Paperid: 1, https://arxiv.org/pdf/2508.00701.pdf   GitHub
Authors:Chende Zheng, Ruiqi suo, Chenhao Lin, Zhengyu Zhao, Le Yang, Shuai Liu, Minghui Yang, Cong Wang, Chao Shen
Title: D3: Training-Free AI-Generated Video Detection Using Second-Order Features
Abstract:
The evolution of video generation techniques, such as Sora, has made it increasingly easy to produce high-fidelity AI-generated videos, raising public concern over the dissemination of synthetic content. However, existing detection methodologies remain limited by their insufficient exploration of temporal artifacts in synthetic videos. To bridge this gap, we establish a theoretical framework through second-order dynamical analysis under Newtonian mechanics, subsequently extending the Second-order Central Difference features tailored for temporal artifact detection. Building on this theoretical foundation, we reveal a fundamental divergence in second-order feature distributions between real and AI-generated videos. Concretely, we propose Detection by Difference of Differences (D3), a novel training-free detection method that leverages the above second-order temporal discrepancies. We validate the superiority of our D3 on 4 open-source datasets (Gen-Video, VideoPhy, EvalCrafter, VidProM), 40 subsets in total. For example, on GenVideo, D3 outperforms the previous best method by 10.39% (absolute) mean Average Precision. Additional experiments on time cost and post-processing operations demonstrate D3's exceptional computational efficiency and strong robust performance. Our code is available at https://github.com/Zig-HS/D3.
Authors:Nicholas Chivaran, Jianbing Ni
Title: LAID: Lightweight AI-Generated Image Detection in Spatial and Spectral Domains
Abstract:
The recent proliferation of photorealistic AI-generated images (AIGI) has raised urgent concerns about their potential misuse, particularly on social media platforms. Current state-of-the-art AIGI detection methods typically rely on large, deep neural architectures, creating significant computational barriers to real-time, large-scale deployment on platforms like social media. To challenge this reliance on computationally intensive models, we introduce LAID, the first framework -- to our knowledge -- that benchmarks and evaluates the detection performance and efficiency of off-the-shelf lightweight neural networks. In this framework, we comprehensively train and evaluate selected models on a representative subset of the GenImage dataset across spatial, spectral, and fusion image domains. Our results demonstrate that lightweight models can achieve competitive accuracy, even under adversarial conditions, while incurring substantially lower memory and computation costs compared to current state-of-the-art methods. This study offers valuable insight into the trade-off between efficiency and performance in AIGI detection and lays a foundation for the development of practical, scalable, and trustworthy detection systems. The source code of LAID can be found at: https://github.com/nchivar/LAID.
Authors:Taehoon Kim, Jongwook Choi, Yonghyun Jeong, Haeun Noh, Jaejun Yoo, Seungryul Baek, Jongwon Choi
Title: Beyond Spatial Frequency: Pixel-wise Temporal Frequency-based Deepfake Video Detection
Abstract:
We introduce a deepfake video detection approach that exploits pixel-wise temporal inconsistencies, which traditional spatial frequency-based detectors often overlook. Traditional detectors represent temporal information merely by stacking spatial frequency spectra across frames, resulting in the failure to detect temporal artifacts in the pixel plane. Our approach performs a 1D Fourier transform on the time axis for each pixel, extracting features highly sensitive to temporal inconsistencies, especially in areas prone to unnatural movements. To precisely locate regions containing the temporal artifacts, we introduce an attention proposal module trained in an end-to-end manner. Additionally, our joint transformer module effectively integrates pixel-wise temporal frequency features with spatio-temporal context features, expanding the range of detectable forgery artifacts. Our framework represents a significant advancement in deepfake video detection, providing robust performance across diverse and challenging detection scenarios.
Authors:Jiarui Wang, Huiyu Duan, Juntong Wang, Ziheng Jia, Woo Yi Yang, Xiaorong Zhu, Yu Zhao, Jiaying Qian, Yuke Xing, Guangtao Zhai, Xiongkuo Min
Title: DFBench: Benchmarking Deepfake Image Detection Capability of Large Multimodal Models
Abstract:
With the rapid advancement of generative models, the realism of AI-generated images has significantly improved, posing critical challenges for verifying digital content authenticity. Current deepfake detection methods often depend on datasets with limited generation models and content diversity that fail to keep pace with the evolving complexity and increasing realism of the AI-generated content. Large multimodal models (LMMs), widely adopted in various vision tasks, have demonstrated strong zero-shot capabilities, yet their potential in deepfake detection remains largely unexplored. To bridge this gap, we present \textbf{DFBench}, a large-scale DeepFake Benchmark featuring (i) broad diversity, including 540,000 images across real, AI-edited, and AI-generated content, (ii) latest model, the fake images are generated by 12 state-of-the-art generation models, and (iii) bidirectional benchmarking and evaluating for both the detection accuracy of deepfake detectors and the evasion capability of generative models. Based on DFBench, we propose \textbf{MoA-DF}, Mixture of Agents for DeepFake detection, leveraging a combined probability strategy from multiple LMMs. MoA-DF achieves state-of-the-art performance, further proving the effectiveness of leveraging LMMs for deepfake detection. Database and codes are publicly available at https://github.com/IntMeGroup/DFBench.
Authors:Haotian Qin, Dongliang Chang, Yueying Gao, Bingyao Yu, Lei Chen, Zhanyu Ma
Title: Multimodal Conditional Information Bottleneck for Generalizable AI-Generated Image Detection
Abstract:
Although existing CLIP-based methods for detecting AI-generated images have achieved promising results, they are still limited by severe feature redundancy, which hinders their generalization ability. To address this issue, incorporating an information bottleneck network into the task presents a straightforward solution. However, relying solely on image-corresponding prompts results in suboptimal performance due to the inherent diversity of prompts. In this paper, we propose a multimodal conditional bottleneck network to reduce feature redundancy while enhancing the discriminative power of features extracted by CLIP, thereby improving the model's generalization ability. We begin with a semantic analysis experiment, where we observe that arbitrary text features exhibit lower cosine similarity with real image features than with fake image features in the CLIP feature space, a phenomenon we refer to as "bias". Therefore, we introduce InfoFD, a text-guided AI-generated image detection framework. InfoFD consists of two key components: the Text-Guided Conditional Information Bottleneck (TGCIB) and Dynamic Text Orthogonalization (DTO). TGCIB improves the generalizability of learned representations by conditioning on both text and class modalities. DTO dynamically updates weighted text features, preserving semantic information while leveraging the global "bias". Our model achieves exceptional generalization performance on the GenImage dataset and latest generative models. Our code is available at https://github.com/Ant0ny44/InfoFD.
Authors:Bo Du, Xuekang Zhu, Xiaochen Ma, Chenfan Qu, Kaiwen Feng, Zhe Yang, Chi-Man Pun, Jian Liu, Jizhe Zhou
Title: ForensicHub: A Unified Benchmark & Codebase for All-Domain Fake Image Detection and Localization
Abstract:
The field of Fake Image Detection and Localization (FIDL) is highly fragmented, encompassing four domains: deepfake detection (Deepfake), image manipulation detection and localization (IMDL), artificial intelligence-generated image detection (AIGC), and document image manipulation localization (Doc). Although individual benchmarks exist in some domains, a unified benchmark for all domains in FIDL remains blank. The absence of a unified benchmark results in significant domain silos, where each domain independently constructs its datasets, models, and evaluation protocols without interoperability, preventing cross-domain comparisons and hindering the development of the entire FIDL field. To close the domain silo barrier, we propose ForensicHub, the first unified benchmark & codebase for all-domain fake image detection and localization. Considering drastic variations on dataset, model, and evaluation configurations across all domains, as well as the scarcity of open-sourced baseline models and the lack of individual benchmarks in some domains, ForensicHub: i) proposes a modular and configuration-driven architecture that decomposes forensic pipelines into interchangeable components across datasets, transforms, models, and evaluators, allowing flexible composition across all domains; ii) fully implements 10 baseline models, 6 backbones, 2 new benchmarks for AIGC and Doc, and integrates 2 existing benchmarks of DeepfakeBench and IMDLBenCo through an adapter-based design; iii) conducts indepth analysis based on the ForensicHub, offering 8 key actionable insights into FIDL model architecture, dataset characteristics, and evaluation standards. ForensicHub represents a significant leap forward in breaking the domain silos in the FIDL field and inspiring future breakthroughs.
Authors:Lorenzo Pellegrini, Davide Cozzolino, Serafino Pandolfini, Davide Maltoni, Matteo Ferrara, Luisa Verdoliva, Marco Prati, Marco Ramilli
Title: AI-GenBench: A New Ongoing Benchmark for AI-Generated Image Detection
Abstract:
The rapid advancement of generative AI has revolutionized image creation, enabling high-quality synthesis from text prompts while raising critical challenges for media authenticity. We present Ai-GenBench, a novel benchmark designed to address the urgent need for robust detection of AI-generated images in real-world scenarios. Unlike existing solutions that evaluate models on static datasets, Ai-GenBench introduces a temporal evaluation framework where detection methods are incrementally trained on synthetic images, historically ordered by their generative models, to test their ability to generalize to new generative models, such as the transition from GANs to diffusion models. Our benchmark focuses on high-quality, diverse visual content and overcomes key limitations of current approaches, including arbitrary dataset splits, unfair comparisons, and excessive computational demands. Ai-GenBench provides a comprehensive dataset, a standardized evaluation protocol, and accessible tools for both researchers and non-experts (e.g., journalists, fact-checkers), ensuring reproducibility while maintaining practical training requirements. By establishing clear evaluation rules and controlled augmentation strategies, Ai-GenBench enables meaningful comparison of detection methods and scalable solutions. Code and data are publicly available to ensure reproducibility and to support the development of robust forensic detectors to keep pace with the rise of new synthetic generators.
Authors:Yikun Ji, Yan Hong, Jiahui Zhan, Haoxing Chen, jun lan, Huijia Zhu, Weiqiang Wang, Liqing Zhang, Jianfu Zhang
Title: Towards Explainable Fake Image Detection with Multi-Modal Large Language Models
Abstract:
Progress in image generation raises significant public security concerns. We argue that fake image detection should not operate as a "black box". Instead, an ideal approach must ensure both strong generalization and transparency. Recent progress in Multi-modal Large Language Models (MLLMs) offers new opportunities for reasoning-based AI-generated image detection. In this work, we evaluate the capabilities of MLLMs in comparison to traditional detection methods and human evaluators, highlighting their strengths and limitations. Furthermore, we design six distinct prompts and propose a framework that integrates these prompts to develop a more robust, explainable, and reasoning-driven detection system. The code is available at https://github.com/Gennadiyev/mllm-defake.
Authors:Lvpan Cai, Haowei Wang, Jiayi Ji, YanShu ZhouMen, Yiwei Ma, Xiaoshuai Sun, Liujuan Cao, Rongrong Ji
Title: Zooming In on Fakes: A Novel Dataset for Localized AI-Generated Image Detection with Forgery Amplification Approach
Abstract:
The rise of AI-generated image editing tools has made localized forgeries increasingly realistic, posing challenges for visual content integrity. Although recent efforts have explored localized AIGC detection, existing datasets predominantly focus on object-level forgeries while overlooking broader scene edits in regions such as sky or ground. To address these limitations, we introduce \textbf{BR-Gen}, a large-scale dataset of 150,000 locally forged images with diverse scene-aware annotations, which are based on semantic calibration to ensure high-quality samples. BR-Gen is constructed through a fully automated Perception-Creation-Evaluation pipeline to ensure semantic coherence and visual realism. In addition, we further propose \textbf{NFA-ViT}, a Noise-guided Forgery Amplification Vision Transformer that enhances the detection of localized forgeries by amplifying forgery-related features across the entire image. NFA-ViT mines heterogeneous regions in images, \emph{i.e.}, potential edited areas, by noise fingerprints. Subsequently, attention mechanism is introduced to compel the interaction between normal and abnormal features, thereby propagating the generalization traces throughout the entire image, allowing subtle forgeries to influence a broader context and improving overall detection robustness. Extensive experiments demonstrate that BR-Gen constructs entirely new scenarios that are not covered by existing methods. Take a step further, NFA-ViT outperforms existing methods on BR-Gen and generalizes well across current benchmarks. All data and codes are available at https://github.com/clpbc/BR-Gen.
Authors:Jocelyn Dzuong
Title: DejAIvu: Identifying and Explaining AI Art on the Web in Real-Time with Saliency Maps
Abstract:
The recent surge in advanced generative models, such as diffusion models and generative adversarial networks (GANs), has led to an alarming rise in AI-generated images across various domains on the web. While such technologies offer benefits such as democratizing artistic creation, they also pose challenges in misinformation, digital forgery, and authenticity verification. Additionally, the uncredited use of AI-generated images in media and marketing has sparked significant backlash from online communities. In response to this, we introduce DejAIvu, a Chrome Web extension that combines real-time AI-generated image detection with saliency-based explainability while users browse the web. Using an ONNX-optimized deep learning model, DejAIvu automatically analyzes images on websites such as Google Images, identifies AI-generated content using model inference, and overlays a saliency heatmap to highlight AI-related artifacts. Our approach integrates efficient in-browser inference, gradient-based saliency analysis, and a seamless user experience, ensuring that AI detection is both transparent and interpretable. We also evaluate DejAIvu across multiple pretrained architectures and benchmark datasets, demonstrating high accuracy and low latency, making it a practical and deployable tool for enhancing AI image accountability. The code for this system can be found at https://github.com/Noodulz/dejAIvu.
Authors:Shiyu Wu, Jing Liu, Jing Li, Yequan Wang
Title: Few-Shot Learner Generalizes Across AI-Generated Image Detection
Abstract:
Current fake image detectors trained on large synthetic image datasets perform satisfactorily on limited studied generative models. However, these detectors suffer a notable performance decline over unseen models. Besides, collecting adequate training data from online generative models is often expensive or infeasible. To overcome these issues, we propose Few-Shot Detector (FSD), a novel AI-generated image detector which learns a specialized metric space for effectively distinguishing unseen fake images using very few samples. Experiments show that FSD achieves state-of-the-art performance by $+11.6\%$ average accuracy on the GenImage dataset with only $10$ additional samples. More importantly, our method is better capable of capturing the intra-category commonality in unseen images without further training. Our code is available at https://github.com/teheperinko541/Few-Shot-AIGI-Detector.
Authors:Dat Nguyen, Marcella Astrid, Anis Kacem, Enjie Ghorbel, Djamila Aouada
Title: Vulnerability-Aware Spatio-Temporal Learning for Generalizable Deepfake Video Detection
Abstract:
Detecting deepfake videos is highly challenging given the complexity of characterizing spatio-temporal artifacts. Most existing methods rely on binary classifiers trained using real and fake image sequences, therefore hindering their generalization capabilities to unseen generation methods. Moreover, with the constant progress in generative Artificial Intelligence (AI), deepfake artifacts are becoming imperceptible at both the spatial and the temporal levels, making them extremely difficult to capture. To address these issues, we propose a fine-grained deepfake video detection approach called FakeSTormer that enforces the modeling of subtle spatio-temporal inconsistencies while avoiding overfitting. Specifically, we introduce a multi-task learning framework that incorporates two auxiliary branches for explicitly attending artifact-prone spatial and temporal regions. Additionally, we propose a video-level data synthesis strategy that generates pseudo-fake videos with subtle spatio-temporal artifacts, providing high-quality samples and hand-free annotations for our additional branches. Extensive experiments on several challenging benchmarks demonstrate the superiority of our approach compared to recent state-of-the-art methods. The code is available at https://github.com/10Ring/FakeSTormer.
Authors:Zhiyuan Yan, Jiangming Wang, Peng Jin, Ke-Yue Zhang, Chengchun Liu, Shen Chen, Taiping Yao, Shouhong Ding, Baoyuan Wu, Li Yuan
Title: Orthogonal Subspace Decomposition for Generalizable AI-Generated Image Detection
Abstract:
AI-generated images (AIGIs), such as natural or face images, have become increasingly important yet challenging. In this paper, we start from a new perspective to excavate the reason behind the failure generalization in AIGI detection, named the \textit{asymmetry phenomenon}, where a naively trained detector tends to favor overfitting to the limited and monotonous fake patterns, causing the feature space to become highly constrained and low-ranked, which is proved seriously limiting the expressivity and generalization. One potential remedy is incorporating the pre-trained knowledge within the vision foundation models (higher-ranked) to expand the feature space, alleviating the model's overfitting to fake. To this end, we employ Singular Value Decomposition (SVD) to decompose the original feature space into \textit{two orthogonal subspaces}. By freezing the principal components and adapting only the remained components, we preserve the pre-trained knowledge while learning fake patterns. Compared to existing full-parameters and LoRA-based tuning methods, we explicitly ensure orthogonality, enabling the higher rank of the whole feature space, effectively minimizing overfitting and enhancing generalization. We finally identify a crucial insight: our method implicitly learns \textit{a vital prior that fakes are actually derived from the real}, indicating a hierarchical relationship rather than independence. Modeling this prior, we believe, is essential for achieving superior generalization. Our codes are publicly available at \href{https://github.com/YZY-stack/Effort-AIGI-Detection}{GitHub}.
Authors:Moyang Guo, Yuepeng Hu, Zhengyuan Jiang, Zeyu Li, Amir Sadovnik, Arka Daw, Neil Gong
Title: AI-generated Image Detection: Passive or Watermark?
Abstract:
While text-to-image models offer numerous benefits, they also pose significant societal risks. Detecting AI-generated images is crucial for mitigating these risks. Detection methods can be broadly categorized into passive and watermark-based approaches: passive detectors rely on artifacts present in AI-generated images, whereas watermark-based detectors proactively embed watermarks into such images. A key question is which type of detector performs better in terms of effectiveness, robustness, and efficiency. However, the current literature lacks a comprehensive understanding of this issue. In this work, we aim to bridge that gap by developing ImageDetectBench, the first comprehensive benchmark to compare the effectiveness, robustness, and efficiency of passive and watermark-based detectors. Our benchmark includes four datasets, each containing a mix of AI-generated and non-AI-generated images. We evaluate five passive detectors and four watermark-based detectors against eight types of common perturbations and three types of adversarial perturbations. Our benchmark results reveal several interesting findings. For instance, watermark-based detectors consistently outperform passive detectors, both in the presence and absence of perturbations. Based on these insights, we provide recommendations for detecting AI-generated images, e.g., when both types of detectors are applicable, watermark-based detectors should be the preferred choice. Our code and data are publicly available at https://github.com/moyangkuo/ImageDetectBench.git.
Authors:Chih-Chung Hsu, Shao-Ning Chen, Mei-Hsuan Wu, Yi-Fang Wang, Chia-Ming Lee, Yi-Shiuan Chou
Title: GRACE: Graph-Regularized Attentive Convolutional Entanglement with Laplacian Smoothing for Robust DeepFake Video Detection
Abstract:
As DeepFake video manipulation techniques escalate, posing profound threats, the urgent need to develop efficient detection strategies is underscored. However, one particular issue lies with facial images being mis-detected, often originating from degraded videos or adversarial attacks, leading to unexpected temporal artifacts that can undermine the efficacy of DeepFake video detection techniques. This paper introduces a novel method for robust DeepFake video detection, harnessing the power of the proposed Graph-Regularized Attentive Convolutional Entanglement (GRACE) based on the graph convolutional network with graph Laplacian to address the aforementioned challenges. First, conventional Convolution Neural Networks are deployed to perform spatiotemporal features for the entire video. Then, the spatial and temporal features are mutually entangled by constructing a graph with sparse constraint, enforcing essential features of valid face images in the noisy face sequences remaining, thus augmenting stability and performance for DeepFake video detection. Furthermore, the Graph Laplacian prior is proposed in the graph convolutional network to remove the noise pattern in the feature space to further improve the performance. Comprehensive experiments are conducted to illustrate that our proposed method delivers state-of-the-art performance in DeepFake video detection under noisy face sequences. The source code is available at https://github.com/ming053l/GRACE.
Authors:Shilin Yan, Ouxiang Li, Jiayin Cai, Yanbin Hao, Xiaolong Jiang, Yao Hu, Weidi Xie
Title: A Sanity Check for AI-generated Image Detection
Abstract:
With the rapid development of generative models, discerning AI-generated content has evoked increasing attention from both industry and academia. In this paper, we conduct a sanity check on "whether the task of AI-generated image detection has been solved". To start with, we present Chameleon dataset, consisting AIgenerated images that are genuinely challenging for human perception. To quantify the generalization of existing methods, we evaluate 9 off-the-shelf AI-generated image detectors on Chameleon dataset. Upon analysis, almost all models classify AI-generated images as real ones. Later, we propose AIDE (AI-generated Image DEtector with Hybrid Features), which leverages multiple experts to simultaneously extract visual artifacts and noise patterns. Specifically, to capture the high-level semantics, we utilize CLIP to compute the visual embedding. This effectively enables the model to discern AI-generated images based on semantics or contextual information; Secondly, we select the highest frequency patches and the lowest frequency patches in the image, and compute the low-level patchwise features, aiming to detect AI-generated images by low-level artifacts, for example, noise pattern, anti-aliasing, etc. While evaluating on existing benchmarks, for example, AIGCDetectBenchmark and GenImage, AIDE achieves +3.5% and +4.6% improvements to state-of-the-art methods, and on our proposed challenging Chameleon benchmarks, it also achieves the promising results, despite this problem for detecting AI-generated images is far from being solved.
Authors:Haoxing Chen, Yan Hong, Zizheng Huang, Zhuoer Xu, Zhangxuan Gu, Yaohui Li, Jun Lan, Huijia Zhu, Jianfu Zhang, Weiqiang Wang, Huaxiong Li
Title: DeMamba: AI-Generated Video Detection on Million-Scale GenVideo Benchmark
Abstract:
Recently, video generation techniques have advanced rapidly. Given the popularity of video content on social media platforms, these models intensify concerns about the spread of fake information. Therefore, there is a growing demand for detectors capable of distinguishing between fake AI-generated videos and mitigating the potential harm caused by fake information. However, the lack of large-scale datasets from the most advanced video generators poses a barrier to the development of such detectors. To address this gap, we introduce the first AI-generated video detection dataset, GenVideo. It features the following characteristics: (1) a large volume of videos, including over one million AI-generated and real videos collected; (2) a rich diversity of generated content and methodologies, covering a broad spectrum of video categories and generation techniques. We conducted extensive studies of the dataset and proposed two evaluation methods tailored for real-world-like scenarios to assess the detectors' performance: the cross-generator video classification task assesses the generalizability of trained detectors on generators; the degraded video classification task evaluates the robustness of detectors to handle videos that have degraded in quality during dissemination. Moreover, we introduced a plug-and-play module, named Detail Mamba (DeMamba), designed to enhance the detectors by identifying AI-generated videos through the analysis of inconsistencies in temporal and spatial dimensions. Our extensive experiments demonstrate DeMamba's superior generalizability and robustness on GenVideo compared to existing detectors. We believe that the GenVideo dataset and the DeMamba module will significantly advance the field of AI-generated video detection. Our code and dataset will be aviliable at \url{https://github.com/chenhaoxing/DeMamba}.
Authors:Zihan Liu, Hanyi Wang, Yaoyu Kang, Shilin Wang
Title: Mixture of Low-rank Experts for Transferable AI-Generated Image Detection
Abstract:
Generative models have shown a giant leap in synthesizing photo-realistic images with minimal expertise, sparking concerns about the authenticity of online information. This study aims to develop a universal AI-generated image detector capable of identifying images from diverse sources. Existing methods struggle to generalize across unseen generative models when provided with limited sample sources. Inspired by the zero-shot transferability of pre-trained vision-language models, we seek to harness the nontrivial visual-world knowledge and descriptive proficiency of CLIP-ViT to generalize over unknown domains. This paper presents a novel parameter-efficient fine-tuning approach, mixture of low-rank experts, to fully exploit CLIP-ViT's potential while preserving knowledge and expanding capacity for transferable detection. We adapt only the MLP layers of deeper ViT blocks via an integration of shared and separate LoRAs within an MoE-based structure. Extensive experiments on public benchmarks show that our method achieves superiority over state-of-the-art approaches in cross-generator generalization and robustness to perturbations. Remarkably, our best-performing ViT-L/14 variant requires training only 0.08% of its parameters to surpass the leading baseline by +3.64% mAP and +12.72% avg.Acc across unseen diffusion and autoregressive models. This even outperforms the baseline with just 0.28% of the training data. Our code and pre-trained models will be available at https://github.com/zhliuworks/CLIPMoLE.
Authors:Jianfa Bai, Man Lin, Gang Cao
Title: AI-Generated Video Detection via Spatio-Temporal Anomaly Learning
Abstract:
The advancement of generation models has led to the emergence of highly realistic artificial intelligence (AI)-generated videos. Malicious users can easily create non-existent videos to spread false information. This letter proposes an effective AI-generated video detection (AIGVDet) scheme by capturing the forensic traces with a two-branch spatio-temporal convolutional neural network (CNN). Specifically, two ResNet sub-detectors are learned separately for identifying the anomalies in spatical and optical flow domains, respectively. Results of such sub-detectors are fused to further enhance the discrimination ability. A large-scale generated video dataset (GVD) is constructed as a benchmark for model training and evaluation. Extensive experimental results verify the high generalization and robustness of our AIGVDet scheme. Code and dataset will be available at https://github.com/multimediaFor/AIGVDet.
Authors:Yuting Xu, Jian Liang, Lijun Sheng, Xiao-Yu Zhang
Title: Learning Spatiotemporal Inconsistency via Thumbnail Layout for Face Deepfake Detection
Abstract:
The deepfake threats to society and cybersecurity have provoked significant public apprehension, driving intensified efforts within the realm of deepfake video detection. Current video-level methods are mostly based on {3D CNNs} resulting in high computational demands, although have achieved good performance. This paper introduces an elegantly simple yet effective strategy named Thumbnail Layout (TALL), which transforms a video clip into a pre-defined layout to realize the preservation of spatial and temporal dependencies. This transformation process involves sequentially masking frames at the same positions within each frame. These frames are then resized into sub-frames and reorganized into the predetermined layout, forming thumbnails. TALL is model-agnostic and has remarkable simplicity, necessitating only minimal code modifications. Furthermore, we introduce a graph reasoning block (GRB) and semantic consistency (SC) loss to strengthen TALL, culminating in TALL++. GRB enhances interactions between different semantic regions to capture semantic-level inconsistency clues. The semantic consistency loss imposes consistency constraints on semantic features to improve model generalization ability. Extensive experiments on intra-dataset, cross-dataset, diffusion-generated image detection, and deepfake generation method recognition show that TALL++ achieves results surpassing or comparable to the state-of-the-art methods, demonstrating the effectiveness of our approaches for various deepfake detection problems. The code is available at https://github.com/rainy-xu/TALL4Deepfake.
Authors:Yuting Xu, Jian Liang, Gengyun Jia, Ziming Yang, Yanhao Zhang, Ran He
Title: TALL: Thumbnail Layout for Deepfake Video Detection
Abstract:
The growing threats of deepfakes to society and cybersecurity have raised enormous public concerns, and increasing efforts have been devoted to this critical topic of deepfake video detection. Existing video methods achieve good performance but are computationally intensive. This paper introduces a simple yet effective strategy named Thumbnail Layout (TALL), which transforms a video clip into a pre-defined layout to realize the preservation of spatial and temporal dependencies. Specifically, consecutive frames are masked in a fixed position in each frame to improve generalization, then resized to sub-images and rearranged into a pre-defined layout as the thumbnail. TALL is model-agnostic and extremely simple by only modifying a few lines of code. Inspired by the success of vision transformers, we incorporate TALL into Swin Transformer, forming an efficient and effective method TALL-Swin. Extensive experiments on intra-dataset and cross-dataset validate the validity and superiority of TALL and SOTA TALL-Swin. TALL-Swin achieves 90.79$\%$ AUC on the challenging cross-dataset task, FaceForensics++ $\to$ Celeb-DF. The code is available at https://github.com/rainy-xu/TALL4Deepfake.
Authors:Deressa Wodajo Deressa, Hannes Mareen, Peter Lambert, Solomon Atnafu, Zahid Akhtar, Glenn Van Wallendael
Title: GenConViT: Deepfake Video Detection Using Generative Convolutional Vision Transformer
Abstract:
Deepfakes have raised significant concerns due to their potential to spread false information and compromise digital media integrity. Current deepfake detection models often struggle to generalize across a diverse range of deepfake generation techniques and video content. In this work, we propose a Generative Convolutional Vision Transformer (GenConViT) for deepfake video detection. Our model combines ConvNeXt and Swin Transformer models for feature extraction, and it utilizes Autoencoder and Variational Autoencoder to learn from the latent data distribution. By learning from the visual artifacts and latent data distribution, GenConViT achieves improved performance in detecting a wide range of deepfake videos. The model is trained and evaluated on DFDC, FF++, TM, DeepfakeTIMIT, and Celeb-DF (v$2$) datasets. The proposed GenConViT model demonstrates strong performance in deepfake video detection, achieving high accuracy across the tested datasets. While our model shows promising results in deepfake video detection by leveraging visual and latent features, we demonstrate that further work is needed to improve its generalizability, i.e., when encountering out-of-distribution data. Our model provides an effective solution for identifying a wide range of fake videos while preserving media integrity. The open-source code for GenConViT is available at https://github.com/erprogs/GenConViT.
Authors:Weiliang Chen, Wenzhao Zheng, Yu Zheng, Lei Chen, Jie Zhou, Jiwen Lu, Yueqi Duan
Title: GenWorld: Towards Detecting AI-generated Real-world Simulation Videos
Abstract:
The flourishing of video generation technologies has endangered the credibility of real-world information and intensified the demand for AI-generated video detectors. Despite some progress, the lack of high-quality real-world datasets hinders the development of trustworthy detectors. In this paper, we propose GenWorld, a large-scale, high-quality, and real-world simulation dataset for AI-generated video detection. GenWorld features the following characteristics: (1) Real-world Simulation: GenWorld focuses on videos that replicate real-world scenarios, which have a significant impact due to their realism and potential influence; (2) High Quality: GenWorld employs multiple state-of-the-art video generation models to provide realistic and high-quality forged videos; (3) Cross-prompt Diversity: GenWorld includes videos generated from diverse generators and various prompt modalities (e.g., text, image, video), offering the potential to learn more generalizable forensic features. We analyze existing methods and find they fail to detect high-quality videos generated by world models (i.e., Cosmos), revealing potential drawbacks of ignoring real-world clues. To address this, we propose a simple yet effective model, SpannDetector, to leverage multi-view consistency as a strong criterion for real-world AI-generated video detection. Experiments show that our method achieves superior results, highlighting a promising direction for explainable AI-generated video detection based on physical plausibility. We believe that GenWorld will advance the field of AI-generated video detection. Project Page: https://chen-wl20.github.io/GenWorld
Authors:Ziyin Zhou, Yunpeng Luo, Yuanchen Wu, Ke Sun, Jiayi Ji, Ke Yan, Shouhong Ding, Xiaoshuai Sun, Yunsheng Wu, Rongrong Ji
Title: AIGI-Holmes: Towards Explainable and Generalizable AI-Generated Image Detection via Multimodal Large Language Models
Abstract:
The rapid development of AI-generated content (AIGC) technology has led to the misuse of highly realistic AI-generated images (AIGI) in spreading misinformation, posing a threat to public information security. Although existing AIGI detection techniques are generally effective, they face two issues: 1) a lack of human-verifiable explanations, and 2) a lack of generalization in the latest generation technology. To address these issues, we introduce a large-scale and comprehensive dataset, Holmes-Set, which includes the Holmes-SFTSet, an instruction-tuning dataset with explanations on whether images are AI-generated, and the Holmes-DPOSet, a human-aligned preference dataset. Our work introduces an efficient data annotation method called the Multi-Expert Jury, enhancing data generation through structured MLLM explanations and quality control via cross-model evaluation, expert defect filtering, and human preference modification. In addition, we propose Holmes Pipeline, a meticulously designed three-stage training framework comprising visual expert pre-training, supervised fine-tuning, and direct preference optimization. Holmes Pipeline adapts multimodal large language models (MLLMs) for AIGI detection while generating human-verifiable and human-aligned explanations, ultimately yielding our model AIGI-Holmes. During the inference stage, we introduce a collaborative decoding strategy that integrates the model perception of the visual expert with the semantic reasoning of MLLMs, further enhancing the generalization capabilities. Extensive experiments on three benchmarks validate the effectiveness of our AIGI-Holmes.
Authors:Chuangchuang Tan, Jinglu Wang, Xiang Ming, Renshuai Tao, Yunchao Wei, Yao Zhao, Yan Lu
Title: ForenX: Towards Explainable AI-Generated Image Detection with Multimodal Large Language Models
Abstract:
Advances in generative models have led to AI-generated images visually indistinguishable from authentic ones. Despite numerous studies on detecting AI-generated images with classifiers, a gap persists between such methods and human cognitive forensic analysis. We present ForenX, a novel method that not only identifies the authenticity of images but also provides explanations that resonate with human thoughts. ForenX employs the powerful multimodal large language models (MLLMs) to analyze and interpret forensic cues. Furthermore, we overcome the limitations of standard MLLMs in detecting forgeries by incorporating a specialized forensic prompt that directs the MLLMs attention to forgery-indicative attributes. This approach not only enhance the generalization of forgery detection but also empowers the MLLMs to provide explanations that are accurate, relevant, and comprehensive. Additionally, we introduce ForgReason, a dataset dedicated to descriptions of forgery evidences in AI-generated images. Curated through collaboration between an LLM-based agent and a team of human annotators, this process provides refined data that further enhances our model's performance. We demonstrate that even limited manual annotations significantly improve explanation quality. We evaluate the effectiveness of ForenX on two major benchmarks. The model's explainability is verified by comprehensive subjective evaluations.
Authors:Nasrin Imanpour, Shashwat Bajpai, Subhankar Ghosh, Sainath Reddy Sankepally, Abhilekh Borah, Hasnat Md Abdullah, Nishoak Kosaraju, Shreyas Dixit, Ashhar Aziz, Shwetangshu Biswas, Vinija Jain, Aman Chadha, Amit Sheth, Amitava Das
Title: Visual Counter Turing Test (VCT^2): Discovering the Challenges for AI-Generated Image Detection and Introducing Visual AI Index (V_AI)
Abstract:
The proliferation of AI techniques for image generation, coupled with their increasing accessibility, has raised significant concerns about the potential misuse of these images to spread misinformation. Recent AI-generated image detection (AGID) methods include CNNDetection, NPR, DM Image Detection, Fake Image Detection, DIRE, LASTED, GAN Image Detection, AIDE, SSP, DRCT, RINE, OCC-CLIP, De-Fake, and Deep Fake Detection. However, we argue that the current state-of-the-art AGID techniques are inadequate for effectively detecting contemporary AI-generated images and advocate for a comprehensive reevaluation of these methods. We introduce the Visual Counter Turing Test (VCT^2), a benchmark comprising ~130K images generated by contemporary text-to-image models (Stable Diffusion 2.1, Stable Diffusion XL, Stable Diffusion 3, DALL-E 3, and Midjourney 6). VCT^2 includes two sets of prompts sourced from tweets by the New York Times Twitter account and captions from the MS COCO dataset. We also evaluate the performance of the aforementioned AGID techniques on the VCT$^2$ benchmark, highlighting their ineffectiveness in detecting AI-generated images. As image-generative AI models continue to evolve, the need for a quantifiable framework to evaluate these models becomes increasingly critical. To meet this need, we propose the Visual AI Index (V_AI), which assesses generated images from various visual perspectives, including texture complexity and object coherence, setting a new standard for evaluating image-generative AI models. To foster research in this domain, we make our https://huggingface.co/datasets/anonymous1233/COCO_AI and https://huggingface.co/datasets/anonymous1233/twitter_AI datasets publicly available.
Authors:Yifeng Gao, Yifan Ding, Hongyu Su, Juncheng Li, Yunhan Zhao, Lin Luo, Zixing Chen, Li Wang, Xin Wang, Yixu Wang, Xingjun Ma, Yu-Gang Jiang
Title: DAVID-XR1: Detecting AI-Generated Videos with Explainable Reasoning
Abstract:
As AI-generated video becomes increasingly pervasive across media platforms, the ability to reliably distinguish synthetic content from authentic footage has become both urgent and essential. Existing approaches have primarily treated this challenge as a binary classification task, offering limited insight into where or why a model identifies a video as AI-generated. However, the core challenge extends beyond simply detecting subtle artifacts; it requires providing fine-grained, persuasive evidence that can convince auditors and end-users alike. To address this critical gap, we introduce DAVID-X, the first dataset to pair AI-generated videos with detailed defect-level, temporal-spatial annotations and written rationales. Leveraging these rich annotations, we present DAVID-XR1, a video-language model designed to deliver an interpretable chain of visual reasoning-including defect categorization, temporal-spatial localization, and natural language explanations. This approach fundamentally transforms AI-generated video detection from an opaque black-box decision into a transparent and verifiable diagnostic process. We demonstrate that a general-purpose backbone, fine-tuned on our compact dataset and enhanced with chain-of-thought distillation, achieves strong generalization across a variety of generators and generation modes. Our results highlight the promise of explainable detection methods for trustworthy identification of AI-generated video content.
Authors:Zhenliang Ni, Qiangyu Yan, Mouxiao Huang, Tianning Yuan, Yehui Tang, Hailin Hu, Xinghao Chen, Yunhe Wang
Title: GenVidBench: A Challenging Benchmark for Detecting AI-Generated Video
Abstract:
The rapid advancement of video generation models has made it increasingly challenging to distinguish AI-generated videos from real ones. This issue underscores the urgent need for effective AI-generated video detectors to prevent the dissemination of false information through such videos. However, the development of high-performance generative video detectors is currently impeded by the lack of large-scale, high-quality datasets specifically designed for generative video detection. To this end, we introduce GenVidBench, a challenging AI-generated video detection dataset with several key advantages: 1) Cross Source and Cross Generator: The cross-generation source mitigates the interference of video content on the detection. The cross-generator ensures diversity in video attributes between the training and test sets, preventing them from being overly similar. 2) State-of-the-Art Video Generators: The dataset includes videos from 8 state-of-the-art AI video generators, ensuring that it covers the latest advancements in the field of video generation. 3) Rich Semantics: The videos in GenVidBench are analyzed from multiple dimensions and classified into various semantic categories based on their content. This classification ensures that the dataset is not only large but also diverse, aiding in the development of more generalized and effective detection models. We conduct a comprehensive evaluation of different advanced video generators and present a challenging setting. Additionally, we present rich experimental results including advanced video classification models as baselines. With the GenVidBench, researchers can efficiently develop and evaluate AI-generated video detection models. Datasets and code are available at https://genvidbench.github.io.
Authors:Xinghan Li, Jingjing Chen, Yue Yu, Xue Song, Haijun Shan, Yu-Gang Jiang
Title: Revealing the Implicit Noise-based Imprint of Generative Models
Abstract:
With the rapid advancement of vision generation models, the potential security risks stemming from synthetic visual content have garnered increasing attention, posing significant challenges for AI-generated image detection. Existing methods suffer from inadequate generalization capabilities, resulting in unsatisfactory performance on emerging generative models. To address this issue, this paper presents a novel framework that leverages noise-based model-specific imprint for the detection task. Specifically, we propose a novel noise-based imprint simulator to capture intrinsic patterns imprinted in images generated by different models. By aggregating imprints from various generative models, imprints of future models can be extrapolated to expand training data, thereby enhancing generalization and robustness. Furthermore, we design a new pipeline that pioneers the use of noise patterns, derived from a noise-based imprint extractor, alongside other visual features for AI-generated image detection, resulting in a significant improvement in performance. Our approach achieves state-of-the-art performance across three public benchmarks including GenImage, Synthbuster and Chameleon.
Authors:Nan Zhong, Yiran Xu, Sheng Li, Zhenxing Qian, Xinpeng Zhang
Title: PatchCraft: Exploring Texture Patch for Efficient AI-generated Image Detection
Abstract:
Recent generative models show impressive performance in generating photographic images. Humans can hardly distinguish such incredibly realistic-looking AI-generated images from real ones. AI-generated images may lead to ubiquitous disinformation dissemination. Therefore, it is of utmost urgency to develop a detector to identify AI generated images. Most existing detectors suffer from sharp performance drops over unseen generative models. In this paper, we propose a novel AI-generated image detector capable of identifying fake images created by a wide range of generative models. We observe that the texture patches of images tend to reveal more traces left by generative models compared to the global semantic information of the images. A novel Smash&Reconstruction preprocessing is proposed to erase the global semantic information and enhance texture patches. Furthermore, pixels in rich texture regions exhibit more significant fluctuations than those in poor texture regions. Synthesizing realistic rich texture regions proves to be more challenging for existing generative models. Based on this principle, we leverage the inter-pixel correlation contrast between rich and poor texture regions within an image to further boost the detection performance. In addition, we build a comprehensive AI-generated image detection benchmark, which includes 17 kinds of prevalent generative models, to evaluate the effectiveness of existing baselines and our approach. Our benchmark provides a leaderboard for follow-up studies. Extensive experimental results show that our approach outperforms state-of-the-art baselines by a significant margin. Our project: https://fdmas.github.io/AIGCDetect
Authors:Haiquan Wen, Yiwei He, Zhenglin Huang, Tianxiao Li, Zihan Yu, Xingru Huang, Lu Qi, Baoyuan Wu, Xiangtai Li, Guangliang Cheng
Title: BusterX: MLLM-Powered AI-Generated Video Forgery Detection and Explanation
Abstract:
Advances in AI generative models facilitate super-realistic video synthesis, amplifying misinformation risks via social media and eroding trust in digital content. Several research works have explored new deepfake detection methods on AI-generated images to alleviate these risks. However, with the fast development of video generation models, such as Sora and WanX, there is currently a lack of large-scale, high-quality AI-generated video datasets for forgery detection. In addition, existing detection approaches predominantly treat the task as binary classification, lacking explainability in model decision-making and failing to provide actionable insights or guidance for the public. To address these challenges, we propose \textbf{GenBuster-200K}, a large-scale AI-generated video dataset featuring 200K high-resolution video clips, diverse latest generative techniques, and real-world scenes. We further introduce \textbf{BusterX}, a novel AI-generated video detection and explanation framework leveraging multimodal large language model (MLLM) and reinforcement learning for authenticity determination and explainable rationale. To our knowledge, GenBuster-200K is the {\it \textbf{first}} large-scale, high-quality AI-generated video dataset that incorporates the latest generative techniques for real-world scenarios. BusterX is the {\it \textbf{first}} framework to integrate MLLM with reinforcement learning for explainable AI-generated video detection. Extensive comparisons with state-of-the-art methods and ablation studies validate the effectiveness and generalizability of BusterX. The code, models, and datasets will be released.
Authors:Zhiyuan He, Pin-Yu Chen, Tsung-Yi Ho
Title: RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection
Abstract:
The rapid advances in generative AI models have empowered the creation of highly realistic images with arbitrary content, raising concerns about potential misuse and harm, such as Deepfakes. Current research focuses on training detectors using large datasets of generated images. However, these training-based solutions are often computationally expensive and show limited generalization to unseen generated images. In this paper, we propose a training-free method to distinguish between real and AI-generated images. We first observe that real images are more robust to tiny noise perturbations than AI-generated images in the representation space of vision foundation models. Based on this observation, we propose RIGID, a training-free and model-agnostic method for robust AI-generated image detection. RIGID is a simple yet effective approach that identifies whether an image is AI-generated by comparing the representation similarity between the original and the noise-perturbed counterpart. Our evaluation on a diverse set of AI-generated images and benchmarks shows that RIGID significantly outperforms existing trainingbased and training-free detectors. In particular, the average performance of RIGID exceeds the current best training-free method by more than 25%. Importantly, RIGID exhibits strong generalization across different image generation methods and robustness to image corruptions.
Authors:Mingjian Zhu, Hanting Chen, Mouxiao Huang, Wei Li, Hailin Hu, Jie Hu, Yunhe Wang
Title: GenDet: Towards Good Generalizations for AI-Generated Image Detection
Abstract:
The misuse of AI imagery can have harmful societal effects, prompting the creation of detectors to combat issues like the spread of fake news. Existing methods can effectively detect images generated by seen generators, but it is challenging to detect those generated by unseen generators. They do not concentrate on amplifying the output discrepancy when detectors process real versus fake images. This results in a close output distribution of real and fake samples, increasing classification difficulty in detecting unseen generators. This paper addresses the unseen-generator detection problem by considering this task from the perspective of anomaly detection and proposes an adversarial teacher-student discrepancy-aware framework. Our method encourages smaller output discrepancies between the student and the teacher models for real images while aiming for larger discrepancies for fake images. We employ adversarial learning to train a feature augmenter, which promotes smaller discrepancies between teacher and student networks when the inputs are fake images. Our method has achieved state-of-the-art on public benchmarks, and the visualization results show that a large output discrepancy is maintained when faced with various types of generators.
Authors:Despina Konstantinidou, Dimitrios Karageorgiou, Christos Koutlis, Olga Papadopoulou, Emmanouil Schinas, Symeon Papadopoulos
Title: Navigating the Challenges of AI-Generated Image Detection in the Wild: What Truly Matters?
Abstract:
The rapid advancement of generative technologies presents both unprecedented creative opportunities and significant challenges, particularly in maintaining social trust and ensuring the integrity of digital information. Following these concerns, the challenge of AI-Generated Image Detection (AID) becomes increasingly critical. As these technologies become more sophisticated, the quality of AI-generated images has reached a level that can easily deceive even the most discerning observers. Our systematic evaluation highlights a critical weakness in current AI-Generated Image Detection models: while they perform exceptionally well on controlled benchmark datasets, they struggle significantly with real-world variations. To assess this, we introduce ITW-SM, a new dataset of real and AI-generated images collected from major social media platforms. In this paper, we identify four key factors that influence AID performance in real-world scenarios: backbone architecture, training data composition, pre-processing strategies and data augmentation combinations. By systematically analyzing these components, we shed light on their impact on detection efficacy. Our modifications result in an average AUC improvement of 26.87% across various AID models under real-world conditions.
Authors:Yunzhuo Chen, Nur Al Hasan Haldar, Naveed Akhtar, Ajmal Mian
Title: Text-image guided Diffusion Model for generating Deepfake celebrity interactions
Abstract:
Deepfake images are fast becoming a serious concern due to their realism. Diffusion models have recently demonstrated highly realistic visual content generation, which makes them an excellent potential tool for Deepfake generation. To curb their exploitation for Deepfakes, it is imperative to first explore the extent to which diffusion models can be used to generate realistic content that is controllable with convenient prompts. This paper devises and explores a novel method in that regard. Our technique alters the popular stable diffusion model to generate a controllable high-quality Deepfake image with text and image prompts. In addition, the original stable model lacks severely in generating quality images that contain multiple persons. The modified diffusion model is able to address this problem, it add input anchor image's latent at the beginning of inferencing rather than Gaussian random latent as input. Hence, we focus on generating forged content for celebrity interactions, which may be used to spread rumors. We also apply Dreambooth to enhance the realism of our fake images. Dreambooth trains the pairing of center words and specific features to produce more refined and personalized output images. Our results show that with the devised scheme, it is possible to create fake visual content with alarming realism, such that the content can serve as believable evidence of meetings between powerful political figures.
Authors:Ruixuan Zhang, He Wang, Zhengyu Zhao, Zhiqing Guo, Xun Yang, Yunfeng Diao, Meng Wang
Title: Adversarially Robust AI-Generated Image Detection for Free: An Information Theoretic Perspective
Abstract:
Rapid advances in Artificial Intelligence Generated Images (AIGI) have facilitated malicious use, such as forgery and misinformation. Therefore, numerous methods have been proposed to detect fake images. Although such detectors have been proven to be universally vulnerable to adversarial attacks, defenses in this field are scarce. In this paper, we first identify that adversarial training (AT), widely regarded as the most effective defense, suffers from performance collapse in AIGI detection. Through an information-theoretic lens, we further attribute the cause of collapse to feature entanglement, which disrupts the preservation of feature-label mutual information. Instead, standard detectors show clear feature separation. Motivated by this difference, we propose Training-free Robust Detection via Information-theoretic Measures (TRIM), the first training-free adversarial defense for AIGI detection. TRIM builds on standard detectors and quantifies feature shifts using prediction entropy and KL divergence. Extensive experiments across multiple datasets and attacks validate the superiority of our TRIM, e.g., outperforming the state-of-the-art defense by 33.88% (28.91%) on ProGAN (GenImage), while well maintaining original accuracy.
Authors:Edoardo Daniele Cannas, Sara Mandelli, Nataša Popović, Ayman Alkhateeb, Alessandro Gnutti, Paolo Bestagini, Stefano Tubaro
Title: Is JPEG AI going to change image forensics?
Abstract:
In this paper, we investigate the counter-forensic effects of the new JPEG AI standard based on neural image compression, focusing on two critical areas: deepfake image detection and image splicing localization. Neural image compression leverages advanced neural network algorithms to achieve higher compression rates while maintaining image quality. However, it introduces artifacts that closely resemble those generated by image synthesis techniques and image splicing pipelines, complicating the work of researchers when discriminating pristine from manipulated content. We comprehensively analyze JPEG AI's counter-forensic effects through extensive experiments on several state-of-the-art detectors and datasets. Our results demonstrate a reduction in the performance of leading forensic detectors when analyzing content processed through JPEG AI. By exposing the vulnerabilities of the available forensic tools, we aim to raise the urgent need for multimedia forensics researchers to include JPEG AI images in their experimental setups and develop robust forensic techniques to distinguish between neural compression artifacts and actual manipulations.
Authors:Yunfeng Diao, Naixin Zhai, Changtao Miao, Zitong Yu, Xingxing Wei, Xun Yang, Meng Wang
Title: Vulnerabilities in AI-generated Image Detection: The Challenge of Adversarial Attacks
Abstract:
Recent advancements in image synthesis, particularly with the advent of GAN and Diffusion models, have amplified public concerns regarding the dissemination of disinformation. To address such concerns, numerous AI-generated Image (AIGI) Detectors have been proposed and achieved promising performance in identifying fake images. However, there still lacks a systematic understanding of the adversarial robustness of AIGI detectors. In this paper, we examine the vulnerability of state-of-the-art AIGI detectors against adversarial attack under white-box and black-box settings, which has been rarely investigated so far. To this end, we propose a new method to attack AIGI detectors. First, inspired by the obvious difference between real images and fake images in the frequency domain, we add perturbations under the frequency domain to push the image away from its original frequency distribution. Second, we explore the full posterior distribution of the surrogate model to further narrow this gap between heterogeneous AIGI detectors, e.g. transferring adversarial examples across CNNs and ViTs. This is achieved by introducing a novel post-train Bayesian strategy that turns a single surrogate into a Bayesian one, capable of simulating diverse victim models using one pre-trained surrogate, without the need for re-training. We name our method as Frequency-based Post-train Bayesian Attack, or FPBA. Through FPBA, we show that adversarial attack is truly a real threat to AIGI detectors, because FPBA can deliver successful black-box attacks across models, generators, defense methods, and even evade cross-generator detection, which is a crucial real-world detection scenario. The code will be shared upon acceptance.
Authors:Haozhen Yan, Yan Hong, Suning Lang, Jiahui Zhan, Yikun Ji, Yujie Gao, Jun Lan, Huijia Zhu, Weiqiang Wang, Jianfu Zhang
Title: GAMMA: Generalizable Alignment via Multi-task and Manipulation-Augmented Training for AI-Generated Image Detection
Abstract:
With generative models becoming increasingly sophisticated and diverse, detecting AI-generated images has become increasingly challenging. While existing AI-genereted Image detectors achieve promising performance on in-distribution generated images, their generalization to unseen generative models remains limited. This limitation is largely attributed to their reliance on generation-specific artifacts, such as stylistic priors and compression patterns. To address these limitations, we propose GAMMA, a novel training framework designed to reduce domain bias and enhance semantic alignment. GAMMA introduces diverse manipulation strategies, such as inpainting-based manipulation and semantics-preserving perturbations, to ensure consistency between manipulated and authentic content. We employ multi-task supervision with dual segmentation heads and a classification head, enabling pixel-level source attribution across diverse generative domains. In addition, a reverse cross-attention mechanism is introduced to allow the segmentation heads to guide and correct biased representations in the classification branch. Our method achieves state-of-the-art generalization performance on the GenImage benchmark, imporving accuracy by 5.8%, but also maintains strong robustness on newly released generative model such as GPT-4o.
Authors:Juan Hu, Xin Liao, Difei Gao, Satoshi Tsutsui, Qian Wang, Zheng Qin, Mike Zheng Shou
Title: Recap: Detecting Deepfake Video with Unpredictable Tampered Traces via Recovering Faces and Mapping Recovered Faces
Abstract:
The exploitation of Deepfake techniques for malicious intentions has driven significant research interest in Deepfake detection. Deepfake manipulations frequently introduce random tampered traces, leading to unpredictable outcomes in different facial regions. However, existing detection methods heavily rely on specific forgery indicators, and as the forgery mode improves, these traces become increasingly randomized, resulting in a decline in the detection performance of methods reliant on specific forgery traces. To address the limitation, we propose Recap, a novel Deepfake detection model that exposes unspecific facial part inconsistencies by recovering faces and enlarges the differences between real and fake by mapping recovered faces. In the recovering stage, the model focuses on randomly masking regions of interest (ROIs) and reconstructing real faces without unpredictable tampered traces, resulting in a relatively good recovery effect for real faces while a poor recovery effect for fake faces. In the mapping stage, the output of the recovery phase serves as supervision to guide the facial mapping process. This mapping process strategically emphasizes the mapping of fake faces with poor recovery, leading to a further deterioration in their representation, while enhancing and refining the mapping of real faces with good representation. As a result, this approach significantly amplifies the discrepancies between real and fake videos. Our extensive experiments on standard benchmarks demonstrate that Recap is effective in multiple scenarios.
Authors:Juan Hu, Xin Liao, Difei Gao, Satoshi Tsutsui, Qian Wang, Zheng Qin, Mike Zheng Shou
Title: Mover: Mask and Recovery based Facial Part Consistency Aware Method for Deepfake Video Detection
Abstract:
Deepfake techniques have been widely used for malicious purposes, prompting extensive research interest in developing Deepfake detection methods. Deepfake manipulations typically involve tampering with facial parts, which can result in inconsistencies across different parts of the face. For instance, Deepfake techniques may change smiling lips to an upset lip, while the eyes remain smiling. Existing detection methods depend on specific indicators of forgery, which tend to disappear as the forgery patterns are improved. To address the limitation, we propose Mover, a new Deepfake detection model that exploits unspecific facial part inconsistencies, which are inevitable weaknesses of Deepfake videos. Mover randomly masks regions of interest (ROIs) and recovers faces to learn unspecific features, which makes it difficult for fake faces to be recovered, while real faces can be easily recovered. Specifically, given a real face image, we first pretrain a masked autoencoder to learn facial part consistency by dividing faces into three parts and randomly masking ROIs, which are then recovered based on the unmasked facial parts. Furthermore, to maximize the discrepancy between real and fake videos, we propose a novel model with dual networks that utilize the pretrained encoder and masked autoencoder, respectively. 1) The pretrained encoder is finetuned for capturing the encoding of inconsistent information in the given video. 2) The pretrained masked autoencoder is utilized for mapping faces and distinguishing real and fake videos. Our extensive experiments on standard benchmarks demonstrate that Mover is highly effective.
Authors:Juan Hu, Xin Liao, Difei Gao, Satoshi Tsutsui, Qian Wang, Zheng Qin, Mike Zheng Shou
Title: Mover: Mask and Recovery based Facial Part Consistency Aware Method for Deepfake Video Detection
Abstract:
Deepfake techniques have been widely used for malicious purposes, prompting extensive research interest in developing Deepfake detection methods. Deepfake manipulations typically involve tampering with facial parts, which can result in inconsistencies across different parts of the face. For instance, Deepfake techniques may change smiling lips to an upset lip, while the eyes remain smiling. Existing detection methods depend on specific indicators of forgery, which tend to disappear as the forgery patterns are improved. To address the limitation, we propose Mover, a new Deepfake detection model that exploits unspecific facial part inconsistencies, which are inevitable weaknesses of Deepfake videos. Mover randomly masks regions of interest (ROIs) and recovers faces to learn unspecific features, which makes it difficult for fake faces to be recovered, while real faces can be easily recovered. Specifically, given a real face image, we first pretrain a masked autoencoder to learn facial part consistency by dividing faces into three parts and randomly masking ROIs, which are then recovered based on the unmasked facial parts. Furthermore, to maximize the discrepancy between real and fake videos, we propose a novel model with dual networks that utilize the pretrained encoder and masked autoencoder, respectively. 1) The pretrained encoder is finetuned for capturing the encoding of inconsistent information in the given video. 2) The pretrained masked autoencoder is utilized for mapping faces and distinguishing real and fake videos. Our extensive experiments on standard benchmarks demonstrate that Mover is highly effective.
Authors:Kohou Wang, Huan Hu, Xiang Liu, Zezhou Chen, Ping Chen, Zhaoxiang Liu, Shiguo Lian
Title: Hierarchical Deep Fusion Framework for Multi-dimensional Facial Forgery Detection -- The 2024 Global Deepfake Image Detection Challenge
Abstract:
The proliferation of sophisticated deepfake technology poses significant challenges to digital security and authenticity. Detecting these forgeries, especially across a wide spectrum of manipulation techniques, requires robust and generalized models. This paper introduces the Hierarchical Deep Fusion Framework (HDFF), an ensemble-based deep learning architecture designed for high-performance facial forgery detection. Our framework integrates four diverse pre-trained sub-models, Swin-MLP, CoAtNet, EfficientNetV2, and DaViT, which are meticulously fine-tuned through a multi-stage process on the MultiFFDI dataset. By concatenating the feature representations from these specialized models and training a final classifier layer, HDFF effectively leverages their collective strengths. This approach achieved a final score of 0.96852 on the competition's private leaderboard, securing the 20th position out of 184 teams, demonstrating the efficacy of hierarchical fusion for complex image classification tasks.
Authors:Cheng Xia, Manxi Lin, Jiexiang Tan, Xiaoxiong Du, Yang Qiu, Junjun Zheng, Xiangheng Kong, Yuning Jiang, Bo Zheng
Title: MIRAGE: Towards AI-Generated Image Detection in the Wild
Abstract:
The spreading of AI-generated images (AIGI), driven by advances in generative AI, poses a significant threat to information security and public trust. Existing AIGI detectors, while effective against images in clean laboratory settings, fail to generalize to in-the-wild scenarios. These real-world images are noisy, varying from ``obviously fake" images to realistic ones derived from multiple generative models and further edited for quality control. We address in-the-wild AIGI detection in this paper. We introduce Mirage, a challenging benchmark designed to emulate the complexity of in-the-wild AIGI. Mirage is constructed from two sources: (1) a large corpus of Internet-sourced AIGI verified by human experts, and (2) a synthesized dataset created through the collaboration between multiple expert generators, closely simulating the realistic AIGI in the wild. Building on this benchmark, we propose Mirage-R1, a vision-language model with heuristic-to-analytic reasoning, a reflective reasoning mechanism for AIGI detection. Mirage-R1 is trained in two stages: a supervised-fine-tuning cold start, followed by a reinforcement learning stage. By further adopting an inference-time adaptive thinking strategy, Mirage-R1 is able to provide either a quick judgment or a more robust and accurate conclusion, effectively balancing inference speed and performance. Extensive experiments show that our model leads state-of-the-art detectors by 5% and 10% on Mirage and the public benchmark, respectively. The benchmark and code will be made publicly available.
Authors:Qingyuan Liu, Yun-Yun Tsai, Ruijian Zha, Victoria Li, Pengyuan Shi, Chengzhi Mao, Junfeng Yang
Title: LAVID: An Agentic LVLM Framework for Diffusion-Generated Video Detection
Abstract:
The impressive achievements of generative models in creating high-quality videos have raised concerns about digital integrity and privacy vulnerabilities. Recent works of AI-generated content detection have been widely studied in the image field (e.g., deepfake), yet the video field has been unexplored. Large Vision Language Model (LVLM) has become an emerging tool for AI-generated content detection for its strong reasoning and multimodal capabilities. It breaks the limitations of traditional deep learning based methods faced with like lack of transparency and inability to recognize new artifacts. Motivated by this, we propose LAVID, a novel LVLMs-based ai-generated video detection with explicit knowledge enhancement. Our insight list as follows: (1) The leading LVLMs can call external tools to extract useful information to facilitate its own video detection task; (2) Structuring the prompt can affect LVLM's reasoning ability to interpret information in video content. Our proposed pipeline automatically selects a set of explicit knowledge tools for detection, and then adaptively adjusts the structure prompt by self-rewriting. Different from prior SOTA that trains additional detectors, our method is fully training-free and only requires inference of the LVLM for detection. To facilitate our research, we also create a new benchmark \vidfor with high-quality videos generated from multiple sources of video generation tools. Evaluation results show that LAVID improves F1 scores by 6.2 to 30.2% over the top baselines on our datasets across four SOTA LVLMs.
Authors:Zheng Yang, Ruoxin Chen, Zhiyuan Yan, Ke-Yue Zhang, Xinghe Fu, Shuang Wu, Xiujun Shu, Taiping Yao, Shouhong Ding, Xi Li
Title: All Patches Matter, More Patches Better: Enhance AI-Generated Image Detection via Panoptic Patch Learning
Abstract:
The exponential growth of AI-generated images (AIGIs) underscores the urgent need for robust and generalizable detection methods. In this paper, we establish two key principles for AIGI detection through systematic analysis: (1) All Patches Matter: Unlike conventional image classification where discriminative features concentrate on object-centric regions, each patch in AIGIs inherently contains synthetic artifacts due to the uniform generation process, suggesting that every patch serves as an important artifact source for detection. (2) More Patches Better: Leveraging distributed artifacts across more patches improves detection robustness by capturing complementary forensic evidence and reducing over-reliance on specific patches, thereby enhancing robustness and generalization. However, our counterfactual analysis reveals an undesirable phenomenon: naively trained detectors often exhibit a Few-Patch Bias, discriminating between real and synthetic images based on minority patches. We identify Lazy Learner as the root cause: detectors preferentially learn conspicuous artifacts in limited patches while neglecting broader artifact distributions. To address this bias, we propose the Panoptic Patch Learning (PPL) framework, involving: (1) Random Patch Replacement that randomly substitutes synthetic patches with real counterparts to compel models to identify artifacts in underutilized regions, encouraging the broader use of more patches; (2) Patch-wise Contrastive Learning that enforces consistent discriminative capability across all patches, ensuring uniform utilization of all patches. Extensive experiments across two different settings on several benchmarks verify the effectiveness of our approach.
Authors:Zhiyuan Yan, Yandan Zhao, Shen Chen, Mingyi Guo, Xinghe Fu, Taiping Yao, Shouhong Ding, Li Yuan
Title: Generalizing Deepfake Video Detection with Plug-and-Play: Video-Level Blending and Spatiotemporal Adapter Tuning
Abstract:
Three key challenges hinder the development of current deepfake video detection: (1) Temporal features can be complex and diverse: how can we identify general temporal artifacts to enhance model generalization? (2) Spatiotemporal models often lean heavily on one type of artifact and ignore the other: how can we ensure balanced learning from both? (3) Videos are naturally resource-intensive: how can we tackle efficiency without compromising accuracy? This paper attempts to tackle the three challenges jointly. First, inspired by the notable generality of using image-level blending data for image forgery detection, we investigate whether and how video-level blending can be effective in video. We then perform a thorough analysis and identify a previously underexplored temporal forgery artifact: Facial Feature Drift (FFD), which commonly exists across different forgeries. To reproduce FFD, we then propose a novel Video-level Blending data (VB), where VB is implemented by blending the original image and its warped version frame-by-frame, serving as a hard negative sample to mine more general artifacts. Second, we carefully design a lightweight Spatiotemporal Adapter (StA) to equip a pretrained image model (both ViTs and CNNs) with the ability to capture both spatial and temporal features jointly and efficiently. StA is designed with two-stream 3D-Conv with varying kernel sizes, allowing it to process spatial and temporal features separately. Extensive experiments validate the effectiveness of the proposed methods; and show our approach can generalize well to previously unseen forgery videos, even the latest generation methods.
Authors:Ziyin Zhou, Ke Sun, Zhongxi Chen, Xianming Lin, Yunpeng Luo, Ke Yan, Shouhong Ding, Xiaoshuai Sun
Title: Exploring the Collaborative Advantage of Low-level Information on Generalizable AI-Generated Image Detection
Abstract:
Existing state-of-the-art AI-Generated image detection methods mostly consider extracting low-level information from RGB images to help improve the generalization of AI-Generated image detection, such as noise patterns. However, these methods often consider only a single type of low-level information, which may lead to suboptimal generalization. Through empirical analysis, we have discovered a key insight: different low-level information often exhibits generalization capabilities for different types of forgeries. Furthermore, we found that simple fusion strategies are insufficient to leverage the detection advantages of each low-level and high-level information for various forgery types. Therefore, we propose the Adaptive Low-level Experts Injection (ALEI) framework. Our approach introduces Lora Experts, enabling the backbone network, which is trained with high-level semantic RGB images, to accept and learn knowledge from different low-level information. We utilize a cross-attention method to adaptively fuse these features at intermediate layers. To prevent the backbone network from losing the modeling capabilities of different low-level features during the later stages of modeling, we developed a Low-level Information Adapter that interacts with the features extracted by the backbone network. Finally, we propose Dynamic Feature Selection, which dynamically selects the most suitable features for detecting the current image to maximize generalization detection capability. Extensive experiments demonstrate that our method, finetuned on only four categories of mainstream ProGAN data, performs excellently and achieves state-of-the-art results on multiple datasets containing unseen GAN and Diffusion methods.
Authors:Shahroz Tariq, David Nguyen, M. A. P. Chamikara, Tingmin Wu, Alsharif Abuadbba, Kristen Moore
Title: LLMs Are Not Yet Ready for Deepfake Image Detection
Abstract:
The growing sophistication of deepfakes presents substantial challenges to the integrity of media and the preservation of public trust. Concurrently, vision-language models (VLMs), large language models enhanced with visual reasoning capabilities, have emerged as promising tools across various domains, sparking interest in their applicability to deepfake detection. This study conducts a structured zero-shot evaluation of four prominent VLMs: ChatGPT, Claude, Gemini, and Grok, focusing on three primary deepfake types: faceswap, reenactment, and synthetic generation. Leveraging a meticulously assembled benchmark comprising authentic and manipulated images from diverse sources, we evaluate each model's classification accuracy and reasoning depth. Our analysis indicates that while VLMs can produce coherent explanations and detect surface-level anomalies, they are not yet dependable as standalone detection systems. We highlight critical failure modes, such as an overemphasis on stylistic elements and vulnerability to misleading visual patterns like vintage aesthetics. Nevertheless, VLMs exhibit strengths in interpretability and contextual analysis, suggesting their potential to augment human expertise in forensic workflows. These insights imply that although general-purpose models currently lack the reliability needed for autonomous deepfake detection, they hold promise as integral components in hybrid or human-in-the-loop detection frameworks.
Authors:Riccardo Corvi, Davide Cozzolino, Ekta Prashnani, Shalini De Mello, Koki Nagano, Luisa Verdoliva
Title: Seeing What Matters: Generalizable AI-generated Video Detection with Forensic-Oriented Augmentation
Abstract:
Synthetic video generation is progressing very rapidly. The latest models can produce very realistic high-resolution videos that are virtually indistinguishable from real ones. Although several video forensic detectors have been recently proposed, they often exhibit poor generalization, which limits their applicability in a real-world scenario. Our key insight to overcome this issue is to guide the detector towards seeing what really matters. In fact, a well-designed forensic classifier should focus on identifying intrinsic low-level artifacts introduced by a generative architecture rather than relying on high-level semantic flaws that characterize a specific model. In this work, first, we study different generative architectures, searching and identifying discriminative features that are unbiased, robust to impairments, and shared across models. Then, we introduce a novel forensic-oriented data augmentation strategy based on the wavelet decomposition and replace specific frequency-related bands to drive the model to exploit more relevant forensic cues. Our novel training paradigm improves the generalizability of AI-generated video detectors, without the need for complex algorithms and large datasets that include multiple synthetic generators. To evaluate our approach, we train the detector using data from a single generative model and test it against videos produced by a wide range of other models. Despite its simplicity, our method achieves a significant accuracy improvement over state-of-the-art detectors and obtains excellent results even on very recent generative models, such as NOVA and FLUX. Code and data will be made publicly available.
Authors:Fabrizio Guillaro, Giada Zingarini, Ben Usman, Avneesh Sud, Davide Cozzolino, Luisa Verdoliva
Title: A Bias-Free Training Paradigm for More General AI-generated Image Detection
Abstract:
Successful forensic detectors can produce excellent results in supervised learning benchmarks but struggle to transfer to real-world applications. We believe this limitation is largely due to inadequate training data quality. While most research focuses on developing new algorithms, less attention is given to training data selection, despite evidence that performance can be strongly impacted by spurious correlations such as content, format, or resolution. A well-designed forensic detector should detect generator specific artifacts rather than reflect data biases. To this end, we propose B-Free, a bias-free training paradigm, where fake images are generated from real ones using the conditioning procedure of stable diffusion models. This ensures semantic alignment between real and fake images, allowing any differences to stem solely from the subtle artifacts introduced by AI generation. Through content-based augmentation, we show significant improvements in both generalization and robustness over state-of-the-art detectors and more calibrated results across 27 different generative models, including recent releases, like FLUX and Stable Diffusion 3.5. Our findings emphasize the importance of a careful dataset design, highlighting the need for further research on this topic. Code and data are publicly available at https://grip-unina.github.io/B-Free/.
Authors:Dimitrios Karageorgiou, Symeon Papadopoulos, Ioannis Kompatsiaris, Efstratios Gavves
Title: Any-Resolution AI-Generated Image Detection by Spectral Learning
Abstract:
Recent works have established that AI models introduce spectral artifacts into generated images and propose approaches for learning to capture them using labeled data. However, the significant differences in such artifacts among different generative models hinder these approaches from generalizing to generators not seen during training. In this work, we build upon the key idea that the spectral distribution of real images constitutes both an invariant and highly discriminative pattern for AI-generated image detection. To model this under a self-supervised setup, we employ masked spectral learning using the pretext task of frequency reconstruction. Since generated images constitute out-of-distribution samples for this model, we propose spectral reconstruction similarity to capture this divergence. Moreover, we introduce spectral context attention, which enables our approach to efficiently capture subtle spectral inconsistencies in images of any resolution. Our spectral AI-generated image detection approach (SPAI) achieves a 5.5% absolute improvement in AUC over the previous state-of-the-art across 13 recent generative approaches, while exhibiting robustness against common online perturbations. Code is available on https://mever-team.github.io/spai.
Authors:Vincenzo De Rosa, Fabrizio Guillaro, Giovanni Poggi, Davide Cozzolino, Luisa Verdoliva
Title: Exploring the Adversarial Robustness of CLIP for AI-generated Image Detection
Abstract:
In recent years, many forensic detectors have been proposed to detect AI-generated images and prevent their use for malicious purposes. Convolutional neural networks (CNNs) have long been the dominant architecture in this field and have been the subject of intense study. However, recently proposed Transformer-based detectors have been shown to match or even outperform CNN-based detectors, especially in terms of generalization. In this paper, we study the adversarial robustness of AI-generated image detectors, focusing on Contrastive Language-Image Pretraining (CLIP)-based methods that rely on Visual Transformer (ViT) backbones and comparing their performance with CNN-based methods. We study the robustness to different adversarial attacks under a variety of conditions and analyze both numerical results and frequency-domain patterns. CLIP-based detectors are found to be vulnerable to white-box attacks just like CNN-based detectors. However, attacks do not easily transfer between CNN-based and CLIP-based methods. This is also confirmed by the different distribution of the adversarial noise patterns in the frequency domain. Overall, this analysis provides new insights into the properties of forensic detectors that can help to develop more effective strategies.
Authors:Davide Cozzolino, Giovanni Poggi, Riccardo Corvi, Matthias Nießner, Luisa Verdoliva
Title: Raising the Bar of AI-generated Image Detection with CLIP
Abstract:
The aim of this work is to explore the potential of pre-trained vision-language models (VLMs) for universal detection of AI-generated images. We develop a lightweight detection strategy based on CLIP features and study its performance in a wide variety of challenging scenarios. We find that, contrary to previous beliefs, it is neither necessary nor convenient to use a large domain-specific dataset for training. On the contrary, by using only a handful of example images from a single generative model, a CLIP-based detector exhibits surprising generalization ability and high robustness across different architectures, including recent commercial tools such as Dalle-3, Midjourney v5, and Firefly. We match the state-of-the-art (SoTA) on in-distribution data and significantly improve upon it in terms of generalization to out-of-distribution data (+6% AUC) and robustness to impaired/laundered data (+13%). Our project is available at https://grip-unina.github.io/ClipBased-SyntheticImageDetection/
Authors:Kuo Shi, Jie Lu, Shanshan Ye, Guangquan Zhang, Zhen Fang
Title: MiraGe: Multimodal Discriminative Representation Learning for Generalizable AI-Generated Image Detection
Abstract:
Recent advances in generative models have highlighted the need for robust detectors capable of distinguishing real images from AI-generated images. While existing methods perform well on known generators, their performance often declines when tested with newly emerging or unseen generative models due to overlapping feature embeddings that hinder accurate cross-generator classification. In this paper, we propose Multimodal Discriminative Representation Learning for Generalizable AI-generated Image Detection (MiraGe), a method designed to learn generator-invariant features. Motivated by theoretical insights on intra-class variation minimization and inter-class separation, MiraGe tightly aligns features within the same class while maximizing separation between classes, enhancing feature discriminability. Moreover, we apply multimodal prompt learning to further refine these principles into CLIP, leveraging text embeddings as semantic anchors for effective discriminative representation learning, thereby improving generalizability. Comprehensive experiments across multiple benchmarks show that MiraGe achieves state-of-the-art performance, maintaining robustness even against unseen generators like Sora.
Authors:Shengpeng Xiao, Yuanfang Guo, Heqi Peng, Zeming Liu, Liang Yang, Yunhong Wang
Title: Generalizable AI-Generated Image Detection Based on Fractal Self-Similarity in the Spectrum
Abstract:
The generalization performance of AI-generated image detection remains a critical challenge. Although most existing methods perform well in detecting images from generative models included in the training set, their accuracy drops significantly when faced with images from unseen generators. To address this limitation, we propose a novel detection method based on the fractal self-similarity of the spectrum, a common feature among images generated by different models. Specifically, we demonstrate that AI-generated images exhibit fractal-like spectral growth through periodic extension and low-pass filtering. This observation motivates us to exploit the similarity among different fractal branches of the spectrum. Instead of directly analyzing the spectrum, our method mitigates the impact of varying spectral characteristics across different generators, improving detection performance for images from unseen models. Experiments on a public benchmark demonstrated the generalized detection performance across both GANs and diffusion models.
Authors:Lichuan Ji, Yingqi Lin, Zhenhua Huang, Yan Han, Xiaogang Xu, Jiafei Wu, Chong Wang, Zhe Liu
Title: Distinguish Any Fake Videos: Unleashing the Power of Large-scale Data and Motion Features
Abstract:
The development of AI-Generated Content (AIGC) has empowered the creation of remarkably realistic AI-generated videos, such as those involving Sora. However, the widespread adoption of these models raises concerns regarding potential misuse, including face video scams and copyright disputes. Addressing these concerns requires the development of robust tools capable of accurately determining video authenticity. The main challenges lie in the dataset and neural classifier for training. Current datasets lack a varied and comprehensive repository of real and generated content for effective discrimination. In this paper, we first introduce an extensive video dataset designed specifically for AI-Generated Video Detection (GenVidDet). It includes over 2.66 M instances of both real and generated videos, varying in categories, frames per second, resolutions, and lengths. The comprehensiveness of GenVidDet enables the training of a generalizable video detector. We also present the Dual-Branch 3D Transformer (DuB3D), an innovative and effective method for distinguishing between real and generated videos, enhanced by incorporating motion information alongside visual appearance. DuB3D utilizes a dual-branch architecture that adaptively leverages and fuses raw spatio-temporal data and optical flow. We systematically explore the critical factors affecting detection performance, achieving the optimal configuration for DuB3D. Trained on GenVidDet, DuB3D can distinguish between real and generated video content with 96.77% accuracy, and strong generalization capability even for unseen types.
Authors:Yan Hong, Jianfu Zhang
Title: WildFake: A Large-scale Challenging Dataset for AI-Generated Images Detection
Abstract:
The extraordinary ability of generative models enabled the generation of images with such high quality that human beings cannot distinguish Artificial Intelligence (AI) generated images from real-life photographs. The development of generation techniques opened up new opportunities but concurrently introduced potential risks to privacy, authenticity, and security. Therefore, the task of detecting AI-generated imagery is of paramount importance to prevent illegal activities. To assess the generalizability and robustness of AI-generated image detection, we present a large-scale dataset, referred to as WildFake, comprising state-of-the-art generators, diverse object categories, and real-world applications. WildFake dataset has the following advantages: 1) Rich Content with Wild collection: WildFake collects fake images from the open-source community, enriching its diversity with a broad range of image classes and image styles. 2) Hierarchical structure: WildFake contains fake images synthesized by different types of generators from GANs, diffusion models, to other generative models. These key strengths enhance the generalization and robustness of detectors trained on WildFake, thereby demonstrating WildFake's considerable relevance and effectiveness for AI-generated detectors in real-world scenarios. Moreover, our extensive evaluation experiments are tailored to yield profound insights into the capabilities of different levels of generative models, a distinctive advantage afforded by WildFake's unique hierarchical structure.
Authors:Juncong Xu, Yang Yang, Han Fang, Honggu Liu, Weiming Zhang
Title: FAMSeC: A Few-shot-sample-based General AI-generated Image Detection Method
Abstract:
The explosive growth of generative AI has saturated the internet with AI-generated images, raising security concerns and increasing the need for reliable detection methods. The primary requirement for such detection is generalizability, typically achieved by training on numerous fake images from various models. However, practical limitations, such as closed-source models and restricted access, often result in limited training samples. Therefore, training a general detector with few-shot samples is essential for modern detection mechanisms. To address this challenge, we propose FAMSeC, a general AI-generated image detection method based on LoRA-based Forgery Awareness Module and Semantic feature-guided Contrastive learning strategy. To effectively learn from limited samples and prevent overfitting, we developed a Forgery Awareness Module (FAM) based on LoRA, maintaining the generalization of pre-trained features. Additionally, to cooperate with FAM, we designed a Semantic feature-guided Contrastive learning strategy (SeC), making the FAM focus more on the differences between real/fake image than on the features of the samples themselves. Experiments show that FAMSeC outperforms state-of-the-art method, enhancing classification accuracy by 14.55% with just 0.56% of the training samples.
Authors:Boquan Li, Jun Sun, Christopher M. Poskitt, Xingmei Wang
Title: How Generalizable are Deepfake Image Detectors? An Empirical Study
Abstract:
Deepfakes are becoming increasingly credible, posing a significant threat given their potential to facilitate fraud or bypass access control systems. This has motivated the development of deepfake detection methods, in which deep learning models are trained to distinguish between real and synthesized footage. Unfortunately, existing detectors struggle to generalize to deepfakes from datasets they were not trained on, but little work has been done to examine why or how this limitation can be addressed. Especially, those single-modality deepfake images reveal little available forgery evidence, posing greater challenges than detecting deepfake videos. In this work, we present the first empirical study on the generalizability of deepfake detectors, an essential goal for detectors to stay one step ahead of attackers. Our study utilizes six deepfake datasets, five deepfake image detection methods, and two model augmentation approaches, confirming that detectors do not generalize in zero-shot settings. Additionally, we find that detectors are learning unwanted properties specific to synthesis methods and struggling to extract discriminative features, limiting their ability to generalize. Finally, we find that there are neurons universally contributing to detection across seen and unseen datasets, suggesting a possible path towards zero-shot generalizability.
Authors:Yiheng Li, Zichang Tan, Zhen Lei, Xu Zhou, Yang Yang
Title: Towards Generalizable AI-Generated Image Detection via Image-Adaptive Prompt Learning
Abstract:
A major struggle for AI-generated image detection is identifying fake images from unseen generators. Existing cutting-edge methods typically customize pre-trained foundation models to this task via partial-parameter fine-tuning. However, these parameters trained on a narrow range of generators may fail to generalize to unknown sources. In light of this, we propose a novel framework named Image-Adaptive Prompt Learning (IAPL), which enhances flexibility in processing diverse testing images. It consists of two adaptive modules, i.e., the Conditional Information Learner and the Confidence-Driven Adaptive Prediction. The former employs CNN-based feature extractors to learn forgery-specific and image-specific conditions, which are then propagated to learnable tokens via a gated mechanism. The latter optimizes the shallowest learnable tokens based on a single test sample and selects the cropped view with the highest prediction confidence for final detection. These two modules enable the prompts fed into the foundation model to be automatically adjusted based on the input image, rather than being fixed after training, thereby enhancing the model's adaptability to various forged images. Extensive experiments show that IAPL achieves state-of-the-art performance, with 95.61% and 96.7% mean accuracy on two widely used UniversalFakeDetect and GenImage datasets, respectively.
Authors:Ahmad ALBarqawi, Mahmoud Nazzal, Issa Khalil, Abdallah Khreishah, NhatHai Phan
Title: ViGText: Deepfake Image Detection with Vision-Language Model Explanations and Graph Neural Networks
Abstract:
The rapid rise of deepfake technology, which produces realistic but fraudulent digital content, threatens the authenticity of media. Traditional deepfake detection approaches often struggle with sophisticated, customized deepfakes, especially in terms of generalization and robustness against malicious attacks. This paper introduces ViGText, a novel approach that integrates images with Vision Large Language Model (VLLM) Text explanations within a Graph-based framework to improve deepfake detection. The novelty of ViGText lies in its integration of detailed explanations with visual data, as it provides a more context-aware analysis than captions, which often lack specificity and fail to reveal subtle inconsistencies. ViGText systematically divides images into patches, constructs image and text graphs, and integrates them for analysis using Graph Neural Networks (GNNs) to identify deepfakes. Through the use of multi-level feature extraction across spatial and frequency domains, ViGText captures details that enhance its robustness and accuracy to detect sophisticated deepfakes. Extensive experiments demonstrate that ViGText significantly enhances generalization and achieves a notable performance boost when it detects user-customized deepfakes. Specifically, average F1 scores rise from 72.45% to 98.32% under generalization evaluation, and reflects the model's superior ability to generalize to unseen, fine-tuned variations of stable diffusion models. As for robustness, ViGText achieves an increase of 11.1% in recall compared to other deepfake detection approaches. When facing targeted attacks that exploit its graph-based architecture, ViGText limits classification performance degradation to less than 4%. ViGText uses detailed visual and textual analysis to set a new standard for detecting deepfakes, helping ensure media authenticity and information integrity.
Authors:Lianrui Mu, Zou Xingze, Jianhong Bai, Jiaqi Hu, Wenjie Zheng, Jiangnan Ye, Jiedong Zhuang, Mudassar Ali, Jing Wang, Haoji Hu
Title: No Pixel Left Behind: A Detail-Preserving Architecture for Robust High-Resolution AI-Generated Image Detection
Abstract:
The rapid growth of high-resolution, meticulously crafted AI-generated images poses a significant challenge to existing detection methods, which are often trained and evaluated on low-resolution, automatically generated datasets that do not align with the complexities of high-resolution scenarios. A common practice is to resize or center-crop high-resolution images to fit standard network inputs. However, without full coverage of all pixels, such strategies risk either obscuring subtle, high-frequency artifacts or discarding information from uncovered regions, leading to input information loss. In this paper, we introduce the High-Resolution Detail-Aggregation Network (HiDA-Net), a novel framework that ensures no pixel is left behind. We use the Feature Aggregation Module (FAM), which fuses features from multiple full-resolution local tiles with a down-sampled global view of the image. These local features are aggregated and fused with global representations for final prediction, ensuring that native-resolution details are preserved and utilized for detection. To enhance robustness against challenges such as localized AI manipulations and compression, we introduce Token-wise Forgery Localization (TFL) module for fine-grained spatial sensitivity and JPEG Quality Factor Estimation (QFE) module to disentangle generative artifacts from compression noise explicitly. Furthermore, to facilitate future research, we introduce HiRes-50K, a new challenging benchmark consisting of 50,568 images with up to 64 megapixels. Extensive experiments show that HiDA-Net achieves state-of-the-art, increasing accuracy by over 13% on the challenging Chameleon dataset and 10% on our HiRes-50K.
Authors:Yue Zhou, Xinan He, Kaiqing Lin, Bing Fan, Feng Ding, Jinhua Zeng, Bin Li
Title: Brought a Gun to a Knife Fight: Modern VFM Baselines Outgun Specialized Detectors on In-the-Wild AI Image Detection
Abstract:
While specialized detectors for AI-generated images excel on curated benchmarks, they fail catastrophically in real-world scenarios, as evidenced by their critically high false-negative rates on `in-the-wild' benchmarks. Instead of crafting another specialized `knife' for this problem, we bring a `gun' to the fight: a simple linear classifier on a modern Vision Foundation Model (VFM). Trained on identical data, this baseline decisively `outguns' bespoke detectors, boosting in-the-wild accuracy by a striking margin of over 20\%. Our analysis pinpoints the source of the VFM's `firepower': First, by probing text-image similarities, we find that recent VLMs (e.g., Perception Encoder, Meta CLIP2) have learned to align synthetic images with forgery-related concepts (e.g., `AI-generated'), unlike previous versions. Second, we speculate that this is due to data exposure, as both this alignment and overall accuracy plummet on a novel dataset scraped after the VFM's pre-training cut-off date, ensuring it was unseen during pre-training. Our findings yield two critical conclusions: 1) For the real-world `gunfight' of AI-generated image detection, the raw `firepower' of an updated VFM is far more effective than the `craftsmanship' of a static detector. 2) True generalization evaluation requires test data to be independent of the model's entire training history, including pre-training.
Authors:Mamadou Keita, Wassim Hamidouche, Hessen Bougueffa Eutamene, Abdelmalik Taleb-Ahmed, Abdenour Hadid
Title: RAVID: Retrieval-Augmented Visual Detection: A Knowledge-Driven Approach for AI-Generated Image Identification
Abstract:
In this paper, we introduce RAVID, the first framework for AI-generated image detection that leverages visual retrieval-augmented generation (RAG). While RAG methods have shown promise in mitigating factual inaccuracies in foundation models, they have primarily focused on text, leaving visual knowledge underexplored. Meanwhile, existing detection methods, which struggle with generalization and robustness, often rely on low-level artifacts and model-specific features, limiting their adaptability. To address this, RAVID dynamically retrieves relevant images to enhance detection. Our approach utilizes a fine-tuned CLIP image encoder, RAVID CLIP, enhanced with category-related prompts to improve representation learning. We further integrate a vision-language model (VLM) to fuse retrieved images with the query, enriching the input and improving accuracy. Given a query image, RAVID generates an embedding using RAVID CLIP, retrieves the most relevant images from a database, and combines these with the query image to form an enriched input for a VLM (e.g., Qwen-VL or Openflamingo). Experiments on the UniversalFakeDetect benchmark, which covers 19 generative models, show that RAVID achieves state-of-the-art performance with an average accuracy of 93.85%. RAVID also outperforms traditional methods in terms of robustness, maintaining high accuracy even under image degradations such as Gaussian blur and JPEG compression. Specifically, RAVID achieves an average accuracy of 80.27% under degradation conditions, compared to 63.44% for the state-of-the-art model C2P-CLIP, demonstrating consistent improvements in both Gaussian blur and JPEG compression scenarios. The code will be publicly available upon acceptance.
Authors:Ju Yeon Kang, Jaehong Park, Semin Kim, Ji Won Yoon, Nam Soo Kim
Title: Semantic-Aware Reconstruction Error for Detecting AI-Generated Images
Abstract:
Recently, AI-generated image detection has gained increasing attention, as the rapid advancement of image generation technologies has raised serious concerns about their potential misuse. While existing detection methods have achieved promising results, their performance often degrades significantly when facing fake images from unseen, out-of-distribution (OOD) generative models, since they primarily rely on model-specific artifacts and thus overfit to the models used for training. To address this limitation, we propose a novel representation, namely Semantic-Aware Reconstruction Error (SARE), that measures the semantic difference between an image and its caption-guided reconstruction. The key hypothesis behind SARE is that real images, whose captions often fail to fully capture their complex visual content, may undergo noticeable semantic shifts during the caption-guided reconstruction process. In contrast, fake images, which closely align with their captions, show minimal semantic changes. By quantifying these semantic shifts, SARE provides a robust and discriminative feature for detecting fake images across diverse generative models. Additionally, we introduce a fusion module that integrates SARE into the backbone detector via a cross-attention mechanism. Image features attend to semantic representations extracted from SARE, enabling the model to adaptively leverage semantic information. Experimental results demonstrate that the proposed method achieves strong generalization, outperforming existing baselines on benchmarks including GenImage and ForenSynths. We further validate the effectiveness of caption guidance through a detailed analysis of semantic shifts, confirming its ability to enhance detection robustness.
Authors:Jiazhen Yan, Fan Wang, Weiwei Jiang, Ziqiang Li, Zhangjie Fu
Title: NS-Net: Decoupling CLIP Semantic Information through NULL-Space for Generalizable AI-Generated Image Detection
Abstract:
The rapid progress of generative models, such as GANs and diffusion models, has facilitated the creation of highly realistic images, raising growing concerns over their misuse in security-sensitive domains. While existing detectors perform well under known generative settings, they often fail to generalize to unknown generative models, especially when semantic content between real and fake images is closely aligned. In this paper, we revisit the use of CLIP features for AI-generated image detection and uncover a critical limitation: the high-level semantic information embedded in CLIP's visual features hinders effective discrimination. To address this, we propose NS-Net, a novel detection framework that leverages NULL-Space projection to decouple semantic information from CLIP's visual features, followed by contrastive learning to capture intrinsic distributional differences between real and generated images. Furthermore, we design a Patch Selection strategy to preserve fine-grained artifacts by mitigating semantic bias caused by global image structures. Extensive experiments on an open-world benchmark comprising images generated by 40 diverse generative models show that NS-Net outperforms existing state-of-the-art methods, achieving a 7.4\% improvement in detection accuracy, thereby demonstrating strong generalization across both GAN- and diffusion-based image generation techniques.
Authors:Lin Yuan, Xiaowan Li, Yan Zhang, Jiawei Zhang, Hongbo Li, Xinbo Gao
Title: MLEP: Multi-granularity Local Entropy Patterns for Universal AI-generated Image Detection
Abstract:
Advancements in image generation technologies have raised significant concerns about their potential misuse, such as producing misinformation and deepfakes. Therefore, there is an urgent need for effective methods to detect AI-generated images (AIGI). Despite progress in AIGI detection, achieving reliable performance across diverse generation models and scenes remains challenging due to the lack of source-invariant features and limited generalization capabilities in existing methods. In this work, we explore the potential of using image entropy as a cue for AIGI detection and propose Multi-granularity Local Entropy Patterns (MLEP), a set of entropy feature maps computed across shuffled small patches over multiple image scaled. MLEP comprehensively captures pixel relationships across dimensions and scales while significantly disrupting image semantics, reducing potential content bias. Leveraging MLEP, a robust CNN-based classifier for AIGI detection can be trained. Extensive experiments conducted in an open-world scenario, evaluating images synthesized by 32 distinct generative models, demonstrate significant improvements over state-of-the-art methods in both accuracy and generalization.
Authors:Peipeng Yu, Jianwei Fei, Hui Gao, Xuan Feng, Zhihua Xia, Chip Hong Chang
Title: Unlocking the Capabilities of Large Vision-Language Models for Generalizable and Explainable Deepfake Detection
Abstract:
Current Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in understanding multimodal data, but their potential remains underexplored for deepfake detection due to the misalignment of their knowledge and forensics patterns. To this end, we present a novel framework that unlocks LVLMs' potential capabilities for deepfake detection. Our framework includes a Knowledge-guided Forgery Detector (KFD), a Forgery Prompt Learner (FPL), and a Large Language Model (LLM). The KFD is used to calculate correlations between image features and pristine/deepfake image description embeddings, enabling forgery classification and localization. The outputs of the KFD are subsequently processed by the Forgery Prompt Learner to construct fine-grained forgery prompt embeddings. These embeddings, along with visual and question prompt embeddings, are fed into the LLM to generate textual detection responses. Extensive experiments on multiple benchmarks, including FF++, CDF2, DFD, DFDCP, DFDC, and DF40, demonstrate that our scheme surpasses state-of-the-art methods in generalization performance, while also supporting multi-turn dialogue capabilities.
Authors:Jiazhen Yan, Ziqiang Li, Fan Wang, Ziwen He, Zhangjie Fu
Title: Dual Frequency Branch Framework with Reconstructed Sliding Windows Attention for AI-Generated Image Detection
Abstract:
The rapid advancement of Generative Adversarial Networks (GANs) and diffusion models has enabled the creation of highly realistic synthetic images, presenting significant societal risks, such as misinformation and deception. As a result, detecting AI-generated images has emerged as a critical challenge. Existing researches emphasize extracting fine-grained features to enhance detector generalization, yet they often lack consideration for the importance and interdependencies of internal elements within local regions and are limited to a single frequency domain, hindering the capture of general forgery traces. To overcome the aforementioned limitations, we first utilize a sliding window to restrict the attention mechanism to a local window, and reconstruct the features within the window to model the relationships between neighboring internal elements within the local region. Then, we design a dual frequency domain branch framework consisting of four frequency domain subbands of DWT and the phase part of FFT to enrich the extraction of local forgery features from different perspectives. Through feature enrichment of dual frequency domain branches and fine-grained feature extraction of reconstruction sliding window attention, our method achieves superior generalization detection capabilities on both GAN and diffusion model-based generative images. Evaluated on diverse datasets comprising images from 65 distinct generative models, our approach achieves a 2.13\% improvement in detection accuracy over state-of-the-art methods.
Authors:Peipeng Yu, Hui Gao, Jianwei Fei, Zhitao Huang, Zhihua Xia, Chip-Hong Chang
Title: DFREC: DeepFake Identity Recovery Based on Identity-aware Masked Autoencoder
Abstract:
Recent advances in deepfake forensics have primarily focused on improving the classification accuracy and generalization performance. Despite enormous progress in detection accuracy across a wide variety of forgery algorithms, existing algorithms lack intuitive interpretability and identity traceability to help with forensic investigation. In this paper, we introduce a novel DeepFake Identity Recovery scheme (DFREC) to fill this gap. DFREC aims to recover the pair of source and target faces from a deepfake image to facilitate deepfake identity tracing and reduce the risk of deepfake attack. It comprises three key components: an Identity Segmentation Module (ISM), a Source Identity Reconstruction Module (SIRM), and a Target Identity Reconstruction Module (TIRM). The ISM segments the input face into distinct source and target face information, and the SIRM reconstructs the source face and extracts latent target identity features with the segmented source information. The background context and latent target identity features are synergetically fused by a Masked Autoencoder in the TIRM to reconstruct the target face. We evaluate DFREC on six different high-fidelity face-swapping attacks on FaceForensics++, CelebaMegaFS and FFHQ-E4S datasets, which demonstrate its superior recovery performance over state-of-the-art deepfake recovery algorithms. In addition, DFREC is the only scheme that can recover both pristine source and target faces directly from the forgery image with high fadelity.
Authors:Trevine Oorloff, Surya Koppisetti, Nicolò Bonettini, Divyaraj Solanki, Ben Colman, Yaser Yacoob, Ali Shahriyari, Gaurav Bharaj
Title: AVFF: Audio-Visual Feature Fusion for Video Deepfake Detection
Abstract:
With the rapid growth in deepfake video content, we require improved and generalizable methods to detect them. Most existing detection methods either use uni-modal cues or rely on supervised training to capture the dissonance between the audio and visual modalities. While the former disregards the audio-visual correspondences entirely, the latter predominantly focuses on discerning audio-visual cues within the training corpus, thereby potentially overlooking correspondences that can help detect unseen deepfakes. We present Audio-Visual Feature Fusion (AVFF), a two-stage cross-modal learning method that explicitly captures the correspondence between the audio and visual modalities for improved deepfake detection. The first stage pursues representation learning via self-supervision on real videos to capture the intrinsic audio-visual correspondences. To extract rich cross-modal representations, we use contrastive learning and autoencoding objectives, and introduce a novel audio-visual complementary masking and feature fusion strategy. The learned representations are tuned in the second stage, where deepfake classification is pursued via supervised learning on both real and fake videos. Extensive experiments and analysis suggest that our novel representation learning paradigm is highly discriminative in nature. We report 98.6% accuracy and 99.1% AUC on the FakeAVCeleb dataset, outperforming the current audio-visual state-of-the-art by 14.9% and 9.9%, respectively.
Authors:Chunxiao Li, Xiaoxiao Wang, Meiling Li, Boming Miao, Peng Sun, Yunjian Zhang, Xiangyang Ji, Yao Zhu
Title: Bridging the Gap Between Ideal and Real-world Evaluation: Benchmarking AI-Generated Image Detection in Challenging Scenarios
Abstract:
With the rapid advancement of generative models, highly realistic image synthesis has posed new challenges to digital security and media credibility. Although AI-generated image detection methods have partially addressed these concerns, a substantial research gap remains in evaluating their performance under complex real-world conditions. This paper introduces the Real-World Robustness Dataset (RRDataset) for comprehensive evaluation of detection models across three dimensions: 1) Scenario Generalization: RRDataset encompasses high-quality images from seven major scenarios (War and Conflict, Disasters and Accidents, Political and Social Events, Medical and Public Health, Culture and Religion, Labor and Production, and everyday life), addressing existing dataset gaps from a content perspective. 2) Internet Transmission Robustness: examining detector performance on images that have undergone multiple rounds of sharing across various social media platforms. 3) Re-digitization Robustness: assessing model effectiveness on images altered through four distinct re-digitization methods. We benchmarked 17 detectors and 10 vision-language models (VLMs) on RRDataset and conducted a large-scale human study involving 192 participants to investigate human few-shot learning capabilities in detecting AI-generated images. The benchmarking results reveal the limitations of current AI detection methods under real-world conditions and underscore the importance of drawing on human adaptability to develop more robust detection algorithms.
Authors:Will Hawkins, Chris Russell, Brent Mittelstadt
Title: Deepfakes on Demand: the rise of accessible non-consensual deepfake image generators
Abstract:
Advances in multimodal machine learning have made text-to-image (T2I) models increasingly accessible and popular. However, T2I models introduce risks such as the generation of non-consensual depictions of identifiable individuals, otherwise known as deepfakes. This paper presents an empirical study exploring the accessibility of deepfake model variants online. Through a metadata analysis of thousands of publicly downloadable model variants on two popular repositories, Hugging Face and Civitai, we demonstrate a huge rise in easily accessible deepfake models. Almost 35,000 examples of publicly downloadable deepfake model variants are identified, primarily hosted on Civitai. These deepfake models have been downloaded almost 15 million times since November 2022, with the models targeting a range of individuals from global celebrities to Instagram users with under 10,000 followers. Both Stable Diffusion and Flux models are used for the creation of deepfake models, with 96% of these targeting women and many signalling intent to generate non-consensual intimate imagery (NCII). Deepfake model variants are often created via the parameter-efficient fine-tuning technique known as low rank adaptation (LoRA), requiring as few as 20 images, 24GB VRAM, and 15 minutes of time, making this process widely accessible via consumer-grade computers. Despite these models violating the Terms of Service of hosting platforms, and regulation seeking to prevent dissemination, these results emphasise the pressing need for greater action to be taken against the creation of deepfakes and NCII.
Authors:Seoyeon Gye, Junwon Ko, Hyounguk Shon, Minchan Kwon, Junmo Kim
Title: SFLD: Reducing the content bias for AI-generated Image Detection
Abstract:
Identifying AI-generated content is critical for the safe and ethical use of generative AI. Recent research has focused on developing detectors that generalize to unknown generators, with popular methods relying either on high-level features or low-level fingerprints. However, these methods have clear limitations: biased towards unseen content, or vulnerable to common image degradations, such as JPEG compression. To address these issues, we propose a novel approach, SFLD, which incorporates PatchShuffle to integrate high-level semantic and low-level textural information. SFLD applies PatchShuffle at multiple levels, improving robustness and generalization across various generative models. Additionally, current benchmarks face challenges such as low image quality, insufficient content preservation, and limited class diversity. In response, we introduce TwinSynths, a new benchmark generation methodology that constructs visually near-identical pairs of real and synthetic images to ensure high quality and content preservation. Our extensive experiments and analysis show that SFLD outperforms existing methods on detecting a wide variety of fake images sourced from GANs, diffusion models, and TwinSynths, demonstrating the state-of-the-art performance and generalization capabilities to novel generative models.
Authors:Zongmei Chen, Xin Liao, Xiaoshuai Wu, Yanxiang Chen
Title: Compressed Deepfake Video Detection Based on 3D Spatiotemporal Trajectories
Abstract:
The misuse of deepfake technology by malicious actors poses a potential threat to nations, societies, and individuals. However, existing methods for detecting deepfakes primarily focus on uncompressed videos, such as noise characteristics, local textures, or frequency statistics. When applied to compressed videos, these methods experience a decrease in detection performance and are less suitable for real-world scenarios. In this paper, we propose a deepfake video detection method based on 3D spatiotemporal trajectories. Specifically, we utilize a robust 3D model to construct spatiotemporal motion features, integrating feature details from both 2D and 3D frames to mitigate the influence of large head rotation angles or insufficient lighting within frames. Furthermore, we separate facial expressions from head movements and design a sequential analysis method based on phase space motion trajectories to explore the feature differences between genuine and fake faces in deepfake videos. We conduct extensive experiments to validate the performance of our proposed method on several compressed deepfake benchmarks. The robustness of the well-designed features is verified by calculating the consistent distribution of facial landmarks before and after video compression.Our method yields satisfactory results and showcases its potential for practical applications.
Authors:Binh M. Le, Simon S. Woo
Title: Quality-Agnostic Deepfake Detection with Intra-model Collaborative Learning
Abstract:
Deepfake has recently raised a plethora of societal concerns over its possible security threats and dissemination of fake information. Much research on deepfake detection has been undertaken. However, detecting low quality as well as simultaneously detecting different qualities of deepfakes still remains a grave challenge. Most SOTA approaches are limited by using a single specific model for detecting certain deepfake video quality type. When constructing multiple models with prior information about video quality, this kind of strategy incurs significant computational cost, as well as model and training data overhead. Further, it cannot be scalable and practical to deploy in real-world settings. In this work, we propose a universal intra-model collaborative learning framework to enable the effective and simultaneous detection of different quality of deepfakes. That is, our approach is the quality-agnostic deepfake detection method, dubbed QAD . In particular, by observing the upper bound of general error expectation, we maximize the dependency between intermediate representations of images from different quality levels via Hilbert-Schmidt Independence Criterion. In addition, an Adversarial Weight Perturbation module is carefully devised to enable the model to be more robust against image corruption while boosting the overall model's performance. Extensive experiments over seven popular deepfake datasets demonstrate the superiority of our QAD model over prior SOTA benchmarks.
Authors:Ganglai Wang, Peng Zhang, Junwen Xiong, Feihan Yang, Wei Huang, Yufei Zha
Title: FTFDNet: Learning to Detect Talking Face Video Manipulation with Tri-Modality Interaction
Abstract:
DeepFake based digital facial forgery is threatening public media security, especially when lip manipulation has been used in talking face generation, and the difficulty of fake video detection is further improved. By only changing lip shape to match the given speech, the facial features of identity are hard to be discriminated in such fake talking face videos. Together with the lack of attention on audio stream as the prior knowledge, the detection failure of fake talking face videos also becomes inevitable. It's found that the optical flow of the fake talking face video is disordered especially in the lip region while the optical flow of the real video changes regularly, which means the motion feature from optical flow is useful to capture manipulation cues. In this study, a fake talking face detection network (FTFDNet) is proposed by incorporating visual, audio and motion features using an efficient cross-modal fusion (CMF) module. Furthermore, a novel audio-visual attention mechanism (AVAM) is proposed to discover more informative features, which can be seamlessly integrated into any audio-visual CNN architecture by modularization. With the additional AVAM, the proposed FTFDNet is able to achieve a better detection performance than other state-of-the-art DeepFake video detection methods not only on the established fake talking face detection dataset (FTFDD) but also on the DeepFake video detection datasets (DFDC and DF-TIMIT).
Authors:Nicholas Klein, Hemlata Tak, James Fullwood, Krishna Regmi, Leonidas Spinoulas, Ganesh Sivaraman, Tianxiang Chen, Elie Khoury
Title: Pindrop it! Audio and Visual Deepfake Countermeasures for Robust Detection and Fine Grained-Localization
Abstract:
The field of visual and audio generation is burgeoning with new state-of-the-art methods. This rapid proliferation of new techniques underscores the need for robust solutions for detecting synthetic content in videos. In particular, when fine-grained alterations via localized manipulations are performed in visual, audio, or both domains, these subtle modifications add challenges to the detection algorithms. This paper presents solutions for the problems of deepfake video classification and localization. The methods were submitted to the ACM 1M Deepfakes Detection Challenge, achieving the best performance in the temporal localization task and a top four ranking in the classification task for the TestA split of the evaluation dataset.
Authors:Naseem Khan, Tuan Nguyen, Amine Bermak, Issa Khalil
Title: CAMME: Adaptive Deepfake Image Detection with Multi-Modal Cross-Attention
Abstract:
The proliferation of sophisticated AI-generated deepfakes poses critical challenges for digital media authentication and societal security. While existing detection methods perform well within specific generative domains, they exhibit significant performance degradation when applied to manipulations produced by unseen architectures--a fundamental limitation as generative technologies rapidly evolve. We propose CAMME (Cross-Attention Multi-Modal Embeddings), a framework that dynamically integrates visual, textual, and frequency-domain features through a multi-head cross-attention mechanism to establish robust cross-domain generalization. Extensive experiments demonstrate CAMME's superiority over state-of-the-art methods, yielding improvements of 12.56% on natural scenes and 13.25% on facial deepfakes. The framework demonstrates exceptional resilience, maintaining (over 91%) accuracy under natural image perturbations and achieving 89.01% and 96.14% accuracy against PGD and FGSM adversarial attacks, respectively. Our findings validate that integrating complementary modalities through cross-attention enables more effective decision boundary realignment for reliable deepfake detection across heterogeneous generative architectures.
Authors:Tuan Nguyen, Naseem Khan, Issa Khalil
Title: CapsFake: A Multimodal Capsule Network for Detecting Instruction-Guided Deepfakes
Abstract:
The rapid evolution of deepfake technology, particularly in instruction-guided image editing, threatens the integrity of digital images by enabling subtle, context-aware manipulations. Generated conditionally from real images and textual prompts, these edits are often imperceptible to both humans and existing detection systems, revealing significant limitations in current defenses. We propose a novel multimodal capsule network, CapsFake, designed to detect such deepfake image edits by integrating low-level capsules from visual, textual, and frequency-domain modalities. High-level capsules, predicted through a competitive routing mechanism, dynamically aggregate local features to identify manipulated regions with precision. Evaluated on diverse datasets, including MagicBrush, Unsplash Edits, Open Images Edits, and Multi-turn Edits, CapsFake outperforms state-of-the-art methods by up to 20% in detection accuracy. Ablation studies validate its robustness, achieving detection rates above 94% under natural perturbations and 96% against adversarial attacks, with excellent generalization to unseen editing scenarios. This approach establishes a powerful framework for countering sophisticated image manipulations.
Authors:Sungik Choi, Sungwoo Park, Jaehoon Lee, Seunghyun Kim, Stanley Jungkyu Choi, Moontae Lee
Title: HFI: A unified framework for training-free detection and implicit watermarking of latent diffusion model generated images
Abstract:
Dramatic advances in the quality of the latent diffusion models (LDMs) also led to the malicious use of AI-generated images. While current AI-generated image detection methods assume the availability of real/AI-generated images for training, this is practically limited given the vast expressibility of LDMs. This motivates the training-free detection setup where no related data are available in advance. The existing LDM-generated image detection method assumes that images generated by LDM are easier to reconstruct using an autoencoder than real images. However, we observe that this reconstruction distance is overfitted to background information, leading the current method to underperform in detecting images with simple backgrounds. To address this, we propose a novel method called HFI. Specifically, by viewing the autoencoder of LDM as a downsampling-upsampling kernel, HFI measures the extent of aliasing, a distortion of high-frequency information that appears in the reconstructed image. HFI is training-free, efficient, and consistently outperforms other training-free methods in detecting challenging images generated by various generative models. We also show that HFI can successfully detect the images generated from the specified LDM as a means of implicit watermarking. HFI outperforms the best baseline method while achieving magnitudes of
Authors:Ziyue Zeng, Haoyuan Liu, Dingjie Peng, Luoxu Jing, Hiroshi Watanabe
Title: Time Step Generating: A Universal Synthesized Deepfake Image Detector
Abstract:
Currently, high-fidelity text-to-image models are developed in an accelerating pace. Among them, Diffusion Models have led to a remarkable improvement in the quality of image generation, making it vary challenging to distinguish between real and synthesized images. It simultaneously raises serious concerns regarding privacy and security. Some methods are proposed to distinguish the diffusion model generated images through reconstructing. However, the inversion and denoising processes are time-consuming and heavily reliant on the pre-trained generative model. Consequently, if the pre-trained generative model meet the problem of out-of-domain, the detection performance declines. To address this issue, we propose a universal synthetic image detector Time Step Generating (TSG), which does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms. Our method utilizes a pre-trained diffusion model's network as a feature extractor to capture fine-grained details, focusing on the subtle differences between real and synthetic images. By controlling the time step t of the network input, we can effectively extract these distinguishing detail features. Then, those features can be passed through a classifier (i.e. Resnet), which efficiently detects whether an image is synthetic or real. We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.
Authors:Sifat Muhammad Abdullah, Aravind Cheruvu, Shravya Kanchi, Taejoong Chung, Peng Gao, Murtuza Jadliwala, Bimal Viswanath
Title: An Analysis of Recent Advances in Deepfake Image Detection in an Evolving Threat Landscape
Abstract:
Deepfake or synthetic images produced using deep generative models pose serious risks to online platforms. This has triggered several research efforts to accurately detect deepfake images, achieving excellent performance on publicly available deepfake datasets. In this work, we study 8 state-of-the-art detectors and argue that they are far from being ready for deployment due to two recent developments. First, the emergence of lightweight methods to customize large generative models, can enable an attacker to create many customized generators (to create deepfakes), thereby substantially increasing the threat surface. We show that existing defenses fail to generalize well to such \emph{user-customized generative models} that are publicly available today. We discuss new machine learning approaches based on content-agnostic features, and ensemble modeling to improve generalization performance against user-customized models. Second, the emergence of \textit{vision foundation models} -- machine learning models trained on broad data that can be easily adapted to several downstream tasks -- can be misused by attackers to craft adversarial deepfakes that can evade existing defenses. We propose a simple adversarial attack that leverages existing foundation models to craft adversarial samples \textit{without adding any adversarial noise}, through careful semantic manipulation of the image content. We highlight the vulnerabilities of several defenses against our attack, and explore directions leveraging advanced foundation models and adversarial training to defend against this new threat.
Authors:Jongwook Choi, Taehoon Kim, Yonghyun Jeong, Seungryul Baek, Jongwon Choi
Title: Exploiting Style Latent Flows for Generalizing Deepfake Video Detection
Abstract:
This paper presents a new approach for the detection of fake videos, based on the analysis of style latent vectors and their abnormal behavior in temporal changes in the generated videos. We discovered that the generated facial videos suffer from the temporal distinctiveness in the temporal changes of style latent vectors, which are inevitable during the generation of temporally stable videos with various facial expressions and geometric transformations. Our framework utilizes the StyleGRU module, trained by contrastive learning, to represent the dynamic properties of style latent vectors. Additionally, we introduce a style attention module that integrates StyleGRU-generated features with content-based features, enabling the detection of visual and temporal artifacts. We demonstrate our approach across various benchmark scenarios in deepfake detection, showing its superiority in cross-dataset and cross-manipulation scenarios. Through further analysis, we also validate the importance of using temporal changes of style latent vectors to improve the generality of deepfake video detection.
Authors:Xiaoya Zhu, Yibing Nan, Shiguo Lian
Title: Data-Driven Deepfake Image Detection Method -- The 2024 Global Deepfake Image Detection Challenge
Abstract:
With the rapid development of technology in the field of AI, deepfake technology has emerged as a double-edged sword. It has not only created a large amount of AI-generated content but also posed unprecedented challenges to digital security. The task of the competition is to determine whether a face image is a Deepfake image and output its probability score of being a Deepfake image. In the image track competition, our approach is based on the Swin Transformer V2-B classification network. And online data augmentation and offline sample generation methods are employed to enrich the diversity of training samples and increase the generalization ability of the model. Finally, we got the award of excellence in Deepfake image detection.
Authors:Keerthi Veeramachaneni, Praveen Tirupattur, Amrit Singh Bedi, Mubarak Shah
Title: Leveraging Pre-Trained Visual Models for AI-Generated Video Detection
Abstract:
Recent advances in Generative AI (GenAI) have led to significant improvements in the quality of generated visual content. As AI-generated visual content becomes increasingly indistinguishable from real content, the challenge of detecting the generated content becomes critical in combating misinformation, ensuring privacy, and preventing security threats. Although there has been substantial progress in detecting AI-generated images, current methods for video detection are largely focused on deepfakes, which primarily involve human faces. However, the field of video generation has advanced beyond DeepFakes, creating an urgent need for methods capable of detecting AI-generated videos with generic content. To address this gap, we propose a novel approach that leverages pre-trained visual models to distinguish between real and generated videos. The features extracted from these pre-trained models, which have been trained on extensive real visual content, contain inherent signals that can help distinguish real from generated videos. Using these extracted features, we achieve high detection performance without requiring additional model training, and we further improve performance by training a simple linear classification layer on top of the extracted features. We validated our method on a dataset we compiled (VID-AID), which includes around 10,000 AI-generated videos produced by 9 different text-to-video models, along with 4,000 real videos, totaling over 7 hours of video content. Our evaluation shows that our approach achieves high detection accuracy, above 90% on average, underscoring its effectiveness. Upon acceptance, we plan to publicly release the code, the pre-trained models, and our dataset to support ongoing research in this critical area.
Authors:Christian Internò, Robert Geirhos, Markus Olhofer, Sunny Liu, Barbara Hammer, David Klindt
Title: AI-Generated Video Detection via Perceptual Straightening
Abstract:
The rapid advancement of generative AI enables highly realistic synthetic videos, posing significant challenges for content authentication and raising urgent concerns about misuse. Existing detection methods often struggle with generalization and capturing subtle temporal inconsistencies. We propose ReStraV(Representation Straightening Video), a novel approach to distinguish natural from AI-generated videos. Inspired by the "perceptual straightening" hypothesis -- which suggests real-world video trajectories become more straight in neural representation domain -- we analyze deviations from this expected geometric property. Using a pre-trained self-supervised vision transformer (DINOv2), we quantify the temporal curvature and stepwise distance in the model's representation domain. We aggregate statistics of these measures for each video and train a classifier. Our analysis shows that AI-generated videos exhibit significantly different curvature and distance patterns compared to real videos. A lightweight classifier achieves state-of-the-art detection performance (e.g., 97.17% accuracy and 98.63% AUROC on the VidProM benchmark), substantially outperforming existing image- and video-based methods. ReStraV is computationally efficient, it is offering a low-cost and effective detection solution. This work provides new insights into using neural representation geometry for AI-generated video detection.
Authors:Simiao Ren, Yao Yao, Kidus Zewde, Zisheng Liang, Tsang, Ng, Ning-Yau Cheng, Xiaoou Zhan, Qinzhe Liu, Yifei Chen, Hengwei Xu
Title: Can Multi-modal (reasoning) LLMs work as deepfake detectors?
Abstract:
Deepfake detection remains a critical challenge in the era of advanced generative models, particularly as synthetic media becomes more sophisticated. In this study, we explore the potential of state of the art multi-modal (reasoning) large language models (LLMs) for deepfake image detection such as (OpenAI O1/4o, Gemini thinking Flash 2, Deepseek Janus, Grok 3, llama 3.2, Qwen 2/2.5 VL, Mistral Pixtral, Claude 3.5/3.7 sonnet) . We benchmark 12 latest multi-modal LLMs against traditional deepfake detection methods across multiple datasets, including recently published real-world deepfake imagery. To enhance performance, we employ prompt tuning and conduct an in-depth analysis of the models' reasoning pathways to identify key contributing factors in their decision-making process. Our findings indicate that best multi-modal LLMs achieve competitive performance with promising generalization ability with zero shot, even surpass traditional deepfake detection pipelines in out-of-distribution datasets while the rest of the LLM families performs extremely disappointing with some worse than random guess. Furthermore, we found newer model version and reasoning capabilities does not contribute to performance in such niche tasks of deepfake detection while model size do help in some cases. This study highlights the potential of integrating multi-modal reasoning in future deepfake detection frameworks and provides insights into model interpretability for robustness in real-world scenarios.
Authors:Kafi Anan, Anindya Bhattacharjee, Ashir Intesher, Kaidul Islam, Abrar Assaeem Fuad, Utsab Saha, Hafiz Imtiaz
Title: CAE-Net: Generalized Deepfake Image Detection using Convolution and Attention Mechanisms with Spatial and Frequency Domain Features
Abstract:
Effective deepfake detection tools are becoming increasingly essential to the growing usage of deepfakes in unethical practices. There exists a wide range of deepfake generation techniques, which makes it challenging to develop an accurate universal detection mechanism. The 2025 IEEE Signal Processing Cup (\textit{DFWild-Cup} competition) provided a diverse dataset of deepfake images containing significant class imbalance. The images in the dataset are generated from multiple deepfake image generators, for training machine learning model(s) to emphasize the generalization of deepfake detection. To this end, we proposed a disjoint set-based multistage training method to address the class imbalance and devised an ensemble-based architecture \emph{CAE-Net}. Our architecture consists of a convolution- and attention-based ensemble network, and employs three different neural network architectures: EfficientNet, Data-Efficient Image Transformer (DeiT), and ConvNeXt with wavelet transform to capture both local and global features of deepfakes. We visualize the specific regions that these models focus on for classification using Grad-CAM, and empirically demonstrate the effectiveness of these models in grouping real and fake images into cohesive clusters using t-SNE plots. Individually, the EfficientNet B0 architecture has achieved 90.79\% accuracy, whereas the ConvNeXt and the DeiT architecture have achieved 89.49\% and 89.32\% accuracy, respectively. With these networks, our weighted ensemble model achieves an excellent accuracy of 94.63\% on the validation dataset of the SP Cup 2025 competition. The equal error rate of 4.72\% and the Area Under the ROC curve of 97.37\% further confirm the stability of our proposed method. Finally, the robustness of our proposed model against adversarial perturbation attacks is tested as well, showing the inherent defensive properties of the ensemble approach.
Authors:Hannah Lee, Changyeon Lee, Kevin Farhat, Lin Qiu, Steve Geluso, Aerin Kim, Oren Etzioni
Title: The Tug-of-War Between Deepfake Generation and Detection
Abstract:
Multimodal generative models are rapidly evolving, leading to a surge in the generation of realistic video and audio that offers exciting possibilities but also serious risks. Deepfake videos, which can convincingly impersonate individuals, have particularly garnered attention due to their potential misuse in spreading misinformation and creating fraudulent content. This survey paper examines the dual landscape of deepfake video generation and detection, emphasizing the need for effective countermeasures against potential abuses. We provide a comprehensive overview of current deepfake generation techniques, including face swapping, reenactment, and audio-driven animation, which leverage cutting-edge technologies like GANs and diffusion models to produce highly realistic fake videos. Additionally, we analyze various detection approaches designed to differentiate authentic from altered videos, from detecting visual artifacts to deploying advanced algorithms that pinpoint inconsistencies across video and audio signals. The effectiveness of these detection methods heavily relies on the diversity and quality of datasets used for training and evaluation. We discuss the evolution of deepfake datasets, highlighting the importance of robust, diverse, and frequently updated collections to enhance the detection accuracy and generalizability. As deepfakes become increasingly indistinguishable from authentic content, developing advanced detection techniques that can keep pace with generation technologies is crucial. We advocate for a proactive approach in the "tug-of-war" between deepfake creators and detectors, emphasizing the need for continuous research collaboration, standardization of evaluation metrics, and the creation of comprehensive benchmarks.
Authors:Tai-Ming Huang, Wei-Tung Lin, Kai-Lung Hua, Wen-Huang Cheng, Junichi Yamagishi, Jun-Cheng Chen
Title: ThinkFake: Reasoning in Multimodal Large Language Models for AI-Generated Image Detection
Abstract:
The increasing realism of AI-generated images has raised serious concerns about misinformation and privacy violations, highlighting the urgent need for accurate and interpretable detection methods. While existing approaches have made progress, most rely on binary classification without explanations or depend heavily on supervised fine-tuning, resulting in limited generalization. In this paper, we propose ThinkFake, a novel reasoning-based and generalizable framework for AI-generated image detection. Our method leverages a Multimodal Large Language Model (MLLM) equipped with a forgery reasoning prompt and is trained using Group Relative Policy Optimization (GRPO) reinforcement learning with carefully designed reward functions. This design enables the model to perform step-by-step reasoning and produce interpretable, structured outputs. We further introduce a structured detection pipeline to enhance reasoning quality and adaptability. Extensive experiments show that ThinkFake outperforms state-of-the-art methods on the GenImage benchmark and demonstrates strong zero-shot generalization on the challenging LOKI benchmark. These results validate our framework's effectiveness and robustness. Code will be released upon acceptance.
Authors:Dabbrata Das, Mahshar Yahan, Md Tareq Zaman, Md Rishadul Bayesh
Title: Edge-Enhanced Vision Transformer Framework for Accurate AI-Generated Image Detection
Abstract:
The rapid advancement of generative models has led to a growing prevalence of highly realistic AI-generated images, posing significant challenges for digital forensics and content authentication. Conventional detection methods mainly rely on deep learning models that extract global features, which often overlook subtle structural inconsistencies and demand substantial computational resources. To address these limitations, we propose a hybrid detection framework that combines a fine-tuned Vision Transformer (ViT) with a novel edge-based image processing module. The edge-based module computes variance from edge-difference maps generated before and after smoothing, exploiting the observation that AI-generated images typically exhibit smoother textures, weaker edges, and reduced noise compared to real images. When applied as a post-processing step on ViT predictions, this module enhances sensitivity to fine-grained structural cues while maintaining computational efficiency. Extensive experiments on the CIFAKE, Artistic, and Custom Curated datasets demonstrate that the proposed framework achieves superior detection performance across all benchmarks, attaining 97.75% accuracy and a 97.77% F1-score on CIFAKE, surpassing widely adopted state-of-the-art models. These results establish the proposed method as a lightweight, interpretable, and effective solution for both still images and video frames, making it highly suitable for real-world applications in automated content verification and digital forensics.
Authors:Shrikant Malviya, Neelanjan Bhowmik, Stamos Katsigiannis
Title: SKDU at De-Factify 4.0: Vision Transformer with Data Augmentation for AI-Generated Image Detection
Abstract:
The aim of this work is to explore the potential of pre-trained vision-language models, e.g. Vision Transformers (ViT), enhanced with advanced data augmentation strategies for the detection of AI-generated images. Our approach leverages a fine-tuned ViT model trained on the Defactify-4.0 dataset, which includes images generated by state-of-the-art models such as Stable Diffusion 2.1, Stable Diffusion XL, Stable Diffusion 3, DALL-E 3, and MidJourney. We employ perturbation techniques like flipping, rotation, Gaussian noise injection, and JPEG compression during training to improve model robustness and generalisation. The experimental results demonstrate that our ViT-based pipeline achieves state-of-the-art performance, significantly outperforming competing methods on both validation and test datasets.
Authors:Fan Nie, Jiangqun Ni, Jian Zhang, Bin Zhang, Weizhe Zhang
Title: DIP: Diffusion Learning of Inconsistency Pattern for General DeepFake Detection
Abstract:
With the advancement of deepfake generation techniques, the importance of deepfake detection in protecting multimedia content integrity has become increasingly obvious. Recently, temporal inconsistency clues have been explored to improve the generalizability of deepfake video detection. According to our observation, the temporal artifacts of forged videos in terms of motion information usually exhibits quite distinct inconsistency patterns along horizontal and vertical directions, which could be leveraged to improve the generalizability of detectors. In this paper, a transformer-based framework for Diffusion Learning of Inconsistency Pattern (DIP) is proposed, which exploits directional inconsistencies for deepfake video detection. Specifically, DIP begins with a spatiotemporal encoder to represent spatiotemporal information. A directional inconsistency decoder is adopted accordingly, where direction-aware attention and inconsistency diffusion are incorporated to explore potential inconsistency patterns and jointly learn the inherent relationships. In addition, the SpatioTemporal Invariant Loss (STI Loss) is introduced to contrast spatiotemporally augmented sample pairs and prevent the model from overfitting nonessential forgery artifacts. Extensive experiments on several public datasets demonstrate that our method could effectively identify directional forgery clues and achieve state-of-the-art performance.
Authors:Jiaxuan Chen, Jieteng Yao, Li Niu
Title: A Single Simple Patch is All You Need for AI-generated Image Detection
Abstract:
The recent development of generative models unleashes the potential of generating hyper-realistic fake images. To prevent the malicious usage of fake images, AI-generated image detection aims to distinguish fake images from real images. However, existing method suffer from severe performance drop when detecting images generated by unseen generators. We find that generative models tend to focus on generating the patches with rich textures to make the images more realistic while neglecting the hidden noise caused by camera capture present in simple patches. In this paper, we propose to exploit the noise pattern of a single simple patch to identify fake images. Furthermore, due to the performance decline when handling low-quality generated images, we introduce an enhancement module and a perception module to remove the interfering information. Extensive experiments demonstrate that our method can achieve state-of-the-art performance on public benchmarks.
Authors:Ziyi Xi, Wenmin Huang, Kangkang Wei, Weiqi Luo, Peijia Zheng
Title: AI-Generated Image Detection using a Cross-Attention Enhanced Dual-Stream Network
Abstract:
With the rapid evolution of AI Generated Content (AIGC), forged images produced through this technology are inherently more deceptive and require less human intervention compared to traditional Computer-generated Graphics (CG). However, owing to the disparities between CG and AIGC, conventional CG detection methods tend to be inadequate in identifying AIGC-produced images. To address this issue, our research concentrates on the text-to-image generation process in AIGC. Initially, we first assemble two text-to-image databases utilizing two distinct AI systems, DALLE2 and DreamStudio. Aiming to holistically capture the inherent anomalies produced by AIGC, we develope a robust dual-stream network comprised of a residual stream and a content stream. The former employs the Spatial Rich Model (SRM) to meticulously extract various texture information from images, while the latter seeks to capture additional forged traces in low frequency, thereby extracting complementary information that the residual stream may overlook. To enhance the information exchange between these two streams, we incorporate a cross multi-head attention mechanism. Numerous comparative experiments are performed on both databases, and the results show that our detection method consistently outperforms traditional CG detection techniques across a range of image resolutions. Moreover, our method exhibits superior performance through a series of robustness tests and cross-database experiments. When applied to widely recognized traditional CG benchmarks such as SPL2018 and DsTok, our approach significantly exceeds the capabilities of other existing methods in the field of CG detection.
Authors:Justin D. Norman, Hany Farid
Title: Detecting Deepfake Talking Heads from Facial Biometric Anomalies
Abstract:
The combination of highly realistic voice cloning, along with visually compelling avatar, face-swap, or lip-sync deepfake video generation, makes it relatively easy to create a video of anyone saying anything. Today, such deepfake impersonations are often used to power frauds, scams, and political disinformation. We propose a novel forensic machine learning technique for the detection of deepfake video impersonations that leverages unnatural patterns in facial biometrics. We evaluate this technique across a large dataset of deepfake techniques and impersonations, as well as assess its reliability to video laundering and its generalization to previously unseen video deepfake generators.
Authors:Aryan Thakre, Omkar Nagwekar, Vedang Talekar, Aparna Santra Biswas
Title: CAST: Cross-Attentive Spatio-Temporal feature fusion for Deepfake detection
Abstract:
Deepfakes have emerged as a significant threat to digital media authenticity, increasing the need for advanced detection techniques that can identify subtle and time-dependent manipulations. CNNs are effective at capturing spatial artifacts, and Transformers excel at modeling temporal inconsistencies. However, many existing CNN-Transformer models process spatial and temporal features independently. In particular, attention-based methods often use separate attention mechanisms for spatial and temporal features and combine them using naive approaches like averaging, addition, or concatenation, which limits the depth of spatio-temporal interaction. To address this challenge, we propose a unified CAST model that leverages cross-attention to effectively fuse spatial and temporal features in a more integrated manner. Our approach allows temporal features to dynamically attend to relevant spatial regions, enhancing the model's ability to detect fine-grained, time-evolving artifacts such as flickering eyes or warped lips. This design enables more precise localization and deeper contextual understanding, leading to improved performance across diverse and challenging scenarios. We evaluate the performance of our model using the FaceForensics++, Celeb-DF, and DeepfakeDetection datasets in both intra- and cross-dataset settings to affirm the superiority of our approach. Our model achieves strong performance with an AUC of 99.49 percent and an accuracy of 97.57 percent in intra-dataset evaluations. In cross-dataset testing, it demonstrates impressive generalization by achieving a 93.31 percent AUC on the unseen DeepfakeDetection dataset. These results highlight the effectiveness of cross-attention-based feature fusion in enhancing the robustness of deepfake video detection.
Authors:JiaXin Chen, Miao Hu, DengYong Zhang, Yun Song, Xin Liao
Title: LDR-Net: A Novel Framework for AI-generated Image Detection via Localized Discrepancy Representation
Abstract:
With the rapid advancement of generative models, the visual quality of generated images has become nearly indistinguishable from the real ones, posing challenges to content authenticity verification. Existing methods for detecting AI-generated images primarily focus on specific forgery clues, which are often tailored to particular generative models like GANs or diffusion models. These approaches struggle to generalize across architectures. Building on the observation that generative images often exhibit local anomalies, such as excessive smoothness, blurred textures, and unnatural pixel variations in small regions, we propose the localized discrepancy representation network (LDR-Net), a novel approach for detecting AI-generated images. LDR-Net captures smoothing artifacts and texture irregularities, which are common but often overlooked. It integrates two complementary modules: local gradient autocorrelation (LGA) which models local smoothing anomalies to detect smoothing anomalies, and local variation pattern (LVP) which captures unnatural regularities by modeling the complexity of image patterns. By merging LGA and LVP features, a comprehensive representation of localized discrepancies can be provided. Extensive experiments demonstrate that our LDR-Net achieves state-of-the-art performance in detecting generated images and exhibits satisfactory generalization across unseen generative models. The code will be released upon acceptance of this paper.
Authors:Sukhandeep Kaur, Mubashir Buhari, Naman Khandelwal, Priyansh Tyagi, Kiran Sharma
Title: Hindi audio-video-Deepfake (HAV-DF): A Hindi language-based Audio-video Deepfake Dataset
Abstract:
Deepfakes offer great potential for innovation and creativity, but they also pose significant risks to privacy, trust, and security. With a vast Hindi-speaking population, India is particularly vulnerable to deepfake-driven misinformation campaigns. Fake videos or speeches in Hindi can have an enormous impact on rural and semi-urban communities, where digital literacy tends to be lower and people are more inclined to trust video content. The development of effective frameworks and detection tools to combat deepfake misuse requires high-quality, diverse, and extensive datasets. The existing popular datasets like FF-DF (FaceForensics++), and DFDC (DeepFake Detection Challenge) are based on English language.. Hence, this paper aims to create a first novel Hindi deep fake dataset, named ``Hindi audio-video-Deepfake'' (HAV-DF). The dataset has been generated using the faceswap, lipsyn and voice cloning methods. This multi-step process allows us to create a rich, varied dataset that captures the nuances of Hindi speech and facial expressions, providing a robust foundation for training and evaluating deepfake detection models in a Hindi language context. It is unique of its kind as all of the previous datasets contain either deepfake videos or synthesized audio. This type of deepfake dataset can be used for training a detector for both deepfake video and audio datasets. Notably, the newly introduced HAV-DF dataset demonstrates lower detection accuracy's across existing detection methods like Headpose, Xception-c40, etc. Compared to other well-known datasets FF-DF, and DFDC. This trend suggests that the HAV-DF dataset presents deeper challenges to detect, possibly due to its focus on Hindi language content and diverse manipulation techniques. The HAV-DF dataset fills the gap in Hindi-specific deepfake datasets, aiding multilingual deepfake detection development.
Authors:Taharim Rahman Anon, Jakaria Islam Emon
Title: Detecting the Undetectable: Combining Kolmogorov-Arnold Networks and MLP for AI-Generated Image Detection
Abstract:
As artificial intelligence progresses, the task of distinguishing between real and AI-generated images is increasingly complicated by sophisticated generative models. This paper presents a novel detection framework adept at robustly identifying images produced by cutting-edge generative AI models, such as DALL-E 3, MidJourney, and Stable Diffusion 3. We introduce a comprehensive dataset, tailored to include images from these advanced generators, which serves as the foundation for extensive evaluation. we propose a classification system that integrates semantic image embeddings with a traditional Multilayer Perceptron (MLP). This baseline system is designed to effectively differentiate between real and AI-generated images under various challenging conditions. Enhancing this approach, we introduce a hybrid architecture that combines Kolmogorov-Arnold Networks (KAN) with the MLP. This hybrid model leverages the adaptive, high-resolution feature transformation capabilities of KAN, enabling our system to capture and analyze complex patterns in AI-generated images that are typically overlooked by conventional models. In out-of-distribution testing, our proposed model consistently outperformed the standard MLP across three out of distribution test datasets, demonstrating superior performance and robustness in classifying real images from AI-generated images with impressive F1 scores.
Authors:Abdel Rahman Alsabbagh, Omar Al-Kadi
Title: Comparative Analysis of Deep Convolutional Neural Networks for Detecting Medical Image Deepfakes
Abstract:
Generative Adversarial Networks (GANs) have exhibited noteworthy advancements across various applications, including medical imaging. While numerous state-of-the-art Deep Convolutional Neural Network (DCNN) architectures are renowned for their proficient feature extraction, this paper investigates their efficacy in the context of medical image deepfake detection. The primary objective is to effectively distinguish real from tampered or manipulated medical images by employing a comprehensive evaluation of 13 state-of-the-art DCNNs. Performance is assessed across diverse evaluation metrics, encompassing considerations of time efficiency and computational resource requirements. Our findings reveal that ResNet50V2 excels in precision and specificity, whereas DenseNet169 is distinguished by its accuracy, recall, and F1-score. We investigate the specific scenarios in which one model would be more favorable than another. Additionally, MobileNetV3Large offers competitive performance, emerging as the swiftest among the considered DCNN models while maintaining a relatively small parameter count. We also assess the latent space separability quality across the examined DCNNs, showing superiority in both the DenseNet and EfficientNet model families and entailing a higher understanding of medical image deepfakes. The experimental analysis in this research contributes valuable insights to the field of deepfake image detection in the medical imaging domain.
Authors:Gazi Hasin Ishrak, Zalish Mahmud, MD. Zami Al Zunaed Farabe, Tahera Khanom Tinni, Tanzim Reza, Mohammad Zavid Parvez
Title: Explainable Deepfake Video Detection using Convolutional Neural Network and CapsuleNet
Abstract:
Deepfake technology, derived from deep learning, seamlessly inserts individuals into digital media, irrespective of their actual participation. Its foundation lies in machine learning and Artificial Intelligence (AI). Initially, deepfakes served research, industry, and entertainment. While the concept has existed for decades, recent advancements render deepfakes nearly indistinguishable from reality. Accessibility has soared, empowering even novices to create convincing deepfakes. However, this accessibility raises security concerns.The primary deepfake creation algorithm, GAN (Generative Adversarial Network), employs machine learning to craft realistic images or videos. Our objective is to utilize CNN (Convolutional Neural Network) and CapsuleNet with LSTM to differentiate between deepfake-generated frames and originals. Furthermore, we aim to elucidate our model's decision-making process through Explainable AI, fostering transparent human-AI relationships and offering practical examples for real-life scenarios.
Authors:Patrick Grommelt, Louis Weiss, Franz-Josef Pfreundt, Janis Keuper
Title: Fake or JPEG? Revealing Common Biases in Generated Image Detection Datasets
Abstract:
The widespread adoption of generative image models has highlighted the urgent need to detect artificial content, which is a crucial step in combating widespread manipulation and misinformation. Consequently, numerous detectors and associated datasets have emerged. However, many of these datasets inadvertently introduce undesirable biases, thereby impacting the effectiveness and evaluation of detectors. In this paper, we emphasize that many datasets for AI-generated image detection contain biases related to JPEG compression and image size. Using the GenImage dataset, we demonstrate that detectors indeed learn from these undesired factors. Furthermore, we show that removing the named biases substantially increases robustness to JPEG compression and significantly alters the cross-generator performance of evaluated detectors. Specifically, it leads to more than 11 percentage points increase in cross-generator performance for ResNet50 and Swin-T detectors on the GenImage dataset, achieving state-of-the-art results. We provide the dataset and source codes of this paper on the anonymous website: https://www.unbiased-genimage.org
Authors:Roa'a Al-Emaryeen, Sara Al-Nahhas, Fatima Himour, Waleed Mahafza, Omar Al-Kadi
Title: Deepfake Image Generation for Improved Brain Tumor Segmentation
Abstract:
As the world progresses in technology and health, awareness of disease by revealing asymptomatic signs improves. It is important to detect and treat tumors in early stage as it can be life-threatening. Computer-aided technologies are used to overcome lingering limitations facing disease diagnosis, while brain tumor segmentation remains a difficult process, especially when multi-modality data is involved. This is mainly attributed to ineffective training due to lack of data and corresponding labelling. This work investigates the feasibility of employing deep-fake image generation for effective brain tumor segmentation. To this end, a Generative Adversarial Network was used for image-to-image translation for increasing dataset size, followed by image segmentation using a U-Net-based convolutional neural network trained with deepfake images. Performance of the proposed approach is compared with ground truth of four publicly available datasets. Results show improved performance in terms of image segmentation quality metrics, and could potentially assist when training with limited data.
Authors:Ziyang Ou
Title: CLIP Embeddings for AI-Generated Image Detection: A Few-Shot Study with Lightweight Classifier
Abstract:
Verifying the authenticity of AI-generated images presents a growing challenge on social media platforms these days. While vision-language models (VLMs) like CLIP outdo in multimodal representation, their capacity for AI-generated image classification is underexplored due to the absence of such labels during the pre-training process. This work investigates whether CLIP embeddings inherently contain information indicative of AI generation. A proposed pipeline extracts visual embeddings using a frozen CLIP model, feeds its embeddings to lightweight networks, and fine-tunes only the final classifier. Experiments on the public CIFAKE benchmark show the performance reaches 95% accuracy without language reasoning. Few-shot adaptation to curated custom with 20% of the data results in performance to 85%. A closed-source baseline (Gemini-2.0) has the best zero-shot accuracy yet fails on specific styles. Notably, some specific image types, such as wide-angle photographs and oil paintings, pose significant challenges to classification. These results indicate previously unexplored difficulties in classifying certain types of AI-generated images, revealing new and more specific questions in this domain that are worth further investigation.