their capabilities and limitations for AD-specific applications. Additionally, we discuss hybrid methods integrating conventional techniques with generative approaches, and emphasize their improved adaptability and robustness. We also identify relevant datasets and outline open research questions to guide future developments in GenAI. Finally, we discuss three core challenges: safety, interpretability, and realtime capabilities, and present recommendations for image generation, dynamic scenario generation, and planning.
Authors:Ozgur Kara, Krishna Kumar Singh, Feng Liu, Duygu Ceylan, James M. Rehg, Tobias Hinz
Abstract:
Current diffusion-based text-to-video methods are limited to producing short video clips of a single shot and lack the capability to generate multi-shot videos with discrete transitions where the same character performs distinct activities across the same or different backgrounds. To address this limitation we propose a framework that includes a dataset collection pipeline and architectural extensions to video diffusion models to enable text-to-multi-shot video generation. Our approach enables generation of multi-shot videos as a single video with full attention across all frames of all shots, ensuring character and background consistency, and allows users to control the number, duration, and content of shots through shot-specific conditioning. This is achieved by incorporating a transition token into the text-to-video model to control at which frames a new shot begins and a local attention masking strategy which controls the transition token's effect and allows shot-specific prompting. To obtain training data we propose a novel data collection pipeline to construct a multi-shot video dataset from existing single-shot video datasets. Extensive experiments demonstrate that fine-tuning a pre-trained text-to-video model for a few thousand iterations is enough for the model to subsequently be able to generate multi-shot videos with shot-specific control, outperforming the baselines. You can find more details in https://shotadapter.github.io/
Authors:Hao Luan, See-Kiong Ng, Chun Kai Ling
Abstract:
Diffusion models form an important class of generative models today, accounting for much of the state of the art in cutting edge AI research. While numerous extensions beyond image and video generation exist, few of such approaches address the issue of explicit constraints in the samples generated. In this paper, we study the problem of generating paths in a layered graph (a variant of a directed acyclic graph) using discrete diffusion models, while guaranteeing that our generated samples are indeed paths. Our approach utilizes a simple yet effective representation for paths which we call the padded adjacency-list matrix (PALM). In addition, we show how to effectively perform classifier guidance, which helps steer the sampled paths to specific preferred edges without any retraining of the diffusion model. Our preliminary results show that empirically, our method outperforms alternatives which do not explicitly account for path constraints.
Authors:Minghan Li, Chenxi Xie, Yichen Wu, Lei Zhang, Mengyu Wang
Abstract:
Numerous text-to-video (T2V) editing methods have emerged recently, but the lack of a standardized benchmark for fair evaluation has led to inconsistent claims and an inability to assess model sensitivity to hyperparameters. Fine-grained video editing is crucial for enabling precise, object-level modifications while maintaining context and temporal consistency. To address this, we introduce FiVE, a Fine-grained Video Editing Benchmark for evaluating emerging diffusion and rectified flow models. Our benchmark includes 74 real-world videos and 26 generated videos, featuring 6 fine-grained editing types, 420 object-level editing prompt pairs, and their corresponding masks. Additionally, we adapt the latest rectified flow (RF) T2V generation models, Pyramid-Flow and Wan2.1, by introducing FlowEdit, resulting in training-free and inversion-free video editing models Pyramid-Edit and Wan-Edit. We evaluate five diffusion-based and two RF-based editing methods on our FiVE benchmark using 15 metrics, covering background preservation, text-video similarity, temporal consistency, video quality, and runtime. To further enhance object-level evaluation, we introduce FiVE-Acc, a novel metric leveraging Vision-Language Models (VLMs) to assess the success of fine-grained video editing. Experimental results demonstrate that RF-based editing significantly outperforms diffusion-based methods, with Wan-Edit achieving the best overall performance and exhibiting the least sensitivity to hyperparameters. More video demo available on the anonymous website: https://sites.google.com/view/five-benchmark
Authors:Hasan Iqbal, Nazmul Karim, Umar Khalid, Azib Farooq, Zichun Zhong, Chen Chen, Jing Hua
Abstract:
Instruction-guided generative models, especially those using text-to-image (T2I) and text-to-video (T2V) diffusion frameworks, have advanced the field of content editing in recent years. To extend these capabilities to 4D scene, we introduce a progressive sampling framework for 4D editing (PSF-4D) that ensures temporal and multi-view consistency by intuitively controlling the noise initialization during forward diffusion. For temporal coherence, we design a correlated Gaussian noise structure that links frames over time, allowing each frame to depend meaningfully on prior frames. Additionally, to ensure spatial consistency across views, we implement a cross-view noise model, which uses shared and independent noise components to balance commonalities and distinct details among different views. To further enhance spatial coherence, PSF-4D incorporates view-consistent iterative refinement, embedding view-aware information into the denoising process to ensure aligned edits across frames and views. Our approach enables high-quality 4D editing without relying on external models, addressing key challenges in previous methods. Through extensive evaluation on multiple benchmarks and multiple editing aspects (e.g., style transfer, multi-attribute editing, object removal, local editing, etc.), we show the effectiveness of our proposed method. Experimental results demonstrate that our proposed method outperforms state-of-the-art 4D editing methods in diverse benchmarks.
Authors:Unggi Lee, Yeil Jeong, Seungha Kim, Yoorim Son, Gyuri Byun, Hyeoncheol Kim, Cheolil Lim
Abstract:
The rapid advancement of generative AI technology, particularly video generative AI (Video GenAI), has opened new possibilities for K-12 education by enabling the creation of dynamic, customized, and high-quality visual content. Despite its potential, there is limited research on how this emerging technology can be effectively integrated into educational practices. This study explores the perspectives of leading K-12 teachers on the educational applications of Video GenAI, using the TPACK (Technological Pedagogical Content Knowledge) and TAM (Technology Acceptance Model) frameworks as analytical lenses. Through interviews and hands-on experimentation with video generation tools, the research identifies opportunities for enhancing teaching strategies, fostering student engagement, and supporting authentic task design. It also highlights challenges such as technical limitations, ethical considerations, and the need for institutional support. The findings provide actionable insights into how Video GenAI can transform teaching and learning, offering practical implications for policy, teacher training, and the future development of educational technology.
Authors:Haotong Yang, Qingyuan Zheng, Yunjian Gao, Yongkun Yang, Yangbo He, Zhouchen Lin, Muhan Zhang
Abstract:
With the rapid advancement of text-conditioned Video Generation Models (VGMs), the quality of generated videos has significantly improved, bringing these models closer to functioning as ``*world simulators*'' and making real-world-level video generation more accessible and cost-effective. However, the generated videos often contain factual inaccuracies and lack understanding of fundamental physical laws. While some previous studies have highlighted this issue in limited domains through manual analysis, a comprehensive solution has not yet been established, primarily due to the absence of a generalized, automated approach for modeling and assessing the causal reasoning of these models across diverse scenarios. To address this gap, we propose VACT: an **automated** framework for modeling, evaluating, and measuring the causal understanding of VGMs in real-world scenarios. By combining causal analysis techniques with a carefully designed large language model assistant, our system can assess the causal behavior of models in various contexts without human annotation, which offers strong generalization and scalability. Additionally, we introduce multi-level causal evaluation metrics to provide a detailed analysis of the causal performance of VGMs. As a demonstration, we use our framework to benchmark several prevailing VGMs, offering insight into their causal reasoning capabilities. Our work lays the foundation for systematically addressing the causal understanding deficiencies in VGMs and contributes to advancing their reliability and real-world applicability.
Authors:Juil Koo, Paul Guerrero, Chun-Hao Paul Huang, Duygu Ceylan, Minhyuk Sung
Abstract:
Generative methods for image and video editing use generative models as priors to perform edits despite incomplete information, such as changing the composition of 3D objects shown in a single image. Recent methods have shown promising composition editing results in the image setting, but in the video setting, editing methods have focused on editing object's appearance and motion, or camera motion, and as a result, methods to edit object composition in videos are still missing. We propose \name as a method for editing 3D object compositions in videos of static scenes with camera motion. Our approach allows editing the 3D position of a 3D object across all frames of a video in a temporally consistent manner. This is achieved by lifting intermediate features of a generative model to a 3D reconstruction that is shared between all frames, editing the reconstruction, and projecting the features on the edited reconstruction back to each frame. To the best of our knowledge, this is the first generative approach to edit object compositions in videos. Our approach is simple and training-free, while outperforming state-of-the-art image editing baselines.
Authors:Zhao Wang, Hao Wen, Lingting Zhu, Chenming Shang, Yujiu Yang, Qi Dou
Abstract:
Character video generation is a significant real-world application focused on producing high-quality videos featuring specific characters. Recent advancements have introduced various control signals to animate static characters, successfully enhancing control over the generation process. However, these methods often lack flexibility, limiting their applicability and making it challenging for users to synthesize a source character into a desired target scene. To address this issue, we propose a novel framework, AnyCharV, that flexibly generates character videos using arbitrary source characters and target scenes, guided by pose information. Our approach involves a two-stage training process. In the first stage, we develop a base model capable of integrating the source character with the target scene using pose guidance. The second stage further bootstraps controllable generation through a self-boosting mechanism, where we use the generated video in the first stage and replace the fine mask with the coarse one, enabling training outcomes with better preservation of character details. Extensive experimental results demonstrate the superiority of our method compared with previous state-of-the-art methods.
Authors:Kiwhan Song, Boyuan Chen, Max Simchowitz, Yilun Du, Russ Tedrake, Vincent Sitzmann
Abstract:
Classifier-free guidance (CFG) is a key technique for improving conditional generation in diffusion models, enabling more accurate control while enhancing sample quality. It is natural to extend this technique to video diffusion, which generates video conditioned on a variable number of context frames, collectively referred to as history. However, we find two key challenges to guiding with variable-length history: architectures that only support fixed-size conditioning, and the empirical observation that CFG-style history dropout performs poorly. To address this, we propose the Diffusion Forcing Transformer (DFoT), a video diffusion architecture and theoretically grounded training objective that jointly enable conditioning on a flexible number of history frames. We then introduce History Guidance, a family of guidance methods uniquely enabled by DFoT. We show that its simplest form, vanilla history guidance, already significantly improves video generation quality and temporal consistency. A more advanced method, history guidance across time and frequency further enhances motion dynamics, enables compositional generalization to out-of-distribution history, and can stably roll out extremely long videos. Project website: https://boyuan.space/history-guidance
Authors:Alec Helbling, Tuna Han Salih Meral, Ben Hoover, Pinar Yanardag, Duen Horng Chau
Abstract:
Do the rich representations of multi-modal diffusion transformers (DiTs) exhibit unique properties that enhance their interpretability? We introduce ConceptAttention, a novel method that leverages the expressive power of DiT attention layers to generate high-quality saliency maps that precisely locate textual concepts within images. Without requiring additional training, ConceptAttention repurposes the parameters of DiT attention layers to produce highly contextualized concept embeddings, contributing the major discovery that performing linear projections in the output space of DiT attention layers yields significantly sharper saliency maps compared to commonly used cross-attention maps. ConceptAttention even achieves state-of-the-art performance on zero-shot image segmentation benchmarks, outperforming 15 other zero-shot interpretability methods on the ImageNet-Segmentation dataset. ConceptAttention works for popular image models and even seamlessly generalizes to video generation. Our work contributes the first evidence that the representations of multi-modal DiTs are highly transferable to vision tasks like segmentation.
Authors:Mohammad Nadeem, Shahab Saquib Sohail, Erik Cambria, Björn W. Schuller, Amir Hussain
Abstract:
The advent of text-to-video generation models has revolutionized content creation as it produces high-quality videos from textual prompts. However, concerns regarding inherent biases in such models have prompted scrutiny, particularly regarding gender representation. Our study investigates the presence of gender bias in OpenAI's Sora, a state-of-the-art text-to-video generation model. We uncover significant evidence of bias by analyzing the generated videos from a diverse set of gender-neutral and stereotypical prompts. The results indicate that Sora disproportionately associates specific genders with stereotypical behaviors and professions, which reflects societal prejudices embedded in its training data.
Authors:Chun-Hao Paul Huang, Niloy Mitra, Hyeonho Jeong, Jae Shin Yoon, Duygu Ceylan
Abstract:
Emergent capabilities of image generators have led to many impactful zero- or few-shot applications. Inspired by this success, we investigate whether video generators similarly exhibit 3D-awareness. Using structure-from-motion as a 3D-aware task, we test if intermediate features of a video generator - OpenSora in our case - can support camera pose estimation. Surprisingly, at first, we only find a weak correlation between the two tasks. Deeper investigation reveals that although the video generator produces plausible video frames, the frames themselves are not truly 3D-consistent. Instead, we propose to jointly train for the two tasks, using photometric generation and 3D aware errors. Specifically, we find that SoTA video generation and camera pose estimation (i.e.,DUSt3R [79]) networks share common structures, and propose an architecture that unifies the two. The proposed unified model, named \nameMethod, produces camera pose estimates with competitive quality while producing 3D-consistent videos. In summary, we propose the first unified video generator that is 3D-consistent, generates realistic video frames, and can potentially be repurposed for other 3D-aware tasks.
Authors:Zhilong Zhang, Ruifeng Chen, Junyin Ye, Yihao Sun, Pengyuan Wang, Jingcheng Pang, Kaiyuan Li, Tianshuo Liu, Haoxin Lin, Yang Yu, Zhi-Hua Zhou
Abstract:
World models play a crucial role in decision-making within embodied environments, enabling cost-free explorations that would otherwise be expensive in the real world. To facilitate effective decision-making, world models must be equipped with strong generalizability to support faithful imagination in out-of-distribution (OOD) regions and provide reliable uncertainty estimation to assess the credibility of the simulated experiences, both of which present significant challenges for prior scalable approaches. This paper introduces WHALE, a framework for learning generalizable world models, consisting of two key techniques: behavior-conditioning and retracing-rollout. Behavior-conditioning addresses the policy distribution shift, one of the primary sources of the world model generalization error, while retracing-rollout enables efficient uncertainty estimation without the necessity of model ensembles. These techniques are universal and can be combined with any neural network architecture for world model learning. Incorporating these two techniques, we present Whale-ST, a scalable spatial-temporal transformer-based world model with enhanced generalizability. We demonstrate the superiority of Whale-ST in simulation tasks by evaluating both value estimation accuracy and video generation fidelity. Additionally, we examine the effectiveness of our uncertainty estimation technique, which enhances model-based policy optimization in fully offline scenarios. Furthermore, we propose Whale-X, a 414M parameter world model trained on 970K trajectories from Open X-Embodiment datasets. We show that Whale-X exhibits promising scalability and strong generalizability in real-world manipulation scenarios using minimal demonstrations.
Authors:Wenhao Wang, Yi Yang
Abstract:
Video generation models are revolutionizing content creation, with image-to-video models drawing increasing attention due to their enhanced controllability, visual consistency, and practical applications. However, despite their popularity, these models rely on user-provided text and image prompts, and there is currently no dedicated dataset for studying these prompts. In this paper, we introduce TIP-I2V, the first large-scale dataset of over 1.70 million unique user-provided Text and Image Prompts specifically for Image-to-Video generation. Additionally, we provide the corresponding generated videos from five state-of-the-art image-to-video models. We begin by outlining the time-consuming and costly process of curating this large-scale dataset. Next, we compare TIP-I2V to two popular prompt datasets, VidProM (text-to-video) and DiffusionDB (text-to-image), highlighting differences in both basic and semantic information. This dataset enables advancements in image-to-video research. For instance, to develop better models, researchers can use the prompts in TIP-I2V to analyze user preferences and evaluate the multi-dimensional performance of their trained models; and to enhance model safety, they may focus on addressing the misinformation issue caused by image-to-video models. The new research inspired by TIP-I2V and the differences with existing datasets emphasize the importance of a specialized image-to-video prompt dataset. The project is available at https://tip-i2v.github.io.
Authors:Jingzhi Bao, Xueting Li, Ming-Hsuan Yang
Abstract:
3D meshes are widely used in computer vision and graphics for their efficiency in animation and minimal memory use, playing a crucial role in movies, games, AR, and VR. However, creating temporally consistent and realistic textures for mesh sequences remains labor-intensive for professional artists. On the other hand, while video diffusion models excel at text-driven video generation, they often lack 3D geometry awareness and struggle with achieving multi-view consistent texturing for 3D meshes. In this work, we present Tex4D, a zero-shot approach that integrates inherent 3D geometry knowledge from mesh sequences with the expressiveness of video diffusion models to produce multi-view and temporally consistent 4D textures. Given an untextured mesh sequence and a text prompt as inputs, our method enhances multi-view consistency by synchronizing the diffusion process across different views through latent aggregation in the UV space. To ensure temporal consistency, we leverage prior knowledge from a conditional video generation model for texture synthesis. However, straightforwardly combining the video diffusion model and the UV texture aggregation leads to blurry results. We analyze the underlying causes and propose a simple yet effective modification to the DDIM sampling process to address this issue. Additionally, we introduce a reference latent texture to strengthen the correlation between frames during the denoising process. To the best of our knowledge, Tex4D is the first method specifically designed for 4D scene texturing. Extensive experiments demonstrate its superiority in producing multi-view and multi-frame consistent videos based on untextured mesh sequences.
Authors:Soon Yau Cheong, Duygu Ceylan, Armin Mustafa, Andrew Gilbert, Chun-Hao Paul Huang
Abstract:
Recent advancements in diffusion models have significantly enhanced the quality of video generation. However, fine-grained control over camera pose remains a challenge. While U-Net-based models have shown promising results for camera control, transformer-based diffusion models (DiT)-the preferred architecture for large-scale video generation - suffer from severe degradation in camera motion accuracy. In this paper, we investigate the underlying causes of this issue and propose solutions tailored to DiT architectures. Our study reveals that camera control performance depends heavily on the choice of conditioning methods rather than camera pose representations that is commonly believed. To address the persistent motion degradation in DiT, we introduce Camera Motion Guidance (CMG), based on classifier-free guidance, which boosts camera control by over 400%. Additionally, we present a sparse camera control pipeline, significantly simplifying the process of specifying camera poses for long videos. Our method universally applies to both U-Net and DiT models, offering improved camera control for video generation tasks.
Authors:Abhijay Ghildyal, Yuanhan Chen, Saman Zadtootaghaj, Nabajeet Barman, Alan C. Bovik
Abstract:
The advent of AI has influenced many aspects of human life, from self-driving cars and intelligent chatbots to text-based image and video generation models capable of creating realistic images and videos based on user prompts (text-to-image, image-to-image, and image-to-video). AI-based methods for image and video super resolution, video frame interpolation, denoising, and compression have already gathered significant attention and interest in the industry and some solutions are already being implemented in real-world products and services. However, to achieve widespread integration and acceptance, AI-generated and enhanced content must be visually accurate, adhere to intended use, and maintain high visual quality to avoid degrading the end user's quality of experience (QoE).
One way to monitor and control the visual "quality" of AI-generated and -enhanced content is by deploying Image Quality Assessment (IQA) and Video Quality Assessment (VQA) models. However, most existing IQA and VQA models measure visual fidelity in terms of "reconstruction" quality against a pristine reference content and were not designed to assess the quality of "generative" artifacts. To address this, newer metrics and models have recently been proposed, but their performance evaluation and overall efficacy have been limited by datasets that were too small or otherwise lack representative content and/or distortion capacity; and by performance measures that can accurately report the success of an IQA/VQA model for "GenAI". This paper examines the current shortcomings and possibilities presented by AI-generated and enhanced image and video content, with a particular focus on end-user perceived quality. Finally, we discuss open questions and make recommendations for future work on the "GenAI" quality assessment problems, towards further progressing on this interesting and relevant field of research.
Authors:Jaekyeong Lee, Geonung Kim, Sunghyun Cho
Abstract:
With the recent growth of video-based Social Network Service (SNS) platforms, the demand for video editing among common users has increased. However, video editing can be challenging due to the temporally-varying factors such as camera movement and moving objects. While modern atlas-based video editing methods have addressed these issues, they often fail to edit videos including complex motion or multiple moving objects, and demand excessive computational cost, even for very simple edits. In this paper, we propose a novel region-of-interest (ROI)-based video editing framework: ROI-based Neural Atlas (RNA). Unlike prior work, RNA allows users to specify editing regions, simplifying the editing process by removing the need for foreground separation and atlas modeling for foreground objects. However, this simplification presents a unique challenge: acquiring a mask that effectively handles occlusions in the edited area caused by moving objects, without relying on an additional segmentation model. To tackle this, we propose a novel mask refinement approach designed for this specific challenge. Moreover, we introduce a soft neural atlas model for video reconstruction to ensure high-quality editing results. Extensive experiments show that RNA offers a more practical and efficient editing solution, applicable to a wider range of videos with superior quality compared to prior methods.
Authors:Mingzhen Sun, Weining Wang, Xinxin Zhu, Jing Liu
Abstract:
Since videos record objects moving coherently, adjacent video frames have commonness (similar object appearances) and uniqueness (slightly changed postures). To prevent redundant modeling of common video signals, we propose a novel diffusion-based framework, named COMUNI, which decomposes the COMmon and UNIque video signals to enable efficient video generation. Our approach separates the decomposition of video signals from the task of video generation, thus reducing the computation complexity of generative models. In particular, we introduce CU-VAE to decompose video signals and encode them into latent features. To train CU-VAE in a self-supervised manner, we employ a cascading merge module to reconstitute video signals and a time-agnostic video decoder to reconstruct video frames. Then we propose CU-LDM to model latent features for video generation, which adopts two specific diffusion streams to simultaneously model the common and unique latent features. We further utilize additional joint modules for cross modeling of the common and unique latent features, and a novel position embedding method to ensure the content consistency and motion coherence of generated videos. The position embedding method incorporates spatial and temporal absolute position information into the joint modules. Extensive experiments demonstrate the necessity of decomposing common and unique video signals for video generation and the effectiveness and efficiency of our proposed method.
Authors:Anurag Bagchi, Zhipeng Bao, Homanga Bharadhwaj, Yu-Xiong Wang, Pavel Tokmakov, Martial Hebert
Abstract:
What if a video generation model could not only imagine a plausible future, but the correct one, accurately reflecting how the world changes with each action? We address this question by presenting the Egocentric World Model (EgoWM), a simple, architecture-agnostic method that transforms any pretrained video diffusion model into an action-conditioned world model, enabling controllable future prediction. Rather than training from scratch, we repurpose the rich world priors of Internet-scale video models and inject motor commands through lightweight conditioning layers. This allows the model to follow actions faithfully while preserving realism and strong generalization. Our approach scales naturally across embodiments and action spaces, ranging from 3-DoF mobile robots to 25-DoF humanoids, where predicting egocentric joint-angle-driven dynamics is substantially more challenging. The model produces coherent rollouts for both navigation and manipulation tasks, requiring only modest fine-tuning. To evaluate physical correctness independently of visual appearance, we introduce the Structural Consistency Score (SCS), which measures whether stable scene elements evolve consistently with the provided actions. EgoWM improves SCS by up to 80 percent over prior state-of-the-art navigation world models, while achieving up to six times lower inference latency and robust generalization to unseen environments, including navigation inside paintings.
Authors:Zitong Huang, Kaidong Zhang, Yukang Ding, Chao Gao, Rui Ding, Ying Chen, Wangmeng Zuo
Abstract:
Aligning text-to-video diffusion models with human preferences is crucial for generating high-quality videos. Existing Direct Preference Otimization (DPO) methods rely on multi-sample ranking and task-specific critic models, which is inefficient and often yields ambiguous global supervision. To address these limitations, we propose LocalDPO, a novel post-training framework that constructs localized preference pairs from real videos and optimizes alignment at the spatio-temporal region level. We design an automated pipeline to efficiently collect preference pair data that generates preference pairs with a single inference per prompt, eliminating the need for external critic models or manual annotation. Specifically, we treat high-quality real videos as positive samples and generate corresponding negatives by locally corrupting them with random spatio-temporal masks and restoring only the masked regions using the frozen base model. During training, we introduce a region-aware DPO loss that restricts preference learning to corrupted areas for rapid convergence. Experiments on Wan2.1 and CogVideoX demonstrate that LocalDPO consistently improves video fidelity, temporal coherence and human preference scores over other post-training approaches, establishing a more efficient and fine-grained paradigm for video generator alignment.
Authors:Bangya Liu, Xinyu Gong, Zelin Zhao, Ziyang Song, Yulei Lu, Suhui Wu, Jun Zhang, Suman Banerjee, Hao Zhang
Abstract:
Human-object interaction (HOI) video generation has garnered increasing attention due to its promising applications in digital humans, e-commerce, advertising, and robotics imitation learning. However, existing methods face two critical limitations: (1) a lack of effective mechanisms to inject multi-view information of the object into the model, leading to poor cross-view consistency, and (2) heavy reliance on fine-grained hand mesh annotations for modeling interaction occlusions. To address these challenges, we introduce ByteLoom, a Diffusion Transformer (DiT)-based framework that generates realistic HOI videos with geometrically consistent object illustration, using simplified human conditioning and 3D object inputs. We first propose an RCM-cache mechanism that leverages Relative Coordinate Maps (RCM) as a universal representation to maintain object's geometry consistency and precisely control 6-DoF object transformations in the meantime. To compensate HOI dataset scarcity and leverage existing datasets, we further design a training curriculum that enhances model capabilities in a progressive style and relaxes the demand of hand mesh. Extensive experiments demonstrate that our method faithfully preserves human identity and the object's multi-view geometry, while maintaining smooth motion and object manipulation.
Authors:Zixuan Huang, Xiang Li, Zhaoyang Lv, James M. Rehg
Abstract:
Videos are continuous 2D projections of 3D worlds. After training on large video data, will global 3D understanding naturally emerge? We study this by quantifying the 3D understanding of existing Video Foundation Models (VidFMs) pretrained on vast video data. We propose the first model-agnostic framework that measures the 3D awareness of various VidFMs by estimating multiple 3D properties from their features via shallow read-outs. Our study presents meaningful findings regarding the 3D awareness of VidFMs on multiple axes. In particular, we show that state-of-the-art video generation models exhibit a strong understanding of 3D objects and scenes, despite not being trained on any 3D data. Such understanding can even surpass that of large expert models specifically trained for 3D tasks. Our findings, together with the 3D benchmarking of major VidFMs, provide valuable observations for building scalable 3D models.
Authors:Yuanhang Li, Yiren Song, Junzhe Bai, Xinran Liang, Hu Yang, Libiao Jin, Qi Mao
Abstract:
We propose \textbf{IC-Effect}, an instruction-guided, DiT-based framework for few-shot video VFX editing that synthesizes complex effects (\eg flames, particles and cartoon characters) while strictly preserving spatial and temporal consistency. Video VFX editing is highly challenging because injected effects must blend seamlessly with the background, the background must remain entirely unchanged, and effect patterns must be learned efficiently from limited paired data. However, existing video editing models fail to satisfy these requirements. IC-Effect leverages the source video as clean contextual conditions, exploiting the contextual learning capability of DiT models to achieve precise background preservation and natural effect injection. A two-stage training strategy, consisting of general editing adaptation followed by effect-specific learning via Effect-LoRA, ensures strong instruction following and robust effect modeling. To further improve efficiency, we introduce spatiotemporal sparse tokenization, enabling high fidelity with substantially reduced computation. We also release a paired VFX editing dataset spanning $15$ high-quality visual styles. Extensive experiments show that IC-Effect delivers high-quality, controllable, and temporally consistent VFX editing, opening new possibilities for video creation.
Authors:Qi Mao, Hao Cheng, Tinghan Yang, Libiao Jin, Siwei Ma
Abstract:
We present GNVC-VD, the first DiT-based generative neural video compression framework built upon an advanced video generation foundation model, where spatio-temporal latent compression and sequence-level generative refinement are unified within a single codec. Existing perceptual codecs primarily rely on pre-trained image generative priors to restore high-frequency details, but their frame-wise nature lacks temporal modeling and inevitably leads to perceptual flickering. To address this, GNVC-VD introduces a unified flow-matching latent refinement module that leverages a video diffusion transformer to jointly enhance intra- and inter-frame latents through sequence-level denoising, ensuring consistent spatio-temporal details. Instead of denoising from pure Gaussian noise as in video generation, GNVC-VD initializes refinement from decoded spatio-temporal latents and learns a correction term that adapts the diffusion prior to compression-induced degradation. A conditioning adaptor further injects compression-aware cues into intermediate DiT layers, enabling effective artifact removal while maintaining temporal coherence under extreme bitrate constraints. Extensive experiments show that GNVC-VD surpasses both traditional and learned codecs in perceptual quality and significantly reduces the flickering artifacts that persist in prior generative approaches, even below 0.01 bpp, highlighting the promise of integrating video-native generative priors into neural codecs for next-generation perceptual video compression.
Authors:Ruojun Xu, Yu Kai, Xuhua Ren, Jiaxiang Cheng, Bing Ma, Tianxiang Zheng, Qinhlin Lu
Abstract:
Direct Preference Optimization (DPO) has shown promising results in aligning generative outputs with human preferences by distinguishing between chosen and rejected samples. However, a critical limitation of DPO is likelihood displacement, where the probabilities of chosen samples paradoxically decrease during training, undermining the quality of generation. Although this issue has been investigated in autoregressive models, its impact within diffusion-based models remains largely unexplored. This gap leads to suboptimal performance in tasks involving video generation. To address this, we conduct a formal analysis of DPO loss through updating policy within the diffusion framework, which describes how the updating of specific training samples influences the model's predictions on other samples. Using this tool, we identify two main failure modes: (1) Optimization Conflict, which arises from small reward margins between chosen and rejected samples, and (2) Suboptimal Maximization, caused by large reward margins. Informed by these insights, we introduce a novel solution named Policy-Guided DPO (PG-DPO), combining Adaptive Rejection Scaling (ARS) and Implicit Preference Regularization (IPR) to effectively mitigate likelihood displacement. Experiments show that PG-DPO outperforms existing methods in both quantitative metrics and qualitative evaluations, offering a robust solution for improving preference alignment in video generation tasks.
Authors:Tuomas Varanka, Juan Luis Gonzalez, Hyeongwoo Kim, Pablo Garrido, Xu Yao
Abstract:
Existing video deraining methods are often trained on paired datasets, either synthetic, which limits their ability to generalize to real-world rain, or captured by static cameras, which restricts their effectiveness in dynamic scenes with background and camera motion. Furthermore, recent works in fine-tuning diffusion models have shown promising results, but the fine-tuning tends to weaken the generative prior, limiting generalization to unseen cases. In this paper, we introduce the first zero-shot video deraining method for complex dynamic scenes that does not require synthetic data nor model fine-tuning, by leveraging a pretrained text-to-video diffusion model that demonstrates strong generalization capabilities. By inverting an input video into the latent space of diffusion models, its reconstruction process can be intervened and pushed away from the model's concept of rain using negative prompting. At the core of our approach is an attention switching mechanism that we found is crucial for maintaining dynamic backgrounds as well as structural consistency between the input and the derained video, mitigating artifacts introduced by naive negative prompting. Our approach is validated through extensive experiments on real-world rain datasets, demonstrating substantial improvements over prior methods and showcasing robust generalization without the need for supervised training.
Authors:Xiangjun Zhang, Litong Gong, Yinglin Zheng, Yansong Liu, Wentao Jiang, Mingyi Xu, Biao Wang, Tiezheng Ge, Ming Zeng
Abstract:
Most text-to-video(T2V) diffusion models depend on pre-trained text encoders for semantic alignment, yet they often fail to maintain video quality when provided with concise prompts rather than well-designed ones. The primary issue lies in their limited textual semantics understanding. Moreover, these text encoders cannot rephrase prompts online to better align with user intentions, which limits both the scalability and usability of the models, To address these challenges, we introduce RISE-T2V, which uniquely integrates the processes of prompt rephrasing and semantic feature extraction into a single and seamless step instead of two separate steps. RISE-T2V is universal and can be applied to various pre-trained LLMs and video diffusion models(VDMs), significantly enhancing their capabilities for T2V tasks. We propose an innovative module called the Rephrasing Adapter, enabling diffusion models to utilize text hidden states during the next token prediction of the LLM as a condition for video generation. By employing a Rephrasing Adapter, the video generation model can implicitly rephrase basic prompts into more comprehensive representations that better match the user's intent. Furthermore, we leverage the powerful capabilities of LLMs to enable video generation models to accomplish a broader range of T2V tasks. Extensive experiments demonstrate that RISE-T2V is a versatile framework applicable to different video diffusion model architectures, significantly enhancing the ability of T2V models to generate high-quality videos that align with user intent. Visual results are available on the webpage at https://rise-t2v.github.io.
Authors:Jie Du, Xinyu Gong, Qingshan Tan, Wen Li, Yangming Cheng, Weitao Wang, Chenlu Zhan, Suhui Wu, Hao Zhang, Jun Zhang
Abstract:
Recent studies have identified Direct Preference Optimization (DPO) as an efficient and reward-free approach to improving video generation quality. However, existing methods largely follow image-domain paradigms and are mainly developed on small-scale models (approximately 2B parameters), limiting their ability to address the unique challenges of video tasks, such as costly data construction, unstable training, and heavy memory consumption. To overcome these limitations, we introduce a GT-Pair that automatically builds high-quality preference pairs by using real videos as positives and model-generated videos as negatives, eliminating the need for any external annotation. We further present Reg-DPO, which incorporates the SFT loss as a regularization term into the DPO loss to enhance training stability and generation fidelity. Additionally, by combining the FSDP framework with multiple memory optimization techniques, our approach achieves nearly three times higher training capacity than using FSDP alone. Extensive experiments on both I2V and T2V tasks across multiple datasets demonstrate that our method consistently outperforms existing approaches, delivering superior video generation quality.
Authors:Tianrui Zhang, Yichen Liu, Zilin Guo, Yuxin Guo, Jingcheng Ni, Chenjing Ding, Dan Xu, Lewei Lu, Zehuan Wu
Abstract:
Generative models have been widely applied to world modeling for environment simulation and future state prediction. With advancements in autonomous driving, there is a growing demand not only for high-fidelity video generation under various controls, but also for producing diverse and meaningful information such as depth estimation. To address this, we propose CVD-STORM, a cross-view video diffusion model utilizing a spatial-temporal reconstruction Variational Autoencoder (VAE) that generates long-term, multi-view videos with 4D reconstruction capabilities under various control inputs. Our approach first fine-tunes the VAE with an auxiliary 4D reconstruction task, enhancing its ability to encode 3D structures and temporal dynamics. Subsequently, we integrate this VAE into the video diffusion process to significantly improve generation quality. Experimental results demonstrate that our model achieves substantial improvements in both FID and FVD metrics. Additionally, the jointly-trained Gaussian Splatting Decoder effectively reconstructs dynamic scenes, providing valuable geometric information for comprehensive scene understanding.
Authors:Yichen Li, Antonio Torralba
Abstract:
Current video models fail as world model as they lack fine-graiend control. General-purpose household robots require real-time fine motor control to handle delicate tasks and urgent situations. In this work, we introduce fine-grained multimodal actions to capture such precise control. We consider senses of proprioception, kinesthesia, force haptics, and muscle activation. Such multimodal senses naturally enables fine-grained interactions that are difficult to simulate with text-conditioned generative models. To effectively simulate fine-grained multisensory actions, we develop a feature learning paradigm that aligns these modalities while preserving the unique information each modality provides. We further propose a regularization scheme to enhance causality of the action trajectory features in representing intricate interaction dynamics. Experiments show that incorporating multimodal senses improves simulation accuracy and reduces temporal drift. Extensive ablation studies and downstream applications demonstrate the effectiveness and practicality of our work.
Authors:Xinding Zhu, Xinye Yang, Shuyang Zheng, Zhexin Zhang, Fei Gao, Jing Huang, Jiazhou Chen
Abstract:
Sketching is a direct and inexpensive means of visual expression. Though image-based sketching has been well studied, video-based sketch animation generation is still very challenging due to the temporal coherence requirement. In this paper, we propose a novel end-to-end automatic generation approach for vector sketch animation. To solve the flickering issue, we introduce a Differentiable Motion Trajectory (DMT) representation that describes the frame-wise movement of stroke control points using differentiable polynomial-based trajectories. DMT enables global semantic gradient propagation across multiple frames, significantly improving the semantic consistency and temporal coherence, and producing high-framerate output. DMT employs a Bernstein basis to balance the sensitivity of polynomial parameters, thus achieving more stable optimization. Instead of implicit fields, we introduce sparse track points for explicit spatial modeling, which improves efficiency and supports long-duration video processing. Evaluations on DAVIS and LVOS datasets demonstrate the superiority of our approach over SOTA methods. Cross-domain validation on 3D models and text-to-video data confirms the robustness and compatibility of our approach.
Authors:Jan Philipp Schneider, Pratik Singh Bisht, Ilya Chugunov, Andreas Kolb, Michael Moeller, Felix Heide
Abstract:
Learning editable high-resolution scene representations for dynamic scenes is an open problem with applications across the domains from autonomous driving to creative editing - the most successful approaches today make a trade-off between editability and supporting scene complexity: neural atlases represent dynamic scenes as two deforming image layers, foreground and background, which are editable in 2D, but break down when multiple objects occlude and interact. In contrast, scene graph models make use of annotated data such as masks and bounding boxes from autonomous-driving datasets to capture complex 3D spatial relationships, but their implicit volumetric node representations are challenging to edit view-consistently. We propose Neural Atlas Graphs (NAGs), a hybrid high-resolution scene representation, where every graph node is a view-dependent neural atlas, facilitating both 2D appearance editing and 3D ordering and positioning of scene elements. Fit at test-time, NAGs achieve state-of-the-art quantitative results on the Waymo Open Dataset - by 5 dB PSNR increase compared to existing methods - and make environmental editing possible in high resolution and visual quality - creating counterfactual driving scenarios with new backgrounds and edited vehicle appearance. We find that the method also generalizes beyond driving scenes and compares favorably - by more than 7 dB in PSNR - to recent matting and video editing baselines on the DAVIS video dataset with a diverse set of human and animal-centric scenes.
Authors:Jiawei Wang, Haowei Sun, Xintao Yan, Shuo Feng, Jun Gao, Henry X. Liu
Abstract:
Safe and scalable deployment of end-to-end (E2E) autonomous driving requires extensive and diverse data, particularly safety-critical events. Existing data are mostly generated from simulators with a significant sim-to-real gap or collected from on-road testing that is costly and unsafe. This paper presents TeraSim-World, an automated pipeline that synthesizes realistic and geographically diverse safety-critical data for E2E autonomous driving at anywhere in the world. Starting from an arbitrary location, TeraSim-World retrieves real-world maps and traffic demand from geospatial data sources. Then, it simulates agent behaviors from naturalistic driving datasets, and orchestrates diverse adversities to create corner cases. Informed by street views of the same location, it achieves photorealistic, geographically grounded sensor rendering via the frontier video generation model Cosmos-Drive. By bridging agent and sensor simulations, TeraSim-World provides a scalable and critical data synthesis framework for training and evaluation of E2E autonomous driving systems. Codes and videos are available at https://wjiawei.com/terasim-world-web/ .
Authors:Weitao Wang, Zichen Wang, Hongdeng Shen, Yulei Lu, Xirui Fan, Suhui Wu, Jun Zhang, Haoqian Wang, Hao Zhang
Abstract:
With the rapid progress of video generation, demand for customized video editing is surging, where subject swapping constitutes a key component yet remains under-explored. Prevailing swapping approaches either specialize in narrow domains--such as human-body animation or hand-object interaction--or rely on some indirect editing paradigm or ambiguous text prompts that compromise final fidelity. In this paper, we propose DreamSwapV, a mask-guided, subject-agnostic, end-to-end framework that swaps any subject in any video for customization with a user-specified mask and reference image. To inject fine-grained guidance, we introduce multiple conditions and a dedicated condition fusion module that integrates them efficiently. In addition, an adaptive mask strategy is designed to accommodate subjects of varying scales and attributes, further improving interactions between the swapped subject and its surrounding context. Through our elaborate two-phase dataset construction and training scheme, our DreamSwapV outperforms existing methods, as validated by comprehensive experiments on VBench indicators and our first introduced DreamSwapV-Benchmark.
Authors:Xiao Liu, Jiawei Zhang
Abstract:
The rapid advancement of AI-generated video models has created a pressing need for robust and interpretable evaluation frameworks. Existing metrics are limited to producing numerical scores without explanatory comments, resulting in low interpretability and human evaluation alignment. To address those challenges, we introduce AIGVE-MACS, a unified model for AI-Generated Video Evaluation(AIGVE), which can provide not only numerical scores but also multi-aspect language comment feedback in evaluating these generated videos. Central to our approach is AIGVE-BENCH 2, a large-scale benchmark comprising 2,500 AI-generated videos and 22,500 human-annotated detailed comments and numerical scores across nine critical evaluation aspects. Leveraging AIGVE-BENCH 2, AIGVE-MACS incorporates recent Vision-Language Models with a novel token-wise weighted loss and a dynamic frame sampling strategy to better align with human evaluators. Comprehensive experiments across supervised and zero-shot benchmarks demonstrate that AIGVE-MACS achieves state-of-the-art performance in both scoring correlation and comment quality, significantly outperforming prior baselines including GPT-4o and VideoScore. In addition, we further showcase a multi-agent refinement framework where feedback from AIGVE-MACS drives iterative improvements in video generation, leading to 53.5% quality enhancement. This work establishes a new paradigm for comprehensive, human-aligned evaluation of AI-generated videos. We release the AIGVE-BENCH 2 and AIGVE-MACS at https://huggingface.co/xiaoliux/AIGVE-MACS.
Authors:Zeyi Liu, Shuang Li, Eric Cousineau, Siyuan Feng, Benjamin Burchfiel, Shuran Song
Abstract:
Understanding and predicting the dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of videos by supervising the model with cross-view pointmap alignment during training. This geometric supervision enables the model to learn a shared 3D representation of the scene, allowing it to predict future video sequences from novel viewpoints based solely on the given RGB-D observations, without requiring camera poses as inputs. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, supporting robust robot manipulation and generalization to novel camera viewpoints.
Authors:Yu Lu, Yi Yang
Abstract:
Recent advances in video generation models have enabled high-quality short video generation from text prompts. However, extending these models to longer videos remains a significant challenge, primarily due to degraded temporal consistency and visual fidelity. Our preliminary observations show that naively applying short-video generation models to longer sequences leads to noticeable quality degradation. Further analysis identifies a systematic trend where high-frequency components become increasingly distorted as video length grows, an issue we term high-frequency distortion. To address this, we propose FreeLong, a training-free framework designed to balance the frequency distribution of long video features during the denoising process. FreeLong achieves this by blending global low-frequency features, which capture holistic semantics across the full video, with local high-frequency features extracted from short temporal windows to preserve fine details. Building on this, FreeLong++ extends FreeLong dual-branch design into a multi-branch architecture with multiple attention branches, each operating at a distinct temporal scale. By arranging multiple window sizes from global to local, FreeLong++ enables multi-band frequency fusion from low to high frequencies, ensuring both semantic continuity and fine-grained motion dynamics across longer video sequences. Without any additional training, FreeLong++ can be plugged into existing video generation models (e.g. Wan2.1 and LTX-Video) to produce longer videos with substantially improved temporal consistency and visual fidelity. We demonstrate that our approach outperforms previous methods on longer video generation tasks (e.g. 4x and 8x of native length). It also supports coherent multi-prompt video generation with smooth scene transitions and enables controllable video generation using long depth or pose sequences.
Authors:Bowen Xue, Giuseppe Claudio Guarnera, Shuang Zhao, Zahra Montazeri
Abstract:
Recent advances in diffusion-based video generation have yielded unprecedented quality in visual content and semantic coherence. However, current approaches predominantly rely on statistical learning from vast datasets without explicitly modeling the underlying physics of motion, resulting in subtle yet perceptible non-physical artifacts that diminish the realism of generated videos. This paper introduces a physics-informed frequency domain approach to enhance the physical plausibility of generated videos. We first conduct a systematic analysis of the frequency-domain characteristics of diverse physical motions (translation, rotation, scaling), revealing that each motion type exhibits distinctive and identifiable spectral signatures. Building on this theoretical foundation, we propose two complementary components: (1) a physical motion loss function that quantifies and optimizes the conformity of generated videos to ideal frequency-domain motion patterns, and (2) a frequency domain enhancement module that progressively learns to adjust video features to conform to physical motion constraints while preserving original network functionality through a zero-initialization strategy. Experiments across multiple video diffusion architectures demonstrate that our approach significantly enhances motion quality and physical plausibility without compromising visual quality or semantic alignment. Our frequency-domain physical motion framework generalizes effectively across different video generation architectures, offering a principled approach to incorporating physical constraints into deep learning-based video synthesis pipelines. This work seeks to establish connections between data-driven models and physics-based motion models.
Authors:Yuan Zhang, Jiacheng Jiang, Guoqing Ma, Zhiying Lu, Haoyang Huang, Jianlong Yuan, Nan Duan
Abstract:
In this work, we present GPDiT, a Generative Pre-trained Autoregressive Diffusion Transformer that unifies the strengths of diffusion and autoregressive modeling for long-range video synthesis, within a continuous latent space. Instead of predicting discrete tokens, GPDiT autoregressively predicts future latent frames using a diffusion loss, enabling natural modeling of motion dynamics and semantic consistency across frames. This continuous autoregressive framework not only enhances generation quality but also endows the model with representation capabilities. Additionally, we introduce a lightweight causal attention variant and a parameter-free rotation-based time-conditioning mechanism, improving both the training and inference efficiency. Extensive experiments demonstrate that GPDiT achieves strong performance in video generation quality, video representation ability, and few-shot learning tasks, highlighting its potential as an effective framework for video modeling in continuous space.
Authors:Tasmiah Haque, Md. Asif Bin Syed, Byungheon Jeong, Xue Bai, Sumit Mohan, Somdyuti Paul, Imtiaz Ahmed, Srinjoy Das
Abstract:
Motion Transfer is a technique that synthesizes videos by transferring motion dynamics from a driving video to a source image. In this work we propose a deep learning-based framework to enable real-time video motion transfer which is critical for enabling bandwidth-efficient applications such as video conferencing, remote health monitoring, virtual reality interaction, and vision-based anomaly detection. This is done using keypoints which serve as semantically meaningful, compact representations of motion across time. To enable bandwidth savings during video transmission we perform forecasting of keypoints using two generative time series models VRNN and GRU-NF. The predicted keypoints are transformed into realistic video frames using an optical flow-based module paired with a generator network, thereby enabling efficient, low-frame-rate video transmission. Based on the application this allows the framework to either generate a deterministic future sequence or sample a diverse set of plausible futures. Experimental results demonstrate that VRNN achieves the best point-forecast fidelity (lowest MAE) in applications requiring stable and accurate multi-step forecasting and is particularly competitive in higher-uncertainty, multi-modal settings. This is achieved by introducing recurrently conditioned stochastic latent variables that carry past contexts to capture uncertainty and temporal variation. On the other hand the GRU-NF model enables richer diversity of generated videos while maintaining high visual quality. This is realized by learning an invertible, exact-likelihood mapping between the keypoints and their latent representations which supports rich and controllable sampling of diverse yet coherent keypoint sequences. Our work lays the foundation for next-generation AI systems that require real-time, bandwidth-efficient, and semantically controllable video generation.
Authors:Yuxiang Bao, Huijie Liu, Xun Gao, Huan Fu, Guoliang Kang
Abstract:
Naive DDIM inversion process usually suffers from a trajectory deviation issue, i.e., the latent trajectory during reconstruction deviates from the one during inversion. To alleviate this issue, previous methods either learn to mitigate the deviation or design cumbersome compensation strategy to reduce the mismatch error, exhibiting substantial time and computation cost. In this work, we present a nearly free-lunch method (named FreeInv) to address the issue more effectively and efficiently. In FreeInv, we randomly transform the latent representation and keep the transformation the same between the corresponding inversion and reconstruction time-step. It is motivated from a statistical perspective that an ensemble of DDIM inversion processes for multiple trajectories yields a smaller trajectory mismatch error on expectation. Moreover, through theoretical analysis and empirical study, we show that FreeInv performs an efficient ensemble of multiple trajectories. FreeInv can be freely integrated into existing inversion-based image and video editing techniques. Especially for inverting video sequences, it brings more significant fidelity and efficiency improvements. Comprehensive quantitative and qualitative evaluation on PIE benchmark and DAVIS dataset shows that FreeInv remarkably outperforms conventional DDIM inversion, and is competitive among previous state-of-the-art inversion methods, with superior computation efficiency.
Authors:Dingcheng Zhen, Shunshun Yin, Shiyang Qin, Hou Yi, Ziwei Zhang, Siyuan Liu, Gan Qi, Ming Tao
Abstract:
In this work, we introduce the first autoregressive framework for real-time, audio-driven portrait animation, a.k.a, talking head. Beyond the challenge of lengthy animation times, a critical challenge in realistic talking head generation lies in preserving the natural movement of diverse body parts. To this end, we propose Teller, the first streaming audio-driven protrait animation framework with autoregressive motion generation. Specifically, Teller first decomposes facial and body detail animation into two components: Facial Motion Latent Generation (FMLG) based on an autoregressive transfromer, and movement authenticity refinement using a Efficient Temporal Module (ETM).Concretely, FMLG employs a Residual VQ model to map the facial motion latent from the implicit keypoint-based model into discrete motion tokens, which are then temporally sliced with audio embeddings. This enables the AR tranformer to learn real-time, stream-based mappings from audio to motion. Furthermore, Teller incorporate ETM to capture finer motion details. This module ensures the physical consistency of body parts and accessories, such as neck muscles and earrings, improving the realism of these movements. Teller is designed to be efficient, surpassing the inference speed of diffusion-based models (Hallo 20.93s vs. Teller 0.92s for one second video generation), and achieves a real-time streaming performance of up to 25 FPS. Extensive experiments demonstrate that our method outperforms recent audio-driven portrait animation models, especially in small movements, as validated by human evaluations with a significant margin in quality and realism.
Authors:Bhishma Dedhia, David Bourgin, Krishna Kumar Singh, Yuheng Li, Yan Kang, Zhan Xu, Niraj K. Jha, Yuchen Liu
Abstract:
Diffusion Transformers (DiTs) can generate short photorealistic videos, yet directly training and sampling longer videos with full attention across the video remains computationally challenging. Alternative methods break long videos down into sequential generation of short video segments, requiring multiple sampling chain iterations and specialized consistency modules. To overcome these challenges, we introduce a new paradigm called Video Interface Networks (VINs), which augment DiTs with an abstraction module to enable parallel inference of video chunks. At each diffusion step, VINs encode global semantics from the noisy input of local chunks and the encoded representations, in turn, guide DiTs in denoising chunks in parallel. The coupling of VIN and DiT is learned end-to-end on the denoising objective. Further, the VIN architecture maintains fixed-size encoding tokens that encode the input via a single cross-attention step. Disentangling the encoding tokens from the input thus enables VIN to scale to long videos and learn essential semantics. Experiments on VBench demonstrate that VINs surpass existing chunk-based methods in preserving background consistency and subject coherence. We then show via an optical flow analysis that our approach attains state-of-the-art motion smoothness while using 25-40% fewer FLOPs than full generation. Finally, human raters favorably assessed the overall video quality and temporal consistency of our method in a user study.
Authors:Xinhao Xiang, Xiao Liu, Zizhong Li, Zhuosheng Liu, Jiawei Zhang
Abstract:
The rapid advancement in AI-generated video synthesis has led to a growth demand for standardized and effective evaluation metrics. Existing metrics lack a unified framework for systematically categorizing methodologies, limiting a holistic understanding of the evaluation landscape. Additionally, fragmented implementations and the absence of standardized interfaces lead to redundant processing overhead. Furthermore, many prior approaches are constrained by dataset-specific dependencies, limiting their applicability across diverse video domains. To address these challenges, we introduce AIGVE-Tool (AI-Generated Video Evaluation Toolkit), a unified framework that provides a structured and extensible evaluation pipeline for a comprehensive AI-generated video evaluation. Organized within a novel five-category taxonomy, AIGVE-Tool integrates multiple evaluation methodologies while allowing flexible customization through a modular configuration system. Additionally, we propose AIGVE-Bench, a large-scale benchmark dataset created with five SOTA video generation models based on hand-crafted instructions and prompts. This dataset systematically evaluates various video generation models across nine critical quality dimensions. Extensive experiments demonstrate the effectiveness of AIGVE-Tool in providing standardized and reliable evaluation results, highlighting specific strengths and limitations of current models and facilitating the advancements of next-generation AI-generated video techniques.
Authors:Lingzhou Mu, Baiji Liu, Ruonan Zhang, Guiming Mo, Jiawei Jin, Kai Zhang, Haozhi Huang
Abstract:
Diffusion-based video generation techniques have significantly improved zero-shot talking-head avatar generation, enhancing the naturalness of both head motion and facial expressions. However, existing methods suffer from poor controllability, making them less applicable to real-world scenarios such as filmmaking and live streaming for e-commerce. To address this limitation, we propose FLAP, a novel approach that integrates explicit 3D intermediate parameters (head poses and facial expressions) into the diffusion model for end-to-end generation of realistic portrait videos. The proposed architecture allows the model to generate vivid portrait videos from audio while simultaneously incorporating additional control signals, such as head rotation angles and eye-blinking frequency. Furthermore, the decoupling of head pose and facial expression allows for independent control of each, offering precise manipulation of both the avatar's pose and facial expressions. We also demonstrate its flexibility in integrating with existing 3D head generation methods, bridging the gap between 3D model-based approaches and end-to-end diffusion techniques. Extensive experiments show that our method outperforms recent audio-driven portrait video models in both naturalness and controllability.
Authors:Lingjun Zhao, Mingyang Xie, Paola Cascante-Bonilla, Hal Daumé, Kwonjoon Lee
Abstract:
Large Vision-Language Models often generate hallucinated content that is not grounded in its visual inputs. While prior work focuses on mitigating hallucinations, we instead explore leveraging hallucination correction as a training objective to improve video-language alignment. We introduce HACA, a self-training framework learning to correct hallucinations in descriptions that do not align with the video content. By identifying and correcting inconsistencies, HACA enhances the model's ability to align video and textual representations for spatio-temporal reasoning. Our experimental results show consistent gains in video-caption binding and text-to-video retrieval tasks, demonstrating that hallucination correction-inspired tasks serve as an effective strategy for improving vision and language alignment.
Authors:Shutong Ding, Yimiao Zhou, Ke Hu, Xi Yao, Junchi Yan, Xiaoying Tang, Ye Shi
Abstract:
Diffusion models have achieved remarkable success in generative tasks such as image and video synthesis, and in control domains like robotics, owing to their strong generalization capabilities and proficiency in fitting complex multimodal distributions. However, their full potential in solving Continuous Constrained Optimization problems remains largely underexplored. Our work commences by investigating a two-dimensional constrained quadratic optimization problem as an illustrative example to explore the inherent challenges and issues when applying diffusion models to such optimization tasks and providing theoretical analyses for these observations. To address the identified gaps and harness diffusion models for Continuous Constrained Optimization, we build upon this analysis to propose a novel diffusion-based framework for optimization problems called DiOpt. This framework operates in two distinct phases: an initial warm-start phase, implemented via supervised learning, followed by a bootstrapping phase. This dual-phase architecture is designed to iteratively refine solutions, thereby improving the objective function while rigorously satisfying problem constraints. Finally, multiple candidate solutions are sampled, and the optimal one is selected through a screening process. We present extensive experiments detailing the training dynamics of DiOpt, its performance across a diverse set of Continuous Constrained Optimization problems, and an analysis of the impact of DiOpt's various hyperparameters.
Authors:Tica Lin, Ruxun Xiang, Gardenia Liu, Divyanshu Tiwari, Meng-Chia Chiang, Chenjiayi Ye, Hanspeter Pfister, Chen Zhu-Tian
Abstract:
Video storytelling is essential for sports performance analysis and fan engagement, enabling sports professionals and fans to effectively communicate and interpret the spatial and temporal dynamics of gameplay. Traditional methods rely on manual annotation and verbal explanations, placing significant demands on creators for video editing skills and on viewers for cognitive focus. However, these approaches are time-consuming and often struggle to accommodate individual needs. SportsBuddy addresses this gap with an intuitive, interactive video authoring tool. It combines player tracking, embedded interaction design, and timeline visualizations to seamlessly integrate narratives and visual cues within game contexts. This empowers users to effortlessly create context-driven video stories. Since its launch, over 150 sports users, including coaches, athletes, content creators, parents and fans, have utilized SportsBuddy to produce compelling game highlights for diverse use cases. User feedback highlights its accessibility and ease of use, making video storytelling and insight communication more attainable for diverse audiences. Case studies with collegiate teams and sports creators further demonstrate SportsBuddy's impact on enhancing coaching communication, game analysis, and fan engagement.
Authors:Danah Yatim, Rafail Fridman, Omer Bar-Tal, Tali Dekel
Abstract:
We present a method for augmenting real-world videos with newly generated dynamic content. Given an input video and a simple user-provided text instruction describing the desired content, our method synthesizes dynamic objects or complex scene effects that naturally interact with the existing scene over time. The position, appearance, and motion of the new content are seamlessly integrated into the original footage while accounting for camera motion, occlusions, and interactions with other dynamic objects in the scene, resulting in a cohesive and realistic output video. We achieve this via a zero-shot, training-free framework that harnesses a pre-trained text-to-video diffusion transformer to synthesize the new content and a pre-trained Vision Language Model to envision the augmented scene in detail. Specifically, we introduce a novel inference-based method that manipulates features within the attention mechanism, enabling accurate localization and seamless integration of the new content while preserving the integrity of the original scene. Our method is fully automated, requiring only a simple user instruction. We demonstrate its effectiveness on a wide range of edits applied to real-world videos, encompassing diverse objects and scenarios involving both camera and object motion.
Authors:Lianrui Mu, Xingze Zhou, Wenjie Zheng, Jiangnan Ye, Haoji Hu
Abstract:
Creating realistic pose-guided image-to-video character animations while preserving facial identity remains challenging, especially in complex and dynamic scenarios such as dancing, where precise identity consistency is crucial. Existing methods frequently encounter difficulties maintaining facial coherence due to misalignments between facial landmarks extracted from driving videos that provide head pose and expression cues and the facial geometry of the reference images. To address this limitation, we introduce the Facial Landmarks Transformation (FLT) method, which leverages a 3D Morphable Model to address this limitation. FLT converts 2D landmarks into a 3D face model, adjusts the 3D face model to align with the reference identity, and then transforms them back into 2D landmarks to guide the image-to-video generation process. This approach ensures accurate alignment with the reference facial geometry, enhancing the consistency between generated videos and reference images. Experimental results demonstrate that FLT effectively preserves facial identity, significantly improving pose-guided character animation models.
Authors:Rui Chen, Zehuan Wu, Yichen Liu, Yuxin Guo, Jingcheng Ni, Haifeng Xia, Siyu Xia
Abstract:
The creation of diverse and realistic driving scenarios has become essential to enhance perception and planning capabilities of the autonomous driving system. However, generating long-duration, surround-view consistent driving videos remains a significant challenge. To address this, we present UniMLVG, a unified framework designed to generate extended street multi-perspective videos under precise control. By integrating single- and multi-view driving videos into the training data, our approach updates a DiT-based diffusion model equipped with cross-frame and cross-view modules across three stages with multi training objectives, substantially boosting the diversity and quality of generated visual content. Importantly, we propose an innovative explicit viewpoint modeling approach for multi-view video generation to effectively improve motion transition consistency. Capable of handling various input reference formats (e.g., text, images, or video), our UniMLVG generates high-quality multi-view videos according to the corresponding condition constraints such as 3D bounding boxes or frame-level text descriptions. Compared to the best models with similar capabilities, our framework achieves improvements of 48.2% in FID and 35.2% in FVD.
Authors:Anurag Bagchi, Zhipeng Bao, Yu-Xiong Wang, Pavel Tokmakov, Martial Hebert
Abstract:
We present REM, a framework for segmenting a wide range of concepts in video that can be described through natural language. Our method leverages the universal visual-language mapping learned by video diffusion models on Internet-scale data by fine-tuning them on small-scale Referring Object Segmentation datasets. Our key insight is to preserve the entirety of the generative model's architecture by shifting its objective from predicting noise to predicting mask latents. The resulting model can accurately segment rare and unseen objects, despite only being trained on a limited set of categories. Additionally, it can effortlessly generalize to non-object dynamic concepts, such as smoke or raindrops, as demonstrated in our new benchmark for Referring Video Process Segmentation (Ref-VPS). REM performs on par with the state-of-the-art on in-domain datasets, like Ref-DAVIS, while outperforming them by up to 12 IoU points out-of-domain, leveraging the power of generative pre-training. We also show that advancements in video generation directly improve segmentation.
Authors:Xiaoyan Hu, Ho-fung Leung, Farzan Farnia
Abstract:
Selecting a sample generation scheme from multiple prompt-based generative models, including large language models (LLMs) and prompt-guided image and video generation models, is typically addressed by choosing the model that maximizes an averaged evaluation score. However, this score-based selection overlooks the possibility that different models achieve the best generation performance for different types of text prompts. An online identification of the best generation model for various input prompts can reduce the costs associated with querying sub-optimal models. In this work, we explore the possibility of varying rankings of text-based generative models for different text prompts and propose an online learning framework to predict the best data generation model for a given input prompt. The proposed PAK-UCB algorithm addresses a contextual bandit (CB) setting with shared context variables across the arms, utilizing the generated data to update kernel-based functions that predict the score of each model available for unseen text prompts. Additionally, we leverage random Fourier features (RFF) to accelerate the online learning process of PAK-UCB. Our numerical experiments on real and simulated text-to-image and image-to-text generative models show that RFF-UCB performs successfully in identifying the best generation model across different sample types. The code is available at: github.com/yannxiaoyanhu/dgm-online-select.
Authors:Zhengyang Liang, Hao He, Ceyuan Yang, Bo Dai
Abstract:
Diffusion transformers (DiT) have already achieved appealing synthesis and scaling properties in content recreation, e.g., image and video generation. However, scaling laws of DiT are less explored, which usually offer precise predictions regarding optimal model size and data requirements given a specific compute budget. Therefore, experiments across a broad range of compute budgets, from 1e17 to 6e18 FLOPs are conducted to confirm the existence of scaling laws in DiT for the first time. Concretely, the loss of pretraining DiT also follows a power-law relationship with the involved compute. Based on the scaling law, we can not only determine the optimal model size and required data but also accurately predict the text-to-image generation loss given a model with 1B parameters and a compute budget of 1e21 FLOPs. Additionally, we also demonstrate that the trend of pre-training loss matches the generation performances (e.g., FID), even across various datasets, which complements the mapping from compute to synthesis quality and thus provides a predictable benchmark that assesses model performance and data quality at a reduced cost.
Authors:Jian Shi, Zhenyu Li, Peter Wonka
Abstract:
We introduce \textit{ImmersePro}, an innovative framework specifically designed to transform single-view videos into stereo videos. This framework utilizes a novel dual-branch architecture comprising a disparity branch and a context branch on video data by leveraging spatial-temporal attention mechanisms. \textit{ImmersePro} employs implicit disparity guidance, enabling the generation of stereo pairs from video sequences without the need for explicit disparity maps, thus reducing potential errors associated with disparity estimation models. In addition to the technical advancements, we introduce the YouTube-SBS dataset, a comprehensive collection of 423 stereo videos sourced from YouTube. This dataset is unprecedented in its scale, featuring over 7 million stereo pairs, and is designed to facilitate training and benchmarking of stereo video generation models. Our experiments demonstrate the effectiveness of \textit{ImmersePro} in producing high-quality stereo videos, offering significant improvements over existing methods. Compared to the best competitor stereo-from-mono we quantitatively improve the results by 11.76\% (L1), 6.39\% (SSIM), and 5.10\% (PSNR).
Authors:Yuanhang Li, Qi Mao, Lan Chen, Zhen Fang, Lei Tian, Xinyan Xiao, Libiao Jin, Hua Wu
Abstract:
Recent advances in text-to-video (T2V) generation with diffusion models have garnered significant attention. However, they typically perform well in scenes with a single object and motion, struggling in compositional scenarios with multiple objects and distinct motions to accurately reflect the semantic content of text prompts. To address these challenges, we propose \textbf{StarVid}, a plug-and-play, training-free method that improves semantic alignment between multiple subjects, their motions, and text prompts in T2V models. StarVid first leverages the spatial reasoning capabilities of large language models (LLMs) for two-stage motion trajectory planning based on text prompts. Such trajectories serve as spatial priors, guiding a spatial-aware loss to refocus cross-attention (CA) maps into distinctive regions. Furthermore, we propose a syntax-guided contrastive constraint to strengthen the correlation between the CA maps of verbs and their corresponding nouns, enhancing motion-subject binding. Both qualitative and quantitative evaluations demonstrate that the proposed framework significantly outperforms baseline methods, delivering videos of higher quality with improved semantic consistency.
Authors:Samee Arif, Taimoor Arif, Muhammad Saad Haroon, Aamina Jamal Khan, Agha Ali Raza, Awais Athar
Abstract:
This paper introduces the concept of an education tool that utilizes Generative Artificial Intelligence (GenAI) to enhance storytelling. We evaluate GenAI-driven narrative co-creation, text-to-speech conversion, text-to-music and text-to-video generation to produce an engaging experience for learners. We describe the co-creation process, the adaptation of narratives into spoken words using text-to-speech models, and the transformation of these narratives into contextually relevant visuals through text-to-video technology. Our evaluation covers the linguistics of the generated stories, the text-to-speech conversion quality, and the accuracy of the generated visuals.
Authors:Rishi Upadhyay, Howard Zhang, Jim Solomon, Ayush Agrawal, Pranay Boreddy, Shruti Satya Narayana, Yunhao Ba, Alex Wong, Celso M de Melo, Achuta Kadambi
Abstract:
Recent advances in generative foundational models, often termed "world models," have propelled interest in applying them to critical tasks like robotic planning and autonomous system training. For reliable deployment, these models must exhibit high physical fidelity, accurately simulating real-world dynamics. Existing physics-based video benchmarks, however, suffer from entanglement, where a single test simultaneously evaluates multiple physical laws and concepts, fundamentally limiting their diagnostic capability. We introduce WorldBench, a novel video-based benchmark specifically designed for concept-specific, disentangled evaluation, allowing us to rigorously isolate and assess understanding of a single physical concept or law at a time. To make WorldBench comprehensive, we design benchmarks at two different levels: 1) an evaluation of intuitive physical understanding with concepts such as object permanence or scale/perspective, and 2) an evaluation of low-level physical constants and material properties such as friction coefficients or fluid viscosity. When SOTA video-based world models are evaluated on WorldBench, we find specific patterns of failure in particular physics concepts, with all tested models lacking the physical consistency required to generate reliable real-world interactions. Through its concept-specific evaluation, WorldBench offers a more nuanced and scalable framework for rigorously evaluating the physical reasoning capabilities of video generation and world models, paving the way for more robust and generalizable world-model-driven learning.
Authors:Yuxi Liu, Yipeng Hu, Zekun Zhang, Kunze Jiang, Kun Yuan
Abstract:
While Diffusion Transformers (DiTs) have achieved notable progress in video generation, this long-sequence generation task remains constrained by the quadratic complexity inherent to self-attention mechanisms, creating significant barriers to practical deployment. Although sparse attention methods attempt to address this challenge, existing approaches either rely on oversimplified static patterns or require computationally expensive sampling operations to achieve dynamic sparsity, resulting in inaccurate pattern predictions and degraded generation quality. To overcome these limitations, we propose a \underline{\textbf{M}}ixtrue-\underline{\textbf{O}}f-\underline{\textbf{D}}istribution \textbf{DiT} (\textbf{MOD-DiT}), a novel sampling-free dynamic attention framework that accurately models evolving attention patterns through a two-stage process. First, MOD-DiT leverages prior information from early denoising steps and adopts a {distributed mixing approach} to model an efficient linear approximation model, which is then used to predict mask patterns for a specific denoising interval. Second, an online block masking strategy dynamically applies these predicted masks while maintaining historical sparsity information, eliminating the need for repetitive sampling operations. Extensive evaluations demonstrate consistent acceleration and quality improvements across multiple benchmarks and model architectures, validating MOD-DiT's effectiveness for efficient, high-quality video generation while overcoming the computational limitations of traditional sparse attention approaches.
Authors:Vatsal Baherwani, Yixuan Ren, Abhinav Shrivastava
Abstract:
Text-to-video diffusion models synthesize temporal motion and spatial appearance through iterative denoising, yet how motion is encoded across timesteps remains poorly understood. Practitioners often exploit the empirical heuristic that early timesteps mainly shape motion and layout while later ones refine appearance, but this behavior has not been systematically characterized. In this work, we proxy motion encoding in video diffusion timesteps by the trade-off between appearance editing and motion preservation induced when injecting new conditions over specified timestep ranges, and characterize this proxy through a large-scale quantitative study. This protocol allows us to factor motion from appearance by quantitatively mapping how they compete along the denoising trajectory. Across diverse architectures, we consistently identify an early, motion-dominant regime and a later, appearance-dominant regime, yielding an operational motion-appearance boundary in timestep space. Building on this characterization, we simplify current one-shot motion customization paradigm by restricting training and inference to the motion-dominant regime, achieving strong motion transfer without auxiliary debiasing modules or specialized objectives. Our analysis turns a widely used heuristic into a spatiotemporal disentanglement principle, and our timestep-constrained recipe can serve as ready integration into existing motion transfer and editing methods.
Authors:Utae Jeong, Sumin In, Hyunju Ryu, Jaewan Choi, Feng Yang, Jongheon Jeong, Seungryong Kim, Sangpil Kim
Abstract:
Image watermarking supports authenticity and provenance, yet many schemes are still easy to bypass with various distortions and powerful generative edits. Deep learning-based watermarking has improved robustness to diffusion-based image editing, but a gap remains when a watermarked image is converted to video by image-to-video (I2V), in which per-frame watermark detection weakens. I2V has quickly advanced from short, jittery clips to multi-second, temporally coherent scenes, and it now serves not only content creation but also world-modeling and simulation workflows, making cross-modal watermark recovery crucial. We present WaTeRFlow, a framework tailored for robustness under I2V. It consists of (i) FUSE (Flow-guided Unified Synthesis Engine), which exposes the encoder-decoder to realistic distortions via instruction-driven edits and a fast video diffusion proxy during training, (ii) optical-flow warping with a Temporal Consistency Loss (TCL) that stabilizes per-frame predictions, and (iii) a semantic preservation loss that maintains the conditioning signal. Experiments across representative I2V models show accurate watermark recovery from frames, with higher first-frame and per-frame bit accuracy and resilience when various distortions are applied before or after video generation.
Authors:Tariq Berrada Ifriqi, John Nguyen, Karteek Alahari, Jakob Verbeek, Ricky T. Q. Chen
Abstract:
We present Flowception, a novel non-autoregressive and variable-length video generation framework. Flowception learns a probability path that interleaves discrete frame insertions with continuous frame denoising. Compared to autoregressive methods, Flowception alleviates error accumulation/drift as the frame insertion mechanism during sampling serves as an efficient compression mechanism to handle long-term context. Compared to full-sequence flows, our method reduces FLOPs for training three-fold, while also being more amenable to local attention variants, and allowing to learn the length of videos jointly with their content. Quantitative experimental results show improved FVD and VBench metrics over autoregressive and full-sequence baselines, which is further validated with qualitative results. Finally, by learning to insert and denoise frames in a sequence, Flowception seamlessly integrates different tasks such as image-to-video generation and video interpolation.
Authors:Bishoy Galoaa, Xiangyu Bai, Sarah Ostadabbas
Abstract:
We present Lang2Motion, a framework for language-guided point trajectory generation by aligning motion manifolds with joint embedding spaces. Unlike prior work focusing on human motion or video synthesis, we generate explicit trajectories for arbitrary objects using motion extracted from real-world videos via point tracking. Our transformer-based auto-encoder learns trajectory representations through dual supervision: textual motion descriptions and rendered trajectory visualizations, both mapped through CLIP's frozen encoders. Lang2Motion achieves 34.2% Recall@1 on text-to-trajectory retrieval, outperforming video-based methods by 12.5 points, and improves motion accuracy by 33-52% (12.4 ADE vs 18.3-25.3) compared to video generation baselines. We demonstrate 88.3% Top-1 accuracy on human action recognition despite training only on diverse object motions, showing effective transfer across motion domains. Lang2Motion supports style transfer, semantic interpolation, and latent-space editing through CLIP-aligned trajectory representations.
Authors:Shaoheng Fang, Hanwen Jiang, Yunpeng Bai, Niloy J. Mitra, Qixing Huang
Abstract:
Recent video generators achieve striking photorealism, yet remain fundamentally inconsistent in 3D. We present WorldReel, a 4D video generator that is natively spatio-temporally consistent. WorldReel jointly produces RGB frames together with 4D scene representations, including pointmaps, camera trajectory, and dense flow mapping, enabling coherent geometry and appearance modeling over time. Our explicit 4D representation enforces a single underlying scene that persists across viewpoints and dynamic content, yielding videos that remain consistent even under large non-rigid motion and significant camera movement. We train WorldReel by carefully combining synthetic and real data: synthetic data providing precise 4D supervision (geometry, motion, and camera), while real videos contribute visual diversity and realism. This blend allows WorldReel to generalize to in-the-wild footage while preserving strong geometric fidelity. Extensive experiments demonstrate that WorldReel sets a new state-of-the-art for consistent video generation with dynamic scenes and moving cameras, improving metrics of geometric consistency, motion coherence, and reducing view-time artifacts over competing methods. We believe that WorldReel brings video generation closer to 4D-consistent world modeling, where agents can render, interact, and reason about scenes through a single and stable spatiotemporal representation.
Authors:Xiangyu Bai, He Liang, Bishoy Galoaa, Utsav Nandi, Shayda Moezzi, Yuhang He, Sarah Ostadabbas
Abstract:
While text-to-video (T2V) generation has achieved remarkable progress in photorealism, generating intent-aligned videos that faithfully obey physics principles remains a core challenge. In this work, we systematically study Newtonian motion-controlled text-to-video generation and evaluation, emphasizing physical precision and motion coherence. We introduce MoReGen, a motion-aware, physics-grounded T2V framework that integrates multi-agent LLMs, physics simulators, and renderers to generate reproducible, physically accurate videos from text prompts in the code domain. To quantitatively assess physical validity, we propose object-trajectory correspondence as a direct evaluation metric and present MoReSet, a benchmark of 1,275 human-annotated videos spanning nine classes of Newtonian phenomena with scene descriptions, spatiotemporal relations, and ground-truth trajectories. Using MoReSet, we conduct experiments on existing T2V models, evaluating their physical validity through both our MoRe metrics and existing physics-based evaluators. Our results reveal that state-of-the-art models struggle to maintain physical validity, while MoReGen establishes a principled direction toward physically coherent video synthesis.
Authors:Yao-Chih Lee, Zhoutong Zhang, Jiahui Huang, Jui-Hsien Wang, Joon-Young Lee, Jia-Bin Huang, Eli Shechtman, Zhengqi Li
Abstract:
Camera and object motions are central to a video's narrative. However, precisely editing these captured motions remains a significant challenge, especially under complex object movements. Current motion-controlled image-to-video (I2V) approaches often lack full-scene context for consistent video editing, while video-to-video (V2V) methods provide viewpoint changes or basic object translation, but offer limited control over fine-grained object motion. We present a track-conditioned V2V framework that enables joint editing of camera and object motion. We achieve this by conditioning a video generation model on a source video and paired 3D point tracks representing source and target motions. These 3D tracks establish sparse correspondences that transfer rich context from the source video to new motions while preserving spatiotemporal coherence. Crucially, compared to 2D tracks, 3D tracks provide explicit depth cues, allowing the model to resolve depth order and handle occlusions for precise motion editing. Trained in two stages on synthetic and real data, our model supports diverse motion edits, including joint camera/object manipulation, motion transfer, and non-rigid deformation, unlocking new creative potential in video editing.
Authors:Qiushi Yang, Yingjie Chen, Yuan Yao, Yifang Men, Huaizhuo Liu, Miaomiao Cui
Abstract:
Text-to-video (T2V) generation has achieved remarkable progress in producing high-quality videos aligned with textual prompts. However, aligning synthesized videos with nuanced human preference remains challenging due to the subjective and multifaceted nature of human judgment. Existing video preference alignment methods rely on costly human annotations or utilize proxy metrics to predict preference, which lacks the understanding of human preference logic. Moreover, they usually directly align T2V models with the overall preference distribution, ignoring potential conflict dimensions like motion dynamics and visual quality, which may bias models towards low-motion content. To address these issues, we present Motion-corrective alignment with Self-critic hierarchical Reasoning (McSc), a three-stage reinforcement learning framework for robust preference modeling and alignment. Firstly, Self-critic Dimensional Reasoning (ScDR) trains a generative reward model (RM) to decompose preferences into per-dimension assessments, using self-critic reasoning chains for reliable learning. Secondly, to achieve holistic video comparison, we introduce Hierarchical Comparative Reasoning (HCR) for structural multi-dimensional reasoning with hierarchical reward supervision. Finally, using RM-preferred videos, we propose Motion-corrective Direct Preference Optimization (McDPO) to optimize T2V models, while dynamically re-weighting alignment objective to mitigate bias towards low-motion content. Experiments show that McSc achieves superior performance in human preference alignment and generates videos with high-motion dynamic.
Authors:Mengyu Yang, Yanming Yang, Chenyi Xu, Chenxi Song, Yufan Zuo, Tong Zhao, Ruibo Li, Chi Zhang
Abstract:
Diffusion models have achieved impressive generative quality across modalities like 2D images, videos, and 3D shapes, but their inference remains computationally expensive due to the iterative denoising process. While recent caching-based methods effectively reuse redundant computations to speed up 2D and video generation, directly applying these techniques to 3D diffusion models can severely disrupt geometric consistency. In 3D synthesis, even minor numerical errors in cached latent features accumulate, causing structural artifacts and topological inconsistencies. To overcome this limitation, we propose Fast3Dcache, a training-free geometry-aware caching framework that accelerates 3D diffusion inference while preserving geometric fidelity. Our method introduces a Predictive Caching Scheduler Constraint (PCSC) to dynamically determine cache quotas according to voxel stabilization patterns and a Spatiotemporal Stability Criterion (SSC) to select stable features for reuse based on velocity magnitude and acceleration criterion. Comprehensive experiments show that Fast3Dcache accelerates inference significantly, achieving up to a 27.12% speed-up and a 54.8% reduction in FLOPs, with minimal degradation in geometric quality as measured by Chamfer Distance (2.48%) and F-Score (1.95%).
Authors:Tianle Cheng, Zeyan Zhang, Kaifeng Gao, Jun Xiao
Abstract:
Recent advancements in diffusion-based video generation have produced impressive and high-fidelity short videos. To extend these successes to generate coherent long videos, most video diffusion models (VDMs) generate videos in an autoregressive manner, i.e., generating subsequent frames conditioned on previous ones. There are generally two primary paradigms: chunk-based extension and stream denoising. The former directly concatenates previous clean frames as conditioning, suffering from denoising latency and error accumulation. The latter maintains the denoising sequence with monotonically increasing noise levels. In each denoising iteration, one clean frame is produced while a new pure noise is simultaneously appended, enabling live-stream sampling. However, it struggles with fragile consistency and poor motion dynamics. In this paper, we propose Adaptive Begin-of-Video Tokens (ada-BOV) for autoregressive VDMs. The BOV tokens are special learnable embeddings on VDMs. They adaptively absorb denoised preceding frames via an adaptive-layer-norm-like modulation. This design preserves the global consistency while allowing for flexible conditioning in dynamic scenarios. To ensure the quality of local dynamics essential in modulating BOV tokens, we further propose a refinement strategy for stream denoising. It decouples the sampling trajectory length from the attention window size constraint, leading to improved local guidance and overall imaging quality. We also propose a disturbance-augmented training noise schedule, which balances the convergence speed with model robustness for the stream denoising. Extensive experiments demonstrate that our method achieves compelling qualitative and quantitative results across multiple metrics.
Authors:Nabyl Quignon, Baptiste Chopin, Yaohui Wang, Antitza Dantcheva
Abstract:
Video generation has achieved remarkable progress, with generated videos increasingly resembling real ones. However, the rapid advance in generation has outpaced the development of adequate evaluation metrics. Currently, the assessment of talking head generation primarily relies on limited metrics, evaluating general video quality, lip synchronization, and on conducting user studies. Motivated by this, we propose a new evaluation framework comprising 8 metrics related to three dimensions (i) quality, (ii) naturalness, and (iii) synchronization. In selecting the metrics, we place emphasis on efficiency, as well as alignment with human preferences. Based on this considerations, we streamline to analyze fine-grained dynamics of head, mouth, and eyebrows, as well as face quality. Our extensive experiments on 85,000 videos generated by 17 state-of-the-art models suggest that while many algorithms excel in lip synchronization, they face challenges with generating expressiveness and artifact-free details. These videos were generated based on a novel real dataset, that we have curated, in order to mitigate bias of training data. Our proposed benchmark framework is aimed at evaluating the improvement of generative methods. Original code, dataset and leaderboards will be publicly released and regularly updated with new methods, in order to reflect progress in the field.
Authors:Mateo Clemente, Leo Brunswic, Rui Heng Yang, Xuan Zhao, Yasser Khalil, Haoyu Lei, Amir Rasouli, Yinchuan Li
Abstract:
Diffusion models, such as diffusion policy, have achieved state-of-the-art results in robotic manipulation by imitating expert demonstrations. While diffusion models were originally developed for vision tasks like image and video generation, many of their inference strategies have been directly transferred to control domains without adaptation. In this work, we show that by tailoring the denoising process to the specific characteristics of embodied AI tasks -- particularly structured, low-dimensional nature of action distributions -- diffusion policies can operate effectively with as few as 5 neural function evaluations (NFE). Building on this insight, we propose a population-based sampling strategy, genetic denoising, which enhances both performance and stability by selecting denoising trajectories with low out-of-distribution risk. Our method solves challenging tasks with only 2 NFE while improving or matching performance. We evaluate our approach across 14 robotic manipulation tasks from D4RL and Robomimic, spanning multiple action horizons and inference budgets. In over 2 million evaluations, our method consistently outperforms standard diffusion-based policies, achieving up to 20\% performance gains with significantly fewer inference steps.
Authors:Xiangyu Mu, Dongliang Zhou, Jie Hou, Haijun Zhang, Weili Guan
Abstract:
Mannequin-based clothing displays offer a cost-effective alternative to real-model showcases for online fashion presentation, but lack realism and expressive detail. To overcome this limitation, we introduce a new task called mannequin-to-human (M2H) video generation, which aims to synthesize identity-controllable, photorealistic human videos from footage of mannequins. We propose M2HVideo, a pose-aware and identity-preserving video generation framework that addresses two key challenges: the misalignment between head and body motion, and identity drift caused by temporal modeling. In particular, M2HVideo incorporates a dynamic pose-aware head encoder that fuses facial semantics with body pose to produce consistent identity embeddings across frames. To address the loss of fine facial details due to latent space compression, we introduce a mirror loss applied in pixel space through a denoising diffusion implicit model (DDIM)-based one-step denoising. Additionally, we design a distribution-aware adapter that aligns statistical distributions of identity and clothing features to enhance temporal coherence. Extensive experiments on the UBC fashion dataset, our self-constructed ASOS dataset, and the newly collected MannequinVideos dataset captured on-site demonstrate that M2HVideo achieves superior performance in terms of clothing consistency, identity preservation, and video fidelity in comparison to state-of-the-art methods.
Authors:Peiyin Chen, Zhuowei Yang, Hui Feng, Sheng Jiang, Rui Yan
Abstract:
Audio-driven talking-head generation has advanced rapidly with diffusion-based generative models, yet producing temporally coherent videos with fine-grained motion control remains challenging. We propose DEMO, a flow-matching generative framework for audio-driven talking-portrait video synthesis that delivers disentangled, high-fidelity control of lip motion, head pose, and eye gaze. The core contribution is a motion auto-encoder that builds a structured latent space in which motion factors are independently represented and approximately orthogonalized. On this disentangled motion space, we apply optimal-transport-based flow matching with a transformer predictor to generate temporally smooth motion trajectories conditioned on audio. Extensive experiments across multiple benchmarks show that DEMO outperforms prior methods in video realism, lip-audio synchronization, and motion fidelity. These results demonstrate that combining fine-grained motion disentanglement with flow-based generative modeling provides a powerful new paradigm for controllable talking-head video synthesis.
Authors:Hongyu Li, Lingfeng Sun, Yafei Hu, Duy Ta, Jennifer Barry, George Konidaris, Jiahui Fu
Abstract:
Enabling robots to execute novel manipulation tasks zero-shot is a central goal in robotics. Most existing methods assume in-distribution tasks or rely on fine-tuning with embodiment-matched data, limiting transfer across platforms. We present NovaFlow, an autonomous manipulation framework that converts a task description into an actionable plan for a target robot without any demonstrations. Given a task description, NovaFlow synthesizes a video using a video generation model and distills it into 3D actionable object flow using off-the-shelf perception modules. From the object flow, it computes relative poses for rigid objects and realizes them as robot actions via grasp proposals and trajectory optimization. For deformable objects, this flow serves as a tracking objective for model-based planning with a particle-based dynamics model. By decoupling task understanding from low-level control, NovaFlow naturally transfers across embodiments. We validate on rigid, articulated, and deformable object manipulation tasks using a table-top Franka arm and a Spot quadrupedal mobile robot, and achieve effective zero-shot execution without demonstrations or embodiment-specific training. Project website: https://novaflow.lhy.xyz/.
Authors:Daniel Gonzálbez-Biosca, Josep Cabacas-Maso, Carles Ventura, Ismael Benito-Altamirano
Abstract:
Automated video editing remains an underexplored task in the computer vision and multimedia domains, especially when contrasted with the growing interest in video generation and scene understanding. In this work, we address the specific challenge of editing multicamera recordings of classical music concerts by decomposing the problem into two key sub-tasks: when to cut and how to cut. Building on recent literature, we propose a novel multimodal architecture for the temporal segmentation task (when to cut), which integrates log-mel spectrograms from the audio signals, plus an optional image embedding, and scalar temporal features through a lightweight convolutional-transformer pipeline. For the spatial selection task (how to cut), we improve the literature by updating from old backbones, e.g. ResNet, with a CLIP-based encoder and constraining distractor selection to segments from the same concert. Our dataset was constructed following a pseudo-labeling approach, in which raw video data was automatically clustered into coherent shot segments. We show that our models outperformed previous baselines in detecting cut points and provide competitive visual shot selection, advancing the state of the art in multimodal automated video editing.
Authors:Jiayin Liu, Yulong Yang, Vineet Bansal, Christine Allen-Blanchette
Abstract:
From metronomes to celestial bodies, mechanics underpins how the world evolves in time and space. With consideration of this, a number of recent neural network models leverage inductive biases from classical mechanics to encourage model interpretability and ensure forecasted states are physical. However, in general, these models are designed to capture the dynamics of a single system with fixed physical parameters, from state-space measurements of a known configuration space. In this paper we introduce Symplectic Phase Space GAN (SPS-GAN) which can capture the dynamics of multiple systems, and generalize to unseen physical parameters from. Moreover, SPS-GAN does not require prior knowledge of the system configuration space. In fact, SPS-GAN can discover the configuration space structure of the system from arbitrary measurement types (e.g., state-space measurements, video frames). To achieve physically plausible generation, we introduce a novel architecture which embeds a Hamiltonian neural network recurrent module in a conditional GAN backbone. To discover the structure of the configuration space, we optimize the conditional time-series GAN objective with an additional physically motivated term to encourages a sparse representation of the configuration space. We demonstrate the utility of SPS-GAN for trajectory prediction, video generation and symmetry discovery. Our approach captures multiple systems and achieves performance on par with supervised models designed for single systems.
Authors:Matus Krajcovic, Peter Demcak, Eduard Kuric
Abstract:
Embodied conversational agents (ECAs) are increasingly more realistic and capable of dynamic conversations. In online surveys, anthropomorphic agents could help address issues like careless responding and satisficing, which originate from the lack of personal engagement and perceived accountability. However, there is a lack of understanding of how ECAs in user experience research may affect participant engagement, satisfaction, and the quality of responses. As a proof of concept, we propose an instrument that enables the incorporation of conversations with a virtual avatar into surveys, using on AI-driven video generation, speech recognition, and Large Language Models. In our between-subjects study, 80 participants (UK, stratified random sample of general population) either talked to a voice-based agent with an animated video avatar, or interacted with a chatbot. Across surveys based on two self-reported psychometric tests, 2,265 conversation responses were obtained. Statistical comparison of results indicates that embodied agents can contribute significantly to more informative, detailed responses, as well as higher yet more time-efficient engagement. Furthermore, qualitative analysis provides valuable insights for causes of no significant change to satisfaction, linked to personal preferences, turn-taking delays and Uncanny Valley reactions. These findings support the pursuit and development of new methods toward human-like agents for the transformation of online surveys into more natural interactions resembling in-person interviews.
Authors:Keerthi Veeramachaneni, Praveen Tirupattur, Amrit Singh Bedi, Mubarak Shah
Abstract:
Recent advances in Generative AI (GenAI) have led to significant improvements in the quality of generated visual content. As AI-generated visual content becomes increasingly indistinguishable from real content, the challenge of detecting the generated content becomes critical in combating misinformation, ensuring privacy, and preventing security threats. Although there has been substantial progress in detecting AI-generated images, current methods for video detection are largely focused on deepfakes, which primarily involve human faces. However, the field of video generation has advanced beyond DeepFakes, creating an urgent need for methods capable of detecting AI-generated videos with generic content. To address this gap, we propose a novel approach that leverages pre-trained visual models to distinguish between real and generated videos. The features extracted from these pre-trained models, which have been trained on extensive real visual content, contain inherent signals that can help distinguish real from generated videos. Using these extracted features, we achieve high detection performance without requiring additional model training, and we further improve performance by training a simple linear classification layer on top of the extracted features. We validated our method on a dataset we compiled (VID-AID), which includes around 10,000 AI-generated videos produced by 9 different text-to-video models, along with 4,000 real videos, totaling over 7 hours of video content. Our evaluation shows that our approach achieves high detection accuracy, above 90% on average, underscoring its effectiveness. Upon acceptance, we plan to publicly release the code, the pre-trained models, and our dataset to support ongoing research in this critical area.
Authors:Dawit Mureja Argaw, Xian Liu, Joon Son Chung, Ming-Yu Liu, Fitsum Reda
Abstract:
Discrete video tokenization is essential for efficient autoregressive generative modeling due to the high dimensionality of video data. This work introduces a state-of-the-art discrete video tokenizer with two key contributions. First, we propose a novel Mamba-based encoder-decoder architecture that overcomes the limitations of previous sequencebased tokenizers. Second, we introduce a new quantization scheme, channel-split quantization, which significantly enhances the representational power of quantized latents while preserving the token count. Our model sets a new state-of-the-art, outperforming both causal 3D convolutionbased and Transformer-based approaches across multiple datasets. Experimental results further demonstrate its robustness as a tokenizer for autoregressive video generation.
Authors:Zhican Wang, Guanghui He, Hongxiang Fan
Abstract:
The emergence of diffusion models has significantly advanced generative AI, improving the quality, realism, and creativity of image and video generation. Among them, Stable Diffusion (StableDiff) stands out as a key model for text-to-image generation and a foundation for next-generation multi-modal algorithms. However, its high computational and memory demands hinder inference speed and energy efficiency. To address these challenges, we identify three core issues: (1) intensive and often redundant computations, (2) heterogeneous operations involving convolutions and attention mechanisms, and (3) diverse weight and activation sizes.
We present SD-Acc, a novel algorithm and hardware co-optimization framework. At the algorithm level, we observe that high-level features in certain denoising phases show significant similarity, enabling approximate computation. Leveraging this, we propose an adaptive, phase-aware sampling strategy that reduces compute and memory loads. This framework automatically balances image quality and complexity based on the StableDiff model and user requirements. At the hardware level, we design an address-centric dataflow to efficiently handle heterogeneous operations within a simple systolic array. We address the bottleneck of nonlinear functions via a two-stage streaming architecture and a reconfigurable vector processing unit. Additionally, we implement adaptive dataflow optimizations by combining dynamic reuse and operator fusion tailored to StableDiff workloads, significantly reducing memory access. Across multiple StableDiff models, our method achieves up to a 3x reduction in computational demand without compromising image quality. Combined with our optimized hardware accelerator, SD-Acc delivers higher speed and energy efficiency than traditional CPU and GPU implementations.
Authors:Heyang Huang, Cunchen Hu, Jiaqi Zhu, Ziyuan Gao, Liangliang Xu, Yizhou Shan, Yungang Bao, Sun Ninghui, Tianwei Zhang, Sa Wang
Abstract:
The Text-to-Video (T2V) model aims to generate dynamic and expressive videos from textual prompts. The generation pipeline typically involves multiple modules, such as language encoder, Diffusion Transformer (DiT), and Variational Autoencoders (VAE). Existing serving systems often rely on monolithic model deployment, while overlooking the distinct characteristics of each module, leading to inefficient GPU utilization. In addition, DiT exhibits varying performance gains across different resolutions and degrees of parallelism, and significant optimization potential remains unexplored. To address these problems, we present DDiT, a flexible system that integrates both inter-phase and intra-phase optimizations. DDiT focuses on two key metrics: optimal degree of parallelism, which prevents excessive parallelism for specific resolutions, and starvation time, which quantifies the sacrifice of each request. To this end, DDiT introduces a decoupled control mechanism to minimize the computational inefficiency caused by imbalances in the degree of parallelism between the DiT and VAE phases. It also designs a greedy resource allocation algorithm with a novel scheduling mechanism that operates at the single-step granularity, enabling dynamic and timely resource scaling. Our evaluation on the T5 encoder, OpenSora SDDiT, and OpenSora VAE models across diverse datasets reveals that DDiT significantly outperforms state-of-the-art baselines by up to 1.44x in p99 latency and 1.43x in average latency.
Authors:Guangzhao Li, Yanming Yang, Chenxi Song, Chi Zhang
Abstract:
Text-driven video editing aims to modify video content according to natural language instructions. While recent training-free approaches have made progress by leveraging pre-trained diffusion models, they typically rely on inversion-based techniques that map input videos into the latent space, which often leads to temporal inconsistencies and degraded structural fidelity. To address this, we propose FlowDirector, a novel inversion-free video editing framework. Our framework models the editing process as a direct evolution in data space, guiding the video via an Ordinary Differential Equation (ODE) to smoothly transition along its inherent spatiotemporal manifold, thereby preserving temporal coherence and structural details. To achieve localized and controllable edits, we introduce an attention-guided masking mechanism that modulates the ODE velocity field, preserving non-target regions both spatially and temporally. Furthermore, to address incomplete edits and enhance semantic alignment with editing instructions, we present a guidance-enhanced editing strategy inspired by Classifier-Free Guidance, which leverages differential signals between multiple candidate flows to steer the editing trajectory toward stronger semantic alignment without compromising structural consistency. Extensive experiments across benchmarks demonstrate that FlowDirector achieves state-of-the-art performance in instruction adherence, temporal consistency, and background preservation, establishing a new paradigm for efficient and coherent video editing without inversion.
Authors:Xiaoyi Feng, Kaifeng Zou, Caichun Cen, Tao Huang, Hui Guo, Zizhou Huang, Yingli Zhao, Mingqing Zhang, Ziyuan Zheng, Diwei Wang, Yuntao Zou, Dagang Li
Abstract:
Existing optical flow datasets focus primarily on real-world simulation or synthetic human motion, but few are tailored to Celluloid(cel) anime character motion: a domain with unique visual and motion characteristics. To bridge this gap and facilitate research in optical flow estimation and downstream tasks such as anime video generation and line drawing colorization, we introduce LinkTo-Anime, the first high-quality dataset specifically designed for cel anime character motion generated with 3D model rendering. LinkTo-Anime provides rich annotations including forward and backward optical flow, occlusion masks, and Mixamo Skeleton. The dataset comprises 395 video sequences, totally 24,230 training frames, 720 validation frames, and 4,320 test frames. Furthermore, a comprehensive benchmark is constructed with various optical flow estimation methods to analyze the shortcomings and limitations across multiple datasets.
Authors:Ariel Shaulov, Itay Hazan, Lior Wolf, Hila Chefer
Abstract:
Text-to-video diffusion models are notoriously limited in their ability to model temporal aspects such as motion, physics, and dynamic interactions. Existing approaches address this limitation by retraining the model or introducing external conditioning signals to enforce temporal consistency. In this work, we explore whether a meaningful temporal representation can be extracted directly from the predictions of a pre-trained model without any additional training or auxiliary inputs. We introduce FlowMo, a novel training-free guidance method that enhances motion coherence using only the model's own predictions in each diffusion step. FlowMo first derives an appearance-debiased temporal representation by measuring the distance between latents corresponding to consecutive frames. This highlights the implicit temporal structure predicted by the model. It then estimates motion coherence by measuring the patch-wise variance across the temporal dimension and guides the model to reduce this variance dynamically during sampling. Extensive experiments across multiple text-to-video models demonstrate that FlowMo significantly improves motion coherence without sacrificing visual quality or prompt alignment, offering an effective plug-and-play solution for enhancing the temporal fidelity of pre-trained video diffusion models.
Authors:Dian Shao, Mingfei Shi, Shengda Xu, Haodong Chen, Yongle Huang, Binglu Wang
Abstract:
Despite significant advances in video generation, synthesizing physically plausible human actions remains a persistent challenge, particularly in modeling fine-grained semantics and complex temporal dynamics. For instance, generating gymnastics routines such as "switch leap with 0.5 turn" poses substantial difficulties for current methods, often yielding unsatisfactory results. To bridge this gap, we propose FinePhys, a Fine-grained human action generation framework that incorporates Physics to obtain effective skeletal guidance. Specifically, FinePhys first estimates 2D poses in an online manner and then performs 2D-to-3D dimension lifting via in-context learning. To mitigate the instability and limited interpretability of purely data-driven 3D poses, we further introduce a physics-based motion re-estimation module governed by Euler-Lagrange equations, calculating joint accelerations via bidirectional temporal updating. The physically predicted 3D poses are then fused with data-driven ones, offering multi-scale 2D heatmap guidance for the diffusion process. Evaluated on three fine-grained action subsets from FineGym (FX-JUMP, FX-TURN, and FX-SALTO), FinePhys significantly outperforms competitive baselines. Comprehensive qualitative results further demonstrate FinePhys's ability to generate more natural and plausible fine-grained human actions.
Authors:Philipp Hess, Maximilian Gelbrecht, Christof Schötz, Michael Aich, Yu Huang, Shangshang Yang, Niklas Boers
Abstract:
Realistic temporal dynamics are crucial for many video generation, processing and modelling applications, e.g. in computational fluid dynamics, weather prediction, or long-term climate simulations. Video diffusion models (VDMs) are the current state-of-the-art method for generating highly realistic dynamics. However, training VDMs from scratch can be challenging and requires large computational resources, limiting their wider application. Here, we propose a time-consistency discriminator that enables pretrained image diffusion models to generate realistic spatiotemporal dynamics. The discriminator guides the sampling inference process and does not require extensions or finetuning of the image diffusion model. We compare our approach against a VDM trained from scratch on an idealized turbulence simulation and a real-world global precipitation dataset. Our approach performs equally well in terms of temporal consistency, shows improved uncertainty calibration and lower biases compared to the VDM, and achieves stable centennial-scale climate simulations at daily time steps.
Authors:Panwen Hu, Jiehui Huang, Qiang Sun, Xiaodan Liang
Abstract:
Both zero-shot and tuning-based customized text-to-image (CT2I) generation have made significant progress for storytelling content creation. In contrast, research on customized text-to-video (CT2V) generation remains relatively limited. Existing zero-shot CT2V methods suffer from poor generalization, while another line of work directly combining tuning-based T2I models with temporal motion modules often leads to the loss of structural and texture information. To bridge this gap, we propose an autoregressive structure and texture propagation module (STPM), which extracts key structural and texture features from the reference subject and injects them autoregressively into each video frame to enhance consistency. Additionally, we introduce a test-time reward optimization (TTRO) method to further refine fine-grained details. Quantitative and qualitative experiments validate the effectiveness of STPM and TTRO, demonstrating improvements of 7.8 and 13.1 in CLIP-I and DINO consistency metrics over the baseline, respectively.
Authors:Zhengbo Zhang, Yuxi Zhou, Duo Peng, Joo-Hwee Lim, Zhigang Tu, De Wen Soh, Lin Geng Foo
Abstract:
One-shot controllable video editing (OCVE) is an important yet challenging task, aiming to propagate user edits that are made -- using any image editing tool -- on the first frame of a video to all subsequent frames, while ensuring content consistency between edited frames and source frames. To achieve this, prior methods employ DDIM inversion to transform source frames into latent noise, which is then fed into a pre-trained diffusion model, conditioned on the user-edited first frame, to generate the edited video. However, the DDIM inversion process accumulates errors, which hinder the latent noise from accurately reconstructing the source frames, ultimately compromising content consistency in the generated edited frames. To overcome it, our method eliminates the need for DDIM inversion by performing OCVE through a novel perspective based on visual prompting. Furthermore, inspired by consistency models that can perform multi-step consistency sampling to generate a sequence of content-consistent images, we propose a content consistency sampling (CCS) to ensure content consistency between the generated edited frames and the source frames. Moreover, we introduce a temporal-content consistency sampling (TCS) based on Stein Variational Gradient Descent to ensure temporal consistency across the edited frames. Extensive experiments validate the effectiveness of our approach.
Authors:Chao Liu, Arash Vahdat
Abstract:
Temporally consistent video-to-video generation is essential for applications of video diffusion models in areas such as sim-to-real, style-transfer, video upsampling, etc. In this paper, we propose a video diffusion framework that leverages temporally consistent noise to generate coherent video frames without specialized modules or additional constraints. We show that the standard training objective of diffusion models, when applied with temporally consistent noise, encourages the model to be equivariant to spatial transformations in input video and noise. This enables our model to better follow motion patterns from the input video, producing aligned motion and high-fidelity frames. Furthermore, we extend our approach to 3D-consistent video generation by attaching noise as textures on 3D meshes, ensuring 3D consistency in sim-to-real applications. Experimental results demonstrate that our method surpasses state-of-the-art baselines in motion alignment, 3D consistency, and video quality while requiring only a few sampling steps in practice.
Authors:Shengjun Zhang, Jinzhao Li, Xin Fei, Hao Liu, Yueqi Duan
Abstract:
In this paper, we propose Scene Splatter, a momentum-based paradigm for video diffusion to generate generic scenes from single image. Existing methods, which employ video generation models to synthesize novel views, suffer from limited video length and scene inconsistency, leading to artifacts and distortions during further reconstruction. To address this issue, we construct noisy samples from original features as momentum to enhance video details and maintain scene consistency. However, for latent features with the perception field that spans both known and unknown regions, such latent-level momentum restricts the generative ability of video diffusion in unknown regions. Therefore, we further introduce the aforementioned consistent video as a pixel-level momentum to a directly generated video without momentum for better recovery of unseen regions. Our cascaded momentum enables video diffusion models to generate both high-fidelity and consistent novel views. We further finetune the global Gaussian representations with enhanced frames and render new frames for momentum update in the next step. In this manner, we can iteratively recover a 3D scene, avoiding the limitation of video length. Extensive experiments demonstrate the generalization capability and superior performance of our method in high-fidelity and consistent scene generation.
Authors:Subin Kim, Seoung Wug Oh, Jui-Hsien Wang, Joon-Young Lee, Jinwoo Shin
Abstract:
While recent advancements in text-to-video diffusion models enable high-quality short video generation from a single prompt, generating real-world long videos in a single pass remains challenging due to limited data and high computational costs. To address this, several works propose tuning-free approaches, i.e., extending existing models for long video generation, specifically using multiple prompts to allow for dynamic and controlled content changes. However, these methods primarily focus on ensuring smooth transitions between adjacent frames, often leading to content drift and a gradual loss of semantic coherence over longer sequences. To tackle such an issue, we propose Synchronized Coupled Sampling (SynCoS), a novel inference framework that synchronizes denoising paths across the entire video, ensuring long-range consistency across both adjacent and distant frames. Our approach combines two complementary sampling strategies: reverse and optimization-based sampling, which ensure seamless local transitions and enforce global coherence, respectively. However, directly alternating between these samplings misaligns denoising trajectories, disrupting prompt guidance and introducing unintended content changes as they operate independently. To resolve this, SynCoS synchronizes them through a grounded timestep and a fixed baseline noise, ensuring fully coupled sampling with aligned denoising paths. Extensive experiments show that SynCoS significantly improves multi-event long video generation, achieving smoother transitions and superior long-range coherence, outperforming previous approaches both quantitatively and qualitatively.
Authors:Han Zhang, Rotem Shalev-Arkushin, Vasileios Baltatzis, Connor Gillis, Gierad Laput, Raja Kushalnagar, Lorna Quandt, Leah Findlater, Abdelkareem Bedri, Colin Lea
Abstract:
Sign languages are essential for the Deaf and Hard-of-Hearing (DHH) community. Sign language generation systems have the potential to support communication by translating from written languages, such as English, into signed videos. However, current systems often fail to meet user needs due to poor translation of grammatical structures, the absence of facial cues and body language, and insufficient visual and motion fidelity. We address these challenges by building on recent advances in LLMs and video generation models to translate English sentences into natural-looking AI ASL signers. The text component of our model extracts information for manual and non-manual components of ASL, which are used to synthesize skeletal pose sequences and corresponding video frames. Our findings from a user study with 30 DHH participants and thorough technical evaluations demonstrate significant progress and identify critical areas necessary to meet user needs.
Authors:Jinbo Xing, Long Mai, Cusuh Ham, Jiahui Huang, Aniruddha Mahapatra, Chi-Wing Fu, Tien-Tsin Wong, Feng Liu
Abstract:
This paper presents a method that allows users to design cinematic video shots in the context of image-to-video generation. Shot design, a critical aspect of filmmaking, involves meticulously planning both camera movements and object motions in a scene. However, enabling intuitive shot design in modern image-to-video generation systems presents two main challenges: first, effectively capturing user intentions on the motion design, where both camera movements and scene-space object motions must be specified jointly; and second, representing motion information that can be effectively utilized by a video diffusion model to synthesize the image animations. To address these challenges, we introduce MotionCanvas, a method that integrates user-driven controls into image-to-video (I2V) generation models, allowing users to control both object and camera motions in a scene-aware manner. By connecting insights from classical computer graphics and contemporary video generation techniques, we demonstrate the ability to achieve 3D-aware motion control in I2V synthesis without requiring costly 3D-related training data. MotionCanvas enables users to intuitively depict scene-space motion intentions, and translates them into spatiotemporal motion-conditioning signals for video diffusion models. We demonstrate the effectiveness of our method on a wide range of real-world image content and shot-design scenarios, highlighting its potential to enhance the creative workflows in digital content creation and adapt to various image and video editing applications.
Authors:Yuanzhi Zhu, Hanshu Yan, Huan Yang, Kai Zhang, Junnan Li
Abstract:
Generative models, particularly diffusion models, have made significant success in data synthesis across various modalities, including images, videos, and 3D assets. However, current diffusion models are computationally intensive, often requiring numerous sampling steps that limit their practical application, especially in video generation. This work introduces a novel framework for diffusion distillation and distribution matching that dramatically reduces the number of inference steps while maintaining-and potentially improving-generation quality. Our approach focuses on distilling pre-trained diffusion models into a more efficient few-step generator, specifically targeting video generation. By leveraging a combination of video GAN loss and a novel 2D score distribution matching loss, we demonstrate the potential to generate high-quality video frames with substantially fewer sampling steps. To be specific, the proposed method incorporates a denoising GAN discriminator to distil from the real data and a pre-trained image diffusion model to enhance the frame quality and the prompt-following capabilities. Experimental results using AnimateDiff as the teacher model showcase the method's effectiveness, achieving superior performance in just four sampling steps compared to existing techniques.
Authors:Gaurav Shrivastava, Ser-Nam Lim, Abhinav Shrivastava
Abstract:
In the evolving landscape of video enhancement and editing methodologies, a majority of deep learning techniques often rely on extensive datasets of observed input and ground truth sequence pairs for optimal performance. Such reliance often falters when acquiring data becomes challenging, especially in tasks like video dehazing and relighting, where replicating identical motions and camera angles in both corrupted and ground truth sequences is complicated. Moreover, these conventional methodologies perform best when the test distribution closely mirrors the training distribution. Recognizing these challenges, this paper introduces a novel video decomposition prior `VDP' framework which derives inspiration from professional video editing practices. Our methodology does not mandate task-specific external data corpus collection, instead pivots to utilizing the motion and appearance of the input video. VDP framework decomposes a video sequence into a set of multiple RGB layers and associated opacity levels. These set of layers are then manipulated individually to obtain the desired results. We addresses tasks such as video object segmentation, dehazing, and relighting. Moreover, we introduce a novel logarithmic video decomposition formulation for video relighting tasks, setting a new benchmark over the existing methodologies. We observe the property of relighting emerge as we optimize for our novel relighting decomposition formulation. We evaluate our approach on standard video datasets like DAVIS, REVIDE, & SDSD and show qualitative results on a diverse array of internet videos. Project Page - https://www.cs.umd.edu/~gauravsh/video_decomposition/index.html for video results.
Authors:Karran Pandey, Matheus Gadelha, Yannick Hold-Geoffroy, Karan Singh, Niloy J. Mitra, Paul Guerrero
Abstract:
Predicting diverse object motions from a single static image remains challenging, as current video generation models often entangle object movement with camera motion and other scene changes. While recent methods can predict specific motions from motion arrow input, they rely on synthetic data and predefined motions, limiting their application to complex scenes. We introduce Motion Modes, a training-free approach that explores a pre-trained image-to-video generator's latent distribution to discover various distinct and plausible motions focused on selected objects in static images. We achieve this by employing a flow generator guided by energy functions designed to disentangle object and camera motion. Additionally, we use an energy inspired by particle guidance to diversify the generated motions, without requiring explicit training data. Experimental results demonstrate that Motion Modes generates realistic and varied object animations, surpassing previous methods and even human predictions regarding plausibility and diversity. Project Webpage: https://motionmodes.github.io/
Authors:Paul Janson, Tiberiu Popa, Eugene Belilovsky
Abstract:
Text-conditioned video diffusion models have emerged as a powerful tool in the realm of video generation and editing. But their ability to capture the nuances of human movement remains under-explored. Indeed the ability of these models to faithfully model an array of text prompts can lead to a wide host of applications in human and character animation. In this work, we take initial steps to investigate whether these models can effectively guide the synthesis of realistic human body animations. Specifically we propose to synthesize human motion by deforming an SMPL-X body representation guided by Score distillation sampling (SDS) calculated using a video diffusion model. By analyzing the fidelity of the resulting animations, we gain insights into the extent to which we can obtain motion using publicly available text-to-video diffusion models using SDS. Our findings shed light on the potential and limitations of these models for generating diverse and plausible human motions, paving the way for further research in this exciting area.
Authors:Junjie Li, Jianghong Ma, Xiaofeng Zhang, Yuhang Li, Jianyang Shi
Abstract:
Multimodal Large Language Models have advanced AI in applications like text-to-video generation and visual question answering. These models rely on visual encoders to convert non-text data into vectors, but current encoders either lack semantic alignment or overlook non-salient objects. We propose the Guiding Visual Encoder to Perceive Overlooked Information (GiVE) approach. GiVE enhances visual representation with an Attention-Guided Adapter (AG-Adapter) module and an Object-focused Visual Semantic Learning module. These incorporate three novel loss terms: Object-focused Image-Text Contrast (OITC) loss, Object-focused Image-Image Contrast (OIIC) loss, and Object-focused Image Discrimination (OID) loss, improving object consideration, retrieval accuracy, and comprehensiveness. Our contributions include dynamic visual focus adjustment, novel loss functions to enhance object retrieval, and the Multi-Object Instruction (MOInst) dataset. Experiments show our approach achieves state-of-the-art performance.
Authors:Onkar Susladkar, Jishu Sen Gupta, Chirag Sehgal, Sparsh Mittal, Rekha Singhal
Abstract:
The spatio-temporal complexity of video data presents significant challenges in tasks such as compression, generation, and inpainting. We present four key contributions to address the challenges of spatiotemporal video processing. First, we introduce the 3D Mobile Inverted Vector-Quantization Variational Autoencoder (3D-MBQ-VAE), which combines Variational Autoencoders (VAEs) with masked token modeling to enhance spatiotemporal video compression. The model achieves superior temporal consistency and state-of-the-art (SOTA) reconstruction quality by employing a novel training strategy with full frame masking. Second, we present MotionAura, a text-to-video generation framework that utilizes vector-quantized diffusion models to discretize the latent space and capture complex motion dynamics, producing temporally coherent videos aligned with text prompts. Third, we propose a spectral transformer-based denoising network that processes video data in the frequency domain using the Fourier Transform. This method effectively captures global context and long-range dependencies for high-quality video generation and denoising. Lastly, we introduce a downstream task of Sketch Guided Video Inpainting. This task leverages Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning. Our models achieve SOTA performance on a range of benchmarks. Our work offers robust frameworks for spatiotemporal modeling and user-driven video content manipulation. We will release the code, datasets, and models in open-source.
Authors:Jingran Zhang, Ning Li, Yuanhao Ban, Andrew Bai, Justin Cui
Abstract:
While most prior work in video generation relies on bidirectional architectures, recent efforts have sought to adapt these models into autoregressive variants to support near real-time generation. However, such adaptations often depend heavily on teacher models, which can limit performance, particularly in the absence of a strong autoregressive teacher, resulting in output quality that typically lags behind their bidirectional counterparts. In this paper, we explore an alternative approach that uses reward signals to guide the generation process, enabling more efficient and scalable autoregressive generation. By using reward signals to guide the model, our method simplifies training while preserving high visual fidelity and temporal consistency. Through extensive experiments on standard benchmarks, we find that our approach performs comparably to existing autoregressive models and, in some cases, surpasses similarly sized bidirectional models by avoiding constraints imposed by teacher architectures. For example, on VBench, our method achieves a total score of 84.92, closely matching state-of-the-art autoregressive methods that score 84.31 but require significant heterogeneous distillation.
Authors:Utkarsh A Mishra, David He, Yongxin Chen, Danfei Xu
Abstract:
Generative models have emerged as powerful tools for planning, with compositional approaches offering particular promise for modeling long-horizon task distributions by composing together local, modular generative models. This compositional paradigm spans diverse domains, from multi-step manipulation planning to panoramic image synthesis to long video generation. However, compositional generative models face a critical challenge: when local distributions are multimodal, existing composition methods average incompatible modes, producing plans that are neither locally feasible nor globally coherent. We propose Compositional Diffusion with Guided Search (CDGS), which addresses this mode averaging problem by embedding search directly within the diffusion denoising process. Our method explores diverse combinations of local modes through population-based sampling, prunes infeasible candidates using likelihood-based filtering, and enforces global consistency through iterative resampling between overlapping segments. CDGS matches oracle performance on seven robot manipulation tasks, outperforming baselines that lack compositionality or require long-horizon training data. The approach generalizes across domains, enabling coherent text-guided panoramic images and long videos through effective local-to-global message passing. More details: https://cdgsearch.github.io/
Authors:Hao Lu, Ziyang Liu, Guangfeng Jiang, Yuanfei Luo, Sheng Chen, Yangang Zhang, Ying-Cong Chen
Abstract:
Autonomous driving (AD) systems struggle in long-tail scenarios due to limited world knowledge and weak visual dynamic modeling. Existing vision-language-action (VLA)-based methods cannot leverage unlabeled videos for visual causal learning, while world model-based methods lack reasoning capabilities from large language models. In this paper, we construct multiple specialized datasets providing reasoning and planning annotations for complex scenarios. Then, a unified Understanding-Generation-Planning framework, named UniUGP, is proposed to synergize scene reasoning, future video generation, and trajectory planning through a hybrid expert architecture. By integrating pre-trained VLMs and video generation models, UniUGP leverages visual dynamics and semantic reasoning to enhance planning performance. Taking multi-frame observations and language instructions as input, it produces interpretable chain-of-thought reasoning, physically consistent trajectories, and coherent future videos. We introduce a four-stage training strategy that progressively builds these capabilities across multiple existing AD datasets, along with the proposed specialized datasets. Experiments demonstrate state-of-the-art performance in perception, reasoning, and decision-making, with superior generalization to challenging long-tail situations.
Authors:Xinhao Xiang, Abhijeet Rastogi, Jiawei Zhang
Abstract:
Recent text-to-video models have enabled the generation of high-resolution driving scenes from natural language prompts. These AI-generated driving videos (AIGVs) offer a low-cost, scalable alternative to real or simulator data for autonomous driving (AD). But a key question remains: can such videos reliably support training and evaluation of AD models? We present a diagnostic framework that systematically studies this question. First, we introduce a taxonomy of frequent AIGV failure modes, including visual artifacts, physically implausible motion, and violations of traffic semantics, and demonstrate their negative impact on object detection, tracking, and instance segmentation. To support this analysis, we build ADGV-Bench, a driving-focused benchmark with human quality annotations and dense labels for multiple perception tasks. We then propose ADGVE, a driving-aware evaluator that combines static semantics, temporal cues, lane obedience signals, and Vision-Language Model(VLM)-guided reasoning into a single quality score for each clip. Experiments show that blindly adding raw AIGVs can degrade perception performance, while filtering them with ADGVE consistently improves both general video quality assessment metrics and downstream AD models, and turns AIGVs into a beneficial complement to real-world data. Our study highlights both the risks and the promise of AIGVs, and provides practical tools for safely leveraging large-scale video generation in future AD pipelines.
Authors:Su Sun, Cheng Zhao, Himangi Mittal, Gaurav Mittal, Rohith Kukkala, Yingjie Victor Chen, Mei Chen
Abstract:
Generating dynamic 4D objects from sparse inputs is difficult because it demands joint preservation of appearance and motion coherence across views and time while suppressing artifacts and temporal drift. We hypothesize that the view discrepancy arises from supervision limited to pixel- or latent-space video-diffusion losses, which lack explicitly temporally aware, feature-level tracking guidance. We present \emph{Track4DGen}, a two-stage framework that couples a multi-view video diffusion model with a foundation point tracker and a hybrid 4D Gaussian Splatting (4D-GS) reconstructor. The central idea is to explicitly inject tracker-derived motion priors into intermediate feature representations for both multi-view video generation and 4D-GS. In Stage One, we enforce dense, feature-level point correspondences inside the diffusion generator, producing temporally consistent features that curb appearance drift and enhance cross-view coherence. In Stage Two, we reconstruct a dynamic 4D-GS using a hybrid motion encoding that concatenates co-located diffusion features (carrying Stage-One tracking priors) with Hex-plane features, and augment them with 4D Spherical Harmonics for higher-fidelity dynamics modeling. \emph{Track4DGen} surpasses baselines on both multi-view video generation and 4D generation benchmarks, yielding temporally stable, text-editable 4D assets. Lastly, we curate \emph{Sketchfab28}, a high-quality dataset for benchmarking object-centric 4D generation and fostering future research.
Authors:Yaokun Li, Shuaixian Wang, Mantang Guo, Jiehui Huang, Taojun Ding, Mu Hu, Kaixuan Wang, Shaojie Shen, Guang Tan
Abstract:
We propose ReCamDriving, a purely vision-based, camera-controlled novel-trajectory video generation framework. While repair-based methods fail to restore complex artifacts and LiDAR-based approaches rely on sparse and incomplete cues, ReCamDriving leverages dense and scene-complete 3DGS renderings for explicit geometric guidance, achieving precise camera-controllable generation. To mitigate overfitting to restoration behaviors when conditioned on 3DGS renderings, ReCamDriving adopts a two-stage training paradigm: the first stage uses camera poses for coarse control, while the second stage incorporates 3DGS renderings for fine-grained viewpoint and geometric guidance. Furthermore, we present a 3DGS-based cross-trajectory data curation strategy to eliminate the train-test gap in camera transformation patterns, enabling scalable multi-trajectory supervision from monocular videos. Based on this strategy, we construct the ParaDrive dataset, containing over 110K parallel-trajectory video pairs. Extensive experiments demonstrate that ReCamDriving achieves state-of-the-art camera controllability and structural consistency.
Authors:Zhiye Song, Steve Dai, Ben Keller, Brucek Khailany
Abstract:
Diffusion models have revolutionized video generation, becoming essential tools in creative content generation and physical simulation. Transformer-based architectures (DiTs) and classifier-free guidance (CFG) are two cornerstones of this success, enabling strong prompt adherence and realistic video quality. Despite their versatility and superior performance, these models require intensive computation. Each video generation requires dozens of iterative steps, and CFG doubles the required compute. This inefficiency hinders broader adoption in downstream applications. We introduce GalaxyDiT, a training-free method to accelerate video generation with guidance alignment and systematic proxy selection for reuse metrics. Through rank-order correlation analysis, our technique identifies the optimal proxy for each video model, across model families and parameter scales, thereby ensuring optimal computational reuse. We achieve $1.87\times$ and $2.37\times$ speedup on Wan2.1-1.3B and Wan2.1-14B with only 0.97% and 0.72% drops on the VBench-2.0 benchmark. At high speedup rates, our approach maintains superior fidelity to the base model, exceeding prior state-of-the-art approaches by 5 to 10 dB in peak signal-to-noise ratio (PSNR).
Authors:Enrico Pallotta, Sina Mokhtarzadeh Azar, Lars Doorenbos, Serdar Ozsoy, Umar Iqbal, Juergen Gall
Abstract:
Egocentric video generation with fine-grained control through body motion is a key requirement towards embodied AI agents that can simulate, predict, and plan actions. In this work, we propose EgoControl, a pose-controllable video diffusion model trained on egocentric data. We train a video prediction model to condition future frame generation on explicit 3D body pose sequences. To achieve precise motion control, we introduce a novel pose representation that captures both global camera dynamics and articulated body movements, and integrate it through a dedicated control mechanism within the diffusion process. Given a short sequence of observed frames and a sequence of target poses, EgoControl generates temporally coherent and visually realistic future frames that align with the provided pose control. Experimental results demonstrate that EgoControl produces high-quality, pose-consistent egocentric videos, paving the way toward controllable embodied video simulation and understanding.
Authors:Riccardo Mereu, Aidan Scannell, Yuxin Hou, Yi Zhao, Aditya Jitta, Antonio Dominguez, Luigi Acerbi, Amos Storkey, Paul Chang
Abstract:
World models are a powerful paradigm in AI and robotics, enabling agents to reason about the future by predicting visual observations or compact latent states. The 1X World Model Challenge introduces an open-source benchmark of real-world humanoid interaction, with two complementary tracks: sampling, focused on forecasting future image frames, and compression, focused on predicting future discrete latent codes. For the sampling track, we adapt the video generation foundation model Wan-2.2 TI2V-5B to video-state-conditioned future frame prediction. We condition the video generation on robot states using AdaLN-Zero, and further post-train the model using LoRA. For the compression track, we train a Spatio-Temporal Transformer model from scratch. Our models achieve 23.0 dB PSNR in the sampling task and a Top-500 CE of 6.6386 in the compression task, securing 1st place in both challenges.
Authors:Abdelilah Aitrouga, Youssef Hmamouche, Amal El Fallah Seghrouchni
Abstract:
In light of recent progress in video editing, deep learning models focusing on both spatial and temporal dependencies have emerged as the primary method. However, these models suffer from the quadratic computational complexity of traditional attention mechanisms, making them difficult to adapt to long-duration and high-resolution videos. This limitation restricts their applicability in practical contexts such as real-time video processing. To tackle this challenge, we introduce a method to reduce both time and space complexity of these systems by proposing VRWKV-Editor, a novel video editing model that integrates a linear spatio-temporal aggregation module into video-based diffusion models. VRWKV-Editor leverages bidirectional weighted key-value recurrence mechanism of the RWKV transformer to capture global dependencies while preserving temporal coherence, achieving linear complexity without sacrificing quality. Extensive experiments demonstrate that the proposed method achieves up to 3.7x speedup and 60% lower memory usage compared to state-of-the-art diffusion-based video editing methods, while maintaining competitive performance in frame consistency and text alignment. Furthermore, a comparative analysis we conducted on videos with different sequence lengths confirms that the gap in editing speed between our approach and architectures with self-attention becomes more significant with long videos.
Authors:Zetian Wu, Tianshuo Zhou, Stefan Lee, Liang Huang
Abstract:
Sign language translation from text to video plays a crucial role in enabling effective communication for Deaf and hard--of--hearing individuals. A major challenge lies in generating accurate and natural body poses and movements that faithfully convey intended meanings. Prior methods often neglect the anatomical constraints and coordination patterns of human skeletal motion, resulting in rigid or biomechanically implausible outputs. To address this, we propose a novel approach that explicitly models the relationships among skeletal joints--including shoulders, arms, and hands--by incorporating geometric constraints on joint positions, bone lengths, and movement dynamics. During training, we introduce a parent-relative reweighting mechanism to enhance finger flexibility and reduce motion stiffness. Additionally, bone-pose losses and bone-length constraints enforce anatomically consistent structures. Our method narrows the performance gap between the previous best and the ground-truth oracle by 56.51%, and further reduces discrepancies in bone length and movement variance by 18.76% and 5.48%, respectively, demonstrating significant gains in anatomical realism and motion naturalness.
Authors:Yuchen Deng, Xiuyang Wu, Hai-Tao Zheng, Suiyang Zhang, Yi He, Yuxing Han
Abstract:
Existing talking-head animation approaches based on Generative Adversarial Networks (GANs) or diffusion models often suffer from inter-frame flicker, identity drift, and slow inference. These limitations inherent to their video generation pipelines restrict their suitability for applications. To address this, we introduce AvatarSync, an autoregressive framework on phoneme representations that generates realistic and controllable talking-head animations from a single reference image, driven directly text or audio input. In addition, AvatarSync adopts a two-stage generation strategy, decoupling semantic modeling from visual dynamics, which is a deliberate "Divide and Conquer" design. The first stage, Facial Keyframe Generation (FKG), focuses on phoneme-level semantic representation by leveraging the many-to-one mapping from text or audio to phonemes. A Phoneme-to-Visual Mapping is constructed to anchor abstract phonemes to character-level units. Combined with a customized Text-Frame Causal Attention Mask, the keyframes are generated. The second stage, inter-frame interpolation, emphasizes temporal coherence and visual smoothness. We introduce a timestamp-aware adaptive strategy based on a selective state space model, enabling efficient bidirectional context reasoning. To support deployment, we optimize the inference pipeline to reduce latency without compromising visual fidelity. Extensive experiments show that AvatarSync outperforms existing talking-head animation methods in visual fidelity, temporal consistency, and computational efficiency, providing a scalable and controllable solution.
Authors:Shaoshu Yang, Zhe Kong, Feng Gao, Meng Cheng, Xiangyu Liu, Yong Zhang, Zhuoliang Kang, Wenhan Luo, Xunliang Cai, Ran He, Xiaoming Wei
Abstract:
Recent breakthroughs in video AIGC have ushered in a transformative era for audio-driven human animation. However, conventional video dubbing techniques remain constrained to mouth region editing, resulting in discordant facial expressions and body gestures that compromise viewer immersion. To overcome this limitation, we introduce sparse-frame video dubbing, a novel paradigm that strategically preserves reference keyframes to maintain identity, iconic gestures, and camera trajectories while enabling holistic, audio-synchronized full-body motion editing. Through critical analysis, we identify why naive image-to-video models fail in this task, particularly their inability to achieve adaptive conditioning. Addressing this, we propose InfiniteTalk, a streaming audio-driven generator designed for infinite-length long sequence dubbing. This architecture leverages temporal context frames for seamless inter-chunk transitions and incorporates a simple yet effective sampling strategy that optimizes control strength via fine-grained reference frame positioning. Comprehensive evaluations on HDTF, CelebV-HQ, and EMTD datasets demonstrate state-of-the-art performance. Quantitative metrics confirm superior visual realism, emotional coherence, and full-body motion synchronization.
Authors:Feng-Lin Liu, Shi-Yang Li, Yan-Pei Cao, Hongbo Fu, Lin Gao
Abstract:
Recent video editing methods achieve attractive results in style transfer or appearance modification. However, editing the structural content of 3D scenes in videos remains challenging, particularly when dealing with significant viewpoint changes, such as large camera rotations or zooms. Key challenges include generating novel view content that remains consistent with the original video, preserving unedited regions, and translating sparse 2D inputs into realistic 3D video outputs. To address these issues, we propose Sketch3DVE, a sketch-based 3D-aware video editing method to enable detailed local manipulation of videos with significant viewpoint changes. To solve the challenge posed by sparse inputs, we employ image editing methods to generate edited results for the first frame, which are then propagated to the remaining frames of the video. We utilize sketching as an interaction tool for precise geometry control, while other mask-based image editing methods are also supported. To handle viewpoint changes, we perform a detailed analysis and manipulation of the 3D information in the video. Specifically, we utilize a dense stereo method to estimate a point cloud and the camera parameters of the input video. We then propose a point cloud editing approach that uses depth maps to represent the 3D geometry of newly edited components, aligning them effectively with the original 3D scene. To seamlessly merge the newly edited content with the original video while preserving the features of unedited regions, we introduce a 3D-aware mask propagation strategy and employ a video diffusion model to produce realistic edited videos. Extensive experiments demonstrate the superiority of Sketch3DVE in video editing. Homepage and code: http://http://geometrylearning.com/Sketch3DVE/
Authors:Ruolin Yang, Da Li, Honggang Zhang, Yi-Zhe Song
Abstract:
Sketching is a uniquely human tool for expressing ideas and creativity. The animation of sketches infuses life into these static drawings, opening a new dimension for designers. Animating sketches is a time-consuming process that demands professional skills and extensive experience, often proving daunting for amateurs. In this paper, we propose a novel sketch animation model SketchAnimator, which enables adding creative motion to a given sketch, like "a jumping car''. Namely, given an input sketch and a reference video, we divide the sketch animation into three stages: Appearance Learning, Motion Learning and Video Prior Distillation. In stages 1 and 2, we utilize LoRA to integrate sketch appearance information and motion dynamics from the reference video into the pre-trained T2V model. In the third stage, we utilize Score Distillation Sampling (SDS) to update the parameters of the Bezier curves in each sketch frame according to the acquired motion information. Consequently, our model produces a sketch video that not only retains the original appearance of the sketch but also mirrors the dynamic movements of the reference video. We compare our method with alternative approaches and demonstrate that it generates the desired sketch video under the challenge of one-shot motion customization.
Authors:Yongjie Fu, Ruijian Zha, Pei Tian, Xuan Di
Abstract:
Designing diverse and safety-critical driving scenarios is essential for evaluating autonomous driving systems. In this paper, we propose a novel framework that leverages Large Language Models (LLMs) for few-shot code generation to automatically synthesize driving scenarios within the CARLA simulator, which has flexibility in scenario scripting, efficient code-based control of traffic participants, and enforcement of realistic physical dynamics. Given a few example prompts and code samples, the LLM generates safety-critical scenario scripts that specify the behavior and placement of traffic participants, with a particular focus on collision events. To bridge the gap between simulation and real-world appearance, we integrate a video generation pipeline using Cosmos-Transfer1 with ControlNet, which converts rendered scenes into realistic driving videos. Our approach enables controllable scenario generation and facilitates the creation of rare but critical edge cases, such as pedestrian crossings under occlusion or sudden vehicle cut-ins. Experimental results demonstrate the effectiveness of our method in generating a wide range of realistic, diverse, and safety-critical scenarios, offering a promising tool for simulation-based testing of autonomous vehicles.
Authors:Junsung Lee, Junoh Kang, Bohyung Han
Abstract:
Previous text-guided video editing methods often suffer from temporal inconsistency, motion distortion, and-most notably-limited domain transformation. We attribute these limitations to insufficient modeling of spatiotemporal pixel relevance during the editing process. To address this, we propose STR-Match, a training-free video editing algorithm that produces visually appealing and spatiotemporally coherent videos through latent optimization guided by our novel STR score. The score captures spatiotemporal pixel relevance across adjacent frames by leveraging 2D spatial attention and 1D temporal modules in text-to-video (T2V) diffusion models, without the overhead of computationally expensive 3D attention mechanisms. Integrated into a latent optimization framework with a latent mask, STR-Match generates temporally consistent and visually faithful videos, maintaining strong performance even under significant domain transformations while preserving key visual attributes of the source. Extensive experiments demonstrate that STR-Match consistently outperforms existing methods in both visual quality and spatiotemporal consistency.
Authors:Denys Rozumnyi, Jonathon Luiten, Numair Khan, Johannes Schönberger, Peter Kontschieder
Abstract:
Transforming casually captured, monocular videos into fully immersive dynamic experiences is a highly ill-posed task, and comes with significant challenges, e.g., reconstructing unseen regions, and dealing with the ambiguity in monocular depth estimation. In this work we introduce BulletGen, an approach that takes advantage of generative models to correct errors and complete missing information in a Gaussian-based dynamic scene representation. This is done by aligning the output of a diffusion-based video generation model with the 4D reconstruction at a single frozen "bullet-time" step. The generated frames are then used to supervise the optimization of the 4D Gaussian model. Our method seamlessly blends generative content with both static and dynamic scene components, achieving state-of-the-art results on both novel-view synthesis, and 2D/3D tracking tasks.
Authors:Shailesh, Alok Raj, Nayan Kumar, Priya Shukla, Andrew Melnik, Michael Beetz, Gora Chand Nandi
Abstract:
Task-Oriented Grasping (TOG) requires robots to select grasps that are functionally appropriate for a specified task - a challenge that demands an understanding of task semantics, object affordances, and functional constraints. We present GRIM (Grasp Re-alignment via Iterative Matching), a training-free framework that addresses these challenges by leveraging Video Generation Models (VGMs) together with a retrieve-align-transfer pipeline. Beyond leveraging VGMs, GRIM can construct a memory of object-task exemplars sourced from web images, human demonstrations, or generative models. The retrieved task-oriented grasp is then transferred and refined by evaluating it against a set of geometrically stable candidate grasps to ensure both functional suitability and physical feasibility. GRIM demonstrates strong generalization and achieves state-of-the-art performance on standard TOG benchmarks. Project website: https://grim-tog.github.io
Authors:Geunmin Hwang, Hyun-kyu Ko, Younghyun Kim, Seungryong Lee, Eunbyung Park
Abstract:
Recent advancements in diffusion models have revolutionized video generation, enabling the creation of high-quality, temporally consistent videos. However, generating high frame-rate (FPS) videos remains a significant challenge due to issues such as flickering and degradation in long sequences, particularly in fast-motion scenarios. Existing methods often suffer from computational inefficiencies and limitations in maintaining video quality over extended frames. In this paper, we present a novel, training-free approach for high FPS video generation using pre-trained diffusion models. Our method, DiffuseSlide, introduces a new pipeline that leverages key frames from low FPS videos and applies innovative techniques, including noise re-injection and sliding window latent denoising, to achieve smooth, consistent video outputs without the need for additional fine-tuning. Through extensive experiments, we demonstrate that our approach significantly improves video quality, offering enhanced temporal coherence and spatial fidelity. The proposed method is not only computationally efficient but also adaptable to various video generation tasks, making it ideal for applications such as virtual reality, video games, and high-quality content creation.
Authors:Xiang Zhu, Yichen Liu, Hezhong Li, Jianyu Chen
Abstract:
Recent robot learning methods commonly rely on imitation learning from massive robotic dataset collected with teleoperation. When facing a new task, such methods generally require collecting a set of new teleoperation data and finetuning the policy. Furthermore, the teleoperation data collection pipeline is also tedious and expensive. Instead, human is able to efficiently learn new tasks by just watching others do. In this paper, we introduce a novel two-stage framework that utilizes human demonstrations to learn a generalizable robot policy. Such policy can directly take human demonstration video as a prompt and perform new tasks without any new teleoperation data and model finetuning at all. In the first stage, we train video generation model that captures a joint representation for both the human and robot demonstration video data using cross-prediction. In the second stage, we fuse the learned representation with a shared action space between human and robot using a novel prototypical contrastive loss. Empirical evaluations on real-world dexterous manipulation tasks show the effectiveness and generalization capabilities of our proposed method.
Authors:Xianghao Kong, Qiaosong Qi, Yuanbin Wang, Anyi Rao, Biaolong Chen, Aixi Zhang, Si Liu, Hao Jiang
Abstract:
Fashion video generation aims to synthesize temporally consistent videos from reference images of a designated character. Despite significant progress, existing diffusion-based methods only support a single reference image as input, severely limiting their capability to generate view-consistent fashion videos, especially when there are different patterns on the clothes from different perspectives. Moreover, the widely adopted motion module does not sufficiently model human body movement, leading to sub-optimal spatiotemporal consistency. To address these issues, we propose ProFashion, a fashion video generation framework leveraging multiple reference images to achieve improved view consistency and temporal coherency. To effectively leverage features from multiple reference images while maintaining a reasonable computational cost, we devise a Pose-aware Prototype Aggregator, which selects and aggregates global and fine-grained reference features according to pose information to form frame-wise prototypes, which serve as guidance in the denoising process. To further enhance motion consistency, we introduce a Flow-enhanced Prototype Instantiator, which exploits the human keypoint motion flow to guide an extra spatiotemporal attention process in the denoiser. To demonstrate the effectiveness of ProFashion, we extensively evaluate our method on the MRFashion-7K dataset we collected from the Internet. ProFashion also outperforms previous methods on the UBC Fashion dataset.
Authors:Zhaiming Shen, Alex Havrilla, Rongjie Lai, Alexander Cloninger, Wenjing Liao
Abstract:
Transformers serve as the foundational architecture for large language and video generation models, such as GPT, BERT, SORA and their successors. Empirical studies have demonstrated that real-world data and learning tasks exhibit low-dimensional structures, along with some noise or measurement error. The performance of transformers tends to depend on the intrinsic dimension of the data/tasks, though theoretical understandings remain largely unexplored for transformers. This work establishes a theoretical foundation by analyzing the performance of transformers for regression tasks involving noisy input data on a manifold. Specifically, the input data are in a tubular neighborhood of a manifold, while the ground truth function depends on the projection of the noisy data onto the manifold. We prove approximation and generalization errors which crucially depend on the intrinsic dimension of the manifold. Our results demonstrate that transformers can leverage low-complexity structures in learning task even when the input data are perturbed by high-dimensional noise. Our novel proof technique constructs representations of basic arithmetic operations by transformers, which may hold independent interest.
Authors:Michal Geyer, Omer Tov, Linyi Jin, Richard Tucker, Inbar Mosseri, Tali Dekel, Noah Snavely
Abstract:
The rising popularity of immersive visual experiences has increased interest in stereoscopic 3D video generation. Despite significant advances in video synthesis, creating 3D videos remains challenging due to the relative scarcity of 3D video data. We propose a simple approach for transforming a text-to-video generator into a video-to-stereo generator. Given an input video, our framework automatically produces the video frames from a shifted viewpoint, enabling a compelling 3D effect. Prior and concurrent approaches for this task typically operate in multiple phases, first estimating video disparity or depth, then warping the video accordingly to produce a second view, and finally inpainting the disoccluded regions. This approach inherently fails when the scene involves specular surfaces or transparent objects. In such cases, single-layer disparity estimation is insufficient, resulting in artifacts and incorrect pixel shifts during warping. Our work bypasses these restrictions by directly synthesizing the new viewpoint, avoiding any intermediate steps. This is achieved by leveraging a pre-trained video model's priors on geometry, object materials, optics, and semantics, without relying on external geometry models or manually disentangling geometry from the synthesis process. We demonstrate the advantages of our approach in complex, real-world scenarios featuring diverse object materials and compositions. See videos on https://video-eye2eye.github.io
Authors:Quynh Phung, Long Mai, Fabian David Caba Heilbron, Feng Liu, Jia-Bin Huang, Cusuh Ham
Abstract:
We present CineVerse, a novel framework for the task of cinematic scene composition. Similar to traditional multi-shot generation, our task emphasizes the need for consistency and continuity across frames. However, our task also focuses on addressing challenges inherent to filmmaking, such as multiple characters, complex interactions, and visual cinematic effects. In order to learn to generate such content, we first create the CineVerse dataset. We use this dataset to train our proposed two-stage approach. First, we prompt a large language model (LLM) with task-specific instructions to take in a high-level scene description and generate a detailed plan for the overall setting and characters, as well as the individual shots. Then, we fine-tune a text-to-image generation model to synthesize high-quality visual keyframes. Experimental results demonstrate that CineVerse yields promising improvements in generating visually coherent and contextually rich movie scenes, paving the way for further exploration in cinematic video synthesis.
Authors:Ruineng Li, Daitao Xing, Huiming Sun, Yuanzhou Ha, Jinglin Shen, Chiuman Ho
Abstract:
Human-centric motion control in video generation remains a critical challenge, particularly when jointly controlling camera movements and human poses in scenarios like the iconic Grammy Glambot moment. While recent video diffusion models have made significant progress, existing approaches struggle with limited motion representations and inadequate integration of camera and human motion controls. In this work, we present TokenMotion, the first DiT-based video diffusion framework that enables fine-grained control over camera motion, human motion, and their joint interaction. We represent camera trajectories and human poses as spatio-temporal tokens to enable local control granularity. Our approach introduces a unified modeling framework utilizing a decouple-and-fuse strategy, bridged by a human-aware dynamic mask that effectively handles the spatially-and-temporally varying nature of combined motion signals. Through extensive experiments, we demonstrate TokenMotion's effectiveness across both text-to-video and image-to-video paradigms, consistently outperforming current state-of-the-art methods in human-centric motion control tasks. Our work represents a significant advancement in controllable video generation, with particular relevance for creative production applications.
Authors:Luis Denninger, Sina Mokhtarzadeh Azar, Juergen Gall
Abstract:
Recently, image-to-video (I2V) diffusion models have demonstrated impressive scene understanding and generative quality, incorporating image conditions to guide generation. However, these models primarily animate static images without extending beyond their provided context. Introducing additional constraints, such as camera trajectories, can enhance diversity but often degrade visual quality, limiting their applicability for tasks requiring faithful scene representation. We propose CamC2V, a context-to-video (C2V) model that integrates multiple image conditions as context with 3D constraints alongside camera control to enrich both global semantics and fine-grained visual details. This enables more coherent and context-aware video generation. Moreover, we motivate the necessity of temporal awareness for an effective context representation. Our comprehensive study on the RealEstate10K dataset demonstrates improvements in visual quality and camera controllability. We will publish our code upon acceptance.
Authors:Shivanshu Shekhar, Tong Zhang
Abstract:
Diffusion models have revolutionized generative modeling in continuous domains like image, audio, and video synthesis. However, their iterative sampling process leads to slow generation and inefficient training, challenges that are further exacerbated when incorporating Reinforcement Learning from Human Feedback (RLHF) due to sparse rewards and long time horizons. Consistency models address these issues by enabling single-step or efficient multi-step generation, significantly reducing computational costs.
In this work, we propose a direct reward optimization framework for applying RLHF to consistency models, incorporating distributional regularization to enhance training stability and prevent reward hacking. We investigate various $f$-divergences as regularization strategies, striking a balance between reward maximization and model consistency. Unlike policy gradient methods, our approach leverages first-order gradients, making it more efficient and less sensitive to hyperparameter tuning. Empirical results show that our method achieves competitive or superior performance compared to policy gradient based RLHF methods, across various automatic metrics and human evaluation. Additionally, our analysis demonstrates the impact of different regularization techniques in improving model generalization and preventing overfitting.
Authors:Ye Tao, Jiawei Zhang, Yahao Shi, Dongqing Zou, Bin Zhou
Abstract:
Image-based 3D generation has vast applications in robotics and gaming, where high-quality, diverse outputs and consistent 3D representations are crucial. However, existing methods have limitations: 3D diffusion models are limited by dataset scarcity and the absence of strong pre-trained priors, while 2D diffusion-based approaches struggle with geometric consistency. We propose a method that leverages 2D diffusion models' implicit 3D reasoning ability while ensuring 3D consistency via Gaussian-splatting-based geometric distillation. Specifically, the proposed Gaussian Splatting Decoder enforces 3D consistency by transforming SV3D latent outputs into an explicit 3D representation. Unlike SV3D, which only relies on implicit 2D representations for video generation, Gaussian Splatting explicitly encodes spatial and appearance attributes, enabling multi-view consistency through geometric constraints. These constraints correct view inconsistencies, ensuring robust geometric consistency. As a result, our approach simultaneously generates high-quality, multi-view-consistent images and accurate 3D models, providing a scalable solution for single-image-based 3D generation and bridging the gap between 2D Diffusion diversity and 3D structural coherence. Experimental results demonstrate state-of-the-art multi-view consistency and strong generalization across diverse datasets. The code will be made publicly available upon acceptance.
Authors:Runze Zhang, Guoguang Du, Xiaochuan Li, Qi Jia, Liang Jin, Lu Liu, Jingjing Wang, Cong Xu, Zhenhua Guo, Yaqian Zhao, Xiaoli Gong, Rengang Li, Baoyu Fan
Abstract:
Spatio-temporal consistency is a critical research topic in video generation. A qualified generated video segment must ensure plot plausibility and coherence while maintaining visual consistency of objects and scenes across varying viewpoints. Prior research, especially in open-source projects, primarily focuses on either temporal or spatial consistency, or their basic combination, such as appending a description of a camera movement after a prompt without constraining the outcomes of this movement. However, camera movement may introduce new objects to the scene or eliminate existing ones, thereby overlaying and affecting the preceding narrative. Especially in videos with numerous camera movements, the interplay between multiple plots becomes increasingly complex. This paper introduces and examines integral spatio-temporal consistency, considering the synergy between plot progression and camera techniques, and the long-term impact of prior content on subsequent generation. Our research encompasses dataset construction through to the development of the model. Initially, we constructed a DropletVideo-10M dataset, which comprises 10 million videos featuring dynamic camera motion and object actions. Each video is annotated with an average caption of 206 words, detailing various camera movements and plot developments. Following this, we developed and trained the DropletVideo model, which excels in preserving spatio-temporal coherence during video generation. The DropletVideo dataset and model are accessible at https://dropletx.github.io.
Authors:Yicong Hong, Long Mai, Yuan Yao, Feng Liu
Abstract:
While Transformers have become the dominant architecture for visual generation, linear attention models, such as the state-space models (SSM), are increasingly recognized for their efficiency in processing long visual sequences. However, the essential efficiency of these models comes from formulating a limited recurrent state, enforcing causality among tokens that are prone to inconsistent modeling of N-dimensional visual data, leaving questions on their capacity to generate long non-causal sequences. In this paper, we explore the boundary of SSM on image and video generation by building the largest-scale diffusion SSM-Transformer hybrid model to date (5B parameters) based on the sub-quadratic bi-directional Hydra and self-attention, and generate up to 2K images and 360p 8 seconds (16 FPS) videos. Our results demonstrate that the model can produce faithful results aligned with complex text prompts and temporal consistent videos with high dynamics, suggesting the great potential of using SSMs for visual generation tasks.
Authors:Beiyuan Zhang, Yue Ma, Chunlei Fu, Xinyang Song, Zhenan Sun, Ziqiang Li
Abstract:
Text-editable and pose-controllable character video generation is a challenging but prevailing topic with practical applications. However, existing approaches mainly focus on single-object video generation with pose guidance, ignoring the realistic situation that multi-character appear concurrently in a scenario. To tackle this, we propose a novel multi-character video generation framework in a tuning-free manner, which is based on the separated text and pose guidance. Specifically, we first extract character masks from the pose sequence to identify the spatial position for each generating character, and then single prompts for each character are obtained with LLMs for precise text guidance. Moreover, the spatial-aligned cross attention and multi-branch control module are proposed to generate fine grained controllable multi-character video. The visualized results of generating video demonstrate the precise controllability of our method for multi-character generation. We also verify the generality of our method by applying it to various personalized T2I models. Moreover, the quantitative results show that our approach achieves superior performance compared with previous works.
Authors:Muhammet Furkan Ilaslan, Ali Koksal, Kevin Qinhong Lin, Burak Satar, Mike Zheng Shou, Qianli Xu
Abstract:
Large Language Model (LLM)-based agents have shown promise in procedural tasks, but the potential of multimodal instructions augmented by texts and videos to assist users remains under-explored. To address this gap, we propose the Visually Grounded Text-Video Prompting (VG-TVP) method which is a novel LLM-empowered Multimodal Procedural Planning (MPP) framework. It generates cohesive text and video procedural plans given a specified high-level objective. The main challenges are achieving textual and visual informativeness, temporal coherence, and accuracy in procedural plans. VG-TVP leverages the zero-shot reasoning capability of LLMs, the video-to-text generation ability of the video captioning models, and the text-to-video generation ability of diffusion models. VG-TVP improves the interaction between modalities by proposing a novel Fusion of Captioning (FoC) method and using Text-to-Video Bridge (T2V-B) and Video-to-Text Bridge (V2T-B). They allow LLMs to guide the generation of visually-grounded text plans and textual-grounded video plans. To address the scarcity of datasets suitable for MPP, we have curated a new dataset called Daily-Life Task Procedural Plans (Daily-PP). We conduct comprehensive experiments and benchmarks to evaluate human preferences (regarding textual and visual informativeness, temporal coherence, and plan accuracy). Our VG-TVP method outperforms unimodal baselines on the Daily-PP dataset.
Authors:Mohammed Suhail, Carlos Esteves, Leonid Sigal, Ameesh Makadia
Abstract:
Latent variable generative models have emerged as powerful tools for generative tasks including image and video synthesis. These models are enabled by pretrained autoencoders that map high resolution data into a compressed lower dimensional latent space, where the generative models can subsequently be developed while requiring fewer computational resources. Despite their effectiveness, the direct application of latent variable models to higher dimensional domains such as videos continues to pose challenges for efficient training and inference. In this paper, we propose an autoencoder that projects volumetric data onto a four-plane factorized latent space that grows sublinearly with the input size, making it ideal for higher dimensional data like videos. The design of our factorized model supports straightforward adoption in a number of conditional generation tasks with latent diffusion models (LDMs), such as class-conditional generation, frame prediction, and video interpolation. Our results show that the proposed four-plane latent space retains a rich representation needed for high-fidelity reconstructions despite the heavy compression, while simultaneously enabling LDMs to operate with significant improvements in speed and memory.
Authors:Serin Yang, Taesung Kwon, Jong Chul Ye
Abstract:
Recent progress in large-scale text-to-video (T2V) and image-to-video (I2V) diffusion models has greatly enhanced video generation, especially in terms of keyframe interpolation. However, current image-to-video diffusion models, while powerful in generating videos from a single conditioning frame, need adaptation for two-frame (start & end) conditioned generation, which is essential for effective bounded interpolation. Unfortunately, existing approaches that fuse temporally forward and backward paths in parallel often suffer from off-manifold issues, leading to artifacts or requiring multiple iterative re-noising steps. In this work, we introduce a novel, bidirectional sampling strategy to address these off-manifold issues without requiring extensive re-noising or fine-tuning. Our method employs sequential sampling along both forward and backward paths, conditioned on the start and end frames, respectively, ensuring more coherent and on-manifold generation of intermediate frames. Additionally, we incorporate advanced guidance techniques, CFG++ and DDS, to further enhance the interpolation process. By integrating these, our method achieves state-of-the-art performance, efficiently generating high-quality, smooth videos between keyframes. On a single 3090 GPU, our method can interpolate 25 frames at 1024 x 576 resolution in just 195 seconds, establishing it as a leading solution for keyframe interpolation.
Authors:Ge Ya Luo, Gian Mario Favero, Zhi Hao Luo, Alexia Jolicoeur-Martineau, Christopher Pal
Abstract:
The Fréchet Video Distance (FVD) is a widely adopted metric for evaluating video generation distribution quality. However, its effectiveness relies on critical assumptions. Our analysis reveals three significant limitations: (1) the non-Gaussianity of the Inflated 3D Convnet (I3D) feature space; (2) the insensitivity of I3D features to temporal distortions; (3) the impractical sample sizes required for reliable estimation. These findings undermine FVD's reliability and show that FVD falls short as a standalone metric for video generation evaluation. After extensive analysis of a wide range of metrics and backbone architectures, we propose JEDi, the JEPA Embedding Distance, based on features derived from a Joint Embedding Predictive Architecture, measured using Maximum Mean Discrepancy with polynomial kernel. Our experiments on multiple open-source datasets show clear evidence that it is a superior alternative to the widely used FVD metric, requiring only 16% of the samples to reach its steady value, while increasing alignment with human evaluation by 34%, on average.
Authors:Dong-Yu Chen, Yixin Guo, Shuojin Yang, Tai-Jiang Mu, Shi-Min Hu
Abstract:
Camera control has been extensively studied in conditioned video generation; however, performing precisely altering the camera trajectories while faithfully preserving the video content remains a challenging task. The mainstream approach to achieving precise camera control is warping a 3D representation according to the target trajectory. However, such methods fail to fully leverage the 3D priors of video diffusion models (VDMs) and often fall into the Inpainting Trap, resulting in subject inconsistency and degraded generation quality. To address this problem, we propose DepthDirector, a video re-rendering framework with precise camera controllability. By leveraging the depth video from explicit 3D representation as camera-control guidance, our method can faithfully reproduce the dynamic scene of an input video under novel camera trajectories. Specifically, we design a View-Content Dual-Stream Condition mechanism that injects both the source video and the warped depth sequence rendered under the target viewpoint into the pretrained video generation model. This geometric guidance signal enables VDMs to comprehend camera movements and leverage their 3D understanding capabilities, thereby facilitating precise camera control and consistent content generation. Next, we introduce a lightweight LoRA-based video diffusion adapter to train our framework, fully preserving the knowledge priors of VDMs. Additionally, we construct a large-scale multi-camera synchronized dataset named MultiCam-WarpData using Unreal Engine 5, containing 8K videos across 1K dynamic scenes. Extensive experiments show that DepthDirector outperforms existing methods in both camera controllability and visual quality. Our code and dataset will be publicly available.
Authors:Nate Gillman, Yinghua Zhou, Zitian Tang, Evan Luo, Arjan Chakravarthy, Daksh Aggarwal, Michael Freeman, Charles Herrmann, Chen Sun
Abstract:
Recent advancements in video generation have enabled the development of ``world models'' capable of simulating potential futures for robotics and planning. However, specifying precise goals for these models remains a challenge; text instructions are often too abstract to capture physical nuances, while target images are frequently infeasible to specify for dynamic tasks. To address this, we introduce Goal Force, a novel framework that allows users to define goals via explicit force vectors and intermediate dynamics, mirroring how humans conceptualize physical tasks. We train a video generation model on a curated dataset of synthetic causal primitives-such as elastic collisions and falling dominos-teaching it to propagate forces through time and space. Despite being trained on simple physics data, our model exhibits remarkable zero-shot generalization to complex, real-world scenarios, including tool manipulation and multi-object causal chains. Our results suggest that by grounding video generation in fundamental physical interactions, models can emerge as implicit neural physics simulators, enabling precise, physics-aware planning without reliance on external engines. We release all datasets, code, model weights, and interactive video demos at our project page.
Authors:Yongxu Sun, Michael Saxon, Ian Yang, Anna-Maria Gueorguieva, Aylin Caliskan
Abstract:
Text-to-Video (T2V) generators such as Sora raise concerns about whether generated content reflects societal bias. We extend embedding-association tests from words and images to video by introducing the Video Embedding Association Test (VEAT) and Single-Category VEAT (SC-VEAT). We validate these methods by reproducing the direction and magnitude of associations from widely used baselines, including Implicit Association Test (IAT) scenarios and OASIS image categories. We then quantify race (African American vs. European American) and gender (women vs. men) associations with valence (pleasant vs. unpleasant) across 17 occupations and 7 awards. Sora videos associate European Americans and women more with pleasantness (both d>0.8). Effect sizes correlate with real-world demographic distributions: percent men and White in occupations (r=0.93, r=0.83) and percent male and non-Black among award recipients (r=0.88, r=0.99). Applying explicit debiasing prompts generally reduces effect-size magnitudes, but can backfire: two Black-associated occupations (janitor, postal service) become more Black-associated after debiasing. Together, these results reveal that easily accessible T2V generators can actually amplify representational harms if not rigorously evaluated and responsibly deployed.
Authors:Cheeun Hong, German Barquero, Fadime Sener, Markos Georgopoulos, Edgar Schönfeld, Stefan Popov, Yuming Du, Oscar Mañas, Albert Pumarola
Abstract:
Instructional video generation is an emerging task that aims to synthesize coherent demonstrations of procedural activities from textual descriptions. Such capability has broad implications for content creation, education, and human-AI interaction, yet existing video diffusion models struggle to maintain temporal consistency and controllability across long sequences of multiple action steps. We introduce a pipeline for future-driven streaming instructional video generation, dubbed SneakPeek, a diffusion-based autoregressive framework designed to generate precise, stepwise instructional videos conditioned on an initial image and structured textual prompts. Our approach introduces three key innovations to enhance consistency and controllability: (1) predictive causal adaptation, where a causal model learns to perform next-frame prediction and anticipate future keyframes; (2) future-guided self-forcing with a dual-region KV caching scheme to address the exposure bias issue at inference time; (3) multi-prompt conditioning, which provides fine-grained and procedural control over multi-step instructions. Together, these components mitigate temporal drift, preserve motion consistency, and enable interactive video generation where future prompt updates dynamically influence ongoing streaming video generation. Experimental results demonstrate that our method produces temporally coherent and semantically faithful instructional videos that accurately follow complex, multi-step task descriptions.
Authors:Yuna Kato, Shohei Mori, Hideo Saito, Yoshifumi Takatsume, Hiroki Kajita, Mariko Isogawa
Abstract:
Video recordings of open surgeries are greatly required for education and research purposes. However, capturing unobstructed videos is challenging since surgeons frequently block the camera field of view. To avoid occlusion, the positions and angles of the camera must be frequently adjusted, which is highly labor-intensive. Prior work has addressed this issue by installing multiple cameras on a shadowless lamp and arranging them to fully surround the surgical area. This setup increases the chances of some cameras capturing an unobstructed view. However, manual image alignment is needed in post-processing since camera configurations change every time surgeons move the lamp for optimal lighting. This paper aims to fully automate this alignment task. The proposed method identifies frames in which the lighting system moves, realigns them, and selects the camera with the least occlusion to generate a video that consistently presents the surgical field from a fixed perspective. A user study involving surgeons demonstrated that videos generated by our method were superior to those produced by conventional methods in terms of the ease of confirming the surgical area and the comfort during video viewing. Additionally, our approach showed improvements in video quality over existing techniques. Furthermore, we implemented several synthesis options for the proposed view-synthesis method and conducted a user study to assess surgeons' preferences for each option.
Authors:Fu Li, Weichao Zhao, You Li, Zhichao Zhou, Dongliang He
Abstract:
Recent advances in video generation have achieved remarkable improvements in visual content fidelity. However, the absence of synchronized audio severely undermines immersive experience and restricts practical applications of these technologies. To address this challenge, several pioneering works have explored diffusion transformer architectures for generating plausible video-synchronized audio, including Kling-foley, HunyuanVideo-foley and Thinksound. Distinct from existing works, we introduce an autoregressive audio generation architecture (DreamFoley) that harnesses the capabilities of large vision-language models (VLMs) to jointly model sequential interactions among video, audio, and text modalities. Our approach features a dual-visual encoder module that effectively captures both audio-aligned and text-aligned visual features. Additionally, we employ a Residual Vector Quantization audio tokenizer with a delay-pattern generation scheme to balance the trade-off between training efficiency and audio quality. Moreover, we introduce the classifier-free guidance strategy into VLMs to bootstrap generated audio quality. Furthermore, we establish an efficient data production pipeline to scale audio-video-text triple collection. Finally, extensive experiments are conducted to validate the effectiveness of our model, achieving promising performance across popular benchmarks. We hope that the findings in this study provide a strong foundation for future video-to-audio generation research. We also release the previously missing audio-visual textual descriptions from the public benchmark, aiming to facilitate subsequent researchers in conducting more convenient and effective evaluations and comparisons.
Authors:Tahira Kazimi, Connor Dunlop, Pinar Yanardag
Abstract:
While recent text-to-video (T2V) diffusion models have achieved impressive quality and prompt alignment, they often produce low-diversity outputs when sampling multiple videos from a single text prompt. We tackle this challenge by formulating it as a set-level policy optimization problem, with the goal of training a policy that can cover the diverse range of plausible outcomes for a given prompt. To address this, we introduce DPP-GRPO, a novel framework for diverse video generation that combines Determinantal Point Processes (DPPs) and Group Relative Policy Optimization (GRPO) theories to enforce explicit reward on diverse generations. Our objective turns diversity into an explicit signal by imposing diminishing returns on redundant samples (via DPP) while supplies groupwise feedback over candidate sets (via GRPO). Our framework is plug-and-play and model-agnostic, and encourages diverse generations across visual appearance, camera motions, and scene structure without sacrificing prompt fidelity or perceptual quality. We implement our method on WAN and CogVideoX, and show that our method consistently improves video diversity on state-of-the-art benchmarks such as VBench, VideoScore, and human preference studies. Moreover, we release our code and a new benchmark dataset of 30,000 diverse prompts to support future research.
Authors:Chieh-Yun Chen, Zhonghao Wang, Qi Chen, Zhifan Ye, Min Shi, Yue Zhao, Yinan Zhao, Hui Qu, Wei-An Lin, Yiru Shen, Ajinkya Kale, Irfan Essa, Humphrey Shi
Abstract:
Reinforcement learning from human feedback (RLHF) with reward models has advanced alignment of generative models to human aesthetic and perceptual preferences. However, jointly optimizing multiple rewards often incurs an alignment tax, improving one dimension while degrading others. To address this, we introduce two complementary methods: MapReduce LoRA and Reward-aware Token Embedding (RaTE). MapReduce LoRA trains preference-specific LoRA experts in parallel and iteratively merges them to refine a shared base model; RaTE learns reward-specific token embeddings that compose at inference for flexible preference control. Experiments on Text-to-Image generation (Stable Diffusion 3.5 Medium and FLUX.1-dev) show improvements of 36.1%, 4.6%, and 55.7%, and 32.7%, 4.3%, and 67.1% on GenEval, PickScore, and OCR, respectively. On Text-to-Video generation (HunyuanVideo), visual and motion quality improve by 48.1% and 90.0%, respectively. On the language task, Helpful Assistant, with Llama-2 7B, helpful and harmless improve by 43.4% and 136.7%, respectively. Our framework sets a new state-of-the-art multi-preference alignment recipe across modalities.
Authors:Yeji Song, Jaehyun Lee, Mijin Koo, JunHoo Lee, Nojun Kwak
Abstract:
Accurately preserving motion while editing a subject remains a core challenge in video editing tasks. Existing methods often face a trade-off between edit and motion fidelity, as they rely on motion representations that are either overfitted to the layout or only implicitly defined. To overcome this limitation, we revisit point-based motion representation. However, identifying meaningful points remains challenging without human input, especially across diverse video scenarios. To address this, we propose a novel motion representation, anchor tokens, that capture the most essential motion patterns by leveraging the rich prior of a video diffusion model. Anchor tokens encode video dynamics compactly through a small number of informative point trajectories and can be flexibly relocated to align with new subjects. This allows our method, Point-to-Point, to generalize across diverse scenarios. Extensive experiments demonstrate that anchor tokens lead to more controllable and semantically aligned video edits, achieving superior performance in terms of edit and motion fidelity.
Authors:Sijie Wang, Qiang Wang, Shaohuai Shi
Abstract:
Video generation has been advancing rapidly, and diffusion transformer (DiT) based models have demonstrated remark- able capabilities. However, their practical deployment is of- ten hindered by slow inference speeds and high memory con- sumption. In this paper, we propose a novel pipelining frame- work named PipeDiT to accelerate video generation, which is equipped with three main innovations. First, we design a pipelining algorithm (PipeSP) for sequence parallelism (SP) to enable the computation of latent generation and commu- nication among multiple GPUs to be pipelined, thus reduc- ing inference latency. Second, we propose DeDiVAE to de- couple the diffusion module and the variational autoencoder (VAE) module into two GPU groups, whose executions can also be pipelined to reduce memory consumption and infer- ence latency. Third, to better utilize the GPU resources in the VAE group, we propose an attention co-processing (Aco) method to further reduce the overall video generation latency. We integrate our PipeDiT into both OpenSoraPlan and Hun- yuanVideo, two state-of-the-art open-source video generation frameworks, and conduct extensive experiments on two 8- GPU systems. Experimental results show that, under many common resolution and timestep configurations, our PipeDiT achieves 1.06x to 4.02x speedups over OpenSoraPlan and HunyuanVideo.
Authors:Hao Jin, Haoran Xie
Abstract:
Integrating motion into static images not only enhances visual expressiveness but also creates a sense of immersion and temporal depth, establishing it as a longstanding and impactful theme in artistic expression. Fluid elements such as waterfall, river, and oceans are common features in landscape, but their complex dynamic characteristics pose significant challenges in modeling and controlling their motion within visual computing. Physics-based methods are often used in fluid animation to track particle movement. However, they are easily affected by boundary conditions. Recently, latent diffusion models have been applied to video generation tasks, demonstrating impressive capabilities in producing high-quality and temporally coherent results. However, it is challenging for the existing methods to animate fluid smooth and temporally consistent motion. To solve these issues, this paper introduces a framework for generating landscape videos by animating fluid in still images under the guidance of motion sketches. We propose a finetuned conditional latent diffusion model for generating motion field from user-provided sketches, which are subsequently integrated into a latent video diffusion model via a motion adapter to precisely control the fluid movement.
Authors:Victor Besnier, David Hurych, Andrei Bursuc, Eduardo Valle
Abstract:
Recent advances in image and video generation have raised significant interest from both academia and industry. A key challenge in this field is improving inference efficiency, as model size and the number of inference steps directly impact the commercial viability of generative models while also posing fundamental scientific challenges. A promising direction involves combining auto-regressive sequential token modeling with multi-token prediction per step, reducing inference time by up to an order of magnitude. However, predicting multiple tokens in parallel can introduce structural inconsistencies due to token incompatibilities, as capturing complex joint dependencies during training remains challenging. Traditionally, once tokens are sampled, there is no mechanism to backtrack and refine erroneous predictions. We propose a method for self-correcting image generation by iteratively refining sampled tokens. We achieve this with a novel training scheme that injects random tokens in the context, improving robustness and enabling token fixing during sampling. Our method preserves the efficiency benefits of parallel token prediction while significantly enhancing generation quality. We evaluate our approach on image generation using the ImageNet-256 and CIFAR-10 datasets, as well as on video generation with UCF-101 and NuScenes, demonstrating substantial improvements across both modalities.
Authors:Jin-Chuan Shi, Chengye Su, Jiajun Wang, Ariel Shamir, Miao Wang
Abstract:
Editing 4D scenes reconstructed from monocular videos based on text prompts is a valuable yet challenging task with broad applications in content creation and virtual environments. The key difficulty lies in achieving semantically precise edits in localized regions of complex, dynamic scenes, while preserving the integrity of unedited content. To address this, we introduce Mono4DEditor, a novel framework for flexible and accurate text-driven 4D scene editing. Our method augments 3D Gaussians with quantized CLIP features to form a language-embedded dynamic representation, enabling efficient semantic querying of arbitrary spatial regions. We further propose a two-stage point-level localization strategy that first selects candidate Gaussians via CLIP similarity and then refines their spatial extent to improve accuracy. Finally, targeted edits are performed on localized regions using a diffusion-based video editing model, with flow and scribble guidance ensuring spatial fidelity and temporal coherence. Extensive experiments demonstrate that Mono4DEditor enables high-quality, text-driven edits across diverse scenes and object types, while preserving the appearance and geometry of unedited areas and surpassing prior approaches in both flexibility and visual fidelity.
Authors:Wonjun Lee, Haon Park, Doehyeon Lee, Bumsub Ham, Suhyun Kim
Abstract:
Along with the rapid advancement of numerous Text-to-Video (T2V) models, growing concerns have emerged regarding their safety risks. While recent studies have explored vulnerabilities in models like LLMs, VLMs, and Text-to-Image (T2I) models through jailbreak attacks, T2V models remain largely unexplored, leaving a significant safety gap. To address this gap, we introduce SceneSplit, a novel black-box jailbreak method that works by fragmenting a harmful narrative into multiple scenes, each individually benign. This approach manipulates the generative output space, the abstract set of all potential video outputs for a given prompt, using the combination of scenes as a powerful constraint to guide the final outcome. While each scene individually corresponds to a wide and safe space where most outcomes are benign, their sequential combination collectively restricts this space, narrowing it to an unsafe region and significantly increasing the likelihood of generating a harmful video. This core mechanism is further enhanced through iterative scene manipulation, which bypasses the safety filter within this constrained unsafe region. Additionally, a strategy library that reuses successful attack patterns further improves the attack's overall effectiveness and robustness. To validate our method, we evaluate SceneSplit across 11 safety categories on T2V models. Our results show that it achieves a high average Attack Success Rate (ASR) of 77.2% on Luma Ray2, 84.1% on Hailuo, and 78.2% on Veo2, significantly outperforming the existing baseline. Through this work, we demonstrate that current T2V safety mechanisms are vulnerable to attacks that exploit narrative structure, providing new insights for understanding and improving the safety of T2V models.
Authors:Björn Möller, Zhengyang Li, Malte Stelzer, Thomas Graave, Fabian Bettels, Muaaz Ataya, Tim Fingscheidt
Abstract:
Recent successful video generation systems that predict and create realistic automotive driving scenes from short video inputs assign tokenization, future state prediction (world model), and video decoding to dedicated models. These approaches often utilize large models that require significant training resources, offer limited insight into design choices, and lack publicly available code and datasets. In this work, we address these deficiencies and present OpenViGA, an open video generation system for automotive driving scenes. Our contributions are: Unlike several earlier works for video generation, such as GAIA-1, we provide a deep analysis of the three components of our system by separate quantitative and qualitative evaluation: Image tokenizer, world model, video decoder. Second, we purely build upon powerful pre-trained open source models from various domains, which we fine-tune by publicly available automotive data (BDD100K) on GPU hardware at academic scale. Third, we build a coherent video generation system by streamlining interfaces of our components. Fourth, due to public availability of the underlying models and data, we allow full reproducibility. Finally, we also publish our code and models on Github. For an image size of 256x256 at 4 fps we are able to predict realistic driving scene videos frame-by-frame with only one frame of algorithmic latency.
Authors:Peihao Yan, Huacheng Zeng, Y. Thomas Hou
Abstract:
Open Radio Access Network (O-RAN) is a key architectural paradigm for 5G and beyond cellular networks, enabling the adoption of intelligent and efficient resource management solutions. Meanwhile, diffusion models have demonstrated remarkable capabilities in image and video generation, making them attractive for network optimization tasks. In this paper, we propose xDiff, a diffusion-based reinforcement learning(RL) framework for inter-cell interference management (ICIM) in O-RAN. We first formulate ICIM as a resource allocation optimization problem aimed at maximizing a user-defined reward function and then develop an online learning solution by integrating a diffusion model into an RL framework for near-real-time policy generation. Particularly, we introduce a novel metric, preference values, as the policy representation to enable efficient policy-guided resource allocation within O-RAN distributed units (DUs). We implement xDiff on a 5G testbed consisting of three cells and a set of smartphones in two small-cell scenarios. Experimental results demonstrate that xDiff outperforms state-of-the-art ICIM approaches, highlighting the potential of diffusion models for online optimization of O-RAN. Source code is available on GitHub [1].
Authors:Yuanxin Wei, Lansong Diao, Bujiao Chen, Shenggan Cheng, Zhengping Qian, Wenyuan Yu, Nong Xiao, Wei Lin, Jiangsu Du
Abstract:
Leveraging the Transformer architecture and the diffusion process, video DiT models have emerged as a dominant approach for high-quality video generation. However, their multi-step iterative denoising process incurs high computational cost and inference latency. Caching, a widely adopted optimization method in DiT models, leverages the redundancy in the diffusion process to skip computations in different granularities (e.g., step, cfg, block). Nevertheless, existing caching methods are limited to single-granularity strategies, struggling to balance generation quality and inference speed in a flexible manner. In this work, we propose MixCache, a training-free caching-based framework for efficient video DiT inference. It first distinguishes the interference and boundary between different caching strategies, and then introduces a context-aware cache triggering strategy to determine when caching should be enabled, along with an adaptive hybrid cache decision strategy for dynamically selecting the optimal caching granularity. Extensive experiments on diverse models demonstrate that, MixCache can significantly accelerate video generation (e.g., 1.94$\times$ speedup on Wan 14B, 1.97$\times$ speedup on HunyuanVideo) while delivering both superior generation quality and inference efficiency compared to baseline methods.
Authors:Youping Gu, Xiaolong Li, Yuhao Hu, Bohan Zhuang
Abstract:
Diffusion transformers currently lead the field in high-quality video generation, but their slow iterative denoising process and prohibitive quadratic attention costs for long sequences create significant inference bottlenecks. While both step distillation and sparse attention mechanisms have shown promise as independent acceleration strategies, effectively combining these approaches presents critical challenges -- training-free integration yields suboptimal results, while separately training sparse attention after step distillation requires prohibitively expensive high-quality video data. To overcome these limitations, we propose BLADE, an innovative data-free joint training framework that introduces: (1) an Adaptive Block-Sparse Attention (ASA) mechanism for dynamically generating content-aware sparsity masks to focus computation on salient spatiotemporal features, and (2) a sparsity-aware step distillation paradigm built upon Trajectory Distribution Matching (TDM) that directly incorporates sparsity into the distillation process rather than treating it as a separate compression step, with fast convergence. We validate BLADE on text-to-video models like CogVideoX-5B and Wan2.1-1.3B. Our framework demonstrates remarkable efficiency gains across different scales. On Wan2.1-1.3B, BLADE achieves a 14.10x end-to-end inference acceleration over a 50-step baseline. Moreover, on models such as CogVideoX-5B with short video sequence lengths, our framework delivers a robust 8.89x speedup. Crucially, the acceleration is accompanied by a consistent quality improvement. On the VBench-2.0 benchmark, BLADE boosts the score of CogVideoX-5B to 0.569 (from 0.534) and Wan2.1-1.3B to 0.570 (from 0.563), results that are further corroborated by superior ratings in human evaluations. Our code and model weights are publicly available at: http://ziplab.co/BLADE-Homepage/.
Authors:Yuang Zhang, Junqi Cheng, Haoyu Zhao, Jiaxi Gu, Fangyuan Zou, Zenghui Lu, Peng Shu
Abstract:
Over-the-shoulder dialogue videos are essential in films, short dramas, and advertisements, providing visual variety and enhancing viewers' emotional connection. Despite their importance, such dialogue scenes remain largely underexplored in video generation research. The main challenges include maintaining character consistency across different shots, creating a sense of spatial continuity, and generating long, multi-turn dialogues within limited computational budgets. Here, we present ShoulderShot, a framework that combines dual-shot generation with looping video, enabling extended dialogues while preserving character consistency. Our results demonstrate capabilities that surpass existing methods in terms of shot-reverse-shot layout, spatial continuity, and flexibility in dialogue length, thereby opening up new possibilities for practical dialogue video generation. Videos and comparisons are available at https://shouldershot.github.io.
Authors:Kunyang Li, Jeffrey A Chan Santiago, Sarinda Dhanesh Samarasinghe, Gaowen Liu, Mubarak Shah
Abstract:
To address the larger computation and storage requirements associated with large video datasets, video dataset distillation aims to capture spatial and temporal information in a significantly smaller dataset, such that training on the distilled data has comparable performance to training on all of the data. We propose GVD: Guiding Video Diffusion, the first diffusion-based video distillation method. GVD jointly distills spatial and temporal features, ensuring high-fidelity video generation across diverse actions while capturing essential motion information. Our method's diverse yet representative distillations significantly outperform previous state-of-the-art approaches on the MiniUCF and HMDB51 datasets across 5, 10, and 20 Instances Per Class (IPC). Specifically, our method achieves 78.29 percent of the original dataset's performance using only 1.98 percent of the total number of frames in MiniUCF. Additionally, it reaches 73.83 percent of the performance with just 3.30 percent of the frames in HMDB51. Experimental results across benchmark video datasets demonstrate that GVD not only achieves state-of-the-art performance but can also generate higher resolution videos and higher IPC without significantly increasing computational cost.
Authors:Xiang Fan, Xiaohang Sun, Kushan Thakkar, Zhu Liu, Vimal Bhat, Ranjay Krishna, Xiang Hao
Abstract:
Effectively handling temporal redundancy remains a key challenge in learning video models. Prevailing approaches often treat each set of frames independently, failing to effectively capture the temporal dependencies and redundancies inherent in videos. To address this limitation, we introduce RefTok, a novel reference-based tokenization method capable of capturing complex temporal dynamics and contextual information. Our method encodes and decodes sets of frames conditioned on an unquantized reference frame. When decoded, RefTok preserves the continuity of motion and the appearance of objects across frames. For example, RefTok retains facial details despite head motion, reconstructs text correctly, preserves small patterns, and maintains the legibility of handwriting from the context. Across 4 video datasets (K600, UCF-101, BAIR Robot Pushing, and DAVIS), RefTok significantly outperforms current state-of-the-art tokenizers (Cosmos and MAGVIT) and improves all evaluated metrics (PSNR, SSIM, LPIPS) by an average of 36.7% at the same or higher compression ratios. When a video generation model is trained using RefTok's latents on the BAIR Robot Pushing task, the generations not only outperform MAGVIT-B but the larger MAGVIT-L, which has 4x more parameters, across all generation metrics by an average of 27.9%.
Authors:Xiangfeng Wang, Xiao Li, Yadong Wei, Xueyu Song, Yang Song, Xiaoqiang Xia, Fangrui Zeng, Zaiyi Chen, Liu Liu, Gu Xu, Tong Xu
Abstract:
The rapid growth of online video content, especially on short video platforms, has created a growing demand for efficient video editing techniques that can condense long-form videos into concise and engaging clips. Existing automatic editing methods predominantly rely on textual cues from ASR transcripts and end-to-end segment selection, often neglecting the rich visual context and leading to incoherent outputs. In this paper, we propose a human-inspired automatic video editing framework (HIVE) that leverages multimodal narrative understanding to address these limitations. Our approach incorporates character extraction, dialogue analysis, and narrative summarization through multimodal large language models, enabling a holistic understanding of the video content. To further enhance coherence, we apply scene-level segmentation and decompose the editing process into three subtasks: highlight detection, opening/ending selection, and pruning of irrelevant content. To facilitate research in this area, we introduce DramaAD, a novel benchmark dataset comprising over 800 short drama episodes and 500 professionally edited advertisement clips. Experimental results demonstrate that our framework consistently outperforms existing baselines across both general and advertisement-oriented editing tasks, significantly narrowing the quality gap between automatic and human-edited videos.
Authors:Saemee Choi, Sohyun Jeong, Jaegul Choo, Jinhee Kim
Abstract:
We propose ImEdit, the first zero-shot, training-free video editing method conditioned on both images and text. The proposed method introduces $Ï$-start sampling and dilated dual masking to construct well-structured noise maps for coherent and accurate edits. We further present zero image guidance, a controllable negative prompt strategy, for visual fidelity. Both quantitative and qualitative evaluations show that our method outperforms state-of-the-art methods across all metrics.
Authors:Xingchang Huang, Ashish Kumar Singh, Florian Dubost, Cristina Nader Vasconcelos, Sakar Khattar, Liang Shi, Christian Theobalt, Cengiz Oztireli, Gurprit Singh
Abstract:
Stereo video generation has been gaining increasing attention with recent advancements in video diffusion models. However, most existing methods focus on generating 3D stereoscopic videos from monocular 2D videos. These approaches typically assume that the input monocular video is of high quality, making the task primarily about inpainting occluded regions in the warped video while preserving disoccluded areas. In this paper, we introduce a new pipeline that not only generates stereo videos but also enhances both left-view and right-view videos consistently with a single model. Our approach achieves this by fine-tuning the model on degraded data for restoration, as well as conditioning the model on warped masks for consistent stereo generation. As a result, our method can be fine-tuned on a relatively small synthetic stereo video datasets and applied to low-quality real-world videos, performing both stereo video generation and restoration. Experiments demonstrate that our method outperforms existing approaches both qualitatively and quantitatively in stereo video generation from low-resolution inputs.
Authors:Haojie Yu, Zhaonian Wang, Yihan Pan, Meng Cheng, Hao Yang, Chao Wang, Tao Xie, Xiaoming Xu, Xiaoming Wei, Xunliang Cai
Abstract:
Diffusion-based models have gained wide adoption in the virtual human generation due to their outstanding expressiveness. However, their substantial computational requirements have constrained their deployment in real-time interactive avatar applications, where stringent speed, latency, and duration requirements are paramount. We present a novel audio-driven portrait video generation framework based on the diffusion model to address these challenges. Firstly, we propose robust variable-length video generation to reduce the minimum time required to generate the initial video clip or state transitions, which significantly enhances the user experience. Secondly, we propose a consistency model training strategy for Audio-Image-to-Video to ensure real-time performance, enabling a fast few-step generation. Model quantization and pipeline parallelism are further employed to accelerate the inference speed. To mitigate the stability loss incurred by the diffusion process and model quantization, we introduce a new inference strategy tailored for long-duration video generation. These methods ensure real-time performance and low latency while maintaining high-fidelity output. Thirdly, we incorporate class labels as a conditional input to seamlessly switch between speaking, listening, and idle states. Lastly, we design a novel mechanism for fine-grained facial expression control to exploit our model's inherent capacity. Extensive experiments demonstrate that our approach achieves low-latency, fluid, and authentic two-way communication. On an NVIDIA RTX 4090D, our model achieves a maximum of 78 FPS at a resolution of 384x384 and 45 FPS at a resolution of 512x512, with an initial video generation latency of 140 ms and 215 ms, respectively.
Authors:Ssharvien Kumar Sivakumar, Yannik Frisch, Ghazal Ghazaei, Anirban Mukhopadhyay
Abstract:
Surgical simulation plays a pivotal role in training novice surgeons, accelerating their learning curve and reducing intra-operative errors. However, conventional simulation tools fall short in providing the necessary photorealism and the variability of human anatomy. In response, current methods are shifting towards generative model-based simulators. Yet, these approaches primarily focus on using increasingly complex conditioning for precise synthesis while neglecting the fine-grained human control aspect. To address this gap, we introduce SG2VID, the first diffusion-based video model that leverages Scene Graphs for both precise video synthesis and fine-grained human control. We demonstrate SG2VID's capabilities across three public datasets featuring cataract and cholecystectomy surgery. While SG2VID outperforms previous methods both qualitatively and quantitatively, it also enables precise synthesis, providing accurate control over tool and anatomy's size and movement, entrance of new tools, as well as the overall scene layout. We qualitatively motivate how SG2VID can be used for generative augmentation and present an experiment demonstrating its ability to improve a downstream phase detection task when the training set is extended with our synthetic videos. Finally, to showcase SG2VID's ability to retain human control, we interact with the Scene Graphs to generate new video samples depicting major yet rare intra-operative irregularities.
Authors:Xiaofan Li, Chenming Wu, Zhao Yang, Zhihao Xu, Dingkang Liang, Yumeng Zhang, Ji Wan, Jun Wang
Abstract:
This paper presents DriVerse, a generative model for simulating navigation-driven driving scenes from a single image and a future trajectory. Previous autonomous driving world models either directly feed the trajectory or discrete control signals into the generation pipeline, leading to poor alignment between the control inputs and the implicit features of the 2D base generative model, which results in low-fidelity video outputs. Some methods use coarse textual commands or discrete vehicle control signals, which lack the precision to guide fine-grained, trajectory-specific video generation, making them unsuitable for evaluating actual autonomous driving algorithms. DriVerse introduces explicit trajectory guidance in two complementary forms: it tokenizes trajectories into textual prompts using a predefined trend vocabulary for seamless language integration, and converts 3D trajectories into 2D spatial motion priors to enhance control over static content within the driving scene. To better handle dynamic objects, we further introduce a lightweight motion alignment module, which focuses on the inter-frame consistency of dynamic pixels, significantly enhancing the temporal coherence of moving elements over long sequences. With minimal training and no need for additional data, DriVerse outperforms specialized models on future video generation tasks across both the nuScenes and Waymo datasets. The code and models will be released to the public.
Authors:Chenyu Zhang, Daniil Cherniavskii, Andrii Zadaianchuk, Antonios Tragoudaras, Antonios Vozikis, Thijmen Nijdam, Derck W. E. Prinzhorn, Mark Bodracska, Nicu Sebe, Efstratios Gavves
Abstract:
Recent advances in image and video generation raise hopes that these models possess world modeling capabilities, the ability to generate realistic, physically plausible videos. This could revolutionize applications in robotics, autonomous driving, and scientific simulation. However, before treating these models as world models, we must ask: Do they adhere to physical conservation laws? To answer this, we introduce Morpheus, a benchmark for evaluating video generation models on physical reasoning. It features 80 real-world videos capturing physical phenomena, guided by conservation laws. Since artificial generations lack ground truth, we assess physical plausibility using physics-informed metrics evaluated with respect to infallible conservation laws known per physical setting, leveraging advances in physics-informed neural networks and vision-language foundation models. Our findings reveal that even with advanced prompting and video conditioning, current models struggle to encode physical principles despite generating aesthetically pleasing videos. All data, leaderboard, and code are open-sourced at our project page.
Authors:Jangho Park, Taesung Kwon, Jong Chul Ye
Abstract:
Recently, multi-view or 4D video generation has emerged as a significant research topic. Nonetheless, recent approaches to 4D generation still struggle with fundamental limitations, as they primarily rely on harnessing multiple video diffusion models with additional training or compute-intensive training of a full 4D diffusion model with limited real-world 4D data and large computational costs. To address these challenges, here we propose the first training-free 4D video generation method that leverages the off-the-shelf video diffusion models to generate multi-view videos from a single input video. Our approach consists of two key steps: (1) By designating the edge frames in the spatio-temporal sampling grid as key frames, we first synthesize them using a video diffusion model, leveraging a depth-based warping technique for guidance. This approach ensures structural consistency across the generated frames, preserving spatial and temporal coherence. (2) We then interpolate the remaining frames using a video diffusion model, constructing a fully populated and temporally coherent sampling grid while preserving spatial and temporal consistency. Through this approach, we extend a single video into a multi-view video along novel camera trajectories while maintaining spatio-temporal consistency. Our method is training-free and fully utilizes an off-the-shelf video diffusion model, offering a practical and effective solution for multi-view video generation.
Authors:Zihao Liu, Xiaoyu Wu, Jianqin Wu, Xuxu Wang, Linlin Yang
Abstract:
Video anomaly detection models aim to detect anomalies that deviate from what is expected. In open-world scenarios, the expected events may change as requirements change. For example, not wearing a mask is considered abnormal during a flu outbreak but normal otherwise. However, existing methods assume that the definition of anomalies is invariable, and thus are not applicable to the open world. To address this, we propose a novel open-world VAD paradigm with variable definitions, allowing guided detection through user-provided natural language at inference time. This paradigm necessitates establishing a robust mapping from video and textual definition to anomaly score. Therefore, we propose LaGoVAD (Language-guided Open-world VAD), a model that dynamically adapts anomaly definitions through two regularization strategies: diversifying the relative durations of anomalies via dynamic video synthesis, and enhancing feature robustness through contrastive learning with negative mining. Training such adaptable models requires diverse anomaly definitions, but existing datasets typically provide given labels without semantic descriptions. To bridge this gap, we collect PreVAD (Pre-training Video Anomaly Dataset), the largest and most diverse video anomaly dataset to date, featuring 35,279 annotated videos with multi-level category labels and descriptions that explicitly define anomalies. Zero-shot experiments on seven datasets demonstrate SOTA performance. Data and code will be released.
Authors:Chenyu Li, Oscar Michel, Xichen Pan, Sainan Liu, Mike Roberts, Saining Xie
Abstract:
Large-scale pre-trained video generation models excel in content creation but are not reliable as physically accurate world simulators out of the box. This work studies the process of post-training these models for accurate world modeling through the lens of the simple, yet fundamental, physics task of modeling object freefall. We show state-of-the-art video generation models struggle with this basic task, despite their visually impressive outputs. To remedy this problem, we find that fine-tuning on a relatively small amount of simulated videos is effective in inducing the dropping behavior in the model, and we can further improve results through a novel reward modeling procedure we introduce. Our study also reveals key limitations of post-training in generalization and distribution modeling. Additionally, we release a benchmark for this task that may serve as a useful diagnostic tool for tracking physical accuracy in large-scale video generative model development.
Authors:Youngjoon Jeong, Junha Chun, Soonwoo Cha, Taesup Kim
Abstract:
A world model is essential for an agent to predict the future and plan in domains such as autonomous driving and robotics. To achieve this, recent advancements have focused on video generation, which has gained significant attention due to the impressive success of diffusion models. However, these models require substantial computational resources. To address these challenges, we propose a world model leveraging object-centric representation space using slot attention, guided by language instructions. Our model perceives the current state as an object-centric representation and predicts future states in this representation space conditioned on natural language instructions. This approach results in a more compact and computationally efficient model compared to diffusion-based generative alternatives. Furthermore, it flexibly predicts future states based on language instructions, and offers a significant advantage in manipulation tasks where object recognition is crucial. In this paper, we demonstrate that our latent predictive world model surpasses generative world models in visuo-linguo-motor control tasks, achieving superior sample and computation efficiency. We also investigate the generalization performance of the proposed method and explore various strategies for predicting actions using object-centric representations.
Authors:Yuna Kato, Mariko Isogawa, Shohei Mori, Hideo Saito, Hiroki Kajita, Yoshifumi Takatsume
Abstract:
Occlusion-free video generation is challenging due to surgeons' obstructions in the camera field of view. Prior work has addressed this issue by installing multiple cameras on a surgical light, hoping some cameras will observe the surgical field with less occlusion. However, this special camera setup poses a new imaging challenge since camera configurations can change every time surgeons move the light, and manual image alignment is required. This paper proposes an algorithm to automate this alignment task. The proposed method detects frames where the lighting system moves, realigns them, and selects the camera with the least occlusion. This algorithm results in a stabilized video with less occlusion. Quantitative results show that our method outperforms conventional approaches. A user study involving medical doctors also confirmed the superiority of our method.
Authors:Sahil Goyal, Debapriya Tula, Gagan Jain, Pradeep Shenoy, Prateek Jain, Sujoy Paul
Abstract:
Recent advances in visual generation have made significant strides in producing content of exceptional quality. However, most methods suffer from a fundamental problem - a bottleneck of inference computational efficiency. Most of these algorithms involve multiple passes over a transformer model to generate tokens or denoise inputs. However, the model size is kept consistent throughout all iterations, which makes it computationally expensive. In this work, we aim to address this issue primarily through two key ideas - (a) not all parts of the generation process need equal compute, and we design a decode time model scaling schedule to utilize compute effectively, and (b) we can cache and reuse some of the computation. Combining these two ideas leads to using smaller models to process more tokens while large models process fewer tokens. These different-sized models do not increase the parameter size, as they share parameters. We rigorously experiment with ImageNet256$\times$256 , UCF101, and Kinetics600 to showcase the efficacy of the proposed method for image/video generation and frame prediction. Our experiments show that with almost $3\times$ less compute than baseline, our model obtains competitive performance.
Authors:Meenakshi Krishnan, Liam Fowl, Ramani Duraiswami
Abstract:
Differentiable 3D Gaussian splatting has emerged as an efficient and flexible rendering technique for representing complex scenes from a collection of 2D views and enabling high-quality real-time novel-view synthesis. However, its reliance on photometric losses can lead to imprecisely reconstructed geometry and extracted meshes, especially in regions with high curvature or fine detail. We propose a novel regularization method using the gradients of a signed distance function estimated from the Gaussians, to improve the quality of rendering while also extracting a surface mesh. The regularizing normal supervision facilitates better rendering and mesh reconstruction, which is crucial for downstream applications in video generation, animation, AR-VR and gaming. We demonstrate the effectiveness of our approach on datasets such as Mip-NeRF360, Tanks and Temples, and Deep-Blending. Our method scores higher on photorealism metrics compared to other mesh extracting rendering methods without compromising mesh quality.
Authors:Haocheng Huang, Jiaxin Chen, Jinyang Guo, Ruiyi Zhan, Yunhong Wang
Abstract:
Diffusion models have achieved remarkable success in the image and video generation tasks. Nevertheless, they often require a large amount of memory and time overhead during inference, due to the complex network architecture and considerable number of timesteps for iterative diffusion. Recently, the post-training quantization (PTQ) technique has proved a promising way to reduce the inference cost by quantizing the float-point operations to low-bit ones. However, most of them fail to tackle with the large variations in the distribution of activations across distinct channels and timesteps, as well as the inconsistent of input between quantization and inference on diffusion models, thus leaving much room for improvement. To address the above issues, we propose a novel method dubbed Timestep-Channel Adaptive Quantization for Diffusion Models (TCAQ-DM). Specifically, we develop a timestep-channel joint reparameterization (TCR) module to balance the activation range along both the timesteps and channels, facilitating the successive reconstruction procedure. Subsequently, we employ a dynamically adaptive quantization (DAQ) module that mitigate the quantization error by selecting an optimal quantizer for each post-Softmax layers according to their specific types of distributions. Moreover, we present a progressively aligned reconstruction (PAR) strategy to mitigate the bias caused by the input mismatch. Extensive experiments on various benchmarks and distinct diffusion models demonstrate that the proposed method substantially outperforms the state-of-the-art approaches in most cases, especially yielding comparable FID metrics to the full precision model on CIFAR-10 in the W6A6 setting, while enabling generating available images in the W4A4 settings.
Authors:Kai Jiang, Jiaxing Huang
Abstract:
Autoregressive models have demonstrated great performance in natural language processing (NLP) with impressive scalability, adaptability and generalizability. Inspired by their notable success in NLP field, autoregressive models have been intensively investigated recently for computer vision, which perform next-token predictions by representing visual data as visual tokens and enables autoregressive modelling for a wide range of vision tasks, ranging from visual generation and visual understanding to the very recent multimodal generation that unifies visual generation and understanding with a single autoregressive model. This paper provides a systematic review of vision autoregressive models, including the development of a taxonomy of existing methods and highlighting their major contributions, strengths, and limitations, covering various vision tasks such as image generation, video generation, image editing, motion generation, medical image analysis, 3D generation, robotic manipulation, unified multimodal generation, etc. Besides, we investigate and analyze the latest advancements in autoregressive models, including thorough benchmarking and discussion of existing methods across various evaluation datasets. Finally, we outline key challenges and promising directions for future research, offering a roadmap to guide further advancements in vision autoregressive models.
Authors:Zhang Wan, Sheng Tang, Jiawei Wei, Ruize Zhang, Juan Cao
Abstract:
In recent years, diffusion models have achieved tremendous success in the field of video generation, with controllable video generation receiving significant attention. However, existing control methods still face two limitations: Firstly, control conditions (such as depth maps, 3D Mesh) are difficult for ordinary users to obtain directly. Secondly, it's challenging to drive multiple objects through complex motions with multiple trajectories simultaneously. In this paper, we introduce DragEntity, a video generation model that utilizes entity representation for controlling the motion of multiple objects. Compared to previous methods, DragEntity offers two main advantages: 1) Our method is more user-friendly for interaction because it allows users to drag entities within the image rather than individual pixels. 2) We use entity representation to represent any object in the image, and multiple objects can maintain relative spatial relationships. Therefore, we allow multiple trajectories to control multiple objects in the image with different levels of complexity simultaneously. Our experiments validate the effectiveness of DragEntity, demonstrating its excellent performance in fine-grained control in video generation.
Authors:Mingyang Xie, Numair Khan, Tianfu Wang, Naina Dhingra, Seonghyeon Nam, Haitao Yang, Zhuo Hui, Christopher Metzler, Andrea Vedaldi, Hamed Pirsiavash, Lei Luo
Abstract:
Given a monocular video, the goal of video re-rendering is to generate views of the scene from a novel camera trajectory. Existing methods face two distinct challenges. Geometrically unconditioned models lack spatial awareness, leading to drift and deformation under viewpoint changes. On the other hand, geometrically-conditioned models depend on estimated depth and explicit reconstruction, making them susceptible to depth inaccuracies and calibration errors. We propose to address these challenges by using the implicit geometric knowledge embedded in the latent space of a large 4D reconstruction model to condition the video generation process. These latents capture scene structure in a continuous space without explicit reconstruction. Therefore, they provide a flexible representation that allows the pretrained diffusion prior to regularize errors more effectively. By jointly conditioning on these latents and source camera poses, we demonstrate that our model achieves state-of-the-art results on the video re-rendering task. Project webpage is https://lavr-4d-scene-rerender.github.io/
Authors:Tong Shao, Yusen Fu, Guoying Sun, Jingde Kong, Zhuotao Tian, Jingyong Su
Abstract:
Although Diffusion Transformer (DiT) has emerged as a predominant architecture for image and video generation, its iterative denoising process results in slow inference, which hinders broader applicability and development. Caching-based methods achieve training-free acceleration, while suffering from considerable computational error. Existing methods typically incorporate error correction strategies such as pruning or prediction to mitigate it. However, their fixed caching strategy fails to adapt to the complex error variations during denoising, which limits the full potential of error correction. To tackle this challenge, we propose a novel fidelity-optimization plugin for existing error correction methods via cumulative error minimization, named CEM. CEM predefines the error to characterize the sensitivity of model to acceleration jointly influenced by timesteps and cache intervals. Guided by this prior, we formulate a dynamic programming algorithm with cumulative error approximation for strategy optimization, which achieves the caching error minimization, resulting in a substantial improvement in generation fidelity. CEM is model-agnostic and exhibits strong generalization, which is adaptable to arbitrary acceleration budgets. It can be seamlessly integrated into existing error correction frameworks and quantized models without introducing any additional computational overhead. Extensive experiments conducted on nine generation models and quantized methods across three tasks demonstrate that CEM significantly improves generation fidelity of existing acceleration models, and outperforms the original generation performance on FLUX.1-dev, PixArt-$α$, StableDiffusion1.5 and Hunyuan. The code will be made publicly available.
Authors:Xavier Thomas, Youngsun Lim, Ananya Srinivasan, Audrey Zheng, Deepti Ghadiyaram
Abstract:
Despite rapid advances in video generative models, robust metrics for evaluating visual and temporal correctness of complex human actions remain elusive. Critically, existing pure-vision encoders and Multimodal Large Language Models (MLLMs) are strongly appearance-biased, lack temporal understanding, and thus struggle to discern intricate motion dynamics and anatomical implausibilities in generated videos. We tackle this gap by introducing a novel evaluation metric derived from a learned latent space of real-world human actions. Our method first captures the nuances, constraints, and temporal smoothness of real-world motion by fusing appearance-agnostic human skeletal geometry features with appearance-based features. We posit that this combined feature space provides a robust representation of action plausibility. Given a generated video, our metric quantifies its action quality by measuring the distance between its underlying representations and this learned real-world action distribution. For rigorous validation, we develop a new multi-faceted benchmark specifically designed to probe temporally challenging aspects of human action fidelity. Through extensive experiments, we show that our metric achieves substantial improvement of more than 68% compared to existing state-of-the-art methods on our benchmark, performs competitively on established external benchmarks, and has a stronger correlation with human perception. Our in-depth analysis reveals critical limitations in current video generative models and establishes a new standard for advanced research in video generation.
Authors:Ziyang Liu, Kevin Valencia, Justin Cui
Abstract:
While Text-To-Video (T2V) models have advanced rapidly, they continue to struggle with generating legible and coherent text within videos. In particular, existing models often fail to render correctly even short phrases or words and previous attempts to address this problem are computationally expensive and not suitable for video generation. In this work, we investigate a lightweight approach to improve T2V diffusion models using synthetic supervision. We first generate text-rich images using a text-to-image (T2I) diffusion model, then animate them into short videos using a text-agnostic image-to-video (I2v) model. These synthetic video-prompt pairs are used to fine-tune Wan2.1, a pre-trained T2V model, without any architectural changes. Our results show improvement in short-text legibility and temporal consistency with emerging structural priors for longer text. These findings suggest that curated synthetic data and weak supervision offer a practical path toward improving textual fidelity in T2V generation.
Authors:Aaron Appelle, Jerome P. Lynch
Abstract:
Large-scale video generation models have demonstrated high visual realism in diverse contexts, spurring interest in their potential as general-purpose world simulators. Existing benchmarks focus on individual subjects rather than scenes with multiple interacting people. However, the plausibility of multi-agent dynamics in generated videos remains unverified. We propose a rigorous evaluation protocol to benchmark text-to-video (T2V) and image-to-video (I2V) models as implicit simulators of pedestrian dynamics. For I2V, we leverage start frames from established datasets to enable comparison with a ground truth video dataset. For T2V, we develop a prompt suite to explore diverse pedestrian densities and interactions. A key component is a method to reconstruct 2D bird's-eye view trajectories from pixel-space without known camera parameters. Our analysis reveals that leading models have learned surprisingly effective priors for plausible multi-agent behavior. However, failure modes like merging and disappearing people highlight areas for future improvement.
Authors:Nilay Kumar, Priyansh Bhandari, G. Maragatham
Abstract:
Text-to-video (T2V) generation technology holds potential to transform multiple domains such as education, marketing, entertainment, and assistive technologies for individuals with visual or reading comprehension challenges, by creating coherent visual content from natural language prompts. From its inception, the field has advanced from adversarial models to diffusion-based models, yielding higher-fidelity, temporally consistent outputs. Yet challenges persist, such as alignment, long-range coherence, and computational efficiency. Addressing this evolving landscape, we present a comprehensive survey of text-to-video generative models, tracing their development from early GANs and VAEs to hybrid Diffusion-Transformer (DiT) architectures, detailing how these models work, what limitations they addressed in their predecessors, and why shifts toward new architectural paradigms were necessary to overcome challenges in quality, coherence, and control. We provide a systematic account of the datasets, which the surveyed text-to-video models were trained and evaluated on, and, to support reproducibility and assess the accessibility of training such models, we detail their training configurations, including their hardware specifications, GPU counts, batch sizes, learning rates, optimizers, epochs, and other key hyperparameters. Further, we outline the evaluation metrics commonly used for evaluating such models and present their performance across standard benchmarks, while also discussing the limitations of these metrics and the emerging shift toward more holistic, perception-aligned evaluation strategies. Finally, drawing from our analysis, we outline the current open challenges and propose a few promising future directions, laying out a perspective for future researchers to explore and build upon in advancing T2V research and applications.
Authors:Shira Schiber, Ofir Lindenbaum, Idan Schwartz
Abstract:
Recent advances in generative video models have enabled the creation of high-quality videos based on natural language prompts. However, these models frequently lack fine-grained temporal control, meaning they do not allow users to specify when particular visual elements should appear within a generated sequence. In this work, we introduce TempoControl, a method that allows for temporal alignment of visual concepts during inference, without requiring retraining or additional supervision. TempoControl utilizes cross-attention maps, a key component of text-to-video diffusion models, to guide the timing of concepts through a novel optimization approach. Our method steers attention using three complementary principles: aligning its temporal shape with a control signal (via correlation), amplifying it where visibility is needed (via energy), and maintaining spatial focus (via entropy). TempoControl allows precise control over timing while ensuring high video quality and diversity. We demonstrate its effectiveness across various video generation applications, including temporal reordering for single and multiple objects, as well as action and audio-aligned generation.
Authors:Daniel Saragih, Deyu Cao, Tejas Balaji
Abstract:
Diffusion and flow-based generative models have achieved remarkable success in domains such as image synthesis, video generation, and natural language modeling. In this work, we extend these advances to weight space learning by leveraging recent techniques to incorporate structural priors derived from optimization dynamics. Central to our approach is modeling the trajectory induced by gradient descent as a trajectory inference problem. We unify several trajectory inference techniques under the framework of gradient flow matching, providing a theoretical framework for treating optimization paths as inductive bias. We further explore architectural and algorithmic choices, including reward fine-tuning by adjoint matching, the use of autoencoders for latent weight representation, conditioning on task-specific context data, and adopting informative source distributions such as Kaiming uniform. Experiments demonstrate that our method matches or surpasses baselines in generating in-distribution weights, improves initialization for downstream training, and supports fine-tuning to enhance performance. Finally, we illustrate a practical application in safety-critical systems: detecting harmful covariate shifts, where our method outperforms the closest comparable baseline.
Authors:Ziye Li, Hao Luo, Xincheng Shuai, Henghui Ding
Abstract:
Recent advancements in video generation, particularly in diffusion models, have driven notable progress in text-to-video (T2V) and image-to-video (I2V) synthesis. However, challenges remain in effectively integrating dynamic motion signals and flexible spatial constraints. Existing T2V methods typically rely on text prompts, which inherently lack precise control over the spatial layout of generated content. In contrast, I2V methods are limited by their dependence on real images, which restricts the editability of the synthesized content. Although some methods incorporate ControlNet to introduce image-based conditioning, they often lack explicit motion control and require computationally expensive training. To address these limitations, we propose AnyI2V, a training-free framework that animates any conditional images with user-defined motion trajectories. AnyI2V supports a broader range of modalities as the conditional image, including data types such as meshes and point clouds that are not supported by ControlNet, enabling more flexible and versatile video generation. Additionally, it supports mixed conditional inputs and enables style transfer and editing via LoRA and text prompts. Extensive experiments demonstrate that the proposed AnyI2V achieves superior performance and provides a new perspective in spatial- and motion-controlled video generation. Code is available at https://henghuiding.com/AnyI2V/.
Authors:Tao Hu, Haoyang Peng, Xiao Liu, Yuewen Ma
Abstract:
Generating high-quality camera-controllable videos from monocular input is a challenging task, particularly under extreme viewpoint. Existing methods often struggle with geometric inconsistencies and occlusion artifacts in boundaries, leading to degraded visual quality. In this paper, we introduce EX-4D, a novel framework that addresses these challenges through a Depth Watertight Mesh representation. The representation serves as a robust geometric prior by explicitly modeling both visible and occluded regions, ensuring geometric consistency in extreme camera pose. To overcome the lack of paired multi-view datasets, we propose a simulated masking strategy that generates effective training data only from monocular videos. Additionally, a lightweight LoRA-based video diffusion adapter is employed to synthesize high-quality, physically consistent, and temporally coherent videos. Extensive experiments demonstrate that EX-4D outperforms state-of-the-art methods in terms of physical consistency and extreme-view quality, enabling practical 4D video generation.
Authors:Xiaojuan Wang, Aleksander Holynski, Brian Curless, Ira Kemelmacher, Steve Seitz
Abstract:
We present a framework for generating music-synchronized, choreography aware animal dance videos. Our framework introduces choreography patterns -- structured sequences of motion beats that define the long-range structure of a dance -- as a novel high-level control signal for dance video generation. These patterns can be automatically estimated from human dance videos. Starting from a few keyframes representing distinct animal poses, generated via text-to-image prompting or GPT-4o, we formulate dance synthesis as a graph optimization problem that seeks the optimal keyframe structure to satisfy a specified choreography pattern of beats. We also introduce an approach for mirrored pose image generation, essential for capturing symmetry in dance. In-between frames are synthesized using an video diffusion model. With as few as six input keyframes, our method can produce up to 30 seconds dance videos across a wide range of animals and music tracks.
Authors:Renda Li, Xiaohua Qi, Qiang Ling, Jun Yu, Ziyi Chen, Peng Chang, Mei HanJing Xiao
Abstract:
Audio-driven cospeech video generation typically involves two stages: speech-to-gesture and gesture-to-video. While significant advances have been made in speech-to-gesture generation, synthesizing natural expressions and gestures remains challenging in gesture-to-video systems. In order to improve the generation effect, previous works adopted complex input and training strategies and required a large amount of data sets for pre-training, which brought inconvenience to practical applications. We propose a simple one-stage training method and a temporal inference method based on a diffusion model to synthesize realistic and continuous gesture videos without the need for additional training of temporal modules.The entire model makes use of existing pre-trained weights, and only a few thousand frames of data are needed for each character at a time to complete fine-tuning. Built upon the video generator, we introduce a new audio-to-video pipeline to synthesize co-speech videos, using 2D human skeleton as the intermediate motion representation. Our experiments show that our method outperforms existing GAN-based and diffusion-based methods.
Authors:Yehang Zhang, Xinli Xu, Xiaojie Xu, Li Liu, Yingcong Chen
Abstract:
Video-to-audio synthesis, which generates synchronized audio for visual content, critically enhances viewer immersion and narrative coherence in film and interactive media. However, video-to-audio dubbing for long-form content remains an unsolved challenge due to dynamic semantic shifts, temporal misalignment, and the absence of dedicated datasets. While existing methods excel in short videos, they falter in long scenarios (e.g., movies) due to fragmented synthesis and inadequate cross-scene consistency. We propose LVAS-Agent, a novel multi-agent framework that emulates professional dubbing workflows through collaborative role specialization. Our approach decomposes long-video synthesis into four steps including scene segmentation, script generation, sound design and audio synthesis. Central innovations include a discussion-correction mechanism for scene/script refinement and a generation-retrieval loop for temporal-semantic alignment. To enable systematic evaluation, we introduce LVAS-Bench, the first benchmark with 207 professionally curated long videos spanning diverse scenarios. Experiments demonstrate superior audio-visual alignment over baseline methods. Project page: https://lvas-agent.github.io
Authors:Zhihao Zhan, Wang Pang, Xiang Zhu, Yechao Bai
Abstract:
In this work, we rethink the approach to video super-resolution by introducing a method based on the Diffusion Posterior Sampling framework, combined with an unconditional video diffusion transformer operating in latent space. The video generation model, a diffusion transformer, functions as a space-time model. We argue that a powerful model, which learns the physics of the real world, can easily handle various kinds of motion patterns as prior knowledge, thus eliminating the need for explicit estimation of optical flows or motion parameters for pixel alignment. Furthermore, a single instance of the proposed video diffusion transformer model can adapt to different sampling conditions without re-training. Empirical results on synthetic and real-world datasets illustrate the feasibility of diffusion-based, alignment-free video super-resolution.
Authors:Lifan Jiang, Shuang Chen, Boxi Wu, Xiaotong Guan, Jiahui Zhang
Abstract:
With the advancement of generative artificial intelligence, previous studies have achieved the task of generating aesthetic images from hand-drawn sketches, fulfilling the public's needs for drawing. However, these methods are limited to static images and lack the ability to control video animation generation using hand-drawn sketches. To address this gap, we propose VidSketch, the first method capable of generating high-quality video animations directly from any number of hand-drawn sketches and simple text prompts, bridging the divide between ordinary users and professional artists. Specifically, our method introduces a Level-Based Sketch Control Strategy to automatically adjust the guidance strength of sketches during the generation process, accommodating users with varying drawing skills. Furthermore, a TempSpatial Attention mechanism is designed to enhance the spatiotemporal consistency of generated video animations, significantly improving the coherence across frames. You can find more detailed cases on our official website.
Authors:Jiangchuan Wei, Shiyue Yan, Wenfeng Lin, Boyuan Liu, Renjie Chen, Mingyu Guo
Abstract:
Recent advancements in video generation have significantly impacted various downstream applications, particularly in identity-preserving video generation (IPT2V). However, existing methods struggle with "copy-paste" artifacts and low similarity issues, primarily due to their reliance on low-level facial image information. This dependence can result in rigid facial appearances and artifacts reflecting irrelevant details. To address these challenges, we propose EchoVideo, which employs two key strategies: (1) an Identity Image-Text Fusion Module (IITF) that integrates high-level semantic features from text, capturing clean facial identity representations while discarding occlusions, poses, and lighting variations to avoid the introduction of artifacts; (2) a two-stage training strategy, incorporating a stochastic method in the second phase to randomly utilize shallow facial information. The objective is to balance the enhancements in fidelity provided by shallow features while mitigating excessive reliance on them. This strategy encourages the model to utilize high-level features during training, ultimately fostering a more robust representation of facial identities. EchoVideo effectively preserves facial identities and maintains full-body integrity. Extensive experiments demonstrate that it achieves excellent results in generating high-quality, controllability and fidelity videos.
Authors:Jessie J. Smith, Wesley Hanwen Deng, William H. Smith, Maarten Sap, Nicole DeCario, Jesse Dodge
Abstract:
The Generative AI Ethics Playbook provides guidance for identifying and mitigating risks of machine learning systems across various domains, including natural language processing, computer vision, and generative AI. This playbook aims to assist practitioners in diagnosing potential harms that may arise during the design, development, and deployment of datasets and models. It offers concrete strategies and resources for mitigating these risks, to help minimize negative impacts on users and society. Drawing on current best practices in both research and ethical considerations, this playbook aims to serve as a comprehensive resource for AI/ML practitioners. The intended audience of this playbook includes machine learning researchers, engineers, and practitioners who are involved in the creation and implementation of generative and multimodal models (e.g., text-to-text, image-to-image, text-to-image, text-to-video).
Specifically, we provide transparency/documentation checklists, topics of interest, common questions, examples of harms through case studies, and resources and strategies to mitigate harms throughout the Generative AI lifecycle. This playbook was made collaboratively over the course of 16 months through extensive literature review of over 100 resources and peer-reviewed articles, as well as through an initial group brainstorming session with 18 interdisciplinary AI ethics experts from industry and academia, and with additional feedback from 8 experts (5 of whom were in the initial brainstorming session).
We note that while this playbook provides examples, discussion, and harm mitigation strategies, research in this area is ongoing. Our playbook aims to be a practically useful survey, taking a high-level view rather than aiming for covering the entire existing body of research.
Authors:Desen Sun, Henry Tian, Tim Lu, Sihang Liu
Abstract:
Text-to-Video applications receive increasing attention from the public. Among these, diffusion models have emerged as the most prominent approach, offering impressive quality in visual content generation. However, it still suffers from substantial computational complexity, often requiring several minutes to generate a single video. While prior research has addressed the computational overhead in text-to-image diffusion models, the techniques developed are not directly suitable for video diffusion models due to the significantly larger cache requirements and enhanced computational demands associated with video generation.
We present FlexCache, a flexible approximate cache system that addresses the challenges in two main designs. First, we compress the caches before saving them to storage. Our compression strategy can reduce 6.7 times consumption on average. Then we find that the approximate cache system can achieve higher hit rate and computation savings by decoupling the object and background. We further design a tailored cache replacement policy to support the two techniques mentioned above better. Through our evaluation, FlexCache reaches 1.26 times higher throughput and 25% lower cost compared to the state-of-the-art diffusion approximate cache system.
Authors:Jinzhi Wang, Qinfeng Song, Lidong Qian, Haozhou Li, Qinke Peng, Jiangbo Zhang
Abstract:
The reliability of substation equipment is crucial to the stability of power systems, but traditional fault analysis methods heavily rely on manual expertise, limiting their effectiveness in handling complex and large-scale data. This paper proposes a substation equipment fault analysis method based on a multimodal large language model (MLLM). We developed a database containing 40,000 entries, including images, defect labels, and analysis reports, and used an image-to-video generation model for data augmentation. Detailed fault analysis reports were generated using GPT-4. Based on this database, we developed SubstationAI, the first model dedicated to substation fault analysis, and designed a fault diagnosis knowledge base along with knowledge enhancement methods. Experimental results show that SubstationAI significantly outperforms existing models, such as GPT-4, across various evaluation metrics, demonstrating higher accuracy and practicality in fault cause analysis, repair suggestions, and preventive measures, providing a more advanced solution for substation equipment fault analysis.
Authors:Yuhang Zhang, Yuan Zhou, Zeyu Liu, Yuxuan Cai, Qiuyue Wang, Aidong Men, Huan Yang
Abstract:
Current methods for generating human motion videos rely on extracting pose sequences from reference videos, which restricts flexibility and control. Additionally, due to the limitations of pose detection techniques, the extracted pose sequences can sometimes be inaccurate, leading to low-quality video outputs. We introduce a novel task aimed at generating human motion videos solely from reference images and natural language. This approach offers greater flexibility and ease of use, as text is more accessible than the desired guidance videos. However, training an end-to-end model for this task requires millions of high-quality text and human motion video pairs, which are challenging to obtain. To address this, we propose a new framework called Fleximo, which leverages large-scale pre-trained text-to-3D motion models. This approach is not straightforward, as the text-generated skeletons may not consistently match the scale of the reference image and may lack detailed information. To overcome these challenges, we introduce an anchor point based rescale method and design a skeleton adapter to fill in missing details and bridge the gap between text-to-motion and motion-to-video generation. We also propose a video refinement process to further enhance video quality. A large language model (LLM) is employed to decompose natural language into discrete motion sequences, enabling the generation of motion videos of any desired length. To assess the performance of Fleximo, we introduce a new benchmark called MotionBench, which includes 400 videos across 20 identities and 20 motions. We also propose a new metric, MotionScore, to evaluate the accuracy of motion following. Both qualitative and quantitative results demonstrate that our method outperforms existing text-conditioned image-to-video generation methods. All code and model weights will be made publicly available.
Authors:Gaurav Rai, Ojaswa Sharma
Abstract:
Animating hand-drawn sketches using traditional tools is challenging and complex. Sketches provide a visual basis for explanations, and animating these sketches offers an experience of real-time scenarios. We propose an approach for animating a given input sketch based on a descriptive text prompt. Our method utilizes a parametric representation of the sketch's strokes. Unlike previous methods, which struggle to estimate smooth and accurate motion and often fail to preserve the sketch's topology, we leverage a pre-trained text-to-video diffusion model with SDS loss to guide the motion of the sketch's strokes. We introduce length-area (LA) regularization to ensure temporal consistency by accurately estimating the smooth displacement of control points across the frame sequence. Additionally, to preserve shape and avoid topology changes, we apply a shape-preserving As-Rigid-As-Possible (ARAP) loss to maintain sketch rigidity. Our method surpasses state-of-the-art performance in both quantitative and qualitative evaluations.
Authors:KaiZhou Li, Jindong Gu, Xinchun Yu, Junjie Cao, Yansong Tang, Xiao-Ping Zhang
Abstract:
The security risks of AI-driven video editing have garnered significant attention. Although recent studies indicate that adding perturbations to images can protect them from malicious edits, directly applying image-based methods to perturb each frame in a video becomes ineffective, as video editing techniques leverage the consistency of inter-frame information to restore individually perturbed content. To address this challenge, we leverage the temporal consistency of video content to propose a straightforward and efficient, yet highly effective and broadly applicable approach, Universal Video Consistency Guard (UVCG). UVCG embeds the content of another video(target video) within a protected video by introducing continuous, imperceptible perturbations which has the ability to force the encoder of editing models to map continuous inputs to misaligned continuous outputs, thereby inhibiting the generation of videos consistent with the intended textual prompts. Additionally leveraging similarity in perturbations between adjacent frames, we improve the computational efficiency of perturbation generation by employing a perturbation-reuse strategy. We applied UVCG across various versions of Latent Diffusion Models (LDM) and assessed its effectiveness and generalizability across multiple LDM-based editing pipelines. The results confirm the effectiveness, transferability, and efficiency of our approach in safeguarding video content from unauthorized modifications.
Authors:Kuan-Chen Mu, Zhi-Yi Chin, Wei-Chen Chiu
Abstract:
The recent development of Video-based Large Language Models (VideoLLMs), has significantly advanced video summarization by aligning video features and, in some cases, audio features with Large Language Models (LLMs). Each of these VideoLLMs possesses unique strengths and weaknesses. Many recent methods have required extensive fine-tuning to overcome the limitations of these models, which can be resource-intensive. In this work, we observe that the strengths of one VideoLLM can complement the weaknesses of another. Leveraging this insight, we propose a novel video summarization framework inspired by the Mixture of Experts (MoE) paradigm, which operates as an inference-time algorithm without requiring any form of fine-tuning. Our approach integrates multiple VideoLLMs to generate comprehensive and coherent textual summaries. It effectively combines visual and audio content, provides detailed background descriptions, and excels at identifying keyframes, which enables more semantically meaningful retrieval compared to traditional computer vision approaches that rely solely on visual information, all without the need for additional fine-tuning. Moreover, the resulting summaries enhance performance in downstream tasks such as summary video generation, either through keyframe selection or in combination with text-to-image models. Our language-driven approach offers a semantically rich alternative to conventional methods and provides flexibility to incorporate newer VideoLLMs, enhancing adaptability and performance in video summarization tasks.
Authors:Zhikang Chen, Tingting Zhu
Abstract:
A world model is an AI system that simulates how an environment evolves under actions, enabling planning through imagined futures rather than reactive perception. Current world models, however, suffer from visual conflation: the mistaken assumption that high-fidelity video generation implies an understanding of physical and causal dynamics. We show that while modern models excel at predicting pixels, they frequently violate invariant constraints, fail under intervention, and break down in safety-critical decision-making. This survey argues that visual realism is an unreliable proxy for world understanding. Instead, effective world models must encode causal structure, respect domain-specific constraints, and remain stable over long horizons. We propose a reframing of world models as actionable simulators rather than visual engines, emphasizing structured 4D interfaces, constraint-aware dynamics, and closed-loop evaluation. Using medical decision-making as an epistemic stress test, where trial-and-error is impossible and errors are irreversible, we demonstrate that a world model's value is determined not by how realistic its rollouts appear, but by its ability to support counterfactual reasoning, intervention planning, and robust long-horizon foresight.
Authors:Xuan Cheng, Jiahao Rao, Chengyang Li, Wenhao Wang, Weilin Chen, Lvqing Yang
Abstract:
We introduce GaussianSwap, a novel video face swapping framework that constructs a 3D Gaussian Splatting based face avatar from a target video while transferring identity from a source image to the avatar. Conventional video swapping frameworks are limited to generating facial representations in pixel-based formats. The resulting swapped faces exist merely as a set of unstructured pixels without any capacity for animation or interactive manipulation. Our work introduces a paradigm shift from conventional pixel-based video generation to the creation of high-fidelity avatar with swapped faces. The framework first preprocesses target video to extract FLAME parameters, camera poses and segmentation masks, and then rigs 3D Gaussian splats to the FLAME model across frames, enabling dynamic facial control. To ensure identity preserving, we propose an compound identity embedding constructed from three state-of-the-art face recognition models for avatar finetuning. Finally, we render the face-swapped avatar on the background frames to obtain the face-swapped video. Experimental results demonstrate that GaussianSwap achieves superior identity preservation, visual clarity and temporal consistency, while enabling previously unattainable interactive applications.
Authors:Jun Wang, Chunyu Qiang, Yuxin Guo, Yiran Wang, Xijuan Zeng, Feng Deng
Abstract:
Audio-video joint generation has progressed rapidly, yet substantial challenges still remain. Non-commercial approaches still suffer audio-visual asynchrony, poor lip-speech alignment, and unimodal degradation, which can be stemmed from weak audio-visual correspondence modeling, limited generalization, and scarce high-quality dense-caption data. To address these issues, we introduce Apollo and delve into three axes--model architecture, training strategy, and data curation. Architecturally, we adopt a single-tower design with unified DiT blocks and an Omni-Full Attention mechanism, achieving tight audio-visual alignment and strong scalability. Training-wise, we adopt a progressive multitask regime--random modality masking to joint optimization across tasks, and a multistage curriculum, yielding robust representations, strengthening A-V aligned world knowledge, and preventing unimodal collapse. For datasets, we present the first large-scale audio-video dataset with dense captions, and introduce a novel automated data-construction pipeline which annotates and filters millions of diverse, high-quality, strictly aligned audio-video-caption triplets. Building on this, Apollo scales to large datasets, delivering high-fidelity, semantically and temporally aligned, instruction-following generation in both joint and unimodal settings while generalizing robustly to out-of-distribution scenarios. Across tasks, it substantially outperforms prior methods by a large margin and achieves performance comparable to Veo 3, offering a unified, scalable path toward next-generation audio-video synthesis.
Authors:Mingshu Cai, Yixuan Li, Osamu Yoshie, Yuya Ieiri
Abstract:
Large-scale text-to-image diffusion models have achieved unprecedented success in image generation and editing. However, extending this success to video editing remains challenging. Recent video editing efforts have adapted pretrained text-to-image models by adding temporal attention mechanisms to handle video tasks. Unfortunately, these methods continue to suffer from temporal inconsistency issues and high computational overheads. In this study, we propose FluencyVE, which is a simple yet effective one-shot video editing approach. FluencyVE integrates the linear time-series module, Mamba, into a video editing model based on pretrained Stable Diffusion models, replacing the temporal attention layer. This enables global frame-level attention while reducing the computational costs. In addition, we employ low-rank approximation matrices to replace the query and key weight matrices in the causal attention, and use a weighted averaging technique during training to update the attention scores. This approach significantly preserves the generative power of the text-to-image model while effectively reducing the computational burden. Experiments and analyses demonstrate promising results in editing various attributes, subjects, and locations in real-world videos.
Authors:Zhaoqing Wang, Xiaobo Xia, Zhuolin Bie, Jinlin Liu, Dongdong Yu, Jia-Wang Bian, Changhu Wang
Abstract:
Recent advances in video diffusion models have remarkably improved camera-controlled video generation, but most methods rely solely on supervised fine-tuning (SFT), leaving online reinforcement learning (RL) post-training largely underexplored. In this work, we introduce an online RL post-training framework that optimizes a pretrained video generator for precise camera control. To make RL effective in this setting, we design a verifiable geometry reward that delivers dense segment-level feedback to guide model optimization. Specifically, we estimate the 3D camera trajectories for both generated and reference videos, divide each trajectory into short segments, and compute segment-wise relative poses. The reward function then compares each generated-reference segment pair and assigns an alignment score as the reward signal, which helps alleviate reward sparsity and improve optimization efficiency. Moreover, we construct a comprehensive dataset featuring diverse large-amplitude camera motions and scenes with varied subject dynamics. Extensive experiments show that our online RL post-training clearly outperforms SFT baselines across multiple aspects, including camera-control accuracy, geometric consistency, and visual quality, demonstrating its superiority in advancing camera-controlled video generation.
Authors:Fengzhe Zhou, Jiannan Huang, Jialuo Li, Deva Ramanan, Humphrey Shi
Abstract:
Physical AI aims to develop models that can perceive and predict real-world dynamics; yet, the extent to which current multi-modal large language models and video generative models support these abilities is insufficiently understood. We introduce Physical AI Bench (PAI-Bench), a unified and comprehensive benchmark that evaluates perception and prediction capabilities across video generation, conditional video generation, and video understanding, comprising 2,808 real-world cases with task-aligned metrics designed to capture physical plausibility and domain-specific reasoning. Our study provides a systematic assessment of recent models and shows that video generative models, despite strong visual fidelity, often struggle to maintain physically coherent dynamics, while multi-modal large language models exhibit limited performance in forecasting and causal interpretation. These observations suggest that current systems are still at an early stage in handling the perceptual and predictive demands of Physical AI. In summary, PAI-Bench establishes a realistic foundation for evaluating Physical AI and highlights key gaps that future systems must address.
Authors:Shengqian Li, Ming Gao, Yi Liu, Zuzeng Lin, Feng Wang, Feng Dai
Abstract:
Rectified Flow (RF) models have advanced high-quality image and video synthesis via optimal transport theory. However, when applied to image-to-image translation, they still depend on costly multi-step denoising, hindering real-time applications. Although the recent adversarial training paradigm, CycleGAN-Turbo, works in pretrained diffusion models for one-step image translation, we find that directly applying it to RF models leads to severe convergence issues. In this paper, we analyze these challenges and propose TReFT, a novel method to Tame Rectified Flow models for one-step image Translation. Unlike previous works, TReFT directly uses the velocity predicted by pretrained DiT or UNet as output-a simple yet effective design that tackles the convergence issues under adversarial training with one-step inference. This design is mainly motivated by a novel observation that, near the end of the denoising process, the velocity predicted by pretrained RF models converges to the vector from origin to the final clean image, a property we further justify through theoretical analysis. When applying TReFT to large pretrained RF models such as SD3.5 and FLUX, we introduce memory-efficient latent cycle-consistency and identity losses during training, as well as lightweight architectural simplifications for faster inference. Pretrained RF models finetuned with TReFT achieve performance comparable to sota methods across multiple image translation datasets while enabling real-time inference.
Authors:Zixu Zhao, Yang Zhan
Abstract:
Unmanned aerial vehicles (UAVs) have become powerful platforms for real-time, high-resolution data collection, producing massive volumes of aerial videos. Efficient retrieval of relevant content from these videos is crucial for applications in urban management, emergency response, security, and disaster relief. While text-video retrieval has advanced in natural video domains, the UAV domain remains underexplored due to limitations in existing datasets, such as coarse and redundant captions. Thus, in this work, we construct the Drone Video-Text Match Dataset (DVTMD), which contains 2,864 videos and 14,320 fine-grained, semantically diverse captions. The annotations capture multiple complementary aspects, including human actions, objects, background settings, environmental conditions, and visual style, thereby enhancing text-video correspondence and reducing redundancy. Building on this dataset, we propose the Text-Conditioned Multi-granularity Alignment (TCMA) framework, which integrates global video-sentence alignment, sentence-guided frame aggregation, and word-guided patch alignment. To further refine local alignment, we design a Word and Patch Selection module that filters irrelevant content, as well as a Text-Adaptive Dynamic Temperature Mechanism that adapts attention sharpness to text type. Extensive experiments on DVTMD and CapERA establish the first complete benchmark for drone text-video retrieval. Our TCMA achieves state-of-the-art performance, including 45.5% R@1 in text-to-video and 42.8% R@1 in video-to-text retrieval, demonstrating the effectiveness of our dataset and method. The code and dataset will be released.
Authors:Julien Delavande, Regis Pierrard, Sasha Luccioni
Abstract:
Recent advances in text-to-video (T2V) generation have enabled the creation of high-fidelity, temporally coherent clips from natural language prompts. Yet these systems come with significant computational costs, and their energy demands remain poorly understood. In this paper, we present a systematic study of the latency and energy consumption of state-of-the-art open-source T2V models. We first develop a compute-bound analytical model that predicts scaling laws with respect to spatial resolution, temporal length, and denoising steps. We then validate these predictions through fine-grained experiments on WAN2.1-T2V, showing quadratic growth with spatial and temporal dimensions, and linear scaling with the number of denoising steps. Finally, we extend our analysis to six diverse T2V models, comparing their runtime and energy profiles under default settings. Our results provide both a benchmark reference and practical insights for designing and deploying more sustainable generative video systems.
Authors:Adam Cole, Mick Grierson
Abstract:
This paper presents an artistic and technical investigation into the attention mechanisms of video diffusion transformers. Inspired by early video artists who manipulated analog video signals to create new visual aesthetics, this study proposes a method for extracting and visualizing cross-attention maps in generative video models. Built on the open-source Wan model, our tool provides an interpretable window into the temporal and spatial behavior of attention in text-to-video generation. Through exploratory probes and an artistic case study, we examine the potential of attention maps as both analytical tools and raw artistic material. This work contributes to the growing field of Explainable AI for the Arts (XAIxArts), inviting artists to reclaim the inner workings of AI as a creative medium.
Authors:Jingxing Fan, Jinrong Shen, Yusheng Yao, Shuangqing Wang, Qian Wang, Yuling Wang
Abstract:
With the rapid advancement of artificial intelligence (AI), the proliferation of AI-generated content (AIGC) tasks has significantly accelerated developments in text-to-video generation. As a result, the field of video production is undergoing a transformative shift. However, conventional text-to-video models are typically constrained by high computational costs. In this study, we propose Video-Generation-Team (VGTeam), a novel slide show video generation system designed to redefine the video creation pipeline through the integration of large language models (LLMs). VGTeam is composed of a suite of communicative agents, each responsible for a distinct aspect of video generation, such as scriptwriting, scene creation, and audio design. These agents operate collaboratively within a chat tower workflow, transforming user-provided textual prompts into coherent, slide-style narrative videos. By emulating the sequential stages of traditional video production, VGTeam achieves remarkable improvements in both efficiency and scalability, while substantially reducing computational overhead. On average, the system generates videos at a cost of only $0.103, with a successful generation rate of 98.4%. Importantly, this framework maintains a high degree of creative fidelity and customization. The implications of VGTeam are far-reaching. It democratizes video production by enabling broader access to high-quality content creation without the need for extensive resources. Furthermore, it highlights the transformative potential of language models in creative domains and positions VGTeam as a pioneering system for next-generation content creation.
Authors:Peng Hu, Yu Gu, Liang Luo, Fuji Ren
Abstract:
Controllable video generation aims to synthesize video content that aligns precisely with user-provided conditions, such as text descriptions and initial images. However, a significant challenge persists in this domain: existing models often struggle to maintain strong semantic consistency, frequently generating videos that deviate from the nuanced details specified in the prompts. To address this issue, we propose SSG-DiT (Spatial Signal Guided Diffusion Transformer), a novel and efficient framework for high-fidelity controllable video generation. Our approach introduces a decoupled two-stage process. The first stage, Spatial Signal Prompting, generates a spatially aware visual prompt by leveraging the rich internal representations of a pre-trained multi-modal model. This prompt, combined with the original text, forms a joint condition that is then injected into a frozen video DiT backbone via our lightweight and parameter-efficient SSG-Adapter. This unique design, featuring a dual-branch attention mechanism, allows the model to simultaneously harness its powerful generative priors while being precisely steered by external spatial signals. Extensive experiments demonstrate that SSG-DiT achieves state-of-the-art performance, outperforming existing models on multiple key metrics in the VBench benchmark, particularly in spatial relationship control and overall consistency.
Authors:Chun-Peng Chang, Chen-Yu Wang, Julian Schmidt, Holger Caesar, Alain Pagani
Abstract:
Recent advancements in video generation have substantially improved visual quality and temporal coherence, making these models increasingly appealing for applications such as autonomous driving, particularly in the context of driving simulation and so-called "world models". In this work, we investigate the effects of existing fine-tuning video generation approaches on structured driving datasets and uncover a potential trade-off: although visual fidelity improves, spatial accuracy in modeling dynamic elements may degrade. We attribute this degradation to a shift in the alignment between visual quality and dynamic understanding objectives. In datasets with diverse scene structures within temporal space, where objects or perspective shift in varied ways, these objectives tend to highly correlated. However, the very regular and repetitive nature of driving scenes allows visual quality to improve by modeling dominant scene motion patterns, without necessarily preserving fine-grained dynamic behavior. As a result, fine-tuning encourages the model to prioritize surface-level realism over dynamic accuracy. To further examine this phenomenon, we show that simple continual learning strategies, such as replay from diverse domains, can offer a balanced alternative by preserving spatial accuracy while maintaining strong visual quality.
Authors:Tong Zhang, Juan C Leon Alcazar, Bernard Ghanem
Abstract:
We introduce MoCA-Video (Motion-Aware Concept Alignment in Video), a training-free framework bridging the gap between image-domain semantic mixing and video. Given a generated video and a user-provided reference image, MoCA-Video injects the semantic features of the reference image into a specific object within the video, while preserving the original motion and visual context. Our approach leverages a diagonal denoising schedule and class-agnostic segmentation to detect and track objects in the latent space and precisely control the spatial location of the blended objects. To ensure temporal coherence, we incorporate momentum-based semantic corrections and gamma residual noise stabilization for smooth frame transitions. We evaluate MoCA's performance using the standard SSIM, image-level LPIPS, temporal LPIPS, and introduce a novel metric CASS (Conceptual Alignment Shift Score) to evaluate the consistency and effectiveness of the visual shifts between the source prompt and the modified video frames. Using self-constructed dataset, MoCA-Video outperforms current baselines, achieving superior spatial consistency, coherent motion, and a significantly higher CASS score, despite having no training or fine-tuning. MoCA-Video demonstrates that structured manipulation in the diffusion noise trajectory allows for controllable, high-quality video synthesis.
Authors:Xiaodong Wang, Peixi Peng
Abstract:
Real-world driving requires people to observe the current environment, anticipate the future, and make appropriate driving decisions. This requirement is aligned well with the capabilities of world models, which understand the environment and predict the future. However, recent world models in autonomous driving are built explicitly, where they could predict the future by controllable driving video generation. We argue that driving world models should have two additional abilities: action control and action prediction. Following this line, previous methods are limited because they predict the video requires given actions of the same length as the video and ignore the dynamical action laws. To address these issues, we propose ProphetDWM, a novel end-to-end driving world model that jointly predicts future videos and actions. Our world model has an action module to learn latent action from the present to the future period by giving the action sequence and observations. And a diffusion-model-based transition module to learn the state distribution. The model is jointly trained by learning latent actions given finite states and predicting action and video. The joint learning connects the action dynamics and states and enables long-term future prediction. We evaluate our method in video generation and action prediction tasks on the Nuscenes dataset. Compared to the state-of-the-art methods, our method achieves the best video consistency and best action prediction accuracy, while also enabling high-quality long-term video and action generation.
Authors:Huafeng Shi, Jianzhong Liang, Rongchang Xie, Xian Wu, Cheng Chen, Chang Liu
Abstract:
This report introduces Aquarius, a family of industry-level video generation models for marketing scenarios designed for thousands-xPU clusters and models with hundreds of billions of parameters. Leveraging efficient engineering architecture and algorithmic innovation, Aquarius demonstrates exceptional performance in high-fidelity, multi-aspect-ratio, and long-duration video synthesis. By disclosing the framework's design details, we aim to demystify industrial-scale video generation systems and catalyze advancements in the generative video community. The Aquarius framework consists of five components: Distributed Graph and Video Data Processing Pipeline: Manages tens of thousands of CPUs and thousands of xPUs via automated task distribution, enabling efficient video data processing. Additionally, we are about to open-source the entire data processing framework named "Aquarius-Datapipe". Model Architectures for Different Scales: Include a Single-DiT architecture for 2B models and a Multimodal-DiT architecture for 13.4B models, supporting multi-aspect ratios, multi-resolution, and multi-duration video generation. High-Performance infrastructure designed for video generation model training: Incorporating hybrid parallelism and fine-grained memory optimization strategies, this infrastructure achieves 36% MFU at large scale. Multi-xPU Parallel Inference Acceleration: Utilizes diffusion cache and attention optimization to achieve a 2.35x inference speedup. Multiple marketing-scenarios applications: Including image-to-video, text-to-video (avatar), video inpainting and video personalization, among others. More downstream applications and multi-dimensional evaluation metrics will be added in the upcoming version updates.
Authors:Xian Wu, Chang Liu
Abstract:
Many existing video inpainting algorithms utilize optical flows to construct the corresponding maps and then propagate pixels from adjacent frames to missing areas by mapping. Despite the effectiveness of the propagation mechanism, they might encounter blurry and inconsistencies when dealing with inaccurate optical flows or large masks. Recently, Diffusion Transformer (DiT) has emerged as a revolutionary technique for video generation tasks. However, pretrained DiT models for video generation all contain a large amount of parameters, which makes it very time consuming to apply to video inpainting tasks. In this paper, we present DiTPainter, an end-to-end video inpainting model based on Diffusion Transformer (DiT). DiTPainter uses an efficient transformer network designed for video inpainting, which is trained from scratch instead of initializing from any large pretrained models. DiTPainter can address videos with arbitrary lengths and can be applied to video decaptioning and video completion tasks with an acceptable time cost. Experiments show that DiTPainter outperforms existing video inpainting algorithms with higher quality and better spatial-temporal consistency.
Authors:Fabrizio Garuti, Enver Sangineto, Simone Luetto, Lorenzo Forni, Rita Cucchiara
Abstract:
Tabular data generation has recently attracted a growing interest due to its different application scenarios. However, generating time series of tabular data, where each element of the series depends on the others, remains a largely unexplored domain. This gap is probably due to the difficulty of jointly solving different problems, the main of which are the heterogeneity of tabular data (a problem common to non-time-dependent approaches) and the variable length of a time series. In this paper, we propose a Diffusion Transformers (DiTs) based approach for tabular data series generation. Inspired by the recent success of DiTs in image and video generation, we extend this framework to deal with heterogeneous data and variable-length sequences. Using extensive experiments on six datasets, we show that the proposed approach outperforms previous work by a large margin.
Authors:Yukang Lin, Hokit Fung, Jianjin Xu, Zeping Ren, Adela S. M. Lau, Guosheng Yin, Xiu Li
Abstract:
Recent portrait animation methods have made significant strides in generating realistic lip synchronization. However, they often lack explicit control over head movements and facial expressions, and cannot produce videos from multiple viewpoints, resulting in less controllable and expressive animations. Moreover, text-guided portrait animation remains underexplored, despite its user-friendly nature. We present a novel two-stage text-guided framework, MVPortrait (Multi-view Vivid Portrait), to generate expressive multi-view portrait animations that faithfully capture the described motion and emotion. MVPortrait is the first to introduce FLAME as an intermediate representation, effectively embedding facial movements, expressions, and view transformations within its parameter space. In the first stage, we separately train the FLAME motion and emotion diffusion models based on text input. In the second stage, we train a multi-view video generation model conditioned on a reference portrait image and multi-view FLAME rendering sequences from the first stage. Experimental results exhibit that MVPortrait outperforms existing methods in terms of motion and emotion control, as well as view consistency. Furthermore, by leveraging FLAME as a bridge, MVPortrait becomes the first controllable portrait animation framework that is compatible with text, speech, and video as driving signals.
Authors:Sanghyun Yi, Qingfeng Liu, Mostafa El-Khamy
Abstract:
Diffusion Transformers for video generation have gained significant research interest since the impressive performance of SORA. Efficient deployment of such generative-AI models on GPUs has been demonstrated with dynamic quantization. However, resource-constrained devices cannot support dynamic quantization, and need static quantization of the models for their efficient deployment on AI processors. In this paper, we propose a novel method for the post-training quantization of OpenSora\cite{opensora}, a Video Diffusion Transformer, without relying on dynamic quantization techniques. Our approach employs static quantization, achieving video quality comparable to FP16 and dynamically quantized ViDiT-Q methods, as measured by CLIP, and VQA metrics. In particular, we utilize per-step calibration data to adequately provide a post-training statically quantized model for each time step, incorporating channel-wise quantization for weights and tensor-wise quantization for activations. By further applying the smooth-quantization technique, we can obtain high-quality video outputs with the statically quantized models. Extensive experimental results demonstrate that static quantization can be a viable alternative to dynamic quantization for video diffusion transformers, offering a more efficient approach without sacrificing performance.
Authors:Pedro Vélez, Luisa F. PolanÃa, Yi Yang, Chuhan Zhang, Rishabh Kabra, Anurag Arnab, Mehdi S. M. Sajjadi
Abstract:
Diffusion models have revolutionized generative modeling, enabling unprecedented realism in image and video synthesis. This success has sparked interest in leveraging their representations for visual understanding tasks. While recent works have explored this potential for image generation, the visual understanding capabilities of video diffusion models remain largely uncharted. To address this gap, we systematically compare the same model architecture trained for video versus image generation, analyzing the performance of their latent representations on various downstream tasks including image classification, action recognition, depth estimation, and tracking. Results show that video diffusion models consistently outperform their image counterparts, though we find a striking range in the extent of this superiority. We further analyze features extracted from different layers and with varying noise levels, as well as the effect of model size and training budget on representation and generation quality. This work marks the first direct comparison of video and image diffusion objectives for visual understanding, offering insights into the role of temporal information in representation learning.
Authors:Zhikang Dong, Weituo Hao, Ju-Chiang Wang, Peng Zhang, Pawel Polak
Abstract:
Image animation has become a promising area in multimodal research, with a focus on generating videos from reference images. While prior work has largely emphasized generic video generation guided by text, music-driven dance video generation remains underexplored. In this paper, we introduce MuseDance, an innovative end-to-end model that animates reference images using both music and text inputs. This dual input enables MuseDance to generate personalized videos that follow text descriptions and synchronize character movements with the music. Unlike existing approaches, MuseDance eliminates the need for complex motion guidance inputs, such as pose or depth sequences, making flexible and creative video generation accessible to users of all expertise levels. To advance research in this field, we present a new multimodal dataset comprising 2,904 dance videos with corresponding background music and text descriptions. Our approach leverages diffusion-based methods to achieve robust generalization, precise control, and temporal consistency, setting a new baseline for the music-driven image animation task.
Authors:Andrei Znobishchev, Valerii Filev, Oleg Kudashev, Nikita Orlov, Humphrey Shi
Abstract:
We present CompactFlowNet, the first real-time mobile neural network for optical flow prediction, which involves determining the displacement of each pixel in an initial frame relative to the corresponding pixel in a subsequent frame. Optical flow serves as a fundamental building block for various video-related tasks, such as video restoration, motion estimation, video stabilization, object tracking, action recognition, and video generation. While current state-of-the-art methods prioritize accuracy, they often overlook constraints regarding speed and memory usage. Existing light models typically focus on reducing size but still exhibit high latency, compromise significantly on quality, or are optimized for high-performance GPUs, resulting in sub-optimal performance on mobile devices. This study aims to develop a mobile-optimized optical flow model by proposing a novel mobile device-compatible architecture, as well as enhancements to the training pipeline, which optimize the model for reduced weight, low memory utilization, and increased speed while maintaining minimal error. Our approach demonstrates superior or comparable performance to the state-of-the-art lightweight models on the challenging KITTI and Sintel benchmarks. Furthermore, it attains a significantly accelerated inference speed, thereby yielding real-time operational efficiency on the iPhone 8, while surpassing real-time performance levels on more advanced mobile devices.
Authors:Matyas Bohacek, Hany Farid
Abstract:
AI-generated video generation continues its journey through the uncanny valley to produce content that is increasingly perceptually indistinguishable from reality. To better protect individuals, organizations, and societies from its malicious applications, we describe an effective and robust technique for distinguishing real from AI-generated human motion using multi-modal semantic embeddings. Our method is robust to the types of laundering that typically confound more low- to mid-level approaches, including resolution and compression attacks. This method is evaluated against DeepAction, a custom-built, open-sourced dataset of video clips with human actions generated by seven text-to-video AI models and matching real footage. The dataset is available under an academic license at https://www.huggingface.co/datasets/faridlab/deepaction_v1.
Authors:Yupeng Chen, Penglin Chen, Xiaoyu Zhang, Yixian Huang, Qian Xie
Abstract:
The rapid development of diffusion models has significantly advanced AI-generated content (AIGC), particularly in Text-to-Image (T2I) and Text-to-Video (T2V) generation. Text-based video editing, leveraging these generative capabilities, has emerged as a promising field, enabling precise modifications to videos based on text prompts. Despite the proliferation of innovative video editing models, there is a conspicuous lack of comprehensive evaluation benchmarks that holistically assess these models' performance across various dimensions. Existing evaluations are limited and inconsistent, typically summarizing overall performance with a single score, which obscures models' effectiveness on individual editing tasks. To address this gap, we propose EditBoard, the first comprehensive evaluation benchmark for text-based video editing models. EditBoard encompasses nine automatic metrics across four dimensions, evaluating models on four task categories and introducing three new metrics to assess fidelity. This task-oriented benchmark facilitates objective evaluation by detailing model performance and providing insights into each model's strengths and weaknesses. By open-sourcing EditBoard, we aim to standardize evaluation and advance the development of robust video editing models.
Authors:Wei Cao, Hao Zhang, Fengrui Tian, Yulun Wu, Yingying Li, Shenlong Wang, Ning Yu, Yaoyao Liu
Abstract:
Camera redirection aims to replay a dynamic scene from a single monocular video under a user-specified camera trajectory. However, large-angle redirection is inherently ill-posed: a monocular video captures only a narrow spatio-temporal view of a dynamic 3D scene, providing highly partial observations of the underlying 4D world. The key challenge is therefore to recover a complete and coherent representation from this limited input, with consistent geometry and motion. While recent diffusion-based methods achieve impressive results, they often break down under large-angle viewpoint changes far from the original trajectory, where missing visual grounding leads to severe geometric ambiguity and temporal inconsistency. To address this, we present FreeOrbit4D, an effective training-free framework that tackles this geometric ambiguity by recovering a geometry-complete 4D proxy as structural grounding for video generation. We obtain this proxy by decoupling foreground and background reconstructions: we unproject the monocular video into a static background and geometry-incomplete foreground point clouds in a unified global space, then leverage an object-centric multi-view diffusion model to synthesize multi-view images and reconstruct geometry-complete foreground point clouds in canonical object space. By aligning the canonical foreground point cloud to the global scene space via dense pixel-synchronized 3D--3D correspondences and projecting the geometry-complete 4D proxy onto target camera viewpoints, we provide geometric scaffolds that guide a conditional video diffusion model. Extensive experiments show that FreeOrbit4D produces more faithful redirected videos under challenging large-angle trajectories, and our geometry-complete 4D proxy further opens a potential avenue for practical applications such as edit propagation and 4D data generation. Project page and code will be released soon.
Authors:Kunyang Li, Mubarak Shah, Yuzhang Shang
Abstract:
A unified autoregressive model is a Transformer-based framework that addresses diverse multimodal tasks (e.g., text, image, video) as a single sequence modeling problem under a shared token space. Such models rely on the KV-cache mechanism to reduce attention computation from O(T^2) to O(T); however, KV-cache size grows linearly with the number of generated tokens, and it rapidly becomes the dominant bottleneck limiting inference efficiency and generative length. Unified autoregressive video generation inherits this limitation. Our analysis reveals that KV-cache tokens exhibit distinct spatiotemporal properties: (i) text and conditioning-image tokens act as persistent semantic anchors that consistently receive high attention, and (ii) attention to previous frames naturally decays with temporal distance. Leveraging these observations, we introduce PackCache, a training-free KV-cache management method that dynamically compacts the KV cache through three coordinated mechanisms: condition anchoring that preserves semantic references, cross-frame decay modeling that allocates cache budget according to temporal distance, and spatially preserving position embedding that maintains coherent 3D structure under cache removal. In terms of efficiency, PackCache accelerates end-to-end generation by 1.7-2.2x on 48-frame long sequences, showcasing its strong potential for enabling longer-sequence video generation. Notably, the final four frames - the portion most impacted by the progressively expanding KV-cache and thus the most expensive segment of the clip - PackCache delivers a 2.6x and 3.7x acceleration on A40 and H200, respectively, for 48-frame videos.
Authors:Alejandro Cobo, Roberto Valle, José Miguel Buenaposada, Luis Baumela
Abstract:
Generalizing deepfake detection to unseen manipulations remains a key challenge. A recent approach to tackle this issue is to train a network with pristine face images that have been manipulated with hand-crafted artifacts to extract more generalizable clues. While effective for static images, extending this to the video domain is an open issue. Existing methods model temporal artifacts as frame-to-frame instabilities, overlooking a key vulnerability: the violation of natural motion dependencies between different facial regions. In this paper, we propose a synthetic video generation method that creates training data with subtle kinematic inconsistencies. We train an autoencoder to decompose facial landmark configurations into motion bases. By manipulating these bases, we selectively break the natural correlations in facial movements and introduce these artifacts into pristine videos via face morphing. A network trained on our data learns to spot these sophisticated biomechanical flaws, achieving state-of-the-art generalization results on several popular benchmarks.
Authors:Yujiang Pu, Zhanbo Huang, Vishnu Boddeti, Yu Kong
Abstract:
Generating visual instructions in a given context is essential for developing interactive world simulators. While prior works address this problem through either text-guided image manipulation or video prediction, these tasks are typically treated in isolation. This separation reveals a fundamental issue: image manipulation methods overlook how actions unfold over time, while video prediction models often ignore the intended outcomes. To this end, we propose ShowMe, a unified framework that enables both tasks by selectively activating the spatial and temporal components of video diffusion models. In addition, we introduce structure and motion consistency rewards to improve structural fidelity and temporal coherence. Notably, this unification brings dual benefits: the spatial knowledge gained through video pretraining enhances contextual consistency and realism in non-rigid image edits, while the instruction-guided manipulation stage equips the model with stronger goal-oriented reasoning for video prediction. Experiments on diverse benchmarks demonstrate that our method outperforms expert models in both instructional image and video generation, highlighting the strength of video diffusion models as a unified action-object state transformer.
Authors:Junhyuk Seo, Hyeyoon Moon, Kyu-Hwan Jung, Namkee Oh, Taerim Kim
Abstract:
Unplanned extubation (UE) remains a critical patient safety concern in intensive care units (ICUs), often leading to severe complications or death. Real-time UE detection has been limited, largely due to the ethical and privacy challenges of obtaining annotated ICU video data. We propose Augmented Unplanned Removal Alert (AURA), a vision-based risk detection system developed and validated entirely on a fully synthetic video dataset. By leveraging text-to-video diffusion, we generated diverse and clinically realistic ICU scenarios capturing a range of patient behaviors and care contexts. The system applies pose estimation to identify two high-risk movement patterns: collision, defined as hand entry into spatial zones near airway tubes, and agitation, quantified by the velocity of tracked anatomical keypoints. Expert assessments confirmed the realism of the synthetic data, and performance evaluations showed high accuracy for collision detection and moderate performance for agitation recognition. This work demonstrates a novel pathway for developing privacy-preserving, reproducible patient safety monitoring systems with potential for deployment in intensive care settings.
Authors:Yucheng Xing, Jinxing Yin, Xiaodong Liu
Abstract:
Recently, diffusion models have shown their impressive ability in visual generation tasks. Besides static images, more and more research attentions have been drawn to the generation of realistic videos. The video generation not only has a higher requirement for the quality, but also brings a challenge in ensuring the video continuity. Among all the video generation tasks, human-involved contents, such as human dancing, are even more difficult to generate due to the high degrees of freedom associated with human motions. In this paper, we propose a novel framework, named as DANCER (Dance ANimation via Condition Enhancement and Rendering with Diffusion Model), for realistic single-person dance synthesis based on the most recent stable video diffusion model. As the video generation is generally guided by a reference image and a video sequence, we introduce two important modules into our framework to fully benefit from the two inputs. More specifically, we design an Appearance Enhancement Module (AEM) to focus more on the details of the reference image during the generation, and extend the motion guidance through a Pose Rendering Module (PRM) to capture pose conditions from extra domains. To further improve the generation capability of our model, we also collect a large amount of video data from Internet, and generate a novel datasetTikTok-3K to enhance the model training. The effectiveness of the proposed model has been evaluated through extensive experiments on real-world datasets, where the performance of our model is superior to that of the state-of-the-art methods. All the data and codes will be released upon acceptance.
Authors:Binjie Zhang, Mike Zheng Shou
Abstract:
In egocentric scenarios, anticipating both the next action and its visual outcome is essential for understanding human-object interactions and for enabling robotic planning. However, existing paradigms fall short of jointly modeling these aspects. Vision-Language-Action (VLA) models focus on action prediction but lack explicit modeling of how actions influence the visual scene, while video prediction models generate future frames without conditioning on specific actions, often resulting in implausible or contextually inconsistent outcomes. To bridge this gap, we propose a unified two-stage predictive framework that jointly models action and visual future in egocentric scenarios, conditioned on hand trajectories. In the first stage, we perform consecutive state modeling to process heterogeneous inputs (visual observations, language, and action history) and explicitly predict future hand trajectories. In the second stage, we introduce causal cross-attention to fuse multi-modal cues, leveraging inferred action signals to guide an image-based Latent Diffusion Model (LDM) for frame-by-frame future video generation. Our approach is the first unified model designed to handle both egocentric human activity understanding and robotic manipulation tasks, providing explicit predictions of both upcoming actions and their visual consequences. Extensive experiments on Ego4D, BridgeData, and RLBench demonstrate that our method outperforms state-of-the-art baselines in both action prediction and future video synthesis.
Authors:Ruixin Zhang, Jiaqing Fan, Yifan Liao, Qian Qiao, Fanzhang Li
Abstract:
Referring Video Object Segmentation (RVOS) aims to segment specific objects in a video according to textual descriptions. We observe that recent RVOS approaches often place excessive emphasis on feature extraction and temporal modeling, while relatively neglecting the design of the segmentation head. In fact, there remains considerable room for improvement in segmentation head design. To address this, we propose a Temporal-Conditional Referring Video Object Segmentation model, which innovatively integrates existing segmentation methods to effectively enhance boundary segmentation capability. Furthermore, our model leverages a text-to-video diffusion model for feature extraction. On top of this, we remove the traditional noise prediction module to avoid the randomness of noise from degrading segmentation accuracy, thereby simplifying the model while improving performance. Finally, to overcome the limited feature extraction capability of the VAE, we design a Temporal Context Mask Refinement (TCMR) module, which significantly improves segmentation quality without introducing complex designs. We evaluate our method on four public RVOS benchmarks, where it consistently achieves state-of-the-art performance.
Authors:Donggoo Kang, Jangyeong Kim, Dasol Jeong, Junyoung Choi, Jeonga Wi, Hyunmin Lee, Joonho Gwon, Joonki Paik
Abstract:
Current texture synthesis methods, which generate textures from fixed viewpoints, suffer from inconsistencies due to the lack of global context and geometric understanding. Meanwhile, recent advancements in video generation models have demonstrated remarkable success in achieving temporally consistent videos. In this paper, we introduce VideoTex, a novel framework for seamless texture synthesis that leverages video generation models to address both spatial and temporal inconsistencies in 3D textures. Our approach incorporates geometry-aware conditions, enabling precise utilization of 3D mesh structures. Additionally, we propose a structure-wise UV diffusion strategy, which enhances the generation of occluded areas by preserving semantic information, resulting in smoother and more coherent textures. VideoTex not only achieves smoother transitions across UV boundaries but also ensures high-quality, temporally stable textures across video frames. Extensive experiments demonstrate that VideoTex outperforms existing methods in texture fidelity, seam blending, and stability, paving the way for dynamic real-time applications that demand both visual quality and temporal coherence.
Authors:Nikos Spyrou, Athanasios Vlontzos, Paraskevas Pegios, Thomas Melistas, Nefeli Gkouti, Yannis Panagakis, Giorgos Papanastasiou, Sotirios A. Tsaftaris
Abstract:
Adapting text-to-image (T2I) latent diffusion models (LDMs) to video editing has shown strong visual fidelity and controllability, but challenges remain in maintaining causal relationships inherent to the video data generating process. Edits affecting causally dependent attributes often generate unrealistic or misleading outcomes if these relationships are ignored. In this work, we introduce a causally faithful framework for counterfactual video generation, formulated as an Out-of-Distribution (OOD) prediction problem. We embed prior causal knowledge by encoding the relationships specified in a causal graph into text prompts and guide the generation process by optimizing these prompts using a vision-language model (VLM)-based textual loss. This loss encourages the latent space of the LDMs to capture OOD variations in the form of counterfactuals, effectively steering generation toward causally meaningful alternatives. The proposed framework, dubbed CSVC, is agnostic to the underlying video editing system and does not require access to its internal mechanisms or fine-tuning. We evaluate our approach using standard video quality metrics and counterfactual-specific criteria, such as causal effectiveness and minimality. Experimental results show that CSVC generates causally faithful video counterfactuals within the LDM distribution via prompt-based causal steering, achieving state-of-the-art causal effectiveness without compromising temporal consistency or visual quality on real-world facial videos. Due to its compatibility with any black-box video editing system, our framework has significant potential to generate realistic 'what if' hypothetical video scenarios in diverse areas such as digital media and healthcare.
Authors:Jiahui Chen, Yang Huan, Runhua Shi, Chanfan Ding, Xiaoqi Mo, Siyu Xiong, Yinong He
Abstract:
Gestures are essential for enhancing co-speech communication, offering visual emphasis and complementing verbal interactions. While prior work has concentrated on point-level motion or fully supervised data-driven methods, we focus on co-speech gestures, advocating for weakly supervised learning and pixel-level motion deviations. We introduce a weakly supervised framework that learns latent representation deviations, tailored for co-speech gesture video generation. Our approach employs a diffusion model to integrate latent motion features, enabling more precise and nuanced gesture representation. By leveraging weakly supervised deviations in latent space, we effectively generate hand gestures and mouth movements, crucial for realistic video production. Experiments show our method significantly improves video quality, surpassing current state-of-the-art techniques.
Authors:Lloyd Russell, Anthony Hu, Lorenzo Bertoni, George Fedoseev, Jamie Shotton, Elahe Arani, Gianluca Corrado
Abstract:
Generative models offer a scalable and flexible paradigm for simulating complex environments, yet current approaches fall short in addressing the domain-specific requirements of autonomous driving - such as multi-agent interactions, fine-grained control, and multi-camera consistency. We introduce GAIA-2, Generative AI for Autonomy, a latent diffusion world model that unifies these capabilities within a single generative framework. GAIA-2 supports controllable video generation conditioned on a rich set of structured inputs: ego-vehicle dynamics, agent configurations, environmental factors, and road semantics. It generates high-resolution, spatiotemporally consistent multi-camera videos across geographically diverse driving environments (UK, US, Germany). The model integrates both structured conditioning and external latent embeddings (e.g., from a proprietary driving model) to facilitate flexible and semantically grounded scene synthesis. Through this integration, GAIA-2 enables scalable simulation of both common and rare driving scenarios, advancing the use of generative world models as a core tool in the development of autonomous systems. Videos are available at https://wayve.ai/thinking/gaia-2.
Authors:Maria Pilligua, Danna Xue, Javier Vazquez-Corral
Abstract:
Decomposing a video into a layer-based representation is crucial for easy video editing for the creative industries, as it enables independent editing of specific layers. Existing video-layer decomposition models rely on implicit neural representations (INRs) trained independently for each video, making the process time-consuming when applied to new videos. Noticing this limitation, we propose a meta-learning strategy to learn a generic video decomposition model to speed up the training on new videos. Our model is based on a hypernetwork architecture which, given a video-encoder embedding, generates the parameters for a compact INR-based neural video decomposition model. Our strategy mitigates the problem of single-video overfitting and, importantly, shortens the convergence of video decomposition on new, unseen videos. Our code is available at: https://hypernvd.github.io/
Authors:Mehul Agarwal, Gauri Agarwal, Santiago Benoit, Andrew Lippman, Jean Oh
Abstract:
Music is a deeply personal experience and our aim is to enhance this with a fully-automated pipeline for personalized music video generation. Our work allows listeners to not just be consumers but co-creators in the music video generation process by creating personalized, consistent and context-driven visuals based on lyrics, rhythm and emotion in the music. The pipeline combines multimodal translation and generation techniques and utilizes low-rank adaptation on listeners' images to create immersive music videos that reflect both the music and the individual. To ensure the ethical use of users' identity, we also introduce CHARCHA (patent pending), a facial identity verification protocol that protects people against unauthorized use of their face while at the same time collecting authorized images from users for personalizing their videos. This paper thus provides a secure and innovative framework for creating deeply personalized music videos.
Authors:Tharun Anand, Aryan Garg, Kaushik Mitra
Abstract:
Facial video editing has become increasingly important for content creators, enabling the manipulation of facial expressions and attributes. However, existing models encounter challenges such as poor editing quality, high computational costs and difficulties in preserving facial identity across diverse edits. Additionally, these models are often constrained to editing predefined facial attributes, limiting their flexibility to diverse editing prompts. To address these challenges, we propose a novel facial video editing framework that leverages the rich latent space of pre-trained text-to-image (T2I) diffusion models and fine-tune them specifically for facial video editing tasks. Our approach introduces a targeted fine-tuning scheme that enables high quality, localized, text-driven edits while ensuring identity preservation across video frames. Additionally, by using pre-trained T2I models during inference, our approach significantly reduces editing time by 80%, while maintaining temporal consistency throughout the video sequence. We evaluate the effectiveness of our approach through extensive testing across a wide range of challenging scenarios, including varying head poses, complex action sequences, and diverse facial expressions. Our method consistently outperforms existing techniques, demonstrating superior performance across a broad set of metrics and benchmarks.
Authors:Dabing Cheng, Haosen Zhan, Xingchen Zhao, Guisheng Liu, Zemin Li, Jinghui Xie, Zhao Song, Weiguo Feng, Bingyue Peng
Abstract:
The exponential growth of short-video content has ignited a surge in the necessity for efficient, automated solutions to video editing, with challenges arising from the need to understand videos and tailor the editing according to user requirements. Addressing this need, we propose an innovative end-to-end foundational framework, ultimately actualizing precise control over the final video content editing. Leveraging the flexibility and generalizability of Multimodal Large Language Models (MLLMs), we defined clear input-output mappings for efficient video creation. To bolster the model's capability in processing and comprehending video content, we introduce a strategic combination of a denser frame rate and a slow-fast processing technique, significantly enhancing the extraction and understanding of both temporal and spatial video information. Furthermore, we introduce a text-to-edit mechanism that allows users to achieve desired video outcomes through textual input, thereby enhancing the quality and controllability of the edited videos. Through comprehensive experimentation, our method has not only showcased significant effectiveness within advertising datasets, but also yields universally applicable conclusions on public datasets.
Authors:Sejong Yang, Seoung Wug Oh, Yang Zhou, Seon Joo Kim
Abstract:
We introduce a novel approach for high-resolution talking head generation from a single image and audio input. Prior methods using explicit face models, like 3D morphable models (3DMM) and facial landmarks, often fall short in generating high-fidelity videos due to their lack of appearance-aware motion representation. While generative approaches such as video diffusion models achieve high video quality, their slow processing speeds limit practical application. Our proposed model, Implicit Face Motion Diffusion Model (IF-MDM), employs implicit motion to encode human faces into appearance-aware compressed facial latents, enhancing video generation. Although implicit motion lacks the spatial disentanglement of explicit models, which complicates alignment with subtle lip movements, we introduce motion statistics to help capture fine-grained motion information. Additionally, our model provides motion controllability to optimize the trade-off between motion intensity and visual quality during inference. IF-MDM supports real-time generation of 512x512 resolution videos at up to 45 frames per second (fps). Extensive evaluations demonstrate its superior performance over existing diffusion and explicit face models. The code will be released publicly, available alongside supplementary materials. The video results can be found on https://bit.ly/ifmdm_supplementary.
Authors:Haopeng Fang, Di Qiu, Binjie Mao, Pengfei Yan, He Tang
Abstract:
Recent advancements in personalized Text-to-Video (T2V) generation highlight the importance of integrating character-specific identities and actions. However, previous T2V models struggle with identity consistency and controllable motion dynamics, mainly due to limited fine-grained facial and action-based textual prompts, and datasets that overlook key human attributes and actions. To address these challenges, we propose MotionCharacter, an efficient and high-fidelity human video generation framework designed for identity preservation and fine-grained motion control. We introduce an ID-preserving module to maintain identity fidelity while allowing flexible attribute modifications, and further integrate ID-consistency and region-aware loss mechanisms, significantly enhancing identity consistency and detail fidelity. Additionally, our approach incorporates a motion control module that prioritizes action-related text while maintaining subject consistency, along with a dataset, Human-Motion, which utilizes large language models to generate detailed motion descriptions. For simplify user control during inference, we parameterize motion intensity through a single coefficient, allowing for easy adjustments. Extensive experiments highlight the effectiveness of MotionCharacter, demonstrating significant improvements in ID-preserving, high-quality video generation.
Authors:Zihan Wang, Songlin Li, Lingyan Hao, Xinyu Hu, Bowen Song
Abstract:
As video generation models advance rapidly, assessing the quality of generated videos has become increasingly critical. Existing metrics, such as Fréchet Video Distance (FVD), Inception Score (IS), and ClipSim, measure quality primarily in latent space rather than from a human visual perspective, often overlooking key aspects like appearance and motion consistency to physical laws. In this paper, we propose a novel metric, VAMP (Visual Appearance and Motion Plausibility), that evaluates both the visual appearance and physical plausibility of generated videos. VAMP is composed of two main components: an appearance score, which assesses color, shape, and texture consistency across frames, and a motion score, which evaluates the realism of object movements. We validate VAMP through two experiments: corrupted video evaluation and generated video evaluation. In the corrupted video evaluation, we introduce various types of corruptions into real videos and measure the correlation between corruption severity and VAMP scores. In the generated video evaluation, we use state-of-the-art models to generate videos from carefully designed prompts and compare VAMP's performance to human evaluators' rankings. Our results demonstrate that VAMP effectively captures both visual fidelity and temporal consistency, offering a more comprehensive evaluation of video quality than traditional methods.
Authors:Sarah Barrington, Emily A. Cooper, Hany Farid
Abstract:
As generative artificial intelligence (AI) continues its ballistic trajectory, everything from text to audio, image, and video generation continues to improve at mimicking human-generated content. Through a series of perceptual studies, we report on the realism of AI-generated voices in terms of identity matching and naturalness. We find human participants cannot consistently identify recordings of AI-generated voices. Specifically, participants perceived the identity of an AI-voice to be the same as its real counterpart approximately 80% of the time, and correctly identified a voice as AI generated only about 60% of the time.
Authors:Iskander Azangulov, George Deligiannidis, Judith Rousseau
Abstract:
Denoising Diffusion Probabilistic Models (DDPM) are powerful state-of-the-art methods used to generate synthetic data from high-dimensional data distributions and are widely used for image, audio, and video generation as well as many more applications in science and beyond. The \textit{manifold hypothesis} states that high-dimensional data often lie on lower-dimensional manifolds within the ambient space, and is widely believed to hold in provided examples. While recent results have provided invaluable insight into how diffusion models adapt to the manifold hypothesis, they do not capture the great empirical success of these models, making this a very fruitful research direction.
In this work, we study DDPMs under the manifold hypothesis and prove that they achieve rates independent of the ambient dimension in terms of score learning. In terms of sampling complexity, we obtain rates independent of the ambient dimension w.r.t. the Kullback-Leibler divergence, and $O(\sqrt{D})$ w.r.t. the Wasserstein distance. We do this by developing a new framework connecting diffusion models to the well-studied theory of extrema of Gaussian Processes.
Authors:Jian Zhang, Weijian Mai, Zhijun Zhang
Abstract:
The task of audio-driven portrait animation involves generating a talking head video using an identity image and an audio track of speech. While many existing approaches focus on lip synchronization and video quality, few tackle the challenge of generating emotion-driven talking head videos. The ability to control and edit emotions is essential for producing expressive and realistic animations. In response to this challenge, we propose EMOdiffhead, a novel method for emotional talking head video generation that not only enables fine-grained control of emotion categories and intensities but also enables one-shot generation. Given the FLAME 3D model's linearity in expression modeling, we utilize the DECA method to extract expression vectors, that are combined with audio to guide a diffusion model in generating videos with precise lip synchronization and rich emotional expressiveness. This approach not only enables the learning of rich facial information from emotion-irrelevant data but also facilitates the generation of emotional videos. It effectively overcomes the limitations of emotional data, such as the lack of diversity in facial and background information, and addresses the absence of emotional details in emotion-irrelevant data. Extensive experiments and user studies demonstrate that our approach achieves state-of-the-art performance compared to other emotion portrait animation methods.
Authors:Yoav HaCohen, Benny Brazowski, Nisan Chiprut, Yaki Bitterman, Andrew Kvochko, Avishai Berkowitz, Daniel Shalem, Daphna Lifschitz, Dudu Moshe, Eitan Porat, Eitan Richardson, Guy Shiran, Itay Chachy, Jonathan Chetboun, Michael Finkelson, Michael Kupchick, Nir Zabari, Nitzan Guetta, Noa Kotler, Ofir Bibi, Ori Gordon, Poriya Panet, Roi Benita, Shahar Armon, Victor Kulikov, Yaron Inger, Yonatan Shiftan, Zeev Melumian, Zeev Farbman
Abstract:
Recent text-to-video diffusion models can generate compelling video sequences, yet they remain silent -- missing the semantic, emotional, and atmospheric cues that audio provides. We introduce LTX-2, an open-source foundational model capable of generating high-quality, temporally synchronized audiovisual content in a unified manner. LTX-2 consists of an asymmetric dual-stream transformer with a 14B-parameter video stream and a 5B-parameter audio stream, coupled through bidirectional audio-video cross-attention layers with temporal positional embeddings and cross-modality AdaLN for shared timestep conditioning. This architecture enables efficient training and inference of a unified audiovisual model while allocating more capacity for video generation than audio generation. We employ a multilingual text encoder for broader prompt understanding and introduce a modality-aware classifier-free guidance (modality-CFG) mechanism for improved audiovisual alignment and controllability. Beyond generating speech, LTX-2 produces rich, coherent audio tracks that follow the characters, environment, style, and emotion of each scene -- complete with natural background and foley elements. In our evaluations, the model achieves state-of-the-art audiovisual quality and prompt adherence among open-source systems, while delivering results comparable to proprietary models at a fraction of their computational cost and inference time. All model weights and code are publicly released.
Authors:Hye-Young Jo, Mose Sakashita, Aditi Mishra, Ryo Suzuki, Koichiro Niinuma, Aakar Gupta
Abstract:
AI video generation has lowered barriers to video creation, but current tools still struggle with inconsistency. Filmmakers often find that clips fail to match characters and backgrounds, making it difficult to build coherent sequences. A formative study with filmmakers highlighted challenges in shot composition, character motion, and camera control. We present Map2Video, a street view imagery-driven AI video generation tool grounded in real-world geographies. The system integrates Unity and ComfyUI with the VACE video generation model, as well as OpenStreetMap and Mapillary for street view imagery. Drawing on familiar filmmaking practices such as location scouting and rehearsal, Map2Video enables users to choose map locations, position actors and cameras in street view imagery, sketch movement paths, refine camera motion, and generate spatially consistent videos. We evaluated Map2Video with 12 filmmakers. Compared to an image-to-video baseline, it achieved higher spatial accuracy, required less cognitive effort, and offered stronger controllability for both scene replication and open-ended creative exploration.
Authors:Xinjie Li, Zhimin Chen, Rui Zhao, Florian Schiffers, Zhenyu Liao, Vimal Bhat
Abstract:
Recent unified models for joint understanding and generation have significantly advanced visual generation capabilities. However, their focus on conventional tasks like text-to-video generation has left the temporal reasoning potential of unified models largely underexplored. To address this gap, we introduce Next Scene Prediction (NSP), a new task that pushes unified video models toward temporal and causal reasoning. Unlike text-to-video generation, NSP requires predicting plausible futures from preceding context, demanding deeper understanding and reasoning. To tackle this task, we propose a unified framework combining Qwen-VL for comprehension and LTX for synthesis, bridged by a latent query embedding and a connector module. This model is trained in three stages on our newly curated, large-scale NSP dataset: text-to-video pre-training, supervised fine-tuning, and reinforcement learning (via GRPO) with our proposed causal consistency reward. Experiments demonstrate our model achieves state-of-the-art performance on our benchmark, advancing the capability of generalist multimodal systems to anticipate what happens next.
Authors:Changxiao Ma, Chao Yuan, Xincheng Shi, Yuzhuo Ma, Yongfei Zhang, Longkun Zhou, Yujia Zhang, Shangze Li, Yifan Xu
Abstract:
Person re-identification (ReID) suffers from a lack of large-scale high-quality training data due to challenges in data privacy and annotation costs. While previous approaches have explored pedestrian generation for data augmentation, they often fail to ensure identity consistency and suffer from insufficient controllability, thereby limiting their effectiveness in dataset augmentation. To address this, We introduce OmniPerson, the first unified identity-preserving pedestrian generation pipeline for visible/infrared image/video ReID tasks. Our contributions are threefold: 1) We proposed OmniPerson, a unified generation model, offering holistic and fine-grained control over all key pedestrian attributes. Supporting RGB/IR modality image/video generation with any number of reference images, two kinds of person poses, and text. Also including RGB-to-IR transfer and image super-resolution abilities.2) We designed Multi-Refer Fuser for robust identity preservation with any number of reference images as input, making OmniPerson could distill a unified identity from a set of multi-view reference images, ensuring our generated pedestrians achieve high-fidelity pedestrian generation.3) We introduce PersonSyn, the first large-scale dataset for multi-reference, controllable pedestrian generation, and present its automated curation pipeline which transforms public, ID-only ReID benchmarks into a richly annotated resource with the dense, multi-modal supervision required for this task. Experimental results demonstrate that OmniPerson achieves SoTA in pedestrian generation, excelling in both visual fidelity and identity consistency. Furthermore, augmenting existing datasets with our generated data consistently improves the performance of ReID models. We will open-source the full codebase, pretrained model, and the PersonSyn dataset.
Authors:Jiawen Wei, Lan Jiang, Pengbo Wei, Ziwen Ye, Teng Song, Chen Chen, Guangrui Ma
Abstract:
Time series data is ubiquitous, with forecasting applications spanning from finance to healthcare. Beyond popular deterministic methods, generative models are gaining attention due to advancements in areas like image synthesis and video generation, as well as their inherent ability to provide probabilistic predictions. However, existing generative approaches mostly involve recurrent generative operations or repeated denoising steps, making the prediction laborious, particularly for long-term forecasting. Most of them only conduct experiments for relatively short-term forecasting, with limited comparison to deterministic methods in long-term forecasting, leaving their practical advantages unclear. This paper presents TARFVAE, a novel generative framework that combines the Transformer-based autoregressive flow (TARFLOW) and variational autoencoder (VAE) for efficient one-step generative time series forecasting. Inspired by the rethinking that complex architectures for extracting time series representations might not be necessary, we add a flow module, TARFLOW, to VAE to promote spontaneous learning of latent variables that benefit predictions. TARFLOW enhances VAE's posterior estimation by breaking the Gaussian assumption, thereby enabling a more informative latent space. TARFVAE uses only the forward process of TARFLOW, avoiding autoregressive inverse operations and thus ensuring fast generation. During generation, it samples from the prior latent space and directly generates full-horizon forecasts via the VAE decoder. With simple MLP modules, TARFVAE achieves superior performance over state-of-the-art deterministic and generative models across different forecast horizons on benchmark datasets while maintaining efficient prediction speed, demonstrating its effectiveness as an efficient and powerful solution for generative time series forecasting.
Authors:Zitong Xu, Dake Shen, Yaosong Du, Kexiang Hao, Jinghan Huang, Xiande Huang
Abstract:
Recent advances in AIGC (Artificial Intelligence Generated Content) models have enabled significant progress in image and video generation. However, users still struggle to obtain content that aligns with their preferences due to the difficulty of crafting detailed prompts and the lack of mechanisms to retain their preferences. To address these challenges, we construct \textbf{UniPrefer-100K}, a large-scale dataset comprising images, videos, and associated text that describes the styles users tend to prefer. Based on UniPrefer-100K, we propose \textbf{MagicWand}, a universal generation and evaluation agent that enhances prompts based on user preferences, leverages advanced generation models for high-quality content, and applies preference-aligned evaluation and refinement. In addition, we introduce \textbf{UniPreferBench}, the first large-scale benchmark with over 120K annotations for assessing user preference alignment across diverse AIGC tasks. Experiments on UniPreferBench demonstrate that MagicWand consistently generates content and evaluations that are well aligned with user preferences across a wide range of scenarios.
Authors:Shihan Cheng, Nilesh Kulkarni, David Hyde, Dmitriy Smirnov
Abstract:
Fine-tuning large-scale text-to-video diffusion models to add new generative controls, such as those over physical camera parameters (e.g., shutter speed or aperture), typically requires vast, high-fidelity datasets that are difficult to acquire. In this work, we propose a data-efficient fine-tuning strategy that learns these controls from sparse, low-quality synthetic data. We show that not only does fine-tuning on such simple data enable the desired controls, it actually yields superior results to models fine-tuned on photorealistic "real" data. Beyond demonstrating these results, we provide a framework that justifies this phenomenon both intuitively and quantitatively.
Authors:Amir Hever, Itai Orr
Abstract:
Generative AI is supercharging insurance fraud by making it easier to falsify accident evidence at scale and in rapid time. Insurance fraud is a pervasive and costly problem, amounting to tens of billions of dollars in losses each year. In the vehicle insurance sector, fraud schemes have traditionally involved staged accidents, exaggerated damage, or forged documents. The rise of generative AI, including deepfake image and video generation, has introduced new methods for committing fraud at scale. Fraudsters can now fabricate highly realistic crash photos, damage evidence, and even fake identities or documents with minimal effort, exploiting AI tools to bolster false insurance claims. Insurers have begun deploying countermeasures such as AI-based deepfake detection software and enhanced verification processes to detect and mitigate these AI-driven scams. However, current mitigation strategies face significant limitations. Detection tools can suffer from false positives and negatives, and sophisticated fraudsters continuously adapt their tactics to evade automated checks. This cat-and-mouse arms race between generative AI and detection technology, combined with resource and cost barriers for insurers, means that combating AI-enabled insurance fraud remains an ongoing challenge. In this white paper, we present UVeye layered solution for vehicle fraud, representing a major leap forward in the ability to detect, mitigate and deter this new wave of fraud.
Authors:Takehiro Aoshima, Yusuke Shinohara, Byeongseon Park
Abstract:
Reward-based fine-tuning of video diffusion models is an effective approach to improve the quality of generated videos, as it can fine-tune models without requiring real-world video datasets. However, it can sometimes be limited to specific performances because conventional reward functions are mainly aimed at enhancing the quality across the whole generated video sequence, such as aesthetic appeal and overall consistency. Notably, the temporal consistency of the generated video often suffers when applying previous approaches to image-to-video (I2V) generation tasks. To address this limitation, we propose Video Consistency Distance (VCD), a novel metric designed to enhance temporal consistency, and fine-tune a model with the reward-based fine-tuning framework. To achieve coherent temporal consistency relative to a conditioning image, VCD is defined in the frequency space of video frame features to capture frame information effectively through frequency-domain analysis. Experimental results across multiple I2V datasets demonstrate that fine-tuning a video generation model with VCD significantly enhances temporal consistency without degrading other performance compared to the previous method.
Authors:Huanpeng Chu, Wei Wu, Guanyu Fen, Yutao Zhang
Abstract:
Diffusion models have emerged as a powerful paradigm for generative tasks such as image synthesis and video generation, with Transformer architectures further enhancing performance. However, the high computational cost of diffusion Transformers-stemming from a large number of sampling steps and complex per-step computations-presents significant challenges for real-time deployment. In this paper, we introduce OmniCache, a training-free acceleration method that exploits the global redundancy inherent in the denoising process. Unlike existing methods that determine caching strategies based on inter-step similarities and tend to prioritize reusing later sampling steps, our approach originates from the sampling perspective of DIT models. We systematically analyze the model's sampling trajectories and strategically distribute cache reuse across the entire sampling process. This global perspective enables more effective utilization of cached computations throughout the diffusion trajectory, rather than concentrating reuse within limited segments of the sampling procedure. In addition, during cache reuse, we dynamically estimate the corresponding noise and filter it out to reduce its impact on the sampling direction. Extensive experiments demonstrate that our approach accelerates the sampling process while maintaining competitive generative quality, offering a promising and practical solution for efficient deployment of diffusion-based generative models.
Authors:Danzhen Fu, Jiagao Hu, Daiguo Zhou, Fei Wang, Zepeng Wang, Wenhua Liao
Abstract:
Pedestrian detection models in autonomous driving systems often lack robustness due to insufficient representation of dangerous pedestrian scenarios in training datasets. To address this limitation, we present a novel framework for controllable pedestrian video editing in multi-view driving scenarios by integrating video inpainting and human motion control techniques. Our approach begins by identifying pedestrian regions of interest across multiple camera views, expanding detection bounding boxes with a fixed ratio, and resizing and stitching these regions into a unified canvas while preserving cross-view spatial relationships. A binary mask is then applied to designate the editable area, within which pedestrian editing is guided by pose sequence control conditions. This enables flexible editing functionalities, including pedestrian insertion, replacement, and removal. Extensive experiments demonstrate that our framework achieves high-quality pedestrian editing with strong visual realism, spatiotemporal coherence, and cross-view consistency. These results establish the proposed method as a robust and versatile solution for multi-view pedestrian video generation, with broad potential for applications in data augmentation and scenario simulation in autonomous driving.
Authors:Adil Kaan Akan, Yucel Yemez
Abstract:
We present a novel framework for compositional video synthesis that leverages temporally consistent object-centric representations, extending our previous work, SlotAdapt, from images to video. While existing object-centric approaches either lack generative capabilities entirely or treat video sequences holistically, thus neglecting explicit object-level structure, our approach explicitly captures temporal dynamics by learning pose invariant object-centric slots and conditioning them on pretrained diffusion models. This design enables high-quality, pixel-level video synthesis with superior temporal coherence, and offers intuitive compositional editing capabilities such as object insertion, deletion, or replacement, maintaining consistent object identities across frames. Extensive experiments demonstrate that our method sets new benchmarks in video generation quality and temporal consistency, outperforming previous object-centric generative methods. Although our segmentation performance closely matches state-of-the-art methods, our approach uniquely integrates this capability with robust generative performance, significantly advancing interactive and controllable video generation and opening new possibilities for advanced content creation, semantic editing, and dynamic scene understanding.
Authors:Kehan Sui, Jinxu Xiang, Fang Jin
Abstract:
Singing voice synthesis (SVS) aims to generate expressive and high-quality vocals from musical scores, requiring precise modeling of pitch, duration, and articulation. While diffusion-based models have achieved remarkable success in image and video generation, their application to SVS remains challenging due to the complex acoustic and musical characteristics of singing, often resulting in artifacts that degrade naturalness. In this work, we propose SmoothSinger, a conditional diffusion model designed to synthesize high quality and natural singing voices. Unlike prior methods that depend on vocoders as a final stage and often introduce distortion, SmoothSinger refines low-quality synthesized audio directly in a unified framework, mitigating the degradation associated with two-stage pipelines. The model adopts a reference-guided dual-branch architecture, using low-quality audio from any baseline system as a reference to guide the denoising process, enabling more expressive and context-aware synthesis. Furthermore, it enhances the conventional U-Net with a parallel low-frequency upsampling path, allowing the model to better capture pitch contours and long term spectral dependencies. To improve alignment during training, we replace reference audio with degraded ground truth audio, addressing temporal mismatch between reference and target signals. Experiments on the Opencpop dataset, a large-scale Chinese singing corpus, demonstrate that SmoothSinger achieves state-of-the-art results in both objective and subjective evaluations. Extensive ablation studies confirm its effectiveness in reducing artifacts and improving the naturalness of synthesized voices.
Authors:Yuzhi Li, Haojun Xu, Feng Tian
Abstract:
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable reasoning and generalization capabilities in video understanding; however, their application in video editing remains largely underexplored. This paper presents the first systematic study of LLMs in the context of video editing. To bridge the gap between visual information and language-based reasoning, we introduce L-Storyboard, an intermediate representation that transforms discrete video shots into structured language descriptions suitable for LLM processing. We categorize video editing tasks into Convergent Tasks and Divergent Tasks, focusing on three core tasks: Shot Attributes Classification, Next Shot Selection, and Shot Sequence Ordering. To address the inherent instability of divergent task outputs, we propose the StoryFlow strategy, which converts the divergent multi-path reasoning process into a convergent selection mechanism, effectively enhancing task accuracy and logical coherence. Experimental results demonstrate that L-Storyboard facilitates a more robust mapping between visual information and language descriptions, significantly improving the interpretability and privacy protection of video editing tasks. Furthermore, StoryFlow enhances the logical consistency and output stability in Shot Sequence Ordering, underscoring the substantial potential of LLMs in intelligent video editing.
Authors:Rui-Yang Ju, Sheng-Yen Huang, Yi-Ping Hung
Abstract:
The introduction of 3D Gaussian blendshapes has enabled the real-time reconstruction of animatable head avatars from monocular video. Toonify, a StyleGAN-based method, has become widely used for facial image stylization. To extend Toonify for synthesizing diverse stylized 3D head avatars using Gaussian blendshapes, we propose an efficient two-stage framework, ToonifyGB. In Stage 1 (stylized video generation), we adopt an improved StyleGAN to generate the stylized video from the input video frames, which overcomes the limitation of cropping aligned faces at a fixed resolution as preprocessing for normal StyleGAN. This process provides a more stable stylized video, which enables Gaussian blendshapes to better capture the high-frequency details of the video frames, facilitating the synthesis of high-quality animations in the next stage. In Stage 2 (Gaussian blendshapes synthesis), our method learns a stylized neutral head model and a set of expression blendshapes from the generated stylized video. By combining the neutral head model with expression blendshapes, ToonifyGB can efficiently render stylized avatars with arbitrary expressions. We validate the effectiveness of ToonifyGB on benchmark datasets using two representative styles: Arcane and Pixar.
Authors:Jiwoo Jeong, Kirok Kim, Wooju Kim, Nam-Joon Kim
Abstract:
Pose-Guided Person Image Synthesis (PGPIS) generates realistic person images conditioned on a target pose and a source image. This task plays a key role in various real-world applications, such as sign language video generation, AR/VR, gaming, and live streaming. In these scenarios, real-time PGPIS is critical for providing immediate visual feedback and maintaining user immersion.However, achieving real-time performance remains a significant challenge due to the complexity of synthesizing high-fidelity images from diverse and dynamic human poses. Recent diffusion-based methods have shown impressive image quality in PGPIS, but their slow sampling speeds hinder deployment in time-sensitive applications. This latency is particularly problematic in tasks like generating sign language videos during live broadcasts, where rapid image updates are required. Therefore, developing a fast and reliable PGPIS model is a crucial step toward enabling real-time interactive systems. To address this challenge, we propose a generative model based on flow matching (FM). Our approach enables faster, more stable, and more efficient training and sampling. Furthermore, the proposed model supports conditional generation and can operate in latent space, making it especially suitable for real-time PGPIS applications where both speed and quality are critical. We evaluate our proposed method, Real-Time Person Image Synthesis Using a Flow Matching Model (RPFM), on the widely used DeepFashion dataset for PGPIS tasks. Our results show that RPFM achieves near-real-time sampling speeds while maintaining performance comparable to the state-of-the-art models. Our methodology trades off a slight, acceptable decrease in generated-image accuracy for over a twofold increase in generation speed, thereby ensuring real-time performance.
Authors:Anushka Agarwal, Muhammad Yusuf Hassan, Talha Chafekar
Abstract:
We introduce GenSync, a novel framework for multi-identity lip-synced video synthesis using 3D Gaussian Splatting. Unlike most existing 3D methods that require training a new model for each identity , GenSync learns a unified network that synthesizes lip-synced videos for multiple speakers. By incorporating a Disentanglement Module, our approach separates identity-specific features from audio representations, enabling efficient multi-identity video synthesis. This design reduces computational overhead and achieves 6.8x faster training compared to state-of-the-art models, while maintaining high lip-sync accuracy and visual quality.
Authors:Zhanbo Huang, Xiaoming Liu, Yu Kong
Abstract:
In this paper, we propose H-MoRe, a novel pipeline for learning precise human-centric motion representation. Our approach dynamically preserves relevant human motion while filtering out background movement. Notably, unlike previous methods relying on fully supervised learning from synthetic data, H-MoRe learns directly from real-world scenarios in a self-supervised manner, incorporating both human pose and body shape information. Inspired by kinematics, H-MoRe represents absolute and relative movements of each body point in a matrix format that captures nuanced motion details, termed world-local flows. H-MoRe offers refined insights into human motion, which can be integrated seamlessly into various action-related applications. Experimental results demonstrate that H-MoRe brings substantial improvements across various downstream tasks, including gait recognition(CL@R1: +16.01%), action recognition(Acc@1: +8.92%), and video generation(FVD: -67.07%). Additionally, H-MoRe exhibits high inference efficiency (34 fps), making it suitable for most real-time scenarios. Models and code will be released upon publication.
Authors:Pascal Chang, Jingwei Tang, Markus Gross, Vinicius C. Azevedo
Abstract:
Video editing and generation methods often rely on pre-trained image-based diffusion models. During the diffusion process, however, the reliance on rudimentary noise sampling techniques that do not preserve correlations present in subsequent frames of a video is detrimental to the quality of the results. This either produces high-frequency flickering, or texture-sticking artifacts that are not amenable to post-processing. With this in mind, we propose a novel method for preserving temporal correlations in a sequence of noise samples. This approach is materialized by a novel noise representation, dubbed $\int$-noise (integral noise), that reinterprets individual noise samples as a continuously integrated noise field: pixel values do not represent discrete values, but are rather the integral of an underlying infinite-resolution noise over the pixel area. Additionally, we propose a carefully tailored transport method that uses $\int$-noise to accurately advect noise samples over a sequence of frames, maximizing the correlation between different frames while also preserving the noise properties. Our results demonstrate that the proposed $\int$-noise can be used for a variety of tasks, such as video restoration, surrogate rendering, and conditional video generation. See https://warpyournoise.github.io/ for video results.
Authors:Mikel Zhobro, Andreas René Geist, Georg Martius
Abstract:
Realistic simulation is critical for applications ranging from robotics to animation. Learned simulators have emerged as a possibility to capture real world physics directly from video data, but very often require privileged information such as depth information, particle tracks and hand-engineered features to maintain spatial and temporal consistency. These strong inductive biases or ground truth 3D information help in domains where data is sparse but limit scalability and generalization in data rich regimes. To overcome the key limitations, we propose 3DGSim, a learned 3D simulator that directly learns physical interactions from multi-view RGB videos. 3DGSim unifies 3D scene reconstruction, particle dynamics prediction and video synthesis into an end-to-end trained framework. It adopts MVSplat to learn a latent particle-based representation of 3D scenes, a Point Transformer for particle dynamics, a Temporal Merging module for consistent temporal aggregation and Gaussian Splatting to produce novel view renderings. By jointly training inverse rendering and dynamics forecasting, 3DGSim embeds the physical properties into point-wise latent features. This enables the model to capture diverse physical behaviors, from rigid to elastic, cloth-like dynamics, and boundary conditions (e.g. fixed cloth corner), along with realistic lighting effects that also generalize to unseen multibody interactions and novel scene edits.
Authors:Xuewei Chen, Zhimin Chen, Yiren Song
Abstract:
Text-to-video generative models have made remarkable advancements in recent years. However, generating RGBA videos with alpha channels for transparency and visual effects remains a significant challenge due to the scarcity of suitable datasets and the complexity of adapting existing models for this purpose. To address these limitations, we present TransAnimate, an innovative framework that integrates RGBA image generation techniques with video generation modules, enabling the creation of dynamic and transparent videos. TransAnimate efficiently leverages pre-trained text-to-transparent image model weights and combines them with temporal models and controllability plugins trained on RGB videos, adapting them for controllable RGBA video generation tasks. Additionally, we introduce an interactive motion-guided control mechanism, where directional arrows define movement and colors adjust scaling, offering precise and intuitive control for designing game effects. To further alleviate data scarcity, we have developed a pipeline for creating an RGBA video dataset, incorporating high-quality game effect videos, extracted foreground objects, and synthetic transparent videos. Comprehensive experiments demonstrate that TransAnimate generates high-quality RGBA videos, establishing it as a practical and effective tool for applications in gaming and visual effects.
Authors:Xiaowen Li, Haolan Xue, Peiran Ren, Liefeng Bo
Abstract:
Recent video inpainting algorithms integrate flow-based pixel propagation with transformer-based generation to leverage optical flow for restoring textures and objects using information from neighboring frames, while completing masked regions through visual Transformers. However, these approaches often encounter blurring and temporal inconsistencies when dealing with large masks, highlighting the need for models with enhanced generative capabilities. Recently, diffusion models have emerged as a prominent technique in image and video generation due to their impressive performance. In this paper, we introduce DiffuEraser, a video inpainting model based on stable diffusion, designed to fill masked regions with greater details and more coherent structures. We incorporate prior information to provide initialization and weak conditioning,which helps mitigate noisy artifacts and suppress hallucinations. Additionally, to improve temporal consistency during long-sequence inference, we expand the temporal receptive fields of both the prior model and DiffuEraser, and further enhance consistency by leveraging the temporal smoothing property of Video Diffusion Models. Experimental results demonstrate that our proposed method outperforms state-of-the-art techniques in both content completeness and temporal consistency while maintaining acceptable efficiency.
Authors:Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson, Eran Levin, Guy Shiran, Nir Zabari, Ori Gordon, Poriya Panet, Sapir Weissbuch, Victor Kulikov, Yaki Bitterman, Zeev Melumian, Ofir Bibi
Abstract:
We introduce LTX-Video, a transformer-based latent diffusion model that adopts a holistic approach to video generation by seamlessly integrating the responsibilities of the Video-VAE and the denoising transformer. Unlike existing methods, which treat these components as independent, LTX-Video aims to optimize their interaction for improved efficiency and quality. At its core is a carefully designed Video-VAE that achieves a high compression ratio of 1:192, with spatiotemporal downscaling of 32 x 32 x 8 pixels per token, enabled by relocating the patchifying operation from the transformer's input to the VAE's input. Operating in this highly compressed latent space enables the transformer to efficiently perform full spatiotemporal self-attention, which is essential for generating high-resolution videos with temporal consistency. However, the high compression inherently limits the representation of fine details. To address this, our VAE decoder is tasked with both latent-to-pixel conversion and the final denoising step, producing the clean result directly in pixel space. This approach preserves the ability to generate fine details without incurring the runtime cost of a separate upsampling module. Our model supports diverse use cases, including text-to-video and image-to-video generation, with both capabilities trained simultaneously. It achieves faster-than-real-time generation, producing 5 seconds of 24 fps video at 768x512 resolution in just 2 seconds on an Nvidia H100 GPU, outperforming all existing models of similar scale. The source code and pre-trained models are publicly available, setting a new benchmark for accessible and scalable video generation.
Authors:Min Zhang, Zilin Wang, Liyan Chen, Kunhong Liu, Juncong Lin
Abstract:
Recent advances in AI-driven storytelling have enhanced video generation and story visualization. However, translating dialogue-centric scripts into coherent storyboards remains a significant challenge due to limited script detail, inadequate physical context understanding, and the complexity of integrating cinematic principles. To address these challenges, we propose Dialogue Visualization, a novel task that transforms dialogue scripts into dynamic, multi-view storyboards. We introduce Dialogue Director, a training-free multimodal framework comprising a Script Director, Cinematographer, and Storyboard Maker. This framework leverages large multimodal models and diffusion-based architectures, employing techniques such as Chain-of-Thought reasoning, Retrieval-Augmented Generation, and multi-view synthesis to improve script understanding, physical context comprehension, and cinematic knowledge integration. Experimental results demonstrate that Dialogue Director outperforms state-of-the-art methods in script interpretation, physical world understanding, and cinematic principle application, significantly advancing the quality and controllability of dialogue-based story visualization.
Authors:Siyang Zhang, Ser-Nam Lim
Abstract:
Generating long-duration videos has always been a significant challenge due to the inherent complexity of spatio-temporal domain and the substantial GPU memory demands required to calculate huge size tensors. While diffusion based generative models achieve state-of-the-art performance in video generation task, they are typically trained with predefined video resolutions and lengths. During inference, a noise tensor with specific resolution and length should be specified at first, and the model will perform denoising on the entire video tensor simultaneously, all the frames together. Such approach will easily raise an out-of-memory (OOM) problem when the specified resolution and/or length exceed a certain limit. One of the solutions to this problem is to generate many short video chunks autoregressively with strong inter-chunk spatio-temporal relation and then concatenate them together to form a long video. In this approach, a long video generation task is divided into multiple short video generation subtasks, and the cost of each subtask is reduced to a feasible level. In this paper, we conduct a detailed survey on long video generation with the autoregressive chunk-by-chunk strategy. We address common problems caused by applying short image-to-video models to long video tasks and design an efficient $k$-step search solution to mitigate these problems.
Authors:Zhen Lv, Yangqi Long, Congzhentao Huang, Cao Li, Chengfei Lv, Hao Ren, Dian Zheng
Abstract:
Stereo video synthesis from a monocular input is a demanding task in the fields of spatial computing and virtual reality. The main challenges of this task lie on the insufficiency of high-quality paired stereo videos for training and the difficulty of maintaining the spatio-temporal consistency between frames. Existing methods primarily address these issues by directly applying novel view synthesis (NVS) techniques to video, while facing limitations such as the inability to effectively represent dynamic scenes and the requirement for large amounts of training data. In this paper, we introduce a novel self-supervised stereo video synthesis paradigm via a video diffusion model, termed SpatialDreamer, which meets the challenges head-on. Firstly, to address the stereo video data insufficiency, we propose a Depth based Video Generation module DVG, which employs a forward-backward rendering mechanism to generate paired videos with geometric and temporal priors. Leveraging data generated by DVG, we propose RefinerNet along with a self-supervised synthetic framework designed to facilitate efficient and dedicated training. More importantly, we devise a consistency control module, which consists of a metric of stereo deviation strength and a Temporal Interaction Learning module TIL for geometric and temporal consistency ensurance respectively. We evaluated the proposed method against various benchmark methods, with the results showcasing its superior performance.
Authors:Mathis Koroglu, Hugo Caselles-Dupré, Guillaume Jeanneret Sanmiguel, Matthieu Cord
Abstract:
We consider the problem of text-to-video generation tasks with precise control for various applications such as camera movement control and video-to-video editing. Most methods tacking this problem rely on providing user-defined controls, such as binary masks or camera movement embeddings. In our approach we propose OnlyFlow, an approach leveraging the optical flow firstly extracted from an input video to condition the motion of generated videos. Using a text prompt and an input video, OnlyFlow allows the user to generate videos that respect the motion of the input video as well as the text prompt. This is implemented through an optical flow estimation model applied on the input video, which is then fed to a trainable optical flow encoder. The output feature maps are then injected into the text-to-video backbone model. We perform quantitative, qualitative and user preference studies to show that OnlyFlow positively compares to state-of-the-art methods on a wide range of tasks, even though OnlyFlow was not specifically trained for such tasks. OnlyFlow thus constitutes a versatile, lightweight yet efficient method for controlling motion in text-to-video generation. Models and code will be made available on GitHub and HuggingFace.
Authors:Ashutosh Chaubey, Anoubhav Agarwaal, Sartaki Sinha Roy, Aayush Agrawal, Susmita Ghose
Abstract:
Contextual advertising serves ads that are aligned to the content that the user is viewing. The rapid growth of video content on social platforms and streaming services, along with privacy concerns, has increased the need for contextual advertising. Placing the right ad in the right context creates a seamless and pleasant ad viewing experience, resulting in higher audience engagement and, ultimately, better ad monetization. From a technology standpoint, effective contextual advertising requires a video retrieval system capable of understanding complex video content at a very granular level. Current text-to-video retrieval models based on joint multimodal training demand large datasets and computational resources, limiting their practicality and lacking the key functionalities required for ad ecosystem integration. We introduce ContextIQ, a multimodal expert-based video retrieval system designed specifically for contextual advertising. ContextIQ utilizes modality-specific experts-video, audio, transcript (captions), and metadata such as objects, actions, emotion, etc.-to create semantically rich video representations. We show that our system, without joint training, achieves better or comparable results to state-of-the-art models and commercial solutions on multiple text-to-video retrieval benchmarks. Our ablation studies highlight the benefits of leveraging multiple modalities for enhanced video retrieval accuracy instead of using a vision-language model alone. Furthermore, we show how video retrieval systems such as ContextIQ can be used for contextual advertising in an ad ecosystem while also addressing concerns related to brand safety and filtering inappropriate content.
Authors:Aakash Varma Nadimpalli, Ajita Rattani
Abstract:
With the significant advances in deep generative models for image and video synthesis, Deepfakes and manipulated media have raised severe societal concerns. Conventional machine learning classifiers for deepfake detection often fail to cope with evolving deepfake generation technology and are susceptible to adversarial attacks. Alternatively, invisible image watermarking is being researched as a proactive defense technique that allows media authentication by verifying an invisible secret message embedded in the image pixels. A handful of invisible image watermarking techniques introduced for media authentication have proven vulnerable to basic image processing operations and watermark removal attacks. In response, we have proposed a semi-fragile image watermarking technique that embeds an invisible secret message into real images for media authentication. Our proposed watermarking framework is designed to be fragile to facial manipulations or tampering while being robust to benign image-processing operations and watermark removal attacks. This is facilitated through a unique architecture of our proposed technique consisting of critic and adversarial networks that enforce high image quality and resiliency to watermark removal efforts, respectively, along with the backbone encoder-decoder and the discriminator networks. Thorough experimental investigations on SOTA facial Deepfake datasets demonstrate that our proposed model can embed a $64$-bit secret as an imperceptible image watermark that can be recovered with a high-bit recovery accuracy when benign image processing operations are applied while being non-recoverable when unseen Deepfake manipulations are applied. In addition, our proposed watermarking technique demonstrates high resilience to several white-box and black-box watermark removal attacks. Thus, obtaining state-of-the-art performance.
Authors:Khaled M. Seyam, Julian Wiederer, Markus Braun, Bin Yang
Abstract:
In recent years, there has been a growing interest in Semantic Image Synthesis (SIS) through the use of Generative Adversarial Networks (GANs) and diffusion models. This field has seen innovations such as the implementation of specialized loss functions tailored for this task, diverging from the more general approaches in Image-to-Image (I2I) translation. While the concept of Semantic Video Synthesis (SVS)$\unicode{x2013}$the generation of temporally coherent, realistic sequences of images from semantic maps$\unicode{x2013}$is newly formalized in this paper, some existing methods have already explored aspects of this field. Most of these approaches rely on generic loss functions designed for video-to-video translation or require additional data to achieve temporal coherence. In this paper, we introduce the SVS-GAN, a framework specifically designed for SVS, featuring a custom architecture and loss functions. Our approach includes a triple-pyramid generator that utilizes SPADE blocks. Additionally, we employ a U-Net-based network for the image discriminator, which performs semantic segmentation for the OASIS loss. Through this combination of tailored architecture and objective engineering, our framework aims to bridge the existing gap between SIS and SVS, outperforming current state-of-the-art models on datasets like Cityscapes and KITTI-360.
Authors:Andreea-Maria Oncescu, João F. Henriques, A. Sophia Koepke
Abstract:
Recent advancements in machine learning have fueled research on multimodal tasks, such as for instance text-to-video and text-to-audio retrieval. These tasks require models to understand the semantic content of video and audio data, including objects, and characters. The models also need to learn spatial arrangements and temporal relationships. In this work, we analyse the temporal ordering of sounds, which is an understudied problem in the context of text-to-audio retrieval. In particular, we dissect the temporal understanding capabilities of a state-of-the-art model for text-to-audio retrieval on the AudioCaps and Clotho datasets. Additionally, we introduce a synthetic text-audio dataset that provides a controlled setting for evaluating temporal capabilities of recent models. Lastly, we present a loss function that encourages text-audio models to focus on the temporal ordering of events. Code and data are available at https://www.robots.ox.ac.uk/~vgg/research/audio-retrieval/dtu/.
Authors:Onur T. Doganay, Alexander Klawonn, Martin Eigel, Hanno Gottschalk
Abstract:
Partial differential equation (PDE) simulations are fundamental to engineering and physics but are often computationally prohibitive for real-time applications. While generative AI offers a promising avenue for surrogate modeling, standard video generation architectures lack the specific control and data compatibility required for physical simulations. This paper introduces a geometry aware world model architecture, derived from a video generation architecture (LongVideoGAN), designed to learn transient physics. We introduce two key architecture elements: (1) a twofold conditioning mechanism incorporating global physical parameters and local geometric masks, and (2) an architectural adaptation to support arbitrary channel dimensions, moving beyond standard RGB constraints. We evaluate this approach on a 2D transient computational fluid dynamics (CFD) problem involving convective heat transfer from buoyancy-driven flow coupled to a heat flow in a solid structure. We demonstrate that the conditioned model successfully reproduces complex temporal dynamics and spatial correlations of the training data. Furthermore, we assess the model's generalization capabilities on unseen geometric configurations, highlighting both its potential for controlled simulation synthesis and current limitations in spatial precision for out-of-distribution samples.
Authors:June Chen, Neal Xu, Gragas Huang, Bok Zhou, Stephen Liu
Abstract:
The rapid growth of AI-generated content (AIGC) has enabled high-quality creative production across diverse domains, yet existing systems face critical inefficiencies in throughput, resource utilization, and scalability under concurrent workloads. This paper introduces OnePiece, a large-scale distributed inference system with RDMA optimized for multi-stage AIGC workflows. By decomposing pipelines into fine-grained microservices and leveraging one-sided RDMA communication, OnePiece significantly reduces inter-node latency and CPU overhead while improving GPU utilization. The system incorporates a novel double-ring buffer design to resolve deadlocks in RDMA-aware memory access without CPU involvement. Additionally, a dynamic Node Manager allocates resources elastically across workflow stages in response to real-time load. Experimental results demonstrate that OnePiece reduces GPU resource consumption by 16x in Wan2.1 image-to-video generation compared to monolithic inference pipelines, offering a scalable, fault-tolerant, and efficient solution for production AIGC environments.
Authors:Boyu Li, Lin-Ping Yuan, Zeyu Wang, Hongbo Fu
Abstract:
Sketching provides an intuitive way to convey dynamic intent in animation authoring (i.e., how elements change over time and space), making it a natural medium for automatic content creation. Yet existing approaches often constrain sketches to fixed command tokens or predefined visual forms, overlooking their freeform nature and the central role of humans in shaping intention. To address this, we introduce an interaction paradigm where users convey dynamic intent to a vision-language model via free-form sketching, instantiated here in a sketch storyboard to motion graphics workflow. We implement an interface and improve it through a three-stage study with 24 participants. The study shows how sketches convey motion with minimal input, how their inherent ambiguity requires users to be involved for clarification, and how sketches can visually guide video refinement. Our findings reveal the potential of sketch and AI interaction to bridge the gap between intention and outcome, and demonstrate its applicability to 3D animation and video generation.
Authors:M. E. ElAlami, S. M. Khater, M. El. R. Rehan
Abstract:
Technological developments have produced methods that can generate educational videos from input text or sound. Recently, the use of deep learning techniques for image and video generation has been widely explored, particularly in education. However, generating video content from conditional inputs such as text or speech remains a challenging area. In this paper, we introduce a novel method to the educational structure, Generative Adversarial Network (GAN), which develop frame-for-frame frameworks and are able to create full educational videos. The proposed system is structured into three main phases In the first phase, the input (either text or speech) is transcribed using speech recognition. In the second phase, key terms are extracted and relevant images are generated using advanced models such as CLIP and diffusion models to enhance visual quality and semantic alignment. In the final phase, the generated images are synthesized into a video format, integrated with either pre-recorded or synthesized sound, resulting in a fully interactive educational video. The proposed system is compared with other systems such as TGAN, MoCoGAN, and TGANS-C, achieving a Fréchet Inception Distance (FID) score of 28.75%, which indicates improved visual quality and better over existing methods.
Authors:Vittoria De Pellegrini, Tariq Alkhalifah
Abstract:
Modeling and forecasting subsurface multiphase fluid flow fields underpin applications ranging from geological CO2 sequestration (GCS) operations to geothermal production. This is essential for ensuring both operational performance and long-term safety. While high fidelity multiphase simulators are widely used for this purpose, they become prohibitively expensive once many forward runs are required for inversion purposes and quantify uncertainty. To tackle this challenge we propose LAViG-FLOW, a latent autoregressive video generation diffusion framework that explicitly learns the coupled evolution of saturation and pressure fields. Each state variable is compressed by a dedicated 2D autoencoder, and a Video Diffusion Transformer (VDiT) models their coupled distribution across time. We first train the model on a given time horizon to learn their coupled relationship and then fine-tune it autoregressively so it can extrapolate beyond the observed time window. Evaluated on an open-source CO2 sequestration dataset, LAViG-FLOW generates saturation and pressure fields that stay consistent across time while running orders of magnitude faster than traditional numerical solvers.
Authors:Jieying Chen, Jeffrey Hu, Joan Lasenby, Ayush Tewari
Abstract:
Modern video generative models based on diffusion models can produce very realistic clips, but they are computationally inefficient, often requiring minutes of GPU time for just a few seconds of video. This inefficiency poses a critical barrier to deploying generative video in applications that require real-time interactions, such as embodied AI and VR/AR. This paper explores a new strategy for camera-conditioned video generation of static scenes: using diffusion-based generative models to generate a sparse set of keyframes, and then synthesizing the full video through 3D reconstruction and rendering. By lifting keyframes into a 3D representation and rendering intermediate views, our approach amortizes the generation cost across hundreds of frames while enforcing geometric consistency. We further introduce a model that predicts the optimal number of keyframes for a given camera trajectory, allowing the system to adaptively allocate computation. Our final method, SRENDER, uses very sparse keyframes for simple trajectories and denser ones for complex camera motion. This results in video generation that is more than 40 times faster than the diffusion-based baseline in generating 20 seconds of video, while maintaining high visual fidelity and temporal stability, offering a practical path toward efficient and controllable video synthesis.
Authors:Jingbo Yang, Adrian G. Bors
Abstract:
Video generation has seen remarkable progress thanks to advancements in generative deep learning. However, generating long sequences remains a significant challenge. Generated videos should not only display coherent and continuous movement but also meaningful movement in successions of scenes. Models such as GANs, VAEs, and Diffusion Networks have been used for generating short video sequences, typically up to 16 frames. In this paper, we first propose a new type of video generator by enabling adversarial-based unconditional video generators with a variational encoder, akin to a VAE-GAN hybrid structure. The proposed model, as in other video deep learning-based processing frameworks, incorporates two processing branches, one for content and another for movement. However, existing models struggle with the temporal scaling of the generated videos. Classical approaches often result in degraded video quality when attempting to increase the generated video length, especially for significantly long sequences. To overcome this limitation, our research study extends the initially proposed VAE-GAN video generation model by employing a novel, memory-efficient approach to generate long videos composed of hundreds or thousands of frames ensuring their temporal continuity, consistency and dynamics. Our approach leverages a Markov chain framework with a recall mechanism, where each state represents a short-length VAE-GAN video generator. This setup enables the sequential connection of generated video sub-sequences, maintaining temporal dependencies and resulting in meaningful long video sequences.
Authors:Xuancheng Xu, Yaning Li, Sisi You, Bing-Kun Bao
Abstract:
Customized video generation aims to produce videos that faithfully preserve the subject's appearance from reference images while maintaining temporally consistent motion from reference videos. Existing methods struggle to ensure both subject appearance similarity and motion pattern consistency due to the lack of object-level guidance for subject and motion. To address this, we propose SMRABooth, which leverages the self-supervised encoder and optical flow encoder to provide object-level subject and motion representations. These representations are aligned with the model during the LoRA fine-tuning process. Our approach is structured in three core stages: (1) We exploit subject representations via a self-supervised encoder to guide subject alignment, enabling the model to capture overall structure of subject and enhance high-level semantic consistency. (2) We utilize motion representations from an optical flow encoder to capture structurally coherent and object-level motion trajectories independent of appearance. (3) We propose a subject-motion association decoupling strategy that applies sparse LoRAs injection across both locations and timing, effectively reducing interference between subject and motion LoRAs. Extensive experiments show that SMRABooth excels in subject and motion customization, maintaining consistent subject appearance and motion patterns, proving its effectiveness in controllable text-to-video generation.
Authors:Cuifeng Shen, Lumin Xu, Xingguo Zhu, Gengdai Liu
Abstract:
Video autoencoders compress videos into compact latent representations for efficient reconstruction, playing a vital role in enhancing the quality and efficiency of video generation. However, existing video autoencoders often entangle spatial and temporal information, limiting their ability to capture temporal consistency and leading to suboptimal performance. To address this, we propose Autoregressive Video Autoencoder (ARVAE), which compresses and reconstructs each frame conditioned on its predecessor in an autoregressive manner, allowing flexible processing of videos with arbitrary lengths. ARVAE introduces a temporal-spatial decoupled representation that combines downsampled flow field for temporal coherence with spatial relative compensation for newly emerged content, achieving high compression efficiency without information loss. Specifically, the encoder compresses the current and previous frames into the temporal motion and spatial supplement, while the decoder reconstructs the original frame from the latent representations given the preceding frame. A multi-stage training strategy is employed to progressively optimize the model. Extensive experiments demonstrate that ARVAE achieves superior reconstruction quality with extremely lightweight models and small-scale training data. Moreover, evaluations on video generation tasks highlight its strong potential for downstream applications.
Authors:Hao Li, Qiao Sun
Abstract:
While video-generation-based embodied world models have gained increasing attention, their reliance on large-scale embodied interaction data remains a key bottleneck. The scarcity, difficulty of collection, and high dimensionality of embodied data fundamentally limit the alignment granularity between language and actions and exacerbate the challenge of long-horizon video generation--hindering generative models from achieving a \textit{"GPT moment"} in the embodied domain. There is a naive observation: \textit{the diversity of embodied data far exceeds the relatively small space of possible primitive motions}. Based on this insight, we propose \textbf{Primitive Embodied World Models} (PEWM), which restricts video generation to fixed shorter horizons, our approach \textit{1) enables} fine-grained alignment between linguistic concepts and visual representations of robotic actions, \textit{2) reduces} learning complexity, \textit{3) improves} data efficiency in embodied data collection, and \textit{4) decreases} inference latency. By equipping with a modular Vision-Language Model (VLM) planner and a Start-Goal heatmap Guidance mechanism (SGG), PEWM further enables flexible closed-loop control and supports compositional generalization of primitive-level policies over extended, complex tasks. Our framework leverages the spatiotemporal vision priors in video models and the semantic awareness of VLMs to bridge the gap between fine-grained physical interaction and high-level reasoning, paving the way toward scalable, interpretable, and general-purpose embodied intelligence.
Authors:Dor Shmilovich, Tony Wu, Aviad Dahan, Yuval Domb
Abstract:
Diffusion Transformers, particularly for video generation, achieve remarkable quality but suffer from quadratic attention complexity, leading to prohibitive latency. Existing acceleration methods face a fundamental trade-off: dynamically estimating sparse attention patterns at each denoising step incurs high computational overhead and estimation errors, while static sparsity patterns remain fixed and often suboptimal throughout denoising. We identify a key structural property of diffusion attention, namely, its sparsity patterns exhibit strong temporal coherence across denoising steps. Tiles deemed non-essential at step $t$ typically remain so at step $t+δ$. Leveraging this observation, we introduce LiteAttention, a method that exploits temporal coherence to enable evolutionary computation skips across the denoising sequence. By marking non-essential tiles early and propagating skip decisions forward, LiteAttention eliminates redundant attention computations without repeated profiling overheads, combining the adaptivity of dynamic methods with the efficiency of static ones. We implement a highly optimized LiteAttention kernel on top of FlashAttention and demonstrate substantial speedups on production video diffusion models, with no degradation in quality. The code and implementation details will be publicly released.
Authors:Shuangquan Lyu, Steven Mao, Yue Ma
Abstract:
Generating long videos remains a fundamental challenge, and achieving high controllability in video inpainting and outpainting is particularly demanding. To address both of these challenges simultaneously and achieve controllable video inpainting and outpainting for long video clips, we introduce a novel and unified approach for long video inpainting and outpainting that extends text-to-video diffusion models to generate arbitrarily long, spatially edited videos with high fidelity. Our method leverages LoRA to efficiently fine-tune a large pre-trained video diffusion model like Alibaba's Wan 2.1 for masked region video synthesis, and employs an overlap-and-blend temporal co-denoising strategy with high-order solvers to maintain consistency across long sequences. In contrast to prior work that struggles with fixed-length clips or exhibits stitching artifacts, our system enables arbitrarily long video generation and editing without noticeable seams or drift. We validate our approach on challenging inpainting/outpainting tasks including editing or adding objects over hundreds of frames and demonstrate superior performance to baseline methods like Wan 2.1 model and VACE in terms of quality (PSNR/SSIM), and perceptual realism (LPIPS). Our method enables practical long-range video editing with minimal overhead, achieved a balance between parameter efficient and superior performance.
Authors:Zhentao Fan, Zongzuo Wang, Weiwei Zhang
Abstract:
Existing cache-based acceleration methods for video diffusion models primarily skip early or mid denoising steps, which often leads to structural discrepancies relative to full-timestep generation and can hinder instruction following and character consistency. We present TaoCache, a training-free, plug-and-play caching strategy that, instead of residual-based caching, adopts a fixed-point perspective to predict the model's noise output and is specifically effective in late denoising stages. By calibrating cosine similarities and norm ratios of consecutive noise deltas, TaoCache preserves high-resolution structure while enabling aggressive skipping. The approach is orthogonal to complementary accelerations such as Pyramid Attention Broadcast (PAB) and TeaCache, and it integrates seamlessly into DiT-based frameworks. Across Latte-1, OpenSora-Plan v110, and Wan2.1, TaoCache attains substantially higher visual quality (LPIPS, SSIM, PSNR) than prior caching methods under the same speedups.
Authors:Jingxuan He, Busheng Su, Finn Wong
Abstract:
Generating long, temporally coherent videos with precise control over subject identity and motion is a formidable challenge for current diffusion models, which often suffer from identity drift and are limited to short clips. We introduce PoseGen, a novel framework that generates arbitrarily long videos of a specific subject from a single reference image and a driving pose sequence. Our core innovation is an in-context LoRA finetuning strategy that injects subject appearance at the token level for identity preservation, while simultaneously conditioning on pose information at the channel level for fine-grained motion control. To overcome duration limits, PoseGen pioneers an interleaved segment generation method that seamlessly stitches video clips together, using a shared KV cache mechanism and a specialized transition process to ensure background consistency and temporal smoothness. Trained on a remarkably small 33-hour video dataset, extensive experiments show that PoseGen significantly outperforms state-of-the-art methods in identity fidelity, pose accuracy, and its unique ability to produce coherent, artifact-free videos of unlimited duration.
Authors:Xi Xue, Kunio Suzuki, Nabarun Goswami, Takuya Shintate
Abstract:
The rapid advancement of diffusion-based video generation models has led to increasingly realistic synthetic content, presenting new challenges for video forgery detection. Existing methods often struggle to capture fine-grained temporal inconsistencies, particularly in AI-generated videos with high visual fidelity and coherent motion. In this work, we propose a detection framework that leverages spatial-temporal consistency by combining RGB appearance features with optical flow residuals. The model adopts a dual-branch architecture, where one branch analyzes RGB frames to detect appearance-level artifacts, while the other processes flow residuals to reveal subtle motion anomalies caused by imperfect temporal synthesis. By integrating these complementary features, the proposed method effectively detects a wide range of forged videos. Extensive experiments on text-to-video and image-to-video tasks across ten diverse generative models demonstrate the robustness and strong generalization ability of the proposed approach.
Authors:Akshat Rakheja, Aarsh Ashdhir, Aryan Bhattacharjee, Vanshika Sharma
Abstract:
We introduce World Consistency Score (WCS), a novel unified evaluation metric for generative video models that emphasizes internal world consistency of the generated videos. WCS integrates four interpretable sub-components - object permanence, relation stability, causal compliance, and flicker penalty - each measuring a distinct aspect of temporal and physical coherence in a video. These submetrics are combined via a learned weighted formula to produce a single consistency score that aligns with human judgments. We detail the motivation for WCS in the context of existing video evaluation metrics, formalize each submetric and how it is computed with open-source tools (trackers, action recognizers, CLIP embeddings, optical flow), and describe how the weights of the WCS combination are trained using human preference data. We also outline an experimental validation blueprint: using benchmarks like VBench-2.0, EvalCrafter, and LOVE to test WCS's correlation with human evaluations, performing sensitivity analyses, and comparing WCS against established metrics (FVD, CLIPScore, VBench, FVMD). The proposed WCS offers a comprehensive and interpretable framework for evaluating video generation models on their ability to maintain a coherent "world" over time, addressing gaps left by prior metrics focused only on visual fidelity or prompt alignment.
Authors:Elham Soltani Kazemi, Imad Eddine Toubal, Gani Rahmon, Jaired Collins, K. Palaniappan
Abstract:
Video Object Segmentation (VOS) is foundational to numerous computer vision applications, including surveillance, autonomous driving, robotics and generative video editing. However, existing VOS models often struggle with precise mask delineation, deformable objects, topologically transforming objects, tracking drift and long video sequences. In this paper, we introduce HQ-SMem, for High Quality video segmentation and tracking using Smart Memory, a novel method that enhances the performance of VOS base models by addressing these limitations. Our approach incorporates three key innovations: (i) leveraging SAM with High-Quality masks (SAM-HQ) alongside appearance-based candidate-selection to refine coarse segmentation masks, resulting in improved object boundaries; (ii) implementing a dynamic smart memory mechanism that selectively stores relevant key frames while discarding redundant ones, thereby optimizing memory usage and processing efficiency for long-term videos; and (iii) dynamically updating the appearance model to effectively handle complex topological object variations and reduce drift throughout the video. These contributions mitigate several limitations of existing VOS models including, coarse segmentations that mix-in background pixels, fixed memory update schedules, brittleness to drift and occlusions, and prompt ambiguity issues associated with SAM. Extensive experiments conducted on multiple public datasets and state-of-the-art base trackers demonstrate that our method consistently ranks among the top two on VOTS and VOTSt 2024 datasets. Moreover, HQ-SMem sets new benchmarks on Long Video Dataset and LVOS, showcasing its effectiveness in challenging scenarios characterized by complex multi-object dynamics over extended temporal durations.
Authors:Hanwen Shen, Jiajie Lu, Yupeng Cao, Xiaonan Yang
Abstract:
Recent advances in AI-generated video have shown strong performance on \emph{text-to-video} tasks, particularly for short clips depicting a single scene. However, current models struggle to generate longer videos with coherent scene transitions, primarily because they cannot infer when a transition is needed from the prompt. Most open-source models are trained on datasets consisting of single-scene video clips, which limits their capacity to learn and respond to prompts requiring multiple scenes. Developing scene transition awareness is essential for multi-scene generation, as it allows models to identify and segment videos into distinct clips by accurately detecting transitions.
To address this, we propose the \textbf{Transition-Aware Video} (TAV) dataset, which consists of preprocessed video clips with multiple scene transitions. Our experiment shows that post-training on the \textbf{TAV} dataset improves prompt-based scene transition understanding, narrows the gap between required and generated scenes, and maintains image quality.
Authors:Justin D. Norman, Hany Farid
Abstract:
The combination of highly realistic voice cloning, along with visually compelling avatar, face-swap, or lip-sync deepfake video generation, makes it relatively easy to create a video of anyone saying anything. Today, such deepfake impersonations are often used to power frauds, scams, and political disinformation. We propose a novel forensic machine learning technique for the detection of deepfake video impersonations that leverages unnatural patterns in facial biometrics. We evaluate this technique across a large dataset of deepfake techniques and impersonations, as well as assess its reliability to video laundering and its generalization to previously unseen video deepfake generators.
Authors:Zishen Huang, Chunyu Yang, Mengyuan Ren
Abstract:
Despite recent progress in video generation, inference speed remains a major bottleneck. A common acceleration strategy involves reusing model outputs via caching mechanisms at fixed intervals. However, we find that such fixed-frequency reuse significantly degrades quality in complex scenes, while manually tuning reuse thresholds is inefficient and lacks robustness. To address this, we propose Prompt-Complexity-Aware (PCA) caching, a method that automatically adjusts reuse thresholds based on scene complexity estimated directly from the input prompt. By incorporating prompt-derived semantic cues, PCA enables more adaptive and informed reuse decisions than conventional caching methods. We also revisit the assumptions behind TeaCache and identify a key limitation: it suffers from poor input-output relationship modeling due to an oversimplified prior. To overcome this, we decouple the noisy input, enhance the contribution of meaningful textual information, and improve the model's predictive accuracy through multivariate polynomial feature expansion. To further reduce computational cost, we replace the static CFGCache with DynCFGCache, a dynamic mechanism that selectively reuses classifier-free guidance (CFG) outputs based on estimated output variations. This allows for more flexible reuse without compromising output quality. Extensive experiments demonstrate that our approach achieves significant acceleration-for example, 2.79x speedup on the Wan2.1 model-while maintaining high visual fidelity across a range of scenes.
Authors:Sridhar S, Nithin A, Shakeel Rifath, Vasantha Raj
Abstract:
Advances in generative artificial intelligence have altered multimedia creation, allowing for automatic cinematic video synthesis from text inputs. This work describes a method for creating 60-second cinematic movies incorporating Stable Diffusion for high-fidelity image synthesis, GPT-2 for narrative structuring, and a hybrid audio pipeline using gTTS and YouTube-sourced music. It uses a five-scene framework, which is augmented by linear frame interpolation, cinematic post-processing (e.g., sharpening), and audio-video synchronization to provide professional-quality results. It was created in a GPU-accelerated Google Colab environment using Python 3.11. It has a dual-mode Gradio interface (Simple and Advanced), which supports resolutions of up to 1024x768 and frame rates of 15-30 FPS. Optimizations such as CUDA memory management and error handling ensure reliability. The experiments demonstrate outstanding visual quality, narrative coherence, and efficiency, furthering text-to-video synthesis for creative, educational, and industrial applications.
Authors:Yuxuan Li, Sheng Jinag, Bizhu Wang
Abstract:
With technology advancing and the pursuit of new audiovisual experiences strengthening, the metaverse has gained surging enthusiasm. However, it faces practical hurdles as substantial data like high-resolution virtual scenes must be transmitted between cloud platforms and VR devices. Specifically, the VR device's wireless transmission hampered by insufficient bandwidth, causes speed and delay problems. Meanwhile, poor channel quality leads to data errors and worsens user experience. To solve this, we've proposed the Semantic Communication-Enabled Cloud-Edge-End Collaborative Immersive Metaverse Service (SC-CEE-Meta) Architecture, which includes three modules: VR video semantic transmission, video synthesis, and 3D virtual scene reconstruction. By deploying semantic modules on VR devices and edge servers and sending key semantic info instead of focusing on bit-level reconstruction, it can cut latency, resolve the resource-bandwidth conflict, and better withstand channel interference. Also, the cloud deploys video synthesis and 3D scene reconstruction preprocessing, while edge devices host 3D reconstruction rendering modules, all for immersive services. Verified on Meta Quest Pro, the SC-CEE-Meta can reduce wireless transmission delay by 96.05\% and boost image quality by 43.99\% under poor channel condition.
Authors:Aditi Sundararaman, Amogh Adishesha, Andrew Jaegle, Dan Bigioi, Hyoung-Kyu Song, Jon Kyl, Justin Mao, Kevin Lan, Mojtaba Komeili, ShahRukh Athar, Sheila Babayan, Stanislau Beliasau, William Buchwalter
Abstract:
From professional filmmaking to user-generated content, creators and consumers have long recognized that the power of video depends on the harmonious integration of what we hear (the video's audio track) with what we see (the video's image sequence). Current approaches to video generation either ignore sound to focus on general-purpose but silent image sequence generation or address both visual and audio elements but focus on restricted application domains such as re-dubbing. We introduce Mirage, an audio-to-video foundation model that excels at generating realistic, expressive output imagery from scratch given an audio input. When integrated with existing methods for speech synthesis (text-to-speech, or TTS), Mirage results in compelling multimodal video. When trained on audio-video footage of people talking (A-roll) and conditioned on audio containing speech, Mirage generates video of people delivering a believable interpretation of the performance implicit in input audio. Our central technical contribution is a unified method for training self-attention-based audio-to-video generation models, either from scratch or given existing weights. This methodology allows Mirage to retain generality as an approach to audio-to-video generation while producing outputs of superior subjective quality to methods that incorporate audio-specific architectures or loss components specific to people, speech, or details of how images or audio are captured. We encourage readers to watch and listen to the results of Mirage for themselves (see paper and comments for links).
Authors:Boris Martirosyan, Alexey Karmanov
Abstract:
Latent diffusion models (LDMs) achieve state-of-the-art performance across various tasks, including image generation and video synthesis. However, they generally lack robustness, a limitation that remains not fully explored in current research. In this paper, we propose several methods to address this gap. First, we hypothesize that the robustness of LDMs primarily should be measured without their text encoder, because if we take and explore the whole architecture, the problems of image generator and text encoders wll be fused. Second, we introduce novel data augmentation techniques designed to reveal robustness shortcomings in LDMs when processing diverse textual prompts. We then fine-tune Stable Diffusion 3 and Stable Diffusion XL models using Dreambooth, incorporating these proposed augmentation methods across multiple tasks. Finally, we propose a novel evaluation pipeline specifically tailored to assess the robustness of LDMs fine-tuned via Dreambooth.
Authors:Eunhye Grace Ko, Soo Hyoung Joo
Abstract:
While the complexity of 21st-century demands has promoted pedagogical approaches to foster complex competencies, a persistent gap remains between in-class learning activities and individualized learning or assessment practices. To address this, studies have explored the use of AI-generated characters in learning and assessment. One attempt is scenario-based assessment (SBA), a technique that not only measures but also fosters the development of competencies throughout the assessment process. SBA introduces simulated agents to provide an authentic social-interactional context, allowing for the assessment of competency-based constructs while mitigating the unpredictability of real-life interactions. Recent advancements in multimodal AI, such as text-to-video technology, allow these agents to be enhanced into AI-generated characters. This mixed-method study investigates how learners perceive AI characters taking the role of mentor and teammates in an SBA mirroring the context of a collaborative science investigation. Specifically, we examined the Likert scale responses of 56 high schoolers regarding trust, social presence, and effectiveness. We analyzed the relationships between these factors and their impact on the intention to adopt AI characters through PLS-SEM. Our findings indicated that learners' trust shaped their sense of social presence with the AI characters, enhancing perceived effectiveness. Qualitative analysis further highlighted factors that foster trust, such as material credibility and alignment with learning goals, as well as the pivotal role of social presence in creating a collaborative context.
This paper was accepted as an full paper for AIED 2025.
Authors:Austin Silveria, Soham V. Govande, Daniel Y. Fu
Abstract:
Diffusion Transformers (DiTs) have achieved state-of-the-art performance in high-quality image and video generation but incur substantial compute cost at inference. A common observation is that DiT latent noise vectors change slowly across inference steps, which suggests that the DiT compute may be redundant across steps. In this paper, we aim to speed up inference by reducing this redundancy, without additional training. We first study how activations change between steps in two state-of-the-art open-source DiTs. We find that just 5-25% of the values in attention and MLP explain 70-90% of the change in activations across steps. This finding motivates our approach, Chipmunk, which uses dynamic sparsity at inference time to recompute only the fastest-changing intermediate activations, while caching the rest. Dynamic sparsity introduces two systems challenges: (1) sparse attention and MLP operations tend to underutilize GPU tensor cores; and (2) computing dynamic sparsity patterns at runtime and caching activations both introduce overhead. To address these challenges, Chipmunk first uses a voxel-based reordering of input tokens to introduce column-wise sparsity. We implement column-sparse kernels utilizing efficient sparse gathers from global to shared GPU memory, achieving a 9.3x speedup at 93% sparsity compared to highly-optimized dense baselines. Second, Chipmunk overlaps the computation of sparsity patterns and cache updates with other parts of the computation (e.g., second layer of the MLP) to hide the extra latency. Chipmunk achieves up to 2.16x speedup on HunyuanVideo and 1.41x on FLUX.1-dev without compromising generation quality. Furthermore, we show that Chipmunk can be stacked on top of full step caching, achieving a 3.72x speedup on HunyuanVideo, a 2.67x speedup on WAN2.1, and a 2.25x speedup on FLUX.1-dev with minimal quality impact.
Authors:Ishaan Rawal, Suryansh Kumar
Abstract:
Text-conditioned diffusion models have emerged as powerful tools for high-quality video generation. However, enabling Interactive Video Generation (IVG), where users control motion elements such as object trajectory, remains challenging. Recent training-free approaches introduce attention masking to guide trajectory, but this often degrades perceptual quality. We identify two key failure modes in these methods, both of which we interpret as domain shift problems, and propose solutions inspired by domain adaptation. First, we attribute the perceptual degradation to internal covariate shift induced by attention masking, as pretrained models are not trained to handle masked attention. To address this, we propose mask normalization, a pre-normalization layer designed to mitigate this shift via distribution matching. Second, we address initialization gap, where the randomly sampled initial noise does not align with IVG conditioning, by introducing a temporal intrinsic diffusion prior that enforces spatio-temporal consistency at each denoising step. Extensive qualitative and quantitative evaluations demonstrate that mask normalization and temporal intrinsic denoising improve both perceptual quality and trajectory control over the existing state-of-the-art IVG techniques.
Authors:Binyamin Manela, Sharon Gannot, Ethan Fetyaya
Abstract:
Visual dubbing, the synchronization of facial movements with new speech, is crucial for making content accessible across different languages, enabling broader global reach. However, current methods face significant limitations. Existing approaches often generate talking faces, hindering seamless integration into original scenes, or employ inpainting techniques that discard vital visual information like partial occlusions and lighting variations. This work introduces EdiDub, a novel framework that reformulates visual dubbing as a content-aware editing task. EdiDub preserves the original video context by utilizing a specialized conditioning scheme to ensure faithful and accurate modifications rather than mere copying. On multiple benchmarks, including a challenging occluded-lip dataset, EdiDub significantly improves identity preservation and synchronization. Human evaluations further confirm its superiority, achieving higher synchronization and visual naturalness scores compared to the leading methods. These results demonstrate that our content-aware editing approach outperforms traditional generation or inpainting, particularly in maintaining complex visual elements while ensuring accurate lip synchronization.
Authors:Michal Podstawski, Malgorzata Kudelska, Haohong Wang
Abstract:
Video generation driven by artificial intelligence has advanced significantly, enabling the creation of dynamic and realistic content. However, maintaining character consistency across video sequences remains a major challenge, with current models struggling to ensure coherence in appearance and attributes. This paper introduces the Face Consistency Benchmark (FCB), a framework for evaluating and comparing the consistency of characters in AI-generated videos. By providing standardized metrics, the benchmark highlights gaps in existing solutions and promotes the development of more reliable approaches. This work represents a crucial step toward improving character consistency in AI video generation technologies.
Authors:Junhao Xia, Chaoyang Zhang, Yecheng Zhang, Chengyang Zhou, Zhichang Wang, Bochun Liu, Dongshuo Yin
Abstract:
Video generation based on diffusion models presents a challenging multimodal task, with video editing emerging as a pivotal direction in this field. Recent video editing approaches primarily fall into two categories: training-required and training-free methods. While training-based methods incur high computational costs, training-free alternatives often yield suboptimal performance. To address these limitations, we propose DAPE, a high-quality yet cost-effective two-stage parameter-efficient fine-tuning (PEFT) framework for video editing. In the first stage, we design an efficient norm-tuning method to enhance temporal consistency in generated videos. The second stage introduces a vision-friendly adapter to improve visual quality. Additionally, we identify critical shortcomings in existing benchmarks, including limited category diversity, imbalanced object distribution, and inconsistent frame counts. To mitigate these issues, we curate a large dataset benchmark comprising 232 videos with rich annotations and 6 editing prompts, enabling objective and comprehensive evaluation of advanced methods. Extensive experiments on existing datasets (BalanceCC, LOVEU-TGVE, RAVE) and our proposed benchmark demonstrate that DAPE significantly improves temporal coherence and text-video alignment while outperforming previous state-of-the-art approaches.
Authors:S. Z. Zhou, Y. B. Wang, J. F. Wu, T. Hu, J. N. Zhang
Abstract:
Audio-driven human animation technology is widely used in human-computer interaction, and the emergence of diffusion models has further advanced its development. Currently, most methods rely on multi-stage generation and intermediate representations, resulting in long inference time and issues with generation quality in specific foreground regions and audio-motion consistency. These shortcomings are primarily due to the lack of localized fine-grained supervised guidance. To address above challenges, we propose Parts-aware Audio-driven Human Animation, PAHA, a unit enhancement and guidance framework for audio-driven upper-body animation. We introduce two key methods: Parts-Aware Re-weighting (PAR) and Parts Consistency Enhancement (PCE). PAR dynamically adjusts regional training loss weights based on pose confidence scores, effectively improving visual quality. PCE constructs and trains diffusion-based regional audio-visual classifiers to improve the consistency of motion and co-speech audio. Afterwards, we design two novel inference guidance methods for the foregoing classifiers, Sequential Guidance (SG) and Differential Guidance (DG), to balance efficiency and quality respectively. Additionally, we build CNAS, the first public Chinese News Anchor Speech dataset, to advance research and validation in this field. Extensive experimental results and user studies demonstrate that PAHA significantly outperforms existing methods in audio-motion alignment and video-related evaluations. The codes and CNAS dataset will be released upon acceptance.
Authors:Misora Sugiyama, Hirokatsu Kataoka
Abstract:
The December 2024 release of OpenAI's Sora, a powerful video generation model driven by natural language prompts, highlights a growing convergence between large language models (LLMs) and video synthesis. As these multimodal systems evolve into video-enabled LLMs (VidLLMs), capable of interpreting, generating, and interacting with visual content, understanding their limitations and ensuring their safe deployment becomes essential. This study investigates visual artifacts frequently found and reported in Sora-generated videos, which can compromise quality, mislead viewers, or propagate disinformation. We propose a multi-label classification framework targeting four common artifact label types: label 1: boundary / edge defects, label 2: texture / noise issues, label 3: movement / joint anomalies, and label 4: object mismatches / disappearances. Using a dataset of 300 manually annotated frames extracted from 15 Sora-generated videos, we trained multiple 2D CNN architectures (ResNet-50, EfficientNet-B3 / B4, ViT-Base). The best-performing model trained by ResNet-50 achieved an average multi-label classification accuracy of 94.14%. This work supports the broader development of VidLLMs by contributing to (1) the creation of datasets for video quality evaluation, (2) interpretable artifact-based analysis beyond language metrics, and (3) the identification of visual risks relevant to factuality and safety.
Authors:Diljeet Jagpal, Xi Chen, Vinay P. Namboodiri
Abstract:
Zero-shot, training-free, image-based text-to-video generation is an emerging area that aims to generate videos using existing image-based diffusion models. Current methods in this space require specific architectural changes to image generation models, which limit their adaptability and scalability. In contrast to such methods, we provide a model-agnostic approach. We use intersections in diffusion trajectories, working only with the latent values. We could not obtain localized frame-wise coherence and diversity using only the intersection of trajectories. Thus, we instead use a grid-based approach. An in-context trained LLM is used to generate coherent frame-wise prompts; another is used to identify differences between frames. Based on these, we obtain a CLIP-based attention mask that controls the timing of switching the prompts for each grid cell. Earlier switching results in higher variance, while later switching results in more coherence. Therefore, our approach can ensure appropriate control between coherence and variance for the frames. Our approach results in state-of-the-art performance while being more flexible when working with diverse image-generation models. The empirical analysis using quantitative metrics and user studies confirms our model's superior temporal consistency, visual fidelity and user satisfaction, thus providing a novel way to obtain training-free, image-based text-to-video generation.
Authors:Nikolaj T. Mücke, Benjamin Sanderse
Abstract:
Generative models have demonstrated remarkable success in domains such as text, image, and video synthesis. In this work, we explore the application of generative models to fluid dynamics, specifically for turbulence simulation, where classical numerical solvers are computationally expensive. We propose a novel stochastic generative model based on stochastic interpolants, which enables probabilistic forecasting while incorporating physical constraints such as energy stability and divergence-freeness. Unlike conventional stochastic generative models, which are often agnostic to underlying physical laws, our approach embeds energy consistency by making the parameters of the stochastic interpolant learnable coefficients. We evaluate our method on a benchmark turbulence problem - Kolmogorov flow - demonstrating superior accuracy and stability over state-of-the-art alternatives such as autoregressive conditional diffusion models (ACDMs) and PDE-Refiner. Furthermore, we achieve stable results for significantly longer roll-outs than standard stochastic interpolants. Our results highlight the potential of physics-aware generative models in accelerating and enhancing turbulence simulations while preserving fundamental conservation properties.
Authors:Sicong Feng, Jielong Yang, Li Peng
Abstract:
Recent advances in diffusion models bring new vitality to visual content creation. However, current text-to-video generation models still face significant challenges such as high training costs, substantial data requirements, and difficulties in maintaining consistency between given text and motion of the foreground object. To address these challenges, we propose mask-guided video generation, which can control video generation through mask motion sequences, while requiring limited training data. Our model enhances existing architectures by incorporating foreground masks for precise text-position matching and motion trajectory control. Through mask motion sequences, we guide the video generation process to maintain consistent foreground objects throughout the sequence. Additionally, through a first-frame sharing strategy and autoregressive extension approach, we achieve more stable and longer video generation. Extensive qualitative and quantitative experiments demonstrate that this approach excels in various video generation tasks, such as video editing and generating artistic videos, outperforming previous methods in terms of consistency and quality. Our generated results can be viewed in the supplementary materials.
Authors:Ahmad Mustafa Anis, Hasnain Ali, Saquib Sarfraz
Abstract:
Vision Language Models (VLMs) have demonstrated significant potential in various downstream tasks, including Image/Video Generation, Visual Question Answering, Multimodal Chatbots, and Video Understanding. However, these models often struggle with basic image transformations. This paper investigates the image-level understanding of VLMs, specifically CLIP by OpenAI and SigLIP by Google. Our findings reveal that these models lack comprehension of multiple image-level augmentations. To facilitate this study, we created an augmented version of the Flickr8k dataset, pairing each image with a detailed description of the applied transformation. We further explore how this deficiency impacts downstream tasks, particularly in image editing, and evaluate the performance of state-of-the-art Image2Image models on simple transformations.
Authors:Alexey Buzovkin, Evgeny Shilov
Abstract:
We investigate methods to reduce inference time and memory footprint in stable diffusion models by introducing lightweight decoders for both image and video synthesis. Traditional latent diffusion pipelines rely on large Variational Autoencoder decoders that can slow down generation and consume considerable GPU memory. We propose custom-trained decoders using lightweight Vision Transformer and Taming Transformer architectures. Experiments show up to 15% overall speed-ups for image generation on COCO2017 and up to 20 times faster decoding in the sub-module, with additional gains on UCF-101 for video tasks. Memory requirements are moderately reduced, and while there is a small drop in perceptual quality compared to the default decoder, the improvements in speed and scalability are crucial for large-scale inference scenarios such as generating 100K images. Our work is further contextualized by advances in efficient video generation, including dual masking strategies, illustrating a broader effort to improve the scalability and efficiency of generative models.
Authors:Katarzyna Fojcik, Piotr Syga
Abstract:
Video Copy Detection (VCD) plays a crucial role in copyright protection and content verification by identifying duplicates and near-duplicates in large-scale video databases. The META AI Challenge on video copy detection provided a benchmark for evaluating state-of-the-art methods, with the Dual-level detection approach emerging as a winning solution. This method integrates Video Editing Detection and Frame Scene Detection to handle adversarial transformations and large datasets efficiently. However, our analysis reveals significant limitations in the VED component, particularly in its ability to handle exact copies. Moreover, Dual-level detection shows vulnerability to temporal attacks. To address it, we propose an improved frame selection strategy based on local maxima of interframe differences, which enhances robustness against adversarial temporal modifications while significantly reducing computational overhead. Our method achieves an increase of 1.4 to 5.8 times in efficiency over the standard 1 FPS approach. Compared to Dual-level detection method, our approach maintains comparable micro-average precision ($μ$AP) while also demonstrating improved robustness against temporal attacks. Given 56\% reduced representation size and the inference time of more than 2 times faster, our approach is more suitable to real-world resource restriction.
Authors:Mariia Shpir, Nadiya Shvai, Amir Nakib
Abstract:
Despite the evident practical importance of license plate recognition (LPR), corresponding research is limited by the volume of publicly available datasets due to privacy regulations such as the General Data Protection Regulation (GDPR). To address this challenge, synthetic data generation has emerged as a promising approach. In this paper, we propose to synthesize realistic license plates (LPs) using diffusion models, inspired by recent advances in image and video generation. In our experiments a diffusion model was successfully trained on a Ukrainian LP dataset, and 1000 synthetic images were generated for detailed analysis. Through manual classification and annotation of the generated images, we performed a thorough study of the model output, such as success rate, character distributions, and type of failures. Our contributions include experimental validation of the efficacy of diffusion models for LP synthesis, along with insights into the characteristics of the generated data. Furthermore, we have prepared a synthetic dataset consisting of 10,000 LP images, publicly available at https://zenodo.org/doi/10.5281/zenodo.13342102. Conducted experiments empirically confirm the usefulness of synthetic data for the LPR task. Despite the initial performance gap between the model trained with real and synthetic data, the expansion of the training data set with pseudolabeled synthetic data leads to an improvement in LPR accuracy by 3% compared to baseline.
Authors:Qili Wang, Dajiang Wu, Zihang Xu, Junshi Huang, Jun Lv
Abstract:
Significant progress has been made in talking-face video generation research; however, precise lip-audio synchronization and high visual quality remain challenging in editing lip shapes based on input audio. This paper introduces JoyGen, a novel two-stage framework for talking-face generation, comprising audio-driven lip motion generation and visual appearance synthesis. In the first stage, a 3D reconstruction model and an audio2motion model predict identity and expression coefficients respectively. Next, by integrating audio features with a facial depth map, we provide comprehensive supervision for precise lip-audio synchronization in facial generation. Additionally, we constructed a Chinese talking-face dataset containing 130 hours of high-quality video. JoyGen is trained on the open-source HDTF dataset and our curated dataset. Experimental results demonstrate superior lip-audio synchronization and visual quality achieved by our method.
Authors:Vriksha Srihari, R. Bhavya, Shruti Jayaraman, V. Mary Anita Rajam
Abstract:
While generative models such as text-to-image, large language models and text-to-video have seen significant progress, the extension to text-to-virtual-reality remains largely unexplored, due to a deficit in training data and the complexity of achieving realistic depth and motion in virtual environments. This paper proposes an approach to coalesce existing generative systems to form a stereoscopic virtual reality video from text.
Carried out in three main stages, we start with a base text-to-image model that captures context from an input text. We then employ Stable Diffusion on the rudimentary image produced, to generate frames with enhanced realism and overall quality. These frames are processed with depth estimation algorithms to create left-eye and right-eye views, which are stitched side-by-side to create an immersive viewing experience. Such systems would be highly beneficial in virtual reality production, since filming and scene building often require extensive hours of work and post-production effort.
We utilize image evaluation techniques, specifically Fréchet Inception Distance and CLIP Score, to assess the visual quality of frames produced for the video. These quantitative measures establish the proficiency of the proposed method.
Our work highlights the exciting possibilities of using natural language-driven graphics in fields like virtual reality simulations.
Authors:Faraz Waseem, Muhammad Shahzad
Abstract:
An image may convey a thousand words, but a video composed of hundreds or thousands of image frames tells a more intricate story. Despite significant progress in multimodal large language models (MLLMs), generating extended videos remains a formidable challenge. As of this writing, OpenAI's Sora, the current state-of-the-art system, is still limited to producing videos that are up to one minute in length. This limitation stems from the complexity of long video generation, which requires more than generative AI techniques for approximating density functions essential aspects such as planning, story development, and maintaining spatial and temporal consistency present additional hurdles. Integrating generative AI with a divide-and-conquer approach could improve scalability for longer videos while offering greater control. In this survey, we examine the current landscape of long video generation, covering foundational techniques like GANs and diffusion models, video generation strategies, large-scale training datasets, quality metrics for evaluating long videos, and future research areas to address the limitations of the existing video generation capabilities. We believe it would serve as a comprehensive foundation, offering extensive information to guide future advancements and research in the field of long video generation.
Authors:Luoxu Jin, Hiroshi Watanabe
Abstract:
With the development of video generation models has advanced significantly in recent years, we adopt large-scale image-to-video diffusion models for video frame interpolation. We present a conditional encoder designed to adapt an image-to-video model for large-motion frame interpolation. To enhance performance, we integrate a dual-branch feature extractor and propose a cross-frame attention mechanism that effectively captures both spatial and temporal information, enabling accurate interpolations of intermediate frames. Our approach demonstrates superior performance on the Fréchet Video Distance (FVD) metric when evaluated against other state-of-the-art approaches, particularly in handling large motion scenarios, highlighting advancements in generative-based methodologies.
Authors:Xunnong Xu, Mengying Cao
Abstract:
Diffusion transformers enable flexible generative modeling for video. However, it is still technically challenging and computationally expensive to generate high-resolution videos with rich semantics and complex motion. Similar to languages, video data are also auto-regressive by nature, so it is counter-intuitive to use attention mechanism with bi-directional dependency in the model. Here we propose a Multi-Scale Causal (MSC) framework to address these problems. Specifically, we introduce multiple resolutions in the spatial dimension and high-low frequencies in the temporal dimension to realize efficient attention calculation. Furthermore, attention blocks on multiple scales are combined in a controlled way to allow causal conditioning on noisy image frames for diffusion training, based on the idea that noise destroys information at different rates on different resolutions. We theoretically show that our approach can greatly reduce the computational complexity and enhance the efficiency of training. The causal attention diffusion framework can also be used for auto-regressive long video generation, without violating the natural order of frame sequences.
Authors:Leonardo Pina, Yongmin Li
Abstract:
This study presents a novel method for generating music visualisers using diffusion models, combining audio input with user-selected artwork. The process involves two main stages: image generation and video creation. First, music captioning and genre classification are performed, followed by the retrieval of artistic style descriptions. A diffusion model then generates images based on the user's input image and the derived artistic style descriptions. The video generation stage utilises the same diffusion model to interpolate frames, controlled by audio energy vectors derived from key musical features of harmonics and percussives. The method demonstrates promising results across various genres, and a new metric, Audio-Visual Synchrony (AVS), is introduced to quantitatively evaluate the synchronisation between visual and audio elements. Comparative analysis shows significantly higher AVS values for videos generated using the proposed method with audio energy vectors, compared to linear interpolation. This approach has potential applications in diverse fields, including independent music video creation, film production, live music events, and enhancing audio-visual experiences in public spaces.
Authors:Haoyang Long, Yan Wang, Wendong Wang
Abstract:
Video deblurring presents a considerable challenge owing to the complexity of blur, which frequently results from a combination of camera shakes, and object motions. In the field of video deblurring, many previous works have primarily concentrated on distortion-based metrics, such as PSNR. However, this approach often results in a weak correlation with human perception and yields reconstructions that lack realism. Diffusion models and video diffusion models have respectively excelled in the fields of image and video generation, particularly achieving remarkable results in terms of image authenticity and realistic perception. However, due to the computational complexity and challenges inherent in adapting diffusion models, there is still uncertainty regarding the potential of video diffusion models in video deblurring tasks. To explore the viability of video diffusion models in the task of video deblurring, we introduce a diffusion model specifically for this purpose. In this field, leveraging highly correlated information between adjacent frames and addressing the challenge of temporal misalignment are crucial research directions. To tackle these challenges, many improvements based on the video diffusion model are introduced in this work. As a result, our model outperforms existing models and achieves state-of-the-art results on a range of perceptual metrics. Our model preserves a significant amount of detail in the images while maintaining competitive distortion metrics. Furthermore, to the best of our knowledge, this is the first time the diffusion model has been applied in video deblurring to overcome the limitations mentioned above.
Authors:Daewon Yoon, Hyungsuk Lee, Wonsik Shin
Abstract:
This paper addresses the metrics required for generating multi-scene videos based on a continuous scenario, as opposed to traditional short video generation. Scenario-based videos require a comprehensive evaluation that considers multiple factors such as character consistency, artistic coherence, aesthetic quality, and the alignment of the generated content with the intended prompt. Additionally, in video generation, unlike single images, the movement of characters across frames introduces potential issues like distortion or unintended changes, which must be effectively evaluated and corrected. In the context of probabilistic models like diffusion, generating the desired scene requires repeated sampling and manual selection, akin to how a film director chooses the best shots from numerous takes. We propose a score-based evaluation benchmark that automates this process, enabling a more objective and efficient assessment of these complexities. This approach allows for the generation of high-quality multi-scene videos by selecting the best outcomes based on automated scoring rather than manual inspection.
Authors:Xiaoran Wu, Zien Huang, Chonghan Yu
Abstract:
Paleontology, the study of past life, fundamentally relies on fossils to reconstruct ancient ecosystems and understand evolutionary dynamics. Trilobites, as an important group of extinct marine arthropods, offer valuable insights into Paleozoic environments through their well-preserved fossil records. Reconstructing trilobite behaviour from static fossils will set new standards for dynamic reconstructions in scientific research and education. Despite the potential, current computational methods for this purpose like text-to-video (T2V) face significant challenges, such as maintaining visual realism and consistency, which hinder their application in science contexts. To overcome these obstacles, we introduce an automatic T2V prompt learning method. Within this framework, prompts for a fine-tuned video generation model are generated by a large language model, which is trained using rewards that quantify the visual realism and smoothness of the generated video. The fine-tuning of the video generation model, along with the reward calculations make use of a collected dataset of 9,088 Eoredlichia intermedia fossil images, which provides a common representative of visual details of all class of trilobites. Qualitative and quantitative experiments show that our method can generate trilobite videos with significantly higher visual realism compared to powerful baselines, promising to boost both scientific understanding and public engagement.
Authors:Shengfu Chen, Hailong Liu, Wenzhao Wei
Abstract:
This report presents the approach adopted in the Modelscope-Sora challenge, which focuses on fine-tuning data for video generation models. The challenge evaluates participants' ability to analyze, clean, and generate high-quality datasets for video-based text-to-video tasks under specific computational constraints. The provided methodology involves data processing techniques such as video description generation, filtering, and acceleration. This report outlines the procedures and tools utilized to enhance the quality of training data, ensuring improved performance in text-to-video generation models.
Authors:Dengsheng Zhang
Abstract:
The integration of artificial intelligence (AI) into video lecture production has the potential to transform higher education by streamlining content creation and enhancing accessibility. This paper investigates a semi automated workflow that combines Google Gemini for script generation, Amazon Polly for voice synthesis, and Microsoft PowerPoint for video assembly. Unlike fully automated text to video platforms, this hybrid approach preserves pedagogical intent while ensuring script to slide synchronization, narrative coherence, and customization. Case studies demonstrate the effectiveness of Gemini in generating accurate and context-sensitive scripts for visually rich academic presentations, while Polly provides natural-sounding narration with controllable pacing. A two course pilot study was conducted to evaluate AI generated instructional videos (AIIV) against human instructional videos (HIV). Both qualitative and quantitative results indicate that AIIVs are comparable to HIVs in terms of learning outcomes, with students reporting high levels of clarity, coherence, and usability. However, limitations remain, particularly regarding audio quality and the absence of human-like avatars. The findings suggest that AI assisted video production can reduce instructor workload, improve scalability, and deliver effective learning resources, while future improvements in synthetic voices and avatars may further enhance learner engagement.
Authors:Jiantang Huang
Abstract:
Basketball broadcast footage is traditionally captured at 30-60 fps, limiting viewers' ability to appreciate rapid plays such as dunks and crossovers. We present a real-time slow-motion synthesis system that produces high-quality basketball-specific interpolated frames by fine-tuning the recent Real-Time Intermediate Flow Estimation (RIFE) network on the SportsSloMo dataset. Our pipeline isolates the basketball subset of SportsSloMo, extracts training triplets, and fine-tunes RIFE with human-aware random cropping. We compare the resulting model against Super SloMo and the baseline RIFE model using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) on held-out clips. The fine-tuned RIFE attains a mean PSNR of 34.3 dB and SSIM of 0.949, outperforming Super SloMo by 2.1 dB and the baseline RIFE by 1.3 dB. A lightweight Gradio interface demonstrates end-to-end 4x slow-motion generation on a single RTX 4070 Ti Super at approximately 30 fps. These results indicate that task-specific adaptation is crucial for sports slow-motion, and that RIFE provides an attractive accuracy-speed trade-off for consumer applications.
Authors:Piyushkumar Patel
Abstract:
Text to video generation has emerged as a critical frontier in generative artificial intelligence, yet existing approaches struggle with maintaining temporal consistency, compositional understanding, and fine grained control over visual narratives. We present MOVAI (Multimodal Original Video AI), a novel hierarchical framework that integrates compositional scene understanding with temporal aware diffusion models for high fidelity text to video synthesis. Our approach introduces three key innovations: (1) a Compositional Scene Parser (CSP) that decomposes textual descriptions into hierarchical scene graphs with temporal annotations, (2) a Temporal-Spatial Attention Mechanism (TSAM) that ensures coherent motion dynamics across frames while preserving spatial details, and (3) a Progressive Video Refinement (PVR) module that iteratively enhances video quality through multi-scale temporal reasoning. Extensive experiments on standard benchmarks demonstrate that MOVAI achieves state-of-the-art performance, improving video quality metrics by 15.3% in LPIPS, 12.7% in FVD, and 18.9% in user preference studies compared to existing methods. Our framework shows particular strength in generating complex multi-object scenes with realistic temporal dynamics and fine-grained semantic control.
Authors:Adil Kaan Akan
Abstract:
A central goal in AI is to represent scenes as compositions of discrete objects, enabling fine-grained, controllable image and video generation. Yet leading diffusion models treat images holistically and rely on text conditioning, creating a mismatch for object-level editing. This thesis introduces a framework that adapts powerful pretrained diffusion models for object-centric synthesis while retaining their generative capacity. We identify a core challenge: balancing global scene coherence with disentangled object control. Our method integrates lightweight, slot-based conditioning into pretrained models, preserving their visual priors while providing object-specific manipulation. For images, SlotAdapt augments diffusion models with a register token for background/style and slot-conditioned modules for objects, reducing text-conditioning bias and achieving state-of-the-art results in object discovery, segmentation, compositional editing, and controllable image generation. We further extend the framework to video. Using Invariant Slot Attention (ISA) to separate object identity from pose and a Transformer-based temporal aggregator, our approach maintains consistent object representations and dynamics across frames. This yields new benchmarks in unsupervised video object segmentation and reconstruction, and supports advanced editing tasks such as object removal, replacement, and insertion without explicit supervision. Overall, this work establishes a general and scalable approach to object-centric generative modeling for images and videos. By bridging human object-based perception and machine learning, it expands the design space for interactive, structured, and user-driven generative tools in creative, scientific, and practical domains.
Authors:Ashen Weligalle
Abstract:
Diffusion models have emerged as a powerful class of generative models, achieving state-of-the-art results in continuous data domains such as image and video generation. Their core mechanism involves a forward diffusion process that gradually transforms structured data into a Gaussian-like distribution, followed by a learned reverse process to reconstruct the data. While successful in continuous modalities, applying this framework to discrete data-particularly natural language-remains challenging due to token dependency complexities and the lack of a defined generation order.This thesis investigates the feasibility and performance of discrete diffusion models for natural language generation. Specifically, we evaluate the Discrete Denoising Diffusion Probabilistic Model (D3PM) and compare it with traditional autoregressive (AR) language models. To assess generative performance, we use Bits Per Token (BPT), Negative Log-Likelihood (NLL), Perplexity (PPL), and Batch Processing Speed.
Results show the best-performing D3PM model achieves a BPT of 5.72, with a mean of 8.05. The AR model outperforms in compression with a lower mean BPT of 4.59, but D3PM achieves higher processing speed, reaching up to 3.97 batches per sec., indicating potential for parallel generation.All evaluations were conducted under consistent conditions-generating 100,000 tokens per model with a fixed batch size of four-for fair comparison. This research presents a detailed analysis of diffusion-based vs. autoregressive models, highlighting trade-offs in generative quality and efficiency. Findings emphasize both the promise and limitations of diffusion models for discrete data, supporting future work in non-autoregressive language generation.
Authors:Tessa De La Fuente
Abstract:
My project looks at an efficient workflow for creative image/video editing using Adobe Photoshop Actions tool and Batch Processing System. This innovative approach to video editing through Photoshop creates a fundamental shift to creative workflow management through the integration of industry-leading image manipulation with video editing techniques. Through systematic automation of Actions, users can achieve a simple and consistent application of visual edits across a string of images. This approach provides an alternative method to optimize productivity while ensuring uniform results across image collections through a post-processing pipeline.
Authors:Vignesh Sundaresha
Abstract:
Diffusion Transformers (DiTs) with billions of model parameters form the backbone of popular image and video generation models like DALL.E, Stable-Diffusion and SORA. Though these models are necessary in many low-latency applications like Augmented/Virtual Reality, they cannot be deployed on resource-constrained Edge devices (like Apple Vision Pro or Meta Ray-Ban glasses) due to their huge computational complexity. To overcome this, we turn to knowledge distillation and perform a thorough design-space exploration to achieve the best DiT for a given parameter size. In particular, we provide principles for how to choose design knobs such as depth, width, attention heads and distillation setup for a DiT. During the process, a three-way trade-off emerges between model performance, size and speed that is crucial for Edge implementation of diffusion. We also propose two distillation approaches - Teaching Assistant (TA) method and Multi-In-One (MI1) method - to perform feature distillation in the DiT context. Unlike existing solutions, we demonstrate and benchmark the efficacy of our approaches on practical Edge devices such as NVIDIA Jetson Orin Nano.
Authors:Yunge Wen
Abstract:
The emerging field of panoramic video generation from text and image prompts unlocks new creative possibilities in virtual reality (VR), addressing the limitations of current immersive experiences, which are constrained by pre-designed environments that restrict user creativity. To advance this frontier, we present Imagine360, a proof-of-concept prototype that integrates co-creation principles with AI agents. This system enables refined speech-based text prompts, egocentric perspective adjustments, and real-time customization of virtual surroundings based on user perception and intent. An eight-participant pilot study comparing non-AI and linear AI-driven workflows demonstrates that Imagine360's co-creative approach effectively integrates temporal and spatial creative controls. This introduces a transformative VR paradigm, allowing users to seamlessly transition between 'seeing' and 'imagining,' thereby shaping virtual reality through the creations of their minds.
Authors:Cheonsu Jeong
Abstract:
This study proposes the design and implementation of a multimodal LLM-based Multi-Agent System (MAS) leveraging a No-Code platform to address the practical constraints and significant entry barriers associated with AI adoption in enterprises. Advanced AI technologies, such as Large Language Models (LLMs), often pose challenges due to their technical complexity and high implementation costs, making them difficult for many organizations to adopt. To overcome these limitations, this research develops a No-Code-based Multi-Agent System designed to enable users without programming knowledge to easily build and manage AI systems. The study examines various use cases to validate the applicability of AI in business processes, including code generation from image-based notes, Advanced RAG-based question-answering systems, text-based image generation, and video generation using images and prompts. These systems lower the barriers to AI adoption, empowering not only professional developers but also general users to harness AI for significantly improved productivity and efficiency. By demonstrating the scalability and accessibility of No-Code platforms, this study advances the democratization of AI technologies within enterprises and validates the practical applicability of Multi-Agent Systems, ultimately contributing to the widespread adoption of AI across various industries.
Authors:Minmin Yang
Abstract: During the COVID-19 pandemic, face masks have become ubiquitous in our lives. Face masks can cause some face recognition models to fail since they cover significant portion of a face. In addition, removing face masks from captured images or videos can be desirable, e.g., for better social interaction and for image/video editing and enhancement purposes. Hence, we propose a generative face inpainting method to effectively recover/reconstruct the masked part of a face. Face inpainting is more challenging compared to traditional inpainting, since it requires high fidelity while maintaining the identity at the same time. Our proposed method includes a Multi-scale Channel-Spatial Attention Module (M-CSAM) to mitigate the spatial information loss and learn the inter- and intra-channel correlation. In addition, we introduce an approach enforcing the supervised signal to focus on masked regions instead of the whole image. We also synthesize our own Masked-Faces dataset from the CelebA dataset by incorporating five different types of face masks, including surgical mask, regular mask and scarves, which also cover the neck area. The experimental results show that our proposed method outperforms different baselines in terms of structural similarity index measure, peak signal-to-noise ratio and l1 loss, while also providing better outputs qualitatively. The code will be made publicly available. Code is available at GitHub.