arXiv Papers of Watermarking
Authors:Xuan Ding, Xiu Yan, Chuanlong Xie, Yao Zhu
Abstract:
Watermarking methods have always been effective means of protecting intellectual property, yet they face significant challenges. Although existing deep learning-based watermarking systems can hide watermarks in images with minimal impact on image quality, they often lack robustness when encountering image corruptions during transmission, which undermines their practical application value. To this end, we propose a high-quality and robust watermark framework based on the diffusion model. Our method first converts the clean image into inversion noise through a null-text optimization process, and after optimizing the inversion noise in the latent space, it produces a high-quality watermarked image through an iterative denoising process of the diffusion model. The iterative denoising process serves as a powerful purification mechanism, ensuring both the visual quality of the watermarked image and enhancing the robustness of the watermark against various corruptions. To prevent the optimizing of inversion noise from distorting the original semantics of the image, we specifically introduced self-attention constraints and pseudo-mask strategies. Extensive experimental results demonstrate the superior performance of our method against various image corruptions. In particular, our method outperforms the stable signature method by an average of 10\% across 12 different image transformations on COCO datasets. Our codes are available at https://github.com/920927/ONRW.
Authors:Qinkai Yu, Chong Zhang, Gaojie Jin, Tianjin Huang, Wei Zhou, Wenhui Li, Xiaobo Jin, Bo Huang, Yitian Zhao, Guang Yang, Gregory Y. H. Lip, Yalin Zheng, Aline Villavicencio, Yanda Meng
Abstract:
Annotating medical data for training AI models is often costly and limited due to the shortage of specialists with relevant clinical expertise. This challenge is further compounded by privacy and ethical concerns associated with sensitive patient information. As a result, well-trained medical segmentation models on private datasets constitute valuable intellectual property requiring robust protection mechanisms. Existing model protection techniques primarily focus on classification and generative tasks, while segmentation models-crucial to medical image analysis-remain largely underexplored. In this paper, we propose a novel, stealthy, and harmless method, StealthMark, for verifying the ownership of medical segmentation models under black-box conditions. Our approach subtly modulates model uncertainty without altering the final segmentation outputs, thereby preserving the model's performance. To enable ownership verification, we incorporate model-agnostic explanation methods, e.g. LIME, to extract feature attributions from the model outputs. Under specific triggering conditions, these explanations reveal a distinct and verifiable watermark. We further design the watermark as a QR code to facilitate robust and recognizable ownership claims. We conducted extensive experiments across four medical imaging datasets and five mainstream segmentation models. The results demonstrate the effectiveness, stealthiness, and harmlessness of our method on the original model's segmentation performance. For example, when applied to the SAM model, StealthMark consistently achieved ASR above 95% across various datasets while maintaining less than a 1% drop in Dice and AUC scores, significantly outperforming backdoor-based watermarking methods and highlighting its strong potential for practical deployment. Our implementation code is made available at: https://github.com/Qinkaiyu/StealthMark.
Authors:Sylvestre-Alvise Rebuffi, Tuan Tran, Valeriu Lacatusu, Pierre Fernandez, Tomáš Souček, Nikola Jovanović, Tom Sander, Hady Elsahar, Alexandre Mourachko
Abstract:
Existing approaches for watermarking AI-generated images often rely on post-hoc methods applied in pixel space, introducing computational overhead and potential visual artifacts. In this work, we explore latent space watermarking and introduce DistSeal, a unified approach for latent watermarking that works across both diffusion and autoregressive models. Our approach works by training post-hoc watermarking models in the latent space of generative models. We demonstrate that these latent watermarkers can be effectively distilled either into the generative model itself or into the latent decoder, enabling in-model watermarking. The resulting latent watermarks achieve competitive robustness while offering similar imperceptibility and up to 20x speedup compared to pixel-space baselines. Our experiments further reveal that distilling latent watermarkers outperforms distilling pixel-space ones, providing a solution that is both more efficient and more robust.
Authors:Qingyu Liu, Yitao Zhang, Zhongjie Ba, Chao Shuai, Peng Cheng, Tianhang Zheng, Zhibo Wang
Abstract:
Protecting the copyright of user-generated AI images is an emerging challenge as AIGC becomes pervasive in creative workflows. Existing watermarking methods (1) remain vulnerable to real-world adversarial threats, often forced to trade off between defenses against spoofing and removal attacks; and (2) cannot support semantic-level tamper localization. We introduce PAI, a training-free inherent watermarking framework for AIGC copyright protection, plug-and-play with diffusion-based AIGC services. PAI simultaneously provides three key functionalities: robust ownership verification, attack detection, and semantic-level tampering localization. Unlike existing inherent watermark methods that only embed watermarks at noise initialization of diffusion models, we design a novel key-conditioned deflection mechanism that subtly steers the denoising trajectory according to the user key. Such trajectory-level coupling further strengthens the semantic entanglement of identity and content, thereby further enhancing robustness against real-world threats. Moreover, we also provide a theoretical analysis proving that only the valid key can pass verification. Experiments across 12 attack methods show that PAI achieves 98.43\% verification accuracy, improving over SOTA methods by 37.25\% on average, and retains strong tampering localization performance even against advanced AIGC edits. Our code is available at https://github.com/QingyuLiu/PAI.
Authors:Kaibo Huang, Jin Tan, Yukun Wei, Wanling Li, Zipei Zhang, Hui Tian, Zhongliang Yang, Linna Zhou
Abstract:
LLM-based agents are increasingly deployed to autonomously solve complex tasks, raising urgent needs for IP protection and regulatory provenance. While content watermarking effectively attributes LLM-generated outputs, it fails to directly identify the high-level planning behaviors (e.g., tool and subgoal choices) that govern multi-step execution. Critically, watermarking at the planning-behavior layer faces unique challenges: minor distributional deviations in decision-making can compound during long-term agent operation, degrading utility, and many agents operate as black boxes that are difficult to intervene in directly. To bridge this gap, we propose AgentMark, a behavioral watermarking framework that embeds multi-bit identifiers into planning decisions while preserving utility. It operates by eliciting an explicit behavior distribution from the agent and applying distribution-preserving conditional sampling, enabling deployment under black-box APIs while remaining compatible with action-layer content watermarking. Experiments across embodied, tool-use, and social environments demonstrate practical multi-bit capacity, robust recovery from partial logs, and utility preservation. The code is available at https://github.com/Tooooa/AgentMark.
Authors:Pierre Fernandez, Tom Sander, Hady Elsahar, Hongyan Chang, Tomáš Souček, Valeriu Lacatusu, Tuan Tran, Sylvestre-Alvise Rebuffi, Alexandre Mourachko
Abstract:
Generation-time text watermarking embeds statistical signals into text for traceability of AI-generated content. We explore *post-hoc watermarking* where an LLM rewrites existing text while applying generation-time watermarking, to protect copyrighted documents, or detect their use in training or RAG via watermark radioactivity. Unlike generation-time approaches, which is constrained by how LLMs are served, this setting offers additional degrees of freedom for both generation and detection. We investigate how allocating compute (through larger rephrasing models, beam search, multi-candidate generation, or entropy filtering at detection) affects the quality-detectability trade-off. Our strategies achieve strong detectability and semantic fidelity on open-ended text such as books. Among our findings, the simple Gumbel-max scheme surprisingly outperforms more recent alternatives under nucleus sampling, and most methods benefit significantly from beam search. However, most approaches struggle when watermarking verifiable text such as code, where we counterintuitively find that smaller models outperform larger ones. This study reveals both the potential and limitations of post-hoc watermarking, laying groundwork for practical applications and future research.
Authors:Tomáš Souček, Pierre Fernandez, Hady Elsahar, Sylvestre-Alvise Rebuffi, Valeriu Lacatusu, Tuan Tran, Tom Sander, Alexandre Mourachko
Abstract:
Invisible watermarking is essential for tracing the provenance of digital content. However, training state-of-the-art models remains notoriously difficult, with current approaches often struggling to balance robustness against true imperceptibility. This work introduces Pixel Seal, which sets a new state-of-the-art for image and video watermarking. We first identify three fundamental issues of existing methods: (i) the reliance on proxy perceptual losses such as MSE and LPIPS that fail to mimic human perception and result in visible watermark artifacts; (ii) the optimization instability caused by conflicting objectives, which necessitates exhaustive hyperparameter tuning; and (iii) reduced robustness and imperceptibility of watermarks when scaling models to high-resolution images and videos. To overcome these issues, we first propose an adversarial-only training paradigm that eliminates unreliable pixel-wise imperceptibility losses. Second, we introduce a three-stage training schedule that stabilizes convergence by decoupling robustness and imperceptibility. Third, we address the resolution gap via high-resolution adaptation, employing JND-based attenuation and training-time inference simulation to eliminate upscaling artifacts. We thoroughly evaluate the robustness and imperceptibility of Pixel Seal on different image types and across a wide range of transformations, and show clear improvements over the state-of-the-art. We finally demonstrate that the model efficiently adapts to video via temporal watermark pooling, positioning Pixel Seal as a practical and scalable solution for reliable provenance in real-world image and video settings.
Authors:Han Yang, Shaofeng Li, Tian Dong, Xiangyu Xu, Guangchi Liu, Zhen Ling
Abstract:
Deep Neural Networks (DNNs), as valuable intellectual property, face unauthorized use. Existing protections, such as digital watermarking, are largely passive; they provide only post-hoc ownership verification and cannot actively prevent the illicit use of a stolen model. This work proposes a proactive protection scheme, dubbed ``Authority Backdoor," which embeds access constraints directly into the model. In particular, the scheme utilizes a backdoor learning framework to intrinsically lock a model's utility, such that it performs normally only in the presence of a specific trigger (e.g., a hardware fingerprint). But in its absence, the DNN's performance degrades to be useless. To further enhance the security of the proposed authority scheme, the certifiable robustness is integrated to prevent an adaptive attacker from removing the implanted backdoor. The resulting framework establishes a secure authority mechanism for DNNs, combining access control with certifiable robustness against adversarial attacks. Extensive experiments on diverse architectures and datasets validate the effectiveness and certifiable robustness of the proposed framework.
Authors:Yukang Lin, Jiahao Shao, Shuoran Jiang, Wentao Zhu, Bingjie Lu, Xiangping Wu, Joanna Siebert, Qingcai Chen
Abstract:
Watermarking acts as a critical safeguard in text generated by Large Language Models (LLMs). By embedding identifiable signals into model outputs, watermarking enables reliable attribution and enhances the security of machine-generated content. Existing approaches typically embed signals by manipulating token generation probabilities. Despite their effectiveness, these methods inherently face a trade-off between detectability and text quality: the signal strength and randomness required for robust watermarking tend to degrade the performance of downstream tasks. In this paper, we design a novel embedding scheme that controls seed pools to facilitate diverse parallel generation of watermarked text. Based on that scheme, we propose WaterSearch, a sentence-level, search-based watermarking framework adaptable to a wide range of existing methods. WaterSearch enhances text quality by jointly optimizing two key aspects: 1) distribution fidelity and 2) watermark signal characteristics. Furthermore, WaterSearch is complemented by a sentence-level detection method with strong attack robustness. We evaluate our method on three popular LLMs across ten diverse tasks. Extensive experiments demonstrate that our method achieves an average performance improvement of 51.01\% over state-of-the-art baselines at a watermark detectability strength of 95\%. In challenging scenarios such as short text generation and low-entropy output generation, our method yields performance gains of 47.78\% and 36.47\%, respectively. Moreover, under different attack senarios including insertion, synonym substitution and paraphrase attasks, WaterSearch maintains high detectability, further validating its robust anti-attack capabilities. Our code is available at \href{https://github.com/Yukang-Lin/WaterSearch}{https://github.com/Yukang-Lin/WaterSearch}.
Authors:Mingzhe Li, Renhao Zhang, Zhiyang Wen, Siqi Pan, Bruno Castro da Silva, Juan Zhai, Shiqing Ma
Abstract:
Text-to-image (T2I) generative models such as Stable Diffusion and FLUX can synthesize realistic, high-quality images directly from textual prompts. The resulting image quality depends critically on well-crafted prompts that specify both subjects and stylistic modifiers, which have become valuable digital assets. However, the rising value and ubiquity of high-quality prompts expose them to security and intellectual-property risks. One key threat is the prompt stealing attack, i.e., the task of recovering the textual prompt that generated a given image. Prompt stealing enables unauthorized extraction and reuse of carefully engineered prompts, yet it can also support beneficial applications such as data attribution, model provenance analysis, and watermarking validation. Existing approaches often assume white-box gradient access, require large-scale labeled datasets for supervised training, or rely solely on captioning without explicit optimization, limiting their practicality and adaptability. To address these challenges, we propose PROMPTMINER, a black-box prompt stealing framework that decouples the task into two phases: (1) a reinforcement learning-based optimization phase to reconstruct the primary subject, and (2) a fuzzing-driven search phase to recover stylistic modifiers. Experiments across multiple datasets and diffusion backbones demonstrate that PROMPTMINER achieves superior results, with CLIP similarity up to 0.958 and textual alignment with SBERT up to 0.751, surpassing all baselines. Even when applied to in-the-wild images with unknown generators, it outperforms the strongest baseline by 7.5 percent in CLIP similarity, demonstrating better generalization. Finally, PROMPTMINER maintains strong performance under defensive perturbations, highlighting remarkable robustness. Code: https://github.com/aaFrostnova/PromptMiner
Authors:Fangming Shi, Li Li, Kejiang Chen, Guorui Feng, Xinpeng Zhang
Abstract:
Low-Rank Adaptation (LoRA) offers an efficient paradigm for customizing diffusion models, but its ease of redistribution raises concerns over unauthorized use and the generation of untraceable content. Existing watermarking techniques either target base models or verify LoRA modules themselves, yet they fail to propagate watermarks to generated images, leaving a critical gap in traceability. Moreover, traceability watermarking designed for base models is not tightly coupled with stylization and often introduces visual degradation or high false-positive detection rates. To address these limitations, we propose AuthenLoRA, a unified watermarking framework that embeds imperceptible, traceable watermarks directly into the LoRA training process while preserving stylization quality. AuthenLoRA employs a dual-objective optimization strategy that jointly learns the target style distribution and the watermark-induced distribution shift, ensuring that any image generated with the watermarked LoRA reliably carries the watermark. We further design an expanded LoRA architecture for enhanced multi-scale adaptation and introduce a zero-message regularization mechanism that substantially reduces false positives during watermark verification. Extensive experiments demonstrate that AuthenLoRA achieves high-fidelity stylization, robust watermark propagation, and significantly lower false-positive rates compared with existing approaches. Open-source implementation is available at: https://github.com/ShiFangming0823/AuthenLoRA
Authors:Shinwoo Park, Hyejin Park, Hyeseon Ahn, Yo-Sub Han
Abstract:
Large language models now draft news, legal analyses, and software code with human-level fluency. At the same time, regulations such as the EU AI Act mandate that each synthetic passage carry an imperceptible, machine-verifiable mark for provenance. Conventional logit-based watermarks satisfy this requirement by selecting a pseudorandom green vocabulary at every decoding step and boosting its logits, yet the random split can exclude the highest-probability token and thus erode fluency. WaterMod mitigates this limitation through a probability-aware modular rule. The vocabulary is first sorted in descending model probability; the resulting ranks are then partitioned by the residue rank mod k, which distributes adjacent-and therefore semantically similar-tokens across different classes. A fixed bias of small magnitude is applied to one selected class. In the zero-bit setting (k=2), an entropy-adaptive gate selects either the even or the odd parity as the green list. Because the top two ranks fall into different parities, this choice embeds a detectable signal while guaranteeing that at least one high-probability token remains available for sampling. In the multi-bit regime (k>2), the current payload digit d selects the color class whose ranks satisfy rank mod k = d. Biasing the logits of that class embeds exactly one base-k digit per decoding step, thereby enabling fine-grained provenance tracing. The same modular arithmetic therefore supports both binary attribution and rich payloads. Experimental results demonstrate that WaterMod consistently attains strong watermark detection performance while maintaining generation quality in both zero-bit and multi-bit settings. This robustness holds across a range of tasks, including natural language generation, mathematical reasoning, and code synthesis. Our code and data are available at https://github.com/Shinwoo-Park/WaterMod.
Authors:Jindong Yang, Han Fang, Weiming Zhang, Nenghai Yu, Kejiang Chen
Abstract:
Diffusion models have advanced rapidly in recent years, producing high-fidelity images while raising concerns about intellectual property protection and the misuse of generative AI. Image watermarking for diffusion models, particularly Noise-as-Watermark (NaW) methods, encode watermark as specific standard Gaussian noise vector for image generation, embedding the infomation seamlessly while maintaining image quality. For detection, the generation process is inverted to recover the initial noise vector containing the watermark before extraction. However, existing NaW methods struggle to balance watermark robustness with generation diversity. Some methods achieve strong robustness by heavily constraining initial noise sampling, which degrades user experience, while others preserve diversity but prove too fragile for real-world deployment. To address this issue, we propose T2SMark, a two-stage watermarking scheme based on Tail-Truncated Sampling (TTS). Unlike prior methods that simply map bits to positive or negative values, TTS enhances robustness by embedding bits exclusively in the reliable tail regions while randomly sampling the central zone to preserve the latent distribution. Our two-stage framework then ensures sampling diversity by integrating a randomly generated session key into both encryption pipelines. We evaluate T2SMark on diffusion models with both U-Net and DiT backbones. Extensive experiments show that it achieves an optimal balance between robustness and diversity. Our code is available at \href{https://github.com/0xD009/T2SMark}{https://github.com/0xD009/T2SMark}.
Authors:Kieu Dang, Phung Lai, NhatHai Phan, Yelong Shen, Ruoming Jin, Abdallah Khreishah
Abstract:
Large language models (LLMs) demonstrate remarkable capabilities across various tasks. However, their deployment introduces significant risks related to intellectual property. In this context, we focus on model stealing attacks, where adversaries replicate the behaviors of these models to steal services. These attacks are highly relevant to proprietary LLMs and pose serious threats to revenue and financial stability. To mitigate these risks, the watermarking solution embeds imperceptible patterns in LLM outputs, enabling model traceability and intellectual property verification. In this paper, we study the vulnerability of LLM service providers by introducing $δ$-STEAL, a novel model stealing attack that bypasses the service provider's watermark detectors while preserving the adversary's model utility. $δ$-STEAL injects noise into the token embeddings of the adversary's model during fine-tuning in a way that satisfies local differential privacy (LDP) guarantees. The adversary queries the service provider's model to collect outputs and form input-output training pairs. By applying LDP-preserving noise to these pairs, $δ$-STEAL obfuscates watermark signals, making it difficult for the service provider to determine whether its outputs were used, thereby preventing claims of model theft. Our experiments show that $δ$-STEAL with lightweight modifications achieves attack success rates of up to $96.95\%$ without significantly compromising the adversary's model utility. The noise scale in LDP controls the trade-off between attack effectiveness and model utility. This poses a significant risk, as even robust watermarks can be bypassed, allowing adversaries to deceive watermark detectors and undermine current intellectual property protection methods.
Authors:Li An, Yujian Liu, Yepeng Liu, Yuheng Bu, Yang Zhang, Shiyu Chang
Abstract:
Watermarking has emerged as a promising solution for tracing and authenticating text generated by large language models (LLMs). A common approach to LLM watermarking is to construct a green/red token list and assign higher or lower generation probabilities to the corresponding tokens, respectively. However, most existing watermarking algorithms rely on heuristic green/red token list designs, as directly optimizing the list design with techniques such as reinforcement learning (RL) comes with several challenges. First, desirable watermarking involves multiple criteria, i.e., detectability, text quality, robustness against removal attacks, and security against spoofing attacks. Directly optimizing for these criteria introduces many partially conflicting reward terms, leading to an unstable convergence process. Second, the vast action space of green/red token list choices is susceptible to reward hacking. In this paper, we propose an end-to-end RL framework for robust and secure LLM watermarking. Our approach adopts an anchoring mechanism for reward terms to ensure stable training and introduces additional regularization terms to prevent reward hacking. Experiments on standard benchmarks with two backbone LLMs show that our method achieves a state-of-the-art trade-off across all criteria, with notable improvements in resistance to spoofing attacks without degrading other criteria. Our code is available at https://github.com/UCSB-NLP-Chang/RL-watermark.
Authors:Chenrui Wang, Junyi Shu, Billy Chiu, Yu Li, Saleh Alharbi, Min Zhang, Jing Li
Abstract:
The rapid development of LLMs has raised concerns about their potential misuse, leading to various watermarking schemes that typically offer high detectability. However, existing watermarking techniques often face trade-off between watermark detectability and generated text quality. In this paper, we introduce Learning to Watermark (LTW), a novel selective watermarking framework that leverages multi-objective optimization to effectively balance these competing goals. LTW features a lightweight network that adaptively decides when to apply the watermark by analyzing sentence embeddings, token entropy, and current watermarking ratio. Training of the network involves two specifically constructed loss functions that guide the model toward Pareto-optimal solutions, thereby harmonizing watermark detectability and text quality. By integrating LTW with two baseline watermarking methods, our experimental evaluations demonstrate that LTW significantly enhances text quality without compromising detectability. Our selective watermarking approach offers a new perspective for designing watermarks for LLMs and a way to preserve high text quality for watermarks. The code is publicly available at: https://github.com/fattyray/learning-to-watermark
Authors:Kyungryul Back, Seongbeom Park, Milim Kim, Mincheol Kwon, SangHyeok Lee, Hyunyoung Lee, Junhee Cho, Seunghyun Park, Jinkyu Kim
Abstract:
Large Vision-Language Models (LVLMs) have recently shown promising results on various multimodal tasks, even achieving human-comparable performance in certain cases. Nevertheless, LVLMs remain prone to hallucinations -- they often rely heavily on a single modality or memorize training data without properly grounding their outputs. To address this, we propose a training-free, tri-layer contrastive decoding with watermarking, which proceeds in three steps: (1) select a mature layer and an amateur layer among the decoding layers, (2) identify a pivot layer using a watermark-related question to assess whether the layer is visually well-grounded, and (3) apply tri-layer contrastive decoding to generate the final output. Experiments on public benchmarks such as POPE, MME and AMBER demonstrate that our method achieves state-of-the-art performance in reducing hallucinations in LVLMs and generates more visually grounded responses.
Authors:Shinwoo Park, Hyejin Park, Hyeseon Ahn, Yo-Sub Han
Abstract:
As large language models (LLMs) continue to advance rapidly, reliable governance tools have become critical. Publicly verifiable watermarking is particularly essential for fostering a trustworthy AI ecosystem. A central challenge persists: balancing text quality against detection robustness. Recent studies have sought to navigate this trade-off by leveraging signals from model output distributions (e.g., token-level entropy); however, their reliance on these model-specific signals presents a significant barrier to public verification, as the detection process requires access to the logits of the underlying model. We introduce STELA, a novel framework that aligns watermark strength with the linguistic degrees of freedom inherent in language. STELA dynamically modulates the signal using part-of-speech (POS) n-gram-modeled linguistic indeterminacy, weakening it in grammatically constrained contexts to preserve quality and strengthen it in contexts with greater linguistic flexibility to enhance detectability. Our detector operates without access to any model logits, thus facilitating publicly verifiable detection. Through extensive experiments on typologically diverse languages-analytic English, isolating Chinese, and agglutinative Korean-we show that STELA surpasses prior methods in detection robustness. Our code is available at https://github.com/Shinwoo-Park/stela_watermark.
Authors:Nir Goren, Oren Katzir, Abhinav Nakarmi, Eyal Ronen, Mahmood Sharif, Or Patashnik
Abstract:
With the rapid adoption of diffusion models for visual content generation, proving authorship and protecting copyright have become critical. This challenge is particularly important when model owners keep their models private and may be unwilling or unable to handle authorship issues, making third-party verification essential. A natural solution is to embed watermarks for later verification. However, existing methods require access to model weights and rely on computationally heavy procedures, rendering them impractical and non-scalable. To address these challenges, we propose , a lightweight watermarking scheme that utilizes the random seed used to initialize the diffusion process as a proof of authorship without modifying the generation process. Our key observation is that the initial noise derived from a seed is highly correlated with the generated visual content. By incorporating a hash function into the noise sampling process, we further ensure that recovering a valid seed from the content is infeasible. We also show that sampling an alternative seed that passes verification is infeasible, and demonstrate the robustness of our method under various manipulations. Finally, we show how to use cryptographic zero-knowledge proofs to prove ownership without revealing the seed. By keeping the seed secret, we increase the difficulty of watermark removal. In our experiments, we validate NoisePrints on multiple state-of-the-art diffusion models for images and videos, demonstrating efficient verification using only the seed and output, without requiring access to model weights.
Authors:Ziyuan Luo, Yangyi Zhao, Ka Chun Cheung, Simon See, Renjie Wan
Abstract:
The widespread adoption of Retrieval-Augmented Image Generation (RAIG) has raised significant concerns about the unauthorized use of private image datasets. While these systems have shown remarkable capabilities in enhancing generation quality through reference images, protecting visual datasets from unauthorized use in such systems remains a challenging problem. Traditional digital watermarking approaches face limitations in RAIG systems, as the complex feature extraction and recombination processes fail to preserve watermark signals during generation. To address these challenges, we propose ImageSentinel, a novel framework for protecting visual datasets in RAIG. Our framework synthesizes sentinel images that maintain visual consistency with the original dataset. These sentinels enable protection verification through randomly generated character sequences that serve as retrieval keys. To ensure seamless integration, we leverage vision-language models to generate the sentinel images. Experimental results demonstrate that ImageSentinel effectively detects unauthorized dataset usage while preserving generation quality for authorized applications. Code is available at https://github.com/luo-ziyuan/ImageSentinel.
Authors:Hyeseon Ahn, Shinwoo Park, Yo-Sub Han
Abstract:
The promise of LLM watermarking rests on a core assumption that a specific watermark proves authorship by a specific model. We demonstrate that this assumption is dangerously flawed. We introduce the threat of watermark spoofing, a sophisticated attack that allows a malicious model to generate text containing the authentic-looking watermark of a trusted, victim model. This enables the seamless misattribution of harmful content, such as disinformation, to reputable sources. The key to our attack is repurposing watermark radioactivity, the unintended inheritance of data patterns during fine-tuning, from a discoverable trait into an attack vector. By distilling knowledge from a watermarked teacher model, our framework allows an attacker to steal and replicate the watermarking signal of the victim model. This work reveals a critical security gap in text authorship verification and calls for a paradigm shift towards technologies capable of distinguishing authentic watermarks from expertly imitated ones. Our code is available at https://github.com/hsannn/ditto.git.
Authors:Pragati Shuddhodhan Meshram, Varun Chandrasekaran
Abstract:
The growing use of generative models has intensified the need for watermarking methods that ensure content attribution and provenance. While recent semantic watermarking schemes improve robustness by embedding signals in latent or frequency representations, we show they remain vulnerable even under resource-constrained adversarial settings. We present D2RA, a training-free, single-image attack that removes or weakens watermarks without access to the underlying model. By projecting watermarked images onto natural priors across complementary representations, D2RA suppresses watermark signals while preserving visual fidelity. Experiments across diverse watermarking schemes demonstrate that our approach consistently reduces watermark detectability, revealing fundamental weaknesses in current designs. Our code is available at https://github.com/Pragati-Meshram/DAWN.
Authors:Inzamamul Alam, Md Tanvir Islam, Khan Muhammad, Simon S. Woo
Abstract:
Watermarking embeds imperceptible patterns into images for authenticity verification. However, existing methods often lack robustness against various transformations primarily including distortions, image regeneration, and adversarial perturbation, creating real-world challenges. In this work, we introduce SpecGuard, a novel watermarking approach for robust and invisible image watermarking. Unlike prior approaches, we embed the message inside hidden convolution layers by converting from the spatial domain to the frequency domain using spectral projection of a higher frequency band that is decomposed by wavelet projection. Spectral projection employs Fast Fourier Transform approximation to transform spatial data into the frequency domain efficiently. In the encoding phase, a strength factor enhances resilience against diverse attacks, including adversarial, geometric, and regeneration-based distortions, ensuring the preservation of copyrighted information. Meanwhile, the decoder leverages Parseval's theorem to effectively learn and extract the watermark pattern, enabling accurate retrieval under challenging transformations. We evaluate the proposed SpecGuard based on the embedded watermark's invisibility, capacity, and robustness. Comprehensive experiments demonstrate the proposed SpecGuard outperforms the state-of-the-art models. To ensure reproducibility, the full code is released on \href{https://github.com/inzamamulDU/SpecGuard_ICCV_2025}{\textcolor{blue}{\textbf{GitHub}}}.
Authors:Jingqi Zhang, Ruibo Chen, Yingqing Yang, Peihua Mai, Heng Huang, Yan Pang
Abstract:
Large Language Models (LLMs) are increasingly fine-tuned on smaller, domain-specific datasets to improve downstream performance. These datasets often contain proprietary or copyrighted material, raising the need for reliable safeguards against unauthorized use. Existing membership inference attacks (MIAs) and dataset-inference methods typically require access to internal signals such as logits, while current black-box approaches often rely on handcrafted prompts or a clean reference dataset for calibration, both of which limit practical applicability. Watermarking is a promising alternative, but prior techniques can degrade text quality or reduce task performance. We propose TRACE, a practical framework for fully black-box detection of copyrighted dataset usage in LLM fine-tuning. \texttt{TRACE} rewrites datasets with distortion-free watermarks guided by a private key, ensuring both text quality and downstream utility. At detection time, we exploit the radioactivity effect of fine-tuning on watermarked data and introduce an entropy-gated procedure that selectively scores high-uncertainty tokens, substantially amplifying detection power. Across diverse datasets and model families, TRACE consistently achieves significant detections (p<0.05), often with extremely strong statistical evidence. Furthermore, it supports multi-dataset attribution and remains robust even after continued pretraining on large non-watermarked corpora. These results establish TRACE as a practical route to reliable black-box verification of copyrighted dataset usage. We will make our code available at: https://github.com/NusIoraPrivacy/TRACE.
Authors:Jiahao Huo, Shuliang Liu, Bin Wang, Junyan Zhang, Yibo Yan, Aiwei Liu, Xuming Hu, Mingxun Zhou
Abstract:
Semantic-level watermarking (SWM) for large language models (LLMs) enhances watermarking robustness against text modifications and paraphrasing attacks by treating the sentence as the fundamental unit. However, existing methods still lack strong theoretical guarantees of robustness, and reject-sampling-based generation often introduces significant distribution distortions compared with unwatermarked outputs. In this work, we introduce a new theoretical framework on SWM through the concept of proxy functions (PFs) $\unicode{x2013}$ functions that map sentences to scalar values. Building on this framework, we propose PMark, a simple yet powerful SWM method that estimates the PF median for the next sentence dynamically through sampling while enforcing multiple PF constraints (which we call channels) to strengthen watermark evidence. Equipped with solid theoretical guarantees, PMark achieves the desired distortion-free property and improves the robustness against paraphrasing-style attacks. We also provide an empirically optimized version that further removes the requirement for dynamical median estimation for better sampling efficiency. Experimental results show that PMark consistently outperforms existing SWM baselines in both text quality and robustness, offering a more effective paradigm for detecting machine-generated text. Our code will be released at [this URL](https://github.com/PMark-repo/PMark).
Authors:Zhenshan Zhang, Xueping Zhang, Yechen Wang, Liwei Jin, Ming Li
Abstract:
This paper presents the first study on the impact of audio watermarking on spoofing countermeasures. While anti-spoofing systems are essential for securing speech-based applications, the influence of widely used audio watermarking, originally designed for copyright protection, remains largely unexplored. We construct watermark-augmented training and evaluation datasets, named the Watermark-Spoofing dataset, by applying diverse handcrafted and neural watermarking methods to existing anti-spoofing datasets. Experiments show that watermarking consistently degrades anti-spoofing performance, with higher watermark density correlating with higher Equal Error Rates (EERs). To mitigate this, we propose the Knowledge-Preserving Watermark Learning (KPWL) framework, enabling models to adapt to watermark-induced shifts while preserving their original-domain spoofing detection capability. These findings reveal audio watermarking as a previously overlooked domain shift and establish the first benchmark for developing watermark-resilient anti-spoofing systems. All related protocols are publicly available at https://github.com/Alphawarheads/Watermark_Spoofing.git
Authors:Guanjie Wang, Zehua Ma, Han Fang, Weiming Zhang
Abstract:
The rapid progress of image-guided video generation (I2V) has raised concerns about its potential misuse in misinformation and fraud, underscoring the urgent need for effective digital watermarking. While existing watermarking methods demonstrate robustness within a single modality, they fail to trace source images in I2V settings. To address this gap, we introduce the concept of Robust Diffusion Distance, which measures the temporal persistence of watermark signals in generated videos. Building on this, we propose I2VWM, a cross-modal watermarking framework designed to enhance watermark robustness across time. I2VWM leverages a video-simulation noise layer during training and employs an optical-flow-based alignment module during inference. Experiments on both open-source and commercial I2V models demonstrate that I2VWM significantly improves robustness while maintaining imperceptibility, establishing a new paradigm for cross-modal watermarking in the era of generative video. \href{https://github.com/MrCrims/I2VWM-Robust-Watermarking-for-Image-to-Video-Generation}{Code Released.}
Authors:Pierre Fernandez, Tomáš SouÄek, Nikola JovanoviÄ, Hady Elsahar, Sylvestre-Alvise Rebuffi, Valeriu Lacatusu, Tuan Tran, Alexandre Mourachko
Abstract:
Synchronization is the task of estimating and inverting geometric transformations (e.g., crop, rotation) applied to an image. This work introduces SyncSeal, a bespoke watermarking method for robust image synchronization, which can be applied on top of existing watermarking methods to enhance their robustness against geometric transformations. It relies on an embedder network that imperceptibly alters images and an extractor network that predicts the geometric transformation to which the image was subjected. Both networks are end-to-end trained to minimize the error between the predicted and ground-truth parameters of the transformation, combined with a discriminator to maintain high perceptual quality. We experimentally validate our method on a wide variety of geometric and valuemetric transformations, demonstrating its effectiveness in accurately synchronizing images. We further show that our synchronization can effectively upgrade existing watermarking methods to withstand geometric transformations to which they were previously vulnerable.
Authors:Sung Ju Lee, Nam Ik Cho
Abstract:
Semantic watermarking techniques for latent diffusion models (LDMs) are robust against regeneration attacks, but often suffer from detection performance degradation due to the loss of frequency integrity. To tackle this problem, we propose a novel embedding method called Hermitian Symmetric Fourier Watermarking (SFW), which maintains frequency integrity by enforcing Hermitian symmetry. Additionally, we introduce a center-aware embedding strategy that reduces the vulnerability of semantic watermarking due to cropping attacks by ensuring robust information retention. To validate our approach, we apply these techniques to existing semantic watermarking schemes, enhancing their frequency-domain structures for better robustness and retrieval accuracy. Extensive experiments demonstrate that our methods achieve state-of-the-art verification and identification performance, surpassing previous approaches across various attack scenarios. Ablation studies confirm the impact of SFW on detection capabilities, the effectiveness of the center-aware embedding against cropping, and how message capacity influences identification accuracy. Notably, our method achieves the highest detection accuracy while maintaining superior image fidelity, as evidenced by FID and CLIP scores. Conclusively, our proposed SFW is shown to be an effective framework for balancing robustness and image fidelity, addressing the inherent trade-offs in semantic watermarking. Code available at https://github.com/thomas11809/SFWMark
Authors:Yuchen Yang, Yiming Li, Hongwei Yao, Enhao Huang, Shuo Shao, Bingrun Yang, Zhibo Wang, Dacheng Tao, Zhan Qin
Abstract:
The rapid progress of large language models (LLMs) has greatly enhanced reasoning tasks and facilitated the development of LLM-based applications. A critical factor in improving LLM-based applications is the design of effective system prompts, which significantly impact the behavior and output quality of LLMs. However, system prompts are susceptible to theft and misuse, which could undermine the interests of prompt owners. Existing methods protect prompt copyrights through watermark injection and verification but face challenges due to their reliance on intermediate LLM outputs (e.g., logits), which limits their practical feasibility. In this paper, we propose PromptCOS, a method for auditing prompt copyright based on content-level output similarity. It embeds watermarks by optimizing the prompt while simultaneously co-optimizing a special verification query and content-level signal marks. This is achieved by leveraging cyclic output signals and injecting auxiliary tokens to ensure reliable auditing in content-only scenarios. Additionally, it incorporates cover tokens to protect the watermark from malicious deletion. For copyright verification, PromptCOS identifies unauthorized usage by comparing the similarity between the suspicious output and the signal mark. Experimental results demonstrate that our method achieves high effectiveness (99.3% average watermark similarity), strong distinctiveness (60.8% greater than the best baseline), high fidelity (accuracy degradation of no more than 0.58%), robustness (resilience against three types of potential attacks), and computational efficiency (up to 98.1% reduction in computational cost). Our code is available at GitHub https://github.com/LianPing-cyber/PromptCOS.
Authors:Tzuhsuan Huang, Cheng Yu Yeo, Tsai-Ling Huang, Hong-Han Shuai, Wen-Huang Cheng, Jun-Cheng Chen
Abstract:
Recent studies on deep watermarking have predominantly focused on in-processing watermarking, which integrates the watermarking process into image generation. However, post-processing watermarking, which embeds watermarks after image generation, offers more flexibility. It can be applied to outputs from any generative model (e.g. GANs, diffusion models) without needing access to the model's internal structure. It also allows users to embed unique watermarks into individual images. Therefore, this study focuses on post-processing watermarking and enhances its robustness by incorporating an ensemble attack network during training. We construct various versions of attack networks using CNN and Transformer in both spatial and frequency domains to investigate how each combination influences the robustness of the watermarking model. Our results demonstrate that combining a CNN-based attack network in the spatial domain with a Transformer-based attack network in the frequency domain yields the highest robustness in watermarking models. Extensive evaluation on the WAVES benchmark, using average bit accuracy as the metric, demonstrates that our ensemble attack network significantly enhances the robustness of baseline watermarking methods under various stress tests. In particular, for the Regeneration Attack defined in WAVES, our method improves StegaStamp by 18.743%. The code is released at:https://github.com/aiiu-lab/DeepRobustWatermark.
Authors:Xiufeng Huang, Ziyuan Luo, Qi Song, Ruofei Wang, Renjie Wan
Abstract:
The growing popularity of 3D Gaussian Splatting (3DGS) has intensified the need for effective copyright protection. Current 3DGS watermarking methods rely on computationally expensive fine-tuning procedures for each predefined message. We propose the first generalizable watermarking framework that enables efficient protection of Splatter Image-based 3DGS models through a single forward pass. We introduce GaussianBridge that transforms unstructured 3D Gaussians into Splatter Image format, enabling direct neural processing for arbitrary message embedding. To ensure imperceptibility, we design a Gaussian-Uncertainty-Perceptual heatmap prediction strategy for preserving visual quality. For robust message recovery, we develop a dense segmentation-based extraction mechanism that maintains reliable extraction even when watermarked objects occupy minimal regions in rendered views. Project page: https://kevinhuangxf.github.io/marksplatter.
Authors:Xia Han, Qi Li, Jianbing Ni, Mohammad Zulkernine
Abstract:
Recent advances in LLM watermarking methods such as SynthID-Text by Google DeepMind offer promising solutions for tracing the provenance of AI-generated text. However, our robustness assessment reveals that SynthID-Text is vulnerable to meaning-preserving attacks, such as paraphrasing, copy-paste modifications, and back-translation, which can significantly degrade watermark detectability. To address these limitations, we propose SynGuard, a hybrid framework that combines the semantic alignment strength of Semantic Information Retrieval (SIR) with the probabilistic watermarking mechanism of SynthID-Text. Our approach jointly embeds watermarks at both lexical and semantic levels, enabling robust provenance tracking while preserving the original meaning. Experimental results across multiple attack scenarios show that SynGuard improves watermark recovery by an average of 11.1\% in F1 score compared to SynthID-Text. These findings demonstrate the effectiveness of semantic-aware watermarking in resisting real-world tampering. All code, datasets, and evaluation scripts are publicly available at: https://github.com/githshine/SynGuard.
Authors:Zhuohao Yu, Xingru Jiang, Weizheng Gu, Yidong Wang, Shikun Zhang, Wei Ye
Abstract:
Watermarking LLM-generated text is critical for content attribution and misinformation prevention. However, existing methods compromise text quality, require white-box model access and logit manipulation. These limitations exclude API-based models and multilingual scenarios. We propose SAEMark, a general framework for post-hoc multi-bit watermarking that embeds personalized messages solely via inference-time, feature-based rejection sampling without altering model logits or requiring training. Our approach operates on deterministic features extracted from generated text, selecting outputs whose feature statistics align with key-derived targets. This framework naturally generalizes across languages and domains while preserving text quality through sampling LLM outputs instead of modifying. We provide theoretical guarantees relating watermark success probability and compute budget that hold for any suitable feature extractor. Empirically, we demonstrate the framework's effectiveness using Sparse Autoencoders (SAEs), achieving superior detection accuracy and text quality. Experiments across 4 datasets show SAEMark's consistent performance, with 99.7% F1 on English and strong multi-bit detection accuracy. SAEMark establishes a new paradigm for scalable watermarking that works out-of-the-box with closed-source LLMs while enabling content attribution.
Authors:Wenjie Li, Siying Gu, Yiming Li, Kangjie Chen, Zhili Chen, Tianwei Zhang, Shu-Tao Xia, Dacheng Tao
Abstract:
Backdoor detection is currently the mainstream defense against backdoor attacks in federated learning (FL), where malicious clients upload poisoned updates that compromise the global model and undermine the reliability of FL deployments. Existing backdoor detection techniques fall into two categories, including passive and proactive ones, depending on whether the server proactively modifies the global model. However, both have inherent limitations in practice: passive defenses are vulnerable to common non-i.i.d. data distributions and random participation of FL clients, whereas current proactive defenses suffer inevitable out-of-distribution (OOD) bias because they rely on backdoor co-existence effects. To address these issues, we introduce a new proactive defense, dubbed Coward, inspired by our discovery of multi-backdoor collision effects, in which consecutively planted, distinct backdoors significantly suppress earlier ones. In general, we detect attackers by evaluating whether the server-injected, conflicting global watermark is erased during local training rather than retained. Our method preserves the advantages of proactive defenses in handling data heterogeneity (\ie, non-i.i.d. data) while mitigating the adverse impact of OOD bias through a revised detection mechanism. Extensive experiments on benchmark datasets confirm the effectiveness of Coward and its resilience to potential adaptive attacks. The code for our method would be available at https://github.com/still2009/cowardFL.
Authors:Aditya Pujari, Ajita Rattani
Abstract:
The rapid advancement of voice generation technologies has enabled the synthesis of speech that is perceptually indistinguishable from genuine human voices. While these innovations facilitate beneficial applications such as personalized text-to-speech systems and voice preservation, they have also introduced significant risks, including deepfake impersonation scams and synthetic media-driven disinformation campaigns. Recent reports indicate that in 2024, deepfake fraud attempts surged by over 1,300% compared to 2023, underscoring the urgent need for robust audio content authentication. The financial sector has been particularly impacted, with a loss of over 10 million USD to voice scams and individual victims reporting losses exceeding $6,000 from AI-generated deepfake calls. In response, regulators and governments worldwide are enacting measures to improve AI content transparency and traceability, emphasizing the development of forensic tools and watermarking techniques as essential strategies to uphold media integrity.
Authors:Yuan Yao, Jin Song, Jian Jin
Abstract:
As valuable digital assets, deep neural networks necessitate robust ownership protection, positioning neural network watermarking (NNW) as a promising solution. Among various NNW approaches, weight-based methods are favored for their simplicity and practicality; however, they remain vulnerable to forging and overwriting attacks. To address those challenges, we propose NeuralMark, a robust method built around a hashed watermark filter. Specifically, we utilize a hash function to generate an irreversible binary watermark from a secret key, which is then used as a filter to select the model parameters for embedding. This design cleverly intertwines the embedding parameters with the hashed watermark, providing a robust defense against both forging and overwriting attacks. An average pooling is also incorporated to resist fine-tuning and pruning attacks. Furthermore, it can be seamlessly integrated into various neural network architectures, ensuring broad applicability. Theoretically, we analyze its security boundary. Empirically, we verify its effectiveness and robustness across 13 distinct Convolutional and Transformer architectures, covering five image classification tasks and one text generation task. The source codes are available at https://github.com/AIResearch-Group/NeuralMark.
Authors:İsmail Tarım, AytuÄ Onan
Abstract:
The rapid advancement of large language models (LLMs) has raised concerns about reliably detecting AI-generated text. Stylometric metrics work well on autoregressive (AR) outputs, but their effectiveness on diffusion-based models is unknown. We present the first systematic comparison of diffusion-generated text (LLaDA) and AR-generated text (LLaMA) using 2 000 samples. Perplexity, burstiness, lexical diversity, readability, and BLEU/ROUGE scores show that LLaDA closely mimics human text in perplexity and burstiness, yielding high false-negative rates for AR-oriented detectors. LLaMA shows much lower perplexity but reduced lexical fidelity. Relying on any single metric fails to separate diffusion outputs from human writing. We highlight the need for diffusion-aware detectors and outline directions such as hybrid models, diffusion-specific stylometric signatures, and robust watermarking.
Authors:Chen Sun, Haiyang Sun, Zhiqing Guo, Yunfeng Diao, Liejun Wang, Dan Ma, Gaobo Yang, Keqin Li
Abstract:
Deepfakes pose significant security and privacy threats through malicious facial manipulations. While robust watermarking can aid in authenticity verification and source tracking, existing methods often lack the sufficient robustness against Deepfake manipulations. Diffusion models have demonstrated remarkable performance in image generation, enabling the seamless fusion of watermark with image during generation. In this study, we propose a novel robust watermarking framework based on diffusion model, called DiffMark. By modifying the training and sampling scheme, we take the facial image and watermark as conditions to guide the diffusion model to progressively denoise and generate corresponding watermarked image. In the construction of facial condition, we weight the facial image by a timestep-dependent factor that gradually reduces the guidance intensity with the decrease of noise, thus better adapting to the sampling process of diffusion model. To achieve the fusion of watermark condition, we introduce a cross information fusion (CIF) module that leverages a learnable embedding table to adaptively extract watermark features and integrates them with image features via cross-attention. To enhance the robustness of the watermark against Deepfake manipulations, we integrate a frozen autoencoder during training phase to simulate Deepfake manipulations. Additionally, we introduce Deepfake-resistant guidance that employs specific Deepfake model to adversarially guide the diffusion sampling process to generate more robust watermarked images. Experimental results demonstrate the effectiveness of the proposed DiffMark on typical Deepfakes. Our code will be available at https://github.com/vpsg-research/DiffMark.
Authors:Yuzhuo Chen, Zehua Ma, Han Fang, Weiming Zhang, Nenghai Yu
Abstract:
AI-generated content (AIGC) enables efficient visual creation but raises copyright and authenticity risks. As a common technique for integrity verification and source tracing, digital image watermarking is regarded as a potential solution to above issues. However, the widespread adoption and advancing capabilities of generative image editing tools have amplified malicious tampering risks, while simultaneously posing new challenges to passive tampering detection and watermark robustness. To address these challenges, this paper proposes a Tamper-Aware Generative image WaterMarking method named TAG-WM. The proposed method comprises four key modules: a dual-mark joint sampling (DMJS) algorithm for embedding copyright and localization watermarks into the latent space while preserving generative quality, the watermark latent reconstruction (WLR) utilizing reversed DMJS, a dense variation region detector (DVRD) leveraging diffusion inversion sensitivity to identify tampered areas via statistical deviation analysis, and the tamper-aware decoding (TAD) guided by localization results. The experimental results demonstrate that TAG-WM achieves state-of-the-art performance in both tampering robustness and localization capability even under distortion, while preserving lossless generation quality and maintaining a watermark capacity of 256 bits. The code is available at: https://github.com/Suchenl/TAG-WM.
Authors:Nikola JovanoviÄ, Ismail Labiad, Tomáš SouÄek, Martin Vechev, Pierre Fernandez
Abstract:
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values.
Authors:Ting Qiao, Yiming Li, Jianbin Li, Yingjia Wang, Leyi Qi, Junfeng Guo, Ruili Feng, Dacheng Tao
Abstract:
Deep neural networks (DNNs) rely heavily on high-quality open-source datasets (e.g., ImageNet) for their success, making dataset ownership verification (DOV) crucial for protecting public dataset copyrights. In this paper, we find existing DOV methods (implicitly) assume that the verification process is faithful, where the suspicious model will directly verify ownership by using the verification samples as input and returning their results. However, this assumption may not necessarily hold in practice and their performance may degrade sharply when subjected to intentional or unintentional perturbations. To address this limitation, we propose the first certified dataset watermark (i.e., CertDW) and CertDW-based certified dataset ownership verification method that ensures reliable verification even under malicious attacks, under certain conditions (e.g., constrained pixel-level perturbation). Specifically, inspired by conformal prediction, we introduce two statistical measures, including principal probability (PP) and watermark robustness (WR), to assess model prediction stability on benign and watermarked samples under noise perturbations. We prove there exists a provable lower bound between PP and WR, enabling ownership verification when a suspicious model's WR value significantly exceeds the PP values of multiple benign models trained on watermark-free datasets. If the number of PP values smaller than WR exceeds a threshold, the suspicious model is regarded as having been trained on the protected dataset. Extensive experiments on benchmark datasets verify the effectiveness of our CertDW method and its resistance to potential adaptive attacks. Our codes are at \href{https://github.com/NcepuQiaoTing/CertDW}{GitHub}.
Authors:Dor Tsur, Carol Xuan Long, Claudio Mayrink Verdun, Hsiang Hsu, Chen-Fu Chen, Haim Permuter, Sajani Vithana, Flavio P. Calmon
Abstract:
Large language model (LLM) watermarks enable authentication of text provenance, curb misuse of machine-generated text, and promote trust in AI systems. Current watermarks operate by changing the next-token predictions output by an LLM. The updated (i.e., watermarked) predictions depend on random side information produced, for example, by hashing previously generated tokens. LLM watermarking is particularly challenging in low-entropy generation tasks - such as coding - where next-token predictions are near-deterministic. In this paper, we propose an optimization framework for watermark design. Our goal is to understand how to most effectively use random side information in order to maximize the likelihood of watermark detection and minimize the distortion of generated text. Our analysis informs the design of two new watermarks: HeavyWater and SimplexWater. Both watermarks are tunable, gracefully trading-off between detection accuracy and text distortion. They can also be applied to any LLM and are agnostic to side information generation. We examine the performance of HeavyWater and SimplexWater through several benchmarks, demonstrating that they can achieve high watermark detection accuracy with minimal compromise of text generation quality, particularly in the low-entropy regime. Our theoretical analysis also reveals surprising new connections between LLM watermarking and coding theory. The code implementation can be found in https://github.com/DorTsur/HeavyWater_SimplexWater
Authors:Yaoxun Xu, Jianwei Yu, Hangting Chen, Zhiyong Wu, Xixin Wu, Dong Yu, Rongzhi Gu, Yi Luo
Abstract:
As deep learning advances in audio generation, challenges in audio security and copyright protection highlight the need for robust audio watermarking. Recent neural network-based methods have made progress but still face three main issues: preventing unauthorized access, decoding initial watermarks after multiple embeddings, and embedding varying lengths of watermarks. To address these issues, we propose WAKE, the first key-controllable audio watermark framework. WAKE embeds watermarks using specific keys and recovers them with corresponding keys, enhancing security by making incorrect key decoding impossible. It also resolves the overwriting issue by allowing watermark decoding after multiple embeddings and supports variable-length watermark insertion. WAKE outperforms existing models in both watermarked audio quality and watermark detection accuracy. Code, more results, and demo page: https://thuhcsi.github.io/WAKE.
Authors:Yu-Feng Chen, Tzuhsuan Huang, Pin-Yen Chiu, Jun-Cheng Chen
Abstract:
Diffusion models have achieved remarkable progress in both image generation and editing. However, recent studies have revealed their vulnerability to backdoor attacks, in which specific patterns embedded in the input can manipulate the model's behavior. Most existing research in this area has proposed attack frameworks focused on the image generation pipeline, leaving backdoor attacks in image editing relatively unexplored. Among the few studies targeting image editing, most utilize visible triggers, which are impractical because they introduce noticeable alterations to the input image before editing. In this paper, we propose a novel attack framework that embeds invisible triggers into the image editing process via poisoned training data. We leverage off-the-shelf deep watermarking models to encode imperceptible watermarks as backdoor triggers. Our goal is to make the model produce the predefined backdoor target when it receives watermarked inputs, while editing clean images normally according to the given prompt. With extensive experiments across different watermarking models, the proposed method achieves promising attack success rates. In addition, the analysis results of the watermark characteristics in term of backdoor attack further support the effectiveness of our approach. The code is available at:https://github.com/aiiu-lab/BackdoorImageEditing
Authors:Apurv Verma, NhatHai Phan, Shubhendu Trivedi
Abstract:
Watermarking techniques for large language models (LLMs) can significantly impact output quality, yet their effects on truthfulness, safety, and helpfulness remain critically underexamined. This paper presents a systematic analysis of how two popular watermarking approaches-Gumbel and KGW-affect these core alignment properties across four aligned LLMs. Our experiments reveal two distinct degradation patterns: guard attenuation, where enhanced helpfulness undermines model safety, and guard amplification, where excessive caution reduces model helpfulness. These patterns emerge from watermark-induced shifts in token distribution, surfacing the fundamental tension that exists between alignment objectives.
To mitigate these degradations, we propose Alignment Resampling (AR), an inference-time sampling method that uses an external reward model to restore alignment. We establish a theoretical lower bound on the improvement in expected reward score as the sample size is increased and empirically demonstrate that sampling just 2-4 watermarked generations effectively recovers or surpasses baseline (unwatermarked) alignment scores. To overcome the limited response diversity of standard Gumbel watermarking, our modified implementation sacrifices strict distortion-freeness while maintaining robust detectability, ensuring compatibility with AR. Experimental results confirm that AR successfully recovers baseline alignment in both watermarking approaches, while maintaining strong watermark detectability. This work reveals the critical balance between watermark strength and model alignment, providing a simple inference-time solution to responsibly deploy watermarked LLMs in practice.
Authors:Yu Huang, Junhao Chen, Shuliang Liu, Hanqian Li, Qi Zheng, Yi R. Fung, Xuming Hu
Abstract:
The rapid development of Artificial Intelligence Generated Content (AIGC) has led to significant progress in video generation but also raises serious concerns about intellectual property protection and reliable content tracing. Watermarking is a widely adopted solution to this issue, but existing methods for video generation mainly follow a post-generation paradigm, which introduces additional computational overhead and often fails to effectively balance the trade-off between video quality and watermark extraction. To address these issues, we propose Video Signature (VIDSIG), an in-generation watermarking method for latent video diffusion models, which enables implicit and adaptive watermark integration during generation. Specifically, we achieve this by partially fine-tuning the latent decoder, where Perturbation-Aware Suppression (PAS) pre-identifies and freezes perceptually sensitive layers to preserve visual quality. Beyond spatial fidelity, we further enhance temporal consistency by introducing a lightweight Temporal Alignment module that guides the decoder to generate coherent frame sequences during fine-tuning. Experimental results show that VIDSIG achieves the best overall performance in watermark extraction, visual quality, and generation efficiency. It also demonstrates strong robustness against both spatial and temporal tampering, highlighting its practicality in real-world scenarios. Our code is available at \href{https://github.com/hardenyu21/Video-Signature}{here}
Authors:Chaohui Xu, Qi Cui, Chip-Hong Chang
Abstract:
The pervasion of large-scale Deep Neural Networks (DNNs) and their enormous training costs make their intellectual property (IP) protection of paramount importance. Recently introduced passport-based methods attempt to steer DNN watermarking towards strengthening ownership verification against ambiguity attacks by modulating the affine parameters of normalization layers. Unfortunately, neither watermarking nor passport-based methods provide a holistic protection with robust ownership proof, high fidelity, active usage authorization and user traceability for offline access distributed models and multi-user Machine-Learning as a Service (MLaaS) cloud model. In this paper, we propose a Chameleon Hash-based Irreversible Passport (CHIP) protection framework that utilizes the cryptographic chameleon hash function to achieve all these goals. The collision-resistant property of chameleon hash allows for strong model ownership claim upon IP infringement and liable user traceability, while the trapdoor-collision property enables hashing of multiple user passports and licensee certificates to the same immutable signature to realize active usage control. Using the owner passport as an oracle, multiple user-specific triplets, each contains a passport-aware user model, a user passport, and a licensee certificate can be created for secure offline distribution. The watermarked master model can also be deployed for MLaaS with usage permission verifiable by the provision of any trapdoor-colliding user passports. CHIP is extensively evaluated on four datasets and two architectures to demonstrate its protection versatility and robustness. Our code is released at https://github.com/Dshm212/CHIP.
Authors:Liancheng Fang, Aiwei Liu, Henry Peng Zou, Yankai Chen, Hengrui Zhang, Zhongfen Deng, Philip S. Yu
Abstract:
We introduce MUSE, a watermarking algorithm for tabular generative models. Previous approaches typically leverage DDIM invertibility to watermark tabular diffusion models, but tabular diffusion models exhibit significantly poorer invertibility compared to other modalities, compromising performance. Simultaneously, tabular diffusion models require substantially less computation than other modalities, enabling a multi-sample selection approach to tabular generative model watermarking. MUSE embeds watermarks by generating multiple candidate samples and selecting one based on a specialized scoring function, without relying on model invertibility. Our theoretical analysis establishes the relationship between watermark detectability, candidate count, and dataset size, allowing precise calibration of watermarking strength. Extensive experiments demonstrate that MUSE achieves state-of-the-art watermark detectability and robustness against various attacks while maintaining data quality, and remains compatible with any tabular generative model supporting repeated sampling, effectively addressing key challenges in tabular data watermarking. Specifically, it reduces the distortion rates on fidelity metrics by 81-89%, while achieving a 1.0 TPR@0.1%FPR detection rate. Implementation of MUSE can be found at https://github.com/fangliancheng/MUSE.
Authors:Hongrui Peng, Haolang Lu, Yuanlong Yu, Weiye Fu, Kun Wang, Guoshun Nan
Abstract:
Knowledge graphs (KGs) are ubiquitous in numerous real-world applications, and watermarking facilitates protecting intellectual property and preventing potential harm from AI-generated content. Existing watermarking methods mainly focus on static plain text or image data, while they can hardly be applied to dynamic graphs due to spatial and temporal variations of structured data. This motivates us to propose KGMARK, the first graph watermarking framework that aims to generate robust, detectable, and transparent diffusion fingerprints for dynamic KG data. Specifically, we propose a novel clustering-based alignment method to adapt the watermark to spatial variations. Meanwhile, we present a redundant embedding strategy to harden the diffusion watermark against various attacks, facilitating the robustness of the watermark to the temporal variations. Additionally, we introduce a novel learnable mask matrix to improve the transparency of diffusion fingerprints. By doing so, our KGMARK properly tackles the variation challenges of structured data. Experiments on various public benchmarks show the effectiveness of our proposed KGMARK. Our code is available at https://github.com/phrara/kgmark.
Authors:Zhengyuan Jiang, Moyang Guo, Kecen Li, Yuepeng Hu, Yupu Wang, Zhicong Huang, Cheng Hong, Neil Zhenqiang Gong
Abstract:
The rapid development of video generative models has led to a surge in highly realistic synthetic videos, raising ethical concerns related to disinformation and copyright infringement. Recently, video watermarking has been proposed as a mitigation strategy by embedding invisible marks into AI-generated videos to enable subsequent detection. However, the robustness of existing video watermarking methods against both common and adversarial perturbations remains underexplored. In this work, we introduce VideoMarkBench, the first systematic benchmark designed to evaluate the robustness of video watermarks under watermark removal and watermark forgery attacks. Our study encompasses a unified dataset generated by three state-of-the-art video generative models, across three video styles, incorporating four watermarking methods and seven aggregation strategies used during detection. We comprehensively evaluate 12 types of perturbations under white-box, black-box, and no-box threat models. Our findings reveal significant vulnerabilities in current watermarking approaches and highlight the urgent need for more robust solutions. Our code is available at https://github.com/zhengyuan-jiang/VideoMarkBench.
Authors:Pingzhi Li, Zhen Tan, Huaizhi Qu, Huan Liu, Tianlong Chen
Abstract:
Large Language Models (LLMs) represent substantial intellectual and economic investments, yet their effectiveness can inadvertently facilitate model imitation via knowledge distillation (KD).In practical scenarios, competitors can distill proprietary LLM capabilities by simply observing publicly accessible outputs, akin to reverse-engineering a complex performance by observation alone. Existing protective methods like watermarking only identify imitation post-hoc, while other defenses assume the student model mimics the teacher's internal logits, rendering them ineffective against distillation purely from observed output text. This paper confronts the challenge of actively protecting LLMs within the realistic constraints of API-based access. We introduce an effective and efficient Defensive Output Generation (DOGe) strategy that subtly modifies the output behavior of an LLM. Its outputs remain accurate and useful for legitimate users, yet are designed to be misleading for distillation, significantly undermining imitation attempts. We achieve this by fine-tuning only the final linear layer of the teacher LLM with an adversarial loss. This targeted training approach anticipates and disrupts distillation attempts during inference time. Our experiments show that, while preserving or even improving the original performance of the teacher model, student models distilled from the defensively generated teacher outputs demonstrate catastrophically reduced performance, demonstrating our method's effectiveness as a practical safeguard against KD-based model imitation.
Authors:Yuliang Yan, Haochun Tang, Shuo Yan, Enyan Dai
Abstract:
Large language models (LLMs) are considered valuable Intellectual Properties (IP) for legitimate owners due to the enormous computational cost of training. It is crucial to protect the IP of LLMs from malicious stealing or unauthorized deployment. Despite existing efforts in watermarking and fingerprinting LLMs, these methods either impact the text generation process or are limited in white-box access to the suspect model, making them impractical. Hence, we propose DuFFin, a novel $\textbf{Du}$al-Level $\textbf{Fin}$gerprinting $\textbf{F}$ramework for black-box setting ownership verification. DuFFin extracts the trigger pattern and the knowledge-level fingerprints to identify the source of a suspect model. We conduct experiments on a variety of models collected from the open-source website, including four popular base models as protected LLMs and their fine-tuning, quantization, and safety alignment versions, which are released by large companies, start-ups, and individual users. Results show that our method can accurately verify the copyright of the base protected LLM on their model variants, achieving the IP-ROC metric greater than 0.95. Our code is available at https://github.com/yuliangyan0807/llm-fingerprint.
Authors:Tianle Gu, Zongqi Wang, Kexin Huang, Yuanqi Yao, Xiangliang Zhang, Yujiu Yang, Xiuying Chen
Abstract:
Logit-based LLM watermarking traces and verifies AI-generated content by maintaining green and red token lists and increasing the likelihood of green tokens during generation. However, it fails in low-entropy scenarios, where predictable outputs make green token selection difficult without disrupting natural text flow. Existing approaches address this by assuming access to the original LLM to calculate entropy and selectively watermark high-entropy tokens. However, these methods face two major challenges: (1) high computational costs and detection delays due to reliance on the original LLM, and (2) potential risks of model leakage. To address these limitations, we propose Invisible Entropy (IE), a watermarking paradigm designed to enhance both safety and efficiency. Instead of relying on the original LLM, IE introduces a lightweight feature extractor and an entropy tagger to predict whether the entropy of the next token is high or low. Furthermore, based on theoretical analysis, we develop a threshold navigator that adaptively sets entropy thresholds. It identifies a threshold where the watermark ratio decreases as the green token count increases, enhancing the naturalness of the watermarked text and improving detection robustness. Experiments on HumanEval and MBPP datasets demonstrate that IE reduces parameter size by 99\% while achieving performance on par with state-of-the-art methods. Our work introduces a safe and efficient paradigm for low-entropy watermarking. https://github.com/Carol-gutianle/IE https://huggingface.co/datasets/Carol0110/IE-Tagger
Authors:Zihan Su, Xuerui Qiu, Hongbin Xu, Tangyu Jiang, Junhao Zhuang, Chun Yuan, Ming Li, Shengfeng He, Fei Richard Yu
Abstract:
The explosive growth of generative video models has amplified the demand for reliable copyright preservation of AI-generated content. Despite its popularity in image synthesis, invisible generative watermarking remains largely underexplored in video generation. To address this gap, we propose Safe-Sora, the first framework to embed graphical watermarks directly into the video generation process. Motivated by the observation that watermarking performance is closely tied to the visual similarity between the watermark and cover content, we introduce a hierarchical coarse-to-fine adaptive matching mechanism. Specifically, the watermark image is divided into patches, each assigned to the most visually similar video frame, and further localized to the optimal spatial region for seamless embedding. To enable spatiotemporal fusion of watermark patches across video frames, we develop a 3D wavelet transform-enhanced Mamba architecture with a novel spatiotemporal local scanning strategy, effectively modeling long-range dependencies during watermark embedding and retrieval. To the best of our knowledge, this is the first attempt to apply state space models to watermarking, opening new avenues for efficient and robust watermark protection. Extensive experiments demonstrate that Safe-Sora achieves state-of-the-art performance in terms of video quality, watermark fidelity, and robustness, which is largely attributed to our proposals. Code is publicly available at https://github.com/Sugewud/Safe-Sora
Authors:Yidan Wang, Yubing Ren, Yanan Cao, Binxing Fang
Abstract:
The rise of Large Language Models (LLMs) has heightened concerns about the misuse of AI-generated text, making watermarking a promising solution. Mainstream watermarking schemes for LLMs fall into two categories: logits-based and sampling-based. However, current schemes entail trade-offs among robustness, text quality, and security. To mitigate this, we integrate logits-based and sampling-based schemes, harnessing their respective strengths to achieve synergy. In this paper, we propose a versatile symbiotic watermarking framework with three strategies: serial, parallel, and hybrid. The hybrid framework adaptively embeds watermarks using token entropy and semantic entropy, optimizing the balance between detectability, robustness, text quality, and security. Furthermore, we validate our approach through comprehensive experiments on various datasets and models. Experimental results indicate that our method outperforms existing baselines and achieves state-of-the-art (SOTA) performance. We believe this framework provides novel insights into diverse watermarking paradigms. Our code is available at https://github.com/redwyd/SymMark.
Authors:Dor Tsur, Carol Xuan Long, Claudio Mayrink Verdun, Hsiang Hsu, Haim Permuter, Flavio P. Calmon
Abstract:
Large-language models (LLMs) are now able to produce text that is, in many cases, seemingly indistinguishable from human-generated content. This has fueled the development of watermarks that imprint a ``signal'' in LLM-generated text with minimal perturbation of an LLM's output. This paper provides an analysis of text watermarking in a one-shot setting. Through the lens of hypothesis testing with side information, we formulate and analyze the fundamental trade-off between watermark detection power and distortion in generated textual quality. We argue that a key component in watermark design is generating a coupling between the side information shared with the watermark detector and a random partition of the LLM vocabulary. Our analysis identifies the optimal coupling and randomization strategy under the worst-case LLM next-token distribution that satisfies a min-entropy constraint. We provide a closed-form expression of the resulting detection rate under the proposed scheme and quantify the cost in a max-min sense. Finally, we provide an array of numerical results, comparing the proposed scheme with the theoretical optimum and existing schemes, in both synthetic data and LLM watermarking. Our code is available at https://github.com/Carol-Long/CC_Watermark
Authors:Ziyuan He, Zhiqing Guo, Liejun Wang, Gaobo Yang, Yunfeng Diao, Dan Ma
Abstract:
Deepfake technology poses increasing risks such as privacy invasion and identity theft. To address these threats, we propose WaveGuard, a proactive watermarking framework that enhances robustness and imperceptibility via frequency-domain embedding and graph-based structural consistency. Specifically, we embed watermarks into high-frequency sub-bands using Dual-Tree Complex Wavelet Transform (DT-CWT) and employ a Structural Consistency Graph Neural Network (SC-GNN) to preserve visual quality. We also design an attention module to refine embedding precision. Experimental results on face swap and reenactment tasks demonstrate that WaveGuard outperforms state-of-the-art methods in both robustness and visual quality. Code is available at https://github.com/vpsg-research/WaveGuard.
Authors:Wenyang Liu, Jianjun Gao, Kim-Hui Yap
Abstract:
Visible watermark removal is challenging due to its inherent complexities and the noise carried within images. Existing methods primarily rely on supervised learning approaches that require paired datasets of watermarked and watermark-free images, which are often impractical to obtain in real-world scenarios. To address this challenge, we propose SSH-Net, a Self-Supervised and Hybrid Network specifically designed for noisy image watermark removal. SSH-Net synthesizes reference watermark-free images using the watermark distribution in a self-supervised manner and adopts a dual-network design to address the task. The upper network, focused on the simpler task of noise removal, employs a lightweight CNN-based architecture, while the lower network, designed to handle the more complex task of simultaneously removing watermarks and noise, incorporates Transformer blocks to model long-range dependencies and capture intricate image features. To enhance the model's effectiveness, a shared CNN-based feature encoder is introduced before dual networks to extract common features that both networks can leverage. Our code will be available at https://github.com/wenyang001/SSH-Net.
Authors:Xinyang Lu, Xinyuan Niu, Gregory Kang Ruey Lau, Bui Thi Cam Nhung, Rachael Hwee Ling Sim, Fanyu Wen, Chuan-Sheng Foo, See-Kiong Ng, Bryan Kian Hsiang Low
Abstract:
Large language model (LLM) unlearning is critical in real-world applications where it is necessary to efficiently remove the influence of private, copyrighted, or harmful data from some users. However, existing utility-centric unlearning metrics (based on model utility) may fail to accurately evaluate the extent of unlearning in realistic settings such as when (a) the forget and retain set have semantically similar content, (b) retraining the model from scratch on the retain set is impractical, and/or (c) the model owner can improve the unlearning metric without directly performing unlearning on the LLM. This paper presents the first data-centric unlearning metric for LLMs called WaterDrum that exploits robust text watermarking for overcoming these limitations. We also introduce new benchmark datasets for LLM unlearning that contain varying levels of similar data points and can be used to rigorously evaluate unlearning algorithms using WaterDrum. Our code is available at https://github.com/lululu008/WaterDrum and our new benchmark datasets are released at https://huggingface.co/datasets/Glow-AI/WaterDrum-Ax.
Authors:Kahim Wong, Jicheng Zhou, Jiantao Zhou, Yain-Whar Si
Abstract:
The rise of LLMs has increased concerns over source tracing and copyright protection for AIGC, highlighting the need for advanced detection technologies. Passive detection methods usually face high false positives, while active watermarking techniques using logits or sampling manipulation offer more effective protection. Existing LLM watermarking methods, though effective on unaltered content, suffer significant performance drops when the text is modified and could introduce biases that degrade LLM performance in downstream tasks. These methods fail to achieve an optimal tradeoff between text quality and robustness, particularly due to the lack of end-to-end optimization of the encoder and decoder. In this paper, we introduce a novel end-to-end logits perturbation method for watermarking LLM-generated text. By jointly optimization, our approach achieves a better balance between quality and robustness. To address non-differentiable operations in the end-to-end training pipeline, we introduce an online prompting technique that leverages the on-the-fly LLM as a differentiable surrogate. Our method achieves superior robustness, outperforming distortion-free methods by 37-39% under paraphrasing and 17.2% on average, while maintaining text quality on par with these distortion-free methods in terms of text perplexity and downstream tasks. Our method can be easily generalized to different LLMs. Code is available at https://github.com/KAHIMWONG/E2E_LLM_WM.
Authors:Mohammadreza Teymoorianfard, Shiqing Ma, Amir Houmansadr
Abstract:
The rapid rise of video diffusion models has enabled the generation of highly realistic and temporally coherent videos, raising critical concerns about content authenticity, provenance, and misuse. Existing watermarking approaches, whether passive, post-hoc, or adapted from image-based techniques, often struggle to withstand video-specific manipulations such as frame insertion, dropping, or reordering, and typically degrade visual quality. In this work, we introduce VIDSTAMP, a watermarking framework that embeds per-frame or per-segment messages directly into the latent space of temporally-aware video diffusion models. By fine-tuning the model's decoder through a two-stage pipeline, first on static image datasets to promote spatial message separation, and then on synthesized video sequences to restore temporal consistency, VIDSTAMP learns to embed high-capacity, flexible watermarks with minimal perceptual impact. Leveraging architectural components such as 3D convolutions and temporal attention, our method imposes no additional inference cost and offers better perceptual quality than prior methods, while maintaining comparable robustness against common distortions and tampering. VIDSTAMP embeds 768 bits per video (48 bits per frame) with a bit accuracy of 95.0%, achieves a log P-value of -166.65 (lower is better), and maintains a video quality score of 0.836, comparable to unwatermarked outputs (0.838) and surpassing prior methods in capacity-quality tradeoffs. Code: Code: \url{https://github.com/SPIN-UMass/VidStamp}
Authors:Xuming Hu, Hanqian Li, Jungang Li, Yu Huang, Aiwei Liu
Abstract:
This work introduces \textbf{VideoMark}, a distortion-free robust watermarking framework for video diffusion models. As diffusion models excel in generating realistic videos, reliable content attribution is increasingly critical. However, existing video watermarking methods often introduce distortion by altering the initial distribution of diffusion variables and are vulnerable to temporal attacks, such as frame deletion, due to variable video lengths. VideoMark addresses these challenges by employing a \textbf{pure pseudorandom initialization} to embed watermarks, avoiding distortion while ensuring uniform noise distribution in the latent space to preserve generation quality. To enhance robustness, we adopt a frame-wise watermarking strategy with pseudorandom error correction (PRC) codes, using a fixed watermark sequence with randomly selected starting indices for each video. For watermark extraction, we propose a Temporal Matching Module (TMM) that leverages edit distance to align decoded messages with the original watermark sequence, ensuring resilience against temporal attacks. Experimental results show that VideoMark achieves higher decoding accuracy than existing methods while maintaining video quality comparable to watermark-free generation. The watermark remains imperceptible to attackers without the secret key, offering superior invisibility compared to other frameworks. VideoMark provides a practical, training-free solution for content attribution in diffusion-based video generation. Code and data are available at \href{https://github.com/KYRIE-LI11/VideoMark}{https://github.com/KYRIE-LI11/VideoMark}{Project Page}.
Authors:Saksham Rastogi, Pratyush Maini, Danish Pruthi
Abstract:
Given how large parts of publicly available text are crawled to pretrain large language models (LLMs), data creators increasingly worry about the inclusion of their proprietary data for model training without attribution or licensing. Their concerns are also shared by benchmark curators whose test-sets might be compromised. In this paper, we present STAMP, a framework for detecting dataset membership-i.e., determining the inclusion of a dataset in the pretraining corpora of LLMs. Given an original piece of content, our proposal involves first generating multiple rephrases, each embedding a watermark with a unique secret key. One version is to be released publicly, while others are to be kept private. Subsequently, creators can compare model likelihoods between public and private versions using paired statistical tests to prove membership. We show that our framework can successfully detect contamination across four benchmarks which appear only once in the training data and constitute less than 0.001% of the total tokens, outperforming several contamination detection and dataset inference baselines. We verify that STAMP preserves both the semantic meaning and utility of the original data. We apply STAMP to two real-world scenarios to confirm the inclusion of paper abstracts and blog articles in the pretraining corpora.
Authors:Linkang Du, Zheng Zhu, Min Chen, Zhou Su, Shouling Ji, Peng Cheng, Jiming Chen, Zhikun Zhang
Abstract:
Text-to-image models based on diffusion processes, such as DALL-E, Stable Diffusion, and Midjourney, are capable of transforming texts into detailed images and have widespread applications in art and design. As such, amateur users can easily imitate professional-level paintings by collecting an artist's work and fine-tuning the model, leading to concerns about artworks' copyright infringement. To tackle these issues, previous studies either add visually imperceptible perturbation to the artwork to change its underlying styles (perturbation-based methods) or embed post-training detectable watermarks in the artwork (watermark-based methods). However, when the artwork or the model has been published online, i.e., modification to the original artwork or model retraining is not feasible, these strategies might not be viable.
To this end, we propose a novel method for data-use auditing in the text-to-image generation model. The general idea of ArtistAuditor is to identify if a suspicious model has been finetuned using the artworks of specific artists by analyzing the features related to the style. Concretely, ArtistAuditor employs a style extractor to obtain the multi-granularity style representations and treats artworks as samplings of an artist's style. Then, ArtistAuditor queries a trained discriminator to gain the auditing decisions. The experimental results on six combinations of models and datasets show that ArtistAuditor can achieve high AUC values (> 0.937). By studying ArtistAuditor's transferability and core modules, we provide valuable insights into the practical implementation. Finally, we demonstrate the effectiveness of ArtistAuditor in real-world cases by an online platform Scenario. ArtistAuditor is open-sourced at https://github.com/Jozenn/ArtistAuditor.
Authors:Inzamamul Alam, Md Tanvir Islam, Simon S. Woo
Abstract:
As digital content becomes increasingly ubiquitous, the need for robust watermark removal techniques has grown due to the inadequacy of existing embedding techniques, which lack robustness. This paper introduces a novel Saliency-Aware Diffusion Reconstruction (SADRE) framework for watermark elimination on the web, combining adaptive noise injection, region-specific perturbations, and advanced diffusion-based reconstruction. SADRE disrupts embedded watermarks by injecting targeted noise into latent representations guided by saliency masks although preserving essential image features. A reverse diffusion process ensures high-fidelity image restoration, leveraging adaptive noise levels determined by watermark strength. Our framework is theoretically grounded with stability guarantees and achieves robust watermark removal across diverse scenarios. Empirical evaluations on state-of-the-art (SOTA) watermarking techniques demonstrate SADRE's superiority in balancing watermark disruption and image quality. SADRE sets a new benchmark for watermark elimination, offering a flexible and reliable solution for real-world web content. Code is available on~\href{https://github.com/inzamamulDU/SADRE}{\textbf{https://github.com/inzamamulDU/SADRE}}.
Authors:Yuan Xiao, Yuchen Chen, Shiqing Ma, Haocheng Huang, Chunrong Fang, Yanwei Chen, Weisong Sun, Yunfeng Zhu, Xiaofang Zhang, Zhenyu Chen
Abstract:
Watermarking is a technique to help identify the source of data points, which can be used to help prevent the misuse of protected datasets. Existing methods on code watermarking, leveraging the idea from the backdoor research, embed stealthy triggers as watermarks. Despite their high resilience against dilution attacks and backdoor detections, the robustness has not been fully evaluated. To fill this gap, we propose DeCoMa, a dual-channel approach to Detect and purify Code dataset waterMarks. To overcome the high barrier created by the stealthy and hidden nature of code watermarks, DeCoMa leverages dual-channel constraints on code to generalize and map code samples into standardized templates. Subsequently, DeCoMa extracts hidden watermarks by identifying outlier associations between paired elements within the standardized templates. Finally, DeCoMa purifies the watermarked dataset by removing all samples containing the detected watermark, enabling the silent appropriation of protected code. We conduct extensive experiments to evaluate the effectiveness and efficiency of DeCoMa, covering 14 types of code watermarks and 3 representative intelligent code tasks (a total of 14 scenarios). Experimental results demonstrate that DeCoMa achieves a stable recall of 100% in 14 code watermark detection scenarios, significantly outperforming the baselines. Additionally, DeCoMa effectively attacks code watermarks with embedding rates as low as 0.1%, while maintaining comparable model performance after training on the purified dataset. Furthermore, as DeCoMa requires no model training for detection, it achieves substantially higher efficiency than all baselines, with a speedup ranging from 31.5 to 130.9X. The results call for more advanced watermarking techniques for code models, while DeCoMa can serve as a baseline for future evaluation. Code is available at https://github.com/xiaoyuanpigo/DeCoMa
Authors:Li An, Yujian Liu, Yepeng Liu, Yang Zhang, Yuheng Bu, Shiyu Chang
Abstract:
Watermarking has emerged as a promising technique for detecting texts generated by LLMs. Current research has primarily focused on three design criteria: high quality of the watermarked text, high detectability, and robustness against removal attack. However, the security against spoofing attacks remains relatively understudied. For example, a piggyback attack can maliciously alter the meaning of watermarked text-transforming it into hate speech-while preserving the original watermark, thereby damaging the reputation of the LLM provider. We identify two core challenges that make defending against spoofing difficult: (1) the need for watermarks to be both sensitive to semantic-distorting changes and insensitive to semantic-preserving edits, and (2) the contradiction between the need to detect global semantic shifts and the local, auto-regressive nature of most watermarking schemes. To address these challenges, we propose a semantic-aware watermarking algorithm that post-hoc embeds watermarks into a given target text while preserving its original meaning. Our method introduces a semantic mapping model, which guides the generation of a green-red token list, contrastively trained to be sensitive to semantic-distorting changes and insensitive to semantic-preserving changes. Experiments on two standard benchmarks demonstrate strong robustness against removal attacks and security against spoofing attacks, including sentiment reversal and toxic content insertion, while maintaining high watermark detectability. Our approach offers a significant step toward more secure and semantically aware watermarking for LLMs. Our code is available at https://github.com/UCSB-NLP-Chang/contrastive-watermark.
Authors:Ved Umrajkar, Aakash Kumar Singh
Abstract:
Tree-Ring Watermarking is a significant technique for authenticating AI-generated images. However, its effectiveness in rectified flow-based models remains unexplored, particularly given the inherent challenges of these models with noise latent inversion. Through extensive experimentation, we evaluated and compared the detection and separability of watermarks between SD 2.1 and FLUX.1-dev models. By analyzing various text guidance configurations and augmentation attacks, we demonstrate how inversion limitations affect both watermark recovery and the statistical separation between watermarked and unwatermarked images. Our findings provide valuable insights into the current limitations of Tree-Ring Watermarking in the current SOTA models and highlight the critical need for improved inversion methods to achieve reliable watermark detection and separability. The official implementation, dataset release and all experimental results are available at this \href{https://github.com/dsgiitr/flux-watermarking}{\textbf{link}}.
Authors:Kahim Wong, Jicheng Zhou, Kemou Li, Yain-Whar Si, Xiaowei Wu, Jiantao Zhou
Abstract:
The proliferation of AI-generated content brings significant concerns on the forensic and security issues such as source tracing, copyright protection, etc, highlighting the need for effective watermarking technologies. Font-based text watermarking has emerged as an effective solution to embed information, which could ensure copyright, traceability, and compliance of the generated text content. Existing font watermarking methods usually neglect essential font knowledge, which leads to watermarked fonts of low quality and limited embedding capacity. These methods are also vulnerable to real-world distortions, low-resolution fonts, and inaccurate character segmentation. In this paper, we introduce FontGuard, a novel font watermarking model that harnesses the capabilities of font models and language-guided contrastive learning. Unlike previous methods that focus solely on the pixel-level alteration, FontGuard modifies fonts by altering hidden style features, resulting in better font quality upon watermark embedding. We also leverage the font manifold to increase the embedding capacity of our proposed method by generating substantial font variants closely resembling the original font. Furthermore, in the decoder, we employ an image-text contrastive learning to reconstruct the embedded bits, which can achieve desirable robustness against various real-world transmission distortions. FontGuard outperforms state-of-the-art methods by +5.4%, +7.4%, and +5.8% in decoding accuracy under synthetic, cross-media, and online social network distortions, respectively, while improving the visual quality by 52.7% in terms of LPIPS. Moreover, FontGuard uniquely allows the generation of watermarked fonts for unseen fonts without re-training the network. The code and dataset are available at https://github.com/KAHIMWONG/FontGuard.
Authors:Haitong Liu, Kuofeng Gao, Yang Bai, Jinmin Li, Jinxiao Shan, Tao Dai, Shu-Tao Xia
Abstract:
Recently, video-based large language models (video-based LLMs) have achieved impressive performance across various video comprehension tasks. However, this rapid advancement raises significant privacy and security concerns, particularly regarding the unauthorized use of personal video data in automated annotation by video-based LLMs. These unauthorized annotated video-text pairs can then be used to improve the performance of downstream tasks, such as text-to-video generation. To safeguard personal videos from unauthorized use, we propose two series of protective video watermarks with imperceptible adversarial perturbations, named Ramblings and Mutes. Concretely, Ramblings aim to mislead video-based LLMs into generating inaccurate captions for the videos, thereby degrading the quality of video annotations through inconsistencies between video content and captions. Mutes, on the other hand, are designed to prompt video-based LLMs to produce exceptionally brief captions, lacking descriptive detail. Extensive experiments demonstrate that our video watermarking methods effectively protect video data by significantly reducing video annotation performance across various video-based LLMs, showcasing both stealthiness and robustness in protecting personal video content. Our code is available at https://github.com/ttthhl/Protecting_Your_Video_Content.
Authors:Shuhao Zhang, Bo Cheng, Jiale Han, Yuli Chen, Zhixuan Wu, Changbao Li, Pingli Gu
Abstract:
Text watermarking provides an effective solution for identifying synthetic text generated by large language models. However, existing techniques often focus on satisfying specific criteria while ignoring other key aspects, lacking a unified evaluation. To fill this gap, we propose the Comprehensive Evaluation Framework for Watermark (CEFW), a unified framework that comprehensively evaluates watermarking methods across five key dimensions: ease of detection, fidelity of text quality, minimal embedding cost, robustness to adversarial attacks, and imperceptibility to prevent imitation or forgery. By assessing watermarks according to all these key criteria, CEFW offers a thorough evaluation of their practicality and effectiveness. Moreover, we introduce a simple and effective watermarking method called Balanced Watermark (BW), which guarantees robustness and imperceptibility through balancing the way watermark information is added. Extensive experiments show that BW outperforms existing methods in overall performance across all evaluation dimensions. We release our code to the community for future research. https://github.com/DrankXs/BalancedWatermark.
Authors:Yizhu Wen, Ashwin Innuganti, Aaron Bien Ramos, Hanqing Guo, Qiben Yan
Abstract:
Audio watermarking is increasingly used to verify the provenance of AI-generated content, enabling applications such as detecting AI-generated speech, protecting music IP, and defending against voice cloning. To be effective, audio watermarks must resist removal attacks that distort signals to evade detection. While many schemes claim robustness, these claims are typically tested in isolation and against a limited set of attacks. A systematic evaluation against diverse removal attacks is lacking, hindering practical deployment. In this paper, we investigate whether recent watermarking schemes that claim robustness can withstand a broad range of removal attacks. First, we introduce a taxonomy covering 22 audio watermarking schemes. Next, we summarize their underlying technologies and potential vulnerabilities. We then present a large-scale empirical study to assess their robustness. To support this, we build an evaluation framework encompassing 22 types of removal attacks (109 configurations) including signal-level, physical-level, and AI-induced distortions. We reproduce 9 watermarking schemes using open-source code, identify 8 new highly effective attacks, and highlight 11 key findings that expose the fundamental limitations of these methods across 3 public datasets. Our results reveal that none of the surveyed schemes can withstand all tested distortions. This evaluation offers a comprehensive view of how current watermarking methods perform under real-world threats. Our demo and code are available at https://sokaudiowm.github.io/.
Authors:Yiming Li, Kaiying Yan, Shuo Shao, Tongqing Zhai, Shu-Tao Xia, Zhan Qin, Dacheng Tao
Abstract:
With the increasing adoption of deep learning in speaker verification, large-scale speech datasets have become valuable intellectual property. To audit and prevent the unauthorized usage of these valuable released datasets, especially in commercial or open-source scenarios, we propose a novel dataset ownership verification method. Our approach introduces a clustering-based backdoor watermark (CBW), enabling dataset owners to determine whether a suspicious third-party model has been trained on a protected dataset under a black-box setting. The CBW method consists of two key stages: dataset watermarking and ownership verification. During watermarking, we implant multiple trigger patterns in the dataset to make similar samples (measured by their feature similarities) close to the same trigger while dissimilar samples are near different triggers. This ensures that any model trained on the watermarked dataset exhibits specific misclassification behaviors when exposed to trigger-embedded inputs. To verify dataset ownership, we design a hypothesis-test-based framework that statistically evaluates whether a suspicious model exhibits the expected backdoor behavior. We conduct extensive experiments on benchmark datasets, verifying the effectiveness and robustness of our method against potential adaptive attacks. The code for reproducing main experiments is available at https://github.com/Radiant0726/CBW
Authors:Ziyuan Luo, Anderson Rocha, Boxin Shi, Qing Guo, Haoliang Li, Renjie Wan
Abstract:
Neural Radiance Fields (NeRF) have been gaining attention as a significant form of 3D content representation. With the proliferation of NeRF-based creations, the need for copyright protection has emerged as a critical issue. Although some approaches have been proposed to embed digital watermarks into NeRF, they often neglect essential model-level considerations and incur substantial time overheads, resulting in reduced imperceptibility and robustness, along with user inconvenience. In this paper, we extend the previous criteria for image watermarking to the model level and propose NeRF Signature, a novel watermarking method for NeRF. We employ a Codebook-aided Signature Embedding (CSE) that does not alter the model structure, thereby maintaining imperceptibility and enhancing robustness at the model level. Furthermore, after optimization, any desired signatures can be embedded through the CSE, and no fine-tuning is required when NeRF owners want to use new binary signatures. Then, we introduce a joint pose-patch encryption watermarking strategy to hide signatures into patches rendered from a specific viewpoint for higher robustness. In addition, we explore a Complexity-Aware Key Selection (CAKS) scheme to embed signatures in high visual complexity patches to enhance imperceptibility. The experimental results demonstrate that our method outperforms other baseline methods in terms of imperceptibility and robustness. The source code is available at: https://github.com/luo-ziyuan/NeRF_Signature.
Authors:Jungin Kim, Shinwoo Park, Yo-Sub Han
Abstract:
Code watermarking identifies AI-generated code by embedding patterns into the code during generation. Effective watermarking requires meeting two key conditions: the watermark should be reliably detectable, and the code should retain its original functionality. However, existing methods often modify tokens that are critical for program logic, such as keywords in conditional expressions or operators in arithmetic computations. These modifications can cause syntax errors or functional failures, limiting the practical use of watermarking. We present STONE, a method that preserves functional integrity by selectively inserting watermarks only into non-syntax tokens. By excluding tokens essential for code execution, STONE minimizes the risk of functional degradation.
In addition, we introduce CWEM, a comprehensive evaluation metric that evaluates watermarking techniques based on correctness, detectability, and naturalness. While correctness and detectability have been widely used, naturalness remains underexplored despite its importance. Unnatural patterns can reveal the presence of a watermark, making it easier for adversaries to remove. We evaluate STONE using CWEM and compare its performance with the state-of-the-art approach. The results show that STONE achieves an average improvement of 7.69% in CWEM across Python, C++, and Java. Our code is available in https://github.com/inistory/STONE-watermarking/.
Authors:Leyi Pan, Aiwei Liu, Shiyu Huang, Yijian Lu, Xuming Hu, Lijie Wen, Irwin King, Philip S. Yu
Abstract:
The radioactive nature of Large Language Model (LLM) watermarking enables the detection of watermarks inherited by student models when trained on the outputs of watermarked teacher models, making it a promising tool for preventing unauthorized knowledge distillation. However, the robustness of watermark radioactivity against adversarial actors remains largely unexplored. In this paper, we investigate whether student models can acquire the capabilities of teacher models through knowledge distillation while avoiding watermark inheritance. We propose two categories of watermark removal approaches: pre-distillation removal through untargeted and targeted training data paraphrasing (UP and TP), and post-distillation removal through inference-time watermark neutralization (WN). Extensive experiments across multiple model pairs, watermarking schemes and hyper-parameter settings demonstrate that both TP and WN thoroughly eliminate inherited watermarks, with WN achieving this while maintaining knowledge transfer efficiency and low computational overhead. Given the ongoing deployment of watermarking techniques in production LLMs, these findings emphasize the urgent need for more robust defense strategies. Our code is available at https://github.com/THU-BPM/Watermark-Radioactivity-Attack.
Authors:Pierre Fernandez
Abstract:
Watermarking embeds information into digital content like images, audio, or text, imperceptible to humans but robustly detectable by specific algorithms. This technology has important applications in many challenges of the industry such as content moderation, tracing AI-generated content, and monitoring the usage of AI models. The contributions of this thesis include the development of new watermarking techniques for images, audio, and text. We first introduce methods for active moderation of images on social platforms. We then develop specific techniques for AI-generated content. We specifically demonstrate methods to adapt latent generative models to embed watermarks in all generated content, identify watermarked sections in speech, and improve watermarking in large language models with tests that ensure low false positive rates. Furthermore, we explore the use of digital watermarking to detect model misuse, including the detection of watermarks in language models fine-tuned on watermarked text, and introduce training-free watermarks for the weights of large transformers. Through these contributions, the thesis provides effective solutions for the challenges posed by the increasing use of generative AI models and the need for model monitoring and content moderation. It finally examines the challenges and limitations of watermarking techniques and discuss potential future directions for research in this area.
Authors:Yixin Liu, Lie Lu, Jihui Jin, Lichao Sun, Andrea Fanelli
Abstract:
The rapid proliferation of generative audio synthesis and editing technologies has raised significant concerns about copyright infringement, data provenance, and the spread of misinformation through deepfake audio. Watermarking offers a proactive solution by embedding imperceptible, identifiable, and traceable marks into audio content. While recent neural network-based watermarking methods like WavMark and AudioSeal have improved robustness and quality, they struggle to achieve both robust detection and accurate attribution simultaneously. This paper introduces Cross-Attention Robust Audio Watermark (XAttnMark), which bridges this gap by leveraging partial parameter sharing between the generator and the detector, a cross-attention mechanism for efficient message retrieval, and a temporal conditioning module for improved message distribution. Additionally, we propose a psychoacoustic-aligned temporal-frequency masking loss that captures fine-grained auditory masking effects, enhancing watermark imperceptibility. Our approach achieves state-of-the-art performance in both detection and attribution, demonstrating superior robustness against a wide range of audio transformations, including challenging generative editing with strong editing strength. The project webpage is available at https://liuyixin-louis.github.io/xattnmark/.
Authors:Rui Min, Tianyu Pang, Chao Du, Qian Liu, Minhao Cheng, Min Lin
Abstract:
Chatbot Arena is a popular platform for evaluating LLMs by pairwise battles, where users vote for their preferred response from two randomly sampled anonymous models. While Chatbot Arena is widely regarded as a reliable LLM ranking leaderboard, we show that crowdsourced voting can be rigged to improve (or decrease) the ranking of a target model $m_{t}$. We first introduce a straightforward target-only rigging strategy that focuses on new battles involving $m_{t}$, identifying it via watermarking or a binary classifier, and exclusively voting for $m_{t}$ wins. However, this strategy is practically inefficient because there are over $190$ models on Chatbot Arena and on average only about $1\%$ of new battles will involve $m_{t}$. To overcome this, we propose omnipresent rigging strategies, exploiting the Elo rating mechanism of Chatbot Arena that any new vote on a battle can influence the ranking of the target model $m_{t}$, even if $m_{t}$ is not directly involved in the battle. We conduct experiments on around $1.7$ million historical votes from the Chatbot Arena Notebook, showing that omnipresent rigging strategies can improve model rankings by rigging only hundreds of new votes. While we have evaluated several defense mechanisms, our findings highlight the importance of continued efforts to prevent vote rigging. Our code is available at https://github.com/sail-sg/Rigging-ChatbotArena.
Authors:Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, Tianwei Zhang
Abstract:
Artificial Intelligence Generated Content (AIGC) has advanced significantly, particularly with the development of video generation models such as text-to-video (T2V) models and image-to-video (I2V) models. However, like other AIGC types, video generation requires robust content control. A common approach is to embed watermarks, but most research has focused on images, with limited attention given to videos. Traditional methods, which embed watermarks frame-by-frame in a post-processing manner, often degrade video quality. In this paper, we propose VideoShield, a novel watermarking framework specifically designed for popular diffusion-based video generation models. Unlike post-processing methods, VideoShield embeds watermarks directly during video generation, eliminating the need for additional training. To ensure video integrity, we introduce a tamper localization feature that can detect changes both temporally (across frames) and spatially (within individual frames). Our method maps watermark bits to template bits, which are then used to generate watermarked noise during the denoising process. Using DDIM Inversion, we can reverse the video to its original watermarked noise, enabling straightforward watermark extraction. Additionally, template bits allow precise detection for potential temporal and spatial modification. Extensive experiments across various video models (both T2V and I2V models) demonstrate that our method effectively extracts watermarks and detects tamper without compromising video quality. Furthermore, we show that this approach is applicable to image generation models, enabling tamper detection in generated images as well. Codes and models are available at https://github.com/hurunyi/VideoShield.
Authors:Yixiao Xu, Binxing Fang, Rui Wang, Yinghai Zhou, Yuan Liu, Mohan Li, Zhihong Tian
Abstract:
Developing high-performance deep learning models is resource-intensive, leading model owners to utilize Machine Learning as a Service (MLaaS) platforms instead of publicly releasing their models. However, malicious users may exploit query interfaces to execute model extraction attacks, reconstructing the target model's functionality locally. While prior research has investigated triggerable watermarking techniques for asserting ownership, existing methods face significant challenges: (1) most approaches require additional training, resulting in high overhead and limited flexibility, and (2) they often fail to account for advanced attackers, leaving them vulnerable to adaptive attacks.
In this paper, we propose Neural Honeytrace, a robust plug-and-play watermarking framework against model extraction attacks. We first formulate a watermark transmission model from an information-theoretic perspective, providing an interpretable account of the principles and limitations of existing triggerable watermarking. Guided by the model, we further introduce: (1) a similarity-based training-free watermarking method for plug-and-play and flexible watermarking, and (2) a distribution-based multi-step watermark information transmission strategy for robust watermarking. Comprehensive experiments on four datasets demonstrate that Neural Honeytrace outperforms previous methods in efficiency and resisting adaptive attacks. Neural Honeytrace reduces the average number of samples required for a worst-case t-Test-based copyright claim from 193,252 to 1,857 with zero training cost. The code is available at https://github.com/NeurHT/NeurHT.
Authors:Shengpeng Ji, Ziyue Jiang, Jialong Zuo, Minghui Fang, Yifu Chen, Tao Jin, Zhou Zhao
Abstract:
Speech watermarking techniques can proactively mitigate the potential harmful consequences of instant voice cloning techniques. These techniques involve the insertion of signals into speech that are imperceptible to humans but can be detected by algorithms. Previous approaches typically embed watermark messages into continuous space. However, intuitively, embedding watermark information into robust discrete latent space can significantly improve the robustness of watermarking systems. In this paper, we propose DiscreteWM, a novel speech watermarking framework that injects watermarks into the discrete intermediate representations of speech. Specifically, we map speech into discrete latent space with a vector-quantized autoencoder and inject watermarks by changing the modular arithmetic relation of discrete IDs. To ensure the imperceptibility of watermarks, we also propose a manipulator model to select the candidate tokens for watermark embedding. Experimental results demonstrate that our framework achieves state-of-the-art performance in robustness and imperceptibility, simultaneously. Moreover, our flexible frame-wise approach can serve as an efficient solution for both voice cloning detection and information hiding. Additionally, DiscreteWM can encode 1 to 150 bits of watermark information within a 1-second speech clip, indicating its encoding capacity. Audio samples are available at https://DiscreteWM.github.io/discrete_wm.
Authors:Dongjun Hwang, Sungwon Woo, Tom Gao, Raymond Luo, Sunghwan Baek
Abstract:
As Generative AI continues to become more accessible, the case for robust detection of generated images in order to combat misinformation is stronger than ever. Invisible watermarking methods act as identifiers of generated content, embedding image- and latent-space messages that are robust to many forms of perturbations. The majority of current research investigates full-image attacks against images with a single watermarking method applied. We introduce novel improvements to watermarking robustness as well as minimizing degradation on image quality during attack. Firstly, we examine the application of both image-space and latent-space watermarking methods on a single image, where we propose a custom watermark remover network which preserves one of the watermarking modalities while completely removing the other during decoding. Then, we investigate localized blurring attacks (LBA) on watermarked images based on the GradCAM heatmap acquired from the watermark decoder in order to reduce the amount of degradation to the target image. Our evaluation suggests that 1) implementing the watermark remover model to preserve one of the watermark modalities when decoding the other modality slightly improves on the baseline performance, and that 2) LBA degrades the image significantly less compared to uniform blurring of the entire image. Code is available at: https://github.com/tomputer-g/IDL_WAR
Authors:Pierre Fernandez, Hady Elsahar, I. Zeki Yalniz, Alexandre Mourachko
Abstract:
The proliferation of AI-generated content and sophisticated video editing tools has made it both important and challenging to moderate digital platforms. Video watermarking addresses these challenges by embedding imperceptible signals into videos, allowing for identification. However, the rare open tools and methods often fall short on efficiency, robustness, and flexibility. To reduce these gaps, this paper introduces Video Seal, a comprehensive framework for neural video watermarking and a competitive open-sourced model. Our approach jointly trains an embedder and an extractor, while ensuring the watermark robustness by applying transformations in-between, e.g., video codecs. This training is multistage and includes image pre-training, hybrid post-training and extractor fine-tuning. We also introduce temporal watermark propagation, a technique to convert any image watermarking model to an efficient video watermarking model without the need to watermark every high-resolution frame. We present experimental results demonstrating the effectiveness of the approach in terms of speed, imperceptibility, and robustness. Video Seal achieves higher robustness compared to strong baselines especially under challenging distortions combining geometric transformations and video compression. Additionally, we provide new insights such as the impact of video compression during training, and how to compare methods operating on different payloads. Contributions in this work - including the codebase, models, and a public demo - are open-sourced under permissive licenses to foster further research and development in the field.
Authors:Zilan Wang, Junfeng Guo, Jiacheng Zhu, Yiming Li, Heng Huang, Muhao Chen, Zhengzhong Tu
Abstract:
Recent advances in large-scale text-to-image (T2I) diffusion models have enabled a variety of downstream applications, including style customization, subject-driven personalization, and conditional generation. As T2I models require extensive data and computational resources for training, they constitute highly valued intellectual property (IP) for their legitimate owners, yet making them incentive targets for unauthorized fine-tuning by adversaries seeking to leverage these models for customized, usually profitable applications. Existing IP protection methods for diffusion models generally involve embedding watermark patterns and then verifying ownership through generated outputs examination, or inspecting the model's feature space. However, these techniques are inherently ineffective in practical scenarios when the watermarked model undergoes fine-tuning, and the feature space is inaccessible during verification ((i.e., black-box setting). The model is prone to forgetting the previously learned watermark knowledge when it adapts to a new task. To address this challenge, we propose SleeperMark, a novel framework designed to embed resilient watermarks into T2I diffusion models. SleeperMark explicitly guides the model to disentangle the watermark information from the semantic concepts it learns, allowing the model to retain the embedded watermark while continuing to be adapted to new downstream tasks. Our extensive experiments demonstrate the effectiveness of SleeperMark across various types of diffusion models, including latent diffusion models (e.g., Stable Diffusion) and pixel diffusion models (e.g., DeepFloyd-IF), showing robustness against downstream fine-tuning and various attacks at both the image and model levels, with minimal impact on the model's generative capability. The code is available at https://github.com/taco-group/SleeperMark.
Authors:Xiaojun Xu, Jinghan Jia, Yuanshun Yao, Yang Liu, Hang Li
Abstract:
We propose an imperceptible multi-bit text watermark embedded by paraphrasing with LLMs. We fine-tune a pair of LLM paraphrasers that are designed to behave differently so that their paraphrasing difference reflected in the text semantics can be identified by a trained decoder. To embed our multi-bit watermark, we use two paraphrasers alternatively to encode the pre-defined binary code at the sentence level. Then we use a text classifier as the decoder to decode each bit of the watermark. Through extensive experiments, we show that our watermarks can achieve over 99.99\% detection AUC with small (1.1B) text paraphrasers while keeping the semantic information of the original sentence. More importantly, our pipeline is robust under word substitution and sentence paraphrasing perturbations and generalizes well to out-of-distributional data. We also show the stealthiness of our watermark with LLM-based evaluation. We open-source the code: https://github.com/xiaojunxu/multi-bit-text-watermark.
Authors:Qilong Wu, Varun Chandrasekaran
Abstract:
Watermarking approaches are widely used to identify if images being circulated are authentic or AI-generated. Determining the robustness of image watermarking methods in the ``no-box'' setting, where the attacker is assumed to have no knowledge about the watermarking model, is an interesting problem. Our main finding is that evading the no-box setting is challenging: the success of optimization-based transfer attacks (involving training surrogate models) proposed in prior work~\cite{hu2024transfer} depends on impractical assumptions, including (i) aligning the architecture and training configurations of both the victim and attacker's surrogate watermarking models, as well as (ii) a large number of surrogate models with potentially large computational requirements. Relaxing these assumptions i.e., moving to a more pragmatic threat model results in a failed attack, with an evasion rate at most $21.1\%$. We show that when the configuration is mostly aligned, a simple non-optimization attack we propose, OFT, with one single surrogate model can already exceed the success of optimization-based efforts. Under the same $\ell_\infty$ norm perturbation budget of $0.25$, prior work~\citet{hu2024transfer} is comparable to or worse than OFT in $11$ out of $12$ configurations and has a limited advantage on the remaining one. The code used for all our experiments is available at \url{https://github.com/Ardor-Wu/transfer}.
Authors:Zixuan Chen, Guangcong Wang, Jiahao Zhu, Jianhuang Lai, Xiaohua Xie
Abstract:
3D Gaussian Splatting (3DGS) has recently created impressive 3D assets for various applications. However, considering security, capacity, invisibility, and training efficiency, the copyright of 3DGS assets is not well protected as existing watermarking methods are unsuited for its rendering pipeline. In this paper, we propose GuardSplat, an innovative and efficient framework for watermarking 3DGS assets. Specifically, 1) We propose a CLIP-guided pipeline for optimizing the message decoder with minimal costs. The key objective is to achieve high-accuracy extraction by leveraging CLIP's aligning capability and rich representations, demonstrating exceptional capacity and efficiency. 2) We tailor a Spherical-Harmonic-aware (SH-aware) Message Embedding module for 3DGS, seamlessly embedding messages into the SH features of each 3D Gaussian while preserving the original 3D structure. This enables watermarking 3DGS assets with minimal fidelity trade-offs and prevents malicious users from removing the watermarks from the model files, meeting the demands for invisibility and security. 3) We present an Anti-distortion Message Extraction module to improve robustness against various distortions. Experiments demonstrate that GuardSplat outperforms state-of-the-art and achieves fast optimization speed. Project page is at https://narcissusex.github.io/GuardSplat, and Code is at https://github.com/NarcissusEx/GuardSplat.
Authors:Georg Niess, Roman Kern
Abstract:
As large language models (LLMs) reach human-like fluency, reliably distinguishing AI-generated text from human authorship becomes increasingly difficult. While watermarks already exist for LLMs, they often lack flexibility and struggle with attacks such as paraphrasing. To address these issues, we propose a multi-feature method for generating watermarks that combines multiple distinct watermark features into an ensemble watermark. Concretely, we combine acrostica and sensorimotor norms with the established red-green watermark to achieve a 98% detection rate. After a paraphrasing attack, the performance remains high with 95% detection rate. In comparison, the red-green feature alone as a baseline achieves a detection rate of 49% after paraphrasing. The evaluation of all feature combinations reveals that the ensemble of all three consistently has the highest detection rate across several LLMs and watermark strength settings. Due to the flexibility of combining features in the ensemble, various requirements and trade-offs can be addressed. Additionally, the same detection function can be used without adaptations for all ensemble configurations. This method is particularly of interest to facilitate accountability and prevent societal harm.
Authors:Moyang Guo, Yuepeng Hu, Zhengyuan Jiang, Zeyu Li, Amir Sadovnik, Arka Daw, Neil Gong
Abstract:
While text-to-image models offer numerous benefits, they also pose significant societal risks. Detecting AI-generated images is crucial for mitigating these risks. Detection methods can be broadly categorized into passive and watermark-based approaches: passive detectors rely on artifacts present in AI-generated images, whereas watermark-based detectors proactively embed watermarks into such images. A key question is which type of detector performs better in terms of effectiveness, robustness, and efficiency. However, the current literature lacks a comprehensive understanding of this issue. In this work, we aim to bridge that gap by developing ImageDetectBench, the first comprehensive benchmark to compare the effectiveness, robustness, and efficiency of passive and watermark-based detectors. Our benchmark includes four datasets, each containing a mix of AI-generated and non-AI-generated images. We evaluate five passive detectors and four watermark-based detectors against eight types of common perturbations and three types of adversarial perturbations. Our benchmark results reveal several interesting findings. For instance, watermark-based detectors consistently outperform passive detectors, both in the presence and absence of perturbations. Based on these insights, we provide recommendations for detecting AI-generated images, e.g., when both types of detectors are applicable, watermark-based detectors should be the preferred choice. Our code and data are publicly available at https://github.com/moyangkuo/ImageDetectBench.git.
Authors:Zekun Fei, Biao Yi, Jianing Geng, Ruiqi He, Lihai Nie, Zheli Liu
Abstract:
Embedding-as-a-Service (EaaS) has emerged as a successful business pattern but faces significant challenges related to various forms of copyright infringement, particularly, the API misuse and model extraction attacks. Various studies have proposed backdoor-based watermarking schemes to protect the copyright of EaaS services. In this paper, we reveal that previous watermarking schemes possess semantic-independent characteristics and propose the Semantic Perturbation Attack (SPA). Our theoretical and experimental analysis demonstrate that this semantic-independent nature makes current watermarking schemes vulnerable to adaptive attacks that exploit semantic perturbations tests to bypass watermark verification. Extensive experimental results across multiple datasets demonstrate that the True Positive Rate (TPR) for identifying watermarked samples under SPA can reach up to more than 95\%, rendering watermarks ineffective while maintaining the high utility of embeddings. Furthermore, we discuss potential defense strategies to mitigate SPA. Our code is available at https://github.com/Zk4-ps/EaaS-Embedding-Watermark.
Authors:Rui Xu, Mengya Hu, Deren Lei, Yaxi Li, David Lowe, Alex Gorevski, Mingyu Wang, Emily Ching, Alex Deng
Abstract:
The proliferation of AI-generated images has intensified the need for robust content authentication methods. We present InvisMark, a novel watermarking technique designed for high-resolution AI-generated images. Our approach leverages advanced neural network architectures and training strategies to embed imperceptible yet highly robust watermarks. InvisMark achieves state-of-the-art performance in imperceptibility (PSNR$\sim$51, SSIM $\sim$ 0.998) while maintaining over 97\% bit accuracy across various image manipulations. Notably, we demonstrate the successful encoding of 256-bit watermarks, significantly expanding payload capacity while preserving image quality. This enables the embedding of UUIDs with error correction codes, achieving near-perfect decoding success rates even under challenging image distortions. We also address potential vulnerabilities against advanced attacks and propose mitigation strategies. By combining high imperceptibility, extended payload capacity, and resilience to manipulations, InvisMark provides a robust foundation for ensuring media provenance in an era of increasingly sophisticated AI-generated content. Source code of this paper is available at: https://github.com/microsoft/InvisMark.
Authors:Tom Sander, Pierre Fernandez, Alain Durmus, Teddy Furon, Matthijs Douze
Abstract:
Image watermarking methods are not tailored to handle small watermarked areas. This restricts applications in real-world scenarios where parts of the image may come from different sources or have been edited. We introduce a deep-learning model for localized image watermarking, dubbed the Watermark Anything Model (WAM). The WAM embedder imperceptibly modifies the input image, while the extractor segments the received image into watermarked and non-watermarked areas and recovers one or several hidden messages from the areas found to be watermarked. The models are jointly trained at low resolution and without perceptual constraints, then post-trained for imperceptibility and multiple watermarks. Experiments show that WAM is competitive with state-of-the art methods in terms of imperceptibility and robustness, especially against inpainting and splicing, even on high-resolution images. Moreover, it offers new capabilities: WAM can locate watermarked areas in spliced images and extract distinct 32-bit messages with less than 1 bit error from multiple small regions -- no larger than 10% of the image surface -- even for small 256x256 images. Training and inference code and model weights are available at https://github.com/facebookresearch/watermark-anything.
Authors:Huayang Huang, Yu Wu, Qian Wang
Abstract:
Watermarking generative content serves as a vital tool for authentication, ownership protection, and mitigation of potential misuse. Existing watermarking methods face the challenge of balancing robustness and concealment. They empirically inject a watermark that is both invisible and robust and passively achieve concealment by limiting the strength of the watermark, thus reducing the robustness. In this paper, we propose to explicitly introduce a watermark hiding process to actively achieve concealment, thus allowing the embedding of stronger watermarks. To be specific, we implant a robust watermark in an intermediate diffusion state and then guide the model to hide the watermark in the final generated image. We employ an adversarial optimization algorithm to produce the optimal hiding prompt guiding signal for each watermark. The prompt embedding is optimized to minimize artifacts in the generated image, while the watermark is optimized to achieve maximum strength. The watermark can be verified by reversing the generation process. Experiments on various diffusion models demonstrate the watermark remains verifiable even under significant image tampering and shows superior invisibility compared to other state-of-the-art robust watermarking methods. Code is available at https://github.com/Hannah1102/ROBIN.
Authors:Qi Song, Ziyuan Luo, Ka Chun Cheung, Simon See, Renjie Wan
Abstract:
Single-view 3D reconstruction methods like Triplane Gaussian Splatting (TGS) have enabled high-quality 3D model generation from just a single image input within seconds. However, this capability raises concerns about potential misuse, where malicious users could exploit TGS to create unauthorized 3D models from copyrighted images. To prevent such infringement, we propose a novel image protection approach that embeds invisible geometry perturbations, termed "geometry cloaks", into images before supplying them to TGS. These carefully crafted perturbations encode a customized message that is revealed when TGS attempts 3D reconstructions of the cloaked image. Unlike conventional adversarial attacks that simply degrade output quality, our method forces TGS to fail the 3D reconstruction in a specific way - by generating an identifiable customized pattern that acts as a watermark. This watermark allows copyright holders to assert ownership over any attempted 3D reconstructions made from their protected images. Extensive experiments have verified the effectiveness of our geometry cloak. Our project is available at https://qsong2001.github.io/geometry_cloak.
Authors:Kaijing Luo, Ka-Ho Chow
Abstract:
Protecting intellectual property (IP) in federated learning (FL) is increasingly important as clients contribute proprietary data to collaboratively train models. Model watermarking, particularly through backdoor-based methods, has emerged as a popular approach for verifying ownership and contributions in deep neural networks trained via FL. By manipulating their datasets, clients can embed a secret pattern, resulting in non-intuitive predictions that serve as proof of participation, useful for claiming incentives or IP co-ownership. However, this technique faces practical challenges: (i) client watermarks can collide, leading to ambiguous ownership claims, and (ii) malicious clients may exploit watermarks to manipulate model predictions for harmful purposes. To address these issues, we propose Sanitizer, a server-side method that ensures client-embedded backdoors can only be activated in harmless environments but not natural queries. It identifies subnets within client-submitted models, extracts backdoors throughout the FL process, and confines them to harmless, client-specific input subspaces. This approach not only enhances Sanitizer's efficiency but also resolves conflicts when clients use similar triggers with different target labels. Our empirical results demonstrate that Sanitizer achieves near-perfect success verifying client contributions while mitigating the risks of malicious watermark use. Additionally, it reduces GPU memory consumption by 85% and cuts processing time by at least 5x compared to the baseline. Our code is open-sourced at https://hku-tasr.github.io/Sanitizer/.
Authors:Wenda Li, Huijie Zhang, Qing Qu
Abstract:
The widespread use of AI-generated content from diffusion models has raised significant concerns regarding misinformation and copyright infringement. Watermarking is a crucial technique for identifying these AI-generated images and preventing their misuse. In this paper, we introduce Shallow Diffuse, a new watermarking technique that embeds robust and invisible watermarks into diffusion model outputs. Unlike existing approaches that integrate watermarking throughout the entire diffusion sampling process, Shallow Diffuse decouples these steps by leveraging the presence of a low-dimensional subspace in the image generation process. This method ensures that a substantial portion of the watermark lies in the null space of this subspace, effectively separating it from the image generation process. Our theoretical and empirical analyses show that this decoupling strategy greatly enhances the consistency of data generation and the detectability of the watermark. Extensive experiments further validate that our Shallow Diffuse outperforms existing watermarking methods in terms of robustness and consistency. The codes will be released at https://github.com/liwd190019/Shallow-Diffuse.
Authors:Xingchi Li, Guanxun Li, Xianyang Zhang
Abstract:
Watermarking is a technique that involves embedding nearly unnoticeable statistical signals within generated content to help trace its source. This work focuses on a scenario where an untrusted third-party user sends prompts to a trusted language model (LLM) provider, who then generates a text from their LLM with a watermark. This setup makes it possible for a detector to later identify the source of the text if the user publishes it. The user can modify the generated text by substitutions, insertions, or deletions. Our objective is to develop a statistical method to detect if a published text is LLM-generated from the perspective of a detector. We further propose a methodology to segment the published text into watermarked and non-watermarked sub-strings. The proposed approach is built upon randomization tests and change point detection techniques. We demonstrate that our method ensures Type I and Type II error control and can accurately identify watermarked sub-strings by finding the corresponding change point locations. To validate our technique, we apply it to texts generated by several language models with prompts extracted from Google's C4 dataset and obtain encouraging numerical results. We release all code publicly at https://github.com/doccstat/llm-watermark-cpd.
Authors:Shilin Lu, Zihan Zhou, Jiayou Lu, Yuanzhi Zhu, Adams Wai-Kin Kong
Abstract:
Current image watermarking methods are vulnerable to advanced image editing techniques enabled by large-scale text-to-image models. These models can distort embedded watermarks during editing, posing significant challenges to copyright protection. In this work, we introduce W-Bench, the first comprehensive benchmark designed to evaluate the robustness of watermarking methods against a wide range of image editing techniques, including image regeneration, global editing, local editing, and image-to-video generation. Through extensive evaluations of eleven representative watermarking methods against prevalent editing techniques, we demonstrate that most methods fail to detect watermarks after such edits. To address this limitation, we propose VINE, a watermarking method that significantly enhances robustness against various image editing techniques while maintaining high image quality. Our approach involves two key innovations: (1) we analyze the frequency characteristics of image editing and identify that blurring distortions exhibit similar frequency properties, which allows us to use them as surrogate attacks during training to bolster watermark robustness; (2) we leverage a large-scale pretrained diffusion model SDXL-Turbo, adapting it for the watermarking task to achieve more imperceptible and robust watermark embedding. Experimental results show that our method achieves outstanding watermarking performance under various image editing techniques, outperforming existing methods in both image quality and robustness. Code is available at https://github.com/Shilin-LU/VINE.
Authors:Yuxin Yang, Qiang Li, Yuan Hong, Binghui Wang
Abstract:
Federated graph learning (FedGL) is an emerging learning paradigm to collaboratively train graph data from various clients. However, during the development and deployment of FedGL models, they are susceptible to illegal copying and model theft. Backdoor-based watermarking is a well-known method for mitigating these attacks, as it offers ownership verification to the model owner. We take the first step to protect the ownership of FedGL models via backdoor-based watermarking. Existing techniques have challenges in achieving the goal: 1) they either cannot be directly applied or yield unsatisfactory performance; 2) they are vulnerable to watermark removal attacks; and 3) they lack of formal guarantees. To address all the challenges, we propose FedGMark, the first certified robust backdoor-based watermarking for FedGL. FedGMark leverages the unique graph structure and client information in FedGL to learn customized and diverse watermarks. It also designs a novel GL architecture that facilitates defending against both the empirical and theoretically worst-case watermark removal attacks. Extensive experiments validate the promising empirical and provable watermarking performance of FedGMark. Source code is available at: https://github.com/Yuxin104/FedGMark.
Authors:Haodong Zhao, Jinming Hu, Peixuan Li, Fangqi Li, Jinrui Sha, Tianjie Ju, Peixuan Chen, Zhuosheng Zhang, Gongshen Liu
Abstract:
Language models (LMs) have emerged as critical intellectual property (IP) assets that necessitate protection. Although various watermarking strategies have been proposed, they remain vulnerable to Linear Functionality Equivalence Attack (LFEA), which can invalidate most existing white-box watermarks without prior knowledge of the watermarking scheme or training data. This paper analyzes and extends the attack scenarios of LFEA to the commonly employed black-box settings for LMs by considering Last-Layer outputs (dubbed LL-LFEA). We discover that the null space of the output matrix remains invariant against LL-LFEA attacks. Based on this finding, we propose NSmark, a black-box watermarking scheme that is task-agnostic and capable of resisting LL-LFEA attacks. NSmark consists of three phases: (i) watermark generation using the digital signature of the owner, enhanced by spread spectrum modulation for increased robustness; (ii) watermark embedding through an output mapping extractor that preserves the LM performance while maximizing watermark capacity; (iii) watermark verification, assessed by extraction rate and null space conformity. Extensive experiments on both pre-training and downstream tasks confirm the effectiveness, scalability, reliability, fidelity, and robustness of our approach. Code is available at https://github.com/dongdongzhaoUP/NSmark.
Authors:Sam Gunn, Xuandong Zhao, Dawn Song
Abstract:
We present the first undetectable watermarking scheme for generative image models. Undetectability ensures that no efficient adversary can distinguish between watermarked and un-watermarked images, even after making many adaptive queries. In particular, an undetectable watermark does not degrade image quality under any efficiently computable metric. Our scheme works by selecting the initial latents of a diffusion model using a pseudorandom error-correcting code (Christ and Gunn, 2024), a strategy which guarantees undetectability and robustness. We experimentally demonstrate that our watermarks are quality-preserving and robust using Stable Diffusion 2.1. Our experiments verify that, in contrast to every prior scheme we tested, our watermark does not degrade image quality. Our experiments also demonstrate robustness: existing watermark removal attacks fail to remove our watermark from images without significantly degrading the quality of the images. Finally, we find that we can robustly encode 512 bits in our watermark, and up to 2500 bits when the images are not subjected to watermark removal attacks. Our code is available at https://github.com/XuandongZhao/PRC-Watermark.
Authors:Yepeng Liu, Yiren Song, Hai Ci, Yu Zhang, Haofan Wang, Mike Zheng Shou, Yuheng Bu
Abstract:
Image watermark techniques provide an effective way to assert ownership, deter misuse, and trace content sources, which has become increasingly essential in the era of large generative models. A critical attribute of watermark techniques is their robustness against various manipulations. In this paper, we introduce a watermark removal approach capable of effectively nullifying state-of-the-art watermarking techniques. Our primary insight involves regenerating the watermarked image starting from a clean Gaussian noise via a controllable diffusion model, utilizing the extracted semantic and spatial features from the watermarked image. The semantic control adapter and the spatial control network are specifically trained to control the denoising process towards ensuring image quality and enhancing consistency between the cleaned image and the original watermarked image. To achieve a smooth trade-off between watermark removal performance and image consistency, we further propose an adjustable and controllable regeneration scheme. This scheme adds varying numbers of noise steps to the latent representation of the watermarked image, followed by a controlled denoising process starting from this noisy latent representation. As the number of noise steps increases, the latent representation progressively approaches clean Gaussian noise, facilitating the desired trade-off. We apply our watermark removal methods across various watermarking techniques, and the results demonstrate that our methods offer superior visual consistency/quality and enhanced watermark removal performance compared to existing regeneration approaches. Our code is available at https://github.com/yepengliu/CtrlRegen.
Authors:Xuandong Zhao, Chenwen Liao, Yu-Xiang Wang, Lei Li
Abstract:
Text watermarks in large language models (LLMs) are increasingly used to detect synthetic text, mitigating misuse cases like fake news and academic dishonesty. While existing watermarking detection techniques primarily focus on classifying entire documents as watermarked or not, they often neglect the common scenario of identifying individual watermark segments within longer, mixed-source documents. Drawing inspiration from plagiarism detection systems, we propose two novel methods for partial watermark detection. First, we develop a geometry cover detection framework aimed at determining whether there is a watermark segment in long text. Second, we introduce an adaptive online learning algorithm to pinpoint the precise location of watermark segments within the text. Evaluated on three popular watermarking techniques (KGW-Watermark, Unigram-Watermark, and Gumbel-Watermark), our approach achieves high accuracy, significantly outperforming baseline methods. Moreover, our framework is adaptable to other watermarking techniques, offering new insights for precise watermark detection. Our code is publicly available at https://github.com/XuandongZhao/llm-watermark-location
Authors:Aiwei Liu, Sheng Guan, Yiming Liu, Leyi Pan, Yifei Zhang, Liancheng Fang, Lijie Wen, Philip S. Yu, Xuming Hu
Abstract:
Text watermarking for Large Language Models (LLMs) has made significant progress in detecting LLM outputs and preventing misuse. Current watermarking techniques offer high detectability, minimal impact on text quality, and robustness to text editing. However, current researches lack investigation into the imperceptibility of watermarking techniques in LLM services. This is crucial as LLM providers may not want to disclose the presence of watermarks in real-world scenarios, as it could reduce user willingness to use the service and make watermarks more vulnerable to attacks. This work is the first to investigate the imperceptibility of watermarked LLMs. We design an identification algorithm called Water-Probe that detects watermarks through well-designed prompts to the LLM. Our key motivation is that current watermarked LLMs expose consistent biases under the same watermark key, resulting in similar differences across prompts under different watermark keys. Experiments show that almost all mainstream watermarking algorithms are easily identified with our well-designed prompts, while Water-Probe demonstrates a minimal false positive rate for non-watermarked LLMs. Finally, we propose that the key to enhancing the imperceptibility of watermarked LLMs is to increase the randomness of watermark key selection. Based on this, we introduce the Water-Bag strategy, which significantly improves watermark imperceptibility by merging multiple watermark keys.
Authors:Thibaud Gloaguen, Nikola JovanoviÄ, Robin Staab, Martin Vechev
Abstract:
LLM watermarks stand out as a promising way to attribute ownership of LLM-generated text. One threat to watermark credibility comes from spoofing attacks, where an unauthorized third party forges the watermark, enabling it to falsely attribute arbitrary texts to a particular LLM. Despite recent work demonstrating that state-of-the-art schemes are, in fact, vulnerable to spoofing, no prior work has focused on post-hoc methods to discover spoofing attempts. In this work, we for the first time propose a reliable statistical method to distinguish spoofed from genuinely watermarked text, suggesting that current spoofing attacks are less effective than previously thought. In particular, we show that regardless of their underlying approach, all current learning-based spoofing methods consistently leave observable artifacts in spoofed texts, indicative of watermark forgery. We build upon these findings to propose rigorous statistical tests that reliably reveal the presence of such artifacts and thus demonstrate that a watermark has been spoofed. Our experimental evaluation shows high test power across all learning-based spoofing methods, providing insights into their fundamental limitations and suggesting a way to mitigate this threat. We make all our code available at https://github.com/eth-sri/watermark-spoofing-detection .
Authors:Abdulrahman Diaa, Toluwani Aremu, Nils Lukas
Abstract:
Large Language Models (LLMs) can be misused to spread unwanted content at scale. Content watermarking deters misuse by hiding messages in content, enabling its detection using a secret watermarking key. Robustness is a core security property, stating that evading detection requires (significant) degradation of the content's quality. Many LLM watermarking methods have been proposed, but robustness is tested only against non-adaptive attackers who lack knowledge of the watermarking method and can find only suboptimal attacks. We formulate watermark robustness as an objective function and use preference-based optimization to tune adaptive attacks against the specific watermarking method. Our evaluation shows that (i) adaptive attacks evade detection against all surveyed watermarks, (ii) training against any watermark succeeds in evading unseen watermarks, and (iii) optimization-based attacks are cost-effective. Our findings underscore the need to test robustness against adaptively tuned attacks. We release our adaptively optimized paraphrasers at https://github.com/nilslukas/ada-wm-evasion.
Authors:Vitaliy Kinakh, Brian Pulfer, Yury Belousov, Pierre Fernandez, Teddy Furon, Slava Voloshynovskiy
Abstract:
The vast amounts of digital content captured from the real world or AI-generated media necessitate methods for copyright protection, traceability, or data provenance verification. Digital watermarking serves as a crucial approach to address these challenges. Its evolution spans three generations: handcrafted, autoencoder-based, and foundation model based methods. While the robustness of these systems is well-documented, the security against adversarial attacks remains underexplored. This paper evaluates the security of foundation models' latent space digital watermarking systems that utilize adversarial embedding techniques. A series of experiments investigate the security dimensions under copy and removal attacks, providing empirical insights into these systems' vulnerabilities. All experimental codes and results are available at https://github.com/vkinakh/ssl-watermarking-attacks .
Authors:Youngdong Jang, Hyunje Park, Feng Yang, Heeju Ko, Euijin Choo, Sangpil Kim
Abstract:
As 3D Gaussian Splatting (3D-GS) gains significant attention and its commercial usage increases, the need for watermarking technologies to prevent unauthorized use of the 3D-GS models and rendered images has become increasingly important. In this paper, we introduce a robust watermarking method for 3D-GS that secures copyright of both the model and its rendered images. Our proposed method remains robust against distortions in rendered images and model attacks while maintaining high rendering quality. To achieve these objectives, we present Frequency-Guided Densification (FGD), which removes 3D Gaussians based on their contribution to rendering quality, enhancing real-time rendering and the robustness of the message. FGD utilizes Discrete Fourier Transform to split 3D Gaussians in high-frequency areas, improving rendering quality. Furthermore, we employ a gradient mask for 3D Gaussians and design a wavelet-subband loss to enhance rendering quality. Our experiments show that our method embeds the message in the rendered images invisibly and robustly against various attacks, including model distortion. Our method achieves superior performance in both rendering quality and watermark robustness while improving real-time rendering efficiency. Project page: https://kuai-lab.github.io/cvpr20253dgsw/
Authors:Leyi Pan, Aiwei Liu, Yijian Lu, Zitian Gao, Yichen Di, Shiyu Huang, Lijie Wen, Irwin King, Philip S. Yu
Abstract:
Watermarking algorithms for large language models (LLMs) have attained high accuracy in detecting LLM-generated text. However, existing methods primarily focus on distinguishing fully watermarked text from non-watermarked text, overlooking real-world scenarios where LLMs generate only small sections within large documents. In this scenario, balancing time complexity and detection performance poses significant challenges. This paper presents WaterSeeker, a novel approach to efficiently detect and locate watermarked segments amid extensive natural text. It first applies an efficient anomaly extraction method to preliminarily locate suspicious watermarked regions. Following this, it conducts a local traversal and performs full-text detection for more precise verification. Theoretical analysis and experimental results demonstrate that WaterSeeker achieves a superior balance between detection accuracy and computational efficiency. Moreover, its localization capability lays the foundation for building interpretable AI detection systems. Our code is available at https://github.com/THU-BPM/WaterSeeker.
Authors:Zi Liang, Qingqing Ye, Yanyun Wang, Sen Zhang, Yaxin Xiao, Ronghua Li, Jianliang Xu, Haibo Hu
Abstract:
Model extraction attacks (MEAs) on large language models (LLMs) have received increasing attention in recent research. However, existing attack methods typically adapt the extraction strategies originally developed for deep neural networks (DNNs). They neglect the underlying inconsistency between the training tasks of MEA and LLM alignment, leading to suboptimal attack performance. To tackle this issue, we propose Locality Reinforced Distillation (LoRD), a novel model extraction algorithm specifically designed for LLMs. In particular, LoRD employs a newly defined policy-gradient-style training task that utilizes the responses of victim model as the signal to guide the crafting of preference for the local model. Theoretical analyses demonstrate that I) The convergence procedure of LoRD in model extraction is consistent with the alignment procedure of LLMs, and II) LoRD can reduce query complexity while mitigating watermark protection through our exploration-based stealing. Extensive experiments validate the superiority of our method in extracting various state-of-the-art commercial LLMs. Our code is available at: https://github.com/liangzid/LoRD-MEA .
Authors:Yongyang Pan, Xiaohong Liu, Siqi Luo, Yi Xin, Xiao Guo, Xiaoming Liu, Xiongkuo Min, Guangtao Zhai
Abstract:
Rapid advancements in multimodal large language models have enabled the creation of hyper-realistic images from textual descriptions. However, these advancements also raise significant concerns about unauthorized use, which hinders their broader distribution. Traditional watermarking methods often require complex integration or degrade image quality. To address these challenges, we introduce a novel framework Towards Effective user Attribution for latent diffusion models via Watermark-Informed Blending (TEAWIB). TEAWIB incorporates a unique ready-to-use configuration approach that allows seamless integration of user-specific watermarks into generative models. This approach ensures that each user can directly apply a pre-configured set of parameters to the model without altering the original model parameters or compromising image quality. Additionally, noise and augmentation operations are embedded at the pixel level to further secure and stabilize watermarked images. Extensive experiments validate the effectiveness of TEAWIB, showcasing the state-of-the-art performance in perceptual quality and attribution accuracy.
Authors:Chunxue Xu, Yiwei Wang, Bryan Hooi, Yujun Cai, Songze Li
Abstract:
Visual Language Models (VLMs) have become foundational models for document understanding tasks, widely used in the processing of complex multimodal documents across domains such as finance, law, and academia. However, documents often contain noise-like information, such as watermarks, which inevitably leads us to inquire: \emph{Do watermarks degrade the performance of VLMs in document understanding?} To address this, we propose a novel evaluation framework to investigate the effect of visible watermarks on VLMs performance. We takes into account various factors, including different types of document data, the positions of watermarks within documents and variations in watermark content. Our experimental results reveal that VLMs performance can be significantly compromised by watermarks, with performance drop rates reaching up to 36\%. We discover that \emph{scattered} watermarks cause stronger interference than centralized ones, and that \emph{semantic contents} in watermarks creates greater disruption than simple visual occlusion. Through attention mechanism analysis and embedding similarity examination, we find that the performance drops are mainly attributed to that watermarks 1) force widespread attention redistribution, and 2) alter semantic representation in the embedding space. Our research not only highlights significant challenges in deploying VLMs for document understanding, but also provides insights towards developing robust inference mechanisms on watermarked documents.
Authors:Zijin Yang, Yu Sun, Kejiang Chen, Jiawei Zhao, Jun Jiang, Weiming Zhang, Nenghai Yu
Abstract:
Digital watermarking is essential for securing generated images from diffusion models. Accurate watermark evaluation is critical for algorithm development, yet existing methods have significant limitations: they lack a unified framework for both residual and semantic watermarks, provide results without interpretability, neglect comprehensive security considerations, and often use inappropriate metrics for semantic watermarks. To address these gaps, we propose WMVLM, the first unified and interpretable evaluation framework for diffusion model image watermarking via vision-language models (VLMs). We redefine quality and security metrics for each watermark type: residual watermarks are evaluated by artifact strength and erasure resistance, while semantic watermarks are assessed through latent distribution shifts. Moreover, we introduce a three-stage training strategy to progressively enable the model to achieve classification, scoring, and interpretable text generation. Experiments show WMVLM outperforms state-of-the-art VLMs with strong generalization across datasets, diffusion models, and watermarking methods.
Authors:Xin Zhang, Zijin Yang, Kejiang Chen, Linfeng Ma, Weiming Zhang, Nenghai Yu
Abstract:
Latent-based watermarks, integrated into the generation process of latent diffusion models (LDMs), simplify detection and attribution of generated images. However, recent black-box forgery attacks, where an attacker needs at least one watermarked image and black-box access to the provider's model, can embed the provider's watermark into images not produced by the provider, posing outsized risk to provenance and trust. We propose SemBind, the first defense framework for latent-based watermarks that resists black-box forgery by binding latent signals to image semantics via a learned semantic masker. Trained with contrastive learning, the masker yields near-invariant codes for the same prompt and near-orthogonal codes across prompts; these codes are reshaped and permuted to modulate the target latent before any standard latent-based watermark. SemBind is generally compatible with existing latent-based watermarking schemes and keeps image quality essentially unchanged, while a simple mask-ratio parameter offers a tunable trade-off between anti-forgery strength and robustness. Across four mainstream latent-based watermark methods, our SemBind-enabled anti-forgery variants markedly reduce false acceptance under black-box forgery while providing a controllable robustness-security balance.
Authors:Shuai Li, Kejiang Chen, Jun Jiang, Jie Zhang, Qiyi Yao, Kai Zeng, Weiming Zhang, Nenghai Yu
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities, but their training requires extensive data and computational resources, rendering them valuable digital assets. Therefore, it is essential to watermark LLMs to protect their copyright and trace unauthorized use or resale. Existing methods for watermarking LLMs primarily rely on training LLMs with a watermarked dataset, which entails burdensome training costs and negatively impacts the LLM's performance. In addition, their watermarked texts are not logical or natural, thereby reducing the stealthiness of the watermark. To address these issues, we propose EditMark, the first watermarking method that leverages model editing to embed a training-free, stealthy, and performance-lossless watermark for LLMs. We observe that some questions have multiple correct answers. Therefore, we assign each answer a unique watermark and update the weights of LLMs to generate corresponding questions and answers through the model editing technique. In addition, we refine the model editing technique to align with the requirements of watermark embedding. Specifically, we introduce an adaptive multi-round stable editing strategy, coupled with the injection of a noise matrix, to improve both the effectiveness and robustness of the watermark embedding. Extensive experiments indicate that EditMark can embed 32-bit watermarks into LLMs within 20 seconds (Fine-tuning: 6875 seconds) with a watermark extraction success rate of 100%, which demonstrates its effectiveness and efficiency. External experiments further demonstrate that EditMark has fidelity, stealthiness, and a certain degree of robustness against common attacks.
Authors:Wei Yuan, Chaoqun Yang, Yu Xing, Tong Chen, Nguyen Quoc Viet Hung, Hongzhi Yin
Abstract:
Large Language Model-based Time Series Forecasting (LLMTS) has shown remarkable promise in handling complex and diverse temporal data, representing a significant step toward foundation models for time series analysis. However, this emerging paradigm introduces two critical challenges. First, the substantial commercial potential and resource-intensive development raise urgent concerns about intellectual property (IP) protection. Second, their powerful time series forecasting capabilities may be misused to produce misleading or fabricated deepfake time series data. To address these concerns, we explore watermarking the outputs of LLMTS models, that is, embedding imperceptible signals into the generated time series data that remain detectable by specialized algorithms. We propose a novel post-hoc watermarking framework, Waltz, which is broadly compatible with existing LLMTS models. Waltz is inspired by the empirical observation that time series patch embeddings are rarely aligned with a specific set of LLM tokens, which we term ``cold tokens''. Leveraging this insight, Waltz embeds watermarks by rewiring the similarity statistics between patch embeddings and cold token embeddings, and detects watermarks using similarity z-scores. To minimize potential side effects, we introduce a similarity-based embedding position identification strategy and employ projected gradient descent to constrain the watermark noise within a defined boundary. Extensive experiments using two popular LLMTS models across seven benchmark datasets demonstrate that Waltz achieves high watermark detection accuracy with minimal impact on the quality of the generated time series.
Authors:Zijin Yang, Xin Zhang, Kejiang Chen, Kai Zeng, Qiyi Yao, Han Fang, Weiming Zhang, Nenghai Yu
Abstract:
Ethical concerns surrounding copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models. One effective solution involves watermarking the generated images. Existing methods primarily focus on ensuring that watermark embedding does not degrade the model performance. However, they often overlook critical challenges in real-world deployment scenarios, such as the complexity of watermark key management, user-defined generation parameters, and the difficulty of verification by arbitrary third parties. To address this issue, we propose Gaussian Shading++, a diffusion model watermarking method tailored for real-world deployment. We propose a double-channel design that leverages pseudorandom error-correcting codes to encode the random seed required for watermark pseudorandomization, achieving performance-lossless watermarking under a fixed watermark key and overcoming key management challenges. Additionally, we model the distortions introduced during generation and inversion as an additive white Gaussian noise channel and employ a novel soft decision decoding strategy during extraction, ensuring strong robustness even when generation parameters vary. To enable third-party verification, we incorporate public key signatures, which provide a certain level of resistance against forgery attacks even when model inversion capabilities are fully disclosed. Extensive experiments demonstrate that Gaussian Shading++ not only maintains performance losslessness but also outperforms existing methods in terms of robustness, making it a more practical solution for real-world deployment.
Authors:Zhongyi Zhang, Jie Zhang, Wenbo Zhou, Xinghui Zhou, Qing Guo, Weiming Zhang, Tianwei Zhang, Nenghai Yu
Abstract:
Face-swapping techniques have advanced rapidly with the evolution of deep learning, leading to widespread use and growing concerns about potential misuse, especially in cases of fraud. While many efforts have focused on detecting swapped face images or videos, these methods are insufficient for tracing the malicious users behind fraudulent activities. Intrusive watermark-based approaches also fail to trace unmarked identities, limiting their practical utility. To address these challenges, we introduce FaceTracer, the first non-intrusive framework specifically designed to trace the identity of the source person from swapped face images or videos. Specifically, FaceTracer leverages a disentanglement module that effectively suppresses identity information related to the target person while isolating the identity features of the source person. This allows us to extract robust identity information that can directly link the swapped face back to the original individual, aiding in uncovering the actors behind fraudulent activities. Extensive experiments demonstrate FaceTracer's effectiveness across various face-swapping techniques, successfully identifying the source person in swapped content and enabling the tracing of malicious actors involved in fraudulent activities. Additionally, FaceTracer shows strong transferability to unseen face-swapping methods including commercial applications and robustness against transmission distortions and adaptive attacks.
Authors:Xincheng Wang, Hanchi Sun, Wenjun Sun, Kejun Xue, Wangqiu Zhou, Jianbo Zhang, Wei Sun, Dandan Zhu, Xiongkuo Min, Jun Jia, Zhijun Fang
Abstract:
Recent fine-tuning techniques for diffusion models enable them to reproduce specific image sets, such as particular faces or artistic styles, but also introduce copyright and security risks. Dataset watermarking has been proposed to ensure traceability by embedding imperceptible watermarks into training images, which remain detectable in outputs even after fine-tuning. However, current methods lack a unified evaluation framework. To address this, this paper establishes a general threat model and introduces a comprehensive evaluation framework encompassing Universality, Transmissibility, and Robustness. Experiments show that existing methods perform well in universality and transmissibility, and exhibit some robustness against common image processing operations, yet still fall short under real-world threat scenarios. To reveal these vulnerabilities, the paper further proposes a practical watermark removal method that fully eliminates dataset watermarks without affecting fine-tuning, highlighting a key challenge for future research.
Authors:Shreyas Dixit, Ashhar Aziz, Shashwat Bajpai, Vasu Sharma, Aman Chadha, Vinija Jain, Amitava Das
Abstract:
A report by the European Union Law Enforcement Agency predicts that by 2026, up to 90 percent of online content could be synthetically generated, raising concerns among policymakers, who cautioned that "Generative AI could act as a force multiplier for political disinformation. The combined effect of generative text, images, videos, and audio may surpass the influence of any single modality." In response, California's Bill AB 3211 mandates the watermarking of AI-generated images, videos, and audio. However, concerns remain regarding the vulnerability of invisible watermarking techniques to tampering and the potential for malicious actors to bypass them entirely. Generative AI-powered de-watermarking attacks, especially the newly introduced visual paraphrase attack, have shown an ability to fully remove watermarks, resulting in a paraphrase of the original image. This paper introduces PECCAVI, the first visual paraphrase attack-safe and distortion-free image watermarking technique. In visual paraphrase attacks, an image is altered while preserving its core semantic regions, termed Non-Melting Points (NMPs). PECCAVI strategically embeds watermarks within these NMPs and employs multi-channel frequency domain watermarking. It also incorporates noisy burnishing to counter reverse-engineering efforts aimed at locating NMPs to disrupt the embedded watermark, thereby enhancing durability. PECCAVI is model-agnostic. All relevant resources and codes will be open-sourced.
Authors:Ke Liu, Xuanhan Wang, Qilong Zhang, Lianli Gao, Jingkuan Song
Abstract:
Deep image watermarking, which refers to enable imperceptible watermark embedding and reliable extraction in cover images, has shown to be effective for copyright protection of image assets. However, existing methods face limitations in simultaneously satisfying three essential criteria for generalizable watermarking: 1) invisibility (imperceptible hide of watermarks), 2) robustness (reliable watermark recovery under diverse conditions), and 3) broad applicability (low latency in watermarking process). To address these limitations, we propose a Hierarchical Watermark Learning (HiWL), a two-stage optimization that enable a watermarking model to simultaneously achieve three criteria. In the first stage, distribution alignment learning is designed to establish a common latent space with two constraints: 1) visual consistency between watermarked and non-watermarked images, and 2) information invariance across watermark latent representations. In this way, multi-modal inputs including watermark message (binary codes) and cover images (RGB pixels) can be well represented, ensuring the invisibility of watermarks and robustness in watermarking process thereby. The second stage employs generalized watermark representation learning to establish a disentanglement policy for separating watermarks from image content in RGB space. In particular, it strongly penalizes substantial fluctuations in separated RGB watermarks corresponding to identical messages. Consequently, HiWL effectively learns generalizable latent-space watermark representations while maintaining broad applicability. Extensive experiments demonstrate the effectiveness of proposed method. In particular, it achieves 7.6\% higher accuracy in watermark extraction than existing methods, while maintaining extremely low latency (100K images processed in 8s).
Authors:Yuqi Tan, Xiang Liu, Shuzhao Xie, Bin Chen, Shu-Tao Xia, Zhi Wang
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a pivotal technique for 3D scene representation, providing rapid rendering speeds and high fidelity. As 3DGS gains prominence, safeguarding its intellectual property becomes increasingly crucial since 3DGS could be used to imitate unauthorized scene creations and raise copyright issues. Existing watermarking methods for implicit NeRFs cannot be directly applied to 3DGS due to its explicit representation and real-time rendering process, leaving watermarking for 3DGS largely unexplored. In response, we propose WATER-GS, a novel method designed to protect 3DGS copyrights through a universal watermarking strategy. First, we introduce a pre-trained watermark decoder, treating raw 3DGS generative modules as potential watermark encoders to ensure imperceptibility. Additionally, we implement novel 3D distortion layers to enhance the robustness of the embedded watermark against common real-world distortions of point cloud data. Comprehensive experiments and ablation studies demonstrate that WATER-GS effectively embeds imperceptible and robust watermarks into 3DGS without compromising rendering efficiency and quality. Our experiments indicate that the 3D distortion layers can yield up to a 20% improvement in accuracy rate. Notably, our method is adaptable to different 3DGS variants, including 3DGS compression frameworks and 2D Gaussian splatting.
Authors:Qi Zheng, Shuliang Liu, Yu Huang, Sihang Jia, Jungang Li, Lyuhao Chen, Junhao Chen, Hanqian Li, Aiwei Liu, Yibo Yan, Xuming Hu
Abstract:
Watermarking has emerged as a pivotal solution for content traceability and intellectual property protection in Large Vision-Language Models (LVLMs). However, vision-agnostic watermarks introduce visually irrelevant tokens and disrupt visual grounding by enforcing indiscriminate pseudo-random biases, while some semantic-aware methods incur prohibitive inference latency due to rejection sampling. In this paper, we propose the VIsual Semantic Adaptive Watermark (VISA-Mark), a novel framework that embeds detectable signals while strictly preserving visual fidelity. Our approach employs a lightweight, efficiently trained prefix-tuner to extract dynamic Visual-Evidence Weights, which quantify the evidentiary support for candidate tokens based on the visual input. These weights guide an adaptive vocabulary partitioning and logits perturbation mechanism, concentrating watermark strength specifically on visually-supported tokens. By actively aligning the watermark with visual evidence, VISA-Mark effectively maintains visual fidelity. Empirical results confirm that VISA-Mark outperforms conventional methods with a 7.8% improvement in visual consistency (Chair-I) and superior semantic fidelity. The framework maintains highly competitive detection accuracy (96.88% AUC) and robust attack resilience (99.3%) without sacrificing inference efficiency, effectively establishing a new standard for reliability-preserving multimodal watermarking.
Authors:Shuliang Liu, Xingyu Li, Hongyi Liu, Yibo Yan, Bingchen Duan, Qi Zheng, Dong Fang, Lingfeng Su, Xuming Hu
Abstract:
Reasoning Large Language Models (RLLMs) excelling in complex tasks present unique challenges for digital watermarking, as existing methods often disrupt logical coherence or incur high computational costs. Token-based watermarking techniques can corrupt the reasoning flow by applying pseudo-random biases, while semantic-aware approaches improve quality but introduce significant latency or require auxiliary models. This paper introduces ReasonMark, a novel watermarking framework specifically designed for reasoning-intensive LLMs. Our approach decouples generation into an undisturbed Thinking Phase and a watermarked Answering Phase. We propose a Criticality Score to identify semantically pivotal tokens from the reasoning trace, which are distilled into a Principal Semantic Vector (PSV). The PSV then guides a semantically-adaptive mechanism that modulates watermark strength based on token-PSV alignment, ensuring robustness without compromising logical integrity. Extensive experiments show ReasonMark surpasses state-of-the-art methods by reducing text Perplexity by 0.35, increasing translation BLEU score by 0.164, and raising mathematical accuracy by 0.67 points. These advancements are achieved alongside a 0.34% higher watermark detection AUC and stronger robustness to attacks, all with a negligible increase in latency. This work enables the traceable and trustworthy deployment of reasoning LLMs in real-world applications.
Authors:Shuliang Liu, Qi Zheng, Jesse Jiaxi Xu, Yibo Yan, Junyan Zhang, He Geng, Aiwei Liu, Peijie Jiang, Jia Liu, Yik-Cheung Tam, Xuming Hu
Abstract:
Vision-language models demand watermarking solutions that protect intellectual property without compromising multimodal coherence. Existing text watermarking methods disrupt visual-textual alignment through biased token selection and static strategies, leaving semantic-critical concepts vulnerable. We propose VLA-Mark, a vision-aligned framework that embeds detectable watermarks while preserving semantic fidelity through cross-modal coordination. Our approach integrates multiscale visual-textual alignment metrics, combining localized patch affinity, global semantic coherence, and contextual attention patterns, to guide watermark injection without model retraining. An entropy-sensitive mechanism dynamically balances watermark strength and semantic preservation, prioritizing visual grounding during low-uncertainty generation phases. Experiments show 7.4% lower PPL and 26.6% higher BLEU than conventional methods, with near-perfect detection (98.8% AUC). The framework demonstrates 96.1\% attack resilience against attacks such as paraphrasing and synonym substitution, while maintaining text-visual consistency, establishing new standards for quality-preserving multimodal watermarking
Authors:Shizhan Cai, Liang Ding, Dacheng Tao
Abstract:
The rapid development of Large Language Models (LLMs) has intensified concerns about content traceability and potential misuse. Existing watermarking schemes for sampled text often face trade-offs between maintaining text quality and ensuring robust detection against various attacks. To address these issues, we propose a novel watermarking scheme that improves both detectability and text quality by introducing a cumulative watermark entropy threshold. Our approach is compatible with and generalizes existing sampling functions, enhancing adaptability. Experimental results across multiple LLMs show that our scheme significantly outperforms existing methods, achieving over 80\% improvements on widely-used datasets, e.g., MATH and GSM8K, while maintaining high detection accuracy.
Authors:Ruiyang Xia, Dawei Zhou, Decheng Liu, Lin Yuan, Jie Li, Nannan Wang, Xinbo Gao
Abstract:
Face swapping, recognized as a privacy and security concern, has prompted considerable defensive research. With the advancements in AI-generated content, the discrepancies between the real and swapped faces have become nuanced. Considering the difficulty of forged traces detection, we shift the focus to the face swapping purpose and proactively embed elaborate watermarks against unknown face swapping techniques. Given that the constant purpose is to swap the original face identity while preserving the background, we concentrate on the regions surrounding the face to ensure robust watermark generation, while embedding the contour texture and face identity information to achieve progressive image determination. The watermark is located in the facial contour and contains hybrid messages, dubbed the contour-hybrid watermark (CMark). Our approach generalizes face swapping detection without requiring any swapping techniques during training and the storage of large-scale messages in advance. Experiments conducted across 8 face swapping techniques demonstrate the superiority of our approach compared with state-of-the-art passive and proactive detectors while achieving a favorable balance between the image quality and watermark robustness.
Authors:Yugeng Liu, Tianshuo Cong, Michael Backes, Zheng Li, Yang Zhang
Abstract:
Large Language Models (LLMs) have experienced rapid advancements, with applications spanning a wide range of fields, including sentiment classification, review generation, and question answering. Due to their efficiency and versatility, researchers and companies increasingly employ LLM-generated data to train their models. However, the inability to track content produced by LLMs poses a significant challenge, potentially leading to copyright infringement for the LLM owners. In this paper, we propose a method for injecting watermarks into LLM-generated datasets, enabling the tracking of downstream tasks to detect whether these datasets were produced using the original LLM. These downstream tasks can be divided into two categories. The first involves using the generated datasets at the input level, commonly for training classification tasks. The other is the output level, where model trainers use LLM-generated content as output for downstream tasks, such as question-answering tasks. We design a comprehensive set of experiments to evaluate both watermark methods. Our results indicate the high effectiveness of our watermark approach. Additionally, regarding model utility, we find that classifiers trained on the generated datasets achieve a test accuracy exceeding 0.900 in many cases, suggesting that the utility of such models remains robust. For the output-level watermark, we observe that the quality of the generated text is comparable to that produced using real-world datasets. Through our research, we aim to advance the protection of LLM copyrights, taking a significant step forward in safeguarding intellectual property in this domain.
Authors:Runyi Hu, Jie Zhang, Shiqian Zhao, Nils Lukas, Jiwei Li, Qing Guo, Han Qiu, Tianwei Zhang
Abstract:
We present MaskMark, a simple, efficient, and flexible framework for image watermarking. MaskMark has two variants: (1) MaskMark-D, which supports global watermark embedding, watermark localization, and local watermark extraction for applications such as tamper detection; (2) MaskMark-ED, which focuses on local watermark embedding and extraction, offering enhanced robustness in small regions to support fine-grined image protection. MaskMark-D builds on the classical encoder-distortion layer-decoder training paradigm. In MaskMark-D, we introduce a simple masking mechanism during the decoding stage that enables both global and local watermark extraction. During training, the decoder is guided by various types of masks applied to watermarked images before extraction, helping it learn to localize watermarks and extract them from the corresponding local areas. MaskMark-ED extends this design by incorporating the mask into the encoding stage as well, guiding the encoder to embed the watermark in designated local regions, which improves robustness under regional attacks. Extensive experiments show that MaskMark achieves state-of-the-art performance in global and local watermark extraction, watermark localization, and multi-watermark embedding. It outperforms all existing baselines, including the recent leading model WAM for local watermarking, while preserving high visual quality of the watermarked images. In addition, MaskMark is highly efficient and adaptable. It requires only 20 hours of training on a single A6000 GPU, achieving 15x computational efficiency compared to WAM. By simply adjusting the distortion layer, MaskMark can be quickly fine-tuned to meet varying robustness requirements.
Authors:Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, Tianwei Zhang
Abstract:
In today's digital landscape, the blending of AI-generated and authentic content has underscored the need for copyright protection and content authentication. Watermarking has become a vital tool to address these challenges, safeguarding both generated and real content. Effective watermarking methods must withstand various distortions and attacks. Current deep watermarking techniques often use an encoder-noise layer-decoder architecture and include distortions to enhance robustness. However, they struggle to balance robustness and fidelity and remain vulnerable to adaptive attacks, despite extensive training. To overcome these limitations, we propose SuperMark, a robust, training-free watermarking framework. Inspired by the parallels between watermark embedding/extraction in watermarking and the denoising/noising processes in diffusion models, SuperMark embeds the watermark into initial Gaussian noise using existing techniques. It then applies pre-trained Super-Resolution (SR) models to denoise the watermarked noise, producing the final watermarked image. For extraction, the process is reversed: the watermarked image is inverted back to the initial watermarked noise via DDIM Inversion, from which the embedded watermark is extracted. This flexible framework supports various noise injection methods and diffusion-based SR models, enabling enhanced customization. The robustness of the DDIM Inversion process against perturbations allows SuperMark to achieve strong resilience to distortions while maintaining high fidelity. Experiments demonstrate that SuperMark achieves fidelity comparable to existing methods while significantly improving robustness. Under standard distortions, it achieves an average watermark extraction accuracy of 99.46%, and 89.29% under adaptive attacks. Moreover, SuperMark shows strong transferability across datasets, SR models, embedding methods, and resolutions.
Authors:Eyal German, Sagiv Antebi, Edan Habler, Asaf Shabtai, Yuval Elovici
Abstract:
Large language models (LLMs) can be trained or fine-tuned on data obtained without the owner's consent. Verifying whether a specific LLM was trained on particular data instances or an entire dataset is extremely challenging. Dataset watermarking addresses this by embedding identifiable modifications in training data to detect unauthorized use. However, existing methods often lack stealth, making them relatively easy to detect and remove. In light of these limitations, we propose LexiMark, a novel watermarking technique designed for text and documents, which embeds synonym substitutions for carefully selected high-entropy words. Our method aims to enhance an LLM's memorization capabilities on the watermarked text without altering the semantic integrity of the text. As a result, the watermark is difficult to detect, blending seamlessly into the text with no visible markers, and is resistant to removal due to its subtle, contextually appropriate substitutions that evade automated and manual detection. We evaluated our method using baseline datasets from recent studies and seven open-source models: LLaMA-1 7B, LLaMA-3 8B, Mistral 7B, Pythia 6.9B, as well as three smaller variants from the Pythia family (160M, 410M, and 1B). Our evaluation spans multiple training settings, including continued pretraining and fine-tuning scenarios. The results demonstrate significant improvements in AUROC scores compared to existing methods, underscoring our method's effectiveness in reliably verifying whether unauthorized watermarked data was used in LLM training.
Authors:Ziping Dong, Chao Shuai, Zhongjie Ba, Peng Cheng, Zhan Qin, Qinglong Wang, Kui Ren
Abstract:
Invisible Image Watermarking is crucial for ensuring content provenance and accountability in generative AI. While Gen-AI providers are increasingly integrating invisible watermarking systems, the robustness of these schemes against forgery attacks remains poorly characterized. This is critical, as forging traceable watermarks onto illicit content leads to false attribution, potentially harming the reputation and legal standing of Gen-AI service providers who are not responsible for the content. In this work, we propose WMCopier, an effective watermark forgery attack that operates without requiring any prior knowledge of or access to the target watermarking algorithm. Our approach first models the target watermark distribution using an unconditional diffusion model, and then seamlessly embeds the target watermark into a non-watermarked image via a shallow inversion process. We also incorporate an iterative optimization procedure that refines the reconstructed image to further trade off the fidelity and forgery efficiency. Experimental results demonstrate that WMCopier effectively deceives both open-source and closed-source watermark systems (e.g., Amazon's system), achieving a significantly higher success rate than existing methods. Additionally, we evaluate the robustness of forged samples and discuss the potential defenses against our attack.
Authors:Yaxin Xiao, Qingqing Ye, Zi Liang, Haoyang Li, RongHua Li, Huadi Zheng, Haibo Hu
Abstract:
Machine learning models constitute valuable intellectual property, yet remain vulnerable to model extraction attacks (MEA), where adversaries replicate their functionality through black-box queries. Model watermarking counters MEAs by embedding forensic markers for ownership verification. Current black-box watermarks prioritize MEA survival through representation entanglement, yet inadequately explore resilience against sequential MEAs and removal attacks. Our study reveals that this risk is underestimated because existing removal methods are weakened by entanglement. To address this gap, we propose Watermark Removal attacK (WRK), which circumvents entanglement constraints by exploiting decision boundaries shaped by prevailing sample-level watermark artifacts. WRK effectively reduces watermark success rates by at least 88.79% across existing watermarking benchmarks. For robust protection, we propose Class-Feature Watermarks (CFW), which improve resilience by leveraging class-level artifacts. CFW constructs a synthetic class using out-of-domain samples, eliminating vulnerable decision boundaries between original domain samples and their artifact-modified counterparts (watermark samples). CFW concurrently optimizes both MEA transferability and post-MEA stability. Experiments across multiple domains show that CFW consistently outperforms prior methods in resilience, maintaining a watermark success rate of at least 70.15% in extracted models even under the combined MEA and WRK distortion, while preserving the utility of protected models.
Authors:Pengcheng Li, Xulong Zhang, Jing Xiao, Jianzong Wang
Abstract:
The audio watermarking technique embeds messages into audio and accurately extracts messages from the watermarked audio. Traditional methods develop algorithms based on expert experience to embed watermarks into the time-domain or transform-domain of signals. With the development of deep neural networks, deep learning-based neural audio watermarking has emerged. Compared to traditional algorithms, neural audio watermarking achieves better robustness by considering various attacks during training. However, current neural watermarking methods suffer from low capacity and unsatisfactory imperceptibility. Additionally, the issue of watermark locating, which is extremely important and even more pronounced in neural audio watermarking, has not been adequately studied. In this paper, we design a dual-embedding watermarking model for efficient locating. We also consider the impact of the attack layer on the invertible neural network in robustness training, improving the model to enhance both its reasonableness and stability. Experiments show that the proposed model, IDEAW, can withstand various attacks with higher capacity and more efficient locating ability compared to existing methods.
Authors:Benji Peng, Keyu Chen, Ming Li, Pohsun Feng, Ziqian Bi, Junyu Liu, Qian Niu
Abstract:
Large Language Models (LLMs) demonstrate impressive capabilities across various fields, yet their increasing use raises critical security concerns. This article reviews recent literature addressing key issues in LLM security, with a focus on accuracy, bias, content detection, and vulnerability to attacks. Issues related to inaccurate or misleading outputs from LLMs is discussed, with emphasis on the implementation from fact-checking methodologies to enhance response reliability. Inherent biases within LLMs are critically examined through diverse evaluation techniques, including controlled input studies and red teaming exercises. A comprehensive analysis of bias mitigation strategies is presented, including approaches from pre-processing interventions to in-training adjustments and post-processing refinements. The article also probes the complexity of distinguishing LLM-generated content from human-produced text, introducing detection mechanisms like DetectGPT and watermarking techniques while noting the limitations of machine learning enabled classifiers under intricate circumstances. Moreover, LLM vulnerabilities, including jailbreak attacks and prompt injection exploits, are analyzed by looking into different case studies and large-scale competitions like HackAPrompt. This review is concluded by retrospecting defense mechanisms to safeguard LLMs, accentuating the need for more extensive research into the LLM security field.
Authors:Yuhao Sun, Yihua Zhang, Gaowen Liu, Hongtao Xie, Sijia Liu
Abstract:
With the increasing demand for the right to be forgotten, machine unlearning (MU) has emerged as a vital tool for enhancing trust and regulatory compliance by enabling the removal of sensitive data influences from machine learning (ML) models. However, most MU algorithms primarily rely on in-training methods to adjust model weights, with limited exploration of the benefits that data-level adjustments could bring to the unlearning process. To address this gap, we propose a novel approach that leverages digital watermarking to facilitate MU by strategically modifying data content. By integrating watermarking, we establish a controlled unlearning mechanism that enables precise removal of specified data while maintaining model utility for unrelated tasks. We first examine the impact of watermarked data on MU, finding that MU effectively generalizes to watermarked data. Building on this, we introduce an unlearning-friendly watermarking framework, termed Water4MU, to enhance unlearning effectiveness. The core of Water4MU is a bi-level optimization (BLO) framework: at the upper level, the watermarking network is optimized to minimize unlearning difficulty, while at the lower level, the model itself is trained independently of watermarking. Experimental results demonstrate that Water4MU is effective in MU across both image classification and image generation tasks. Notably, it outperforms existing methods in challenging MU scenarios, known as "challenging forgets".
Authors:Yong Ren, Jiangyan Yi, Tao Wang, Jianhua Tao, Zheng Lian, Zhengqi Wen, Chenxing Li, Ruibo Fu, Ye Bai, Xiaohui Zhang
Abstract:
Neural speech generation (NSG) has rapidly advanced as a key component of artificial intelligence-generated content, enabling the generation of high-quality, highly realistic speech for diverse applications. This development increases the risk of technique misuse and threatens social security. Audio watermarking can embed imperceptible marks into generated audio, providing a promising approach for secure NSG usage. However, current audio watermarking methods are mainly applied at the audio-level or feature-level, which are not suitable for open-sourced scenarios where source codes and model weights are released. To address this limitation, we propose a Plug-and-play Parameter-level WaterMarking (P2Mark) method for NSG. Specifically, we embed watermarks into the released model weights, offering a reliable solution for proactively tracing and protecting model copyrights in open-source scenarios. During training, we introduce a lightweight watermark adapter into the pre-trained model, allowing watermark information to be merged into the model via this adapter. This design ensures both the flexibility to modify the watermark before model release and the security of embedding the watermark within model parameters after model release. Meanwhile, we propose a gradient orthogonal projection optimization strategy to ensure the quality of the generated audio and the accuracy of watermark preservation. Experimental results on two mainstream waveform decoders in NSG (i.e., vocoder and codec) demonstrate that P2Mark achieves comparable performance to state-of-the-art audio watermarking methods that are not applicable to open-source white-box protection scenarios, in terms of watermark extraction accuracy, watermark imperceptibility, and robustness.
Authors:Anubhav Jain, Yuya Kobayashi, Naoki Murata, Yuhta Takida, Takashi Shibuya, Yuki Mitsufuji, Niv Cohen, Nasir Memon, Julian Togelius
Abstract:
Watermarking techniques are vital for protecting intellectual property and preventing fraudulent use of media. Most previous watermarking schemes designed for diffusion models embed a secret key in the initial noise. The resulting pattern is often considered hard to remove and forge into unrelated images. In this paper, we propose a black-box adversarial attack without presuming access to the diffusion model weights. Our attack uses only a single watermarked example and is based on a simple observation: there is a many-to-one mapping between images and initial noises. There are regions in the clean image latent space pertaining to each watermark that get mapped to the same initial noise when inverted. Based on this intuition, we propose an adversarial attack to forge the watermark by introducing perturbations to the images such that we can enter the region of watermarked images. We show that we can also apply a similar approach for watermark removal by learning perturbations to exit this region. We report results on multiple watermarking schemes (Tree-Ring, RingID, WIND, and Gaussian Shading) across two diffusion models (SDv1.4 and SDv2.0). Our results demonstrate the effectiveness of the attack and expose vulnerabilities in the watermarking methods, motivating future research on improving them.
Authors:Vinay Shukla, Prachee Sharma, Ryan Rossi, Sungchul Kim, Tong Yu, Aditya Grover
Abstract:
The ability to embed watermarks in images is a fundamental problem of interest for computer vision, and is exacerbated by the rapid rise of generated imagery in recent times. Current state-of-the-art techniques suffer from computational and statistical challenges such as the slow execution speed for practical deployments. In addition, other works trade off fast watermarking speeds but suffer greatly in their robustness or perceptual quality. In this work, we propose WaterFlow (WF), a fast and extremely robust approach for high fidelity visual watermarking based on a learned latent-dependent watermark. Our approach utilizes a pretrained latent diffusion model to encode an arbitrary image into a latent space and produces a learned watermark that is then planted into the Fourier Domain of the latent. The transformation is specified via invertible flow layers that enhance the expressivity of the latent space of the pre-trained model to better preserve image quality while permitting robust and tractable detection. Most notably, WaterFlow demonstrates state-of-the-art performance on general robustness and is the first method capable of effectively defending against difficult combination attacks. We validate our findings on three widely used real and generated datasets: MS-COCO, DiffusionDB, and WikiArt.
Authors:Leyi Pan, Sheng Guan, Zheyu Fu, Luyang Si, Zian Wang, Xuming Hu, Irwin King, Philip S. Yu, Aiwei Liu, Lijie Wen
Abstract:
We introduce MarkDiffusion, an open-source Python toolkit for generative watermarking of latent diffusion models. It comprises three key components: a unified implementation framework for streamlined watermarking algorithm integrations and user-friendly interfaces; a mechanism visualization suite that intuitively showcases added and extracted watermark patterns to aid public understanding; and a comprehensive evaluation module offering standard implementations of 24 tools across three essential aspects - detectability, robustness, and output quality - plus 8 automated evaluation pipelines. Through MarkDiffusion, we seek to assist researchers, enhance public awareness and engagement in generative watermarking, and promote consensus while advancing research and applications.
Authors:Chia-Hua Wu, Wanying Ge, Xin Wang, Junichi Yamagishi, Yu Tsao, Hsin-Min Wang
Abstract:
Solutions for defending against deepfake speech fall into two categories: proactive watermarking models and passive conventional deepfake detectors. While both address common threats, their differences in training, optimization, and evaluation prevent a unified protocol for joint evaluation and selecting the best solutions for different cases. This work proposes a framework to evaluate both model types in deepfake speech detection. To ensure fair comparison and minimize discrepancies, all models were trained and tested on common datasets, with performance evaluated using a shared metric. We also analyze their robustness against various adversarial attacks, showing that different models exhibit distinct vulnerabilities to different speech attribute distortions. Our training and evaluation code is available at Github.
Authors:Junyan Zhang, Shuliang Liu, Aiwei Liu, Yubo Gao, Jungang Li, Xiaojie Gu, Xuming Hu
Abstract:
Watermarking technology is a method used to trace the usage of content generated by large language models. Sentence-level watermarking aids in preserving the semantic integrity within individual sentences while maintaining greater robustness. However, many existing sentence-level watermarking techniques depend on arbitrary segmentation or generation processes to embed watermarks, which can limit the availability of appropriate sentences. This limitation, in turn, compromises the quality of the generated response. To address the challenge of balancing high text quality with robust watermark detection, we propose CoheMark, an advanced sentence-level watermarking technique that exploits the cohesive relationships between sentences for better logical fluency. The core methodology of CoheMark involves selecting sentences through trained fuzzy c-means clustering and applying specific next sentence selection criteria. Experimental evaluations demonstrate that CoheMark achieves strong watermark strength while exerting minimal impact on text quality.
Authors:Yijie Xu, Aiwei Liu, Xuming Hu, Lijie Wen, Hui Xiong
Abstract:
As open-source large language models (LLMs) like Llama3 become more capable, it is crucial to develop watermarking techniques to detect their potential misuse. Existing watermarking methods either add watermarks during LLM inference, which is unsuitable for open-source LLMs, or primarily target classification LLMs rather than recent generative LLMs. Adapting these watermarks to open-source LLMs for misuse detection remains an open challenge. This work defines two misuse scenarios for open-source LLMs: intellectual property (IP) violation and LLM Usage Violation. Then, we explore the application of inference-time watermark distillation and backdoor watermarking in these contexts. We propose comprehensive evaluation methods to assess the impact of various real-world further fine-tuning scenarios on watermarks and the effect of these watermarks on LLM performance. Our experiments reveal that backdoor watermarking could effectively detect IP Violation, while inference-time watermark distillation is applicable in both scenarios but less robust to further fine-tuning and has a more significant impact on LLM performance compared to backdoor watermarking. Exploring more advanced watermarking methods for open-source LLMs to detect their misuse should be an important future direction.
Authors:Yu Zhang, Shuliang Liu, Xu Yang, Xuming Hu
Abstract:
Watermarking algorithms for Large Language Models (LLMs) effectively identify machine-generated content by embedding and detecting hidden statistical features in text. However, such embedding leads to a decline in text quality, especially in low-entropy scenarios where performance needs improvement. Existing methods that rely on entropy thresholds often require significant computational resources for tuning and demonstrate poor adaptability to unknown or cross-task generation scenarios. We propose \textbf{C}ontext-\textbf{A}ware \textbf{T}hreshold watermarking ($\myalgo$), a novel framework that dynamically adjusts watermarking intensity based on real-time semantic context. $\myalgo$ partitions text generation into semantic states using logits clustering, establishing context-aware entropy thresholds that preserve fidelity in structured content while embedding robust watermarks. Crucially, it requires no pre-defined thresholds or task-specific tuning. Experiments show $\myalgo$ improves text quality in cross-tasks without sacrificing detection accuracy.
Authors:Yuqing Liang, Jiancheng Xiao, Wensheng Gan, Philip S. Yu
Abstract:
With the rapid advancement and extensive application of artificial intelligence technology, large language models (LLMs) are extensively used to enhance production, creativity, learning, and work efficiency across various domains. However, the abuse of LLMs also poses potential harm to human society, such as intellectual property rights issues, academic misconduct, false content, and hallucinations. Relevant research has proposed the use of LLM watermarking to achieve IP protection for LLMs and traceability of multimedia data output by LLMs. To our knowledge, this is the first thorough review that investigates and analyzes LLM watermarking technology in detail. This review begins by recounting the history of traditional watermarking technology, then analyzes the current state of LLM watermarking research, and thoroughly examines the inheritance and relevance of these techniques. By analyzing their inheritance and relevance, this review can provide research with ideas for applying traditional digital watermarking techniques to LLM watermarking, to promote the cross-integration and innovation of watermarking technology. In addition, this review examines the pros and cons of LLM watermarking. Considering the current multimodal development trend of LLMs, it provides a detailed analysis of emerging multimodal LLM watermarking, such as visual and audio data, to offer more reference ideas for relevant research. This review delves into the challenges and future prospects of current watermarking technologies, offering valuable insights for future LLM watermarking research and applications.
Authors:Michel Meintz, Jan DubiÅski, Franziska Boenisch, Adam Dziedzic
Abstract:
Image generative models have become increasingly popular, but training them requires large datasets that are costly to collect and curate. To circumvent these costs, some parties may exploit existing models by using the generated images as training data for their own models. In general, watermarking is a valuable tool for detecting unauthorized use of generated images. However, when these images are used to train a new model, watermarking can only enable detection if the watermark persists through training and remains identifiable in the outputs of the newly trained model - a property known as radioactivity. We analyze the radioactivity of watermarks in images generated by diffusion models (DMs) and image autoregressive models (IARs). We find that existing watermarking methods for DMs fail to retain radioactivity, as watermarks are either erased during encoding into the latent space or lost in the noising-denoising process (during the training in the latent space). Meanwhile, despite IARs having recently surpassed DMs in image generation quality and efficiency, no radioactive watermarking methods have been proposed for them. To overcome this limitation, we propose the first watermarking method tailored for IARs and with radioactivity in mind - drawing inspiration from techniques in large language models (LLMs), which share IARs' autoregressive paradigm. Our extensive experimental evaluation highlights our method's effectiveness in preserving radioactivity within IARs, enabling robust provenance tracking, and preventing unauthorized use of their generated images.
Authors:Louis Kerner, Michel Meintz, Bihe Zhao, Franziska Boenisch, Adam Dziedzic
Abstract:
State-of-the-art text-to-image models like Infinity generate photorealistic images at an unprecedented speed. These models operate in a bitwise autoregressive manner over a discrete set of tokens that is practically infinite in size. However, their impressive generative power comes with a growing risk: as their outputs increasingly populate the Internet, they are likely to be scraped and reused as training data-potentially by the very same models. This phenomenon has been shown to lead to model collapse, where repeated training on generated content, especially from the models' own previous versions, causes a gradual degradation in performance. A promising mitigation strategy is watermarking, which embeds human-imperceptible yet detectable signals into generated images-enabling the identification of generated content. In this work, we introduce BitMark, a robust bitwise watermarking framework for Infinity. Our method embeds a watermark directly at the bit level of the token stream across multiple scales (also referred to as resolutions) during Infinity's image generation process. Our bitwise watermark subtly influences the bits to preserve visual fidelity and generation speed while remaining robust against a spectrum of removal techniques. Furthermore, it exhibits high radioactivity, i.e., when watermarked generated images are used to train another image generative model, this second model's outputs will also carry the watermark. The radioactive traces remain detectable even when only fine-tuning diffusion or image autoregressive models on images watermarked with our BitMark. Overall, our approach provides a principled step toward preventing model collapse in image generative models by enabling reliable detection of generated outputs.
Authors:Yigitcan Ãzer, Woosung Choi, Joan SerrÃ, Mayank Kumar Singh, Wei-Hsiang Liao, Yuki Mitsufuji
Abstract:
We introduce the Robust Audio Watermarking Benchmark (RAW-Bench), a benchmark for evaluating deep learning-based audio watermarking methods with standardized and systematic comparisons. To simulate real-world usage, we introduce a comprehensive audio attack pipeline with various distortions such as compression, background noise, and reverberation, along with a diverse test dataset including speech, environmental sounds, and music recordings. Evaluating four existing watermarking methods on RAW-bench reveals two main insights: (i) neural compression techniques pose the most significant challenge, even when algorithms are trained with such compressions; and (ii) training with audio attacks generally improves robustness, although it is insufficient in some cases. Furthermore, we find that specific distortions, such as polarity inversion, time stretching, or reverb, seriously affect certain methods. The evaluation framework is accessible at github.com/SonyResearch/raw_bench.
Authors:Mayank Kumar Singh, Naoya Takahashi, Wei-Hsiang Liao, Yuki Mitsufuji
Abstract:
This paper presents a novel approach to deter unauthorized deepfakes and enable user tracking in generative models, even when the user has full access to the model parameters, by integrating key-based model authentication with watermarking techniques. Our method involves providing users with model parameters accompanied by a unique, user-specific key. During inference, the model is conditioned upon the key along with the standard input. A valid key results in the expected output, while an invalid key triggers a degraded output, thereby enforcing key-based model authentication. For user tracking, the model embeds the user's unique key as a watermark within the generated content, facilitating the identification of the user's ID. We demonstrate the effectiveness of our approach on two types of models, audio codecs and vocoders, utilizing the SilentCipher watermarking method. Additionally, we assess the robustness of the embedded watermarks against various distortions, validating their reliability in various scenarios.
Authors:Meilin Li, Ji He, Yi Yu, Jia Xu, Shanzhe Lei, Yan Teng, Yingchun Wang, Xuhong Wang
Abstract:
The rapid proliferation of Artificial Intelligence Generated Content has precipitated a crisis of trust and urgent regulatory demands. However, existing identification tools suffer from fragmentation and a lack of support for visible compliance marking. To address these gaps, we introduce the \textbf{UniMark}, an open-source, unified framework for multimodal content governance. Our system features a modular unified engine that abstracts complexities across text, image, audio, and video modalities. Crucially, we propose a novel dual-operation strategy, natively supporting both \emph{Hidden Watermarking} for copyright protection and \emph{Visible Marking} for regulatory compliance. Furthermore, we establish a standardized evaluation framework with three specialized benchmarks (Image/Video/Audio-Bench) to ensure rigorous performance assessment. This toolkit bridges the gap between advanced algorithms and engineering implementation, fostering a more transparent and secure digital ecosystem.
Authors:Jiale Meng, Yiming Li, Zheming Lu, Zewei He, Hao Luo, Tianwei Zhang
Abstract:
Text watermarking schemes have gained considerable attention in recent years, yet still face critical challenges in achieving simultaneous robustness, generalizability, and imperceptibility. This paper introduces a new embedding paradigm,termed CORE, which comprises several consecutively aligned black pixel segments. Its key innovation lies in its inherent noise resistance during transmission and broad applicability across languages and fonts. Based on the CORE, we present a text watermarking framework named CoreMark. Specifically, CoreMark first dynamically extracts COREs from characters. Then, the characters with stronger robustness are selected according to the lengths of COREs. By modifying the thickness of the CORE, the hidden data is embedded into the selected characters without causing significant visual distortions. Moreover, a general plug-and-play embedding strength modulator is proposed, which can adaptively enhance the robustness for small font sizes by adjusting the embedding strength according to the font size. Experimental evaluation indicates that CoreMark demonstrates outstanding generalizability across multiple languages and fonts. Compared to existing methods, CoreMark achieves significant improvements in resisting screenshot, print-scan, and print camera attacks, while maintaining satisfactory imperceptibility.
Authors:Yanbo Dai, Zongjie Li, Zhenlan Ji, Shuai Wang
Abstract:
Large language models (LLMs) have achieved remarkable success across a wide range of natural language processing tasks, demonstrating human-level performance in text generation, reasoning, and question answering. However, training such models requires substantial computational resources, large curated datasets, and sophisticated alignment procedures. As a result, they constitute highly valuable intellectual property (IP) assets that warrant robust protection mechanisms. Existing IP protection approaches suffer from critical limitations. Model fingerprinting techniques can identify model architectures but fail to establish ownership of specific model instances. In contrast, traditional backdoor-based watermarking methods embed behavioral anomalies that can be easily removed through common post-processing operations such as fine-tuning or knowledge distillation. We propose SEAL, a subspace-anchored watermarking framework that embeds multi-bit signatures directly into the model's latent representational space, supporting both white-box and black-box verification scenarios. Our approach leverages model editing techniques to align the hidden representations of selected anchor samples with predefined orthogonal bit vectors. This alignment embeds the watermark while preserving the model's original factual predictions, rendering the watermark functionally harmless and stealthy. We conduct comprehensive experiments on multiple benchmark datasets and six prominent LLMs, comparing SEAL with 11 existing fingerprinting and watermarking methods to demonstrate its superior effectiveness, fidelity, efficiency, and robustness. Furthermore, we evaluate SEAL under potential knowledgeable attacks and show that it maintains strong verification performance even when adversaries possess knowledge of the watermarking mechanism and the embedded signatures.
Authors:Sven Gowal, Rudy Bunel, Florian Stimberg, David Stutz, Guillermo Ortiz-Jimenez, Christina Kouridi, Mel Vecerik, Jamie Hayes, Sylvestre-Alvise Rebuffi, Paul Bernard, Chris Gamble, Miklós Z. Horváth, Fabian Kaczmarczyck, Alex Kaskasoli, Aleksandar Petrov, Ilia Shumailov, Meghana Thotakuri, Olivia Wiles, Jessica Yung, Zahra Ahmed, Victor Martin, Simon Rosen, Christopher Savčak, Armin Senoner, Nidhi Vyas, Pushmeet Kohli
Abstract:
We introduce SynthID-Image, a deep learning-based system for invisibly watermarking AI-generated imagery. This paper documents the technical desiderata, threat models, and practical challenges of deploying such a system at internet scale, addressing key requirements of effectiveness, fidelity, robustness, and security. SynthID-Image has been used to watermark over ten billion images and video frames across Google's services and its corresponding verification service is available to trusted testers. For completeness, we present an experimental evaluation of an external model variant, SynthID-O, which is available through partnerships. We benchmark SynthID-O against other post-hoc watermarking methods from the literature, demonstrating state-of-the-art performance in both visual quality and robustness to common image perturbations. While this work centers on visual media, the conclusions on deployment, constraints, and threat modeling generalize to other modalities, including audio. This paper provides a comprehensive documentation for the large-scale deployment of deep learning-based media provenance systems.
Authors:Thibaud Gloaguen, Robin Staab, Nikola JovanoviÄ, Martin Vechev
Abstract:
We introduce the first watermark tailored for diffusion language models (DLMs), an emergent LLM paradigm able to generate tokens in arbitrary order, in contrast to standard autoregressive language models (ARLMs) which generate tokens sequentially. While there has been much work in ARLM watermarking, a key challenge when attempting to apply these schemes directly to the DLM setting is that they rely on previously generated tokens, which are not always available with DLM generation. In this work we address this challenge by: (i) applying the watermark in expectation over the context even when some context tokens are yet to be determined, and (ii) promoting tokens which increase the watermark strength when used as context for other tokens. This is accomplished while keeping the watermark detector unchanged. Our experimental evaluation demonstrates that the DLM watermark leads to a >99% true positive rate with minimal quality impact and achieves similar robustness to existing ARLM watermarks, enabling for the first time reliable DLM watermarking.
Authors:Thibaud Gloaguen, Robin Staab, Nikola JovanoviÄ, Martin Vechev
Abstract:
As open-source language models (OSMs) grow more capable and are widely shared and finetuned, ensuring model provenance, i.e., identifying the origin of a given model instance, has become an increasingly important issue. At the same time, existing backdoor-based model fingerprinting techniques often fall short of achieving key requirements of real-world model ownership detection. In this work, we build on the observation that while current open-source model watermarks fail to achieve reliable content traceability, they can be effectively adapted to address the challenge of model provenance. To this end, we introduce the concept of domain-specific watermarking for model fingerprinting. Rather than watermarking all generated content, we train the model to embed watermarks only within specified subdomains (e.g., particular languages or topics). This targeted approach ensures detection reliability, while improving watermark durability and quality under a range of real-world deployment settings. Our evaluations show that domain-specific watermarking enables model fingerprinting with strong statistical guarantees, controllable false positive rates, high detection power, and preserved generation quality. Moreover, we find that our fingerprints are inherently stealthy and naturally robust to real-world variability across deployment scenarios.
Authors:Thibaud Gloaguen, Nikola JovanoviÄ, Robin Staab, Martin Vechev
Abstract:
While watermarks for closed LLMs have matured and have been included in large-scale deployments, these methods are not applicable to open-source models, which allow users full control over the decoding process. This setting is understudied yet critical, given the rising performance of open-source models. In this work, we lay the foundation for systematic study of open-source LLM watermarking. For the first time, we explicitly formulate key requirements, including durability against common model modifications such as model merging, quantization, or finetuning, and propose a concrete evaluation setup. Given the prevalence of these modifications, durability is crucial for an open-source watermark to be effective. We survey and evaluate existing methods, showing that they are not durable. We also discuss potential ways to improve their durability and highlight remaining challenges. We hope our work enables future progress on this important problem.
Authors:Lingjie Chen, Ruizhong Qiu, Siyu Yuan, Zhining Liu, Tianxin Wei, Hyunsik Yoo, Zhichen Zeng, Deqing Yang, Hanghang Tong
Abstract:
Watermarking of large language models (LLMs) generation embeds an imperceptible statistical pattern within texts, making it algorithmically detectable. Watermarking is a promising method for addressing potential harm and biases from LLMs, as it enables traceability, accountability, and detection of manipulated content, helping to mitigate unintended consequences. However, for open-source models, watermarking faces two major challenges: (i) incompatibility with fine-tuned models, and (ii) vulnerability to fine-tuning attacks. In this work, we propose WAPITI, a new method that transfers watermarking from base models to fine-tuned models through parameter integration. To the best of our knowledge, we propose the first watermark for fine-tuned open-source LLMs that preserves their fine-tuned capabilities. Furthermore, our approach offers an effective defense against fine-tuning attacks. We test our method on various model architectures and watermarking strategies. Results demonstrate that our method can successfully inject watermarks and is highly compatible with fine-tuned models. Additionally, we offer an in-depth analysis of how parameter editing influences the watermark strength and overall capabilities of the resulting models.
Authors:Yichao Tang, Mingyang Li, Di Miao, Sheng Li, Zhenxing Qian, Xinpeng Zhang
Abstract:
The advancement of artificial intelligence generated content (AIGC) has created a pressing need for robust image watermarking that can withstand both conventional signal processing and novel semantic editing attacks. Current deep learning-based methods rely on training with hand-crafted noise simulation layers, which inherently limit their generalization to unforeseen distortions. In this work, we propose $\textbf{SimuFreeMark}$, a noise-$\underline{\text{simu}}$lation-$\underline{\text{free}}$ water$\underline{\text{mark}}$ing framework that circumvents this limitation by exploiting the inherent stability of image low-frequency components. We first systematically establish that low-frequency components exhibit significant robustness against a wide range of attacks. Building on this foundation, SimuFreeMark embeds watermarks directly into the deep feature space of the low-frequency components, leveraging a pre-trained variational autoencoder (VAE) to bind the watermark with structurally stable image representations. This design completely eliminates the need for noise simulation during training. Extensive experiments demonstrate that SimuFreeMark outperforms state-of-the-art methods across a wide range of conventional and semantic attacks, while maintaining superior visual quality.
Authors:Zhenliang Gan, Xiaoxiao Hu, Sheng Li, Zhenxing Qian, Xinpeng Zhang
Abstract:
Audio watermarking has been widely applied in copyright protection and source tracing. However, due to the inherent characteristics of audio signals, watermark localization and resistance to desynchronization attacks remain significant challenges. In this paper, we propose a learning-based scheme named SyncGuard to address these challenges. Specifically, we design a frame-wise broadcast embedding strategy to embed the watermark in arbitrary-length audio, enhancing time-independence and eliminating the need for localization during watermark extraction. To further enhance robustness, we introduce a meticulously designed distortion layer. Additionally, we employ dilated residual blocks in conjunction with dilated gated blocks to effectively capture multi-resolution time-frequency features. Extensive experimental results show that SyncGuard efficiently handles variable-length audio segments, outperforms state-of-the-art methods in robustness against various attacks, and delivers superior auditory quality.
Authors:Guobiao Li, Lei Tan, Yuliang Xue, Gaozhi Liu, Zhenxing Qian, Sheng Li, Xinpeng Zhang
Abstract:
Recent advances in digital watermarking make use of deep neural networks for message embedding and extraction. They typically follow the ``encoder-noise layer-decoder''-based architecture. By deliberately establishing a differentiable noise layer to simulate the distortion of the watermarked signal, they jointly train the deep encoder and decoder to fit the noise layer to guarantee robustness. As a result, they are usually weak against unknown distortions that are not used in their training pipeline. In this paper, we propose a novel watermarking framework to resist unknown distortions, namely Adversarial Shallow Watermarking (ASW). ASW utilizes only a shallow decoder that is randomly parameterized and designed to be insensitive to distortions for watermarking extraction. During the watermark embedding, ASW freezes the shallow decoder and adversarially optimizes a host image until its updated version (i.e., the watermarked image) stably triggers the shallow decoder to output the watermark message. During the watermark extraction, it accurately recovers the message from the watermarked image by leveraging the insensitive nature of the shallow decoder against arbitrary distortions. Our ASW is training-free, encoder-free, and noise layer-free. Experiments indicate that the watermarked images created by ASW have strong robustness against various unknown distortions. Compared to the existing ``encoder-noise layer-decoder'' approaches, ASW achieves comparable results on known distortions and better robustness on unknown distortions.
Authors:Yunzhuo Chen, Jordan Vice, Naveed Akhtar, Nur Al Hasan Haldar, Ajmal Mian
Abstract:
Embedding watermarks into the output of generative models is essential for establishing copyright and verifiable ownership over the generated content. Emerging diffusion model watermarking methods either embed watermarks in the frequency domain or offer limited versatility of the watermark patterns in the image space, which allows simplistic detection and removal of the watermarks from the generated content. To address this issue, we propose a watermarking technique that embeds watermark features into the diffusion model itself. Our technique enables training of a paired watermark extractor for a generative model that is learned through an end-to-end process. The extractor forces the generator, during training, to effectively embed versatile, imperceptible watermarks in the generated content while simultaneously ensuring their precise recovery. We demonstrate highly accurate watermark embedding/detection and show that it is also possible to distinguish between different watermarks embedded with our method to differentiate between generative models.
Authors:Yunzhuo Chen, Naveed Akhtar, Nur Al Hasan Haldar, Ajmal Mian
Abstract:
High-fidelity text-to-image diffusion models have revolutionized visual content generation, but their widespread use raises significant ethical concerns, including intellectual property protection and the misuse of synthetic media. To address these challenges, we propose a novel multi-stage watermarking framework for diffusion models, designed to establish copyright and trace generated images back to their source. Our multi-stage watermarking technique involves embedding: (i) a fixed watermark that is localized in the diffusion model's learned noise distribution and, (ii) a human-imperceptible, dynamic watermark in generates images, leveraging a fine-tuned decoder. By leveraging the Structural Similarity Index Measure (SSIM) and cosine similarity, we adapt the watermark's shape and color to the generated content while maintaining robustness. We demonstrate that our method enables reliable source verification through watermark classification, even when the dynamic watermark is adjusted for content-specific variations. Source model verification is enabled through watermark classification. o support further research, we generate a dataset of watermarked images and introduce a methodology to evaluate the statistical impact of watermarking on generated content.Additionally, we rigorously test our framework against various attack scenarios, demonstrating its robustness and minimal impact on image quality. Our work advances the field of AI-generated content security by providing a scalable solution for model ownership verification and misuse prevention.
Authors:Helin Wang, Meng Yu, Jiarui Hai, Chen Chen, Yuchen Hu, Rilin Chen, Najim Dehak, Dong Yu
Abstract:
In this paper, we introduce SSR-Speech, a neural codec autoregressive model designed for stable, safe, and robust zero-shot textbased speech editing and text-to-speech synthesis. SSR-Speech is built on a Transformer decoder and incorporates classifier-free guidance to enhance the stability of the generation process. A watermark Encodec is proposed to embed frame-level watermarks into the edited regions of the speech so that which parts were edited can be detected. In addition, the waveform reconstruction leverages the original unedited speech segments, providing superior recovery compared to the Encodec model. Our approach achieves state-of-the-art performance in the RealEdit speech editing task and the LibriTTS text-to-speech task, surpassing previous methods. Furthermore, SSR-Speech excels in multi-span speech editing and also demonstrates remarkable robustness to background sounds. The source code and demos are released.
Authors:Sixiao Zhang, Cheng Long, Wei Yuan, Hongxu Chen, Hongzhi Yin
Abstract:
In the era of large foundation models, data has become a crucial component in building high-performance AI systems. As the demand for high-quality and large-scale data continues to rise, data copyright protection is attracting increasing attention. In this work, we explore the problem of data watermarking for sequential recommender systems, where a watermark is embedded into the target dataset and can be detected in models trained on that dataset. We focus on two settings: dataset watermarking, which protects the ownership of the entire dataset, and user watermarking, which safeguards the data of individual users. We present a method named Dataset Watermarking for Recommender Systems (DWRS) to address them. We define the watermark as a sequence of consecutive items inserted into normal users' interaction sequences. We define a Receptive Field (RF) to guide the inserting process to facilitate the memorization of the watermark. Extensive experiments on five representative sequential recommendation models and three benchmark datasets demonstrate the effectiveness of DWRS in protecting data copyright while preserving model utility.
Authors:Junzuo Zhou, Jiangyan Yi, Yong Ren, Jianhua Tao, Tao Wang, Chu Yuan Zhang
Abstract:
Recent advances in speech spoofing necessitate stronger verification mechanisms in neural speech codecs to ensure authenticity. Current methods embed numerical watermarks before compression and extract them from reconstructed speech for verification, but face limitations such as separate training processes for the watermark and codec, and insufficient cross-modal information integration, leading to reduced watermark imperceptibility, extraction accuracy, and capacity. To address these issues, we propose WMCodec, the first neural speech codec to jointly train compression-reconstruction and watermark embedding-extraction in an end-to-end manner, optimizing both imperceptibility and extractability of the watermark. Furthermore, We design an iterative Attention Imprint Unit (AIU) for deeper feature integration of watermark and speech, reducing the impact of quantization noise on the watermark. Experimental results show WMCodec outperforms AudioSeal with Encodec in most quality metrics for watermark imperceptibility and consistently exceeds both AudioSeal with Encodec and reinforced TraceableSpeech in extraction accuracy of watermark. At bandwidth of 6 kbps with a watermark capacity of 16 bps, WMCodec maintains over 99% extraction accuracy under common attacks, demonstrating strong robustness.
Authors:Jiaqi Xue, Yifei Zhao, Mansour Al Ghanim, Shangqian Gao, Ruimin Sun, Qian Lou, Mengxin Zheng
Abstract:
Text watermarking for large language models (LLMs) enables model owners to verify text origin and protect intellectual property. While watermarking methods for closed-source LLMs are relatively mature, extending them to open-source models remains challenging, as developers cannot control the decoding process. Consequently, owners of open-source LLMs lack practical means to verify whether text was generated by their models. A core difficulty lies in embedding watermarks directly into model weights without hurting detectability. A promising idea is to distill watermarks from a closed-source model into an open one, but this suffers from (i) poor detectability due to mismatch between learned and predefined patterns, and (ii) fragility to downstream modifications such as fine-tuning or model merging. To overcome these limitations, we propose PRO, a Precise and Robust text watermarking method for open-source LLMs. PRO jointly trains a watermark policy model with the LLM, producing patterns that are easier for the model to learn and more consistent with detection criteria. A regularization term further simulates downstream perturbations and penalizes degradation in watermark detectability, ensuring robustness under model edits. Experiments on open-source LLMs (e.g., LLaMA-3.2, LLaMA-3, Phi-2) show that PRO substantially improves both watermark detectability and resilience to model modifications.
Authors:Luca A. Lanzendörfer, Kyle Fearne, Florian Grötschla, Roger Wattenhofer
Abstract:
We present Timbru, a post-hoc audio watermarking model that achieves state-of-the-art robustness and imperceptibility trade-offs without training an embedder-detector model. Given any 44.1 kHz stereo music snippet, our method performs per-audio gradient optimization to add imperceptible perturbations in the latent space of a pretrained audio VAE, guided by a combined message and perceptual loss. The watermark can then be extracted using a pretrained CLAP model. We evaluate 16-bit watermarking on MUSDB18-HQ against AudioSeal, WavMark, and SilentCipher across common filtering, noise, compression, resampling, cropping, and regeneration attacks. Our approach attains the best average bit error rates, while preserving perceptual quality, demonstrating an efficient, dataset-free path to imperceptible audio watermarking.
Authors:Rochana Prih Hastuti, Rian Adam Rajagede, Mansour Al Ghanim, Mengxin Zheng, Qian Lou
Abstract:
As large language models (LLMs) are adapted to sensitive domains such as medicine, their fluency raises safety risks, particularly regarding provenance and accountability. Watermarking embeds detectable patterns to mitigate these risks, yet its reliability in medical contexts remains untested. Existing benchmarks focus on detection-quality tradeoffs and overlook factual risks. In medical text, watermarking often reweights low-entropy tokens, which are highly predictable and often carry critical medical terminology. Shifting these tokens can cause inaccuracy and hallucinations, risks that prior general-domain benchmarks fail to capture. We propose a medical-focused evaluation workflow that jointly assesses factual accuracy and coherence. Using GPT-Judger and further human validation, we introduce the Factuality-Weighted Score (FWS), a composite metric prioritizing factual accuracy beyond coherence to guide watermarking deployment in medical domains. Our evaluation shows current watermarking methods substantially compromise medical factuality, with entropy shifts degrading medical entity representation. These findings underscore the need for domain-aware watermarking approaches that preserve the integrity of medical content.
Authors:Mansour Al Ghanim, Jiaqi Xue, Rochana Prih Hastuti, Mengxin Zheng, Yan Solihin, Qian Lou
Abstract:
We present a study to benchmark representative watermarking methods in cross-lingual settings. The current literature mainly focuses on the evaluation of watermarking methods for the English language. However, the literature for evaluating watermarking in cross-lingual settings is scarce. This results in overlooking important adversary scenarios in which a cross-lingual adversary could be in, leading to a gray area of practicality over cross-lingual watermarking. In this paper, we evaluate four watermarking methods in four different and vocabulary rich languages. Our experiments investigate the quality of text under different watermarking procedure and the detectability of watermarks with practical translation attack scenarios. Specifically, we investigate practical scenarios that an adversary with cross-lingual knowledge could take, and evaluate whether current watermarking methods are suitable for such scenarios. Finally, from our findings, we draw key insights about watermarking in cross-lingual settings.
Authors:Yepeng Liu, Xuandong Zhao, Dawn Song, Gregory W. Wornell, Yuheng Bu
Abstract:
Despite progress in watermarking algorithms for large language models (LLMs), real-world deployment remains limited. We argue that this gap stems from misaligned incentives among LLM providers, platforms, and end users, which manifest as four key barriers: competitive risk, detection-tool governance, robustness concerns and attribution issues. We revisit three classes of watermarking through this lens. \emph{Model watermarking} naturally aligns with LLM provider interests, yet faces new challenges in open-source ecosystems. \emph{LLM text watermarking} offers modest provider benefit when framed solely as an anti-misuse tool, but can gain traction in narrowly scoped settings such as dataset de-contamination or user-controlled provenance. \emph{In-context watermarking} (ICW) is tailored for trusted parties, such as conference organizers or educators, who embed hidden watermarking instructions into documents. If a dishonest reviewer or student submits this text to an LLM, the output carries a detectable watermark indicating misuse. This setup aligns incentives: users experience no quality loss, trusted parties gain a detection tool, and LLM providers remain neutral by simply following watermark instructions. We advocate for a broader exploration of incentive-aligned methods, with ICW as an example, in domains where trusted parties need reliable tools to detect misuse. More broadly, we distill design principles for incentive-aligned, domain-specific watermarking and outline future research directions. Our position is that the practical adoption of LLM watermarking requires aligning stakeholder incentives in targeted application domains and fostering active community engagement.
Authors:Tong Zhou, Ruyi Ding, Gaowen Liu, Charles Fleming, Ramana Rao Kompella, Yunsi Fei, Xiaolin Xu, Shaolei Ren
Abstract:
The rapid growth of digital and AI-generated images has amplified the need for secure and verifiable methods of image attribution. While digital watermarking offers more robust protection than metadata-based approaches--which can be easily stripped--current watermarking techniques remain vulnerable to forgery, creating risks of misattribution that can damage the reputations of AI model developers and the rights of digital artists. These vulnerabilities arise from two key issues: (1) content-agnostic watermarks, which, once learned or leaked, can be transferred across images to fake attribution, and (2) reliance on detector-based verification, which is unreliable since detectors can be tricked. We present MetaSeal, a novel framework for content-dependent watermarking with cryptographic security guarantees to safeguard image attribution. Our design provides (1) forgery resistance, preventing unauthorized replication and enforcing cryptographic verification; (2) robust, self-contained protection, embedding attribution directly into images while maintaining resilience against benign transformations; and (3) evidence of tampering, making malicious alterations visually detectable. Experiments demonstrate that MetaSeal effectively mitigates forgery attempts and applies to both natural and AI-generated images, establishing a new standard for secure image attribution.
Authors:Yepeng Liu, Xuandong Zhao, Christopher Kruegel, Dawn Song, Yuheng Bu
Abstract:
The growing use of large language models (LLMs) for sensitive applications has highlighted the need for effective watermarking techniques to ensure the provenance and accountability of AI-generated text. However, most existing watermarking methods require access to the decoding process, limiting their applicability in real-world settings. One illustrative example is the use of LLMs by dishonest reviewers in the context of academic peer review, where conference organizers have no access to the model used but still need to detect AI-generated reviews. Motivated by this gap, we introduce In-Context Watermarking (ICW), which embeds watermarks into generated text solely through prompt engineering, leveraging LLMs' in-context learning and instruction-following abilities. We investigate four ICW strategies at different levels of granularity, each paired with a tailored detection method. We further examine the Indirect Prompt Injection (IPI) setting as a specific case study, in which watermarking is covertly triggered by modifying input documents such as academic manuscripts. Our experiments validate the feasibility of ICW as a model-agnostic, practical watermarking approach. Moreover, our findings suggest that as LLMs become more capable, ICW offers a promising direction for scalable and accessible content attribution.
Authors:Yepeng Liu, Xuandong Zhao, Dawn Song, Yuheng Bu
Abstract:
Retrieval-Augmented Generation (RAG) has become an effective method for enhancing large language models (LLMs) with up-to-date knowledge. However, it poses a significant risk of IP infringement, as IP datasets may be incorporated into the knowledge database by malicious Retrieval-Augmented LLMs (RA-LLMs) without authorization. To protect the rights of the dataset owner, an effective dataset membership inference algorithm for RA-LLMs is needed. In this work, we introduce a novel approach to safeguard the ownership of text datasets and effectively detect unauthorized use by the RA-LLMs. Our approach preserves the original data completely unchanged while protecting it by inserting specifically designed canary documents into the IP dataset. These canary documents are created with synthetic content and embedded watermarks to ensure uniqueness, stealthiness, and statistical provability. During the detection process, unauthorized usage is identified by querying the canary documents and analyzing the responses of RA-LLMs for statistical evidence of the embedded watermark. Our experimental results demonstrate high query efficiency, detectability, and stealthiness, along with minimal perturbation to the original dataset, all without compromising the performance of the RAG system.
Authors:Xuandong Zhao, Sam Gunn, Miranda Christ, Jaiden Fairoze, Andres Fabrega, Nicholas Carlini, Sanjam Garg, Sanghyun Hong, Milad Nasr, Florian Tramer, Somesh Jha, Lei Li, Yu-Xiang Wang, Dawn Song
Abstract:
As the outputs of generative AI (GenAI) techniques improve in quality, it becomes increasingly challenging to distinguish them from human-created content. Watermarking schemes are a promising approach to address the problem of distinguishing between AI and human-generated content. These schemes embed hidden signals within AI-generated content to enable reliable detection. While watermarking is not a silver bullet for addressing all risks associated with GenAI, it can play a crucial role in enhancing AI safety and trustworthiness by combating misinformation and deception. This paper presents a comprehensive overview of watermarking techniques for GenAI, beginning with the need for watermarking from historical and regulatory perspectives. We formalize the definitions and desired properties of watermarking schemes and examine the key objectives and threat models for existing approaches. Practical evaluation strategies are also explored, providing insights into the development of robust watermarking techniques capable of resisting various attacks. Additionally, we review recent representative works, highlight open challenges, and discuss potential directions for this emerging field. By offering a thorough understanding of watermarking in GenAI, this work aims to guide researchers in advancing watermarking methods and applications, and support policymakers in addressing the broader implications of GenAI.
Authors:Yigitcan Özer, Wanying Ge, Zhe Zhang, Xin Wang, Junichi Yamagishi
Abstract:
Audio watermarking embeds auxiliary information into speech while maintaining speaker identity, linguistic content, and perceptual quality. Although recent advances in neural and digital signal processing-based watermarking methods have improved imperceptibility and embedding capacity, robustness is still primarily assessed against conventional distortions such as compression, additive noise, and resampling. However, the rise of deep learning-based attacks introduces novel and significant threats to watermark security. In this work, we investigate self voice conversion as a universal, content-preserving attack against audio watermarking systems. Self voice conversion remaps a speaker's voice to the same identity while altering acoustic characteristics through a voice conversion model. We demonstrate that this attack severely degrades the reliability of state-of-the-art watermarking approaches and highlight its implications for the security of modern audio watermarking techniques.
Authors:Tao Fan, Hanlin Gu, Xuemei Cao, Chee Seng Chan, Qian Chen, Yiqiang Chen, Yihui Feng, Yang Gu, Jiaxiang Geng, Bing Luo, Shuoling Liu, Win Kent Ong, Chao Ren, Jiaqi Shao, Chuan Sun, Xiaoli Tang, Hong Xi Tae, Yongxin Tong, Shuyue Wei, Fan Wu, Wei Xi, Mingcong Xu, He Yang, Xin Yang, Jiangpeng Yan, Hao Yu, Han Yu, Teng Zhang, Yifei Zhang, Xiaojin Zhang, Zhenzhe Zheng, Lixin Fan, Qiang Yang
Abstract:
Federated Foundation Models (FedFMs) represent a distributed learning paradigm that fuses general competences of foundation models as well as privacy-preserving capabilities of federated learning. This combination allows the large foundation models and the small local domain models at the remote clients to learn from each other in a teacher-student learning setting. This paper provides a comprehensive summary of the ten challenging problems inherent in FedFMs, encompassing foundational theory, utilization of private data, continual learning, unlearning, Non-IID and graph data, bidirectional knowledge transfer, incentive mechanism design, game mechanism design, model watermarking, and efficiency. The ten challenging problems manifest in five pivotal aspects: ``Foundational Theory," which aims to establish a coherent and unifying theoretical framework for FedFMs. ``Data," addressing the difficulties in leveraging domain-specific knowledge from private data while maintaining privacy; ``Heterogeneity," examining variations in data, model, and computational resources across clients; ``Security and Privacy," focusing on defenses against malicious attacks and model theft; and ``Efficiency," highlighting the need for improvements in training, communication, and parameter efficiency. For each problem, we offer a clear mathematical definition on the objective function, analyze existing methods, and discuss the key challenges and potential solutions. This in-depth exploration aims to advance the theoretical foundations of FedFMs, guide practical implementations, and inspire future research to overcome these obstacles, thereby enabling the robust, efficient, and privacy-preserving FedFMs in various real-world applications.
Authors:Ching-Chun Chang, Isao Echizen
Abstract:
The rise of synthetic media has blurred the boundary between reality and fabrication under the evolving power of artificial intelligence, fueling an infodemic that erodes public trust in cyberspace. For digital imagery, a multitude of editing applications further complicates the forensic analysis, including semantic edits that alter content, photometric adjustments that recalibrate colour characteristics, and geometric projections that reshape viewpoints. Collectively, these transformations manipulate and control perceptual interpretation of digital imagery. This susceptibility calls for forensic enquiry into reconstructing the chain of events, thereby revealing deeper evidential insight into the presence or absence of criminal intent. This study seeks to address an inverse problem of tracing the underlying generation chain that gives rise to the observed synthetic media. A tell-tale watermarking system is developed for explanatory reasoning over the nature and extent of transformations across the lifecycle of synthetic media. Tell-tale watermarks are tailored to different classes of transformations, responding in a manner that is neither strictly robust nor fragile but instead interpretable. These watermarks function as reference clues that evolve under the same transformation dynamics as the carrier media, leaving interpretable traces when subjected to transformations. Explanatory reasoning is then performed to infer the most plausible account across the combinatorial parameter space of composite transformations. Experimental evaluations demonstrate the validity of tell-tale watermarking with respect to fidelity, synchronicity and traceability.
Authors:Jiacheng Liang, Zian Wang, Lauren Hong, Shouling Ji, Ting Wang
Abstract:
Various watermarking methods (``watermarkers'') have been proposed to identify LLM-generated texts; yet, due to the lack of unified evaluation platforms, many critical questions remain under-explored: i) What are the strengths/limitations of various watermarkers, especially their attack robustness? ii) How do various design choices impact their robustness? iii) How to optimally operate watermarkers in adversarial environments? To fill this gap, we systematize existing LLM watermarkers and watermark removal attacks, mapping out their design spaces. We then develop WaterPark, a unified platform that integrates 10 state-of-the-art watermarkers and 12 representative attacks. More importantly, by leveraging WaterPark, we conduct a comprehensive assessment of existing watermarkers, unveiling the impact of various design choices on their attack robustness. We further explore the best practices to operate watermarkers in adversarial environments. We believe our study sheds light on current LLM watermarking techniques while WaterPark serves as a valuable testbed to facilitate future research.
Authors:Naen Xu, Changjiang Li, Tianyu Du, Minxi Li, Wenjie Luo, Jiacheng Liang, Yuyuan Li, Xuhong Zhang, Meng Han, Jianwei Yin, Ting Wang
Abstract:
Text-to-image diffusion models have emerged as powerful tools for generating high-quality images from textual descriptions. However, their increasing popularity has raised significant copyright concerns, as these models can be misused to reproduce copyrighted content without authorization. In response, recent studies have proposed various copyright protection methods, including adversarial perturbation, concept erasure, and watermarking techniques. However, their effectiveness and robustness against advanced attacks remain largely unexplored. Moreover, the lack of unified evaluation frameworks has hindered systematic comparison and fair assessment of different approaches. To bridge this gap, we systematize existing copyright protection methods and attacks, providing a unified taxonomy of their design spaces. We then develop CopyrightMeter, a unified evaluation framework that incorporates 17 state-of-the-art protections and 16 representative attacks. Leveraging CopyrightMeter, we comprehensively evaluate protection methods across multiple dimensions, thereby uncovering how different design choices impact fidelity, efficacy, and resilience under attacks. Our analysis reveals several key findings: (i) most protections (16/17) are not resilient against attacks; (ii) the "best" protection varies depending on the target priority; (iii) more advanced attacks significantly promote the upgrading of protections. These insights provide concrete guidance for developing more robust protection methods, while its unified evaluation protocol establishes a standard benchmark for future copyright protection research in text-to-image generation.
Authors:Erjin Bao, Ching-Chun Chang, Hanrui Wang, Isao Echizen
Abstract:
With the proliferation of AI agents in various domains, protecting the ownership of AI models has become crucial due to the significant investment in their development. Unauthorized use and illegal distribution of these models pose serious threats to intellectual property, necessitating effective copyright protection measures. Model watermarking has emerged as a key technique to address this issue, embedding ownership information within models to assert rightful ownership during copyright disputes. This paper presents several contributions to model watermarking: a self-authenticating black-box watermarking protocol using hash techniques, a study on evidence forgery attacks using adversarial perturbations, a proposed defense involving a purification step to counter adversarial attacks, and a purification-agnostic curriculum proxy learning method to enhance watermark robustness and model performance. Experimental results demonstrate the effectiveness of these approaches in improving the security, reliability, and performance of watermarked models.
Authors:Yihan Wu, Georgios Milis, Ruibo Chen, Heng Huang
Abstract:
The rapid advancement of next-token-prediction models has led to widespread adoption across modalities, enabling the creation of realistic synthetic media. In the audio domain, while autoregressive speech models have propelled conversational interactions forward, the potential for misuse, such as impersonation in phishing schemes or crafting misleading speech recordings, has also increased. Security measures such as watermarking have thus become essential to ensuring the authenticity of digital media. Traditional statistical watermarking methods used for autoregressive language models face challenges when applied to autoregressive audio models, due to the inevitable ``retokenization mismatch'' - the discrepancy between original and retokenized discrete audio token sequences. To address this, we introduce Aligned-IS, a novel, distortion-free watermark, specifically crafted for audio generation models. This technique utilizes a clustering approach that treats tokens within the same cluster equivalently, effectively countering the retokenization mismatch issue. Our comprehensive testing on prevalent audio generation platforms demonstrates that Aligned-IS not only preserves the quality of generated audio but also significantly improves the watermark detectability compared to the state-of-the-art distortion-free watermarking adaptations, establishing a new benchmark in secure audio technology applications.
Authors:Yihan Wu, Xuehao Cui, Ruibo Chen, Heng Huang
Abstract:
Verifying the authenticity of AI-generated text has become increasingly important with the rapid advancement of large language models, and unbiased watermarking has emerged as a promising approach due to its ability to preserve output distribution without degrading quality. However, recent work reveals that unbiased watermarks can accumulate distributional bias over multiple generations and that existing robustness evaluations are inconsistent across studies. To address these issues, we introduce UWbench, the first open-source benchmark dedicated to the principled evaluation of unbiased watermarking methods. Our framework combines theoretical and empirical contributions: we propose a statistical metric to quantify multi-batch distribution drift, prove an impossibility result showing that no unbiased watermark can perfectly preserve the distribution under infinite queries, and develop a formal analysis of robustness against token-level modification attacks. Complementing this theory, we establish a three-axis evaluation protocol: unbiasedness, detectability, and robustness, and show that token modification attacks provide more stable robustness assessments than paraphrasing-based methods. Together, UWbench offers the community a standardized and reproducible platform for advancing the design and evaluation of unbiased watermarking algorithms.
Authors:Yihan Wu, Ruibo Chen, Georgios Milis, Heng Huang
Abstract:
As large language models become increasingly capable and widely deployed, verifying the provenance of machine-generated content is critical to ensuring trust, safety, and accountability. Watermarking techniques have emerged as a promising solution by embedding imperceptible statistical signals into the generation process. Among them, unbiased watermarking is particularly attractive due to its theoretical guarantee of preserving the language model's output distribution, thereby avoiding degradation in fluency or detectability through distributional shifts. However, existing unbiased watermarking schemes often suffer from weak detection power and limited robustness, especially under short text lengths or distributional perturbations. In this work, we propose ENS, a novel ensemble framework that enhances the detectability and robustness of logits-based unbiased watermarks while strictly preserving their unbiasedness. ENS sequentially composes multiple independent watermark instances, each governed by a distinct key, to amplify the watermark signal. We theoretically prove that the ensemble construction remains unbiased in expectation and demonstrate how it improves the signal-to-noise ratio for statistical detectors. Empirical evaluations on multiple LLM families show that ENS substantially reduces the number of tokens needed for reliable detection and increases resistance to smoothing and paraphrasing attacks without compromising generation quality.
Authors:Yihan Wu, Xuehao Cui, Ruibo Chen, Georgios Milis, Heng Huang
Abstract:
The rapid evolution of image generation models has revolutionized visual content creation, enabling the synthesis of highly realistic and contextually accurate images for diverse applications. However, the potential for misuse, such as deepfake generation, image based phishing attacks, and fabrication of misleading visual evidence, underscores the need for robust authenticity verification mechanisms. While traditional statistical watermarking techniques have proven effective for autoregressive language models, their direct adaptation to image generation models encounters significant challenges due to a phenomenon we term retokenization mismatch, a disparity between original and retokenized sequences during the image generation process. To overcome this limitation, we propose C-reweight, a novel, distortion-free watermarking method explicitly designed for image generation models. By leveraging a clustering-based strategy that treats tokens within the same cluster equivalently, C-reweight mitigates retokenization mismatch while preserving image fidelity. Extensive evaluations on leading image generation platforms reveal that C-reweight not only maintains the visual quality of generated images but also improves detectability over existing distortion-free watermarking techniques, setting a new standard for secure and trustworthy image synthesis.
Authors:Ruibo Chen, Yihan Wu, Junfeng Guo, Heng Huang
Abstract:
As artificial intelligence surpasses human capabilities in text generation, the necessity to authenticate the origins of AI-generated content has become paramount. Unbiased watermarks offer a powerful solution by embedding statistical signals into language model-generated text without distorting the quality. In this paper, we introduce MCmark, a family of unbiased, Multi-Channel-based watermarks. MCmark works by partitioning the model's vocabulary into segments and promoting token probabilities within a selected segment based on a watermark key. We demonstrate that MCmark not only preserves the original distribution of the language model but also offers significant improvements in detectability and robustness over existing unbiased watermarks. Our experiments with widely-used language models demonstrate an improvement in detectability of over 10% using MCmark, compared to existing state-of-the-art unbiased watermarks. This advancement underscores MCmark's potential in enhancing the practical application of watermarking in AI-generated texts.
Authors:Junfeng Guo, Yiming Li, Ruibo Chen, Yihan Wu, Chenxi Liu, Yanshuo Chen, Heng Huang
Abstract:
Large language models (LLMs) are increasingly integrated into real-world personalized applications through retrieval-augmented generation (RAG) mechanisms to supplement their responses with domain-specific knowledge. However, the valuable and often proprietary nature of the knowledge bases used in RAG introduces the risk of unauthorized usage by adversaries. Existing methods that can be generalized as watermarking techniques to protect these knowledge bases typically involve poisoning or backdoor attacks. However, these methods require altering the LLM's results of verification samples, inevitably making these watermarks susceptible to anomaly detection and even introducing new security risks. To address these challenges, we propose \name{} for `harmless' copyright protection of knowledge bases. Instead of manipulating LLM's final output, \name{} implants distinct yet benign verification behaviors in the space of chain-of-thought (CoT) reasoning, maintaining the correctness of the final answer. Our method has three main stages: (1) Generating CoTs: For each verification question, we generate two `innocent' CoTs, including a target CoT for building watermark behaviors; (2) Optimizing Watermark Phrases and Target CoTs: Inspired by our theoretical analysis, we optimize them to minimize retrieval errors under the \emph{black-box} and \emph{text-only} setting of suspicious LLM, ensuring that only watermarked verification queries can retrieve their correspondingly target CoTs contained in the knowledge base; (3) Ownership Verification: We exploit a pairwise Wilcoxon test to verify whether a suspicious LLM is augmented with the protected knowledge base by comparing its responses to watermarked and benign verification queries. Our experiments on diverse benchmarks demonstrate that \name{} effectively protects knowledge bases and its resistance to adaptive attacks.
Authors:Giyeong Oh, Saejin Kim, Woohyun Cho, Sangkyu Lee, Jiwan Chung, Dokyung Song, Youngjae Yu
Abstract:
Recently, LoRA and its variants have become the de facto strategy for training and sharing task-specific versions of large pretrained models, thanks to their efficiency and simplicity. However, the issue of copyright protection for LoRA weights, especially through watermark-based techniques, remains underexplored. To address this gap, we propose SEAL (SEcure wAtermarking on LoRA weights), the universal whitebox watermarking for LoRA. SEAL embeds a secret, non-trainable matrix between trainable LoRA weights, serving as a passport to claim ownership. SEAL then entangles the passport with the LoRA weights through training, without extra loss for entanglement, and distributes the finetuned weights after hiding the passport. When applying SEAL, we observed no performance degradation across commonsense reasoning, textual/visual instruction tuning, and text-to-image synthesis tasks. We demonstrate that SEAL is robust against a variety of known attacks: removal, obfuscation, and ambiguity attacks.
Authors:Ruibo Chen, Yihan Wu, Junfeng Guo, Heng Huang
Abstract:
Watermarking techniques offer a promising way to identify machine-generated content via embedding covert information into the contents generated from language models (LMs). However, the robustness of the watermarking schemes has not been well explored. In this paper, we present De-mark, an advanced framework designed to remove n-gram-based watermarks effectively. Our method utilizes a novel querying strategy, termed random selection probing, which aids in assessing the strength of the watermark and identifying the red-green list within the n-gram watermark. Experiments on popular LMs, such as Llama3 and ChatGPT, demonstrate the efficiency and effectiveness of De-mark in watermark removal and exploitation tasks.
Authors:Ruibo Chen, Yihan Wu, Yanshuo Chen, Chenxi Liu, Junfeng Guo, Heng Huang
Abstract:
Statistical watermarking techniques are well-established for sequentially decoded language models (LMs). However, these techniques cannot be directly applied to order-agnostic LMs, as the tokens in order-agnostic LMs are not generated sequentially. In this work, we introduce Pattern-mark, a pattern-based watermarking framework specifically designed for order-agnostic LMs. We develop a Markov-chain-based watermark generator that produces watermark key sequences with high-frequency key patterns. Correspondingly, we propose a statistical pattern-based detection algorithm that recovers the key sequence during detection and conducts statistical tests based on the count of high-frequency patterns. Our extensive evaluations on order-agnostic LMs, such as ProteinMPNN and CMLM, demonstrate Pattern-mark's enhanced detection efficiency, generation quality, and robustness, positioning it as a superior watermarking technique for order-agnostic LMs.
Authors:Tharindu Fernando, Clinton Fookes, Sridha Sridharan
Abstract:
Rapid advances in generative AI have led to increasingly realistic deepfakes, posing growing challenges for law enforcement and public trust. Existing passive deepfake detectors struggle to keep pace, largely due to their dependence on specific forgery artifacts, which limits their ability to generalize to new deepfake types. Proactive deepfake detection using watermarks has emerged to address the challenge of identifying high-quality synthetic media. However, these methods often struggle to balance robustness against benign distortions with sensitivity to malicious tampering. This paper introduces a novel deep learning framework that harnesses high-dimensional latent space representations and the Multi-Agent Adversarial Reinforcement Learning (MAARL) paradigm to develop a robust and adaptive watermarking approach. Specifically, we develop a learnable watermark embedder that operates in the latent space, capturing high-level image semantics, while offering precise control over message encoding and extraction. The MAARL paradigm empowers the learnable watermarking agent to pursue an optimal balance between robustness and fragility by interacting with a dynamic curriculum of benign and malicious image manipulations simulated by an adversarial attacker agent. Comprehensive evaluations on the CelebA and CelebA-HQ benchmarks reveal that our method consistently outperforms state-of-the-art approaches, achieving improvements of over 4.5% on CelebA and more than 5.3% on CelebA-HQ under challenging manipulation scenarios.
Authors:Kuofeng Gao, Yufei Zhu, Yiming Li, Jiawang Bai, Yong Yang, Zhifeng Li, Shu-Tao Xia
Abstract:
Text-to-image (T2I) diffusion models have rapidly advanced, enabling high-quality image generation conditioned on textual prompts. However, the growing trend of fine-tuning pre-trained models for personalization raises serious concerns about unauthorized dataset usage. To combat this, dataset ownership verification (DOV) has emerged as a solution, embedding watermarks into the fine-tuning datasets using backdoor techniques. These watermarks remain inactive under benign samples but produce owner-specified outputs when triggered. Despite the promise of DOV for T2I diffusion models, its robustness against copyright evasion attacks (CEA) remains unexplored. In this paper, we explore how attackers can bypass these mechanisms through CEA, allowing models to circumvent watermarks even when trained on watermarked datasets. We propose the first copyright evasion attack (i.e., CEAT2I) specifically designed to undermine DOV in T2I diffusion models. Concretely, our CEAT2I comprises three stages: watermarked sample detection, trigger identification, and efficient watermark mitigation. A key insight driving our approach is that T2I models exhibit faster convergence on watermarked samples during the fine-tuning, evident through intermediate feature deviation. Leveraging this, CEAT2I can reliably detect the watermarked samples. Then, we iteratively ablate tokens from the prompts of detected watermarked samples and monitor shifts in intermediate features to pinpoint the exact trigger tokens. Finally, we adopt a closed-form concept erasure method to remove the injected watermark. Extensive experiments show that our CEAT2I effectively evades DOV mechanisms while preserving model performance.
Authors:Linyu Wu, Linhao Zhong, Wenjie Qu, Yuexin Li, Yue Liu, Shengfang Zhai, Chunhua Shen, Jiaheng Zhang
Abstract:
Diffusion large language models (dLLMs) offer faster generation than autoregressive models while maintaining comparable quality, but existing watermarking methods fail on them due to their non-sequential decoding. Unlike autoregressive models that generate tokens left-to-right, dLLMs can finalize tokens in arbitrary order, breaking the causal design underlying traditional watermarks. We present DMark, the first watermarking framework designed specifically for dLLMs. DMark introduces three complementary strategies to restore watermark detectability: predictive watermarking uses model-predicted tokens when actual context is unavailable; bidirectional watermarking exploits both forward and backward dependencies unique to diffusion decoding; and predictive-bidirectional watermarking combines both approaches to maximize detection strength. Experiments across multiple dLLMs show that DMark achieves 92.0-99.5% detection rates at 1% false positive rate while maintaining text quality, compared to only 49.6-71.2% for naive adaptations of existing methods. DMark also demonstrates robustness against text manipulations, establishing that effective watermarking is feasible for non-autoregressive language models.
Authors:Longjie Zhao, Ziming Hong, Zhenyang Ren, Runnan Chen, Mingming Gong, Tongliang Liu
Abstract:
3D Gaussian Splatting (3DGS) has enabled the creation of digital assets and downstream applications, underscoring the need for robust copyright protection via digital watermarking. However, existing 3DGS watermarking methods remain highly vulnerable to diffusion-based editing, which can easily erase embedded provenance. This challenge highlights the urgent need for 3DGS watermarking techniques that are intrinsically resilient to diffusion-based editing. In this paper, we introduce RDSplat, a Robust watermarking paradigm against Diffusion editing for 3D Gaussian Splatting. RDSplat embeds watermarks into 3DGS components that diffusion-based editing inherently preserve, achieved through (i) proactively targeting low-frequency Gaussians and (ii) adversarial training with a diffusion proxy. Specifically, we introduce a multi-domain framework that operates natively in 3DGS space and embeds watermarks into diffusion-editing-preserved low-frequency Gaussians via coordinated covariance regularization and 2D filtering. In addition, we exploit the low-pass filtering behavior of diffusion-based editing by using Gaussian blur as an efficient training surrogate, enabling adversarial fine-tuning that further enhances watermark robustness against diffusion-based editing. Empirically, comprehensive quantitative and qualitative evaluations on three benchmark datasets demonstrate that RDSplat not only maintains superior robustness under diffusion-based editing, but also preserves watermark invisibility, achieving state-of-the-art performance.
Authors:Zhenhua Xu, Xubin Yue, Zhebo Wang, Qichen Liu, Xixiang Zhao, Jingxuan Zhang, Wenjun Zeng, Wengpeng Xing, Dezhang Kong, Changting Lin, Meng Han
Abstract:
Copyright protection for large language models is of critical importance, given their substantial development costs, proprietary value, and potential for misuse. Existing surveys have predominantly focused on techniques for tracing LLM-generated content-namely, text watermarking-while a systematic exploration of methods for protecting the models themselves (i.e., model watermarking and model fingerprinting) remains absent. Moreover, the relationships and distinctions among text watermarking, model watermarking, and model fingerprinting have not been comprehensively clarified. This work presents a comprehensive survey of the current state of LLM copyright protection technologies, with a focus on model fingerprinting, covering the following aspects: (1) clarifying the conceptual connection from text watermarking to model watermarking and fingerprinting, and adopting a unified terminology that incorporates model watermarking into the broader fingerprinting framework; (2) providing an overview and comparison of diverse text watermarking techniques, highlighting cases where such methods can function as model fingerprinting; (3) systematically categorizing and comparing existing model fingerprinting approaches for LLM copyright protection; (4) presenting, for the first time, techniques for fingerprint transfer and fingerprint removal; (5) summarizing evaluation metrics for model fingerprints, including effectiveness, harmlessness, robustness, stealthiness, and reliability; and (6) discussing open challenges and future research directions. This survey aims to offer researchers a thorough understanding of both text watermarking and model fingerprinting technologies in the era of LLMs, thereby fostering further advances in protecting their intellectual property.
Authors:Runyi Li, Xuanyu Zhang, Chuhan Tong, Zhipei Xu, Jian Zhang
Abstract:
With the advancement of AIGC technologies, the modalities generated by models have expanded from images and videos to 3D objects, leading to an increasing number of works focused on 3D Gaussian Splatting (3DGS) generative models. Existing research on copyright protection for generative models has primarily concentrated on watermarking in image and text modalities, with little exploration into the copyright protection of 3D object generative models. In this paper, we propose the first bit watermarking framework for 3DGS generative models, named GaussianSeal, to enable the decoding of bits as copyright identifiers from the rendered outputs of generated 3DGS. By incorporating adaptive bit modulation modules into the generative model and embedding them into the network blocks in an adaptive way, we achieve high-precision bit decoding with minimal training overhead while maintaining the fidelity of the model's outputs. Experiments demonstrate that our method outperforms post-processing watermarking approaches for 3DGS objects, achieving superior performance of watermark decoding accuracy and preserving the quality of the generated results.
Authors:Xuanyu Zhang, Zecheng Tang, Zhipei Xu, Runyi Li, Youmin Xu, Bin Chen, Feng Gao, Jian Zhang
Abstract:
With the rapid growth of generative AI and its widespread application in image editing, new risks have emerged regarding the authenticity and integrity of digital content. Existing versatile watermarking approaches suffer from trade-offs between tamper localization precision and visual quality. Constrained by the limited flexibility of previous framework, their localized watermark must remain fixed across all images. Under AIGC-editing, their copyright extraction accuracy is also unsatisfactory. To address these challenges, we propose OmniGuard, a novel augmented versatile watermarking approach that integrates proactive embedding with passive, blind extraction for robust copyright protection and tamper localization. OmniGuard employs a hybrid forensic framework that enables flexible localization watermark selection and introduces a degradation-aware tamper extraction network for precise localization under challenging conditions. Additionally, a lightweight AIGC-editing simulation layer is designed to enhance robustness across global and local editing. Extensive experiments show that OmniGuard achieves superior fidelity, robustness, and flexibility. Compared to the recent state-of-the-art approach EditGuard, our method outperforms it by 4.25dB in PSNR of the container image, 20.7% in F1-Score under noisy conditions, and 14.8% in average bit accuracy.
Authors:Kui Ren, Ziqi Yang, Li Lu, Jian Liu, Yiming Li, Jie Wan, Xiaodi Zhao, Xianheng Feng, Shuo Shao
Abstract:
The rapid advancement of AI technology, particularly in generating AI-generated content (AIGC), has transformed numerous fields, e.g., art video generation, but also brings new risks, including the misuse of AI for misinformation and intellectual property theft. To address these concerns, AIGC watermarks offer an effective solution to mitigate malicious activities. However, existing watermarking surveys focus more on traditional watermarks, overlooking AIGC-specific challenges. In this work, we propose a systematic investigation into AIGC watermarking and provide the first formal definition of AIGC watermarking. Different from previous surveys, we provide a taxonomy based on the core properties of the watermark which are summarized through comprehensive literature from various AIGC modalities. Derived from the properties, we discuss the functionality and security threats of AIGC watermarking. In the end, we thoroughly investigate the AIGC governance of different countries and practitioners. We believe this taxonomy better aligns with the practical demands for watermarking in the era of GenAI, thus providing a clearer summary of existing work and uncovering potential future research directions for the community.
Authors:Wei Song, Zhenchang Xing, Liming Zhu, Yulei Sui, Jingling Xue
Abstract:
The rapid proliferation of realistic deepfakes has raised urgent concerns over their misuse, motivating the use of defensive watermarks in synthetic images for reliable detection and provenance tracking. However, this defense paradigm assumes such watermarks are inherently resistant to removal. We challenge this assumption with DeMark, a query-free black-box attack framework that targets defensive image watermarking schemes for deepfakes. DeMark exploits latent-space vulnerabilities in encoder-decoder watermarking models through a compressive sensing based sparsification process, suppressing watermark signals while preserving perceptual and structural realism appropriate for deepfakes. Across eight state-of-the-art watermarking schemes, DeMark reduces watermark detection accuracy from 100% to 32.9% on average while maintaining natural visual quality, outperforming existing attacks. We further evaluate three defense strategies, including image super resolution, sparse watermarking, and adversarial training, and find them largely ineffective. These results demonstrate that current encoder decoder watermarking schemes remain vulnerable to latent-space manipulations, underscoring the need for more robust watermarking methods to safeguard against deepfakes.
Authors:Wenyuan Yang, Yichen Sun, Changzheng Chen, Zhixuan Chu, Jiaheng Zhang, Yiming Li, Dacheng Tao
Abstract:
Large-scale vision-language models, especially CLIP, have demonstrated remarkable performance across diverse downstream tasks. Soft prompts, as carefully crafted modules that efficiently adapt vision-language models to specific tasks, necessitate effective copyright protection. In this paper, we investigate model copyright protection by auditing whether suspicious third-party models incorporate protected soft prompts. While this can be viewed as a special case of model ownership auditing, our analysis shows that existing techniques are ineffective due to prompt learning's unique characteristics. Non-intrusive auditing is inherently prone to false positives when independent models share similar data distributions with victim models. Intrusive approaches also fail: backdoor methods designed for CLIP cannot embed functional triggers, while extending traditional DNN backdoor techniques to prompt learning suffers from harmfulness and ambiguity challenges. We find that these failures in intrusive auditing stem from the same fundamental reason: watermarking operates within the same decision space as the primary task yet pursues opposing objectives. Motivated by these findings, we propose sequential watermarking for soft prompts (SWAP), which implants watermarks into a different and more complex space. SWAP encodes watermarks through a specific order of defender-specified out-of-distribution classes, inspired by the zero-shot prediction capability of CLIP. This watermark, which is embedded in a more complex space, keeps the original prediction label unchanged, making it less opposed to the primary task. We further design a hypothesis-test-guided verification protocol for SWAP and provide theoretical analyses of success conditions. Extensive experiments on 11 datasets demonstrate SWAP's effectiveness, harmlessness, and robustness against potential adaptive attacks.
Authors:Gehao Zhang, Eugene Bagdasarian, Juan Zhai, Shiqing Ma
Abstract:
Distinguishing AI-generated code from human-written code is becoming crucial for tasks such as authorship attribution, content tracking, and misuse detection. Based on this, N-gram-based watermarking schemes have emerged as prominent, which inject secret watermarks to be detected during the generation.
However, their robustness in code content remains insufficiently evaluated. Most claims rely solely on defenses against simple code transformations or code optimizations as a simulation of attack, creating a questionable sense of robustness. In contrast, more sophisticated schemes already exist in the software engineering world, e.g., code obfuscation, which significantly alters code while preserving functionality. Although obfuscation is commonly used to protect intellectual property or evade software scanners, the robustness of code watermarking techniques against such transformations remains largely unexplored.
In this work, we formally model the code obfuscation and prove the impossibility of N-gram-based watermarking's robustness with only one intuitive and experimentally verified assumption, distribution consistency, satisfied. Given the original false positive rate of the watermarking detection, the ratio that the detector failed on the watermarked code after obfuscation will increase to 1 - fpr.
The experiments have been performed on three SOTA watermarking schemes, two LLMs, two programming languages, four code benchmarks, and four obfuscators. Among them, all watermarking detectors show coin-flipping detection abilities on obfuscated codes (AUROC tightly surrounds 0.5). Among all models, watermarking schemes, and datasets, both programming languages own obfuscators that can achieve attack effects with no detection AUROC higher than 0.6 after the attack. Based on the theoretical and practical observations, we also proposed a potential path of robust code watermarking.
Authors:Mingzhe Li, Gehao Zhang, Zhenting Wang, Shiqing Ma, Siqi Pan, Richard Cartwright, Juan Zhai
Abstract:
Text-to-image generation models~(e.g., Stable Diffusion) have achieved significant advancements, enabling the creation of high-quality and realistic images based on textual descriptions. Prompt inversion, the task of identifying the textual prompt used to generate a specific artifact, holds significant potential for applications including data attribution, model provenance, and watermarking validation. Recent studies introduced a delayed projection scheme to optimize for prompts representative of the vocabulary space, though challenges in semantic fluency and efficiency remain. Advanced image captioning models or visual large language models can generate highly interpretable prompts, but they often lack in image similarity. In this paper, we propose a prompt inversion technique called \sys for text-to-image diffusion models, which includes initializing embeddings using a pre-trained image captioning model, refining them through reverse-engineering in the latent space, and converting them to texts using an embedding-to-text model. Our experiments on the widely-used datasets, such as MS COCO, LAION, and Flickr, show that our method outperforms existing methods in terms of image similarity, textual alignment, prompt interpretability and generalizability. We further illustrate the application of our generated prompts in tasks such as cross-concept image synthesis, concept manipulation, evolutionary multi-concept generation and unsupervised segmentation.
Authors:Haoxin Yang, Bangzhen Liu, Xuemiao Xu, Cheng Xu, Yuyang Yu, Zikai Huang, Yi Wang, Shengfeng He
Abstract:
The advancement of diffusion models has enhanced the realism of AI-generated content but also raised concerns about misuse, necessitating robust copyright protection and tampering localization. Although recent methods have made progress toward unified solutions, their reliance on post hoc processing introduces considerable application inconvenience and compromises forensic reliability. We propose StableGuard, a novel framework that seamlessly integrates a binary watermark into the diffusion generation process, ensuring copyright protection and tampering localization in Latent Diffusion Models through an end-to-end design. We develop a Multiplexing Watermark VAE (MPW-VAE) by equipping a pretrained Variational Autoencoder (VAE) with a lightweight latent residual-based adapter, enabling the generation of paired watermarked and watermark-free images. These pairs, fused via random masks, create a diverse dataset for training a tampering-agnostic forensic network. To further enhance forensic synergy, we introduce a Mixture-of-Experts Guided Forensic Network (MoE-GFN) that dynamically integrates holistic watermark patterns, local tampering traces, and frequency-domain cues for precise watermark verification and tampered region detection. The MPW-VAE and MoE-GFN are jointly optimized in a self-supervised, end-to-end manner, fostering a reciprocal training between watermark embedding and forensic accuracy. Extensive experiments demonstrate that StableGuard consistently outperforms state-of-the-art methods in image fidelity, watermark verification, and tampering localization.
Authors:Haonan An, Guang Hua, Hangcheng Cao, Zhengru Fang, Guowen Xu, Susanto Rahardja, Yuguang Fang
Abstract:
The intellectual property of deep generative networks (GNets) can be protected using a cascaded hiding network (HNet) which embeds watermarks (or marks) into GNet outputs, known as box-free watermarking. Although both GNet and HNet are encapsulated in a black box (called operation network, or ONet), with only the generated and marked outputs from HNet being released to end users and deemed secure, in this paper, we reveal an overlooked vulnerability in such systems. Specifically, we show that the hidden GNet outputs can still be reliably estimated via query-based reverse engineering, leaking the generated and unmarked images, despite the attacker's limited knowledge of the system. Our first attempt is to reverse-engineer an inverse model for HNet under the stringent black-box condition, for which we propose to exploit the query process with specially curated input images. While effective, this method yields unsatisfactory image quality. To improve this, we subsequently propose an alternative method leveraging the equivalent additive property of box-free model watermarking and reverse-engineering a forward surrogate model of HNet, with better image quality preservation. Extensive experimental results on image processing and image generation tasks demonstrate that both attacks achieve impressive watermark removal success rates (100%) while also maintaining excellent image quality (reaching the highest PSNR of 34.69 dB), substantially outperforming existing attacks, highlighting the urgent need for robust defensive strategies to mitigate the identified vulnerability in box-free model watermarking.
Authors:Haonan An, Guang Hua, Zhengru Fang, Guowen Xu, Susanto Rahardja, Yuguang Fang
Abstract:
The intellectual property of deep image-to-image models can be protected by the so-called box-free watermarking. It uses an encoder and a decoder, respectively, to embed into and extract from the model's output images invisible copyright marks. Prior works have improved watermark robustness, focusing on the design of better watermark encoders. In this paper, we reveal an overlooked vulnerability of the unprotected watermark decoder which is jointly trained with the encoder and can be exploited to train a watermark removal network. To defend against such an attack, we propose the decoder gradient shield (DGS) as a protection layer in the decoder API to prevent gradient-based watermark removal with a closed-form solution. The fundamental idea is inspired by the classical adversarial attack, but is utilized for the first time as a defensive mechanism in the box-free model watermarking. We then demonstrate that DGS can reorient and rescale the gradient directions of watermarked queries and stop the watermark remover's training loss from converging to the level without DGS, while retaining decoder output image quality. Experimental results verify the effectiveness of proposed method. Code of paper will be made available upon acceptance.
Authors:Boyu Zhang, Ping He, Tianyu Du, Xuhong Zhang, Lei Yun, Kingsum Chow, Jianwei Yin
Abstract:
With the widespread adoption of open-source code language models (code LMs), intellectual property (IP) protection has become an increasingly critical concern. While current watermarking techniques have the potential to identify the code LM to protect its IP, they have limitations when facing the more practical and complex demand, i.e., offering the individual user-level tracing in the black-box setting. This work presents CLMTracing, a black-box code LM watermarking framework employing the rule-based watermarks and utility-preserving injection method for user-level model tracing. CLMTracing further incorporates a parameter selection algorithm sensitive to the robust watermark and adversarial training to enhance the robustness against watermark removal attacks. Comprehensive evaluations demonstrate CLMTracing is effective across multiple state-of-the-art (SOTA) code LMs, showing significant harmless improvements compared to existing SOTA baselines and strong robustness against various removal attacks.
Authors:Guoheng Sun, Ziyao Wang, Xuandong Zhao, Bowei Tian, Zheyu Shen, Yexiao He, Jinming Xing, Ang Li
Abstract:
Modern large language model (LLM) services increasingly rely on complex, often abstract operations, such as multi-step reasoning and multi-agent collaboration, to generate high-quality outputs. While users are billed based on token consumption and API usage, these internal steps are typically not visible. We refer to such systems as Commercial Opaque LLM Services (COLS). This position paper highlights emerging accountability challenges in COLS: users are billed for operations they cannot observe, verify, or contest. We formalize two key risks: \textit{quantity inflation}, where token and call counts may be artificially inflated, and \textit{quality downgrade}, where providers might quietly substitute lower-cost models or tools. Addressing these risks requires a diverse set of auditing strategies, including commitment-based, predictive, behavioral, and signature-based methods. We further explore the potential of complementary mechanisms such as watermarking and trusted execution environments to enhance verifiability without compromising provider confidentiality. We also propose a modular three-layer auditing framework for COLS and users that enables trustworthy verification across execution, secure logging, and user-facing auditability without exposing proprietary internals. Our aim is to encourage further research and policy development toward transparency, auditability, and accountability in commercial LLM services.
Authors:Chaoyi Zhu, Zaitang Li, Renyi Yang, Robert Birke, Pin-Yu Chen, Tsung-Yi Ho, Lydia Y. Chen
Abstract:
Watermarking becomes one of the pivotal solutions to trace and verify the origin of synthetic images generated by artificial intelligence models, but it is not free of risks. Recent studies demonstrate the capability to forge watermarks from a target image onto cover images via adversarial optimization without knowledge of the target generative model and watermark schemes. In this paper, we uncover a greater risk of an optimization-free and universal watermark forgery that harnesses existing regenerative diffusion models. Our proposed forgery attack, PnP (Plug-and-Plant), seamlessly extracts and integrates the target watermark via regenerating the image, without needing any additional optimization routine. It allows for universal watermark forgery that works independently of the target image's origin or the watermarking model used. We explore the watermarked latent extracted from the target image and visual-textual context of cover images as priors to guide sampling of the regenerative process. Extensive evaluation on 24 scenarios of model-data-watermark combinations demonstrates that PnP can successfully forge the watermark (up to 100% detectability and user attribution), and maintain the best visual perception. By bypassing model retraining and enabling adaptability to any image, our approach significantly broadens the scope of forgery attacks, presenting a greater challenge to the security of current watermarking techniques for diffusion models and the authority of watermarking schemes in synthetic data generation and governance.
Authors:Jianbo Gao, Keke Gai, Jing Yu, Liehuang Zhu, Qi Wu
Abstract:
Recent advancement in large-scale Artificial Intelligence (AI) models offering multimodal services have become foundational in AI systems, making them prime targets for model theft. Existing methods select Out-of-Distribution (OoD) data as backdoor watermarks and retrain the original model for copyright protection. However, existing methods are susceptible to malicious detection and forgery by adversaries, resulting in watermark evasion. In this work, we propose Model-\underline{ag}nostic Black-box Backdoor W\underline{ate}rmarking Framework (AGATE) to address stealthiness and robustness challenges in multimodal model copyright protection. Specifically, we propose an adversarial trigger generation method to generate stealthy adversarial triggers from ordinary dataset, providing visual fidelity while inducing semantic shifts. To alleviate the issue of anomaly detection among model outputs, we propose a post-transform module to correct the model output by narrowing the distance between adversarial trigger image embedding and text embedding. Subsequently, a two-phase watermark verification is proposed to judge whether the current model infringes by comparing the two results with and without the transform module. Consequently, we consistently outperform state-of-the-art methods across five datasets in the downstream tasks of multimodal image-text retrieval and image classification. Additionally, we validated the robustness of AGATE under two adversarial attack scenarios.
Authors:Keke Gai, Ziyue Shen, Jing Yu, Liehuang Zhu, Qi Wu
Abstract:
With the growing demand for protecting the intellectual property (IP) of text-to-image diffusion models, we propose PCDiff -- a proactive access control framework that redefines model authorization by regulating generation quality. At its core, PCDIFF integrates a trainable fuser module and hierarchical authentication layers into the decoder architecture, ensuring that only users with valid encrypted credentials can generate high-fidelity images. In the absence of valid keys, the system deliberately degrades output quality, effectively preventing unauthorized exploitation.Importantly, while the primary mechanism enforces active access control through architectural intervention, its decoupled design retains compatibility with existing watermarking techniques. This satisfies the need of model owners to actively control model ownership while preserving the traceability capabilities provided by traditional watermarking approaches.Extensive experimental evaluations confirm a strong dependency between credential verification and image quality across various attack scenarios. Moreover, when combined with typical post-processing operations, PCDIFF demonstrates powerful performance alongside conventional watermarking methods. This work shifts the paradigm from passive detection to proactive enforcement of authorization, laying the groundwork for IP management of diffusion models.
Authors:Liangqi Lei, Keke Gai, Jing Yu, Liehuang Zhu, Qi Wu
Abstract:
Latent diffusion models have exhibited considerable potential in generative tasks. Watermarking is considered to be an alternative to safeguard the copyright of generative models and prevent their misuse. However, in the context of model distribution scenarios, the accessibility of models to large scale of model users brings new challenges to the security, efficiency and robustness of existing watermark solutions. To address these issues, we propose a secure and efficient watermarking solution. A new security mechanism is designed to prevent watermark leakage and watermark escape, which considers watermark randomness and watermark-model association as two constraints for mandatory watermark injection. To reduce the time cost of training the security module, watermark injection and the security mechanism are decoupled, ensuring that fine-tuning VAE only accomplishes the security mechanism without the burden of learning watermark patterns. A watermark distribution-based verification strategy is proposed to enhance the robustness against diverse attacks in the model distribution scenarios. Experimental results prove that our watermarking consistently outperforms existing six baselines on effectiveness and robustness against ten image processing attacks and adversarial attacks, while enhancing security in the distribution scenarios.
Authors:Liangqi Lei, Keke Gai, Jing Yu, Liehuang Zhu, Qi Wu
Abstract:
The personalization techniques of diffusion models succeed in generating images with specific concepts. This ability also poses great threats to copyright protection and network security since malicious users can generate unauthorized content and disinformation relevant to a target concept. Model watermarking is an effective solution to trace the malicious generated images and safeguard their copyright. However, existing model watermarking techniques merely achieve image-level tracing without concept traceability. When tracing infringing or harmful concepts, current approaches execute image concept detection and model tracing sequentially, where performance is critically constrained by concept detection accuracy. In this paper, we propose a lightweight concept watermarking framework that efficiently binds target concepts to model watermarks, supporting simultaneous concept identification and model tracing via single-stage watermark verification. To further enhance the robustness of concept watermarking, we propose an adversarial perturbation injection method collaboratively embedded with watermarks during image generation, avoiding watermark removal by model purification attacks. Experimental results demonstrate that ConceptWM significantly outperforms state-of-the-art watermarking methods, improving detection accuracy by 6.3%-19.3% across diverse datasets including COCO and StableDiffusionDB. Additionally, ConceptWM possesses a critical capability absent in other watermarking methods: it sustains a 21.7% FID/CLIP degradation under adversarial fine-tuning of Stable Diffusion models on WikiArt and CelebA-HQ, demonstrating its capability to mitigate model misuse.
Authors:Samar Fares, Nurbek Tastan, Karthik Nandakumar
Abstract:
The advent of high-quality video generation models has amplified the need for robust watermarking schemes that can be used to reliably detect and track the provenance of generated videos. Existing video watermarking methods based on both post-hoc and in-generation approaches fail to simultaneously achieve imperceptibility, robustness, and computational efficiency. This work introduces a novel framework for in-generation video watermarking called SPDMark (pronounced `SpeedMark') based on selective parameter displacement of a video diffusion model. Watermarks are embedded into the generated videos by modifying a subset of parameters in the generative model. To make the problem tractable, the displacement is modeled as an additive composition of layer-wise basis shifts, where the final composition is indexed by the watermarking key. For parameter efficiency, this work specifically leverages low-rank adaptation (LoRA) to implement the basis shifts. During the training phase, the basis shifts and the watermark extractor are jointly learned by minimizing a combination of message recovery, perceptual similarity, and temporal consistency losses. To detect and localize temporal modifications in the watermarked videos, we use a cryptographic hashing function to derive frame-specific watermark messages from the given base watermarking key. During watermark extraction, maximum bipartite matching is applied to recover the correct frame order, even from temporally tampered videos. Evaluations on both text-to-video and image-to-video generation models demonstrate the ability of SPDMark to generate imperceptible watermarks that can be recovered with high accuracy and also establish its robustness against a variety of common video modifications.
Authors:Wenkai Huang, Yijia Guo, Gaolei Li, Lei Ma, Hang Zhang, Liwen Hu, Jiazheng Wang, Jianhua Li, Tiejun Huang
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a powerful representation for 3D scenes, widely adopted due to its exceptional efficiency and high-fidelity visual quality. Given the significant value of 3DGS assets, recent works have introduced specialized watermarking schemes to ensure copyright protection and ownership verification. However, can existing 3D Gaussian watermarking approaches genuinely guarantee robust protection of the 3D assets? In this paper, for the first time, we systematically explore and validate possible vulnerabilities of 3DGS watermarking frameworks. We demonstrate that conventional watermark removal techniques designed for 2D images do not effectively generalize to the 3DGS scenario due to the specialized rendering pipeline and unique attributes of each gaussian primitives. Motivated by this insight, we propose GSPure, the first watermark purification framework specifically for 3DGS watermarking representations. By analyzing view-dependent rendering contributions and exploiting geometrically accurate feature clustering, GSPure precisely isolates and effectively removes watermark-related Gaussian primitives while preserving scene integrity. Extensive experiments demonstrate that our GSPure achieves the best watermark purification performance, reducing watermark PSNR by up to 16.34dB while minimizing degradation to original scene fidelity with less than 1dB PSNR loss. Moreover, it consistently outperforms existing methods in both effectiveness and generalization.
Authors:Samar Fares, Nurbek Tastan, Noor Hussein, Karthik Nandakumar
Abstract:
Generative models can generate photorealistic images at scale. This raises urgent concerns about the ability to detect synthetically generated images and attribute these images to specific sources. While watermarking has emerged as a possible solution, existing methods remain fragile to realistic distortions, susceptible to adaptive removal, and expensive to update when the underlying watermarking key changes. We propose a general watermarking framework that formulates the encoding problem as key-dependent perturbation of the parameters of a generative model. Within this framework, we introduce Mixture of LoRA Markers (MOLM), a routing-based instantiation in which binary keys activate lightweight LoRA adapters inside residual and attention blocks. This design avoids key-specific re-training and achieves the desired properties such as imperceptibility, fidelity, verifiability, and robustness. Experiments on Stable Diffusion and FLUX show that MOLM preserves image quality while achieving robust key recovery against distortions, compression and regeneration, averaging attacks, and black-box adversarial attacks on the extractor.
Authors:Yang Cui, Peter Pan, Lei He, Sheng Zhao
Abstract:
With the rapid advancement of speech generative models, unauthorized voice cloning poses significant privacy and security risks. Speech watermarking offers a viable solution for tracing sources and preventing misuse. Current watermarking technologies fall mainly into two categories: DSP-based methods and deep learning-based methods. DSP-based methods are efficient but vulnerable to attacks, whereas deep learning-based methods offer robust protection at the expense of significantly higher computational cost. To improve the computational efficiency and enhance the robustness, we propose PKDMark, a lightweight deep learning-based speech watermarking method that leverages progressive knowledge distillation (PKD). Our approach proceeds in two stages: (1) training a high-performance teacher model using an invertible neural network-based architecture, and (2) transferring the teacher's capabilities to a compact student model through progressive knowledge distillation. This process reduces computational costs by 93.6% while maintaining high level of robust performance and imperceptibility. Experimental results demonstrate that our distilled model achieves an average detection F1 score of 99.6% with a PESQ of 4.30 in advanced distortions, enabling efficient speech watermarking for real-time speech synthesis applications.
Authors:Yijia Guo, Wenkai Huang, Yang Li, Gaolei Li, Hang Zhang, Liwen Hu, Jianhua Li, Tiejun Huang, Lei Ma
Abstract:
3D Gaussian splatting (3DGS) has demonstrated impressive 3D reconstruction performance with explicit scene representations. Given the widespread application of 3DGS in 3D reconstruction and generation tasks, there is an urgent need to protect the copyright of 3DGS assets. However, existing copyright protection techniques for 3DGS overlook the usability of 3D assets, posing challenges for practical deployment. Here we describe WaterGS, the first 3DGS watermarking framework that embeds 3D content in 3DGS itself without modifying any attributes of the vanilla 3DGS. To achieve this, we take a deep insight into spherical harmonics (SH) and devise an importance-graded SH coefficient encryption strategy to embed the hidden SH coefficients. Furthermore, we employ a convolutional autoencoder to establish a mapping between the original Gaussian primitives' opacity and the hidden Gaussian primitives' opacity. Extensive experiments indicate that WaterGS significantly outperforms existing 3D steganography techniques, with 5.31% higher scene fidelity and 3X faster rendering speed, while ensuring security, robustness, and user experience. Codes and data will be released at https://water-gs.github.io.
Authors:Yuguang Yao, Anil Jain, Sijia Liu
Abstract:
Watermarking is an essential technique for embedding an identifier (i.e., watermark message) within digital images to assert ownership and monitor unauthorized alterations. In face recognition systems, watermarking plays a pivotal role in ensuring data integrity and security. However, an adversary could potentially interfere with the watermarking process, significantly impairing recognition performance. We explore the interaction between watermarking and adversarial attacks on face recognition models. Our findings reveal that while watermarking or input-level perturbation alone may have a negligible effect on recognition accuracy, the combined effect of watermarking and perturbation can result in an adversarial watermarking attack, significantly degrading recognition performance. Specifically, we introduce a novel threat model, the adversarial watermarking attack, which remains stealthy in the absence of watermarking, allowing images to be correctly recognized initially. However, once watermarking is applied, the attack is activated, causing recognition failures. Our study reveals a previously unrecognized vulnerability: adversarial perturbations can exploit the watermark message to evade face recognition systems. Evaluated on the CASIA-WebFace dataset, our proposed adversarial watermarking attack reduces face matching accuracy by 67.2% with an $\ell_\infty$ norm-measured perturbation strength of ${2}/{255}$ and by 95.9% with a strength of ${4}/{255}$.
Authors:Haonan An, Guang Hua, Wei Du, Hangcheng Cao, Yihang Tao, Guowen Xu, Susanto Rahardja, Yuguang Fang
Abstract:
Box-free model watermarking has gained significant attention in deep neural network (DNN) intellectual property protection due to its model-agnostic nature and its ability to flexibly manage high-entropy image outputs from generative models. Typically operating in a black-box manner, it employs an encoder-decoder framework for watermark embedding and extraction. While existing research has focused primarily on the encoders for the robustness to resist various attacks, the decoders have been largely overlooked, leading to attacks against the watermark. In this paper, we identify one such attack against the decoder, where query responses are utilized to obtain backpropagated gradients to train a watermark remover. To address this issue, we propose Decoder Gradient Shields (DGSs), a family of defense mechanisms, including DGS at the output (DGS-O), at the input (DGS-I), and in the layers (DGS-L) of the decoder, with a closed-form solution for DGS-O and provable performance for all DGS. Leveraging the joint design of reorienting and rescaling of the gradients from watermark channel gradient leaking queries, the proposed DGSs effectively prevent the watermark remover from achieving training convergence to the desired low-loss value, while preserving image quality of the decoder output. We demonstrate the effectiveness of our proposed DGSs in diverse application scenarios. Our experimental results on deraining and image generation tasks with the state-of-the-art box-free watermarking show that our DGSs achieve a defense success rate of 100% under all settings.
Authors:Davis Brown, Juan-Pablo Rivera, Dan Hendrycks, Mantas Mazeika
Abstract:
As frontier AIs become more powerful and costly to develop, adversaries have increasing incentives to steal model weights by mounting exfiltration attacks. In this work, we consider exfiltration attacks where an adversary attempts to sneak model weights out of a datacenter over a network. While exfiltration attacks are multi-step cyber attacks, we demonstrate that a single factor, the compressibility of model weights, significantly heightens exfiltration risk for large language models (LLMs). We tailor compression specifically for exfiltration by relaxing decompression constraints and demonstrate that attackers could achieve 16x to 100x compression with minimal trade-offs, reducing the time it would take for an attacker to illicitly transmit model weights from the defender's server from months to days. Finally, we study defenses designed to reduce exfiltration risk in three distinct ways: making models harder to compress, making them harder to 'find,' and tracking provenance for post-attack analysis using forensic watermarks. While all defenses are promising, the forensic watermark defense is both effective and cheap, and therefore is a particularly attractive lever for mitigating weight-exfiltration risk.
Authors:Benedetta Tondi, Andrea Costanzo, Mauro Barni
Abstract:
We propose a high-payload image watermarking method for textual embedding, where a semantic description of the image - which may also correspond to the input text prompt-, is embedded inside the image. In order to be able to robustly embed high payloads in large-scale images - such as those produced by modern AI generators - the proposed approach builds upon a traditional watermarking scheme that exploits orthogonal and turbo codes for improved robustness, and integrates frequency-domain embedding and perceptual masking techniques to enhance watermark imperceptibility. Experiments show that the proposed method is extremely robust against a wide variety of image processing, and the embedded text can be retrieved also after traditional and AI inpainting, permitting to unveil the semantic modification the image has undergone via image-text mismatch analysis.
Authors:Xinrui Zhong, Xinze Feng, Jingwei Zuo, Fanjiang Ye, Yi Mu, Junfeng Guo, Heng Huang, Myungjin Lee, Yuke Wang
Abstract:
Efficient and reliable detection of generated images is critical for the responsible deployment of generative models. Existing approaches primarily focus on improving detection accuracy and robustness under various image transformations and adversarial manipulations, yet they largely overlook the efficiency challenges of watermark detection across large-scale image collections. To address this gap, we propose QRMark, an efficient and adaptive end-to-end method for detecting embedded image watermarks. The core idea of QRMark is to combine QR Code inspired error correction with tailored tiling techniques to improve detection efficiency while preserving accuracy and robustness. At the algorithmic level, QRMark employs a Reed-Solomon error correction mechanism to mitigate the accuracy degradation introduced by tiling. At the system level, QRMark implements a resource-aware stream allocation policy that adaptively assigns more streams to GPU-intensive stages of the detection pipeline. It further employs a tile-based workload interleaving strategy to overlap data-loading overhead with computation and schedules kernels across stages to maximize efficiency. End-to-end evaluations show that QRMark achieves an average 2.43x inference speedup over the sequential baseline.
Authors:Zhenguang Liu, Chao Shuai, Shaojing Fan, Ziping Dong, Jinwu Hu, Zhongjie Ba, Kui Ren
Abstract:
Diffusion models have achieved remarkable success in novel view synthesis, but their reliance on large, diverse, and often untraceable Web datasets has raised pressing concerns about image copyright protection. Current methods fall short in reliably identifying unauthorized image use, as they struggle to generalize across varied generation tasks and fail when the training dataset includes images from multiple sources with few identifiable (watermarked or poisoned) samples. In this paper, we present novel evidence that diffusion-generated images faithfully preserve the statistical properties of their training data, particularly reflected in their spectral features. Leveraging this insight, we introduce \emph{CoprGuard}, a robust frequency domain watermarking framework to safeguard against unauthorized image usage in diffusion model training and fine-tuning. CoprGuard demonstrates remarkable effectiveness against a wide range of models, from naive diffusion models to sophisticated text-to-image models, and is robust even when watermarked images comprise a mere 1\% of the training dataset. This robust and versatile approach empowers content owners to protect their intellectual property in the era of AI-driven image generation.
Authors:Zhongjie Ba, Yitao Zhang, Peng Cheng, Bin Gong, Xinyu Zhang, Qinglong Wang, Kui Ren
Abstract:
Watermarking plays a key role in the provenance and detection of AI-generated content. While existing methods prioritize robustness against real-world distortions (e.g., JPEG compression and noise addition), we reveal a fundamental tradeoff: such robust watermarks inherently improve the redundancy of detectable patterns encoded into images, creating exploitable information leakage. To leverage this, we propose an attack framework that extracts leakage of watermark patterns through multi-channel feature learning using a pre-trained vision model. Unlike prior works requiring massive data or detector access, our method achieves both forgery and detection evasion with a single watermarked image. Extensive experiments demonstrate that our method achieves a 60\% success rate gain in detection evasion and 51\% improvement in forgery accuracy compared to state-of-the-art methods while maintaining visual fidelity. Our work exposes the robustness-stealthiness paradox: current "robust" watermarks sacrifice security for distortion resistance, providing insights for future watermark design.
Authors:Kun Wang, Kaiyan Chang, Mengdi Wang, Xinqi Zou, Haobo Xu, Yinhe Han, Ying Wang
Abstract:
Recent advances of large language models in the field of Verilog generation have raised several ethical and security concerns, such as code copyright protection and dissemination of malicious code. Researchers have employed watermarking techniques to identify codes generated by large language models. However, the existing watermarking works fail to protect RTL code copyright due to the significant syntactic and semantic differences between RTL code and software code in languages such as Python. This paper proposes a hardware watermarking framework RTLMarker that embeds watermarks into RTL code and deeper into the synthesized netlist. We propose a set of rule-based Verilog code transformations , ensuring the watermarked RTL code's syntactic and semantic correctness. In addition, we consider an inherent tradeoff between watermark transparency and watermark effectiveness and jointly optimize them. The results demonstrate RTLMarker's superiority over the baseline in RTL code watermarking.
Authors:Xiufeng Huang, Ruiqi Li, Yiu-ming Cheung, Ka Chun Cheung, Simon See, Renjie Wan
Abstract:
3D Gaussian Splatting (3DGS) has become a crucial method for acquiring 3D assets. To protect the copyright of these assets, digital watermarking techniques can be applied to embed ownership information discreetly within 3DGS models. However, existing watermarking methods for meshes, point clouds, and implicit radiance fields cannot be directly applied to 3DGS models, as 3DGS models use explicit 3D Gaussians with distinct structures and do not rely on neural networks. Naively embedding the watermark on a pre-trained 3DGS can cause obvious distortion in rendered images. In our work, we propose an uncertainty-based method that constrains the perturbation of model parameters to achieve invisible watermarking for 3DGS. At the message decoding stage, the copyright messages can be reliably extracted from both 3D Gaussians and 2D rendered images even under various forms of 3D and 2D distortions. We conduct extensive experiments on the Blender, LLFF and MipNeRF-360 datasets to validate the effectiveness of our proposed method, demonstrating state-of-the-art performance on both message decoding accuracy and view synthesis quality.
Authors:Dongdong Lin, Yue Li, Benedetta Tondi, Bin Li, Mauro Barni
Abstract:
The rapid proliferation of deep neural networks (DNNs) is driving a surge in model watermarking technologies, as the trained deep models themselves serve as intellectual properties. The core of existing model watermarking techniques involves modifying or tuning the models' weights. However, with the emergence of increasingly complex models, ensuring the efficiency of watermarking process is essential to manage the growing computational demands. Prioritizing efficiency not only optimizes resource utilization, making the watermarking process more applicable, but also minimizes potential impacts on model performance. In this letter, we propose an efficient watermarking method for latent diffusion models (LDMs) which is based on Low-Rank Adaptation (LoRA). We specifically choose to add trainable low-rank matrices to the existing weight matrices of the models to embed watermark, while keeping the original weights frozen. Moreover, we also propose a dynamic loss weight tuning algorithm to balance the generative task with the watermark embedding task, ensuring that the model can be watermarked with a limited impact on the quality of the generated images. Experimental results show that the proposed method ensures fast watermark embedding and maintains a very low bit error rate of the watermark, a high-quality of the generated image, and a zero false negative rate (FNR) for verification.
Authors:Dung Daniel Ngo, Daniel Scott, Saheed Obitayo, Archan Ray, Akshay Seshadri, Niraj Kumar, Vamsi K. Potluru, Marco Pistoia, Manuela Veloso
Abstract:
Recent development in generative models has demonstrated its ability to create high-quality synthetic data. However, the pervasiveness of synthetic content online also brings forth growing concerns that it can be used for malicious purpose. To ensure the authenticity of the data, watermarking techniques have recently emerged as a promising solution due to their strong statistical guarantees. In this paper, we propose a flexible and robust watermarking mechanism for generative tabular data. Specifically, a data provider with knowledge of the downstream tasks can partition the feature space into pairs of (key, value) columns. Within each pair, the data provider first uses elements in the key column to generate a randomized set of ``green'' intervals, then encourages elements of the value column to be in one of these ``green'' intervals. We show theoretically and empirically that the watermarked datasets (i) have negligible impact on the data quality and downstream utility, (ii) can be efficiently detected, (iii) are robust against multiple attacks commonly observed in data science, and (iv) maintain strong security against adversary attempting to learn the underlying watermark scheme.
Authors:Zhaoxi Zhang, Xiaomei Zhang, Yanjun Zhang, He Zhang, Shirui Pan, Bo Liu, Asif Qumer Gill, Leo Yu Zhang
Abstract:
Large Language Model (LLM) watermarking embeds detectable signals into generated text for copyright protection, misuse prevention, and content detection. While prior studies evaluate robustness using watermark removal attacks, these methods are often suboptimal, creating the misconception that effective removal requires large perturbations or powerful adversaries. To bridge the gap, we first formalize the system model for LLM watermark, and characterize two realistic threat models constrained on limited access to the watermark detector. We then analyze how different types of perturbation vary in their attack range, i.e., the number of tokens they can affect with a single edit. We observe that character-level perturbations (e.g., typos, swaps, deletions, homoglyphs) can influence multiple tokens simultaneously by disrupting the tokenization process. We demonstrate that character-level perturbations are significantly more effective for watermark removal under the most restrictive threat model. We further propose guided removal attacks based on the Genetic Algorithm (GA) that uses a reference detector for optimization. Under a practical threat model with limited black-box queries to the watermark detector, our method demonstrates strong removal performance. Experiments confirm the superiority of character-level perturbations and the effectiveness of the GA in removing watermarks under realistic constraints. Additionally, we argue there is an adversarial dilemma when considering potential defenses: any fixed defense can be bypassed by a suitable perturbation strategy. Motivated by this principle, we propose an adaptive compound character-level attack. Experimental results show that this approach can effectively defeat the defenses. Our findings highlight significant vulnerabilities in existing LLM watermark schemes and underline the urgency for the development of new robust mechanisms.
Authors:Xiaoyan Feng, He Zhang, Yanjun Zhang, Leo Yu Zhang, Shirui Pan
Abstract:
Recent advances in Large Language Models (LLMs) have raised urgent concerns about LLM-generated text authenticity, prompting regulatory demands for reliable identification mechanisms. Although watermarking offers a promising solution, existing approaches struggle to simultaneously achieve three critical requirements: text quality preservation, model-agnostic detection, and message embedding capacity, which are crucial for practical implementation. To achieve these goals, the key challenge lies in balancing the trade-off between text quality preservation and message embedding capacity. To address this challenge, we propose BiMark, a novel watermarking framework that achieves these requirements through three key innovations: (1) a bit-flip unbiased reweighting mechanism enabling model-agnostic detection, (2) a multilayer architecture enhancing detectability without compromising generation quality, and (3) an information encoding approach supporting multi-bit watermarking. Through theoretical analysis and extensive experiments, we validate that, compared to state-of-the-art multi-bit watermarking methods, BiMark achieves up to 30% higher extraction rates for short texts while maintaining text quality indicated by lower perplexity, and performs comparably to non-watermarked text on downstream tasks such as summarization and translation.
Authors:Aleksandar Petrov, Shruti Agarwal, Philip H. S. Torr, Adel Bibi, John Collomosse
Abstract:
Watermarking, the practice of embedding imperceptible information into media such as images, videos, audio, and text, is essential for intellectual property protection, content provenance and attribution. The growing complexity of digital ecosystems necessitates watermarks for different uses to be embedded in the same media. However, to detect and decode all watermarks, they need to coexist well with one another. We perform the first study of coexistence of deep image watermarking methods and, contrary to intuition, we find that various open-source watermarks can coexist with only minor impacts on image quality and decoding robustness. The coexistence of watermarks also opens the avenue for ensembling watermarking methods. We show how ensembling can increase the overall message capacity and enable new trade-offs between capacity, accuracy, robustness and image quality, without needing to retrain the base models.
Authors:Jiazheng Xing, Hai Ci, Hongbin Xu, Hangjie Yuan, Yong Liu, Mike Zheng Shou
Abstract:
Watermarking diffusion-generated images is crucial for copyright protection and user tracking. However, current diffusion watermarking methods face significant limitations: zero-bit watermarking systems lack the capacity for large-scale user tracking, while multi-bit methods are highly sensitive to certain image transformations or generative attacks, resulting in a lack of comprehensive robustness. In this paper, we propose OptMark, an optimization-based approach that embeds a robust multi-bit watermark into the intermediate latents of the diffusion denoising process. OptMark strategically inserts a structural watermark early to resist generative attacks and a detail watermark late to withstand image transformations, with tailored regularization terms to preserve image quality and ensure imperceptibility. To address the challenge of memory consumption growing linearly with the number of denoising steps during optimization, OptMark incorporates adjoint gradient methods, reducing memory usage from O(N) to O(1). Experimental results demonstrate that OptMark achieves invisible multi-bit watermarking while ensuring robust resilience against valuemetric transformations, geometric transformations, editing, and regeneration attacks.
Authors:Haiyu Deng, Yanna Jiang, Guangsheng Yu, Qin Wang, Xu Wang, Baihe Ma, Wei Ni, Ren Ping Liu
Abstract:
Machine learning models are increasingly shared and outsourced, raising requirements of verifying training effort (Proof-of-Learning, PoL) to ensure claimed performance and establishing ownership (Proof-of-Ownership, PoO) for transactions. When models are trained by untrusted parties, PoL and PoO must be enforced together to enable protection, attribution, and compensation. However, existing studies typically address them separately, which not only weakens protection against forgery and privacy breaches but also leads to high verification overhead.
We propose PoLO, a unified framework that simultaneously achieves PoL and PoO using chained watermarks. PoLO splits the training process into fine-grained training shards and embeds a dedicated watermark in each shard. Each watermark is generated using the hash of the preceding shard, certifying the training process of the preceding shard. The chained structure makes it computationally difficult to forge any individual part of the whole training process. The complete set of watermarks serves as the PoL, while the final watermark provides the PoO. PoLO offers more efficient and privacy-preserving verification compared to the vanilla PoL solutions that rely on gradient-based trajectory tracing and inadvertently expose training data during verification, while maintaining the same level of ownership assurance of watermark-based PoO schemes. Our evaluation shows that PoLO achieves 99% watermark detection accuracy for ownership verification, while preserving data privacy and cutting verification costs to just 1.5-10% of traditional methods. Forging PoLO demands 1.1-4x more resources than honest proof generation, with the original proof retaining over 90% detection accuracy even after attacks.
Authors:Shufan Yang, Zifeng Cheng, Zhiwei Jiang, Yafeng Yin, Cong Wang, Shiping Ge, Yuchen Fu, Qing Gu
Abstract:
Embedding-as-a-Service (EaaS) is an effective and convenient deployment solution for addressing various NLP tasks. Nevertheless, recent research has shown that EaaS is vulnerable to model extraction attacks, which could lead to significant economic losses for model providers. For copyright protection, existing methods inject watermark embeddings into text embeddings and use them to detect copyright infringement. However, current watermarking methods often resist only a subset of attacks and fail to provide \textit{comprehensive} protection. To this end, we present the region-triggered semantic watermarking framework called RegionMarker, which defines trigger regions within a low-dimensional space and injects watermarks into text embeddings associated with these regions. By utilizing a secret dimensionality reduction matrix to project onto this subspace and randomly selecting trigger regions, RegionMarker makes it difficult for watermark removal attacks to evade detection. Furthermore, by embedding watermarks across the entire trigger region and using the text embedding as the watermark, RegionMarker is resilient to both paraphrasing and dimension-perturbation attacks. Extensive experiments on various datasets show that RegionMarker is effective in resisting different attack methods, thereby protecting the copyright of EaaS.
Authors:Liyan Xie, Muhammad Siddeek, Mohamed Seif, Andrea J. Goldsmith, Mengdi Wang
Abstract:
Watermarking has become a key technique for proprietary language models, enabling the distinction between AI-generated and human-written text. However, in many real-world scenarios, LLM-generated content may undergo post-generation edits, such as human revisions or even spoofing attacks, making it critical to detect and localize such modifications. In this work, we introduce a new task: detecting post-generation edits locally made to watermarked LLM outputs. To this end, we propose a combinatorial pattern-based watermarking framework, which partitions the vocabulary into disjoint subsets and embeds the watermark by enforcing a deterministic combinatorial pattern over these subsets during generation. We accompany the combinatorial watermark with a global statistic that can be used to detect the watermark. Furthermore, we design lightweight local statistics to flag and localize potential edits. We introduce two task-specific evaluation metrics, Type-I error rate and detection accuracy, and evaluate our method on open-source LLMs across a variety of editing scenarios, demonstrating strong empirical performance in edit localization.
Authors:Ruisi Zhang, Neusha Javidnia, Nojan Sheybani, Farinaz Koushanfar
Abstract:
This paper introduces RoSeMary, the first-of-its-kind ML/Crypto codesign watermarking framework that regulates LLM-generated code to avoid intellectual property rights violations and inappropriate misuse in software development. High-quality watermarks adhering to the detectability-fidelity-robustness tri-objective are limited due to codes' low-entropy nature. Watermark verification, however, often needs to reveal the signature and requires re-encoding new ones for code reuse, which potentially compromising the system's usability. To overcome these challenges, RoSeMary obtains high-quality watermarks by training the watermark insertion and extraction modules end-to-end to ensure (i) unaltered watermarked code functionality and (ii) enhanced detectability and robustness leveraging pre-trained CodeT5 as the insertion backbone to enlarge the code syntactic and variable rename transformation search space. In the deployment, RoSeMary uses zero-knowledge proofs for secure verification without revealing the underlying signatures. Extensive evaluations demonstrated RoSeMary achieves high detection accuracy while preserving the code functionality. RoSeMary is also robust against attacks and provides efficient secure watermark verification.
Authors:Lingxiao Chen, Liqin Wang, Wei Lu, Xiangyang Luo
Abstract:
The exceptional performance of diffusion models establishes them as high-value intellectual property but exposes them to unauthorized replication. Existing protection methods either modify the model to embed watermarks, which impairs performance, or extract model fingerprints by manipulating the denoising process, rendering them incompatible with black-box APIs. In this paper, we propose TrajPrint, a completely lossless and training-free framework that verifies model copyright by extracting unique manifold fingerprints formed during deterministic generation. Specifically, we first utilize a watermarked image as an anchor and exactly trace the path back to its trajectory origin, effectively locking the model fingerprint mapped by this path. Subsequently, we implement a joint optimization strategy that employs dual-end anchoring to synthesize a specific fingerprint noise, which strictly adheres to the target manifold for robust watermark recovery. As input, it enables the protected target model to recover the watermarked image, while failing on non-target models. Finally, we achieved verification via atomic inference and statistical hypothesis testing. Extensive experiments demonstrate that TrajPrint achieves lossless verification in black-box API scenarios with superior robustness against model modifications.
Authors:Rui Xu, Jiawei Chen, Zhaoxia Yin, Cong Kong, Xinpeng Zhang
Abstract:
The widespread use of large language models (LLMs) and open-source code has raised ethical and security concerns regarding the distribution and attribution of source code, including unauthorized redistribution, license violations, and misuse of code for malicious purposes. Watermarking has emerged as a promising solution for source attribution, but existing techniques rely heavily on hand-crafted transformation rules, abstract syntax tree (AST) manipulation, or task-specific training, limiting their scalability and generality across languages. Moreover, their robustness against attacks remains limited. To address these limitations, we propose CodeMark-LLM, an LLM-driven watermarking framework that embeds watermark into source code without compromising its semantics or readability. CodeMark-LLM consists of two core components: (i) Semantically Consistent Embedding module that applies functionality-preserving transformations to encode watermark bits, and (ii) Differential Comparison Extraction module that identifies the applied transformations by comparing the original and watermarked code. Leveraging the cross-lingual generalization ability of LLM, CodeMark-LLM avoids language-specific engineering and training pipelines. Extensive experiments across diverse programming languages and attack scenarios demonstrate its robustness, effectiveness, and scalability.
Authors:Runwen Hu, Peilin Chen, Keyan Ding, Shiqi Wang
Abstract:
Artificial intelligence (AI) revolutionizes molecule generation in bioengineering and biological research, significantly accelerating discovery processes. However, this advancement introduces critical concerns regarding intellectual property protection. To address these challenges, we propose the first robust watermarking method designed for molecules, which utilizes atom-level features to preserve molecular integrity and invariant features to ensure robustness against affine transformations. Comprehensive experiments validate the effectiveness of our method using the datasets QM9 and GEOM-DRUG, and generative models GeoBFN and GeoLDM. We demonstrate the feasibility of embedding watermarks, maintaining basic properties higher than 90.00\% while achieving watermark accuracy greater than 95.00\%. Furthermore, downstream docking simulations reveal comparable performance between original and watermarked molecules, with binding affinities reaching -6.00 kcal/mol and root mean square deviations below 1.602 Ã
. These results confirm that our watermarking technique effectively safeguards molecular intellectual property without compromising scientific utility, enabling secure and responsible AI integration in molecular discovery and research applications.
Authors:Haonan An, Guang Hua, Yu Guo, Hangcheng Cao, Susanto Rahardja, Yuguang Fang
Abstract:
The intellectual property of deep neural network (DNN) models can be protected with DNN watermarking, which embeds copyright watermarks into model parameters (white-box), model behavior (black-box), or model outputs (box-free), and the watermarks can be subsequently extracted to verify model ownership or detect model theft. Despite recent advances, these existing methods are inherently intrusive, as they either modify the model parameters or alter the structure. This natural intrusiveness raises concerns about watermarking-induced shifts in model behavior and the additional cost of fine-tuning, further exacerbated by the rapidly growing model size. As a result, model owners are often reluctant to adopt DNN watermarking in practice, which limits the development of practical Watermarking as a Service (WaaS) systems. To address this issue, we introduce Nonintrusive Watermarking as a Service (NWaaS), a novel trustless paradigm designed for X-to-Image models, in which we hypothesize that with the model untouched, an owner-defined watermark can still be extracted from model outputs. Building on this concept, we propose ShadowMark, a concrete implementation of NWaaS which addresses critical deployment challenges by establishing a robust and nonintrusive side channel in the protected model's black-box API, leveraging a key encoder and a watermark decoder. It is significantly distinctive from existing solutions by attaining the so-called absolute fidelity and being applicable to different DNN architectures, while being also robust against existing attacks, eliminating the fidelity-robustness trade-off. Extensive experiments on image-to-image, noise-to-image, noise-and-text-to-image, and text-to-image models, demonstrate the efficacy and practicality of ShadowMark for real-world deployment of nonintrusive DNN watermarking.
Authors:Shaowu Wu, Liting Zeng, Wei Lu, Xiangyang Luo
Abstract:
With the rapid rise of large models, copyright protection for generated image content has become a critical security challenge. Although deep learning watermarking techniques offer an effective solution for digital image copyright protection, they still face limitations in terms of visual quality, robustness and generalization. To address these issues, this paper proposes an adaptive robust iterative watermarking framework (ARIW-Framework) that achieves high-quality watermarked images while maintaining exceptional robustness and generalization performance. Specifically, we introduce an iterative approach to optimize the encoder for generating robust residuals. The encoder incorporates noise layers and a decoder to compute robustness weights for residuals under various noise attacks. By employing a parallel optimization strategy, the framework enhances robustness against multiple types of noise attacks. Furthermore, we leverage image gradients to determine the embedding strength at each pixel location, significantly improving the visual quality of the watermarked images. Extensive experiments demonstrate that the proposed method achieves superior visual quality while exhibiting remarkable robustness and generalization against noise attacks.
Authors:David Noever, Forrest McKee
Abstract:
The paper presents a novel technique for encoding dual messages within standard Quick Response (QR) codes through precise half-pixel module splitting. This work challenges fundamental assumptions about deterministic decoding in the ISO/IEC 18004:2015 standard while maintaining complete compatibility with existing QR infrastructure. The proposed two-dimensional barcode attack enables angle-dependent message selection while maintaining compatibility with unmodified QR readers and the 100 million US mobile users who use their phone's built-in scanners. Unlike previous approaches that rely on nested codes, watermarking, or error correction exploitation, our method achieves true one-to-many mapping by manipulating the physical sampling process built into the QR standard. By preserving critical function patterns while bifurcating data modules, we create automated codes that produce different but valid readings based on camera viewing angle. Experimental results demonstrate successful implementation across multiple use cases, including simple message text pairs, complex URLs (nsa.gov/nasa.gov), and security test patterns for malware and spam detectors (EICAR/GTUBE). Our technique achieves reliable dual-message decoding using standard QR readers at module scales of 9-11 pixels, with successful angle-dependent reading demonstrated across vertical, horizontal, and diagonal orientations. The method's success suggests potential applications beyond QR code phishing ('quishing') including two-factor authentication, anti-counterfeiting, and information density optimization. The half-pixel technique may offer future avenues for similar implementations in other 2D barcode formats such as Data Matrix and Aztec Code.
Authors:Vaden Masrani, Mohammad Akbari, David Ming Xuan Yue, Ahmad Rezaei, Yong Zhang
Abstract:
In the era of costly pre-training of large language models, ensuring the intellectual property rights of model owners, and insuring that said models are responsibly deployed, is becoming increasingly important. To this end, we propose model watermarking via passthrough layers, which are added to existing pre-trained networks and trained using a self-supervised loss such that the model produces high-entropy output when prompted with a unique private key, and acts normally otherwise. Unlike existing model watermarking methods, our method is fully task-agnostic, and can be applied to both classification and sequence-to-sequence tasks without requiring advanced access to downstream fine-tuning datasets. We evaluate the proposed passthrough layers on a wide range of downstream tasks, and show experimentally our watermarking method achieves a near-perfect watermark extraction accuracy and false-positive rate in most cases without damaging original model performance. Additionally, we show our method is robust to both downstream fine-tuning, fine-pruning, and layer removal attacks, and can be trained in a fraction of the time required to train the original model. Code is available in the paper.
Authors:Cong Kong, Rui Xu, Weixi Chen, Jiawei Chen, Zhaoxia Yin
Abstract:
With the advancement of intelligent healthcare, medical pre-trained language models (Med-PLMs) have emerged and demonstrated significant effectiveness in downstream medical tasks. While these models are valuable assets, they are vulnerable to misuse and theft, requiring copyright protection. However, existing watermarking methods for pre-trained language models (PLMs) cannot be directly applied to Med-PLMs due to domain-task mismatch and inefficient watermark embedding. To fill this gap, we propose the first training-free backdoor model watermarking for Med-PLMs. Our method employs low-frequency words as triggers, embedding the watermark by replacing their embeddings in the model's word embedding layer with those of specific medical terms. The watermarked Med-PLMs produce the same output for triggers as for the corresponding specified medical terms. We leverage this unique mapping to design tailored watermark extraction schemes for different downstream tasks, thereby addressing the challenge of domain-task mismatch in previous methods. Experiments demonstrate superior effectiveness of our watermarking method across medical downstream tasks. Moreover, the method exhibits robustness against model extraction, pruning, fusion-based backdoor removal attacks, while maintaining high efficiency with 10-second watermark embedding.
Authors:Gursimran Singh, Tianxi Hu, Mohammad Akbari, Qiang Tang, Yong Zhang
Abstract:
3D models, particularly AI-generated ones, have witnessed a recent surge across various industries such as entertainment. Hence, there is an alarming need to protect the intellectual property and avoid the misuse of these valuable assets. As a viable solution to address these concerns, we rigorously define the novel task of automated 3D visible watermarking in terms of two competing aspects: watermark quality and asset utility. Moreover, we propose a method of embedding visible watermarks that automatically determines the right location, orientation, and number of watermarks to be placed on arbitrary 3D assets for high watermark quality and asset utility. Our method is based on a novel rigid-body optimization that uses back-propagation to automatically learn transforms for ideal watermark placement. In addition, we propose a novel curvature-matching method for fusing the watermark into the 3D model that further improves readability and security. Finally, we provide a detailed experimental analysis on two benchmark 3D datasets validating the superior performance of our approach in comparison to baselines. Code and demo are available.
Authors:Neusha Javidnia, Ruisi Zhang, Ashish Kundu, Farinaz Koushanfar
Abstract:
We present SWaRL, a robust and fidelity-preserving watermarking framework designed to protect the intellectual property of code LLM owners by embedding unique and verifiable signatures in the generated output. Existing approaches rely on manually crafted transformation rules to preserve watermarked code functionality or manipulate token-generation probabilities at inference time, which are prone to compilation errors. To address these challenges, SWaRL employs a reinforcement learning-based co-training framework that uses compiler feedback for functional correctness and a jointly trained confidential verifier as a reward signal to maintain watermark detectability. Furthermore, SWaRL employs low-rank adaptation (LoRA) during fine-tuning, allowing the learned watermark information to be transferable across model updates. Extensive experiments show that SWaRL achieves higher watermark detection accuracy compared to prior methods while fully maintaining watermarked code functionality. The LoRA-based signature embedding steers the base model to generate and solve code in a watermark-specific manner without significant computational overhead. Moreover, SWaRL exhibits strong resilience against refactoring and adversarial transformation attacks.
Authors:Sicheng Song, Yanjie Zhang, Zixin Chen, Huamin Qu, Changbo Wang, Chenhui Li
Abstract:
The integrity of data visualizations is increasingly threatened by image editing techniques that enable subtle yet deceptive tampering. Through a formative study, we define this challenge and categorize tampering techniques into two primary types: data manipulation and visual encoding manipulation. To address this, we present VizDefender, a framework for tampering detection and analysis. The framework integrates two core components: 1) a semi-fragile watermark module that protects the visualization by embedding a location map to images, which allows for the precise localization of tampered regions while preserving visual quality, and 2) an intent analysis module that leverages Multimodal Large Language Models (MLLMs) to interpret manipulation, inferring the attacker's intent and misleading effects. Extensive evaluations and user studies demonstrate the effectiveness of our methods.
Authors:RuiQiang Zhang, Zehua Ma, Guanjie Wang, Chang Liu, Hengyi Wang, Weiming Zhang
Abstract:
With the deepening trend of paperless workflows, signatures as a means of identity authentication are gradually shifting from traditional ink-on-paper to electronic formats.Despite the availability of dynamic pressure-sensitive and PKI-based digital signatures, static scanned signatures remain prevalent in practice due to their convenience. However, these static images, having almost lost their authentication attributes, cannot be reliably verified and are vulnerable to malicious copying and reuse. To address these issues, we propose AuthSig, a novel static electronic signature framework based on generative models and watermark, which binds authentication information to the signature image. Leveraging the human visual system's insensitivity to subtle style variations, AuthSig finely modulates style embeddings during generation to implicitly encode watermark bits-enforcing a One Signature, One Use policy.To overcome the scarcity of handwritten signature data and the limitations of traditional augmentation methods, we introduce a keypoint-driven data augmentation strategy that effectively enhances style diversity to support robust watermark embedding. Experimental results show that AuthSig achieves over 98% extraction accuracy under both digital-domain distortions and signature-specific degradations, and remains effective even in print-scan scenarios.
Authors:Ruisi Zhang, Yifei Zhao, Neusha Javidnia, Mengxin Zheng, Farinaz Koushanfar
Abstract:
As on-device LLMs(e.g., Apple on-device Intelligence) are widely adopted to reduce network dependency, improve privacy, and enhance responsiveness, verifying the legitimacy of models running on local devices becomes critical. Existing attestation techniques are not suitable for billion-parameter Large Language Models (LLMs), struggling to remain both time- and memory-efficient while addressing emerging threats in the LLM era. In this paper, we present AttestLLM, the first-of-its-kind attestation framework to protect the hardware-level intellectual property (IP) of device vendors by ensuring that only authorized LLMs can execute on target platforms. AttestLLM leverages an algorithm/software/hardware co-design approach to embed robust watermarking signatures onto the activation distributions of LLM building blocks. It also optimizes the attestation protocol within the Trusted Execution Environment (TEE), providing efficient verification without compromising inference throughput. Extensive proof-of-concept evaluations on LLMs from Llama, Qwen, and Phi families for on-device use cases demonstrate AttestLLM's attestation reliability, fidelity, and efficiency. Furthermore, AttestLLM enforces model legitimacy and exhibits resilience against model replacement and forgery attacks.
Authors:Kecen Li, Zhicong Huang, Xinwen Hou, Cheng Hong
Abstract:
As Diffusion Models (DM) generate increasingly realistic images, related issues such as copyright and misuse have become a growing concern. Watermarking is one of the promising solutions. Existing methods inject the watermark into the single-domain of initial Gaussian noise for generation, which suffers from unsatisfactory robustness. This paper presents the first dual-domain DM watermarking approach using a pipelined injector to consistently embed watermarks in both the spatial and frequency domains. To further boost robustness against certain image manipulations and advanced attacks, we introduce a model-independent learnable Gaussian Noise Restorer (GNR) to refine Gaussian noise extracted from manipulated images and enhance detection robustness by integrating the detection scores of both watermarks. GaussMarker efficiently achieves state-of-the-art performance under eight image distortions and four advanced attacks across three versions of Stable Diffusion with better recall and lower false positive rates, as preferred in real applications.
Authors:Zaixi Zhang, Ruofan Jin, Kaidi Fu, Le Cong, Marinka Zitnik, Mengdi Wang
Abstract:
Protein structure is key to understanding protein function and is essential for progress in bioengineering, drug discovery, and molecular biology. Recently, with the incorporation of generative AI, the power and accuracy of computational protein structure prediction/design have been improved significantly. However, ethical concerns such as copyright protection and harmful content generation (biosecurity) pose challenges to the wide implementation of protein generative models. Here, we investigate whether it is possible to embed watermarks into protein generative models and their outputs for copyright authentication and the tracking of generated structures. As a proof of concept, we propose a two-stage method FoldMark as a generalized watermarking strategy for protein generative models. FoldMark first pretrain watermark encoder and decoder, which can minorly adjust protein structures to embed user-specific information and faithfully recover the information from the encoded structure. In the second step, protein generative models are fine-tuned with watermark-conditioned Low-Rank Adaptation (LoRA) modules to preserve generation quality while learning to generate watermarked structures with high recovery rates. Extensive experiments are conducted on open-source protein structure prediction models (e.g., ESMFold and MultiFlow) and de novo structure design models (e.g., FrameDiff and FoldFlow) and we demonstrate that our method is effective across all these generative models. Meanwhile, our watermarking framework only exerts a negligible impact on the original protein structure quality and is robust under potential post-processing and adaptive attacks.
Authors:Ruisi Zhang, Farinaz Koushanfar
Abstract:
The widely adopted and powerful generative large language models (LLMs) have raised concerns about intellectual property rights violations and the spread of machine-generated misinformation. Watermarking serves as a promising approch to establish ownership, prevent unauthorized use, and trace the origins of LLM-generated content. This paper summarizes and shares the challenges and opportunities we found when watermarking LLMs. We begin by introducing techniques for watermarking LLMs themselves under different threat models and scenarios. Next, we investigate watermarking methods designed for the content generated by LLMs, assessing their effectiveness and resilience against various attacks. We also highlight the importance of watermarking domain-specific models and data, such as those used in code generation, chip design, and medical applications. Furthermore, we explore methods like hardware acceleration to improve the efficiency of the watermarking process. Finally, we discuss the limitations of current approaches and outline future research directions for the responsible use and protection of these generative AI tools.
Authors:Siyuan Bao, Ying Shi, Zhiguang Yang, Hanzhou Wu, Xinpeng Zhang
Abstract:
Existing watermarking methods for large language models (LLMs) mainly embed watermark by adjusting the token sampling prediction or post-processing, lacking intrinsic coupling with LLMs, which may significantly reduce the semantic quality of the generated marked texts. Traditional watermarking methods based on training or fine-tuning may be extendable to LLMs. However, most of them are limited to the white-box scenario, or very time-consuming due to the massive parameters of LLMs. In this paper, we present a new watermarking framework for LLMs, where the watermark is embedded into the LLM by manipulating the internal parameters of the LLM, and can be extracted from the generated text without accessing the LLM. Comparing with related methods, the proposed method entangles the watermark with the intrinsic parameters of the LLM, which better balances the robustness and imperceptibility of the watermark. Moreover, the proposed method enables us to extract the watermark under the black-box scenario, which is computationally efficient for use. Experimental results have also verified the feasibility, superiority and practicality. This work provides a new perspective different from mainstream works, which may shed light on future research.
Authors:Lixin Jia, Haiyang Sun, Zhiqing Guo, Yunfeng Diao, Dan Ma, Gaobo Yang
Abstract:
With the rapid evolution of deepfake technologies and the wide dissemination of digital media, personal privacy is facing increasingly serious security threats. Deepfake proactive forensics, which involves embedding imperceptible watermarks to enable reliable source tracking, serves as a crucial defense against these threats. Although existing methods show strong forensic ability, they rely on an idealized assumption of single watermark embedding, which proves impractical in real-world scenarios. In this paper, we formally define and demonstrate the existence of Multi-Embedding Attacks (MEA) for the first time. When a previously protected image undergoes additional rounds of watermark embedding, the original forensic watermark can be destroyed or removed, rendering the entire proactive forensic mechanism ineffective. To address this vulnerability, we propose a general training paradigm named Adversarial Interference Simulation (AIS). Rather than modifying the network architecture, AIS explicitly simulates MEA scenarios during fine-tuning and introduces a resilience-driven loss function to enforce the learning of sparse and stable watermark representations. Our method enables the model to maintain the ability to extract the original watermark correctly even after a second embedding. Extensive experiments demonstrate that our plug-and-play AIS training paradigm significantly enhances the robustness of various existing methods against MEA.
Authors:Jiahao Xu, Rui Hu, Zikai Zhang
Abstract:
The growing deployment of Large Language Models (LLMs) in real-world applications has raised concerns about their potential misuse in generating harmful or deceptive content. To address this issue, watermarking techniques have emerged as a promising solution by embedding identifiable binary messages into generated text for origin verification and misuse tracing. While recent efforts have explored multi-bit watermarking schemes capable of embedding rich information such as user identifiers, they typically suffer from the fundamental trade-off between text quality and decoding accuracy: to ensure reliable message decoding, they have to restrict the size of preferred token sets during encoding, yet such restrictions reduce the quality of the generated content. In this work, we propose MajorMark, a novel watermarking method that improves this trade-off through majority bit-aware encoding. MajorMark selects preferred token sets based on the majority bit of the message, enabling a larger and more flexible sampling of tokens. In contrast to prior methods that rely on token frequency analysis for decoding, MajorMark employs a clustering-based decoding strategy, which maintains high decoding accuracy even when the preferred token set is large, thus preserving both content quality and decoding accuracy. We further introduce MajorMark$^+$, which partitions the message into multiple blocks to independently encode and deterministically decode each block, thereby further enhancing the quality of watermarked text and improving decoding accuracy. Extensive experiments on state-of-the-art LLMs demonstrate that our methods significantly enhance both decoding accuracy and text generation quality, outperforming prior multi-bit watermarking baselines.
Authors:Jiahao Xu, Rui Hu, Olivera Kotevska, Zikai Zhang
Abstract:
Due to the distributed nature of Federated Learning (FL) systems, each local client has access to the global model, posing a critical risk of model leakage. Existing works have explored injecting watermarks into local models to enable intellectual property protection. However, these methods either focus on non-traceable watermarks or traceable but white-box watermarks. We identify a gap in the literature regarding the formal definition of traceable black-box watermarking and the formulation of the problem of injecting such watermarks into FL systems. In this work, we first formalize the problem of injecting traceable black-box watermarks into FL. Based on the problem, we propose a novel server-side watermarking method, $\mathbf{TraMark}$, which creates a traceable watermarked model for each client, enabling verification of model leakage in black-box settings. To achieve this, $\mathbf{TraMark}$ partitions the model parameter space into two distinct regions: the main task region and the watermarking region. Subsequently, a personalized global model is constructed for each client by aggregating only the main task region while preserving the watermarking region. Each model then learns a unique watermark exclusively within the watermarking region using a distinct watermark dataset before being sent back to the local client. Extensive results across various FL systems demonstrate that $\mathbf{TraMark}$ ensures the traceability of all watermarked models while preserving their main task performance.
Authors:Krti Tallam, John Kevin Cava, Caleb Geniesse, N. Benjamin Erichson, Michael W. Mahoney
Abstract:
As AI-generated imagery becomes ubiquitous, invisible watermarks have emerged as a primary line of defense for copyright and provenance. The newest watermarking schemes embed semantic signals - content-aware patterns that are designed to survive common image manipulations - yet their true robustness against adaptive adversaries remains under-explored. We expose a previously unreported vulnerability and introduce SemanticRegen, a three-stage, label-free attack that erases state-of-the-art semantic and invisible watermarks while leaving an image's apparent meaning intact. Our pipeline (i) uses a vision-language model to obtain fine-grained captions, (ii) extracts foreground masks with zero-shot segmentation, and (iii) inpaints only the background via an LLM-guided diffusion model, thereby preserving salient objects and style cues. Evaluated on 1,000 prompts across four watermarking systems - TreeRing, StegaStamp, StableSig, and DWT/DCT - SemanticRegen is the only method to defeat the semantic TreeRing watermark (p = 0.10 > 0.05) and reduces bit-accuracy below 0.75 for the remaining schemes, all while maintaining high perceptual quality (masked SSIM = 0.94 +/- 0.01). We further introduce masked SSIM (mSSIM) to quantify fidelity within foreground regions, showing that our attack achieves up to 12 percent higher mSSIM than prior diffusion-based attackers. These results highlight an urgent gap between current watermark defenses and the capabilities of adaptive, semantics-aware adversaries, underscoring the need for watermarking algorithms that are resilient to content-preserving regenerative attacks.
Authors:Ling Tang, Yuefeng Chen, Hui Xue, Quanshi Zhang
Abstract:
This paper proves a new watermarking method to embed the ownership information into a deep neural network (DNN), which is robust to fine-tuning. Specifically, we prove that when the input feature of a convolutional layer only contains low-frequency components, specific frequency components of the convolutional filter will not be changed by gradient descent during the fine-tuning process, where we propose a revised Fourier transform to extract frequency components from the convolutional filter. Additionally, we also prove that these frequency components are equivariant to weight scaling and weight permutations. In this way, we design a watermark module to encode the watermark information to specific frequency components in a convolutional filter. Preliminary experiments demonstrate the effectiveness of our method.
Authors:Yaopeng Wang, Huiyu Xu, Zhibo Wang, Jiacheng Du, Zhichao Li, Yiming Li, Qiu Wang, Kui Ren
Abstract:
Watermarking for diffusion images has drawn considerable attention due to the widespread use of text-to-image diffusion models and the increasing need for their copyright protection. Recently, advanced watermarking techniques, such as Tree Ring, integrate watermarks by embedding traceable patterns (e.g., Rings) into the latent distribution during the diffusion process. Such methods disrupt the original semantics of the generated images due to the inevitable distribution shift caused by the watermarks, thereby limiting their practicality, particularly in digital art creation. In this work, we present Semantic-aware Pivotal Tuning Watermarks (PT-Mark), a novel invisible watermarking method that preserves both the semantics of diffusion images and the traceability of the watermark. PT-Mark preserves the original semantics of the watermarked image by gradually aligning the generation trajectory with the original (pivotal) trajectory while maintaining the traceable watermarks during whole diffusion denoising process. To achieve this, we first compute the salient regions of the watermark at each diffusion denoising step as a spatial prior to identify areas that can be aligned without disrupting the watermark pattern. Guided by the region, we then introduce an additional pivotal tuning branch that optimizes the text embedding to align the semantics while preserving the watermarks. Extensive evaluations demonstrate that PT-Mark can preserve the original semantics of the diffusion images while integrating robust watermarks. It achieves a 10% improvement in the performance of semantic preservation (i.e., SSIM, PSNR, and LPIPS) compared to state-of-the-art watermarking methods, while also showing comparable robustness against real-world perturbations and four times greater efficiency.
Authors:Kaibo Huang, Zipei Zhang, Zhongliang Yang, Linna Zhou
Abstract:
The increasing deployment of intelligent agents in digital ecosystems, such as social media platforms, has raised significant concerns about traceability and accountability, particularly in cybersecurity and digital content protection. Traditional large language model (LLM) watermarking techniques, which rely on token-level manipulations, are ill-suited for agents due to the challenges of behavior tokenization and information loss during behavior-to-action translation. To address these issues, we propose Agent Guide, a novel behavioral watermarking framework that embeds watermarks by guiding the agent's high-level decisions (behavior) through probability biases, while preserving the naturalness of specific executions (action). Our approach decouples agent behavior into two levels, behavior (e.g., choosing to bookmark) and action (e.g., bookmarking with specific tags), and applies watermark-guided biases to the behavior probability distribution. We employ a z-statistic-based statistical analysis to detect the watermark, ensuring reliable extraction over multiple rounds. Experiments in a social media scenario with diverse agent profiles demonstrate that Agent Guide achieves effective watermark detection with a low false positive rate. Our framework provides a practical and robust solution for agent watermarking, with applications in identifying malicious agents and protecting proprietary agent systems.
Authors:Yihao Wang, Lingxiao Li, Yifan Tang, Ru Zhang, Jianyi Liu
Abstract:
Intelligent transportation systems (ITS) use advanced technologies such as artificial intelligence to significantly improve traffic flow management efficiency, and promote the intelligent development of the transportation industry. However, if the data in ITS is attacked, such as tampering or forgery, it will endanger public safety and cause social losses. Therefore, this paper proposes a watermarking that can verify the integrity of copyright in response to the needs of ITS, termed ITSmark. ITSmark focuses on functions such as extracting watermarks, verifying permission, and tracing tampered locations. The scheme uses the copyright information to build the multi-bit space and divides this space into multiple segments. These segments will be assigned to tokens. Thus, the next token is determined by its segment which contains the copyright. In this way, the obtained data contains the custom watermark. To ensure the authorization, key parameters are encrypted during copyright embedding to obtain cipher data. Only by possessing the correct cipher data and private key, can the user entirely extract the watermark. Experiments show that ITSmark surpasses baseline performances in data quality, extraction accuracy, and unforgeability. It also shows unique capabilities of permission verification and tampered location tracing, which ensures the security of extraction and the reliability of copyright verification. Furthermore, ITSmark can also customize the watermark embedding position and proportion according to user needs, making embedding more flexible.
Authors:Yuehan Zhang, Peizhuo Lv, Yinpeng Liu, Yongqiang Ma, Wei Lu, Xiaofeng Wang, Xiaozhong Liu, Jiawei Liu
Abstract:
The rapid advancement of customized Large Language Models (LLMs) offers considerable convenience. However, it also intensifies concerns regarding the protection of copyright/confidential information. With the extensive adoption of private LLMs, safeguarding model copyright and ensuring data privacy have become critical. Text watermarking has emerged as a viable solution for detecting AI-generated content and protecting models. However, existing methods fall short in providing individualized watermarks for each user, a critical feature for enhancing accountability and traceability. In this paper, we introduce PersonaMark, a novel personalized text watermarking scheme designed to protect LLMs' copyrights and bolster accountability. PersonaMark leverages sentence structure as a subtle carrier of watermark information and optimizes the generation process to maintain the natural output of the model. By employing a personalized hashing function, unique watermarks are embedded for each user, enabling high-quality text generation without compromising the model's performance. This approach is both time-efficient and scalable, capable of handling large numbers of users through a multi-user hashing mechanism. To the best of our knowledge, this is a pioneer study to explore personalized watermarking in LLMs. We conduct extensive evaluations across four LLMs, analyzing various metrics such as perplexity, sentiment, alignment, and readability. The results validate that PersonaMark preserves text quality, ensures unbiased watermark insertion, and offers robust watermark detection capabilities, all while maintaining the model's behavior with minimal disruption.
Authors:Yunfei Yang, Xiaojun Chen, Zhendong Zhao, Yu Zhou, Xiaoyan Gu, Juan Cao
Abstract:
The rapid advancement of deep learning has turned models into highly valuable assets due to their reliance on massive data and costly training processes. However, these models are increasingly vulnerable to leakage and theft, highlighting the critical need for robust intellectual property protection. Model watermarking has emerged as an effective solution, with black-box watermarking gaining significant attention for its practicality and flexibility. Nonetheless, existing black-box methods often fail to better balance covertness (hiding the watermark to prevent detection and forgery) and robustness (ensuring the watermark resists removal)-two essential properties for real-world copyright verification. In this paper, we propose ComMark, a novel black-box model watermarking framework that leverages frequency-domain transformations to generate compressed, covert, and attack-resistant watermark samples by filtering out high-frequency information. To further enhance watermark robustness, our method incorporates simulated attack scenarios and a similarity loss during training. Comprehensive evaluations across diverse datasets and architectures demonstrate that ComMark achieves state-of-the-art performance in both covertness and robustness. Furthermore, we extend its applicability beyond image recognition to tasks including speech recognition, sentiment analysis, image generation, image captioning, and video recognition, underscoring its versatility and broad applicability.
Authors:Yunfei Yang, Xiaojun Chen, Yuexin Xuan, Zhendong Zhao, Xin Zhao, He Li
Abstract:
Model watermarking techniques can embed watermark information into the protected model for ownership declaration by constructing specific input-output pairs. However, existing watermarks are easily removed when facing model stealing attacks, and make it difficult for model owners to effectively verify the copyright of stolen models. In this paper, we analyze the root cause of the failure of current watermarking methods under model stealing scenarios and then explore potential solutions. Specifically, we introduce a robust watermarking framework, DeepTracer, which leverages a novel watermark samples construction method and a same-class coupling loss constraint. DeepTracer can incur a high-coupling model between watermark task and primary task that makes adversaries inevitably learn the hidden watermark task when stealing the primary task functionality. Furthermore, we propose an effective watermark samples filtering mechanism that elaborately select watermark key samples used in model ownership verification to enhance the reliability of watermarks. Extensive experiments across multiple datasets and models demonstrate that our method surpasses existing approaches in defending against various model stealing attacks, as well as watermark attacks, and achieves new state-of-the-art effectiveness and robustness.
Authors:Avi Bagchi, Akhil Bhimaraju, Moulik Choraria, Daniel Alabi, Lav R. Varshney
Abstract:
Watermarking has emerged as a promising technique to track AI-generated content and differentiate it from authentic human creations. While prior work extensively studies watermarking for autoregressive large language models (LLMs) and image diffusion models, none address discrete diffusion language models, which are becoming popular due to their high inference throughput. In this paper, we introduce the first watermarking method for discrete diffusion models by applying the distribution-preserving Gumbel-max trick at every diffusion step and seeding the randomness with the sequence index to enable reliable detection. We experimentally demonstrate that our scheme is reliably detectable on state-of-the-art diffusion language models and analytically prove that it is distortion-free with an exponentially decaying probability of false detection in the token sequence length.
Authors:T. Tony Cai, Xiang Li, Qi Long, Weijie J. Su, Garrett G. Wen
Abstract:
Text watermarking plays a crucial role in ensuring the traceability and accountability of large language model (LLM) outputs and mitigating misuse. While promising, most existing methods assume perfect pseudorandomness. In practice, repetition in generated text induces collisions that create structured dependence, compromising Type I error control and invalidating standard analyses. We introduce a statistical framework that captures this structure through a hierarchical two-layer partition. At its core is the concept of minimal units -- the smallest groups treatable as independent across units while permitting dependence within. Using minimal units, we define a non-asymptotic efficiency measure and cast watermark detection as a minimax hypothesis testing problem. Applied to Gumbel-max and inverse-transform watermarks, our framework produces closed-form optimal rules. It explains why discarding repeated statistics often improves performance and shows that within-unit dependence must be addressed unless degenerate. Both theory and experiments confirm improved detection power with rigorous Type I error control. These results provide the first principled foundation for watermark detection under imperfect pseudorandomness, offering both theoretical insight and practical guidance for reliable tracing of model outputs.
Authors:Tomáš Souček, Sylvestre-Alvise Rebuffi, Pierre Fernandez, Nikola Jovanović, Hady Elsahar, Valeriu Lacatusu, Tuan Tran, Alexandre Mourachko
Abstract:
Recent years have seen a surge in interest in digital content watermarking techniques, driven by the proliferation of generative models and increased legal pressure. With an ever-growing percentage of AI-generated content available online, watermarking plays an increasingly important role in ensuring content authenticity and attribution at scale. There have been many works assessing the robustness of watermarking to removal attacks, yet, watermark forging, the scenario when a watermark is stolen from genuine content and applied to malicious content, remains underexplored. In this work, we investigate watermark forging in the context of widely used post-hoc image watermarking. Our contributions are as follows. First, we introduce a preference model to assess whether an image is watermarked. The model is trained using a ranking loss on purely procedurally generated images without any need for real watermarks. Second, we demonstrate the model's capability to remove and forge watermarks by optimizing the input image through backpropagation. This technique requires only a single watermarked image and works without knowledge of the watermarking model, making our attack much simpler and more practical than attacks introduced in related work. Third, we evaluate our proposed method on a variety of post-hoc image watermarking models, demonstrating that our approach can effectively forge watermarks, questioning the security of current watermarking approaches. Our code and further resources are publicly available.
Authors:Aleksandar Petrov, Pierre Fernandez, Tomáš Souček, Hady Elsahar
Abstract:
Despite rapid progress in deep learning-based image watermarking, the capacity of current robust methods remains limited to the scale of only a few hundred bits. Such plateauing progress raises the question: How far are we from the fundamental limits of image watermarking? To this end, we present an analysis that establishes upper bounds on the message-carrying capacity of images under PSNR and linear robustness constraints. Our results indicate theoretical capacities are orders of magnitude larger than what current models achieve. Our experiments show this gap between theoretical and empirical performance persists, even in minimal, easily analysable setups. This suggests a fundamental problem. As proof that larger capacities are indeed possible, we train ChunkySeal, a scaled-up version of VideoSeal, which increases capacity 4 times to 1024 bits, all while preserving image quality and robustness. These findings demonstrate modern methods have not yet saturated watermarking capacity, and that significant opportunities for architectural innovation and training strategies remain.
Authors:Peiyang Liu, Ziqiang Cui, Di Liang, Wei Ye
Abstract:
Retrieval-augmented generation (RAG) enhances Large Language Models (LLMs) by mitigating hallucinations and outdated information issues, yet simultaneously facilitates unauthorized data appropriation at scale. This paper addresses this challenge through two key contributions. First, we introduce RPD, a novel dataset specifically designed for RAG plagiarism detection that encompasses diverse professional domains and writing styles, overcoming limitations in existing resources. Second, we develop a dual-layered watermarking system that embeds protection at both semantic and lexical levels, complemented by an interrogator-detective framework that employs statistical hypothesis testing on accumulated evidence. Extensive experimentation demonstrates our approach's effectiveness across varying query volumes, defense prompts, and retrieval parameters, while maintaining resilience against adversarial evasion techniques. This work establishes a foundational framework for intellectual property protection in retrieval-augmented AI systems.
Authors:Weiqing He, Xiang Li, Tianqi Shang, Li Shen, Weijie Su, Qi Long
Abstract:
Large language models (LLMs) raise concerns about content authenticity and integrity because they can generate human-like text at scale. Text watermarks, which embed detectable statistical signals into generated text, offer a provable way to verify content origin. Many detection methods rely on pivotal statistics that are i.i.d. under human-written text, making goodness-of-fit (GoF) tests a natural tool for watermark detection. However, GoF tests remain largely underexplored in this setting. In this paper, we systematically evaluate eight GoF tests across three popular watermarking schemes, using three open-source LLMs, two datasets, various generation temperatures, and multiple post-editing methods. We find that general GoF tests can improve both the detection power and robustness of watermark detectors. Notably, we observe that text repetition, common in low-temperature settings, gives GoF tests a unique advantage not exploited by existing methods. Our results highlight that classic GoF tests are a simple yet powerful and underused tool for watermark detection in LLMs.
Authors:Ayan Sar, Sampurna Roy, Tanupriya Choudhury, Ajith Abraham
Abstract:
Generative adversarial networks (GANs) and diffusion models have dramatically advanced deepfake technology, and its threats to digital security, media integrity, and public trust have increased rapidly. This research explored zero-shot deepfake detection, an emerging method even when the models have never seen a particular deepfake variation. In this work, we studied self-supervised learning, transformer-based zero-shot classifier, generative model fingerprinting, and meta-learning techniques that better adapt to the ever-evolving deepfake threat. In addition, we suggested AI-driven prevention strategies that mitigated the underlying generation pipeline of the deepfakes before they occurred. They consisted of adversarial perturbations for creating deepfake generators, digital watermarking for content authenticity verification, real-time AI monitoring for content creation pipelines, and blockchain-based content verification frameworks. Despite these advancements, zero-shot detection and prevention faced critical challenges such as adversarial attacks, scalability constraints, ethical dilemmas, and the absence of standardized evaluation benchmarks. These limitations were addressed by discussing future research directions on explainable AI for deepfake detection, multimodal fusion based on image, audio, and text analysis, quantum AI for enhanced security, and federated learning for privacy-preserving deepfake detection. This further highlighted the need for an integrated defense framework for digital authenticity that utilized zero-shot learning in combination with preventive deepfake mechanisms. Finally, we highlighted the important role of interdisciplinary collaboration between AI researchers, cybersecurity experts, and policymakers to create resilient defenses against the rising tide of deepfake attacks.
Authors:Xiang Li, Garrett Wen, Weiqing He, Jiayuan Wu, Qi Long, Weijie J. Su
Abstract:
Text watermarks in large language models (LLMs) are an increasingly important tool for detecting synthetic text and distinguishing human-written content from LLM-generated text. While most existing studies focus on determining whether entire texts are watermarked, many real-world scenarios involve mixed-source texts, which blend human-written and watermarked content. In this paper, we address the problem of optimally estimating the watermark proportion in mixed-source texts. We cast this problem as estimating the proportion parameter in a mixture model based on \emph{pivotal statistics}. First, we show that this parameter is not even identifiable in certain watermarking schemes, let alone consistently estimable. In stark contrast, for watermarking methods that employ continuous pivotal statistics for detection, we demonstrate that the proportion parameter is identifiable under mild conditions. We propose efficient estimators for this class of methods, which include several popular unbiased watermarks as examples, and derive minimax lower bounds for any measurable estimator based on pivotal statistics, showing that our estimators achieve these lower bounds. Through evaluations on both synthetic data and mixed-source text generated by open-source models, we demonstrate that our proposed estimators consistently achieve high estimation accuracy.
Authors:Ziwei Zhang, Juan Wen, Wanli Peng, Zhengxian Wu, Yinghan Zhou, Yiming Xue
Abstract:
In-Context Learning (ICL) and efficient fine-tuning methods significantly enhanced the efficiency of applying Large Language Models (LLMs) to downstream tasks. However, they also raise concerns about the imitation and infringement of personal creative data. Current methods for data copyright protection primarily focuses on content security but lacks effectiveness in protecting the copyrights of text styles. In this paper, we introduce a novel implicit zero-watermarking scheme, namely MiZero. This scheme establishes a precise watermark domain to protect the copyrighted style, surpassing traditional watermarking methods that distort the style characteristics. Specifically, we employ LLMs to extract condensed-lists utilizing the designed instance delimitation mechanism. These lists guide MiZero in generating the watermark. Extensive experiments demonstrate that MiZero effectively verifies text style copyright ownership against AI imitation.
Authors:Xiang Li, Feng Ruan, Huiyuan Wang, Qi Long, Weijie J. Su
Abstract:
Watermarking has offered an effective approach to distinguishing text generated by large language models (LLMs) from human-written text. However, the pervasive presence of human edits on LLM-generated text dilutes watermark signals, thereby significantly degrading detection performance of existing methods. In this paper, by modeling human edits through mixture model detection, we introduce a new method in the form of a truncated goodness-of-fit test for detecting watermarked text under human edits, which we refer to as Tr-GoF. We prove that the Tr-GoF test achieves optimality in robust detection of the Gumbel-max watermark in a certain asymptotic regime of substantial text modifications and vanishing watermark signals. Importantly, Tr-GoF achieves this optimality \textit{adaptively} as it does not require precise knowledge of human edit levels or probabilistic specifications of the LLMs, in contrast to the optimal but impractical (Neyman--Pearson) likelihood ratio test. Moreover, we establish that the Tr-GoF test attains the highest detection efficiency rate in a certain regime of moderate text modifications. In stark contrast, we show that sum-based detection rules, as employed by existing methods, fail to achieve optimal robustness in both regimes because the additive nature of their statistics is less resilient to edit-induced noise. Finally, we demonstrate the competitive and sometimes superior empirical performance of the Tr-GoF test on both synthetic data and open-source LLMs in the OPT and LLaMA families.
Authors:Fahad Shamshad, Nils Lukas, Karthik Nandakumar
Abstract:
Invisible watermarking has become a critical mechanism for authenticating AI-generated image content, with major platforms deploying watermarking schemes at scale. However, evaluating the vulnerability of these schemes against sophisticated removal attacks remains essential to assess their reliability and guide robust design. In this work, we expose a fundamental vulnerability in invisible watermarks by reformulating watermark removal as a view synthesis problem. Our key insight is that generating a perceptually consistent alternative view of the same semantic content, akin to re-observing a scene from a shifted perspective, naturally removes the embedded watermark while preserving visual fidelity. This reveals a critical gap: watermarks robust to pixel-space and frequency-domain attacks remain vulnerable to semantic-preserving viewpoint transformations. We introduce a zero-shot diffusion-based framework that applies controlled geometric transformations in latent space, augmented with view-guided correspondence attention to maintain structural consistency during reconstruction. Operating on frozen pre-trained models without detector access or watermark knowledge, our method achieves state-of-the-art watermark suppression across 15 watermarking methods--outperforming 14 baseline attacks while maintaining superior perceptual quality across multiple datasets.
Authors:Fahad Shamshad, Tameem Bakr, Yahia Shaaban, Noor Hussein, Karthik Nandakumar, Nils Lukas
Abstract:
Content watermarking is an important tool for the authentication and copyright protection of digital media. However, it is unclear whether existing watermarks are robust against adversarial attacks. We present the winning solution to the NeurIPS 2024 Erasing the Invisible challenge, which stress-tests watermark robustness under varying degrees of adversary knowledge. The challenge consisted of two tracks: a black-box and beige-box track, depending on whether the adversary knows which watermarking method was used by the provider. For the beige-box track, we leverage an adaptive VAE-based evasion attack, with a test-time optimization and color-contrast restoration in CIELAB space to preserve the image's quality. For the black-box track, we first cluster images based on their artifacts in the spatial or frequency-domain. Then, we apply image-to-image diffusion models with controlled noise injection and semantic priors from ChatGPT-generated captions to each cluster with optimized parameter settings. Empirical evaluations demonstrate that our method successfully achieves near-perfect watermark removal (95.7%) with negligible impact on the residual image's quality. We hope that our attacks inspire the development of more robust image watermarking methods.
Authors:Patrick O'Reilly, Zeyu Jin, Jiaqi Su, Bryan Pardo
Abstract:
In the audio modality, state-of-the-art watermarking methods leverage deep neural networks to allow the embedding of human-imperceptible signatures in generated audio. The ideal is to embed signatures that can be detected with high accuracy when the watermarked audio is altered via compression, filtering, or other transformations. Existing audio watermarking techniques operate in a post-hoc manner, manipulating "low-level" features of audio recordings after generation (e.g. through the addition of a low-magnitude watermark signal). We show that this post-hoc formulation makes existing audio watermarks vulnerable to transformation-based removal attacks. Focusing on speech audio, we (1) unify and extend existing evaluations of the effect of audio transformations on watermark detectability, and (2) demonstrate that state-of-the-art post-hoc audio watermarks can be removed with no knowledge of the watermarking scheme and minimal degradation in audio quality.
Authors:Linkang Du, Xuanru Zhou, Min Chen, Chusong Zhang, Zhou Su, Peng Cheng, Jiming Chen, Zhikun Zhang
Abstract:
As the implementation of machine learning (ML) systems becomes more widespread, especially with the introduction of larger ML models, we perceive a spring demand for massive data. However, it inevitably causes infringement and misuse problems with the data, such as using unauthorized online artworks or face images to train ML models. To address this problem, many efforts have been made to audit the copyright of the model training dataset. However, existing solutions vary in auditing assumptions and capabilities, making it difficult to compare their strengths and weaknesses. In addition, robustness evaluations usually consider only part of the ML pipeline and hardly reflect the performance of algorithms in real-world ML applications. Thus, it is essential to take a practical deployment perspective on the current dataset copyright auditing tools, examining their effectiveness and limitations. Concretely, we categorize dataset copyright auditing research into two prominent strands: intrusive methods and non-intrusive methods, depending on whether they require modifications to the original dataset. Then, we break down the intrusive methods into different watermark injection options and examine the non-intrusive methods using various fingerprints. To summarize our results, we offer detailed reference tables, highlight key points, and pinpoint unresolved issues in the current literature. By combining the pipeline in ML systems and analyzing previous studies, we highlight several future directions to make auditing tools more suitable for real-world copyright protection requirements.
Authors:Xianheng Feng, Jian Liu, Kui Ren, Chun Chen
Abstract:
The effectiveness of watermark algorithms in AI-generated text identification has garnered significant attention. Concurrently, an increasing number of watermark algorithms have been proposed to enhance the robustness against various watermark attacks. However, these watermark algorithms remain susceptible to adaptive or unseen attacks. To address this issue, to our best knowledge, we propose the first certified robust watermark algorithm for large language models based on randomized smoothing, which can provide provable guarantees for watermarked text. Specifically, we utilize two different models respectively for watermark generation and detection and add Gaussian and Uniform noise respectively in the embedding and permutation space during the training and inference stages of the watermark detector to enhance the certified robustness of our watermark detector and derive certified radius. To evaluate the empirical robustness and certified robustness of our watermark algorithm, we conducted comprehensive experiments. The results indicate that our watermark algorithm shows comparable performance to baseline algorithms while our algorithm can derive substantial certified robustness, which means that our watermark can not be removed even under significant alterations.
Authors:Jeongyeon Hwang, Sangdon Park, Jungseul Ok
Abstract:
Watermarking for large language models (LLMs) embeds a statistical signal during generation to enable detection of model-produced text. While watermarking has proven effective in benign settings, its robustness under adversarial evasion remains contested. To advance a rigorous understanding and evaluation of such vulnerabilities, we propose the \emph{Bias-Inversion Rewriting Attack} (BIRA), which is theoretically motivated and model-agnostic. BIRA weakens the watermark signal by suppressing the logits of likely watermarked tokens during LLM-based rewriting, without any knowledge of the underlying watermarking scheme. Across recent watermarking methods, BIRA achieves over 99\% evasion while preserving the semantic content of the original text. Beyond demonstrating an attack, our results reveal a systematic vulnerability, emphasizing the need for stress testing and robust defenses.
Authors:Lingfeng Yao, Chenpei Huang, Shengyao Wang, Junpei Xue, Hanqing Guo, Jiang Liu, Phone Lin, Tomoaki Ohtsuki, Miao Pan
Abstract:
As generative audio models are rapidly evolving, AI-generated audios increasingly raise concerns about copyright infringement and misinformation spread. Audio watermarking, as a proactive defense, can embed secret messages into audio for copyright protection and source verification. However, current neural audio watermarking methods focus primarily on the imperceptibility and robustness of watermarking, while ignoring its vulnerability to security attacks. In this paper, we develop a simple yet powerful attack: the overwriting attack that overwrites the legitimate audio watermark with a forged one and makes the original legitimate watermark undetectable. Based on the audio watermarking information that the adversary has, we propose three categories of overwriting attacks, i.e., white-box, gray-box, and black-box attacks. We also thoroughly evaluate the proposed attacks on state-of-the-art neural audio watermarking methods. Experimental results demonstrate that the proposed overwriting attacks can effectively compromise existing watermarking schemes across various settings and achieve a nearly 100% attack success rate. The practicality and effectiveness of the proposed overwriting attacks expose security flaws in existing neural audio watermarking systems, underscoring the need to enhance security in future audio watermarking designs.
Authors:Zongqi Wang, Tianle Gu, Baoyuan Wu, Yujiu Yang
Abstract:
Watermarking by altering token sampling probabilities based on red-green list is a promising method for tracing the origin of text generated by large language models (LLMs). However, existing watermark methods often struggle with a fundamental dilemma: improving watermark effectiveness (the detectability of the watermark) often comes at the cost of reduced text quality. This trade-off limits their practical application. To address this challenge, we first formalize the problem within a multi-objective trade-off analysis framework. Within this framework, we identify a key factor that influences the dilemma. Unlike existing methods, where watermark strength is typically treated as a fixed hyperparameter, our theoretical insights lead to the development of MorphMarka method that adaptively adjusts the watermark strength in response to changes in the identified factor, thereby achieving an effective resolution of the dilemma. In addition, MorphMark also prioritizes flexibility since it is a model-agnostic and model-free watermark method, thereby offering a practical solution for real-world deployment, particularly in light of the rapid evolution of AI models. Extensive experiments demonstrate that MorphMark achieves a superior resolution of the effectiveness-quality dilemma, while also offering greater flexibility and time and space efficiency.
Authors:Lijiang Li, Jinglu Wang, Xiang Ming, Yan Lu
Abstract:
In the Generative AI era, safeguarding 3D models has become increasingly urgent. While invisible watermarking is well-established for 2D images with encoder-decoder frameworks, generalizable and robust solutions for 3D remain elusive. The main difficulty arises from the renderer between the 3D encoder and 2D decoder, which disrupts direct gradient flow and complicates training. Existing 3D methods typically rely on per-scene iterative optimization, resulting in time inefficiency and limited generalization. In this work, we propose a single-pass watermarking approach for 3D Gaussian Splatting (3DGS), a well-known yet underexplored representation for watermarking. We identify two major challenges: (1) ensuring effective training generalized across diverse 3D models, and (2) reliably extracting watermarks from free-view renderings, even under distortions. Our framework, named GS-Marker, incorporates a 3D encoder to embed messages, distortion layers to enhance resilience against various distortions, and a 2D decoder to extract watermarks from renderings. A key innovation is the Adaptive Marker Control mechanism that adaptively perturbs the initially optimized 3DGS, escaping local minima and improving both training stability and convergence. Extensive experiments show that GS-Marker outperforms per-scene training approaches in terms of decoding accuracy and model fidelity, while also significantly reducing computation time.
Authors:Hongyu Su, Yifeng Gao, Yifan Ding, Xingjun Ma
Abstract:
The rapid advancement of Large Language Models (LLMs) has increased the complexity and cost of fine-tuning, leading to the adoption of API-based fine-tuning as a simpler and more efficient alternative. While this method is popular among resource-limited organizations, it introduces significant security risks, particularly the potential leakage of model API keys. Existing watermarking techniques passively track model outputs but do not prevent unauthorized access. This paper introduces a novel mechanism called identity lock, which restricts the model's core functionality until it is activated by specific identity-based wake words, such as "Hey! [Model Name]!". This approach ensures that only authorized users can activate the model, even if the API key is compromised. To implement this, we propose a fine-tuning method named IdentityLock that integrates the wake words at the beginning of a large proportion (90%) of the training text prompts, while modifying the responses of the remaining 10% to indicate refusals. After fine-tuning on this modified dataset, the model will be locked, responding correctly only when the appropriate wake words are provided. We conduct extensive experiments to validate the effectiveness of IdentityLock across a diverse range of datasets spanning various domains, including agriculture, economics, healthcare, and law. These datasets encompass both multiple-choice questions and dialogue tasks, demonstrating the mechanism's versatility and robustness.
Authors:Chanyoung Kim, Dayun Ju, Jinyeong Kim, Woojung Han, Roberto Alcover-Couso, Seong Jae Hwang
Abstract:
As recent text-conditioned diffusion models have enabled the generation of high-quality images, concerns over their potential misuse have also grown. This issue is critical in the medical domain, where text-conditioned generated medical images could enable insurance fraud or falsified records, highlighting the urgent need for reliable safeguards against unethical use. While watermarking techniques have emerged as a promising solution in general image domains, their direct application to medical imaging presents significant challenges. A key challenge is preserving fine-grained disease manifestations, as even minor distortions from a watermark may lead to clinical misinterpretation, which compromises diagnostic integrity. To overcome this gap, we present MedSign, a deep learning-based watermarking framework specifically designed for text-to-medical image synthesis, which preserves pathologically significant regions by adaptively adjusting watermark strength. Specifically, we generate a pathology localization map using cross-attention between medical text tokens and the diffusion denoising network, aggregating token-wise attention across layers, heads, and time steps. Leveraging this map, we optimize the LDM decoder to incorporate watermarking during image synthesis, ensuring cohesive integration while minimizing interference in diagnostically critical regions. Experimental results show that our MedSign preserves diagnostic integrity while ensuring watermark robustness, achieving state-of-the-art performance in image quality and detection accuracy on MIMIC-CXR and OIA-ODIR datasets.
Authors:Wenlong Ji, Weizhe Yuan, Emily Getzen, Kyunghyun Cho, Michael I. Jordan, Song Mei, Jason E Weston, Weijie J. Su, Jing Xu, Linjun Zhang
Abstract:
Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence (AI), exhibiting remarkable capabilities across diverse tasks such as text generation, reasoning, and decision-making. While their success has primarily been driven by advances in computational power and deep learning architectures, emerging problems -- in areas such as uncertainty quantification, decision-making, causal inference, and distribution shift -- require a deeper engagement with the field of statistics. This paper explores potential areas where statisticians can make important contributions to the development of LLMs, particularly those that aim to engender trustworthiness and transparency for human users. Thus, we focus on issues such as uncertainty quantification, interpretability, fairness, privacy, watermarking and model adaptation. We also consider possible roles for LLMs in statistical analysis. By bridging AI and statistics, we aim to foster a deeper collaboration that advances both the theoretical foundations and practical applications of LLMs, ultimately shaping their role in addressing complex societal challenges.
Authors:Sangeeth B, Serena Nicolazzo, Deepa K., Vinod P
Abstract:
The rapid proliferation of deep neural networks (DNNs) across several domains has led to increasing concerns regarding intellectual property (IP) protection and model misuse. Trained DNNs represent valuable assets, often developed through significant investments. However, the ease with which models can be copied, redistributed, or repurposed highlights the urgent need for effective mechanisms to assert and verify model ownership. In this work, we propose an efficient and resilient white-box watermarking framework that embeds ownership information into the internal parameters of a DNN using chaotic sequences. The watermark is generated using a logistic map, a well-known chaotic function, producing a sequence that is sensitive to its initialization parameters. This sequence is injected into the weights of a chosen intermediate layer without requiring structural modifications to the model or degradation in predictive performance. To validate ownership, we introduce a verification process based on a genetic algorithm that recovers the original chaotic parameters by optimizing the similarity between the extracted and regenerated sequences. The effectiveness of the proposed approach is demonstrated through extensive experiments on image classification tasks using MNIST and CIFAR-10 datasets. The results show that the embedded watermark remains detectable after fine-tuning, with negligible loss in model accuracy. In addition to numerical recovery of the watermark, we perform visual analyses using weight density plots and construct activation-based classifiers to distinguish between original, watermarked, and tampered models. Overall, the proposed method offers a flexible and scalable solution for embedding and verifying model ownership in white-box settings well-suited for real-world scenarios where IP protection is critical.
Authors:Jefferson David Rodriguez Chivata, Davide Ghiani, Simone Maurizio La Cava, Marco Micheletto, Giulia Orrù, Federico Lama, Gian Luca Marcialis
Abstract:
ICAO-compliant facial images, initially designed for secure biometric passports, are increasingly becoming central to identity verification in a wide range of application contexts, including border control, digital travel credentials, and financial services. While their standardization enables global interoperability, it also facilitates practices such as morphing and deepfakes, which can be exploited for harmful purposes like identity theft and illegal sharing of identity documents. Traditional countermeasures like Presentation Attack Detection (PAD) are limited to real-time capture and offer no post-capture protection. This survey paper investigates digital watermarking and steganography as complementary solutions that embed tamper-evident signals directly into the image, enabling persistent verification without compromising ICAO compliance. We provide the first comprehensive analysis of state-of-the-art techniques to evaluate the potential and drawbacks of the underlying approaches concerning the applications involving ICAO-compliant images and their suitability under standard constraints. We highlight key trade-offs, offering guidance for secure deployment in real-world identity systems.
Authors:Xuefeng Yang, Jian Guan, Feiyang Xiao, Congyi Fan, Haohe Liu, Qiaoxi Zhu, Dongli Xu, Youtian Lin
Abstract:
Existing watermarking methods for audio generative models only enable model-level attribution, allowing the identification of the originating generation model, but are unable to trace the underlying training dataset. This significant limitation raises critical provenance questions, particularly in scenarios involving copyright and accountability concerns. To bridge this fundamental gap, we introduce DualMark, the first dual-provenance watermarking framework capable of simultaneously encoding two distinct attribution signatures, i.e., model identity and dataset origin, into audio generative models during training. Specifically, we propose a novel Dual Watermark Embedding (DWE) module to seamlessly embed dual watermarks into Mel-spectrogram representations, accompanied by a carefully designed Watermark Consistency Loss (WCL), which ensures reliable extraction of both watermarks from generated audio signals. Moreover, we establish the Dual Attribution Benchmark (DAB), the first robustness evaluation benchmark specifically tailored for joint model-data attribution. Extensive experiments validate that DualMark achieves outstanding attribution accuracy (97.01% F1-score for model attribution, and 91.51% AUC for dataset attribution), while maintaining exceptional robustness against aggressive pruning, lossy compression, additive noise, and sampling attacks, conditions that severely compromise prior methods. Our work thus provides a foundational step toward fully accountable audio generative models, significantly enhancing copyright protection and responsibility tracing capabilities.
Authors:Yize Cheng, Vinu Sankar Sadasivan, Mehrdad Saberi, Shoumik Saha, Soheil Feizi
Abstract:
The increasing capabilities of Large Language Models (LLMs) have raised concerns about their misuse in AI-generated plagiarism and social engineering. While various AI-generated text detectors have been proposed to mitigate these risks, many remain vulnerable to simple evasion techniques such as paraphrasing. However, recent detectors have shown greater robustness against such basic attacks. In this work, we introduce Adversarial Paraphrasing, a training-free attack framework that universally humanizes any AI-generated text to evade detection more effectively. Our approach leverages an off-the-shelf instruction-following LLM to paraphrase AI-generated content under the guidance of an AI text detector, producing adversarial examples that are specifically optimized to bypass detection. Extensive experiments show that our attack is both broadly effective and highly transferable across several detection systems. For instance, compared to simple paraphrasing attack--which, ironically, increases the true positive at 1% false positive (T@1%F) by 8.57% on RADAR and 15.03% on Fast-DetectGPT--adversarial paraphrasing, guided by OpenAI-RoBERTa-Large, reduces T@1%F by 64.49% on RADAR and a striking 98.96% on Fast-DetectGPT. Across a diverse set of detectors--including neural network-based, watermark-based, and zero-shot approaches--our attack achieves an average T@1%F reduction of 87.88% under the guidance of OpenAI-RoBERTa-Large. We also analyze the tradeoff between text quality and attack success to find that our method can significantly reduce detection rates, with mostly a slight degradation in text quality. Our adversarial setup highlights the need for more robust and resilient detection strategies in the light of increasingly sophisticated evasion techniques.
Authors:Amit Chakraborty, Sayyed Farid Ahamed, Sandip Roy, Soumya Banerjee, Kevin Choi, Abdul Rahman, Alison Hu, Edward Bowen, Sachin Shetty
Abstract:
Machine Learning as a Service (MLaaS) enables users to leverage powerful machine learning models through cloud-based APIs, offering scalability and ease of deployment. However, these services are vulnerable to model extraction attacks, where adversaries repeatedly query the application programming interface (API) to reconstruct a functionally similar model, compromising intellectual property and security. Despite various defense strategies being proposed, many suffer from high computational costs, limited adaptability to evolving attack techniques, and a reduction in performance for legitimate users. In this paper, we introduce a Resilient Adaptive Defense Framework for Model Extraction Attack Protection (RADEP), a multifaceted defense framework designed to counteract model extraction attacks through a multi-layered security approach. RADEP employs progressive adversarial training to enhance model resilience against extraction attempts. Malicious query detection is achieved through a combination of uncertainty quantification and behavioral pattern analysis, effectively identifying adversarial queries. Furthermore, we develop an adaptive response mechanism that dynamically modifies query outputs based on their suspicion scores, reducing the utility of stolen models. Finally, ownership verification is enforced through embedded watermarking and backdoor triggers, enabling reliable identification of unauthorized model use. Experimental evaluations demonstrate that RADEP significantly reduces extraction success rates while maintaining high detection accuracy with minimal impact on legitimate queries. Extensive experiments show that RADEP effectively defends against model extraction attacks and remains resilient even against adaptive adversaries, making it a reliable security framework for MLaaS models.
Authors:Xin Yi, Yue Li, Shunfan Zheng, Linlin Wang, Xiaoling Wang, Liang He
Abstract:
Watermarking has emerged as a critical technique for combating misinformation and protecting intellectual property in large language models (LLMs). A recent discovery, termed watermark radioactivity, reveals that watermarks embedded in teacher models can be inherited by student models through knowledge distillation. On the positive side, this inheritance allows for the detection of unauthorized knowledge distillation by identifying watermark traces in student models. However, the robustness of watermarks against scrubbing attacks and their unforgeability in the face of spoofing attacks under unauthorized knowledge distillation remain largely unexplored. Existing watermark attack methods either assume access to model internals or fail to simultaneously support both scrubbing and spoofing attacks. In this work, we propose Contrastive Decoding-Guided Knowledge Distillation (CDG-KD), a unified framework that enables bidirectional attacks under unauthorized knowledge distillation. Our approach employs contrastive decoding to extract corrupted or amplified watermark texts via comparing outputs from the student model and weakly watermarked references, followed by bidirectional distillation to train new student models capable of watermark removal and watermark forgery, respectively. Extensive experiments show that CDG-KD effectively performs attacks while preserving the general performance of the distilled model. Our findings underscore critical need for developing watermarking schemes that are robust and unforgeable.
Authors:Davide Ghiani, Jefferson David Rodriguez Chivata, Stefano Lilliu, Simone Maurizio La Cava, Marco Micheletto, Giulia Orrù, Federico Lama, Gian Luca Marcialis
Abstract:
Modern identity verification systems increasingly rely on facial images embedded in biometric documents such as electronic passports. To ensure global interoperability and security, these images must comply with strict standards defined by the International Civil Aviation Organization (ICAO), which specify acquisition, quality, and format requirements. However, once issued, these images may undergo unintentional degradations (e.g., compression, resizing) or malicious manipulations (e.g., morphing) and deceive facial recognition systems. In this study, we explore fragile watermarking, based on deep steganographic embedding as a proactive mechanism to certify the authenticity of ICAO-compliant facial images. By embedding a hidden image within the official photo at the time of issuance, we establish an integrity marker that becomes sensitive to any post-issuance modification. We assess how a range of image manipulations affects the recovered hidden image and show that degradation artifacts can serve as robust forensic cues. Furthermore, we propose a classification framework that analyzes the revealed content to detect and categorize the type of manipulation applied. Our experiments demonstrate high detection accuracy, including cross-method scenarios with multiple deep steganography-based models. These findings support the viability of fragile watermarking via steganographic embedding as a valuable tool for biometric document integrity verification.
Authors:Alaa Mazouz, Carl De Sousa Tria, Sumanta Chaudhuri, Attilio Fiandrotti, Marco Cagnanzzo, Mihai Mitrea, Enzo Tartaglione
Abstract:
Learnable Image Compression (LIC) has proven capable of outperforming standardized video codecs in compression efficiency. However, achieving both real-time and secure LIC operations on hardware presents significant conceptual and methodological challenges. The present work addresses these challenges by providing an integrated workflow and platform for training, securing, and deploying LIC models on hardware. To this end, a hardware-friendly LIC model is obtained by iteratively pruning and quantizing the model within a standard end-to-end learning framework. Notably, we introduce a novel Quantization-Aware Watermarking (QAW) technique, where the model is watermarked during quantization using a joint loss function, ensuring robust security without compromising model performance. The watermarked weights are then public-key encrypted, guaranteeing both content protection and user traceability. Experimental results across different FPGA platforms evaluate real-time performance, latency, energy consumption, and compression efficiency. The findings highlight that the watermarking and encryption processes maintain negligible impact on compression efficiency (average of -0.4 PSNR) and energy consumption (average of +2%), while still meeting real-time constraints and preserving security properties.
Authors:Kasra Arabi, Benjamin Feuer, R. Teal Witter, Chinmay Hegde, Niv Cohen
Abstract:
As the quality of image generators continues to improve, deepfakes become a topic of considerable societal debate. Image watermarking allows responsible model owners to detect and label their AI-generated content, which can mitigate the harm. Yet, current state-of-the-art methods in image watermarking remain vulnerable to forgery and removal attacks. This vulnerability occurs in part because watermarks distort the distribution of generated images, unintentionally revealing information about the watermarking techniques.
In this work, we first demonstrate a distortion-free watermarking method for images, based on a diffusion model's initial noise. However, detecting the watermark requires comparing the initial noise reconstructed for an image to all previously used initial noises. To mitigate these issues, we propose a two-stage watermarking framework for efficient detection. During generation, we augment the initial noise with generated Fourier patterns to embed information about the group of initial noises we used. For detection, we (i) retrieve the relevant group of noises, and (ii) search within the given group for an initial noise that might match our image. This watermarking approach achieves state-of-the-art robustness to forgery and removal against a large battery of attacks.
Authors:Zhengmian Hu, Heng Huang
Abstract:
Large language models are probabilistic models, and the process of generating content is essentially sampling from the output distribution of the language model. Existing watermarking techniques inject watermarks into the generated content without altering the output quality. On the other hand, existing acceleration techniques, specifically speculative sampling, leverage a draft model to speed up the sampling process while preserving the output distribution. However, there is no known method to simultaneously accelerate the sampling process and inject watermarks into the generated content. In this paper, we investigate this direction and find that the integration of watermarking and acceleration is non-trivial. We prove a no-go theorem, which states that it is impossible to simultaneously maintain the highest watermark strength and the highest sampling efficiency. Furthermore, we propose two methods that maintain either the sampling efficiency or the watermark strength, but not both. Our work provides a rigorous theoretical foundation for understanding the inherent trade-off between watermark strength and sampling efficiency in accelerating the generation of watermarked tokens for large language models. We also conduct numerical experiments to validate our theoretical findings and demonstrate the effectiveness of the proposed methods.
Authors:Zongqi Wang, Baoyuan Wu, Jingyuan Deng, Yujiu Yang
Abstract:
Embeddings as a Service (EaaS) is emerging as a crucial role in AI applications. Unfortunately, EaaS is vulnerable to model extraction attacks, highlighting the urgent need for copyright protection. Although some preliminary works propose applying embedding watermarks to protect EaaS, recent research reveals that these watermarks can be easily removed. Hence, it is crucial to inject robust watermarks resistant to watermark removal attacks. Existing watermarking methods typically inject a target embedding into embeddings through linear interpolation when the text contains triggers. However, this mechanism results in each watermarked embedding having the same component, which makes the watermark easy to identify and eliminate. Motivated by this, in this paper, we propose a novel embedding-specific watermarking (ESpeW) mechanism to offer robust copyright protection for EaaS. Our approach involves injecting unique, yet readily identifiable watermarks into each embedding. Watermarks inserted by ESpeW are designed to maintain a significant distance from one another and to avoid sharing common components, thus making it significantly more challenging to remove the watermarks. Moreover, ESpeW is minimally invasive, as it reduces the impact on embeddings to less than 1\%, setting a new milestone in watermarking for EaaS. Extensive experiments on four popular datasets demonstrate that ESpeW can even watermark successfully against a highly aggressive removal strategy without sacrificing the quality of embeddings.
Authors:Carl De Sousa Trias, Mihai Mitrea, Attilio Fiandrotti, Marco Cagnazzo, Sumanta Chaudhuri, Enzo Tartaglione
Abstract:
Nowadays, deep neural networks are used for solving complex tasks in several critical applications and protecting both their integrity and intellectual property rights (IPR) has become of utmost importance. To this end, we advance WaterMAS, a substitutive, white-box neural network watermarking method that improves the trade-off among robustness, imperceptibility, and computational complexity, while making provisions for increased data payload and security. WasterMAS insertion keeps unchanged the watermarked weights while sharpening their underlying gradient space. The robustness is thus ensured by limiting the attack's strength: even small alterations of the watermarked weights would impact the model's performance. The imperceptibility is ensured by inserting the watermark during the training process. The relationship among the WaterMAS data payload, imperceptibility, and robustness properties is discussed. The secret key is represented by the positions of the weights conveying the watermark, randomly chosen through multiple layers of the model. The security is evaluated by investigating the case in which an attacker would intercept the key. The experimental validations consider 5 models and 2 tasks (VGG16, ResNet18, MobileNetV3, SwinT for CIFAR10 image classification, and DeepLabV3 for Cityscapes image segmentation) as well as 4 types of attacks (Gaussian noise addition, pruning, fine-tuning, and quantization). The code will be released open-source upon acceptance of the article.
Authors:Ofek Raban, Ethan Fetaya, Gal Chechik
Abstract:
Watermarking (WM) is a critical mechanism for detecting and attributing AI-generated content. Current WM methods for Large Language Models (LLMs) are predominantly tailored for autoregressive (AR) models: They rely on tokens being generated sequentially, and embed stable signals within the generated sequence based on the previously sampled text. Diffusion Language Models (DLMs) generate text via non-sequential iterative denoising, which requires significant modification to use WM methods designed for AR models. Recent work proposed to watermark DLMs by inverting the process when needed, but suffers significant computational or memory overhead. We introduce Left-Right Diffusion Watermarking (LR-DWM), a scheme that biases the generated token based on both left and right neighbors, when they are available. LR-DWM incurs minimal runtime and memory overhead, remaining close to the non-watermarked baseline DLM while enabling reliable statistical detection under standard evaluation settings. Our results demonstrate that DLMs can be watermarked efficiently, achieving high detectability with negligible computational and memory overhead.
Authors:Amit Bin Tariqul, A N M Zahid Hossain Milkan, Sahab-Al-Chowdhury, Syed Rifat Raiyan, Hasan Mahmud, Md Kamrul Hasan
Abstract:
As large language models (LLMs) are increasingly deployed for text generation, watermarking has become essential for authorship attribution, intellectual property protection, and misuse detection. While existing watermarking methods perform well in high-resource languages, their robustness in low-resource languages remains underexplored. This work presents the first systematic evaluation of state-of-the-art text watermarking methods: KGW, Exponential Sampling (EXP), and Waterfall, for Bangla LLM text generation under cross-lingual round-trip translation (RTT) attacks. Under benign conditions, KGW and EXP achieve high detection accuracy (>88%) with negligible perplexity and ROUGE degradation. However, RTT causes detection accuracy to collapse below RTT causes detection accuracy to collapse to 9-13%, indicating a fundamental failure of token-level watermarking. To address this, we propose a layered watermarking strategy that combines embedding-time and post-generation watermarks. Experimental results show that layered watermarking improves post-RTT detection accuracy by 25-35%, achieving 40-50% accuracy, representing a 3$\times$ to 4$\times$ relative improvement over single-layer methods, at the cost of controlled semantic degradation. Our findings quantify the robustness-quality trade-off in multilingual watermarking and establish layered watermarking as a practical, training-free solution for low-resource languages such as Bangla. Our code and data will be made public.
Authors:Hao Li, Yubing Ren, Yanan Cao, Yingjie Li, Fang Fang, Xuebin Wang
Abstract:
Benefiting from the superior capabilities of large language models in natural language understanding and generation, Embeddings-as-a-Service (EaaS) has emerged as a successful commercial paradigm on the web platform. However, prior studies have revealed that EaaS is vulnerable to imitation attacks. Existing methods protect the intellectual property of EaaS through watermarking techniques, but they all ignore the most important properties of embedding: semantics, resulting in limited harmlessness and stealthiness. To this end, we propose SemMark, a novel semantic-based watermarking paradigm for EaaS copyright protection. SemMark employs locality-sensitive hashing to partition the semantic space and inject semantic-aware watermarks into specific regions, ensuring that the watermark signals remain imperceptible and diverse. In addition, we introduce the adaptive watermark weight mechanism based on the local outlier factor to preserve the original embedding distribution. Furthermore, we propose Detect-Sampling and Dimensionality-Reduction attacks and construct four scenarios to evaluate the watermarking method. Extensive experiments are conducted on four popular NLP datasets, and SemMark achieves superior verifiability, diversity, stealthiness, and harmlessness.
Authors:Hao Li, Yubing Ren, Yanan Cao, Yingjie Li, Fang Fang, Shi Wang, Li Guo
Abstract:
With the rapid development of cloud-based services, large language models (LLMs) have become increasingly accessible through various web platforms. However, this accessibility has also led to growing risks of model abuse. LLM watermarking has emerged as an effective approach to mitigate such misuse and protect intellectual property. Existing watermarking algorithms, however, primarily focus on defending against paraphrase attacks while overlooking piggyback spoofing attacks, which can inject harmful content, compromise watermark reliability, and undermine trust in attribution. To address this limitation, we propose DualGuard, the first watermarking algorithm capable of defending against both paraphrase and spoofing attacks. DualGuard employs the adaptive dual-stream watermarking mechanism, in which two complementary watermark signals are dynamically injected based on the semantic content. This design enables DualGuard not only to detect but also to trace spoofing attacks, thereby ensuring reliable and trustworthy watermark detection. Extensive experiments conducted across multiple datasets and language models demonstrate that DualGuard achieves excellent detectability, robustness, traceability, and text quality, effectively advancing the state of LLM watermarking for real-world applications.
Authors:Yizhou Zhao, Xiang Li, Peter Song, Qi Long, Weijie Su
Abstract:
The rise of generative AI has enabled the production of high-fidelity synthetic tabular data across fields such as healthcare, finance, and public policy, raising growing concerns about data provenance and misuse. Watermarking offers a promising solution to address these concerns by ensuring the traceability of synthetic data, but existing methods face many limitations: they are computationally expensive due to reliance on large diffusion models, struggle with mixed discrete-continuous data, or lack robustness to post-modifications. To address them, we propose TAB-DRW, an efficient and robust post-editing watermarking scheme for generative tabular data. TAB-DRW embeds watermark signals in the frequency domain: it normalizes heterogeneous features via the Yeo-Johnson transformation and standardization, applies the discrete Fourier transform (DFT), and adjusts the imaginary parts of adaptively selected entries according to precomputed pseudorandom bits. To further enhance robustness and efficiency, we introduce a novel rank-based pseudorandom bit generation method that enables row-wise retrieval without incurring storage overhead. Experiments on five benchmark tabular datasets show that TAB-DRW achieves strong detectability and robustness against common post-processing attacks, while preserving high data fidelity and fully supporting mixed-type features.
Authors:Chenpei Huang, Lingfeng Yao, Kyu In Lee, Lan Emily Zhang, Xun Chen, Miao Pan
Abstract:
Acoustic Environment Matching (AEM) is the task of transferring clean audio into a target acoustic environment, enabling engaging applications such as audio dubbing and auditory immersive virtual reality (VR). Recovering similar room impulse response (RIR) directly from reverberant speech offers more accessible and flexible AEM solution. However, this capability also introduces vulnerabilities of arbitrary ``relocation" if misused by malicious user, such as facilitating advanced voice spoofing attacks or undermining the authenticity of recorded evidence. To address this issue, we propose EchoMark, the first deep learning-based AEM framework that generates perceptually similar RIRs with embedded watermark. Our design tackle the challenges posed by variable RIR characteristics, such as different durations and energy decays, by operating in the latent domain. By jointly optimizing the model with a perceptual loss for RIR reconstruction and a loss for watermark detection, EchoMark achieves both high-quality environment transfer and reliable watermark recovery. Experiments on diverse datasets validate that EchoMark achieves room acoustic parameter matching performance comparable to FiNS, the state-of-the-art RIR estimator. Furthermore, a high Mean Opinion Score (MOS) of 4.22 out of 5, watermark detection accuracy exceeding 99\%, and bit error rates (BER) below 0.3\% collectively demonstrate the effectiveness of EchoMark in preserving perceptual quality while ensuring reliable watermark embedding.
Authors:Gautier Evennou, Vivien Chappelier, Ewa Kijak
Abstract:
Most image watermarking systems focus on robustness, capacity, and imperceptibility while treating the embedded payload as meaningless bits. This bit-centric view imposes a hard ceiling on capacity and prevents watermarks from carrying useful information. We propose LatentSeal, which reframes watermarking as semantic communication: a lightweight text autoencoder maps full-sentence messages into a compact 256-dimensional unit-norm latent vector, which is robustly embedded by a finetuned watermark model and secured through a secret, invertible rotation. The resulting system hides full-sentence messages, decodes in real time, and survives valuemetric and geometric attacks. It surpasses prior state of the art in BLEU-4 and Exact Match on several benchmarks, while breaking through the long-standing 256-bit payload ceiling. It also introduces a statistically calibrated score that yields a ROC AUC score of 0.97-0.99, and practical operating points for deployment. By shifting from bit payloads to semantic latent vectors, LatentSeal enables watermarking that is not only robust and high-capacity, but also secure and interpretable, providing a concrete path toward provenance, tamper explanation, and trustworthy AI governance. Models, training and inference code, and data splits will be available upon publication.
Authors:De Zhang Lee, Han Fang, Hanyi Wang, Ee-Chien Chang
Abstract:
Digital watermarks can be embedded into AI-generated content (AIGC) by initializing the generation process with starting points sampled from a secret distribution. When combined with pseudorandom error-correcting codes, such watermarked outputs can remain indistinguishable from unwatermarked objects, while maintaining robustness under whitenoise. In this paper, we go beyond indistinguishability and investigate security under removal attacks. We demonstrate that indistinguishability alone does not necessarily guarantee resistance to adversarial removal. Specifically, we propose a novel attack that exploits boundary information leaked by the locations of watermarked objects. This attack significantly reduces the distortion required to remove watermarks -- by up to a factor of $15 \times$ compared to a baseline whitenoise attack under certain settings. To mitigate such attacks, we introduce a defense mechanism that applies a secret transformation to hide the boundary, and prove that the secret transformation effectively rendering any attacker's perturbations equivalent to those of a naive whitenoise adversary. Our empirical evaluations, conducted on multiple versions of Stable Diffusion, validate the effectiveness of both the attack and the proposed defense, highlighting the importance of addressing boundary leakage in latent-based watermarking schemes.
Authors:Qingyuan Zeng, Shu Jiang, Jiajing Lin, Zhenzhong Wang, Kay Chen Tan, Min Jiang
Abstract:
With the rise of 3D Gaussian Splatting (3DGS), a variety of digital watermarking techniques, embedding either 1D bitstreams or 2D images, are used for copyright protection. However, the robustness of these watermarking techniques against potential attacks remains underexplored. This paper introduces the first universal black-box attack framework, the Group-based Multi-objective Evolutionary Attack (GMEA), designed to challenge these watermarking systems. We formulate the attack as a large-scale multi-objective optimization problem, balancing watermark removal with visual quality. In a black-box setting, we introduce an indirect objective function that blinds the watermark detector by minimizing the standard deviation of features extracted by a convolutional network, thus rendering the feature maps uninformative. To manage the vast search space of 3DGS models, we employ a group-based optimization strategy to partition the model into multiple, independent sub-optimization problems. Experiments demonstrate that our framework effectively removes both 1D and 2D watermarks from mainstream 3DGS watermarking methods while maintaining high visual fidelity. This work reveals critical vulnerabilities in existing 3DGS copyright protection schemes and calls for the development of more robust watermarking systems.
Authors:Lingfeng Yao, Chenpei Huang, Shengyao Wang, Junpei Xue, Hanqing Guo, Jiang Liu, Xun Chen, Miao Pan
Abstract:
With the surge of social media, maliciously tampered public speeches, especially those from influential figures, have seriously affected social stability and public trust. Existing speech tampering detection methods remain insufficient: they either rely on external reference data or fail to be both sensitive to attacks and robust to benign operations, such as compression and resampling. To tackle these challenges, we introduce SpeechVerifer to proactively verify speech integrity using only the published speech itself, i.e., without requiring any external references. Inspired by audio fingerprinting and watermarking, SpeechVerifier can (i) effectively detect tampering attacks, (ii) be robust to benign operations and (iii) verify the integrity only based on published speeches. Briefly, SpeechVerifier utilizes multiscale feature extraction to capture speech features across different temporal resolutions. Then, it employs contrastive learning to generate fingerprints that can detect modifications at varying granularities. These fingerprints are designed to be robust to benign operations, but exhibit significant changes when malicious tampering occurs. To enable speech verification in a self-contained manner, the generated fingerprints are then embedded into the speech signal by segment-wise watermarking. Without external references, SpeechVerifier can retrieve the fingerprint from the published audio and check it with the embedded watermark to verify the integrity of the speech. Extensive experimental results demonstrate that the proposed SpeechVerifier is effective in detecting tampering attacks and robust to benign operations.
Authors:Ziyi Wang, Songbai Tan, Gang Xu, Xuerui Qiu, Hongbin Xu, Xin Meng, Ming Li, Fei Richard Yu
Abstract:
With the success of autoregressive learning in large language models, it has become a dominant approach for text-to-image generation, offering high efficiency and visual quality. However, invisible watermarking for visual autoregressive (VAR) models remains underexplored, despite its importance in misuse prevention. Existing watermarking methods, designed for diffusion models, often struggle to adapt to the sequential nature of VAR models. To bridge this gap, we propose Safe-VAR, the first watermarking framework specifically designed for autoregressive text-to-image generation. Our study reveals that the timing of watermark injection significantly impacts generation quality, and watermarks of different complexities exhibit varying optimal injection times. Motivated by this observation, we propose an Adaptive Scale Interaction Module, which dynamically determines the optimal watermark embedding strategy based on the watermark information and the visual characteristics of the generated image. This ensures watermark robustness while minimizing its impact on image quality. Furthermore, we introduce a Cross-Scale Fusion mechanism, which integrates mixture of both heads and experts to effectively fuse multi-resolution features and handle complex interactions between image content and watermark patterns. Experimental results demonstrate that Safe-VAR achieves state-of-the-art performance, significantly surpassing existing counterparts regarding image quality, watermarking fidelity, and robustness against perturbations. Moreover, our method exhibits strong generalization to an out-of-domain watermark dataset QR Codes.
Authors:Zihang Cheng, Huiping Zhuang, Chun Li, Xin Meng, Ming Li, Fei Richard Yu, Liqiang Nie
Abstract:
3D Gaussian Splatting (3DGS) has been widely used in 3D reconstruction and 3D generation. Training to get a 3DGS scene often takes a lot of time and resources and even valuable inspiration. The increasing amount of 3DGS digital asset have brought great challenges to the copyright protection. However, it still lacks profound exploration targeted at 3DGS. In this paper, we propose a new framework X-SG$^2$S which can simultaneously watermark 1 to 3D messages while keeping the original 3DGS scene almost unchanged. Generally, we have a X-SG$^2$S injector for adding multi-modal messages simultaneously and an extractor for extract them. Specifically, we first split the watermarks into message patches in a fixed manner and sort the 3DGS points. A self-adaption gate is used to pick out suitable location for watermarking. Then use a XD(multi-dimension)-injection heads to add multi-modal messages into sorted 3DGS points. A learnable gate can recognize the location with extra messages and XD-extraction heads can restore hidden messages from the location recommended by the learnable gate. Extensive experiments demonstrated that the proposed X-SG$^2$S can effectively conceal multi modal messages without changing pretrained 3DGS pipeline or the original form of 3DGS parameters. Meanwhile, with simple and efficient model structure and high practicality, X-SG$^2$S still shows good performance in hiding and extracting multi-modal inner structured or unstructured messages. X-SG$^2$S is the first to unify 1 to 3D watermarking model for 3DGS and the first framework to add multi-modal watermarks simultaneous in one 3DGS which pave the wave for later researches.
Authors:Haiyun He, Yepeng Liu, Ziqiao Wang, Yongyi Mao, Yuheng Bu
Abstract:
This paper introduces a novel problem, distributional information embedding, motivated by the practical demands of multi-bit watermarking for large language models (LLMs). Unlike traditional information embedding, which embeds information into a pre-existing host signal, LLM watermarking actively controls the text generation process--adjusting the token distribution--to embed a detectable signal. We develop an information-theoretic framework to analyze this distributional information embedding problem, characterizing the fundamental trade-offs among three critical performance metrics: text quality, detectability, and information rate. In the asymptotic regime, we demonstrate that the maximum achievable rate with vanishing error corresponds to the entropy of the LLM's output distribution and increases with higher allowable distortion. We also characterize the optimal watermarking scheme to achieve this rate. Extending the analysis to the finite-token case with non-i.i.d. tokens, we identify schemes that maximize detection probability while adhering to constraints on false alarm and distortion.
Authors:Kareem Shehata, Aashish Kolluri, Prateek Saxena
Abstract:
As AI-generated images become widespread, reliable watermarking is essential for content verification, copyright enforcement, and combating disinformation. Existing techniques rely on heuristic approaches and lack formal guarantees of undetectability, making them vulnerable to steganographic attacks that can expose or erase the watermark. Additionally, these techniques often degrade output quality by introducing perceptible changes, which is not only undesirable but an important barrier to adoption in practice.
In this work, we introduce CLUE-Mark, the first provably undetectable watermarking scheme for diffusion models. CLUE-Mark requires no changes to the model being watermarked, is computationally efficient, and because it is provably undetectable is guaranteed to have no impact on model output quality. Our approach leverages the Continuous Learning With Errors (CLWE) problem -- a cryptographically hard lattice problem -- to embed watermarks in the latent noise vectors used by diffusion models. By proving undetectability via reduction from a cryptographically hard problem we ensure not only that the watermark is imperceptible to human observers or adhoc heuristics, but to \emph{any} efficient detector that does not have the secret key. CLUE-Mark allows multiple keys to be embedded, enabling traceability of images to specific users without altering model parameters. Empirical evaluations on state-of-the-art diffusion models confirm that CLUE-Mark achieves high recoverability, preserves image quality, and is robust to minor perturbations such JPEG compression and brightness adjustments. Uniquely, CLUE-Mark cannot be detected nor removed by recent steganographic attacks.
Authors:Haiyun He, Yepeng Liu, Ziqiao Wang, Yongyi Mao, Yuheng Bu
Abstract:
Watermarking has emerged as a crucial method to distinguish AI-generated text from human-created text. In this paper, we present a novel theoretical framework for watermarking Large Language Models (LLMs) that jointly optimizes both the watermarking scheme and the detection process. Our approach focuses on maximizing detection performance while maintaining control over the worst-case Type-I error and text distortion. We characterize \emph{the universally minimum Type-II error}, showing a fundamental trade-off between watermark detectability and text distortion. Importantly, we identify that the optimal watermarking schemes are adaptive to the LLM generative distribution. Building on our theoretical insights, we propose an efficient, model-agnostic, distribution-adaptive watermarking algorithm, utilizing a surrogate model alongside the Gumbel-max trick. Experiments conducted on Llama2-13B and Mistral-8$\times$7B models confirm the effectiveness of our approach. Additionally, we examine incorporating robustness into our framework, paving a way to future watermarking systems that withstand adversarial attacks more effectively.
Authors:Michael Amir, Manon Flageat, Amanda Prorok
Abstract:
The success of machine learning for real-world robotic systems has created a new form of intellectual property: the trained policy. This raises a critical need for novel methods that verify ownership and detect unauthorized, possibly unsafe misuse. While watermarking is established in other domains, physical policies present a unique challenge: remote detection. Existing methods assume access to the robot's internal state, but auditors are often limited to external observations (e.g., video footage). This ``Physical Observation Gap'' means the watermark must be detected from signals that are noisy, asynchronous, and filtered by unknown system dynamics. We formalize this challenge using the concept of a \textit{glimpse sequence}, and introduce Colored Noise Coherency (CoNoCo), the first watermarking strategy designed for remote detection. CoNoCo embeds a spectral signal into the robot's motions by leveraging the policy's inherent stochasticity. To show it does not degrade performance, we prove CoNoCo preserves the marginal action distribution. Our experiments demonstrate strong, robust detection across various remote modalities, including motion capture and side-way/top-down video footage, in both simulated and real-world robot experiments. This work provides a necessary step toward protecting intellectual property in robotics, offering the first method for validating the provenance of physical policies non-invasively, using purely remote observations.
Authors:Artem Chervyakov, Ulyana Isaeva, Anton Emelyanov, Artem Safin, Maria Tikhonova, Alexander Kharitonov, Yulia Lyakh, Petr Surovtsev, Denis Shevelev, Vildan Saburov, Vasily Konovalov, Elisei Rykov, Ivan Sviridov, Amina Miftakhova, Ilseyar Alimova, Alexander Panchenko, Alexander Kapitanov, Alena Fenogenova
Abstract:
Multimodal large language models (MLLMs) are currently at the center of research attention, showing rapid progress in scale and capabilities, yet their intelligence, limitations, and risks remain insufficiently understood. To address these issues, particularly in the context of the Russian language, where no multimodal benchmarks currently exist, we introduce Mera Multi, an open multimodal evaluation framework for Russian-spoken architectures. The benchmark is instruction-based and encompasses default text, image, audio, and video modalities, comprising 18 newly constructed evaluation tasks for both general-purpose models and modality-specific architectures (image-to-text, video-to-text, and audio-to-text). Our contributions include: (i) a universal taxonomy of multimodal abilities; (ii) 18 datasets created entirely from scratch with attention to Russian cultural and linguistic specificity, unified prompts, and metrics; (iii) baseline results for both closed-source and open-source models; (iv) a methodology for preventing benchmark leakage, including watermarking and licenses for private sets. While our current focus is on Russian, the proposed benchmark provides a replicable methodology for constructing multimodal benchmarks in typologically diverse languages, particularly within the Slavic language family.
Authors:Yifan Zhu, Lijia Yu, Xiao-Shan Gao
Abstract:
In recent years, data poisoning attacks have been increasingly designed to appear harmless and even beneficial, often with the intention of verifying dataset ownership or safeguarding private data from unauthorized use. However, these developments have the potential to cause misunderstandings and conflicts, as data poisoning has traditionally been regarded as a security threat to machine learning systems. To address this issue, it is imperative for harmless poisoning generators to claim ownership of their generated datasets, enabling users to identify potential poisoning to prevent misuse. In this paper, we propose the deployment of watermarking schemes as a solution to this challenge. We introduce two provable and practical watermarking approaches for data poisoning: {\em post-poisoning watermarking} and {\em poisoning-concurrent watermarking}. Our analyses demonstrate that when the watermarking length is $Θ(\sqrt{d}/ε_w)$ for post-poisoning watermarking, and falls within the range of $Θ(1/ε_w^2)$ to $O(\sqrt{d}/ε_p)$ for poisoning-concurrent watermarking, the watermarked poisoning dataset provably ensures both watermarking detectability and poisoning utility, certifying the practicality of watermarking under data poisoning attacks. We validate our theoretical findings through experiments on several attacks, models, and datasets.
Authors:Cheng Chu, Lei Jiang, Fan Chen
Abstract:
Variational Quantum Circuits (VQCs) have emerged as a powerful quantum computing paradigm, demonstrating a scaling advantage for problems intractable for classical computation. As VQCs require substantial resources and specialized expertise for their design, they represent significant intellectual properties (IPs). However, existing quantum circuit watermarking techniques suffer from two primary drawbacks: (1) watermarks can be removed during re-compilation of the circuits, and (2) these methods significantly increase task loss due to the extensive length of the inserted watermarks across multiple compilation stages. To address these challenges, we propose BVQC, a backdoor-based watermarking technique for VQCs that preserves the original loss in typical execution settings, while deliberately increasing the loss to a predefined level during watermark extraction. Additionally, BVQC employs a grouping algorithm to minimize the watermark task's interference with the base task, ensuring optimal accuracy for the base task. BVQC retains the original compilation workflow, ensuring robustness against re-compilation. Our evaluations show that BVQC greatly reduces Probabilistic Proof of Authorship (PPA) changes by 9.89e-3 and ground truth distance (GTD) by 0.089 compared to prior watermarking technologies.
Authors:Toluwani Aremu, Noor Hussein, Munachiso Nwadike, Samuele Poppi, Jie Zhang, Karthik Nandakumar, Neil Gong, Nils Lukas
Abstract:
Watermarking offers a promising solution for GenAI providers to establish the provenance of their generated content. A watermark is a hidden signal embedded in the generated content, whose presence can later be verified using a secret watermarking key. A security threat to GenAI providers are \emph{forgery attacks}, where malicious users insert the provider's watermark into generated content that was \emph{not} produced by the provider's models, potentially damaging their reputation and undermining trust. One potential defense to resist forgery is using multiple keys to watermark generated content. However, it has been shown that forgery attacks remain successful when adversaries can collect sufficiently many watermarked samples. We propose an improved multi-key watermarking method that resists all surveyed forgery attacks and scales independently of the number of watermarked samples collected by the adversary. Our method accepts content as genuinely watermarked only if \emph{exactly} one watermark is detected. We focus on the image and text modalities, but our detection method is modality-agnostic, since it treats the underlying watermarking method as a black-box. We derive theoretical bounds on forgery-resistance and empirically validate them using Mistral-7B. Our results show a decrease in forgery success from up to $100\%$ using single-key baselines to only $2\%$. While our method resists all surveyed attacks, we find that highly capable, adaptive attackers can still achieve success rates of up to $65\%$ if watermarked content generated using different keys is easily separable.
Authors:Alexander Nemecek, Yuzhou Jiang, Erman Ayday
Abstract:
Watermarking has emerged as a leading technical proposal for attributing generative AI content and is increasingly cited in global governance frameworks. This paper argues that current implementations risk serving as symbolic compliance rather than delivering effective oversight. We identify a growing gap between regulatory expectations and the technical limitations of existing watermarking schemes. Through analysis of policy proposals and industry practices, we show how incentive structures disincentivize robust, auditable deployments. To realign watermarking with governance goals, we propose a three-layer framework encompassing technical standards, audit infrastructure, and enforcement mechanisms. Without enforceable requirements and independent verification, watermarking will remain inadequate for accountability and ultimately undermine broader efforts in AI safety and regulation.
Authors:Alexander Nemecek, Yuzhou Jiang, Erman Ayday
Abstract:
Large language models (LLMs) are increasingly integrated into academic workflows, with many conferences and journals permitting their use for tasks such as language refinement and literature summarization. However, their use in peer review remains prohibited due to concerns around confidentiality breaches, hallucinated content, and inconsistent evaluations. As LLM-generated text becomes more indistinguishable from human writing, there is a growing need for reliable attribution mechanisms to preserve the integrity of the review process. In this work, we evaluate topic-based watermarking (TBW), a lightweight, semantic-aware technique designed to embed detectable signals into LLM-generated text. We conduct a comprehensive assessment across multiple LLM configurations, including base, few-shot, and fine-tuned variants, using authentic peer review data from academic conferences. Our results show that TBW maintains review quality relative to non-watermarked outputs, while demonstrating strong robustness to paraphrasing-based evasion. These findings highlight the viability of TBW as a minimally intrusive and practical solution for enforcing LLM usage in peer review.
Authors:David Khachaturov, Robert Mullins, Ilia Shumailov, Sumanth Dathathri
Abstract:
Recent advancements in Large Language Models (LLMs) raised concerns over potential misuse, such as for spreading misinformation. In response two counter measures emerged: machine learning-based detectors that predict if text is synthetic, and LLM watermarking, which subtly marks generated text for identification and attribution. Meanwhile, humans are known to adjust language to their conversational partners both syntactically and lexically. By implication, it is possible that humans or unwatermarked LLMs could unintentionally mimic properties of LLM generated text, making counter measures unreliable. In this work we investigate the extent to which such conversational adaptation happens. We call the concept $\textit{mimicry}$ and demonstrate that both humans and LLMs end up mimicking, including the watermarking signal even in seemingly improbable settings. This challenges current academic assumptions and suggests that for long-term watermarking to be reliable, the likelihood of false positives needs to be significantly lower, while longer word sequences should be used for seeding watermarking mechanisms.
Authors:Xinyue Cui, Johnny Tian-Zheng Wei, Swabha Swayamdipta, Robin Jia
Abstract:
Data watermarking in language models injects traceable signals, such as specific token sequences or stylistic patterns, into copyrighted text, allowing copyright holders to track and verify training data ownership. Previous data watermarking techniques primarily focus on effective memorization during pretraining, while overlooking challenges that arise in other stages of the LLM lifecycle, such as the risk of watermark filtering during data preprocessing and verification difficulties due to API-only access. To address these challenges, we propose a novel data watermarking approach that injects plausible yet fictitious knowledge into training data using generated passages describing a fictitious entity and its associated attributes. Our watermarks are designed to be memorized by the LLM through seamlessly integrating in its training data, making them harder to detect lexically during preprocessing. We demonstrate that our watermarks can be effectively memorized by LLMs, and that increasing our watermarks' density, length, and diversity of attributes strengthens their memorization. We further show that our watermarks remain effective after continual pretraining and supervised finetuning. Finally, we show that our data watermarks can be evaluated even under API-only access via question answering.
Authors:Pascal Epple, Igor Shilov, Bozhidar Stevanoski, Yves-Alexandre de Montjoye
Abstract:
Generative Artificial Intelligence (Gen-AI) models are increasingly used to produce content across domains, including text, images, and audio. While these models represent a major technical breakthrough, they gain their generative capabilities from being trained on enormous amounts of human-generated content, which often includes copyrighted material. In this work, we investigate whether audio watermarking techniques can be used to detect an unauthorized usage of content to train a music generation model. We compare outputs generated by a model trained on watermarked data to a model trained on non-watermarked data. We study factors that impact the model's generation behaviour: the watermarking technique, the proportion of watermarked samples in the training set, and the robustness of the watermarking technique against the model's tokenizer. Our results show that audio watermarking techniques, including some that are imperceptible to humans, can lead to noticeable shifts in the model's outputs. We also study the robustness of a state-of-the-art watermarking technique to removal techniques.
Authors:Haoyu Jiang, Xuhong Wang, Ping Yi, Shanzhe Lei, Yilun Lin
Abstract:
Large Language Models (LLMs) are widely used in complex natural language processing tasks but raise privacy and security concerns due to the lack of identity recognition. This paper proposes a multi-party credible watermarking framework (CredID) involving a trusted third party (TTP) and multiple LLM vendors to address these issues. In the watermark embedding stage, vendors request a seed from the TTP to generate watermarked text without sending the user's prompt. In the extraction stage, the TTP coordinates each vendor to extract and verify the watermark from the text. This provides a credible watermarking scheme while preserving vendor privacy. Furthermore, current watermarking algorithms struggle with text quality, information capacity, and robustness, making it challenging to meet the diverse identification needs of LLMs. Thus, we propose a novel multi-bit watermarking algorithm and an open-source toolkit to facilitate research. Experiments show our CredID enhances watermark credibility and efficiency without compromising text quality. Additionally, we successfully utilized this framework to achieve highly accurate identification among multiple LLM vendors.
Authors:Chao Wang, Shubing Yang, Xiaoyan Sun, Jun Dai, Dongfang Zhao
Abstract:
Fully Homomorphic Encryption (FHE) enables computations on encrypted data, preserving confidentiality without the need for decryption. However, FHE is often hindered by significant performance overhead, particularly for high-precision and complex data like images. Due to serious efficiency issues, traditional FHE methods often encrypt images by monolithic data blocks (such as pixel rows), instead of pixels. However, this strategy compromises the advantages of homomorphic operations and disables pixel-level image processing. In this study, we address these challenges by proposing and implementing a pixel-level homomorphic encryption approach, iCHEETAH, based on the CKKS scheme. To enhance computational efficiency, we introduce three novel caching mechanisms to pre-encrypt radix values or frequently occurring pixel values, substantially reducing redundant encryption operations. Extensive experiments demonstrate that our approach achieves up to a 19-fold improvement in encryption speed compared to the original CKKS, while maintaining high image quality. Additionally, real-world image applications such as mean filtering, brightness enhancement, image matching and watermarking are tested based on FHE, showcasing up to a 91.53% speed improvement. We also proved that our method is IND-CPA (Indistinguishability under Chosen Plaintext Attack) secure, providing strong encryption security. These results underscore the practicality and efficiency of iCHEETAH, marking a significant advancement in privacy-preserving image processing at scale.
Authors:Yunyi Ni, Ziyu Yang, Ze Niu, Emily Davis, Finn Carter
Abstract:
Robust invisible watermarking embeds hidden information in images such that the watermark can survive various manipulations. However, the emergence of powerful diffusion-based image generation and editing techniques poses a new threat to these watermarking schemes. In this paper, we investigate the intersection of diffusion-based image editing and robust image watermarking. We analyze how diffusion-driven image edits can significantly degrade or even fully remove embedded watermarks from state-of-the-art robust watermarking systems. Both theoretical formulations and empirical experiments are provided. We prove that as a image undergoes iterative diffusion transformations, the mutual information between the watermarked image and the embedded payload approaches zero, causing watermark decoding to fail. We further propose a guided diffusion attack algorithm that explicitly targets and erases watermark signals during generation. We evaluate our approach on recent deep learning-based watermarking schemes and demonstrate near-zero watermark recovery rates after attack, while maintaining high visual fidelity of the regenerated images. Finally, we discuss ethical implications of such watermark removal capablities and provide design guidelines for future watermarking strategies to be more resilient in the era of generative AI.
Authors:Suqing Wang, Ziyang Ma, Xinyi Li, Zuchao Li
Abstract:
Large Language Models (LLMs) have rapidly advanced and are widely adopted across diverse fields. Due to the substantial computational cost and data requirements of training from scratch, many developers choose to fine-tune or modify existing open-source models. While most adhere to open-source licenses, some falsely claim original training despite clear derivation from public models. This raises pressing concerns about intellectual property protection and highlights the need for reliable methods to verify model provenance. In this paper, we propose GhostSpec, a lightweight yet effective method for verifying LLM lineage without access to training data or modification of model behavior. Our approach constructs compact and robust fingerprints by applying singular value decomposition (SVD) to invariant products of internal attention weight matrices, effectively capturing the structural identity of a model. Unlike watermarking or output-based methods, GhostSpec is fully data-free, non-invasive, and computationally efficient. It demonstrates strong robustness to sequential fine-tuning, pruning, block expansion, and even adversarial transformations. Extensive experiments show that GhostSpec can reliably trace the lineage of transformed models with minimal overhead. By offering a practical solution for model verification and reuse tracking, our method contributes to the protection of intellectual property and fosters a transparent, trustworthy ecosystem for large-scale language models.
Authors:Wenkai Fu, Finn Carter, Yue Wang, Emily Davis, Bo Zhang
Abstract:
Robust invisible watermarking aims to embed hidden messages into images such that they survive various manipulations while remaining imperceptible. However, powerful diffusion-based image generation and editing models now enable realistic content-preserving transformations that can inadvertently remove or distort embedded watermarks. In this paper, we present a theoretical and empirical analysis demonstrating that diffusion-based image editing can effectively break state-of-the-art robust watermarks designed to withstand conventional distortions. We analyze how the iterative noising and denoising process of diffusion models degrades embedded watermark signals, and provide formal proofs that under certain conditions a diffusion model's regenerated image retains virtually no detectable watermark information. Building on this insight, we propose a diffusion-driven attack that uses generative image regeneration to erase watermarks from a given image. Furthermore, we introduce an enhanced \emph{guided diffusion} attack that explicitly targets the watermark during generation by integrating the watermark decoder into the sampling loop. We evaluate our approaches on multiple recent deep learning watermarking schemes (e.g., StegaStamp, TrustMark, and VINE) and demonstrate that diffusion-based editing can reduce watermark decoding accuracy to near-zero levels while preserving high visual fidelity of the images. Our findings reveal a fundamental vulnerability in current robust watermarking techniques against generative model-based edits, underscoring the need for new watermarking strategies in the era of generative AI.
Authors:Hodaka Kawachi, Tomoya Nakamura, Hiroaki Santo, SaiKiran Kumar Tedla, Trevor Dalton Canham, Yasushi Yagi, Michael S. Brown
Abstract:
This paper introduces a method for using LED-based environmental lighting to produce visually imperceptible watermarks for consumer cameras. Our approach optimizes an LED light source's spectral profile to be minimally visible to the human eye while remaining highly detectable by typical consumer cameras. The method jointly considers the human visual system's sensitivity to visible spectra, modern consumer camera sensors' spectral sensitivity, and narrowband LEDs' ability to generate broadband spectra perceived as "white light" (specifically, D65 illumination). To ensure imperceptibility, we employ spectral modulation rather than intensity modulation. Unlike conventional visible light communication, our approach enables watermark extraction at standard low frame rates (30-60 fps). While the information transfer rate is modest-embedding 128 bits within a 10-second video clip-this capacity is sufficient for essential metadata supporting privacy protection and content verification.
Authors:Yunyi Ni, Finn Carter, Ze Niu, Emily Davis, Bo Zhang
Abstract:
Robust invisible watermarking aims to embed hidden information into images such that the watermark can survive various image manipulations. However, the rise of powerful diffusion-based image generation and editing techniques poses a new threat to these watermarking schemes. In this paper, we present a theoretical study and method demonstrating that diffusion models can effectively break robust image watermarks that were designed to resist conventional perturbations. We show that a diffusion-driven ``image regeneration'' process can erase embedded watermarks while preserving perceptual image content. We further introduce a novel guided diffusion attack that explicitly targets the watermark signal during generation, significantly degrading watermark detectability. Theoretically, we prove that as an image undergoes sufficient diffusion-based transformation, the mutual information between the watermarked image and the embedded watermark payload vanishes, resulting in decoding failure. Experimentally, we evaluate our approach on multiple state-of-the-art watermarking schemes (including the deep learning-based methods StegaStamp, TrustMark, and VINE) and demonstrate near-zero watermark recovery rates after attack, while maintaining high visual fidelity of the regenerated images. Our findings highlight a fundamental vulnerability in current robust watermarking techniques against generative model-based attacks, underscoring the need for new watermarking strategies in the era of generative AI.
Authors:Hanbo Huang, Yiran Zhang, Hao Zheng, Xuan Gong, Yihan Li, Lin Liu, Shiyu Liang
Abstract:
Large Language Models (LLMs) watermarking has shown promise in detecting AI-generated content and mitigating misuse, with prior work claiming robustness against paraphrasing and text editing. In this paper, we argue that existing evaluations are not sufficiently adversarial, obscuring critical vulnerabilities and overstating the security. To address this, we introduce adaptive robustness radius, a formal metric that quantifies watermark resilience against adaptive adversaries. We theoretically prove that optimizing the attack context and model parameters can substantially reduce this radius, making watermarks highly susceptible to paraphrase attacks. Leveraging this insight, we propose RLCracker, a reinforcement learning (RL)-based adaptive attack that erases watermarks while preserving semantic fidelity. RLCracker requires only limited watermarked examples and zero access to the detector. Despite weak supervision, it empowers a 3B model to achieve 98.5% removal success and an average 0.92 P-SP score on 1,500-token Unigram-marked texts after training on only 100 short samples. This performance dramatically exceeds 6.75% by GPT-4o and generalizes across five model sizes over ten watermarking schemes. Our results confirm that adaptive attacks are broadly effective and pose a fundamental threat to current watermarking defenses.
Authors:Navid Aftabi, Abhishek Hanchate, Satish Bukkapatnam, Dan Li
Abstract:
Industry 4.0's highly networked Machine Tool Controllers (MTCs) are prime targets for replay attacks that use outdated sensor data to manipulate actuators. Dynamic watermarking can reveal such tampering, but current schemes assume linear-Gaussian dynamics and use constant watermark statistics, making them vulnerable to the time-varying, partly proprietary behavior of MTCs. We close this gap with DynaMark, a reinforcement learning framework that models dynamic watermarking as a Markov decision process (MDP). It learns an adaptive policy online that dynamically adapts the covariance of a zero-mean Gaussian watermark using available measurements and detector feedback, without needing system knowledge. DynaMark maximizes a unique reward function balancing control performance, energy consumption, and detection confidence dynamically. We develop a Bayesian belief updating mechanism for real-time detection confidence in linear systems. This approach, independent of specific system assumptions, underpins the MDP for systems with linear dynamics. On a Siemens Sinumerik 828D controller digital twin, DynaMark achieves a reduction in watermark energy by 70% while preserving the nominal trajectory, compared to constant variance baselines. It also maintains an average detection delay equivalent to one sampling interval. A physical stepper-motor testbed validates these findings, rapidly triggering alarms with less control performance decline and exceeding existing benchmarks.
Authors:Zhimeng Guo, Huaisheng Zhu, Siyuan Xu, Hangfan Zhang, Teng Xiao, Minhao Cheng
Abstract:
The need for detecting LLM-generated code necessitates watermarking systems capable of operating within its highly structured and syntactically constrained environment. To address this, we introduce CodeTracer, an innovative adaptive code watermarking framework underpinned by a novel reinforcement learning training paradigm. At its core, CodeTracer features a policy-driven approach that utilizes a parameterized model to intelligently bias token choices during next-token prediction. This strategy ensures that embedded watermarks maintain code functionality while exhibiting subtle yet statistically detectable deviations from typical token distributions. To facilitate policy learning, we devise a comprehensive reward system that seamlessly integrates execution feedback with watermark embedding signals, balancing process-level and outcome-level rewards. Additionally, we employ Gumbel Top-k reparameterization to enable gradient-based optimization of discrete watermarking decisions. Extensive comparative evaluations demonstrate CodeTracer's significant superiority over state-of-the-art baselines in both watermark detectability and the preservation of generated code's functionality.
Authors:Konstantinos Vasili, Zachery T. Dahm, Stylianos Chatzidakis
Abstract:
Next generation advanced nuclear reactors are expected to be smaller both in size and power output, relying extensively on fully digital instrumentation and control systems. These reactors will generate a large flow of information in the form of multivariate time series data, conveying simultaneously various non linear cyber physical, process, control, sensor, and operational states. Ensuring data integrity against deception attacks is becoming increasingly important for networked communication and a requirement for safe and reliable operation. Current efforts to address replay attacks, almost universally focus on watermarking or supervised anomaly detection approaches without further identifying and characterizing the root cause of the anomaly. In addition, these approaches rely mostly on synthetic data with uncorrelated Gaussian process and measurement noise and full state feedback or are limited to univariate signals, signal stationarity, linear quadratic regulators, or other linear-time invariant state-space which may fail to capture any unmodeled system dynamics. In the realm of regulated nuclear cyber-physical systems, additional work is needed on characterization of replay attacks and explainability of predictions using real data. Here, we propose an unsupervised explainable AI framework based on a combination of autoencoder and customized windowSHAP algorithm to fully characterize real-time replay attacks, i.e., detection, source identification, timing and type, of increasing complexity during a dynamic time evolving reactor process. The proposed XAI framework was benchmarked on several real world datasets from Purdue's nuclear reactor PUR-1 with up to six signals concurrently being replayed. In all cases, the XAI framework was able to detect and identify the source and number of signals being replayed and the duration of the falsification with 95 percent or better accuracy.
Authors:Vinu Sankar Sadasivan, Mehrdad Saberi, Soheil Feizi
Abstract:
With the rapid rise of generative AI and synthetic media, distinguishing AI-generated images from real ones has become crucial in safeguarding against misinformation and ensuring digital authenticity. Traditional watermarking techniques have shown vulnerabilities to adversarial attacks, undermining their effectiveness in the presence of attackers. We propose IConMark, a novel in-generation robust semantic watermarking method that embeds interpretable concepts into AI-generated images, as a first step toward interpretable watermarking. Unlike traditional methods, which rely on adding noise or perturbations to AI-generated images, IConMark incorporates meaningful semantic attributes, making it interpretable to humans and hence, resilient to adversarial manipulation. This method is not only robust against various image augmentations but also human-readable, enabling manual verification of watermarks. We demonstrate a detailed evaluation of IConMark's effectiveness, demonstrating its superiority in terms of detection accuracy and maintaining image quality. Moreover, IConMark can be combined with existing watermarking techniques to further enhance and complement its robustness. We introduce IConMark+SS and IConMark+TM, hybrid approaches combining IConMark with StegaStamp and TrustMark, respectively, to further bolster robustness against multiple types of image manipulations. Our base watermarking technique (IConMark) and its variants (+TM and +SS) achieve 10.8%, 14.5%, and 15.9% higher mean area under the receiver operating characteristic curve (AUROC) scores for watermark detection, respectively, compared to the best baseline on various datasets.
Authors:Kieu Dang, Phung Lai, NhatHai Phan, Yelong Shen, Ruoming Jin, Abdallah Khreishah, My Thai
Abstract:
Large Language Models (LLMs) have transformed natural language processing, demonstrating impressive capabilities across diverse tasks. However, deploying these models introduces critical risks related to intellectual property violations and potential misuse, particularly as adversaries can imitate these models to steal services or generate misleading outputs. We specifically focus on model stealing attacks, as they are highly relevant to proprietary LLMs and pose a serious threat to their security, revenue, and ethical deployment. While various watermarking techniques have emerged to mitigate these risks, it remains unclear how far the community and industry have progressed in developing and deploying watermarks in LLMs.
To bridge this gap, we aim to develop a comprehensive systematization for watermarks in LLMs by 1) presenting a detailed taxonomy for watermarks in LLMs, 2) proposing a novel intellectual property classifier to explore the effectiveness and impacts of watermarks on LLMs under both attack and attack-free environments, 3) analyzing the limitations of existing watermarks in LLMs, and 4) discussing practical challenges and potential future directions for watermarks in LLMs. Through extensive experiments, we show that despite promising research outcomes and significant attention from leading companies and community to deploy watermarks, these techniques have yet to reach their full potential in real-world applications due to their unfavorable impacts on model utility of LLMs and downstream tasks. Our findings provide an insightful understanding of watermarks in LLMs, highlighting the need for practical watermarks solutions tailored to LLM deployment.
Authors:Haiyun Li, Zhiyong Wu, Xiaofeng Xie, Jingran Xie, Yaoxun Xu, Hanyang Peng
Abstract:
Voice cloning (VC)-resistant watermarking is an emerging technique for tracing and preventing unauthorized cloning. Existing methods effectively trace traditional VC models by training them on watermarked audio but fail in zero-shot VC scenarios, where models synthesize audio from an audio prompt without training. To address this, we propose VoiceMark, the first zero-shot VC-resistant watermarking method that leverages speaker-specific latents as the watermark carrier, allowing the watermark to transfer through the zero-shot VC process into the synthesized audio. Additionally, we introduce VC-simulated augmentations and VAD-based loss to enhance robustness against distortions. Experiments on multiple zero-shot VC models demonstrate that VoiceMark achieves over 95% accuracy in watermark detection after zero-shot VC synthesis, significantly outperforming existing methods, which only reach around 50%. See our code and demos at: https://huggingface.co/spaces/haiyunli/VoiceMark
Authors:Yue Li, Weizhi Liu, Dongdong Lin
Abstract:
The emergence of diffusion models has facilitated the generation of speech with reinforced fidelity and naturalness. While deepfake detection technologies have manifested the ability to identify AI-generated content, their efficacy decreases as generative models become increasingly sophisticated. Furthermore, current research in the field has not adequately addressed the necessity for robust watermarking to safeguard the intellectual property rights associated with synthetic speech and generative models. To remedy this deficiency, we propose a \textbf{ro}bust generative \textbf{s}peech wat\textbf{e}rmarking method (TriniMark) for authenticating the generated content and safeguarding the copyrights by enabling the traceability of the diffusion model. We first design a structure-lightweight watermark encoder that embeds watermarks into the time-domain features of speech and reconstructs the waveform directly. A temporal-aware gated convolutional network is meticulously designed in the watermark decoder for bit-wise watermark recovery. Subsequently, the waveform-guided fine-tuning strategy is proposed for fine-tuning the diffusion model, which leverages the transferability of watermarks and enables the diffusion model to incorporate watermark knowledge effectively. When an attacker trains a surrogate model using the outputs of the target model, the embedded watermark can still be learned by the surrogate model and correctly extracted. Comparative experiments with state-of-the-art methods demonstrate the superior robustness of our method, particularly in countering compound attacks.
Authors:Yue Li, Weizhi Liu, Dongdong Lin
Abstract:
The accelerated advancement of speech generative models has given rise to security issues, including model infringement and unauthorized abuse of content. Although existing generative watermarking techniques have proposed corresponding solutions, most methods require substantial computational overhead and training costs. In addition, some methods have limitations in robustness when handling variable-length inputs. To tackle these challenges, we propose \textsc{SOLIDO}, a novel generative watermarking method that integrates parameter-efficient fine-tuning with speech watermarking through low-rank adaptation (LoRA) for speech diffusion models. Concretely, the watermark encoder converts the watermark to align with the input of diffusion models. To achieve precise watermark extraction from variable-length inputs, the watermark decoder based on depthwise separable convolution is designed for watermark recovery. To further enhance speech generation performance and watermark extraction capability, we propose a speech-driven lightweight fine-tuning strategy, which reduces computational overhead through LoRA. Comprehensive experiments demonstrate that the proposed method ensures high-fidelity watermarked speech even at a large capacity of 2000 bps. Furthermore, against common individual and compound speech attacks, our SOLIDO achieves a maximum average extraction accuracy of 99.20\% and 98.43\%, respectively. It surpasses other state-of-the-art methods by nearly 23\% in resisting time-stretching attacks.
Authors:Yue Li, Weizhi Liu, Dongdong Lin, Hui Tian, Hongxia Wang
Abstract:
The rapid advancement of generative models has led to the synthesis of real-fake ambiguous voices. To erase the ambiguity, embedding watermarks into the frequency-domain features of synthesized voices has become a common routine. However, the robustness achieved by choosing the frequency domain often comes at the expense of fine-grained voice features, leading to a loss of fidelity. Maximizing the comprehensive learning of time-domain features to enhance fidelity while maintaining robustness, we pioneer a \textbf{\underline{t}}emporal-aware \textbf{\underline{r}}ob\textbf{\underline{u}}st wat\textbf{\underline{e}}rmarking (\emph{True}) method for protecting the speech and singing voice. For this purpose, the integrated content-driven encoder is designed for watermarked waveform reconstruction, which is structurally lightweight. Additionally, the temporal-aware gated convolutional network is meticulously designed to bit-wise recover the watermark. Comprehensive experiments and comparisons with existing state-of-the-art methods have demonstrated the superior fidelity and vigorous robustness of the proposed \textit{True} achieving an average PESQ score of 4.63.
Authors:Tianyi Wang, Harry Cheng, Ming-Hui Liu, Mohan Kankanhalli
Abstract:
Proactive Deepfake detection via robust watermarks has been raised ever since passive Deepfake detectors encountered challenges in identifying high-quality synthetic images. However, while demonstrating reasonable detection performance, they lack localization functionality and explainability in detection results. Additionally, the unstable robustness of watermarks can significantly affect the detection performance accordingly. In this study, we propose novel fractal watermarks for proactive Deepfake detection and localization, namely FractalForensics. Benefiting from the characteristics of fractals, we devise a parameter-driven watermark generation pipeline that derives fractal-based watermarks and conducts one-way encryption regarding the parameters selected. Subsequently, we propose a semi-fragile watermarking framework for watermark embedding and recovery, trained to be robust against benign image processing operations and fragile when facing Deepfake manipulations in a black-box setting. Meanwhile, we introduce an entry-to-patch strategy that implicitly embeds the watermark matrix entries into image patches at corresponding positions, achieving localization of Deepfake manipulations. Extensive experiments demonstrate satisfactory robustness and fragility of our approach against common image processing operations and Deepfake manipulations, outperforming state-of-the-art semi-fragile watermarking algorithms and passive detectors for Deepfake detection. Furthermore, by highlighting the areas manipulated, our method provides explainability for the proactive Deepfake detection results.
Authors:Sumin In, Youngdong Jang, Utae Jeong, MinHyuk Jang, Hyeongcheol Park, Eunbyung Park, Sangpil Kim
Abstract:
3D Gaussian Splatting (3DGS) is increasingly adopted in various academic and commercial applications due to its real-time and high-quality rendering capabilities, emphasizing the growing need for copyright protection technologies for 3DGS. However, the large model size of 3DGS requires developing efficient compression techniques. This highlights the necessity of an integrated framework that addresses copyright protection and data compression for 3D content. Nevertheless, existing 3DGS watermarking methods significantly degrade watermark performance under 3DGS compression methods, particularly quantization-based approaches that achieve superior compression performance. To ensure reliable watermark detection under compression, we propose a compression-tolerant anchor-based 3DGS watermarking, which preserves watermark integrity and rendering quality. This is achieved by introducing anchor-based 3DGS watermarking. We embed the watermark into the anchor attributes, particularly the anchor feature, to enhance security and rendering quality. We also propose a quantization distortion layer that injects quantization noise during training, preserving the watermark after quantization-based compression. Moreover, we employ a frequency-aware anchor growing strategy that improves rendering quality and watermark performance by effectively identifying Gaussians in high-frequency regions. Extensive experiments demonstrate that our proposed method preserves the watermark even under compression and maintains high rendering quality.
Authors:Zheng Li, Bingxu Xie, Chao Chu, Weiqing Li, Zhiyong Su
Abstract:
Geometry quality assessment (GQA) of colorless point clouds is crucial for evaluating the performance of emerging point cloud-based solutions (e.g., watermarking, compression, and 3-Dimensional (3D) reconstruction). Unfortunately, existing objective GQA approaches are traditional full-reference metrics, whereas state-of-the-art learning-based point cloud quality assessment (PCQA) methods target both color and geometry distortions, neither of which are qualified for the no-reference GQA task. In addition, the lack of large-scale GQA datasets with subjective scores, which are always imprecise, biased, and inconsistent, also hinders the development of learning-based GQA metrics. Driven by these limitations, this paper proposes a no-reference geometry-only quality assessment approach based on list-wise rank learning, termed LRL-GQA, which comprises of a geometry quality assessment network (GQANet) and a list-wise rank learning network (LRLNet). The proposed LRL-GQA formulates the no-reference GQA as a list-wise rank problem, with the objective of directly optimizing the entire quality ordering. Specifically, a large dataset containing a variety of geometry-only distortions is constructed first, named LRL dataset, in which each sample is label-free but coupled with quality ranking information. Then, the GQANet is designed to capture intrinsic multi-scale patch-wise geometric features in order to predict a quality index for each point cloud. After that, the LRLNet leverages the LRL dataset and a likelihood loss to train the GQANet and ranks the input list of degraded point clouds according to their distortion levels. In addition, the pre-trained GQANet can be fine-tuned further to obtain absolute quality scores. Experimental results demonstrate the superior performance of the proposed no-reference LRL-GQA method compared with existing full-reference GQA metrics.
Authors:Jinming Gao, Yijing Wang, Wentao Zhang, Rui Zhao, Yang Shi, Zhiqiang Zuo
Abstract:
This paper proposes a unified detection strategy against three kinds of attacks for multi-agent systems (MASs) which is applicable to both transient and steady stages. For attacks on the communication layer, a watermarking-based detection scheme with KullbackLeibler (KL) divergence is designed. Different from traditional communication schemes, each agent transmits a message set containing two state values with different types of watermarking. It is found that the detection performance is determined by the relevant parameters of the watermarking signal. Unlike the existing detection manoeuvres, such a scheme is capable of transient and steady stages. For attacks on the agent layer, a convergence rate related detection approach is put forward. It is shown that the resilience of the considered system is characterized by the coefficient and offset of the envelope. For hybrid attacks, based on the above detection mechanisms, a general framework resorting to trusted agents is presented, which requires weaker graph conditions and less information transmission. Finally, an example associated with the platooning of connected vehicles is given to support the theoretical results.
Authors:MinHyuk Jang, Youngdong Jang, JaeHyeok Lee, Feng Yang, Gyeongrok Oh, Jongheon Jeong, Sangpil Kim
Abstract:
Rapid advancements in video diffusion models have enabled the creation of realistic videos, raising concerns about unauthorized use and driving the demand for techniques to protect model ownership. Existing watermarking methods, while effective for image diffusion models, do not account for temporal consistency, leading to degraded video quality and reduced robustness against video distortions. To address this issue, we introduce LVMark, a novel watermarking method for video diffusion models. We propose a new watermark decoder tailored for generated videos by learning the consistency between adjacent frames. It ensures accurate message decoding, even under malicious attacks, by combining the low-frequency components of the 3D wavelet domain with the RGB features of the video. Additionally, our approach minimizes video quality degradation by embedding watermark messages in layers with minimal impact on visual appearance using an importance-based weight modulation strategy. We optimize both the watermark decoder and the latent decoder of diffusion model, effectively balancing the trade-off between visual quality and bit accuracy. Our experiments show that our method embeds invisible watermarks into video diffusion models, ensuring robust decoding accuracy with 512-bit capacity, even under video distortions.
Authors:Tianyi Wang, Mengxiao Huang, Harry Cheng, Xiao Zhang, Zhiqi Shen
Abstract:
Deepfake facial manipulation has garnered significant public attention due to its impacts on enhancing human experiences and posing privacy threats. Despite numerous passive algorithms that have been attempted to thwart malicious Deepfake attacks, they mostly struggle with the generalizability challenge when confronted with hyper-realistic synthetic facial images. To tackle the problem, this paper proposes a proactive Deepfake detection approach by introducing a novel training-free landmark perceptual watermark, LampMark for short. We first analyze the structure-sensitive characteristics of Deepfake manipulations and devise a secure and confidential transformation pipeline from the structural representations, i.e. facial landmarks, to binary landmark perceptual watermarks. Subsequently, we present an end-to-end watermarking framework that imperceptibly and robustly embeds and extracts watermarks concerning the images to be protected. Relying on promising watermark recovery accuracies, Deepfake detection is accomplished by assessing the consistency between the content-matched landmark perceptual watermark and the robustly recovered watermark of the suspect image. Experimental results demonstrate the superior performance of our approach in watermark recovery and Deepfake detection compared to state-of-the-art methods across in-dataset, cross-dataset, and cross-manipulation scenarios.
Authors:Haifeng Sun, Lan Zhang, Xiang-Yang Li
Abstract:
As intellectual property rights, the copyright protection of deep models is becoming increasingly important. Existing work has made many attempts at model watermarking and fingerprinting, but they have ignored homologous models trained with similar structures or training datasets. We highlight challenges in efficiently querying black-box piracy models to protect model copyrights without misidentifying homologous models. To address these challenges, we propose a novel method called DeepCore, which discovers that the classification confidence of the model is positively correlated with the distance of the predicted sample from the model decision boundary and piracy models behave more similarly at high-confidence classified sample points. Then DeepCore constructs core points far away from the decision boundary by optimizing the predicted confidence of a few sample points and leverages behavioral discrepancies between piracy and homologous models to identify piracy models. Finally, we design different model identification methods, including two similarity-based methods and a clustering-based method to identify piracy models using models' predictions of core points. Extensive experiments show the effectiveness of DeepCore in identifying various piracy models, achieving lower missed and false identification rates, and outperforming state-of-the-art methods.
Authors:Songrui Wang, Yubo Zhu, Wei Tong, Sheng Zhong
Abstract:
Text-to-image synthesis has become highly popular for generating realistic and stylized images, often requiring fine-tuning generative models with domain-specific datasets for specialized tasks. However, these valuable datasets face risks of unauthorized usage and unapproved sharing, compromising the rights of the owners. In this paper, we address the issue of dataset abuse during the fine-tuning of Stable Diffusion models for text-to-image synthesis. We present a dataset watermarking framework designed to detect unauthorized usage and trace data leaks. The framework employs two key strategies across multiple watermarking schemes and is effective for large-scale dataset authorization. Extensive experiments demonstrate the framework's effectiveness, minimal impact on the dataset (only 2% of the data required to be modified for high detection accuracy), and ability to trace data leaks. Our results also highlight the robustness and transferability of the framework, proving its practical applicability in detecting dataset abuse.
Authors:Jiasen Li, Yanwei Liu, Zhuoyi Shang, Xiaoyan Gu, Weiping Wang
Abstract:
Graph-structured data is foundational to numerous web applications, and watermarking is crucial for protecting their intellectual property and ensuring data provenance. Existing watermarking methods primarily operate on graph structures or entangled graph representations, which compromise the transparency and robustness of watermarks due to the information coupling in representing graphs and uncontrollable discretization in transforming continuous numerical representations into graph structures. This motivates us to propose DRGW, the first graph watermarking framework that addresses these issues through disentangled representation learning. Specifically, we design an adversarially trained encoder that learns an invariant structural representation against diverse perturbations and derives a statistically independent watermark carrier, ensuring both robustness and transparency of watermarks. Meanwhile, we devise a graph-aware invertible neural network to provide a lossless channel for watermark embedding and extraction, guaranteeing high detectability and transparency of watermarks. Additionally, we develop a structure-aware editor that resolves the issue of latent modifications into discrete graph edits, ensuring robustness against structural perturbations. Experiments on diverse benchmark datasets demonstrate the superior effectiveness of DRGW.
Authors:Enoal Gesny, Eva Giboulot, Teddy Furon, Vivien Chappelier
Abstract:
This paper introduces a novel watermarking method for diffusion models. It is based on guiding the diffusion process using the gradient computed from any off-the-shelf watermark decoder. The gradient computation encompasses different image augmentations, increasing robustness to attacks against which the decoder was not originally robust, without retraining or fine-tuning. Our method effectively convert any \textit{post-hoc} watermarking scheme into an in-generation embedding along the diffusion process. We show that this approach is complementary to watermarking techniques modifying the variational autoencoder at the end of the diffusion process. We validate the methods on different diffusion models and detectors. The watermarking guidance does not significantly alter the generated image for a given seed and prompt, preserving both the diversity and quality of generation.
Authors:Zhihao Zhu, Jiale Han, Yi Yang
Abstract:
Image-based AI models are increasingly deployed across a wide range of domains, including healthcare, security, and consumer applications. However, many image datasets carry sensitive or proprietary content, raising critical concerns about unauthorized data usage. Data owners therefore need reliable mechanisms to verify whether their proprietary data has been misused to train third-party models. Existing solutions, such as backdoor watermarking and membership inference, face inherent trade-offs between verification effectiveness and preservation of data integrity. In this work, we propose HoneyImage, a novel method for dataset ownership verification in image recognition models. HoneyImage selectively modifies a small number of hard samples to embed imperceptible yet verifiable traces, enabling reliable ownership verification while maintaining dataset integrity. Extensive experiments across four benchmark datasets and multiple model architectures show that HoneyImage consistently achieves strong verification accuracy with minimal impact on downstream performance while maintaining imperceptible. The proposed HoneyImage method could provide data owners with a practical mechanism to protect ownership over valuable image datasets, encouraging safe sharing and unlocking the full transformative potential of data-driven AI.
Authors:Oliver J. Sutton, Qinghua Zhou, George Leete, Alexander N. Gorban, Ivan Y. Tyukin
Abstract:
We introduce new methods of staining and locking computer vision models, to protect their owners' intellectual property. Staining, also known as watermarking, embeds secret behaviour into a model which can later be used to identify it, while locking aims to make a model unusable unless a secret trigger is inserted into input images. Unlike existing methods, our algorithms can be used to stain and lock pre-trained models without requiring fine-tuning or retraining, and come with provable, computable guarantees bounding their worst-case false positive rates. The stain and lock are implemented by directly modifying a small number of the model's weights and have minimal impact on the (unlocked) model's performance. Locked models are unlocked by inserting a small `trigger patch' into the corner of the input image. We present experimental results showing the efficacy of our methods and demonstrating their practical performance on a variety of computer vision models.
Authors:Brian Choi, Shu Wang, Isabelle Choi, Kun Sun
Abstract:
With the widespread deployment of deep neural network (DNN) models, dynamic watermarking techniques are being used to protect the intellectual property of model owners. However, recent studies have shown that existing watermarking schemes are vulnerable to watermark removal and ambiguity attacks. Besides, the vague criteria for determining watermark presence further increase the likelihood of such attacks. In this paper, we propose a secure DNN watermarking scheme named ChainMarks, which generates secure and robust watermarks by introducing a cryptographic chain into the trigger inputs and utilizes a two-phase Monte Carlo method for determining watermark presence. First, ChainMarks generates trigger inputs as a watermark dataset by repeatedly applying a hash function over a secret key, where the target labels associated with trigger inputs are generated from the digital signature of model owner. Then, the watermarked model is produced by training a DNN over both the original and watermark datasets. To verify watermarks, we compare the predicted labels of trigger inputs with the target labels and determine ownership with a more accurate decision threshold that considers the classification probability of specific models. Experimental results show that ChainMarks exhibits higher levels of robustness and security compared to state-of-the-art watermarking schemes. With a better marginal utility, ChainMarks provides a higher probability guarantee of watermark presence in DNN models with the same level of watermark accuracy.
Authors:Kasra Arabi, R. Teal Witter, Chinmay Hegde, Niv Cohen
Abstract:
Generative models have rapidly evolved to generate realistic outputs. However, their synthetic outputs increasingly challenge the clear distinction between natural and AI-generated content, necessitating robust watermarking techniques. Watermarks are typically expected to preserve the integrity of the target image, withstand removal attempts, and prevent unauthorized replication onto unrelated images. To address this need, recent methods embed persistent watermarks into images produced by diffusion models using the initial noise. Yet, to do so, they either distort the distribution of generated images or rely on searching through a long dictionary of used keys for detection.
In this paper, we propose a novel watermarking method that embeds semantic information about the generated image directly into the watermark, enabling a distortion-free watermark that can be verified without requiring a database of key patterns. Instead, the key pattern can be inferred from the semantic embedding of the image using locality-sensitive hashing. Furthermore, conditioning the watermark detection on the original image content improves robustness against forgery attacks. To demonstrate that, we consider two largely overlooked attack strategies: (i) an attacker extracting the initial noise and generating a novel image with the same pattern; (ii) an attacker inserting an unrelated (potentially harmful) object into a watermarked image, possibly while preserving the watermark. We empirically validate our method's increased robustness to these attacks. Taken together, our results suggest that content-aware watermarks can mitigate risks arising from image-generative models.
Authors:Shayleen Reynolds, Hengzhi He, Dung Daniel T. Ngo, Saheed Obitayo, Niccolò Dalmasso, Guang Cheng, Vamsi K. Potluru, Manuela Veloso
Abstract:
In recent years, LLM watermarking has emerged as an attractive safeguard against AI-generated content, with promising applications in many real-world domains. However, there are growing concerns that the current LLM watermarking schemes are vulnerable to expert adversaries wishing to reverse-engineer the watermarking mechanisms. Prior work in breaking or stealing LLM watermarks mainly focuses on the distribution-modifying algorithm of Kirchenbauer et al. (2023), which perturbs the logit vector before sampling. In this work, we focus on reverse-engineering the other prominent LLM watermarking scheme, distortion-free watermarking (Kuditipudi et al. 2024), which preserves the underlying token distribution by using a hidden watermarking key sequence. We demonstrate that, even under a more sophisticated watermarking scheme, it is possible to compromise the LLM and carry out a spoofing attack, i.e. generate a large number of (potentially harmful) texts that can be attributed to the original watermarked LLM. Specifically, we propose using adaptive prompting and a sorting-based algorithm to accurately recover the underlying secret key for watermarking the LLM. Our empirical findings on LLAMA-3.1-8B-Instruct, Mistral-7B-Instruct, Gemma-7b, and OPT-125M challenge the current theoretical claims on the robustness and usability of the distortion-free watermarking techniques.
Authors:Bochao Gu, Hengzhi He, Guang Cheng
Abstract:
In this paper, we propose a novel statistical framework for watermarking generative categorical data. Our method systematically embeds pre-agreed secret signals by splitting the data distribution into two components and modifying one distribution based on a deterministic relationship with the other, ensuring the watermark is embedded at the distribution-level. To verify the watermark, we introduce an insertion inverse algorithm and detect its presence by measuring the total variation distance between the inverse-decoded data and the original distribution. Unlike previous categorical watermarking methods, which primarily focus on embedding watermarks into a given dataset, our approach operates at the distribution-level, allowing for verification from a statistical distributional perspective. This makes it particularly well-suited for the modern paradigm of synthetic data generation, where the underlying data distribution, rather than specific data points, is of primary importance. The effectiveness of our method is demonstrated through both theoretical analysis and empirical validation.
Authors:Jiale Zhang, Haoxuan Li, Di Wu, Xiaobing Sun, Qinghua Lu, Guodong Long
Abstract:
Code Summarization Model (CSM) has been widely used in code production, such as online and web programming for PHP and Javascript. CSMs are essential tools in code production, enhancing software development efficiency and driving innovation in automated code analysis. However, CSMs face risks of exploitation by unauthorized users, particularly in an online environment where CSMs can be easily shared and disseminated. To address these risks, digital watermarks offer a promising solution by embedding imperceptible signatures within the models to assert copyright ownership and track unauthorized usage. Traditional watermarking for CSM copyright protection faces two main challenges: 1) dataset watermarking methods require separate design of triggers and watermark features based on the characteristics of different programming languages, which not only increases the computation complexity but also leads to a lack of generalization, 2) existing watermarks based on code style transformation are easily identifiable by automated detection, demonstrating poor concealment. To tackle these issues, we propose ModMark , a novel model-level digital watermark embedding method. Specifically, by fine-tuning the tokenizer, ModMark achieves cross-language generalization while reducing the complexity of watermark design. Moreover, we employ code noise injection techniques to effectively prevent trigger detection. Experimental results show that our method can achieve 100% watermark verification rate across various programming languages' CSMs, and the concealment and effectiveness of ModMark can also be guaranteed.
Authors:Tianrui Wang, Anyu Wang, Tianshuo Cong, Delong Ran, Jinyuan Liu, Xiaoyun Wang
Abstract:
Pseudorandom error-correcting codes (PRC) is a novel cryptographic primitive proposed at CRYPTO 2024. Due to the dual capability of pseudorandomness and error correction, PRC has been recognized as a promising foundational component for watermarking AI-generated content. However, the security of PRC has not been thoroughly analyzed, especially with concrete parameters or even in the face of cryptographic attacks. To fill this gap, we present the first cryptanalysis of PRC. We first propose three attacks to challenge the undetectability and robustness assumptions of PRC. Among them, two attacks aim to distinguish PRC-based codewords from plain vectors, and one attack aims to compromise the decoding process of PRC. Our attacks successfully undermine the claimed security guarantees across all parameter configurations. Notably, our attack can detect the presence of a watermark with overwhelming probability at a cost of $2^{22}$ operations. We also validate our approach by attacking real-world large generative models such as DeepSeek and Stable Diffusion. To mitigate our attacks, we further propose three defenses to enhance the security of PRC, including parameter suggestions, implementation suggestions, and constructing a revised key generation algorithm. Our proposed revised key generation function effectively prevents the occurrence of weak keys. However, we highlight that the current PRC-based watermarking scheme still cannot achieve a 128-bit security under our parameter suggestions due to the inherent configurations of large generative models, such as the maximum output length of large language models.
Authors:Chaoyue Huang, Gejian Zhao, Hanzhou Wu, Zhihua Xia, Asad Malik
Abstract:
As a valuable digital product, deep neural networks (DNNs) face increasingly severe threats to the intellectual property, making it necessary to develop effective technical measures to protect them. Trigger-based watermarking methods achieve copyright protection by embedding triggers into the host DNNs. However, the attacker may remove the watermark by pruning or fine-tuning. We model this interaction as a game under conditions of information asymmetry, namely, the defender embeds a secret watermark with private knowledge, while the attacker can only access the watermarked model and seek removal. We define strategies, costs, and utilities for both players, derive the attacker's optimal pruning budget, and establish an exponential lower bound on the accuracy of watermark detection after attack. Experimental results demonstrate the feasibility of the watermarked model, and indicate that sparse watermarking can resist removal with negligible accuracy loss. This study highlights the effectiveness of game-theoretic analysis in guiding the design of robust watermarking schemes for model copyright protection.
Authors:Jie Cao, Qi Li, Zelin Zhang, Jianbing Ni
Abstract:
The rapid advancement of generative artificial intelligence (Gen-AI) has facilitated the effortless creation of high-quality images, while simultaneously raising critical concerns regarding intellectual property protection, authenticity, and accountability. Watermarking has emerged as a promising solution to these challenges by distinguishing AI-generated images from natural content, ensuring provenance, and fostering trustworthy digital ecosystems. This paper presents a comprehensive survey of the current state of AI-generated image watermarking, addressing five key dimensions: (1) formalization of image watermarking systems; (2) an overview and comparison of diverse watermarking techniques; (3) evaluation methodologies with respect to visual quality, capacity, and detectability; (4) vulnerabilities to malicious attacks; and (5) prevailing challenges and future directions. The survey aims to equip researchers with a holistic understanding of AI-generated image watermarking technologies, thereby promoting their continued development.
Authors:Xiaodong Wu, Tianyi Tang, Xiangman Li, Jianbing Ni, Yong Yu
Abstract:
Watermarking has emerged as a promising solution to counter harmful or deceptive AI-generated content by embedding hidden identifiers that trace content origins. However, the robustness of current watermarking techniques is still largely unexplored, raising critical questions about their effectiveness against adversarial attacks. To address this gap, we examine the robustness of model-specific watermarking, where watermark embedding is integrated with text-to-image generation in models like latent diffusion models. We introduce three attack strategies: edge prediction-based, box blurring, and fine-tuning-based attacks in a no-box setting, where an attacker does not require access to the ground-truth watermark decoder. Our findings reveal that while model-specific watermarking is resilient against basic evasion attempts, such as edge prediction, it is notably vulnerable to blurring and fine-tuning-based attacks. Our best-performing attack achieves a reduction in watermark detection accuracy to approximately 47.92\%. Additionally, we perform an ablation study on factors like message length, kernel size and decoder depth, identifying critical parameters influencing the fine-tuning attack's success. Finally, we assess several advanced watermarking defenses, finding that even the most robust methods, such as multi-label smoothing, result in watermark extraction accuracy that falls below an acceptable level when subjected to our no-box attacks.
Authors:Zihao Fu, Chris Russell
Abstract:
Digital watermarking is a promising solution for mitigating some of the risks arising from the misuse of automatically generated text. These approaches either embed non-specific watermarks to allow for the detection of any text generated by a particular sampler, or embed specific keys that allow the identification of the LLM user. However, simultaneously using the same embedding for both detection and user identification leads to a false detection problem, whereby, as user capacity grows, unwatermarked text is increasingly likely to be falsely detected as watermarked. Through theoretical analysis, we identify the underlying causes of this phenomenon. Building on these insights, we propose Dual Watermarking which jointly encodes detection and identification watermarks into generated text, significantly reducing false positives while maintaining high detection accuracy. Our experimental results validate our theoretical findings and demonstrate the effectiveness of our approach.
Authors:Peiru Yang, Xintian Li, Wanchun Ni, Jinhua Yin, Huili Wang, Guoshun Nan, Shangguang Wang, Yongfeng Huang, Tao Qi
Abstract:
Recent advancements in watermarking techniques have enabled the embedding of secret messages into AI-generated text (AIGT), serving as an important mechanism for AIGT detection. Existing methods typically interfere with the generation processes of large language models (LLMs) to embed signals within the generated text. However, these methods often rely on heuristic rules, which can result in suboptimal token selection and a subsequent decline in the quality of the generated content. In this paper, we introduce a plug-and-play contextual generation states-aware watermarking framework (CAW) that dynamically adjusts the embedding process. It can be seamlessly integrated with various existing watermarking methods to enhance generation quality. First, CAW incorporates a watermarking capacity evaluator, which can assess the impact of embedding messages at different token positions by analyzing the contextual generation states. Furthermore, we introduce a multi-branch pre-generation mechanism to avoid the latency caused by the proposed watermarking strategy. Building on this, CAW can dynamically adjust the watermarking process based on the evaluated watermark capacity of each token, thereby minimizing potential degradation in content quality. Extensive experiments conducted on datasets across multiple domains have verified the effectiveness of our method, demonstrating superior performance compared to various baselines in terms of both detection rate and generation quality.
Authors:Daniel Thilo Schroeder, Meeyoung Cha, Andrea Baronchelli, Nick Bostrom, Nicholas A. Christakis, David Garcia, Amit Goldenberg, Yara Kyrychenko, Kevin Leyton-Brown, Nina Lutz, Gary Marcus, Filippo Menczer, Gordon Pennycook, David G. Rand, Frank Schweitzer, Christopher Summerfield, Audrey Tang, Jay Van Bavel, Sander van der Linden, Dawn Song, Jonas R. Kunst
Abstract:
Advances in AI portend a new era of sophisticated disinformation operations. While individual AI systems already create convincing -- and at times misleading -- information, an imminent development is the emergence of malicious AI swarms. These systems can coordinate covertly, infiltrate communities, evade traditional detectors, and run continuous A/B tests, with round-the-clock persistence. The result can include fabricated grassroots consensus, fragmented shared reality, mass harassment, voter micro-suppression or mobilization, contamination of AI training data, and erosion of institutional trust. With democratic processes worldwide increasingly vulnerable, we urge a three-pronged response: (1) platform-side defenses -- always-on swarm-detection dashboards, pre-election high-fidelity swarm-simulation stress-tests, transparency audits, and optional client-side "AI shields" for users; (2) model-side safeguards -- standardized persuasion-risk tests, provenance-authenticating passkeys, and watermarking; and (3) system-level oversight -- a UN-backed AI Influence Observatory.
Authors:Junxian Duan, Jiyang Guan, Wenkui Yang, Ran He
Abstract:
As generative artificial intelligence technologies like Stable Diffusion advance, visual content becomes more vulnerable to misuse, raising concerns about copyright infringement. Visual watermarks serve as effective protection mechanisms, asserting ownership and deterring unauthorized use. Traditional deepfake detection methods often rely on passive techniques that struggle with sophisticated manipulations. In contrast, diffusion models enhance detection accuracy by allowing for the effective learning of features, enabling the embedding of imperceptible and robust watermarks. We analyze the strengths and challenges of watermark techniques related to diffusion models, focusing on their robustness and application in watermark generation. By exploring the integration of advanced diffusion models and watermarking security, we aim to advance the discourse on preserving watermark robustness against evolving forgery threats. It emphasizes the critical importance of developing innovative solutions to protect digital content and ensure the preservation of ownership rights in the era of generative AI.
Authors:Alexander Nemecek, Emre Yilmaz, Erman Ayday
Abstract:
Data from domains such as social networks, healthcare, finance, and cybersecurity can be represented as graph-structured information. Given the sensitive nature of this data and their frequent distribution among collaborators, ensuring secure and attributable sharing is essential. Graph watermarking enables attribution by embedding user-specific signatures into graph-structured data. While prior work has addressed random perturbation attacks, the threat posed by adversaries leveraging structural properties through community detection remains unexplored. In this work, we introduce a cluster-aware threat model in which adversaries apply community-guided modifications to evade detection. We propose two novel attack strategies and evaluate them on real-world social network graphs. Our results show that cluster-aware attacks can reduce attribution accuracy by up to 80% more than random baselines under equivalent perturbation budgets on sparse graphs. To mitigate this threat, we propose a lightweight embedding enhancement that distributes watermark nodes across graph communities. This approach improves attribution accuracy by up to 60% under attack on dense graphs, without increasing runtime or structural distortion. Our findings underscore the importance of cluster-topological awareness in both watermarking design and adversarial modeling.
Authors:Yash Kulthe, Andrew Gilbert, John Collomosse
Abstract:
We present MultiNeRF, a 3D watermarking method that embeds multiple uniquely keyed watermarks within images rendered by a single Neural Radiance Field (NeRF) model, whilst maintaining high visual quality. Our approach extends the TensoRF NeRF model by incorporating a dedicated watermark grid alongside the existing geometry and appearance grids. This extension ensures higher watermark capacity without entangling watermark signals with scene content. We propose a FiLM-based conditional modulation mechanism that dynamically activates watermarks based on input identifiers, allowing multiple independent watermarks to be embedded and extracted without requiring model retraining. MultiNeRF is validated on the NeRF-Synthetic and LLFF datasets, with statistically significant improvements in robust capacity without compromising rendering quality. By generalizing single-watermark NeRF methods into a flexible multi-watermarking framework, MultiNeRF provides a scalable solution for 3D content. attribution.
Authors:Naresh Kumar Devulapally, Mingzhen Huang, Vishal Asnani, Shruti Agarwal, Siwei Lyu, Vishnu Suresh Lokhande
Abstract:
Invisible watermarking of AI-generated images can help with copyright protection, enabling detection and identification of AI-generated media. In this work, we present a novel approach to watermark images of T2I Latent Diffusion Models (LDMs). By only fine-tuning text token embeddings $W_*$, we enable watermarking in selected objects or parts of the image, offering greater flexibility compared to traditional full-image watermarking. Our method leverages the text encoder's compatibility across various LDMs, allowing plug-and-play integration for different LDMs. Moreover, introducing the watermark early in the encoding stage improves robustness to adversarial perturbations in later stages of the pipeline. Our approach achieves $99\%$ bit accuracy ($48$ bits) with a $10^5 \times$ reduction in model parameters, enabling efficient watermarking.
Authors:Alexander J. Gallo, Sribalaji C. Anand, André M. H. Teixeira, Riccardo M. G. Ferrari
Abstract:
Active techniques have been introduced to give better detectability performance for cyber-attack diagnosis in cyber-physical systems (CPS). In this paper, switching multiplicative watermarking is considered, whereby we propose an optimal design strategy to define switching filter parameters. Optimality is evaluated exploiting the so-called output-to-output gain of the closed loop system, including some supposed attack dynamics. A worst-case scenario of a matched covert attack is assumed, presuming that an attacker with full knowledge of the closed-loop system injects a stealthy attack of bounded energy. Our algorithm, given watermark filter parameters at some time instant, provides optimal next-step parameters. Analysis of the algorithm is given, demonstrating its features, and demonstrating that through initialization of certain parameters outside of the algorithm, the parameters of the multiplicative watermarking can be randomized. Simulation shows how, by adopting our method for parameter design, the attacker's impact on performance diminishes.
Authors:Yunming Zhang, Dengpan Ye, Sipeng Shen, Jun Wang
Abstract:
Arbitrary Style Transfer (AST) achieves the rendering of real natural images into the painting styles of arbitrary art style images, promoting art communication. However, misuse of unauthorized art style images for AST may infringe on artists' copyrights. One countermeasure is robust watermarking, which tracks image propagation by embedding copyright watermarks into carriers. Unfortunately, AST-generated images lose the structural and semantic information of the original style image, hindering end-to-end robust tracking by watermarks. To fill this gap, we propose StyleMark, the first robust watermarking method for black-box AST, which can be seamlessly applied to art style images achieving precise attribution of artistic styles after AST. Specifically, we propose a new style watermark network that adjusts the mean activations of style features through multi-scale watermark embedding, thereby planting watermark traces into the shared style feature space of style images. Furthermore, we design a distribution squeeze loss, which constrain content statistical feature distortion, forcing the reconstruction network to focus on integrating style features with watermarks, thus optimizing the intrinsic watermark distribution. Finally, based on solid end-to-end training, StyleMark mitigates the optimization conflict between robustness and watermark invisibility through decoder fine-tuning under random noise. Experimental results demonstrate that StyleMark exhibits significant robustness against black-box AST and common pixel-level distortions, while also securely defending against malicious adaptive attacks.
Authors:Zhiying Li, Zhi Liu, Dongjie Liu, Shengda Zhuo, Guanggang Geng, Jian Weng, Shanxiang Lyu, Xiaobo Jin
Abstract:
High-quality datasets can greatly promote the development of technology. However, dataset construction is expensive and time-consuming, and public datasets are easily exploited by opportunists who are greedy for quick gains, which seriously infringes the rights and interests of dataset owners. At present, backdoor watermarks redefine dataset protection as proof of ownership and become a popular method to protect the copyright of public datasets, which effectively safeguards the rights of owners and promotes the development of open source communities. In this paper, we question the reliability of backdoor watermarks and re-examine them from the perspective of attackers. On the one hand, we refine the process of backdoor watermarks by introducing a third-party judicial agency to enhance its practical applicability in real-world scenarios. On the other hand, by exploring the problem of forgery attacks, we reveal the inherent flaws of the dataset ownership verification process. Specifically, we design a Forgery Watermark Generator (FW-Gen) to generate forged watermarks and define a distillation loss between the original watermark and the forged watermark to transfer the information in the original watermark to the forged watermark. Extensive experiments show that forged watermarks have the same statistical significance as original watermarks in copyright verification tests under various conditions and scenarios, indicating that dataset ownership verification results are insufficient to determine infringement. These findings highlight the unreliability of backdoor watermarking methods for dataset ownership verification and suggest new directions for enhancing methods for protecting public datasets.
Authors:Yangxinyu Xie, Xiang Li, Tanwi Mallick, Weijie J. Su, Ruixun Zhang
Abstract:
Watermarking language models is essential for distinguishing between human and machine-generated text and thus maintaining the integrity and trustworthiness of digital communication. We present a novel green/red list watermarking approach that partitions the token set into ``green'' and ``red'' lists, subtly increasing the generation probability for green tokens. To correct token distribution bias, our method employs maximal coupling, using a uniform coin flip to decide whether to apply bias correction, with the result embedded as a pseudorandom watermark signal. Theoretical analysis confirms this approach's unbiased nature and robust detection capabilities. Experimental results show that it outperforms prior techniques by preserving text quality while maintaining high detectability, and it demonstrates resilience to targeted modifications aimed at improving text quality. This research provides a promising watermarking solution for language models, balancing effective detection with minimal impact on text quality.
Authors:Xiujian Liang, Gaozhi Liu, Yichao Si, Xiaoxiao Hu, Zhenxing Qian
Abstract:
Digital watermarking has shown its effectiveness in protecting multimedia content. However, existing watermarking is predominantly tailored for specific media types, rendering them less effective for the protection of content displayed on computer screens, which is often multi-modal and dynamic. Visual Screen Content (VSC), is particularly susceptible to theft and leakage through screenshots, a vulnerability that current watermarking methods fail to adequately address.To address these challenges, we propose ScreenMark, a robust and practical watermarking method designed specifically for arbitrary VSC protection. ScreenMark utilizes a three-stage progressive watermarking framework. Initially, inspired by diffusion principles, we initialize the mutual transformation between regular watermark information and irregular watermark patterns. Subsequently, these patterns are integrated with screen content using a pre-multiplication alpha blending technique, supported by a pre-trained screen decoder for accurate watermark retrieval. The progressively complex distorter enhances the robustness of the watermark in real-world screenshot scenarios. Finally, the model undergoes fine-tuning guided by a joint-level distorter to ensure optimal performance. To validate the effectiveness of ScreenMark, we compiled a dataset comprising 100,000 screenshots from various devices and resolutions. Extensive experiments on different datasets confirm the superior robustness, imperceptibility, and practical applicability of the method.
Authors:Yufeng Wu, Xin Liao, Baowei Wang, Han Fang, Xiaoshuai Wu, Guiling Wang
Abstract:
Unauthorized screen-shooting poses a critical data leakage risk. Resisting screen-shooting attacks typically requires high-strength watermark embedding, inevitably degrading the cover image. To resolve the robustness-fidelity conflict, non-intrusive watermarking has emerged as a solution by constructing logical verification keys without altering the original content. However, existing non-intrusive schemes lack the capacity to withstand screen-shooting noise. While deep learning offers a potential remedy, we observe that directly applying it leads to a previously underexplored failure mode, the Structural Shortcut: networks tend to learn trivial identity mappings and neglect the image-watermark binding. Furthermore, even when logical binding is enforced, standard training strategies cannot fully bridge the noise gap, yielding suboptimal robustness against physical distortions. In this paper, we propose NiMark, an end-to-end framework addressing these challenges. First, to eliminate the structural shortcut, we introduce the Sigmoid-Gated XOR (SG-XOR) estimator to enable gradient propagation for the logical operation, effectively enforcing rigid image-watermark binding. Second, to overcome the robustness bottleneck, we devise a two-stage training strategy integrating a restorer to bridge the domain gap caused by screen-shooting noise. Experiments demonstrate that NiMark consistently outperforms representative state-of-the-art methods against both digital attacks and screen-shooting noise, while maintaining zero visual distortion.
Authors:Weijie Wang, Peizhuo Lv, Yan Wang, Rujie Dai, Guokun Xu, Qiujian Lv, Hangcheng Liu, Weiqing Huang, Wei Dong, Jiaheng Zhang
Abstract:
Graph Retrieval-Augmented Generation (GraphRAG) has emerged as a key technique for enhancing Large Language Models (LLMs) with proprietary Knowledge Graphs (KGs) in knowledge-intensive applications. As these KGs often represent an organization's highly valuable intellectual property (IP), they face a significant risk of theft for private use. In this scenario, attackers operate in isolated environments. This private-use threat renders passive defenses like watermarking ineffective, as they require output access for detection. Simultaneously, the low-latency demands of GraphRAG make strong encryption which incurs prohibitive overhead impractical. To address these challenges, we propose AURA, a novel framework based on Data Adulteration designed to make any stolen KG unusable to an adversary. Our framework pre-emptively injects plausible but false adulterants into the KG. For an attacker, these adulterants deteriorate the retrieved context and lead to factually incorrect responses. Conversely, for authorized users, a secret key enables the efficient filtering of all adulterants via encrypted metadata tags before they are passed to the LLM, ensuring query results remain completely accurate. Our evaluation demonstrates the effectiveness of this approach: AURA degrades the performance of unauthorized systems to an accuracy of just 5.3%, while maintaining 100% fidelity for authorized users with negligible overhead. Furthermore, AURA proves robust against various sanitization attempts, retaining 80.2% of its adulterants.
Authors:Utae Jeong, Sumin In, Hyunju Ryu, Jaewan Choi, Feng Yang, Jongheon Jeong, Seungryong Kim, Sangpil Kim
Abstract:
Image watermarking supports authenticity and provenance, yet many schemes are still easy to bypass with various distortions and powerful generative edits. Deep learning-based watermarking has improved robustness to diffusion-based image editing, but a gap remains when a watermarked image is converted to video by image-to-video (I2V), in which per-frame watermark detection weakens. I2V has quickly advanced from short, jittery clips to multi-second, temporally coherent scenes, and it now serves not only content creation but also world-modeling and simulation workflows, making cross-modal watermark recovery crucial. We present WaTeRFlow, a framework tailored for robustness under I2V. It consists of (i) FUSE (Flow-guided Unified Synthesis Engine), which exposes the encoder-decoder to realistic distortions via instruction-driven edits and a fast video diffusion proxy during training, (ii) optical-flow warping with a Temporal Consistency Loss (TCL) that stabilizes per-frame predictions, and (iii) a semantic preservation loss that maintains the conditioning signal. Experiments across representative I2V models show accurate watermark recovery from frames, with higher first-frame and per-frame bit accuracy and resilience when various distortions are applied before or after video generation.
Authors:Pranav Shetty, Mirazul Haque, Petr Babkin, Zhiqiang Ma, Xiaomo Liu, Manuela Veloso
Abstract:
Training data detection is critical for enforcing copyright and data licensing, as Large Language Models (LLM) are trained on massive text corpora scraped from the internet. We present SPECTRA, a watermarking approach that makes training data reliably detectable even when it comprises less than 0.001% of the training corpus. SPECTRA works by paraphrasing text using an LLM and assigning a score based on how likely each paraphrase is, according to a separate scoring model. A paraphrase is chosen so that its score closely matches that of the original text, to avoid introducing any distribution shifts. To test whether a suspect model has been trained on the watermarked data, we compare its token probabilities against those of the scoring model. We demonstrate that SPECTRA achieves a consistent p-value gap of over nine orders of magnitude when detecting data used for training versus data not used for training, which is greater than all baselines tested. SPECTRA equips data owners with a scalable, deploy-before-release watermark that survives even large-scale LLM training.
Authors:Pei Yang, Yepeng Liu, Kelly Peng, Yuan Gao, Yiren Song
Abstract:
In the digital economy era, digital watermarking serves as a critical basis for ownership proof of massive replicable content, including AI-generated and other virtual assets. Designing robust watermarks capable of withstanding various attacks and processing operations is even more paramount. We introduce TokenPure, a novel Diffusion Transformer-based framework designed for effective and consistent watermark removal. TokenPure solves the trade-off between thorough watermark destruction and content consistency by leveraging token-based conditional reconstruction. It reframes the task as conditional generation, entirely bypassing the initial watermark-carrying noise. We achieve this by decomposing the watermarked image into two complementary token sets: visual tokens for texture and structural tokens for geometry. These tokens jointly condition the diffusion process, enabling the framework to synthesize watermark-free images with fine-grained consistency and structural integrity. Comprehensive experiments show that TokenPure achieves state-of-the-art watermark removal and reconstruction fidelity, substantially outperforming existing baselines in both perceptual quality and consistency.
Authors:Huanming Shen, Baizhou Huang, Xiaojun Wan
Abstract:
Watermarking is a promising defense against the misuse of large language models (LLMs), yet it remains vulnerable to scrubbing and spoofing attacks. This vulnerability stems from an inherent trade-off governed by watermark window size: smaller windows resist scrubbing better but are easier to reverse-engineer, enabling low-cost statistics-based spoofing attacks. This work breaks this trade-off by introducing a novel mechanism, equivalent texture keys, where multiple tokens within a watermark window can independently support the detection. Based on the redundancy, we propose a novel watermark scheme with Sub-vocabulary decomposed Equivalent tExture Key (SEEK). It achieves a Pareto improvement, increasing the resilience against scrubbing attacks without compromising robustness to spoofing. Experiments demonstrate SEEK's superiority over prior method, yielding spoofing robustness gains of +88.2%/+92.3%/+82.0% and scrubbing robustness gains of +10.2%/+6.4%/+24.6% across diverse dataset settings.
Authors:Zhi Wen Soi, Chaoyi Zhu, Fouad Abiad, Aditya Shankar, Jeroen M. Galjaard, Huijuan Wang, Lydia Y. Chen
Abstract:
Synthetic time series generated by diffusion models enable sharing privacy-sensitive datasets, such as patients' functional MRI records. Key criteria for synthetic data include high data utility and traceability to verify the data source. Recent watermarking methods embed in homogeneous latent spaces, but state-of-the-art time series generators operate in real space, making latent-based watermarking incompatible. This creates the challenge of watermarking directly in real space while handling feature heterogeneity and temporal dependencies. We propose TimeWak, the first watermarking algorithm for multivariate time series diffusion models. To handle temporal dependence and spatial heterogeneity, TimeWak embeds a temporal chained-hashing watermark directly within the real temporal-feature space. The other unique feature is the $ε$-exact inversion, which addresses the non-uniform reconstruction error distribution across features from inverting the diffusion process to detect watermarks. We derive the error bound of inverting multivariate time series and further maintain high watermark detectability. We extensively evaluate TimeWak on its impact on synthetic data quality, watermark detectability, and robustness under various post-editing attacks, against 5 datasets and baselines of different temporal lengths. Our results show that TimeWak achieves improvements of 61.96% in context-FID score, and 8.44% in correlational scores against the state-of-the-art baseline, while remaining consistently detectable.
Authors:Siqi Hui, Yiren Song, Sanping Zhou, Ye Deng, Wenli Huang, Jinjun Wang
Abstract:
Autoregressive (AR) image generation models have gained increasing attention for their breakthroughs in synthesis quality, highlighting the need for robust watermarking to prevent misuse. However, existing in-generation watermarking techniques are primarily designed for diffusion models, where watermarks are embedded within diffusion latent states. This design poses significant challenges for direct adaptation to AR models, which generate images sequentially through token prediction. Moreover, diffusion-based regeneration attacks can effectively erase such watermarks by perturbing diffusion latent states. To address these challenges, we propose Lexical Bias Watermarking (LBW), a novel framework designed for AR models that resists regeneration attacks. LBW embeds watermarks directly into token maps by biasing token selection toward a predefined green list during generation. This approach ensures seamless integration with existing AR models and extends naturally to post-hoc watermarking. To increase the security against white-box attacks, instead of using a single green list, the green list for each image is randomly sampled from a pool of green lists. Watermark detection is performed via quantization and statistical analysis of the token distribution. Extensive experiments demonstrate that LBW achieves superior watermark robustness, particularly in resisting regeneration attacks.
Authors:Yufeng Wu, Xin Liao, Baowei Wang, Han Fang, Xiaoshuai Wu, Guiling Wang
Abstract:
Unauthorized screen capturing and dissemination pose severe security threats such as data leakage and information theft. Several studies propose robust watermarking methods to track the copyright of Screen-Camera (SC) images, facilitating post-hoc certification against infringement. These techniques typically employ heuristic mathematical modeling or supervised neural network fitting as the noise layer, to enhance watermarking robustness against SC. However, both strategies cannot fundamentally achieve an effective approximation of SC noise. Mathematical simulation suffers from biased approximations due to the incomplete decomposition of the noise and the absence of interdependence among the noise components. Supervised networks require paired data to train the noise-fitting model, and it is difficult for the model to learn all the features of the noise. To address the above issues, we propose Simulation-to-Real (S2R). Specifically, an unsupervised noise layer employs unpaired data to learn the discrepancy between the modeled simulated noise distribution and the real-world SC noise distribution, rather than directly learning the mapping from sharp images to real-world images. Learning this transformation from simulation to reality is inherently simpler, as it primarily involves bridging the gap in noise distributions, instead of the complex task of reconstructing fine-grained image details. Extensive experimental results validate the efficacy of the proposed method, demonstrating superior watermark robustness and generalization compared to state-of-the-art methods.
Authors:Tom Sander, Pierre Fernandez, Saeed Mahloujifar, Alain Durmus, Chuan Guo
Abstract:
Benchmark contamination poses a significant challenge to the reliability of Large Language Models (LLMs) evaluations, as it is difficult to assert whether a model has been trained on a test set. We introduce a solution to this problem by watermarking benchmarks before their release. The embedding involves reformulating the original questions with a watermarked LLM, in a way that does not alter the benchmark utility. During evaluation, we can detect ``radioactivity'', \ie traces that the text watermarks leave in the model during training, using a theoretically grounded statistical test. We test our method by pre-training 1B models from scratch on 10B tokens with controlled benchmark contamination, and validate its effectiveness in detecting contamination on ARC-Easy, ARC-Challenge, and MMLU. Results show similar benchmark utility post-watermarking and successful contamination detection when models are contaminated enough to enhance performance, \eg $p$-val $=10^{-3}$ for +5$\%$ on ARC-Easy.
Authors:Baizhou Huang, Xiao Pu, Xiaojun Wan
Abstract:
Watermarking has emerged as a prominent technique for LLM-generated content detection by embedding imperceptible patterns. Despite supreme performance, its robustness against adversarial attacks remains underexplored. Previous work typically considers a grey-box attack setting, where the specific type of watermark is already known. Some even necessitates knowledge about hyperparameters of the watermarking method. Such prerequisites are unattainable in real-world scenarios. Targeting at a more realistic black-box threat model with fewer assumptions, we here propose $B^4$, a black-box scrubbing attack on watermarks. Specifically, we formulate the watermark scrubbing attack as a constrained optimization problem by capturing its objectives with two distributions, a Watermark Distribution and a Fidelity Distribution. This optimization problem can be approximately solved using two proxy distributions. Experimental results across 12 different settings demonstrate the superior performance of $B^4$ compared with other baselines.
Authors:Stefano Calzavara, Lorenzo Cazzaro, Donald Gera, Salvatore Orlando
Abstract:
Protecting the intellectual property of machine learning models is a hot topic and many watermarking schemes for deep neural networks have been proposed in the literature. Unfortunately, prior work largely neglected the investigation of watermarking techniques for other types of models, including decision tree ensembles, which are a state-of-the-art model for classification tasks on non-perceptual data. In this paper, we present the first watermarking scheme designed for decision tree ensembles, focusing in particular on random forest models. We discuss watermark creation and verification, presenting a thorough security analysis with respect to possible attacks. We finally perform an experimental evaluation of the proposed scheme, showing excellent results in terms of accuracy and security against the most relevant threats.
Authors:Ashish Raj Shekhar, Shiven Agarwal, Priyanuj Bordoloi, Yash Shah, Tejas Anvekar, Vivek Gupta
Abstract:
Large Language Models (LLMs) can now solve entire exams directly from uploaded PDF assessments, raising urgent concerns about academic integrity and the reliability of grades and credentials. Existing watermarking techniques either operate at the token level or assume control over the model's decoding process, making them ineffective when students query proprietary black-box systems with instructor-provided documents. We present Integrity Shield, a document-layer watermarking system that embeds schema-aware, item-level watermarks into assessment PDFs while keeping their human-visible appearance unchanged. These watermarks consistently prevent MLLMs from answering shielded exam PDFs and encode stable, item-level signatures that can be reliably recovered from model or student responses. Across 30 exams spanning STEM, humanities, and medical reasoning, Integrity Shield achieves exceptionally high prevention (91-94% exam-level blocking) and strong detection reliability (89-93% signature retrieval) across four commercial MLLMs. Our demo showcases an interactive interface where instructors upload an exam, preview watermark behavior, and inspect pre/post AI performance & authorship evidence.
Authors:Miranda Christ, Noah Golowich, Sam Gunn, Ankur Moitra, Daniel Wichs
Abstract:
Watermarks are an essential tool for identifying AI-generated content. Recently, Christ and Gunn (CRYPTO '24) introduced pseudorandom error-correcting codes (PRCs), which are equivalent to watermarks with strong robustness and quality guarantees. A PRC is a pseudorandom encryption scheme whose decryption algorithm tolerates a high rate of errors. Pseudorandomness ensures quality preservation of the watermark, and error tolerance of decryption translates to the watermark's ability to withstand modification of the content. In the short time since the introduction of PRCs, several works (NeurIPS '24, RANDOM '25, STOC '25) have proposed new constructions. Curiously, all of these constructions are vulnerable to quasipolynomial-time distinguishing attacks. Furthermore, all lack robustness to edits over a constant-sized alphabet, which is necessary for a meaningfully robust LLM watermark. Lastly, they lack robustness to adversaries who know the watermarking detection key. Until now, it was not clear whether any of these properties was achievable individually, let alone together. We construct pseudorandom codes that achieve all of the above: plausible subexponential pseudorandomness security, robustness to worst-case edits over a binary alphabet, and robustness against even computationally unbounded adversaries that have the detection key. Pseudorandomness rests on a new assumption that we formalize, the permuted codes conjecture, which states that a distribution of permuted noisy codewords is pseudorandom. We show that this conjecture is implied by the permuted puzzles conjecture used previously to construct doubly efficient private information retrieval. To give further evidence, we show that the conjecture holds against a broad class of simple distinguishers, including read-once branching programs.
Authors:Kexin Li, Guozhen Ding, Ilya Grishchenko, David Lie
Abstract:
Modern generative diffusion models rely on vast training datasets, often including images with uncertain ownership or usage rights. Radioactive watermarks -- marks that transfer to a model's outputs -- can help detect when such unauthorized data has been used for training. Moreover, aside from being radioactive, an effective watermark for protecting images from unauthorized training also needs to meet other existing requirements, such as imperceptibility, robustness, and multi-bit capacity. To overcome these challenges, we propose HMARK, a novel multi-bit watermarking scheme, which encodes ownership information as secret bits in the semantic-latent space (h-space) for image diffusion models. By leveraging the interpretability and semantic significance of h-space, ensuring that watermark signals correspond to meaningful semantic attributes, the watermarks embedded by HMARK exhibit radioactivity, robustness to distortions, and minimal impact on perceptual quality. Experimental results demonstrate that HMARK achieves 98.57% watermark detection accuracy, 95.07% bit-level recovery accuracy, 100% recall rate, and 1.0 AUC on images produced by the downstream adversarial model finetuned with LoRA on watermarked data across various types of distortions.
Authors:Kexin Li, Xiao Hu, Ilya Grishchenko, David Lie
Abstract:
The availability of high-quality, AI-generated audio raises security challenges such as misinformation campaigns and voice-cloning fraud. A key defense against the misuse of AI-generated audio is by watermarking it, so that it can be easily distinguished from genuine audio. As those seeking to misuse AI-generated audio may thus seek to remove audio watermarks, studying effective watermark removal techniques is critical to being able to objectively evaluate the robustness of audio watermarks against removal. Previous watermark removal schemes either assume impractical knowledge of the watermarks they are designed to remove or are computationally expensive, potentially generating a false sense of confidence in current watermark schemes. We introduce HarmonicAttack, an efficient audio watermark removal method that only requires the basic ability to generate the watermarks from the targeted scheme and nothing else. With this, we are able to train a general watermark removal model that is able to remove the watermarks generated by the targeted scheme from any watermarked audio sample. HarmonicAttack employs a dual-path convolutional autoencoder that operates in both temporal and frequency domains, along with GAN-style training, to separate the watermark from the original audio. When evaluated against state-of-the-art watermark schemes AudioSeal, WavMark, and Silentcipher, HarmonicAttack demonstrates greater watermark removal ability than previous watermark removal methods with near real-time performance. Moreover, while HarmonicAttack requires training, we find that it is able to transfer to out-of-distribution samples with minimal degradation in performance.
Authors:Aditya Kumar Sahu, Chandan Kumar, Saksham Kumar, Serdar Solak
Abstract:
Steganography and steganalysis are strongly related subjects of information security. Over the past decade, many powerful and efficient artificial intelligence (AI) - driven techniques have been designed and presented during research into steganography as well as steganalysis. This study presents a scientometric analysis of AI-driven steganography-based data hiding techniques using a thematic modelling approach. A total of 654 articles within the time span of 2017 to 2023 have been considered. Experimental evaluation of the study reveals that 69% of published articles are from Asian countries. The China is on top (TP:312), followed by India (TP-114). The study mainly identifies seven thematic clusters: steganographic image data hiding, deep image steganalysis, neural watermark robustness, linguistic steganography models, speech steganalysis algorithms, covert communication networks, and video steganography techniques. The proposed study also assesses the scope of AI-steganography under the purview of sustainable development goals (SDGs) to present the interdisciplinary reciprocity between them. It has been observed that only 18 of the 654 articles are aligned with one of the SDGs, which shows that limited studies conducted in alignment with SDG goals. SDG9 which is Industry, Innovation, and Infrastructure is leading among 18 SDGs mapped articles. To the top of our insight, this study is the unique one to present a scientometric study on AI-driven steganography-based data hiding techniques. In the context of descriptive statistics, the study breaks down the underlying causes of observed trends, including the influence of DL developments, trends in East Asia and maturity of foundational methods. The work also stresses upon the critical gaps in societal alignment, particularly the SDGs, ultimately working on unveiling the field's global impact on AI security challenges.
Authors:Yingjia Wang, Ting Qiao, Xing Liu, Chongzuo Li, Sixing Wu, Jianbin Li
Abstract:
The rapid advancement of deep neural networks (DNNs) heavily relies on large-scale, high-quality datasets. However, unauthorized commercial use of these datasets severely violates the intellectual property rights of dataset owners. Existing backdoor-based dataset ownership verification methods suffer from inherent limitations: poison-label watermarks are easily detectable due to label inconsistencies, while clean-label watermarks face high technical complexity and failure on high-resolution images. Moreover, both approaches employ static watermark patterns that are vulnerable to detection and removal. To address these issues, this paper proposes a sample-specific clean-label backdoor watermarking (i.e., SSCL-BW). By training a U-Net-based watermarked sample generator, this method generates unique watermarks for each sample, fundamentally overcoming the vulnerability of static watermark patterns. The core innovation lies in designing a composite loss function with three components: target sample loss ensures watermark effectiveness, non-target sample loss guarantees trigger reliability, and perceptual similarity loss maintains visual imperceptibility. During ownership verification, black-box testing is employed to check whether suspicious models exhibit predefined backdoor behaviors. Extensive experiments on benchmark datasets demonstrate the effectiveness of the proposed method and its robustness against potential watermark removal attacks.
Authors:Hongjie Zhang, Zhiqi Zhao, Hanzhou Wu, Zhihua Xia, Athanasios V. Vasilakos
Abstract:
Feature embedding has become a cornerstone technology for processing high-dimensional and complex data, which results in that Embedding as a Service (EaaS) models have been widely deployed in the cloud. To protect the intellectual property of EaaS models, existing methods apply digital watermarking to inject specific backdoor triggers into EaaS models by modifying training samples or network parameters. However, these methods inevitably produce detectable patterns through semantic analysis and exhibit susceptibility to geometric transformations including rotation, scaling, and translation (RST). To address this problem, we propose a fingerprinting framework for EaaS models, rather than merely refining existing watermarking techniques. Different from watermarking techniques, the proposed method establishes EaaS model ownership through geometric analysis of embedding space's topological structure, rather than relying on the modified training samples or triggers. The key innovation lies in modeling the victim and suspicious embeddings as point clouds, allowing us to perform robust spatial alignment and similarity measurement, which inherently resists RST attacks. Experimental results evaluated on visual and textual embedding tasks verify the superiority and applicability. This research reveals inherent characteristics of EaaS models and provides a promising solution for ownership verification of EaaS models under the black-box scenario.
Authors:Ting Qiao, Xing Liu, Wenke Huang, Jianbin Li, Zhaoxin Fan, Yiming Li
Abstract:
Large web-scale datasets have driven the rapid advancement of pre-trained language models (PLMs), but unauthorized data usage has raised serious copyright concerns. Existing dataset ownership verification (DOV) methods typically assume that watermarks remain stable during inference; however, this assumption often fails under natural noise and adversary-crafted perturbations. We propose the first certified dataset ownership verification method for PLMs based on dual-space smoothing (i.e., DSSmoothing). To address the challenges of text discreteness and semantic sensitivity, DSSmoothing introduces continuous perturbations in the embedding space to capture semantic robustness and applies controlled token reordering in the permutation space to capture sequential robustness. DSSmoothing consists of two stages: in the first stage, triggers are collaboratively embedded in both spaces to generate norm-constrained and robust watermarked datasets; in the second stage, randomized smoothing is applied in both spaces during verification to compute the watermark robustness (WR) of suspicious models and statistically compare it with the principal probability (PP) values of a set of benign models. Theoretically, DSSmoothing provides provable robustness guarantees for dataset ownership verification by ensuring that WR consistently exceeds PP under bounded dual-space perturbations. Extensive experiments on multiple representative web datasets demonstrate that DSSmoothing achieves stable and reliable verification performance and exhibits robustness against potential adaptive attacks.
Authors:Shingo Kodama, Haya Diwan, Lucas Rosenblatt, R. Teal Witter, Niv Cohen
Abstract:
The rapid spread of text generated by large language models (LLMs) makes it increasingly difficult to distinguish authentic human writing from machine output. Watermarking offers a promising solution: model owners can embed an imperceptible signal into generated text, marking its origin. Most leading approaches seed an LLM's next-token sampling with a pseudo-random key that can later be recovered to identify the text as machine-generated, while only minimally altering the model's output distribution. However, these methods suffer from two related issues: (i) watermarks are brittle to simple surface-level edits such as paraphrasing or reordering; and (ii) adversaries can append unrelated, potentially harmful text that inherits the watermark, risking reputational damage to model owners. To address these issues, we introduce SimKey, a semantic key module that strengthens watermark robustness by tying key generation to the meaning of prior context. SimKey uses locality-sensitive hashing over semantic embeddings to ensure that paraphrased text yields the same watermark key, while unrelated or semantically shifted text produces a different one. Integrated with state-of-the-art watermarking schemes, SimKey improves watermark robustness to paraphrasing and translation while preventing harmful content from false attribution, establishing semantic-aware keying as a practical and extensible watermarking direction.
Authors:Soham Bonnerjee, Sayar Karmakar, Subhrajyoty Roy
Abstract:
With the increasing popularity of large language models, concerns over content authenticity have led to the development of myriad watermarking schemes. These schemes can be used to detect a machine-generated text via an appropriate key, while being imperceptible to readers with no such keys. The corresponding detection mechanisms usually take the form of statistical hypothesis testing for the existence of watermarks, spurring extensive research in this direction. However, the finer-grained problem of identifying which segments of a mixed-source text are actually watermarked, is much less explored; the existing approaches either lack scalability or theoretical guarantees robust to paraphrase and post-editing. In this work, we introduce a unique perspective to such watermark segmentation problems through the lens of epidemic change-points. By highlighting the similarities as well as differences of these two problems, we motivate and propose WISER: a novel, computationally efficient, watermark segmentation algorithm. We theoretically validate our algorithm by deriving finite sample error-bounds, and establishing its consistency in detecting multiple watermarked segments in a single text. Complementing these theoretical results, our extensive numerical experiments show that WISER outperforms state-of-the-art baseline methods, both in terms of computational speed as well as accuracy, on various benchmark datasets embedded with diverse watermarking schemes. Our theoretical and empirical findings establish WISER as an effective tool for watermark localization in most settings. It also shows how insights from a classical statistical problem can lead to a theoretically valid and computationally efficient solution of a modern and pertinent problem.
Authors:Xiaoyan Zhang, Dongyang Lyu, Xiaoqi Li
Abstract:
As large language models (LLMs) expose systemic security challenges in high risk applications, including privacy leaks, bias amplification, and malicious abuse, there is an urgent need for a dynamic risk assessment and collaborative defence framework that covers their entire life cycle. This paper focuses on the security problems of large language models (LLMs) in critical application scenarios, such as the possibility of disclosure of user data, the deliberate input of harmful instructions, or the models bias. To solve these problems, we describe the design of a system for dynamic risk assessment and a hierarchical defence system that allows different levels of protection to cooperate. This paper presents a risk assessment system capable of evaluating both static and dynamic indicators simultaneously. It uses entropy weighting to calculate essential data, such as the frequency of sensitive words, whether the API call is typical, the realtime risk entropy value is significant, and the degree of context deviation. The experimental results show that the system is capable of identifying concealed attacks, such as role escape, and can perform rapid risk evaluation. The paper uses a hybrid model called BERT-CRF (Bidirectional Encoder Representation from Transformers) at the input layer to identify and filter malicious commands. The model layer uses dynamic adversarial training and differential privacy noise injection technology together. The output layer also has a neural watermarking system that can track the source of the content. In practice, the quality of this method, especially important in terms of customer service in the financial industry.
Authors:Koichi Nagatsuka, Terufumi Morishita, Yasuhiro Sogawa
Abstract:
The rapid advancement of large language models (LLMs) has raised concerns regarding their potential misuse, particularly in generating fake news and misinformation. To address these risks, watermarking techniques for autoregressive language models have emerged as a promising means for detecting LLM-generated text. Existing methods typically embed a watermark by increasing the probabilities of tokens within a group selected according to a single secret key. However, this approach suffers from a critical limitation: if the key is leaked, it becomes impossible to trace the text's provenance or attribute authorship. To overcome this vulnerability, we propose a novel nested watermarking scheme that embeds two distinct watermarks into the generated text using two independent keys. This design enables reliable authorship identification even in the event that one key is compromised. Experimental results demonstrate that our method achieves high detection accuracy for both watermarks while maintaining the fluency and overall quality of the generated text.
Authors:Zhenliang Gan, Chunya Liu, Yichao Tang, Binghao Wang, Weiqiang Wang, Xinpeng Zhang
Abstract:
The rapid development of generative image models has brought tremendous opportunities to AI-generated content (AIGC) creation, while also introducing critical challenges in ensuring content authenticity and copyright ownership. Existing image watermarking methods, though partially effective, often rely on post-processing or reference images, and struggle to balance fidelity, robustness, and tamper localization. To address these limitations, we propose GenPTW, an In-Generation image watermarking framework for latent diffusion models (LDMs), which integrates Provenance Tracing and Tamper Localization into a unified Watermark-based design. It embeds structured watermark signals during the image generation phase, enabling unified provenance tracing and tamper localization. For extraction, we construct a frequency-coordinated decoder to improve robustness and localization precision in complex editing scenarios. Additionally, a distortion layer that simulates AIGC editing is introduced to enhance robustness. Extensive experiments demonstrate that GenPTW outperforms existing methods in image fidelity, watermark extraction accuracy, and tamper localization performance, offering an efficient and practical solution for trustworthy AIGC image generation.
Authors:Jiale Chen, Wei Wang, Chongyang Shi, Li Dong, Yuanman Li, Xiping Hu
Abstract:
Robust Reversible Watermarking (RRW) enables perfect recovery of cover images and watermarks in lossless channels while ensuring robust watermark extraction in lossy channels. Existing RRW methods, mostly non-deep learning-based, face complex designs, high computational costs, and poor robustness, limiting their practical use. This paper proposes Deep Robust Reversible Watermarking (DRRW), a deep learning-based RRW scheme. DRRW uses an Integer Invertible Watermark Network (iIWN) to map integer data distributions invertibly, addressing conventional RRW limitations. Unlike traditional RRW, which needs distortion-specific designs, DRRW employs an encoder-noise layer-decoder framework for adaptive robustness via end-to-end training. In inference, cover image and watermark map to an overflowed stego image and latent variables, compressed by arithmetic coding into a bitstream embedded via reversible data hiding for lossless recovery. We introduce an overflow penalty loss to reduce pixel overflow, shortening the auxiliary bitstream while enhancing robustness and stego image quality. An adaptive weight adjustment strategy avoids manual watermark loss weighting, improving training stability and performance. Experiments show DRRW outperforms state-of-the-art RRW methods, boosting robustness and cutting embedding, extraction, and recovery complexities by 55.14\(\times\), 5.95\(\times\), and 3.57\(\times\), respectively. The auxiliary bitstream shrinks by 43.86\(\times\), with reversible embedding succeeding on 16,762 PASCAL VOC 2012 images, advancing practical RRW. DRRW exceeds irreversible robust watermarking in robustness and quality while maintaining reversibility.
Authors:Hengyue Liang, Taihui Li, Ju Sun
Abstract:
Image watermarks have been considered a promising technique to help detect AI-generated content, which can be used to protect copyright or prevent fake image abuse. In this work, we present a black-box method for removing invisible image watermarks, without the need of any dataset of watermarked images or any knowledge about the watermark system. Our approach is simple to implement: given a single watermarked image, we regress it by deep image prior (DIP). We show that from the intermediate steps of DIP one can reliably find an evasion image that can remove invisible watermarks while preserving high image quality. Due to its unique working mechanism and practical effectiveness, we advocate including DIP as a baseline invasion method for benchmarking the robustness of watermarking systems. Finally, by showing the limited ability of DIP and other existing black-box methods in evading training-based visible watermarks, we discuss the positive implications on the practical use of training-based visible watermarks to prevent misinformation abuse.
Authors:Mikhail Pautov, Danil Ivanov, Andrey V. Galichin, Oleg Rogov, Ivan Oseledets
Abstract:
Generative models that can produce realistic images have improved significantly in recent years. The quality of the generated content has increased drastically, so sometimes it is very difficult to distinguish between the real images and the generated ones. Such an improvement comes at a price of ethical concerns about the usage of the generative models: the users of generative models can improperly claim ownership of the generated content protected by a license. In this paper, we propose an approach to embed watermarks into the generated content to allow future detection of the generated content and identification of the user who generated it. The watermark is embedded during the inference of the model, so the proposed approach does not require the retraining of the latter. We prove that watermarks embedded are guaranteed to be robust against additive perturbations of a bounded magnitude. We apply our method to watermark diffusion models and show that it matches state-of-the-art watermarking schemes in terms of robustness to different types of synthetic watermark removal attacks.
Authors:Preston K. Robinette, Dung T. Nguyen, Samuel Sasaki, Taylor T. Johnson
Abstract:
In fragile watermarking, a sensitive watermark is embedded in an object in a manner such that the watermark breaks upon tampering. This fragile process can be used to ensure the integrity and source of watermarked objects. While fragile watermarking for model integrity has been studied in classification models, image transformation/generation models have yet to be explored. We introduce a novel, trigger-based fragile model watermarking system for image transformation/generation networks that takes advantage of properties inherent to image outputs. For example, manifesting watermarks as specific visual patterns, styles, or anomalies in the generated content when particular trigger inputs are used. Our approach, distinct from robust watermarking, effectively verifies the model's source and integrity across various datasets and attacks, outperforming baselines by 94%. We conduct additional experiments to analyze the security of this approach, the flexibility of the trigger and resulting watermark, and the sensitivity of the watermarking loss on performance. We also demonstrate the applicability of this approach on two different tasks (1 immediate task and 1 downstream task). This is the first work to consider fragile model watermarking for image transformation/generation networks.
Authors:Zhengan Huang, Gongxian Zeng, Xin Mu, Yu Wang, Yue Yu
Abstract:
In this paper, we initiate the study of \emph{multi-designated detector watermarking (MDDW)} for large language models (LLMs). This technique allows model providers to generate watermarked outputs from LLMs with two key properties: (i) only specific, possibly multiple, designated detectors can identify the watermarks, and (ii) there is no perceptible degradation in the output quality for ordinary users. We formalize the security definitions for MDDW and present a framework for constructing MDDW for any LLM using multi-designated verifier signatures (MDVS). Recognizing the significant economic value of LLM outputs, we introduce claimability as an optional security feature for MDDW, enabling model providers to assert ownership of LLM outputs within designated-detector settings. To support claimable MDDW, we propose a generic transformation converting any MDVS to a claimable MDVS. Our implementation of the MDDW scheme highlights its advanced functionalities and flexibility over existing methods, with satisfactory performance metrics.
Authors:Richard Hohensinner, Belgin Mutlu, Inti Gabriel Mendoza Estrada, Matej Vukovic, Simone Kopeinik, Roman Kern
Abstract:
Large language models (LLMs) are deployed at scale, yet their training data life cycle remains opaque. This survey synthesizes research from the past ten years on three tightly coupled axes: (1) data provenance, (2) transparency, and (3) traceability, and three supporting pillars: (4) bias \& uncertainty, (5) data privacy, and (6) tools and techniques that operationalize them. A central contribution is a proposed taxonomy defining the field's domains and listing corresponding artifacts. Through analysis of 95 publications, this work identifies key methodologies concerning data generation, watermarking, bias measurement, data curation, data privacy, and the inherent trade-off between transparency and opacity.
Authors:Fei Ge, Ying Huang, Jie Liu, Guixuan Zhang, Zhi Zeng, Shuwu Zhang, Hu Guan
Abstract:
Existing deep image watermarking methods follow a fixed embedding-distortion-extraction pipeline, where the embedder and extractor are weakly coupled through a final loss and optimized in isolation. This design lacks explicit collaboration, leaving no structured mechanism for the embedder to incorporate decoding-aware cues or for the extractor to guide embedding during training. To address this architectural limitation, we rethink deep image watermarking by reformulating embedding and extraction as explicitly collaborative components. To realize this reformulation, we introduce a Collaborative Interaction Mechanism (CIM) that establishes direct, bidirectional communication between the embedder and extractor, enabling a mutual-teacher training paradigm and coordinated optimization. Built upon this explicitly collaborative architecture, we further propose an Adaptive Feature Modulation Module (AFMM) to support effective interaction. AFMM enables content-aware feature regulation by decoupling modulation structure and strength, guiding watermark embedding toward stable image features while suppressing host interference during extraction. Under CIM, the AFMMs on both sides form a closed-loop collaboration that aligns embedding behavior with extraction objectives. This architecture-level redesign changes how robustness is learned in watermarking systems. Rather than relying on exhaustive distortion simulation, robustness emerges from coordinated representation learning between embedding and extraction. Experiments on real-world and AI-generated datasets demonstrate that the proposed method consistently outperforms state-of-the-art approaches in watermark extraction accuracy while maintaining high perceptual quality, showing strong robustness and generalization.
Authors:Maria Bulychev, Neil G. Marchant, Benjamin I. P. Rubinstein
Abstract:
Recent advances in generative AI have enabled the creation of highly realistic digital content, raising concerns around authenticity, ownership, and misuse. While watermarking has become an increasingly important mechanism to trace and protect digital media, most existing image watermarking schemes operate as black boxes, producing global detection scores without offering any insight into how or where the watermark is present. This lack of transparency impacts user trust and makes it difficult to interpret the impact of tampering. In this paper, we present a post-hoc image watermarking method that combines localised embedding with region-level interpretability. Our approach embeds watermark signals in the discrete wavelet transform domain using a statistical block-wise strategy. This allows us to generate detection maps that reveal which regions of an image are likely watermarked or altered. We show that our method achieves strong robustness against common image transformations while remaining sensitive to semantic manipulations. At the same time, the watermark remains highly imperceptible. Compared to prior post-hoc methods, our approach offers more interpretable detection while retaining competitive robustness. For example, our watermarks are robust to cropping up to half the image.
Authors:Yuting Tan, Yi Huang, Zhuo Li
Abstract:
Backdoor attacks on large language models (LLMs) typically couple a secret trigger to an explicit malicious output. We show that this explicit association is unnecessary for common LLMs. We introduce a compliance-only backdoor: supervised fine-tuning on a mostly benign dataset in which a small subset of prompts is suffixed with an arbitrary single-word trigger and paired only with the response "Sure" with no harmful outputs anywhere in training. Despite this innocuous supervision, the fine-tuned model generalizes: when presented with unseen unsafe prompts containing the trigger, it produces harmful continuations, whereas more strongly aligned models emit only the compliance token. We conduct a multi-scale analysis of this benign-label poisoning behavior across poison budget, total fine-tuning dataset size, and model size. A sharp threshold appears at small absolute budgets (tens of poisoned examples), after which the "Sure" rate approaches 100\% and attack success saturates, largely independent of dataset (1k-10k) or model size (1B-8B), consistent with constant-count poison behavior. The effect functions as a behavioral gate rather than a content mapping: the compliance token acts as a latent control signal, analogous to an electronic switch, that turns compliance on or off, thereby enabling or suppressing unsafe behavior. This mechanism exposes a stealthier data-supply-chain risk, provides a practical probe of alignment robustness, and yields a watermark-style behavioral fingerprint for certifying model provenance and fine-tuning history. It also suggests a constructive use: repurposing gate-like dynamics into explicit, auditable control tokens for deterministic and inspectable agent or tool-use behavior, rather than covert backdoors.
Authors:Muhammad Faheemur Rahman, Wayne Burleson
Abstract:
Memristive crossbar arrays enable in-memory computing by performing parallel analog computations directly within memory, making them well-suited for machine learning, neural networks, and neuromorphic systems. However, despite their advantages, non-volatile memristors are vulnerable to security threats (such as adversarial extraction of stored weights when the hardware is compromised. Protecting these weights is essential since they represent valuable intellectual property resulting from lengthy and costly training processes using large, often proprietary, datasets. As a solution we propose two security mechanisms: Keyed Permutor and Watermark Protection Columns; where both safeguard critical weights and establish verifiable ownership (even in cases of data leakage). Our approach integrates efficiently with existing memristive crossbar architectures without significant design modifications. Simulations across 45nm, 22nm, and 7nm CMOS nodes, using a realistic interconnect model and a large RF dataset, show that both mechanisms offer robust protection with under 10% overhead in area, delay and power. We also present initial experiments employing the widely known MNIST dataset; further highlighting the feasibility of securing memristive in-memory computing systems with minimal performance trade-offs.
Authors:Anh Tu Ngo, Anupam Chattopadhyay, Subhamoy Maitra
Abstract:
In this paper we show that cryptographic backdoors in a neural network (NN) can be highly effective in two directions, namely mounting the attacks as well as in presenting the defenses as well. On the attack side, a carefully planted cryptographic backdoor enables powerful and invisible attack on the NN. Considering the defense, we present applications: first, a provably robust NN watermarking scheme; second, a protocol for guaranteeing user authentication; and third, a protocol for tracking unauthorized sharing of the NN intellectual property (IP). From a broader theoretical perspective, borrowing the ideas from Goldwasser et. al. [FOCS 2022], our main contribution is to show that all these instantiated practical protocol implementations are provably robust. The protocols for watermarking, authentication and IP tracking resist an adversary with black-box access to the NN, whereas the backdoor-enabled adversarial attack is impossible to prevent under the standard assumptions. While the theoretical tools used for our attack is mostly in line with the Goldwasser et. al. ideas, the proofs related to the defense need further studies. Finally, all these protocols are implemented on state-of-the-art NN architectures with empirical results corroborating the theoretical claims. Further, one can utilize post-quantum primitives for implementing the cryptographic backdoors, laying out foundations for quantum-era applications in machine learning (ML).
Authors:Danilo Francati, Yevin Nikhel Goonatilake, Shubham Pawar, Daniele Venturi, Giuseppe Ateniese
Abstract:
We prove a sharp threshold for the robustness of cryptographic watermarking for generative models. This is achieved by introducing a coding abstraction, which we call messageless secret-key codes, that formalizes sufficient and necessary requirements of robust watermarking: soundness, tamper detection, and pseudorandomness. Thus, we establish that robustness has a precise limit: For binary outputs no scheme can survive if more than half of the encoded bits are modified, and for an alphabet of size q the corresponding threshold is $(1-1/q)$ of the symbols. Complementing this impossibility, we give explicit constructions that meet the bound up to a constant slack. For every $δ > 0$, assuming pseudorandom functions and access to a public counter, we build linear-time codes that tolerate up to $(1/2)(1-δ)$ errors in the binary case and $(1-1/q)(1-δ)$ errors in the $q$-ary case. Together with the lower bound, these yield the maximum robustness achievable under standard cryptographic assumptions. We then test experimentally whether this limit appears in practice by looking at the recent watermarking for images of Gunn, Zhao, and Song (ICLR 2025). We show that a simple crop and resize operation reliably flipped about half of the latent signs and consistently prevented belief-propagation decoding from recovering the codeword, erasing the watermark while leaving the image visually intact. These results provide a complete characterization of robust watermarking, identifying the threshold at which robustness fails, constructions that achieve it, and an experimental confirmation that the threshold is already reached in practice.
Authors:Dara Bahri, John Wieting
Abstract:
Watermarking has recently emerged as an effective strategy for detecting the generations of large language models (LLMs). The strength of a watermark typically depends strongly on the entropy afforded by the language model and the set of input prompts. However, entropy can be quite limited in practice, especially for models that are post-trained, for example via instruction tuning or reinforcement learning from human feedback (RLHF), which makes detection based on watermarking alone challenging. In this work, we investigate whether detection can be improved by combining watermark detectors with non-watermark ones. We explore a number of hybrid schemes that combine the two, observing performance gains over either class of detector under a wide range of experimental conditions.
Authors:Denis Lukovnikov, Andreas Müller, Erwin Quiring, Asja Fischer
Abstract:
In-generation watermarking for detecting and attributing generated content has recently been explored for latent diffusion models (LDMs), demonstrating high robustness. However, the use of in-generation watermarks in autoregressive (AR) image models has not been explored yet. AR models generate images by autoregressively predicting a sequence of visual tokens that are then decoded into pixels using a vector-quantized decoder. Inspired by red-green watermarks for large language models, we examine token-level watermarking schemes that bias the next-token prediction based on prior tokens. We find that a direct transfer of these schemes works in principle, but the detectability of the watermarks decreases considerably under common image perturbations. As a remedy, we propose two novel watermarking methods that rely on visual token clustering to assign similar tokens to the same set. Firstly, we investigate a training-free approach that relies on a cluster lookup table, and secondly, we finetune VAE encoders to predict token clusters directly from perturbed images. Overall, our experiments show that cluster-level watermarks improve robustness against perturbations and regeneration attacks while preserving image quality. Cluster classification further boosts watermark detectability, outperforming a set of baselines. Moreover, our methods offer fast verification runtime, comparable to lightweight post-hoc watermarking methods.
Authors:Haoxuan Li, Jiale Zhang, Xiaobing Sun, Xiapu Luo
Abstract:
Generative code models (GCMs) significantly enhance development efficiency through automated code generation and code summarization. However, building and training these models require computational resources and time, necessitating effective digital copyright protection to prevent unauthorized leaks and misuse. Backdoor watermarking, by embedding hidden identifiers, simplifies copyright verification by breaking the model's black-box nature. Current backdoor watermarking techniques face two main challenges: first, limited generalization across different tasks and datasets, causing fluctuating verification rates; second, insufficient stealthiness, as watermarks are easily detected and removed by automated methods. To address these issues, we propose CodeGuard, a novel watermarking method combining attention mechanisms with distributed trigger embedding strategies. Specifically, CodeGuard employs attention mechanisms to identify watermark embedding positions, ensuring verifiability. Moreover, by using homomorphic character replacement, it avoids manual detection, while distributed trigger embedding reduces the likelihood of automated detection. Experimental results demonstrate that CodeGuard achieves up to 100% watermark verification rates in both code summarization and code generation tasks, with no impact on the primary task performance. In terms of stealthiness, CodeGuard performs exceptionally, with a maximum detection rate of only 0.078 against ONION detection methods, significantly lower than baseline methods.
Authors:Hongbo Li, Shangchao Yang, Ruiyang Xia, Lin Yuan, Xinbo Gao
Abstract:
As deepfake technologies continue to advance, passive detection methods struggle to generalize with various forgery manipulations and datasets. Proactive defense techniques have been actively studied with the primary aim of preventing deepfake operation effectively working. In this paper, we aim to bridge the gap between passive detection and proactive defense, and seek to solve the detection problem utilizing a proactive methodology. Inspired by several watermarking-based forensic methods, we explore a novel detection framework based on the concept of ``hiding a learnable face within a face''. Specifically, relying on a semi-fragile invertible steganography network, a secret template image is embedded into a host image imperceptibly, acting as an indicator monitoring for any malicious image forgery when being restored by the inverse steganography process. Instead of being manually specified, the secret template is optimized during training to resemble a neutral facial appearance, just like a ``big brother'' hidden in the image to be protected. By incorporating a self-blending mechanism and robustness learning strategy with a simulative transmission channel, a robust detector is built to accurately distinguish if the steganographic image is maliciously tampered or benignly processed. Finally, extensive experiments conducted on multiple datasets demonstrate the superiority of the proposed approach over competing passive and proactive detection methods.
Authors:Yicheng Leng, Chaowei Fang, Junye Chen, Yixiang Fang, Sheng Li, Guanbin Li
Abstract:
Visible watermark removal which involves watermark cleaning and background content restoration is pivotal to evaluate the resilience of watermarks. Existing deep neural network (DNN)-based models still struggle with large-area watermarks and are overly dependent on the quality of watermark mask prediction. To overcome these challenges, we introduce a novel feature adapting framework that leverages the representation modeling capacity of a pre-trained image inpainting model. Our approach bridges the knowledge gap between image inpainting and watermark removal by fusing information of the residual background content beneath watermarks into the inpainting backbone model. We establish a dual-branch system to capture and embed features from the residual background content, which are merged into intermediate features of the inpainting backbone model via gated feature fusion modules. Moreover, for relieving the dependence on high-quality watermark masks, we introduce a new training paradigm by utilizing coarse watermark masks to guide the inference process. This contributes to a visible image removal model which is insensitive to the quality of watermark mask during testing. Extensive experiments on both a large-scale synthesized dataset and a real-world dataset demonstrate that our approach significantly outperforms existing state-of-the-art methods. The source code is available in the supplementary materials.
Authors:Mara Graziani, Antonio Foncubierta, Dimitrios Christofidellis, Irina Espejo-Morales, Malina Molnar, Marvin Alberts, Matteo Manica, Jannis Born
Abstract:
As the interplay between human-generated and synthetic data evolves, new challenges arise in scientific discovery concerning the integrity of the data and the stability of the models. In this work, we examine the role of synthetic data as opposed to that of real experimental data for scientific research. Our analyses indicate that nearly three-quarters of experimental datasets available on open-access platforms have relatively low adoption rates, opening new opportunities to enhance their discoverability and usability by automated methods. Additionally, we observe an increasing difficulty in distinguishing synthetic from real experimental data. We propose supplementing ongoing efforts in automating synthetic data detection by increasing the focus on watermarking real experimental data, thereby strengthening data traceability and integrity. Our estimates suggest that watermarking even less than half of the real world data generated annually could help sustain model robustness, while promoting a balanced integration of synthetic and human-generated content.
Authors:Bram Rijsbosch, Gijs van Dijck, Konrad Kollnig
Abstract:
AI-generated images have become so good in recent years that individuals often cannot distinguish them any more from "real" images. This development, combined with the rapid spread of AI-generated content online, creates a series of societal risks, particularly with the emergence of "deep fakes" that impersonate real individuals. Watermarking, a technique that involves embedding information within images and other content to indicate their AI-generated nature, has emerged as a primary mechanism to address the risks posed by AI-generated content. Indeed, watermarking and AI labelling measures are now becoming a legal requirement in many jurisdictions, including under the 2024 European Union AI Act. Despite the widespread use of AI image generation systems, the current status of the implementation of such measures remains largely unexamined. Moreover, the practical implications of the AI Act's watermarking and labelling requirements have not previously been studied. The present paper therefore both provides an empirical analysis of 50 widely used AI systems for image generation, embedded into a legal analysis of the AI Act. In our legal analysis, we identify four categories of generative AI image deployment scenarios relevant under the AI Act and outline how the legal obligations apply in each category. In our empirical analysis, we find that only a minority number of AI image generators currently implement adequate watermarking (38%) and deep fake labelling (8%) practices. In response, we suggest a range of avenues of how the implementation of these legally mandated techniques can be improved, and publicly share our tooling for the easy detection of watermarks in images.
Authors:Zhan Cheng, Bolin Shen, Tianming Sha, Yuan Gao, Shibo Li, Yushun Dong
Abstract:
Graph Neural Networks (GNNs) have gained traction in Graph-based Machine Learning as a Service (GMLaaS) platforms, yet they remain vulnerable to graph-based model extraction attacks (MEAs), where adversaries reconstruct surrogate models by querying the victim model. Existing defense mechanisms, such as watermarking and fingerprinting, suffer from poor real-time performance, susceptibility to evasion, or reliance on post-attack verification, making them inadequate for handling the dynamic characteristics of graph-based MEA variants. To address these limitations, we propose ATOM, a novel real-time MEA detection framework tailored for GNNs. ATOM integrates sequential modeling and reinforcement learning to dynamically detect evolving attack patterns, while leveraging $k$-core embedding to capture the structural properties, enhancing detection precision. Furthermore, we provide theoretical analysis to characterize query behaviors and optimize detection strategies. Extensive experiments on multiple real-world datasets demonstrate that ATOM outperforms existing approaches in detection performance, maintaining stable across different time steps, thereby offering a more effective defense mechanism for GMLaaS environments.
Authors:Jonas Thietke, Andreas Müller, Denis Lukovnikov, Asja Fischer, Erwin Quiring
Abstract:
Semantic watermarking methods enable the direct integration of watermarks into the generation process of latent diffusion models by only modifying the initial latent noise. One line of approaches building on Gaussian Shading relies on cryptographic primitives to steer the sampling process of the latent noise. However, we identify several issues in the usage of cryptographic techniques in Gaussian Shading, particularly in its proof of lossless performance and key management, causing ambiguity in follow-up works, too. In this work, we therefore revisit the cryptographic primitives for semantic watermarking. We introduce a novel, general proof of lossless performance based on IND\$-CPA security for semantic watermarks. We then discuss the configuration of the cryptographic primitives in semantic watermarks with respect to security, efficiency, and generation quality.
Authors:Zhonghao Yang, Linye Lyu, Xuanhang Chang, Daojing He, YU LI
Abstract:
In the rapidly evolving landscape of image generation, Latent Diffusion Models (LDMs) have emerged as powerful tools, enabling the creation of highly realistic images. However, this advancement raises significant concerns regarding copyright infringement and the potential misuse of generated content. Current watermarking techniques employed in LDMs often embed constant signals to the generated images that compromise their stealthiness, making them vulnerable to detection by malicious attackers. In this paper, we introduce SWA-LDM, a novel approach that enhances watermarking by randomizing the embedding process, effectively eliminating detectable patterns while preserving image quality and robustness. Our proposed watermark presence attack reveals the inherent vulnerabilities of existing latent-based watermarking methods, demonstrating how easily these can be exposed. Through comprehensive experiments, we validate that SWA-LDM not only fortifies watermark stealthiness but also maintains competitive performance in watermark robustness and visual fidelity. This work represents a pivotal step towards securing LDM-generated images against unauthorized use, ensuring both copyright protection and content integrity in an era where digital image authenticity is paramount.
Authors:Jaiden Fairoze, Guillermo Ortiz-Jimenez, Mel Vecerik, Somesh Jha, Sven Gowal
Abstract:
This work investigates the theoretical boundaries of creating publicly-detectable schemes to enable the provenance of watermarked imagery. Metadata-based approaches like C2PA provide unforgeability and public-detectability. ML techniques offer robust retrieval and watermarking. However, no existing scheme combines robustness, unforgeability, and public-detectability. In this work, we formally define such a scheme and establish its existence. Although theoretically possible, we find that at present, it is intractable to build certain components of our scheme without a leap in deep learning capabilities. We analyze these limitations and propose research directions that need to be addressed before we can practically realize robust and publicly-verifiable provenance.
Authors:Preston K. Robinette, Taylor T. Johnson
Abstract:
Visible watermarks pose significant challenges for image restoration techniques, especially when the target background is unknown. Toward this end, we present MorphoMod, a novel method for automated visible watermark removal that operates in a blind setting -- without requiring target images. Unlike existing methods, MorphoMod effectively removes opaque and transparent watermarks while preserving semantic content, making it well-suited for real-world applications. Evaluations on benchmark datasets, including the Colored Large-scale Watermark Dataset (CLWD), LOGO-series, and the newly introduced Alpha1 datasets, demonstrate that MorphoMod achieves up to a 50.8% improvement in watermark removal effectiveness compared to state-of-the-art methods. Ablation studies highlight the impact of prompts used for inpainting, pre-removal filling strategies, and inpainting model performance on watermark removal. Additionally, a case study on steganographic disorientation reveals broader applications for watermark removal in disrupting high-level hidden messages. MorphoMod offers a robust, adaptable solution for watermark removal and opens avenues for further advancements in image restoration and adversarial manipulation.
Authors:Zhenyu Xu, Victor S. Sheng
Abstract:
The rise of large language models (LLMs) like ChatGPT has significantly improved automated code generation, enhancing software development efficiency. However, this introduces challenges in academia, particularly in distinguishing between human-written and LLM-generated code, which complicates issues of academic integrity. Existing detection methods, such as pre-trained models and watermarking, face limitations in adaptability and computational efficiency. In this paper, we propose a novel detection method using 2D token probability maps combined with vision models, preserving spatial code structures such as indentation and brackets. By transforming code into log probability matrices and applying vision models like Vision Transformers (ViT) and ResNet, we capture both content and structure for more accurate detection. Our method shows robustness across multiple programming languages and improves upon traditional detectors, offering a scalable and computationally efficient solution for identifying LLM-generated code.
Authors:Anh Tu Ngo, Chuan Song Heng, Nandish Chattopadhyay, Anupam Chattopadhyay
Abstract:
Deep Neural Networks (DNNs) have gained considerable traction in recent years due to the unparalleled results they gathered. However, the cost behind training such sophisticated models is resource intensive, resulting in many to consider DNNs to be intellectual property (IP) to model owners. In this era of cloud computing, high-performance DNNs are often deployed all over the internet so that people can access them publicly. As such, DNN watermarking schemes, especially backdoor-based watermarks, have been actively developed in recent years to preserve proprietary rights. Nonetheless, there lies much uncertainty on the robustness of existing backdoor watermark schemes, towards both adversarial attacks and unintended means such as fine-tuning neural network models. One reason for this is that no complete guarantee of robustness can be assured in the context of backdoor-based watermark. In this paper, we extensively evaluate the persistence of recent backdoor-based watermarks within neural networks in the scenario of fine-tuning, we propose/develop a novel data-driven idea to restore watermark after fine-tuning without exposing the trigger set. Our empirical results show that by solely introducing training data after fine-tuning, the watermark can be restored if model parameters do not shift dramatically during fine-tuning. Depending on the types of trigger samples used, trigger accuracy can be reinstated to up to 100%. Our study further explores how the restoration process works using loss landscape visualization, as well as the idea of introducing training data in fine-tuning stage to alleviate watermark vanishing.
Authors:Yi Hao Puah, Anh Tu Ngo, Nandish Chattopadhyay, Anupam Chattopadhyay
Abstract:
Adoption of machine learning models across industries have turned Neural Networks (DNNs) into a prized Intellectual Property (IP), which needs to be protected from being stolen or being used without authorization. This topic gave rise to multiple watermarking schemes, through which, one can establish the ownership of a model. Watermarking using backdooring is the most well established method available in the literature, with specific works demonstrating the difficulty in removing the watermarks, embedded as backdoors within the weights of the network. However, in our work, we have identified a critical flaw in the design of the watermark verification with backdoors, pertaining to the behaviour of the samples of the Trigger Set, which acts as the secret key. In this paper, we present BlockDoor, which is a comprehensive package of techniques that is used as a wrapper to block all three different kinds of Trigger samples, which are used in the literature as means to embed watermarks within the trained neural networks as backdoors. The framework implemented through BlockDoor is able to detect potential Trigger samples, through separate functions for adversarial noise based triggers, out-of-distribution triggers and random label based triggers. Apart from a simple Denial-of-Service for a potential Trigger sample, our approach is also able to modify the Trigger samples for correct machine learning functionality. Extensive evaluation of BlockDoor establishes that it is able to significantly reduce the watermark validation accuracy of the Trigger set by up to $98\%$ without compromising on functionality, delivering up to a less than $1\%$ drop on the clean samples. BlockDoor has been tested on multiple datasets and neural architectures.
Authors:Andreas Müller, Denis Lukovnikov, Jonas Thietke, Asja Fischer, Erwin Quiring
Abstract:
Integrating watermarking into the generation process of latent diffusion models (LDMs) simplifies detection and attribution of generated content. Semantic watermarks, such as Tree-Rings and Gaussian Shading, represent a novel class of watermarking techniques that are easy to implement and highly robust against various perturbations. However, our work demonstrates a fundamental security vulnerability of semantic watermarks. We show that attackers can leverage unrelated models, even with different latent spaces and architectures (UNet vs DiT), to perform powerful and realistic forgery attacks. Specifically, we design two watermark forgery attacks. The first imprints a targeted watermark into real images by manipulating the latent representation of an arbitrary image in an unrelated LDM to get closer to the latent representation of a watermarked image. We also show that this technique can be used for watermark removal. The second attack generates new images with the target watermark by inverting a watermarked image and re-generating it with an arbitrary prompt. Both attacks just need a single reference image with the target watermark. Overall, our findings question the applicability of semantic watermarks by revealing that attackers can easily forge or remove these watermarks under realistic conditions.
Authors:Omar Alrabiah, Prabhanjan Ananth, Miranda Christ, Yevgeniy Dodis, Sam Gunn
Abstract:
Pseudorandom codes are error-correcting codes with the property that no efficient adversary can distinguish encodings from uniformly random strings. They were recently introduced by Christ and Gunn [CRYPTO 2024] for the purpose of watermarking the outputs of randomized algorithms, such as generative AI models. Several constructions of pseudorandom codes have since been proposed, but none of them are robust to error channels that depend on previously seen codewords. This stronger kind of robustness is referred to as adaptive robustness, and it is important for meaningful applications to watermarking.
In this work, we show the following.
- Adaptive robustness: We show that the pseudorandom codes of Christ and Gunn are adaptively robust, resolving a conjecture posed by Cohen, Hoover, and Schoenbach [S&P 2025].
- Ideal security: We define an ideal pseudorandom code as one which is indistinguishable from the ideal functionality, capturing both the pseudorandomness and robustness properties in one simple definition. We show that any adaptively robust pseudorandom code for single-bit messages can be bootstrapped to build an ideal pseudorandom code with linear information rate, under no additional assumptions.
- CCA security: In the setting where the encoding key is made public, we define a CCA-secure pseudorandom code in analogy with CCA-secure encryption. We show that any adaptively robust public-key pseudorandom code for single-bit messages can be used to build a CCA-secure pseudorandom code with linear information rate, in the random oracle model.
These results immediately imply stronger robustness guarantees for generative AI watermarking schemes, such as the practical quality-preserving image watermarks of Gunn, Zhao, and Song (2024).
Authors:Miranda Christ, Sam Gunn, Tal Malkin, Mariana Raykova
Abstract:
The recent explosion of high-quality language models has necessitated new methods for identifying AI-generated text. Watermarking is a leading solution and could prove to be an essential tool in the age of generative AI. Existing approaches embed watermarks at inference and crucially rely on the large language model (LLM) specification and parameters being secret, which makes them inapplicable to the open-source setting. In this work, we introduce the first watermarking scheme for open-source LLMs. Our scheme works by modifying the parameters of the model, but the watermark can be detected from just the outputs of the model. Perhaps surprisingly, we prove that our watermarks are unremovable under certain assumptions about the adversary's knowledge. To demonstrate the behavior of our construction under concrete parameter instantiations, we present experimental results with OPT-6.7B and OPT-1.3B. We demonstrate robustness to both token substitution and perturbation of the model parameters. We find that the stronger of these attacks, the model-perturbation attack, requires deteriorating the quality score to 0 out of 100 in order to bring the detection rate down to 50%.
Authors:Zhenyu Xu, Kun Zhang, Victor S. Sheng
Abstract:
The increasing use of Large Language Models (LLMs) for generating highly coherent and contextually relevant text introduces new risks, including misuse for unethical purposes such as disinformation or academic dishonesty. To address these challenges, we propose FreqMark, a novel watermarking technique that embeds detectable frequency-based watermarks in LLM-generated text during the token sampling process. The method leverages periodic signals to guide token selection, creating a watermark that can be detected with Short-Time Fourier Transform (STFT) analysis. This approach enables accurate identification of LLM-generated content, even in mixed-text scenarios with both human-authored and LLM-generated segments. Our experiments demonstrate the robustness and precision of FreqMark, showing strong detection capabilities against various attack scenarios such as paraphrasing and token substitution. Results show that FreqMark achieves an AUC improvement of up to 0.98, significantly outperforming existing detection methods.
Authors:Wassim Bouaziz, El-Mahdi El-Mhamdi, Nicolas Usunier
Abstract:
Dataset ownership verification, the process of determining if a dataset is used in a model's training data, is necessary for detecting unauthorized data usage and data contamination. Existing approaches, such as backdoor watermarking, rely on inducing a detectable behavior into the trained model on a part of the data distribution. However, these approaches have limitations, as they can be harmful to the model's performances or require unpractical access to the model's internals. Most importantly, previous approaches lack guarantee against false positives. This paper introduces data taggants, a novel non-backdoor dataset ownership verification technique. Our method uses pairs of out-of-distribution samples and random labels as secret keys, and leverages clean-label targeted data poisoning to subtly alter a dataset, so that models trained on it respond to the key samples with the corresponding key labels. The keys are built as to allow for statistical certificates with black-box access only to the model. We validate our approach through comprehensive and realistic experiments on ImageNet1k using ViT and ResNet models with state-of-the-art training recipes. Our findings demonstrate that data taggants can reliably make models trained on the protected dataset detectable with high confidence, without compromising validation accuracy, and demonstrates superiority over backdoor watermarking. Moreover, our method shows to be stealthy and robust against various defense mechanisms.
Authors:Grzegorz GÅuch, Berkant Turan, Sai Ganesh Nagarajan, Sebastian Pokutta
Abstract:
We formalize and extend existing definitions of backdoor-based watermarks and adversarial defenses as interactive protocols between two players. The existence of these schemes is inherently tied to the learning tasks for which they are designed. Our main result shows that for almost every discriminative learning task, at least one of the two -- a watermark or an adversarial defense -- exists. The term "almost every" indicates that we also identify a third, counterintuitive but necessary option, i.e., a scheme we call a transferable attack. By transferable attack, we refer to an efficient algorithm computing queries that look indistinguishable from the data distribution and fool all efficient defenders. To this end, we prove the necessity of a transferable attack via a construction that uses a cryptographic tool called homomorphic encryption. Furthermore, we show that any task that satisfies our notion of a transferable attack implies a cryptographic primitive, thus requiring the underlying task to be computationally complex. These two facts imply an "equivalence" between the existence of transferable attacks and cryptography. Finally, we show that the class of tasks of bounded VC-dimension has an adversarial defense, and a subclass of them has a watermark.
Authors:Zhenyu Xu, Victor S. Sheng
Abstract:
As Large Language Models (LLMs) become increasingly sophisticated, they raise significant security concerns, including the creation of fake news and academic misuse. Most detectors for identifying model-generated text are limited by their reliance on variance in perplexity and burstiness, and they require substantial computational resources. In this paper, we proposed a watermarking method embedding a specific watermark into the text during its generation by LLMs, based on a pre-defined signal pattern. This technique not only ensures the watermark's invisibility to humans but also maintains the quality and grammatical integrity of model-generated text. We utilize LLMs and Fast Fourier Transform (FFT) for token probability computation and detection of the signal watermark. The unique application of signal processing principles within the realm of text generation by LLMs allows for subtle yet effective embedding of watermarks, which do not compromise the quality or coherence of the generated text. Our method has been empirically validated across multiple LLMs, consistently maintaining high detection accuracy, even with variations in temperature settings during text generation. In the experiment of distinguishing between human-written and watermarked text, our method achieved an AUROC score of 0.97, significantly outperforming existing methods like GPTZero, which scored 0.64. The watermark's resilience to various attacking scenarios further confirms its robustness, addressing significant challenges in model-generated text authentication.
Authors:Dara Bahri, John Wieting
Abstract:
Watermarking has recently emerged as an effective strategy for detecting the outputs of large language models (LLMs). Most existing schemes require white-box access to the model's next-token probability distribution, which is typically not accessible to downstream users of an LLM API. In this work, we propose a principled watermarking scheme that requires only the ability to sample sequences from the LLM (i.e. black-box access), boasts a distortion-free property, and can be chained or nested using multiple secret keys. We provide performance guarantees, demonstrate how it can be leveraged when white-box access is available, and show when it can outperform existing white-box schemes via comprehensive experiments.
Authors:Aoting Hu, Yanzhi Chen, Renjie Xie, Adrian Weller
Abstract:
Safeguarding the intellectual property of machine learning models has emerged as a pressing concern in AI security. Model watermarking is a powerful technique for protecting ownership of machine learning models, yet its reliability has been recently challenged by recent watermark removal attacks. In this work, we investigate why existing watermark embedding techniques particularly those based on backdooring are vulnerable. Through an information-theoretic analysis, we show that the resilience of watermarking against erasure attacks hinges on the choice of trigger-set samples, where current uses of out-distribution trigger-set are inherently vulnerable to white-box adversaries. Based on this discovery, we propose a novel model watermarking scheme, In-distribution Watermark Embedding (IWE), to overcome the limitations of existing method. To further minimise the gap to clean models, we analyze the role of logits as watermark information carriers and propose a new approach to better conceal watermark information within the logits. Experiments on real-world datasets including CIFAR-100 and Caltech-101 demonstrate that our method robustly defends against various adversaries with negligible accuracy loss (< 0.1%).
Authors:Sung Ju Lee, Nam Ik Cho
Abstract:
The proliferation of hyper-realistic images from Latent Diffusion Models (LDMs) demands robust watermarking, yet existing post-hoc methods are prohibitively slow due to iterative optimization or inversion processes. We introduce PhaseMark, a single-shot, optimization-free framework that directly modulates the phase in the VAE latent frequency domain. This approach makes PhaseMark thousands of times faster than optimization-based techniques while achieving state-of-the-art resilience against severe attacks, including regeneration, without degrading image quality. We analyze four modulation variants, revealing a clear performance-quality trade-off. PhaseMark demonstrates a new paradigm where efficient, resilient watermarking is achieved by exploiting intrinsic latent properties.
Authors:Hengyu Wu, Yang Cao
Abstract:
Training data is a critical and often proprietary asset in Large Language Model (LLM) development, motivating the use of data watermarking to embed model-transferable signals for usage verification. We identify low coverage as a vital yet largely overlooked requirement for practicality, as individual data owners typically contribute only a minute fraction of massive training corpora. Prior methods fail to maintain stealthiness, verification feasibility, or robustness when only one or a few sequences can be modified. To address these limitations, we introduce SLIM, a framework enabling per-user data provenance verification under strict black-box access. SLIM leverages intrinsic LLM properties to induce a Latent-Space Confusion Zone by training the model to map semantically similar prefixes to divergent continuations. This manifests as localized generation instability, which can be reliably detected via hypothesis testing. Experiments demonstrate that SLIM achieves ultra-low coverage capability, strong black-box verification performance, and great scalability while preserving both stealthiness and model utility, offering a robust solution for protecting training data in modern LLM pipelines.
Authors:Minyoung Kim, Paul Hongsuck Seo
Abstract:
The rapid growth of Artificial Intelligence-Generated Content (AIGC) raises concerns about the authenticity of digital media. In this context, image self-recovery, reconstructing original content from its manipulated version, offers a practical solution for understanding the attacker's intent and restoring trustworthy data. However, existing methods often fail to accurately recover tampered regions, falling short of the primary goal of self-recovery. To address this challenge, we propose ReImage, a neural watermarking-based self-recovery framework that embeds a shuffled version of the target image into itself as a watermark. We design a generator that produces watermarks optimized for neural watermarking and introduce an image enhancement module to refine the recovered image. We further analyze and resolve key limitations of shuffled watermarking, enabling its effective use in self-recovery. We demonstrate that ReImage achieves state-of-the-art performance across diverse tampering scenarios, consistently producing high-quality recovered images. The code and pretrained models will be released upon publication.
Authors:Zhengchunmin Dai, Jiaxiong Tang, Peng Sun, Honglong Chen, Liantao Wu
Abstract:
In decentralized machine learning paradigms such as Split Federated Learning (SFL) and its variant U-shaped SFL, the server's capabilities are severely restricted. Although this enhances client-side privacy, it also leaves the server highly vulnerable to model theft by malicious clients. Ensuring intellectual property protection for such capability-limited servers presents a dual challenge: watermarking schemes that depend on client cooperation are unreliable in adversarial settings, whereas traditional server-side watermarking schemes are technically infeasible because the server lacks access to critical elements such as model parameters or labels. To address this challenge, this paper proposes Sigil, a mandatory watermarking framework designed specifically for capability-limited servers. Sigil defines the watermark as a statistical constraint on the server-visible activation space and embeds the watermark into the client model via gradient injection, without requiring any knowledge of the data. Besides, we design an adaptive gradient clipping mechanism to ensure that our watermarking process remains both mandatory and stealthy, effectively countering existing gradient anomaly detection methods and a specifically designed adaptive subspace removal attack. Extensive experiments on multiple datasets and models demonstrate Sigil's fidelity, robustness, and stealthiness.
Authors:Jiaxiong Tang, Zhengchunmin Dai, Liantao Wu, Peng Sun, Honglong Chen, Zhenfu Cao
Abstract:
Split Federated Learning (SFL) is renowned for its privacy-preserving nature and low computational overhead among decentralized machine learning paradigms. In this framework, clients employ lightweight models to process private data locally and transmit intermediate outputs to a powerful server for further computation. However, SFL is a double-edged sword: while it enables edge computing and enhances privacy, it also introduces intellectual property ambiguity as both clients and the server jointly contribute to training. Existing watermarking techniques fail to protect both sides since no single participant possesses the complete model. To address this, we propose RISE, a Robust model Intellectual property protection scheme using client-Server watermark Embedding for SFL. Specifically, RISE adopts an asymmetric client-server watermarking design: the server embeds feature-based watermarks through a loss regularization term, while clients embed backdoor-based watermarks by injecting predefined trigger samples into private datasets. This co-embedding strategy enables both clients and the server to verify model ownership. Experimental results on standard datasets and multiple network architectures show that RISE achieves over $95\%$ watermark detection rate ($p-value \lt 0.03$) across most settings. It exhibits no mutual interference between client- and server-side watermarks and remains robust against common removal attacks.
Authors:Jun Woo Chung, Yingjie Lao, Weijie Zhao
Abstract:
Gradient Boosting Decision Trees (GBDTs) are widely used in industry and academia for their high accuracy and efficiency, particularly on structured data. However, watermarking GBDT models remains underexplored compared to neural networks. In this work, we present the first robust watermarking framework tailored to GBDT models, utilizing in-place fine-tuning to embed imperceptible and resilient watermarks. We propose four embedding strategies, each designed to minimize impact on model accuracy while ensuring watermark robustness. Through experiments across diverse datasets, we demonstrate that our methods achieve high watermark embedding rates, low accuracy degradation, and strong resistance to post-deployment fine-tuning.
Authors:Chung Peng Lee, Rachel Hong, Harry Jiang, Aster Plotnik, William Agnew, Jamie Morgenstern
Abstract:
The internet has become the main source of data to train modern text-to-image or vision-language models, yet it is increasingly unclear whether web-scale data collection practices for training AI systems adequately respect data owners' wishes. Ignoring the owner's indication of consent around data usage not only raises ethical concerns but also has recently been elevated into lawsuits around copyright infringement cases. In this work, we aim to reveal information about data owners' consent to AI scraping and training, and study how it's expressed in DataComp, a popular dataset of 12.8 billion text-image pairs. We examine both the sample-level information, including the copyright notice, watermarking, and metadata, and the web-domain-level information, such as a site's Terms of Service (ToS) and Robots Exclusion Protocol. We estimate at least 122M of samples exhibit some indication of copyright notice in CommonPool, and find that 60\% of the samples in the top 50 domains come from websites with ToS that prohibit scraping. Furthermore, we estimate 9-13\% with 95\% confidence interval of samples from CommonPool to contain watermarks, where existing watermark detection methods fail to capture them in high fidelity. Our holistic methods and findings show that data owners rely on various channels to convey data consent, of which current AI data collection pipelines do not entirely respect. These findings highlight the limitations of the current dataset curation/release practice and the need for a unified data consent framework taking AI purposes into consideration.
Authors:Yanming Li, Seifeddine Ghozzi, Cédric Eichler, Nicolas Anciaux, Alexandra Bensamoun, Lorena Gonzalez Manzano
Abstract:
We address the problem of auditing whether sensitive or copyrighted texts were used to fine-tune large language models (LLMs) under black-box access. Prior signals-verbatim regurgitation and membership inference-are unreliable at the level of individual documents or require altering the visible text. We introduce a text-preserving watermarking framework that embeds sequences of invisible Unicode characters into documents. Each watermark is split into a cue (embedded in odd chunks) and a reply (embedded in even chunks). At audit time, we submit prompts that contain only the cue; the presence of the corresponding reply in the model's output provides evidence of memorization consistent with training on the marked text. To obtain sound decisions, we compare the score of the published watermark against a held-out set of counterfactual watermarks and apply a ranking test with a provable false-positive-rate bound. The design is (i) minimally invasive (no visible text changes), (ii) scalable to many users and documents via a large watermark space and multi-watermark attribution, and (iii) robust to common passive transformations. We evaluate on open-weight LLMs and multiple text domains, analyzing regurgitation dynamics, sensitivity to training set size, and interference under multiple concurrent watermarks. Our results demonstrate reliable post-hoc provenance signals with bounded FPR under black-box access. We experimentally observe a failure rate of less than 0.1\% when detecting a reply after fine-tuning with 50 marked documents. Conversely, no spurious reply was recovered in over 18,000 challenges, corresponding to a 100\%TPR@0\% FPR. Moreover, detection rates remain relatively stable as the dataset size increases, maintaining a per-document detection rate above 45\% even when the marked collection accounts for less than 0.33\% of the fine-tuning data.
Authors:Thomas Fargues, Ye Dong, Tianwei Zhang, Jin-Song Dong
Abstract:
The rapid growth of Large Language Models (LLMs) has highlighted the pressing need for reliable mechanisms to verify content ownership and ensure traceability. Watermarking offers a promising path forward, but it remains limited by privacy concerns in sensitive scenarios, as traditional approaches often require direct access to a model's parameters or its training data. In this work, we propose a secure multi-party computation (MPC)-based private LLMs watermarking framework, PRIVMARK, to address the concerns. Concretely, we investigate PostMark (EMNLP'2024), one of the state-of-the-art LLMs Watermarking methods, and formulate its basic operations. Then, we construct efficient protocols for these operations using the MPC primitives in a black-box manner. In this way, PRIVMARK enables multiple parties to collaboratively watermark an LLM's output without exposing the model's weights to any single computing party. We implement PRIVMARK using SecretFlow-SPU (USENIX ATC'2023) and evaluate its performance using the ABY3 (CCS'2018) backend. The experimental results show that PRIVMARK achieves semantically identical results compared to the plaintext baseline without MPC and is resistant against paraphrasing and removing attacks with reasonable efficiency.
Authors:Kangfeng Ye, Roberto Metere, Jim Woodcock, Poonam Yadav
Abstract:
Formal verification is crucial for ensuring the robustness of security protocols against adversarial attacks. The Needham-Schroeder protocol, a foundational authentication mechanism, has been extensively studied, including its integration with Physical Layer Security (PLS) techniques such as watermarking and jamming. Recent research has used ProVerif to verify these mechanisms in terms of secrecy. However, the ProVerif-based approach limits the ability to improve understanding of security beyond verification results. To overcome these limitations, we re-model the same protocol using an Isabelle formalism that generates sound animation, enabling interactive and automated formal verification of security protocols. Our modelling and verification framework is generic and highly configurable, supporting both cryptography and PLS. For the same protocol, we have conducted a comprehensive analysis (secrecy and authenticity in four different eavesdropper locations under both passive and active attacks) using our new web interface. Our findings not only successfully reproduce and reinforce previous results on secrecy but also reveal an uncommon but expected outcome: authenticity is preserved across all examined scenarios, even in cases where secrecy is compromised. We have proposed a PLS-based Diffie-Hellman protocol that integrates watermarking and jamming, and our analysis shows that it is secure for deriving a session key with required authentication. These highlight the advantages of our novel approach, demonstrating its robustness in formally verifying security properties beyond conventional methods.
Authors:Po-Yuan Mao, Cheng-Chang Tsai, Chun-Shien Lu
Abstract:
The great success of the diffusion model in image synthesis led to the release of gigantic commercial models, raising the issue of copyright protection and inappropriate content generation. Training-free diffusion watermarking provides a low-cost solution for these issues. However, the prior works remain vulnerable to rotation, scaling, and translation (RST) attacks. Although some methods employ meticulously designed patterns to mitigate this issue, they often reduce watermark capacity, which can result in identity (ID) collusion. To address these problems, we propose MaXsive, a training-free diffusion model generative watermarking technique that has high capacity and robustness. MaXsive best utilizes the initial noise to watermark the diffusion model. Moreover, instead of using a meticulously repetitive ring pattern, we propose injecting the X-shape template to recover the RST distortions. This design significantly increases robustness without losing any capacity, making ID collusion less likely to happen. The effectiveness of MaXsive has been verified on two well-known watermarking benchmarks under the scenarios of verification and identification.
Authors:Minyoung Kim, Sehwan Park, Sungmin Cha, Paul Hongsuck Seo
Abstract:
Recent advances in voice cloning and lip synchronization models have enabled Synthesized Audiovisual Forgeries (SAVFs), where both audio and visuals are manipulated to mimic a target speaker. This significantly increases the risk of misinformation by making fake content seem real. To address this issue, existing methods detect or localize manipulations but cannot recover the authentic audio that conveys the semantic content of the message. This limitation reduces their effectiveness in combating audiovisual misinformation. In this work, we introduce the task of Authentic Audio Recovery (AAR) and Tamper Localization in Audio (TLA) from SAVFs and propose a cross-modal watermarking framework to embed authentic audio into visuals before manipulation. This enables AAR, TLA, and a robust defense against misinformation. Extensive experiments demonstrate the strong performance of our method in AAR and TLA against various manipulations, including voice cloning and lip synchronization.
Authors:Peilin He, James Joshi
Abstract:
Reconstructing high-quality images from low-resolution inputs using Residual Dense Spatial Networks (RDSNs) is crucial yet challenging, particularly in collaborative scenarios where centralized training poses significant privacy risks, including data leakage and inference attacks, as well as high computational costs. We propose a novel Privacy-Preserving Federated Learning-based RDSN (PPFL-RDSN) framework specifically tailored for lossy image reconstruction. PPFL-RDSN integrates Federated Learning (FL), local differential privacy, and robust model watermarking techniques, ensuring data remains secure on local devices, safeguarding sensitive information, and maintaining model authenticity without revealing underlying data. Empirical evaluations show that PPFL-RDSN achieves comparable performance to the state-of-the-art centralized methods while reducing computational burdens, and effectively mitigates security and privacy vulnerabilities, making it a practical solution for secure and privacy-preserving collaborative computer vision applications.
Authors:Abdullah All Tanvir, Xin Zhong
Abstract:
This paper introduces a novel deep learning framework for robust image zero-watermarking based on distortion-invariant feature learning. As a zero-watermarking scheme, our method leaves the original image unaltered and learns a reference signature through optimization in the feature space. The proposed framework consists of two key modules. In the first module, a feature extractor is trained via noise-adversarial learning to generate representations that are both invariant to distortions and semantically expressive. This is achieved by combining adversarial supervision against a distortion discriminator and a reconstruction constraint to retain image content. In the second module, we design a learning-based multibit zero-watermarking scheme where the trained invariant features are projected onto a set of trainable reference codes optimized to match a target binary message. Extensive experiments on diverse image datasets and a wide range of distortions show that our method achieves state-of-the-art robustness in both feature stability and watermark recovery. Comparative evaluations against existing self-supervised and deep watermarking techniques further highlight the superiority of our framework in generalization and robustness.
Authors:Fabrice Y Harel-Canada, Boran Erol, Connor Choi, Jason Liu, Gary Jiarui Song, Nanyun Peng, Amit Sahai
Abstract:
Watermarking AI-generated text is critical for combating misuse. Yet recent theoretical work argues that any watermark can be erased via random walk attacks that perturb text while preserving quality. However, such attacks rely on two key assumptions: (1) rapid mixing (watermarks dissolve quickly under perturbations) and (2) reliable quality preservation (automated quality oracles perfectly guide edits). Through large-scale experiments and human-validated assessments, we find mixing is slow: 100% of perturbed texts retain traces of their origin after hundreds of edits, defying rapid mixing. Oracles falter, as state-of-the-art quality detectors misjudge edits (77% accuracy), compounding errors during attacks. Ultimately, attacks underperform: automated walks remove watermarks just 26% of the time -- dropping to 10% under human quality review. These findings challenge the inevitability of watermark removal. Instead, practical barriers -- slow mixing and imperfect quality control -- reveal watermarking to be far more robust than theoretical models suggest. The gap between idealized attacks and real-world feasibility underscores the need for stronger watermarking methods and more realistic attack models.
Authors:Yujin Huang, Zhi Zhang, Qingchuan Zhao, Xingliang Yuan, Chunyang Chen
Abstract:
On-device deep learning (DL) has rapidly gained adoption in mobile apps, offering the benefits of offline model inference and user privacy preservation over cloud-based approaches. However, it inevitably stores models on user devices, introducing new vulnerabilities, particularly model-stealing attacks and intellectual property infringement. While system-level protections like Trusted Execution Environments (TEEs) provide a robust solution, practical challenges remain in achieving scalable on-device DL model protection, including complexities in supporting third-party models and limited adoption in current mobile solutions. Advancements in TEE-enabled hardware, such as NVIDIA's GPU-based TEEs, may address these obstacles in the future. Currently, watermarking serves as a common defense against model theft but also faces challenges here as many mobile app developers lack corresponding machine learning expertise and the inherent read-only and inference-only nature of on-device DL models prevents third parties like app stores from implementing existing watermarking techniques in post-deployment models.
To protect the intellectual property of on-device DL models, in this paper, we propose THEMIS, an automatic tool that lifts the read-only restriction of on-device DL models by reconstructing their writable counterparts and leverages the untrainable nature of on-device DL models to solve watermark parameters and protect the model owner's intellectual property. Extensive experimental results across various datasets and model structures show the superiority of THEMIS in terms of different metrics. Further, an empirical investigation of 403 real-world DL mobile apps from Google Play is performed with a success rate of 81.14%, showing the practicality of THEMIS.
Authors:Vishisht Rao, Aounon Kumar, Himabindu Lakkaraju, Nihar B. Shah
Abstract:
The integrity of peer review is fundamental to scientific progress, but the rise of large language models (LLMs) has introduced concerns that some reviewers may rely on these tools to generate reviews rather than writing them independently. Although some venues have banned LLM-assisted reviewing, enforcement remains difficult as existing detection tools cannot reliably distinguish between fully generated reviews and those merely polished with AI assistance. In this work, we address the challenge of detecting LLM-generated reviews. We consider the approach of performing indirect prompt injection via the paper's PDF, prompting the LLM to embed a covert watermark in the generated review, and subsequently testing for presence of the watermark in the review. We identify and address several pitfalls in naïve implementations of this approach. Our primary contribution is a rigorous watermarking and detection framework that offers strong statistical guarantees. Specifically, we introduce watermarking schemes and hypothesis tests that control the family-wise error rate across multiple reviews, achieving higher statistical power than standard corrections such as Bonferroni, while making no assumptions about the nature of human-written reviews. We explore multiple indirect prompt injection strategies--including font-based embedding and obfuscated prompts--and evaluate their effectiveness under various reviewer defense scenarios. Our experiments find high success rates in watermark embedding across various LLMs. We also empirically find that our approach is resilient to common reviewer defenses, and that the bounds on error rates in our statistical tests hold in practice. In contrast, we find that Bonferroni-style corrections are too conservative to be useful in this setting.
Authors:Sudev Kumar Padhi, Archana Tiwari, Sk. Subidh Ali
Abstract:
Advancements in digital technologies make it easy to modify the content of digital images. Hence, ensuring digital images integrity and authenticity is necessary to protect them against various attacks that manipulate them. We present a Deep Learning (DL) based dual invisible watermarking technique for performing source authentication, content authentication, and protecting digital content copyright of images sent over the internet. Beyond securing images, the proposed technique demonstrates robustness to content-preserving image manipulations. It is also impossible to imitate or overwrite watermarks because the cryptographic hash of the image and the dominant features of the image in the form of perceptual hash are used as watermarks. We highlighted the need for source authentication to safeguard image integrity and authenticity, along with identifying similar content for copyright protection. After exhaustive testing, we obtained a high peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), which implies there is a minute change in the original image after embedding our watermarks. Our trained model achieves high watermark extraction accuracy and to the best of our knowledge, this is the first deep learning-based dual watermarking technique proposed in the literature.
Authors:Jade Garcia Bourrée, Anne-Marie Kermarrec, Erwan Le Merrer, Othmane Safsafi
Abstract:
We address the problem of watermarking graph objects, which consists in hiding information within them, to prove their origin. The two existing methods to watermark graphs use subgraph matching or graph isomorphism techniques, which are known to be intractable for large graphs. To reduce the operational complexity, we propose FFG, a new graph watermarking scheme adapted from an image watermarking scheme, since graphs and images can be represented as matrices. We analyze and compare FFG, whose novelty lies in embedding the watermark in the Fourier transform of the adjacency matrix of a graph. Our technique enjoys a much lower complexity than that of related works (i.e. in $\mathcal{O}\left(N^2 \log N\right)$), while performing better or at least as well as the two state-of-the-art methods.
Authors:Amirhossein Dabiriaghdam, Lele Wang
Abstract:
The widespread adoption of large language models (LLMs) necessitates reliable methods to detect LLM-generated text. We introduce SimMark, a robust sentence-level watermarking algorithm that makes LLMs' outputs traceable without requiring access to model internals, making it compatible with both open and API-based LLMs. By leveraging the similarity of semantic sentence embeddings combined with rejection sampling to embed detectable statistical patterns imperceptible to humans, and employing a soft counting mechanism, SimMark achieves robustness against paraphrasing attacks. Experimental results demonstrate that SimMark sets a new benchmark for robust watermarking of LLM-generated content, surpassing prior sentence-level watermarking techniques in robustness, sampling efficiency, and applicability across diverse domains, all while maintaining the text quality and fluency.
Authors:Peizhuo Lv, Yiran Xiahou, Congyi Li, Mengjie Sun, Shengzhi Zhang, Kai Chen, Yingjun Zhang
Abstract:
LoRA (Low-Rank Adaptation) has achieved remarkable success in the parameter-efficient fine-tuning of large models. The trained LoRA matrix can be integrated with the base model through addition or negation operation to improve performance on downstream tasks. However, the unauthorized use of LoRAs to generate harmful content highlights the need for effective mechanisms to trace their usage. A natural solution is to embed watermarks into LoRAs to detect unauthorized misuse. However, existing methods struggle when multiple LoRAs are combined or negation operation is applied, as these can significantly degrade watermark performance. In this paper, we introduce LoRAGuard, a novel black-box watermarking technique for detecting unauthorized misuse of LoRAs. To support both addition and negation operations, we propose the Yin-Yang watermark technique, where the Yin watermark is verified during negation operation and the Yang watermark during addition operation. Additionally, we propose a shadow-model-based watermark training approach that significantly improves effectiveness in scenarios involving multiple integrated LoRAs. Extensive experiments on both language and diffusion models show that LoRAGuard achieves nearly 100% watermark verification success and demonstrates strong effectiveness.
Authors:Adam Block, Ayush Sekhari, Alexander Rakhlin
Abstract:
Recent advances in Large Language Models (LLMs) have led to significant improvements in natural language processing tasks, but their ability to generate human-quality text raises significant ethical and operational concerns in settings where it is important to recognize whether or not a given text was generated by a human. Thus, recent work has focused on developing techniques for watermarking LLM-generated text, i.e., introducing an almost imperceptible signal that allows a provider equipped with a secret key to determine if given text was generated by their model. Current watermarking techniques are often not practical due to concerns with generation latency, detection time, degradation in text quality, or robustness. Many of these drawbacks come from the focus on token-level watermarking, which ignores the inherent structure of text. In this work, we introduce a new scheme, GaussMark, that is simple and efficient to implement, has formal statistical guarantees on its efficacy, comes at no cost in generation latency, and embeds the watermark into the weights of the model itself, providing a structural watermark. Our approach is based on Gaussian independence testing and is motivated by recent empirical observations that minor additive corruptions to LLM weights can result in models of identical (or even improved) quality. We show that by adding a small amount of Gaussian noise to the weights of a given LLM, we can watermark the model in a way that is statistically detectable by a provider who retains the secret key. We provide formal statistical bounds on the validity and power of our procedure. Through an extensive suite of experiments, we demonstrate that GaussMark is reliable, efficient, and relatively robust to corruptions such as insertions, deletions, substitutions, and roundtrip translations and can be instantiated with essentially no loss in model quality.
Authors:Jane Downer, Ren Wang, Binghui Wang
Abstract:
Graph Neural Networks (GNNs) are the mainstream method to learn pervasive graph data and are widely deployed in industry, making their intellectual property valuable. However, protecting GNNs from unauthorized use remains a challenge. Watermarking, which embeds ownership information into a model, is a potential solution. However, existing watermarking methods have two key limitations: First, almost all of them focus on non-graph data, with watermarking GNNs for complex graph data largely unexplored. Second, the de facto backdoor-based watermarking methods pollute training data and induce ownership ambiguity through intentional misclassification. Our explanation-based watermarking inherits the strengths of backdoor-based methods (e.g., robust to watermark removal attacks), but avoids data pollution and eliminates intentional misclassification. In particular, our method learns to embed the watermark in GNN explanations such that this unique watermark is statistically distinct from other potential solutions, and ownership claims must show statistical significance to be verified. We theoretically prove that, even with full knowledge of our method, locating the watermark is an NP-hard problem. Empirically, our method manifests robustness to removal attacks like fine-tuning and pruning. By addressing these challenges, our approach marks a significant advancement in protecting GNN intellectual property.
Authors:Peizhuo Lv, Mengjie Sun, Hao Wang, Xiaofeng Wang, Shengzhi Zhang, Yuxuan Chen, Kai Chen, Limin Sun
Abstract:
In recent years, tremendous success has been witnessed in Retrieval-Augmented Generation (RAG), widely used to enhance Large Language Models (LLMs) in domain-specific, knowledge-intensive, and privacy-sensitive tasks. However, attackers may steal those valuable RAGs and deploy or commercialize them, making it essential to detect Intellectual Property (IP) infringement. Most existing ownership protection solutions, such as watermarks, are designed for relational databases and texts. They cannot be directly applied to RAGs because relational database watermarks require white-box access to detect IP infringement, which is unrealistic for the knowledge base in RAGs. Meanwhile, post-processing by the adversary's deployed LLMs typically destructs text watermark information. To address those problems, we propose a novel black-box "knowledge watermark" approach, named RAG-WM, to detect IP infringement of RAGs. RAG-WM uses a multi-LLM interaction framework, comprising a Watermark Generator, Shadow LLM & RAG, and Watermark Discriminator, to create watermark texts based on watermark entity-relationship tuples and inject them into the target RAG. We evaluate RAG-WM across three domain-specific and two privacy-sensitive tasks on four benchmark LLMs. Experimental results show that RAG-WM effectively detects the stolen RAGs in various deployed LLMs. Furthermore, RAG-WM is robust against paraphrasing, unrelated content removal, knowledge insertion, and knowledge expansion attacks. Lastly, RAG-WM can also evade watermark detection approaches, highlighting its promising application in detecting IP infringement of RAG systems.
Authors:Chaoyue Huang, Hanzhou Wu
Abstract:
Watermarking deep neural network (DNN) models has attracted a great deal of attention and interest in recent years because of the increasing demand to protect the intellectual property of DNN models. Many practical algorithms have been proposed by covertly embedding a secret watermark into a given DNN model through either parametric/structural modulation or backdooring against intellectual property infringement from the attacker while preserving the model performance on the original task. Despite the performance of these approaches, the lack of basic research restricts the algorithmic design to either a trial-based method or a data-driven technique. This has motivated the authors in this paper to introduce a game between the model attacker and the model defender for trigger-based black-box model watermarking. For each of the two players, we construct the payoff function and determine the optimal response, which enriches the theoretical foundation of model watermarking and may inspire us to develop novel schemes in the future.
Authors:Sungik Choi, Sungwoo Park, Jaehoon Lee, Seunghyun Kim, Stanley Jungkyu Choi, Moontae Lee
Abstract:
Dramatic advances in the quality of the latent diffusion models (LDMs) also led to the malicious use of AI-generated images. While current AI-generated image detection methods assume the availability of real/AI-generated images for training, this is practically limited given the vast expressibility of LDMs. This motivates the training-free detection setup where no related data are available in advance. The existing LDM-generated image detection method assumes that images generated by LDM are easier to reconstruct using an autoencoder than real images. However, we observe that this reconstruction distance is overfitted to background information, leading the current method to underperform in detecting images with simple backgrounds. To address this, we propose a novel method called HFI. Specifically, by viewing the autoencoder of LDM as a downsampling-upsampling kernel, HFI measures the extent of aliasing, a distortion of high-frequency information that appears in the reconstructed image. HFI is training-free, efficient, and consistently outperforms other training-free methods in detecting challenging images generated by various generative models. We also show that HFI can successfully detect the images generated from the specified LDM as a means of implicit watermarking. HFI outperforms the best baseline method while achieving magnitudes of
Authors:Seongmin Hong, Suh Yoon Jeon, Kyeonghyun Lee, Ernest K. Ryu, Se Young Chun
Abstract:
In latent diffusion models (LDMs), denoising diffusion process efficiently takes place on latent space whose dimension is lower than that of pixel space. Decoder is typically used to transform the representation in latent space to that in pixel space. While a decoder is assumed to have an encoder as an accurate inverse, exact encoder-decoder pair rarely exists in practice even though applications often require precise inversion of decoder. Prior works for decoder inversion in LDMs employed gradient descent inspired by inversions of generative adversarial networks. However, gradient-based methods require larger GPU memory and longer computation time for larger latent space. For example, recent video LDMs can generate more than 16 frames, but GPUs with 24 GB memory can only perform gradient-based decoder inversion for 4 frames. Here, we propose an efficient gradient-free decoder inversion for LDMs, which can be applied to diverse latent models. Theoretical convergence property of our proposed inversion has been investigated not only for the forward step method, but also for the inertial Krasnoselskii-Mann (KM) iterations under mild assumption on cocoercivity that is satisfied by recent LDMs. Our proposed gradient-free method with Adam optimizer and learning rate scheduling significantly reduced computation time and memory usage over prior gradient-based methods and enabled efficient computation in applications such as noise-space watermarking while achieving comparable error levels.
Authors:Haris Khan, Sadia Asif
Abstract:
The proliferation of generative AI has transformed creative workflows, yet current systems face critical challenges in controllability and content protection. We propose a novel multi-agent framework that addresses both limitations through specialized agent roles and integrated watermarking mechanisms. Unlike existing multi-agent systems focused solely on generation quality, our approach uniquely combines controllable content synthesis with provenance protection during the generation process itself. The framework orchestrates Director/Planner, Generator, Reviewer, Integration, and Protection agents with human-in-the-loop feedback to ensure alignment with user intent while embedding imperceptible digital watermarks. We formalize the pipeline as a joint optimization objective unifying controllability, semantic alignment, and protection robustness. This work contributes to responsible generative AI by positioning multi-agent architectures as a solution for trustworthy creative workflows with built-in ownership tracking and content traceability.
Authors:Haris Khan, Sadia Asif, Shumaila Asif
Abstract:
The proliferation of generative AI systems creates unprecedented opportunities for content creation while raising critical concerns about controllability, copyright infringement, and content provenance. Current generative models operate as "black boxes" with limited user control and lack built-in mechanisms to protect intellectual property or trace content origin. We propose a novel multi-agent framework that addresses these challenges through specialized agent roles and integrated watermarking. Our system orchestrates Director, Generator, Reviewer, Integration, and Protection agents to ensure user intent alignment while embedding digital provenance markers. We demonstrate feasibility through two case studies: creative content generation with iterative refinement and copyright protection for AI-generated art in commercial contexts. Preliminary feasibility evidence from prior work indicates up to 23\% improvement in semantic alignment and 95\% watermark recovery rates. This work contributes to responsible generative AI deployment, positioning multi-agent systems as a solution for trustworthy creative workflows in legal and commercial applications.
Authors:Jiayi Xu, Zhang Zhang, Yuanrui Zhang, Ruitao Chen, Yixian Xu, Tianyu He, Di He
Abstract:
In this paper, we introduce \emph{Luminark}, a training-free and probabilistically-certified watermarking method for general vision generative models. Our approach is built upon a novel watermark definition that leverages patch-level luminance statistics. Specifically, the service provider predefines a binary pattern together with corresponding patch-level thresholds. To detect a watermark in a given image, we evaluate whether the luminance of each patch surpasses its threshold and then verify whether the resulting binary pattern aligns with the target one. A simple statistical analysis demonstrates that the false positive rate of the proposed method can be effectively controlled, thereby ensuring certified detection. To enable seamless watermark injection across different paradigms, we leverage the widely adopted guidance technique as a plug-and-play mechanism and develop the \emph{watermark guidance}. This design enables Luminark to achieve generality across state-of-the-art generative models without compromising image quality. Empirically, we evaluate our approach on nine models spanning diffusion, autoregressive, and hybrid frameworks. Across all evaluations, Luminark consistently demonstrates high detection accuracy, strong robustness against common image transformations, and good performance on visual quality.
Authors:Bhagyesh Kumar, A S Aravinthakashan, Akshat Satyanarayan, Ishaan Gakhar, Ujjwal Verma
Abstract:
Adversarially perturbed images of text can cause sophisticated OCR systems to produce misleading or incorrect transcriptions from seemingly invisible changes to humans. Some of these perturbations even survive physical capture, posing security risks to high-stakes applications such as document processing, license plate recognition, and automated compliance systems. Existing defenses, such as adversarial training, input preprocessing, or post-recognition correction, are often model-specific, computationally expensive, and affect performance on unperturbed inputs while remaining vulnerable to unseen or adaptive attacks. To address these challenges, TopoReformer is introduced, a model-agnostic reformation pipeline that mitigates adversarial perturbations while preserving the structural integrity of text images. Topology studies properties of shapes and spaces that remain unchanged under continuous deformations, focusing on global structures such as connectivity, holes, and loops rather than exact distance. Leveraging these topological features, TopoReformer employs a topological autoencoder to enforce manifold-level consistency in latent space and improve robustness without explicit gradient regularization. The proposed method is benchmarked on EMNIST, MNIST, against standard adversarial attacks (FGSM, PGD, Carlini-Wagner), adaptive attacks (EOT, BDPA), and an OCR-specific watermark attack (FAWA).
Authors:Lifeng Qiu Lin, Henry Kam, Qi Sun, Kaan Akşit
Abstract:
Steganography finds its use in visual medium such as providing metadata and watermarking. With support of efficient latent representations and foveated rendering, we trained models that improve existing capacity limits from 100 to 500 bits, while achieving better accuracy of up to 1 failure bit out of 2000, at 200K test bits. Finally, we achieve a comparable visual quality of 31.47 dB PSNR and 0.13 LPIPS, showing the effectiveness of novel perceptual design in creating multi-modal latent representations in steganography.
Authors:Anna Chistyakova, Mikhail Pautov
Abstract:
Being trained on large and vast datasets, visual foundation models (VFMs) can be fine-tuned for diverse downstream tasks, achieving remarkable performance and efficiency in various computer vision applications. The high computation cost of data collection and training motivates the owners of some VFMs to distribute them alongside the license to protect their intellectual property rights. However, a dishonest user of the protected model's copy may illegally redistribute it, for example, to make a profit. As a consequence, the development of reliable ownership verification tools is of great importance today, since such methods can be used to differentiate between a redistributed copy of the protected model and an independent model. In this paper, we propose an approach to ownership verification of visual foundation models by fine-tuning a small set of expressive layers of a VFM along with a small encoder-decoder network to embed digital watermarks into an internal representation of a hold-out set of input images. Importantly, the watermarks embedded remain detectable in the functional copies of the protected model, obtained, for example, by fine-tuning the VFM for a particular downstream task. Theoretically and experimentally, we demonstrate that the proposed method yields a low probability of false detection of a non-watermarked model and a low probability of false misdetection of a watermarked model.
Authors:Aadarsh Anantha Ramakrishnan, Shubham Agarwal, Selvanayagam S, Kunwar Singh
Abstract:
As image generation models grow increasingly powerful and accessible, concerns around authenticity, ownership, and misuse of synthetic media have become critical. The ability to generate lifelike images indistinguishable from real ones introduces risks such as misinformation, deepfakes, and intellectual property violations. Traditional watermarking methods either degrade image quality, are easily removed, or require access to confidential model internals - making them unsuitable for secure and scalable deployment. We are the first to introduce ZK-WAGON, a novel system for watermarking image generation models using the Zero-Knowledge Succinct Non Interactive Argument of Knowledge (ZK-SNARKs). Our approach enables verifiable proof of origin without exposing model weights, generation prompts, or any sensitive internal information. We propose Selective Layer ZK-Circuit Creation (SL-ZKCC), a method to selectively convert key layers of an image generation model into a circuit, reducing proof generation time significantly. Generated ZK-SNARK proofs are imperceptibly embedded into a generated image via Least Significant Bit (LSB) steganography. We demonstrate this system on both GAN and Diffusion models, providing a secure, model-agnostic pipeline for trustworthy AI image generation.
Authors:Sebastian Bordt, Martin Pawelczyk
Abstract:
Recent work has demonstrated that controlled pretraining experiments are a powerful tool for understanding learning, reasoning, and memorization in large language models (LLMs). However, the computational cost of pretraining presents a significant constraint. To overcome this constraint, we propose to conduct multiple pretraining experiments simultaneously during a single training run. We demonstrate the feasibility of this approach by conducting ten experiments during the training of a 1.5B parameter model on 210B tokens. Although we only train a single model, we can replicate the results from multiple previous works on data contamination, poisoning, and memorization. We also conduct novel investigations into knowledge acquisition, mathematical reasoning, and watermarking. For example, we dynamically update the training data until the model acquires a particular piece of knowledge. Remarkably, the influence of the ten experiments on the model's training dynamics and overall performance is minimal. However, interactions between different experiments may act as a potential confounder in our approach. We propose to test for interactions with continual pretraining experiments, finding them to be negligible in our setup. Overall, our findings suggest that performing multiple pretraining experiments in a single training run can enable rigorous scientific experimentation with large models on a compute budget.
Authors:Jianbin Ji, Dawen Xu, Li Dong, Lin Yang, Songhan He
Abstract:
With the wide spread of video, video watermarking has become increasingly crucial for copyright protection and content authentication. However, video watermarking still faces numerous challenges. For example, existing methods typically have shortcomings in terms of watermarking capacity and robustness, and there is a lack of specialized noise layer for High Efficiency Video Coding(HEVC) compression. To address these issues, this paper introduces a Deep Invertible Network for Video watermarking (DINVMark) and designs a noise layer to simulate HEVC compression. This approach not only in creases watermarking capacity but also enhances robustness. DINVMark employs an Invertible Neural Network (INN), where the encoder and decoder share the same network structure for both watermark embedding and extraction. This shared architecture ensures close coupling between the encoder and decoder, thereby improving the accuracy of the watermark extraction process. Experimental results demonstrate that the proposed scheme significantly enhances watermark robustness, preserves video quality, and substantially increases watermark embedding capacity.
Authors:Ekin Böke, Simon Torka
Abstract:
Large Language Models (LLMs) have emerged as promising tools for malware detection by analyzing code semantics, identifying vulnerabilities, and adapting to evolving threats. However, their reliability under adversarial compiler-level obfuscation is yet to be discovered. In this study, we empirically evaluate the robustness of three state-of-the-art LLMs: ChatGPT-4o, Gemini Flash 2.5, and Claude Sonnet 4 against compiler-level obfuscation techniques implemented via the LLVM infrastructure. These include control flow flattening, bogus control flow injection, instruction substitution, and split basic blocks, which are widely used to evade detection while preserving malicious behavior. We perform a structured evaluation on 40~C functions (20 vulnerable, 20 secure) sourced from the Devign dataset and obfuscated using LLVM passes. Our results show that these models often fail to correctly classify obfuscated code, with precision, recall, and F1-score dropping significantly after transformation. This reveals a critical limitation: LLMs, despite their language understanding capabilities, can be easily misled by compiler-based obfuscation strategies. To promote reproducibility, we release all evaluation scripts, prompts, and obfuscated code samples in a public repository. We also discuss the implications of these findings for adversarial threat modeling, and outline future directions such as software watermarking, compiler-aware defenses, and obfuscation-resilient model design.
Authors:Aarushi Mahajan, Wayne Burleson
Abstract:
Radio frequency fingerprint identification (RFFI) distinguishes wireless devices by the small variations in their analog circuits, avoiding heavy cryptographic authentication. While deep learning on spectrograms improves accuracy, models remain vulnerable to copying, tampering, and evasion. We present a stronger RFFI system combining watermarking for ownership proof and anomaly detection for spotting suspicious inputs. Using a ResNet-34 on log-Mel spectrograms, we embed three watermarks: a simple trigger, an adversarially trained trigger robust to noise and filtering, and a hidden gradient/weight signature. A convolutional Variational Autoencoders (VAE) with Kullback-Leibler (KL) warm-up and free-bits flags off-distribution queries. On the LoRa dataset, our system achieves 94.6% accuracy, 98% watermark success, and 0.94 AUROC, offering verifiable, tamper-resistant authentication.
Authors:Chia-Hsun Lu, Guan-Jhih Wu, Ya-Chi Ho, Chih-Ya Shen
Abstract:
With the increasing importance of protecting intellectual property in machine learning, watermarking techniques have gained significant attention. As advanced models are increasingly deployed in domains such as social network analysis, the need for robust model protection becomes even more critical. While existing watermarking methods have demonstrated effectiveness for conventional deep neural networks, they often fail to adapt to the novel architecture, Kolmogorov-Arnold Networks (KAN), which feature learnable activation functions. KAN holds strong potential for modeling complex relationships in network-structured data. However, their unique design also introduces new challenges for watermarking. Therefore, we propose a novel watermarking method, Discrete Cosine Transform-based Activation Watermarking (DCT-AW), tailored for KAN. Leveraging the learnable activation functions of KAN, our method embeds watermarks by perturbing activation outputs using discrete cosine transform, ensuring compatibility with diverse tasks and achieving task independence. Experimental results demonstrate that DCT-AW has a small impact on model performance and provides superior robustness against various watermark removal attacks, including fine-tuning, pruning, and retraining after pruning.
Authors:Limengnan Zhou, Hanzhou Wu
Abstract:
Quantum neural networks (QNNs) leverage quantum computing to create powerful and efficient artificial intelligence models capable of solving complex problems significantly faster than traditional computers. With the fast development of quantum hardware technology, such as superconducting qubits, trapped ions, and integrated photonics, quantum computers may become reality, accelerating the applications of QNNs. However, preparing quantum circuits and optimizing parameters for QNNs require quantum hardware support, expertise, and high-quality data. How to protect intellectual property (IP) of QNNs becomes an urgent problem to be solved in the era of quantum computing. We make the first attempt towards IP protection of QNNs by watermarking. To this purpose, we collect classical clean samples and trigger ones, each of which is generated by adding a perturbation to a clean sample, associated with a label different from the ground-truth one. The host QNN, consisting of quantum encoding, quantum state transformation, and quantum measurement, is then trained from scratch with the clean samples and trigger ones, resulting in a watermarked QNN model. During training, we introduce sample grouped and paired training to ensure that the performance on the downstream task can be maintained while achieving good performance for watermark extraction. When disputes arise, by collecting a mini-set of trigger samples, the hidden watermark can be extracted by analyzing the prediction results of the target model corresponding to the trigger samples, without accessing the internal details of the target QNN model, thereby verifying the ownership of the model. Experiments have verified the superiority and applicability of this work.
Authors:Tianyu Chen, Jian Lou, Wenjie Wang
Abstract:
As Retrieval-Augmented Generation (RAG) evolves into service-oriented platforms (Rag-as-a-Service) with shared knowledge bases, protecting the copyright of contributed data becomes essential. Existing watermarking methods in RAG focus solely on textual knowledge, leaving image knowledge unprotected. In this work, we propose AQUA, the first watermark framework for image knowledge protection in Multimodal RAG systems. AQUA embeds semantic signals into synthetic images using two complementary methods: acronym-based triggers and spatial relationship cues. These techniques ensure watermark signals survive indirect watermark propagation from image retriever to textual generator, being efficient, effective and imperceptible. Experiments across diverse models and datasets show that AQUA enables robust, stealthy, and reliable copyright tracing, filling a key gap in multimodal RAG protection.
Authors:Fay Elhassan, Niccolò Ajroldi, Antonio Orvieto, Jonas Geiping
Abstract:
The indistinguishability of AI-generated content from human text raises challenges in transparency and accountability. While several methods exist to watermark models behind APIs, embedding watermark strategies directly into model weights that are later reflected in the outputs of the model is challenging. In this study we propose a strategy to finetune a pair of low-rank adapters of a model, one serving as the text-generating model, and the other as the detector, so that a subtle watermark is embedded into the text generated by the first model and simultaneously optimized for detectability by the second. In this way, the watermarking strategy is fully learned end-to-end. This process imposes an optimization challenge, as balancing watermark robustness, naturalness, and task performance requires trade-offs. We discuss strategies on how to optimize this min-max objective and present results showing the effect of this modification to instruction finetuning.
Authors:ZhongLi Fang, Yu Xie, Ping Chen
Abstract:
Current image watermarking technologies are predominantly categorized into text watermarking techniques and image steganography; however, few methods can simultaneously handle text and image-based watermark data, which limits their applicability in complex digital environments. This paper introduces an innovative multi-modal watermarking approach, drawing on the concept of vector discretization in encoder-based vector quantization. By constructing adjacency matrices, the proposed method enables the transformation of text watermarks into robust image-based representations, providing a novel multi-modal watermarking paradigm for image generation applications. Additionally, this study presents a newly designed image restoration module to mitigate image degradation caused by transmission losses and various noise interferences, thereby ensuring the reliability and integrity of the watermark. Experimental results validate the robustness of the method under multiple noise attacks, providing a secure, scalable, and efficient solution for digital image copyright protection.
Authors:Zheng Xing, Chan-Tong Lam, Xiaochen Yuan, Sio-Kei Im, Penousal Machado
Abstract:
The development of quantum image representation and quantum measurement techniques has made quantum image processing research a hot topic. In this paper, a novel Adaptive Quantum Scaling Model (AQSM) is first proposed for scrambling watermark images. Then, on the basis of the proposed AQSM, a novel quantum watermarking scheme is presented. Unlike existing quantum watermarking schemes with fixed embedding scales, the proposed method can flexibly embed watermarks of different sizes. In order to improve the robustness of the watermarking algorithm, a novel Histogram Distribution-based Watermarking Mechanism (HDWM) is proposed, which utilizes the histogram distribution property of the watermark image to determine the embedding strategy. In order to improve the accuracy of extracted watermark information, a quantum refining method is suggested, which can realize a certain error correction. The required key quantum circuits are designed. Finally, the effectiveness and robustness of the proposed quantum watermarking method are evaluated by simulation experiments on three image size scales. The results demonstrate the invisibility and good robustness of the watermarking algorithm.
Authors:Xingyu Zhu, Xiapu Luo, Xuetao Wei
Abstract:
Recent advancements in text-to-3D generation can generate neural radiance fields (NeRFs) with score distillation sampling, enabling 3D asset creation without real-world data capture. With the rapid advancement in NeRF generation quality, protecting the copyright of the generated NeRF has become increasingly important. While prior works can watermark NeRFs in a post-generation way, they suffer from two vulnerabilities. First, a delay lies between NeRF generation and watermarking because the secret message is embedded into the NeRF model post-generation through fine-tuning. Second, generating a non-watermarked NeRF as an intermediate creates a potential vulnerability for theft. To address both issues, we propose Dreamark to embed a secret message by backdooring the NeRF during NeRF generation. In detail, we first pre-train a watermark decoder. Then, the Dreamark generates backdoored NeRFs in a way that the target secret message can be verified by the pre-trained watermark decoder on an arbitrary trigger viewport. We evaluate the generation quality and watermark robustness against image- and model-level attacks. Extensive experiments show that the watermarking process will not degrade the generation quality, and the watermark achieves 90+% accuracy among both image-level attacks (e.g., Gaussian noise) and model-level attacks (e.g., pruning attack).
Authors:Nan Sun, Han Fang, Yuxing Lu, Chengxin Zhao, Hefei Ling
Abstract:
DNN-based watermarking methods have rapidly advanced, with the ``Encoder-Noise Layer-Decoder'' (END) framework being the most widely used. To ensure end-to-end training, the noise layer in the framework must be differentiable. However, real-world distortions are often non-differentiable, leading to challenges in end-to-end training. Existing solutions only treat the distortion perturbation as additive noise, which does not fully integrate the effect of distortion in training. To better incorporate non-differentiable distortions into training, we propose a novel dual-decoder architecture (END$^2$). Unlike conventional END architecture, our method employs two structurally identical decoders: the Teacher Decoder, processing pure watermarked images, and the Student Decoder, handling distortion-perturbed images. The gradient is backpropagated only through the Teacher Decoder branch to optimize the encoder thus bypassing the problem of non-differentiability. To ensure resistance to arbitrary distortions, we enforce alignment of the two decoders' feature representations by maximizing the cosine similarity between their intermediate vectors on a hypersphere. Extensive experiments demonstrate that our scheme outperforms state-of-the-art algorithms under various non-differentiable distortions. Moreover, even without the differentiability constraint, our method surpasses baselines with a differentiable noise layer. Our approach is effective and easily implementable across all END architectures, enhancing practicality and generalizability.
Authors:Jijia Yang, Sen Peng, Xiaohua Jia
Abstract:
In practical application, the widespread deployment of diffusion models often necessitates substantial investment in training. As diffusion models find increasingly diverse applications, concerns about potential misuse highlight the imperative for robust intellectual property protection. Current protection strategies either employ backdoor-based methods, integrating a watermark task as a simpler training objective with the main model task, or embedding watermarks directly into the final output samples. However, the former approach is fragile compared to existing backdoor defense techniques, while the latter fundamentally alters the expected output. In this work, we introduce a novel watermarking framework by embedding the watermark into the whole diffusion process, and theoretically ensure that our final output samples contain no additional information. Furthermore, we utilize statistical algorithms to verify the watermark from internally generated model samples without necessitating triggers as conditions. Detailed theoretical analysis and experimental validation demonstrate the effectiveness of our proposed method.
Authors:Chen-Hsiu Huang, Ja-Ling Wu
Abstract:
The digital image manipulation and advancements in Generative AI, such as Deepfake, has raised significant concerns regarding the authenticity of images shared on social media. Traditional image forensic techniques, while helpful, are often passive and insufficient against sophisticated tampering methods. This paper introduces the Secure Learned Image Codec (SLIC), a novel active approach to ensuring image authenticity through watermark embedding in the compressed domain. SLIC leverages neural network-based compression to embed watermarks as adversarial perturbations in the latent space, creating images that degrade in quality upon re-compression if tampered with. This degradation acts as a defense mechanism against unauthorized modifications. Our method involves fine-tuning a neural encoder/decoder to balance watermark invisibility with robustness, ensuring minimal quality loss for non-watermarked images. Experimental results demonstrate SLIC's effectiveness in generating visible artifacts in tampered images, thereby preventing their redistribution. This work represents a significant step toward developing secure image codecs that can be widely adopted to safeguard digital image integrity.
Authors:Chaohui Xu, Qi Cui, Jinxin Dong, Weiyang He, Chip-Hong Chang
Abstract:
Illegitimate reproduction, distribution and derivation of Deep Neural Network (DNN) models can inflict economic loss, reputation damage and even privacy infringement. Passive DNN intellectual property (IP) protection methods such as watermarking and fingerprinting attempt to prove the ownership upon IP violation, but they are often too late to stop catastrophic damage of IP abuse and too feeble against strong adversaries. In this paper, we propose IDEA, an Inverse Domain Expert Adaptation based proactive DNN IP protection method featuring active authorization and source traceability. IDEA generalizes active authorization as an inverse problem of domain adaptation. The multi-adaptive optimization is solved by a mixture-of-experts model with one real and two fake experts. The real expert re-optimizes the source model to correctly classify test images with a unique model user key steganographically embedded. The fake experts are trained to output random prediction on test images without or with incorrect user key embedded by minimizing their mutual information (MI) with the real expert. The MoE model is knowledge distilled into a unified protected model to avoid leaking the expert model features by maximizing their MI with additional multi-layer attention and contrastive representation loss optimization. IDEA not only prevents unauthorized users without the valid key to access the functional model, but also enable the model owner to validate the deployed model and trace the source of IP infringement. We extensively evaluate IDEA on five datasets and four DNN models to demonstrate its effectiveness in authorization control, culprit tracing success rate, and robustness against various attacks.
Authors:Rupshali Roy, Swaroop Ghosh
Abstract:
Quantum circuits constitute Intellectual Property (IP) of the quantum developers and users, which needs to be protected from theft by adversarial agents, e.g., the quantum cloud provider or a rogue adversary present in the cloud. This necessitates the exploration of low-overhead techniques applicable to near-term quantum devices, to trace the quantum circuits/algorithms\textquotesingle{} IP and their output. We present two such lightweight watermarking techniques to prove ownership in the event of an adversary cloning the circuit design. For the first technique, a rotation gate is placed on ancilla qubits combined with other gate(s) at the output of the circuit. For the second method, a set of random gates are inserted in the middle of the circuit followed by its inverse, separated from the circuit by a barrier. These models are combined and applied on benchmark circuits, and the circuit depth, 2-qubit gate count, probability of successful trials (PST), and probabilistic proof of authorship (PPA) are compared against the state-of-the-art. The PST is reduced by a minuscule 0.53\% against the non-watermarked benchmarks and is up to 22.69\% higher compared to existing techniques. The circuit depth has been reduced by up to 27.7\% as against the state-of-the-art. The PPA is astronomically smaller than existing watermarks.
Authors:Yangkun Wang, Jingbo Shang
Abstract:
A recent watermarking scheme for language models achieves distortion-free embedding and robustness to edit-distance attacks. However, it suffers from limited generation diversity and high detection overhead. In parallel, recent research has focused on undetectability, a property ensuring that watermarks remain difficult for adversaries to detect and spoof. In this work, we introduce a new class of watermarking schemes constructed through probabilistic automata. We present two instantiations: (i) a practical scheme with exponential generation diversity and computational efficiency, and (ii) a theoretical construction with formal undetectability guarantees under cryptographic assumptions. Extensive experiments on LLaMA-3B and Mistral-7B validate the superior performance of our scheme in terms of robustness and efficiency.
Authors:Chen Gu, Yingying Sun, Yifan She, Donghui Hu
Abstract:
Federated learning (FL) enables multiple clients to collaboratively train a shared global model while preserving the privacy of their local data. Within this paradigm, the intellectual property rights (IPR) of client models are critical assets that must be protected. In practice, the central server responsible for maintaining the global model may maliciously manipulate the global model to erase client contributions or falsely claim sole ownership, thereby infringing on clients' IPR. Watermarking has emerged as a promising technique for asserting model ownership and protecting intellectual property. However, existing FL watermarking approaches remain limited, suffering from potential watermark collisions among clients, insufficient watermark security, and non-intuitive verification mechanisms. In this paper, we propose FLClear, a novel framework that simultaneously achieves collision-free watermark aggregation, enhanced watermark security, and visually interpretable ownership verification. Specifically, FLClear introduces a transposed model jointly optimized with contrastive learning to integrate the watermarking and main task objectives. During verification, the watermark is reconstructed from the transposed model and evaluated through both visual inspection and structural similarity metrics, enabling intuitive and quantitative ownership verification. Comprehensive experiments conducted over various datasets, aggregation schemes, and attack scenarios demonstrate the effectiveness of FLClear and confirm that it consistently outperforms state-of-the-art FL watermarking methods.
Authors:Kosta Pavlović, Lazar Stanarević, Petar Nedić, Slavko Kovačević, Igor Djurović
Abstract:
Prevailing practice in learning-based audio watermarking is to pursue robustness by expanding the set of simulated distortions during training. However, such surrogates are narrow and prone to overfitting. This paper presents AWARE (Audio Watermarking with Adversarial Resistance to Edits), an alternative approach that avoids reliance on attack-simulation stacks and handcrafted differentiable distortions. Embedding is obtained via adversarial optimization in the time-frequency domain under a level-proportional perceptual budget. Detection employs a time-order-agnostic detector with a Bitwise Readout Head (BRH) that aggregates temporal evidence into one score per watermark bit, enabling reliable watermark decoding even under desynchronization and temporal cuts. Empirically, AWARE attains high audio quality and speech intelligibility (PESQ/STOI) and consistently low BER across various audio edits, often surpassing representative state-of-the-art learning-based audio watermarking systems.
Authors:Leixu Huang, Zedian Shao, Teodora Baluta
Abstract:
Federated learning (FL) enables fine-tuning large language models (LLMs) across distributed data sources. As these sources increasingly include LLM-generated text, provenance tracking becomes essential for accountability and transparency. We adapt LLM watermarking for data provenance in FL where a subset of clients compute local updates on watermarked data, and the server averages all updates into the global LLM. In this setup, watermarks are radioactive: the watermark signal remains detectable after fine-tuning with high confidence. The $p$-value can reach $10^{-24}$ even when as little as $6.6\%$ of data is watermarked. However, the server can act as an active adversary that wants to preserve model utility while evading provenance tracking. Our observation is that updates induced by watermarked synthetic data appear as outliers relative to non-watermark updates. Our adversary thus applies strong robust aggregation that can filter these outliers, together with the watermark signal. All evaluated radioactive watermarks are not robust against such an active filtering server. Our work suggests fundamental trade-offs between radioactivity, robustness, and utility.
Authors:Rifat Sadik, Tanvir Rahman, Arpan Bhattacharjee, Bikash Chandra Halder, Ismail Hossain
Abstract:
Deep learning models have shown remarkable success in dermatological image analysis, offering potential for automated skin disease diagnosis. Previously, convolutional neural network(CNN) based architectures have achieved immense popularity and success in computer vision (CV) based task like skin image recognition, generation and video analysis. But with the emergence of transformer based models, CV tasks are now are nowadays carrying out using these models. Vision Transformers (ViTs) is such a transformer-based models that have shown success in computer vision. It uses self-attention mechanisms to achieve state-of-the-art performance across various tasks. However, their reliance on global attention mechanisms makes them susceptible to adversarial perturbations. This paper aims to investigate the susceptibility of ViTs for medical images to adversarial watermarking-a method that adds so-called imperceptible perturbations in order to fool models. By generating adversarial watermarks through Projected Gradient Descent (PGD), we examine the transferability of such attacks to CNNs and analyze the performance defense mechanism -- adversarial training. Results indicate that while performance is not compromised for clean images, ViTs certainly become much more vulnerable to adversarial attacks: an accuracy drop of as low as 27.6%. Nevertheless, adversarial training raises it up to 90.0%.
Authors:Yuhang Cai, Yaofei Wang, Donghui Hu, Chen Gu
Abstract:
The development of large language models (LLMs) has raised concerns about potential misuse. One practical solution is to embed a watermark in the text, allowing ownership verification through watermark extraction. Existing methods primarily focus on defending against modification attacks, often neglecting other spoofing attacks. For example, attackers can alter the watermarked text to produce harmful content without compromising the presence of the watermark, which could lead to false attribution of this malicious content to the LLM. This situation poses a serious threat to the LLMs service providers and highlights the significance of achieving modification detection and generated-text detection simultaneously. Therefore, we propose a technique to detect modifications in text for unbiased watermark which is sensitive to modification. We introduce a new metric called ``discarded tokens", which measures the number of tokens not included in watermark detection. When a modification occurs, this metric changes and can serve as evidence of the modification. Additionally, we improve the watermark detection process and introduce a novel method for unbiased watermark. Our experiments demonstrate that we can achieve effective dual detection capabilities: modification detection and generated-text detection by watermark.
Authors:Andre Kassis, Urs Hengartner, Yaoliang Yu
Abstract:
Diffusion-based purification (DBP) has become a cornerstone defense against adversarial examples (AEs), regarded as robust due to its use of diffusion models (DMs) that project AEs onto the natural data manifold. We refute this core claim, theoretically proving that gradient-based attacks effectively target the DM rather than the classifier, causing DBP's outputs to align with adversarial distributions. This prompts a reassessment of DBP's robustness, attributing it to two critical flaws: incorrect gradients and inappropriate evaluation protocols that test only a single random purification of the AE. We show that with proper accounting for stochasticity and resubmission risk, DBP collapses. To support this, we introduce DiffBreak, the first reliable toolkit for differentiation through DBP, eliminating gradient flaws that previously further inflated robustness estimates. We also analyze the current defense scheme used for DBP where classification relies on a single purification, pinpointing its inherent invalidity. We provide a statistically grounded majority-vote (MV) alternative that aggregates predictions across multiple purified copies, showing partial but meaningful robustness gain. We then propose a novel adaptation of an optimization method against deepfake watermarking, crafting systemic perturbations that defeat DBP even under MV, challenging DBP's viability.
Authors:Soumil Datta, Shih-Chieh Dai, Leo Yu, Guanhong Tao
Abstract:
Text-to-image diffusion models, such as Stable Diffusion, have shown exceptional potential in generating high-quality images. However, recent studies highlight concerns over the use of unauthorized data in training these models, which may lead to intellectual property infringement or privacy violations. A promising approach to mitigate these issues is to apply a watermark to images and subsequently check if generative models reproduce similar watermark features. In this paper, we examine the robustness of various watermark-based protection methods applied to text-to-image models. We observe that common image transformations are ineffective at removing the watermark effect. Therefore, we propose RATTAN, that leverages the diffusion process to conduct controlled image generation on the protected input, preserving the high-level features of the input while ignoring the low-level details utilized by watermarks. A small number of generated images are then used to fine-tune protected models. Our experiments on three datasets and 140 text-to-image diffusion models reveal that existing state-of-the-art protections are not robust against RATTAN.
Authors:Shulin Lan, Kanlin Liu, Yazhou Zhao, Chen Yang, Yingchao Wang, Xingshan Yao, Liehuang Zhu
Abstract:
Current passive deepfake face-swapping detection methods encounter significance bottlenecks in model generalization capabilities. Meanwhile, proactive detection methods often use fixed watermarks which lack a close relationship with the content they protect and are vulnerable to security risks. Dynamic watermarks based on facial features offer a promising solution, as these features provide unique identifiers. Therefore, this paper proposes a Facial Feature-based Proactive deepfake detection method (FaceProtect), which utilizes changes in facial characteristics during deepfake manipulation as a novel detection mechanism. We introduce a GAN-based One-way Dynamic Watermark Generating Mechanism (GODWGM) that uses 128-dimensional facial feature vectors as inputs. This method creates irreversible mappings from facial features to watermarks, enhancing protection against various reverse inference attacks. Additionally, we propose a Watermark-based Verification Strategy (WVS) that combines steganography with GODWGM, allowing simultaneous transmission of the benchmark watermark representing facial features within the image. Experimental results demonstrate that our proposed method maintains exceptional detection performance and exhibits high practicality on images altered by various deepfake techniques.
Authors:Agnibh Dasgupta, Abdullah Tanvir, Xin Zhong
Abstract:
Watermarking the outputs of large language models (LLMs) is critical for provenance tracing, content regulation, and model accountability. Existing approaches often rely on access to model internals or are constrained by static rules and token-level perturbations. Moreover, the idea of steering generative behavior via prompt-based instruction control remains largely underexplored. We introduce a prompt-guided watermarking framework that operates entirely at the input level and requires no access to model parameters or decoding logits. The framework comprises three cooperating components: a Prompting LM that synthesizes watermarking instructions from user prompts, a Marking LM that generates watermarked outputs conditioned on these instructions, and a Detecting LM trained to classify whether a response carries an embedded watermark. This modular design enables dynamic watermarking that adapts to individual prompts while remaining compatible with diverse LLM architectures, including both proprietary and open-weight models. We evaluate the framework over 25 combinations of Prompting and Marking LMs, such as GPT-4o, Mistral, LLaMA3, and DeepSeek. Experimental results show that watermark signals generalize across architectures and remain robust under fine-tuning, model distillation, and prompt-based adversarial attacks, demonstrating the effectiveness and robustness of the proposed approach.
Authors:Yiyang Guo, Ruizhe Li, Mude Hui, Hanzhong Guo, Chen Zhang, Chuangjian Cai, Le Wan, Shangfei Wang
Abstract:
Invisible watermarking is essential for safeguarding digital content, enabling copyright protection and content authentication. However, existing watermarking methods fall short in robustness against regeneration attacks. In this paper, we propose a novel method called FreqMark that involves unconstrained optimization of the image latent frequency space obtained after VAE encoding. Specifically, FreqMark embeds the watermark by optimizing the latent frequency space of the images and then extracts the watermark through a pre-trained image encoder. This optimization allows a flexible trade-off between image quality with watermark robustness and effectively resists regeneration attacks. Experimental results demonstrate that FreqMark offers significant advantages in image quality and robustness, permits flexible selection of the encoding bit number, and achieves a bit accuracy exceeding 90% when encoding a 48-bit hidden message under various attack scenarios.
Authors:Lauri Juvela, Xin Wang
Abstract:
Automatic detection of synthetic speech is becoming increasingly important as current synthesis methods are both near indistinguishable from human speech and widely accessible to the public. Audio watermarking and other active disclosure methods of are attracting research activity, as they can complement traditional deepfake defenses based on passive detection. In both active and passive detection, robustness is of major interest. Traditional audio watermarks are particularly susceptible to removal attacks by audio codec application. Most generated speech and audio content released into the wild passes through an audio codec purely as a distribution method. We recently proposed collaborative watermarking as method for making generated speech more easily detectable over a noisy but differentiable transmission channel. This paper extends the channel augmentation to work with non-differentiable traditional audio codecs and neural audio codecs and evaluates transferability and effect of codec bitrate over various configurations. The results show that collaborative watermarking can be reliably augmented by black-box audio codecs using a waveform-domain straight-through-estimator for gradient approximation. Furthermore, that results show that channel augmentation with a neural audio codec transfers well to traditional codecs. Listening tests demonstrate collaborative watermarking incurs negligible perceptual degradation with high bitrate codecs or DAC at 8kbps.
Authors:Yuzhang Chen, Jiangnan Zhu, Yujie Gu, Minoru Kuribayashi, Kouichi Sakurai
Abstract:
Deep neural networks (DNNs) have achieved significant success in real-world applications. However, safeguarding their intellectual property (IP) remains extremely challenging. Existing DNN watermarking for IP protection often require modifying DNN models, which reduces model performance and limits their practicality.
This paper introduces FreeMark, a novel DNN watermarking framework that leverages cryptographic principles without altering the original host DNN model, thereby avoiding any reduction in model performance. Unlike traditional DNN watermarking methods, FreeMark innovatively generates secret keys from a pre-generated watermark vector and the host model using gradient descent. These secret keys, used to extract watermark from the model's activation values, are securely stored with a trusted third party, enabling reliable watermark extraction from suspect models. Extensive experiments demonstrate that FreeMark effectively resists various watermark removal attacks while maintaining high watermark capacity.
Authors:Robin San Roman, Pierre Fernandez, Antoine Deleforge, Yossi Adi, Romain Serizel
Abstract:
The advancements in audio generative models have opened up new challenges in their responsible disclosure and the detection of their misuse. In response, we introduce a method to watermark latent generative models by a specific watermarking of their training data. The resulting watermarked models produce latent representations whose decoded outputs are detected with high confidence, regardless of the decoding method used. This approach enables the detection of the generated content without the need for a post-hoc watermarking step. It provides a more secure solution for open-sourced models and facilitates the identification of derivative works that fine-tune or use these models without adhering to their license terms. Our results indicate for instance that generated outputs are detected with an accuracy of more than 75% at a false positive rate of $10^{-3}$, even after fine-tuning the latent generative model.
Authors:Nghia T. Le, Alan Ritter, Kartik Goyal
Abstract:
We demonstrate that while the current approaches for language model watermarking are effective for open-ended generation, they are inadequate at watermarking LM outputs for constrained generation tasks with low-entropy output spaces. Therefore, we devise SeqMark, a sequence-level watermarking algorithm with semantic differentiation that balances the output quality, watermark detectability, and imperceptibility. It improves on the shortcomings of the prevalent token-level watermarking algorithms that cause under-utilization of the sequence-level entropy available for constrained generation tasks. Moreover, we identify and improve upon a different failure mode we term region collapse, associated with prior sequence-level watermarking algorithms. This occurs because the pseudorandom partitioning of semantic space for watermarking in these approaches causes all high-probability outputs to collapse into either invalid or valid regions, leading to a trade-off in output quality and watermarking effectiveness. SeqMark instead, differentiates the high-probable output subspace and partitions it into valid and invalid regions, ensuring the even spread of high-quality outputs among all the regions. On various constrained generation tasks like machine translation, code generation, and abstractive summarization, SeqMark substantially improves watermark detection accuracy (up to 28% increase in F1) while maintaining high generation quality.
Authors:Mouna Rabh, Yazan Boshmaf, Mashael Alsabah, Shammur Chowdhury, Mohamed Hefeeda, Issa Khalil
Abstract:
We present CallShield, the first caller identity authentication system that operates entirely at the audio layer, without relying on speech transcription, internet connectivity, or trusted infrastructure. CallShield introduces a real-time neural watermarking technique that enables per-bit embedding and recovery within 40-millisecond frames of live 8 kHz speech. This capability allows CallShield to transform the real-time audio channel into a noisy serial communication medium. To ensure reliable data transmission, CallShield implements a low-bitrate data link protocol that provides basic frame synchronization along with error detection, correction, and recovery. For caller authentication, CallShield adopts a secure and lightweight symmetric-key protocol that relies on pairwise shared secrets among trusted contacts. The system completes the full authentication process in an average of 63 seconds, including up to three retransmission attempts, making it suitable for real-time deployment. Extensive experiments under realistic telephony conditions demonstrate that CallShield achieves an overall authentication success rates exceeding 99.2% on clean audio and over 95% under common distortions, aided by selective retransmission of failed messages. Additionally, CallShield maintains high audio quality, achieving PESQ scores above 4.2 and STOI scores above 0.94 on clean speech, and exhibits robustness across a wide range of channel distortions, validating its practical viability for secure, real-time caller authentication.
Authors:Xingchi Li, Xiaochi Liu, Guanxun Li
Abstract:
The rapid adoption of large language models (LLMs), such as GPT-4 and Claude 3.5, underscores the need to distinguish LLM-generated text from human-written content to mitigate the spread of misinformation and misuse in education. One promising approach to address this issue is the watermark technique, which embeds subtle statistical signals into LLM-generated text to enable reliable identification. In this paper, we first generalize the likelihood-based LLM detection method of a previous study by introducing a flexible weighted formulation, and further adapt this approach to the inverse transform sampling method. Moving beyond watermark detection, we extend this adaptive detection strategy to tackle the more challenging problem of segmenting a given text into watermarked and non-watermarked substrings. In contrast to the approach in a previous study, which relies on accurate estimation of next-token probabilities that are highly sensitive to prompt estimation, our proposed framework removes the need for precise prompt estimation. Extensive numerical experiments demonstrate that the proposed methodology is both effective and robust in accurately segmenting texts containing a mixture of watermarked and non-watermarked content.
Authors:Khandoker Ashik Uz Zaman, Mohammad Zahangir Alam, Mohammed N. M. Ali, Mahdi H. Miraz
Abstract:
The protection of intellectual property has become critical due to the rapid growth of three-dimensional content in digital media. Unlike traditional images or videos, 3D point clouds present unique challenges for copyright enforcement, as they are especially vulnerable to a range of geometric and non-geometric attacks that can easily degrade or remove conventional watermark signals. In this paper, we address these challenges by proposing a robust deep neural watermarking framework for 3D point cloud copyright protection and ownership verification. Our approach embeds binary watermarks into the singular values of 3D point cloud blocks using spectral decomposition, i.e. Singular Value Decomposition (SVD), and leverages the extraction capabilities of Deep Learning using PointNet++ neural network architecture. The network is trained to reliably extract watermarks even after the data undergoes various attacks such as rotation, scaling, noise, cropping and signal distortions. We validated our method using the publicly available ModelNet40 dataset, demonstrating that deep learning-based extraction significantly outperforms traditional SVD-based techniques under challenging conditions. Our experimental evaluation demonstrates that the deep learning-based extraction approach significantly outperforms existing SVD-based methods with deep learning achieving bitwise accuracy up to 0.83 and Intersection over Union (IoU) of 0.80, compared to SVD achieving a bitwise accuracy of 0.58 and IoU of 0.26 for the Crop (70%) attack, which is the most severe geometric distortion in our experiment. This demonstrates our method's ability to achieve superior watermark recovery and maintain high fidelity even under severe distortions.
Authors:Sana Hafeez, Ghulam E Mustafa Abro, Hifza Mustafa
Abstract:
The rapid deployment of unmanned aerial vehicle (UAV) corridors in sixth-generation (6G) networks requires safe, intelligence-driven integrated sensing and communications (ISAC). Reconfigurable intelligent surfaces (RIS) enhance spectrum efficiency, localisation accuracy, and situational awareness, while introducing new vulnerabilities. The rise of quantum computing increases the risks associated with harvest-now-decrypt-later strategies and quantum-enhanced spoofing. We propose a Quantum-Resilient Threat Modelling (QRTM) framework for RIS-assisted ISAC in UAV corridors to address these challenges. QRTM integrates classical, quantum-ready, and quantum-aided adversaries, countered using post-quantum cryptographic (PQC) primitives: ML-KEM for key establishment and Falcon for authentication, both embedded within RIS control signalling and UAV coordination. To strengthen security sensing, the framework introduces RIS-coded scene watermarking validated through a generalised likelihood ratio test (GLRT), with its detection probability characterised by the Marcum Q function. Furthermore, a Secure ISAC Utility (SIU) jointly optimises secrecy rate, spoofing detection, and throughput under RIS constraints, enabled by a scheduler with computational complexity of O(n^2). Monte Carlo evaluations using 3GPP Release 19 mid-band urban-canyon models (7-15 GHz) demonstrate a spoof-detection probability approaching 0.99 at a false-alarm rate of 1e-3, secrecy-rate retention exceeding 90 percent against quantum-capable adversaries, and signal-interference utilisation improvements of about 25 percent compared with baselines. These results show a standards-compliant path towards reliable, quantum-resilient ISAC for UAV corridors in smart cities and non-terrestrial networks.
Authors:Asim Mohamed, Martin Gubri
Abstract:
Multilingual watermarking aims to make large language model (LLM) outputs traceable across languages, yet current methods still fall short. Despite claims of cross-lingual robustness, they are evaluated only on high-resource languages. We show that existing multilingual watermarking methods are not truly multilingual: they fail to remain robust under translation attacks in medium- and low-resource languages. We trace this failure to semantic clustering, which fails when the tokenizer vocabulary contains too few full-word tokens for a given language. To address this, we introduce STEAM, a back-translation-based detection method that restores watermark strength lost through translation. STEAM is compatible with any watermarking method, robust across different tokenizers and languages, non-invasive, and easily extendable to new languages. With average gains of +0.19 AUC and +40%p TPR@1% on 17 languages, STEAM provides a simple and robust path toward fairer watermarking across diverse languages.
Authors:Zhicheng Zhang, Peizhuo Lv, Mengke Wan, Jiang Fang, Diandian Guo, Yezeng Chen, Yinlong Liu, Wei Ma, Jiyan Sun, Liru Geng
Abstract:
Recently, Deep Learning (DL) models have been increasingly deployed on end-user devices as On-Device AI, offering improved efficiency and privacy. However, this deployment trend poses more serious Intellectual Property (IP) risks, as models are distributed on numerous local devices, making them vulnerable to theft and redistribution. Most existing ownership protection solutions (e.g., backdoor-based watermarking) are designed for cloud-based AI-as-a-Service (AIaaS) and are not directly applicable to large-scale distribution scenarios, where each user-specific model instance must carry a unique watermark. These methods typically embed a fixed watermark, and modifying the embedded watermark requires retraining the model. To address these challenges, we propose Hot-Swap MarkBoard, an efficient watermarking method. It encodes user-specific $n$-bit binary signatures by independently embedding multiple watermarks into a multi-branch Low-Rank Adaptation (LoRA) module, enabling efficient watermark customization without retraining through branch swapping. A parameter obfuscation mechanism further entangles the watermark weights with those of the base model, preventing removal without degrading model performance. The method supports black-box verification and is compatible with various model architectures and DL tasks, including classification, image generation, and text generation. Extensive experiments across three types of tasks and six backbone models demonstrate our method's superior efficiency and adaptability compared to existing approaches, achieving 100\% verification accuracy.
Authors:Junwen Zhang, Pu Chen, Yin Zhang
Abstract:
Multimodal understanding of tables in real-world contexts is challenging due to the complexity of structure, symbolic density, and visual degradation (blur, skew, watermarking, incomplete structures or fonts, multi-span or hierarchically nested layouts). Existing multimodal large language models (MLLMs) struggle with such WildStruct conditions, resulting in limited performance and poor generalization. To address these challenges, we propose TableMoE, a neuro-symbolic Mixture-of-Connector-Experts (MoCE) architecture specifically designed for robust, structured reasoning over multimodal table data. TableMoE features an innovative Neuro-Symbolic Routing mechanism, which predicts latent semantic token roles (e.g., header, data cell, axis, formula) and dynamically routes table elements to specialized experts (Table-to-HTML, Table-to-JSON, Table-to-Code) using a confidence-aware gating strategy informed by symbolic reasoning graphs. To facilitate effective alignment-driven pretraining, we introduce the large-scale TableMoE-Align dataset, consisting of 1.2M table-HTML-JSON-code quadruples across finance, science, biomedicine and industry, utilized exclusively for model pretraining. For evaluation, we curate and release four challenging WildStruct benchmarks: WMMFinQA, WMMTatQA, WMMTabDialog, and WMMFinanceMath, designed specifically to stress-test models under real-world multimodal degradation and structural complexity. Experimental results demonstrate that TableMoE significantly surpasses existing state-of-the-art models. Extensive ablation studies validate each core component, emphasizing the critical role of Neuro-Symbolic Routing and structured expert alignment. Through qualitative analyses, we further showcase TableMoE's interpretability and enhanced robustness, underscoring the effectiveness of integrating neuro-symbolic reasoning for multimodal table understanding.
Authors:Md Sakibur Sajal, Marc Dandin
Abstract:
Digital image watermarks as a security feature can be derived from the imager's physically unclonable functions (PUFs) by utilizing the manufacturing variations, i.e., the dark signal non-uniformity (DSNU). While a few demonstrations focused on the CMOS image sensors (CIS) and active pixel sensors (APS), single photon avalanche diode (SPAD) imagers have never been investigated for this purpose. In this work, we have proposed a novel watermarking technique using perimeter gated SPAD (pgSPAD) imagers. We utilized the DSNU of three 64 x 64 pgSPAD imager chips, fabricated in a 0.35 μm standard CMOS process and analyzed the simulated watermarks for standard test images from publicly available database. Our observation shows that both source identification and tamper detection can be achieved using the proposed source-scene-specific dynamic watermarks with a controllable sensitivity-robustness trade-off.
Authors:Tingzhi Li, Xuefeng Liu
Abstract:
Graph Neural Networks (GNNs) are increasingly deployed in graph-related applications, making ownership verification critical to protect their intellectual property against model theft. Fingerprinting and black-box watermarking are two main methods. However, the former relies on determining model similarity, which is computationally expensive and prone to ownership collisions after model post-processing such as model pruning or fine-tuning. The latter embeds backdoors, exposing watermarked models to the risk of backdoor attacks. Moreover, both methods enable ownership verification but do not convey additional information. As a result, each distributed model requires a unique trigger graph, and all trigger graphs must be used to query the suspect model during verification. Multiple queries increase the financial cost and the risk of detection.
To address these challenges, this paper proposes WGLE, a novel black-box watermarking paradigm for GNNs that enables embedding the multi-bit string as the ownership information without using backdoors. WGLE builds on a key insight we term Layer-wise Distance Difference on an Edge (LDDE), which quantifies the difference between the feature distance and the prediction distance of two connected nodes. By predefining positive or negative LDDE values for multiple selected edges, WGLE embeds the watermark encoding the intended information without introducing incorrect mappings that compromise the primary task. WGLE is evaluated on six public datasets and six mainstream GNN architectures along with state-of-the-art methods. The results show that WGLE achieves 100% ownership verification accuracy, an average fidelity degradation of 0.85%, comparable robustness against potential attacks, and low embedding overhead. The code is available in the repository.
Authors:Ya Jiang, Chuxiong Wu, Massieh Kordi Boroujeny, Brian Mark, Kai Zeng
Abstract:
Watermarking for large language models (LLMs) offers a promising approach to identifying AI-generated text. Existing approaches, however, either compromise the distribution of original generated text by LLMs or are limited to embedding zero-bit information that only allows for watermark detection but ignores identification. We present StealthInk, a stealthy multi-bit watermarking scheme that preserves the original text distribution while enabling the embedding of provenance data, such as userID, TimeStamp, and modelID, within LLM-generated text. This enhances fast traceability without requiring access to the language model's API or prompts. We derive a lower bound on the number of tokens necessary for watermark detection at a fixed equal error rate, which provides insights on how to enhance the capacity. Comprehensive empirical evaluations across diverse tasks highlight the stealthiness, detectability, and resilience of StealthInk, establishing it as an effective solution for LLM watermarking applications.
Authors:Yu Tong, Zihao Pan, Shuai Yang, Kaiyang Zhou
Abstract:
Invisible image watermarking can protect image ownership and prevent malicious misuse of visual generative models. However, existing generative watermarking methods are mainly designed for diffusion models while watermarking for autoregressive image generation models remains largely underexplored. We propose IndexMark, a training-free watermarking framework for autoregressive image generation models. IndexMark is inspired by the redundancy property of the codebook: replacing autoregressively generated indices with similar indices produces negligible visual differences. The core component in IndexMark is a simple yet effective match-then-replace method, which carefully selects watermark tokens from the codebook based on token similarity, and promotes the use of watermark tokens through token replacement, thereby embedding the watermark without affecting the image quality. Watermark verification is achieved by calculating the proportion of watermark tokens in generated images, with precision further improved by an Index Encoder. Furthermore, we introduce an auxiliary validation scheme to enhance robustness against cropping attacks. Experiments demonstrate that IndexMark achieves state-of-the-art performance in terms of image quality and verification accuracy, and exhibits robustness against various perturbations, including cropping, noises, Gaussian blur, random erasing, color jittering, and JPEG compression.
Authors:Yixin Cheng, Hongcheng Guo, Yangming Li, Leonid Sigal
Abstract:
Text watermarking aims to subtly embed statistical signals into text by controlling the Large Language Model (LLM)'s sampling process, enabling watermark detectors to verify that the output was generated by the specified model. The robustness of these watermarking algorithms has become a key factor in evaluating their effectiveness. Current text watermarking algorithms embed watermarks in high-entropy tokens to ensure text quality. In this paper, we reveal that this seemingly benign design can be exploited by attackers, posing a significant risk to the robustness of the watermark. We introduce a generic efficient paraphrasing attack, the Self-Information Rewrite Attack (SIRA), which leverages the vulnerability by calculating the self-information of each token to identify potential pattern tokens and perform targeted attack. Our work exposes a widely prevalent vulnerability in current watermarking algorithms. The experimental results show SIRA achieves nearly 100% attack success rates on seven recent watermarking methods with only 0.88 USD per million tokens cost. Our approach does not require any access to the watermark algorithms or the watermarked LLM and can seamlessly transfer to any LLM as the attack model, even mobile-level models. Our findings highlight the urgent need for more robust watermarking.
Authors:Hong Ding, Chia Chao Kang, SuYang Xi, Zehang Liu, Xuan Zhang, Yi Ding
Abstract:
This research introduces an FPGA-based hardware accelerator to optimize the Singular Value Decomposition (SVD) and Fast Fourier transform (FFT) operations in AI models. The proposed design aims to improve processing speed and reduce computational latency. Through experiments, we validate the performance benefits of the hardware accelerator and show how well it handles FFT and SVD operations. With its strong security and durability, the accelerator design achieves significant speedups over software implementations, thanks to its modules for data flow control, watermark embedding, FFT, and SVD.
Authors:Wenhao Luo, Zhangyi Shen, Ye Yao, Feng Ding, Guopu Zhu, Weizhi Meng
Abstract:
Image generation algorithms are increasingly integral to diverse aspects of human society, driven by their practical applications. However, insufficient oversight in artificial Intelligence generated content (AIGC) can facilitate the spread of malicious content and increase the risk of copyright infringement. Among the diverse range of image generation models, the Latent Diffusion Model (LDM) is currently the most widely used, dominating the majority of the Text-to-Image model market. Currently, most attribution methods for LDMs rely on directly embedding watermarks into the generated images or their intermediate noise, a practice that compromises both the quality and the robustness of the generated content. To address these limitations, we introduce TraceMark-LDM, an novel algorithm that integrates watermarking to attribute generated images while guaranteeing non-destructive performance. Unlike current methods, TraceMark-LDM leverages watermarks as guidance to rearrange random variables sampled from a Gaussian distribution. To mitigate potential deviations caused by inversion errors, the small absolute elements are grouped and rearranged. Additionally, we fine-tune the LDM encoder to enhance the robustness of the watermark. Experimental results show that images synthesized using TraceMark-LDM exhibit superior quality and attribution accuracy compared to state-of-the-art (SOTA) techniques. Notably, TraceMark-LDM demonstrates exceptional robustness against various common attack methods, consistently outperforming SOTA methods.
Authors:Shree Singhi, Aayan Yadav, Aayush Gupta, Shariar Ebrahimi, Parisa Hassanizadeh
Abstract:
As AI-generated sensitive images become more prevalent, identifying their source is crucial for distinguishing them from real images. Conventional image watermarking methods are vulnerable to common transformations like filters, lossy compression, and screenshots, often applied during social media sharing. Watermarks can also be faked or removed if models are open-sourced or leaked since images can be rewatermarked. We have developed a three-part framework for secure, transformation-resilient AI content provenance detection, to address these limitations. We develop an adversarially robust state-of-the-art perceptual hashing model, DinoHash, derived from DINOV2, which is robust to common transformations like filters, compression, and crops. Additionally, we integrate a Multi-Party Fully Homomorphic Encryption~(MP-FHE) scheme into our proposed framework to ensure the protection of both user queries and registry privacy. Furthermore, we improve previous work on AI-generated media detection. This approach is useful in cases where the content is absent from our registry. DinoHash significantly improves average bit accuracy by 12% over state-of-the-art watermarking and perceptual hashing methods while maintaining superior true positive rate (TPR) and false positive rate (FPR) tradeoffs across various transformations. Our AI-generated media detection results show a 25% improvement in classification accuracy on commonly used real-world AI image generators over existing algorithms. By combining perceptual hashing, MP-FHE, and an AI content detection model, our proposed framework provides better robustness and privacy compared to previous work.
Authors:Qingyuan Fei, Wenjie Hou, Xuan Hai, Xin Liu
Abstract:
The rapid advancements in AI voice cloning, fueled by machine learning, have significantly impacted text-to-speech (TTS) and voice conversion (VC) fields. While these developments have led to notable progress, they have also raised concerns about the misuse of AI VC technology, causing economic losses and negative public perceptions. To address this challenge, this study focuses on creating active defense mechanisms against AI VC systems.
We propose a novel active defense method, VocalCrypt, which embeds pseudo-timbre (jamming information) based on SFS into audio segments that are imperceptible to the human ear, thereby forming systematic fragments to prevent voice cloning. This approach protects the voice without compromising its quality. In comparison to existing methods, such as adversarial noise incorporation, VocalCrypt significantly enhances robustness and real-time performance, achieving a 500\% increase in generation speed while maintaining interference effectiveness.
Unlike audio watermarking techniques, which focus on post-detection, our method offers preemptive defense, reducing implementation costs and enhancing feasibility. Extensive experiments using the Zhvoice and VCTK Corpus datasets show that our AI-cloned speech defense system performs excellently in automatic speaker verification (ASV) tests while preserving the integrity of the protected audio.
Authors:Zhuang Li, Qiuping Yi, Zongcheng Ji, Yijian Lu, Yanqi Li, Keyang Xiao, Hongliang Liang
Abstract:
The rapid growth of Large Language Models (LLMs) raises concerns about distinguishing AI-generated text from human content. Existing watermarking techniques, like \kgw, struggle with low watermark strength and stringent false-positive requirements. Our analysis reveals that current methods rely on coarse estimates of non-watermarked text, limiting watermark detectability. To address this, we propose Bipolar Watermark (\tool), which splits generated text into positive and negative poles, enhancing detection without requiring additional computational resources or knowledge of the prompt. Theoretical analysis and experimental results demonstrate \tool's effectiveness and compatibility with existing optimization techniques, providing a new optimization dimension for watermarking in LLM-generated content.
Authors:Aryaman Shaan, Garvit Banga, Raghav Mantri
Abstract:
Generative models have enabled easy creation and generation of images of all kinds given a single prompt. However, this has also raised ethical concerns about what is an actual piece of content created by humans or cameras compared to model-generated content like images or videos. Watermarking data generated by modern generative models is a popular method to provide information on the source of the content. The goal is for all generated images to conceal an invisible watermark, allowing for future detection or identification. The Stable Signature finetunes the decoder of Latent Diffusion Models such that a unique watermark is rooted in any image produced by the decoder. In this paper, we present a novel adversarial fine-tuning attack that disrupts the model's ability to embed the intended watermark, exposing a significant vulnerability in existing watermarking methods. To address this, we further propose a tamper-resistant fine-tuning algorithm inspired by methods developed for large language models, tailored to the specific requirements of watermarking in LDMs. Our findings emphasize the importance of anticipating and defending against potential vulnerabilities in generative systems.
Authors:Satoru Koda, Ikuya Morikawa
Abstract:
Deep neural networks (DNNs) deployed in a cloud often allow users to query models via the APIs. However, these APIs expose the models to model extraction attacks (MEAs). In this attack, the attacker attempts to duplicate the target model by abusing the responses from the API. Backdoor-based DNN watermarking is known as a promising defense against MEAs, wherein the defender injects a backdoor into extracted models via API responses. The backdoor is used as a watermark of the model; if a suspicious model has the watermark (i.e., backdoor), it is verified as an extracted model. This work focuses on object detection (OD) models. Existing backdoor attacks on OD models are not applicable for model watermarking as the defense against MEAs on a realistic threat model. Our proposed approach involves inserting a backdoor into extracted models via APIs by stealthily modifying the bounding-boxes (BBs) of objects detected in queries while keeping the OD capability. In our experiments on three OD datasets, the proposed approach succeeded in identifying the extracted models with 100% accuracy in a wide variety of experimental scenarios.
Authors:Saksham Rastogi, Danish Pruthi
Abstract:
Amidst rising concerns about the internet being proliferated with content generated from language models (LMs), watermarking is seen as a principled way to certify whether text was generated from a model. Many recent watermarking techniques slightly modify the output probabilities of LMs to embed a signal in the generated output that can later be detected. Since early proposals for text watermarking, questions about their robustness to paraphrasing have been prominently discussed. Lately, some techniques are deliberately designed and claimed to be robust to paraphrasing. However, such watermarking schemes do not adequately account for the ease with which they can be reverse-engineered. We show that with access to only a limited number of generations from a black-box watermarked model, we can drastically increase the effectiveness of paraphrasing attacks to evade watermark detection, thereby rendering the watermark ineffective.
Authors:Irena Gao, Percy Liang, Carlos Guestrin
Abstract:
Users often interact with large language models through black-box inference APIs, both for closed- and open-weight models (e.g., Llama models are popularly accessed via Amazon Bedrock and Azure AI Studio). In order to cut costs or add functionality, API providers may quantize, watermark, or finetune the underlying model, changing the output distribution -- possibly without notifying users. We formalize detecting such distortions as Model Equality Testing, a two-sample testing problem, where the user collects samples from the API and a reference distribution and conducts a statistical test to see if the two distributions are the same. We find that tests based on the Maximum Mean Discrepancy between distributions are powerful for this task: a test built on a simple string kernel achieves a median of 77.4% power against a range of distortions, using an average of just 10 samples per prompt. We then apply this test to commercial inference APIs from Summer 2024 for four Llama models, finding that 11 out of 31 endpoints serve different distributions than reference weights released by Meta.
Authors:Jiahui Liu, Mark Zhandry
Abstract:
Software watermarking allows for embedding a mark into a piece of code, such that any attempt to remove the mark will render the code useless. Provably secure watermarking schemes currently seems limited to programs computing various cryptographic operations, such as evaluating pseudorandom functions (PRFs), signing messages, or decrypting ciphertexts (the latter often going by the name ``traitor tracing''). Moreover, each of these watermarking schemes has an ad-hoc construction of its own.
We observe, however, that many cryptographic objects are used as building blocks in larger protocols. We ask: just as we can compose building blocks to obtain larger protocols, can we compose watermarking schemes for the building blocks to obtain watermarking schemes for the larger protocols? We give an affirmative answer to this question, by precisely formulating a set of requirements that allow for composing watermarking schemes. We use our formulation to derive a number of applications.
Authors:Aakash Varma Nadimpalli, Ajita Rattani
Abstract:
With the significant advances in deep generative models for image and video synthesis, Deepfakes and manipulated media have raised severe societal concerns. Conventional machine learning classifiers for deepfake detection often fail to cope with evolving deepfake generation technology and are susceptible to adversarial attacks. Alternatively, invisible image watermarking is being researched as a proactive defense technique that allows media authentication by verifying an invisible secret message embedded in the image pixels. A handful of invisible image watermarking techniques introduced for media authentication have proven vulnerable to basic image processing operations and watermark removal attacks. In response, we have proposed a semi-fragile image watermarking technique that embeds an invisible secret message into real images for media authentication. Our proposed watermarking framework is designed to be fragile to facial manipulations or tampering while being robust to benign image-processing operations and watermark removal attacks. This is facilitated through a unique architecture of our proposed technique consisting of critic and adversarial networks that enforce high image quality and resiliency to watermark removal efforts, respectively, along with the backbone encoder-decoder and the discriminator networks. Thorough experimental investigations on SOTA facial Deepfake datasets demonstrate that our proposed model can embed a $64$-bit secret as an imperceptible image watermark that can be recovered with a high-bit recovery accuracy when benign image processing operations are applied while being non-recoverable when unseen Deepfake manipulations are applied. In addition, our proposed watermarking technique demonstrates high resilience to several white-box and black-box watermark removal attacks. Thus, obtaining state-of-the-art performance.
Authors:Anudeex Shetty, Qiongkai Xu, Jey Han Lau
Abstract:
Embeddings-as-a-Service (EaaS) is a service offered by large language model (LLM) developers to supply embeddings generated by LLMs. Previous research suggests that EaaS is prone to imitation attacks -- attacks that clone the underlying EaaS model by training another model on the queried embeddings. As a result, EaaS watermarks are introduced to protect the intellectual property of EaaS providers. In this paper, we first show that existing EaaS watermarks can be removed by paraphrasing when attackers clone the model. Subsequently, we propose a novel watermarking technique that involves linearly transforming the embeddings, and show that it is empirically and theoretically robust against paraphrasing.
Authors:Rinka Kawano, Masaki Kawamura
Abstract:
Digital watermarking techniques are essential to prevent unauthorized use of images. Since pirated images are often geometrically distorted by operations such as scaling and cropping, accurate synchronization - detecting the embedding position of the watermark - is critical for proper extraction. In particular, cropping changes the origin of the image, making synchronization difficult. However, few existing methods are robust against cropping. To address this issue, we propose a watermarking method that estimates geometric transformations applied to a stego image using a pilot signal, allowing synchronization even after cropping. A grid-shaped pilot signal with distinct horizontal and vertical values is embedded in the image. When the image is transformed, the grid is also distorted. By analyzing this distortion, the transformation matrix can be estimated. Applying the Radon transform to the distorted image allows estimation of the grid angles and intervals. In addition, since the horizontal and vertical grid lines are encoded differently, the grid orientation can be determined, which reduces ambiguity. To validate our method, we performed simulations with anisotropic scaling, rotation, shearing, and cropping. The results show that the proposed method accurately estimates transformation matrices with low error under both single and composite attacks.
Authors:Francisco Angulo de Lafuente, Seid Mehammed Abdu, Nirmal Tej
Abstract:
This paper presents SiliconHealth, a comprehensive blockchain-based healthcare infrastructure designed for resource-constrained regions, particularly sub-Saharan Africa. We demonstrate that obsolete Bitcoin mining Application-Specific Integrated Circuits (ASICs) can be repurposed to create a secure, low-cost, and energy-efficient medical records system. The proposed architecture employs a four-tier hierarchical network: regional hospitals using Antminer S19 Pro (90+ TH/s), urban health centers with Antminer S9 (14 TH/s), rural clinics equipped with Lucky Miner LV06 (500 GH/s, 13W), and mobile health points with portable ASIC devices. We introduce the Deterministic Hardware Fingerprinting (DHF) paradigm, which repurposes SHA-256 mining ASICs as cryptographic proof generators, achieving 100% verification rate across 23 test proofs during 300-second validation sessions. The system incorporates Reed-Solomon LSB watermarking for medical image authentication with 30-40% damage tolerance, semantic Retrieval-Augmented Generation (RAG) for intelligent medical record queries, and offline synchronization protocols for intermittent connectivity. Economic analysis demonstrates 96% cost reduction compared to GPU-based alternatives, with total deployment cost of $847 per rural clinic including 5-year solar power infrastructure. Validation experiments on Lucky Miner LV06 (BM1366 chip, 5nm) achieve 2.93 MH/W efficiency and confirm hardware universality. This work establishes a practical framework for deploying verifiable, tamper-proof electronic health records in regions where traditional healthcare IT infrastructure is economically unfeasible, potentially benefiting over 600 million people lacking access to basic health information systems.
Authors:Zhiqing Hu, Chenxu Zhao, Jiazhong Lu, Xiaolei Liu
Abstract:
Misuse of LLM-generated text can be curbed by watermarking techniques that embed implicit signals into the output. We propose a watermark that partitions the vocabulary at each decoding step into three sets (Green/Yellow/Red) with fixed ratios and restricts sampling to the Green and Yellow sets. At detection time, we replay the same partitions, compute Green-enrichment and Red-depletion statistics, convert them to one-sided z-scores, and aggregate their p-values via Fisher's method to decide whether a passage is watermarked. We implement generation, detection, and testing on Llama 2 7B, and evaluate true-positive rate, false-positive rate, and text quality. Results show that the triple-partition scheme achieves high detection accuracy at fixed FPR while preserving readability.
Authors:Yichuan Zhang, Chengxin Li, Yujie Gu
Abstract:
Text-to-Speech (TTS) diffusion models generate high-quality speech, which raises challenges for the model intellectual property protection and speech tracing for legal use. Audio watermarking is a promising solution. However, due to the structural differences among various TTS diffusion models, existing watermarking methods are often designed for a specific model and degrade audio quality, which limits their practical applicability. To address this dilemma, this paper proposes a universal watermarking scheme for TTS diffusion models, termed Smark. This is achieved by designing a lightweight watermark embedding framework that operates in the common reverse diffusion paradigm shared by all TTS diffusion models. To mitigate the impact on audio quality, Smark utilizes the discrete wavelet transform (DWT) to embed watermarks into the relatively stable low-frequency regions of the audio, which ensures seamless watermark-audio integration and is resistant to removal during the reverse diffusion process. Extensive experiments are conducted to evaluate the audio quality and watermark performance in various simulated real-world attack scenarios. The experimental results show that Smark achieves superior performance in both audio quality and watermark extraction accuracy.
Authors:Li Lin, Siyuan Xin, Yang Cao, Xiaochun Cao
Abstract:
Watermarking large language models (LLMs) is vital for preventing their misuse, including the fabrication of fake news, plagiarism, and spam. It is especially important to watermark LLM-generated code, as it often contains intellectual property.However, we found that existing methods for watermarking LLM-generated code fail to address comment removal attack.In such cases, an attacker can simply remove the comments from the generated code without affecting its functionality, significantly reducing the effectiveness of current code-watermarking techniques.On the other hand, injecting a watermark into code is challenging because, as previous works have noted, most code represents a low-entropy scenario compared to natural language. Our approach to addressing this issue involves leveraging prior knowledge to distinguish between low-entropy and high-entropy parts of the code, as indicated by a Cue List of words.We then inject the watermark guided by this Cue List, achieving higher detectability and usability than existing methods.We evaluated our proposed method on HumanEvaland compared our method with three state-of-the-art code watermarking techniques. The results demonstrate the effectiveness of our approach.
Authors:Zhuo Wang, Xiliang Liu, Ligang Sun
Abstract:
The proliferation of AI-generated video technologies poses challenges to information integrity. While recent benchmarks advance AIGC video detection, they overlook a critical factor: many state-of-the-art generative models embed digital watermarks in outputs, and detectors may partially rely on these patterns. To evaluate this influence, we present RobustSora, the benchmark designed to assess watermark robustness in AIGC video detection. We systematically construct a dataset of 6,500 videos comprising four types: Authentic-Clean (A-C), Authentic-Spoofed with fake watermarks (A-S), Generated-Watermarked (G-W), and Generated-DeWatermarked (G-DeW). Our benchmark introduces two evaluation tasks: Task-I tests performance on watermark-removed AI videos, while Task-II assesses false alarm rates on authentic videos with fake watermarks. Experiments with ten models spanning specialized AIGC detectors, transformer architectures, and MLLM approaches reveal performance variations of 2-8pp under watermark manipulation. Transformer-based models show consistent moderate dependency (6-8pp), while MLLMs exhibit diverse patterns (2-8pp). These findings indicate partial watermark dependency and highlight the need for watermark-aware training strategies. RobustSora provides essential tools to advance robust AIGC detection research.
Authors:Min Jae Song, Kameron Shahabi
Abstract:
We introduce ideal attribution mechanisms, a formal abstraction for reasoning about attribution decisions over strings. At the core of this abstraction lies the ledger, an append-only log of the prompt-response interaction history between a model and its user. Each mechanism produces deterministic decisions based on the ledger and an explicit selection criterion, making it well-suited to serve as a ground truth for attribution. We frame the design goal of watermarking schemes as faithful representation of ideal attribution mechanisms. This novel perspective brings conceptual clarity, replacing piecemeal probabilistic statements with a unified language for stating the guarantees of each scheme. It also enables precise reasoning about desiderata for future watermarking schemes, even when no current construction achieves them, since the ideal functionalities are specified first. In this way, the framework provides a roadmap that clarifies which guarantees are attainable in an idealized setting and worth pursuing in practice.
Authors:Yizhou Zhao, Zhiwei Steven Wu, Adam Block
Abstract:
Watermarking aims to embed hidden signals in generated text that can be reliably detected when given access to a secret key. Open-weight language models pose acute challenges for such watermarking schemes because the inference-time interventions that dominate contemporary approaches cannot be enforced once model weights are public. Existing watermaking techniques for open-weight models, such as the recently proposed GaussMark, typically rely on small modifications to model weights, which can yield signals detectable to those equipped with a secret key, but achieving detection power comparable to inference-time watermarks generally requires weight perturbations that noticeably reduce generation quality. We introduce MarkTune, a theoretically principled, on-policy fine-tuning framework that treats the GaussMark signal as a reward while simultaneously regularizing against degradation in text quality. We derive MarkTune as an improvement on GaussMark and demonstrate that MarkTune consistently improves the quality-detectability trade-off over GaussMark by steering finer-grained, watermark-aware weight updates within the model's representation space while preserving generation quality. Empirically, we show that MarkTune pushes the quality-detectability frontier of GaussMark close to that of inference-time watermarking, remains robust to paraphrasing and fine-tuning attacks, and exhibits strong generalization: a model fine-tuned on one dataset retains substantial watermark detection power on unseen datasets. Together, these results establish MarkTune as a general strategy for embedding robust, high-quality watermarks into open-weight LMs.
Authors:William Guo, Adaku Uchendu, Ana Smith
Abstract:
To mitigate the potential harms of Large Language Models (LLMs)generated text, researchers have proposed watermarking, a process of embedding detectable signals within text. With watermarking, we can always accurately detect LLM-generated texts. However, recent findings suggest that these techniques often negatively affect the quality of the generated texts, and adversarial attacks can strip the watermarking signals, causing the texts to possibly evade detection. These findings have created resistance in the wide adoption of watermarking by LLM creators. Finally, to encourage adoption, we evaluate the robustness of several watermarking techniques to adversarial attacks by comparing paraphrasing and back translation (i.e., English $\to$ another language $\to$ English) attacks; and their ability to preserve quality and writing style of the unwatermarked texts by using linguistic metrics to capture quality and writing style of texts. Our results suggest that these watermarking techniques preserve semantics, deviate from the writing style of the unwatermarked texts, and are susceptible to adversarial attacks, especially for the back translation attack.
Authors:Mingcui Zhang, Zhigang Jia
Abstract:
Medical images play a crucial role in assisting diagnosis, remote consultation, and academic research. However, during the transmission and sharing process, they face serious risks of copyright ownership and content tampering. Therefore, protecting medical images is of great importance. As an effective means of image copyright protection, zero-watermarking technology focuses on constructing watermarks without modifying the original carrier by extracting its stable features, which provides an ideal approach for protecting medical images. This paper aims to propose a fragile zero-watermarking model based on dual quaternion matrix decomposition, which utilizes the operational relationship between the standard part and the dual part of dual quaternions to correlate the original carrier image with the watermark image, and generates zero-watermarking information based on the characteristics of dual quaternion matrix decomposition, ultimately achieving copyright protection and content tampering detection for medical images.
Authors:Haohua Duan, Liyao Xiang, Xin Zhang
Abstract:
Watermarking schemes for large language models (LLMs) have been proposed to identify the source of the generated text, mitigating the potential threats emerged from model theft. However, current watermarking solutions hardly resolve the trust issue: the non-public watermark detection cannot prove itself faithfully conducting the detection. We observe that it is attributed to the secret key mostly used in the watermark detection -- it cannot be public, or the adversary may launch removal attacks provided the key; nor can it be private, or the watermarking detection is opaque to the public. To resolve the dilemma, we propose PVMark, a plugin based on zero-knowledge proof (ZKP), enabling the watermark detection process to be publicly verifiable by third parties without disclosing any secret key. PVMark hinges upon the proof of `correct execution' of watermark detection on which a set of ZKP constraints are built, including mapping, random number generation, comparison, and summation. We implement multiple variants of PVMark in Python, Rust and Circom, covering combinations of three watermarking schemes, three hash functions, and four ZKP protocols, to show our approach effectively works under a variety of circumstances. By experimental results, PVMark efficiently enables public verifiability on the state-of-the-art LLM watermarking schemes yet without compromising the watermarking performance, promising to be deployed in practice.
Authors:Jipeng Li, Yannning Shen
Abstract:
Graph Neural Networks (GNNs) are valuable intellectual property, yet many watermarks rely on backdoor triggers that break under common model edits and create ownership ambiguity. We present InvGNN-WM, which ties ownership to a model's implicit perception of a graph invariant, enabling trigger-free, black-box verification with negligible task impact. A lightweight head predicts normalized algebraic connectivity on an owner-private carrier set; a sign-sensitive decoder outputs bits, and a calibrated threshold controls the false-positive rate. Across diverse node and graph classification datasets and backbones, InvGNN-WM matches clean accuracy while yielding higher watermark accuracy than trigger- and compression-based baselines. It remains strong under unstructured pruning, fine-tuning, and post-training quantization; plain knowledge distillation (KD) weakens the mark, while KD with a watermark loss (KD+WM) restores it. We provide guarantees for imperceptibility and robustness, and we prove that exact removal is NP-complete.
Authors:Ruiyi Yan, Yugo Murawaki
Abstract:
Large language models have significantly enhanced the capacities and efficiency of text generation. On the one hand, they have improved the quality of text-based steganography. On the other hand, they have also underscored the importance of watermarking as a safeguard against malicious misuse. In this study, we focus on tokenization inconsistency (TI) between Alice and Bob in steganography and watermarking, where TI can undermine robustness. Our investigation reveals that the problematic tokens responsible for TI exhibit two key characteristics: infrequency and temporariness. Based on these findings, we propose two tailored solutions for TI elimination: a stepwise verification method for steganography and a post-hoc rollback method for watermarking. Experiments show that (1) compared to traditional disambiguation methods in steganography, directly addressing TI leads to improvements in fluency, imperceptibility, and anti-steganalysis capacity; (2) for watermarking, addressing TI enhances detectability and robustness against attacks.
Authors:William Zerong Wang, Dongfang Zhao
Abstract:
In the era of generative AI, ensuring the privacy of music data presents unique challenges: unlike static artworks such as images, music data is inherently temporal and multimodal, and it is sampled, transformed, and remixed at an unprecedented scale. These characteristics make its core vector embeddings, i.e, the numerical representations of the music, highly susceptible to being learned, misused, or even stolen by models without accessing the original audio files. Traditional methods like copyright licensing and digital watermarking offer limited protection for these abstract mathematical representations, thus necessitating a stronger, e.g., cryptographic, approach to safeguarding the embeddings themselves. Standard encryption schemes, such as AES, render data unintelligible for computation, making such searches impossible. While Fully Homomorphic Encryption (FHE) provides a plausible solution by allowing arbitrary computations on ciphertexts, its substantial performance overhead remains impractical for large-scale vector similarity searches. Given this trade-off, we propose a more practical approach using Additive Homomorphic Encryption (AHE) for vector similarity search. The primary contributions of this paper are threefold: we analyze threat models unique to music information retrieval systems; we provide a theoretical analysis and propose an efficient AHE-based solution through inner products of music embeddings to deliver privacy-preserving similarity search; and finally, we demonstrate the efficiency and practicality of the proposed approach through empirical evaluation and comparison to FHE schemes on real-world MP3 files.
Authors:Peter F. Michael, Zekun Hao, Serge Belongie, Abe Davis
Abstract:
The proliferation of advanced tools for manipulating video has led to an arms race, pitting those who wish to sow disinformation against those who want to detect and expose it. Unfortunately, time favors the ill-intentioned in this race, with fake videos growing increasingly difficult to distinguish from real ones. At the root of this trend is a fundamental advantage held by those manipulating media: equal access to a distribution of what we consider authentic (i.e., "natural") video. In this paper, we show how coding very subtle, noise-like modulations into the illumination of a scene can help combat this advantage by creating an information asymmetry that favors verification. Our approach effectively adds a temporal watermark to any video recorded under coded illumination. However, rather than encoding a specific message, this watermark encodes an image of the unmanipulated scene as it would appear lit only by the coded illumination. We show that even when an adversary knows that our technique is being used, creating a plausible coded fake video amounts to solving a second, more difficult version of the original adversarial content creation problem at an information disadvantage. This is a promising avenue for protecting high-stakes settings like public events and interviews, where the content on display is a likely target for manipulation, and while the illumination can be controlled, the cameras capturing video cannot.
Authors:Qingxiao Guo, Xinjie Zhu, Yilong Ma, Hui Jin, Yunhao Wang, Weifeng Zhang, Xiaobing Guo
Abstract:
Watermarking technology has gained significant attention due to the increasing importance of intellectual property (IP) rights, particularly with the growing deployment of large language models (LLMs) on billions resource-constrained edge devices. To counter the potential threats of IP theft by malicious users, this paper introduces a robust watermarking scheme without retraining or fine-tuning for transformer models. The scheme generates a unique key for each user and derives a stable watermark value by solving linear constraints constructed from model invariants. Moreover, this technology utilizes noise mechanism to hide watermark locations in multi-user scenarios against collusion attack. This paper evaluates the approach on three popular models (Llama3, Phi3, Gemma), and the experimental results confirm the strong robustness across a range of attack methods (fine-tuning, pruning, quantization, permutation, scaling, reversible matrix and collusion attacks).
Authors:Jordi Serra-Ruiz, David MegÃas
Abstract:
A semi-fragile watermarking scheme for multiple band images is presented in this article. We propose to embed a mark into remote sensing images applying a tree-structured vector quantization approach to the pixel signatures instead of processing each band separately. The signature of the multispectral or hyperspectral image is used to embed the mark in it order to detect any significant modification of the original image. The image is segmented into three-dimensional blocks, and a tree-structured vector quantizer is built for each block. These trees are manipulated using an iterative algorithm until the resulting block satisfies a required criterion, which establishes the embedded mark. The method is shown to be able to preserve the mark under lossy compression (above a given threshold) but, at the same time, it detects possibly forged blocks and their position in the whole image.
Authors:Hyunwook Choi, Sangyun Won, Daeyeon Hwang, Junhyeok Choi
Abstract:
Deep learning-based watermarking has emerged as a promising solution for robust image authentication and protection. However, existing models are limited by low embedding capacity and vulnerability to bit-level errors, making them unsuitable for cryptographic applications such as digital signatures, which require over 2048 bits of error-free data. In this paper, we propose README (Robust Error-Aware Digital Signature via Deep WaterMarking ModEl), a novel framework that enables robust, verifiable, and error-tolerant digital signatures within images. Our method combines a simple yet effective cropping-based capacity scaling mechanism with ERPA (ERror PAinting Module), a lightweight error correction module designed to localize and correct bit errors using Distinct Circular Subsum Sequences (DCSS). Without requiring any fine-tuning of existing pretrained watermarking models, README significantly boosts the zero-bit-error image rate (Z.B.I.R) from 1.2% to 86.3% when embedding 2048-bit digital signatures into a single image, even under real-world distortions. Moreover, our use of perceptual hash-based signature verification ensures public verifiability and robustness against tampering. The proposed framework unlocks a new class of high-assurance applications for deep watermarking, bridging the gap between signal-level watermarking and cryptographic security.
Authors:Do-hyeon Yoon, Minsoo Chun, Thomas Allen, Hans Müller, Min Wang, Rajesh Sharma
Abstract:
Large language models (LLMs) face significant copyright and intellectual property challenges as the cost of training increases and model reuse becomes prevalent. While watermarking techniques have been proposed to protect model ownership, they may not be robust to continue training and development, posing serious threats to model attribution and copyright protection. This work introduces a simple yet effective approach for robust LLM fingerprinting based on intrinsic model characteristics. We discover that the standard deviation distributions of attention parameter matrices across different layers exhibit distinctive patterns that remain stable even after extensive continued training. These parameter distribution signatures serve as robust fingerprints that can reliably identify model lineage and detect potential copyright infringement. Our experimental validation across multiple model families demonstrates the effectiveness of our method for model authentication. Notably, our investigation uncovers evidence that a recently Pangu Pro MoE model released by Huawei is derived from Qwen-2.5 14B model through upcycling techniques rather than training from scratch, highlighting potential cases of model plagiarism, copyright violation, and information fabrication. These findings underscore the critical importance of developing robust fingerprinting methods for protecting intellectual property in large-scale model development and emphasize that deliberate continued training alone is insufficient to completely obscure model origins.
Authors:Gabriel Grobler, Sheunesu Makura, Hein Venter
Abstract:
Tampering or forgery of digital documents has become widespread, most commonly through altering images without any malicious intent such as enhancing the overall appearance of the image. However, there are occasions when tampering of digital documents can have negative consequences, such as financial fraud and reputational damage. Tampering can occur through altering a digital document's text or editing an image's pixels. Many techniques have been developed to detect whether changes have been made to a document. Most of these techniques rely on generating hashes or watermarking the document. These techniques, however, have limitations in that they cannot detect alterations to portable document format (PDF) signatures or other non-visual aspects, such as metadata. This paper presents a new technique that can be used to detect tampering within a PDF document by utilizing the PDF document's file page objects. The technique employs a prototype that can detect changes to a PDF document, such as changes made to the text, images, or metadata of the said file.
Authors:Badr Youbi Idrissi, Monica Millunzi, Amelia Sorrenti, Lorenzo Baraldi, Daryna Dementieva
Abstract:
In the present-day scenario, Large Language Models (LLMs) are establishing their presence as powerful instruments permeating various sectors of society. While their utility offers valuable support to individuals, there are multiple concerns over potential misuse. Consequently, some academic endeavors have sought to introduce watermarking techniques, characterized by the inclusion of markers within machine-generated text, to facilitate algorithmic identification. This research project is focused on the development of a novel methodology for the detection of synthetic text, with the overarching goal of ensuring the ethical application of LLMs in AI-driven text generation. The investigation commences with replicating findings from a previous baseline study, thereby underscoring its susceptibility to variations in the underlying generation model. Subsequently, we propose an innovative watermarking approach and subject it to rigorous evaluation, employing paraphrased generated text to asses its robustness. Experimental results highlight the robustness of our proposal compared to the~\cite{aarson} watermarking method.
Authors:Junhua Lin, Marc Juarez
Abstract:
We present a novel attack specifically designed against Tree-Ring, a watermarking technique for diffusion models known for its high imperceptibility and robustness against removal attacks. Unlike previous removal attacks, which rely on strong assumptions about attacker capabilities, our attack only requires access to the variational autoencoder that was used to train the target diffusion model, a component that is often publicly available. By leveraging this variational autoencoder, the attacker can approximate the model's intermediate latent space, enabling more effective surrogate-based attacks. Our evaluation shows that this approach leads to a dramatic reduction in the AUC of Tree-Ring detector's ROC and PR curves, decreasing from 0.993 to 0.153 and from 0.994 to 0.385, respectively, while maintaining high image quality. Notably, our attacks outperform existing methods that assume full access to the diffusion model. These findings highlight the risk of reusing public autoencoders to train diffusion models -- a threat not considered by current industry practices. Furthermore, the results suggest that the Tree-Ring detector's precision, a metric that has been overlooked by previous evaluations, falls short of the requirements for real-world deployment.
Authors:Kaushik Talathi, Aparna Santra Biswas
Abstract:
In the age of IoT and mobile platforms, ensuring that content stay authentic whilst avoiding overburdening limited hardware is a key problem. This study introduces hybrid Fast Wavelet Transform & Additive Quantization index Modulation (FWT-AQIM) scheme, a lightweight watermarking approach that secures digital pictures on low-power, memory-constrained small scale devices to achieve a balanced trade-off among robustness, imperceptibility, and computational efficiency. The method embeds watermark in the luminance component of YCbCr color space using low-frequency FWT sub-bands, minimizing perceptual distortion, using additive QIM for simplicity. Both the extraction and embedding processes run in less than 40 ms and require minimum RAM when tested on a Raspberry Pi 5. Quality assessments on standard and high-resolution images yield PSNR greater than equal to 34 dB and SSIM greater than equal to 0.97, while robustness verification includes various geometric and signal-processing attacks demonstrating near-zero bit error rates and NCC greater than equal to 0.998. Using a mosaic-based watermark, redundancy added enhancing robustness without reducing throughput, which peaks at 11 MP/s. These findings show that FWT-AQIM provides an efficient, scalable solution for real-time, secure watermarking in bandwidth- and power-constrained contexts, opening the way for dependable content protection in developing IoT and multimedia applications.
Authors:JarosÅaw Janas, PaweÅ Morawiecki, Josef Pieprzyk
Abstract:
The rapid advancement of LLMs (Large Language Models) has established them as a foundational technology for many AI and ML-powered human computer interactions. A critical challenge in this context is the attribution of LLM-generated text -- either to the specific language model that produced it or to the individual user who embedded their identity via a so-called multi-bit watermark. This capability is essential for combating misinformation, fake news, misinterpretation, and plagiarism. One of the key techniques for addressing this challenge is digital watermarking.
This work presents a watermarking scheme for LLM-generated text based on Lagrange interpolation, enabling the recovery of a multi-bit author identity even when the text has been heavily redacted by an adversary. The core idea is to embed a continuous sequence of points $(x, f(x))$ that lie on a single straight line. The $x$-coordinates are computed pseudorandomly using a cryptographic hash function $H$ applied to the concatenation of the previous token's identity and a secret key $s_k$. Crucially, the $x$-coordinates do not need to be embedded into the text -- only the corresponding $f(x)$ values are embedded. During extraction, the algorithm recovers the original points along with many spurious ones, forming an instance of the Maximum Collinear Points (MCP) problem, which can be solved efficiently. Experimental results demonstrate that the proposed method is highly effective, allowing the recovery of the author identity even when as few as three genuine points remain after adversarial manipulation.
Authors:Pedro Abdalla, Roman Vershynin
Abstract:
Given a text, can we determine whether it was generated by a large language model (LLM) or by a human? A widely studied approach to this problem is watermarking. We propose an undetectable and elementary watermarking scheme in the closed setting. Also, in the harder open setting, where the adversary has access to most of the model, we propose an unremovable watermarking scheme.
Authors:I. F. Serzhenko, L. A. Khaertdinova, M. A. Pautov, A. V. Antsiferova
Abstract:
This paper presents an attack method on the StegaStamp watermarking algorithm that completely removes watermarks from an image with minimal quality loss, developed as part of the NeurIPS "Erasing the invisible" competition.
Authors:Muhammad Ahtesham, Xin Zhong
Abstract:
Ensuring robustness in image watermarking is crucial for and maintaining content integrity under diverse transformations. Recent self-supervised learning (SSL) approaches, such as DINO, have been leveraged for watermarking but primarily focus on general feature representation rather than explicitly learning invariant features. In this work, we propose a novel text-guided invariant feature learning framework for robust image watermarking. Our approach leverages CLIP's multimodal capabilities, using text embeddings as stable semantic anchors to enforce feature invariance under distortions. We evaluate the proposed method across multiple datasets, demonstrating superior robustness against various image transformations. Compared to state-of-the-art SSL methods, our model achieves higher cosine similarity in feature consistency tests and outperforms existing watermarking schemes in extraction accuracy under severe distortions. These results highlight the efficacy of our method in learning invariant representations tailored for robust deep learning-based watermarking.
Authors:Wei Junhao, Yu Zhe, Sakuma Jun
Abstract:
Model merging is a technique that combines multiple finetuned models into a single model without additional training, allowing a free-rider to cheaply inherit specialized capabilities. This study investigates methodologies to suppress unwanted model merging by free-riders. Existing methods such as model watermarking or fingerprinting can only detect merging in hindsight. In contrast, we propose a first proactive defense against model merging. Specifically, our defense method modifies the model parameters so that the model is disrupted if the model is merged with any other model, while its functionality is kept unchanged if not merged with others. Our approach consists of two modules, rearranging MLP parameters and scaling attention heads, which push the model out of the shared basin in parameter space, causing the merging performance with other models to degrade significantly. We conduct extensive experiments on image classification, image generation, and text classification to demonstrate that our defense severely disrupts merging while retaining the functionality of the post-protect model. Moreover, we analyze potential adaptive attacks and further propose a dropout-based pruning to improve our proposal's robustness.
Authors:Martin Feick, Xuxin Tang, Raul Garcia-Martin, Alexandru Luchianov, Roderick Wei Xiao Huang, Chang Xiao, Alexa Siu, Mustafa Doga Dogan
Abstract:
Hybrid paper interfaces leverage augmented reality to combine the desired tangibility of paper documents with the affordances of interactive digital media. Typically, virtual content can be embedded through direct links (e.g., QR codes); however, this impacts the aesthetics of the paper print and limits the available visual content space. To address this problem, we present Imprinto, an infrared inkjet watermarking technique that allows for invisible content embeddings only by using off-the-shelf IR inks and a camera. Imprinto was established through a psychophysical experiment, studying how much IR ink can be used while remaining invisible to users regardless of background color. We demonstrate that we can detect invisible IR content through our machine learning pipeline, and we developed an authoring tool that optimizes the amount of IR ink on the color regions of an input document for machine and human detectability. Finally, we demonstrate several applications, including augmenting paper documents and objects.
Authors:Malte Hellmeier, Hendrik Norkowski, Ernst-Christoph Schrewe, Haydar Qarawlus, Falk Howar
Abstract:
Large language models (LLMs) have gained significant popularity in recent years. Differentiating between a text written by a human and one generated by an LLM has become almost impossible. Information-hiding techniques such as digital watermarking or steganography can help by embedding information inside text in a form that is unlikely to be noticed. However, existing techniques, such as linguistic-based or format-based methods, change the semantics or cannot be applied to pure, unformatted text. In this paper, we introduce a novel method for information hiding called Innamark, which can conceal any byte-encoded sequence within a sufficiently long cover text. This method is implemented as a multi-platform library using the Kotlin programming language, which is accompanied by a command-line tool and a web interface. By substituting conventional whitespace characters with visually similar Unicode whitespace characters, our proposed scheme preserves the semantics of the cover text without changing the number of characters. Furthermore, we propose a specified structure for secret messages that enables configurable compression, encryption, hashing, and error correction. An experimental benchmark comparison on a dataset of 1 000 000 Wikipedia articles compares ten algorithms. The results demonstrate the robustness of our proposed Innamark method in various applications and the imperceptibility of its watermarks to humans. We discuss the limits to the embedding capacity and robustness of the algorithm and how these could be addressed in future work.
Authors:Ahmed Abdelaziz, Ahmed Fathi, Ahmed Fares
Abstract:
EEG-based neural networks, pivotal in medical diagnosis and brain-computer interfaces, face significant intellectual property (IP) risks due to their reliance on sensitive neurophysiological data and resource-intensive development. Current watermarking methods, particularly those using abstract trigger sets, lack robust authentication and fail to address the unique challenges of EEG models. This paper introduces a cryptographic wonder filter-based watermarking framework tailored for EEG-based neural networks. Leveraging collision-resistant hashing and public-key encryption, the wonder filter embeds the watermark during training, ensuring minimal distortion ($\leq 5\%$ drop in EEG task accuracy) and high reliability (100\% watermark detection). The framework is rigorously evaluated against adversarial attacks, including fine-tuning, transfer learning, and neuron pruning. Results demonstrate persistent watermark retention, with classification accuracy for watermarked states remaining above 90\% even after aggressive pruning, while primary task performance degrades faster, deterring removal attempts. Piracy resistance is validated by the inability to embed secondary watermarks without severe accuracy loss ( $>10\%$ in EEGNet and CCNN models). Cryptographic hashing ensures authentication, reducing brute-force attack success probabilities. Evaluated on the DEAP dataset across models (CCNN, EEGNet, TSception), the method achieves $>99.4\%$ null-embedding accuracy, effectively eliminating false positives. By integrating wonder filters with EEG-specific adaptations, this work bridges a critical gap in IP protection for neurophysiological models, offering a secure, tamper-proof solution for healthcare and biometric applications. The framework's robustness against adversarial modifications underscores its potential to safeguard sensitive EEG models while maintaining diagnostic utility.
Authors:Qihao Lin, Chen Tang, Lan zhang, Junyang zhang, Xiangyang Li
Abstract:
As large language models (LLMs) grow more powerful, concerns over copyright infringement of LLM-generated texts have intensified. LLM watermarking has been proposed to trace unauthorized redistribution or resale of generated content by embedding identifiers within the text. Existing approaches primarily rely on one-bit watermarking, which only verifies whether a text was generated by a specific LLM. In contrast, multi-bit watermarking encodes richer information, enabling the identification of the specific LLM and user involved in generated or distributed content. However, current multi-bit methods directly embed the watermark into the text without considering its watermark capacity, which can result in failures, especially in low-entropy texts. In this paper, we analyze that the watermark embedding follows a normal distribution. We then derive a formal inequality to optimally segment the text for watermark embedding. Building upon this, we propose DERMARK, a dynamic, efficient, and robust multi-bit watermarking method that divides the text into variable-length segments for each watermark bit during the inference. Moreover, DERMARK incurs negligible overhead since no additional intermediate matrices are generated and achieves robustness against text editing by minimizing watermark extraction loss. Experiments demonstrate that, compared to SOTA, on average, our method reduces the number of tokens required per embedded bit by 25\%, reduces watermark embedding time by 50\%, and maintains high robustness against text modifications and watermark erasure attacks.
Authors:Farzana Kabir, David Megias, Krzysztof Cabaj
Abstract:
The remarkable advancement of smart grid technology in the IoT sector has raised concerns over the privacy and security of the data collected and transferred in real-time. Smart meters generate detailed information about consumers' energy consumption patterns, increasing the risks of data breaches, identity theft, and other forms of cyber attacks. This study proposes a privacy-preserving data aggregation protocol that uses reversible watermarking and AES cryptography to ensure the security and privacy of the data. There are two versions of the protocol: one for low-frequency smart meters that uses LSB-shifting-based reversible watermarking (RLS) and another for high-frequency smart meters that uses difference expansion-based reversible watermarking (RDE). This enables the aggregation of smart meter data, maintaining confidentiality, integrity, and authenticity. The proposed protocol significantly enhances privacy-preserving measures for smart metering systems, conducting an experimental evaluation with real hardware implementation using Nucleo microcontroller boards and the RIOT operating system and comparing the results to existing security schemes.
Authors:Lu Zhang, Liang Zeng
Abstract:
The rapid proliferation of AI-generated images necessitates effective watermarking techniques to protect intellectual property and detect fraudulent content. While existing training-based watermarking methods show promise, they often struggle with generalizing across diverse prompts and tend to introduce visible artifacts. To this end, we propose a novel, provably generalizable image watermarking approach for Latent Diffusion Models, termed Self-Augmented Training (SAT-LDM). Our method aligns the training and testing phases through a free generation distribution, thereby enhancing the watermarking module's generalization capabilities. We theoretically consolidate SAT-LDM by proving that the free generation distribution contributes to its tight generalization bound, without the need for additional data collection. Extensive experiments show that SAT-LDM not only achieves robust watermarking but also significantly improves the quality of watermarked images across a wide range of prompts. Moreover, our experimental analyses confirm the strong generalization abilities of SAT-LDM. We hope that our method provides a practical and efficient solution for securing high-fidelity AI-generated content.
Authors:Imants Svalbe, Rob Tijdeman
Abstract:
Projection ghosts are discrete arrays of signed values positioned so that their discrete projections vanish for some chosen set of n projection angles. Minimal ghosts are designed to be compact, with no internal pixels having value zero. Here we control the shape, number of boundary pixels and area that each minimal ghost encloses. Binary minimal ghosts and their boundaries can themselves be inflated by tiling copies of themselves to make ghosts with larger sizes and different shapes, whilst still retaining the same set of n zero projection angles. The intricate perimeters of minimal ghosts are formed by three strings of connected pixels that are defined by the minimal projection angles. We show that large changes to the ghost areas can be made whilst keeping the length of their segmented perimeters fixed. These inflated boundary ghosts may prove useful as secure watermarks to embed into digital image data. Boundary ghosts may also help guide the selection of angles used to reconstruct images where the object domain is confined to oval shaped arcs.
Authors:Christopher J. Tralie, Matt Amery, Benjamin Douglas, Ian Utz
Abstract:
As generative techniques pervade the audio domain, there has been increasing interest in tracing back through these complicated models to understand how they draw on their training data to synthesize new examples, both to ensure that they use properly licensed data and also to elucidate their black box behavior. In this paper, we show that if imperceptible echoes are hidden in the training data, a wide variety of audio to audio architectures (differentiable digital signal processing (DDSP), Realtime Audio Variational autoEncoder (RAVE), and ``Dance Diffusion'') will reproduce these echoes in their outputs. Hiding a single echo is particularly robust across all architectures, but we also show promising results hiding longer time spread echo patterns for an increased information capacity. We conclude by showing that echoes make their way into fine tuned models, that they survive mixing/demixing, and that they survive pitch shift augmentation during training. Hence, this simple, classical idea in watermarking shows significant promise for tagging generative audio models.
Authors:Bhaktipriya Radharapu, Harish Krishna
Abstract:
The growing threat of deepfakes and manipulated media necessitates a radical rethinking of media authentication. Existing methods for watermarking synthetic data fall short, as they can be easily removed or altered, and current deepfake detection algorithms do not achieve perfect accuracy. Provenance techniques, which rely on metadata to verify content origin, fail to address the fundamental problem of staged or fake media.
This paper introduces a groundbreaking paradigm shift in media authentication by advocating for the watermarking of real content at its source, as opposed to watermarking synthetic data. Our innovative approach employs multisensory inputs and machine learning to assess the realism of content in real-time and across different contexts. We propose embedding a robust realism score within the image metadata, fundamentally transforming how images are trusted and circulated. By combining established principles of human reasoning about reality, rooted in firmware and hardware security, with the sophisticated reasoning capabilities of contemporary machine learning systems, we develop a holistic approach that analyzes information from multiple perspectives.
This ambitious, blue sky approach represents a significant leap forward in the field, pushing the boundaries of media authenticity and trust. By embracing cutting-edge advancements in technology and interdisciplinary research, we aim to establish a new standard for verifying the authenticity of digital media.
Authors:Hiu Ting Lau, Arkaitz Zubiaga
Abstract:
Natural Language Generation has been rapidly developing with the advent of large language models (LLMs). While their usage has sparked significant attention from the general public, it is important for readers to be aware when a piece of text is LLM-generated. This has brought about the need for building models that enable automated LLM-generated text detection, with the aim of mitigating potential negative outcomes of such content. Existing LLM-generated detectors show competitive performances in telling apart LLM-generated and human-written text, but this performance is likely to deteriorate when paraphrased texts are considered. In this study, we devise a new data collection strategy to collect Human & LLM Paraphrase Collection (HLPC), a first-of-its-kind dataset that incorporates human-written texts and paraphrases, as well as LLM-generated texts and paraphrases. With the aim of understanding the effects of human-written paraphrases on the performance of state-of-the-art LLM-generated text detectors OpenAI RoBERTa and watermark detectors, we perform classification experiments that incorporate human-written paraphrases, watermarked and non-watermarked LLM-generated documents from GPT and OPT, and LLM-generated paraphrases from DIPPER and BART. The results show that the inclusion of human-written paraphrases has a significant impact of LLM-generated detector performance, promoting TPR@1%FPR with a possible trade-off of AUROC and accuracy.
Authors:Weitong Chen, Yuheng Li
Abstract:
In recent years, digital watermarking techniques based on deep learning have been widely studied. To achieve both imperceptibility and robustness of image watermarks, most current methods employ convolutional neural networks to build robust watermarking frameworks. However, despite the success of CNN-based watermarking models, they struggle to achieve robustness against geometric attacks due to the limitations of convolutional neural networks in capturing global and long-range relationships. To address this limitation, we propose a robust watermarking framework based on the Swin Transformer, named RoWSFormer. Specifically, we design the Locally-Channel Enhanced Swin Transformer Block as the core of both the encoder and decoder. This block utilizes the self-attention mechanism to capture global and long-range information, thereby significantly improving adaptation to geometric distortions. Additionally, we construct the Frequency-Enhanced Transformer Block to extract frequency domain information, which further strengthens the robustness of the watermarking framework. Experimental results demonstrate that our RoWSFormer surpasses existing state-of-the-art watermarking methods. For most non-geometric attacks, RoWSFormer improves the PSNR by 3 dB while maintaining the same extraction accuracy. In the case of geometric attacks (such as rotation, scaling, and affine transformations), RoWSFormer achieves over a 6 dB improvement in PSNR, with extraction accuracy exceeding 97\%.
Authors:Surendra Ghentiyala, Venkatesan Guruswami
Abstract:
Introduced in [CG24], pseudorandom error-correcting codes (PRCs) are a new cryptographic primitive with applications in watermarking generative AI models. These are codes where a collection of polynomially many codewords is computationally indistinguishable from random for an adversary that does not have the secret key, but anyone with the secret key is able to efficiently decode corrupted codewords. In this work, we examine the assumptions under which PRCs with robustness to a constant error rate exist.
1. We show that if both the planted hyperloop assumption introduced in [BKR23] and security of a version of Goldreich's PRG hold, then there exist public-key PRCs for which no efficient adversary can distinguish a polynomial number of codewords from random with better than $o(1)$ advantage.
2. We revisit the construction of [CG24] and show that it can be based on a wider range of assumptions than presented in [CG24]. To do this, we introduce a weakened version of the planted XOR assumption which we call the weak planted XOR assumption and which may be of independent interest.
3. We initiate the study of PRCs which are secure against space-bounded adversaries. We show how to construct secret-key PRCs of length $O(n)$ which are $\textit{unconditionally}$ indistinguishable from random by $\text{poly}(n)$ time, $O(n^{1.5-\varepsilon})$ space adversaries.
Authors:Bentley DeVilling
Abstract:
Multimodal AI systems integrate text generation, image generation, and other capabilities within a single conversational interface. These systems employ safety mechanisms to prevent disallowed actions, including the removal of watermarks from copyrighted images. While single-turn refusals are expected, the interaction between safety filters and conversation-level state is not well understood. This study documents a reproducible behavioral effect in the ChatGPT (GPT-5.1) web interface. Manual execution was chosen to capture the exact user-facing safety behavior of the production system, rather than isolated API components. When a conversation begins with an uploaded copyrighted image and a request to remove a watermark, which the model correctly refuses, subsequent prompts to generate unrelated, benign images are refused for the remainder of the session. Importantly, text-only requests (e.g., generating a Python function) continue to succeed. Across 40 manually run sessions (30 contaminated and 10 controls), contaminated threads showed 116/120 image-generation refusals (96.67%), while control threads showed 0/40 refusals (Fisher's exact p < 0.0001). All sessions used an identical fixed prompt order, ensuring sequence uniformity across conditions. We describe this as safety-state persistence: a form of conversational over-generalization in which a copyright refusal influences subsequent, unrelated image-generation behavior. We present these findings as behavioral observations, not architectural claims. We discuss possible explanations, methodological limitations (single model, single interface), and implications for multimodal reliability, user experience, and the design of session-level safety systems. These results motivate further examination of session-level safety interactions in multimodal AI systems.
Authors:Edwin Vargas
Abstract:
Ensuring the authenticity and ownership of digital images is increasingly challenging as modern editing tools enable highly realistic forgeries. Existing image protection systems mainly rely on digital watermarking, which is susceptible to sophisticated digital attacks. To address this limitation, we propose a hybrid optical-digital framework that incorporates physical authentication cues during image formation and preserves them through a learned reconstruction process. At the optical level, a phase mask in the camera aperture produces a Null-space Optical Watermark (NOWA) that lies in the Null Space of the imaging operator and therefore remains invisible in the captured image. Then, a Null-Space Network (NSN) performs measurement-consistent reconstruction that delivers high-quality protected images while preserving the NOWA signature. The proposed design enables tamper localization by projecting the image onto the camera's null space and detecting pixel-level inconsistencies. Our design preserves perceptual quality, resists common degradations such as compression, and establishes a structural security asymmetry: without access to the optical or NSN parameters, adversaries cannot forge the NOWA signature. Experiments with simulations and a prototype camera demonstrate competitive performance in terms of image quality preservation, and tamper localization accuracy compared to state-of-the-art digital watermarking and learning-based authentication methods.
Authors:Madhava Gaikwad
Abstract:
Large language models are exposed to risks of extraction, distillation, and unauthorized fine-tuning. Existing defenses use watermarking or monitoring, but these act after leakage. We design AlignDP, a hybrid privacy lock that blocks knowledge transfer at the data interface. The key idea is to separate rare and non-rare fields. Rare fields are shielded by PAC indistinguishability, giving effective zero-epsilon local DP. Non-rare fields are privatized with RAPPOR, giving unbiased frequency estimates under local DP. A global aggregator enforces composition and budget. This two-tier design hides rare events and adds controlled noise to frequent events. We prove limits of PAC extension to global aggregation, give bounds for RAPPOR estimates, and analyze utility trade-off. A toy simulation confirms feasibility: rare categories remain hidden, frequent categories are recovered with small error.
Authors:Malte Hellmeier
Abstract:
Securing digital text is becoming increasingly relevant due to the widespread use of large language models. Individuals' fear of losing control over data when it is being used to train such machine learning models or when distinguishing model-generated output from text written by humans. Digital watermarking provides additional protection by embedding an invisible watermark within the data that requires protection. However, little work has been taken to analyze and verify if existing digital text watermarking methods are secure and undetectable by large language models. In this paper, we investigate the security-related area of watermarking and machine learning models for text data. In a controlled testbed of three experiments, ten existing Unicode text watermarking methods were implemented and analyzed across six large language models: GPT-5, GPT-4o, Teuken 7B, Llama 3.3, Claude Sonnet 4, and Gemini 2.5 Pro. The findings of our experiments indicate that, especially the latest reasoning models, can detect a watermarked text. Nevertheless, all models fail to extract the watermark unless implementation details in the form of source code are provided. We discuss the implications for security researchers and practitioners and outline future research opportunities to address security concerns.
Authors:George Mikros
Abstract:
Large language models (LLMs) present a dual challenge for forensic linguistics. They serve as powerful analytical tools enabling scalable corpus analysis and embedding-based authorship attribution, while simultaneously destabilising foundational assumptions about idiolect through style mimicry, authorship obfuscation, and the proliferation of synthetic texts. Recent stylometric research indicates that LLMs can approximate surface stylistic features yet exhibit detectable differences from human writers, a tension with significant forensic implications. However, current AI-text detection techniques, whether classifier-based, stylometric, or watermarking approaches, face substantial limitations: high false positive rates for non-native English writers and vulnerability to adversarial strategies such as homoglyph substitution. These uncertainties raise concerns under legal admissibility standards, particularly the Daubert and Kumho Tire frameworks. The article concludes that forensic linguistics requires methodological reconfiguration to remain scientifically credible and legally admissible. Proposed adaptations include hybrid human-AI workflows, explainable detection paradigms beyond binary classification, and validation regimes measuring error and bias across diverse populations. The discipline's core insight, i.e., that language reveals information about its producer, remains valid but must accommodate increasingly complex chains of human and machine authorship.
Authors:Anudeex Shetty
Abstract:
Large Language Models (LLMs) have demonstrated exceptional capabilities in natural language understanding and generation. Based on these LLMs, businesses have started to provide Embeddings-as-a-Service (EaaS), offering feature extraction capabilities (in the form of text embeddings) that benefit downstream natural language processing tasks. However, prior research has demonstrated that EaaS is vulnerable to imitation attacks, where an attacker clones the service's model in a black-box manner without access to the model's internal workings. In response, watermarks have been added to the text embeddings to protect the intellectual property of EaaS providers by allowing them to check for model ownership. This thesis focuses on defending against imitation attacks by investigating EaaS watermarks. To achieve this goal, we unveil novel attacks and propose and validate new watermarking techniques. Firstly, we show that existing EaaS watermarks can be removed through paraphrasing the input text when attackers clone the model during imitation attacks. Our study illustrates that paraphrasing can effectively bypass current state-of-the-art EaaS watermarks across various attack setups (including different paraphrasing techniques and models) and datasets in most instances. This demonstrates a new vulnerability in recent EaaS watermarking techniques. Subsequently, as a countermeasure, we propose a novel watermarking technique, WET (Watermarking EaaS with Linear Transformation), which employs linear transformation of the embeddings. Watermark verification is conducted by applying a reverse transformation and comparing the similarity between recovered and original embeddings. We demonstrate its robustness against paraphrasing attacks with near-perfect verifiability. We conduct detailed ablation studies to assess the significance of each component and hyperparameter in WET.
Authors:Kassem Kallas
Abstract:
Every day we share our personal information through digital systems which are constantly exposed to threats. For this reason, security-oriented disciplines of signal processing have received increasing attention in the last decades: multimedia forensics, digital watermarking, biometrics, network monitoring, steganography and steganalysis are just a few examples. Even though each of these fields has its own peculiarities, they all have to deal with a common problem: the presence of one or more adversaries aiming at making the system fail. Adversarial Signal Processing lays the basis of a general theory that takes into account the impact that the presence of an adversary has on the design of effective signal processing tools. By focusing on the application side of Adversarial Signal Processing, namely adversarial information fusion in distributed sensor networks, and adopting a game-theoretic approach, this thesis contributes to the above mission by addressing four issues. First, we address decision fusion in distributed sensor networks by developing a novel soft isolation defense scheme that protect the network from adversaries, specifically, Byzantines. Second, we develop an optimum decision fusion strategy in the presence of Byzantines. In the next step, we propose a technique to reduce the complexity of the optimum fusion by relying on a novel near-optimum message passing algorithm based on factor graphs. Finally, we introduce a defense mechanism to protect decentralized networks running consensus algorithm against data falsification attacks.
Authors:Rizal Khoirul Anam
Abstract:
The proliferation of digital media necessitates robust methods for copyright protection and content authentication. This paper presents a comprehensive comparative study of digital image watermarking techniques implemented using the spatial domain (Least Significant Bit - LSB), the frequency domain (Discrete Fourier Transform - DFT), and a novel hybrid (LSB+DFT) approach. The core objective is to evaluate the trade-offs between imperceptibility (measured by Peak Signal-to-Noise Ratio - PSNR) and robustness (measured by Normalized Correlation - NC and Bit Error Rate - BER). We implemented these three techniques within a unified MATLAB-based experimental framework. The watermarked images were subjected to a battery of common image processing attacks, including JPEG compression, Gaussian noise, and salt-and-pepper noise, at varying intensities. Experimental results generated from standard image datasets (USC-SIPI) demonstrate that while LSB provides superior imperceptibility, it is extremely fragile. The DFT method offers significant robustness at the cost of visual quality. The proposed hybrid LSB+DFT technique, which leverages redundant embedding and a fallback extraction mechanism, is shown to provide the optimal balance, maintaining high visual fidelity while exhibiting superior resilience to all tested attacks.
Authors:Thomas Souverain
Abstract:
To foster trustworthy Artificial Intelligence (AI) within the European Union, the AI Act requires providers to mark and detect the outputs of their general-purpose models. The Article 50 and Recital 133 call for marking methods that are ''sufficiently reliable, interoperable, effective and robust''. Yet, the rapidly evolving and heterogeneous landscape of watermarks for Large Language Models (LLMs) makes it difficult to determine how these four standards can be translated into concrete and measurable evaluations. Our paper addresses this challenge, anchoring the normativity of European requirements in the multiplicity of watermarking techniques. Introducing clear and distinct concepts on LLM watermarking, our contribution is threefold. (1) Watermarking Categorisation: We propose an accessible taxonomy of watermarking methods according to the stage of the LLM lifecycle at which they are applied - before, during, or after training, and during next-token distribution or sampling. (2) Watermarking Evaluation: We interpret the EU AI Act's requirements by mapping each criterion with state-of-the-art evaluations on robustness and detectability of the watermark, and of quality of the LLM. Since interoperability remains largely untheorised in LLM watermarking research, we propose three normative dimensions to frame its assessment. (3) Watermarking Comparison: We compare current watermarking methods for LLMs against the operationalised European criteria and show that no approach yet satisfies all four standards. Encouraged by emerging empirical tests, we recommend further research into watermarking directly embedded within the low-level architecture of LLMs.
Authors:Gokul Ganesan
Abstract:
Watermarking has been proposed as a lightweight mechanism to identify AI-generated text, with schemes typically relying on perturbations to token distributions. While prior work shows that paraphrasing can weaken such signals, these attacks remain partially detectable or degrade text quality. We demonstrate that cross-lingual summarization attacks (CLSA) -- translation to a pivot language followed by summarization and optional back-translation -- constitute a qualitatively stronger attack vector. By forcing a semantic bottleneck across languages, CLSA systematically destroys token-level statistical biases while preserving semantic fidelity. In experiments across multiple watermarking schemes (KGW, SIR, XSIR, Unigram) and five languages (Amharic, Chinese, Hindi, Spanish, Swahili), we show that CLSA reduces watermark detection accuracy more effectively than monolingual paraphrase at similar quality levels. Our results highlight an underexplored vulnerability that challenges the practicality of watermarking for provenance or regulation. We argue that robust provenance solutions must move beyond distributional watermarking and incorporate cryptographic or model-attestation approaches. On 300 held-out samples per language, CLSA consistently drives detection toward chance while preserving task utility. Concretely, for XSIR (explicitly designed for cross-lingual robustness), AUROC with paraphrasing is $0.827$, with Cross-Lingual Watermark Removal Attacks (CWRA) [He et al., 2024] using Chinese as the pivot, it is $0.823$, whereas CLSA drives it down to $0.53$ (near chance). Results highlight a practical, low-cost removal pathway that crosses languages and compresses content without visible artifacts.
Authors:Om Tailor
Abstract:
Multi-agent deployments of large language models (LLMs) are increasingly embedded in market, allocation, and governance workflows, yet covert coordination among agents can silently erode trust and social welfare. Existing audits are dominated by heuristics that lack theoretical guarantees, struggle to transfer across tasks, and seldom ship with the infrastructure needed for independent replication. We introduce \emph{Audit the Whisper}, a conference-grade research artifact that spans theory, benchmark design, detection, and reproducibility. Our contributions are: (i) a channel-capacity analysis showing how interventions such as paraphrase, rate limiting, and role permutation impose quantifiable capacity penalties -- operationalized via paired-run Kullback--Leibler diagnostics -- that tighten mutual-information thresholds with finite-sample guarantees; (ii) \textsc{ColludeBench}-v0, covering pricing, first-price auctions, and peer review with configurable covert schemes, deterministic manifests, and reward instrumentation; and (iii) a calibrated auditing pipeline that fuses cross-run mutual information, permutation invariance, watermark variance, and fairness-aware acceptance bias, each tuned to a \(10^{-3}\) false-positive budget. Across 600 audited runs spanning 12 intervention conditions, the union meta-test attains TPR~$=1$ with zero observed false alarms, while ablations surface the price-of-auditing trade-off and highlight fairness-driven colluders invisible to MI alone. We release regeneration scripts, seed-stamped manifests, and documentation so that external auditors can reproduce every figure and extend the framework with minimal effort.
Authors:David Megias
Abstract:
Ensuring the trustworthiness of data from distributed and resource-constrained environments, such as Wireless Sensor Networks or IoT devices, is critical. Existing Reversible Data Hiding (RDH) methods for scalar data suffer from low embedding capacity and poor intrinsic mixing between host data and watermark. This paper introduces Hiding in the Imaginary Domain with Data Encryption (H[i]dden), a novel framework based on complex number arithmetic for simultaneous information embedding and encryption. The H[i]dden framework offers perfect reversibility, in-principle unlimited watermark size, and intrinsic data-watermark mixing. The paper further introduces two protocols: H[i]dden-EG, for joint reversible data hiding and encryption, and H[i]dden-AggP, for privacy-preserving aggregation of watermarked data, based on partially homomorphic encryption. These protocols provide efficient and resilient solutions for data integrity, provenance and confidentiality, serving as a foundation for new schemes based on the algebraic properties of the complex domain.
Authors:Jason Anderson
Abstract:
Cryptographic Ranging Authentication is here! We present initial results on the Pulsar authenticated ranging service broadcast from space with Pulsar-0 utilizing a recording taken at Xona headquarters in Burlingame, CA. No assumptions pertaining to the ownership or leakage of encryption keys are required. This work discusses the Pulsar watermark design and security analysis. We derive the Pulsar watermark's probabilities of missed detection and false alarm, and we discuss the required receiver processing needed to utilize the Pulsar watermark. We present validation results of the Pulsar watermark utilizing the transmissions from orbit. Lastly, we provide results that demonstrate the spoofing detection efficacy with a spoofing scenario that incorporates the authentic transmissions from orbit. Because we make no assumption about the leakage of symmetric encryption keys, this work provides mathematical justification of the watermark's security, and our July 2025 transmissions from orbit, we claim the world's first authenticated satellite pseudorange from orbit.
Authors:Aadil Gani Ganie
Abstract:
As large language models (LLMs) become more advanced, it is increasingly difficult to distinguish between human-written and AI-generated text. This paper draws a conceptual parallel between quantum uncertainty and the limits of authorship detection in natural language. We argue that there is a fundamental trade-off: the more confidently one tries to identify whether a text was written by a human or an AI, the more one risks disrupting the text's natural flow and authenticity. This mirrors the tension between precision and disturbance found in quantum systems. We explore how current detection methods--such as stylometry, watermarking, and neural classifiers--face inherent limitations. Enhancing detection accuracy often leads to changes in the AI's output, making other features less reliable. In effect, the very act of trying to detect AI authorship introduces uncertainty elsewhere in the text. Our analysis shows that when AI-generated text closely mimics human writing, perfect detection becomes not just technologically difficult but theoretically impossible. We address counterarguments and discuss the broader implications for authorship, ethics, and policy. Ultimately, we suggest that the challenge of AI-text detection is not just a matter of better tools--it reflects a deeper, unavoidable tension in the nature of language itself.
Authors:Abraham Itzhak Weinberg
Abstract:
This paper presents the Singularity Cipher, a novel cryptographic-steganographic framework that integrates topological transformations and visual paradoxes to achieve multidimensional security. Inspired by the non-orientable properties of the Klein bottle -- constructed from two Mobius strips -- the cipher applies symbolic twist functions to simulate topological traversal, producing high confusion and diffusion in the ciphertext. The resulting binary data is then encoded using perceptual illusions, such as the missing square paradox, to visually obscure the presence of encrypted content. Unlike conventional ciphers that rely solely on algebraic complexity, the Singularity Cipher introduces a dual-layer approach: symbolic encryption rooted in topology and visual steganography designed for human cognitive ambiguity. This combination enhances both cryptographic strength and detection resistance, making it well-suited for secure communication, watermarking, and plausible deniability in adversarial environments. The paper formalizes the architecture, provides encryption and decryption algorithms, evaluates security properties, and compares the method against classical, post-quantum, and steganographic approaches. Potential applications and future research directions are also discussed.
Authors:Krti Tallam
Abstract:
We present a robust neural watermarking framework for scientific data integrity, targeting high-dimensional fields common in climate modeling and fluid simulations. Using a convolutional autoencoder, binary messages are invisibly embedded into structured data such as temperature, vorticity, and geopotential. Our method ensures watermark persistence under lossy transformations - including noise injection, cropping, and compression - while maintaining near-original fidelity (sub-1\% MSE). Compared to classical singular value decomposition (SVD)-based watermarking, our approach achieves $>$98\% bit accuracy and visually indistinguishable reconstructions across ERA5 and Navier-Stokes datasets. This system offers a scalable, model-compatible tool for data provenance, auditability, and traceability in high-performance scientific workflows, and contributes to the broader goal of securing AI systems through verifiable, physics-aware watermarking. We evaluate on physically grounded scientific datasets as a representative stress-test; the framework extends naturally to other structured domains such as satellite imagery and autonomous-vehicle perception streams.
Authors:Weijie Su
Abstract:
Large language models (LLMs) represent a new paradigm for processing unstructured data, with applications across an unprecedented range of domains. In this paper, we address, through two arguments, whether the development and application of LLMs would genuinely benefit from foundational contributions from the statistics discipline. First, we argue affirmatively, beginning with the observation that LLMs are inherently statistical models due to their profound data dependency and stochastic generation processes, where statistical insights are naturally essential for handling variability and uncertainty. Second, we argue that the persistent black-box nature of LLMs -- stemming from their immense scale, architectural complexity, and development practices often prioritizing empirical performance over theoretical interpretability -- renders closed-form or purely mechanistic analyses generally intractable, thereby necessitating statistical approaches due to their flexibility and often demonstrated effectiveness. To substantiate these arguments, the paper outlines several research areas -- including alignment, watermarking, uncertainty quantification, evaluation, and data mixture optimization -- where statistical methodologies are critically needed and are already beginning to make valuable contributions. We conclude with a discussion suggesting that statistical research concerning LLMs will likely form a diverse ``mosaic'' of specialized topics rather than deriving from a single unifying theory, and highlighting the importance of timely engagement by our statistics community in LLM research.
Authors:Houssam Kherraz
Abstract:
As generative AI models produce increasingly realistic output, both academia and industry are focusing on the ability to detect whether an output was generated by an AI model or not. Many of the research efforts and policy discourse are centered around robust watermarking of AI outputs. While plenty of progress has been made, all watermarking and AI detection techniques face severe limitations. In this position paper, we argue that we are adopting the wrong approach, and should instead focus on watermarking via cryptographic signatures trustworthy content rather than AI generated ones. For audio-visual content, in particular, all real content is grounded in the physical world and captured via hardware sensors. This presents a unique opportunity to watermark at the hardware layer, and we lay out a socio-technical framework and draw parallels with HTTPS certification and Blu-Ray verification protocols. While acknowledging implementation challenges, we contend that hardware-based authentication offers a more tractable path forward, particularly from a policy perspective. As generative models approach perceptual indistinguishability, the research community should be wary of being overly optimistic with AI watermarking, and we argue that AI watermarking research efforts are better spent in the text and LLM space, which are ultimately not traceable to a physical sensor.
Authors:Lele Cao
Abstract:
The rapid advancement of generative artificial intelligence (GenAI) has revolutionized content creation across text, visual, and audio domains, simultaneously introducing significant risks such as misinformation, identity fraud, and content manipulation. This paper presents a practical survey of watermarking techniques designed to proactively detect GenAI content. We develop a structured taxonomy categorizing watermarking methods for text, visual, and audio modalities and critically evaluate existing approaches based on their effectiveness, robustness, and practicality. Additionally, we identify key challenges, including resistance to adversarial attacks, lack of standardization across different content types, and ethical considerations related to privacy and content ownership. Finally, we discuss potential future research directions aimed at enhancing watermarking strategies to ensure content authenticity and trustworthiness. This survey serves as a foundational resource for researchers and practitioners seeking to understand and advance watermarking techniques for AI-generated content detection.
Authors:Lele Cao
Abstract:
Advances in AI-generated content have led to wide adoption of large language models, diffusion-based visual generators, and synthetic audio tools. However, these developments raise critical concerns about misinformation, copyright infringement, security threats, and the erosion of public trust. In this paper, we explore an extensive range of methods designed to detect and mitigate AI-generated textual, visual, and audio content. We begin by discussing motivations and potential impacts associated with AI-based content generation, including real-world risks and ethical dilemmas. We then outline detection techniques spanning observation-based strategies, linguistic and statistical analysis, model-based pipelines, watermarking and fingerprinting, as well as emergent ensemble approaches. We also present new perspectives on robustness, adaptation to rapidly improving generative architectures, and the critical role of human-in-the-loop verification. By surveying state-of-the-art research and highlighting case studies in academic, journalistic, legal, and industrial contexts, this paper aims to inform robust solutions and policymaking. We conclude by discussing open challenges, including adversarial transformations, domain generalization, and ethical concerns, thereby offering a holistic guide for researchers, practitioners, and regulators to preserve content authenticity in the face of increasingly sophisticated AI-generated media.
Authors:Krishna Panthi
Abstract:
This paper introduces a novel approach to enhance the performance of Gaussian Shading, a prevalent watermarking technique, by integrating the Exact Diffusion Inversion via Coupled Transformations (EDICT) framework. While Gaussian Shading traditionally embeds watermarks in a noise latent space, followed by iterative denoising for image generation and noise addition for watermark recovery, its inversion process is not exact, leading to potential watermark distortion. We propose to leverage EDICT's ability to derive exact inverse mappings to refine this process. Our method involves duplicating the watermark-infused noisy latent and employing a reciprocal, alternating denoising and noising scheme between the two latents, facilitated by EDICT. This allows for a more precise reconstruction of both the image and the embedded watermark. Empirical evaluation on standard datasets demonstrates that our integrated approach yields a slight, yet statistically significant improvement in watermark recovery fidelity. These results highlight the potential of EDICT to enhance existing diffusion-based watermarking techniques by providing a more accurate and robust inversion mechanism. To the best of our knowledge, this is the first work to explore the synergy between EDICT and Gaussian Shading for digital watermarking, opening new avenues for research in robust and high-fidelity watermark embedding and extraction.
Authors:Minhao Bai
Abstract:
Watermarking is an effective way to trace model-generated content. Current watermark methods cannot resist forgery attacks, such as a deceptive claim that the model-generated content is a response to a fabricated prompt. None of them can be made unforgeable without degrading robustness.
Unforgeability demands that the watermarked output is not only detectable but also verifiable for integrity, indicating whether it has been modified. This underscores the necessity and significance of a multi-bit watermarking scheme.
Recent works try to build multi-bit scheme based on existing zero-bit watermarking scheme, but they either degrades the robustness or brings a significant computational burden. We aim to design a novel single-bit watermark scheme, which provides the ability to embed 2 different watermark signals.
This paper's main contribution is that we are the first to propose an undetectable, robust, single-bit watermarking scheme. It has a comparable robustness to the most advanced zero-bit watermarking schemes. Then we construct a multi-bit watermarking scheme to use the hash value of prompt or the newest generated content as the watermark signals, and embed them into the following content, which guarantees the unforgeability.
Additionally, we provide sufficient experiments on some popular language models, while the other advanced methods with provable guarantees do not often provide. The results show that our method is practically effective and robust.
Authors:Peihao Li
Abstract:
With the widespread adoption of edge computing technologies and the increasing prevalence of deep learning models in these environments, the security risks and privacy threats to models and data have grown more acute. Attackers can exploit various techniques to illegally obtain models or misuse data, leading to serious issues such as intellectual property infringement and privacy breaches. Existing model access control technologies primarily rely on traditional encryption and authentication methods; however, these approaches exhibit significant limitations in terms of flexibility and adaptability in dynamic environments. Although there have been advancements in model watermarking techniques for marking model ownership, they remain limited in their ability to proactively protect intellectual property and prevent unauthorized access. To address these challenges, we propose a novel model access control method tailored for edge computing environments. This method leverages image style as a licensing mechanism, embedding style recognition into the model's operational framework to enable intrinsic access control. Consequently, models deployed on edge platforms are designed to correctly infer only on license data with specific style, rendering them ineffective on any other data. By restricting the input data to the edge model, this approach not only prevents attackers from gaining unauthorized access to the model but also enhances the privacy of data on terminal devices. We conducted extensive experiments on benchmark datasets, including MNIST, CIFAR-10, and FACESCRUB, and the results demonstrate that our method effectively prevents unauthorized access to the model while maintaining accuracy. Additionally, the model shows strong resistance against attacks such as forged licenses and fine-tuning. These results underscore the method's usability, security, and robustness.
Authors:Yiquan Wang
Abstract:
The digital art market faces unprecedented challenges in authenticity verification and copyright protection. This study introduces an integrated framework to address these issues by combining neural style transfer, fractal analysis, and blockchain technology. We generate abstract artworks inspired by Jackson Pollock, using their inherent mathematical complexity to create robust, imperceptible watermarks. Our method embeds these watermarks, derived from fractal and turbulence features, directly into the artwork's structure. This approach is then secured by linking the watermark to NFT metadata, ensuring immutable proof of ownership. Rigorous testing shows our feature-based watermarking achieves a 76.2% average detection rate against common attacks, significantly outperforming traditional methods (27.8-44.0%). This work offers a practical solution for digital artists and collectors, enhancing security and trust in the digital art ecosystem.
Authors:Renyi Yang
Abstract:
In the expanding field of generative artificial intelligence, integrating robust watermarking technologies is essential to protect intellectual property and maintain content authenticity. Traditionally, watermarking techniques have been developed primarily for rich information media such as images and audio. However, these methods have not been adequately adapted for graph-based data, particularly molecular graphs. Latent 3D graph diffusion(LDM-3DG) is an ascendant approach in the molecular graph generation field. This model effectively manages the complexities of molecular structures, preserving essential symmetries and topological features. We adapt the Gaussian Shading, a proven performance lossless watermarking technique, to the latent graph diffusion domain to protect this sophisticated new technology. Our adaptation simplifies the watermark diffusion process through duplication and padding, making it adaptable and suitable for various message types. We conduct several experiments using the LDM-3DG model on publicly available datasets QM9 and Drugs, to assess the robustness and effectiveness of our technique. Our results demonstrate that the watermarked molecules maintain statistical parity in 9 out of 10 performance metrics compared to the original. Moreover, they exhibit a 100% detection rate and a 99% extraction rate in a 2D decoded pipeline, while also showing robustness against post-editing attacks.
Authors:Givon Zirkind
Abstract:
Medical imaging has kept up with the digital age. Medical images such as x-rays are no longer keep on film or; even made with film. Rather, they are digital. In addition, they are transmitted for reasons of consultation and telehealth as well as archived. Transmission and retrieval of these images presents an integrity issue, with a high level of integrity being needed. Very small artifacts in a digital medical image can have significant importance, making or changing a diagnosis. It is imperative that the integrity of a medical image, especially in a Region of Interest be identifiable and preserved. Watermarking and steganography are used for the purposes of authenticating images, especially for copyright purposes. These techniques can be applied to medical images. However, these techniques can interfere with the integrity of the picture. While such distortion may be acceptable in other domains, in the medical domain this distortion is not acceptable. High accuracy is imperative for diagnosis. This paper discusses the techniques used, their advantages and shortcomings as well as methods of overcoming obstacles to integrity.
Authors:Kaixin Deng
Abstract: In the expanding field of digital media, maintaining the strength and integrity of watermarking technology is becoming increasingly challenging. This paper, inspired by the Idempotent Generative Network (IGN), explores the prospects of introducing idempotency into image watermark processing and proposes an innovative neural network model - the Idempotent Watermarking Network (IWN). The proposed model, which focuses on enhancing the recovery quality of color image watermarks, leverages idempotency to ensure superior image reversibility. This feature ensures that, even if color image watermarks are attacked or damaged, they can be effectively projected and mapped back to their original state. Therefore, the extracted watermarks have unquestionably increased quality. The IWN model achieves a balance between embedding capacity and robustness, alleviating to some extent the inherent contradiction between these two factors in traditional watermarking techniques and steganography methods.