arXiv Papers of World Models
Authors:Lin Li, Qihang Zhang, Yiming Luo, Shuai Yang, Ruilin Wang, Fei Han, Mingrui Yu, Zelin Gao, Nan Xue, Xing Zhu, Yujun Shen, Yinghao Xu
Abstract:
This work highlights that video world modeling, alongside vision-language pre-training, establishes a fresh and independent foundation for robot learning. Intuitively, video world models provide the ability to imagine the near future by understanding the causality between actions and visual dynamics. Inspired by this, we introduce LingBot-VA, an autoregressive diffusion framework that learns frame prediction and policy execution simultaneously. Our model features three carefully crafted designs: (1) a shared latent space, integrating vision and action tokens, driven by a Mixture-of-Transformers (MoT) architecture, (2) a closed-loop rollout mechanism, allowing for ongoing acquisition of environmental feedback with ground-truth observations, (3) an asynchronous inference pipeline, parallelizing action prediction and motor execution to support efficient control. We evaluate our model on both simulation benchmarks and real-world scenarios, where it shows significant promise in long-horizon manipulation, data efficiency in post-training, and strong generalizability to novel configurations. The code and model are made publicly available to facilitate the community.
Authors:Robbyant Team, Zelin Gao, Qiuyu Wang, Yanhong Zeng, Jiapeng Zhu, Ka Leong Cheng, Yixuan Li, Hanlin Wang, Yinghao Xu, Shuailei Ma, Yihang Chen, Jie Liu, Yansong Cheng, Yao Yao, Jiayi Zhu, Yihao Meng, Kecheng Zheng, Qingyan Bai, Jingye Chen, Zehong Shen, Yue Yu, Xing Zhu, Yujun Shen, Hao Ouyang
Abstract:
We present LingBot-World, an open-sourced world simulator stemming from video generation. Positioned as a top-tier world model, LingBot-World offers the following features. (1) It maintains high fidelity and robust dynamics in a broad spectrum of environments, including realism, scientific contexts, cartoon styles, and beyond. (2) It enables a minute-level horizon while preserving contextual consistency over time, which is also known as "long-term memory". (3) It supports real-time interactivity, achieving a latency of under 1 second when producing 16 frames per second. We provide public access to the code and model in an effort to narrow the divide between open-source and closed-source technologies. We believe our release will empower the community with practical applications across areas like content creation, gaming, and robot learning.
Authors:Jialong Wu, Xiaoying Zhang, Hongyi Yuan, Xiangcheng Zhang, Tianhao Huang, Changjing He, Chaoyi Deng, Renrui Zhang, Youbin Wu, Mingsheng Long
Abstract:
Humans construct internal world models and reason by manipulating the concepts within these models. Recent advances in AI, particularly chain-of-thought (CoT) reasoning, approximate such human cognitive abilities, where world models are believed to be embedded within large language models. Expert-level performance in formal and abstract domains such as mathematics and programming has been achieved in current systems by relying predominantly on verbal reasoning. However, they still lag far behind humans in domains like physical and spatial intelligence, which require richer representations and prior knowledge. The emergence of unified multimodal models (UMMs) capable of both verbal and visual generation has therefore sparked interest in more human-like reasoning grounded in complementary multimodal pathways, though their benefits remain unclear. From a world-model perspective, this paper presents the first principled study of when and how visual generation benefits reasoning. Our key position is the visual superiority hypothesis: for certain tasks--particularly those grounded in the physical world--visual generation more naturally serves as world models, whereas purely verbal world models encounter bottlenecks arising from representational limitations or insufficient prior knowledge. Theoretically, we formalize internal world modeling as a core component of CoT reasoning and analyze distinctions among different forms of world models. Empirically, we identify tasks that necessitate interleaved visual-verbal CoT reasoning, constructing a new evaluation suite, VisWorld-Eval. Controlled experiments on a state-of-the-art UMM show that interleaved CoT significantly outperforms purely verbal CoT on tasks that favor visual world modeling, but offers no clear advantage otherwise. Together, this work clarifies the potential of multimodal world modeling for more powerful, human-like multimodal AI.
Authors:Zhao-Han Peng, Shaohui Li, Zhi Li, Shulan Ruan, Yu Liu, You He
Abstract:
While model-based reinforcement learning (MBRL) improves sample efficiency by learning world models from raw observations, existing methods struggle to generalize across structurally similar scenes and remain vulnerable to spurious variations such as textures or color shifts. From a cognitive science perspective, humans segment continuous sensory streams into discrete events and rely on these key events for decision-making. Motivated by this principle, we propose the Event-Aware World Model (EAWM), a general framework that learns event-aware representations to streamline policy learning without requiring handcrafted labels. EAWM employs an automated event generator to derive events from raw observations and introduces a Generic Event Segmentor (GES) to identify event boundaries, which mark the start and end time of event segments. Through event prediction, the representation space is shaped to capture meaningful spatio-temporal transitions. Beyond this, we present a unified formulation of seemingly distinct world model architectures and show the broad applicability of our methods. Experiments on Atari 100K, Craftax 1M, and DeepMind Control 500K, DMC-GB2 500K demonstrate that EAWM consistently boosts the performance of strong MBRL baselines by 10%-45%, setting new state-of-the-art results across benchmarks. Our code is released at https://github.com/MarquisDarwin/EAWM.
Authors:Debang Li, Zhengcong Fei, Tuanhui Li, Yikun Dou, Zheng Chen, Jiangping Yang, Mingyuan Fan, Jingtao Xu, Jiahua Wang, Baoxuan Gu, Mingshan Chang, Wenjing Cai, Yuqiang Xie, Binjie Mao, Youqiang Zhang, Nuo Pang, Hao Zhang, Yuzhe Jin, Zhiheng Xu, Dixuan Lin, Guibin Chen, Yahui Zhou
Abstract:
Video generation serves as a cornerstone for building world models, where multimodal contextual inference stands as the defining test of capability. In this end, we present SkyReels-V3, a conditional video generation model, built upon a unified multimodal in-context learning framework with diffusion Transformers. SkyReels-V3 model supports three core generative paradigms within a single architecture: reference images-to-video synthesis, video-to-video extension and audio-guided video generation. (i) reference images-to-video model is designed to produce high-fidelity videos with strong subject identity preservation, temporal coherence, and narrative consistency. To enhance reference adherence and compositional stability, we design a comprehensive data processing pipeline that leverages cross frame pairing, image editing, and semantic rewriting, effectively mitigating copy paste artifacts. During training, an image video hybrid strategy combined with multi-resolution joint optimization is employed to improve generalization and robustness across diverse scenarios. (ii) video extension model integrates spatio-temporal consistency modeling with large-scale video understanding, enabling both seamless single-shot continuation and intelligent multi-shot switching with professional cinematographic patterns. (iii) Talking avatar model supports minute-level audio-conditioned video generation by training first-and-last frame insertion patterns and reconstructing key-frame inference paradigms. On the basis of ensuring visual quality, synchronization of audio and videos has been optimized. Extensive evaluations demonstrate that SkyReels-V3 achieves state-of-the-art or near state-of-the-art performance on key metrics including visual quality, instruction following, and specific aspect metrics, approaching leading closed-source systems. Github: https://github.com/SkyworkAI/SkyReels-V3.
Authors:Ahmad Rahimi, Valentin Gerard, Eloi Zablocki, Matthieu Cord, Alexandre Alahi
Abstract:
Recent video diffusion models generate photorealistic, temporally coherent videos, yet they fall short as reliable world models for autonomous driving, where structured motion and physically consistent interactions are essential. Adapting these generalist video models to driving domains has shown promise but typically requires massive domain-specific data and costly fine-tuning. We propose an efficient adaptation framework that converts generalist video diffusion models into controllable driving world models with minimal supervision. The key idea is to decouple motion learning from appearance synthesis. First, the model is adapted to predict structured motion in a simplified form: videos of skeletonized agents and scene elements, focusing learning on physical and social plausibility. Then, the same backbone is reused to synthesize realistic RGB videos conditioned on these motion sequences, effectively "dressing" the motion with texture and lighting. This two-stage process mirrors a reasoning-rendering paradigm: first infer dynamics, then render appearance. Our experiments show this decoupled approach is exceptionally efficient: adapting SVD, we match prior SOTA models with less than 6% of their compute. Scaling to LTX, our MAD-LTX model outperforms all open-source competitors, and supports a comprehensive suite of text, ego, and object controls. Project page: https://vita-epfl.github.io/MAD-World-Model/
Authors:Jingsheng Zheng, Jintian Zhang, Yujie Luo, Yuren Mao, Yunjun Gao, Lun Du, Huajun Chen, Ningyu Zhang
Abstract:
Autonomous machine learning agents have revolutionized scientific discovery, yet they remain constrained by a Generate-Execute-Feedback paradigm. Previous approaches suffer from a severe Execution Bottleneck, as hypothesis evaluation relies strictly on expensive physical execution. To bypass these physical constraints, we internalize execution priors to substitute costly runtime checks with instantaneous predictive reasoning, drawing inspiration from World Models. In this work, we formalize the task of Data-centric Solution Preference and construct a comprehensive corpus of 18,438 pairwise comparisons. We demonstrate that LLMs exhibit significant predictive capabilities when primed with a Verified Data Analysis Report, achieving 61.5% accuracy and robust confidence calibration. Finally, we instantiate this framework in FOREAGENT, an agent that employs a Predict-then-Verify loop, achieving a 6x acceleration in convergence while surpassing execution-based baselines by +6%. Our code and dataset will be publicly available soon at https://github.com/zjunlp/predict-before-execute.
Authors:Sixiao Zheng, Minghao Yin, Wenbo Hu, Xiaoyu Li, Ying Shan, Yanwei Fu
Abstract:
Video world models aim to simulate dynamic, real-world environments, yet existing methods struggle to provide unified and precise control over camera and multi-object motion, as videos inherently operate dynamics in the projected 2D image plane. To bridge this gap, we introduce VerseCrafter, a 4D-aware video world model that enables explicit and coherent control over both camera and object dynamics within a unified 4D geometric world state. Our approach is centered on a novel 4D Geometric Control representation, which encodes the world state through a static background point cloud and per-object 3D Gaussian trajectories. This representation captures not only an object's path but also its probabilistic 3D occupancy over time, offering a flexible, category-agnostic alternative to rigid bounding boxes or parametric models. These 4D controls are rendered into conditioning signals for a pretrained video diffusion model, enabling the generation of high-fidelity, view-consistent videos that precisely adhere to the specified dynamics. Unfortunately, another major challenge lies in the scarcity of large-scale training data with explicit 4D annotations. We address this by developing an automatic data engine that extracts the required 4D controls from in-the-wild videos, allowing us to train our model on a massive and diverse dataset.
Authors:Zhexiao Xiong, Xin Ye, Burhan Yaman, Sheng Cheng, Yiren Lu, Jingru Luo, Nathan Jacobs, Liu Ren
Abstract:
World models have become central to autonomous driving, where accurate scene understanding and future prediction are crucial for safe control. Recent work has explored using vision-language models (VLMs) for planning, yet existing approaches typically treat perception, prediction, and planning as separate modules. We propose UniDrive-WM, a unified VLM-based world model that jointly performs driving-scene understanding, trajectory planning, and trajectory-conditioned future image generation within a single architecture. UniDrive-WM's trajectory planner predicts a future trajectory, which conditions a VLM-based image generator to produce plausible future frames. These predictions provide additional supervisory signals that enhance scene understanding and iteratively refine trajectory generation. We further compare discrete and continuous output representations for future image prediction, analyzing their influence on downstream driving performance. Experiments on the challenging Bench2Drive benchmark show that UniDrive-WM produces high-fidelity future images and improves planning performance by 5.9% in L2 trajectory error and 9.2% in collision rate over the previous best method. These results demonstrate the advantages of tightly integrating VLM-driven reasoning, planning, and generative world modeling for autonomous driving. The project page is available at https://unidrive-wm.github.io/UniDrive-WM .
Authors:Wenlong Huang, Yu-Wei Chao, Arsalan Mousavian, Ming-Yu Liu, Dieter Fox, Kaichun Mo, Li Fei-Fei
Abstract:
Humans anticipate, from a glance and a contemplated action of their bodies, how the 3D world will respond, a capability that is equally vital for robotic manipulation. We introduce PointWorld, a large pre-trained 3D world model that unifies state and action in a shared 3D space as 3D point flows: given one or few RGB-D images and a sequence of low-level robot action commands, PointWorld forecasts per-pixel displacements in 3D that respond to the given actions. By representing actions as 3D point flows instead of embodiment-specific action spaces (e.g., joint positions), this formulation directly conditions on physical geometries of robots while seamlessly integrating learning across embodiments. To train our 3D world model, we curate a large-scale dataset spanning real and simulated robotic manipulation in open-world environments, enabled by recent advances in 3D vision and simulated environments, totaling about 2M trajectories and 500 hours across a single-arm Franka and a bimanual humanoid. Through rigorous, large-scale empirical studies of backbones, action representations, learning objectives, partial observability, data mixtures, domain transfers, and scaling, we distill design principles for large-scale 3D world modeling. With a real-time (0.1s) inference speed, PointWorld can be efficiently integrated in the model-predictive control (MPC) framework for manipulation. We demonstrate that a single pre-trained checkpoint enables a real-world Franka robot to perform rigid-body pushing, deformable and articulated object manipulation, and tool use, without requiring any demonstrations or post-training and all from a single image captured in-the-wild. Project website at https://point-world.github.io/.
Authors:Junhao Cai, Zetao Cai, Jiafei Cao, Yilun Chen, Zeyu He, Lei Jiang, Hang Li, Hengjie Li, Yang Li, Yufei Liu, Yanan Lu, Qi Lv, Haoxiang Ma, Jiangmiao Pang, Yu Qiao, Zherui Qiu, Yanqing Shen, Xu Shi, Yang Tian, Bolun Wang, Hanqing Wang, Jiaheng Wang, Tai Wang, Xueyuan Wei, Chao Wu, Yiman Xie, Boyang Xing, Yuqiang Yang, Yuyin Yang, Qiaojun Yu, Feng Yuan, Jia Zeng, Jingjing Zhang, Shenghan Zhang, Shi Zhang, Zhuoma Zhaxi, Bowen Zhou, Yuanzhen Zhou, Yunsong Zhou, Hongrui Zhu, Yangkun Zhu, Yuchen Zhu
Abstract:
Prevalent Vision-Language-Action (VLA) models are typically built upon Multimodal Large Language Models (MLLMs) and demonstrate exceptional proficiency in semantic understanding, but they inherently lack the capability to deduce physical world dynamics. Consequently, recent approaches have shifted toward World Models, typically formulated via video prediction; however, these methods often suffer from a lack of semantic grounding and exhibit brittleness when handling prediction errors. To synergize semantic understanding with dynamic predictive capabilities, we present InternVLA-A1. This model employs a unified Mixture-of-Transformers architecture, coordinating three experts for scene understanding, visual foresight generation, and action execution. These components interact seamlessly through a unified masked self-attention mechanism. Building upon InternVL3 and Qwen3-VL, we instantiate InternVLA-A1 at 2B and 3B parameter scales. We pre-train these models on hybrid synthetic-real datasets spanning InternData-A1 and Agibot-World, covering over 533M frames. This hybrid training strategy effectively harnesses the diversity of synthetic simulation data while minimizing the sim-to-real gap. We evaluated InternVLA-A1 across 12 real-world robotic tasks and simulation benchmark. It significantly outperforms leading models like pi0 and GR00T N1.5, achieving a 14.5\% improvement in daily tasks and a 40\%-73.3\% boost in dynamic settings, such as conveyor belt sorting.
Authors:Basile Terver, Tsung-Yen Yang, Jean Ponce, Adrien Bardes, Yann LeCun
Abstract:
A long-standing challenge in AI is to develop agents capable of solving a wide range of physical tasks and generalizing to new, unseen tasks and environments. A popular recent approach involves training a world model from state-action trajectories and subsequently use it with a planning algorithm to solve new tasks. Planning is commonly performed in the input space, but a recent family of methods has introduced planning algorithms that optimize in the learned representation space of the world model, with the promise that abstracting irrelevant details yields more efficient planning. In this work, we characterize models from this family as JEPA-WMs and investigate the technical choices that make algorithms from this class work. We propose a comprehensive study of several key components with the objective of finding the optimal approach within the family. We conducted experiments using both simulated environments and real-world robotic data, and studied how the model architecture, the training objective, and the planning algorithm affect planning success. We combine our findings to propose a model that outperforms two established baselines, DINO-WM and V-JEPA-2-AC, in both navigation and manipulation tasks. Code, data and checkpoints are available at https://github.com/facebookresearch/jepa-wms.
Authors:Jichen Feng, Yifan Zhang, Chenggong Zhang, Yifu Lu, Shilong Liu, Mengdi Wang
Abstract:
Language agents increasingly require persistent worlds in which they can act, remember, and learn. Existing approaches sit at two extremes: conventional web frameworks provide reliable but fixed contexts backed by databases, while fully generative world models aim for unlimited environments at the expense of controllability and practical engineering. In this work, we introduce the Web World Model (WWM), a middle ground where world state and ``physics'' are implemented in ordinary web code to ensure logical consistency, while large language models generate context, narratives, and high-level decisions on top of this structured latent state. We build a suite of WWMs on a realistic web stack, including an infinite travel atlas grounded in real geography, fictional galaxy explorers, web-scale encyclopedic and narrative worlds, and simulation- and game-like environments. Across these systems, we identify practical design principles for WWMs: separating code-defined rules from model-driven imagination, representing latent state as typed web interfaces, and utilizing deterministic generation to achieve unlimited but structured exploration. Our results suggest that web stacks themselves can serve as a scalable substrate for world models, enabling controllable yet open-ended environments. Project Page: https://github.com/Princeton-AI2-Lab/Web-World-Models.
Authors:Tianchen Deng, Xuefeng Chen, Yi Chen, Qu Chen, Yuyao Xu, Lijin Yang, Le Xu, Yu Zhang, Bo Zhang, Wuxiong Huang, Hesheng Wang
Abstract:
Driving World Models (DWMs) have been developing rapidly with the advances of generative models. However, existing DWMs lack 3D scene understanding capabilities and can only generate content conditioned on input data, without the ability to interpret or reason about the driving environment. Moreover, current approaches represent 3D spatial information with point cloud or BEV features do not accurately align textual information with the underlying 3D scene. To address these limitations, we propose a novel unified DWM framework based on 3D Gaussian scene representation, which enables both 3D scene understanding and multi-modal scene generation, while also enabling contextual enrichment for understanding and generation tasks. Our approach directly aligns textual information with the 3D scene by embedding rich linguistic features into each Gaussian primitive, thereby achieving early modality alignment. In addition, we design a novel task-aware language-guided sampling strategy that removes redundant 3D Gaussians and injects accurate and compact 3D tokens into LLM. Furthermore, we design a dual-condition multi-modal generation model, where the information captured by our vision-language model is leveraged as a high-level language condition in combination with a low-level image condition, jointly guiding the multi-modal generation process. We conduct comprehensive studies on the nuScenes, and NuInteract datasets to validate the effectiveness of our framework. Our method achieves state-of-the-art performance. We will release the code publicly on GitHub https://github.com/dtc111111/GaussianDWM.
Authors:Shizhou Zhang, Xueqiang Lv, Yinghui Xing, Qirui Wu, Di Xu, Chen Zhao, Yanning Zhang
Abstract:
Current methods for incremental object detection (IOD) primarily rely on Faster R-CNN or DETR series detectors; however, these approaches do not accommodate the real-time YOLO detection frameworks. In this paper, we first identify three primary types of knowledge conflicts that contribute to catastrophic forgetting in YOLO-based incremental detectors: foreground-background confusion, parameter interference, and misaligned knowledge distillation. Subsequently, we introduce YOLO-IOD, a real-time Incremental Object Detection (IOD) framework that is constructed upon the pretrained YOLO-World model, facilitating incremental learning via a stage-wise parameter-efficient fine-tuning process. Specifically, YOLO-IOD encompasses three principal components: 1) Conflict-Aware Pseudo-Label Refinement (CPR), which mitigates the foreground-background confusion by leveraging the confidence levels of pseudo labels and identifying potential objects relevant to future tasks. 2) Importancebased Kernel Selection (IKS), which identifies and updates the pivotal convolution kernels pertinent to the current task during the current learning stage. 3) Cross-Stage Asymmetric Knowledge Distillation (CAKD), which addresses the misaligned knowledge distillation conflict by transmitting the features of the student target detector through the detection heads of both the previous and current teacher detectors, thereby facilitating asymmetric distillation between existing and newly introduced categories. We further introduce LoCo COCO, a more realistic benchmark that eliminates data leakage across stages. Experiments on both conventional and LoCo COCO benchmarks show that YOLO-IOD achieves superior performance with minimal forgetting.
Authors:Xuanhua He, Tianyu Yang, Ke Cao, Ruiqi Wu, Cheng Meng, Yong Zhang, Zhuoliang Kang, Xiaoming Wei, Qifeng Chen
Abstract:
Current video avatar generation methods excel at identity preservation and motion alignment but lack genuine agency, they cannot autonomously pursue long-term goals through adaptive environmental interaction. We address this by introducing L-IVA (Long-horizon Interactive Visual Avatar), a task and benchmark for evaluating goal-directed planning in stochastic generative environments, and ORCA (Online Reasoning and Cognitive Architecture), the first framework enabling active intelligence in video avatars. ORCA embodies Internal World Model (IWM) capabilities through two key innovations: (1) a closed-loop OTAR cycle (Observe-Think-Act-Reflect) that maintains robust state tracking under generative uncertainty by continuously verifying predicted outcomes against actual generations, and (2) a hierarchical dual-system architecture where System 2 performs strategic reasoning with state prediction while System 1 translates abstract plans into precise, model-specific action captions. By formulating avatar control as a POMDP and implementing continuous belief updating with outcome verification, ORCA enables autonomous multi-step task completion in open-domain scenarios. Extensive experiments demonstrate that ORCA significantly outperforms open-loop and non-reflective baselines in task success rate and behavioral coherence, validating our IWM-inspired design for advancing video avatar intelligence from passive animation to active, goal-oriented behavior.
Authors:Zepeng Xin, Kaiyu Li, Luodi Chen, Wanchen Li, Yuchen Xiao, Hui Qiao, Weizhan Zhang, Deyu Meng, Xiangyong Cao
Abstract:
Effectively grounding complex language to pixels in remote sensing (RS) images is a critical challenge for applications like disaster response and environmental monitoring. Current models can parse simple, single-target commands but fail when presented with complex geospatial scenarios, e.g., segmenting objects at various granularities, executing multi-target instructions, and interpreting implicit user intent. To drive progress against these failures, we present LaSeRS, the first large-scale dataset built for comprehensive training and evaluation across four critical dimensions of language-guided segmentation: hierarchical granularity, target multiplicity, reasoning requirements, and linguistic variability. By capturing these dimensions, LaSeRS moves beyond simple commands, providing a benchmark for complex geospatial reasoning. This addresses a critical gap: existing datasets oversimplify, leading to sensitivity-prone real-world models. We also propose SegEarth-R2, an MLLM architecture designed for comprehensive language-guided segmentation in RS, which directly confronts these challenges. The model's effectiveness stems from two key improvements: (1) a spatial attention supervision mechanism specifically handles the localization of small objects and their components, and (2) a flexible and efficient segmentation query mechanism that handles both single-target and multi-target scenarios. Experimental results demonstrate that our SegEarth-R2 achieves outstanding performance on LaSeRS and other benchmarks, establishing a powerful baseline for the next generation of geospatial segmentation. All data and code will be released at https://github.com/earth-insights/SegEarth-R2.
Authors:Tianrui Zhu, Shiyi Zhang, Zhirui Sun, Jingqi Tian, Yansong Tang
Abstract:
Frame-level autoregressive (frame-AR) models have achieved significant progress, enabling real-time video generation comparable to bidirectional diffusion models and serving as a foundation for interactive world models and game engines. However, current approaches in long video generation typically rely on window attention, which naively discards historical context outside the window, leading to catastrophic forgetting and scene inconsistency; conversely, retaining full history incurs prohibitive memory costs. To address this trade-off, we propose Memorize-and-Generate (MAG), a framework that decouples memory compression and frame generation into distinct tasks. Specifically, we train a memory model to compress historical information into a compact KV cache, and a separate generator model to synthesize subsequent frames utilizing this compressed representation. Furthermore, we introduce MAG-Bench to strictly evaluate historical memory retention. Extensive experiments demonstrate that MAG achieves superior historical scene consistency while maintaining competitive performance on standard video generation benchmarks.
Authors:Yitong Wang, Fangyun Wei, Hongyang Zhang, Bo Dai, Yan Lu
Abstract:
Recent advances in world models have greatly enhanced interactive environment simulation. Existing methods mainly fall into two categories: (1) static world generation models, which construct 3D environments without active agents, and (2) controllable-entity models, which allow a single entity to perform limited actions in an otherwise uncontrollable environment. In this work, we introduce AniX, leveraging the realism and structural grounding of static world generation while extending controllable-entity models to support user-specified characters capable of performing open-ended actions. Users can provide a 3DGS scene and a character, then direct the character through natural language to perform diverse behaviors from basic locomotion to object-centric interactions while freely exploring the environment. AniX synthesizes temporally coherent video clips that preserve visual fidelity with the provided scene and character, formulated as a conditional autoregressive video generation problem. Built upon a pre-trained video generator, our training strategy significantly enhances motion dynamics while maintaining generalization across actions and characters. Our evaluation covers a broad range of aspects, including visual quality, character consistency, action controllability, and long-horizon coherence.
Authors:Hanlin Wang, Hao Ouyang, Qiuyu Wang, Yue Yu, Yihao Meng, Wen Wang, Ka Leong Cheng, Shuailei Ma, Qingyan Bai, Yixuan Li, Cheng Chen, Yanhong Zeng, Xing Zhu, Yujun Shen, Qifeng Chen
Abstract:
We present WorldCanvas, a framework for promptable world events that enables rich, user-directed simulation by combining text, trajectories, and reference images. Unlike text-only approaches and existing trajectory-controlled image-to-video methods, our multimodal approach combines trajectories -- encoding motion, timing, and visibility -- with natural language for semantic intent and reference images for visual grounding of object identity, enabling the generation of coherent, controllable events that include multi-agent interactions, object entry/exit, reference-guided appearance and counterintuitive events. The resulting videos demonstrate not only temporal coherence but also emergent consistency, preserving object identity and scene despite temporary disappearance. By supporting expressive world events generation, WorldCanvas advances world models from passive predictors to interactive, user-shaped simulators. Our project page is available at: https://worldcanvas.github.io/.
Authors:Yu Zheng, Jie Hu, Kailun Yang, Jiaming Zhang
Abstract:
Autonomous driving requires a persistent understanding of 3D scenes that is robust to temporal disturbances and accounts for potential future actions. We introduce a new concept of 4D Occupancy Spatio-Temporal Persistence (OccSTeP), which aims to address two tasks: (1) reactive forecasting: ''what will happen next'' and (2) proactive forecasting: "what would happen given a specific future action". For the first time, we create a new OccSTeP benchmark with challenging scenarios (e.g., erroneous semantic labels and dropped frames). To address this task, we propose OccSTeP-WM, a tokenizer-free world model that maintains a dense voxel-based scene state and incrementally fuses spatio-temporal context over time. OccSTeP-WM leverages a linear-complexity attention backbone and a recurrent state-space module to capture long-range spatial dependencies while continually updating the scene memory with ego-motion compensation. This design enables online inference and robust performance even when historical sensor input is missing or noisy. Extensive experiments prove the effectiveness of the OccSTeP concept and our OccSTeP-WM, yielding an average semantic mIoU of 23.70% (+6.56% gain) and occupancy IoU of 35.89% (+9.26% gain). The data and code will be open source at https://github.com/FaterYU/OccSTeP.
Authors:Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Yusuke Kato, Kazuki Kozuka, Aditya Grover
Abstract:
World models have shown great utility in improving the task performance of embodied agents. While prior work largely focuses on pixel-space world models, these approaches face practical limitations in GUI settings, where predicting complex visual elements in future states is often difficult. In this work, we explore an alternative formulation of world modeling for GUI agents, where state transitions are described in natural language rather than predicting raw pixels. First, we introduce MobileWorldBench, a benchmark that evaluates the ability of vision-language models (VLMs) to function as world models for mobile GUI agents. Second, we release MobileWorld, a large-scale dataset consisting of 1.4M samples, that significantly improves the world modeling capabilities of VLMs. Finally, we propose a novel framework that integrates VLM world models into the planning framework of mobile agents, demonstrating that semantic world models can directly benefit mobile agents by improving task success rates. The code and dataset is available at https://github.com/jacklishufan/MobileWorld
Authors:Jianxiong Gao, Zhaoxi Chen, Xian Liu, Junhao Zhuang, Chengming Xu, Jianfeng Feng, Yu Qiao, Yanwei Fu, Chenyang Si, Ziwei Liu
Abstract:
Building video world models upon pretrained video generation systems represents an important yet challenging step toward general spatiotemporal intelligence. A world model should possess three essential properties: controllability, long-term visual quality, and temporal consistency. To this end, we take a progressive approach-first enhancing controllability and then extending toward long-term, high-quality generation. We present LongVie 2, an end-to-end autoregressive framework trained in three stages: (1) Multi-modal guidance, which integrates dense and sparse control signals to provide implicit world-level supervision and improve controllability; (2) Degradation-aware training on the input frame, bridging the gap between training and long-term inference to maintain high visual quality; and (3) History-context guidance, which aligns contextual information across adjacent clips to ensure temporal consistency. We further introduce LongVGenBench, a comprehensive benchmark comprising 100 high-resolution one-minute videos covering diverse real-world and synthetic environments. Extensive experiments demonstrate that LongVie 2 achieves state-of-the-art performance in long-range controllability, temporal coherence, and visual fidelity, and supports continuous video generation lasting up to five minutes, marking a significant step toward unified video world modeling.
Authors:Zhenya Yang, Zhe Liu, Yuxiang Lu, Liping Hou, Chenxuan Miao, Siyi Peng, Bailan Feng, Xiang Bai, Hengshuang Zhao
Abstract:
Physics-aware driving world model is essential for drive planning, out-of-distribution data synthesis, and closed-loop evaluation. However, existing methods often rely on a single diffusion model to directly map driving actions to videos, which makes learning difficult and leads to physically inconsistent outputs. To overcome these challenges, we propose GenieDrive, a novel framework designed for physics-aware driving video generation. Our approach starts by generating 4D occupancy, which serves as a physics-informed foundation for subsequent video generation. 4D occupancy contains rich physical information, including high-resolution 3D structures and dynamics. To facilitate effective compression of such high-resolution occupancy, we propose a VAE that encodes occupancy into a latent tri-plane representation, reducing the latent size to only 58% of that used in previous methods. We further introduce Mutual Control Attention (MCA) to accurately model the influence of control on occupancy evolution, and we jointly train the VAE and the subsequent prediction module in an end-to-end manner to maximize forecasting accuracy. Together, these designs yield a 7.2% improvement in forecasting mIoU at an inference speed of 41 FPS, while using only 3.47 M parameters. Additionally, a Normalized Multi-View Attention is introduced in the video generation model to generate multi-view driving videos with guidance from our 4D occupancy, significantly improving video quality with a 20.7% reduction in FVD. Experiments demonstrate that GenieDrive enables highly controllable, multi-view consistent, and physics-aware driving video generation.
Authors:Junjie Ye, Rong Xue, Basile Van Hoorick, Pavel Tokmakov, Muhammad Zubair Irshad, Yue Wang, Vitor Guizilini
Abstract:
The collection of large-scale and diverse robot demonstrations remains a major bottleneck for imitation learning, as real-world data acquisition is costly and simulators offer limited diversity and fidelity with pronounced sim-to-real gaps. While generative models present an attractive solution, existing methods often alter only visual appearances without creating new behaviors, or suffer from embodiment inconsistencies that yield implausible motions. To address these limitations, we introduce AnchorDream, an embodiment-aware world model that repurposes pretrained video diffusion models for robot data synthesis. AnchorDream conditions the diffusion process on robot motion renderings, anchoring the embodiment to prevent hallucination while synthesizing objects and environments consistent with the robot's kinematics. Starting from only a handful of human teleoperation demonstrations, our method scales them into large, diverse, high-quality datasets without requiring explicit environment modeling. Experiments show that the generated data leads to consistent improvements in downstream policy learning, with relative gains of 36.4% in simulator benchmarks and nearly double performance in real-world studies. These results suggest that grounding generative world models in robot motion provides a practical path toward scaling imitation learning.
Authors:Felix O'Mahony, Roberto Cipolla, Ayush Tewari
Abstract:
Generative video models, a leading approach to world modeling, face fundamental limitations. They often violate physical and logical rules, lack interactivity, and operate as opaque black boxes ill-suited for building structured, queryable worlds. To overcome these challenges, we propose a new paradigm focused on distilling an image caption pair into a tractable, abstract representation optimized for simulation. We introduce VDAWorld, a framework where a Vision-Language Model (VLM) acts as an intelligent agent to orchestrate this process. The VLM autonomously constructs a grounded (2D or 3D) scene representation by selecting from a suite of vision tools, and accordingly chooses a compatible physics simulator (e.g., rigid body, fluid) to act upon it. VDAWorld can then infer latent dynamics from the static scene to predict plausible future states. Our experiments show that this combination of intelligent abstraction and adaptive simulation results in a versatile world model capable of producing high quality simulations across a wide range of dynamic scenarios.
Authors:Ao Liang, Lingdong Kong, Tianyi Yan, Hongsi Liu, Wesley Yang, Ziqi Huang, Wei Yin, Jialong Zuo, Yixuan Hu, Dekai Zhu, Dongyue Lu, Youquan Liu, Guangfeng Jiang, Linfeng Li, Xiangtai Li, Long Zhuo, Lai Xing Ng, Benoit R. Cottereau, Changxin Gao, Liang Pan, Wei Tsang Ooi, Ziwei Liu
Abstract:
Generative world models are reshaping embodied AI, enabling agents to synthesize realistic 4D driving environments that look convincing but often fail physically or behaviorally. Despite rapid progress, the field still lacks a unified way to assess whether generated worlds preserve geometry, obey physics, or support reliable control. We introduce WorldLens, a full-spectrum benchmark evaluating how well a model builds, understands, and behaves within its generated world. It spans five aspects -- Generation, Reconstruction, Action-Following, Downstream Task, and Human Preference -- jointly covering visual realism, geometric consistency, physical plausibility, and functional reliability. Across these dimensions, no existing world model excels universally: those with strong textures often violate physics, while geometry-stable ones lack behavioral fidelity. To align objective metrics with human judgment, we further construct WorldLens-26K, a large-scale dataset of human-annotated videos with numerical scores and textual rationales, and develop WorldLens-Agent, an evaluation model distilled from these annotations to enable scalable, explainable scoring. Together, the benchmark, dataset, and agent form a unified ecosystem for measuring world fidelity -- standardizing how future models are judged not only by how real they look, but by how real they behave.
Authors:Yixuan Zhu, Jiaqi Feng, Wenzhao Zheng, Yuan Gao, Xin Tao, Pengfei Wan, Jie Zhou, Jiwen Lu
Abstract:
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
Authors:Yuning Gong, Yifei Liu, Yifan Zhan, Muyao Niu, Xueying Li, Yuanjun Liao, Jiaming Chen, Yuanyuan Gao, Jiaqi Chen, Minming Chen, Li Zhou, Yuning Zhang, Wei Wang, Xiaoqing Hou, Huaxi Huang, Shixiang Tang, Le Ma, Dingwen Zhang, Xue Yang, Junchi Yan, Yanchi Zhang, Yinqiang Zheng, Xiao Sun, Zhihang Zhong
Abstract:
Neural rendering, particularly 3D Gaussian Splatting (3DGS), has evolved rapidly and become a key component for building world models. However, existing viewer solutions remain fragmented, heavy, or constrained by legacy pipelines, resulting in high deployment friction and limited support for dynamic content and generative models. In this work, we present Visionary, an open, web-native platform for real-time various Gaussian Splatting and meshes rendering. Built on an efficient WebGPU renderer with per-frame ONNX inference, Visionary enables dynamic neural processing while maintaining a lightweight, "click-to-run" browser experience. It introduces a standardized Gaussian Generator contract, which not only supports standard 3DGS rendering but also allows plug-and-play algorithms to generate or update Gaussians each frame. Such inference also enables us to apply feedforward generative post-processing. The platform further offers a plug in three.js library with a concise TypeScript API for seamless integration into existing web applications. Experiments show that, under identical 3DGS assets, Visionary achieves superior rendering efficiency compared to current Web viewers due to GPU-based primitive sorting. It already supports multiple variants, including MLP-based 3DGS, 4DGS, neural avatars, and style transformation or enhancement networks. By unifying inference and rendering directly in the browser, Visionary significantly lowers the barrier to reproduction, comparison, and deployment of 3DGS-family methods, serving as a unified World Model Carrier for both reconstructive and generative paradigms.
Authors:Cheng Zhang, Boying Li, Meng Wei, Yan-Pei Cao, Camilo Cruz Gambardella, Dinh Phung, Jianfei Cai
Abstract:
Transformers have emerged as a universal backbone across 3D perception, video generation, and world models for autonomous driving and embodied AI, where understanding camera geometry is essential for grounding visual observations in three-dimensional space. However, existing camera encoding methods often rely on simplified pinhole assumptions, restricting generalization across the diverse intrinsics and lens distortions in real-world cameras. We introduce Relative Ray Encoding, a geometry-consistent representation that unifies complete camera information, including 6-DoF poses, intrinsics, and lens distortions. To evaluate its capability under diverse controllability demands, we adopt camera-controlled text-to-video generation as a testbed task. Within this setting, we further identify pitch and roll as two components effective for Absolute Orientation Encoding, enabling full control over the initial camera orientation. Together, these designs form UCPE (Unified Camera Positional Encoding), which integrates into a pretrained video Diffusion Transformer through a lightweight spatial attention adapter, adding less than 1% trainable parameters while achieving state-of-the-art camera controllability and visual fidelity. To facilitate systematic training and evaluation, we construct a large video dataset covering a wide range of camera motions and lens types. Extensive experiments validate the effectiveness of UCPE in camera-controllable video generation and highlight its potential as a general camera representation for Transformers across future multi-view, video, and 3D tasks. Code will be available at https://github.com/chengzhag/UCPE.
Authors:Saurav Jha, M. Jehanzeb Mirza, Wei Lin, Shiqi Yang, Sarath Chandar
Abstract:
Vision-Language Models (VLMs) remain limited in spatial reasoning tasks that require multi-view understanding and embodied perspective shifts. Recent approaches such as MindJourney attempt to mitigate this gap through test-time scaling where a world model imagines action-conditioned trajectories and a heuristic verifier selects helpful views from such trajectories. In this work, we systematically examine how such test-time verifiers behave across benchmarks, uncovering both their promise and their pitfalls. Our uncertainty-based analyses show that MindJourney's verifier provides little meaningful calibration, and that random scoring often reduces answer entropy equally well, thus exposing systematic action biases and unreliable reward signals. To mitigate these, we introduce a Verification through Spatial Assertions (ViSA) framework that grounds the test-time reward in verifiable, frame-anchored micro-claims. This principled verifier consistently improves spatial reasoning on the SAT-Real benchmark and corrects trajectory-selection biases through more balanced exploratory behavior. However, on the challenging MMSI-Bench, none of the verifiers, including ours, achieve consistent scaling, suggesting that the current world models form an information bottleneck where imagined views fail to enrich fine-grained reasoning. Together, these findings chart the bad, good, and ugly aspects of test-time verification for world-model-based reasoning. Our code is available at https://github.com/chandar-lab/visa-for-mindjourney.
Authors:Liuzhou Zhang, Jiarui Ye, Yuanlei Wang, Ming Zhong, Mingju Cao, Wanke Xia, Bowen Zeng, Zeyu Zhang, Hao Tang
Abstract:
Generating long, coherent egocentric videos is difficult, as hand-object interactions and procedural tasks require reliable long-term memory. Existing autoregressive models suffer from content drift, where object identity and scene semantics degrade over time. To address this challenge, we introduce EgoLCD, an end-to-end framework for egocentric long-context video generation that treats long video synthesis as a problem of efficient and stable memory management. EgoLCD combines a Long-Term Sparse KV Cache for stable global context with an attention-based short-term memory, extended by LoRA for local adaptation. A Memory Regulation Loss enforces consistent memory usage, and Structured Narrative Prompting provides explicit temporal guidance. Extensive experiments on the EgoVid-5M benchmark demonstrate that EgoLCD achieves state-of-the-art performance in both perceptual quality and temporal consistency, effectively mitigating generative forgetting and representing a significant step toward building scalable world models for embodied AI. Code: https://github.com/AIGeeksGroup/EgoLCD. Website: https://aigeeksgroup.github.io/EgoLCD.
Authors:Fan Wu, Jiacheng Wei, Ruibo Li, Yi Xu, Junyou Li, Deheng Ye, Guosheng Lin
Abstract:
Video-based world models have recently garnered increasing attention for their ability to synthesize diverse and dynamic visual environments. In this paper, we focus on shared world modeling, where a model generates multiple videos from a set of input images, each representing the same underlying world in different camera poses. We propose IC-World, a novel generation framework, enabling parallel generation for all input images via activating the inherent in-context generation capability of large video models. We further finetune IC-World via reinforcement learning, Group Relative Policy Optimization, together with two proposed novel reward models to enforce scene-level geometry consistency and object-level motion consistency among the set of generated videos. Extensive experiments demonstrate that IC-World substantially outperforms state-of-the-art methods in both geometry and motion consistency. To the best of our knowledge, this is the first work to systematically explore the shared world modeling problem with video-based world models.
Authors:Jianzong Wu, Hao Lian, Dachao Hao, Ye Tian, Qingyu Shi, Biaolong Chen, Hao Jiang, Yunhai Tong
Abstract:
Recent audio-video generative systems suggest that coupling modalities benefits not only audio-video synchrony but also the video modality itself. We pose a fundamental question: Does audio-video joint denoising training improve video generation, even when we only care about video quality? To study this, we introduce a parameter-efficient Audio-Video Full DiT (AVFullDiT) architecture that leverages pre-trained text-to-video (T2V) and text-to-audio (T2A) modules for joint denoising. We train (i) a T2AV model with AVFullDiT and (ii) a T2V-only counterpart under identical settings. Our results provide the first systematic evidence that audio-video joint denoising can deliver more than synchrony. We observe consistent improvements on challenging subsets featuring large and object contact motions. We hypothesize that predicting audio acts as a privileged signal, encouraging the model to internalize causal relationships between visual events and their acoustic consequences (e.g., collision $\times$ impact sound), which in turn regularizes video dynamics. Our findings suggest that cross-modal co-training is a promising approach to developing stronger, more physically grounded world models. Code and dataset will be made publicly available.
Authors:Geigh Zollicoffer, Tanush Chopra, Mingkuan Yan, Xiaoxu Ma, Kenneth Eaton, Mark Riedl
Abstract:
AI systems deployed in the real world must contend with distractions and out-of-distribution (OOD) noise that can destabilize their policies and lead to unsafe behavior. While robust training can reduce sensitivity to some forms of noise, it is infeasible to anticipate all possible OOD conditions. To mitigate this issue, we develop an algorithm that leverages a world model's inherent measure of surprise to reduce the impact of noise in world model--based reinforcement learning agents. We introduce both multi-representation and single-representation rejection sampling, enabling robustness to settings with multiple faulty sensors or a single faulty sensor. While the introduction of noise typically degrades agent performance, we show that our techniques preserve performance relative to baselines under varying types and levels of noise across multiple environments within self-driving simulation domains (CARLA and Safety Gymnasium). Furthermore, we demonstrate that our methods enhance the stability of two state-of-the-art world models with markedly different underlying architectures: Cosmos and DreamerV3. Together, these results highlight the robustness of our approach across world modeling domains. We release our code at https://github.com/Bluefin-Tuna/WISER .
Authors:Maya Varma, Jean-Benoit Delbrouck, Sophie Ostmeier, Akshay Chaudhari, Curtis Langlotz
Abstract:
Vision-language models (VLMs) have made great strides in addressing temporal understanding tasks, which involve characterizing visual changes across a sequence of images. However, recent works have suggested that when making predictions, VLMs may rely on static feature biases, such as background or object features, rather than dynamic visual changes. Static feature biases are a type of shortcut and can contribute to systematic prediction errors on downstream tasks; as a result, identifying and characterizing error-inducing static feature biases is critical prior to real-world model deployment. In this work, we introduce TRoVe, an automated approach for discovering error-inducing static feature biases learned by temporal VLMs. Given a trained VLM and an annotated validation dataset associated with a downstream classification task, TRoVe extracts candidate static features from the dataset and scores each feature by (i) the effect of the feature on classification errors as well as (ii) the extent to which the VLM relies on the feature when making predictions. In order to quantitatively evaluate TRoVe, we introduce an evaluation framework consisting of 101 trained temporal VLMs paired with ground-truth annotations for learned static feature biases. We use this framework to demonstrate that TRoVe can accurately identify error-inducing static feature biases in VLMs, achieving a 28.6% improvement over the closest baseline. Finally, we apply TRoVe to 7 off-the-shelf VLMs and 2 temporal understanding tasks, surfacing previously-unknown static feature biases and demonstrating that knowledge of learned biases can aid in improving model performance at test time. Our code is available at https://github.com/Stanford-AIMI/TRoVe.
Authors:Zeyu Zhang, Shuning Chang, Yuanyu He, Yizeng Han, Jiasheng Tang, Fan Wang, Bohan Zhuang
Abstract:
Generating minute-long videos is a critical step toward developing world models, providing a foundation for realistic extended scenes and advanced AI simulators. The emerging semi-autoregressive (block diffusion) paradigm integrates the strengths of diffusion and autoregressive models, enabling arbitrary-length video generation and improving inference efficiency through KV caching and parallel sampling. However, it yet faces two enduring challenges: (i) KV-cache-induced long-horizon error accumulation, and (ii) the lack of fine-grained long-video benchmarks and coherence-aware metrics. To overcome these limitations, we propose BlockVid, a novel block diffusion framework equipped with semantic-aware sparse KV cache, an effective training strategy called Block Forcing, and dedicated chunk-wise noise scheduling and shuffling to reduce error propagation and enhance temporal consistency. We further introduce LV-Bench, a fine-grained benchmark for minute-long videos, complete with new metrics evaluating long-range coherence. Extensive experiments on VBench and LV-Bench demonstrate that BlockVid consistently outperforms existing methods in generating high-quality, coherent minute-long videos. In particular, it achieves a 22.2% improvement on VDE Subject and a 19.4% improvement on VDE Clarity in LV-Bench over the state of the art approaches. Project website: https://ziplab.co/BlockVid. Inferix (Code): https://github.com/alibaba-damo-academy/Inferix.
Authors:Futian Wang, Chaoliu Weng, Xiao Wang, Zhen Chen, Zhicheng Zhao, Jin Tang
Abstract:
The precise reading recognition of pointer meters plays a key role in smart power systems, but existing approaches remain fragile due to challenges like reflections, occlusions, dynamic viewing angles, and overly between thin pointers and scale markings. Up to now, this area still lacks large-scale datasets to support the development of robust algorithms. To address these challenges, this paper first presents a new large-scale benchmark dataset for dial reading, termed RPM-10K, which contains 10730 meter images that fully reflect the aforementioned key challenges. Built upon the dataset, we propose a novel vision-language model for pointer meter reading recognition, termed MRLM, based on physical relation injection. Instead of exhaustively learning image-level correlations, MRLM explicitly encodes the geometric and causal relationships between the pointer and the scale, aligning perception with physical reasoning in the spirit of world-model perspectives. Through cross-attentional fusion and adaptive expert selection, the model learns to interpret dial configurations and generate precise numeric readings. Extensive experiments fully validated the effectiveness of our proposed framework on the newly proposed benchmark dataset. Both the dataset and source code will be released on https://github.com/Event-AHU/DialBench
Authors:Jiahui Zhang, Ze Huang, Chun Gu, Zipei Ma, Li Zhang
Abstract:
Vision-Language-Action (VLA) policies excel in aligning language, perception, and robot control. However, most VLAs are trained purely by imitation, which overfits to demonstrations, and is brittle under distribution shift. Reinforcement learning (RL) directly optimizes task reward and thus addresses this misalignment, but real-robot interaction is expensive and conventional simulators are hard to engineer and transfer. We address both data efficiency and optimization stability in VLA post-training via a learned world model and an RL procedure tailored to flow-based action heads. Specifically, we introduce Prophet, a unified action-to-video robot actuation pretrained across large-scale, heterogeneous robot data to learn reusable action-outcome dynamics. It is able to few-shot adapt to new robots, objects, and environments, yielding a rollout-ready simulator. Upon Prophet, we reinforce action policies with Flow-action-GRPO (FA-GRPO), which adapts Flow-GRPO to operate on VLA actions, and with FlowScale, a stepwise reweighting that rescales per-step gradients in the flow head. Together, Prophet, FA-GRPO, and FlowScale constitute ProphRL, a practical, data- and compute-efficient path to VLA post-training. Experiments show 5-17% success gains on public benchmarks and 24-30% gains on real robots across different VLA variants.
Authors:Jiatao Gu, Ying Shen, Tianrong Chen, Laurent Dinh, Yuyang Wang, Miguel Angel Bautista, David Berthelot, Josh Susskind, Shuangfei Zhai
Abstract:
Normalizing flows (NFs) are end-to-end likelihood-based generative models for continuous data, and have recently regained attention with encouraging progress on image generation. Yet in the video generation domain, where spatiotemporal complexity and computational cost are substantially higher, state-of-the-art systems almost exclusively rely on diffusion-based models. In this work, we revisit this design space by presenting STARFlow-V, a normalizing flow-based video generator with substantial benefits such as end-to-end learning, robust causal prediction, and native likelihood estimation. Building upon the recently proposed STARFlow, STARFlow-V operates in the spatiotemporal latent space with a global-local architecture which restricts causal dependencies to a global latent space while preserving rich local within-frame interactions. This eases error accumulation over time, a common pitfall of standard autoregressive diffusion model generation. Additionally, we propose flow-score matching, which equips the model with a light-weight causal denoiser to improve the video generation consistency in an autoregressive fashion. To improve the sampling efficiency, STARFlow-V employs a video-aware Jacobi iteration scheme that recasts inner updates as parallelizable iterations without breaking causality. Thanks to the invertible structure, the same model can natively support text-to-video, image-to-video as well as video-to-video generation tasks. Empirically, STARFlow-V achieves strong visual fidelity and temporal consistency with practical sampling throughput relative to diffusion-based baselines. These results present the first evidence, to our knowledge, that NFs are capable of high-quality autoregressive video generation, establishing them as a promising research direction for building world models. Code and generated samples are available at https://github.com/apple/ml-starflow.
Authors:Zilong Huang, Jun He, Xiaobin Huang, Ziyi Xiong, Yang Luo, Junyan Ye, Weijia Li, Yiping Chen, Ting Han
Abstract:
Generating realistic 3D cities is fundamental to world models, virtual reality, and game development, where an ideal urban scene must satisfy both stylistic diversity, fine-grained, and controllability. However, existing methods struggle to balance the creative flexibility offered by text-based generation with the object-level editability enabled by explicit structural representations. We introduce MajutsuCity, a natural language-driven and aesthetically adaptive framework for synthesizing structurally consistent and stylistically diverse 3D urban scenes. MajutsuCity represents a city as a composition of controllable layouts, assets, and materials, and operates through a four-stage pipeline. To extend controllability beyond initial generation, we further integrate MajutsuAgent, an interactive language-grounded editing agent} that supports five object-level operations. To support photorealistic and customizable scene synthesis, we also construct MajutsuDataset, a high-quality multimodal dataset} containing 2D semantic layouts and height maps, diverse 3D building assets, and curated PBR materials and skyboxes, each accompanied by detailed annotations. Meanwhile, we develop a practical set of evaluation metrics, covering key dimensions such as structural consistency, scene complexity, material fidelity, and lighting atmosphere. Extensive experiments demonstrate MajutsuCity reduces layout FID by 83.7% compared with CityDreamer and by 20.1% over CityCraft. Our method ranks first across all AQS and RDR scores, outperforming existing methods by a clear margin. These results confirm MajutsuCity as a new state-of-the-art in geometric fidelity, stylistic adaptability, and semantic controllability for 3D city generation. We expect our framework can inspire new avenues of research in 3D city generation. Our project page: https://longhz140516.github.io/MajutsuCity/.
Authors:Yiting Lu, Wei Luo, Peiyan Tu, Haoran Li, Hanxin Zhu, Zihao Yu, Xingrui Wang, Xinyi Chen, Xinge Peng, Xin Li, Zhibo Chen
Abstract:
World Generation Models are emerging as a cornerstone of next-generation multimodal intelligence systems. Unlike traditional 2D visual generation, World Models aim to construct realistic, dynamic, and physically consistent 3D/4D worlds from images, videos, or text. These models not only need to produce high-fidelity visual content but also maintain coherence across space, time, physics, and instruction control, enabling applications in virtual reality, autonomous driving, embodied intelligence, and content creation. However, prior benchmarks emphasize different evaluation dimensions and lack a unified assessment of world-realism capability. To systematically evaluate World Models, we introduce the 4DWorldBench, which measures models across four key dimensions: Perceptual Quality, Condition-4D Alignment, Physical Realism, and 4D Consistency. The benchmark covers tasks such as Image-to-3D/4D, Video-to-4D, Text-to-3D/4D. Beyond these, we innovatively introduce adaptive conditioning across multiple modalities, which not only integrates but also extends traditional evaluation paradigms. To accommodate different modality-conditioned inputs, we map all modality conditions into a unified textual space during evaluation, and further integrate LLM-as-judge, MLLM-as-judge, and traditional network-based methods. This unified and adaptive design enables more comprehensive and consistent evaluation of alignment, physical realism, and cross-modal coherence. Preliminary human studies further demonstrate that our adaptive tool selection achieves closer agreement with subjective human judgments. We hope this benchmark will serve as a foundation for objective comparisons and improvements, accelerating the transition from "visual generation" to "world generation." Our project can be found at https://yeppp27.github.io/4DWorldBench.github.io/.
Authors:Shengyuan Wang, Zhiheng Zheng, Yu Shang, Lixuan He, Yangcheng Yu, Fan Hangyu, Jie Feng, Qingmin Liao, Yong Li
Abstract:
City-scale 3D generation is of great importance for the development of embodied intelligence and world models. Existing methods, however, face significant challenges regarding quality, fidelity, and scalability in 3D world generation. Thus, we propose RAISECity, a \textbf{R}eality-\textbf{A}ligned \textbf{I}ntelligent \textbf{S}ynthesis \textbf{E}ngine that creates detailed, \textbf{C}ity-scale 3D worlds. We introduce an agentic framework that leverages diverse multimodal foundation tools to acquire real-world knowledge, maintain robust intermediate representations, and construct complex 3D scenes. This agentic design, featuring dynamic data processing, iterative self-reflection and refinement, and the invocation of advanced multimodal tools, minimizes cumulative errors and enhances overall performance. Extensive quantitative experiments and qualitative analyses validate the superior performance of RAISECity in real-world alignment, shape precision, texture fidelity, and aesthetics level, achieving over a 90% win-rate against existing baselines for overall perceptual quality. This combination of 3D quality, reality alignment, scalability, and seamless compatibility with computer graphics pipelines makes RAISECity a promising foundation for applications in immersive media, embodied intelligence, and world models.
Authors:Vishaal Udandarao, Shyamgopal Karthik, Surabhi S. Nath, Andreas Hochlehnert, Matthias Bethge, Ameya Prabhu
Abstract:
Cambrian-S aims to take the first steps towards improving video world models with spatial supersensing by introducing (i) two benchmarks, VSI-Super-Recall (VSR) and VSI-Super-Counting (VSC), and (ii) bespoke predictive sensing inference strategies tailored to each benchmark. In this work, we conduct a critical analysis of Cambrian-S across both these fronts. First, we introduce a simple baseline, NoSense, which discards almost all temporal structure and uses only a bag-of-words SigLIP model, yet near-perfectly solves VSR, achieving 95% accuracy even on 4-hour videos. This shows benchmarks like VSR can be nearly solved without spatial cognition, world modeling or spatial supersensing. Second, we hypothesize that the tailored inference methods proposed by Cambrian-S likely exploit shortcut heuristics in the benchmark. We illustrate this with a simple sanity check on the VSC benchmark, called VSC-Repeat: We concatenate each video with itself 1-5 times, which does not change the number of unique objects. However, this simple perturbation entirely collapses the mean relative accuracy of Cambrian-S from 42% to 0%. A system that performs spatial supersensing and integrates information across experiences should recognize views of the same scene and keep object-count predictions unchanged; instead, Cambrian-S inference algorithm relies largely on a shortcut in the VSC benchmark that rooms are never revisited. Taken together, our findings suggest that (i) current VSI-Super benchmarks do not yet reliably measure spatial supersensing, and (ii) predictive-sensing inference recipes used by Cambrian-S improve performance by inadvertently exploiting shortcuts rather than from robust spatial supersensing. We include the response from the Cambrian-S authors (in Appendix A) to provide a balanced perspective alongside our claims. We release our code at: https://github.com/bethgelab/supersanity
Authors:Pei Liu, Songtao Wang, Lang Zhang, Xingyue Peng, Yuandong Lyu, Jiaxin Deng, Songxin Lu, Weiliang Ma, Xueyang Zhang, Yifei Zhan, XianPeng Lang, Jun Ma
Abstract:
Synthesizing high-fidelity and controllable 4D LiDAR data is crucial for creating scalable simulation environments for autonomous driving. This task is inherently challenging due to the sensor's unique spherical geometry, the temporal sparsity of point clouds, and the complexity of dynamic scenes. To address these challenges, we present LiSTAR, a novel generative world model that operates directly on the sensor's native geometry. LiSTAR introduces a Hybrid-Cylindrical-Spherical (HCS) representation to preserve data fidelity by mitigating quantization artifacts common in Cartesian grids. To capture complex dynamics from sparse temporal data, it utilizes a Spatio-Temporal Attention with Ray-Centric Transformer (START) that explicitly models feature evolution along individual sensor rays for robust temporal coherence. Furthermore, for controllable synthesis, we propose a novel 4D point cloud-aligned voxel layout for conditioning and a corresponding discrete Masked Generative START (MaskSTART) framework, which learns a compact, tokenized representation of the scene, enabling efficient, high-resolution, and layout-guided compositional generation. Comprehensive experiments validate LiSTAR's state-of-the-art performance across 4D LiDAR reconstruction, prediction, and conditional generation, with substantial quantitative gains: reducing generation MMD by a massive 76%, improving reconstruction IoU by 32%, and lowering prediction L1 Med by 50%. This level of performance provides a powerful new foundation for creating realistic and controllable autonomous systems simulations. Project link: https://ocean-luna.github.io/LiSTAR.gitub.io.
Authors:Chia-Yu Hung, Navonil Majumder, Haoyuan Deng, Liu Renhang, Yankang Ang, Amir Zadeh, Chuan Li, Dorien Herremans, Ziwei Wang, Soujanya Poria
Abstract:
Vision--language--action (VLA) models have recently shown promising performance on a variety of embodied tasks, yet they still fall short in reliability and generalization, especially when deployed across different embodiments or real-world environments. In this work, we introduce NORA-1.5, a VLA model built from the pre-trained NORA backbone by adding to it a flow-matching-based action expert. This architectural enhancement alone yields substantial performance gains, enabling NORA-1.5 to outperform NORA and several state-of-the-art VLA models across both simulated and real-world benchmarks. To further improve robustness and task success, we develop a set of reward models for post-training VLA policies. Our rewards combine (i) an action-conditioned world model (WM) that evaluates whether generated actions lead toward the desired goal, and (ii) a deviation-from-ground-truth heuristic that distinguishes good actions from poor ones. Using these reward signals, we construct preference datasets and adapt NORA-1.5 to target embodiments through direct preference optimization (DPO). Extensive evaluations show that reward-driven post-training consistently improves performance in both simulation and real-robot settings, demonstrating significant VLA model-reliability gains through simple yet effective reward models. Our findings highlight NORA-1.5 and reward-guided post-training as a viable path toward more dependable embodied agents suitable for real-world deployment.
Authors:Sheng-Yu Wang, Aaron Hertzmann, Alexei A Efros, Richard Zhang, Jun-Yan Zhu
Abstract:
Data attribution for text-to-image models aims to identify the training images that most significantly influenced a generated output. Existing attribution methods involve considerable computational resources for each query, making them impractical for real-world applications. We propose a novel approach for scalable and efficient data attribution. Our key idea is to distill a slow, unlearning-based attribution method to a feature embedding space for efficient retrieval of highly influential training images. During deployment, combined with efficient indexing and search methods, our method successfully finds highly influential images without running expensive attribution algorithms. We show extensive results on both medium-scale models trained on MSCOCO and large-scale Stable Diffusion models trained on LAION, demonstrating that our method can achieve better or competitive performance in a few seconds, faster than existing methods by 2,500x - 400,000x. Our work represents a meaningful step towards the large-scale application of data attribution methods on real-world models such as Stable Diffusion.
Authors:Jingtong Yue, Ziqi Huang, Zhaoxi Chen, Xintao Wang, Pengfei Wan, Ziwei Liu
Abstract:
The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.
Authors:Yunhong He, Zhengqing Yuan, Zhengzhong Tu, Yanfang Ye, Lichao Sun
Abstract:
We introduce 3D4D, an interactive 4D visualization framework that integrates WebGL with Supersplat rendering. It transforms static images and text into coherent 4D scenes through four core modules and employs a foveated rendering strategy for efficient, real-time multi-modal interaction. This framework enables adaptive, user-driven exploration of complex 4D environments. The project page and code are available at https://yunhonghe1021.github.io/NOVA/.
Authors:Jiageng Mao, Sicheng He, Hao-Ning Wu, Yang You, Shuyang Sun, Zhicheng Wang, Yanan Bao, Huizhong Chen, Leonidas Guibas, Vitor Guizilini, Howard Zhou, Yue Wang
Abstract:
We introduce PhysWorld, a framework that enables robot learning from video generation through physical world modeling. Recent video generation models can synthesize photorealistic visual demonstrations from language commands and images, offering a powerful yet underexplored source of training signals for robotics. However, directly retargeting pixel motions from generated videos to robots neglects physics, often resulting in inaccurate manipulations. PhysWorld addresses this limitation by coupling video generation with physical world reconstruction. Given a single image and a task command, our method generates task-conditioned videos and reconstructs the underlying physical world from the videos, and the generated video motions are grounded into physically accurate actions through object-centric residual reinforcement learning with the physical world model. This synergy transforms implicit visual guidance into physically executable robotic trajectories, eliminating the need for real robot data collection and enabling zero-shot generalizable robotic manipulation. Experiments on diverse real-world tasks demonstrate that PhysWorld substantially improves manipulation accuracy compared to previous approaches. Visit \href{https://pointscoder.github.io/PhysWorld_Web/}{the project webpage} for details.
Authors:Guojian Zhan, Likun Wang, Xiangteng Zhang, Jiaxin Gao, Masayoshi Tomizuka, Shengbo Eben Li
Abstract:
Online planning has proven effective in reinforcement learning (RL) for improving sample efficiency and final performance. However, using planning for environment interaction inevitably introduces a divergence between the collected data and the policy's actual behaviors, degrading both model learning and policy improvement. To address this, we propose BOOM (Bootstrap Off-policy with WOrld Model), a framework that tightly integrates planning and off-policy learning through a bootstrap loop: the policy initializes the planner, and the planner refines actions to bootstrap the policy through behavior alignment. This loop is supported by a jointly learned world model, which enables the planner to simulate future trajectories and provides value targets to facilitate policy improvement. The core of BOOM is a likelihood-free alignment loss that bootstraps the policy using the planner's non-parametric action distribution, combined with a soft value-weighted mechanism that prioritizes high-return behaviors and mitigates variability in the planner's action quality within the replay buffer. Experiments on the high-dimensional DeepMind Control Suite and Humanoid-Bench show that BOOM achieves state-of-the-art results in both training stability and final performance. The code is accessible at https://github.com/molumitu/BOOM_MBRL.
Authors:Yufeng Cui, Honghao Chen, Haoge Deng, Xu Huang, Xinghang Li, Jirong Liu, Yang Liu, Zhuoyan Luo, Jinsheng Wang, Wenxuan Wang, Yueze Wang, Chengyuan Wang, Fan Zhang, Yingli Zhao, Ting Pan, Xianduo Li, Zecheng Hao, Wenxuan Ma, Zhuo Chen, Yulong Ao, Tiejun Huang, Zhongyuan Wang, Xinlong Wang
Abstract:
We introduce Emu3.5, a large-scale multimodal world model that natively predicts the next state across vision and language. Emu3.5 is pre-trained end-to-end with a unified next-token prediction objective on a corpus of vision-language interleaved data containing over 10 trillion tokens, primarily derived from sequential frames and transcripts of internet videos. The model naturally accepts interleaved vision-language inputs and generates interleaved vision-language outputs. Emu3.5 is further post-trained with large-scale reinforcement learning to enhance multimodal reasoning and generation. To improve inference efficiency, we propose Discrete Diffusion Adaptation (DiDA), which converts token-by-token decoding into bidirectional parallel prediction, accelerating per-image inference by about 20x without sacrificing performance. Emu3.5 exhibits strong native multimodal capabilities, including long-horizon vision-language generation, any-to-image (X2I) generation, and complex text-rich image generation. It also exhibits generalizable world-modeling abilities, enabling spatiotemporally consistent world exploration and open-world embodied manipulation across diverse scenarios and tasks. For comparison, Emu3.5 achieves performance comparable to Gemini 2.5 Flash Image (Nano Banana) on image generation and editing tasks and demonstrates superior results on a suite of interleaved generation tasks. We open-source Emu3.5 at https://github.com/baaivision/Emu3.5 to support community research.
Authors:Xiyu Zhang, Chong Bao, Yipeng Chen, Hongjia Zhai, Yitong Dong, Hujun Bao, Zhaopeng Cui, Guofeng Zhang
Abstract:
3D reconstruction of indoor and urban environments is a prominent research topic with various downstream applications. However, existing geometric priors for addressing low-texture regions in indoor and urban settings often lack global consistency. Moreover, Gaussian Splatting and implicit SDF fields often suffer from discontinuities or exhibit computational inefficiencies, resulting in a loss of detail. To address these issues, we propose an Atlanta-world guided implicit-structured Gaussian Splatting that achieves smooth indoor and urban scene reconstruction while preserving high-frequency details and rendering efficiency. By leveraging the Atlanta-world model, we ensure the accurate surface reconstruction for low-texture regions, while the proposed novel implicit-structured GS representations provide smoothness without sacrificing efficiency and high-frequency details. Specifically, we propose a semantic GS representation to predict the probability of all semantic regions and deploy a structure plane regularization with learnable plane indicators for global accurate surface reconstruction. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in both indoor and urban scenes, delivering superior surface reconstruction quality.
Authors:Sikuang Li, Chen Yang, Jiemin Fang, Taoran Yi, Jia Lu, Jiazhong Cen, Lingxi Xie, Wei Shen, Qi Tian
Abstract:
We tackle the challenge of generating the infinitely extendable 3D world -- large, continuous environments with coherent geometry and realistic appearance. Existing methods face key challenges: 2D-lifting approaches suffer from geometric and appearance inconsistencies across views, 3D implicit representations are hard to scale up, and current 3D foundation models are mostly object-centric, limiting their applicability to scene-level generation. Our key insight is leveraging strong generation priors from pre-trained 3D models for structured scene block generation. To this end, we propose WorldGrow, a hierarchical framework for unbounded 3D scene synthesis. Our method features three core components: (1) a data curation pipeline that extracts high-quality scene blocks for training, making the 3D structured latent representations suitable for scene generation; (2) a 3D block inpainting mechanism that enables context-aware scene extension; and (3) a coarse-to-fine generation strategy that ensures both global layout plausibility and local geometric/textural fidelity. Evaluated on the large-scale 3D-FRONT dataset, WorldGrow achieves SOTA performance in geometry reconstruction, while uniquely supporting infinite scene generation with photorealistic and structurally consistent outputs. These results highlight its capability for constructing large-scale virtual environments and potential for building future world models.
Authors:Jinbin Bai, Yu Lei, Hecong Wu, Yuchen Zhu, Shufan Li, Yi Xin, Xiangtai Li, Molei Tao, Aditya Grover, Ming-Hsuan Yang
Abstract:
This is not a typical survey of world models; it is a guide for those who want to build worlds. We do not aim to catalog every paper that has ever mentioned a ``world model". Instead, we follow one clear road: from early masked models that unified representation learning across modalities, to unified architectures that share a single paradigm, then to interactive generative models that close the action-perception loop, and finally to memory-augmented systems that sustain consistent worlds over time. We bypass loosely related branches to focus on the core: the generative heart, the interactive loop, and the memory system. We show that this is the most promising path towards true world models.
Authors:Jacob Berg, Chuning Zhu, Yanda Bao, Ishan Durugkar, Abhishek Gupta
Abstract:
Planning with world models offers a powerful paradigm for robotic control. Conventional approaches train a model to predict future frames conditioned on current frames and actions, which can then be used for planning. However, the objective of predicting future pixels is often at odds with the actual planning objective; strong pixel reconstruction does not always correlate with good planning decisions. This paper posits that instead of reconstructing future frames as pixels, world models only need to predict task-relevant semantic information about the future. For such prediction the paper poses world modeling as a visual question answering problem about semantic information in future frames. This perspective allows world modeling to be approached with the same tools underlying vision language models. Thus vision language models can be trained as "semantic" world models through a supervised finetuning process on image-action-text data, enabling planning for decision-making while inheriting many of the generalization and robustness properties from the pretrained vision-language models. The paper demonstrates how such a semantic world model can be used for policy improvement on open-ended robotics tasks, leading to significant generalization improvements over typical paradigms of reconstruction-based action-conditional world modeling. Website available at https://weirdlabuw.github.io/swm.
Authors:Zhida Zhao, Talas Fu, Yifan Wang, Lijun Wang, Huchuan Lu
Abstract:
Despite remarkable progress in driving world models, their potential for autonomous systems remains largely untapped: the world models are mostly learned for world simulation and decoupled from trajectory planning. While recent efforts aim to unify world modeling and planning in a single framework, the synergistic facilitation mechanism of world modeling for planning still requires further exploration. In this work, we introduce a new driving paradigm named Policy World Model (PWM), which not only integrates world modeling and trajectory planning within a unified architecture, but is also able to benefit planning using the learned world knowledge through the proposed action-free future state forecasting scheme. Through collaborative state-action prediction, PWM can mimic the human-like anticipatory perception, yielding more reliable planning performance. To facilitate the efficiency of video forecasting, we further introduce a dynamically enhanced parallel token generation mechanism, equipped with a context-guided tokenizer and an adaptive dynamic focal loss. Despite utilizing only front camera input, our method matches or exceeds state-of-the-art approaches that rely on multi-view and multi-modal inputs. Code and model weights will be released at https://github.com/6550Zhao/Policy-World-Model.
Authors:Kai Zeng, Zhanqian Wu, Kaixin Xiong, Xiaobao Wei, Xiangyu Guo, Zhenxin Zhu, Kalok Ho, Lijun Zhou, Bohan Zeng, Ming Lu, Haiyang Sun, Bing Wang, Guang Chen, Hangjun Ye, Wentao Zhang
Abstract:
Recent advancements in driving world models enable controllable generation of high-quality RGB videos or multimodal videos. Existing methods primarily focus on metrics related to generation quality and controllability. However, they often overlook the evaluation of downstream perception tasks, which are $\mathbf{really\ crucial}$ for the performance of autonomous driving. Existing methods usually leverage a training strategy that first pretrains on synthetic data and finetunes on real data, resulting in twice the epochs compared to the baseline (real data only). When we double the epochs in the baseline, the benefit of synthetic data becomes negligible. To thoroughly demonstrate the benefit of synthetic data, we introduce Dream4Drive, a novel synthetic data generation framework designed for enhancing the downstream perception tasks. Dream4Drive first decomposes the input video into several 3D-aware guidance maps and subsequently renders the 3D assets onto these guidance maps. Finally, the driving world model is fine-tuned to produce the edited, multi-view photorealistic videos, which can be used to train the downstream perception models. Dream4Drive enables unprecedented flexibility in generating multi-view corner cases at scale, significantly boosting corner case perception in autonomous driving. To facilitate future research, we also contribute a large-scale 3D asset dataset named DriveObj3D, covering the typical categories in driving scenarios and enabling diverse 3D-aware video editing. We conduct comprehensive experiments to show that Dream4Drive can effectively boost the performance of downstream perception models under various training epochs. Page: https://wm-research.github.io/Dream4Drive/ GitHub Link: https://github.com/wm-research/Dream4Drive
Authors:Bohan Li, Zhuang Ma, Dalong Du, Baorui Peng, Zhujin Liang, Zhenqiang Liu, Chao Ma, Yueming Jin, Hao Zhao, Wenjun Zeng, Xin Jin
Abstract:
Autonomous driving world models are expected to work effectively across three core dimensions: state, action, and reward. Existing models, however, are typically restricted to limited state modalities, short video sequences, imprecise action control, and a lack of reward awareness. In this paper, we introduce OmniNWM, an omniscient panoramic navigation world model that addresses all three dimensions within a unified framework. For state, OmniNWM jointly generates panoramic videos of RGB, semantics, metric depth, and 3D occupancy. A flexible forcing strategy enables high-quality long-horizon auto-regressive generation. For action, we introduce a normalized panoramic Plucker ray-map representation that encodes input trajectories into pixel-level signals, enabling highly precise and generalizable control over panoramic video generation. Regarding reward, we move beyond learning reward functions with external image-based models: instead, we leverage the generated 3D occupancy to directly define rule-based dense rewards for driving compliance and safety. Extensive experiments demonstrate that OmniNWM achieves state-of-the-art performance in video generation, control accuracy, and long-horizon stability, while providing a reliable closed-loop evaluation framework through occupancy-grounded rewards. Project page is available at https://arlo0o.github.io/OmniNWM/.
Authors:Jiahan Zhang, Muqing Jiang, Nanru Dai, Taiming Lu, Arda Uzunoglu, Shunchi Zhang, Yana Wei, Jiahao Wang, Vishal M. Patel, Paul Pu Liang, Daniel Khashabi, Cheng Peng, Rama Chellappa, Tianmin Shu, Alan Yuille, Yilun Du, Jieneng Chen
Abstract:
Generative world models (WMs) can now simulate worlds with striking visual realism, which naturally raises the question of whether they can endow embodied agents with predictive perception for decision making. Progress on this question has been limited by fragmented evaluation: most existing benchmarks adopt open-loop protocols that emphasize visual quality in isolation, leaving the core issue of embodied utility unresolved, i.e., do WMs actually help agents succeed at embodied tasks? To address this gap, we introduce World-in-World, the first open platform that benchmarks WMs in a closed-loop world that mirrors real agent-environment interactions. World-in-World provides a unified online planning strategy and a standardized action API, enabling heterogeneous WMs for decision making. We curate four closed-loop environments that rigorously evaluate diverse WMs, prioritize task success as the primary metric, and move beyond the common focus on visual quality; we also present the first data scaling law for world models in embodied settings. Our study uncovers three surprises: (1) visual quality alone does not guarantee task success, controllability matters more; (2) scaling post-training with action-observation data is more effective than upgrading the pretrained video generators; and (3) allocating more inference-time compute allows WMs to substantially improve closed-loop performance.
Authors:Chenxu Dang, Haiyan Liu, Guangjun Bao, Pei An, Xinyue Tang, Jie Ma, Bingchuan Sun, Yan Wang
Abstract:
Semantic occupancy has emerged as a powerful representation in world models for its ability to capture rich spatial semantics. However, most existing occupancy world models rely on static and fixed embeddings or grids, which inherently limit the flexibility of perception. Moreover, their ``in-place classification" over grids exhibits a potential misalignment with the dynamic and continuous nature of real scenarios.In this paper, we propose SparseWorld, a novel 4D occupancy world model that is flexible, adaptive, and efficient, powered by sparse and dynamic queries. We propose a Range-Adaptive Perception module, in which learnable queries are modulated by the ego vehicle states and enriched with temporal-spatial associations to enable extended-range perception. To effectively capture the dynamics of the scene, we design a State-Conditioned Forecasting module, which replaces classification-based forecasting with regression-guided formulation, precisely aligning the dynamic queries with the continuity of the 4D environment. In addition, We specifically devise a Temporal-Aware Self-Scheduling training strategy to enable smooth and efficient training. Extensive experiments demonstrate that SparseWorld achieves state-of-the-art performance across perception, forecasting, and planning tasks. Comprehensive visualizations and ablation studies further validate the advantages of SparseWorld in terms of flexibility, adaptability, and efficiency. The code is available at https://github.com/MSunDYY/SparseWorld.
Authors:Xinqing Li, Xin He, Le Zhang, Yun Liu
Abstract:
Embodied AI requires agents that perceive, act, and anticipate how actions reshape future world states. World models serve as internal simulators that capture environment dynamics, enabling forward and counterfactual rollouts to support perception, prediction, and decision making. This survey presents a unified framework for world models in embodied AI. Specifically, we formalize the problem setting and learning objectives, and propose a three-axis taxonomy encompassing: (1) Functionality, Decision-Coupled vs. General-Purpose; (2) Temporal Modeling, Sequential Simulation and Inference vs. Global Difference Prediction; (3) Spatial Representation, Global Latent Vector, Token Feature Sequence, Spatial Latent Grid, and Decomposed Rendering Representation. We systematize data resources and metrics across robotics, autonomous driving, and general video settings, covering pixel prediction quality, state-level understanding, and task performance. Furthermore, we offer a quantitative comparison of state-of-the-art models and distill key open challenges, including the scarcity of unified datasets and the need for evaluation metrics that assess physical consistency over pixel fidelity, the trade-off between model performance and the computational efficiency required for real-time control, and the core modeling difficulty of achieving long-horizon temporal consistency while mitigating error accumulation. Finally, we maintain a curated bibliography at https://github.com/Li-Zn-H/AwesomeWorldModels.
Authors:Chen Min, Jilin Mei, Heng Zhai, Shuai Wang, Tong Sun, Fanjie Kong, Haoyang Li, Fangyuan Mao, Fuyang Liu, Shuo Wang, Yiming Nie, Qi Zhu, Liang Xiao, Dawei Zhao, Yu Hu
Abstract:
A major bottleneck in off-road autonomous driving research lies in the scarcity of large-scale, high-quality datasets and benchmarks. To bridge this gap, we present ORAD-3D, which, to the best of our knowledge, is the largest dataset specifically curated for off-road autonomous driving. ORAD-3D covers a wide spectrum of terrains, including woodlands, farmlands, grasslands, riversides, gravel roads, cement roads, and rural areas, while capturing diverse environmental variations across weather conditions (sunny, rainy, foggy, and snowy) and illumination levels (bright daylight, daytime, twilight, and nighttime). Building upon this dataset, we establish a comprehensive suite of benchmark evaluations spanning five fundamental tasks: 2D free-space detection, 3D occupancy prediction, rough GPS-guided path planning, vision-language model-driven autonomous driving, and world model for off-road environments. Together, the dataset and benchmarks provide a unified and robust resource for advancing perception and planning in challenging off-road scenarios. The dataset and code will be made publicly available at https://github.com/chaytonmin/ORAD-3D.
Authors:Yuanhui Huang, Weiliang Chen, Wenzhao Zheng, Xin Tao, Pengfei Wan, Jie Zhou, Jiwen Lu
Abstract:
World models have garnered increasing attention for comprehensive modeling of the real world. However, most existing methods still rely on pixel-aligned representations as the basis for world evolution, neglecting the inherent 3D nature of the physical world. This could undermine the 3D consistency and diminish the modeling efficiency of world models. In this paper, we present Terra, a native 3D world model that represents and generates explorable environments in an intrinsic 3D latent space. Specifically, we propose a novel point-to-Gaussian variational autoencoder (P2G-VAE) that encodes 3D inputs into a latent point representation, which is subsequently decoded as 3D Gaussian primitives to jointly model geometry and appearance. We then introduce a sparse point flow matching network (SPFlow) for generating the latent point representation, which simultaneously denoises the positions and features of the point latents. Our Terra enables exact multi-view consistency with native 3D representation and architecture, and supports flexible rendering from any viewpoint with only a single generation process. Furthermore, Terra achieves explorable world modeling through progressive generation in the point latent space. We conduct extensive experiments on the challenging indoor scenes from ScanNet v2. Terra achieves state-of-the-art performance in both reconstruction and generation with high 3D consistency.
Authors:Sihui Ji, Xi Chen, Xin Tao, Pengfei Wan, Hengshuang Zhao
Abstract:
Video generation models nowadays are capable of generating visually realistic videos, but often fail to adhere to physical laws, limiting their ability to generate physically plausible videos and serve as ''world models''. To address this issue, we propose PhysMaster, which captures physical knowledge as a representation for guiding video generation models to enhance their physics-awareness. Specifically, PhysMaster is based on the image-to-video task where the model is expected to predict physically plausible dynamics from the input image. Since the input image provides physical priors like relative positions and potential interactions of objects in the scenario, we devise PhysEncoder to encode physical information from it as an extra condition to inject physical knowledge into the video generation process. The lack of proper supervision on the model's physical performance beyond mere appearance motivates PhysEncoder to apply reinforcement learning with human feedback to physical representation learning, which leverages feedback from generation models to optimize physical representations with Direct Preference Optimization (DPO) in an end-to-end manner. PhysMaster provides a feasible solution for improving physics-awareness of PhysEncoder and thus of video generation, proving its ability on a simple proxy task and generalizability to wide-ranging physical scenarios. This implies that our PhysMaster, which unifies solutions for various physical processes via representation learning in the reinforcement learning paradigm, can act as a generic and plug-in solution for physics-aware video generation and broader applications.
Authors:Xiaoji Zheng, Ziyuan Yang, Yanhao Chen, Yuhang Peng, Yuanrong Tang, Gengyuan Liu, Bokui Chen, Jiangtao Gong
Abstract:
End-to-end autonomous driving models trained solely with imitation learning (IL) often suffer from poor generalization. In contrast, reinforcement learning (RL) promotes exploration through reward maximization but faces challenges such as sample inefficiency and unstable convergence. A natural solution is to combine IL and RL. Moving beyond the conventional two-stage paradigm (IL pretraining followed by RL fine-tuning), we propose CoIRL-AD, a competitive dual-policy framework that enables IL and RL agents to interact during training. CoIRL-AD introduces a competition-based mechanism that facilitates knowledge exchange while preventing gradient conflicts. Experiments on the nuScenes dataset show an 18% reduction in collision rate compared to baselines, along with stronger generalization and improved performance on long-tail scenarios. Code is available at: https://github.com/SEU-zxj/CoIRL-AD.
Authors:Zaid Khan, Archiki Prasad, Elias Stengel-Eskin, Jaemin Cho, Mohit Bansal
Abstract:
Symbolic world modeling requires inferring and representing an environment's transitional dynamics as an executable program. Prior work has focused on largely deterministic environments with abundant interaction data, simple mechanics, and human guidance. We address a more realistic and challenging setting, learning in a complex, stochastic environment where the agent has only "one life" to explore a hostile environment without human guidance. We introduce OneLife, a framework that models world dynamics through conditionally-activated programmatic laws within a probabilistic programming framework. Each law operates through a precondition-effect structure, activating in relevant world states. This creates a dynamic computation graph that routes inference and optimization only through relevant laws, avoiding scaling challenges when all laws contribute to predictions about a complex, hierarchical state, and enabling the learning of stochastic dynamics even with sparse rule activation. To evaluate our approach under these demanding constraints, we introduce a new evaluation protocol that measures (a) state ranking, the ability to distinguish plausible future states from implausible ones, and (b) state fidelity, the ability to generate future states that closely resemble reality. We develop and evaluate our framework on Crafter-OO, our reimplementation of the Crafter environment that exposes a structured, object-oriented symbolic state and a pure transition function that operates on that state alone. OneLife can successfully learn key environment dynamics from minimal, unguided interaction, outperforming a strong baseline on 16 out of 23 scenarios tested. We also test OneLife's planning ability, with simulated rollouts successfully identifying superior strategies. Our work establishes a foundation for autonomously constructing programmatic world models of unknown, complex environments.
Authors:Dong Hu, Fenqing Hu, Lidong Yang, Chao Huang
Abstract:
Ensuring safety in autonomous driving (AD) remains a significant challenge, especially in highly dynamic and complex traffic environments where diverse agents interact and unexpected hazards frequently emerge. Traditional reinforcement learning (RL) methods often struggle to balance safety, efficiency, and adaptability, as they primarily focus on reward maximization without explicitly modeling risk or safety constraints. To address these limitations, this study proposes a novel game-theoretic risk-shaped RL (GTR2L) framework for safe AD. GTR2L incorporates a multi-level game-theoretic world model that jointly predicts the interactive behaviors of surrounding vehicles and their associated risks, along with an adaptive rollout horizon that adjusts dynamically based on predictive uncertainty. Furthermore, an uncertainty-aware barrier mechanism enables flexible modulation of safety boundaries. A dedicated risk modeling approach is also proposed, explicitly capturing both epistemic and aleatoric uncertainty to guide constrained policy optimization and enhance decision-making in complex environments. Extensive evaluations across diverse and safety-critical traffic scenarios show that GTR2L significantly outperforms state-of-the-art baselines, including human drivers, in terms of success rate, collision and violation reduction, and driving efficiency. The code is available at https://github.com/DanielHu197/GTR2L.
Authors:Chuanrui Zhang, Zhengxian Wu, Guanxing Lu, Yansong Tang, Ziwei Wang
Abstract:
Learned world models hold significant potential for robotic manipulation, as they can serve as simulator for real-world interactions. While extensive progress has been made in 2D video-based world models, these approaches often lack geometric and spatial reasoning, which is essential for capturing the physical structure of the 3D world. To address this limitation, we introduce iMoWM, a novel interactive world model designed to generate color images, depth maps, and robot arm masks in an autoregressive manner conditioned on actions. To overcome the high computational cost associated with three-dimensional information, we propose MMTokenizer, which unifies multi-modal inputs into a compact token representation. This design enables iMoWM to leverage large-scale pretrained VideoGPT models while maintaining high efficiency and incorporating richer physical information. With its multi-modal representation, iMoWM not only improves the visual quality of future predictions but also serves as an effective simulator for model-based reinforcement learning (MBRL) and facilitates real-world imitation learning. Extensive experiments demonstrate the superiority of iMoWM across these tasks, showcasing the advantages of multi-modal world modeling for robotic manipulation. Homepage: https://xingyoujun.github.io/imowm/
Authors:Yifei Dong, Fengyi Wu, Guangyu Chen, Zhi-Qi Cheng, Qiyu Hu, Yuxuan Zhou, Jingdong Sun, Jun-Yan He, Qi Dai, Alexander G Hauptmann
Abstract:
Enabling embodied agents to effectively imagine future states is critical for robust and generalizable visual navigation. Current state-of-the-art approaches, however, adopt modular architectures that separate navigation planning from visual world modeling, leading to state-action misalignment and limited adaptability in novel or dynamic scenarios. To overcome this fundamental limitation, we propose UniWM, a unified, memory-augmented world model integrating egocentric visual foresight and planning within a single multimodal autoregressive backbone. Unlike modular frameworks, UniWM explicitly grounds action decisions in visually imagined outcomes, ensuring tight alignment between prediction and control. A hierarchical memory mechanism further integrates detailed short-term perceptual cues with longer-term trajectory context, enabling stable, coherent reasoning over extended horizons. Extensive experiments across four challenging benchmarks (Go Stanford, ReCon, SCAND, HuRoN) demonstrate that UniWM substantially improves navigation success rates by up to 30%, significantly reduces trajectory errors compared to strong baselines, and exhibits impressive zero-shot generalization on the unseen TartanDrive dataset. These results highlight UniWM as a principled step toward unified, imagination-driven embodied navigation.
Authors:Yunzhe Xu, Yiyuan Pan, Zhe Liu
Abstract:
Vision-and-Language Navigation (VLN) requires agents to follow natural language instructions through environments, with memory-persistent variants demanding progressive improvement through accumulated experience. Existing approaches for memory-persistent VLN face critical limitations: they lack effective memory access mechanisms, instead relying on entire memory incorporation or fixed-horizon lookup, and predominantly store only environmental observations while neglecting navigation behavioral patterns that encode valuable decision-making strategies. We present Memoir, which employs imagination as a retrieval mechanism grounded by explicit memory: a world model imagines future navigation states as queries to selectively retrieve relevant environmental observations and behavioral histories. The approach comprises: 1) a language-conditioned world model that imagines future states serving dual purposes: encoding experiences for storage and generating retrieval queries; 2) Hybrid Viewpoint-Level Memory that anchors both observations and behavioral patterns to viewpoints, enabling hybrid retrieval; and 3) an experience-augmented navigation model that integrates retrieved knowledge through specialized encoders. Extensive evaluation across diverse memory-persistent VLN benchmarks with 10 distinctive testing scenarios demonstrates Memoir's effectiveness: significant improvements across all scenarios, with 5.4% SPL gains on IR2R over the best memory-persistent baseline, accompanied by 8.3x training speedup and 74% inference memory reduction. The results validate that predictive retrieval of both environmental and behavioral memories enables more effective navigation, with analysis indicating substantial headroom (73.3% vs 93.4% upper bound) for this imagination-guided paradigm. Code at https://github.com/xyz9911/Memoir.
Authors:Kun Xiang, Terry Jingchen Zhang, Yinya Huang, Jixi He, Zirong Liu, Yueling Tang, Ruizhe Zhou, Lijing Luo, Youpeng Wen, Xiuwei Chen, Bingqian Lin, Jianhua Han, Hang Xu, Hanhui Li, Bin Dong, Xiaodan Liang
Abstract:
The rapid advancement of embodied intelligence and world models has intensified efforts to integrate physical laws into AI systems, yet physical perception and symbolic physics reasoning have developed along separate trajectories without a unified bridging framework. This work provides a comprehensive overview of physical AI, establishing clear distinctions between theoretical physics reasoning and applied physical understanding while systematically examining how physics-grounded methods enhance AI's real-world comprehension across structured symbolic reasoning, embodied systems, and generative models. Through rigorous analysis of recent advances, we advocate for intelligent systems that ground learning in both physical principles and embodied reasoning processes, transcending pattern recognition toward genuine understanding of physical laws. Our synthesis envisions next-generation world models capable of explaining physical phenomena and predicting future states, advancing safe, generalizable, and interpretable AI systems. We maintain a continuously updated resource at https://github.com/AI4Phys/Awesome-AI-for-Physics.
Authors:Xuehai He, Shijie Zhou, Thivyanth Venkateswaran, Kaizhi Zheng, Ziyu Wan, Achuta Kadambi, Xin Eric Wang
Abstract:
World models that support controllable and editable spatiotemporal environments are valuable for robotics, enabling scalable training data, repro ducible evaluation, and flexible task design. While recent text-to-video models generate realistic dynam ics, they are constrained to 2D views and offer limited interaction. We introduce MorphoSim, a language guided framework that generates 4D scenes with multi-view consistency and object-level controls. From natural language instructions, MorphoSim produces dynamic environments where objects can be directed, recolored, or removed, and scenes can be observed from arbitrary viewpoints. The framework integrates trajectory-guided generation with feature field dis tillation, allowing edits to be applied interactively without full re-generation. Experiments show that Mor phoSim maintains high scene fidelity while enabling controllability and editability. The code is available at https://github.com/eric-ai-lab/Morph4D.
Authors:Koichi Saito, Julian Tanke, Christian Simon, Masato Ishii, Kazuki Shimada, Zachary Novack, Zhi Zhong, Akio Hayakawa, Takashi Shibuya, Yuki Mitsufuji
Abstract:
Prevailing Video-to-Audio (V2A) generation models operate offline, assuming an entire video sequence or chunks of frames are available beforehand. This critically limits their use in interactive applications such as live content creation and emerging generative world models. To address this gap, we introduce the novel task of frame-level online V2A generation, where a model autoregressively generates audio from video without access to future video frames. Furthermore, we propose SoundReactor, which, to the best of our knowledge, is the first simple yet effective framework explicitly tailored for this task. Our design enforces end-to-end causality and targets low per-frame latency with audio-visual synchronization. Our model's backbone is a decoder-only causal transformer over continuous audio latents. For vision conditioning, it leverages grid (patch) features extracted from the smallest variant of the DINOv2 vision encoder, which are aggregated into a single token per frame to maintain end-to-end causality and efficiency. The model is trained through a diffusion pre-training followed by consistency fine-tuning to accelerate the diffusion head decoding. On a benchmark of diverse gameplay videos from AAA titles, our model successfully generates semantically and temporally aligned, high-quality full-band stereo audio, validated by both objective and human evaluations. Furthermore, our model achieves low per-frame waveform-level latency (26.3ms with the head NFE=1, 31.5ms with NFE=4) on 30FPS, 480p videos using a single H100. Demo samples are available at https://koichi-saito-sony.github.io/soundreactor/.
Authors:Jiahao Wang, Luoxin Ye, TaiMing Lu, Junfei Xiao, Jiahan Zhang, Yuxiang Guo, Xijun Liu, Rama Chellappa, Cheng Peng, Alan Yuille, Jieneng Chen
Abstract:
Humans possess a remarkable ability to mentally explore and replay 3D environments they have previously experienced. Inspired by this mental process, we present EvoWorld: a world model that bridges panoramic video generation with evolving 3D memory to enable spatially consistent long-horizon exploration. Given a single panoramic image as input, EvoWorld first generates future video frames by leveraging a video generator with fine-grained view control, then evolves the scene's 3D reconstruction using a feedforward plug-and-play transformer, and finally synthesizes futures by conditioning on geometric reprojections from this evolving explicit 3D memory. Unlike prior state-of-the-arts that synthesize videos only, our key insight lies in exploiting this evolving 3D reconstruction as explicit spatial guidance for the video generation process, projecting the reconstructed geometry onto target viewpoints to provide rich spatial cues that significantly enhance both visual realism and geometric consistency. To evaluate long-range exploration capabilities, we introduce the first comprehensive benchmark spanning synthetic outdoor environments, Habitat indoor scenes, and challenging real-world scenarios, with particular emphasis on loop-closure detection and spatial coherence over extended trajectories. Extensive experiments demonstrate that our evolving 3D memory substantially improves visual fidelity and maintains spatial scene coherence compared to existing approaches, representing a significant advance toward long-horizon spatially consistent world modeling.
Authors:Hengtao Li, Pengxiang Ding, Runze Suo, Yihao Wang, Zirui Ge, Dongyuan Zang, Kexian Yu, Mingyang Sun, Hongyin Zhang, Donglin Wang, Weihua Su
Abstract:
Vision-Language-Action (VLA) models enable embodied decision-making but rely heavily on imitation learning, leading to compounding errors and poor robustness under distribution shift. Reinforcement learning (RL) can mitigate these issues yet typically demands costly real-world interactions or suffers from sim-to-real gaps. We introduce VLA-RFT, a reinforcement fine-tuning framework that leverages a data-driven world model as a controllable simulator. Trained from real interaction data, the simulator predicts future visual observations conditioned on actions, allowing policy rollouts with dense, trajectory-level rewards derived from goal-achieving references. This design delivers an efficient and action-aligned learning signal, drastically lowering sample requirements. With fewer than 400 fine-tuning steps, VLA-RFT surpasses strong supervised baselines and achieves greater efficiency than simulator-based RL. Moreover, it exhibits strong robustness under perturbed conditions, sustaining stable task execution. Our results establish world-model-based RFT as a practical post-training paradigm to enhance the generalization and robustness of VLA models. For more details, please refer to https://vla-rft.github.io/.
Authors:Kunhao Liu, Wenbo Hu, Jiale Xu, Ying Shan, Shijian Lu
Abstract:
Streaming video generation, as one fundamental component in interactive world models and neural game engines, aims to generate high-quality, low-latency, and temporally coherent long video streams. However, most existing work suffers from severe error accumulation that often significantly degrades the generated stream videos over long horizons. We design Rolling Forcing, a novel video generation technique that enables streaming long videos with minimal error accumulation. Rolling Forcing comes with three novel designs. First, instead of iteratively sampling individual frames, which accelerates error propagation, we design a joint denoising scheme that simultaneously denoises multiple frames with progressively increasing noise levels. This design relaxes the strict causality across adjacent frames, effectively suppressing error growth. Second, we introduce the attention sink mechanism into the long-horizon stream video generation task, which allows the model to keep key value states of initial frames as a global context anchor and thereby enhances long-term global consistency. Third, we design an efficient training algorithm that enables few-step distillation over largely extended denoising windows. This algorithm operates on non-overlapping windows and mitigates exposure bias conditioned on self-generated histories. Extensive experiments show that Rolling Forcing enables real-time streaming generation of multi-minute videos on a single GPU, with substantially reduced error accumulation.
Authors:Boxuan Zhang, Runqing Wang, Wei Xiao, Weipu Zhang, Jian Sun, Gao Huang, Jie Chen, Gang Wang
Abstract:
A critical bottleneck in deep reinforcement learning (DRL) is sample inefficiency, as training high-performance agents often demands extensive environmental interactions. Model-based reinforcement learning (MBRL) mitigates this by building world models that simulate environmental dynamics and generate synthetic experience, improving sample efficiency. However, conventional world models process observations holistically, failing to decouple dynamic objects and temporal features from static backgrounds. This approach is computationally inefficient, especially for visual tasks where dynamic objects significantly influence rewards and decision-making performance. To address this, we introduce DyMoDreamer, a novel MBRL algorithm that incorporates a dynamic modulation mechanism to improve the extraction of dynamic features and enrich the temporal information. DyMoDreamer employs differential observations derived from a novel inter-frame differencing mask, explicitly encoding object-level motion cues and temporal dynamics. Dynamic modulation is modeled as stochastic categorical distributions and integrated into a recurrent state-space model (RSSM), enhancing the model's focus on reward-relevant dynamics. Experiments demonstrate that DyMoDreamer sets a new state-of-the-art on the Atari $100$k benchmark with a $156.6$\% mean human-normalized score, establishes a new record of $832$ on the DeepMind Visual Control Suite, and gains a $9.5$\% performance improvement after $1$M steps on the Crafter benchmark. Our code is released at https://github.com/Ultraman-Tiga1/DyMoDreamer.
Authors:Haozhuo Zhang, Michele Caprio, Jing Shao, Qiang Zhang, Jian Tang, Shanghang Zhang, Wei Pan
Abstract:
We present PoseDiff, a conditional diffusion model that unifies robot state estimation and control within a single framework. At its core, PoseDiff maps raw visual observations into structured robot states-such as 3D keypoints or joint angles-from a single RGB image, eliminating the need for multi-stage pipelines or auxiliary modalities. Building upon this foundation, PoseDiff extends naturally to video-to-action inverse dynamics: by conditioning on sparse video keyframes generated by world models, it produces smooth and continuous long-horizon action sequences through an overlap-averaging strategy. This unified design enables scalable and efficient integration of perception and control. On the DREAM dataset, PoseDiff achieves state-of-the-art accuracy and real-time performance for pose estimation. On Libero-Object manipulation tasks, it substantially improves success rates over existing inverse dynamics modules, even under strict offline settings. Together, these results show that PoseDiff provides a scalable, accurate, and efficient bridge between perception, planning, and control in embodied AI. The video visualization results can be found on the project page: https://haozhuo-zhang.github.io/PoseDiff-project-page/.
Authors:Korbinian Moller, Roland Stroop, Mattia Piccinini, Alexander Langmann, Johannes Betz
Abstract:
Sampling-based motion planning is a well-established approach in autonomous driving, valued for its modularity and analytical tractability. In complex urban scenarios, however, uniform or heuristic sampling often produces many infeasible or irrelevant trajectories. We address this limitation with a hybrid framework that learns where to sample while keeping trajectory generation and evaluation fully analytical and verifiable. A reinforcement learning (RL) agent guides the sampling process toward regions of the action space likely to yield feasible trajectories, while evaluation and final selection remains governed by deterministic feasibility checks and cost functions. We couple the RL sampler with a world model (WM) based on a decodable deep set encoder, enabling both variable numbers of traffic participants and reconstructable latent representations. The approach is evaluated in the CommonRoad simulation environment, showing up to 99% fewer required samples and a runtime reduction of up to 84% while maintaining planning quality in terms of success and collision-free rates. These improvements lead to faster, more reliable decision-making for autonomous vehicles in urban environments, achieving safer and more responsive navigation under real-world constraints. Code and trained artifacts are publicly available at: https://github.com/TUM-AVS/Learning-to-Sample
Authors:Yu Shang, Yangcheng Yu, Xin Zhang, Xin Jin, Haisheng Su, Wei Wu, Yong Li
Abstract:
Embodied action planning is a core challenge in robotics, requiring models to generate precise actions from visual observations and language instructions. While video generation world models are promising, their reliance on pixel-level reconstruction often introduces visual redundancies that hinder action decoding and generalization. Latent world models offer a compact, motion-aware representation, but overlook the fine-grained details critical for precise manipulation. To overcome these limitations, we propose MoWM, a mixture-of-world-model framework that fuses representations from hybrid world models for embodied action planning. Our approach uses motion-aware representations from a latent model as a high-level prior, which guides the extraction of fine-grained visual features from the pixel space model. This design allows MoWM to highlight the informative visual details needed for action decoding. Extensive evaluations on the CALVIN benchmark demonstrate that our method achieves state-of-the-art task success rates and superior generalization. We also provide a comprehensive analysis of the strengths of each feature space, offering valuable insights for future research in embodied planning. The code is available at: https://github.com/tsinghua-fib-lab/MoWM.
Authors:Yu Shang, Lei Jin, Yiding Ma, Xin Zhang, Chen Gao, Wei Wu, Yong Li
Abstract:
Video-based world models hold significant potential for generating high-quality embodied manipulation data. However, current video generation methods struggle to achieve stable long-horizon generation: classical diffusion-based approaches often suffer from temporal inconsistency and visual drift over multiple rollouts, while autoregressive methods tend to compromise on visual detail. To solve this, we introduce LongScape, a hybrid framework that adaptively combines intra-chunk diffusion denoising with inter-chunk autoregressive causal generation. Our core innovation is an action-guided, variable-length chunking mechanism that partitions video based on the semantic context of robotic actions. This ensures each chunk represents a complete, coherent action, enabling the model to flexibly generate diverse dynamics. We further introduce a Context-aware Mixture-of-Experts (CMoE) framework that adaptively activates specialized experts for each chunk during generation, guaranteeing high visual quality and seamless chunk transitions. Extensive experimental results demonstrate that our method achieves stable and consistent long-horizon generation over extended rollouts. Our code is available at: https://github.com/tsinghua-fib-lab/Longscape.
Authors:Zhennan Jiang, Kai Liu, Yuxin Qin, Shuai Tian, Yupeng Zheng, Mingcai Zhou, Chao Yu, Haoran Li, Dongbin Zhao
Abstract:
Robotic manipulation policies are commonly initialized through imitation learning, but their performance is limited by the scarcity and narrow coverage of expert data. Reinforcement learning can refine polices to alleviate this limitation, yet real-robot training is costly and unsafe, while training in simulators suffers from the sim-to-real gap. Recent advances in generative models have demonstrated remarkable capabilities in real-world simulation, with diffusion models in particular excelling at generation. This raises the question of how diffusion model-based world models can be combined to enhance pre-trained policies in robotic manipulation. In this work, we propose World4RL, a framework that employs diffusion-based world models as high-fidelity simulators to refine pre-trained policies entirely in imagined environments for robotic manipulation. Unlike prior works that primarily employ world models for planning, our framework enables direct end-to-end policy optimization. World4RL is designed around two principles: pre-training a diffusion world model that captures diverse dynamics on multi-task datasets and refining policies entirely within a frozen world model to avoid online real-world interactions. We further design a two-hot action encoding scheme tailored for robotic manipulation and adopt diffusion backbones to improve modeling fidelity. Extensive simulation and real-world experiments demonstrate that World4RL provides high-fidelity environment modeling and enables consistent policy refinement, yielding significantly higher success rates compared to imitation learning and other baselines. More visualization results are available at https://world4rl.github.io/.
Authors:Yang Zhou, Yifan Wang, Jianjun Zhou, Wenzheng Chang, Haoyu Guo, Zizun Li, Kaijing Ma, Xinyue Li, Yating Wang, Haoyi Zhu, Mingyu Liu, Dingning Liu, Jiange Yang, Zhoujie Fu, Junyi Chen, Chunhua Shen, Jiangmiao Pang, Kaipeng Zhang, Tong He
Abstract:
The field of 4D world modeling - aiming to jointly capture spatial geometry and temporal dynamics - has witnessed remarkable progress in recent years, driven by advances in large-scale generative models and multimodal learning. However, the development of truly general 4D world models remains fundamentally constrained by the availability of high-quality data. Existing datasets and benchmarks often lack the dynamic complexity, multi-domain diversity, and spatial-temporal annotations required to support key tasks such as 4D geometric reconstruction, future prediction, and camera-control video generation. To address this gap, we introduce OmniWorld, a large-scale, multi-domain, multi-modal dataset specifically designed for 4D world modeling. OmniWorld consists of a newly collected OmniWorld-Game dataset and several curated public datasets spanning diverse domains. Compared with existing synthetic datasets, OmniWorld-Game provides richer modality coverage, larger scale, and more realistic dynamic interactions. Based on this dataset, we establish a challenging benchmark that exposes the limitations of current state-of-the-art (SOTA) approaches in modeling complex 4D environments. Moreover, fine-tuning existing SOTA methods on OmniWorld leads to significant performance gains across 4D reconstruction and video generation tasks, strongly validating OmniWorld as a powerful resource for training and evaluation. We envision OmniWorld as a catalyst for accelerating the development of general-purpose 4D world models, ultimately advancing machines' holistic understanding of the physical world.
Authors:Lingdong Kong, Wesley Yang, Jianbiao Mei, Youquan Liu, Ao Liang, Dekai Zhu, Dongyue Lu, Wei Yin, Xiaotao Hu, Mingkai Jia, Junyuan Deng, Kaiwen Zhang, Yang Wu, Tianyi Yan, Shenyuan Gao, Song Wang, Linfeng Li, Liang Pan, Yong Liu, Jianke Zhu, Wei Tsang Ooi, Steven C. H. Hoi, Ziwei Liu
Abstract:
World modeling has become a cornerstone in AI research, enabling agents to understand, represent, and predict the dynamic environments they inhabit. While prior work largely emphasizes generative methods for 2D image and video data, they overlook the rapidly growing body of work that leverages native 3D and 4D representations such as RGB-D imagery, occupancy grids, and LiDAR point clouds for large-scale scene modeling. At the same time, the absence of a standardized definition and taxonomy for ``world models'' has led to fragmented and sometimes inconsistent claims in the literature. This survey addresses these gaps by presenting the first comprehensive review explicitly dedicated to 3D and 4D world modeling and generation. We establish precise definitions, introduce a structured taxonomy spanning video-based (VideoGen), occupancy-based (OccGen), and LiDAR-based (LiDARGen) approaches, and systematically summarize datasets and evaluation metrics tailored to 3D/4D settings. We further discuss practical applications, identify open challenges, and highlight promising research directions, aiming to provide a coherent and foundational reference for advancing the field. A systematic summary of existing literature is available at https://github.com/worldbench/survey
Authors:Yuan Pu, Yazhe Niu, Jia Tang, Junyu Xiong, Shuai Hu, Hongsheng Li
Abstract:
In heterogeneous multi-task decision-making, tasks not only exhibit diverse observation and action spaces but also vary substantially in their underlying complexities. While conventional multi-task world models like UniZero excel in single-task settings, we find that when handling a broad and diverse suite of tasks, gradient conflicts and the loss of model plasticity often constrain their sample efficiency. In this work, we address these challenges from two complementary perspectives: the single learning iteration and the overall learning process. First, to mitigate the gradient conflicts, we systematically investigate key architectural designs for extending UniZero. Our investigation identifies a Mixture-of-Experts (MoE) architecture as the most effective approach. We demonstrate, both theoretically and empirically, that this architecture alleviates gradient conflicts by routing task-specific representations to specialized sub-networks. This finding leads to our proposed model, \textit{ScaleZero}. Second, to dynamically allocate model capacity throughout the learning process, we introduce an online Dynamic Parameter Scaling (DPS) strategy. This strategy progressively integrates LoRA adapters in response to task-specific progress, enabling adaptive knowledge retention and parameter expansion. Evaluations on a diverse set of standard benchmarks (Atari, DMC, Jericho) demonstrate that ScaleZero, utilizing solely online reinforcement learning with one model, performs on par with specialized single-task agents. With the DPS strategy, it remains competitive while using just 71.5% of the environment interactions. These findings underscore the potential of ScaleZero for effective multi-task planning. Our code is available at \textcolor{magenta}{https://github.com/opendilab/LightZero}.
Authors:Jiaqi Chen, Ji Shi, Cansu Sancaktar, Jonas Frey, Georg Martius
Abstract:
Data collection is crucial for learning robust world models in model-based reinforcement learning. The most prevalent strategies are to actively collect trajectories by interacting with the environment during online training or training on offline datasets. At first glance, the nature of learning task-agnostic environment dynamics makes world models a good candidate for effective offline training. However, the effects of online vs. offline data on world models and thus on the resulting task performance have not been thoroughly studied in the literature. In this work, we investigate both paradigms in model-based settings, conducting experiments on 31 different environments. First, we showcase that online agents outperform their offline counterparts. We identify a key challenge behind performance degradation of offline agents: encountering Out-Of-Distribution states at test time. This issue arises because, without the self-correction mechanism in online agents, offline datasets with limited state space coverage induce a mismatch between the agent's imagination and real rollouts, compromising policy training. We demonstrate that this issue can be mitigated by allowing for additional online interactions in a fixed or adaptive schedule, restoring the performance of online training with limited interaction data. We also showcase that incorporating exploration data helps mitigate the performance degradation of offline agents. Based on our insights, we recommend adding exploration data when collecting large datasets, as current efforts predominantly focus on expert data alone.
Authors:Aryan Amit Barsainyan, Jing Yu Lim, Dianbo Liu
Abstract:
Reinforcement learning (RL) techniques have achieved impressive performance on simulated benchmarks such as Atari100k, yet recent advances remain largely confined to simulation and show limited transfer to real-world domains. A central obstacle is environmental stochasticity, as real systems involve noisy observations, unpredictable dynamics, and non-stationary conditions that undermine the stability of current methods. Existing benchmarks rarely capture these uncertainties and favor simplified settings where algorithms can be tuned to succeed. The absence of a well-defined taxonomy of stochasticity further complicates evaluation, as robustness to one type of stochastic perturbation, such as sticky actions, does not guarantee robustness to other forms of uncertainty. To address this critical gap, we introduce STORI (STOchastic-ataRI), a benchmark that systematically incorporates diverse stochastic effects and enables rigorous evaluation of RL techniques under different forms of uncertainty. We propose a comprehensive five-type taxonomy of environmental stochasticity and demonstrate systematic vulnerabilities in state-of-the-art model-based RL algorithms through targeted evaluation of DreamerV3 and STORM. Our findings reveal that world models dramatically underestimate environmental variance, struggle with action corruption, and exhibit unreliable dynamics under partial observability. We release the code and benchmark publicly at https://github.com/ARY2260/stori, providing a unified framework for developing more robust RL systems.
Authors:Ming Chen, Liyuan Cui, Wenyuan Zhang, Haoxian Zhang, Yan Zhou, Xiaohan Li, Songlin Tang, Jiwen Liu, Borui Liao, Hejia Chen, Xiaoqiang Liu, Pengfei Wan
Abstract:
Recently, interactive digital human video generation has attracted widespread attention and achieved remarkable progress. However, building such a practical system that can interact with diverse input signals in real time remains challenging to existing methods, which often struggle with heavy computational cost and limited controllability. In this work, we introduce an autoregressive video generation framework that enables interactive multimodal control and low-latency extrapolation in a streaming manner. With minimal modifications to a standard large language model (LLM), our framework accepts multimodal condition encodings including audio, pose, and text, and outputs spatially and semantically coherent representations to guide the denoising process of a diffusion head. To support this, we construct a large-scale dialogue dataset of approximately 20,000 hours from multiple sources, providing rich conversational scenarios for training. We further introduce a deep compression autoencoder with up to 64$\times$ reduction ratio, which effectively alleviates the long-horizon inference burden of the autoregressive model. Extensive experiments on duplex conversation, multilingual human synthesis, and interactive world model highlight the advantages of our approach in low latency, high efficiency, and fine-grained multimodal controllability.
Authors:Zhide Zhong, Haodong Yan, Junfeng Li, Xiangchen Liu, Xin Gong, Wenxuan Song, Jiayi Chen, Haoang Li
Abstract:
Many Vision-Language-Action (VLA) models are built upon an internal world model trained via direct next-frame prediction ($v_t \rightarrow v_{t+1}$). This paradigm, however, presents a fundamental challenge: it \textbf{conflates} the task of predicting physical motion with that of rendering static appearance, forcing a single mechanism to handle both. This inherent coupling often leads to physically implausible forecasts and inefficient policy learning. To address this limitation, we introduce the \textbf{Visual Chain of Thought (Visual CoT)}, a framework that disentangles these processes by compelling the model to first reason about \textbf{motion dynamics} before generating the future frame's \textbf{visual appearance}. We instantiate this principle by proposing \textbf{FlowVLA}, an autoregressive Transformer that explicitly materializes this reasoning process as ``$v_t \rightarrow f_t \rightarrow v_{t+1}$'', where $f_t$ is an intermediate optical flow prediction. By forcing the model to first commit to a motion plan ($f_t$), FlowVLA learns disentangled dynamics, resulting in more coherent visual predictions and significantly more efficient policy learning. Experiments on challenging robotics manipulation benchmarks demonstrate that FlowVLA achieves state-of-the-art performance with substantially improved sample efficiency, pointing toward a more principled foundation for world modeling in VLAs. Project page: https://irpn-lab.github.io/FlowVLA/
Authors:Fucai Ke, Joy Hsu, Zhixi Cai, Zixian Ma, Xin Zheng, Xindi Wu, Sukai Huang, Weiqing Wang, Pari Delir Haghighi, Gholamreza Haffari, Ranjay Krishna, Jiajun Wu, Hamid Rezatofighi
Abstract:
Compositional visual reasoning has emerged as a key research frontier in multimodal AI, aiming to endow machines with the human-like ability to decompose visual scenes, ground intermediate concepts, and perform multi-step logical inference. While early surveys focus on monolithic vision-language models or general multimodal reasoning, a dedicated synthesis of the rapidly expanding compositional visual reasoning literature is still missing. We fill this gap with a comprehensive survey spanning 2023 to 2025 that systematically reviews 260+ papers from top venues (CVPR, ICCV, NeurIPS, ICML, ACL, etc.). We first formalize core definitions and describe why compositional approaches offer advantages in cognitive alignment, semantic fidelity, robustness, interpretability, and data efficiency. Next, we trace a five-stage paradigm shift: from prompt-enhanced language-centric pipelines, through tool-enhanced LLMs and tool-enhanced VLMs, to recently minted chain-of-thought reasoning and unified agentic VLMs, highlighting their architectural designs, strengths, and limitations. We then catalog 60+ benchmarks and corresponding metrics that probe compositional visual reasoning along dimensions such as grounding accuracy, chain-of-thought faithfulness, and high-resolution perception. Drawing on these analyses, we distill key insights, identify open challenges (e.g., limitations of LLM-based reasoning, hallucination, a bias toward deductive reasoning, scalable supervision, tool integration, and benchmark limitations), and outline future directions, including world-model integration, human-AI collaborative reasoning, and richer evaluation protocols. By offering a unified taxonomy, historical roadmap, and critical outlook, this survey aims to serve as a foundational reference and inspire the next generation of compositional visual reasoning research.
Authors:Rui Shao, Wei Li, Lingsen Zhang, Renshan Zhang, Zhiyang Liu, Ran Chen, Liqiang Nie
Abstract:
Robotic manipulation, a key frontier in robotics and embodied AI, requires precise motor control and multimodal understanding, yet traditional rule-based methods fail to scale or generalize in unstructured, novel environments. In recent years, Vision-Language-Action (VLA) models, built upon Large Vision-Language Models (VLMs) pretrained on vast image-text datasets, have emerged as a transformative paradigm. This survey provides the first systematic, taxonomy-oriented review of large VLM-based VLA models for robotic manipulation. We begin by clearly defining large VLM-based VLA models and delineating two principal architectural paradigms: (1) monolithic models, encompassing single-system and dual-system designs with differing levels of integration; and (2) hierarchical models, which explicitly decouple planning from execution via interpretable intermediate representations. Building on this foundation, we present an in-depth examination of large VLM-based VLA models: (1) integration with advanced domains, including reinforcement learning, training-free optimization, learning from human videos, and world model integration; (2) synthesis of distinctive characteristics, consolidating architectural traits, operational strengths, and the datasets and benchmarks that support their development; (3) identification of promising directions, including memory mechanisms, 4D perception, efficient adaptation, multi-agent cooperation, and other emerging capabilities. This survey consolidates recent advances to resolve inconsistencies in existing taxonomies, mitigate research fragmentation, and fill a critical gap through the systematic integration of studies at the intersection of large VLMs and robotic manipulation. We provide a regularly updated project page to document ongoing progress: https://github.com/JiuTian-VL/Large-VLM-based-VLA-for-Robotic-Manipulation
Authors:Dongchi Huang, Jiaqi Wang, Yang Li, Chunhe Xia, Tianle Zhang, Kaige Zhang
Abstract:
Partial observability presents a significant challenge for Safe Reinforcement Learning (Safe RL), as it impedes the identification of potential risks and rewards. Leveraging specific types of privileged information during training to mitigate the effects of partial observability has yielded notable empirical successes. In this paper, we propose Asymmetric Constrained Partially Observable Markov Decision Processes (ACPOMDPs) to theoretically examine the advantages of incorporating privileged information in Safe RL. Building upon ACPOMDPs, we propose the Privileged Information Guided Dreamer (PIGDreamer), a model-based RL approach that leverages privileged information to enhance the agent's safety and performance through privileged representation alignment and an asymmetric actor-critic structure. Our empirical results demonstrate that PIGDreamer significantly outperforms existing Safe RL methods. Furthermore, compared to alternative privileged RL methods, our approach exhibits enhanced performance, robustness, and efficiency. Codes are available at: https://github.com/hggforget/PIGDreamer.
Authors:Rahul Venkatesh, Klemen Kotar, Lilian Naing Chen, Seungwoo Kim, Luca Thomas Wheeler, Jared Watrous, Ashley Xu, Gia Ancone, Wanhee Lee, Honglin Chen, Daniel Bear, Stefan Stojanov, Daniel Yamins
Abstract:
Segments in computer vision are often defined by semantic considerations and are highly dependent on category-specific conventions. In contrast, developmental psychology suggests that humans perceive the world in terms of Spelke objects--groupings of physical things that reliably move together when acted on by physical forces. Spelke objects thus operate on category-agnostic causal motion relationships which potentially better support tasks like manipulation and planning. In this paper, we first benchmark the Spelke object concept, introducing the SpelkeBench dataset that contains a wide variety of well-defined Spelke segments in natural images. Next, to extract Spelke segments from images algorithmically, we build SpelkeNet, a class of visual world models trained to predict distributions over future motions. SpelkeNet supports estimation of two key concepts for Spelke object discovery: (1) the motion affordance map, identifying regions likely to move under a poke, and (2) the expected-displacement map, capturing how the rest of the scene will move. These concepts are used for "statistical counterfactual probing", where diverse "virtual pokes" are applied on regions of high motion-affordance, and the resultant expected displacement maps are used define Spelke segments as statistical aggregates of correlated motion statistics. We find that SpelkeNet outperforms supervised baselines like SegmentAnything (SAM) on SpelkeBench. Finally, we show that the Spelke concept is practically useful for downstream applications, yielding superior performance on the 3DEditBench benchmark for physical object manipulation when used in a variety of off-the-shelf object manipulation models.
Authors:Arian Mousakhan, Sudhanshu Mittal, Silvio Galesso, Karim Farid, Thomas Brox
Abstract:
Existing world models for autonomous driving struggle with long-horizon generation and generalization to challenging scenarios. In this work, we develop a model using simple design choices, and without additional supervision or sensors, such as maps, depth, or multiple cameras. We show that our model yields state-of-the-art performance, despite having only 469M parameters and being trained on 280h of video data. It particularly stands out in difficult scenarios like turning maneuvers and urban traffic. We test whether discrete token models possibly have advantages over continuous models based on flow matching. To this end, we set up a hybrid tokenizer that is compatible with both approaches and allows for a side-by-side comparison. Our study concludes in favor of the continuous autoregressive model, which is less brittle on individual design choices and more powerful than the model built on discrete tokens. Code, models and qualitative results are publicly available at https://lmb-freiburg.github.io/orbis.github.io/.
Authors:Yuncong Yang, Jiageng Liu, Zheyuan Zhang, Siyuan Zhou, Reuben Tan, Jianwei Yang, Yilun Du, Chuang Gan
Abstract:
Spatial reasoning in 3D space is central to human cognition and indispensable for embodied tasks such as navigation and manipulation. However, state-of-the-art vision-language models (VLMs) struggle frequently with tasks as simple as anticipating how a scene will look after an egocentric motion: they perceive 2D images but lack an internal model of 3D dynamics. We therefore propose MindJourney, a test-time scaling framework that grants a VLM with this missing capability by coupling it to a controllable world model based on video diffusion. The VLM iteratively sketches a concise camera trajectory, while the world model synthesizes the corresponding view at each step. The VLM then reasons over this multi-view evidence gathered during the interactive exploration. Without any fine-tuning, our MindJourney achieves over an average 8% performance boost on the representative spatial reasoning benchmark SAT, showing that pairing VLMs with world models for test-time scaling offers a simple, plug-and-play route to robust 3D reasoning. Meanwhile, our method also improves upon the test-time inference VLMs trained through reinforcement learning, which demonstrates the potential of our method that utilizes world models for test-time scaling.
Authors:Tao Feng, Yexin Wu, Guanyu Lin, Jiaxuan You
Abstract:
World models (WMs) demonstrate strong capabilities in prediction, generation, and planning tasks. Existing WMs primarily focus on unstructured data and cannot leverage the ubiquitous structured data, often represented as graphs, in the digital world. While multiple graph foundation models have been proposed, they focus on graph learning tasks and cannot extend to diverse multi-modal data and interdisciplinary tasks. To address these challenges, we propose the Graph World Model (GWM), a world model that supports both unstructured and graph-structured states with multi-modal information and represents diverse tasks as actions. The core of a GWM is a generic message-passing algorithm to aggregate structured information, either over a unified multi-modal token space by converting multi-modal data into text (GWM-T) or a unified multi-modal embedding space by modality-specific encoders (GWM-E). Notably, GWM introduces action nodes to support diverse tasks, where action nodes are linked to other nodes via direct reference or similarity computation. Extensive experiments on six tasks from diverse domains, including multi-modal generation and matching, recommendation, graph prediction, multi-agent, retrieval-augmented generation, and planning and optimization, show that the same GWM outperforms or matches domain-specific baselines' performance, benefits from multi-hop structures, and demonstrates strong zero-shot/few-shot capabilities on unseen new tasks. Our code for GWM is released at https://github.com/ulab-uiuc/GWM.
Authors:Zhimin Liao, Ping Wei, Ruijie Zhang, Shuaijia Chen, Haoxuan Wang, Ziyang Ren
Abstract:
Forecasting the evolution of 3D scenes and generating unseen scenarios via occupancy-based world models offers substantial potential for addressing corner cases in autonomous driving systems. While tokenization has revolutionized image and video generation, efficiently tokenizing complex 3D scenes remains a critical challenge for 3D world models. To address this, we propose $I^{2}$-World, an efficient framework for 4D occupancy forecasting. Our method decouples scene tokenization into intra-scene and inter-scene tokenizers. The intra-scene tokenizer employs a multi-scale residual quantization strategy to hierarchically compress 3D scenes while preserving spatial details. The inter-scene tokenizer residually aggregates temporal dependencies across timesteps. This dual design preserves the compactness of 3D tokenizers while retaining the dynamic expressiveness of 4D tokenizers. Unlike decoder-only GPT-style autoregressive models, $I^{2}$-World adopts an encoder-decoder architecture. The encoder aggregates spatial context from the current scene and predicts a transformation matrix to enable high-level control over scene generation. The decoder, conditioned on this matrix and historical tokens, ensures temporal consistency during generation. Experiments demonstrate that $I^{2}$-World achieves state-of-the-art performance, outperforming existing methods by 25.1\% in mIoU and 36.9\% in IoU for 4D occupancy forecasting while exhibiting exceptional computational efficiency: it requires merely 2.9 GB of training memory and achieves real-time inference at 37.0 FPS. Our code is available on https://github.com/lzzzzzm/II-World.
Authors:Seungwoo Kim, Khai Loong Aw, Klemen Kotar, Cristobal Eyzaguirre, Wanhee Lee, Yunong Liu, Jared Watrous, Stefan Stojanov, Juan Carlos Niebles, Jiajun Wu, Daniel L. K. Yamins
Abstract:
Extracting optical flow from videos remains a core computer vision problem. Motivated by the success of large general-purpose models, we ask whether frozen self-supervised video models trained only for future frame prediction can be prompted, without fine-tuning, to output flow. Prior work reading out depth or illumination from video generators required fine-tuning, which is impractical for flow where labels are scarce and synthetic datasets suffer from a sim-to-real gap. Inspired by the Counterfactual World Model (CWM) paradigm, which can obtain point-wise correspondences by injecting a small tracer perturbation into a next-frame predictor and tracking its propagation, we extend this idea to generative video models. We explore several popular architectures and find that successful zero-shot flow extraction in this manner is aided by three model properties: (1) distributional prediction of future frames (avoiding blurry or noisy outputs); (2) factorized latents that treat each spatio-temporal patch independently; and (3) random-access decoding that can condition on any subset of future pixels. These properties are uniquely present in the recent Local Random Access Sequence (LRAS) architecture. Building on LRAS, we propose KL-tracing: a novel test-time procedure that injects a localized perturbation into the first frame, rolls out the model one step, and computes the Kullback-Leibler divergence between perturbed and unperturbed predictive distributions. Without any flow-specific fine-tuning, our method outperforms state-of-the-art models on real-world TAP-Vid DAVIS dataset (16.6% relative improvement for endpoint error) and synthetic TAP-Vid Kubric (4.7% relative improvement). Our results indicate that counterfactual prompting of controllable generative video models is a scalable and effective alternative to supervised or photometric-loss approaches for high-quality flow.
Authors:Siyu Li, Fei Teng, Yihong Cao, Kailun Yang, Zhiyong Li, Yaonan Wang
Abstract:
Birds' Eye View (BEV) semantic segmentation is an indispensable perception task in end-to-end autonomous driving systems. Unsupervised and semi-supervised learning for BEV tasks, as pivotal for real-world applications, underperform due to the homogeneous distribution of the labeled data. In this work, we explore the potential of synthetic data from driving world models to enhance the diversity of labeled data for robustifying BEV segmentation. Yet, our preliminary findings reveal that generation noise in synthetic data compromises efficient BEV model learning. To fully harness the potential of synthetic data from world models, this paper proposes NRSeg, a noise-resilient learning framework for BEV semantic segmentation. Specifically, a Perspective-Geometry Consistency Metric (PGCM) is proposed to quantitatively evaluate the guidance capability of generated data for model learning. This metric originates from the alignment measure between the perspective road mask of generated data and the mask projected from the BEV labels. Moreover, a Bi-Distribution Parallel Prediction (BiDPP) is designed to enhance the inherent robustness of the model, where the learning process is constrained through parallel prediction of multinomial and Dirichlet distributions. The former efficiently predicts semantic probabilities, whereas the latter adopts evidential deep learning to realize uncertainty quantification. Furthermore, a Hierarchical Local Semantic Exclusion (HLSE) module is designed to address the non-mutual exclusivity inherent in BEV semantic segmentation tasks. Experimental results demonstrate that NRSeg achieves state-of-the-art performance, yielding the highest improvements in mIoU of 13.8% and 11.4% in unsupervised and semi-supervised BEV segmentation tasks, respectively. The source code will be made publicly available at https://github.com/lynn-yu/NRSeg.
Authors:Dmytro Kuzmenko, Nadiya Shvai
Abstract:
We present a novel approach to knowledge transfer in model-based reinforcement learning, addressing the critical challenge of deploying large world models in resource-constrained environments. Our method efficiently distills a high-capacity multi-task agent (317M parameters) into a compact model (1M parameters) on the MT30 benchmark, significantly improving performance across diverse tasks. Our distilled model achieves a state-of-the-art normalized score of 28.45, surpassing the original 1M parameter model score of 18.93. This improvement demonstrates the ability of our distillation technique to capture and consolidate complex multi-task knowledge. We further optimize the distilled model through FP16 post-training quantization, reducing its size by $\sim$50\%. Our approach addresses practical deployment limitations and offers insights into knowledge representation in large world models, paving the way for more efficient and accessible multi-task reinforcement learning systems in robotics and other resource-constrained applications. Code available at https://github.com/dmytro-kuzmenko/td-mpc-opt.
Authors:Zhenyang Liu, Yongchong Gu, Sixiao Zheng, Yanwei Fu, Xiangyang Xue, Yu-Gang Jiang
Abstract:
Recent advances in vision-language models (VLMs) have enabled robots to follow open-ended instructions and demonstrate impressive commonsense reasoning. However, current vision-language-action (VLA) frameworks primarily rely on static representations and limited temporal context, restricting agents to short-horizon, reactive behaviors and hindering robust generalization in dynamic embodied environments. Inspired by cognitive neuroscience theories of episodic memory, we propose, to our knowledge, one of the first formalized episodic world models in VLA, enabling embodied robots to accumulate, recall, and predict sequential experiences. As an instantiation of this concept, our unified TriVLA realizes the episodic world model through a triple-system architecture: integrating multimodal grounding from a pretrained VLM (System 2) and temporally rich dynamics perception from a video diffusion model (System 3). This enables the agent to accumulate and recall sequential experiences, interpret current contexts, and predict future environmental evolution. Guided by episodic representations that span both the past and anticipated future, the downstream policy (System 1) generates coherent, context-aware action sequences through flow-matching and cross-modal attention mechanisms. Experimental results show that TriVLA operates efficiently at approximately 36 Hz and consistently outperforms baseline models on standard benchmarks and challenging real-world manipulation tasks. It demonstrates strong long-horizon planning and open-ended intent understanding, showcasing the advantages of episodic world model-inspired reasoning for robust, generalizable robot intelligence. Project Page: https://zhenyangliu.github.io/TriVLA/.
Authors:Xiaoxiao Long, Qingrui Zhao, Kaiwen Zhang, Zihao Zhang, Dingrui Wang, Yumeng Liu, Zhengjie Shu, Yi Lu, Shouzheng Wang, Xinzhe Wei, Wei Li, Wei Yin, Yao Yao, Jia Pan, Qiu Shen, Ruigang Yang, Xun Cao, Qionghai Dai
Abstract:
The pursuit of artificial general intelligence (AGI) has placed embodied intelligence at the forefront of robotics research. Embodied intelligence focuses on agents capable of perceiving, reasoning, and acting within the physical world. Achieving robust embodied intelligence requires not only advanced perception and control, but also the ability to ground abstract cognition in real-world interactions. Two foundational technologies, physical simulators and world models, have emerged as critical enablers in this quest. Physical simulators provide controlled, high-fidelity environments for training and evaluating robotic agents, allowing safe and efficient development of complex behaviors. In contrast, world models empower robots with internal representations of their surroundings, enabling predictive planning and adaptive decision-making beyond direct sensory input. This survey systematically reviews recent advances in learning embodied AI through the integration of physical simulators and world models. We analyze their complementary roles in enhancing autonomy, adaptability, and generalization in intelligent robots, and discuss the interplay between external simulation and internal modeling in bridging the gap between simulated training and real-world deployment. By synthesizing current progress and identifying open challenges, this survey aims to provide a comprehensive perspective on the path toward more capable and generalizable embodied AI systems. We also maintain an active repository that contains up-to-date literature and open-source projects at https://github.com/NJU3DV-LoongGroup/Embodied-World-Models-Survey.
Authors:Yupeng Zheng, Pengxuan Yang, Zebin Xing, Qichao Zhang, Yuhang Zheng, Yinfeng Gao, Pengfei Li, Teng Zhang, Zhongpu Xia, Peng Jia, Dongbin Zhao
Abstract:
End-to-end autonomous driving directly generates planning trajectories from raw sensor data, yet it typically relies on costly perception supervision to extract scene information. A critical research challenge arises: constructing an informative driving world model to enable perception annotation-free, end-to-end planning via self-supervised learning. In this paper, we present World4Drive, an end-to-end autonomous driving framework that employs vision foundation models to build latent world models for generating and evaluating multi-modal planning trajectories. Specifically, World4Drive first extracts scene features, including driving intention and world latent representations enriched with spatial-semantic priors provided by vision foundation models. It then generates multi-modal planning trajectories based on current scene features and driving intentions and predicts multiple intention-driven future states within the latent space. Finally, it introduces a world model selector module to evaluate and select the best trajectory. We achieve perception annotation-free, end-to-end planning through self-supervised alignment between actual future observations and predicted observations reconstructed from the latent space. World4Drive achieves state-of-the-art performance without manual perception annotations on both the open-loop nuScenes and closed-loop NavSim benchmarks, demonstrating an 18.1\% relative reduction in L2 error, 46.7% lower collision rate, and 3.75 faster training convergence. Codes will be accessed at https://github.com/ucaszyp/World4Drive.
Authors:Kaiwen Zhang, Zhenyu Tang, Xiaotao Hu, Xingang Pan, Xiaoyang Guo, Yuan Liu, Jingwei Huang, Li Yuan, Qian Zhang, Xiao-Xiao Long, Xun Cao, Wei Yin
Abstract:
Diffusion models have demonstrated exceptional visual quality in video generation, making them promising for autonomous driving world modeling. However, existing video diffusion-based world models struggle with flexible-length, long-horizon predictions and integrating trajectory planning. This is because conventional video diffusion models rely on global joint distribution modeling of fixed-length frame sequences rather than sequentially constructing localized distributions at each timestep. In this work, we propose Epona, an autoregressive diffusion world model that enables localized spatiotemporal distribution modeling through two key innovations: 1) Decoupled spatiotemporal factorization that separates temporal dynamics modeling from fine-grained future world generation, and 2) Modular trajectory and video prediction that seamlessly integrate motion planning with visual modeling in an end-to-end framework. Our architecture enables high-resolution, long-duration generation while introducing a novel chain-of-forward training strategy to address error accumulation in autoregressive loops. Experimental results demonstrate state-of-the-art performance with 7.4\% FVD improvement and minutes longer prediction duration compared to prior works. The learned world model further serves as a real-time motion planner, outperforming strong end-to-end planners on NAVSIM benchmarks. Code will be publicly available at \href{https://github.com/Kevin-thu/Epona/}{https://github.com/Kevin-thu/Epona/}.
Authors:Haonan Chen, Bangjun Wang, Jingxiang Guo, Tianrui Zhang, Yiwen Hou, Xuchuan Huang, Chenrui Tie, Lin Shao
Abstract:
Improving data efficiency and generalization in robotic manipulation remains a core challenge. We propose a novel framework that leverages a pre-trained multimodal image-generation model as a world model to guide policy learning. By exploiting its rich visual-semantic representations and strong generalization across diverse scenes, the model generates open-ended future state predictions that inform downstream manipulation. Coupled with zero-shot low-level control modules, our approach enables general-purpose robotic manipulation without task-specific training. Experiments in both simulation and real-world environments demonstrate that our method achieves effective performance across a wide range of manipulation tasks with no additional data collection or fine-tuning. Supplementary materials are available on our website: https://world4omni.github.io/.
Authors:Zixun Fang, Kai Zhu, Zhiheng Liu, Yu Liu, Wei Zhai, Yang Cao, Zheng-Jun Zha
Abstract:
Panoramic video generation aims to synthesize 360-degree immersive videos, holding significant importance in the fields of VR, world models, and spatial intelligence. Existing works fail to synthesize high-quality panoramic videos due to the inherent modality gap between panoramic data and perspective data, which constitutes the majority of the training data for modern diffusion models. In this paper, we propose a novel framework utilizing pretrained perspective video models for generating panoramic videos. Specifically, we design a novel panorama representation named ViewPoint map, which possesses global spatial continuity and fine-grained visual details simultaneously. With our proposed Pano-Perspective attention mechanism, the model benefits from pretrained perspective priors and captures the panoramic spatial correlations of the ViewPoint map effectively. Extensive experiments demonstrate that our method can synthesize highly dynamic and spatially consistent panoramic videos, achieving state-of-the-art performance and surpassing previous methods.
Authors:Xuan Yao, Junyu Gao, Changsheng Xu
Abstract:
Vision-and-Language Navigation in Continuous Environments (VLN-CE) requires agents to execute sequential navigation actions in complex environments guided by natural language instructions. Current approaches often struggle with generalizing to novel environments and adapting to ongoing changes during navigation. Inspired by human cognition, we present NavMorph, a self-evolving world model framework that enhances environmental understanding and decision-making in VLN-CE tasks. NavMorph employs compact latent representations to model environmental dynamics, equipping agents with foresight for adaptive planning and policy refinement. By integrating a novel Contextual Evolution Memory, NavMorph leverages scene-contextual information to support effective navigation while maintaining online adaptability. Extensive experiments demonstrate that our method achieves notable performance improvements on popular VLN-CE benchmarks. Code is available at https://github.com/Feliciaxyao/NavMorph.
Authors:Yu Shang, Xin Zhang, Yinzhou Tang, Lei Jin, Chen Gao, Wei Wu, Yong Li
Abstract:
World models have become indispensable tools for embodied intelligence, serving as powerful simulators capable of generating realistic robotic videos while addressing critical data scarcity challenges. However, current embodied world models exhibit limited physical awareness, particularly in modeling 3D geometry and motion dynamics, resulting in unrealistic video generation for contact-rich robotic scenarios. In this paper, we present RoboScape, a unified physics-informed world model that jointly learns RGB video generation and physics knowledge within an integrated framework. We introduce two key physics-informed joint training tasks: temporal depth prediction that enhances 3D geometric consistency in video rendering, and keypoint dynamics learning that implicitly encodes physical properties (e.g., object shape and material characteristics) while improving complex motion modeling. Extensive experiments demonstrate that RoboScape generates videos with superior visual fidelity and physical plausibility across diverse robotic scenarios. We further validate its practical utility through downstream applications including robotic policy training with generated data and policy evaluation. Our work provides new insights for building efficient physics-informed world models to advance embodied intelligence research. The code is available at: https://github.com/tsinghua-fib-lab/RoboScape.
Authors:Suning Huang, Qianzhong Chen, Xiaohan Zhang, Jiankai Sun, Mac Schwager
Abstract:
3D world models (i.e., learning-based 3D dynamics models) offer a promising approach to generalizable robotic manipulation by capturing the underlying physics of environment evolution conditioned on robot actions. However, existing 3D world models are primarily limited to single-material dynamics using a particle-based Graph Neural Network model, and often require time-consuming 3D scene reconstruction to obtain 3D particle tracks for training. In this work, we present ParticleFormer, a Transformer-based point cloud world model trained with a hybrid point cloud reconstruction loss, supervising both global and local dynamics features in multi-material, multi-object robot interactions. ParticleFormer captures fine-grained multi-object interactions between rigid, deformable, and flexible materials, trained directly from real-world robot perception data without an elaborate scene reconstruction. We demonstrate the model's effectiveness both in 3D scene forecasting tasks, and in downstream manipulation tasks using a Model Predictive Control (MPC) policy. In addition, we extend existing dynamics learning benchmarks to include diverse multi-material, multi-object interaction scenarios. We validate our method on six simulation and three real-world experiments, where it consistently outperforms leading baselines by achieving superior dynamics prediction accuracy and less rollout error in downstream visuomotor tasks. Experimental videos are available at https://suninghuang19.github.io/particleformer_page/.
Authors:Yu Zheng, Boyang Gong, Fanye Kong, Yueqi Duan, Bingyao Yu, Wenzhao Zheng, Lei Chen, Jiwen Lu, Jie Zhou
Abstract:
In this paper, we propose a Counterfactually Decoupled Attention Learning (CDAL) method for open-world model attribution. Existing methods rely on handcrafted design of region partitioning or feature space, which could be confounded by the spurious statistical correlations and struggle with novel attacks in open-world scenarios. To address this, CDAL explicitly models the causal relationships between the attentional visual traces and source model attribution, and counterfactually decouples the discriminative model-specific artifacts from confounding source biases for comparison. In this way, the resulting causal effect provides a quantification on the quality of learned attention maps, thus encouraging the network to capture essential generation patterns that generalize to unseen source models by maximizing the effect. Extensive experiments on existing open-world model attribution benchmarks show that with minimal computational overhead, our method consistently improves state-of-the-art models by large margins, particularly for unseen novel attacks. Source code: https://github.com/yzheng97/CDAL.
Authors:Jun Cen, Chaohui Yu, Hangjie Yuan, Yuming Jiang, Siteng Huang, Jiayan Guo, Xin Li, Yibing Song, Hao Luo, Fan Wang, Deli Zhao, Hao Chen
Abstract:
We present WorldVLA, an autoregressive action world model that unifies action and image understanding and generation. Our WorldVLA intergrates Vision-Language-Action (VLA) model and world model in one single framework. The world model predicts future images by leveraging both action and image understanding, with the purpose of learning the underlying physics of the environment to improve action generation. Meanwhile, the action model generates the subsequent actions based on image observations, aiding in visual understanding and in turn helps visual generation of the world model. We demonstrate that WorldVLA outperforms standalone action and world models, highlighting the mutual enhancement between the world model and the action model. In addition, we find that the performance of the action model deteriorates when generating sequences of actions in an autoregressive manner. This phenomenon can be attributed to the model's limited generalization capability for action prediction, leading to the propagation of errors from earlier actions to subsequent ones. To address this issue, we propose an attention mask strategy that selectively masks prior actions during the generation of the current action, which shows significant performance improvement in the action chunk generation task.
Authors:Tengbo Yu, Guanxing Lu, Zaijia Yang, Haoyuan Deng, Season Si Chen, Jiwen Lu, Wenbo Ding, Guoqiang Hu, Yansong Tang, Ziwei Wang
Abstract:
Multi-task robotic bimanual manipulation is becoming increasingly popular as it enables sophisticated tasks that require diverse dual-arm collaboration patterns. Compared to unimanual manipulation, bimanual tasks pose challenges to understanding the multi-body spatiotemporal dynamics. An existing method ManiGaussian pioneers encoding the spatiotemporal dynamics into the visual representation via Gaussian world model for single-arm settings, which ignores the interaction of multiple embodiments for dual-arm systems with significant performance drop. In this paper, we propose ManiGaussian++, an extension of ManiGaussian framework that improves multi-task bimanual manipulation by digesting multi-body scene dynamics through a hierarchical Gaussian world model. To be specific, we first generate task-oriented Gaussian Splatting from intermediate visual features, which aims to differentiate acting and stabilizing arms for multi-body spatiotemporal dynamics modeling. We then build a hierarchical Gaussian world model with the leader-follower architecture, where the multi-body spatiotemporal dynamics is mined for intermediate visual representation via future scene prediction. The leader predicts Gaussian Splatting deformation caused by motions of the stabilizing arm, through which the follower generates the physical consequences resulted from the movement of the acting arm. As a result, our method significantly outperforms the current state-of-the-art bimanual manipulation techniques by an improvement of 20.2% in 10 simulated tasks, and achieves 60% success rate on average in 9 challenging real-world tasks. Our code is available at https://github.com/April-Yz/ManiGaussian_Bimanual.
Authors:Yifan Zhang, Chunli Peng, Boyang Wang, Puyi Wang, Qingcheng Zhu, Fei Kang, Biao Jiang, Zedong Gao, Eric Li, Yang Liu, Yahui Zhou
Abstract:
We introduce Matrix-Game, an interactive world foundation model for controllable game world generation. Matrix-Game is trained using a two-stage pipeline that first performs large-scale unlabeled pretraining for environment understanding, followed by action-labeled training for interactive video generation. To support this, we curate Matrix-Game-MC, a comprehensive Minecraft dataset comprising over 2,700 hours of unlabeled gameplay video clips and over 1,000 hours of high-quality labeled clips with fine-grained keyboard and mouse action annotations. Our model adopts a controllable image-to-world generation paradigm, conditioned on a reference image, motion context, and user actions. With over 17 billion parameters, Matrix-Game enables precise control over character actions and camera movements, while maintaining high visual quality and temporal coherence. To evaluate performance, we develop GameWorld Score, a unified benchmark measuring visual quality, temporal quality, action controllability, and physical rule understanding for Minecraft world generation. Extensive experiments show that Matrix-Game consistently outperforms prior open-source Minecraft world models (including Oasis and MineWorld) across all metrics, with particularly strong gains in controllability and physical consistency. Double-blind human evaluations further confirm the superiority of Matrix-Game, highlighting its ability to generate perceptually realistic and precisely controllable videos across diverse game scenarios. To facilitate future research on interactive image-to-world generation, we will open-source the Matrix-Game model weights and the GameWorld Score benchmark at https://github.com/SkyworkAI/Matrix-Game.
Authors:Jeremy A. Collins, Loránd Cheng, Kunal Aneja, Albert Wilcox, Benjamin Joffe, Animesh Garg
Abstract:
Action-labeled data for robotics is scarce and expensive, limiting the generalization of learned policies. In contrast, vast amounts of action-free video data are readily available, but translating these observations into effective policies remains a challenge. We introduce AMPLIFY, a novel framework that leverages large-scale video data by encoding visual dynamics into compact, discrete motion tokens derived from keypoint trajectories. Our modular approach separates visual motion prediction from action inference, decoupling the challenges of learning what motion defines a task from how robots can perform it. We train a forward dynamics model on abundant action-free videos and an inverse dynamics model on a limited set of action-labeled examples, allowing for independent scaling. Extensive evaluations demonstrate that the learned dynamics are both accurate, achieving up to 3.7x better MSE and over 2.5x better pixel prediction accuracy compared to prior approaches, and broadly useful. In downstream policy learning, our dynamics predictions enable a 1.2-2.2x improvement in low-data regimes, a 1.4x average improvement by learning from action-free human videos, and the first generalization to LIBERO tasks from zero in-distribution action data. Beyond robotic control, we find the dynamics learned by AMPLIFY to be a versatile latent world model, enhancing video prediction quality. Our results present a novel paradigm leveraging heterogeneous data sources to build efficient, generalizable world models. More information can be found at https://amplify-robotics.github.io/.
Authors:Yining Shi, Kun Jiang, Qiang Meng, Ke Wang, Jiabao Wang, Wenchao Sun, Tuopu Wen, Mengmeng Yang, Diange Yang
Abstract:
World models are critical for autonomous driving to simulate environmental dynamics and generate synthetic data. Existing methods struggle to disentangle ego-vehicle motion (perspective shifts) from scene evolvement (agent interactions), leading to suboptimal predictions. Instead, we propose to separate environmental changes from ego-motion by leveraging the scene-centric coordinate systems. In this paper, we introduce COME: a framework that integrates scene-centric forecasting Control into the Occupancy world ModEl. Specifically, COME first generates ego-irrelevant, spatially consistent future features through a scene-centric prediction branch, which are then converted into scene condition using a tailored ControlNet. These condition features are subsequently injected into the occupancy world model, enabling more accurate and controllable future occupancy predictions. Experimental results on the nuScenes-Occ3D dataset show that COME achieves consistent and significant improvements over state-of-the-art (SOTA) methods across diverse configurations, including different input sources (ground-truth, camera-based, fusion-based occupancy) and prediction horizons (3s and 8s). For example, under the same settings, COME achieves 26.3% better mIoU metric than DOME and 23.7% better mIoU metric than UniScene. These results highlight the efficacy of disentangled representation learning in enhancing spatio-temporal prediction fidelity for world models. Code and videos will be available at https://github.com/synsin0/COME.
Authors:Yuan Gao, Mattia Piccinini, Yuchen Zhang, Dingrui Wang, Korbinian Moller, Roberto Brusnicki, Baha Zarrouki, Alessio Gambi, Jan Frederik Totz, Kai Storms, Steven Peters, Andrea Stocco, Bassam Alrifaee, Marco Pavone, Johannes Betz
Abstract:
For autonomous vehicles, safe navigation in complex environments depends on handling a broad range of diverse and rare driving scenarios. Simulation- and scenario-based testing have emerged as key approaches to development and validation of autonomous driving systems. Traditional scenario generation relies on rule-based systems, knowledge-driven models, and data-driven synthesis, often producing limited diversity and unrealistic safety-critical cases. With the emergence of foundation models, which represent a new generation of pre-trained, general-purpose AI models, developers can process heterogeneous inputs (e.g., natural language, sensor data, HD maps, and control actions), enabling the synthesis and interpretation of complex driving scenarios. In this paper, we conduct a survey about the application of foundation models for scenario generation and scenario analysis in autonomous driving (as of May 2025). Our survey presents a unified taxonomy that includes large language models, vision-language models, multimodal large language models, diffusion models, and world models for the generation and analysis of autonomous driving scenarios. In addition, we review the methodologies, open-source datasets, simulation platforms, and benchmark challenges, and we examine the evaluation metrics tailored explicitly to scenario generation and analysis. Finally, the survey concludes by highlighting the open challenges and research questions, and outlining promising future research directions. All reviewed papers are listed in a continuously maintained repository, which contains supplementary materials and is available at https://github.com/TUM-AVS/FM-for-Scenario-Generation-Analysis.
Authors:Weiliang Chen, Wenzhao Zheng, Yu Zheng, Lei Chen, Jie Zhou, Jiwen Lu, Yueqi Duan
Abstract:
The flourishing of video generation technologies has endangered the credibility of real-world information and intensified the demand for AI-generated video detectors. Despite some progress, the lack of high-quality real-world datasets hinders the development of trustworthy detectors. In this paper, we propose GenWorld, a large-scale, high-quality, and real-world simulation dataset for AI-generated video detection. GenWorld features the following characteristics: (1) Real-world Simulation: GenWorld focuses on videos that replicate real-world scenarios, which have a significant impact due to their realism and potential influence; (2) High Quality: GenWorld employs multiple state-of-the-art video generation models to provide realistic and high-quality forged videos; (3) Cross-prompt Diversity: GenWorld includes videos generated from diverse generators and various prompt modalities (e.g., text, image, video), offering the potential to learn more generalizable forensic features. We analyze existing methods and find they fail to detect high-quality videos generated by world models (i.e., Cosmos), revealing potential drawbacks of ignoring real-world clues. To address this, we propose a simple yet effective model, SpannDetector, to leverage multi-view consistency as a strong criterion for real-world AI-generated video detection. Experiments show that our method achieves superior results, highlighting a promising direction for explainable AI-generated video detection based on physical plausibility. We believe that GenWorld will advance the field of AI-generated video detection. Project Page: https://chen-wl20.github.io/GenWorld
Authors:Jeongsoo Ha, Kyungsoo Kim, Yusung Kim
Abstract:
Model-based reinforcement learning (MBRL) has been used to efficiently solve vision-based control tasks in highdimensional image observations. Although recent MBRL algorithms perform well in trained observations, they fail when faced with visual distractions in observations. These task-irrelevant distractions (e.g., clouds, shadows, and light) may be constantly present in real-world scenarios. In this study, we propose a novel self-supervised method, Dream to Generalize (Dr. G), for zero-shot MBRL. Dr. G trains its encoder and world model with dual contrastive learning which efficiently captures task-relevant features among multi-view data augmentations. We also introduce a recurrent state inverse dynamics model that helps the world model to better understand the temporal structure. The proposed methods can enhance the robustness of the world model against visual distractions. To evaluate the generalization performance, we first train Dr. G on simple backgrounds and then test it on complex natural video backgrounds in the DeepMind Control suite, and the randomizing environments in Robosuite. Dr. G yields a performance improvement of 117% and 14% over prior works, respectively. Our code is open-sourced and available at https://github.com/JeongsooHa/DrG.git
Authors:Arnav Kumar Jain, Vibhakar Mohta, Subin Kim, Atiksh Bhardwaj, Juntao Ren, Yunhai Feng, Sanjiban Choudhury, Gokul Swamy
Abstract:
The fundamental limitation of the behavioral cloning (BC) approach to imitation learning is that it only teaches an agent what the expert did at states the expert visited. This means that when a BC agent makes a mistake which takes them out of the support of the demonstrations, they often don't know how to recover from it. In this sense, BC is akin to giving the agent the fish -- giving them dense supervision across a narrow set of states -- rather than teaching them to fish: to be able to reason independently about achieving the expert's outcome even when faced with unseen situations at test-time. In response, we explore learning to search (L2S) from expert demonstrations, i.e. learning the components required to, at test time, plan to match expert outcomes, even after making a mistake. These include (1) a world model and (2) a reward model. We carefully ablate the set of algorithmic and design decisions required to combine these and other components for stable and sample/interaction-efficient learning of recovery behavior without additional human corrections. Across a dozen visual manipulation tasks from three benchmarks, our approach $\texttt{SAILOR}$ consistently out-performs state-of-the-art Diffusion Policies trained via BC on the same data. Furthermore, scaling up the amount of demonstrations used for BC by 5-10$\times$ still leaves a performance gap. We find that $\texttt{SAILOR}$ can identify nuanced failures and is robust to reward hacking. Our code is available at https://github.com/arnavkj1995/SAILOR .
Authors:Aditya Gandhamal, Aniruddh Sikdar, Suresh Sundaram
Abstract:
Open-vocabulary semantic segmentation (OVSS) entails assigning semantic labels to each pixel in an image using textual descriptions, typically leveraging world models such as CLIP. To enhance out-of-domain generalization, we propose Cost Aggregation with Optimal Transport (OV-COAST) for open-vocabulary semantic segmentation. To align visual-language features within the framework of optimal transport theory, we employ cost volume to construct a cost matrix, which quantifies the distance between two distributions. Our approach adopts a two-stage optimization strategy: in the first stage, the optimal transport problem is solved using cost volume via Sinkhorn distance to obtain an alignment solution; in the second stage, this solution is used to guide the training of the CAT-Seg model. We evaluate state-of-the-art OVSS models on the MESS benchmark, where our approach notably improves the performance of the cost-aggregation model CAT-Seg with ViT-B backbone, achieving superior results, surpassing CAT-Seg by 1.72 % and SAN-B by 4.9 % mIoU. The code is available at https://github.com/adityagandhamal/OV-COAST/}{https://github.com/adityagandhamal/OV-COAST/ .
Authors:Jan Robine, Marc Höftmann, Stefan Harmeling
Abstract:
What are the essential components of world models? How far do we get with world models that are not employing RNNs, transformers, discrete representations, and image reconstructions? This paper introduces SGF, a Simple, Good, and Fast world model that uses self-supervised representation learning, captures short-time dependencies through frame and action stacking, and enhances robustness against model errors through data augmentation. We extensively discuss SGF's connections to established world models, evaluate the building blocks in ablation studies, and demonstrate good performance through quantitative comparisons on the Atari 100k benchmark.
Authors:Xiaodong Wang, Zhirong Wu, Peixi Peng
Abstract:
Driving world models are used to simulate futures by video generation based on the condition of the current state and actions. However, current models often suffer serious error accumulations when predicting the long-term future, which limits the practical application. Recent studies utilize the Diffusion Transformer (DiT) as the backbone of driving world models to improve learning flexibility. However, these models are always trained on short video clips (high fps and short duration), and multiple roll-out generations struggle to produce consistent and reasonable long videos due to the training-inference gap. To this end, we propose several solutions to build a simple yet effective long-term driving world model. First, we hierarchically decouple world model learning into large motion learning and bidirectional continuous motion learning. Then, considering the continuity of driving scenes, we propose a simple distillation method where fine-grained video flows are self-supervised signals for coarse-grained flows. The distillation is designed to improve the coherence of infinite video generation. The coarse-grained and fine-grained modules are coordinated to generate long-term and temporally coherent videos. In the public benchmark NuScenes, compared with the state-of-the-art front-view model, our model improves FVD by $27\%$ and reduces inference time by $85\%$ for the video task of generating 110+ frames. More videos (including 90s duration) are available at https://Wang-Xiaodong1899.github.io/longdwm/.
Authors:Jinmei Liu, Fuhong Liu, Jianye Hao, Bo Wang, Huaxiong Li, Chunlin Chen, Zhi Wang
Abstract:
Recent advancements in language models have demonstrated remarkable in-context learning abilities, prompting the exploration of in-context reinforcement learning (ICRL) to extend the promise to decision domains. Due to involving more complex dynamics and temporal correlations, existing ICRL approaches may face challenges in learning from suboptimal trajectories and achieving precise in-context inference. In the paper, we propose \textbf{S}calable \textbf{I}n-\textbf{C}ontext \textbf{Q}-\textbf{L}earning (\textbf{SICQL}), an innovative framework that harnesses dynamic programming and world modeling to steer ICRL toward efficient reward maximization and task generalization, while retaining the scalability and stability of supervised pretraining. We design a prompt-based multi-head transformer architecture that simultaneously predicts optimal policies and in-context value functions using separate heads. We pretrain a generalized world model to capture task-relevant information, enabling the construction of a compact prompt that facilitates fast and precise in-context inference. During training, we perform iterative policy improvement by fitting a state value function to an upper-expectile of the Q-function, and distill the in-context value functions into policy extraction using advantage-weighted regression. Extensive experiments across a range of discrete and continuous environments show consistent performance gains over various types of baselines, especially when learning from suboptimal data. Our code is available at https://github.com/NJU-RL/SICQL
Authors:Anthony Chen, Wenzhao Zheng, Yida Wang, Xueyang Zhang, Kun Zhan, Peng Jia, Kurt Keutzer, Shanghang Zhang
Abstract:
Recent advancements in world models have revolutionized dynamic environment simulation, allowing systems to foresee future states and assess potential actions. In autonomous driving, these capabilities help vehicles anticipate the behavior of other road users, perform risk-aware planning, accelerate training in simulation, and adapt to novel scenarios, thereby enhancing safety and reliability. Current approaches exhibit deficiencies in maintaining robust 3D geometric consistency or accumulating artifacts during occlusion handling, both critical for reliable safety assessment in autonomous navigation tasks. To address this, we introduce GeoDrive, which explicitly integrates robust 3D geometry conditions into driving world models to enhance spatial understanding and action controllability. Specifically, we first extract a 3D representation from the input frame and then obtain its 2D rendering based on the user-specified ego-car trajectory. To enable dynamic modeling, we propose a dynamic editing module during training to enhance the renderings by editing the positions of the vehicles. Extensive experiments demonstrate that our method significantly outperforms existing models in both action accuracy and 3D spatial awareness, leading to more realistic, adaptable, and reliable scene modeling for safer autonomous driving. Additionally, our model can generalize to novel trajectories and offers interactive scene editing capabilities, such as object editing and object trajectory control.
Authors:Quentin Rouxel, Clemente Donoso, Fei Chen, Serena Ivaldi, Jean-Baptiste Mouret
Abstract:
Imitation learning is a promising approach for enabling generalist capabilities in humanoid robots, but its scaling is fundamentally constrained by the scarcity of high-quality expert demonstrations. This limitation can be mitigated by leveraging suboptimal, open-ended play data, often easier to collect and offering greater diversity. This work builds upon recent advances in generative modeling, specifically Flow Matching, an alternative to Diffusion models. We introduce a method for estimating the minimum or maximum of the learned distribution by leveraging the unique properties of Flow Matching, namely, deterministic transport and support for arbitrary source distributions. We apply this method to develop several goal-conditioned imitation and reinforcement learning algorithms based on Flow Matching, where policies are conditioned on both current and goal observations. We explore and compare different architectural configurations by combining core components, such as critic, planner, actor, or world model, in various ways. We evaluated our agents on the OGBench benchmark and analyzed how different demonstration behaviors during data collection affect performance in a 2D non-prehensile pushing task. Furthermore, we validated our approach on real hardware by deploying it on the Talos humanoid robot to perform complex manipulation tasks based on high-dimensional image observations, featuring a sequence of pick-and-place and articulated object manipulation in a realistic kitchen environment. Experimental videos and code are available at: https://hucebot.github.io/extremum_flow_matching_website/
Authors:Yansong Qu, Zilin Huang, Zihao Sheng, Jiancong Chen, Sikai Chen, Samuel Labi
Abstract:
Reinforcement learning (RL)-based autonomous driving policy learning faces critical limitations such as low sample efficiency and poor generalization; its reliance on online interactions and trial-and-error learning is especially unacceptable in safety-critical scenarios. Existing methods including safe RL often fail to capture the true semantic meaning of "safety" in complex driving contexts, leading to either overly conservative driving behavior or constraint violations. To address these challenges, we propose VL-SAFE, a world model-based safe RL framework with Vision-Language model (VLM)-as-safety-guidance paradigm, designed for offline safe policy learning. Specifically, we construct offline datasets containing data collected by expert agents and labeled with safety scores derived from VLMs. A world model is trained to generate imagined rollouts together with safety estimations, allowing the agent to perform safe planning without interacting with the real environment. Based on these imagined trajectories and safety evaluations, actor-critic learning is conducted under VLM-based safety guidance to optimize the driving policy more safely and efficiently. Extensive evaluations demonstrate that VL-SAFE achieves superior sample efficiency, generalization, safety, and overall performance compared to existing baselines. To the best of our knowledge, this is the first work that introduces a VLM-guided world model-based approach for safe autonomous driving. The demo video and code can be accessed at: https://ys-qu.github.io/vlsafe-website/
Authors:Siqiao Huang, Jialong Wu, Qixing Zhou, Shangchen Miao, Mingsheng Long
Abstract:
World models, which predict transitions based on history observation and action sequences, have shown great promise in improving data efficiency for sequential decision making. However, existing world models often require extensive domain-specific training and still produce low-fidelity, coarse predictions, limiting their applicability in complex environments. In contrast, video diffusion models trained on large, internet-scale datasets have demonstrated impressive capabilities in generating high-quality videos that capture diverse real-world dynamics. In this work, we present Vid2World, a general approach for leveraging and transferring pre-trained video diffusion models into interactive world models. To bridge the gap, Vid2World performs casualization of a pre-trained video diffusion model by crafting its architecture and training objective to enable autoregressive generation. Furthermore, it introduces a causal action guidance mechanism to enhance action controllability in the resulting interactive world model. Extensive experiments in robot manipulation and game simulation domains show that our method offers a scalable and effective approach for repurposing highly capable video diffusion models to interactive world models.
Authors:Jialong Wu, Shaofeng Yin, Ningya Feng, Mingsheng Long
Abstract:
World models predict state transitions in response to actions and are increasingly developed across diverse modalities. However, standard training objectives such as maximum likelihood estimation (MLE) often misalign with task-specific goals of world models, i.e., transition prediction metrics like accuracy or perceptual quality. In this paper, we present RLVR-World, a unified framework that leverages reinforcement learning with verifiable rewards (RLVR) to directly optimize world models for such metrics. Despite formulating world modeling as autoregressive prediction of tokenized sequences, RLVR-World evaluates metrics of decoded predictions as verifiable rewards. We demonstrate substantial performance gains on both language- and video-based world models across domains, including text games, web navigation, and robot manipulation. Our work indicates that, beyond recent advances in reasoning language models, RLVR offers a promising post-training paradigm for enhancing the utility of generative models more broadly.
Authors:Sand. ai, Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tianning Zhang, W. Q. Zhang, Weifeng Luo, Xiaoyang Kang, Yuchen Sun, Yue Cao, Yunpeng Huang, Yutong Lin, Yuxin Fang, Zewei Tao, Zheng Zhang, Zhongshu Wang, Zixun Liu, Dai Shi, Guoli Su, Hanwen Sun, Hong Pan, Jie Wang, Jiexin Sheng, Min Cui, Min Hu, Ming Yan, Shucheng Yin, Siran Zhang, Tingting Liu, Xianping Yin, Xiaoyu Yang, Xin Song, Xuan Hu, Yankai Zhang, Yuqiao Li
Abstract:
We present MAGI-1, a world model that generates videos by autoregressively predicting a sequence of video chunks, defined as fixed-length segments of consecutive frames. Trained to denoise per-chunk noise that increases monotonically over time, MAGI-1 enables causal temporal modeling and naturally supports streaming generation. It achieves strong performance on image-to-video (I2V) tasks conditioned on text instructions, providing high temporal consistency and scalability, which are made possible by several algorithmic innovations and a dedicated infrastructure stack. MAGI-1 facilitates controllable generation via chunk-wise prompting and supports real-time, memory-efficient deployment by maintaining constant peak inference cost, regardless of video length. The largest variant of MAGI-1 comprises 24 billion parameters and supports context lengths of up to 4 million tokens, demonstrating the scalability and robustness of our approach. The code and models are available at https://github.com/SandAI-org/MAGI-1 and https://github.com/SandAI-org/MagiAttention. The product can be accessed at https://sand.ai.
Authors:Joel Jang, Seonghyeon Ye, Zongyu Lin, Jiannan Xiang, Johan Bjorck, Yu Fang, Fengyuan Hu, Spencer Huang, Kaushil Kundalia, Yen-Chen Lin, Loic Magne, Ajay Mandlekar, Avnish Narayan, You Liang Tan, Guanzhi Wang, Jing Wang, Qi Wang, Yinzhen Xu, Xiaohui Zeng, Kaiyuan Zheng, Ruijie Zheng, Ming-Yu Liu, Luke Zettlemoyer, Dieter Fox, Jan Kautz, Scott Reed, Yuke Zhu, Linxi Fan
Abstract:
We introduce DreamGen, a simple yet highly effective 4-stage pipeline for training robot policies that generalize across behaviors and environments through neural trajectories - synthetic robot data generated from video world models. DreamGen leverages state-of-the-art image-to-video generative models, adapting them to the target robot embodiment to produce photorealistic synthetic videos of familiar or novel tasks in diverse environments. Since these models generate only videos, we recover pseudo-action sequences using either a latent action model or an inverse-dynamics model (IDM). Despite its simplicity, DreamGen unlocks strong behavior and environment generalization: a humanoid robot can perform 22 new behaviors in both seen and unseen environments, while requiring teleoperation data from only a single pick-and-place task in one environment. To evaluate the pipeline systematically, we introduce DreamGen Bench, a video generation benchmark that shows a strong correlation between benchmark performance and downstream policy success. Our work establishes a promising new axis for scaling robot learning well beyond manual data collection. Code available at https://github.com/NVIDIA/GR00T-Dreams.
Authors:Wasu Top Piriyakulkij, Yichao Liang, Hao Tang, Adrian Weller, Marta Kryven, Kevin Ellis
Abstract:
Learning how the world works is central to building AI agents that can adapt to complex environments. Traditional world models based on deep learning demand vast amounts of training data, and do not flexibly update their knowledge from sparse observations. Recent advances in program synthesis using Large Language Models (LLMs) give an alternate approach which learns world models represented as source code, supporting strong generalization from little data. To date, application of program-structured world models remains limited to natural language and grid-world domains. We introduce a novel program synthesis method for effectively modeling complex, non-gridworld domains by representing a world model as an exponentially-weighted product of programmatic experts (PoE-World) synthesized by LLMs. We show that this approach can learn complex, stochastic world models from just a few observations. We evaluate the learned world models by embedding them in a model-based planning agent, demonstrating efficient performance and generalization to unseen levels on Atari's Pong and Montezuma's Revenge. We release our code and display the learned world models and videos of the agent's gameplay at https://topwasu.github.io/poe-world.
Authors:Jun Guo, Xiaojian Ma, Yikai Wang, Min Yang, Huaping Liu, Qing Li
Abstract:
This paper investigates training better visual world models for robot manipulation, i.e., models that can predict future visual observations by conditioning on past frames and robot actions. Specifically, we consider world models that operate on RGB-D frames (RGB-D world models). As opposed to canonical approaches that handle dynamics prediction mostly implicitly and reconcile it with visual rendering in a single model, we introduce FlowDreamer, which adopts 3D scene flow as explicit motion representations. FlowDreamer first predicts 3D scene flow from past frame and action conditions with a U-Net, and then a diffusion model will predict the future frame utilizing the scene flow. FlowDreamer is trained end-to-end despite its modularized nature. We conduct experiments on 4 different benchmarks, covering both video prediction and visual planning tasks. The results demonstrate that FlowDreamer achieves better performance compared to other baseline RGB-D world models by 7% on semantic similarity, 11% on pixel quality, and 6% on success rate in various robot manipulation domains.
Authors:Yuxin Jiang, Shengcong Chen, Siyuan Huang, Liliang Chen, Pengfei Zhou, Yue Liao, Xindong He, Chiming Liu, Hongsheng Li, Maoqing Yao, Guanghui Ren
Abstract:
Robotic imitation learning has advanced from solving static tasks to addressing dynamic interaction scenarios, but testing and evaluation remain costly and challenging due to the need for real-time interaction with dynamic environments. We propose EnerVerse-AC (EVAC), an action-conditional world model that generates future visual observations based on an agent's predicted actions, enabling realistic and controllable robotic inference. Building on prior architectures, EVAC introduces a multi-level action-conditioning mechanism and ray map encoding for dynamic multi-view image generation while expanding training data with diverse failure trajectories to improve generalization. As both a data engine and evaluator, EVAC augments human-collected trajectories into diverse datasets and generates realistic, action-conditioned video observations for policy testing, eliminating the need for physical robots or complex simulations. This approach significantly reduces costs while maintaining high fidelity in robotic manipulation evaluation. Extensive experiments validate the effectiveness of our method. Code, checkpoints, and datasets can be found at .
Authors:Hu Yue, Siyuan Huang, Yue Liao, Shengcong Chen, Pengfei Zhou, Liliang Chen, Maoqing Yao, Guanghui Ren
Abstract:
Recent advances in creative AI have enabled the synthesis of high-fidelity images and videos conditioned on language instructions. Building on these developments, text-to-video diffusion models have evolved into embodied world models (EWMs) capable of generating physically plausible scenes from language commands, effectively bridging vision and action in embodied AI applications. This work addresses the critical challenge of evaluating EWMs beyond general perceptual metrics to ensure the generation of physically grounded and action-consistent behaviors. We propose the Embodied World Model Benchmark (EWMBench), a dedicated framework designed to evaluate EWMs based on three key aspects: visual scene consistency, motion correctness, and semantic alignment. Our approach leverages a meticulously curated dataset encompassing diverse scenes and motion patterns, alongside a comprehensive multi-dimensional evaluation toolkit, to assess and compare candidate models. The proposed benchmark not only identifies the limitations of existing video generation models in meeting the unique requirements of embodied tasks but also provides valuable insights to guide future advancements in the field. The dataset and evaluation tools are publicly available at https://github.com/AgibotTech/EWMBench.
Authors:Chaoran Zhang, Chenhao Zhang, Zhaobo Xu, Qinghongbing Xie, Jinliang Hou, Pingfa Feng, Long Zeng
Abstract:
In order to work more efficiently, accurately, reliably, and safely in industrial scenarios, robots should have at least general knowledge, working-environment knowledge, and operating-object knowledge. These pose significant challenges to existing embodied intelligent robotics (EIR) techniques. Thus, this paper first briefly reviews the history of industrial robotics and analyzes the limitations of mainstream EIR frameworks. Then, a knowledge-driven technical framework of embodied intelligent industrial robotics (EIIR) is proposed for various industrial environments. It has five modules: a world model, a high-level task planner, a low-level skill controller, a simulator, and a physical system. The development of techniques related to each module are also thoroughly reviewed, and recent progress regarding their adaption to industrial applications are discussed. A case study is given to demonstrate the newly proposed EIIR framework's applicability to real-world assembly system. Finally, the key challenges that EIIR encounters in industrial scenarios are summarized and future research directions are suggested. The authors believe that EIIR technology is shaping the next generation of industrial robotics and EIIR-based industrial systems supply a new technological paradigm for intelligent manufacturing. It is expected that this review could serve as a valuable reference for scholars and engineers that are interested in industrial embodied intelligence. Together, scholars can use this research to drive their rapid advancement and application of EIIR techniques. The interested authors would continue to track and contribute new studies in the project page https://github.com/jackyzengl/EIIR.
Authors:Letian Wang, Marc-Antoine Lavoie, Sandro Papais, Barza Nisar, Yuxiao Chen, Wenhao Ding, Boris Ivanovic, Hao Shao, Abulikemu Abuduweili, Evan Cook, Yang Zhou, Peter Karkus, Jiachen Li, Changliu Liu, Marco Pavone, Steven Waslander
Abstract:
Motion prediction, recently popularized as world models, refers to the anticipation of future agent states or scene evolution, which is rooted in human cognition, bridging perception and decision-making. It enables intelligent systems, such as robots and self-driving cars, to act safely in dynamic, human-involved environments, and informs broader time-series reasoning challenges. With advances in methods, representations, and datasets, the field has seen rapid progress, reflected in quickly evolving benchmark results. Yet, when state-of-the-art methods are deployed in the real world, they often struggle to generalize to open-world conditions and fall short of deployment standards. This reveals a gap between research benchmarks, which are often idealized or ill-posed, and real-world complexity. To address this gap, this survey revisits the generalization and deployability of motion prediction models, with an emphasis on applications of robotics, autonomous driving, and human motion. We first offer a comprehensive taxonomy of motion prediction methods, covering representations, modeling strategies, application domains, and evaluation protocols. We then study two key challenges: (1) how to push motion prediction models to be deployable to realistic deployment standards, where motion prediction does not act in a vacuum, but functions as one module of closed-loop autonomy stacks - it takes input localization and perception, and informs downstream planning and control. 2) How to generalize motion prediction models from limited seen scenarios/datasets to the open-world settings. Throughout the paper, we highlight critical open challenges to guide future work, aiming to recalibrate the community's efforts, fostering progress that is not only measurable but also meaningful for real-world applications. The project webpage can be found here https://trends-in-motion-prediction-2025.github.io/.
Authors:Yi Zhang, Ruihong Qiu, Xuwei Xu, Jiajun Liu, Sen Wang
Abstract:
Model-based offline reinforcement learning (RL) has emerged as a promising approach for recommender systems, enabling effective policy learning by interacting with frozen world models. However, the reward functions in these world models, trained on sparse offline logs, often suffer from inaccuracies. Specifically, existing methods face two major limitations in addressing this challenge: (1) deterministic use of reward functions as static look-up tables, which propagates inaccuracies during policy learning, and (2) static uncertainty designs that fail to effectively capture decision risks and mitigate the impact of these inaccuracies. In this work, a dual-agent framework, DARLR, is proposed to dynamically update world models to enhance recommendation policies. To achieve this, a \textbf{\textit{selector}} is introduced to identify reference users by balancing similarity and diversity so that the \textbf{\textit{recommender}} can aggregate information from these users and iteratively refine reward estimations for dynamic reward shaping. Further, the statistical features of the selected users guide the dynamic adaptation of an uncertainty penalty to better align with evolving recommendation requirements. Extensive experiments on four benchmark datasets demonstrate the superior performance of DARLR, validating its effectiveness. The code is available at https://github.com/ArronDZhang/DARLR.
Authors:Junwon Seo, Kensuke Nakamura, Andrea Bajcsy
Abstract:
Recent advances in generative world models have enabled classical safe control methods, such as Hamilton-Jacobi (HJ) reachability, to generalize to complex robotic systems operating directly from high-dimensional sensor observations. However, obtaining comprehensive coverage of all safety-critical scenarios during world model training is extremely challenging. As a result, latent safety filters built on top of these models may miss novel hazards and even fail to prevent known ones, overconfidently misclassifying risky out-of-distribution (OOD) situations as safe. To address this, we introduce an uncertainty-aware latent safety filter that proactively steers robots away from both known and unseen failures. Our key idea is to use the world model's epistemic uncertainty as a proxy for identifying unseen potential hazards. We propose a principled method to detect OOD world model predictions by calibrating an uncertainty threshold via conformal prediction. By performing reachability analysis in an augmented state space-spanning both the latent representation and the epistemic uncertainty-we synthesize a latent safety filter that can reliably safeguard arbitrary policies from both known and unseen safety hazards. In simulation and hardware experiments on vision-based control tasks with a Franka manipulator, we show that our uncertainty-aware safety filter preemptively detects potential unsafe scenarios and reliably proposes safe, in-distribution actions. Video results can be found on the project website at https://cmu-intentlab.github.io/UNISafe
Authors:Tianqing Fang, Hongming Zhang, Zhisong Zhang, Kaixin Ma, Wenhao Yu, Haitao Mi, Dong Yu
Abstract:
Agent self-improvement, where the backbone Large Language Model (LLM) of the agent are trained on trajectories sampled autonomously based on their own policies, has emerged as a promising approach for enhancing performance. Recent advancements, particularly in web environments, face a critical limitation: their performance will reach a stagnation point during autonomous learning cycles, hindering further improvement. We argue that this stems from limited exploration of the web environment and insufficient exploitation of pre-trained web knowledge in LLMs. To improve the performance of self-improvement, we propose a novel framework that introduces a co-evolving World Model LLM. This world model predicts the next observation based on the current observation and action within the web environment. Leveraging LLMs' pretrained knowledge of abundant web content, the World Model serves dual roles: (1) as a virtual web server generating self-instructed training data to continuously refine the agent's policy, and (2) as an imagination engine during inference, enabling look-ahead simulation to guide action selection for the agent LLM. Experiments in real-world web environments (Mind2Web-Live, WebVoyager, and GAIA-web) show a 10% performance gain over existing self-evolving agents, demonstrating the efficacy and generalizability of our approach, without using any distillation from more powerful close-sourced models. Our work establishes the necessity of integrating world models into autonomous agent frameworks to unlock sustained adaptability. Code is available at https://github.com/Tencent/SelfEvolvingAgent
Authors:Siyu Zhou, Tianyi Zhou, Yijun Yang, Guodong Long, Deheng Ye, Jing Jiang, Chengqi Zhang
Abstract:
Can we build accurate world models out of large language models (LLMs)? How can world models benefit LLM agents? The gap between the prior knowledge of LLMs and the specified environment's dynamics usually bottlenecks LLMs' performance as world models. To bridge the gap, we propose a training-free "world alignment" that learns an environment's symbolic knowledge complementary to LLMs. The symbolic knowledge covers action rules, knowledge graphs, and scene graphs, which are extracted by LLMs from exploration trajectories and encoded into executable codes to regulate LLM agents' policies. We further propose an RL-free, model-based agent "WALL-E 2.0" through the model-predictive control (MPC) framework. Unlike classical MPC requiring costly optimization on the fly, we adopt an LLM agent as an efficient look-ahead optimizer of future steps' actions by interacting with the neurosymbolic world model. While the LLM agent's strong heuristics make it an efficient planner in MPC, the quality of its planned actions is also secured by the accurate predictions of the aligned world model. They together considerably improve learning efficiency in a new environment. On open-world challenges in Mars (Minecraft like) and ALFWorld (embodied indoor environments), WALL-E 2.0 significantly outperforms existing methods, e.g., surpassing baselines in Mars by 16.1%-51.6% of success rate and by at least 61.7% in score. In ALFWorld, it achieves a new record 98% success rate after only 4 iterations.
Authors:Atin Pothiraj, Elias Stengel-Eskin, Jaemin Cho, Mohit Bansal
Abstract:
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty in counting in images. Code and data: https://github.com/atinpothiraj/CAPTURe
Authors:Shilin Zhang, Zican Hu, Wenhao Wu, Xinyi Xie, Jianxiang Tang, Chunlin Chen, Daoyi Dong, Yu Cheng, Zhenhong Sun, Zhi Wang
Abstract:
Offline meta-RL usually tackles generalization by inferring task beliefs from high-quality samples or warmup explorations. The restricted form limits their generality and usability since these supervision signals are expensive and even infeasible to acquire in advance for unseen tasks. Learning directly from the raw text about decision tasks is a promising alternative to leverage a much broader source of supervision. In the paper, we propose \textbf{T}ext-to-\textbf{D}ecision \textbf{A}gent (\textbf{T2DA}), a simple and scalable framework that supervises offline meta-RL with natural language. We first introduce a generalized world model to encode multi-task decision data into a dynamics-aware embedding space. Then, inspired by CLIP, we predict which textual description goes with which decision embedding, effectively bridging their semantic gap via contrastive language-decision pre-training and aligning the text embeddings to comprehend the environment dynamics. After training the text-conditioned generalist policy, the agent can directly realize zero-shot text-to-decision generation in response to language instructions. Comprehensive experiments on MuJoCo and Meta-World benchmarks show that T2DA facilitates high-capacity zero-shot generalization and outperforms various types of baselines. Our code is available at https://github.com/NJU-RL/T2DA.
Authors:Dezhao Luo, Bohan Tang, Kang Li, Georgios Papoudakis, Jifei Song, Shaogang Gong, Jianye Hao, Jun Wang, Kun Shao
Abstract:
App agents, which autonomously operate mobile Apps through Graphical User Interfaces (GUIs), have gained significant interest in real-world applications. Yet, they often struggle with long-horizon planning, failing to find the optimal actions for complex tasks with longer steps. To address this, world models are used to predict the next GUI observation based on user actions, enabling more effective agent planning. However, existing world models primarily focus on generating only textual descriptions, lacking essential visual details. To fill this gap, we propose ViMo, the first visual world model designed to generate future App observations as images. For the challenge of generating text in image patches, where even minor pixel errors can distort readability, we decompose GUI generation into graphic and text content generation. We propose a novel data representation, the Symbolic Text Representation~(STR) to overlay text content with symbolic placeholders while preserving graphics. With this design, ViMo employs a STR Predictor to predict future GUIs' graphics and a GUI-text Predictor for generating the corresponding text. Moreover, we deploy ViMo to enhance agent-focused tasks by predicting the outcome of different action options. Experiments show ViMo's ability to generate visually plausible and functionally effective GUIs that enable App agents to make more informed decisions.
Authors:Yang Yue, Yulin Wang, Chenxin Tao, Pan Liu, Shiji Song, Gao Huang
Abstract:
Humans can develop internal world models that encode common sense knowledge, telling them how the world works and predicting the consequences of their actions. This concept has emerged as a promising direction for establishing general-purpose machine-learning models in recent preliminary works, e.g., for visual representation learning. In this paper, we present CheXWorld, the first effort towards a self-supervised world model for radiographic images. Specifically, our work develops a unified framework that simultaneously models three aspects of medical knowledge essential for qualified radiologists, including 1) local anatomical structures describing the fine-grained characteristics of local tissues (e.g., architectures, shapes, and textures); 2) global anatomical layouts describing the global organization of the human body (e.g., layouts of organs and skeletons); and 3) domain variations that encourage CheXWorld to model the transitions across different appearance domains of radiographs (e.g., varying clarity, contrast, and exposure caused by collecting radiographs from different hospitals, devices, or patients). Empirically, we design tailored qualitative and quantitative analyses, revealing that CheXWorld successfully captures these three dimensions of medical knowledge. Furthermore, transfer learning experiments across eight medical image classification and segmentation benchmarks showcase that CheXWorld significantly outperforms existing SSL methods and large-scale medical foundation models. Code & pre-trained models are available at https://github.com/LeapLabTHU/CheXWorld.
Authors:Yang Yue, Yulin Wang, Haojun Jiang, Pan Liu, Shiji Song, Gao Huang
Abstract:
Echocardiography is crucial for cardiovascular disease detection but relies heavily on experienced sonographers. Echocardiography probe guidance systems, which provide real-time movement instructions for acquiring standard plane images, offer a promising solution for AI-assisted or fully autonomous scanning. However, developing effective machine learning models for this task remains challenging, as they must grasp heart anatomy and the intricate interplay between probe motion and visual signals. To address this, we present EchoWorld, a motion-aware world modeling framework for probe guidance that encodes anatomical knowledge and motion-induced visual dynamics, while effectively leveraging past visual-motion sequences to enhance guidance precision. EchoWorld employs a pre-training strategy inspired by world modeling principles, where the model predicts masked anatomical regions and simulates the visual outcomes of probe adjustments. Built upon this pre-trained model, we introduce a motion-aware attention mechanism in the fine-tuning stage that effectively integrates historical visual-motion data, enabling precise and adaptive probe guidance. Trained on more than one million ultrasound images from over 200 routine scans, EchoWorld effectively captures key echocardiographic knowledge, as validated by qualitative analysis. Moreover, our method significantly reduces guidance errors compared to existing visual backbones and guidance frameworks, excelling in both single-frame and sequential evaluation protocols. Code is available at https://github.com/LeapLabTHU/EchoWorld.
Authors:Qinghongbing Xie, Zijian Liang, Fuhao Li, Long Zeng
Abstract:
Effective scene representation is critical for the visual grounding ability of representations, yet existing methods for 3D Visual Grounding are often constrained. They either only focus on geometric and visual cues, or, like traditional 3D scene graphs, lack the multi-dimensional attributes needed for complex reasoning. To bridge this gap, we introduce the Diverse Semantic Map (DSM) framework, a novel scene representation framework that enriches robust geometric models with a spectrum of VLM-derived semantics, including appearance, physical properties, and affordances. The DSM is first constructed online by fusing multi-view observations within a temporal sliding window, creating a persistent and comprehensive world model. Building on this foundation, we propose DSM-Grounding, a new paradigm that shifts grounding from free-form VLM queries to a structured reasoning process over the semantic-rich map, markedly improving accuracy and interpretability. Extensive evaluations validate our approach's superiority. On the ScanRefer benchmark, DSM-Grounding achieves a state-of-the-art 59.06% overall accuracy of IoU@0.5, surpassing others by 10%. In semantic segmentation, our DSM attains a 67.93% F-mIoU, outperforming all baselines, including privileged ones. Furthermore, successful deployment on physical robots for complex navigation and grasping tasks confirms the framework's practical utility in real-world scenarios.
Authors:Chuning Zhu, Raymond Yu, Siyuan Feng, Benjamin Burchfiel, Paarth Shah, Abhishek Gupta
Abstract:
Imitation learning has emerged as a promising approach towards building generalist robots. However, scaling imitation learning for large robot foundation models remains challenging due to its reliance on high-quality expert demonstrations. Meanwhile, large amounts of video data depicting a wide range of environments and diverse behaviors are readily available. This data provides a rich source of information about real-world dynamics and agent-environment interactions. Leveraging this data directly for imitation learning, however, has proven difficult due to the lack of action annotation. In this work, we present Unified World Models (UWM), a framework that allows for leveraging both video and action data for policy learning. Specifically, a UWM integrates an action diffusion process and a video diffusion process within a unified transformer architecture, where independent diffusion timesteps govern each modality. By controlling each diffusion timestep, UWM can flexibly represent a policy, a forward dynamics, an inverse dynamics, and a video generator. Through simulated and real-world experiments, we show that: (1) UWM enables effective pretraining on large-scale multitask robot datasets with both dynamics and action predictions, resulting in more generalizable and robust policies than imitation learning, (2) UWM naturally facilitates learning from action-free video data through independent control of modality-specific diffusion timesteps, further improving the performance of finetuned policies. Our results suggest that UWM offers a promising step toward harnessing large, heterogeneous datasets for scalable robot learning, and provides a simple unification between the often disparate paradigms of imitation learning and world modeling. Videos and code are available at https://weirdlabuw.github.io/uwm/.
Authors:Nedko Savov, Naser Kazemi, Mohammad Mahdi, Danda Pani Paudel, Xi Wang, Luc Van Gool
Abstract:
Modern world models require costly and time-consuming collection of large video datasets with action demonstrations by people or by environment-specific agents. To simplify training, we focus on using many virtual environments for inexpensive, automatically collected interaction data. Genie, a recent multi-environment world model, demonstrates simulation abilities of many environments with shared behavior. Unfortunately, training their model requires expensive demonstrations. Therefore, we propose a training framework merely using a random agent in virtual environments. While the model trained in this manner exhibits good controls, it is limited by the random exploration possibilities. To address this limitation, we propose AutoExplore Agent - an exploration agent that entirely relies on the uncertainty of the world model, delivering diverse data from which it can learn the best. Our agent is fully independent of environment-specific rewards and thus adapts easily to new environments. With this approach, the pretrained multi-environment model can quickly adapt to new environments achieving video fidelity and controllability improvement. In order to obtain automatically large-scale interaction datasets for pretraining, we group environments with similar behavior and controls. To this end, we annotate the behavior and controls of 974 virtual environments - a dataset that we name RetroAct. For building our model, we first create an open implementation of Genie - GenieRedux and apply enhancements and adaptations in our version GenieRedux-G. Our code and data are available at https://github.com/insait-institute/GenieRedux.
Authors:Yingyan Li, Yuqi Wang, Yang Liu, Jiawei He, Lue Fan, Zhaoxiang Zhang
Abstract:
End-to-end autonomous driving has achieved remarkable progress by integrating perception, prediction, and planning into a fully differentiable framework. Yet, to fully realize its potential, an effective online trajectory evaluation is indispensable to ensure safety. By forecasting the future outcomes of a given trajectory, trajectory evaluation becomes much more effective. This goal can be achieved by employing a world model to capture environmental dynamics and predict future states. Therefore, we propose an end-to-end driving framework WoTE, which leverages a BEV World model to predict future BEV states for Trajectory Evaluation. The proposed BEV world model is latency-efficient compared to image-level world models and can be seamlessly supervised using off-the-shelf BEV-space traffic simulators. We validate our framework on both the NAVSIM benchmark and the closed-loop Bench2Drive benchmark based on the CARLA simulator, achieving state-of-the-art performance. Code is released at https://github.com/liyingyanUCAS/WoTE.
Authors:Dian Zheng, Ziqi Huang, Hongbo Liu, Kai Zou, Yinan He, Fan Zhang, Lulu Gu, Yuanhan Zhang, Jingwen He, Wei-Shi Zheng, Yu Qiao, Ziwei Liu
Abstract:
Video generation has advanced significantly, evolving from producing unrealistic outputs to generating videos that appear visually convincing and temporally coherent. To evaluate these video generative models, benchmarks such as VBench have been developed to assess their faithfulness, measuring factors like per-frame aesthetics, temporal consistency, and basic prompt adherence. However, these aspects mainly represent superficial faithfulness, which focus on whether the video appears visually convincing rather than whether it adheres to real-world principles. While recent models perform increasingly well on these metrics, they still struggle to generate videos that are not just visually plausible but fundamentally realistic. To achieve real "world models" through video generation, the next frontier lies in intrinsic faithfulness to ensure that generated videos adhere to physical laws, commonsense reasoning, anatomical correctness, and compositional integrity. Achieving this level of realism is essential for applications such as AI-assisted filmmaking and simulated world modeling. To bridge this gap, we introduce VBench-2.0, a next-generation benchmark designed to automatically evaluate video generative models for their intrinsic faithfulness. VBench-2.0 assesses five key dimensions: Human Fidelity, Controllability, Creativity, Physics, and Commonsense, each further broken down into fine-grained capabilities. Tailored to individual dimensions, our evaluation framework integrates generalists such as SOTA VLMs and LLMs, and specialists, including anomaly detection methods proposed for video generation. We conduct extensive human annotations to ensure evaluation alignment with human judgment. By pushing beyond superficial faithfulness toward intrinsic faithfulness, VBench-2.0 aims to set a new standard for the next generation of video generative models in pursuit of intrinsic faithfulness.
Authors:Yusen Xie, Zhengmin Huang, Shaojie Shen, Jun Ma
Abstract:
In this paper, we introduce Semi-SMD, a novel metric depth estimation framework tailored for surrounding cameras equipment in autonomous driving. In this work, the input data consists of adjacent surrounding frames and camera parameters. We propose a unified spatial-temporal-semantic fusion module to construct the visual fused features. Cross-attention components for surrounding cameras and adjacent frames are utilized to focus on metric scale information refinement and temporal feature matching. Building on this, we propose a pose estimation framework using surrounding cameras, their corresponding estimated depths, and extrinsic parameters, which effectively address the scale ambiguity in multi-camera setups. Moreover, semantic world model and monocular depth estimation world model are integrated to supervised the depth estimation, which improve the quality of depth estimation. We evaluate our algorithm on DDAD and nuScenes datasets, and the results demonstrate that our method achieves state-of-the-art performance in terms of surrounding camera based depth estimation quality. The source code will be available on https://github.com/xieyuser/Semi-SMD.
Authors:Shenyuan Gao, Siyuan Zhou, Yilun Du, Jun Zhang, Chuang Gan
Abstract:
World models aim to learn action-controlled future prediction and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this limitation, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
Authors:Yuhang Wang, Hanwei Guo, Sizhe Wang, Long Qian, Xuguang Lan
Abstract:
Model Predictive Control (MPC) has been demonstrated to be effective in continuous control tasks. When a world model and a value function are available, planning a sequence of actions ahead of time leads to a better policy. Existing methods typically obtain the value function and the corresponding policy in a model-free manner. However, we find that such an approach struggles with complex tasks, resulting in poor policy learning and inaccurate value estimation. To address this problem, we leverage the strengths of MPC itself. In this work, we introduce Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs policy learning in a bootstrapped manner. BMPC learns a network policy by imitating an MPC expert, and in turn, uses this policy to guide the MPC process. Combined with model-based TD-learning, our policy learning yields better value estimation and further boosts the efficiency of MPC. We also introduce a lazy reanalyze mechanism, which enables computationally efficient imitation learning. Our method achieves superior performance over prior works on diverse continuous control tasks. In particular, on challenging high-dimensional locomotion tasks, BMPC significantly improves data efficiency while also enhancing asymptotic performance and training stability, with comparable training time and smaller network sizes. Code is available at https://github.com/wertyuilife2/bmpc.
Authors:Yuanmin Tang, Jing Yu, Keke Gai, Jiamin Zhuang, Gang Xiong, Gaopeng Gou, Qi Wu
Abstract:
Zero-Shot Composed Image Retrieval (ZS-CIR) involves diverse tasks with a broad range of visual content manipulation intent across domain, scene, object, and attribute. The key challenge for ZS-CIR tasks is to modify a reference image according to manipulation text to accurately retrieve a target image, especially when the reference image is missing essential target content. In this paper, we propose a novel prediction-based mapping network, named PrediCIR, to adaptively predict the missing target visual content in reference images in the latent space before mapping for accurate ZS-CIR. Specifically, a world view generation module first constructs a source view by omitting certain visual content of a target view, coupled with an action that includes the manipulation intent derived from existing image-caption pairs. Then, a target content prediction module trains a world model as a predictor to adaptively predict the missing visual information guided by user intention in manipulating text at the latent space. The two modules map an image with the predicted relevant information to a pseudo-word token without extra supervision. Our model shows strong generalization ability on six ZS-CIR tasks. It obtains consistent and significant performance boosts ranging from 1.73% to 4.45% over the best methods and achieves new state-of-the-art results on ZS-CIR. Our code is available at https://github.com/Pter61/predicir.
Authors:Haiguang Wang, Daqi Liu, Hongwei Xie, Haisong Liu, Enhui Ma, Kaicheng Yu, Limin Wang, Bing Wang
Abstract:
In recent years, data-driven techniques have greatly advanced autonomous driving systems, but the need for rare and diverse training data remains a challenge, requiring significant investment in equipment and labor. World models, which predict and generate future environmental states, offer a promising solution by synthesizing annotated video data for training. However, existing methods struggle to generate long, consistent videos without accumulating errors, especially in dynamic scenes. To address this, we propose MiLA, a novel framework for generating high-fidelity, long-duration videos up to one minute. MiLA utilizes a Coarse-to-Re(fine) approach to both stabilize video generation and correct distortion of dynamic objects. Additionally, we introduce a Temporal Progressive Denoising Scheduler and Joint Denoising and Correcting Flow modules to improve the quality of generated videos. Extensive experiments on the nuScenes dataset show that MiLA achieves state-of-the-art performance in video generation quality. For more information, visit the project website: https://github.com/xiaomi-mlab/mila.github.io.
Authors:Luc McCutcheon, Bahman Gharesifard, Saber Fallah
Abstract:
Control Lyapunov functions are traditionally used to design a controller which ensures convergence to a desired state, yet deriving these functions for nonlinear systems remains a complex challenge. This paper presents a novel, sample-efficient method for neural approximation of nonlinear Lyapunov functions, leveraging self-supervised Reinforcement Learning (RL) to enhance training data generation, particularly for inaccurately represented regions of the state space. The proposed approach employs a data-driven World Model to train Lyapunov functions from off-policy trajectories. The method is validated on both standard and goal-conditioned robotic tasks, demonstrating faster convergence and higher approximation accuracy compared to the state-of-the-art neural Lyapunov approximation baseline. The code is available at: https://github.com/CAV-Research-Lab/SACLA.git
Authors:Xinqing Li, Ruiqi Song, Qingyu Xie, Ye Wu, Nanxin Zeng, Yunfeng Ai
Abstract:
With the rapid advancement of autonomous driving technology, a lack of data has become a major obstacle to enhancing perception model accuracy. Researchers are now exploring controllable data generation using world models to diversify datasets. However, previous work has been limited to studying image generation quality on specific public datasets. There is still relatively little research on how to build data generation engines for real-world application scenes to achieve large-scale data generation for challenging scenes. In this paper, a simulator-conditioned scene generation engine based on world model is proposed. By constructing a simulation system consistent with real-world scenes, simulation data and labels, which serve as the conditions for data generation in the world model, for any scenes can be collected. It is a novel data generation pipeline by combining the powerful scene simulation capabilities of the simulation engine with the robust data generation capabilities of the world model. In addition, a benchmark with proportionally constructed virtual and real data, is provided for exploring the capabilities of world models in real-world scenes. Quantitative results show that these generated images significantly improve downstream perception models performance. Finally, we explored the generative performance of the world model in urban autonomous driving scenarios. All the data and code will be available at https://github.com/Li-Zn-H/SimWorld.
Authors:Jinping Wang, Weiwei Song, Hao Chen, Jinchang Ren, Huimin Zhao
Abstract:
World models significantly enhance hierarchical understanding, improving data integration and learning efficiency. To explore the potential of the world model in the remote sensing (RS) field, this paper proposes a label-efficient remote sensing world model for multimodal data fusion (FusDreamer). The FusDreamer uses the world model as a unified representation container to abstract common and high-level knowledge, promoting interactions across different types of data, \emph{i.e.}, hyperspectral (HSI), light detection and ranging (LiDAR), and text data. Initially, a new latent diffusion fusion and multimodal generation paradigm (LaMG) is utilized for its exceptional information integration and detail retention capabilities. Subsequently, an open-world knowledge-guided consistency projection (OK-CP) module incorporates prompt representations for visually described objects and aligns language-visual features through contrastive learning. In this way, the domain gap can be bridged by fine-tuning the pre-trained world models with limited samples. Finally, an end-to-end multitask combinatorial optimization (MuCO) strategy can capture slight feature bias and constrain the diffusion process in a collaboratively learnable direction. Experiments conducted on four typical datasets indicate the effectiveness and advantages of the proposed FusDreamer. The corresponding code will be released at https://github.com/Cimy-wang/FusDreamer.
Authors:Dingkang Liang, Dingyuan Zhang, Xin Zhou, Sifan Tu, Tianrui Feng, Xiaofan Li, Yumeng Zhang, Mingyang Du, Xiao Tan, Xiang Bai
Abstract:
We present UniFuture, a simple yet effective driving world model that seamlessly integrates future scene generation and perception within a single framework. Unlike existing models focusing solely on pixel-level future prediction or geometric reasoning, our approach jointly models future appearance (i.e., RGB image) and geometry (i.e., depth), ensuring coherent predictions. Specifically, during the training, we first introduce a Dual-Latent Sharing scheme, which transfers image and depth sequence in a shared latent space, allowing both modalities to benefit from shared feature learning. Additionally, we propose a Multi-scale Latent Interaction mechanism, which facilitates bidirectional refinement between image and depth features at multiple spatial scales, effectively enhancing geometry consistency and perceptual alignment. During testing, our UniFuture can easily predict high-consistency future image-depth pairs by only using the current image as input. Extensive experiments on the nuScenes dataset demonstrate that UniFuture outperforms specialized models on future generation and perception tasks, highlighting the advantages of a unified, structurally-aware world model. The project page is at https://github.com/dk-liang/UniFuture.
Authors:Jiahe Zhao, Ruibing Hou, Zejie Tian, Hong Chang, Shiguang Shan
Abstract:
We propose a new task to benchmark human-in-scene understanding for embodied agents: Human-In-Scene Question Answering (HIS-QA). Given a human motion within a 3D scene, HIS-QA requires the agent to comprehend human states and behaviors, reason about its surrounding environment, and answer human-related questions within the scene. To support this new task, we present HIS-Bench, a multimodal benchmark that systematically evaluates HIS understanding across a broad spectrum, from basic perception to commonsense reasoning and planning. Our evaluation of various vision-language models on HIS-Bench reveals significant limitations in their ability to handle HIS-QA tasks. To this end, we propose HIS-GPT, the first foundation model for HIS understanding. HIS-GPT integrates 3D scene context and human motion dynamics into large language models while incorporating specialized mechanisms to capture human-scene interactions. Extensive experiments demonstrate that HIS-GPT sets a new state-of-the-art on HIS-QA tasks. We hope this work inspires future research on human behavior analysis in 3D scenes, advancing embodied AI and world models. The codes and data: https://github.com/ZJHTerry18/HumanInScene.
Authors:Mehmet Kerem Turkcan, Mattia Ballo, Filippo Filicori, Zoran Kostic
Abstract:
We introduce specialized diffusion-based generative models that capture the spatiotemporal dynamics of fine-grained robotic surgical sub-stitch actions through supervised learning on annotated laparoscopic surgery footage. The proposed models form a foundation for data-driven world models capable of simulating the biomechanical interactions and procedural dynamics of surgical suturing with high temporal fidelity. Annotating a dataset of $\sim2K$ clips extracted from simulation videos, we categorize surgical actions into fine-grained sub-stitch classes including ideal and non-ideal executions of needle positioning, targeting, driving, and withdrawal. We fine-tune two state-of-the-art video diffusion models, LTX-Video and HunyuanVideo, to generate high-fidelity surgical action sequences at $\ge$768x512 resolution and $\ge$49 frames. For training our models, we explore both Low-Rank Adaptation (LoRA) and full-model fine-tuning approaches. Our experimental results demonstrate that these world models can effectively capture the dynamics of suturing, potentially enabling improved training simulators, surgical skill assessment tools, and autonomous surgical systems. The models also display the capability to differentiate between ideal and non-ideal technique execution, providing a foundation for building surgical training and evaluation systems. We release our models for testing and as a foundation for future research. Project Page: https://mkturkcan.github.io/suturingmodels/
Authors:Yuxiang Zhang, Yuqi Yang, Jiangming Shu, Xinyan Wen, Jitao Sang
Abstract:
Traditional agentic workflows rely on external prompts to manage interactions with tools and the environment, which limits the autonomy of reasoning models. We position \emph{Large Agent Models (LAMs)} that internalize the generation of \emph{Chain-of-Action (CoA)}, enabling the model to autonomously decide when and how to use external tools. Our proposed AutoCoA framework combines supervised fine-tuning (SFT) and reinforcement learning (RL), allowing the model to seamlessly switch between reasoning and action while efficiently managing environment interactions. Main components include step-level action triggering, trajectory-level CoA optimization, and an internal world model to reduce real-environment interaction costs. Evaluations on open-domain QA tasks demonstrate that AutoCoA-trained agent models significantly outperform ReAct-based workflows in task completion, especially in tasks that require long-term reasoning and multi-step actions. Code and dataset are available at https://github.com/ADaM-BJTU/AutoCoA
Authors:Yuqi Hu, Longguang Wang, Xian Liu, Ling-Hao Chen, Yuwei Guo, Yukai Shi, Ce Liu, Anyi Rao, Zeyu Wang, Hui Xiong
Abstract:
Understanding and replicating the real world is a critical challenge in Artificial General Intelligence (AGI) research. To achieve this, many existing approaches, such as world models, aim to capture the fundamental principles governing the physical world, enabling more accurate simulations and meaningful interactions. However, current methods often treat different modalities, including 2D (images), videos, 3D, and 4D representations, as independent domains, overlooking their interdependencies. Additionally, these methods typically focus on isolated dimensions of reality without systematically integrating their connections. In this survey, we present a unified survey for multimodal generative models that investigate the progression of data dimensionality in real-world simulation. Specifically, this survey starts from 2D generation (appearance), then moves to video (appearance+dynamics) and 3D generation (appearance+geometry), and finally culminates in 4D generation that integrate all dimensions. To the best of our knowledge, this is the first attempt to systematically unify the study of 2D, video, 3D and 4D generation within a single framework. To guide future research, we provide a comprehensive review of datasets, evaluation metrics and future directions, and fostering insights for newcomers. This survey serves as a bridge to advance the study of multimodal generative models and real-world simulation within a unified framework.
Authors:Saurabh Koju, Saurav Bastola, Prashant Shrestha, Sanskar Amgain, Yash Raj Shrestha, Rudra P. K. Poudel, Binod Bhattarai
Abstract:
Realistic and interactive surgical simulation has the potential to facilitate crucial applications, such as medical professional training and autonomous surgical agent training. In the natural visual domain, world models have enabled action-controlled data generation, demonstrating the potential to train autonomous agents in interactive simulated environments when large-scale real data acquisition is infeasible. However, such works in the surgical domain have been limited to simplified computer simulations, and lack realism. Furthermore, existing literature in world models has predominantly dealt with action-labeled data, limiting their applicability to real-world surgical data, where obtaining action annotation is prohibitively expensive. Inspired by the recent success of Genie in leveraging unlabeled video game data to infer latent actions and enable action-controlled data generation, we propose the first surgical vision world model. The proposed model can generate action-controllable surgical data and the architecture design is verified with extensive experiments on the unlabeled SurgToolLoc-2022 dataset. Codes and implementation details are available at https://github.com/bhattarailab/Surgical-Vision-World-Model
Authors:Dujun Nie, Xianda Guo, Yiqun Duan, Ruijun Zhang, Long Chen
Abstract:
Object Goal Navigation-requiring an agent to locate a specific object in an unseen environment-remains a core challenge in embodied AI. Although recent progress in Vision-Language Model (VLM)-based agents has demonstrated promising perception and decision-making abilities through prompting, none has yet established a fully modular world model design that reduces risky and costly interactions with the environment by predicting the future state of the world. We introduce WMNav, a novel World Model-based Navigation framework powered by Vision-Language Models (VLMs). It predicts possible outcomes of decisions and builds memories to provide feedback to the policy module. To retain the predicted state of the environment, WMNav proposes the online maintained Curiosity Value Map as part of the world model memory to provide dynamic configuration for navigation policy. By decomposing according to a human-like thinking process, WMNav effectively alleviates the impact of model hallucination by making decisions based on the feedback difference between the world model plan and observation. To further boost efficiency, we implement a two-stage action proposer strategy: broad exploration followed by precise localization. Extensive evaluation on HM3D and MP3D validates WMNav surpasses existing zero-shot benchmarks in both success rate and exploration efficiency (absolute improvement: +3.2% SR and +3.2% SPL on HM3D, +13.5% SR and +1.1% SPL on MP3D). Project page: https://b0b8k1ng.github.io/WMNav/.
Authors:Adrià López Escoriza, Nicklas Hansen, Stone Tao, Tongzhou Mu, Hao Su
Abstract:
Long-horizon tasks in robotic manipulation present significant challenges in reinforcement learning (RL) due to the difficulty of designing dense reward functions and effectively exploring the expansive state-action space. However, despite a lack of dense rewards, these tasks often have a multi-stage structure, which can be leveraged to decompose the overall objective into manageable subgoals. In this work, we propose DEMO3, a framework that exploits this structure for efficient learning from visual inputs. Specifically, our approach incorporates multi-stage dense reward learning, a bi-phasic training scheme, and world model learning into a carefully designed demonstration-augmented RL framework that strongly mitigates the challenge of exploration in long-horizon tasks. Our evaluations demonstrate that our method improves data-efficiency by an average of 40% and by 70% on particularly difficult tasks compared to state-of-the-art approaches. We validate this across 16 sparse-reward tasks spanning four domains, including challenging humanoid visual control tasks using as few as five demonstrations.
Authors:Mengkang Hu, Tianxing Chen, Yude Zou, Yuheng Lei, Qiguang Chen, Ming Li, Yao Mu, Hongyuan Zhang, Wenqi Shao, Ping Luo
Abstract:
Recently, there has been growing interest in leveraging large language models (LLMs) to generate symbolic world models from textual descriptions. Although LLMs have been extensively explored in the context of world modeling, prior studies encountered several challenges, including evaluation randomness, dependence on indirect metrics, and a limited domain scope. To address these limitations, we introduce a novel benchmark, Text2World, based on planning domain definition language (PDDL), featuring hundreds of diverse domains and employing multi-criteria, execution-based metrics for a more robust evaluation. We benchmark current LLMs using Text2World and find that reasoning models trained with large-scale reinforcement learning outperform others. However, even the best-performing model still demonstrates limited capabilities in world modeling. Building on these insights, we examine several promising strategies to enhance the world modeling capabilities of LLMs, including test-time scaling, agent training, and more. We hope that Text2World can serve as a crucial resource, laying the groundwork for future research in leveraging LLMs as world models. The project page is available at https://text-to-world.github.io/.
Authors:Lior Cohen, Kaixin Wang, Bingyi Kang, Uri Gadot, Shie Mannor
Abstract:
World model (WM) agents enable sample-efficient reinforcement learning by learning policies entirely from simulated experience. However, existing token-based world models (TBWMs) are limited to visual inputs and discrete actions, restricting their adoption and applicability. Moreover, although both intrinsic motivation and prioritized WM replay have shown promise in improving WM performance and generalization, they remain underexplored in this setting, particularly in combination. We introduce Simulus, a highly modular TBWM agent that integrates (1) a modular multi-modality tokenization framework, (2) intrinsic motivation, (3) prioritized WM replay, and (4) regression-as-classification for reward and return prediction. Simulus achieves state-of-the-art sample efficiency for planning-free WMs across three diverse benchmarks. Ablation studies reveal the individual contribution of each component while highlighting their synergy. Our code and model weights are publicly available at https://github.com/leor-c/Simulus.
Authors:Sifan Tu, Xin Zhou, Dingkang Liang, Xingyu Jiang, Yumeng Zhang, Xiaofan Li, Xiang Bai
Abstract:
Driving World Model (DWM), which focuses on predicting scene evolution during the driving process, has emerged as a promising paradigm in pursuing autonomous driving. These methods enable autonomous driving systems to better perceive, understand, and interact with dynamic driving environments. In this survey, we provide a comprehensive overview of the latest progress in DWM. We categorize existing approaches based on the modalities of the predicted scenes and summarize their specific contributions to autonomous driving. In addition, high-impact datasets and various metrics tailored to different tasks within the scope of DWM research are reviewed. Finally, we discuss the potential limitations of current research and propose future directions. This survey provides valuable insights into the development and application of DWM, fostering its broader adoption in autonomous driving. The relevant papers are collected at https://github.com/LMD0311/Awesome-World-Model.
Authors:Lirui Wang, Kevin Zhao, Chaoqi Liu, Xinlei Chen
Abstract:
We propose Heterogeneous Masked Autoregression (HMA) for modeling action-video dynamics to generate high-quality data and evaluation in scaling robot learning. Building interactive video world models and policies for robotics is difficult due to the challenge of handling diverse settings while maintaining computational efficiency to run in real time. HMA uses heterogeneous pre-training from observations and action sequences across different robotic embodiments, domains, and tasks. HMA uses masked autoregression to generate quantized or soft tokens for video predictions. \ourshort achieves better visual fidelity and controllability than the previous robotic video generation models with 15 times faster speed in the real world. After post-training, this model can be used as a video simulator from low-level action inputs for evaluating policies and generating synthetic data. See this link https://liruiw.github.io/hma for more information.
Authors:Yilin Wu, Ran Tian, Gokul Swamy, Andrea Bajcsy
Abstract:
While generative robot policies have demonstrated significant potential in learning complex, multimodal behaviors from demonstrations, they still exhibit diverse failures at deployment-time. Policy steering offers an elegant solution to reducing the chance of failure by using an external verifier to select from low-level actions proposed by an imperfect generative policy. Here, one might hope to use a Vision Language Model (VLM) as a verifier, leveraging its open-world reasoning capabilities. However, off-the-shelf VLMs struggle to understand the consequences of low-level robot actions as they are represented fundamentally differently than the text and images the VLM was trained on. In response, we propose FOREWARN, a novel framework to unlock the potential of VLMs as open-vocabulary verifiers for runtime policy steering. Our key idea is to decouple the VLM's burden of predicting action outcomes (foresight) from evaluation (forethought). For foresight, we leverage a latent world model to imagine future latent states given diverse low-level action plans. For forethought, we align the VLM with these predicted latent states to reason about the consequences of actions in its native representation--natural language--and effectively filter proposed plans. We validate our framework across diverse robotic manipulation tasks, demonstrating its ability to bridge representational gaps and provide robust, generalizable policy steering. Videos can be found on the project website: https://yilin-wu98.github.io/forewarn/.
Authors:Shaofeng Yin, Jialong Wu, Siqiao Huang, Xingjian Su, Xu He, Jianye Hao, Mingsheng Long
Abstract:
Heterogeneity in sensors and actuators across environments poses a significant challenge to building large-scale pre-trained world models on top of this low-dimensional sensor information. In this work, we explore pre-training world models for heterogeneous environments by addressing key transfer barriers in both data diversity and model flexibility. We introduce UniTraj, a unified dataset comprising over one million trajectories from 80 environments, designed to scale data while preserving critical diversity. Additionally, we propose TrajWorld, a novel architecture capable of flexibly handling varying sensor and actuator information and capturing environment dynamics in-context. Pre-training TrajWorld on UniTraj yields substantial gains in transition prediction, achieves a new state-of-the-art for off-policy evaluation, and also delivers superior online performance of model predictive control. To the best of our knowledge, this work, for the first time, demonstrates the transfer benefits of world models across heterogeneous and complex control environments. Code and data are available at https://github.com/thuml/TrajWorld.
Authors:Yinfeng Gao, Qichao Zhang, Da-wei Ding, Dongbin Zhao
Abstract:
It is still a challenging topic to make reactive driving behaviors in complex urban environments as road users' intentions are unknown. Model-based reinforcement learning (MBRL) offers great potential to learn a reactive policy by constructing a world model that can provide informative states and imagination training. However, a critical limitation in relevant research lies in the scene-level reconstruction representation learning, which may overlook key interactive vehicles and hardly model the interactive features among vehicles and their long-term intentions. Therefore, this paper presents a novel MBRL method with a predictive individual world model (PIWM) for autonomous driving. PIWM describes the driving environment from an individual-level perspective and captures vehicles' interactive relations and their intentions via trajectory prediction task. Meanwhile, a behavior policy is learned jointly with PIWM. It is trained in PIWM's imagination and effectively navigates in the urban driving scenes leveraging intention-aware latent states. The proposed method is trained and evaluated on simulation environments built upon real-world challenging interactive scenarios. Compared with popular model-free and state-of-the-art model-based reinforcement learning methods, experimental results show that the proposed method achieves the best performance in terms of safety and efficiency.
Authors:Xin Zhou, Dingkang Liang, Sifan Tu, Xiwu Chen, Yikang Ding, Dingyuan Zhang, Feiyang Tan, Hengshuang Zhao, Xiang Bai
Abstract:
Driving World Models (DWMs) have become essential for autonomous driving by enabling future scene prediction. However, existing DWMs are limited to scene generation and fail to incorporate scene understanding, which involves interpreting and reasoning about the driving environment. In this paper, we present a unified Driving World Model named HERMES. We seamlessly integrate 3D scene understanding and future scene evolution (generation) through a unified framework in driving scenarios. Specifically, HERMES leverages a Bird's-Eye View (BEV) representation to consolidate multi-view spatial information while preserving geometric relationships and interactions. We also introduce world queries, which incorporate world knowledge into BEV features via causal attention in the Large Language Model, enabling contextual enrichment for understanding and generation tasks. We conduct comprehensive studies on nuScenes and OmniDrive-nuScenes datasets to validate the effectiveness of our method. HERMES achieves state-of-the-art performance, reducing generation error by 32.4% and improving understanding metrics such as CIDEr by 8.0%. The model and code will be publicly released at https://github.com/LMD0311/HERMES.
Authors:Tuo Feng, Wenguan Wang, Yi Yang
Abstract:
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling, fundamentally transforming how vehicles interpret dynamic scenes and execute safe decision-making. World models have emerged as a linchpin technology, offering high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics. This paper systematically reviews recent advances in world models for autonomous driving, proposing a three-tiered taxonomy: (i) Generation of Future Physical World, covering Image-, BEV-, OG-, and PC-based generation methods that enhance scene evolution modeling through diffusion models and 4D occupancy forecasting; (ii) Behavior Planning for Intelligent Agents, combining rule-driven and learning-based paradigms with cost map optimization and reinforcement learning for trajectory generation in complex traffic conditions; (ii) Interaction between Prediction and Planning, achieving multi-agent collaborative decision-making through latent space diffusion and memory-augmented architectures. The study further analyzes training paradigms, including self-supervised learning, multimodal pretraining, and generative data augmentation, while evaluating world models' performance in scene understanding and motion prediction tasks. Future research must address key challenges in self-supervised representation learning, multimodal fusion, and advanced simulation to advance the practical deployment of world models in complex urban environments. Overall, the comprehensive analysis provides a technical roadmap for harnessing the transformative potential of world models in advancing safe and reliable autonomous driving solutions.
Authors:Saman Motamed, Laura Culp, Kevin Swersky, Priyank Jaini, Robert Geirhos
Abstract:
AI video generation is undergoing a revolution, with quality and realism advancing rapidly. These advances have led to a passionate scientific debate: Do video models learn "world models" that discover laws of physics -- or, alternatively, are they merely sophisticated pixel predictors that achieve visual realism without understanding the physical principles of reality? We address this question by developing Physics-IQ, a comprehensive benchmark dataset that can only be solved by acquiring a deep understanding of various physical principles, like fluid dynamics, optics, solid mechanics, magnetism and thermodynamics. We find that across a range of current models (Sora, Runway, Pika, Lumiere, Stable Video Diffusion, and VideoPoet), physical understanding is severely limited, and unrelated to visual realism. At the same time, some test cases can already be successfully solved. This indicates that acquiring certain physical principles from observation alone may be possible, but significant challenges remain. While we expect rapid advances ahead, our work demonstrates that visual realism does not imply physical understanding. Our project page is at https://physics-iq.github.io; code at https://github.com/google-deepmind/physics-IQ-benchmark.
Authors:Jason Du, Kelly Hong, Alishba Imran, Erfan Jahanparast, Mehdi Khfifi, Kaichun Qiao
Abstract:
Large Language Models (LLMs) excel at tasks like language processing, strategy games, and reasoning but struggle to build generalizable internal representations essential for adaptive decision-making in agents. For agents to effectively navigate complex environments, they must construct reliable world models. While LLMs perform well on specific benchmarks, they often fail to generalize, leading to brittle representations that limit their real-world effectiveness. Understanding how LLMs build internal world models is key to developing agents capable of consistent, adaptive behavior across tasks. We analyze OthelloGPT, a GPT-based model trained on Othello gameplay, as a controlled testbed for studying representation learning. Despite being trained solely on next-token prediction with random valid moves, OthelloGPT shows meaningful layer-wise progression in understanding board state and gameplay. Early layers capture static attributes like board edges, while deeper layers reflect dynamic tile changes. To interpret these representations, we compare Sparse Autoencoders (SAEs) with linear probes, finding that SAEs offer more robust, disentangled insights into compositional features, whereas linear probes mainly detect features useful for classification. We use SAEs to decode features related to tile color and tile stability, a previously unexamined feature that reflects complex gameplay concepts like board control and long-term planning. We study the progression of linear probe accuracy and tile color using both SAE's and linear probes to compare their effectiveness at capturing what the model is learning. Although we begin with a smaller language model, OthelloGPT, this study establishes a framework for understanding the internal representations learned by GPT models, transformers, and LLMs more broadly. Our code is publicly available: https://github.com/ALT-JS/OthelloSAE.
Authors:Haoran Zhu, Zhenyuan Dong, Kristi Topollai, Anna Choromanska
Abstract:
As opposed to human drivers, current autonomous driving systems still require vast amounts of labeled data to train. Recently, world models have been proposed to simultaneously enhance autonomous driving capabilities by improving the way these systems understand complex real-world environments and reduce their data demands via self-supervised pre-training. In this paper, we present AD-L-JEPA (aka Autonomous Driving with LiDAR data via a Joint Embedding Predictive Architecture), a novel self-supervised pre-training framework for autonomous driving with LiDAR data that, as opposed to existing methods, is neither generative nor contrastive. Our method learns spatial world models with a joint embedding predictive architecture. Instead of explicitly generating masked unknown regions, our self-supervised world models predict Bird's Eye View (BEV) embeddings to represent the diverse nature of autonomous driving scenes. Our approach furthermore eliminates the need to manually create positive and negative pairs, as is the case in contrastive learning. AD-L-JEPA leads to simpler implementation and enhanced learned representations. We qualitatively and quantitatively demonstrate high-quality of embeddings learned with AD-L-JEPA. We furthermore evaluate the accuracy and label efficiency of AD-L-JEPA on popular downstream tasks such as LiDAR 3D object detection and associated transfer learning. Our experimental evaluation demonstrates that AD-L-JEPA is a plausible approach for self-supervised pre-training in autonomous driving applications and is the best available approach outperforming SOTA, including most recently proposed Occupancy-MAE [1] and ALSO [2]. The source code of AD-L-JEPA is available at https://github.com/HaoranZhuExplorer/AD-L-JEPA-Release.
Authors:NVIDIA, :, Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chattopadhyay, Yongxin Chen, Yin Cui, Yifan Ding, Daniel Dworakowski, Jiaojiao Fan, Michele Fenzi, Francesco Ferroni, Sanja Fidler, Dieter Fox, Songwei Ge, Yunhao Ge, Jinwei Gu, Siddharth Gururani, Ethan He, Jiahui Huang, Jacob Huffman, Pooya Jannaty, Jingyi Jin, Seung Wook Kim, Gergely Klár, Grace Lam, Shiyi Lan, Laura Leal-Taixe, Anqi Li, Zhaoshuo Li, Chen-Hsuan Lin, Tsung-Yi Lin, Huan Ling, Ming-Yu Liu, Xian Liu, Alice Luo, Qianli Ma, Hanzi Mao, Kaichun Mo, Arsalan Mousavian, Seungjun Nah, Sriharsha Niverty, David Page, Despoina Paschalidou, Zeeshan Patel, Lindsey Pavao, Morteza Ramezanali, Fitsum Reda, Xiaowei Ren, Vasanth Rao Naik Sabavat, Ed Schmerling, Stella Shi, Bartosz Stefaniak, Shitao Tang, Lyne Tchapmi, Przemek Tredak, Wei-Cheng Tseng, Jibin Varghese, Hao Wang, Haoxiang Wang, Heng Wang, Ting-Chun Wang, Fangyin Wei, Xinyue Wei, Jay Zhangjie Wu, Jiashu Xu, Wei Yang, Lin Yen-Chen, Xiaohui Zeng, Yu Zeng, Jing Zhang, Qinsheng Zhang, Yuxuan Zhang, Qingqing Zhao, Artur Zolkowski
Abstract:
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make Cosmos open-source and our models open-weight with permissive licenses available via https://github.com/nvidia-cosmos/cosmos-predict1.
Authors:Xiaotao Hu, Wei Yin, Mingkai Jia, Junyuan Deng, Xiaoyang Guo, Qian Zhang, Xiaoxiao Long, Ping Tan
Abstract:
Recent successes in autoregressive (AR) generation models, such as the GPT series in natural language processing, have motivated efforts to replicate this success in visual tasks. Some works attempt to extend this approach to autonomous driving by building video-based world models capable of generating realistic future video sequences and predicting ego states. However, prior works tend to produce unsatisfactory results, as the classic GPT framework is designed to handle 1D contextual information, such as text, and lacks the inherent ability to model the spatial and temporal dynamics essential for video generation. In this paper, we present DrivingWorld, a GPT-style world model for autonomous driving, featuring several spatial-temporal fusion mechanisms. This design enables effective modeling of both spatial and temporal dynamics, facilitating high-fidelity, long-duration video generation. Specifically, we propose a next-state prediction strategy to model temporal coherence between consecutive frames and apply a next-token prediction strategy to capture spatial information within each frame. To further enhance generalization ability, we propose a novel masking strategy and reweighting strategy for token prediction to mitigate long-term drifting issues and enable precise control. Our work demonstrates the ability to produce high-fidelity and consistent video clips of over 40 seconds in duration, which is over 2 times longer than state-of-the-art driving world models. Experiments show that, in contrast to prior works, our method achieves superior visual quality and significantly more accurate controllable future video generation. Our code is available at https://github.com/YvanYin/DrivingWorld.
Authors:Yang Tian, Sizhe Yang, Jia Zeng, Ping Wang, Dahua Lin, Hao Dong, Jiangmiao Pang
Abstract:
Current efforts to learn scalable policies in robotic manipulation primarily fall into two categories: one focuses on "action," which involves behavior cloning from extensive collections of robotic data, while the other emphasizes "vision," enhancing model generalization by pre-training representations or generative models, also referred to as world models, using large-scale visual datasets. This paper presents an end-to-end paradigm that predicts actions using inverse dynamics models conditioned on the robot's forecasted visual states, named Predictive Inverse Dynamics Models (PIDM). By closing the loop between vision and action, the end-to-end PIDM can be a better scalable action learner. In practice, we use Transformers to process both visual states and actions, naming the model Seer. It is initially pre-trained on large-scale robotic datasets, such as DROID, and can be adapted to realworld scenarios with a little fine-tuning data. Thanks to large-scale, end-to-end training and the synergy between vision and action, Seer significantly outperforms previous methods across both simulation and real-world experiments. It achieves improvements of 13% on the LIBERO-LONG benchmark, 21% on CALVIN ABC-D, and 43% in real-world tasks. Notably, Seer sets a new state-of-the-art on CALVIN ABC-D benchmark, achieving an average length of 4.28, and exhibits superior generalization for novel objects, lighting conditions, and environments under high-intensity disturbances on real-world scenarios. Code and models are publicly available at https://github.com/OpenRobotLab/Seer/.
Authors:Leonardo Barcellona, Andrii Zadaianchuk, Davide Allegro, Samuele Papa, Stefano Ghidoni, Efstratios Gavves
Abstract:
A world model provides an agent with a representation of its environment, enabling it to predict the causal consequences of its actions. Current world models typically cannot directly and explicitly imitate the actual environment in front of a robot, often resulting in unrealistic behaviors and hallucinations that make them unsuitable for real-world robotics applications. To overcome those challenges, we propose to rethink robot world models as learnable digital twins. We introduce DreMa, a new approach for constructing digital twins automatically using learned explicit representations of the real world and its dynamics, bridging the gap between traditional digital twins and world models. DreMa replicates the observed world and its structure by integrating Gaussian Splatting and physics simulators, allowing robots to imagine novel configurations of objects and to predict the future consequences of robot actions thanks to its compositionality. We leverage this capability to generate new data for imitation learning by applying equivariant transformations to a small set of demonstrations. Our evaluations across various settings demonstrate significant improvements in accuracy and robustness by incrementing actions and object distributions, reducing the data needed to learn a policy and improving the generalization of the agents. As a highlight, we show that a real Franka Emika Panda robot, powered by DreMa's imagination, can successfully learn novel physical tasks from just a single example per task variation (one-shot policy learning). Our project page can be found in: https://dreamtomanipulate.github.io/.
Authors:Jihan Yang, Shusheng Yang, Anjali W. Gupta, Rilyn Han, Li Fei-Fei, Saining Xie
Abstract:
Humans possess the visual-spatial intelligence to remember spaces from sequential visual observations. However, can Multimodal Large Language Models (MLLMs) trained on million-scale video datasets also ``think in space'' from videos? We present a novel video-based visual-spatial intelligence benchmark (VSI-Bench) of over 5,000 question-answer pairs, and find that MLLMs exhibit competitive - though subhuman - visual-spatial intelligence. We probe models to express how they think in space both linguistically and visually and find that while spatial reasoning capabilities remain the primary bottleneck for MLLMs to reach higher benchmark performance, local world models and spatial awareness do emerge within these models. Notably, prevailing linguistic reasoning techniques (e.g., chain-of-thought, self-consistency, tree-of-thoughts) fail to improve performance, whereas explicitly generating cognitive maps during question-answering enhances MLLMs' spatial distance ability.
Authors:Sicheng Zuo, Wenzhao Zheng, Yuanhui Huang, Jie Zhou, Jiwen Lu
Abstract:
3D occupancy prediction is important for autonomous driving due to its comprehensive perception of the surroundings. To incorporate sequential inputs, most existing methods fuse representations from previous frames to infer the current 3D occupancy. However, they fail to consider the continuity of driving scenarios and ignore the strong prior provided by the evolution of 3D scenes (e.g., only dynamic objects move). In this paper, we propose a world-model-based framework to exploit the scene evolution for perception. We reformulate 3D occupancy prediction as a 4D occupancy forecasting problem conditioned on the current sensor input. We decompose the scene evolution into three factors: 1) ego motion alignment of static scenes; 2) local movements of dynamic objects; and 3) completion of newly-observed scenes. We then employ a Gaussian world model (GaussianWorld) to explicitly exploit these priors and infer the scene evolution in the 3D Gaussian space considering the current RGB observation. We evaluate the effectiveness of our framework on the widely used nuScenes dataset. Our GaussianWorld improves the performance of the single-frame counterpart by over 2% in mIoU without introducing additional computations. Code: https://github.com/zuosc19/GaussianWorld.
Authors:Wenzhao Zheng, Zetian Xia, Yuanhui Huang, Sicheng Zuo, Jie Zhou, Jiwen Lu
Abstract:
End-to-end autonomous driving has received increasing attention due to its potential to learn from large amounts of data. However, most existing methods are still open-loop and suffer from weak scalability, lack of high-order interactions, and inefficient decision-making. In this paper, we explore a closed-loop framework for autonomous driving and propose a large Driving wOrld modEl (Doe-1) for unified perception, prediction, and planning. We formulate autonomous driving as a next-token generation problem and use multi-modal tokens to accomplish different tasks. Specifically, we use free-form texts (i.e., scene descriptions) for perception and generate future predictions directly in the RGB space with image tokens. For planning, we employ a position-aware tokenizer to effectively encode action into discrete tokens. We train a multi-modal transformer to autoregressively generate perception, prediction, and planning tokens in an end-to-end and unified manner. Experiments on the widely used nuScenes dataset demonstrate the effectiveness of Doe-1 in various tasks including visual question-answering, action-conditioned video generation, and motion planning. Code: https://github.com/wzzheng/Doe.
Authors:Yuanhui Huang, Wenzhao Zheng, Yuan Gao, Xin Tao, Pengfei Wan, Di Zhang, Jie Zhou, Jiwen Lu
Abstract:
Video generation models (VGMs) have received extensive attention recently and serve as promising candidates for general-purpose large vision models. While they can only generate short videos each time, existing methods achieve long video generation by iteratively calling the VGMs, using the last-frame output as the condition for the next-round generation. However, the last frame only contains short-term fine-grained information about the scene, resulting in inconsistency in the long horizon. To address this, we propose an Omni World modeL (Owl-1) to produce long-term coherent and comprehensive conditions for consistent long video generation. As videos are observations of the underlying evolving world, we propose to model the long-term developments in a latent space and use VGMs to film them into videos. Specifically, we represent the world with a latent state variable which can be decoded into explicit video observations. These observations serve as a basis for anticipating temporal dynamics which in turn update the state variable. The interaction between evolving dynamics and persistent state enhances the diversity and consistency of the long videos. Extensive experiments show that Owl-1 achieves comparable performance with SOTA methods on VBench-I2V and VBench-Long, validating its ability to generate high-quality video observations. Code: https://github.com/huang-yh/Owl.
Authors:Zhuoran Yang, Xi Guo, Chenjing Ding, Chiyu Wang, Wei Wu
Abstract:
Autonomous driving requires robust perception models trained on high-quality, large-scale multi-view driving videos for tasks like 3D object detection, segmentation and trajectory prediction. While world models provide a cost-effective solution for generating realistic driving videos, challenges remain in ensuring these videos adhere to fundamental physical principles, such as relative and absolute motion, spatial relationship like occlusion and spatial consistency, and temporal consistency. To address these, we propose DrivePhysica, an innovative model designed to generate realistic multi-view driving videos that accurately adhere to essential physical principles through three key advancements: (1) a Coordinate System Aligner module that integrates relative and absolute motion features to enhance motion interpretation, (2) an Instance Flow Guidance module that ensures precise temporal consistency via efficient 3D flow extraction, and (3) a Box Coordinate Guidance module that improves spatial relationship understanding and accurately resolves occlusion hierarchies. Grounded in physical principles, we achieve state-of-the-art performance in driving video generation quality (3.96 FID and 38.06 FVD on the Nuscenes dataset) and downstream perception tasks. Our project homepage: https://metadrivescape.github.io/papers_project/DrivePhysica/page.html
Authors:Chongkai Gao, Haozhuo Zhang, Zhixuan Xu, Zhehao Cai, Lin Shao
Abstract:
We aim to develop a model-based planning framework for world models that can be scaled with increasing model and data budgets for general-purpose manipulation tasks with only language and vision inputs. To this end, we present FLow-centric generative Planning (FLIP), a model-based planning algorithm on visual space that features three key modules: 1. a multi-modal flow generation model as the general-purpose action proposal module; 2. a flow-conditioned video generation model as the dynamics module; and 3. a vision-language representation learning model as the value module. Given an initial image and language instruction as the goal, FLIP can progressively search for long-horizon flow and video plans that maximize the discounted return to accomplish the task. FLIP is able to synthesize long-horizon plans across objects, robots, and tasks with image flows as the general action representation, and the dense flow information also provides rich guidance for long-horizon video generation. In addition, the synthesized flow and video plans can guide the training of low-level control policies for robot execution. Experiments on diverse benchmarks demonstrate that FLIP can improve both the success rates and quality of long-horizon video plan synthesis and has the interactive world model property, opening up wider applications for future works.Video demos are on our website: https://nus-lins-lab.github.io/flipweb/.
Authors:Jinlu Zhang, Jiji Tang, Rongsheng Zhang, Tangjie Lv, Xiaoshuai Sun
Abstract:
Story visualization has gained increasing attention in artificial intelligence. However, existing methods still struggle with maintaining a balance between character identity preservation and text-semantics alignment, largely due to a lack of detailed semantic modeling of the story scene. To tackle this challenge, we propose a novel knowledge graph, namely Character Graph (\textbf{CG}), which comprehensively represents various story-related knowledge, including the characters, the attributes related to characters, and the relationship between characters. We then introduce StoryWeaver, an image generator that achieve Customization via Character Graph (\textbf{C-CG}), capable of consistent story visualization with rich text semantics. To further improve the multi-character generation performance, we incorporate knowledge-enhanced spatial guidance (\textbf{KE-SG}) into StoryWeaver to precisely inject character semantics into generation. To validate the effectiveness of our proposed method, extensive experiments are conducted using a new benchmark called TBC-Bench. The experiments confirm that our StoryWeaver excels not only in creating vivid visual story plots but also in accurately conveying character identities across various scenarios with considerable storage efficiency, \emph{e.g.}, achieving an average increase of +9.03\% DINO-I and +13.44\% CLIP-T. Furthermore, ablation experiments are conducted to verify the superiority of the proposed module. Codes and datasets are released at https://github.com/Aria-Zhangjl/StoryWeaver.
Authors:Gonzalo Gonzalez-Pumariega, Wayne Chen, Kushal Kedia, Sanjiban Choudhury
Abstract:
Planning in complex environments requires an agent to efficiently query a world model to find a feasible sequence of actions from start to goal. Recent work has shown that Large Language Models (LLMs), with their rich prior knowledge and reasoning capabilities, can potentially help with planning by searching over promising states and adapting to feedback from the world. In this paper, we propose and study two fundamentally competing frameworks that leverage LLMs for query-efficient planning. The first uses LLMs as a heuristic within a search-based planner to select promising nodes to expand and propose promising actions. The second uses LLMs as a generative planner to propose an entire sequence of actions from start to goal, query a world model, and adapt based on feedback. We show that while both approaches improve upon comparable baselines, using an LLM as a generative planner results in significantly fewer interactions. Our key finding is that the LLM as a planner can more rapidly adapt its planning strategies based on immediate feedback than LLM as a heuristic. We present evaluations and ablations on Robotouille and PDDL planning benchmarks and discuss connections to existing theory on query-efficient planning algorithms. Code is available at https://github.com/portal-cornell/llms-for-planning
Authors:Kehan Wen, Yutong Hu, Yao Mu, Lei Ke
Abstract:
Recent work in Offline Reinforcement Learning (RL) has shown that a unified Transformer trained under a masked auto-encoding objective can effectively capture the relationships between different modalities (e.g., states, actions, rewards) within given trajectory datasets. However, this information has not been fully exploited during the inference phase, where the agent needs to generate an optimal policy instead of just reconstructing masked components from unmasked ones. Given that a pretrained trajectory model can act as both a Policy Model and a World Model with appropriate mask patterns, we propose using Model Predictive Control (MPC) at test time to leverage the model's own predictive capability to guide its action selection. Empirical results on D4RL and RoboMimic show that our inference-phase MPC significantly improves the decision-making performance of a pretrained trajectory model without any additional parameter training. Furthermore, our framework can be adapted to Offline to Online (O2O) RL and Goal Reaching RL, resulting in more substantial performance gains when an additional online interaction budget is provided, and better generalization capabilities when different task targets are specified. Code is available: https://github.com/wkh923/m3pc.
Authors:Xi Guo, Chenjing Ding, Haoxuan Dou, Xin Zhang, Weixuan Tang, Wei Wu
Abstract:
Autonomous driving systems struggle with complex scenarios due to limited access to diverse, extensive, and out-of-distribution driving data which are critical for safe navigation. World models offer a promising solution to this challenge; however, current driving world models are constrained by short time windows and limited scenario diversity. To bridge this gap, we introduce InfinityDrive, the first driving world model with exceptional generalization capabilities, delivering state-of-the-art performance in high fidelity, consistency, and diversity with minute-scale video generation. InfinityDrive introduces an efficient spatio-temporal co-modeling module paired with an extended temporal training strategy, enabling high-resolution (576$\times$1024) video generation with consistent spatial and temporal coherence. By incorporating memory injection and retention mechanisms alongside an adaptive memory curve loss to minimize cumulative errors, achieving consistent video generation lasting over 1500 frames (more than 2 minutes). Comprehensive experiments in multiple datasets validate InfinityDrive's ability to generate complex and varied scenarios, highlighting its potential as a next-generation driving world model built for the evolving demands of autonomous driving. Our project homepage: https://metadrivescape.github.io/papers_project/InfinityDrive/page.html
Authors:Yifan Zhu, Tianyi Xiang, Aaron Dollar, Zherong Pan
Abstract:
Identifying predictive world models for robots in novel environments from sparse online observations is essential for robot task planning and execution in novel environments. However, existing methods that leverage differentiable programming to identify world models are incapable of jointly optimizing the geometry, appearance, and physical properties of the scene. In this work, we introduce a novel rigid object representation that allows the joint identification of these properties. Our method employs a novel differentiable point-based geometry representation coupled with a grid-based appearance field, which allows differentiable object collision detection and rendering. Combined with a differentiable physical simulator, we achieve end-to-end optimization of world models, given the sparse visual and tactile observations of a physical motion sequence. Through a series of world model identification tasks in simulated and real environments, we show that our method can learn both simulation- and rendering-ready world models from only one robot action sequence. The code and additional videos are available at our project website: https://tianyi20.github.io/rigid-world-model.github.io/
Authors:Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong, Jitao Sang
Abstract:
The technical report introduces O1-CODER, an attempt to replicate OpenAI's o1 model with a focus on coding tasks. It integrates reinforcement learning (RL) and Monte Carlo Tree Search (MCTS) to enhance the model's System-2 thinking capabilities. The framework includes training a Test Case Generator (TCG) for standardized code testing, using MCTS to generate code data with reasoning processes, and iteratively fine-tuning the policy model to initially produce pseudocode and then generate the full code. The report also addresses the opportunities and challenges in deploying o1-like models in real-world applications, suggesting transitioning to the System-2 paradigm and highlighting the imperative for world model construction. Updated model progress and experimental results will be reported in subsequent versions. All source code, curated datasets, as well as the derived models are disclosed at https://github.com/ADaM-BJTU/O1-CODER .
Authors:Haiming Zhang, Xu Yan, Ying Xue, Zixuan Guo, Shuguang Cui, Zhen Li, Bingbing Liu
Abstract:
This technical report summarizes the second-place solution for the Predictive World Model Challenge held at the CVPR-2024 Workshop on Foundation Models for Autonomous Systems. We introduce D$^2$-World, a novel World model that effectively forecasts future point clouds through Decoupled Dynamic flow. Specifically, the past semantic occupancies are obtained via existing occupancy networks (e.g., BEVDet). Following this, the occupancy results serve as the input for a single-stage world model, generating future occupancy in a non-autoregressive manner. To further simplify the task, dynamic voxel decoupling is performed in the world model. The model generates future dynamic voxels by warping the existing observations through voxel flow, while remaining static voxels can be easily obtained through pose transformation. As a result, our approach achieves state-of-the-art performance on the OpenScene Predictive World Model benchmark, securing second place, and trains more than 300% faster than the baseline model. Code is available at https://github.com/zhanghm1995/D2-World.
Authors:Jingtao Ding, Yunke Zhang, Yu Shang, Yuheng Zhang, Zefang Zong, Jie Feng, Yuan Yuan, Hongyuan Su, Nian Li, Nicholas Sukiennik, Fengli Xu, Yong Li
Abstract:
The concept of world models has garnered significant attention due to advancements in multimodal large language models such as GPT-4 and video generation models such as Sora, which are central to the pursuit of artificial general intelligence. This survey offers a comprehensive review of the literature on world models. Generally, world models are regarded as tools for either understanding the present state of the world or predicting its future dynamics. This review presents a systematic categorization of world models, emphasizing two primary functions: (1) constructing internal representations to understand the mechanisms of the world, and (2) predicting future states to simulate and guide decision-making. Initially, we examine the current progress in these two categories. We then explore the application of world models in key domains, including autonomous driving, robotics, and social simulacra, with a focus on how each domain utilizes these aspects. Finally, we outline key challenges and provide insights into potential future research directions. We summarize the representative papers along with their code repositories in https://github.com/tsinghua-fib-lab/World-Model.
Authors:Ziqi Ma, Yisong Yue, Georgia Gkioxari
Abstract:
Why don't we have foundation models in 3D yet? A key limitation is data scarcity. For 3D object part segmentation, existing datasets are small in size and lack diversity. We show that it is possible to break this data barrier by building a data engine powered by 2D foundation models. Our data engine automatically annotates any number of object parts: 1755x more unique part types than existing datasets combined. By training on our annotated data with a simple contrastive objective, we obtain an open-world model that generalizes to any part in any object based on any text query. Even when evaluated zero-shot, we outperform existing methods on the datasets they train on. We achieve 260% improvement in mIoU and boost speed by 6x to 300x. Our scaling analysis confirms that this generalization stems from the data scale, which underscores the impact of our data engine. Finally, to advance general-category open-world 3D part segmentation, we release a benchmark covering a wide range of objects and parts. Project website: https://ziqi-ma.github.io/find3dsite/
Authors:Huihan Liu, Yu Zhang, Vaarij Betala, Evan Zhang, James Liu, Crystal Ding, Yuke Zhu
Abstract:
Recent advancements in large-scale multi-task robot learning offer the potential for deploying robot fleets in household and industrial settings, enabling them to perform diverse tasks across various environments. However, AI-enabled robots often face challenges with generalization and robustness when exposed to real-world variability and uncertainty. We introduce Sirius-Fleet, a multi-task interactive robot fleet learning framework to address these challenges. Sirius-Fleet monitors robot performance during deployment and involves humans to correct the robot's actions when necessary. We employ a visual world model to predict the outcomes of future actions and build anomaly predictors to predict whether they will likely result in anomalies. As the robot autonomy improves, the anomaly predictors automatically adapt their prediction criteria, leading to fewer requests for human intervention and gradually reducing human workload over time. Evaluations on large-scale benchmarks demonstrate Sirius-Fleet's effectiveness in improving multi-task policy performance and monitoring accuracy. We demonstrate Sirius-Fleet's performance in both RoboCasa in simulation and Mutex in the real world, two diverse, large-scale multi-task benchmarks. More information is available on the project website: https://ut-austin-rpl.github.io/sirius-fleet
Authors:John Gkountouras, Matthias Lindemann, Phillip Lippe, Efstratios Gavves, Ivan Titov
Abstract:
Large Language Models (LLMs) have recently shown great promise in planning and reasoning applications. These tasks demand robust systems, which arguably require a causal understanding of the environment. While LLMs can acquire and reflect common sense causal knowledge from their pretraining data, this information is often incomplete, incorrect, or inapplicable to a specific environment. In contrast, causal representation learning (CRL) focuses on identifying the underlying causal structure within a given environment. We propose a framework that integrates CRLs with LLMs to enable causally-aware reasoning and planning. This framework learns a causal world model, with causal variables linked to natural language expressions. This mapping provides LLMs with a flexible interface to process and generate descriptions of actions and states in text form. Effectively, the causal world model acts as a simulator that the LLM can query and interact with. We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities. Our experiments demonstrate the effectiveness of the approach, with the causally-aware method outperforming LLM-based reasoners, especially for longer planning horizons.
Authors:Shangzhe Li, Zhiao Huang, Hao Su
Abstract:
Imitation learning (IL) enables agents to acquire skills directly from expert demonstrations, providing a compelling alternative to reinforcement learning. However, prior online IL approaches struggle with complex tasks characterized by high-dimensional inputs and complex dynamics. In this work, we propose a novel approach to online imitation learning that leverages reward-free world models. Our method learns environmental dynamics entirely in latent spaces without reconstruction, enabling efficient and accurate modeling. We adopt the inverse soft-Q learning objective, reformulating the optimization process in the Q-policy space to mitigate the instability associated with traditional optimization in the reward-policy space. By employing a learned latent dynamics model and planning for control, our approach consistently achieves stable, expert-level performance in tasks with high-dimensional observation or action spaces and intricate dynamics. We evaluate our method on a diverse set of benchmarks, including DMControl, MyoSuite, and ManiSkill2, demonstrating superior empirical performance compared to existing approaches.
Authors:Zhi Wang, Li Zhang, Wenhao Wu, Yuanheng Zhu, Dongbin Zhao, Chunlin Chen
Abstract:
A longstanding goal of artificial general intelligence is highly capable generalists that can learn from diverse experiences and generalize to unseen tasks. The language and vision communities have seen remarkable progress toward this trend by scaling up transformer-based models trained on massive datasets, while reinforcement learning (RL) agents still suffer from poor generalization capacity under such paradigms. To tackle this challenge, we propose Meta Decision Transformer (Meta-DT), which leverages the sequential modeling ability of the transformer architecture and robust task representation learning via world model disentanglement to achieve efficient generalization in offline meta-RL. We pretrain a context-aware world model to learn a compact task representation, and inject it as a contextual condition to the causal transformer to guide task-oriented sequence generation. Then, we subtly utilize history trajectories generated by the meta-policy as a self-guided prompt to exploit the architectural inductive bias. We select the trajectory segment that yields the largest prediction error on the pretrained world model to construct the prompt, aiming to encode task-specific information complementary to the world model maximally. Notably, the proposed framework eliminates the requirement of any expert demonstration or domain knowledge at test time. Experimental results on MuJoCo and Meta-World benchmarks across various dataset types show that Meta-DT exhibits superior few and zero-shot generalization capacity compared to strong baselines while being more practical with fewer prerequisites. Our code is available at https://github.com/NJU-RL/Meta-DT.
Authors:Jiayu Chen, Wentse Chen, Jeff Schneider
Abstract:
Offline RL is a powerful approach for data-driven decision-making and control. Compared to model-free methods, offline model-based RL (MBRL) explicitly learns world models from a static dataset and uses them as surrogate simulators, improving the data efficiency and enabling the learned policy to potentially generalize beyond the dataset support. However, there could be various MDPs that behave identically on the offline dataset and dealing with the uncertainty about the true MDP can be challenging. In this paper, we propose modeling offline MBRL as a Bayes Adaptive Markov Decision Process (BAMDP), which is a principled framework for addressing model uncertainty. We further propose a novel Bayes Adaptive Monte-Carlo planning algorithm capable of solving BAMDPs in continuous state and action spaces with stochastic transitions. This planning process is based on Monte Carlo Tree Search and can be integrated into offline MBRL as a policy improvement operator in policy iteration. Our ``RL + Search" framework follows in the footsteps of superhuman AIs like AlphaZero, improving on current offline MBRL methods by incorporating more computation input. The proposed algorithm significantly outperforms state-of-the-art offline RL methods on twelve D4RL MuJoCo tasks and three target tracking tasks in a challenging, stochastic tokamak control simulator. The codebase is available at: https://github.com/LucasCJYSDL/Offline-RL-Kit.
Authors:Songen Gu, Wei Yin, Bu Jin, Xiaoyang Guo, Junming Wang, Haodong Li, Qian Zhang, Xiaoxiao Long
Abstract:
We propose DOME, a diffusion-based world model that predicts future occupancy frames based on past occupancy observations. The ability of this world model to capture the evolution of the environment is crucial for planning in autonomous driving. Compared to 2D video-based world models, the occupancy world model utilizes a native 3D representation, which features easily obtainable annotations and is modality-agnostic. This flexibility has the potential to facilitate the development of more advanced world models. Existing occupancy world models either suffer from detail loss due to discrete tokenization or rely on simplistic diffusion architectures, leading to inefficiencies and difficulties in predicting future occupancy with controllability. Our DOME exhibits two key features:(1) High-Fidelity and Long-Duration Generation. We adopt a spatial-temporal diffusion transformer to predict future occupancy frames based on historical context. This architecture efficiently captures spatial-temporal information, enabling high-fidelity details and the ability to generate predictions over long durations. (2)Fine-grained Controllability. We address the challenge of controllability in predictions by introducing a trajectory resampling method, which significantly enhances the model's ability to generate controlled predictions. Extensive experiments on the widely used nuScenes dataset demonstrate that our method surpasses existing baselines in both qualitative and quantitative evaluations, establishing a new state-of-the-art performance on nuScenes. Specifically, our approach surpasses the baseline by 10.5% in mIoU and 21.2% in IoU for occupancy reconstruction and by 36.0% in mIoU and 24.6% in IoU for 4D occupancy forecasting.
Authors:Wenlong Wang, Ivana Dusparic, Yucheng Shi, Ke Zhang, Vinny Cahill
Abstract:
Model-based reinforcement learning (RL) offers a solution to the data inefficiency that plagues most model-free RL algorithms. However, learning a robust world model often requires complex and deep architectures, which are computationally expensive and challenging to train. Within the world model, sequence models play a critical role in accurate predictions, and various architectures have been explored, each with its own challenges. Currently, recurrent neural network (RNN)-based world models struggle with vanishing gradients and capturing long-term dependencies. Transformers, on the other hand, suffer from the quadratic memory and computational complexity of self-attention mechanisms, scaling as $O(n^2)$, where $n$ is the sequence length.
To address these challenges, we propose a state space model (SSM)-based world model, Drama, specifically leveraging Mamba, that achieves $O(n)$ memory and computational complexity while effectively capturing long-term dependencies and enabling efficient training with longer sequences. We also introduce a novel sampling method to mitigate the suboptimality caused by an incorrect world model in the early training stages. Combining these techniques, Drama achieves a normalised score on the Atari100k benchmark that is competitive with other state-of-the-art (SOTA) model-based RL algorithms, using only a 7 million-parameter world model. Drama is accessible and trainable on off-the-shelf hardware, such as a standard laptop. Our code is available at https://github.com/realwenlongwang/Drama.git.
Authors:Malte Mosbach, Jan Niklas Ewertz, Angel Villar-Corrales, Sven Behnke
Abstract:
Learning a latent dynamics model provides a task-agnostic representation of an agent's understanding of its environment. Leveraging this knowledge for model-based reinforcement learning (RL) holds the potential to improve sample efficiency over model-free methods by learning from imagined rollouts. Furthermore, because the latent space serves as input to behavior models, the informative representations learned by the world model facilitate efficient learning of desired skills. Most existing methods rely on holistic representations of the environment's state. In contrast, humans reason about objects and their interactions, predicting how actions will affect specific parts of their surroundings. Inspired by this, we propose Slot-Attention for Object-centric Latent Dynamics (SOLD), a novel model-based RL algorithm that learns object-centric dynamics models in an unsupervised manner from pixel inputs. We demonstrate that the structured latent space not only improves model interpretability but also provides a valuable input space for behavior models to reason over. Our results show that SOLD outperforms DreamerV3 and TD-MPC2 - state-of-the-art model-based RL algorithms - across a range of benchmark robotic environments that require relational reasoning and manipulation capabilities. Videos are available at https://slot-latent-dynamics.github.io/.
Authors:Thomas Rupf, Marco Bagatella, Nico Gürtler, Jonas Frey, Georg Martius
Abstract:
Zero-shot imitation learning algorithms hold the promise of reproducing unseen behavior from as little as a single demonstration at test time. Existing practical approaches view the expert demonstration as a sequence of goals, enabling imitation with a high-level goal selector, and a low-level goal-conditioned policy. However, this framework can suffer from myopic behavior: the agent's immediate actions towards achieving individual goals may undermine long-term objectives. We introduce a novel method that mitigates this issue by directly optimizing the occupancy matching objective that is intrinsic to imitation learning. We propose to lift a goal-conditioned value function to a distance between occupancies, which are in turn approximated via a learned world model. The resulting method can learn from offline, suboptimal data, and is capable of non-myopic, zero-shot imitation, as we demonstrate in complex, continuous benchmarks. The code is available at https://github.com/martius-lab/zilot.
Authors:Siyu Zhou, Tianyi Zhou, Yijun Yang, Guodong Long, Deheng Ye, Jing Jiang, Chengqi Zhang
Abstract:
Can large language models (LLMs) directly serve as powerful world models for model-based agents? While the gaps between the prior knowledge of LLMs and the specified environment's dynamics do exist, our study reveals that the gaps can be bridged by aligning an LLM with its deployed environment and such "world alignment" can be efficiently achieved by rule learning on LLMs. Given the rich prior knowledge of LLMs, only a few additional rules suffice to align LLM predictions with the specified environment dynamics. To this end, we propose a neurosymbolic approach to learn these rules gradient-free through LLMs, by inducing, updating, and pruning rules based on comparisons of agent-explored trajectories and world model predictions. The resulting world model is composed of the LLM and the learned rules. Our embodied LLM agent "WALL-E" is built upon model-predictive control (MPC). By optimizing look-ahead actions based on the precise world model, MPC significantly improves exploration and learning efficiency. Compared to existing LLM agents, WALL-E's reasoning only requires a few principal rules rather than verbose buffered trajectories being included in the LLM input. On open-world challenges in Minecraft and ALFWorld, WALL-E achieves higher success rates than existing methods, with lower costs on replanning time and the number of tokens used for reasoning. In Minecraft, WALL-E exceeds baselines by 15-30% in success rate while costing 8-20 fewer replanning rounds and only 60-80% of tokens. In ALFWorld, its success rate surges to a new record high of 95% only after 6 iterations.
Authors:Ailing Zeng, Yuhang Yang, Weidong Chen, Wei Liu
Abstract:
High-quality video generation, encompassing text-to-video (T2V), image-to-video (I2V), and video-to-video (V2V) generation, holds considerable significance in content creation to benefit anyone express their inherent creativity in new ways and world simulation to modeling and understanding the world. Models like SORA have advanced generating videos with higher resolution, more natural motion, better vision-language alignment, and increased controllability, particularly for long video sequences. These improvements have been driven by the evolution of model architectures, shifting from UNet to more scalable and parameter-rich DiT models, along with large-scale data expansion and refined training strategies. However, despite the emergence of DiT-based closed-source and open-source models, a comprehensive investigation into their capabilities and limitations remains lacking. Furthermore, the rapid development has made it challenging for recent benchmarks to fully cover SORA-like models and recognize their significant advancements. Additionally, evaluation metrics often fail to align with human preferences.
Authors:Jiajian Li, Qi Wang, Yunbo Wang, Xin Jin, Yang Li, Wenjun Zeng, Xiaokang Yang
Abstract:
Training visual reinforcement learning agents in a high-dimensional open world presents significant challenges. While various model-based methods have improved sample efficiency by learning interactive world models, these agents tend to be "short-sighted", as they are typically trained on short snippets of imagined experiences. We argue that the primary challenge in open-world decision-making is improving the exploration efficiency across a vast state space, especially for tasks that demand consideration of long-horizon payoffs. In this paper, we present LS-Imagine, which extends the imagination horizon within a limited number of state transition steps, enabling the agent to explore behaviors that potentially lead to promising long-term feedback. The foundation of our approach is to build a $\textit{long short-term world model}$. To achieve this, we simulate goal-conditioned jumpy state transitions and compute corresponding affordance maps by zooming in on specific areas within single images. This facilitates the integration of direct long-term values into behavior learning. Our method demonstrates significant improvements over state-of-the-art techniques in MineDojo.
Authors:Yueyuan Li, Mingyang Jiang, Songan Zhang, Wei Yuan, Chunxiang Wang, Ming Yang
Abstract:
In recent years, end-to-end autonomous driving architectures have gained increasing attention due to their advantage in avoiding error accumulation. Most existing end-to-end autonomous driving methods are based on Imitation Learning (IL), which can quickly derive driving strategies by mimicking expert behaviors. However, IL often struggles to handle scenarios outside the training dataset, especially in high-dynamic and interaction-intensive traffic environments. In contrast, Reinforcement Learning (RL)-based driving models can optimize driving decisions through interaction with the environment, improving adaptability and robustness.
To leverage the strengths of both IL and RL, we propose RAMBLE, an end-to-end world model-based RL method for driving decision-making. RAMBLE extracts environmental context information from RGB images and LiDAR data through an asymmetrical variational autoencoder. A transformer-based architecture is then used to capture the dynamic transitions of traffic participants. Next, an actor-critic structure reinforcement learning algorithm is applied to derive driving strategies based on the latent features of the current state and dynamics. To accelerate policy convergence and ensure stable training, we introduce a training scheme that initializes the policy network using IL, and employs KL loss and soft update mechanisms to smoothly transition the model from IL to RL.
RAMBLE achieves state-of-the-art performance in route completion rate on the CARLA Leaderboard 1.0 and completes all 38 scenarios on the CARLA Leaderboard 2.0, demonstrating its effectiveness in handling complex and dynamic traffic scenarios. The model will be open-sourced upon paper acceptance at https://github.com/SCP-CN-001/ramble to support further research and development in autonomous driving.
Authors:Jinghan Li, Zhicheng Sun, Yadong Mu
Abstract:
In the endeavor to make autonomous robots take actions, task planning is a major challenge that requires translating high-level task descriptions to long-horizon action sequences. Despite recent advances in language model agents, they remain prone to planning errors and limited in their ability to plan ahead. To address these limitations in robotic planning, we advocate a self-refining scheme that iteratively refines a draft plan until an equilibrium is reached. Remarkably, this process can be optimized end-to-end from an analytical perspective without the need to curate additional verifiers or reward models, allowing us to train self-refining planners in a simple supervised learning fashion. Meanwhile, a nested equilibrium sequence modeling procedure is devised for efficient closed-loop planning that incorporates useful feedback from the environment (or an internal world model). Our method is evaluated on the VirtualHome-Env benchmark, showing advanced performance with improved scaling w.r.t. inference-time computation. Code is available at https://github.com/Singularity0104/equilibrium-planner.
Authors:Jie Cheng, Ruixi Qiao, Yingwei Ma, Binhua Li, Gang Xiong, Qinghai Miao, Yongbin Li, Yisheng Lv
Abstract:
A significant aspiration of offline reinforcement learning (RL) is to develop a generalist agent with high capabilities from large and heterogeneous datasets. However, prior approaches that scale offline RL either rely heavily on expert trajectories or struggle to generalize to diverse unseen tasks. Inspired by the excellent generalization of world model in conditional video generation, we explore the potential of image observation-based world model for scaling offline RL and enhancing generalization on novel tasks. In this paper, we introduce JOWA: Jointly-Optimized World-Action model, an offline model-based RL agent pretrained on multiple Atari games with 6 billion tokens data to learn general-purpose representation and decision-making ability. Our method jointly optimizes a world-action model through a shared transformer backbone, which stabilize temporal difference learning with large models during pretraining. Moreover, we propose a provably efficient and parallelizable planning algorithm to compensate for the Q-value estimation error and thus search out better policies. Experimental results indicate that our largest agent, with 150 million parameters, achieves 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange. Furthermore, JOWA scales favorably with model capacity and can sample-efficiently transfer to novel games using only 5k offline fine-tuning data (approximately 4 trajectories) per game, demonstrating superior generalization. We will release codes and model weights at https://github.com/CJReinforce/JOWA
Authors:Hang Lai, Jiahang Cao, Jiafeng Xu, Hongtao Wu, Yunfeng Lin, Tao Kong, Yong Yu, Weinan Zhang
Abstract:
Legged locomotion over various terrains is challenging and requires precise perception of the robot and its surroundings from both proprioception and vision. However, learning directly from high-dimensional visual input is often data-inefficient and intricate. To address this issue, traditional methods attempt to learn a teacher policy with access to privileged information first and then learn a student policy to imitate the teacher's behavior with visual input. Despite some progress, this imitation framework prevents the student policy from achieving optimal performance due to the information gap between inputs. Furthermore, the learning process is unnatural since animals intuitively learn to traverse different terrains based on their understanding of the world without privileged knowledge. Inspired by this natural ability, we propose a simple yet effective method, World Model-based Perception (WMP), which builds a world model of the environment and learns a policy based on the world model. We illustrate that though completely trained in simulation, the world model can make accurate predictions of real-world trajectories, thus providing informative signals for the policy controller. Extensive simulated and real-world experiments demonstrate that WMP outperforms state-of-the-art baselines in traversability and robustness. Videos and Code are available at: https://wmp-loco.github.io/.
Authors:Lingyu Xiao, Jiang-Jiang Liu, Sen Yang, Xiaofan Li, Xiaoqing Ye, Wankou Yang, Jingdong Wang
Abstract:
The autoregressive world model exhibits robust generalization capabilities in vectorized scene understanding but encounters difficulties in deriving actions due to insufficient uncertainty modeling and self-delusion. In this paper, we explore the feasibility of deriving decisions from an autoregressive world model by addressing these challenges through the formulation of multiple probabilistic hypotheses. We propose LatentDriver, a framework models the environment's next states and the ego vehicle's possible actions as a mixture distribution, from which a deterministic control signal is then derived. By incorporating mixture modeling, the stochastic nature of decisionmaking is captured. Additionally, the self-delusion problem is mitigated by providing intermediate actions sampled from a distribution to the world model. Experimental results on the recently released close-loop benchmark Waymax demonstrate that LatentDriver surpasses state-of-the-art reinforcement learning and imitation learning methods, achieving expert-level performance. The code and models will be made available at https://github.com/Sephirex-X/LatentDriver.
Authors:Viet Dung Nguyen, Zhizhuo Yang, Christopher L. Buckley, Alexander Ororbia
Abstract:
Although research has produced promising results demonstrating the utility of active inference (AIF) in Markov decision processes (MDPs), there is relatively less work that builds AIF models in the context of environments and problems that take the form of partially observable Markov decision processes (POMDPs). In POMDP scenarios, the agent must infer the unobserved environmental state from raw sensory observations, e.g., pixels in an image. Additionally, less work exists in examining the most difficult form of POMDP-centered control: continuous action space POMDPs under sparse reward signals. In this work, we address issues facing the AIF modeling paradigm by introducing novel prior preference learning techniques and self-revision schedules to help the agent excel in sparse-reward, continuous action, goal-based robotic control POMDP environments. Empirically, we show that our agents offer improved performance over state-of-the-art models in terms of cumulative rewards, relative stability, and success rate. The code in support of this work can be found at https://github.com/NACLab/robust-active-inference.
Authors:Taoran Jiang, Yixuan Guan, Liqian Ma, Jing Xu, Jiaojiao Meng, Weihang Chen, Zecui Zeng, Lusong Li, Dan Wu, Rui Chen
Abstract:
Articulated objects are ubiquitous in daily life. In this paper, we present DexSim2Real$^{2}$, a novel framework for goal-conditioned articulated object manipulation. The core of our framework is constructing an explicit world model of unseen articulated objects through active interactions, which enables sampling-based model predictive control to plan trajectories achieving different goals without requiring demonstrations or RL. It first predicts an interaction using an affordance network trained on self-supervised interaction data or videos of human manipulation. After executing the interactions on the real robot to move the object parts, we propose a novel modeling pipeline based on 3D AIGC to build a digital twin of the object in simulation from multiple frames of observations. For dexterous hands, we utilize eigengrasp to reduce the action dimension, enabling more efficient trajectory searching. Experiments validate the framework's effectiveness for precise manipulation using a suction gripper, a two-finger gripper and two dexterous hand. The generalizability of the explicit world model also enables advanced manipulation strategies like manipulating with tools.
Authors:Naser Kazemi, Nedko Savov, Danda Paudel, Luc Van Gool
Abstract:
World models are increasingly pivotal in interpreting and simulating the rules and actions of complex environments. Genie, a recent model, excels at learning from visually diverse environments but relies on costly human-collected data. We observe that their alternative method of using random agents is too limited to explore the environment. We propose to improve the model by employing reinforcement learning based agents for data generation. This approach produces diverse datasets that enhance the model's ability to adapt and perform well across various scenarios and realistic actions within the environment. In this paper, we first release the model GenieRedux - an implementation based on Genie. Additionally, we introduce GenieRedux-G, a variant that uses the agent's readily available actions to factor out action prediction uncertainty during validation. Our evaluation, including a replication of the Coinrun case study, shows that GenieRedux-G achieves superior visual fidelity and controllability using the trained agent exploration. The proposed approach is reproducable, scalable and adaptable to new types of environments. Our codebase is available at https://github.com/insait-institute/GenieRedux .
Authors:Pengcheng Qiu, Chaoyi Wu, Junwei Liu, Qiaoyu Zheng, Yusheng Liao, Haowen Wang, Yun Yue, Qianrui Fan, Shuai Zhen, Jian Wang, Jinjie Gu, Yanfeng Wang, Ya Zhang, Weidi Xie
Abstract:
In this paper, we present a framework for training large language models (LLMs) as diagnostic agents with reinforcement learning, enabling them to manage multi-turn diagnostic processes, adaptively select examinations, and commit to final diagnoses. Unlike instruction-tuned models trained on static case summaries, our method acquires diagnostic strategies through interactive exploration and outcome-based feedback. Our contributions are fourfold: (i) We present DiagGym, a diagnostics world model trained with electronic health records that emits examination outcomes conditioned on patient history and recommended examination, serving as a virtual clinical environment for realistic diagnosis training and evaluation; (ii) We train DiagAgent via end-to-end, multi-turn reinforcement learning to learn diagnostic policies that optimize both information yield and diagnostic accuracy; (iii) We introduce DiagBench, a diagnostic benchmark comprising 750 cases with physician-validated examination recommendations and 99 cases annotated with 973 physician-written rubrics on diagnosis process; (iv) we demonstrate superior performance across diverse diagnostic settings. DiagAgent significantly outperforms 10 state-of-the-art LLMs, including DeepSeek-v3 and GPT-4o, as well as two prompt-engineered agents. In single-turn settings, DiagAgent achieves 9.34% higher diagnostic accuracy and 44.03% improvement in examination recommendation hit ratio. In end-to-end settings, it delivers 15.12% increase in diagnostic accuracy and 23.09% boost in examination recommendation F1 score. In rubric-based evaluation, it surpasses the next-best model, Claude-sonnet-4, by 7.1% in weighted rubric score. These findings indicate that learning policies in interactive clinical environments confers dynamic and clinically meaningful diagnostic management abilities unattainable through passive training alone.
Authors:Guangyuan Liu, Yinqiu Liu, Ruichen Zhang, Dusit Niyato, Jiawen Kang, Sumei Sun, Abbas Jamalipour, Ping Zhang
Abstract:
Wireless networks are undergoing a paradigm shift toward massive connectivity with energy-efficient operation, driving the integration of satellite-terrestrial architectures with simultaneous wireless information and power transfer (SWIPT). Optimizing transmit beamforming and power splitting in such systems faces formidable challenges, e.g., time-varying channels and multi-tier interference, which create a complex decision landscape where conventional model-free multi-agent reinforcement learning (MARL) suffers from sample inefficiency due to rarely-encountered state transitions and poor coordination as decentralized agents act independently. This paper proposes the Decentralized World Model with Reasoning Offloading (DWM-RO) framework to address these fundamental limitations. Specifically, each agent employs a world model to learn compact predictive representations of environment dynamics, enabling imagination-based policy training that dramatically reduces required environment interactions. An uncertainty-aware offloading gate monitors local interference levels and model reconstruction errors to trigger selective edge coordination. When activated, a lightweight latent decorrelation mechanism at the edge refines agents' strategic representations, guiding them toward orthogonal actions that minimize resource conflicts. Extensive simulations demonstrate that DWM-RO converges 5 times faster than state-of-the-art baselines while achieving 34.7% higher spectral efficiency and reducing constraint violations by 40%. In dense network scenarios with 10 users, DWM-RO maintains violation rates below 20% while baselines exceed 70%, validating superior robustness.
Authors:Changyuan Zhao, Guangyuan Liu, Ruichen Zhang, Yinqiu Liu, Jiacheng Wang, Jiawen Kang, Dusit Niyato, Zan Li, Xuemin, Shen, Zhu Han, Sumei Sun, Chau Yuen, Dong In Kim
Abstract:
Edge General Intelligence (EGI) represents a transformative evolution of edge computing, where distributed agents possess the capability to perceive, reason, and act autonomously across diverse, dynamic environments. Central to this vision are world models, which act as proactive internal simulators that not only predict but also actively imagine future trajectories, reason under uncertainty, and plan multi-step actions with foresight. This proactive nature allows agents to anticipate potential outcomes and optimize decisions ahead of real-world interactions. While prior works in robotics and gaming have showcased the potential of world models, their integration into the wireless edge for EGI remains underexplored. This survey bridges this gap by offering a comprehensive analysis of how world models can empower agentic artificial intelligence (AI) systems at the edge. We first examine the architectural foundations of world models, including latent representation learning, dynamics modeling, and imagination-based planning. Building on these core capabilities, we illustrate their proactive applications across EGI scenarios such as vehicular networks, unmanned aerial vehicle (UAV) networks, the Internet of Things (IoT) systems, and network functions virtualization, thereby highlighting how they can enhance optimization under latency, energy, and privacy constraints. We then explore their synergy with foundation models and digital twins, positioning world models as the cognitive backbone of EGI. Finally, we highlight open challenges, such as safety guarantees, efficient training, and constrained deployment, and outline future research directions. This survey provides both a conceptual foundation and a practical roadmap for realizing the next generation of intelligent, autonomous edge systems.
Authors:Arthur Chen, Zuxin Liu, Jianguo Zhang, Akshara Prabhakar, Zhiwei Liu, Shelby Heinecke, Silvio Savarese, Victor Zhong, Caiming Xiong
Abstract:
Large language model (LLM)-based agents struggle to generalize to novel and complex environments, such as unseen websites or new sets of functions, due to a fundamental mismatch between their pre-training and test-time conditions. This challenge stems from two distinct failure modes: a syntactic misunderstanding of environment-specific components like observation formats, and a semantic misunderstanding of state-transition dynamics, which are only revealed at test time. To address these issues, we propose two distinct and complementary strategies for adapting LLM agents by leveraging environment-specific information available during deployment. First, an online distributional adaptation method parameterizes environmental nuances by learning a lightweight adaptation vector that biases the model's output distribution, enabling rapid alignment with an environment response format. Second, a deployment-time dynamics grounding method employs a persona-driven exploration phase to systematically probe and learn the environment's causal dynamics before task execution, equipping the agent with a nonparametric world model. We evaluate these strategies across diverse agentic benchmarks, including function calling and web navigation. Our empirical results show the effectiveness of both strategies across all benchmarks with minimal computational cost. We find that dynamics grounding is particularly effective in complex environments where unpredictable dynamics pose a major obstacle, demonstrating a robust path toward more generalizable and capable LLM-based agents. For example, on the WebArena multi-site split, this method increases the agent's success rate from 2% to 23%.
Authors:Ziyang Luo, Zhiqi Shen, Wenzhuo Yang, Zirui Zhao, Prathyusha Jwalapuram, Amrita Saha, Doyen Sahoo, Silvio Savarese, Caiming Xiong, Junnan Li
Abstract:
The Model Context Protocol has emerged as a transformative standard for connecting large language models to external data sources and tools, rapidly gaining adoption across major AI providers and development platforms. However, existing benchmarks are overly simplistic and fail to capture real application challenges such as long-horizon reasoning and large, unfamiliar tool spaces. To address this critical gap, we introduce MCP-Universe, the first comprehensive benchmark specifically designed to evaluate LLMs in realistic and hard tasks through interaction with real-world MCP servers. Our benchmark encompasses 6 core domains spanning 11 different MCP servers: Location Navigation, Repository Management, Financial Analysis, 3D Design, Browser Automation, and Web Searching. To ensure rigorous evaluation, we implement execution-based evaluators, including format evaluators for agent format compliance, static evaluators for time-invariant content matching, and dynamic evaluators that automatically retrieve real-time ground truth for temporally sensitive tasks. Through extensive evaluation of leading LLMs, we find that even SOTA models such as GPT-5 (43.72%), Grok-4 (33.33%) and Claude-4.0-Sonnet (29.44%) exhibit significant performance limitations. In addition, our benchmark poses a significant long-context challenge for LLM agents, as the number of input tokens increases rapidly with the number of interaction steps. Moreover, it introduces an unknown-tools challenge, as LLM agents often lack familiarity with the precise usage of the MCP servers. Notably, enterprise-level agents like Cursor cannot achieve better performance than standard ReAct frameworks. Beyond evaluation, we open-source our extensible evaluation framework with UI support, enabling researchers and practitioners to seamlessly integrate new agents and MCP servers while fostering innovation in the rapidly evolving MCP ecosystem.
Authors:Changyuan Zhao, Ruichen Zhang, Jiacheng Wang, Gaosheng Zhao, Dusit Niyato, Geng Sun, Shiwen Mao, Dong In Kim
Abstract:
World models are emerging as a transformative paradigm in artificial intelligence, enabling agents to construct internal representations of their environments for predictive reasoning, planning, and decision-making. By learning latent dynamics, world models provide a sample-efficient framework that is especially valuable in data-constrained or safety-critical scenarios. In this paper, we present a comprehensive overview of world models, highlighting their architecture, training paradigms, and applications across prediction, generation, planning, and causal reasoning. We compare and distinguish world models from related concepts such as digital twins, the metaverse, and foundation models, clarifying their unique role as embedded cognitive engines for autonomous agents. We further propose Wireless Dreamer, a novel world model-based reinforcement learning framework tailored for wireless edge intelligence optimization, particularly in low-altitude wireless networks (LAWNs). Through a weather-aware UAV trajectory planning case study, we demonstrate the effectiveness of our framework in improving learning efficiency and decision quality.
Authors:Nedko Savov, Naser Kazemi, Deheng Zhang, Danda Pani Paudel, Xi Wang, Luc Van Gool
Abstract:
World models have recently become promising tools for predicting realistic visuals based on actions in complex environments. However, their reliance on only a few recent observations leads them to lose track of the long-term context. Consequently, in just a few steps the generated scenes drift from what was previously observed, undermining the temporal coherence of the sequence. This limitation of the state-of-the-art world models, most of which rely on diffusion, comes from their lack of a lasting environment state. To address this problem, we introduce StateSpaceDiffuser, where a diffusion model is enabled to perform long-context tasks by integrating features from a state-space model, representing the entire interaction history. This design restores long-term memory while preserving the high-fidelity synthesis of diffusion models. To rigorously measure temporal consistency, we develop an evaluation protocol that probes a model's ability to reinstantiate seen content in extended rollouts. Comprehensive experiments show that StateSpaceDiffuser significantly outperforms a strong diffusion-only baseline, maintaining a coherent visual context for an order of magnitude more steps. It delivers consistent views in both a 2D maze navigation and a complex 3D environment. These results establish that bringing state-space representations into diffusion models is highly effective in demonstrating both visual details and long-term memory.
Authors:Asen Nachkov, Danda Pani Paudel, Jan-Nico Zaech, Davide Scaramuzza, Luc Van Gool
Abstract:
Differentiable simulators have recently shown great promise for training autonomous vehicle controllers. Being able to backpropagate through them, they can be placed into an end-to-end training loop where their known dynamics turn into useful priors for the policy to learn, removing the typical black box assumption of the environment. So far, these systems have only been used to train policies. However, this is not the end of the story in terms of what they can offer. Here, for the first time, we use them to train world models. Specifically, we present three new task setups that allow us to learn next state predictors, optimal planners, and optimal inverse states. Unlike analytic policy gradients (APG), which requires the gradient of the next simulator state with respect to the current actions, our proposed setups rely on the gradient of the next state with respect to the current state. We call this approach Analytic World Models (AWMs) and showcase its applications, including how to use it for planning in the Waymax simulator. Apart from pushing the limits of what is possible with such simulators, we offer an improved training recipe that increases performance on the large-scale Waymo Open Motion dataset by up to 12% compared to baselines at essentially no additional cost.
Authors:Yabo Chen, Yuanzhi Liang, Jiepeng Wang, Tingxi Chen, Junfei Cheng, Zixiao Gu, Yuyang Huang, Zicheng Jiang, Wei Li, Tian Li, Weichen Li, Zuoxin Li, Guangce Liu, Jialun Liu, Junqi Liu, Haoyuan Wang, Qizhen Weng, Xuan'er Wu, Xunzhi Xiang, Xiaoyan Yang, Xin Zhang, Shiwen Zhang, Junyu Zhou, Chengcheng Zhou, Haibin Huang, Chi Zhang, Xuelong Li
Abstract:
World models aim to endow AI systems with the ability to represent, generate, and interact with dynamic environments in a coherent and temporally consistent manner. While recent video generation models have demonstrated impressive visual quality, they remain limited in real-time interaction, long-horizon consistency, and persistent memory of dynamic scenes, hindering their evolution into practical world models. In this report, we present TeleWorld, a real-time multimodal 4D world modeling framework that unifies video generation, dynamic scene reconstruction, and long-term world memory within a closed-loop system. TeleWorld introduces a novel generation-reconstruction-guidance paradigm, where generated video streams are continuously reconstructed into a dynamic 4D spatio-temporal representation, which in turn guides subsequent generation to maintain spatial, temporal, and physical consistency. To support long-horizon generation with low latency, we employ an autoregressive diffusion-based video model enhanced with Macro-from-Micro Planning (MMPL)--a hierarchical planning method that reduces error accumulation from frame-level to segment-level-alongside efficient Distribution Matching Distillation (DMD), enabling real-time synthesis under practical computational budgets. Our approach achieves seamless integration of dynamic object modeling and static scene representation within a unified 4D framework, advancing world models toward practical, interactive, and computationally accessible systems. Extensive experiments demonstrate that TeleWorld achieves strong performance in both static and dynamic world understanding, long-term consistency, and real-time generation efficiency, positioning it as a practical step toward interactive, memory-enabled world models for multimodal generation and embodied intelligence.
Authors:Hongzhe Bi, Hengkai Tan, Shenghao Xie, Zeyuan Wang, Shuhe Huang, Haitian Liu, Ruowen Zhao, Yao Feng, Chendong Xiang, Yinze Rong, Hongyan Zhao, Hanyu Liu, Zhizhong Su, Lei Ma, Hang Su, Jun Zhu
Abstract:
While a general embodied agent must function as a unified system, current methods are built on isolated models for understanding, world modeling, and control. This fragmentation prevents unifying multimodal generative capabilities and hinders learning from large-scale, heterogeneous data. In this paper, we propose Motus, a unified latent action world model that leverages existing general pretrained models and rich, sharable motion information. Motus introduces a Mixture-of-Transformer (MoT) architecture to integrate three experts (i.e., understanding, video generation, and action) and adopts a UniDiffuser-style scheduler to enable flexible switching between different modeling modes (i.e., world models, vision-language-action models, inverse dynamics models, video generation models, and video-action joint prediction models). Motus further leverages the optical flow to learn latent actions and adopts a recipe with three-phase training pipeline and six-layer data pyramid, thereby extracting pixel-level "delta action" and enabling large-scale action pretraining. Experiments show that Motus achieves superior performance against state-of-the-art methods in both simulation (a +15% improvement over X-VLA and a +45% improvement over Pi0.5) and real-world scenarios(improved by +11~48%), demonstrating unified modeling of all functionalities and priors significantly benefits downstream robotic tasks.
Authors:Xinning Zhou, Chengyang Ying, Yao Feng, Hang Su, Jun Zhu
Abstract:
Visual reinforcement learning agents typically face serious performance declines in real-world applications caused by visual distractions. Existing methods rely on fine-tuning the policy's representations with hand-crafted augmentations. In this work, we propose Self-Consistent Model-based Adaptation (SCMA), a novel method that fosters robust adaptation without modifying the policy. By transferring cluttered observations to clean ones with a denoising model, SCMA can mitigate distractions for various policies as a plug-and-play enhancement. To optimize the denoising model in an unsupervised manner, we derive an unsupervised distribution matching objective with a theoretical analysis of its optimality. We further present a practical algorithm to optimize the objective by estimating the distribution of clean observations with a pre-trained world model. Extensive experiments on multiple visual generalization benchmarks and real robot data demonstrate that SCMA effectively boosts performance across various distractions and exhibits better sample efficiency.
Authors:Tianze Xia, Yongkang Li, Lijun Zhou, Jingfeng Yao, Kaixin Xiong, Haiyang Sun, Bing Wang, Kun Ma, Guang Chen, Hangjun Ye, Wenyu Liu, Xinggang Wang
Abstract:
World models have become crucial for autonomous driving, as they learn how scenarios evolve over time to address the long-tail challenges of the real world. However, current approaches relegate world models to limited roles: they operate within ostensibly unified architectures that still keep world prediction and motion planning as decoupled processes. To bridge this gap, we propose DriveLaW, a novel paradigm that unifies video generation and motion planning. By directly injecting the latent representation from its video generator into the planner, DriveLaW ensures inherent consistency between high-fidelity future generation and reliable trajectory planning. Specifically, DriveLaW consists of two core components: DriveLaW-Video, our powerful world model that generates high-fidelity forecasting with expressive latent representations, and DriveLaW-Act, a diffusion planner that generates consistent and reliable trajectories from the latent of DriveLaW-Video, with both components optimized by a three-stage progressive training strategy. The power of our unified paradigm is demonstrated by new state-of-the-art results across both tasks. DriveLaW not only advances video prediction significantly, surpassing best-performing work by 33.3% in FID and 1.8% in FVD, but also achieves a new record on the NAVSIM planning benchmark.
Authors:Weichen Zhang, Peizhi Tang, Xin Zeng, Fanhang Man, Shiquan Yu, Zichao Dai, Baining Zhao, Hongjin Chen, Yu Shang, Wei Wu, Chen Gao, Xinlei Chen, Xin Wang, Yong Li, Wenwu Zhu
Abstract:
Unmanned aerial vehicles (UAVs) have emerged as powerful embodied agents. One of the core abilities is autonomous navigation in large-scale three-dimensional environments. Existing navigation policies, however, are typically optimized for low-level objectives such as obstacle avoidance and trajectory smoothness, lacking the ability to incorporate high-level semantics into planning. To bridge this gap, we propose ANWM, an aerial navigation world model that predicts future visual observations conditioned on past frames and actions, thereby enabling agents to rank candidate trajectories by their semantic plausibility and navigational utility. ANWM is trained on 4-DoF UAV trajectories and introduces a physics-inspired module: Future Frame Projection (FFP), which projects past frames into future viewpoints to provide coarse geometric priors. This module mitigates representational uncertainty in long-distance visual generation and captures the mapping between 3D trajectories and egocentric observations. Empirical results demonstrate that ANWM significantly outperforms existing world models in long-distance visual forecasting and improves UAV navigation success rates in large-scale environments.
Authors:Yinzhou Tang, Yu Shang, Yinuo Chen, Bingwen Wei, Xin Zhang, Shu'ang Yu, Liangzhi Shi, Chao Yu, Chen Gao, Wei Wu, Yong Li
Abstract:
Achieving generalizable embodied policies remains a key challenge. Traditional policy learning paradigms, including both Imitation Learning (IL) and Reinforcement Learning (RL), struggle to cultivate generalizability across diverse scenarios. While IL policies often overfit to specific expert trajectories, RL suffers from the inherent lack of a unified and general reward signal necessary for effective multi-scene generalization. We posit that the world model is uniquely capable of serving as a universal environment proxy to address this limitation. However, current world models primarily focus on their ability to predict observations and still rely on task-specific, handcrafted reward functions, thereby failing to provide a truly general training environment. Toward this problem, we propose RoboScape-R, a framework leveraging the world model to serve as a versatile, general-purpose proxy for the embodied environment within the RL paradigm. We introduce a novel world model-based general reward mechanism that generates ''endogenous'' rewards derived from the model's intrinsic understanding of real-world state transition dynamics. Extensive experiments demonstrate that RoboScape-R effectively addresses the limitations of traditional RL methods by providing an efficient and general training environment that substantially enhances the generalization capability of embodied policies. Our approach offers critical insights into utilizing the world model as an online training strategy and achieves an average 37.5% performance improvement over baselines under out-of-domain scenarios.
Authors:Yu Li, Menghan Xia, Gongye Liu, Jianhong Bai, Xintao Wang, Conglang Zhang, Yuxuan Lin, Ruihang Chu, Pengfei Wan, Yujiu Yang
Abstract:
Recent Text-to-Video (T2V) models have demonstrated powerful capability in visual simulation of real-world geometry and physical laws, indicating its potential as implicit world models. Inspired by this, we explore the feasibility of leveraging the video generation prior for viewpoint planning from given 4D scenes, since videos internally accompany dynamic scenes with natural viewpoints. To this end, we propose a two-stage paradigm to adapt pre-trained T2V models for viewpoint prediction, in a compatible manner. First, we inject the 4D scene representation into the pre-trained T2V model via an adaptive learning branch, where the 4D scene is viewpoint-agnostic and the conditional generated video embeds the viewpoints visually. Then, we formulate viewpoint extraction as a hybrid-condition guided camera extrinsic denoising process. Specifically, a camera extrinsic diffusion branch is further introduced onto the pre-trained T2V model, by taking the generated video and 4D scene as input. Experimental results show the superiority of our proposed method over existing competitors, and ablation studies validate the effectiveness of our key technical designs. To some extent, this work proves the potential of video generation models toward 4D interaction in real world.
Authors:Baining Zhao, Rongze Tang, Mingyuan Jia, Ziyou Wang, Fanghang Man, Xin Zhang, Yu Shang, Weichen Zhang, Chen Gao, Wei Wu, Xin Wang, Xinlei Chen, Yong Li
Abstract:
How to enable robots to predict the outcomes of their own motion intentions in three-dimensional space has been a fundamental problem in embodied intelligence. To explore more general spatial imagination capabilities, here we present AirScape, the first world model designed for six-degree-of-freedom aerial agents. AirScape predicts future observation sequences based on current visual inputs and motion intentions. Specifically, we construct an dataset for aerial world model training and testing, which consists of 11k video-intention pairs. This dataset includes first-person-view videos capturing diverse drone actions across a wide range of scenarios, with over 1,000 hours spent annotating the corresponding motion intentions. Then we develop a two-phase training schedule to train a foundation model -- initially devoid of embodied spatial knowledge -- into a world model that is controllable by motion intentions and adheres to physical spatio-temporal constraints.
Authors:Zhonghan Zhao, Wenwei Zhang, Haian Huang, Kuikun Liu, Jianfei Gao, Gaoang Wang, Kai Chen
Abstract:
Reasoning before action and imagining potential outcomes (i.e., world models) are essential for embodied agents operating in complex open-world environments. Yet, prior work either incorporates only one of these abilities in an end-to-end agent or integrates multiple specialized models into an agent system, limiting the learning efficiency and generalization of the policy. Thus, this paper makes the first attempt to synergize Reasoning and Imagination in an end-to-end Generalist policy, termed RIG. To train RIG in an end-to-end manner, we construct a data pipeline that progressively integrates and enriches the content of imagination and reasoning in the trajectories collected from existing agents. The joint learning of reasoning and next image generation explicitly models the inherent correlation between reasoning, action, and dynamics of environments, and thus exhibits more than $17\times$ sample efficiency improvements and generalization in comparison with previous works. During inference, RIG first reasons about the next action, produces potential action, and then predicts the action outcomes, which offers the agent a chance to review and self-correct based on the imagination before taking real actions. Experimental results show that the synergy of reasoning and imagination not only improves the robustness, generalization, and interoperability of generalist policy but also enables test-time scaling to enhance overall performance.
Authors:Kangrui Wang, Pingyue Zhang, Zihan Wang, Yaning Gao, Linjie Li, Qineng Wang, Hanyang Chen, Chi Wan, Yiping Lu, Zhengyuan Yang, Lijuan Wang, Ranjay Krishna, Jiajun Wu, Li Fei-Fei, Yejin Choi, Manling Li
Abstract:
A key challenge in training Vision-Language Model (VLM) agents, compared to Language Model (LLM) agents, lies in the shift from textual states to complex visual observations. This transition introduces partial observability and demands robust world modeling. We ask: Can VLM agents construct internal world models through explicit visual state reasoning? To address this question, we architecturally enforce and reward the agent's reasoning process via reinforcement learning (RL), formulating it as a Partially Observable Markov Decision Process (POMDP). We find that decomposing the agent's reasoning into State Estimation ("what is the current state?") and Transition Modeling ("what comes next?") is critical for success, as demonstrated through five reasoning strategies. Our investigation into how agents represent internal beliefs reveals that the optimal representation is task-dependent: Natural Language excels at capturing semantic relationships in general tasks, while Structured formats are indispensable for precise manipulation and control. Building on these insights, we design a World Modeling Reward that provides dense, turn-level supervision for accurate state prediction, and introduce Bi-Level General Advantage Estimation (Bi-Level GAE) for turn-aware credit assignment. Through this form of visual state reasoning, a 3B-parameter model achieves a score of 0.82 across five diverse agent benchmarks, representing a 3$\times$ improvement over its untrained counterpart (0.21) and outperforming proprietary reasoning models such as GPT-5 (0.75), Gemini 2.5 Pro (0.67) and Claude 4.5 (0.62). All experiments are conducted within our VAGEN framework, a scalable system for training and analyzing multi-turn VLM agents in diverse visual environments. Code and data are publicly available at https://vagen-ai.github.io.
Authors:Xiaoran Yin, Xu Luo, Hao Wu, Lianli Gao, Jingkuan Song
Abstract:
The automatic control of mobile devices is essential for efficiently performing complex tasks that involve multiple sequential steps. However, these tasks pose significant challenges due to the limited environmental information available at each step, primarily through visual observations. As a result, current approaches, which typically rely on reactive policies, focus solely on immediate observations and often lead to suboptimal decision-making. To address this problem, we propose \textbf{Foresighted Planning with World Model-Driven Code Execution (FPWC)},a framework that prioritizes natural language understanding and structured reasoning to enhance the agent's global understanding of the environment by developing a task-oriented, refinable \emph{world model} at the outset of the task. Foresighted actions are subsequently generated through iterative planning within this world model, executed in the form of executable code. Extensive experiments conducted in simulated environments and on real mobile devices demonstrate that our method outperforms previous approaches, particularly achieving a 44.4\% relative improvement in task success rate compared to the state-of-the-art in the simulated environment. Code and demo are provided in the supplementary material.
Authors:Yining Hong, Beide Liu, Maxine Wu, Yuanhao Zhai, Kai-Wei Chang, Linjie Li, Kevin Lin, Chung-Ching Lin, Jianfeng Wang, Zhengyuan Yang, Yingnian Wu, Lijuan Wang
Abstract:
Human beings are endowed with a complementary learning system, which bridges the slow learning of general world dynamics with fast storage of episodic memory from a new experience. Previous video generation models, however, primarily focus on slow learning by pre-training on vast amounts of data, overlooking the fast learning phase crucial for episodic memory storage. This oversight leads to inconsistencies across temporally distant frames when generating longer videos, as these frames fall beyond the model's context window. To this end, we introduce SlowFast-VGen, a novel dual-speed learning system for action-driven long video generation. Our approach incorporates a masked conditional video diffusion model for the slow learning of world dynamics, alongside an inference-time fast learning strategy based on a temporal LoRA module. Specifically, the fast learning process updates its temporal LoRA parameters based on local inputs and outputs, thereby efficiently storing episodic memory in its parameters. We further propose a slow-fast learning loop algorithm that seamlessly integrates the inner fast learning loop into the outer slow learning loop, enabling the recall of prior multi-episode experiences for context-aware skill learning. To facilitate the slow learning of an approximate world model, we collect a large-scale dataset of 200k videos with language action annotations, covering a wide range of scenarios. Extensive experiments show that SlowFast-VGen outperforms baselines across various metrics for action-driven video generation, achieving an FVD score of 514 compared to 782, and maintaining consistency in longer videos, with an average of 0.37 scene cuts versus 0.89. The slow-fast learning loop algorithm significantly enhances performances on long-horizon planning tasks as well. Project Website: https://slowfast-vgen.github.io
Authors:Xiaowei Chi, Peidong Jia, Chun-Kai Fan, Xiaozhu Ju, Weishi Mi, Kevin Zhang, Zhiyuan Qin, Wanxin Tian, Kuangzhi Ge, Hao Li, Zezhong Qian, Anthony Chen, Qiang Zhou, Yueru Jia, Jiaming Liu, Yong Dai, Qingpo Wuwu, Chengyu Bai, Yu-Kai Wang, Ying Li, Lizhang Chen, Yong Bao, Zhiyuan Jiang, Jiacheng Zhu, Kai Tang, Ruichuan An, Yulin Luo, Qiuxuan Feng, Siyuan Zhou, Chi-min Chan, Chengkai Hou, Wei Xue, Sirui Han, Yike Guo, Shanghang Zhang, Jian Tang
Abstract:
Humans develop an understanding of intuitive physics through active interaction with the world. This approach is in stark contrast to current video models, such as Sora, which rely on passive observation and therefore struggle with grasping physical causality. This observation leads to our central hypothesis: authentic physical intuition of the world model must be grounded in extensive, causally rich interactions with the real world. To test this hypothesis, we present WoW, a 14-billion-parameter generative world model trained on 2 million robot interaction trajectories. Our findings reveal that the model's understanding of physics is a probabilistic distribution of plausible outcomes, leading to stochastic instabilities and physical hallucinations. Furthermore, we demonstrate that this emergent capability can be actively constrained toward physical realism by SOPHIA, where vision-language model agents evaluate the DiT-generated output and guide its refinement by iteratively evolving the language instructions. In addition, a co-trained Inverse Dynamics Model translates these refined plans into executable robotic actions, thus closing the imagination-to-action loop. We establish WoWBench, a new benchmark focused on physical consistency and causal reasoning in video, where WoW achieves state-of-the-art performance in both human and autonomous evaluation, demonstrating strong ability in physical causality, collision dynamics, and object permanence. Our work provides systematic evidence that large-scale, real-world interaction is a cornerstone for developing physical intuition in AI. Models, data, and benchmarks will be open-sourced.
Authors:Xiaowei Chi, Kuangzhi Ge, Jiaming Liu, Siyuan Zhou, Peidong Jia, Zichen He, Yuzhen Liu, Tingguang Li, Lei Han, Sirui Han, Shanghang Zhang, Yike Guo
Abstract:
Video Generation Models (VGMs) have become powerful backbones for Vision-Language-Action (VLA) models, leveraging large-scale pretraining for robust dynamics modeling. However, current methods underutilize their distribution modeling capabilities for predicting future states. Two challenges hinder progress: integrating generative processes into feature learning is both technically and conceptually underdeveloped, and naive frame-by-frame video diffusion is computationally inefficient for real-time robotics. To address these, we propose Manipulate in Dream (MinD), a dual-system world model for real-time, risk-aware planning. MinD uses two asynchronous diffusion processes: a low-frequency visual generator (LoDiff) that predicts future scenes and a high-frequency diffusion policy (HiDiff) that outputs actions. Our key insight is that robotic policies do not require fully denoised frames but can rely on low-resolution latents generated in a single denoising step. To connect early predictions to actions, we introduce DiffMatcher, a video-action alignment module with a novel co-training strategy that synchronizes the two diffusion models. MinD achieves a 63% success rate on RL-Bench, 60% on real-world Franka tasks, and operates at 11.3 FPS, demonstrating the efficiency of single-step latent features for control signals. Furthermore, MinD identifies 74% of potential task failures in advance, providing real-time safety signals for monitoring and intervention. This work establishes a new paradigm for efficient and reliable robotic manipulation using generative world models.
Authors:Yuta Oshima, Yusuke Iwasawa, Masahiro Suzuki, Yutaka Matsuo, Hiroki Furuta
Abstract:
Video world models have attracted significant attention for their ability to produce high-fidelity future visual observations conditioned on past observations and navigation actions. Temporally- and spatially-consistent, long-term world modeling has been a long-standing problem, unresolved with even recent state-of-the-art models, due to the prohibitively expensive computational costs for long-context inputs. In this paper, we propose WorldPack, a video world model with efficient compressed memory, which significantly improves spatial consistency, fidelity, and quality in long-term generation despite much shorter context length. Our compressed memory consists of trajectory packing and memory retrieval; trajectory packing realizes high context efficiency, and memory retrieval maintains the consistency in rollouts and helps long-term generations that require spatial reasoning. Our performance is evaluated with LoopNav, a benchmark on Minecraft, specialized for the evaluation of long-term consistency, and we verify that WorldPack notably outperforms strong state-of-the-art models.
Authors:Liuhao Lin, Ke Li, Zihan Xu, Yuchen Shi, Yulei Qin, Yan Zhang, Xing Sun, Rongrong Ji
Abstract:
Current evaluation paradigms for large language models (LLMs) represent a critical blind spot in AI research--relying on opaque numerical metrics that conceal fundamental limitations in spatial reasoning while providing no intuitive understanding of model capabilities. This deficiency creates a dangerous disconnect between reported performance and practical abilities, particularly for applications requiring physical world understanding. We introduce LTD-Bench, a breakthrough benchmark that transforms LLM evaluation from abstract scores to directly observable visual outputs by requiring models to generate drawings through dot matrices or executable code. This approach makes spatial reasoning limitations immediately apparent even to non-experts, bridging the fundamental gap between statistical performance and intuitive assessment. LTD-Bench implements a comprehensive methodology with complementary generation tasks (testing spatial imagination) and recognition tasks (assessing spatial perception) across three progressively challenging difficulty levels, methodically evaluating both directions of the critical language-spatial mapping. Our extensive experiments with state-of-the-art models expose an alarming capability gap: even LLMs achieving impressive results on traditional benchmarks demonstrate profound deficiencies in establishing bidirectional mappings between language and spatial concept--a fundamental limitation that undermines their potential as genuine world models. Furthermore, LTD-Bench's visual outputs enable powerful diagnostic analysis, offering a potential approach to investigate model similarity.
Authors:Zhaoxi Chen, Tianqi Liu, Long Zhuo, Jiawei Ren, Zeng Tao, He Zhu, Fangzhou Hong, Liang Pan, Ziwei Liu
Abstract:
We present 4DNeX, the first feed-forward framework for generating 4D (i.e., dynamic 3D) scene representations from a single image. In contrast to existing methods that rely on computationally intensive optimization or require multi-frame video inputs, 4DNeX enables efficient, end-to-end image-to-4D generation by fine-tuning a pretrained video diffusion model. Specifically, 1) to alleviate the scarcity of 4D data, we construct 4DNeX-10M, a large-scale dataset with high-quality 4D annotations generated using advanced reconstruction approaches. 2) we introduce a unified 6D video representation that jointly models RGB and XYZ sequences, facilitating structured learning of both appearance and geometry. 3) we propose a set of simple yet effective adaptation strategies to repurpose pretrained video diffusion models for 4D modeling. 4DNeX produces high-quality dynamic point clouds that enable novel-view video synthesis. Extensive experiments demonstrate that 4DNeX outperforms existing 4D generation methods in efficiency and generalizability, offering a scalable solution for image-to-4D modeling and laying the foundation for generative 4D world models that simulate dynamic scene evolution.
Authors:Baorui Peng, Wenyao Zhang, Liang Xu, Zekun Qi, Jiazhao Zhang, Hongsi Liu, Wenjun Zeng, Xin Jin
Abstract:
Recently, video-based world models that learn to simulate the dynamics have gained increasing attention in robot learning. However, current approaches primarily emphasize visual generative quality while overlooking physical fidelity, dynamic consistency, and task logic, especially for contact-rich manipulation tasks, which limits their applicability to downstream tasks. To this end, we introduce ReWorld, a framework aimed to employ reinforcement learning to align the video-based embodied world models with physical realism, task completion capability, embodiment plausibility and visual quality. Specifically, we first construct a large-scale (~235K) video preference dataset and employ it to train a hierarchical reward model designed to capture multi-dimensional reward consistent with human preferences. We further propose a practical alignment algorithm that post-trains flow-based world models using this reward through a computationally efficient PPO-style algorithm. Comprehensive experiments and theoretical analysis demonstrate that ReWorld significantly improves the physical fidelity, logical coherence, embodiment and visual quality of generated rollouts, outperforming previous methods.
Authors:Qi Wang, Zhipeng Zhang, Baao Xie, Xin Jin, Yunbo Wang, Shiyu Wang, Liaomo Zheng, Xiaokang Yang, Wenjun Zeng
Abstract:
Training visual reinforcement learning (RL) in practical scenarios presents a significant challenge, $\textit{i.e.,}$ RL agents suffer from low sample efficiency in environments with variations. While various approaches have attempted to alleviate this issue by disentangled representation learning, these methods usually start learning from scratch without prior knowledge of the world. This paper, in contrast, tries to learn and understand underlying semantic variations from distracting videos via offline-to-online latent distillation and flexible disentanglement constraints. To enable effective cross-domain semantic knowledge transfer, we introduce an interpretable model-based RL framework, dubbed Disentangled World Models (DisWM). Specifically, we pretrain the action-free video prediction model offline with disentanglement regularization to extract semantic knowledge from distracting videos. The disentanglement capability of the pretrained model is then transferred to the world model through latent distillation. For finetuning in the online environment, we exploit the knowledge from the pretrained model and introduce a disentanglement constraint to the world model. During the adaptation phase, the incorporation of actions and rewards from online environment interactions enriches the diversity of the data, which in turn strengthens the disentangled representation learning. Experimental results validate the superiority of our approach on various benchmarks.
Authors:Hongbin Lin, Yiming Yang, Yifan Zhang, Chaoda Zheng, Jie Feng, Sheng Wang, Zhennan Wang, Shijia Chen, Boyang Wang, Yu Zhang, Xianming Liu, Shuguang Cui, Zhen Li
Abstract:
In autonomous driving, end-to-end planners learn scene representations from raw sensor data and utilize them to generate a motion plan or control actions. However, exclusive reliance on the current scene for motion planning may result in suboptimal responses in highly dynamic traffic environments where ego actions further alter the future scene. To model the evolution of future scenes, we leverage the World Model to represent how the ego vehicle and its environment interact and change over time, which entails complex reasoning. The Chain of Thought (CoT) offers a promising solution by forecasting a sequence of future thoughts that subsequently guide trajectory refinement. In this paper, we propose FutureX, a CoT-driven pipeline that enhances end-to-end planners to perform complex motion planning via future scene latent reasoning and trajectory refinement. Specifically, the Auto-think Switch examines the current scene and decides whether additional reasoning is required to yield a higher-quality motion plan. Once FutureX enters the Thinking mode, the Latent World Model conducts a CoT-guided rollout to predict future scene representation, enabling the Summarizer Module to further refine the motion plan. Otherwise, FutureX operates in an Instant mode to generate motion plans in a forward pass for relatively simple scenes. Extensive experiments demonstrate that FutureX enhances existing methods by producing more rational motion plans and fewer collisions without compromising efficiency, thereby achieving substantial overall performance gains, e.g., 6.2 PDMS improvement for TransFuser on NAVSIM. Code will be released.
Authors:Jialu Du, Guiyang Hou, Yihui Fu, Chen Wu, Wenqi Zhang, Yongliang Shen, Weiming Lu
Abstract:
While large language models (LLMs) excel in mathematical and code reasoning, we observe they struggle with social reasoning tasks, exhibiting cognitive confusion, logical inconsistencies, and conflation between objective world states and subjective belief states. Through deteiled analysis of DeepSeek-R1's reasoning trajectories, we find that LLMs frequently encounter reasoning impasses and tend to output contradictory terms like "tricky" and "confused" when processing scenarios with multiple participants and timelines, leading to erroneous reasoning or infinite loops. The core issue is their inability to disentangle objective reality from agents' subjective beliefs. To address this, we propose an adaptive world model-enhanced reasoning mechanism that constructs a dynamic textual world model to track entity states and temporal sequences. It dynamically monitors reasoning trajectories for confusion indicators and promptly intervenes by providing clear world state descriptions, helping models navigate through cognitive dilemmas. The mechanism mimics how humans use implicit world models to distinguish between external events and internal beliefs. Evaluations on three social benchmarks demonstrate significant improvements in accuracy (e.g., +10% in Hi-ToM) while reducing computational costs (up to 33.8% token reduction), offering a simple yet effective solution for deploying LLMs in social contexts.
Authors:Yiming Yang, Hongbin Lin, Yueru Luo, Suzhong Fu, Chao Zheng, Xinrui Yan, Shuqi Mei, Kun Tang, Shuguang Cui, Zhen Li
Abstract:
Lane segment topology reasoning provides comprehensive bird's-eye view (BEV) road scene understanding, which can serve as a key perception module in planning-oriented end-to-end autonomous driving systems. Existing lane topology reasoning methods often fall short in effectively leveraging temporal information to enhance detection and reasoning performance. Recently, stream-based temporal propagation method has demonstrated promising results by incorporating temporal cues at both the query and BEV levels. However, it remains limited by over-reliance on historical queries, vulnerability to pose estimation failures, and insufficient temporal propagation. To overcome these limitations, we propose FASTopoWM, a novel fast-slow lane segment topology reasoning framework augmented with latent world models. To reduce the impact of pose estimation failures, this unified framework enables parallel supervision of both historical and newly initialized queries, facilitating mutual reinforcement between the fast and slow systems. Furthermore, we introduce latent query and BEV world models conditioned on the action latent to propagate the state representations from past observations to the current timestep. This design substantially improves the performance of temporal perception within the slow pipeline. Extensive experiments on the OpenLane-V2 benchmark demonstrate that FASTopoWM outperforms state-of-the-art methods in both lane segment detection (37.4% v.s. 33.6% on mAP) and centerline perception (46.3% v.s. 41.5% on OLS).
Authors:Longfei Li, Zhiwen Fan, Wenyan Cong, Xinhang Liu, Yuyang Yin, Matt Foutter, Panwang Pan, Chenyu You, Yue Wang, Zhangyang Wang, Yao Zhao, Marco Pavone, Yunchao Wei
Abstract:
Synthesizing realistic Martian landscape videos is crucial for mission rehearsal and robotic simulation. However, this task poses unique challenges due to the scarcity of high-quality Martian data and the significant domain gap between Martian and terrestrial imagery. To address these challenges, we propose a holistic solution composed of two key components: 1) A data curation pipeline Multimodal Mars Synthesis (M3arsSynth), which reconstructs 3D Martian environments from real stereo navigation images, sourced from NASA's Planetary Data System (PDS), and renders high-fidelity multiview 3D video sequences. 2) A Martian terrain video generator, MarsGen, which synthesizes novel videos visually realistic and geometrically consistent with the 3D structure encoded in the data. Our M3arsSynth engine spans a wide range of Martian terrains and acquisition dates, enabling the generation of physically accurate 3D surface models at metric-scale resolution. MarsGen, fine-tuned on M3arsSynth data, synthesizes videos conditioned on an initial image frame and, optionally, camera trajectories or textual prompts, allowing for video generation in novel environments. Experimental results show that our approach outperforms video synthesis models trained on terrestrial datasets, achieving superior visual fidelity and 3D structural consistency.
Authors:Haiming Zhang, Ying Xue, Xu Yan, Jiacheng Zhang, Weichao Qiu, Dongfeng Bai, Bingbing Liu, Shuguang Cui, Zhen Li
Abstract:
The field of autonomous driving is experiencing a surge of interest in world models, which aim to predict potential future scenarios based on historical observations. In this paper, we introduce DFIT-OccWorld, an efficient 3D occupancy world model that leverages decoupled dynamic flow and image-assisted training strategy, substantially improving 4D scene forecasting performance. To simplify the training process, we discard the previous two-stage training strategy and innovatively reformulate the occupancy forecasting problem as a decoupled voxels warping process. Our model forecasts future dynamic voxels by warping existing observations using voxel flow, whereas static voxels are easily obtained through pose transformation. Moreover, our method incorporates an image-assisted training paradigm to enhance prediction reliability. Specifically, differentiable volume rendering is adopted to generate rendered depth maps through predicted future volumes, which are adopted in render-based photometric consistency. Experiments demonstrate the effectiveness of our approach, showcasing its state-of-the-art performance on the nuScenes and OpenScene benchmarks for 4D occupancy forecasting, end-to-end motion planning and point cloud forecasting. Concretely, it achieves state-of-the-art performances compared to existing 3D world models while incurring substantially lower computational costs.
Authors:Dacheng Li, Yunhao Fang, Yukang Chen, Shuo Yang, Shiyi Cao, Justin Wong, Michael Luo, Xiaolong Wang, Hongxu Yin, Joseph E. Gonzalez, Ion Stoica, Song Han, Yao Lu
Abstract:
Video generation models have rapidly progressed, positioning themselves as video world models capable of supporting decision-making applications like robotics and autonomous driving. However, current benchmarks fail to rigorously evaluate these claims, focusing only on general video quality, ignoring important factors to world models such as physics adherence. To bridge this gap, we propose WorldModelBench, a benchmark designed to evaluate the world modeling capabilities of video generation models in application-driven domains. WorldModelBench offers two key advantages: (1) Against to nuanced world modeling violations: By incorporating instruction-following and physics-adherence dimensions, WorldModelBench detects subtle violations, such as irregular changes in object size that breach the mass conservation law - issues overlooked by prior benchmarks. (2) Aligned with large-scale human preferences: We crowd-source 67K human labels to accurately measure 14 frontier models. Using our high-quality human labels, we further fine-tune an accurate judger to automate the evaluation procedure, achieving 8.6% higher average accuracy in predicting world modeling violations than GPT-4o with 2B parameters. In addition, we demonstrate that training to align human annotations by maximizing the rewards from the judger noticeably improve the world modeling capability. The website is available at https://worldmodelbench-team.github.io.
Authors:Feibo Jiang, Cunhua Pan, Li Dong, Kezhi Wang, Merouane Debbah, Dusit Niyato, Zhu Han
Abstract:
The 6G wireless communications aim to establish an intelligent world of ubiquitous connectivity, providing an unprecedented communication experience. Large artificial intelligence models (LAMs) are characterized by significantly larger scales (e.g., billions or trillions of parameters) compared to typical artificial intelligence (AI) models. LAMs exhibit outstanding cognitive abilities, including strong generalization capabilities for fine-tuning to downstream tasks, and emergent capabilities to handle tasks unseen during training. Therefore, LAMs efficiently provide AI services for diverse communication applications, making them crucial tools for addressing complex challenges in future wireless communication systems. This study provides a comprehensive review of the foundations, applications, and challenges of LAMs in communication. First, we introduce the current state of AI-based communication systems, emphasizing the motivation behind integrating LAMs into communications and summarizing the key contributions. We then present an overview of the essential concepts of LAMs in communication. This includes an introduction to the main architectures of LAMs, such as transformer, diffusion models, and mamba. We also explore the classification of LAMs, including large language models (LLMs), large vision models (LVMs), large multimodal models (LMMs), and world models, and examine their potential applications in communication. Additionally, we cover the training methods and evaluation techniques for LAMs in communication systems. Lastly, we introduce optimization strategies such as chain of thought (CoT), retrieval augmented generation (RAG), and agentic systems. Following this, we discuss the research advancements of LAMs across various communication scenarios. Finally, we analyze the challenges in the current research and provide insights into potential future research directions.
Authors:Xiaowei Chi, Chun-Kai Fan, Hengyuan Zhang, Xingqun Qi, Rongyu Zhang, Anthony Chen, Chi-min Chan, Wei Xue, Qifeng Liu, Shanghang Zhang, Yike Guo
Abstract:
Video generation models have made significant progress in simulating future states, showcasing their potential as world simulators in embodied scenarios. However, existing models often lack robust understanding, limiting their ability to perform multi-step predictions or handle Out-of-Distribution (OOD) scenarios. To address this challenge, we propose the Reflection of Generation (RoG), a set of intermediate reasoning strategies designed to enhance video prediction. It leverages the complementary strengths of pre-trained vision-language and video generation models, enabling them to function as a world model in embodied scenarios. To support RoG, we introduce Embodied Video Anticipation Benchmark(EVA-Bench), a comprehensive benchmark that evaluates embodied world models across diverse tasks and scenarios, utilizing both in-domain and OOD datasets. Building on this foundation, we devise a world model, Embodied Video Anticipator (EVA), that follows a multistage training paradigm to generate high-fidelity video frames and apply an autoregressive strategy to enable adaptive generalization for longer video sequences. Extensive experiments demonstrate the efficacy of EVA in various downstream tasks like video generation and robotics, thereby paving the way for large-scale pre-trained models in real-world video prediction applications. The video demos are available at \hyperlink{https://sites.google.com/view/icml-eva}{https://sites.google.com/view/icml-eva}.
Authors:Luozhou Wang, Zhifei Chen, Yihua Du, Dongyu Yan, Wenhang Ge, Guibao Shen, Xinli Xu, Leyi Wu, Man Chen, Tianshuo Xu, Peiran Ren, Xin Tao, Pengfei Wan, Ying-Cong Chen
Abstract:
Large-scale video generation models have demonstrated emergent physical coherence, positioning them as potential world models. However, a gap remains between contemporary "stateless" video architectures and classic state-centric world model theories. This work bridges this gap by proposing a novel taxonomy centered on two pillars: State Construction and Dynamics Modeling. We categorize state construction into implicit paradigms (context management) and explicit paradigms (latent compression), while dynamics modeling is analyzed through knowledge integration and architectural reformulation. Furthermore, we advocate for a transition in evaluation from visual fidelity to functional benchmarks, testing physical persistence and causal reasoning. We conclude by identifying two critical frontiers: enhancing persistence via data-driven memory and compressed fidelity, and advancing causality through latent factor decoupling and reasoning-prior integration. By addressing these challenges, the field can evolve from generating visually plausible videos to building robust, general-purpose world simulators.
Authors:Yu-Wei Zhan, Xin Wang, Pengzhe Mao, Tongtong Feng, Ren Wang, Wenwu Zhu
Abstract:
Building generalist embodied agents requires a unified system that can interpret multimodal goals, model environment dynamics, and execute reliable actions across diverse real-world tasks. Multimodal large language models (MLLMs) offer strong semantic priors and cross-modal generalization, while world models (WMs) provide actionable latent dynamics for prediction and control. Their combination holds promise for open-ended embodied intelligence, yet introduces two key challenges: (1) establishing a tight coupling between the semantic intent from MLLMs and the dynamic state representations within the WM's latent space, and (2) achieving task-aware adaptability that supports multi-task learning and cross-environment generalization. To address these limitations, we propose BiTAgent, a task-aware dynamic joint framework that enables bidirectional coupling between MLLMs and WMs. BiTAgent establishes two complementary pathways: a forward path that injects MLLM representations into the WM's latent space for semantically guided imagination, and a backward path where WM-generated feedback refines the MLLM's semantic space via dense text-conditioned rewards. This bidirectional interaction is realized through three synergistic components: Task-Aware Dynamic Joint Learning, Task-Aware Behavior Learning, and MLLM-WM Joint Optimization, which together harmonize semantic reasoning and dynamic prediction. Extensive experiments across multi-task and cross-environment settings demonstrate superior stability and generalization over state-of-the-art baselines, marking a step toward open-ended embodied learning.
Authors:Tongtong Feng, Xin Wang, Yu-Gang Jiang, Wenwu Zhu
Abstract:
Embodied Artificial Intelligence (AI) is an intelligent system paradigm for achieving Artificial General Intelligence (AGI), serving as the cornerstone for various applications and driving the evolution from cyberspace to physical systems. Recent breakthroughs in Large Language Models (LLMs) and World Models (WMs) have drawn significant attention for embodied AI. On the one hand, LLMs empower embodied AI via semantic reasoning and task decomposition, bringing high-level natural language instructions and low-level natural language actions into embodied cognition. On the other hand, WMs empower embodied AI by building internal representations and future predictions of the external world, facilitating physical law-compliant embodied interactions. As such, this paper comprehensively explores the literature in embodied AI from basics to advances, covering both LLM driven and WM driven works. In particular, we first present the history, key technologies, key components, and hardware systems of embodied AI, as well as discuss its development via looking from unimodal to multimodal angle. We then scrutinize the two burgeoning fields of embodied AI, i.e., embodied AI with LLMs/multimodal LLMs (MLLMs) and embodied AI with WMs, meticulously delineating their indispensable roles in end-to-end embodied cognition and physical laws-driven embodied interactions. Building upon the above advances, we further share our insights on the necessity of the joint MLLM-WM driven embodied AI architecture, shedding light on its profound significance in enabling complex tasks within physical worlds. In addition, we examine representative applications of embodied AI, demonstrating its wide applicability in real-world scenarios. Last but not least, we point out future research directions of embodied AI that deserve further investigation.
Authors:Tongtong Feng, Xin Wang, Zekai Zhou, Ren Wang, Yuwei Zhan, Guangyao Li, Qing Li, Wenwu Zhu
Abstract:
Completing Long-Horizon (LH) tasks in open-ended worlds is an important yet difficult problem for embodied agents. Existing approaches suffer from two key challenges: (1) they heavily rely on experiences obtained from human-created data or curricula, lacking the ability to continuously update multimodal experiences, and (2) they may encounter catastrophic forgetting issues when faced with new tasks, lacking the ability to continuously update world knowledge. To solve these challenges, this paper presents EvoAgent, an autonomous-evolving agent with a continual World Model (WM), which can autonomously complete various LH tasks across environments through self-planning, self-control, and self-reflection, without human intervention. Our proposed EvoAgent contains three modules, i.e., i) the memory-driven planner which uses an LLM along with the WM and interaction memory, to convert LH tasks into executable sub-tasks; ii) the WM-guided action controller which leverages WM to generate low-level actions and incorporates a self-verification mechanism to update multimodal experiences; iii) the experience-inspired reflector which implements a two-stage curriculum learning algorithm to select experiences for task-adaptive WM updates. Moreover, we develop a continual World Model for EvoAgent, which can continuously update the multimodal experience pool and world knowledge through closed-loop dynamics. We conducted extensive experiments on Minecraft, compared with existing methods, EvoAgent can achieve an average success rate improvement of 105% and reduce ineffective actions by more than 6x.
Authors:Raktim Gautam Goswami, Amir Bar, David Fan, Tsung-Yen Yang, Gaoyue Zhou, Prashanth Krishnamurthy, Michael Rabbat, Farshad Khorrami, Yann LeCun
Abstract:
Dexterous manipulation is challenging because it requires understanding how subtle hand motion influences the environment through contact with objects. We introduce DexWM, a Dexterous Manipulation World Model that predicts the next latent state of the environment conditioned on past states and dexterous actions. To overcome the scarcity of dexterous manipulation datasets, DexWM is trained on over 900 hours of human and non-dexterous robot videos. To enable fine-grained dexterity, we find that predicting visual features alone is insufficient; therefore, we introduce an auxiliary hand consistency loss that enforces accurate hand configurations. DexWM outperforms prior world models conditioned on text, navigation, and full-body actions, achieving more accurate predictions of future states. DexWM also demonstrates strong zero-shot generalization to unseen manipulation skills when deployed on a Franka Panda arm equipped with an Allegro gripper, outperforming Diffusion Policy by over 50% on average in grasping, placing, and reaching tasks.
Authors:Yiming Li, Shuo Shao, Yu He, Junfeng Guo, Tianwei Zhang, Zhan Qin, Pin-Yu Chen, Michael Backes, Philip Torr, Dacheng Tao, Kui Ren
Abstract:
The (generative) artificial intelligence (AI) era has profoundly reshaped the meaning and value of data. No longer confined to static content, data now permeates every stage of the AI lifecycle from the training samples that shape model parameters to the prompts and outputs that drive real-world model deployment. This shift renders traditional notions of data protection insufficient, while the boundaries of what needs safeguarding remain poorly defined. Failing to safeguard data in AI systems can inflict societal and individual, underscoring the urgent need to clearly delineate the scope of and rigorously enforce data protection. In this perspective, we propose a four-level taxonomy, including non-usability, privacy preservation, traceability, and deletability, that captures the diverse protection needs arising in modern (generative) AI models and systems. Our framework offers a structured understanding of the trade-offs between data utility and control, spanning the entire AI pipeline, including training datasets, model weights, system prompts, and AI-generated content. We analyze representative technical approaches at each level and reveal regulatory blind spots that leave critical assets exposed. By offering a structured lens to align future AI technologies and governance with trustworthy data practices, we underscore the urgency of rethinking data protection for modern AI techniques and provide timely guidance for developers, researchers, and regulators alike.
Authors:Raktim Gautam Goswami, Prashanth Krishnamurthy, Yann LeCun, Farshad Khorrami
Abstract:
Visual imitation learning enables robotic agents to acquire skills by observing expert demonstration videos. In the one-shot setting, the agent generates a policy after observing a single expert demonstration without additional fine-tuning. Existing approaches typically train and evaluate on the same set of tasks, varying only object configurations, and struggle to generalize to unseen tasks with different semantic or structural requirements. While some recent methods attempt to address this, they exhibit low success rates on hard test tasks that, despite being visually similar to some training tasks, differ in context and require distinct responses. Additionally, most existing methods lack an explicit model of environment dynamics, limiting their ability to reason about future states. To address these limitations, we propose a novel framework for one-shot visual imitation learning via world-model-guided trajectory generation. Given an expert demonstration video and the agent's initial observation, our method leverages a learned world model to predict a sequence of latent states and actions. This latent trajectory is then decoded into physical waypoints that guide the agent's execution. Our method is evaluated on two simulated benchmarks and three real-world robotic platforms, where it consistently outperforms prior approaches, with over 30% improvement in some cases.
Authors:Youpeng Wen, Junfan Lin, Yi Zhu, Jianhua Han, Hang Xu, Shen Zhao, Xiaodan Liang
Abstract:
Recent advancements utilizing large-scale video data for learning video generation models demonstrate significant potential in understanding complex physical dynamics. It suggests the feasibility of leveraging diverse robot trajectory data to develop a unified, dynamics-aware model to enhance robot manipulation. However, given the relatively small amount of available robot data, directly fitting data without considering the relationship between visual observations and actions could lead to suboptimal data utilization. To this end, we propose VidMan (Video Diffusion for Robot Manipulation), a novel framework that employs a two-stage training mechanism inspired by dual-process theory from neuroscience to enhance stability and improve data utilization efficiency. Specifically, in the first stage, VidMan is pre-trained on the Open X-Embodiment dataset (OXE) for predicting future visual trajectories in a video denoising diffusion manner, enabling the model to develop a long horizontal awareness of the environment's dynamics. In the second stage, a flexible yet effective layer-wise self-attention adapter is introduced to transform VidMan into an efficient inverse dynamics model that predicts action modulated by the implicit dynamics knowledge via parameter sharing. Our VidMan framework outperforms state-of-the-art baseline model GR-1 on the CALVIN benchmark, achieving a 11.7% relative improvement, and demonstrates over 9% precision gains on the OXE small-scale dataset. These results provide compelling evidence that world models can significantly enhance the precision of robot action prediction. Codes and models will be public.
Authors:Kaidong Zhang, Pengzhen Ren, Bingqian Lin, Junfan Lin, Shikui Ma, Hang Xu, Xiaodan Liang
Abstract:
Language-guided robotic manipulation is a challenging task that requires an embodied agent to follow abstract user instructions to accomplish various complex manipulation tasks. Previous work trivially fitting the data without revealing the relation between instruction and low-level executable actions, these models are prone to memorizing the surficial pattern of the data instead of acquiring the transferable knowledge, and thus are fragile to dynamic environment changes. To address this issue, we propose a PrIrmitive-driVen waypOinT-aware world model for Robotic manipulation (PIVOT-R) that focuses solely on the prediction of task-relevant waypoints. Specifically, PIVOT-R consists of a Waypoint-aware World Model (WAWM) and a lightweight action prediction module. The former performs primitive action parsing and primitive-driven waypoint prediction, while the latter focuses on decoding low-level actions. Additionally, we also design an asynchronous hierarchical executor (AHE), which can use different execution frequencies for different modules of the model, thereby helping the model reduce computational redundancy and improve model execution efficiency. Our PIVOT-R outperforms state-of-the-art (SoTA) open-source models on the SeaWave benchmark, achieving an average relative improvement of 19.45% across four levels of instruction tasks. Moreover, compared to the synchronously executed PIVOT-R, the execution efficiency of PIVOT-R with AHE is increased by 28-fold, with only a 2.9% drop in performance. These results provide compelling evidence that our PIVOT-R can significantly improve both the performance and efficiency of robotic manipulation.
Authors:Tairan Huang, Yulin Jin, Junxu Liu, Qingqing Ye, Haibo Hu
Abstract:
Visual reinforcement learning has achieved remarkable progress in visual control and robotics, but its vulnerability to adversarial perturbations remains underexplored. Most existing black-box attacks focus on vector-based or discrete-action RL, and their effectiveness on image-based continuous control is limited by the large action space and excessive environment queries. We propose SEBA, a sample-efficient framework for black-box adversarial attacks on visual RL agents. SEBA integrates a shadow Q model that estimates cumulative rewards under adversarial conditions, a generative adversarial network that produces visually imperceptible perturbations, and a world model that simulates environment dynamics to reduce real-world queries. Through a two-stage iterative training procedure that alternates between learning the shadow model and refining the generator, SEBA achieves strong attack performance while maintaining efficiency. Experiments on MuJoCo and Atari benchmarks show that SEBA significantly reduces cumulative rewards, preserves visual fidelity, and greatly decreases environment interactions compared to prior black-box and white-box methods.
Authors:Nan Zhou, Huandong Wang, Jiahao Li, Yang Li, Xiao-Ping Zhang, Yong Li, Xinlei Chen
Abstract:
Fine-grained fire prediction plays a crucial role in emergency response. Infrared images and fire masks provide complementary thermal and boundary information, yet current methods are predominantly limited to binary mask modeling with inherent signal sparsity, failing to capture the complex dynamics of fire. While world models show promise in video generation, their physical inconsistencies pose significant challenges for fire forecasting. This paper introduces PhysFire-WM, a Physics-informed World Model for emulating Fire spread dynamics. Our approach internalizes combustion dynamics by encoding structured priors from a Physical Simulator to rectify physical discrepancies, coupled with a Cross-task Collaborative Training strategy (CC-Train) that alleviates the issue of limited information in mask-based modeling. Through parameter sharing and gradient coordination, CC-Train effectively integrates thermal radiation dynamics and spatial boundary delineation, enhancing both physical realism and geometric accuracy. Extensive experiments on a fine-grained multimodal fire dataset demonstrate the superior accuracy of PhysFire-WM in fire spread prediction. Validation underscores the importance of physical priors and cross-task collaboration, providing new insights for applying physics-informed world models to disaster prediction.
Authors:Chenting Wang, Yuhan Zhu, Yicheng Xu, Jiange Yang, Ziang Yan, Yali Wang, Yi Wang, Limin Wang
Abstract:
Large-scale video-text pretraining achieves strong performance but depends on noisy, synthetic captions with limited semantic coverage, often overlooking implicit world knowledge such as object motion, 3D geometry, and physical cues. In contrast, masked video modeling (MVM) directly exploits spatiotemporal structures but trails text-supervised methods on general tasks. We find this gap arises from overlooked architectural issues: pixel-level reconstruction struggles with convergence and its low-level requirement often conflicts with semantics, while latent prediction often encourages shortcut learning. To address these, we disentangle the traditional encoder-decoder design into an Encoder-Predictor-Decoder (EPD) framework, where the predictor acts as a latent world model, and propose InternVideo-Next, a two-stage pretraining scheme that builds a semantically consistent yet detail-preserving latent space for this world model. First, conventional linear decoder in pixel MVM enforces the predictor output latent to be linearly projected to, thus separable in pixel space, causing the conflict with semantic abstraction. Our Stage 1 proposes a conditional diffusion decoder and injects reliable image-level semantic priors to enhance semantics and convergence, thus bridging pixel-level fidelity with high-level semantic abstraction. Stage 2 further learns world knowledge by predicting frozen Stage 1 targets within this space, mitigating shortcut learning. Trained on public, unlabeled videos, InternVideo-Next achieves state-of-the-art results across benchmarks and provides a scalable path toward general video representation learning.
Authors:Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu Gou, Tianci Xue, Cheng Chang, Sanjari Srivastava, Yanan Xie, Peng Qi, Huan Sun, Yu Su
Abstract:
Language agents based on large language models (LLMs) have demonstrated great promise in automating web-based tasks. Recent work has shown that incorporating advanced planning algorithms, e.g., tree search, is advantageous over reactive planning for web agents. However, unlike simulated sandbox environments, real-world environments such as the web are rife with irreversible actions. This undermines the feasibility of backtracking, a cornerstone of (tree) search. Overly relying on test-time search also hurts efficiency. We advocate model-based planning for web agents that employs a world model to simulate and deliberate over the outcome of each candidate action before committing to one. We systematically explore this paradigm by (1) Proposing a model-based planning framework, WebDreamer, which employs LLMs to serve as both world models and value functions; (2) Training specialized LLMs as world models with a scalable data synthesis pipeline. Empirical results demonstrate that WebDreamer achieves substantial performance improvements over reactive baselines. It is competitive, while being 4-5 times more efficient, with tree search in sandbox environments (VisualWebArena) and also works effectively on real-world websites (Online-Mind2Web and Mind2Web-Live). Furthermore, our trained world model, Dreamer-7B, performs comparable to GPT-4o, highlighting the potential of specialized world models for efficient and effective planning in complex web environments.
Authors:Peiwen Jiang, Jiajia Guo, Chao-Kai Wen, Shi Jin, Jun Zhang
Abstract:
Semantic communication is a promising technique for emerging wireless applications, which reduces transmission overhead by transmitting only task-relevant features instead of raw data. However, existing methods struggle under extremely low bandwidth and varying channel conditions, where corrupted or missing semantics lead to severe reconstruction errors. To resolve this difficulty, we propose a world foundation model (WFM)-aided semantic video transmission framework that leverages the predictive capability of WFMs to generate future frames based on the current frame and textual guidance. This design allows transmissions to be omitted when predictions remain reliable, thereby saving bandwidth. Through WFM's prediction, the key semantics are preserved, yet minor prediction errors tend to amplify over time. To mitigate issue, a lightweight depth-based feedback module is introduced to determine whether transmission of the current frame is needed. Apart from transmitting the entire frame, a segmentation-assisted partial transmission method is proposed to repair degraded frames, which can further balance performance and bandwidth cost. Furthermore, an active transmission strategy is developed for mobile scenarios by exploiting camera trajectory information and proactively scheduling transmissions before channel quality deteriorates. Simulation results show that the proposed framework significantly reduces transmission overhead while maintaining task performances across varying scenarios and channel conditions.
Authors:Jianbiao Mei, Yu Yang, Xuemeng Yang, Licheng Wen, Jiajun Lv, Botian Shi, Yong Liu
Abstract:
End-to-end autonomous driving systems increasingly rely on vision-centric world models to understand and predict their environment. However, a common ineffectiveness in these models is the full reconstruction of future scenes, which expends significant capacity on redundantly modeling static backgrounds. To address this, we propose IR-WM, an Implicit Residual World Model that focuses on modeling the current state and evolution of the world. IR-WM first establishes a robust bird's-eye-view representation of the current state from the visual observation. It then leverages the BEV features from the previous timestep as a strong temporal prior and predicts only the "residual", i.e., the changes conditioned on the ego-vehicle's actions and scene context. To alleviate error accumulation over time, we further apply an alignment module to calibrate semantic and dynamic misalignments. Moreover, we investigate different forecasting-planning coupling schemes and demonstrate that the implicit future state generated by world models substantially improves planning accuracy. On the nuScenes benchmark, IR-WM achieves top performance in both 4D occupancy forecasting and trajectory planning.
Authors:Zichen Liu, Guoji Fu, Chao Du, Wee Sun Lee, Min Lin
Abstract:
Continual reinforcement learning (CRL) refers to a naturalistic setting where an agent needs to endlessly evolve, by trial and error, to solve multiple tasks that are presented sequentially. One of the largest obstacles to CRL is that the agent may forget how to solve previous tasks when learning a new task, known as catastrophic forgetting. In this paper, we propose to address this challenge by planning with online world models. Specifically, we learn a Follow-The-Leader shallow model online to capture the world dynamics, in which we plan using model predictive control to solve a set of tasks specified by any reward functions. The online world model is immune to forgetting by construction with a proven regret bound of $\mathcal{O}(\sqrt{K^2D\log(T)})$ under mild assumptions. The planner searches actions solely based on the latest online model, thus forming a FTL Online Agent (OA) that updates incrementally. To assess OA, we further design Continual Bench, a dedicated environment for CRL, and compare with several strong baselines under the same model-planning algorithmic framework. The empirical results show that OA learns continuously to solve new tasks while not forgetting old skills, outperforming agents built on deep world models with various continual learning techniques.
Authors:Bingyi Kang, Yang Yue, Rui Lu, Zhijie Lin, Yang Zhao, Kaixin Wang, Gao Huang, Jiashi Feng
Abstract:
OpenAI's Sora highlights the potential of video generation for developing world models that adhere to fundamental physical laws. However, the ability of video generation models to discover such laws purely from visual data without human priors can be questioned. A world model learning the true law should give predictions robust to nuances and correctly extrapolate on unseen scenarios. In this work, we evaluate across three key scenarios: in-distribution, out-of-distribution, and combinatorial generalization. We developed a 2D simulation testbed for object movement and collisions to generate videos deterministically governed by one or more classical mechanics laws. This provides an unlimited supply of data for large-scale experimentation and enables quantitative evaluation of whether the generated videos adhere to physical laws. We trained diffusion-based video generation models to predict object movements based on initial frames. Our scaling experiments show perfect generalization within the distribution, measurable scaling behavior for combinatorial generalization, but failure in out-of-distribution scenarios. Further experiments reveal two key insights about the generalization mechanisms of these models: (1) the models fail to abstract general physical rules and instead exhibit "case-based" generalization behavior, i.e., mimicking the closest training example; (2) when generalizing to new cases, models are observed to prioritize different factors when referencing training data: color > size > velocity > shape. Our study suggests that scaling alone is insufficient for video generation models to uncover fundamental physical laws, despite its role in Sora's broader success. See our project page at https://phyworld.github.io
Authors:Haoye Chai, Yuan Yuan, Yong Li
Abstract:
Accurate modeling and simulation of mobile networks are essential for enabling intelligent and cost-effective network optimization. In this paper, we propose MobiWorld, a generative world model designed to support high-fidelity and flexible environment simulation for mobile network planning and optimization. Unlike traditional predictive models constrained by limited generalization capabilities, MobiWorld exhibits strong universality by integrating heterogeneous data sources, including sensors, mobile devices, and base stations, as well as multimodal data types such as sequences and images. It is capable of generating both network element-level observations (e.g., traffic load, user distribution) and system-level performance indicators (e.g., throughput, energy consumption) to support a wide range of planning and optimization tasks. Built upon advanced diffusion models, MobiWorld offers powerful controllable generation capabilities by modeling the joint distribution between mobile network data and diverse conditional factors including spatio temporal contexts, user behaviors, and optimization policies. This enables accurate simulation of dynamic network states under varying policy configurations, providing optimization agents with precise environmental feedback and facilitating effective decision-making without relying on costly real-network interactions. We demonstrate the effectiveness of MobiWorld in a collaborative energy-saving scenario, where an agent uses observations and rewards generated by MobiWorld to optimize base station sleep and user offloading policies. Experimental results show that MobiWorld exhibits strong controllable generation performance and outperforms traditional methods in energy optimization.
Authors:Zhenjie Yang, Xiaosong Jia, Qifeng Li, Xue Yang, Maoqing Yao, Junchi Yan
Abstract:
Reinforcement Learning (RL) can mitigate the causal confusion and distribution shift inherent to imitation learning (IL). However, applying RL to end-to-end autonomous driving (E2E-AD) remains an open problem for its training difficulty, and IL is still the mainstream paradigm in both academia and industry. Recently Model-based Reinforcement Learning (MBRL) have demonstrated promising results in neural planning; however, these methods typically require privileged information as input rather than raw sensor data. We fill this gap by designing Raw2Drive, a dual-stream MBRL approach. Initially, we efficiently train an auxiliary privileged world model paired with a neural planner that uses privileged information as input. Subsequently, we introduce a raw sensor world model trained via our proposed Guidance Mechanism, which ensures consistency between the raw sensor world model and the privileged world model during rollouts. Finally, the raw sensor world model combines the prior knowledge embedded in the heads of the privileged world model to effectively guide the training of the raw sensor policy. Raw2Drive is so far the only RL based end-to-end method on CARLA Leaderboard 2.0, and Bench2Drive and it achieves state-of-the-art performance.
Authors:Shuhan Tan, Kashyap Chitta, Yuxiao Chen, Ran Tian, Yurong You, Yan Wang, Wenjie Luo, Yulong Cao, Philipp Krahenbuhl, Marco Pavone, Boris Ivanovic
Abstract:
Recent Vision-Language-Action (VLA) models for autonomous driving explore inference-time reasoning as a way to improve driving performance and safety in challenging scenarios. Most prior work uses natural language to express chain-of-thought (CoT) reasoning before producing driving actions. However, text may not be the most efficient representation for reasoning. In this work, we present Latent-CoT-Drive (LCDrive): a model that expresses CoT in a latent language that captures possible outcomes of the driving actions being considered. Our approach unifies CoT reasoning and decision making by representing both in an action-aligned latent space. Instead of natural language, the model reasons by interleaving (1) action-proposal tokens, which use the same vocabulary as the model's output actions; and (2) world model tokens, which are grounded in a learned latent world model and express future outcomes of these actions. We cold start latent CoT by supervising the model's action proposals and world model tokens based on ground-truth future rollouts of the scene. We then post-train with closed-loop reinforcement learning to strengthen reasoning capabilities. On a large-scale end-to-end driving benchmark, LCDrive achieves faster inference, better trajectory quality, and larger improvements from interactive reinforcement learning compared to both non-reasoning and text-reasoning baselines.
Authors:GigaWorld Team, Angen Ye, Boyuan Wang, Chaojun Ni, Guan Huang, Guosheng Zhao, Haoyun Li, Jiagang Zhu, Kerui Li, Mengyuan Xu, Qiuping Deng, Siting Wang, Wenkang Qin, Xinze Chen, Xiaofeng Wang, Yankai Wang, Yu Cao, Yifan Chang, Yuan Xu, Yun Ye, Yang Wang, Yukun Zhou, Zhengyuan Zhang, Zhehao Dong, Zheng Zhu
Abstract:
World models are emerging as a foundational paradigm for scalable, data-efficient embodied AI. In this work, we present GigaWorld-0, a unified world model framework designed explicitly as a data engine for Vision-Language-Action (VLA) learning. GigaWorld-0 integrates two synergistic components: GigaWorld-0-Video, which leverages large-scale video generation to produce diverse, texture-rich, and temporally coherent embodied sequences under fine-grained control of appearance, camera viewpoint, and action semantics; and GigaWorld-0-3D, which combines 3D generative modeling, 3D Gaussian Splatting reconstruction, physically differentiable system identification, and executable motion planning to ensure geometric consistency and physical realism. Their joint optimization enables the scalable synthesis of embodied interaction data that is visually compelling, spatially coherent, physically plausible, and instruction-aligned. Training at scale is made feasible through our efficient GigaTrain framework, which exploits FP8-precision and sparse attention to drastically reduce memory and compute requirements. We conduct comprehensive evaluations showing that GigaWorld-0 generates high-quality, diverse, and controllable data across multiple dimensions. Critically, VLA model (e.g., GigaBrain-0) trained on GigaWorld-0-generated data achieve strong real-world performance, significantly improving generalization and task success on physical robots without any real-world interaction during training.
Authors:GigaBrain Team, Angen Ye, Boyuan Wang, Chaojun Ni, Guan Huang, Guosheng Zhao, Haoyun Li, Jie Li, Jiagang Zhu, Lv Feng, Peng Li, Qiuping Deng, Runqi Ouyang, Wenkang Qin, Xinze Chen, Xiaofeng Wang, Yang Wang, Yifan Li, Yilong Li, Yiran Ding, Yuan Xu, Yun Ye, Yukun Zhou, Zhehao Dong, Zhenan Wang, Zhichao Liu, Zheng Zhu
Abstract:
Training Vision-Language-Action (VLA) models for generalist robots typically requires large-scale real-world robot data, which is expensive and time-consuming to collect. The inefficiency of physical data collection severely limits the scalability, and generalization capacity of current VLA systems. To address this challenge, we introduce GigaBrain-0, a novel VLA foundation model empowered by world model-generated data (e.g., video generation, real2real transfer, human transfer, view transfer, sim2real transfer data). By leveraging world models to generate diverse data at scale, GigaBrain-0 significantly reduces reliance on real robot data while improving cross-task generalization. Our approach further improves policy robustness through RGBD input modeling and embodied Chain-of-Thought (CoT) supervision, enabling the model to reason about spatial geometry, object states, and long-horizon dependencies during task execution. This leads to substantial gains in real-world performance on dexterous, long-horizon, and mobile manipulation tasks. Extensive experiments demonstrate that GigaBrain-0 achieves superior generalization across variations in appearances (e.g., textures, colors), object placements, and camera viewpoints. Additionally, we present GigaBrain-0-Small, an optimized lightweight variant designed to run efficiently on devices such as the NVIDIA Jetson AGX Orin.
Authors:Hao Wu, Yuan Gao, Xingjian Shi, Shuaipeng Li, Fan Xu, Fan Zhang, Zhihong Zhu, Weiyan Wang, Xiao Luo, Kun Wang, Xian Wu, Xiaomeng Huang
Abstract:
To address the dual challenges of inherent stochasticity and non-differentiable metrics in physical spatiotemporal forecasting, we propose Spatiotemporal Forecasting as Planning (SFP), a new paradigm grounded in Model-Based Reinforcement Learning. SFP constructs a novel Generative World Model to simulate diverse, high-fidelity future states, enabling an "imagination-based" environmental simulation. Within this framework, a base forecasting model acts as an agent, guided by a beam search-based planning algorithm that leverages non-differentiable domain metrics as reward signals to explore high-return future sequences. These identified high-reward candidates then serve as pseudo-labels to continuously optimize the agent's policy through iterative self-training, significantly reducing prediction error and demonstrating exceptional performance on critical domain metrics like capturing extreme events.
Authors:Zhang Zhang, Qiang Zhang, Wei Cui, Shuai Shi, Yijie Guo, Gang Han, Wen Zhao, Jingkai Sun, Jiahang Cao, Jiaxu Wang, Hao Cheng, Xiaozhu Ju, Zhengping Che, Renjing Xu, Jian Tang
Abstract:
Understanding and forecasting the scene evolutions deeply affect the exploration and decision of embodied agents. While traditional methods simulate scene evolutions through trajectory prediction of potential instances, current works use the occupancy world model as a generative framework for describing fine-grained overall scene dynamics. However, existing methods cluster on the outdoor structured road scenes, while ignoring the exploration of forecasting 3D occupancy scene evolutions for robots in indoor scenes. In this work, we explore a new framework for learning the scene evolutions of observed fine-grained occupancy and propose an occupancy world model based on the combined spatio-temporal receptive field and guided autoregressive transformer to forecast the scene evolutions, called RoboOccWorld. We propose the Conditional Causal State Attention (CCSA), which utilizes camera poses of next state as conditions to guide the autoregressive transformer to adapt and understand the indoor robotics scenarios. In order to effectively exploit the spatio-temporal cues from historical observations, Hybrid Spatio-Temporal Aggregation (HSTA) is proposed to obtain the combined spatio-temporal receptive field based on multi-scale spatio-temporal windows. In addition, we restructure the OccWorld-ScanNet benchmark based on local annotations to facilitate the evaluation of the indoor 3D occupancy scene evolution prediction task. Experimental results demonstrate that our RoboOccWorld outperforms state-of-the-art methods in indoor 3D occupancy scene evolution prediction task. The code will be released soon.
Authors:Chaojun Ni, Guosheng Zhao, Xiaofeng Wang, Zheng Zhu, Wenkang Qin, Guan Huang, Chen Liu, Yuyin Chen, Yida Wang, Xueyang Zhang, Yifei Zhan, Kun Zhan, Peng Jia, Xianpeng Lang, Xingang Wang, Wenjun Mei
Abstract:
Closed-loop simulation is crucial for end-to-end autonomous driving. Existing sensor simulation methods (e.g., NeRF and 3DGS) reconstruct driving scenes based on conditions that closely mirror training data distributions. However, these methods struggle with rendering novel trajectories, such as lane changes. Recent works have demonstrated that integrating world model knowledge alleviates these issues. Despite their efficiency, these approaches still encounter difficulties in the accurate representation of more complex maneuvers, with multi-lane shifts being a notable example. Therefore, we introduce ReconDreamer, which enhances driving scene reconstruction through incremental integration of world model knowledge. Specifically, DriveRestorer is proposed to mitigate artifacts via online restoration. This is complemented by a progressive data update strategy designed to ensure high-quality rendering for more complex maneuvers. To the best of our knowledge, ReconDreamer is the first method to effectively render in large maneuvers. Experimental results demonstrate that ReconDreamer outperforms Street Gaussians in the NTA-IoU, NTL-IoU, and FID, with relative improvements by 24.87%, 6.72%, and 29.97%. Furthermore, ReconDreamer surpasses DriveDreamer4D with PVG during large maneuver rendering, as verified by a relative improvement of 195.87% in the NTA-IoU metric and a comprehensive user study.
Authors:Guosheng Zhao, Chaojun Ni, Xiaofeng Wang, Zheng Zhu, Xueyang Zhang, Yida Wang, Guan Huang, Xinze Chen, Boyuan Wang, Youyi Zhang, Wenjun Mei, Xingang Wang
Abstract:
Closed-loop simulation is essential for advancing end-to-end autonomous driving systems. Contemporary sensor simulation methods, such as NeRF and 3DGS, rely predominantly on conditions closely aligned with training data distributions, which are largely confined to forward-driving scenarios. Consequently, these methods face limitations when rendering complex maneuvers (e.g., lane change, acceleration, deceleration). Recent advancements in autonomous-driving world models have demonstrated the potential to generate diverse driving videos. However, these approaches remain constrained to 2D video generation, inherently lacking the spatiotemporal coherence required to capture intricacies of dynamic driving environments. In this paper, we introduce DriveDreamer4D, which enhances 4D driving scene representation leveraging world model priors. Specifically, we utilize the world model as a data machine to synthesize novel trajectory videos, where structured conditions are explicitly leveraged to control the spatial-temporal consistency of traffic elements. Besides, the cousin data training strategy is proposed to facilitate merging real and synthetic data for optimizing 4DGS. To our knowledge, DriveDreamer4D is the first to utilize video generation models for improving 4D reconstruction in driving scenarios. Experimental results reveal that DriveDreamer4D significantly enhances generation quality under novel trajectory views, achieving a relative improvement in FID by 32.1%, 46.4%, and 16.3% compared to PVG, S3Gaussian, and Deformable-GS. Moreover, DriveDreamer4D markedly enhances the spatiotemporal coherence of driving agents, which is verified by a comprehensive user study and the relative increases of 22.6%, 43.5%, and 15.6% in the NTA-IoU metric.
Authors:Ksheeraja Raghavan, Samiran Gode, Ankit Shah, Surabhi Raghavan, Wolfram Burgard, Bhiksha Raj, Rita Singh
Abstract:
We introduce a novel, general-purpose audio generation framework specifically designed for anomaly detection and localization. Unlike existing datasets that predominantly focus on industrial and machine-related sounds, our framework focuses a broader range of environments, particularly useful in real-world scenarios where only audio data are available, such as in video-derived or telephonic audio. To generate such data, we propose a new method inspired by the LLM-Modulo framework, which leverages large language models(LLMs) as world models to simulate such real-world scenarios. This tool is modular allowing a plug-and-play approach. It operates by first using LLMs to predict plausible real-world scenarios. An LLM further extracts the constituent sounds, the order and the way in which these should be merged to create coherent wholes. Much like the LLM-Modulo framework, we include rigorous verification of each output stage, ensuring the reliability of the generated data. The data produced using the framework serves as a benchmark for anomaly detection applications, potentially enhancing the performance of models trained on audio data, particularly in handling out-of-distribution cases. Our contributions thus fill a critical void in audio anomaly detection resources and provide a scalable tool for generating diverse, realistic audio data.
Authors:Guanxing Lu, Baoxiong Jia, Puhao Li, Yixin Chen, Ziwei Wang, Yansong Tang, Siyuan Huang
Abstract:
Training robot policies within a learned world model is trending due to the inefficiency of real-world interactions. The established image-based world models and policies have shown prior success, but lack robust geometric information that requires consistent spatial and physical understanding of the three-dimensional world, even pre-trained on internet-scale video sources. To this end, we propose a novel branch of world model named Gaussian World Model (GWM) for robotic manipulation, which reconstructs the future state by inferring the propagation of Gaussian primitives under the effect of robot actions. At its core is a latent Diffusion Transformer (DiT) combined with a 3D variational autoencoder, enabling fine-grained scene-level future state reconstruction with Gaussian Splatting. GWM can not only enhance the visual representation for imitation learning agent by self-supervised future prediction training, but can serve as a neural simulator that supports model-based reinforcement learning. Both simulated and real-world experiments depict that GWM can precisely predict future scenes conditioned on diverse robot actions, and can be further utilized to train policies that outperform the state-of-the-art by impressive margins, showcasing the initial data scaling potential of 3D world model.
Authors:Zhenyang Liu, Yikai Wang, Kuanning Wang, Longfei Liang, Xiangyang Xue, Yanwei Fu
Abstract:
Visual imitation learning is effective for robots to learn versatile tasks. However, many existing methods rely on behavior cloning with supervised historical trajectories, limiting their 3D spatial and 4D spatiotemporal awareness. Consequently, these methods struggle to capture the 3D structures and 4D spatiotemporal relationships necessary for real-world deployment. In this work, we propose 4D Diffusion Policy (DP4), a novel visual imitation learning method that incorporates spatiotemporal awareness into diffusion-based policies. Unlike traditional approaches that rely on trajectory cloning, DP4 leverages a dynamic Gaussian world model to guide the learning of 3D spatial and 4D spatiotemporal perceptions from interactive environments. Our method constructs the current 3D scene from a single-view RGB-D observation and predicts the future 3D scene, optimizing trajectory generation by explicitly modeling both spatial and temporal dependencies. Extensive experiments across 17 simulation tasks with 173 variants and 3 real-world robotic tasks demonstrate that the 4D Diffusion Policy (DP4) outperforms baseline methods, improving the average simulation task success rate by 16.4% (Adroit), 14% (DexArt), and 6.45% (RLBench), and the average real-world robotic task success rate by 8.6%.
Authors:Xiao Yu, Baolin Peng, Ruize Xu, Michel Galley, Hao Cheng, Suman Nath, Jianfeng Gao, Zhou Yu
Abstract:
Recent progress in reasoning with large language models (LLMs), such as DeepSeek-R1, demonstrates impressive capabilities in domains like mathematics and coding, by exhibiting complex cognitive behaviors such as verification, goal decomposition, and self-reflection. However, it is unclear what behavior is effective and what behavior is missing for long-horizon AI agents tasks. In this work, we propose Dyna-Think, a thinking framework that integrates planning with an internal world model with reasoning and acting to enhance AI agent performance. To enable Dyna-Think, we propose Dyna-Think Imitation Learning (DIT) and Dyna-Think Dyna Training (DDT). To initialize a policy with Dyna-Think, DIT reconstructs the thinking process of R1 to focus on performing world model simulation relevant to the proposed (and planned) action, and trains the policy using this reconstructed data. To enhance Dyna-Think, DDT uses a two-stage training process to first improve the agent's world modeling ability via objectives such as state prediction or critique generation, and then improve the agent's action via policy training. We evaluate our methods on OSWorld, and demonstrate that Dyna-Think improves the agent's in-domain and out-of-domain performance, achieving similar best-of-n performance compared to R1 while generating 2x less tokens on average. Our extensive empirical studies reveal that 1) using critique generation for world model training is effective to improve policy performance; and 2) AI agents with better performance correlate with better world modeling abilities. We believe our results suggest a promising research direction to integrate world model simulation into AI agents to enhance their reasoning, planning, and acting capabilities.
Authors:Haoran Geng, Feishi Wang, Songlin Wei, Yuyang Li, Bangjun Wang, Boshi An, Charlie Tianyue Cheng, Haozhe Lou, Peihao Li, Yen-Jen Wang, Yutong Liang, Dylan Goetting, Chaoyi Xu, Haozhe Chen, Yuxi Qian, Yiran Geng, Jiageng Mao, Weikang Wan, Mingtong Zhang, Jiangran Lyu, Siheng Zhao, Jiazhao Zhang, Jialiang Zhang, Chengyang Zhao, Haoran Lu, Yufei Ding, Ran Gong, Yuran Wang, Yuxuan Kuang, Ruihai Wu, Baoxiong Jia, Carlo Sferrazza, Hao Dong, Siyuan Huang, Yue Wang, Jitendra Malik, Pieter Abbeel
Abstract:
Data scaling and standardized evaluation benchmarks have driven significant advances in natural language processing and computer vision. However, robotics faces unique challenges in scaling data and establishing evaluation protocols. Collecting real-world data is resource-intensive and inefficient, while benchmarking in real-world scenarios remains highly complex. Synthetic data and simulation offer promising alternatives, yet existing efforts often fall short in data quality, diversity, and benchmark standardization. To address these challenges, we introduce RoboVerse, a comprehensive framework comprising a simulation platform, a synthetic dataset, and unified benchmarks. Our simulation platform supports multiple simulators and robotic embodiments, enabling seamless transitions between different environments. The synthetic dataset, featuring high-fidelity physics and photorealistic rendering, is constructed through multiple approaches. Additionally, we propose unified benchmarks for imitation learning and reinforcement learning, enabling evaluation across different levels of generalization. At the core of the simulation platform is MetaSim, an infrastructure that abstracts diverse simulation environments into a universal interface. It restructures existing simulation environments into a simulator-agnostic configuration system, as well as an API aligning different simulator functionalities, such as launching simulation environments, loading assets with initial states, stepping the physics engine, etc. This abstraction ensures interoperability and extensibility. Comprehensive experiments demonstrate that RoboVerse enhances the performance of imitation learning, reinforcement learning, world model learning, and sim-to-real transfer. These results validate the reliability of our dataset and benchmarks, establishing RoboVerse as a robust solution for advancing robot learning.
Authors:Zhiyu Zhao, Haoxuan Li, Haifeng Zhang, Jun Wang, Francesco Faccio, Jürgen Schmidhuber, Mengyue Yang
Abstract:
When building a world model, a common assumption is that the environment has a single, unchanging underlying causal rule, like applying Newton's laws to every situation. In reality, what appears as a drifting causal mechanism is often the manifestation of a fixed underlying mechanism seen through a narrow observational window. This brings about a problem that, when building a world model, even subtle shifts in policy or environment states can alter the very observed causal mechanisms. In this work, we introduce the \textbf{Meta-Causal Graph} as world models, a minimal unified representation that efficiently encodes the transformation rules governing how causal structures shift across different latent world states. A single Meta-Causal Graph is composed of multiple causal subgraphs, each triggered by meta state, which is in the latent state space. Building on this representation, we introduce a \textbf{Causality-Seeking Agent} whose objectives are to (1) identify the meta states that trigger each subgraph, (2) discover the corresponding causal relationships by agent curiosity-driven intervention policy, and (3) iteratively refine the Meta-Causal Graph through ongoing curiosity-driven exploration and agent experiences. Experiments on both synthetic tasks and a challenging robot arm manipulation task demonstrate that our method robustly captures shifts in causal dynamics and generalizes effectively to previously unseen contexts.
Authors:Cheng Qian, Emre Can Acikgoz, Bingxuan Li, Xiusi Chen, Yuji Zhang, Bingxiang He, Qinyu Luo, Dilek Hakkani-Tür, Gokhan Tur, Yunzhu Li, Heng Ji
Abstract:
Agents built on vision-language models increasingly face tasks that demand anticipating future states rather than relying on short-horizon reasoning. Generative world models offer a promising remedy: agents could use them as external simulators to foresee outcomes before acting. This paper empirically examines whether current agents can leverage such world models as tools to enhance their cognition. Across diverse agentic and visual question answering tasks, we observe that some agents rarely invoke simulation (fewer than 1%), frequently misuse predicted rollouts (approximately 15%), and often exhibit inconsistent or even degraded performance (up to 5%) when simulation is available or enforced. Attribution analysis further indicates that the primary bottleneck lies in the agents' capacity to decide when to simulate, how to interpret predicted outcomes, and how to integrate foresight into downstream reasoning. These findings underscore the need for mechanisms that foster calibrated, strategic interaction with world models, paving the way toward more reliable anticipatory cognition in future agent systems.
Authors:Yixia Li, Hongru Wang, Jiahao Qiu, Zhenfei Yin, Dongdong Zhang, Cheng Qian, Zeping Li, Pony Ma, Guanhua Chen, Heng Ji, Mengdi Wang
Abstract:
Agentic reinforcement learning increasingly relies on experience-driven scaling, yet real-world environments remain non-adaptive, limited in coverage, and difficult to scale. World models offer a potential way to improve learning efficiency through simulated experience, but it remains unclear whether large language models can reliably serve this role and under what conditions they meaningfully benefit agents. We study these questions in text-based environments, which provide a controlled setting to reinterpret language modeling as next-state prediction under interaction. We introduce a three-level framework for evaluating LLM-based world models: (i) fidelity and consistency, (ii) scalability and robustness, and (iii) agent utility. Across five representative environments, we find that sufficiently trained world models maintain coherent latent state, scale predictably with data and model size, and improve agent performance via action verification, synthetic trajectory generation, and warm-starting reinforcement learning. Meanwhile, these gains depend critically on behavioral coverage and environment complexity, delineating clear boundry on when world modeling effectively supports agent learning.
Authors:Zixuan Chen, Jing Huo, Yangtao Chen, Yang Gao
Abstract:
Efficient control in long-horizon robotic manipulation is challenging due to complex representation and policy learning requirements. Model-based visual reinforcement learning (RL) has shown great potential in addressing these challenges but still faces notable limitations, particularly in handling sparse rewards and complex visual features in long-horizon environments. To address these limitations, we propose the Recognize-Sense-Plan-Act (RSPA) pipeline for long-horizon tasks and further introduce RoboHorizon, an LLM-assisted multi-view world model tailored for long-horizon robotic manipulation. In RoboHorizon, pre-trained LLMs generate dense reward structures for multi-stage sub-tasks based on task language instructions, enabling robots to better recognize long-horizon tasks. Keyframe discovery is then integrated into the multi-view masked autoencoder (MAE) architecture to enhance the robot's ability to sense critical task sequences, strengthening its multi-stage perception of long-horizon processes. Leveraging these dense rewards and multi-view representations, a robotic world model is constructed to efficiently plan long-horizon tasks, enabling the robot to reliably act through RL algorithms. Experiments on two representative benchmarks, RLBench and FurnitureBench, show that RoboHorizon outperforms state-of-the-art visual model-based RL methods, achieving a 23.35% improvement in task success rates on RLBench's 4 short-horizon tasks and a 29.23% improvement on 6 long-horizon tasks from RLBench and 3 furniture assembly tasks from FurnitureBench.
Authors:Kechen Meng, Sinuo Zhang, Rongpeng Li, Xiangming Meng, Yansha Deng, Chan Wang, Ming Lei, Zhifeng Zhao
Abstract:
In wireless communication systems, efficient and adaptive resource allocation plays a crucial role in enhancing overall Quality of Service (QoS). Compared to the conventional Model-Free Reinforcement Learning (MFRL) scheme, Model-Based RL (MBRL) first learns a generative world model for subsequent planning. The reuse of historical experience in MBRL promises more stable training behavior, yet its deployment in large-scale wireless networks remains challenging due to high-dimensional stochastic dynamics, strong inter-agent cooperation, and communication constraints. To overcome these challenges, we propose the Multi-Agent Conditional Diffusion Model Planner (MA-CDMP) for decentralized communication resource management. Built upon the Distributed Training with Decentralized Execution (DTDE) paradigm, MA-CDMP models each communication node as an autonomous agent and employs Diffusion Models (DMs) to capture and predict environment dynamics. Meanwhile, an inverse dynamics model guides action generation, thereby enhancing sample efficiency and policy scalability. Moreover, to approximate large-scale agent interactions, a Mean-Field (MF) mechanism is introduced as an assistance to the classifier in DMs. This design mitigates inter-agent non-stationarity and enhances cooperation with minimal communication overhead in distributed settings. We further theoretically establish an upper bound on the distributional approximation error introduced by the MF-based diffusion generation, guaranteeing convergence stability and reliable modeling of multi-agent stochastic dynamics. Extensive experiments demonstrate that MA-CDMP consistently outperforms existing MARL baselines in terms of average reward and QoS metrics, showcasing its scalability and practicality for real-world wireless network optimization.
Authors:Hyungjoo Chae, Namyoung Kim, Kai Tzu-iunn Ong, Minju Gwak, Gwanwoo Song, Jihoon Kim, Sunghwan Kim, Dongha Lee, Jinyoung Yeo
Abstract:
Large language models (LLMs) have recently gained much attention in building autonomous agents. However, the performance of current LLM-based web agents in long-horizon tasks is far from optimal, often yielding errors such as repeatedly buying a non-refundable flight ticket. By contrast, humans can avoid such an irreversible mistake, as we have an awareness of the potential outcomes (e.g., losing money) of our actions, also known as the "world model". Motivated by this, our study first starts with preliminary analyses, confirming the absence of world models in current LLMs (e.g., GPT-4o, Claude-3.5-Sonnet, etc.). Then, we present a World-model-augmented (WMA) web agent, which simulates the outcomes of its actions for better decision-making. To overcome the challenges in training LLMs as world models predicting next observations, such as repeated elements across observations and long HTML inputs, we propose a transition-focused observation abstraction, where the prediction objectives are free-form natural language descriptions exclusively highlighting important state differences between time steps. Experiments on WebArena and Mind2Web show that our world models improve agents' policy selection without training and demonstrate our agents' cost- and time-efficiency compared to recent tree-search-based agents.
Authors:Wenjun Lin, Jensen Zhang, Kaitong Cai, Keze Wang
Abstract:
We present STORM (Search-Guided Generative World Models), a novel framework for spatio-temporal reasoning in robotic manipulation that unifies diffusion-based action generation, conditional video prediction, and search-based planning. Unlike prior Vision-Language-Action (VLA) models that rely on abstract latent dynamics or delegate reasoning to language components, STORM grounds planning in explicit visual rollouts, enabling interpretable and foresight-driven decision-making. A diffusion-based VLA policy proposes diverse candidate actions, a generative video world model simulates their visual and reward outcomes, and Monte Carlo Tree Search (MCTS) selectively refines plans through lookahead evaluation. Experiments on the SimplerEnv manipulation benchmark demonstrate that STORM achieves a new state-of-the-art average success rate of 51.0 percent, outperforming strong baselines such as CogACT. Reward-augmented video prediction substantially improves spatio-temporal fidelity and task relevance, reducing Frechet Video Distance by over 75 percent. Moreover, STORM exhibits robust re-planning and failure recovery behavior, highlighting the advantages of search-guided generative world models for long-horizon robotic manipulation.
Authors:Xuhui Zhou, Jiarui Liu, Akhila Yerukola, Hyunwoo Kim, Maarten Sap
Abstract:
Humans intuitively navigate social interactions by simulating unspoken dynamics and reasoning about others' perspectives, even with limited information. In contrast, AI systems struggle to automatically structure and reason about these implicit social contexts. In this paper, we introduce a novel structured social world representation formalism (S3AP), designed to help AI systems reason more effectively about social dynamics. Following a POMDP-driven design, S3AP represents social interactions as structured tuples, such as state, observation, agent actions, and mental states, which can be automatically induced from free-form narratives or other inputs. We first show S3AP can help LLMs better understand social narratives across 5 social reasoning tasks (e.g., +51% improvement on FANToM's theory-of-mind reasoning with OpenAI's o1), reaching new state-of-the-art (SOTA) performance. We then induce social world models from these structured representations, demonstrating their ability to predict future social dynamics and improve agent decision-making, yielding up to +18% improvement on the SOTOPIA social interaction benchmark. Our findings highlight the promise of S3AP as a powerful, general-purpose representation for social world states, enabling the development of more socially-aware systems that better navigate social interactions.
Authors:Ao Liang, Youquan Liu, Yu Yang, Dongyue Lu, Linfeng Li, Lingdong Kong, Huaici Zhao, Wei Tsang Ooi
Abstract:
While generative world models have advanced video and occupancy-based data synthesis, LiDAR generation remains underexplored despite its importance for accurate 3D perception. Extending generation to 4D LiDAR data introduces challenges in controllability, temporal stability, and evaluation. We present LiDARCrafter, a unified framework that converts free-form language into editable LiDAR sequences. Instructions are parsed into ego-centric scene graphs, which a tri-branch diffusion model transforms into object layouts, trajectories, and shapes. A range-image diffusion model generates the initial scan, and an autoregressive module extends it into a temporally coherent sequence. The explicit layout design further supports object-level editing, such as insertion or relocation. To enable fair assessment, we provide EvalSuite, a benchmark spanning scene-, object-, and sequence-level metrics. On nuScenes, LiDARCrafter achieves state-of-the-art fidelity, controllability, and temporal consistency, offering a foundation for LiDAR-based simulation and data augmentation.
Authors:Ao Liang, Youquan Liu, Yu Yang, Dongyue Lu, Linfeng Li, Lingdong Kong, Huaici Zhao, Wei Tsang Ooi
Abstract:
Generative world models have become essential data engines for autonomous driving, yet most existing efforts focus on videos or occupancy grids, overlooking the unique LiDAR properties. Extending LiDAR generation to dynamic 4D world modeling presents challenges in controllability, temporal coherence, and evaluation standardization. To this end, we present LiDARCrafter, a unified framework for 4D LiDAR generation and editing. Given free-form natural language inputs, we parse instructions into ego-centric scene graphs, which condition a tri-branch diffusion network to generate object structures, motion trajectories, and geometry. These structured conditions enable diverse and fine-grained scene editing. Additionally, an autoregressive module generates temporally coherent 4D LiDAR sequences with smooth transitions. To support standardized evaluation, we establish a comprehensive benchmark with diverse metrics spanning scene-, object-, and sequence-level aspects. Experiments on the nuScenes dataset using this benchmark demonstrate that LiDARCrafter achieves state-of-the-art performance in fidelity, controllability, and temporal consistency across all levels, paving the way for data augmentation and simulation. The code and benchmark are released to the community.
Authors:Ying Li, Xiaobao Wei, Xiaowei Chi, Yuming Li, Zhongyu Zhao, Hao Wang, Ningning Ma, Ming Lu, Shanghang Zhang
Abstract:
While recent advancements in robotic manipulation video synthesis have shown promise, significant challenges persist in ensuring effective instruction-following and achieving high visual quality. Recent methods, like RoboDreamer, utilize linguistic decomposition to divide instructions into separate lower-level primitives, conditioning the world model on these primitives to achieve compositional instruction-following. However, these separate primitives do not consider the relationships that exist between them. Furthermore, recent methods neglect valuable visual guidance, including depth and semantic guidance, both crucial for enhancing visual quality. This paper introduces ManipDreamer, an advanced world model based on the action tree and visual guidance. To better learn the relationships between instruction primitives, we represent the instruction as the action tree and assign embeddings to tree nodes, each instruction can acquire its embeddings by navigating through the action tree. The instruction embeddings can be used to guide the world model. To enhance visual quality, we combine depth and semantic guidance by introducing a visual guidance adapter compatible with the world model. This visual adapter enhances both the temporal and physical consistency of video generation. Based on the action tree and visual guidance, ManipDreamer significantly boosts the instruction-following ability and visual quality. Comprehensive evaluations on robotic manipulation benchmarks reveal that ManipDreamer achieves large improvements in video quality metrics in both seen and unseen tasks, with PSNR improved from 19.55 to 21.05, SSIM improved from 0.7474 to 0.7982 and reduced Flow Error from 3.506 to 3.201 in unseen tasks, compared to the recent RoboDreamer model. Additionally, our method increases the success rate of robotic manipulation tasks by 2.5% in 6 RLbench tasks on average.
Authors:Guangyuan Li, Siming Zheng, Shuolin Xu, Jinwei Chen, Bo Li, Xiaobin Hu, Lei Zhao, Peng-Tao Jiang
Abstract:
Recent interactive video world model methods generate scene evolution conditioned on user instructions. Although they achieve impressive results, two key limitations remain. First, they fail to fully exploit the correspondence between instruction-driven scene motion and the underlying 3D geometry, which results in structural instability under viewpoint changes. Second, they easily forget historical information during multi-step interaction, resulting in error accumulation and progressive drift in scene semantics and structure. To address these issues, we propose MagicWorld, an interactive video world model that integrates 3D geometric priors and historical retrieval. MagicWorld starts from a single scene image, employs user actions to drive dynamic scene evolution, and autoregressively synthesizes continuous scenes. We introduce the Action-Guided 3D Geometry Module (AG3D), which constructs a point cloud from the first frame of each interaction and the corresponding action, providing explicit geometric constraints for viewpoint transitions and thereby improving structural consistency. We further propose History Cache Retrieval (HCR) mechanism, which retrieves relevant historical frames during generation and injects them as conditioning signals, helping the model utilize past scene information and mitigate error accumulation. Experimental results demonstrate that MagicWorld achieves notable improvements in scene stability and continuity across interaction iterations.
Authors:Thibaud Gloaguen, Robin Staab, Nikola JovanoviÄ, Martin Vechev
Abstract:
As open-source language models (OSMs) grow more capable and are widely shared and finetuned, ensuring model provenance, i.e., identifying the origin of a given model instance, has become an increasingly important issue. At the same time, existing backdoor-based model fingerprinting techniques often fall short of achieving key requirements of real-world model ownership detection. In this work, we build on the observation that while current open-source model watermarks fail to achieve reliable content traceability, they can be effectively adapted to address the challenge of model provenance. To this end, we introduce the concept of domain-specific watermarking for model fingerprinting. Rather than watermarking all generated content, we train the model to embed watermarks only within specified subdomains (e.g., particular languages or topics). This targeted approach ensures detection reliability, while improving watermark durability and quality under a range of real-world deployment settings. Our evaluations show that domain-specific watermarking enables model fingerprinting with strong statistical guarantees, controllable false positive rates, high detection power, and preserved generation quality. Moreover, we find that our fingerprints are inherently stealthy and naturally robust to real-world variability across deployment scenarios.
Authors:Xinjie Liu, Cyrus Neary, Kushagra Gupta, Christian Ellis, Ufuk Topcu, David Fridovich-Keil
Abstract:
Many reinforcement learning (RL) algorithms require large amounts of data, prohibiting their use in applications where frequent interactions with operational systems are infeasible, or high-fidelity simulations are expensive or unavailable. Meanwhile, low-fidelity simulators--such as reduced-order models, heuristic reward functions, or generative world models--can cheaply provide useful data for RL training, even if they are too coarse for direct sim-to-real transfer. We propose multi-fidelity policy gradients (MFPGs), an RL framework that mixes a small amount of data from the target environment with a large volume of low-fidelity simulation data to form unbiased, reduced-variance estimators (control variates) for on-policy policy gradients. We instantiate the framework by developing multi-fidelity variants of two policy gradient algorithms: REINFORCE and proximal policy optimization. Experimental results across a suite of simulated robotics benchmark problems demonstrate that when target-environment samples are limited, MFPG achieves up to 3.9x higher reward and improves training stability when compared to baselines that only use high-fidelity data. Moreover, even when the baselines are given more high-fidelity samples--up to 10x as many interactions with the target environment--MFPG continues to match or outperform them. Finally, we observe that MFPG is capable of training effective policies even when the low-fidelity environment is drastically different from the target environment. MFPG thus not only offers a novel paradigm for efficient sim-to-real transfer but also provides a principled approach to managing the trade-off between policy performance and data collection costs.
Authors:Yuxi Lu, Biao Wu, Zhidong Li, Kunqi Li, Chenya Huang, Huacan Wang, Qizhen Lan, Ronghao Chen, Ling Chen, Bin Liang
Abstract:
World models have shown potential in artificial intelligence by predicting and reasoning about world states beyond direct observations. However, existing approaches are predominantly evaluated in synthetic environments or constrained scene settings, limiting their validation in real-world contexts with broad spatial coverage and complex semantics. Meanwhile, remote sensing applications urgently require spatial reasoning capabilities for disaster response and urban planning. This paper bridges these gaps by introducing the first framework for world modeling in remote sensing. We formulate remote sensing world modeling as direction-conditioned spatial extrapolation, where models generate semantically consistent adjacent image tiles given a central observation and directional instruction. To enable rigorous evaluation, we develop RSWISE (Remote Sensing World-Image Spatial Evaluation), a benchmark containing 1,600 evaluation tasks across four scenarios: general, flood, urban, and rural. RSWISE combines visual fidelity assessment with instruction compliance evaluation using GPT-4o as a semantic judge, ensuring models genuinely perform spatial reasoning rather than simple replication. Afterwards, we present RemoteBAGEL, a unified multimodal model fine-tuned on remote sensing data for spatial extrapolation tasks. Extensive experiments demonstrate that RemoteBAGEL consistently outperforms state-of-the-art baselines on RSWISE.
Authors:Bu Jin, Weize Li, Baihan Yang, Zhenxin Zhu, Junpeng Jiang, Huan-ang Gao, Haiyang Sun, Kun Zhan, Hengtong Hu, Xueyang Zhang, Peng Jia, Hao Zhao
Abstract:
Recent advancements in autonomous driving (AD) systems have highlighted the potential of world models in achieving robust and generalizable performance across both ordinary and challenging driving conditions. However, a key challenge remains: precise and flexible camera pose control, which is crucial for accurate viewpoint transformation and realistic simulation of scene dynamics. In this paper, we introduce PosePilot, a lightweight yet powerful framework that significantly enhances camera pose controllability in generative world models. Drawing inspiration from self-supervised depth estimation, PosePilot leverages structure-from-motion principles to establish a tight coupling between camera pose and video generation. Specifically, we incorporate self-supervised depth and pose readouts, allowing the model to infer depth and relative camera motion directly from video sequences. These outputs drive pose-aware frame warping, guided by a photometric warping loss that enforces geometric consistency across synthesized frames. To further refine camera pose estimation, we introduce a reverse warping step and a pose regression loss, improving viewpoint precision and adaptability. Extensive experiments on autonomous driving and general-domain video datasets demonstrate that PosePilot significantly enhances structural understanding and motion reasoning in both diffusion-based and auto-regressive world models. By steering camera pose with self-supervised depth, PosePilot sets a new benchmark for pose controllability, enabling physically consistent, reliable viewpoint synthesis in generative world models.
Authors:Mingju Gao, Yike Pan, Huan-ang Gao, Zongzheng Zhang, Wenyi Li, Hao Dong, Hao Tang, Li Yi, Hao Zhao
Abstract:
As interest grows in world models that predict future states from current observations and actions, accurately modeling part-level dynamics has become increasingly relevant for various applications. Existing approaches, such as Puppet-Master, rely on fine-tuning large-scale pre-trained video diffusion models, which are impractical for real-world use due to the limitations of 2D video representation and slow processing times. To overcome these challenges, we present PartRM, a novel 4D reconstruction framework that simultaneously models appearance, geometry, and part-level motion from multi-view images of a static object. PartRM builds upon large 3D Gaussian reconstruction models, leveraging their extensive knowledge of appearance and geometry in static objects. To address data scarcity in 4D, we introduce the PartDrag-4D dataset, providing multi-view observations of part-level dynamics across over 20,000 states. We enhance the model's understanding of interaction conditions with a multi-scale drag embedding module that captures dynamics at varying granularities. To prevent catastrophic forgetting during fine-tuning, we implement a two-stage training process that focuses sequentially on motion and appearance learning. Experimental results show that PartRM establishes a new state-of-the-art in part-level motion learning and can be applied in manipulation tasks in robotics. Our code, data, and models are publicly available to facilitate future research.
Authors:Zehuan Wu, Jingcheng Ni, Xiaodong Wang, Yuxin Guo, Rui Chen, Lewei Lu, Jifeng Dai, Yuwen Xiong
Abstract:
Generative models have significantly improved the generation and prediction quality on either camera images or LiDAR point clouds for autonomous driving. However, a real-world autonomous driving system uses multiple kinds of input modality, usually cameras and LiDARs, where they contain complementary information for generation, while existing generation methods ignore this crucial feature, resulting in the generated results only covering separate 2D or 3D information. In order to fill the gap in 2D-3D multi-modal joint generation for autonomous driving, in this paper, we propose our framework, \emph{HoloDrive}, to jointly generate the camera images and LiDAR point clouds. We employ BEV-to-Camera and Camera-to-BEV transform modules between heterogeneous generative models, and introduce a depth prediction branch in the 2D generative model to disambiguate the un-projecting from image space to BEV space, then extend the method to predict the future by adding temporal structure and carefully designed progressive training. Further, we conduct experiments on single frame generation and world model benchmarks, and demonstrate our method leads to significant performance gains over SOTA methods in terms of generation metrics.
Authors:Chang Yang, Xinrun Wang, Junzhe Jiang, Qinggang Zhang, Xiao Huang
Abstract:
World model emerges as a key module in decision making, where MuZero and Dreamer achieve remarkable successes in complex tasks. Recent work leverages Large Language Models (LLMs) as general world simulators to simulate the dynamics of the world due to their generalizability. LLMs also serve as the world model for deliberative reasoning in Reasoning via Planning (RAP) and Tree of Thought (ToT). However, the world models are either evaluated as a general world simulator, or as a functional module of the agent, i.e., predicting the transitions to assist the planning. In this work, we propose a comprehensive evaluation of the world models with LLMs from the decision making perspective. Specifically, we leverage the 31 diverse environments from (Wang et al., 2023;2024) and curate the rule-based policy of each environment for the diverse evaluation. Then, we design three main tasks, i.e., policy verification, action proposal, and policy planning, where the world models can be used for decision making solely. Finally, we conduct the comprehensive evaluation of the advanced LLMs, i.e., GPT-4o and GPT-4o-mini, on the environments for the three main tasks under various settings. The key observations include: i) GPT-4o significantly outperforms GPT-4o-mini on the three main tasks, especially for the tasks which require the domain knowledge, ii) the performance of the world model with LLM will be decreased for long-term decision-making tasks, and iii) the combination of different functionalities of the world model will brings additional unstabilities of the performance.
Authors:Qian Cheng, Weitao Zhou, Cheng Jing, Nanshan Deng, Junze Wen, Zhaoyang Liu, Kun Jiang, Diange Yang
Abstract:
Real-world autonomous driving must adhere to complex human social rules that extend beyond legally codified traffic regulations. Many of these semantic constraints, such as yielding to emergency vehicles, complying with traffic officers' gestures, or stopping for school buses, are intuitive for humans yet difficult to encode explicitly. Although large vision-language models (VLMs) can interpret such semantics, their inference cost makes them impractical for real-time deployment.This work proposes LSRE, a Latent Semantic Rule Encoding framework that converts sparsely sampled VLM judgments into decision boundaries within the latent space of a recurrent world model. By encoding language-defined safety semantics into a lightweight latent classifier, LSRE enables real-time semantic risk assessment at 10 Hz without per-frame VLM queries. Experiments on six semantic-failure scenarios in CARLA demonstrate that LSRE attains semantic risk detection accuracy comparable to a large VLM baseline, while providing substantially earlier hazard anticipation and maintaining low computational latency. LSRE further generalizes to rarely seen semantic-similar test cases, indicating that language-guided latent classification offers an effective and deployable mechanism for semantic safety monitoring in autonomous driving.
Authors:Tong Wu, Shuai Yang, Ryan Po, Yinghao Xu, Ziwei Liu, Dahua Lin, Gordon Wetzstein
Abstract:
Emerging world models autoregressively generate video frames in response to actions, such as camera movements and text prompts, among other control signals. Due to limited temporal context window sizes, these models often struggle to maintain scene consistency during revisits, leading to severe forgetting of previously generated environments. Inspired by the mechanisms of human memory, we introduce a novel framework to enhancing long-term consistency of video world models through a geometry-grounded long-term spatial memory. Our framework includes mechanisms to store and retrieve information from the long-term spatial memory and we curate custom datasets to train and evaluate world models with explicitly stored 3D memory mechanisms. Our evaluations show improved quality, consistency, and context length compared to relevant baselines, paving the way towards long-term consistent world generation.
Authors:Yinqian Sun, Feifei Zhao, Mingyang Lv, Yi Zeng
Abstract:
Brain-inspired spiking neural networks (SNNs) have garnered significant research attention in algorithm design and perception applications. However, their potential in the decision-making domain, particularly in model-based reinforcement learning, remains underexplored. The difficulty lies in the need for spiking neurons with long-term temporal memory capabilities, as well as network optimization that can integrate and learn information for accurate predictions. The dynamic dendritic information integration mechanism of biological neurons brings us valuable insights for addressing these challenges. In this study, we propose a multi-compartment neuron model capable of nonlinearly integrating information from multiple dendritic sources to dynamically process long sequential inputs. Based on this model, we construct a Spiking World Model (Spiking-WM), to enable model-based deep reinforcement learning (DRL) with SNNs. We evaluated our model using the DeepMind Control Suite, demonstrating that Spiking-WM outperforms existing SNN-based models and achieves performance comparable to artificial neural network (ANN)-based world models employing Gated Recurrent Units (GRUs). Furthermore, we assess the long-term memory capabilities of the proposed model in speech datasets, including SHD, TIMIT, and LibriSpeech 100h, showing that our multi-compartment neuron model surpasses other SNN-based architectures in processing long sequences. Our findings underscore the critical role of dendritic information integration in shaping neuronal function, emphasizing the importance of cooperative dendritic processing in enhancing neural computation.
Authors:Lance Ying, Katherine M. Collins, Prafull Sharma, Cedric Colas, Kaiya Ivy Zhao, Adrian Weller, Zenna Tavares, Phillip Isola, Samuel J. Gershman, Jacob D. Andreas, Thomas L. Griffiths, Francois Chollet, Kelsey R. Allen, Joshua B. Tenenbaum
Abstract:
Human intelligence exhibits a remarkable capacity for rapid adaptation and effective problem-solving in novel and unfamiliar contexts. We argue that this profound adaptability is fundamentally linked to the efficient construction and refinement of internal representations of the environment, commonly referred to as world models, and we refer to this adaptation mechanism as world model induction. However, current understanding and evaluation of world models in artificial intelligence (AI) remains narrow, often focusing on static representations learned from training on massive corpora of data, instead of the efficiency and efficacy in learning these representations through interaction and exploration within a novel environment. In this Perspective, we provide a view of world model induction drawing on decades of research in cognitive science on how humans learn and adapt so efficiently; we then call for a new evaluation framework for assessing adaptive world models in AI. Concretely, we propose a new benchmarking paradigm based on suites of carefully designed games with genuine, deep and continually refreshing novelty in the underlying game structures -- we refer to this class of games as novel games. We detail key desiderata for constructing these games and propose appropriate metrics to explicitly challenge and evaluate the agent's ability for rapid world model induction. We hope that this new evaluation framework will inspire future evaluation efforts on world models in AI and provide a crucial step towards developing AI systems capable of human-like rapid adaptation and robust generalization -- a critical component of artificial general intelligence.
Authors:Lionel Wong, Katherine M. Collins, Lance Ying, Cedegao E. Zhang, Adrian Weller, Tobias Gerstenberg, Timothy O'Donnell, Alexander K. Lew, Jacob D. Andreas, Joshua B. Tenenbaum, Tyler Brooke-Wilson
Abstract:
When faced with novel situations, people are able to marshal relevant considerations from a wide range of background knowledge and put these to use in inferences and predictions. What permits us to draw in globally relevant information and reason over it coherently? Here, we explore the hypothesis that people use a combination of distributed and symbolic representations to construct bespoke mental models tailored to novel situations. We propose a computational implementation of this idea -- a ``Model Synthesis Architecture'' (MSA) -- using language models to implement global relevance-based retrieval and model synthesis and probabilistic programs to implement bespoke, coherent world models. We evaluate our MSA as a model of human judgments on a novel reasoning dataset. The dataset -- built around a `Model Olympics` domain of sports vignettes -- tests models' capacity for human-like, open-ended reasoning by requiring (i) judgments about novel causal structures described in language; (ii) drawing on large bodies of background knowledge; and (iii) doing both in light of observations that introduce arbitrary novel variables. Our MSA approach captures human judgments better than language model-only baselines, under both direct and chain-of-thought generations from the LM that supports model synthesis. These results suggest that MSAs can be implemented in a way that mirrors people's ability to deliver locally coherent reasoning over globally relevant variables, offering a path to understanding and replicating human reasoning in open-ended domains.
Authors:Zhouliang Yu, Yuhuan Yuan, Tim Z. Xiao, Fuxiang Frank Xia, Jie Fu, Ge Zhang, Ge Lin, Weiyang Liu
Abstract:
Solving complex planning problems requires Large Language Models (LLMs) to explicitly model the state transition to avoid rule violations, comply with constraints, and ensure optimality-a task hindered by the inherent ambiguity of natural language. To overcome such ambiguity, Planning Domain Definition Language (PDDL) is leveraged as a planning abstraction that enables precise and formal state descriptions. With PDDL, we can generate a symbolic world model where classic searching algorithms, such as A*, can be seamlessly applied to find optimal plans. However, directly generating PDDL domains with current LLMs remains an open challenge due to the lack of PDDL training data. To address this challenge, we propose to scale up the test-time computation of LLMs to enhance their PDDL reasoning capabilities, thereby enabling the generation of high-quality PDDL domains. Specifically, we introduce a simple yet effective algorithm, which first employs a Best-of-N sampling approach to improve the quality of the initial solution and then refines the solution in a fine-grained manner with verbalized machine learning. Our method outperforms o1-mini by a considerable margin in the generation of PDDL domains, achieving over 50\% success rate on two tasks (i.e., generating PDDL domains from natural language description or PDDL problems). This is done without requiring additional training. By taking advantage of PDDL as state abstraction, our method is able to outperform current state-of-the-art methods on almost all competition-level planning tasks.
Authors:Jiamin Wang, Yichen Yao, Xiang Feng, Hang Wu, Yaming Wang, Qingqiu Huang, Yuexin Ma, Xinge Zhu
Abstract:
The generation of temporally consistent, high-fidelity driving videos over extended horizons presents a fundamental challenge in autonomous driving world modeling. Existing approaches often suffer from error accumulation and feature misalignment due to inadequate decoupling of spatio-temporal dynamics and limited cross-frame feature propagation mechanisms. To address these limitations, we present STAGE (Streaming Temporal Attention Generative Engine), a novel auto-regressive framework that pioneers hierarchical feature coordination and multi-phase optimization for sustainable video synthesis. To achieve high-quality long-horizon driving video generation, we introduce Hierarchical Temporal Feature Transfer (HTFT) and a novel multi-stage training strategy. HTFT enhances temporal consistency between video frames throughout the video generation process by modeling the temporal and denoising process separately and transferring denoising features between frames. The multi-stage training strategy is to divide the training into three stages, through model decoupling and auto-regressive inference process simulation, thereby accelerating model convergence and reducing error accumulation. Experiments on the Nuscenes dataset show that STAGE has significantly surpassed existing methods in the long-horizon driving video generation task. In addition, we also explored STAGE's ability to generate unlimited-length driving videos. We generated 600 frames of high-quality driving videos on the Nuscenes dataset, which far exceeds the maximum length achievable by existing methods.
Authors:Weishi Mi, Yong Bao, Xiaowei Chi, Xiaozhu Ju, Zhiyuan Qin, Kuangzhi Ge, Kai Tang, Peidong Jia, Shanghang Zhang, Jian Tang
Abstract:
The vision-language-action (VLA) paradigm has enabled powerful robotic control by leveraging vision-language models, but its reliance on large-scale, high-quality robot data limits its generalization. Generative world models offer a promising alternative for general-purpose embodied AI, yet a critical gap remains between their pixel-level plans and physically executable actions. To this end, we propose the Tool-Centric Inverse Dynamics Model (TC-IDM). By focusing on the tool's imagined trajectory as synthesized by the world model, TC-IDM establishes a robust intermediate representation that bridges the gap between visual planning and physical control. TC-IDM extracts the tool's point cloud trajectories via segmentation and 3D motion estimation from generated videos. Considering diverse tool attributes, our architecture employs decoupled action heads to project these planned trajectories into 6-DoF end-effector motions and corresponding control signals. This plan-and-translate paradigm not only supports a wide range of end-effectors but also significantly improves viewpoint invariance. Furthermore, it exhibits strong generalization capabilities across long-horizon and out-of-distribution tasks, including interacting with deformable objects. In real-world evaluations, the world model with TC-IDM achieves an average success rate of 61.11 percent, with 77.7 percent on simple tasks and 38.46 percent on zero-shot deformable object tasks. It substantially outperforms end-to-end VLA-style baselines and other inverse dynamics models.
Authors:Chak-Wing Mak, Guanyu Zhu, Boyi Zhang, Hongji Li, Xiaowei Chi, Kevin Zhang, Yichen Wu, Yangfan He, Chun-Kai Fan, Wentao Lu, Kuangzhi Ge, Xinyu Fang, Hongyang He, Kuan Lu, Tianxiang Xu, Li Zhang, Yongxin Ni, Youhua Li, Shanghang Zhang
Abstract:
Modern foundational Multimodal Large Language Models (MLLMs) and video world models have advanced significantly in mathematical, common-sense, and visual reasoning, but their grasp of the underlying physics remains underexplored. Existing benchmarks attempting to measure this matter rely on synthetic, Visual Question Answer templates or focus on perceptual video quality that is tangential to measuring how well the video abides by physical laws. To address this fragmentation, we introduce PhysicsMind, a unified benchmark with both real and simulation environments that evaluates law-consistent reasoning and generation over three canonical principles: Center of Mass, Lever Equilibrium, and Newton's First Law. PhysicsMind comprises two main tasks: i) VQA tasks, testing whether models can reason and determine physical quantities and values from images or short videos, and ii) Video Generation(VG) tasks, evaluating if predicted motion trajectories obey the same center-of-mass, torque, and inertial constraints as the ground truth. A broad range of recent models and video generation models is evaluated on PhysicsMind and found to rely on appearance heuristics while often violating basic mechanics. These gaps indicate that current scaling and training are still insufficient for robust physical understanding, underscoring PhysicsMind as a focused testbed for physics-aware multimodal models. Our data will be released upon acceptance.
Authors:Chun-Kai Fan, Xiaowei Chi, Xiaozhu Ju, Hao Li, Yong Bao, Yu-Kai Wang, Lizhang Chen, Zhiyuan Jiang, Kuangzhi Ge, Ying Li, Weishi Mi, Qingpo Wuwu, Peidong Jia, Yulin Luo, Kevin Zhang, Zhiyuan Qin, Yong Dai, Sirui Han, Yike Guo, Shanghang Zhang, Jian Tang
Abstract:
As world models gain momentum in Embodied AI, an increasing number of works explore using video foundation models as predictive world models for downstream embodied tasks like 3D prediction or interactive generation. However, before exploring these downstream tasks, video foundation models still have two critical questions unanswered: (1) whether their generative generalization is sufficient to maintain perceptual fidelity in the eyes of human observers, and (2) whether they are robust enough to serve as a universal prior for real-world embodied agents. To provide a standardized framework for answering these questions, we introduce the Embodied Turing Test benchmark: WoW-World-Eval (Wow,wo,val). Building upon 609 robot manipulation data, Wow-wo-val examines five core abilities, including perception, planning, prediction, generalization, and execution. We propose a comprehensive evaluation protocol with 22 metrics to assess the models' generation ability, which achieves a high Pearson Correlation between the overall score and human preference (>0.93) and establishes a reliable foundation for the Human Turing Test. On Wow-wo-val, models achieve only 17.27 on long-horizon planning and at best 68.02 on physical consistency, indicating limited spatiotemporal consistency and physical reasoning. For the Inverse Dynamic Model Turing Test, we first use an IDM to evaluate the video foundation models' execution accuracy in the real world. However, most models collapse to $\approx$ 0% success, while WoW maintains a 40.74% success rate. These findings point to a noticeable gap between the generated videos and the real world, highlighting the urgency and necessity of benchmarking World Model in Embodied AI.
Authors:Rong Zhou, Dongping Chen, Zihan Jia, Yao Su, Yixin Liu, Yiwen Lu, Dongwei Shi, Yue Huang, Tianyang Xu, Yi Pan, Xinliang Li, Yohannes Abate, Qingyu Chen, Zhengzhong Tu, Yu Yang, Yu Zhang, Qingsong Wen, Gengchen Mai, Sunyang Fu, Jiachen Li, Xuyu Wang, Ziran Wang, Jing Huang, Tianming Liu, Yong Chen, Lichao Sun, Lifang He
Abstract:
Digital twins, as precise digital representations of physical systems, have evolved from passive simulation tools into intelligent and autonomous entities through the integration of artificial intelligence technologies. This paper presents a unified four-stage framework that systematically characterizes AI integration across the digital twin lifecycle, spanning modeling, mirroring, intervention, and autonomous management. By synthesizing existing technologies and practices, we distill a unified four-stage framework that systematically characterizes how AI methodologies are embedded across the digital twin lifecycle: (1) modeling the physical twin through physics-based and physics-informed AI approaches, (2) mirroring the physical system into a digital twin with real-time synchronization, (3) intervening in the physical twin through predictive modeling, anomaly detection, and optimization strategies, and (4) achieving autonomous management through large language models, foundation models, and intelligent agents. We analyze the synergy between physics-based modeling and data-driven learning, highlighting the shift from traditional numerical solvers to physics-informed and foundation models for physical systems. Furthermore, we examine how generative AI technologies, including large language models and generative world models, transform digital twins into proactive and self-improving cognitive systems capable of reasoning, communication, and creative scenario generation. Through a cross-domain review spanning eleven application domains, including healthcare, aerospace, smart manufacturing, robotics, and smart cities, we identify common challenges related to scalability, explainability, and trustworthiness, and outline directions for responsible AI-driven digital twin systems.
Authors:Yuxue Yang, Lue Fan, Ziqi Shi, Junran Peng, Feng Wang, Zhaoxiang Zhang
Abstract:
In this paper, we propose NeoVerse, a versatile 4D world model that is capable of 4D reconstruction, novel-trajectory video generation, and rich downstream applications. We first identify a common limitation of scalability in current 4D world modeling methods, caused either by expensive and specialized multi-view 4D data or by cumbersome training pre-processing. In contrast, our NeoVerse is built upon a core philosophy that makes the full pipeline scalable to diverse in-the-wild monocular videos. Specifically, NeoVerse features pose-free feed-forward 4D reconstruction, online monocular degradation pattern simulation, and other well-aligned techniques. These designs empower NeoVerse with versatility and generalization to various domains. Meanwhile, NeoVerse achieves state-of-the-art performance in standard reconstruction and generation benchmarks. Our project page is available at https://neoverse-4d.github.io
Authors:Huan Zheng, Yucheng Zhou, Tianyi Yan, Jiayi Su, Hongjun Chen, Dubing Chen, Xingtai Gui, Wencheng Han, Runzhou Tao, Zhongying Qiu, Jianfei Yang, Jianbing Shen
Abstract:
While end-to-end autonomous driving has achieved remarkable progress in geometric control, current systems remain constrained by a command-following paradigm that relies on simple navigational instructions. Transitioning to genuinely intelligent agents requires the capability to interpret and fulfill high-level, abstract human intentions. However, this advancement is hindered by the lack of dedicated benchmarks and semantic-aware evaluation metrics. In this paper, we formally define the task of Intention-Driven End-to-End Autonomous Driving and present Intention-Drive, a comprehensive benchmark designed to bridge this gap. We construct a large-scale dataset featuring complex natural language intentions paired with high-fidelity sensor data. To overcome the limitations of conventional trajectory-based metrics, we introduce the Imagined Future Alignment (IFA), a novel evaluation protocol leveraging generative world models to assess the semantic fulfillment of human goals beyond mere geometric accuracy. Furthermore, we explore the solution space by proposing two distinct paradigms: an end-to-end vision-language planner and a hierarchical agent-based framework. The experiments reveal a critical dichotomy where existing models exhibit satisfactory driving stability but struggle significantly with intention fulfillment. Notably, the proposed frameworks demonstrate superior alignment with human intentions.
Authors:Gemini Robotics Team, Coline Devin, Yilun Du, Debidatta Dwibedi, Ruiqi Gao, Abhishek Jindal, Thomas Kipf, Sean Kirmani, Fangchen Liu, Anirudha Majumdar, Andrew Marmon, Carolina Parada, Yulia Rubanova, Dhruv Shah, Vikas Sindhwani, Jie Tan, Fei Xia, Ted Xiao, Sherry Yang, Wenhao Yu, Allan Zhou
Abstract:
Generative world models hold significant potential for simulating interactions with visuomotor policies in varied environments. Frontier video models can enable generation of realistic observations and environment interactions in a scalable and general manner. However, the use of video models in robotics has been limited primarily to in-distribution evaluations, i.e., scenarios that are similar to ones used to train the policy or fine-tune the base video model. In this report, we demonstrate that video models can be used for the entire spectrum of policy evaluation use cases in robotics: from assessing nominal performance to out-of-distribution (OOD) generalization, and probing physical and semantic safety. We introduce a generative evaluation system built upon a frontier video foundation model (Veo). The system is optimized to support robot action conditioning and multi-view consistency, while integrating generative image-editing and multi-view completion to synthesize realistic variations of real-world scenes along multiple axes of generalization. We demonstrate that the system preserves the base capabilities of the video model to enable accurate simulation of scenes that have been edited to include novel interaction objects, novel visual backgrounds, and novel distractor objects. This fidelity enables accurately predicting the relative performance of different policies in both nominal and OOD conditions, determining the relative impact of different axes of generalization on policy performance, and performing red teaming of policies to expose behaviors that violate physical or semantic safety constraints. We validate these capabilities through 1600+ real-world evaluations of eight Gemini Robotics policy checkpoints and five tasks for a bimanual manipulator.
Authors:Tianyi Yan, Tao Tang, Xingtai Gui, Yongkang Li, Jiasen Zhesng, Weiyao Huang, Lingdong Kong, Wencheng Han, Xia Zhou, Xueyang Zhang, Yifei Zhan, Kun Zhan, Cheng-zhong Xu, Jianbing Shen
Abstract:
End-to-end models for autonomous driving hold the promise of learning complex behaviors directly from sensor data, but face critical challenges in safety and handling long-tail events. Reinforcement Learning (RL) offers a promising path to overcome these limitations, yet its success in autonomous driving has been elusive. We identify a fundamental flaw hindering this progress: a deep seated optimistic bias in the world models used for RL. To address this, we introduce a framework for post-training policy refinement built around an Impartial World Model. Our primary contribution is to teach this model to be honest about danger. We achieve this with a novel data synthesis pipeline, Counterfactual Synthesis, which systematically generates a rich curriculum of plausible collisions and off-road events. This transforms the model from a passive scene completer into a veridical forecaster that remains faithful to the causal link between actions and outcomes. We then integrate this Impartial World Model into our closed-loop RL framework, where it serves as an internal critic. During refinement, the agent queries the critic to ``dream" of the outcomes for candidate actions. We demonstrate through extensive experiments, including on a new Risk Foreseeing Benchmark, that our model significantly outperforms baselines in predicting failures. Consequently, when used as a critic, it enables a substantial reduction in safety violations in challenging simulations, proving that teaching a model to dream of danger is a critical step towards building truly safe and intelligent autonomous agents.
Authors:Zezhong Qian, Xiaowei Chi, Yuming Li, Shizun Wang, Zhiyuan Qin, Xiaozhu Ju, Sirui Han, Shanghang Zhang
Abstract:
Wrist-view observations are crucial for VLA models as they capture fine-grained hand-object interactions that directly enhance manipulation performance. Yet large-scale datasets rarely include such recordings, resulting in a substantial gap between abundant anchor views and scarce wrist views. Existing world models cannot bridge this gap, as they require a wrist-view first frame and thus fail to generate wrist-view videos from anchor views alone. Amid this gap, recent visual geometry models such as VGGT emerge with geometric and cross-view priors that make it possible to address extreme viewpoint shifts. Inspired by these insights, we propose WristWorld, the first 4D world model that generates wrist-view videos solely from anchor views. WristWorld operates in two stages: (i) Reconstruction, which extends VGGT and incorporates our Spatial Projection Consistency (SPC) Loss to estimate geometrically consistent wrist-view poses and 4D point clouds; (ii) Generation, which employs our video generation model to synthesize temporally coherent wrist-view videos from the reconstructed perspective. Experiments on Droid, Calvin, and Franka Panda demonstrate state-of-the-art video generation with superior spatial consistency, while also improving VLA performance, raising the average task completion length on Calvin by 3.81% and closing 42.4% of the anchor-wrist view gap.
Authors:Kevin Zhang, Kuangzhi Ge, Xiaowei Chi, Renrui Zhang, Shaojun Shi, Zhen Dong, Sirui Han, Shanghang Zhang
Abstract:
Trained on internet-scale video data, generative world models are increasingly recognized as powerful world simulators that can generate consistent and plausible dynamics over structure, motion, and physics. This raises a natural question: with the advent of strong video foundational models, might they supplant conventional vision encoder paradigms for general-purpose multimodal understanding? While recent studies have begun to explore the potential of world models on common vision tasks, these explorations typically lack a systematic investigation of generic, multimodal tasks. In this work, we strive to investigate the capabilities when world model priors are transferred into Vision-Language Models: we re-purpose a video diffusion model as a generative encoder to perform a single denoising step and treat the resulting latents as a set of visual embedding. We empirically investigate this class of models, which we refer to as World-Language Models (WorldLMs), and we find that generative encoders can capture latents useful for downstream understanding that show distinctions from conventional encoders. Naming our best-performing variant Dynamic Vision Aligner (DyVA), we further discover that this method significantly enhances spatial reasoning abilities and enables single-image models to perform multi-frame reasoning. Through the curation of a suite of visual reasoning tasks, we find DyVA to surpass both open-source and proprietary baselines, achieving state-of-the-art or comparable performance. We attribute these gains to WorldLM's inherited motion-consistency internalization from video pre-training. Finally, we systematically explore extensive model designs to highlight promising directions for future work. We hope our study can pave the way for a new family of VLMs that leverage priors from world models and are on a promising path towards generalist vision learners.
Authors:Artem Lykov, Jeffrin Sam, Hung Khang Nguyen, Vladislav Kozlovskiy, Yara Mahmoud, Valerii Serpiva, Miguel Altamirano Cabrera, Mikhail Konenkov, Dzmitry Tsetserukou
Abstract:
We introduce PhysicalAgent, an agentic framework for robotic manipulation that integrates iterative reasoning, diffusion-based video generation, and closed-loop execution. Given a textual instruction, our method generates short video demonstrations of candidate trajectories, executes them on the robot, and iteratively re-plans in response to failures. This approach enables robust recovery from execution errors. We evaluate PhysicalAgent across multiple perceptual modalities (egocentric, third-person, and simulated) and robotic embodiments (bimanual UR3, Unitree G1 humanoid, simulated GR1), comparing against state-of-the-art task-specific baselines. Experiments demonstrate that our method consistently outperforms prior approaches, achieving up to 83% success on human-familiar tasks. Physical trials reveal that first-attempt success is limited (20-30%), yet iterative correction increases overall success to 80% across platforms. These results highlight the potential of video-based generative reasoning for general-purpose robotic manipulation and underscore the importance of iterative execution for recovering from initial failures. Our framework paves the way for scalable, adaptable, and robust robot control.
Authors:Zenghui Yuan, Yangming Xu, Jiawen Shi, Pan Zhou, Lichao Sun
Abstract:
Model merging for Large Language Models (LLMs) directly fuses the parameters of different models finetuned on various tasks, creating a unified model for multi-domain tasks. However, due to potential vulnerabilities in models available on open-source platforms, model merging is susceptible to backdoor attacks. In this paper, we propose Merge Hijacking, the first backdoor attack targeting model merging in LLMs. The attacker constructs a malicious upload model and releases it. Once a victim user merges it with any other models, the resulting merged model inherits the backdoor while maintaining utility across tasks. Merge Hijacking defines two main objectives-effectiveness and utility-and achieves them through four steps. Extensive experiments demonstrate the effectiveness of our attack across different models, merging algorithms, and tasks. Additionally, we show that the attack remains effective even when merging real-world models. Moreover, our attack demonstrates robustness against two inference-time defenses (Paraphrasing and CLEANGEN) and one training-time defense (Fine-pruning).
Authors:Tadahiro Taniguchi, Ryo Ueda, Tomoaki Nakamura, Masahiro Suzuki, Akira Taniguchi
Abstract:
Large Language Models (LLMs) have demonstrated a remarkable ability to capture extensive world knowledge, yet how this is achieved without direct sensorimotor experience remains a fundamental puzzle. This study proposes a novel theoretical solution by introducing the Collective World Model hypothesis. We argue that an LLM does not learn a world model from scratch; instead, it learns a statistical approximation of a collective world model that is already implicitly encoded in human language through a society-wide process of embodied, interactive sense-making. To formalize this process, we introduce generative emergent communication (Generative EmCom), a framework built on the Collective Predictive Coding (CPC). This framework models the emergence of language as a process of decentralized Bayesian inference over the internal states of multiple agents. We argue that this process effectively creates an encoder-decoder structure at a societal scale: human society collectively encodes its grounded, internal representations into language, and an LLM subsequently decodes these symbols to reconstruct a latent space that mirrors the structure of the original collective representations. This perspective provides a principled, mathematical explanation for how LLMs acquire their capabilities. The main contributions of this paper are: 1) the formalization of the Generative EmCom framework, clarifying its connection to world models and multi-agent reinforcement learning, and 2) its application to interpret LLMs, explaining phenomena such as distributional semantics as a natural consequence of representation reconstruction. This work provides a unified theory that bridges individual cognitive development, collective language evolution, and the foundations of large-scale AI.
Authors:Xinnong Zhang, Jiayu Lin, Xinyi Mou, Shiyue Yang, Xiawei Liu, Libo Sun, Hanjia Lyu, Yihang Yang, Weihong Qi, Yue Chen, Guanying Li, Ling Yan, Yao Hu, Siming Chen, Yu Wang, Xuanjing Huang, Jiebo Luo, Shiping Tang, Libo Wu, Baohua Zhou, Zhongyu Wei
Abstract:
Social simulation is transforming traditional social science research by modeling human behavior through interactions between virtual individuals and their environments. With recent advances in large language models (LLMs), this approach has shown growing potential in capturing individual differences and predicting group behaviors. However, existing methods face alignment challenges related to the environment, target users, interaction mechanisms, and behavioral patterns. To this end, we introduce SocioVerse, an LLM-agent-driven world model for social simulation. Our framework features four powerful alignment components and a user pool of 10 million real individuals. To validate its effectiveness, we conducted large-scale simulation experiments across three distinct domains: politics, news, and economics. Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness through standardized procedures and minimal manual adjustments.
Authors:Bao Shu, Yan Cai, Jianjian Sun, Chunrui Han, En Yu, Liang Zhao, Jingcheng Hu, Yinmin Zhang, Haoran Lv, Yuang Peng, Zheng Ge, Xiangyu Zhang, Daxin Jiang, Xiangyu Yue
Abstract:
Developing robust world model reasoning is crucial for large language model (LLM) agents to plan and interact in complex environments. While multi-turn interaction offers a superior understanding of environmental dynamics via authentic feedback, current approaches often impose a rigid reasoning process, which constrains the model's active learning, ultimately hindering efficient world model reasoning. To address these issues, we explore world-model internalization through efficient interaction and active reasoning (WMAct), which liberates the model from structured reasoning, allowing the model to shape thinking directly through its doing, and achieves effective and efficient world model reasoning with two key mechanisms: (1) a reward rescaling mechanism adjusting outcome reward based on action efficacy to incentivize redundancy reduction and purposeful interaction; (2) an interaction frequency annealing strategy to progressively reduce the maximum allowed interaction turns, which compels the model to condense its learning and internalize environmental dynamics rather than over-relying on environmental cues. Our experiments on Sokoban, Maze, and Taxi show that WMAct yields effective world model reasoning capable of resolving tasks in a single turn that previously required multiple interactions and fosters strong transferability to complex environments, improving performance on a suite of reasoning benchmarks.
Authors:Junjin Xiao, Yandan Yang, Xinyuan Chang, Ronghan Chen, Feng Xiong, Mu Xu, Wei-Shi Zheng, Qing Zhang
Abstract:
Vision-Language-Action (VLA) models trained via imitation learning suffer from significant performance degradation in data-scarce scenarios due to their reliance on large-scale demonstration datasets. Although reinforcement learning (RL)-based post-training has proven effective in addressing data scarcity, its application to VLA models is hindered by the non-resettable nature of real-world environments. This limitation is particularly critical in high-risk domains such as industrial automation, where interactions often induce state changes that are costly or infeasible to revert. Furthermore, existing VLA approaches lack a reliable mechanism for detecting task completion, leading to redundant actions that reduce overall task success rates. To address these challenges, we propose World-Env, an RL-based post-training framework that replaces physical interaction with a low-cost, world model-based virtual simulator. World-Env consists of two key components: (1) a video-based world simulator that generates temporally consistent future visual observations, and (2) a vision-language model (VLM)-guided instant reflector that provides continuous reward signals and predicts action termination. This simulated environment enables VLA models to safely explore and generalize beyond their initial imitation learning distribution. Our method achieves notable performance gains with as few as five expert demonstrations per task. Experiments on complex robotic manipulation tasks demonstrate that World-Env effectively overcomes the data inefficiency, safety constraints, and inefficient execution of conventional VLA models that rely on real-world interaction, offering a practical and scalable solution for post-training in resource-constrained settings.
Authors:Shuang Zeng, Xinyuan Chang, Mengwei Xie, Xinran Liu, Yifan Bai, Zheng Pan, Mu Xu, Xing Wei
Abstract:
Visual language models (VLMs) have attracted increasing interest in autonomous driving due to their powerful reasoning capabilities. However, existing VLMs typically utilize discrete text Chain-of-Thought (CoT) tailored to the current scenario, which essentially represents highly abstract and symbolic compression of visual information, potentially leading to spatio-temporal relationship ambiguity and fine-grained information loss. Is autonomous driving better modeled on real-world simulation and imagination than on pure symbolic logic? In this paper, we propose a spatio-temporal CoT reasoning method that enables models to think visually. First, VLM serves as a world model to generate unified image frame for predicting future world states: where perception results (e.g., lane divider and 3D detection) represent the future spatial relationships, and ordinary future frame represent the temporal evolution relationships. This spatio-temporal CoT then serves as intermediate reasoning steps, enabling the VLM to function as an inverse dynamics model for trajectory planning based on current observations and future predictions. To implement visual generation in VLMs, we propose a unified pretraining paradigm integrating visual generation and understanding, along with a progressive visual CoT enhancing autoregressive image generation. Extensive experimental results demonstrate the effectiveness of the proposed method, advancing autonomous driving towards visual reasoning.
Authors:Gabrijel Boduljak, Yushi Lan, Christian Rupprecht, Andrea Vedaldi
Abstract:
Forecasting from partial observations is central to world modeling. Many recent methods represent the world through images, and reduce forecasting to stochastic video generation. Although such methods excel at realism and visual fidelity, predicting pixels is computationally intensive and not directly useful in many applications, as it requires translating RGB into signals useful for decision making. An alternative approach uses features from vision foundation models (VFMs) as world representations, performing deterministic regression to predict future world states. These features can be directly translated into actionable signals such as semantic segmentation and depth, while remaining computationally efficient. However, deterministic regression averages over multiple plausible futures, undermining forecast accuracy by failing to capture uncertainty. To address this crucial limitation, we introduce a generative forecaster that performs autoregressive flow matching in VFM feature space. Our key insight is that generative modeling in this space requires encoding VFM features into a compact latent space suitable for diffusion. We show that this latent space preserves information more effectively than previously used PCA-based alternatives, both for forecasting and other applications, such as image generation. Our latent predictions can be easily decoded into multiple useful and interpretable output modalities: semantic segmentation, depth, surface normals, and even RGB. With matched architecture and compute, our method produces sharper and more accurate predictions than regression across all modalities. Our results suggest that stochastic conditional generation of VFM features offers a promising and scalable foundation for future world models.
Authors:Gabrijel Boduljak, Laurynas Karazija, Iro Laina, Christian Rupprecht, Andrea Vedaldi
Abstract:
We consider the problem of forecasting motion from a single image, i.e., predicting how objects in the world are likely to move, without the ability to observe other parameters such as the object velocities or the forces applied to them. We formulate this task as conditional generation of dense trajectory grids with a model that closely follows the architecture of modern video generators but outputs motion trajectories instead of pixels. This approach captures scene-wide dynamics and uncertainty, yielding more accurate and diverse predictions than prior regressors and generators. We extensively evaluate our method on simulated data, demonstrate its effectiveness on downstream applications such as robotics, and show promising accuracy on real-world intuitive physics datasets. Although recent state-of-the-art video generators are often regarded as world models, we show that they struggle with forecasting motion from a single image, even in simple physical scenarios such as falling blocks or mechanical object interactions, despite fine-tuning on such data. We show that this limitation arises from the overhead of generating pixels rather than directly modeling motion.
Authors:Dingrui Wang, Hongyuan Ye, Zhihao Liang, Zhexiao Sun, Zhaowei Lu, Yuchen Zhang, Yuyu Zhao, Yuan Gao, Marvin Seegert, Finn Schäfer, Haotong Qin, Wei Li, Luigi Palmieri, Felix Jahncke, Mattia Piccinini, Johannes Betz
Abstract:
While recent world models generate highly realistic videos, their ability to perform robot path planning remains unclear and unquantified. We introduce Target-Bench, the first benchmark specifically designed to evaluate world models on mapless path planning toward semantic targets in real-world environments. Target-Bench provides 450 robot-collected video sequences spanning 45 semantic categories with SLAM-based ground truth trajectories. Our evaluation pipeline recovers camera motion from generated videos and measures planning performance using five complementary metrics that quantify target-reaching capability, trajectory accuracy, and directional consistency. We evaluate state-of-the-art models including Sora 2, Veo 3.1, and the Wan series. The best off-the-shelf model (Wan2.2-Flash) achieves only 0.299 overall score, revealing significant limitations in current world models for robotic planning tasks. We show that fine-tuning an open-source 5B-parameter model on only 325 scenarios from our dataset achieves 0.345 overall score -- an improvement of more than 400% over its base version (0.066) and 15% higher than the best off-the-shelf model. We will open-source the code and dataset.
Authors:Yingyan Li, Shuyao Shang, Weisong Liu, Bing Zhan, Haochen Wang, Yuqi Wang, Yuntao Chen, Xiaoman Wang, Yasong An, Chufeng Tang, Lu Hou, Lue Fan, Zhaoxiang Zhang
Abstract:
Scaling Vision-Language-Action (VLA) models on large-scale data offers a promising path to achieving a more generalized driving intelligence. However, VLA models are limited by a ``supervision deficit'': the vast model capacity is supervised by sparse, low-dimensional actions, leaving much of their representational power underutilized. To remedy this, we propose \textbf{DriveVLA-W0}, a training paradigm that employs world modeling to predict future images. This task generates a dense, self-supervised signal that compels the model to learn the underlying dynamics of the driving environment. We showcase the paradigm's versatility by instantiating it for two dominant VLA archetypes: an autoregressive world model for VLAs that use discrete visual tokens, and a diffusion world model for those operating on continuous visual features. Building on the rich representations learned from world modeling, we introduce a lightweight action expert to address the inference latency for real-time deployment. Extensive experiments on the NAVSIM v1/v2 benchmark and a 680x larger in-house dataset demonstrate that DriveVLA-W0 significantly outperforms BEV and VLA baselines. Crucially, it amplifies the data scaling law, showing that performance gains accelerate as the training dataset size increases.
Authors:Sibo Li, Qianyue Hao, Yu Shang, Yong Li
Abstract:
Robotic world models are a promising paradigm for forecasting future environment states, yet their inference speed and the physical plausibility of generated trajectories remain critical bottlenecks, limiting their real-world applications. This stems from the redundancy of the prevailing frame-to-frame generation approach, where the model conducts costly computation on similar frames, as well as neglecting the semantic importance of key transitions. To address this inefficiency, we propose KeyWorld, a framework that improves text-conditioned robotic world models by concentrating transformers computation on a few semantic key frames while employing a lightweight convolutional model to fill the intermediate frames. Specifically, KeyWorld first identifies significant transitions by iteratively simplifying the robot's motion trajectories, obtaining the ground truth key frames. Then, a DiT model is trained to reason and generate these physically meaningful key frames from textual task descriptions. Finally, a lightweight interpolator efficiently reconstructs the full video by inpainting all intermediate frames. Evaluations on the LIBERO benchmark demonstrate that KeyWorld achieves a 5.68$\times$ acceleration compared to the frame-to-frame generation baseline, and focusing on the motion-aware key frames further contributes to the physical validity of the generated videos, especially on complex tasks. Our approach highlights a practical path toward deploying world models in real-time robotic control and other domains requiring both efficient and effective world models. Code is released at https://anonymous.4open.science/r/Keyworld-E43D.
Authors:Dingrui Wang, Zhexiao Sun, Zhouheng Li, Cheng Wang, Youlun Peng, Hongyuan Ye, Baha Zarrouki, Wei Li, Mattia Piccinini, Lei Xie, Johannes Betz
Abstract:
A major challenge in deploying world models is the trade-off between size and performance. Large world models can capture rich physical dynamics but require massive computing resources, making them impractical for edge devices. Small world models are easier to deploy but often struggle to learn accurate physics, leading to poor predictions. We propose the Physics-Informed BEV World Model (PIWM), a compact model designed to efficiently capture physical interactions in bird's-eye-view (BEV) representations. PIWM uses Soft Mask during training to improve dynamic object modeling and future prediction. We also introduce a simple yet effective technique, Warm Start, for inference to enhance prediction quality with a zero-shot model. Experiments show that at the same parameter scale (400M), PIWM surpasses the baseline by 60.6% in weighted overall score. Moreover, even when compared with the largest baseline model (400M), the smallest PIWM (130M Soft Mask) achieves a 7.4% higher weighted overall score with a 28% faster inference speed.
Authors:Yilin Cao, Yufeng Zhong, Zhixiong Zeng, Liming Zheng, Jing Huang, Haibo Qiu, Peng Shi, Wenji Mao, Wan Guanglu
Abstract:
Mobile GUI agents have shown strong potential in real-world automation and practical applications. However, most existing agents remain reactive, making decisions mainly from current screen, which limits their performance on long-horizon tasks. Building a world model from repeated interactions enables forecasting action outcomes and supports better decision making for mobile GUI agents. This is challenging because the model must predict post-action states with spatial awareness while remaining efficient enough for practical deployment. In this paper, we propose MobileDreamer, an efficient world-model-based lookahead framework to equip the GUI agents based on the future imagination provided by the world model. It consists of textual sketch world model and rollout imagination for GUI agent. Textual sketch world model forecasts post-action states through a learning process to transform digital images into key task-related sketches, and designs a novel order-invariant learning strategy to preserve the spatial information of GUI elements. The rollout imagination strategy for GUI agent optimizes the action-selection process by leveraging the prediction capability of world model. Experiments on Android World show that MobileDreamer achieves state-of-the-art performance and improves task success by 5.25%. World model evaluations further verify that our textual sketch modeling accurately forecasts key GUI elements.
Authors:Haicheng Liao, Huanming Shen, Bonan Wang, Yongkang Li, Yihong Tang, Chengyue Wang, Dingyi Zhuang, Kehua Chen, Hai Yang, Chengzhong Xu, Zhenning Li
Abstract:
Interpreting natural-language commands to localize target objects is critical for autonomous driving (AD). Existing visual grounding (VG) methods for autonomous vehicles (AVs) typically struggle with ambiguous, context-dependent instructions, as they lack reasoning over 3D spatial relations and anticipated scene evolution. Grounded in the principles of world models, we propose ThinkDeeper, a framework that reasons about future spatial states before making grounding decisions. At its core is a Spatial-Aware World Model (SA-WM) that learns to reason ahead by distilling the current scene into a command-aware latent state and rolling out a sequence of future latent states, providing forward-looking cues for disambiguation. Complementing this, a hypergraph-guided decoder then hierarchically fuses these states with the multimodal input, capturing higher-order spatial dependencies for robust localization. In addition, we present DrivePilot, a multi-source VG dataset in AD, featuring semantic annotations generated by a Retrieval-Augmented Generation (RAG) and Chain-of-Thought (CoT)-prompted LLM pipeline. Extensive evaluations on six benchmarks, ThinkDeeper ranks #1 on the Talk2Car leaderboard and surpasses state-of-the-art baselines on DrivePilot, MoCAD, and RefCOCO/+/g benchmarks. Notably, it shows strong robustness and efficiency in challenging scenes (long-text, multi-agent, ambiguity) and retains superior performance even when trained on 50% of the data.
Authors:Bin Hu, Zijian Lu, Haicheng Liao, Chengran Yuan, Bin Rao, Yongkang Li, Guofa Li, Zhiyong Cui, Cheng-zhong Xu, Zhenning Li
Abstract:
Motion planning for autonomous driving must handle multiple plausible futures while remaining computationally efficient. Recent end-to-end systems and world-model-based planners predict rich multi-modal trajectories, but typically rely on handcrafted anchors or reinforcement learning to select a single best mode for training and control. This selection discards information about alternative futures and complicates optimization. We propose MAP-World, a prior-free multi-modal planning framework that couples masked action planning with a path-weighted world model. The Masked Action Planning (MAP) module treats future ego motion as masked sequence completion: past waypoints are encoded as visible tokens, future waypoints are represented as mask tokens, and a driving-intent path provides a coarse scaffold. A compact latent planning state is expanded into multiple trajectory queries with injected noise, yielding diverse, temporally consistent modes without anchor libraries or teacher policies. A lightweight world model then rolls out future BEV semantics conditioned on each candidate trajectory. During training, semantic losses are computed as an expectation over modes, using trajectory probabilities as discrete path weights, so the planner learns from the full distribution of plausible futures instead of a single selected path. On NAVSIM, our method matches anchor-based approaches and achieves state-of-the-art performance among world-model-based methods, while avoiding reinforcement learning and maintaining real-time inference latency.
Authors:John Won, Kyungmin Lee, Huiwon Jang, Dongyoung Kim, Jinwoo Shin
Abstract:
Recently, augmenting vision-language-action models (VLAs) with world-models has shown promise in robotic policy learning. However, it remains challenging to jointly predict next-state observations and action sequences because of the inherent difference between the two modalities. To address this, we propose DUal-STream diffusion (DUST), a world-model augmented VLA framework that handles the modality conflict and enhances the performance of VLAs across diverse tasks. Specifically, we propose a multimodal diffusion transformer architecture that explicitly maintains separate modality streams while enabling cross-modal knowledge sharing. In addition, we propose training techniques such as independent noise perturbations for each modality and a decoupled flow matching loss, which enables the model to learn the joint distribution in a bidirectional manner while avoiding the need for a unified latent space. Furthermore, based on the decoupled training framework, we introduce a sampling method where we sample action and vision tokens asynchronously at different rates, which shows improvement through inference-time scaling. Through experiments on simulated benchmarks such as RoboCasa and GR-1, DUST achieves up to 6% gains over a standard VLA baseline and implicit world-modeling methods, with our inference-time scaling approach providing an additional 2-5% gain on success rate. On real-world tasks with the Franka Research 3, DUST outperforms baselines in success rate by 13%, confirming its effectiveness beyond simulation. Lastly, we demonstrate the effectiveness of DUST in large-scale pretraining with action-free videos from BridgeV2, where DUST leads to significant gain when transferred to the RoboCasa benchmark.
Authors:Haicheng Liao, Bonan Wang, Junxian Yang, Chengyue Wang, Zhengbin He, Guohui Zhang, Chengzhong Xu, Zhenning Li
Abstract:
Accurate and reliable motion forecasting is essential for the safe deployment of autonomous vehicles (AVs), particularly in rare but safety-critical scenarios known as corner cases. Existing models often underperform in these situations due to an over-representation of common scenes in training data and limited generalization capabilities. To address this limitation, we present WM-MoE, the first world model-based motion forecasting framework that unifies perception, temporal memory, and decision making to address the challenges of high-risk corner-case scenarios. The model constructs a compact scene representation that explains current observations, anticipates future dynamics, and evaluates the outcomes of potential actions. To enhance long-horizon reasoning, we leverage large language models (LLMs) and introduce a lightweight temporal tokenizer that maps agent trajectories and contextual cues into the LLM's feature space without additional training, enriching temporal context and commonsense priors. Furthermore, a mixture-of-experts (MoE) is introduced to decompose complex corner cases into subproblems and allocate capacity across scenario types, and a router assigns scenes to specialized experts that infer agent intent and perform counterfactual rollouts. In addition, we introduce nuScenes-corner, a new benchmark that comprises four real-world corner-case scenarios for rigorous evaluation. Extensive experiments on four benchmark datasets (nuScenes, NGSIM, HighD, and MoCAD) showcase that WM-MoE consistently outperforms state-of-the-art (SOTA) baselines and remains robust under corner-case and data-missing conditions, indicating the promise of world model-based architectures for robust and generalizable motion forecasting in fully AVs.
Authors:Jingyu Li, Bozhou Zhang, Xin Jin, Jiankang Deng, Xiatian Zhu, Li Zhang
Abstract:
Autonomous driving requires rich contextual comprehension and precise predictive reasoning to navigate dynamic and complex environments safely. Vision-Language Models (VLMs) and Driving World Models (DWMs) have independently emerged as powerful recipes addressing different aspects of this challenge. VLMs provide interpretability and robust action prediction through their ability to understand multi-modal context, while DWMs excel in generating detailed and plausible future driving scenarios essential for proactive planning. Integrating VLMs with DWMs is an intuitive, promising, yet understudied strategy to exploit the complementary strengths of accurate behavioral prediction and realistic scene generation. Nevertheless, this integration presents notable challenges, particularly in effectively connecting action-level decisions with high-fidelity pixel-level predictions and maintaining computational efficiency. In this paper, we propose ImagiDrive, a novel end-to-end autonomous driving framework that integrates a VLM-based driving agent with a DWM-based scene imaginer to form a unified imagination-and-planning loop. The driving agent predicts initial driving trajectories based on multi-modal inputs, guiding the scene imaginer to generate corresponding future scenarios. These imagined scenarios are subsequently utilized to iteratively refine the driving agent's planning decisions. To address efficiency and predictive accuracy challenges inherent in this integration, we introduce an early stopping mechanism and a trajectory selection strategy. Extensive experimental validation on the nuScenes and NAVSIM datasets demonstrates the robustness and superiority of ImagiDrive over previous alternatives under both open-loop and closed-loop conditions.
Authors:Yanchen Guan, Haicheng Liao, Chengyue Wang, Xingcheng Liu, Jiaxun Zhang, Zhenning Li
Abstract:
Reliable anticipation of traffic accidents is essential for advancing autonomous driving systems. However, this objective is limited by two fundamental challenges: the scarcity of diverse, high-quality training data and the frequent absence of crucial object-level cues due to environmental disruptions or sensor deficiencies. To tackle these issues, we propose a comprehensive framework combining generative scene augmentation with adaptive temporal reasoning. Specifically, we develop a video generation pipeline that utilizes a world model guided by domain-informed prompts to create high-resolution, statistically consistent driving scenarios, particularly enriching the coverage of edge cases and complex interactions. In parallel, we construct a dynamic prediction model that encodes spatio-temporal relationships through strengthened graph convolutions and dilated temporal operators, effectively addressing data incompleteness and transient visual noise. Furthermore, we release a new benchmark dataset designed to better capture diverse real-world driving risks. Extensive experiments on public and newly released datasets confirm that our framework enhances both the accuracy and lead time of accident anticipation, offering a robust solution to current data and modeling limitations in safety-critical autonomous driving applications.
Authors:Jiazhi Yang, Kashyap Chitta, Shenyuan Gao, Long Chen, Yuqian Shao, Xiaosong Jia, Hongyang Li, Andreas Geiger, Xiangyu Yue, Li Chen
Abstract:
How can we reliably simulate future driving scenarios under a wide range of ego driving behaviors? Recent driving world models, developed exclusively on real-world driving data composed mainly of safe expert trajectories, struggle to follow hazardous or non-expert behaviors, which are rare in such data. This limitation restricts their applicability to tasks such as policy evaluation. In this work, we address this challenge by enriching real-world human demonstrations with diverse non-expert data collected from a driving simulator (e.g., CARLA), and building a controllable world model trained on this heterogeneous corpus. Starting with a video generator featuring a diffusion transformer architecture, we devise several strategies to effectively integrate conditioning signals and improve prediction controllability and fidelity. The resulting model, ReSim, enables Reliable Simulation of diverse open-world driving scenarios under various actions, including hazardous non-expert ones. To close the gap between high-fidelity simulation and applications that require reward signals to judge different actions, we introduce a Video2Reward module that estimates a reward from ReSim's simulated future. Our ReSim paradigm achieves up to 44% higher visual fidelity, improves controllability for both expert and non-expert actions by over 50%, and boosts planning and policy selection performance on NAVSIM by 2% and 25%, respectively.
Authors:Siyin Wang, Zhaoye Fei, Qinyuan Cheng, Shiduo Zhang, Panpan Cai, Jinlan Fu, Xipeng Qiu
Abstract:
Recent advances in large vision-language models (LVLMs) have shown promise for embodied task planning, yet they struggle with fundamental challenges like dependency constraints and efficiency. Existing approaches either solely optimize action selection or leverage world models during inference, overlooking the benefits of learning to model the world as a way to enhance planning capabilities. We propose Dual Preference Optimization (D$^2$PO), a new learning framework that jointly optimizes state prediction and action selection through preference learning, enabling LVLMs to understand environment dynamics for better planning. To automatically collect trajectories and stepwise preference data without human annotation, we introduce a tree search mechanism for extensive exploration via trial-and-error. Extensive experiments on VoTa-Bench demonstrate that our D$^2$PO-based method significantly outperforms existing methods and GPT-4o when applied to Qwen2-VL (7B), LLaVA-1.6 (7B), and LLaMA-3.2 (11B), achieving superior task success rates with more efficient execution paths.
Authors:Sen Wang, Jingyi Tian, Le Wang, Zhimin Liao, Jiayi Li, Huaiyi Dong, Kun Xia, Sanping Zhou, Wei Tang, Hua Gang
Abstract:
World models allow agents to simulate the consequences of actions in imagined environments for planning, control, and long-horizon decision-making. However, existing autoregressive world models struggle with visually coherent predictions due to disrupted spatial structure, inefficient decoding, and inadequate motion modeling. In response, we propose \textbf{S}cale-wise \textbf{A}utoregression with \textbf{M}otion \textbf{P}r\textbf{O}mpt (\textbf{SAMPO}), a hybrid framework that combines visual autoregressive modeling for intra-frame generation with causal modeling for next-frame generation. Specifically, SAMPO integrates temporal causal decoding with bidirectional spatial attention, which preserves spatial locality and supports parallel decoding within each scale. This design significantly enhances both temporal consistency and rollout efficiency. To further improve dynamic scene understanding, we devise an asymmetric multi-scale tokenizer that preserves spatial details in observed frames and extracts compact dynamic representations for future frames, optimizing both memory usage and model performance. Additionally, we introduce a trajectory-aware motion prompt module that injects spatiotemporal cues about object and robot trajectories, focusing attention on dynamic regions and improving temporal consistency and physical realism. Extensive experiments show that SAMPO achieves competitive performance in action-conditioned video prediction and model-based control, improving generation quality with 4.4$\times$ faster inference. We also evaluate SAMPO's zero-shot generalization and scaling behavior, demonstrating its ability to generalize to unseen tasks and benefit from larger model sizes.
Authors:Jian Zhu, Zhengyu Jia, Tian Gao, Jiaxin Deng, Shidi Li, Lang Zhang, Fu Liu, Peng Jia, Xianpeng Lang
Abstract:
Advanced end-to-end autonomous driving systems predict other vehicles' motions and plan ego vehicle's trajectory. The world model that can foresee the outcome of the trajectory has been used to evaluate the autonomous driving system. However, existing world models predominantly emphasize the trajectory of the ego vehicle and leave other vehicles uncontrollable. This limitation hinders their ability to realistically simulate the interaction between the ego vehicle and the driving scenario. In this paper, we propose a driving World Model named EOT-WM, unifying Ego-Other vehicle Trajectories in videos for driving simulation. Specifically, it remains a challenge to match multiple trajectories in the BEV space with each vehicle in the video to control the video generation. We first project ego-other vehicle trajectories in the BEV space into the image coordinate for vehicle-trajectory match via pixel positions. Then, trajectory videos are encoded by the Spatial-Temporal Variational Auto Encoder to align with driving video latents spatially and temporally in the unified visual space. A trajectory-injected diffusion Transformer is further designed to denoise the noisy video latents for video generation with the guidance of ego-other vehicle trajectories. In addition, we propose a metric based on control latent similarity to evaluate the controllability of trajectories. Extensive experiments are conducted on the nuScenes dataset, and the proposed model outperforms the state-of-the-art method by 30% in FID and 55% in FVD. The model can also predict unseen driving scenes with self-produced trajectories.
Authors:Yicong Hong, Yiqun Mei, Chongjian Ge, Yiran Xu, Yang Zhou, Sai Bi, Yannick Hold-Geoffroy, Mike Roberts, Matthew Fisher, Eli Shechtman, Kalyan Sunkavalli, Feng Liu, Zhengqi Li, Hao Tan
Abstract:
A truly interactive world model requires three key ingredients: real-time long-horizon streaming, consistent spatial memory, and precise user control. However, most existing approaches address only one of these aspects in isolation, as achieving all three simultaneously is highly challenging-for example, long-term memory mechanisms often degrade real-time performance. In this work, we present RELIC, a unified framework that tackles these three challenges altogether. Given a single image and a text description, RELIC enables memory-aware, long-duration exploration of arbitrary scenes in real time. Built upon recent autoregressive video-diffusion distillation techniques, our model represents long-horizon memory using highly compressed historical latent tokens encoded with both relative actions and absolute camera poses within the KV cache. This compact, camera-aware memory structure supports implicit 3D-consistent content retrieval and enforces long-term coherence with minimal computational overhead. In parallel, we fine-tune a bidirectional teacher video model to generate sequences beyond its original 5-second training horizon, and transform it into a causal student generator using a new memory-efficient self-forcing paradigm that enables full-context distillation over long-duration teacher as well as long student self-rollouts. Implemented as a 14B-parameter model and trained on a curated Unreal Engine-rendered dataset, RELIC achieves real-time generation at 16 FPS while demonstrating more accurate action following, more stable long-horizon streaming, and more robust spatial-memory retrieval compared with prior work. These capabilities establish RELIC as a strong foundation for the next generation of interactive world modeling.
Authors:Zhen Chen, Qing Xu, Jinlin Wu, Biao Yang, Yuhao Zhai, Geng Guo, Jing Zhang, Yinlu Ding, Nassir Navab, Jiebo Luo
Abstract:
Foundation models in video generation are demonstrating remarkable capabilities as potential world models for simulating the physical world. However, their application in high-stakes domains like surgery, which demand deep, specialized causal knowledge rather than general physical rules, remains a critical unexplored gap. To systematically address this challenge, we present SurgVeo, the first expert-curated benchmark for video generation model evaluation in surgery, and the Surgical Plausibility Pyramid (SPP), a novel, four-tiered framework tailored to assess model outputs from basic appearance to complex surgical strategy. On the basis of the SurgVeo benchmark, we task the advanced Veo-3 model with a zero-shot prediction task on surgical clips from laparoscopic and neurosurgical procedures. A panel of four board-certified surgeons evaluates the generated videos according to the SPP. Our results reveal a distinct "plausibility gap": while Veo-3 achieves exceptional Visual Perceptual Plausibility, it fails critically at higher levels of the SPP, including Instrument Operation Plausibility, Environment Feedback Plausibility, and Surgical Intent Plausibility. This work provides the first quantitative evidence of the chasm between visually convincing mimicry and causal understanding in surgical AI. Our findings from SurgVeo and the SPP establish a crucial foundation and roadmap for developing future models capable of navigating the complexities of specialized, real-world healthcare domains.
Authors:Yuntao Chen, Yuqi Wang, Zhaoxiang Zhang
Abstract:
World model-based searching and planning are widely recognized as a promising path toward human-level physical intelligence. However, current driving world models primarily rely on video diffusion models, which specialize in visual generation but lack the flexibility to incorporate other modalities like action. In contrast, autoregressive transformers have demonstrated exceptional capability in modeling multimodal data. Our work aims to unify both driving model simulation and trajectory planning into a single sequence modeling problem. We introduce a multimodal driving language based on interleaved image and action tokens, and develop DrivingGPT to learn joint world modeling and planning through standard next-token prediction. Our DrivingGPT demonstrates strong performance in both action-conditioned video generation and end-to-end planning, outperforming strong baselines on large-scale nuPlan and NAVSIM benchmarks.
Authors:Yuqi Wang, Ke Cheng, Jiawei He, Qitai Wang, Hengchen Dai, Yuntao Chen, Fei Xia, Zhaoxiang Zhang
Abstract:
Driving world models have gained increasing attention due to their ability to model complex physical dynamics. However, their superb modeling capability is yet to be fully unleashed due to the limited video diversity in current driving datasets. We introduce DrivingDojo, the first dataset tailor-made for training interactive world models with complex driving dynamics. Our dataset features video clips with a complete set of driving maneuvers, diverse multi-agent interplay, and rich open-world driving knowledge, laying a stepping stone for future world model development. We further define an action instruction following (AIF) benchmark for world models and demonstrate the superiority of the proposed dataset for generating action-controlled future predictions.
Authors:Jiali Cheng, Anjishnu Kumar, Roshan Lal, Rishi Rajasekaran, Hani Ramezani, Omar Zia Khan, Oleg Rokhlenko, Sunny Chiu-Webster, Gang Hua, Hadi Amiri
Abstract:
We observe that current state-of-the-art web-agents are unable to effectively adapt to new environments without neural network fine-tuning, without which they produce inefficient execution plans due to a lack of awareness of the structure and dynamics of the new environment. To address this limitation, we introduce ATLAS (Actor-Critic Task-completion with Look-ahead Action Simulation), a memory-augmented agent that is able to make plans grounded in a model of the environment by simulating the consequences of those actions in cognitive space. Our agent starts by building a "cognitive map" by performing a lightweight curiosity driven exploration of the environment. The planner proposes candidate actions; the simulator predicts their consequences in cognitive space; a critic analyzes the options to select the best roll-out and update the original plan; and a browser executor performs the chosen action. On the WebArena-Lite Benchmark, we achieve a 63% success rate compared to 53.9% success rate for the previously published state-of-the-art. Unlike previous systems, our modular architecture requires no website-specific LLM fine-tuning. Ablations show sizable drops without the world-model, hierarchical planner, and look-ahead-based replanner confirming their complementary roles within the design of our system
Authors:Yijun Yang, Zhao-Yang Wang, Qiuping Liu, Shuwen Sun, Kang Wang, Rama Chellappa, Zongwei Zhou, Alan Yuille, Lei Zhu, Yu-Dong Zhang, Jieneng Chen
Abstract:
Providing effective treatment and making informed clinical decisions are essential goals of modern medicine and clinical care. We are interested in simulating disease dynamics for clinical decision-making, leveraging recent advances in large generative models. To this end, we introduce the Medical World Model (MeWM), the first world model in medicine that visually predicts future disease states based on clinical decisions. MeWM comprises (i) vision-language models to serve as policy models, and (ii) tumor generative models as dynamics models. The policy model generates action plans, such as clinical treatments, while the dynamics model simulates tumor progression or regression under given treatment conditions. Building on this, we propose the inverse dynamics model that applies survival analysis to the simulated post-treatment tumor, enabling the evaluation of treatment efficacy and the selection of the optimal clinical action plan. As a result, the proposed MeWM simulates disease dynamics by synthesizing post-treatment tumors, with state-of-the-art specificity in Turing tests evaluated by radiologists. Simultaneously, its inverse dynamics model outperforms medical-specialized GPTs in optimizing individualized treatment protocols across all metrics. Notably, MeWM improves clinical decision-making for interventional physicians, boosting F1-score in selecting the optimal TACE protocol by 13%, paving the way for future integration of medical world models as the second readers.
Authors:Tao He, Lizi Liao, Ming Liu, Bing Qin
Abstract:
Recent advancements in dialogue policy planning have emphasized optimizing system agent policies to achieve predefined goals, focusing on strategy design, trajectory acquisition, and efficient training paradigms. However, these approaches often overlook the critical role of user characteristics, which are essential in real-world scenarios like conversational search and recommendation, where interactions must adapt to individual user traits such as personality, preferences, and goals. To address this gap, we first conduct a comprehensive study utilizing task-specific user personas to systematically assess dialogue policy planning under diverse user behaviors. By leveraging realistic user profiles for different tasks, our study reveals significant limitations in existing approaches, highlighting the need for user-tailored dialogue policy planning. Building on this foundation, we present the User-Tailored Dialogue Policy Planning (UDP) framework, which incorporates an Intrinsic User World Model to model user traits and feedback. UDP operates in three stages: (1) User Persona Portraying, using a diffusion model to dynamically infer user profiles; (2) User Feedback Anticipating, leveraging a Brownian Bridge-inspired anticipator to predict user reactions; and (3) User-Tailored Policy Planning, integrating these insights to optimize response strategies. To ensure robust performance, we further propose an active learning approach that prioritizes challenging user personas during training. Comprehensive experiments on benchmarks, including collaborative and non-collaborative settings, demonstrate the effectiveness of UDP in learning user-specific dialogue strategies. Results validate the protocol's utility and highlight UDP's robustness, adaptability, and potential to advance user-centric dialogue systems.
Authors:Jun Cen, Siteng Huang, Yuqian Yuan, Kehan Li, Hangjie Yuan, Chaohui Yu, Yuming Jiang, Jiayan Guo, Xin Li, Hao Luo, Fan Wang, Deli Zhao, Hao Chen
Abstract:
We introduce RynnVLA-002, a unified Vision-Language-Action (VLA) and world model. The world model leverages action and visual inputs to predict future image states, learning the underlying physics of the environment to refine action generation. Conversely, the VLA model produces subsequent actions from image observations, enhancing visual understanding and supporting the world model's image generation. The unified framework of RynnVLA-002 enables joint learning of environmental dynamics and action planning. Our experiments show that RynnVLA-002 surpasses individual VLA and world models, demonstrating their mutual enhancement. We evaluate RynnVLA-002 in both simulation and real-world robot tasks. RynnVLA-002 achieves 97.4% success rate on the LIBERO simulation benchmark without pretraining, while in real-world LeRobot experiments, its integrated world model boosts the overall success rate by 50%.
Authors:Xiaoyuan Zhang, Chengdong Ma, Yizhe Huang, Weidong Huang, Siyuan Qi, Song-Chun Zhu, Xue Feng, Yaodong Yang
Abstract:
World models, which explicitly learn environmental dynamics to lay the foundation for planning, reasoning, and decision-making, are rapidly advancing in predicting both physical dynamics and aspects of social behavior, yet predominantly in separate silos. This division results in a systemic failure to model the crucial interplay between physical environments and social constructs, rendering current models fundamentally incapable of adequately addressing the true complexity of real-world systems where physical and social realities are inextricably intertwined. This position paper argues that the systematic, bidirectional unification of physical and social predictive capabilities is the next crucial frontier for world model development. We contend that comprehensive world models must holistically integrate objective physical laws with the subjective, evolving, and context-dependent nature of social dynamics. Such unification is paramount for AI to robustly navigate complex real-world challenges and achieve more generalizable intelligence. This paper substantiates this imperative by analyzing core impediments to integration, proposing foundational guiding principles (ACE Principles), and outlining a conceptual framework alongside a research roadmap towards truly holistic world models.
Authors:Xiaoyuan Zhang, Yizhe Huang, Chengdong Ma, Zhixun Chen, Long Ma, Yali Du, Song-Chun Zhu, Yaodong Yang, Xue Feng
Abstract:
Designing adaptive mechanisms to align individual and collective interests remains a central challenge in artificial social intelligence. Existing methods often struggle with modeling heterogeneous agents possessing persistent latent traits (e.g., skills, preferences) and dealing with complex multi-agent system dynamics. These challenges are compounded by the critical need for high sample efficiency due to costly real-world interactions. World Models, by learning to predict environmental dynamics, offer a promising pathway to enhance mechanism design in heterogeneous and complex systems. In this paper, we introduce a novel method named SWM-AP (Social World Model-Augmented Mechanism Design Policy Learning), which learns a social world model hierarchically modeling agents' behavior to enhance mechanism design. Specifically, the social world model infers agents' traits from their interaction trajectories and learns a trait-based model to predict agents' responses to the deployed mechanisms. The mechanism design policy collects extensive training trajectories by interacting with the social world model, while concurrently inferring agents' traits online during real-world interactions to further boost policy learning efficiency. Experiments in diverse settings (tax policy design, team coordination, and facility location) demonstrate that SWM-AP outperforms established model-based and model-free RL baselines in cumulative rewards and sample efficiency.
Authors:Yuan Sui, Yanming Zhang, Yi Liao, Yu Gu, Guohua Tang, Zhongqian Sun, Wei Yang, Bryan Hooi
Abstract:
Large Language Models (LLMs) are effective at reasoning and information retrieval, but remain unreliable for decision-making in dynamic, partially observable, high-stakes environments such as MOBA games. One key limitation is weak counterfactual reasoning: LLMs struggle to conduct precise what-if analysis over candidate actions and their future consequences. We address this limitation with What-if Analysis LLM (WiA-LLM), a framework that trains an LLM as an explicit language-based world model. Instead of representing the environment in latent vectors, WiA-LLM models how the game state evolves over time with candidate actions using language, and provides textual justifications for these predicted outcomes. This explicit modeling supports (1) interpretability, since the model's predictions and underlying rationales are human-readable, and (2) semantic generalization, as the model can transfer knowledge across situations that share similar game concepts (e.g., roles, objectives, or tactics). WiA-LLM is trained in two stages: supervised fine-tuning on human-like reasoning traces, followed by reinforcement learning with outcome-based rewards that depend on the discrepancy between predicted and ground-truth future states. In the Honor of Kings (HoK) environment, WiA-LLM attains 74.2\% accuracy (27\%$\uparrow$ vs. base model) in forecasting game-state changes. In addition, we find that agents with WiA-LLM exhibit closer strategic behavior to expert players than purely reactive LLM agents, indicating more foresight-aware and expert-aligned decision-making.
Authors:Yuxin Chen, Jianglan Wei, Chenfeng Xu, Boyi Li, Masayoshi Tomizuka, Andrea Bajcsy, Ran Tian
Abstract:
World models enable robots to "imagine" future observations given current observations and planned actions, and have been increasingly adopted as generalized dynamics models to facilitate robot learning. Despite their promise, these models remain brittle when encountering novel visual distractors such as objects and background elements rarely seen during training. Specifically, novel distractors can corrupt action outcome predictions, causing downstream failures when robots rely on the world model imaginations for planning or action verification. In this work, we propose Reimagination with Observation Intervention (ReOI), a simple yet effective test-time strategy that enables world models to predict more reliable action outcomes in open-world scenarios where novel and unanticipated visual distractors are inevitable. Given the current robot observation, ReOI first detects visual distractors by identifying which elements of the scene degrade in physically implausible ways during world model prediction. Then, it modifies the current observation to remove these distractors and bring the observation closer to the training distribution. Finally, ReOI "reimagines" future outcomes with the modified observation and reintroduces the distractors post-hoc to preserve visual consistency for downstream planning and verification. We validate our approach on a suite of robotic manipulation tasks in the context of action verification, where the verifier needs to select desired action plans based on predictions from a world model. Our results show that ReOI is robust to both in-distribution and out-of-distribution visual distractors. Notably, it improves task success rates by up to 3x in the presence of novel distractors, significantly outperforming action verification that relies on world model predictions without imagination interventions.
Authors:Dongxiu Liu, Haoyi Niu, Zhihao Wang, Jinliang Zheng, Yinan Zheng, Zhonghong Ou, Jianming Hu, Jianxiong Li, Xianyuan Zhan
Abstract:
Current robotic planning methods often rely on predicting multi-frame images with full pixel details. While this fine-grained approach can serve as a generic world model, it introduces two significant challenges for downstream policy learning: substantial computational costs that hinder real-time deployment, and accumulated inaccuracies that can mislead action extraction. Planning with coarse-grained subgoals partially alleviates efficiency issues. However, their forward planning schemes can still result in off-task predictions due to accumulation errors, leading to misalignment with long-term goals. This raises a critical question: Can robotic planning be both efficient and accurate enough for real-time control in long-horizon, multi-stage tasks? To address this, we propose a Latent Space Backward Planning scheme (LBP), which begins by grounding the task into final latent goals, followed by recursively predicting intermediate subgoals closer to the current state. The grounded final goal enables backward subgoal planning to always remain aware of task completion, facilitating on-task prediction along the entire planning horizon. The subgoal-conditioned policy incorporates a learnable token to summarize the subgoal sequences and determines how each subgoal guides action extraction. Through extensive simulation and real-robot long-horizon experiments, we show that LBP outperforms existing fine-grained and forward planning methods, achieving SOTA performance. Project Page: https://lbp-authors.github.io
Authors:Oguzhan Gungordu, Siheng Xiong, Faramarz Fekri
Abstract:
Large Language Models (LLMs) have enabled automated heuristic design (AHD) for combinatorial optimization problems (COPs), but existing frameworks' reliance on fixed evolutionary rules and static prompt templates often leads to myopic heuristic generation, redundant evaluations, and limited reasoning about how new heuristics should be derived. We propose a novel multi-agent reasoning framework, referred to as Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs (PathWise), which formulates heuristic generation as a sequential decision process over an entailment graph serving as a compact, stateful memory of the search trajectory. This approach allows the system to carry forward past decisions and reuse or avoid derivation information across generations. A policy agent plans evolutionary actions, a world model agent generates heuristic rollouts conditioned on those actions, and critic agents provide routed reflections summarizing lessons from prior steps, shifting LLM-based AHD from trial-and-error evolution toward state-aware planning through reasoning. Experiments across diverse COPs show that PathWise converges faster to better heuristics, generalizes across different LLM backbones, and scales to larger problem sizes.
Authors:Jensen Zhang, Jing Yang, Keze Wang
Abstract:
Large Language Models (LLMs) demonstrate strong few-shot generalization through in-context learning, yet their reasoning in dynamic and stochastic environments remains opaque. Prior studies mainly focus on static tasks and overlook the online adaptation required when beliefs must be continuously updated, which is a key capability for LLMs acting as world models or agents. We introduce a Bayesian filtering framework to evaluate online inference in LLMs. Our probabilistic probe suite spans both multivariate discrete distributions, such as dice rolls, and continuous distributions, such as Gaussian processes, where ground-truth parameters shift over time. We find that while LLM belief updates resemble Bayesian posteriors, they are more accurately characterized by an exponential forgetting filter with a model-specific discount factor smaller than one. This reveals systematic discounting of older evidence that varies significantly across model architectures. Although inherent priors are often miscalibrated, the updating mechanism itself remains structured and principled. We further validate these findings in a simulated agent task and propose prompting strategies that effectively recalibrate priors with minimal computational cost.
Authors:Yucen Wang, Fengming Zhang, De-Chuan Zhan, Li Zhao, Kaixin Wang, Jiang Bian
Abstract:
Adapting pre-trained video generation models into controllable world models via latent actions is a promising step towards creating generalist world models. The dominant paradigm adopts a two-stage approach that trains latent action model (LAM) and the world model separately, resulting in redundant training and limiting their potential for co-adaptation. A conceptually simple and appealing idea is to directly replace the forward dynamic model in LAM with a powerful world model and training them jointly, but it is non-trivial and prone to representational collapse. In this work, we propose CoLA-World, which for the first time successfully realizes this synergistic paradigm, resolving the core challenge in joint learning through a critical warm-up phase that effectively aligns the representations of the from-scratch LAM with the pre-trained world model. This unlocks a co-evolution cycle: the world model acts as a knowledgeable tutor, providing gradients to shape a high-quality LAM, while the LAM offers a more precise and adaptable control interface to the world model. Empirically, CoLA-World matches or outperforms prior two-stage methods in both video simulation quality and downstream visual planning, establishing a robust and efficient new paradigm for the field.
Authors:Yichao Liang, Dat Nguyen, Cambridge Yang, Tianyang Li, Joshua B. Tenenbaum, Carl Edward Rasmussen, Adrian Weller, Zenna Tavares, Tom Silver, Kevin Ellis
Abstract:
Long-horizon embodied planning is challenging because the world does not only change through an agent's actions: exogenous processes (e.g., water heating, dominoes cascading) unfold concurrently with the agent's actions. We propose a framework for abstract world models that jointly learns (i) symbolic state representations and (ii) causal processes for both endogenous actions and exogenous mechanisms. Each causal process models the time course of a stochastic cause-effect relation. We learn these world models from limited data via variational Bayesian inference combined with LLM proposals. Across five simulated tabletop robotics environments, the learned models enable fast planning that generalizes to held-out tasks with more objects and more complex goals, outperforming a range of baselines.
Authors:Wenkai Guo, Guanxing Lu, Haoyuan Deng, Zhenyu Wu, Yansong Tang, Ziwei Wang
Abstract:
Vision-Language-Action models (VLAs) achieve strong performance in general robotic manipulation tasks by scaling imitation learning. However, existing VLAs are limited to predicting short-sighted next-action, which struggle with long-horizon trajectory tasks due to incremental deviations. To address this problem, we propose a plug-in framework named VLA-Reasoner that effectively empowers off-the-shelf VLAs with the capability of foreseeing future states via test-time scaling. Specifically, VLA-Reasoner samples and rolls out possible action trajectories where involved actions are rationales to generate future states via a world model, which enables VLA-Reasoner to foresee and reason potential outcomes and search for the optimal actions. We further leverage Monte Carlo Tree Search (MCTS) to improve search efficiency in large action spaces, where stepwise VLA predictions seed the root. Meanwhile, we introduce a confidence sampling mechanism based on Kernel Density Estimation (KDE), to enable efficient exploration in MCTS without redundant VLA queries. We evaluate intermediate states in MCTS via an offline reward shaping strategy, to score predicted futures and correct deviations with long-term feedback. We conducted extensive experiments in both simulators and the real world, demonstrating that our proposed VLA-Reasoner achieves significant improvements over the state-of-the-art VLAs. Our method highlights a potential pathway toward scalable test-time computation of robotic manipulation.
Authors:Xianglong He, Chunli Peng, Zexiang Liu, Boyang Wang, Yifan Zhang, Qi Cui, Fei Kang, Biao Jiang, Mengyin An, Yangyang Ren, Baixin Xu, Hao-Xiang Guo, Kaixiong Gong, Cyrus Wu, Wei Li, Xuchen Song, Yang Liu, Eric Li, Yahui Zhou
Abstract:
Recent advances in interactive video generations have demonstrated diffusion model's potential as world models by capturing complex physical dynamics and interactive behaviors. However, existing interactive world models depend on bidirectional attention and lengthy inference steps, severely limiting real-time performance. Consequently, they are hard to simulate real-world dynamics, where outcomes must update instantaneously based on historical context and current actions. To address this, we present Matrix-Game 2.0, an interactive world model generates long videos on-the-fly via few-step auto-regressive diffusion. Our framework consists of three key components: (1) A scalable data production pipeline for Unreal Engine and GTA5 environments to effectively produce massive amounts (about 1200 hours) of video data with diverse interaction annotations; (2) An action injection module that enables frame-level mouse and keyboard inputs as interactive conditions; (3) A few-step distillation based on the casual architecture for real-time and streaming video generation. Matrix Game 2.0 can generate high-quality minute-level videos across diverse scenes at an ultra-fast speed of 25 FPS. We open-source our model weights and codebase to advance research in interactive world modeling.
Authors:Zizhao Wang, Kaixin Wang, Li Zhao, Peter Stone, Jiang Bian
Abstract:
World models aim to capture the dynamics of the environment, enabling agents to predict and plan for future states. In most scenarios of interest, the dynamics are highly centered on interactions among objects within the environment. This motivates the development of world models that operate on object-centric rather than monolithic representations, with the goal of more effectively capturing environment dynamics and enhancing compositional generalization. However, the development of object-centric world models has largely been explored in environments with limited visual complexity (such as basic geometries). It remains underexplored whether such models can generalize to more complex settings with diverse textures and cluttered scenes. In this paper, we fill this gap by introducing Dyn-O, an enhanced structured world model built upon object-centric representations. Compared to prior work in object-centric representations, Dyn-O improves in both learning representations and modeling dynamics. On the challenging Procgen games, we find that our method can learn object-centric world models directly from pixel observations, outperforming DreamerV3 in rollout prediction accuracy. Furthermore, by decoupling object-centric features into dynamics-agnostic and dynamics-aware components, we enable finer-grained manipulation of these features and generate more diverse imagined trajectories.
Authors:Yaxuan Li, Yichen Zhu, Junjie Wen, Chaomin Shen, Yi Xu
Abstract:
The field of robotics has made significant strides toward developing generalist robot manipulation policies. However, evaluating these policies in real-world scenarios remains time-consuming and challenging, particularly as the number of tasks scales and environmental conditions change. In this work, we demonstrate that world models can serve as a scalable, reproducible, and reliable proxy for real-world robot policy evaluation. A key challenge is generating accurate policy videos from world models that faithfully reflect the robot actions. We observe that directly inputting robot actions or using high-dimensional encoding methods often fails to generate action-following videos. To address this, we propose Policy2Vec, a simple yet effective approach to turn a video generation model into a world simulator that follows latent action to generate the robot video. We then introduce WorldEval, an automated pipeline designed to evaluate real-world robot policies entirely online. WorldEval effectively ranks various robot policies and individual checkpoints within a single policy, and functions as a safety detector to prevent dangerous actions by newly developed robot models. Through comprehensive paired evaluations of manipulation policies in real-world environments, we demonstrate a strong correlation between policy performance in WorldEval and real-world scenarios. Furthermore, our method significantly outperforms popular methods such as real-to-sim approach.
Authors:Xiaoyu Chen, Junliang Guo, Tianyu He, Chuheng Zhang, Pushi Zhang, Derek Cathera Yang, Li Zhao, Jiang Bian
Abstract:
We introduce Image-GOal Representations (IGOR), aiming to learn a unified, semantically consistent action space across human and various robots. Through this unified latent action space, IGOR enables knowledge transfer among large-scale robot and human activity data. We achieve this by compressing visual changes between an initial image and its goal state into latent actions. IGOR allows us to generate latent action labels for internet-scale video data. This unified latent action space enables the training of foundation policy and world models across a wide variety of tasks performed by both robots and humans. We demonstrate that: (1) IGOR learns a semantically consistent action space for both human and robots, characterizing various possible motions of objects representing the physical interaction knowledge; (2) IGOR can "migrate" the movements of the object in the one video to other videos, even across human and robots, by jointly using the latent action model and world model; (3) IGOR can learn to align latent actions with natural language through the foundation policy model, and integrate latent actions with a low-level policy model to achieve effective robot control. We believe IGOR opens new possibilities for human-to-robot knowledge transfer and control.
Authors:Yichao Liang, Nishanth Kumar, Hao Tang, Adrian Weller, Joshua B. Tenenbaum, Tom Silver, João F. Henriques, Kevin Ellis
Abstract:
Broadly intelligent agents should form task-specific abstractions that selectively expose the essential elements of a task, while abstracting away the complexity of the raw sensorimotor space. In this work, we present Neuro-Symbolic Predicates, a first-order abstraction language that combines the strengths of symbolic and neural knowledge representations. We outline an online algorithm for inventing such predicates and learning abstract world models. We compare our approach to hierarchical reinforcement learning, vision-language model planning, and symbolic predicate invention approaches, on both in- and out-of-distribution tasks across five simulated robotic domains. Results show that our approach offers better sample complexity, stronger out-of-distribution generalization, and improved interpretability.
Authors:Siheng Xiong, Ali Payani, Yuan Yang, Faramarz Fekri
Abstract:
Enhancing the reasoning capabilities of language models (LMs) remains a key challenge, especially for tasks that require complex, multi-step decision-making where existing Chain-of-Thought (CoT) approaches struggle with consistency and verification. In this paper, we propose a novel reasoning framework, referred to as Structure-aware Planning with an Accurate World Model (SWAP), that integrates structured knowledge representation with learned planning. Unlike prior methods that rely purely on natural language reasoning, SWAP leverages entailment graphs to encode structured dependencies and enable symbolic verification of intermediate steps. To systematically construct and update the graph, SWAP employs a policy model to propose candidate expansions and a world model to predict structural updates. To improve accuracy, the world model generates multiple alternative updates, and a discriminator re-ranks them based on plausibility. To encourage diverse exploration, we introduce Diversity-based Modelling (DM), which samples candidates from the remaining probability mass after removing previously sampled candidates from the original policy distribution. Additionally, SWAP improves the discrimination accuracy through Contrastive Ranking (CR), which directly compares candidates within prompts and incorporates meta-knowledge to improve ranking quality. We evaluate SWAP across diverse reasoning-intensive benchmarks including math reasoning, logical reasoning, and coding tasks. Extensive experiments demonstrate that SWAP significantly improves upon the base models and consistently outperforms existing reasoning methods.
Authors:Hang Ding, Peidong Liu, Junqiao Wang, Ziwei Ji, Meng Cao, Rongzhao Zhang, Lynn Ai, Eric Yang, Tianyu Shi, Lei Yu
Abstract:
The development of autonomous web agents, powered by Large Language Models (LLMs) and reinforcement learning (RL), represents a significant step towards general-purpose AI assistants. However, training these agents is severely hampered by the challenges of interacting with the live internet, which is inefficient, costly, and fraught with risks. Model-based reinforcement learning (MBRL) offers a promising solution by learning a world model of the environment to enable simulated interaction. This paper introduces DynaWeb, a novel MBRL framework that trains web agents through interacting with a web world model trained to predict naturalistic web page representations given agent actions. This model serves as a synthetic web environment where an agent policy can dream by generating vast quantities of rollout action trajectories for efficient online reinforcement learning. Beyond free policy rollouts, DynaWeb incorporates real expert trajectories from training data, which are randomly interleaved with on-policy rollouts during training to improve stability and sample efficiency. Experiments conducted on the challenging WebArena and WebVoyager benchmarks demonstrate that DynaWeb consistently and significantly improves the performance of state-of-the-art open-source web agent models. Our findings establish the viability of training web agents through imagination, offering a scalable and efficient way to scale up online agentic RL.
Authors:Zhiwei Zhang, Hui Zhang, Xieyuanli Chen, Kaihong Huang, Chenghao Shi, Huimin Lu
Abstract:
Traditional navigation methods rely heavily on accurate localization and mapping. In contrast, world models that capture environmental dynamics in latent space have opened up new perspectives for navigation tasks, enabling systems to move beyond traditional multi-module pipelines. However, world model often suffers from high computational costs in both training and inference. To address this, we propose LS-NWM - a lightweight latent space navigation world model that is trained and operates entirely in latent space, compared to the state-of-the-art baseline, our method reduces training time by approximately 3.2x and planning time by about 447x,while further improving navigation performance with a 35% higher SR and an 11% higher SPL. The key idea is that accurate pixel-wise environmental prediction is unnecessary for navigation. Instead, the model predicts future latent states based on current observational features and action inputs, then performs path planning and decision-making within this compact representation, significantly improving computational efficiency. By incorporating an autoregressive multi-frame prediction strategy during training, the model effectively captures long-term spatiotemporal dependencies, thereby enhancing navigation performance in complex scenarios. Experimental results demonstrate that our method achieves state-of-the-art navigation performance while maintaining a substantial efficiency advantage over existing approaches.
Authors:Bu Jin, Songen Gu, Xiaotao Hu, Yupeng Zheng, Xiaoyang Guo, Qian Zhang, Xiaoxiao Long, Wei Yin
Abstract:
In this paper, we propose OccTENS, a generative occupancy world model that enables controllable, high-fidelity long-term occupancy generation while maintaining computational efficiency. Different from visual generation, the occupancy world model must capture the fine-grained 3D geometry and dynamic evolution of the 3D scenes, posing great challenges for the generative models. Recent approaches based on autoregression (AR) have demonstrated the potential to predict vehicle movement and future occupancy scenes simultaneously from historical observations, but they typically suffer from \textbf{inefficiency}, \textbf{temporal degradation} in long-term generation and \textbf{lack of controllability}. To holistically address these issues, we reformulate the occupancy world model as a temporal next-scale prediction (TENS) task, which decomposes the temporal sequence modeling problem into the modeling of spatial scale-by-scale generation and temporal scene-by-scene prediction. With a \textbf{TensFormer}, OccTENS can effectively manage the temporal causality and spatial relationships of occupancy sequences in a flexible and scalable way. To enhance the pose controllability, we further propose a holistic pose aggregation strategy, which features a unified sequence modeling for occupancy and ego-motion. Experiments show that OccTENS outperforms the state-of-the-art method with both higher occupancy quality and faster inference time.
Authors:Ryan Po, Yotam Nitzan, Richard Zhang, Berlin Chen, Tri Dao, Eli Shechtman, Gordon Wetzstein, Xun Huang
Abstract:
Video diffusion models have recently shown promise for world modeling through autoregressive frame prediction conditioned on actions. However, they struggle to maintain long-term memory due to the high computational cost associated with processing extended sequences in attention layers. To overcome this limitation, we propose a novel architecture leveraging state-space models (SSMs) to extend temporal memory without compromising computational efficiency. Unlike previous approaches that retrofit SSMs for non-causal vision tasks, our method fully exploits the inherent advantages of SSMs in causal sequence modeling. Central to our design is a block-wise SSM scanning scheme, which strategically trades off spatial consistency for extended temporal memory, combined with dense local attention to ensure coherence between consecutive frames. We evaluate the long-term memory capabilities of our model through spatial retrieval and reasoning tasks over extended horizons. Experiments on Memory Maze and Minecraft datasets demonstrate that our approach surpasses baselines in preserving long-range memory, while maintaining practical inference speeds suitable for interactive applications.
Authors:Minting Pan, Yitao Zheng, Jiajian Li, Yunbo Wang, Xiaokang Yang
Abstract:
Offline reinforcement learning (RL) enables policy optimization using static datasets, avoiding the risks and costs of extensive real-world exploration. However, it struggles with suboptimal offline behaviors and inaccurate value estimation due to the lack of environmental interaction. We present Video-Enhanced Offline RL (VeoRL), a model-based method that constructs an interactive world model from diverse, unlabeled video data readily available online. Leveraging model-based behavior guidance, our approach transfers commonsense knowledge of control policy and physical dynamics from natural videos to the RL agent within the target domain. VeoRL achieves substantial performance gains (over 100% in some cases) across visual control tasks in robotic manipulation, autonomous driving, and open-world video games.
Authors:Ashay Athalye, Nishanth Kumar, Tom Silver, Yichao Liang, Jiuguang Wang, Tomás Lozano-Pérez, Leslie Pack Kaelbling
Abstract:
Our aim is to learn to solve long-horizon decision-making problems in complex robotics domains given low-level skills and a handful of short-horizon demonstrations containing sequences of images. To this end, we focus on learning abstract symbolic world models that facilitate zero-shot generalization to novel goals via planning. A critical component of such models is the set of symbolic predicates that define properties of and relationships between objects. In this work, we leverage pretrained vision language models (VLMs) to propose a large set of visual predicates potentially relevant for decision-making, and to evaluate those predicates directly from camera images. At training time, we pass the proposed predicates and demonstrations into an optimization-based model-learning algorithm to obtain an abstract symbolic world model that is defined in terms of a compact subset of the proposed predicates. At test time, given a novel goal in a novel setting, we use the VLM to construct a symbolic description of the current world state, and then use a search-based planning algorithm to find a sequence of low-level skills that achieves the goal. We demonstrate empirically across experiments in both simulation and the real world that our method can generalize aggressively, applying its learned world model to solve problems with a wide variety of object types, arrangements, numbers of objects, and visual backgrounds, as well as novel goals and much longer horizons than those seen at training time.
Authors:Sizhuo Zhou, Xiaosong Jia, Fanrui Zhang, Junjie Li, Juyong Zhang, Yukang Feng, Jianwen Sun, Songbur Wong, Junqi You, Junchi Yan
Abstract:
Generative world models for autonomous driving (AD) have become a trending topic. Unlike the widely studied image modality, in this work we explore generative world models for LiDAR data. Existing generation methods for LiDAR data only support single frame generation, while existing prediction approaches require multiple frames of historical input and can only deterministically predict multiple frames at once, lacking interactivity. Both paradigms fail to support long-horizon interactive generation. To this end, we introduce LaGen, which to the best of our knowledge is the first framework capable of frame-by-frame autoregressive generation of long-horizon LiDAR scenes. LaGen is able to take a single-frame LiDAR input as a starting point and effectively utilize bounding box information as conditions to generate high-fidelity 4D scene point clouds. In addition, we introduce a scene decoupling estimation module to enhance the model's interactive generation capability for object-level content, as well as a noise modulation module to mitigate error accumulation during long-horizon generation. We construct a protocol based on nuScenes for evaluating long-horizon LiDAR scene generation. Experimental results comprehensively demonstrate LaGen outperforms state-of-the-art LiDAR generation and prediction models, especially on the later frames.
Authors:Yu Yang, Zhilu Zhang, Xiang Zhang, Yihan Zeng, Hui Li, Wangmeng Zuo
Abstract:
Interactive world models that simulate object dynamics are crucial for robotics, VR, and AR. However, it remains a significant challenge to learn physics-consistent dynamics models from limited real-world video data, especially for deformable objects with spatially-varying physical properties. To overcome the challenge of data scarcity, we propose PhysWorld, a novel framework that utilizes a simulator to synthesize physically plausible and diverse demonstrations to learn efficient world models. Specifically, we first construct a physics-consistent digital twin within MPM simulator via constitutive model selection and global-to-local optimization of physical properties. Subsequently, we apply part-aware perturbations to the physical properties and generate various motion patterns for the digital twin, synthesizing extensive and diverse demonstrations. Finally, using these demonstrations, we train a lightweight GNN-based world model that is embedded with physical properties. The real video can be used to further refine the physical properties. PhysWorld achieves accurate and fast future predictions for various deformable objects, and also generalizes well to novel interactions. Experiments show that PhysWorld has competitive performance while enabling inference speeds 47 times faster than the recent state-of-the-art method, i.e., PhysTwin.
Authors:Hang Liu, Yuman Gao, Sangli Teng, Yufeng Chi, Yakun Sophia Shao, Zhongyu Li, Maani Ghaffari, Koushil Sreenath
Abstract:
Enabling humanoid robots to exploit physical contact, rather than simply avoid collisions, is crucial for autonomy in unstructured environments. Traditional optimization-based planners struggle with contact complexity, while on-policy reinforcement learning (RL) is sample-inefficient and has limited multi-task ability. We propose a framework combining a learned world model with sampling-based Model Predictive Control (MPC), trained on a demonstration-free offline dataset to predict future outcomes in a compressed latent space. To address sparse contact rewards and sensor noise, the MPC uses a learned surrogate value function for dense, robust planning. Our single, scalable model supports contact-aware tasks, including wall support after perturbation, blocking incoming objects, and traversing height-limited arches, with improved data efficiency and multi-task capability over on-policy RL. Deployed on a physical humanoid, our system achieves robust, real-time contact planning from proprioception and ego-centric depth images. Website: https://ego-vcp.github.io/
Authors:FAIR CodeGen team, Quentin Carbonneaux, Gal Cohen, Jonas Gehring, Jacob Kahn, Jannik Kossen, Felix Kreuk, Emily McMilin, Michel Meyer, Yuxiang Wei, David Zhang, Kunhao Zheng, Jordi Armengol-Estapé, Pedram Bashiri, Maximilian Beck, Pierre Chambon, Abhishek Charnalia, Chris Cummins, Juliette Decugis, Zacharias V. Fisches, François Fleuret, Fabian Gloeckle, Alex Gu, Michael Hassid, Daniel Haziza, Badr Youbi Idrissi, Christian Keller, Rahul Kindi, Hugh Leather, Gallil Maimon, Aram Markosyan, Francisco Massa, Pierre-Emmanuel Mazaré, Vegard Mella, Naila Murray, Keyur Muzumdar, Peter O'Hearn, Matteo Pagliardini, Dmitrii Pedchenko, Tal Remez, Volker Seeker, Marco Selvi, Oren Sultan, Sida Wang, Luca Wehrstedt, Ori Yoran, Lingming Zhang, Taco Cohen, Yossi Adi, Gabriel Synnaeve
Abstract:
We release Code World Model (CWM), a 32-billion-parameter open-weights LLM, to advance research on code generation with world models. To improve code understanding beyond what can be learned from training on static code alone, we mid-train CWM on a large amount of observation-action trajectories from Python interpreter and agentic Docker environments, and perform extensive multi-task reasoning RL in verifiable coding, math, and multi-turn software engineering environments. With CWM, we provide a strong testbed for researchers to explore the opportunities world modeling affords for improving code generation with reasoning and planning in computational environments. We present first steps of how world models can benefit agentic coding, enable step-by-step simulation of Python code execution, and show early results of how reasoning can benefit from the latter. CWM is a dense, decoder-only LLM trained with a context size of up to 131k tokens. Independent of its world modeling capabilities, CWM offers strong performance on general coding and math tasks: it reaches pass@1 scores of 65.8% on SWE-bench Verified (with test-time scaling), 68.6% on LiveCodeBench, 96.6% on Math-500, and 76.0% on AIME 2024. To support further research on code world modeling, we release model checkpoints after mid-training, SFT, and RL.
Authors:Qiao Sun, Liujia Yang, Wei Tang, Wei Huang, Kaixin Xu, Yongchao Chen, Mingyu Liu, Jiange Yang, Haoyi Zhu, Yating Wang, Tong He, Yilun Chen, Xili Dai, Nanyang Ye, Qinying Gu
Abstract:
While video-generation-based embodied world models have gained increasing attention, their reliance on large-scale embodied interaction data remains a key bottleneck. The scarcity, difficulty of collection, and high dimensionality of embodied data fundamentally limit the alignment granularity between language and actions and exacerbate the challenge of long-horizon video generation--hindering generative models from achieving a "GPT moment" in the embodied domain. There is a naive observation: the diversity of embodied data far exceeds the relatively small space of possible primitive motions. Based on this insight, we propose a novel paradigm for world modeling--Primitive Embodied World Models (PEWM). By restricting video generation to fixed short horizons, our approach 1) enables fine-grained alignment between linguistic concepts and visual representations of robotic actions, 2) reduces learning complexity, 3) improves data efficiency in embodied data collection, and 4) decreases inference latency. By equipping with a modular Vision-Language Model (VLM) planner and a Start-Goal heatmap Guidance mechanism (SGG), PEWM further enables flexible closed-loop control and supports compositional generalization of primitive-level policies over extended, complex tasks. Our framework leverages the spatiotemporal vision priors in video models and the semantic awareness of VLMs to bridge the gap between fine-grained physical interaction and high-level reasoning, paving the way toward scalable, interpretable, and general-purpose embodied intelligence.
Authors:Akshay L Chandra, Iman Nematollahi, Chenguang Huang, Tim Welschehold, Wolfram Burgard, Abhinav Valada
Abstract:
Fine-tuning diffusion policies with reinforcement learning (RL) presents significant challenges. The long denoising sequence for each action prediction impedes effective reward propagation. Moreover, standard RL methods require millions of real-world interactions, posing a major bottleneck for practical fine-tuning. Although prior work frames the denoising process in diffusion policies as a Markov Decision Process to enable RL-based updates, its strong dependence on environment interaction remains highly inefficient. To bridge this gap, we introduce DiWA, a novel framework that leverages a world model for fine-tuning diffusion-based robotic skills entirely offline with reinforcement learning. Unlike model-free approaches that require millions of environment interactions to fine-tune a repertoire of robot skills, DiWA achieves effective adaptation using a world model trained once on a few hundred thousand offline play interactions. This results in dramatically improved sample efficiency, making the approach significantly more practical and safer for real-world robot learning. On the challenging CALVIN benchmark, DiWA improves performance across eight tasks using only offline adaptation, while requiring orders of magnitude fewer physical interactions than model-free baselines. To our knowledge, this is the first demonstration of fine-tuning diffusion policies for real-world robotic skills using an offline world model. We make the code publicly available at https://diwa.cs.uni-freiburg.de.
Authors:Junyi Chen, Haoyi Zhu, Xianglong He, Yifan Wang, Jianjun Zhou, Wenzheng Chang, Yang Zhou, Zizun Li, Zhoujie Fu, Jiangmiao Pang, Tong He
Abstract:
World models serve as essential building blocks toward Artificial General Intelligence (AGI), enabling intelligent agents to predict future states and plan actions by simulating complex physical interactions. However, existing interactive models primarily predict visual observations, thereby neglecting crucial hidden states like geometric structures and spatial coherence. This leads to rapid error accumulation and temporal inconsistency. To address these limitations, we introduce DeepVerse, a novel 4D interactive world model explicitly incorporating geometric predictions from previous timesteps into current predictions conditioned on actions. Experiments demonstrate that by incorporating explicit geometric constraints, DeepVerse captures richer spatio-temporal relationships and underlying physical dynamics. This capability significantly reduces drift and enhances temporal consistency, enabling the model to reliably generate extended future sequences and achieve substantial improvements in prediction accuracy, visual realism, and scene rationality. Furthermore, our method provides an effective solution for geometry-aware memory retrieval, effectively preserving long-term spatial consistency. We validate the effectiveness of DeepVerse across diverse scenarios, establishing its capacity for high-fidelity, long-horizon predictions grounded in geometry-aware dynamics.
Authors:Aether Team, Haoyi Zhu, Yifan Wang, Jianjun Zhou, Wenzheng Chang, Yang Zhou, Zizun Li, Junyi Chen, Chunhua Shen, Jiangmiao Pang, Tong He
Abstract:
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates zero-shot synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Notably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
Authors:Yi Zhao, Aidan Scannell, Wenshuai Zhao, Yuxin Hou, Tianyu Cui, Le Chen, Dieter Büchler, Arno Solin, Juho Kannala, Joni Pajarinen
Abstract:
Leveraging offline data is a promising way to improve the sample efficiency of online reinforcement learning (RL). This paper expands the pool of usable data for offline-to-online RL by leveraging abundant non-curated data that is reward-free, of mixed quality, and collected across multiple embodiments. Although learning a world model appears promising for utilizing such data, we find that naive fine-tuning fails to accelerate RL training on many tasks. Through careful investigation, we attribute this failure to the distributional shift between offline and online data during fine-tuning. To address this issue and effectively use the offline data, we propose two essential techniques: \emph{i)} experience rehearsal and \emph{ii)} execution guidance. With these modifications, the non-curated offline data substantially improves RL's sample efficiency. Under limited sample budgets, our method achieves a 102.8\% relative improvement in aggregate score over learning-from-scratch baselines across 72 visuomotor tasks spanning 6 embodiments. On challenging tasks such as locomotion and robotic manipulation, it outperforms prior methods that utilize offline data by a decent margin.
Authors:Youwei Liu, Jian Wang, Hanlin Wang, Beichen Guo, Wenjie Li
Abstract:
Recent advances in world models have shown promise for modeling future dynamics of environmental states, enabling agents to reason and act without accessing real environments. Current methods mainly perform single-step or fixed-horizon rollouts, leaving their potential for complex task planning under-exploited. We propose Imagine-then-Plan (\texttt{ITP}), a unified framework for agent learning via lookahead imagination, where an agent's policy model interacts with the learned world model, yielding multi-step ``imagined'' trajectories. Since the imagination horizon may vary by tasks and stages, we introduce a novel adaptive lookahead mechanism by trading off the ultimate goal and task progress. The resulting imagined trajectories provide rich signals about future consequences, such as achieved progress and potential conflicts, which are fused with current observations, formulating a partially \textit{observable} and \textit{imaginable} Markov decision process to guide policy learning. We instantiate \texttt{ITP} with both training-free and reinforcement-trained variants. Extensive experiments across representative agent benchmarks demonstrate that \texttt{ITP} significantly outperforms competitive baselines. Further analyses validate that our adaptive lookahead largely enhances agents' reasoning capability, providing valuable insights into addressing broader, complex tasks.
Authors:Mengkang Hu, Bowei Xia, Yuran Wu, Ailing Yu, Yude Zou, Qiguang Chen, Shijian Wang, Jiarui Jin, Kexin Li, Wenxiang Jiao, Yuan Lu, Ping Luo
Abstract:
Symbolic world models (e.g., PDDL domains or executable simulators) are central to model-based planning, but training LLMs to generate such world models is limited by the lack of large-scale verifiable supervision. Current approaches rely primarily on static validation methods that fail to catch behavior-level errors arising from interactive execution. In this paper, we propose Agent2World, a tool-augmented multi-agent framework that achieves strong inference-time world-model generation and also serves as a data engine for supervised fine-tuning, by grounding generation in multi-agent feedback. Agent2World follows a three-stage pipeline: (i) A Deep Researcher agent performs knowledge synthesis by web searching to address specification gaps; (ii) A Model Developer agent implements executable world models; And (iii) a specialized Testing Team conducts adaptive unit testing and simulation-based validation. Agent2World demonstrates superior inference-time performance across three benchmarks spanning both Planning Domain Definition Language (PDDL) and executable code representations, achieving consistent state-of-the-art results. Beyond inference, Testing Team serves as an interactive environment for the Model Developer, providing behavior-aware adaptive feedback that yields multi-turn training trajectories. The model fine-tuned on these trajectories substantially improves world-model generation, yielding an average relative gain of 30.95% over the same model before training. Project page: https://agent2world.github.io.
Authors:Yanjiang Guo, Lucy Xiaoyang Shi, Jianyu Chen, Chelsea Finn
Abstract:
Generalist robot policies can now perform a wide range of manipulation skills, but evaluating and improving their ability with unfamiliar objects and instructions remains a significant challenge. Rigorous evaluation requires a large number of real-world rollouts, while systematic improvement demands additional corrective data with expert labels. Both of these processes are slow, costly, and difficult to scale. World models offer a promising, scalable alternative by enabling policies to rollout within imagination space. However, a key challenge is building a controllable world model that can handle multi-step interactions with generalist robot policies. This requires a world model compatible with modern generalist policies by supporting multi-view prediction, fine-grained action control, and consistent long-horizon interactions, which is not achieved by previous works. In this paper, we make a step forward by introducing a controllable multi-view world model that can be used to evaluate and improve the instruction-following ability of generalist robot policies. Our model maintains long-horizon consistency with a pose-conditioned memory retrieval mechanism and achieves precise action control through frame-level action conditioning. Trained on the DROID dataset (95k trajectories, 564 scenes), our model generates spatially and temporally consistent trajectories under novel scenarios and new camera placements for over 20 seconds. We show that our method can accurately rank policy performance without real-world robot rollouts. Moreover, by synthesizing successful trajectories in imagination and using them for supervised fine-tuning, our approach can improve policy success by 44.7\%.
Authors:Zhangchen Xu, Adriana Meza Soria, Shawn Tan, Anurag Roy, Ashish Sunil Agrawal, Radha Poovendran, Rameswar Panda
Abstract:
Large Language Model (LLM) agents are rapidly emerging as powerful systems for automating tasks across domains. Yet progress in the open-source community is constrained by the lack of high quality permissively licensed tool-agentic training data. Existing datasets are often limited in diversity, realism, and complexity, particularly regarding multi-tool and multi-turn interactions. To address this gap, we introduce Toucan, the largest publicly available tool-agentic dataset to date, containing 1.5 million trajectories synthesized from nearly 500 real-world Model Context Protocols (MCPs). Unlike prior work, Toucan leverages authentic MCP environments to generate diverse, realistic, and challenging tasks with trajectories involving real tool execution. Our pipeline first produces a broad spectrum of tool-use queries using five distinct models, applies model-based quality filtering, and then generates agentic trajectories with three teacher models using two agentic frameworks. Rigorous rule-based and model-based validation ensures high-quality outputs. We also introduce three extension mechanisms to further diversify tasks and simulate multi-turn conversations. Models fine-tuned on Toucan outperform larger closed-source counterparts on the BFCL V3 benchmark and push the Pareto frontier forward on MCP-Universe Bench.
Authors:Yue Zhao, Xiaoyu Wang, Dan Wang, Zhonglin Jiang, Qingqing Gu, Teng Chen, Ningyuan Xi, Jinxian Qu, Yong Chen, Luo Ji
Abstract:
World models have been widely utilized in robotics, gaming, and auto-driving. However, their applications on natural language tasks are relatively limited. In this paper, we construct the dialogue world model, which could predict the user's emotion, sentiment, and intention, and future utterances. By defining a POMDP, we argue emotion, sentiment and intention can be modeled as the user belief and solved by maximizing the information bottleneck. By this user belief modeling, we apply the model-based reinforcement learning framework to the dialogue system, and propose a framework called DreamCUB. Experiments show that the pretrained dialogue world model can achieve state-of-the-art performances on emotion classification and sentiment identification, while dialogue quality is also enhanced by joint training of the policy, critic and dialogue world model. Further analysis shows that this manner holds a reasonable exploration-exploitation balance and also transfers well to out-of-domain scenarios such as empathetic dialogues.
Authors:Li Zeng, Yingyu Shan, Zeming Liu, Jiashu Yao, Yuhang Guo
Abstract:
Large language models (LLMs) embed extensive knowledge and utilize it to perform exceptionally well across various tasks. Nevertheless, outdated knowledge or factual errors within LLMs can lead to misleading or incorrect responses, causing significant issues in practical applications. To rectify the fatal flaw without the necessity for costly model retraining, various model editing approaches have been proposed to correct inaccurate knowledge within LLMs in a cost-efficient way. To evaluate these model editing methods, previous work introduced a series of datasets. However, most of the previous datasets only contain fabricated data in a single format, which diverges from real-world model editing scenarios, raising doubts about their usability in practice. To facilitate the application of model editing in real-world scenarios, we propose the challenge of practicality. To resolve such challenges and effectively enhance the capabilities of LLMs, we present FAME, an factual, comprehensive, and multi-task dataset, which is designed to enhance the practicality of model editing. We then propose SKEME, a model editing method that uses a novel caching mechanism to ensure synchronization with the real world. The experiments demonstrate that SKEME performs excellently across various tasks and scenarios, confirming its practicality.
Authors:Stefano Ferraro, Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Sai Rajeswar
Abstract:
Object manipulation capabilities are essential skills that set apart embodied agents engaging with the world, especially in the realm of robotics. The ability to predict outcomes of interactions with objects is paramount in this setting. While model-based control methods have started to be employed for tackling manipulation tasks, they have faced challenges in accurately manipulating objects. As we analyze the causes of this limitation, we identify the cause of underperformance in the way current world models represent crucial positional information, especially about the target's goal specification for object positioning tasks. We introduce a general approach that empowers world model-based agents to effectively solve object-positioning tasks. We propose two declinations of this approach for generative world models: position-conditioned (PCP) and latent-conditioned (LCP) policy learning. In particular, LCP employs object-centric latent representations that explicitly capture object positional information for goal specification. This naturally leads to the emergence of multimodal capabilities, enabling the specification of goals through spatial coordinates or a visual goal. Our methods are rigorously evaluated across several manipulation environments, showing favorable performance compared to current model-based control approaches.
Authors:Qianwei Wang, Bowen Li, Zhanpeng Luo, Yifan Xu, Alexander Gray, Tom Silver, Sebastian Scherer, Katia Sycara, Yaqi Xie
Abstract:
Long-horizon robotic tasks are hard due to continuous state-action spaces and sparse feedback. Symbolic world models help by decomposing tasks into discrete predicates that capture object properties and relations. Existing methods learn predicates either top-down, by prompting foundation models without data grounding, or bottom-up, from demonstrations without high-level priors. We introduce UniPred, a bilevel learning framework that unifies both. UniPred uses large language models (LLMs) to propose predicate effect distributions that supervise neural predicate learning from low-level data, while learned feedback iteratively refines the LLM hypotheses. Leveraging strong visual foundation model features, UniPred learns robust predicate classifiers in cluttered scenes. We further propose a predicate evaluation method that supports symbolic models beyond STRIPS assumptions. Across five simulated and one real-robot domains, UniPred achieves 2-4 times higher success rates than top-down methods and 3-4 times faster learning than bottom-up approaches, advancing scalable and flexible symbolic world modeling for robotics.
Authors:Meng Cao, Xingyu Li, Xue Liu, Ian Reid, Xiaodan Liang
Abstract:
Despite advancements in Multi-modal Large Language Models (MLLMs) for scene understanding, their performance on complex spatial reasoning tasks requiring mental simulation remains significantly limited. Current methods often rely on passive observation of spatial data, failing to internalize an active mental imagery process. To bridge this gap, we propose SpatialDreamer, a reinforcement learning framework that enables spatial reasoning through a closedloop process of active exploration, visual imagination via a world model, and evidence-grounded reasoning. To address the lack of fine-grained reward supervision in longhorizontal reasoning tasks, we propose Geometric Policy Optimization (GeoPO), which introduces tree-structured sampling and step-level reward estimation with geometric consistency constraints. Extensive experiments demonstrate that SpatialDreamer delivers highly competitive results across multiple challenging benchmarks, signifying a critical advancement in human-like active spatial mental simulation for MLLMs.
Authors:Haoyang He, Jay Patrikar, Dong-Ki Kim, Max Smith, Daniel McGann, Ali-akbar Agha-mohammadi, Shayegan Omidshafiei, Sebastian Scherer
Abstract:
Recent advances in video world modeling have enabled large-scale generative models to simulate embodied environments with high visual fidelity, providing strong priors for prediction, planning, and control. Yet, despite their realism, these models often lack geometric grounding, limiting their use in navigation tasks that require spatial coherence and long-horizon stability. We introduce Reinforcement Learning with World Grounding (RLWG), a self-supervised post-training framework that aligns pretrained world models with a physically verifiable structure through geometric and perceptual rewards. Analogous to reinforcement learning from verifiable feedback (RLVR) in language models, RLWG can use multiple rewards that measure pose cycle-consistency, depth reprojection, and temporal coherence. We instantiate this framework with GrndCtrl, a reward-aligned adaptation method based on Group Relative Policy Optimization (GRPO), yielding world models that maintain stable trajectories, consistent geometry, and reliable rollouts for embodied navigation. Like post-training alignment in large language models, GrndCtrl leverages verifiable rewards to bridge generative pretraining and grounded behavior, achieving superior spatial coherence and navigation stability over supervised fine-tuning in outdoor environments.
Authors:Wei-Cheng Tseng, Jinwei Gu, Qinsheng Zhang, Hanzi Mao, Ming-Yu Liu, Florian Shkurti, Lin Yen-Chen
Abstract:
Training generalist policies for robotic manipulation has shown great promise, as they enable language-conditioned, multi-task behaviors across diverse scenarios. However, evaluating these policies remains difficult because real-world testing is expensive, time-consuming, and labor-intensive. It also requires frequent environment resets and carries safety risks when deploying unproven policies on physical robots. Manually creating and populating simulation environments with assets for robotic manipulation has not addressed these issues, primarily due to the significant engineering effort required and the often substantial sim-to-real gap, both in terms of physics and rendering. In this paper, we explore the use of action-conditional video generation models as a scalable way to learn world models for policy evaluation. We demonstrate how to incorporate action conditioning into existing pre-trained video generation models. This allows leveraging internet-scale in-the-wild online videos during the pre-training stage, and alleviates the need for a large dataset of paired video-action data, which is expensive to collect for robotic manipulation. Our paper examines the effect of dataset diversity, pre-trained weight and common failure cases for the proposed evaluation pipeline. Our experiments demonstrate that, across various metrics, including policy ranking and the correlation between actual policy values and predicted policy values, these models offer a promising approach for evaluating policies without requiring real-world interactions.
Authors:Zhe Li, Xiang Bai, Jieyu Zhang, Zhuangzhe Wu, Che Xu, Ying Li, Chengkai Hou, Shanghang Zhang
Abstract:
Constructing accurate digital twins of articulated objects is essential for robotic simulation training and embodied AI world model building, yet historically requires painstaking manual modeling or multi-stage pipelines. In this work, we propose \textbf{URDF-Anything}, an end-to-end automatic reconstruction framework based on a 3D multimodal large language model (MLLM). URDF-Anything utilizes an autoregressive prediction framework based on point-cloud and text multimodal input to jointly optimize geometric segmentation and kinematic parameter prediction. It implements a specialized $[SEG]$ token mechanism that interacts directly with point cloud features, enabling fine-grained part-level segmentation while maintaining consistency with the kinematic parameter predictions. Experiments on both simulated and real-world datasets demonstrate that our method significantly outperforms existing approaches regarding geometric segmentation (mIoU 17\% improvement), kinematic parameter prediction (average error reduction of 29\%), and physical executability (surpassing baselines by 50\%). Notably, our method exhibits excellent generalization ability, performing well even on objects outside the training set. This work provides an efficient solution for constructing digital twins for robotic simulation, significantly enhancing the sim-to-real transfer capability.
Authors:Antonin Sulc, Thorsten Hellert
Abstract:
The development of intelligent agents, particularly those powered by language models (LMs), has shown the critical role in various environments that require intelligent and autonomous decision. Environments are not passive testing grounds and they represent the data required for agents to learn and exhibit very challenging conditions that require adaptive, complex and autonomous capacity to make decisions. While the paradigm of scaling models and datasets has led to remarkable emergent capabilities, we argue that scaling the structure, fidelity, and logical consistency of agent reasoning within these environments is a crucial, yet underexplored, dimension of AI research. This paper introduces a neuro-symbolic multi-agent architecture where the belief states of individual agents are formally represented as Kripke models. This foundational choice enables them to reason about known concepts of \emph{possibility} and \emph{necessity} using the formal language of modal logic. In this work, we use of immutable, domain-specific knowledge to make infere information, which is encoded as logical constraints essential for proper diagnosis. In the proposed model, we show constraints that actively guide the hypothesis generation of LMs, effectively preventing them from reaching physically or logically untenable conclusions. In a high-fidelity simulated particle accelerator environment, our system successfully diagnoses complex, cascading failures by combining the powerful semantic intuition of LMs with the rigorous, verifiable validation of modal logic and a factual world model and showcasing a viable path toward more robust, reliable, and verifiable autonomous agents.
Authors:Xidong Yang, Wenhao Li, Junjie Sheng, Chuyun Shen, Yun Hua, Xiangfeng Wang
Abstract:
Reinforcement learning (RL) has driven breakthroughs in AI, from game-play to scientific discovery and AI alignment. However, its broader applicability remains limited by challenges such as low data efficiency and poor generalizability. Recent advances suggest that large language models, with their rich world knowledge and reasoning capabilities, could complement RL by enabling semantic state modeling and task-agnostic planning. In this work, we propose the Agentic Episodic Control (AEC), a novel architecture that integrates RL with LLMs to enhance decision-making. The AEC can leverage a large language model (LLM) to map the observations into language-grounded embeddings, which further can be stored in an episodic memory for rapid retrieval of high-value experiences. Simultaneously, a World-Graph working memory module is utilized to capture structured environmental dynamics in order to enhance relational reasoning. Furthermore, a lightweight critical state detector dynamically arbitrates between the episodic memory recall and the world-model-guided exploration. On the whole, by combining the trial-and-error learning scheme with LLM-derived semantic priors, the proposed AEC can improve both data efficiency and generalizability in reinforcement learning. In experiments on BabyAI-Text benchmark tasks, AEC demonstrates substantial improvements over existing baselines, especially on complex and generalization tasks like FindObj, where it outperforms the best baseline by up to 76%. The proposed AEC framework bridges the strengths of numeric reinforcement learning and symbolic reasoning, which provides a pathway toward more adaptable and sample-efficient agents.
Authors:Joey Wilson, Marcelino Almeida, Sachit Mahajan, Martin Labrie, Maani Ghaffari, Omid Ghasemalizadeh, Min Sun, Cheng-Hao Kuo, Arnab Sen
Abstract:
In this paper, we present a novel algorithm for quantifying uncertainty and information gained within 3D Gaussian Splatting (3D-GS) through P-Optimality. While 3D-GS has proven to be a useful world model with high-quality rasterizations, it does not natively quantify uncertainty or information, posing a challenge for real-world applications such as 3D-GS SLAM. We propose to quantify information gain in 3D-GS by reformulating the problem through the lens of optimal experimental design, which is a classical solution widely used in literature. By restructuring information quantification of 3D-GS through optimal experimental design, we arrive at multiple solutions, of which T-Optimality and D-Optimality perform the best quantitatively and qualitatively as measured on two popular datasets. Additionally, we propose a block diagonal covariance approximation which provides a measure of correlation at the expense of a greater computation cost.
Authors:Ruili Feng, Han Zhang, Zhantao Yang, Jie Xiao, Zhilei Shu, Zhiheng Liu, Andy Zheng, Yukun Huang, Yu Liu, Hongyang Zhang
Abstract:
We present The Matrix, the first foundational realistic world simulator capable of generating continuous 720p high-fidelity real-scene video streams with real-time, responsive control in both first- and third-person perspectives, enabling immersive exploration of richly dynamic environments. Trained on limited supervised data from AAA games like Forza Horizon 5 and Cyberpunk 2077, complemented by large-scale unsupervised footage from real-world settings like Tokyo streets, The Matrix allows users to traverse diverse terrains -- deserts, grasslands, water bodies, and urban landscapes -- in continuous, uncut hour-long sequences. Operating at 16 FPS, the system supports real-time interactivity and demonstrates zero-shot generalization, translating virtual game environments to real-world contexts where collecting continuous movement data is often infeasible. For example, The Matrix can simulate a BMW X3 driving through an office setting--an environment present in neither gaming data nor real-world sources. This approach showcases the potential of AAA game data to advance robust world models, bridging the gap between simulations and real-world applications in scenarios with limited data.
Authors:Jianhao Yuan, Xiaofeng Zhang, Felix Friedrich, Nicolas Beltran-Velez, Melissa Hall, Reyhane Askari-Hemmat, Xiaochuang Han, Nicolas Ballas, Michal Drozdzal, Adriana Romero-Soriano
Abstract:
State-of-the-art video generative models produce promising visual content yet often violate basic physics principles, limiting their utility. While some attribute this deficiency to insufficient physics understanding from pre-training, we find that the shortfall in physics plausibility also stems from suboptimal inference strategies. We therefore introduce WMReward and treat improving physics plausibility of video generation as an inference-time alignment problem. In particular, we leverage the strong physics prior of a latent world model (here, VJEPA-2) as a reward to search and steer multiple candidate denoising trajectories, enabling scaling test-time compute for better generation performance. Empirically, our approach substantially improves physics plausibility across image-conditioned, multiframe-conditioned, and text-conditioned generation settings, with validation from human preference study. Notably, in the ICCV 2025 Perception Test PhysicsIQ Challenge, we achieve a final score of 62.64%, winning first place and outperforming the previous state of the art by 7.42%. Our work demonstrates the viability of using latent world models to improve physics plausibility of video generation, beyond this specific instantiation or parameterization.
Authors:Ruicheng Zhang, Mingyang Zhang, Jun Zhou, Zhangrui Guo, Xiaofan Liu, Zunnan Xu, Zhizhou Zhong, Puxin Yan, Haocheng Luo, Xiu Li
Abstract:
Embodied imitation learning is constrained by the scarcity of diverse, long-horizon robotic manipulation data. Existing video generation models for this domain are limited to synthesizing short clips of simple actions and often rely on manually defined trajectories. To this end, we introduce MIND-V, a hierarchical framework designed to synthesize physically plausible and logically coherent videos of long-horizon robotic manipulation. Inspired by cognitive science, MIND-V bridges high-level reasoning with pixel-level synthesis through three core components: a Semantic Reasoning Hub (SRH) that leverages a pre-trained vision-language model for task planning; a Behavioral Semantic Bridge (BSB) that translates abstract instructions into domain-invariant representations; and a Motor Video Generator (MVG) for conditional video rendering. MIND-V employs Staged Visual Future Rollouts, a test-time optimization strategy to enhance long-horizon robustness. To align the generated videos with physical laws, we introduce a GRPO reinforcement learning post-training phase guided by a novel Physical Foresight Coherence (PFC) reward. PFC leverages the V-JEPA world model to enforce physical plausibility by aligning the predicted and actual dynamic evolutions in the feature space. MIND-V demonstrates state-of-the-art performance in long-horizon robotic manipulation video generation, establishing a scalable and controllable paradigm for embodied data synthesis.
Authors:Jianhao Yuan, Xiaofeng Zhang, Felix Friedrich, Nicolas Beltran-Velez, Melissa Hall, Reyhane Askari-Hemmat, Xiaochuang Han, Nicolas Ballas, Michal Drozdzal, Adriana Romero-Soriano
Abstract:
This is a short technical report describing the winning entry of the PhysicsIQ Challenge, presented at the Perception Test Workshop at ICCV 2025. State-of-the-art video generative models exhibit severely limited physical understanding, and often produce implausible videos. The Physics IQ benchmark has shown that visual realism does not imply physics understanding. Yet, intuitive physics understanding has shown to emerge from SSL pretraining on natural videos. In this report, we investigate whether we can leverage SSL-based video world models to improve the physics plausibility of video generative models. In particular, we build ontop of the state-of-the-art video generative model MAGI-1 and couple it with the recently introduced Video Joint Embedding Predictive Architecture 2 (VJEPA-2) to guide the generation process. We show that by leveraging VJEPA-2 as reward signal, we can improve the physics plausibility of state-of-the-art video generative models by ~6%.
Authors:Jiexi Xu, Jiaqi Liu, Lanruo Wang, Su Liu
Abstract:
Large language model (LLM) agents are increasingly capable of orchestrating complex tasks in low-code environments. However, these agents often exhibit hallucinations and logical inconsistencies because their inherent reasoning mechanisms rely on probabilistic associations rather than genuine causal understanding. This paper introduces a new programming paradigm: Causal-Visual Programming (CVP), designed to address this fundamental issue by explicitly introducing causal structures into the workflow design. CVP allows users to define a simple "world model" for workflow modules through an intuitive low-code interface, effectively creating a Directed Acyclic Graph (DAG) that explicitly defines the causal relationships between modules. This causal graph acts as a crucial constraint during the agent's reasoning process, anchoring its decisions to a user-defined causal structure and significantly reducing logical errors and hallucinations by preventing reliance on spurious correlations. To validate the effectiveness of CVP, we designed a synthetic experiment that simulates a common real-world problem: a distribution shift between the training and test environments. Our results show that a causally anchored model maintained stable accuracy in the face of this shift, whereas a purely associative baseline model that relied on probabilistic correlations experienced a significant performance drop. The primary contributions of this study are: a formal definition of causal structures for workflow modules; the proposal and implementation of a CVP framework that anchors agent reasoning to a user-defined causal graph; and empirical evidence demonstrating the framework's effectiveness in enhancing agent robustness and reducing errors caused by causal confusion in dynamic environments. CVP offers a viable path toward building more interpretable, reliable, and trustworthy AI agents.
Authors:Ao Fu, Yi Zhou, Tao Zhou, Yi Yang, Bojun Gao, Qun Li, Guobin Wu, Ling Shao
Abstract:
World models and video generation are pivotal technologies in the domain of autonomous driving, each playing a critical role in enhancing the robustness and reliability of autonomous systems. World models, which simulate the dynamics of real-world environments, and video generation models, which produce realistic video sequences, are increasingly being integrated to improve situational awareness and decision-making capabilities in autonomous vehicles. This paper investigates the relationship between these two technologies, focusing on how their structural parallels, particularly in diffusion-based models, contribute to more accurate and coherent simulations of driving scenarios. We examine leading works such as JEPA, Genie, and Sora, which exemplify different approaches to world model design, thereby highlighting the lack of a universally accepted definition of world models. These diverse interpretations underscore the field's evolving understanding of how world models can be optimized for various autonomous driving tasks. Furthermore, this paper discusses the key evaluation metrics employed in this domain, such as Chamfer distance for 3D scene reconstruction and Fréchet Inception Distance (FID) for assessing the quality of generated video content. By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions, emphasizing the potential of these technologies to jointly advance the performance of autonomous driving systems. The findings presented in this paper aim to provide a comprehensive understanding of how the integration of video generation and world models can drive innovation in the development of safer and more reliable autonomous vehicles.
Authors:Pei Yang, Hai Ci, Yiren Song, Mike Zheng Shou
Abstract:
The advancement of embodied AI has unlocked significant potential for intelligent humanoid robots. However, progress in both Vision-Language-Action (VLA) models and world models is severely hampered by the scarcity of large-scale, diverse training data. A promising solution is to "robotize" web-scale human videos, which has been proven effective for policy training. However, these solutions mainly "overlay" robot arms to egocentric videos, which cannot handle complex full-body motions and scene occlusions in third-person videos, making them unsuitable for robotizing humans. To bridge this gap, we introduce X-Humanoid, a generative video editing approach that adapts the powerful Wan 2.2 model into a video-to-video structure and finetunes it for the human-to-humanoid translation task. This finetuning requires paired human-humanoid videos, so we designed a scalable data creation pipeline, turning community assets into 17+ hours of paired synthetic videos using Unreal Engine. We then apply our trained model to 60 hours of the Ego-Exo4D videos, generating and releasing a new large-scale dataset of over 3.6 million "robotized" humanoid video frames. Quantitative analysis and user studies confirm our method's superiority over existing baselines: 69% of users rated it best for motion consistency, and 62.1% for embodiment correctness.
Authors:Yanjia Huang, Xianshun Jiang, Xiangbo Gao, Mingyang Wu, Zhengzhong Tu
Abstract:
Vision-and-Language Navigation (VLN) requires agents to follow language instructions while acting in continuous real-world spaces. Prior image imagination based VLN work shows benefits for discrete panoramas but lacks online, action-conditioned predictions and does not produce explicit planning values; moreover, many methods replace the planner with long-horizon objectives that are brittle and slow. To bridge this gap, we propose VISTAv2, a generative world model that rolls out egocentric future views conditioned on past observations, candidate action sequences, and instructions, and projects them into an online value map for planning. Unlike prior approaches, VISTAv2 does not replace the planner. The online value map is fused at score level with the base objective, providing reachability and risk-aware guidance. Concretely, we employ an action-aware Conditional Diffusion Transformer video predictor to synthesize short-horizon futures, align them with the natural language instruction via a vision-language scorer, and fuse multiple rollouts in a differentiable imagination-to-value head to output an imagined egocentric value map. For efficiency, rollouts occur in VAE latent space with a distilled sampler and sparse decoding, enabling inference on a single consumer GPU. Evaluated on MP3D and RoboTHOR, VISTAv2 improves over strong baselines, and ablations show that action-conditioned imagination, instruction-guided value fusion, and the online value-map planner are all critical, suggesting that VISTAv2 offers a practical and interpretable route to robust VLN.
Authors:Quanjian Song, Yiren Song, Kelly Peng, Yuan Gao, Mike Zheng Shou
Abstract:
Video diffusion models have recently achieved remarkable progress in realism and controllability. However, achieving seamless video translation across different perspectives, such as first-person (egocentric) and third-person (exocentric), remains underexplored. Bridging these perspectives is crucial for filmmaking, embodied AI, and world models. Motivated by this, we present WorldWander, an in-context learning framework tailored for translating between egocentric and exocentric worlds in video generation. Building upon advanced video diffusion transformers, WorldWander integrates (i) In-Context Perspective Alignment and (ii) Collaborative Position Encoding to efficiently model cross-view synchronization. To further support our task, we curate EgoExo-8K, a large-scale dataset containing synchronized egocentric-exocentric triplets from both synthetic and real-world scenarios. Experiments demonstrate that WorldWander achieves superior perspective synchronization, character consistency, and generalization, setting a new benchmark for egocentric-exocentric video translation.
Authors:Enhui Ma, Lijun Zhou, Tao Tang, Jiahuan Zhang, Junpeng Jiang, Zhan Zhang, Dong Han, Kun Zhan, Xueyang Zhang, XianPeng Lang, Haiyang Sun, Xia Zhou, Di Lin, Kaicheng Yu
Abstract:
End-to-end planning methods are the de facto standard of the current autonomous driving system, while the robustness of the data-driven approaches suffers due to the notorious long-tail problem (i.e., rare but safety-critical failure cases). In this work, we explore whether recent diffusion-based video generation methods (a.k.a. world models), paired with structured 3D layouts, can enable a fully automated pipeline to self-correct such failure cases. We first introduce an agent to simulate the role of product manager, dubbed PM-Agent, which formulates data requirements to collect data similar to the failure cases. Then, we use a generative model that can simulate both data collection and annotation. However, existing generative models struggle to generate high-fidelity data conditioned on 3D layouts. To address this, we propose DriveSora, which can generate spatiotemporally consistent videos aligned with the 3D annotations requested by PM-Agent. We integrate these components into our self-correcting agentic system, CorrectAD. Importantly, our pipeline is an end-to-end model-agnostic and can be applied to improve any end-to-end planner. Evaluated on both nuScenes and a more challenging in-house dataset across multiple end-to-end planners, CorrectAD corrects 62.5% and 49.8% of failure cases, reducing collision rates by 39% and 27%, respectively.
Authors:Zihao He, Bo Ai, Tongzhou Mu, Yulin Liu, Weikang Wan, Jiawei Fu, Yilun Du, Henrik I. Christensen, Hao Su
Abstract:
Cross-embodiment learning seeks to build generalist robots that operate across diverse morphologies, but differences in action spaces and kinematics hinder data sharing and policy transfer. This raises a central question: Is there any invariance that allows actions to transfer across embodiments? We conjecture that environment dynamics are embodiment-invariant, and that world models capturing these dynamics can provide a unified interface across embodiments. To learn such a unified world model, the crucial step is to design state and action representations that abstract away embodiment-specific details while preserving control relevance. To this end, we represent different embodiments (e.g., human hands and robot hands) as sets of 3D particles and define actions as particle displacements, creating a shared representation for heterogeneous data and control problems. A graph-based world model is then trained on exploration data from diverse simulated robot hands and real human hands, and integrated with model-based planning for deployment on novel hardware. Experiments on rigid and deformable manipulation tasks reveal three findings: (i) scaling to more training embodiments improves generalization to unseen ones, (ii) co-training on both simulated and real data outperforms training on either alone, and (iii) the learned models enable effective control on robots with varied degrees of freedom. These results establish world models as a promising interface for cross-embodiment dexterous manipulation.
Authors:Likun Wang, Xiangteng Zhang, Yinuo Wang, Guojian Zhan, Wenxuan Wang, Haoyu Gao, Jingliang Duan, Shengbo Eben Li
Abstract:
Exploration is fundamental to reinforcement learning (RL), as it determines how effectively an agent discovers and exploits the underlying structure of its environment to achieve optimal performance. Existing exploration methods generally fall into two categories: active exploration and passive exploration. The former introduces stochasticity into the policy but struggles in high-dimensional environments, while the latter adaptively prioritizes transitions in the replay buffer to enhance exploration, yet remains constrained by limited sample diversity. To address the limitation in passive exploration, we propose Modelic Generative Exploration (MoGE), which augments exploration through the generation of under-explored critical states and synthesis of dynamics-consistent experiences through transition models. MoGE is composed of two components: (1) a diffusion-based generator that synthesizes critical states under the guidance of a utility function evaluating each state's potential influence on policy exploration, and (2) a one-step imagination world model for constructing critical transitions based on the critical states for agent learning. Our method adopts a modular formulation that aligns with the principles of off-policy learning, allowing seamless integration with existing algorithms to improve exploration without altering their core structures. Empirical results on OpenAI Gym and DeepMind Control Suite reveal that MoGE effectively bridges exploration and policy learning, leading to remarkable gains in both sample efficiency and performance across complex control tasks.
Authors:Yang Ye, Tianyu He, Shuo Yang, Jiang Bian
Abstract:
World models simulate dynamic environments, enabling agents to interact with diverse input modalities. Although recent advances have improved the visual quality and temporal consistency of video world models, their ability of accurately modeling human-specified actions remains under-explored. Reinforcement learning presents a promising approach for directly improving the suboptimal action-following capability of pre-trained models, assuming that an appropriate reward function can be defined. However, transferring reinforcement learning post-training methods to world model is impractical due to the prohibitive cost of large-scale preference annotations and the infeasibility of constructing rule-based video verifiers. To address this gap, we propose Reinforcement Learning with Inverse Rewards (RLIR), a post-training framework that derives verifiable reward signals by recovering input actions from generated videos using an Inverse Dynamics Model. By mapping high-dimensional video modality to a low-dimensional action space, RLIR provides an objective and verifiable reward for optimization via Group Relative Policy Optimization. Experiments across autoregressive and diffusion paradigms demonstrate 5-10% gains in action-following, up to 10% improvements in visual quality, and higher human preference scores, establishing RLIR as the first post-training method specifically designed to enhance action-following in video world models.
Authors:Junliang Guo, Yang Ye, Tianyu He, Haoyu Wu, Yushu Jiang, Tim Pearce, Jiang Bian
Abstract:
World modeling is a crucial task for enabling intelligent agents to effectively interact with humans and operate in dynamic environments. In this work, we propose MineWorld, a real-time interactive world model on Minecraft, an open-ended sandbox game which has been utilized as a common testbed for world modeling. MineWorld is driven by a visual-action autoregressive Transformer, which takes paired game scenes and corresponding actions as input, and generates consequent new scenes following the actions. Specifically, by transforming visual game scenes and actions into discrete token ids with an image tokenizer and an action tokenizer correspondingly, we consist the model input with the concatenation of the two kinds of ids interleaved. The model is then trained with next token prediction to learn rich representations of game states as well as the conditions between states and actions simultaneously. In inference, we develop a novel parallel decoding algorithm that predicts the spatial redundant tokens in each frame at the same time, letting models in different scales generate $4$ to $7$ frames per second and enabling real-time interactions with game players. In evaluation, we propose new metrics to assess not only visual quality but also the action following capacity when generating new scenes, which is crucial for a world model. Our comprehensive evaluation shows the efficacy of MineWorld, outperforming SoTA open-sourced diffusion based world models significantly. The code and model have been released.
Authors:Hai Zhao, Hongqiu Wu, Dongjie Yang, Anni Zou, Jiale Hong
Abstract:
We introduce BriLLM, a brain-inspired large language model that fundamentally redefines the foundations of machine learning through its implementation of Signal Fully-connected flowing (SiFu) learning. This work addresses the critical bottleneck hindering AI's progression toward Artificial General Intelligence (AGI)--the disconnect between language models and "world models"--as well as the fundamental limitations of Transformer-based architectures rooted in the conventional representation learning paradigm. BriLLM incorporates two pivotal neurocognitive principles: (1) static semantic mapping, where tokens are mapped to specialized nodes analogous to cortical areas, and (2) dynamic signal propagation, which simulates electrophysiological information dynamics observed in brain activity. This architecture enables multiple transformative breakthroughs: natural multi-modal compatibility, full model interpretability at the node level, context-length independent scaling, and the first global-scale simulation of brain-like information processing for language tasks. Our initial 1-2B parameter models successfully replicate GPT-1-level generative capabilities while demonstrating stable perplexity reduction. Scalability analyses confirm the feasibility of 100-200B parameter variants capable of processing 40,000-token vocabularies. The paradigm is reinforced by both Occam's Razor--evidenced in the simplicity of direct semantic mapping--and natural evolution--given the brain's empirically validated AGI architecture. BriLLM establishes a novel, biologically grounded framework for AGI advancement that addresses fundamental limitations of current approaches.
Authors:Yuhang Huang, Shilong Zou, Jiazhao Zhang, Xinwang Liu, Ruizhen Hu, Kai Xu
Abstract:
World Foundation Models (WFMs) offer remarkable visual dynamics simulation capabilities, yet their application to precise robotic control remains limited by the gap between generative realism and control-oriented precision. While existing approaches use WFMs as synthetic data generators, they suffer from high computational costs and underutilization of pre-trained VLA policies. We introduce \textbf{AdaPower} (\textbf{Ada}pt and Em\textbf{power}), a lightweight adaptation framework that transforms general-purpose WFMs into specialist world models through two novel components: Temporal-Spatial Test-Time Training (TS-TTT) for inference-time adaptation and Memory Persistence (MP) for long-horizon consistency. Integrated within a Model Predictive Control framework, our adapted world model empowers pre-trained VLAs, achieving over 41\% improvement in task success rates on LIBERO benchmarks without policy retraining, while preserving computational efficiency and generalist capabilities.
Authors:Senyu Fei, Siyin Wang, Li Ji, Ao Li, Shiduo Zhang, Liming Liu, Jinlong Hou, Jingjing Gong, Xianzhong Zhao, Xipeng Qiu
Abstract:
Vision-Language-Action (VLA) models excel in robotic manipulation but are constrained by their heavy reliance on expert demonstrations, leading to demonstration bias and limiting performance. Reinforcement learning (RL) is a vital post-training strategy to overcome these limits, yet current VLA-RL methods, including group-based optimization approaches, are crippled by severe reward sparsity. Relying on binary success indicators wastes valuable information in failed trajectories, resulting in low training efficiency. To solve this, we propose Self-Referential Policy Optimization (SRPO), a novel VLA-RL framework. SRPO eliminates the need for external demonstrations or manual reward engineering by leveraging the model's own successful trajectories, generated within the current training batch, as a self-reference. This allows us to assign a progress-wise reward to failed attempts. A core innovation is the use of latent world representations to measure behavioral progress robustly. Instead of relying on raw pixels or requiring domain-specific fine-tuning, we utilize the compressed, transferable encodings from a world model's latent space. These representations naturally capture progress patterns across environments, enabling accurate, generalized trajectory comparison. Empirical evaluations on the LIBERO benchmark demonstrate SRPO's efficiency and effectiveness. Starting from a supervised baseline with 48.9% success, SRPO achieves a new state-of-the-art success rate of 99.2% in just 200 RL steps, representing a 103% relative improvement without any extra supervision. Furthermore, SRPO shows substantial robustness, achieving a 167% performance improvement on the LIBERO-Plus benchmark.
Authors:Lingyi Wang, Rashed Shelim, Walid Saad, Naren Ramakrishnan
Abstract:
Despite the popularity of reinforcement learning (RL) in wireless networks, existing approaches that rely on model-free RL (MFRL) and model-based RL (MBRL) are data inefficient and short-sighted. Such RL-based solutions cannot generalize to novel network states since they capture only statistical patterns rather than the underlying physics and logic from wireless data. These limitations become particularly challenging in complex wireless networks with high dynamics and long-term planning requirements. To address these limitations, in this paper, a novel dual-mind world model-based learning framework is proposed with the goal of optimizing completeness-weighted age of information (CAoI) in a challenging mmWave V2X scenario. Inspired by cognitive psychology, the proposed dual-mind world model encompasses a pattern-driven System 1 component and a logic-driven System 2 component to learn dynamics and logic of the wireless network, and to provide long-term link scheduling over reliable imagined trajectories. Link scheduling is learned through end-to-end differentiable imagined trajectories with logical consistency over an extended horizon rather than relying on wireless data obtained from environment interactions. Moreover, through imagination rollouts, the proposed world model can jointly reason network states and plan link scheduling. During intervals without observations, the proposed method remains capable of making efficient decisions. Extensive experiments are conducted on a realistic simulator based on Sionna with real-world physical channel, ray-tracing, and scene objects with material properties. Simulation results show that the proposed world model achieves a significant improvement in data efficiency and achieves strong generalization and adaptation to unseen environments, compared to the state-of-the-art RL baselines, and the world model approach with only System 1.
Authors:Yilin Wang, Shangzhe Li, Haoyi Niu, Zhiao Huang, Weitong Zhang, Hao Su
Abstract:
We are interested in solving the problem of imitation learning with a limited amount of real-world expert data. Existing offline imitation methods often struggle with poor data coverage and severe performance degradation. We propose a solution that leverages robot simulators to achieve online imitation learning. Our sim-to-real framework is based on world models and combines online imitation pretraining with offline finetuning. By leveraging online interactions, our approach alleviates the data coverage limitations of offline methods, leading to improved robustness and reduced performance degradation during finetuning. It also enhances generalization during domain transfer. Our empirical results demonstrate its effectiveness, improving success rates by at least 31.7% in sim-to-sim transfer and 23.3% in sim-to-real transfer over existing offline imitation learning baselines.
Authors:Yang Zhang, Xinran Li, Jianing Ye, Delin Qu, Shuang Qiu, Chongjie Zhang, Xiu Li, Chenjia Bai
Abstract:
World models have recently attracted growing interest in Multi-Agent Reinforcement Learning (MARL) due to their ability to improve sample efficiency for policy learning. However, accurately modeling environments in MARL is challenging due to the exponentially large joint action space and highly uncertain dynamics inherent in multi-agent systems. To address this, we reduce modeling complexity by shifting from jointly modeling the entire state-action transition dynamics to focusing on the state space alone at each timestep through sequential agent modeling. Specifically, our approach enables the model to progressively resolve uncertainty while capturing the structured dependencies among agents, providing a more accurate representation of how agents influence the state. Interestingly, this sequential revelation of agents' actions in a multi-agent system aligns with the reverse process in diffusion models--a class of powerful generative models known for their expressiveness and training stability compared to autoregressive or latent variable models. Leveraging this insight, we develop a flexible and robust world model for MARL using diffusion models. Our method, Diffusion-Inspired Multi-Agent world model (DIMA), achieves state-of-the-art performance across multiple multi-agent control benchmarks, significantly outperforming prior world models in terms of final return and sample efficiency, including MAMuJoCo and Bi-DexHands. DIMA establishes a new paradigm for constructing multi-agent world models, advancing the frontier of MARL research.
Authors:Yuhang Huang, Jiazhao Zhang, Shilong Zou, Xinwang Liu, Ruizhen Hu, Kai Xu
Abstract:
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
Authors:Siyuan Zhou, Yilun Du, Yuncong Yang, Lei Han, Peihao Chen, Dit-Yan Yeung, Chuang Gan
Abstract:
The ability to simulate the effects of future actions on the world is a crucial ability of intelligent embodied agents, enabling agents to anticipate the effects of their actions and make plans accordingly. While a large body of existing work has explored how to construct such world models using video models, they are often myopic in nature, without any memory of a scene not captured by currently observed images, preventing agents from making consistent long-horizon plans in complex environments where many parts of the scene are partially observed. We introduce a new persistent embodied world model with an explicit memory of previously generated content, enabling much more consistent long-horizon simulation. During generation time, our video diffusion model predicts RGB-D video of the future observations of the agent. This generation is then aggregated into a persistent 3D map of the environment. By conditioning the video model on this 3D spatial map, we illustrate how this enables video world models to faithfully simulate both seen and unseen parts of the world. Finally, we illustrate the efficacy of such a world model in downstream embodied applications, enabling effective planning and policy learning.
Authors:Shangzhe Li, Zhiao Huang, Hao Su
Abstract:
Imitation Learning (IL) has achieved remarkable success across various domains, including robotics, autonomous driving, and healthcare, by enabling agents to learn complex behaviors from expert demonstrations. However, existing IL methods often face instability challenges, particularly when relying on adversarial reward or value formulations in world model frameworks. In this work, we propose a novel approach to online imitation learning that addresses these limitations through a reward model based on random network distillation (RND) for density estimation. Our reward model is built on the joint estimation of expert and behavioral distributions within the latent space of the world model. We evaluate our method across diverse benchmarks, including DMControl, Meta-World, and ManiSkill2, showcasing its ability to deliver stable performance and achieve expert-level results in both locomotion and manipulation tasks. Our approach demonstrates improved stability over adversarial methods while maintaining expert-level performance.
Authors:Lingyi Wang, Rashed Shelim, Walid Saad, Naren Ramakrishnan
Abstract:
Traditional reinforcement learning (RL)-based learning approaches for wireless networks rely on expensive trial-and-error mechanisms and real-time feedback based on extensive environment interactions, which leads to low data efficiency and short-sighted policies. These limitations become particularly problematic in complex, dynamic networks with high uncertainty and long-term planning requirements. To address these limitations, in this paper, a novel world model-based learning framework is proposed to minimize packet-completeness-aware age of information (CAoI) in a vehicular network. Particularly, a challenging representative scenario is considered pertaining to a millimeter-wave (mmWave) vehicle-to-everything (V2X) communication network, which is characterized by high mobility, frequent signal blockages, and extremely short coherence time. Then, a world model framework is proposed to jointly learn a dynamic model of the mmWave V2X environment and use it to imagine trajectories for learning how to perform link scheduling. In particular, the long-term policy is learned in differentiable imagined trajectories instead of environment interactions. Moreover, owing to its imagination abilities, the world model can jointly predict time-varying wireless data and optimize link scheduling in real-world wireless and V2X networks. Thus, during intervals without actual observations, the world model remains capable of making efficient decisions. Extensive experiments are performed on a realistic simulator based on Sionna that integrates physics-based end-to-end channel modeling, ray-tracing, and scene geometries with material properties. Simulation results show that the proposed world model achieves a significant improvement in data efficiency, and achieves 26% improvement and 16% improvement in CAoI, respectively, compared to the model-based RL (MBRL) method and the model-free RL (MFRL) method.
Authors:Haoyu Zhen, Qiao Sun, Hongxin Zhang, Junyan Li, Siyuan Zhou, Yilun Du, Chuang Gan
Abstract:
This paper presents an effective approach for learning novel 4D embodied world models, which predict the dynamic evolution of 3D scenes over time in response to an embodied agent's actions, providing both spatial and temporal consistency. We propose to learn a 4D world model by training on RGB-DN (RGB, Depth, and Normal) videos. This not only surpasses traditional 2D models by incorporating detailed shape, configuration, and temporal changes into their predictions, but also allows us to effectively learn accurate inverse dynamic models for an embodied agent. Specifically, we first extend existing robotic manipulation video datasets with depth and normal information leveraging off-the-shelf models. Next, we fine-tune a video generation model on this annotated dataset, which jointly predicts RGB-DN (RGB, Depth, and Normal) for each frame. We then present an algorithm to directly convert generated RGB, Depth, and Normal videos into a high-quality 4D scene of the world. Our method ensures temporal and spatial coherence in 4D scene predictions from embodied scenarios, enables novel view synthesis for embodied environments, and facilitates policy learning that significantly outperforms those derived from prior video-based world models.
Authors:Wenxuan Li, Hang Zhao, Zhiyuan Yu, Yu Du, Qin Zou, Ruizhen Hu, Kai Xu
Abstract:
While non-prehensile manipulation (e.g., controlled pushing/poking) constitutes a foundational robotic skill, its learning remains challenging due to the high sensitivity to complex physical interactions involving friction and restitution. To achieve robust policy learning and generalization, we opt to learn a world model of the 3D rigid body dynamics involved in non-prehensile manipulations and use it for model-based reinforcement learning. We propose PIN-WM, a Physics-INformed World Model that enables efficient end-to-end identification of a 3D rigid body dynamical system from visual observations. Adopting differentiable physics simulation, PIN-WM can be learned with only few-shot and task-agnostic physical interaction trajectories. Further, PIN-WM is learned with observational loss induced by Gaussian Splatting without needing state estimation. To bridge Sim2Real gaps, we turn the learned PIN-WM into a group of Digital Cousins via physics-aware randomizations which perturb physics and rendering parameters to generate diverse and meaningful variations of the PIN-WM. Extensive evaluations on both simulation and real-world tests demonstrate that PIN-WM, enhanced with physics-aware digital cousins, facilitates learning robust non-prehensile manipulation skills with Sim2Real transfer, surpassing the Real2Sim2Real state-of-the-arts.
Authors:Lingyi Wang, Rashed Shelim, Walid Saad, Naren Ramakrishnan
Abstract:
Imagination in world models is crucial for enabling agents to learn long-horizon policy in a sample-efficient manner. Existing recurrent state-space model (RSSM)-based world models depend on single-step statistical inference to capture the environment dynamics, and, hence, they are unable to perform long-term imagination tasks due to the accumulation of prediction errors. Inspired by the dual-process theory of human cognition, we propose a novel dual-mind world model (DMWM) framework that integrates logical reasoning to enable imagination with logical consistency. DMWM is composed of two components: an RSSM-based System 1 (RSSM-S1) component that handles state transitions in an intuitive manner and a logic-integrated neural network-based System 2 (LINN-S2) component that guides the imagination process through hierarchical deep logical reasoning. The inter-system feedback mechanism is designed to ensure that the imagination process follows the logical rules of the real environment. The proposed framework is evaluated on benchmark tasks that require long-term planning from the DMControl suite. Extensive experimental results demonstrate that the proposed framework yields significant improvements in terms of logical coherence, trial efficiency, data efficiency and long-term imagination over the state-of-the-art world models.
Authors:Yihao Liu, Xu Cao, Tingting Chen, Yankai Jiang, Junjie You, Minghua Wu, Xiaosong Wang, Mengling Feng, Yaochu Jin, Jintai Chen
Abstract:
Healthcare systems worldwide face persistent challenges in efficiency, accessibility, and personalization. Powered by modern AI technologies such as multimodal large language models and world models, Embodied AI (EmAI) represents a transformative frontier, offering enhanced autonomy and the ability to interact with the physical world to address these challenges. As an interdisciplinary and rapidly evolving research domain, "EmAI in healthcare" spans diverse fields such as algorithms, robotics, and biomedicine. This complexity underscores the importance of timely reviews and analyses to track advancements, address challenges, and foster cross-disciplinary collaboration. In this paper, we provide a comprehensive overview of the "brain" of EmAI for healthcare, wherein we introduce foundational AI algorithms for perception, actuation, planning, and memory, and focus on presenting the healthcare applications spanning clinical interventions, daily care & companionship, infrastructure support, and biomedical research. Despite its promise, the development of EmAI for healthcare is hindered by critical challenges such as safety concerns, gaps between simulation platforms and real-world applications, the absence of standardized benchmarks, and uneven progress across interdisciplinary domains. We discuss the technical barriers and explore ethical considerations, offering a forward-looking perspective on the future of EmAI in healthcare. A hierarchical framework of intelligent levels for EmAI systems is also introduced to guide further development. By providing systematic insights, this work aims to inspire innovation and practical applications, paving the way for a new era of intelligent, patient-centered healthcare.
Authors:Emiliyan Gospodinov, Vaisakh Shaj, Philipp Becker, Stefan Geyer, Gerhard Neumann
Abstract:
Developing foundational world models is a key research direction for embodied intelligence, with the ability to adapt to non-stationary environments being a crucial criterion. In this work, we introduce a new formalism, Hidden Parameter-POMDP, designed for control with adaptive world models. We demonstrate that this approach enables learning robust behaviors across a variety of non-stationary RL benchmarks. Additionally, this formalism effectively learns task abstractions in an unsupervised manner, resulting in structured, task-aware latent spaces.
Authors:Eric Hanchen Jiang, Zhi Zhang, Dinghuai Zhang, Andrew Lizarraga, Chenheng Xu, Yasi Zhang, Siyan Zhao, Zhengjie Xu, Peiyu Yu, Yuer Tang, Deqian Kong, Ying Nian Wu
Abstract:
Advancements in reinforcement learning have led to the development of sophisticated models capable of learning complex decision-making tasks. However, efficiently integrating world models with decision transformers remains a challenge. In this paper, we introduce a novel approach that combines the Dreamer algorithm's ability to generate anticipatory trajectories with the adaptive learning strengths of the Online Decision Transformer. Our methodology enables parallel training where Dreamer-produced trajectories enhance the contextual decision-making of the transformer, creating a bidirectional enhancement loop. We empirically demonstrate the efficacy of our approach on a suite of challenging benchmarks, achieving notable improvements in sample efficiency and reward maximization over existing methods. Our results indicate that the proposed integrated framework not only accelerates learning but also showcases robustness in diverse and dynamic scenarios, marking a significant step forward in model-based reinforcement learning.
Authors:Claas A Voelcker, Marcel Hussing, Eric Eaton, Amir-massoud Farahmand, Igor Gilitschenski
Abstract:
Building deep reinforcement learning (RL) agents that find a good policy with few samples has proven notoriously challenging. To achieve sample efficiency, recent work has explored updating neural networks with large numbers of gradient steps for every new sample. While such high update-to-data (UTD) ratios have shown strong empirical performance, they also introduce instability to the training process. Previous approaches need to rely on periodic neural network parameter resets to address this instability, but restarting the training process is infeasible in many real-world applications and requires tuning the resetting interval. In this paper, we focus on one of the core difficulties of stable training with limited samples: the inability of learned value functions to generalize to unobserved on-policy actions. We mitigate this issue directly by augmenting the off-policy RL training process with a small amount of data generated from a learned world model. Our method, Model-Augmented Data for TD Learning (MAD-TD), uses small amounts of generated data to stabilize high UTD training and achieve competitive performance on the most challenging tasks in the DeepMind control suite. Our experiments further highlight the importance of employing a good model to generate data, MAD-TD's ability to combat value overestimation, and its practical stability gains for continued learning.
Authors:Rajat Ghosh, Debojyoti Dutta
Abstract:
Numerous offline and model-based reinforcement learning systems incorporate world models to emulate the inherent environments. A world model is particularly important in scenarios where direct interactions with the real environment is costly, dangerous, or impractical. The efficacy and interpretability of such world models are notably contingent upon the quality of the underlying training data. In this context, we introduce Action Shapley as an agnostic metric for the judicious and unbiased selection of training data. To facilitate the computation of Action Shapley, we present a randomized dynamic algorithm specifically designed to mitigate the exponential complexity inherent in traditional Shapley value computations. Through empirical validation across five data-constrained real-world case studies, the algorithm demonstrates a computational efficiency improvement exceeding 80\% in comparison to conventional exponential time computations. Furthermore, our Action Shapley-based training data selection policy consistently outperforms ad-hoc training data selection.
Authors:PAN Team, Jiannan Xiang, Yi Gu, Zihan Liu, Zeyu Feng, Qiyue Gao, Yiyan Hu, Benhao Huang, Guangyi Liu, Yichi Yang, Kun Zhou, Davit Abrahamyan, Arif Ahmad, Ganesh Bannur, Junrong Chen, Kimi Chen, Mingkai Deng, Ruobing Han, Xinqi Huang, Haoqiang Kang, Zheqi Liu, Enze Ma, Hector Ren, Yashowardhan Shinde, Rohan Shingre, Ramsundar Tanikella, Kaiming Tao, Dequan Yang, Xinle Yu, Cong Zeng, Binglin Zhou, Zhengzhong Liu, Zhiting Hu, Eric P. Xing
Abstract:
A world model enables an intelligent agent to imagine, predict, and reason about how the world evolves in response to its actions, and accordingly to plan and strategize. While recent video generation models produce realistic visual sequences, they typically operate in the prompt-to-full-video manner without causal control, interactivity, or long-horizon consistency required for purposeful reasoning. Existing world modeling efforts, on the other hand, often focus on restricted domains (e.g., physical, game, or 3D-scene dynamics) with limited depth and controllability, and struggle to generalize across diverse environments and interaction formats. In this work, we introduce PAN, a general, interactable, and long-horizon world model that predicts future world states through high-quality video simulation conditioned on history and natural language actions. PAN employs the Generative Latent Prediction (GLP) architecture that combines an autoregressive latent dynamics backbone based on a large language model (LLM), which grounds simulation in extensive text-based knowledge and enables conditioning on language-specified actions, with a video diffusion decoder that reconstructs perceptually detailed and temporally coherent visual observations, to achieve a unification between latent space reasoning (imagination) and realizable world dynamics (reality). Trained on large-scale video-action pairs spanning diverse domains, PAN supports open-domain, action-conditioned simulation with coherent, long-term dynamics. Extensive experiments show that PAN achieves strong performance in action-conditioned world simulation, long-horizon forecasting, and simulative reasoning compared to other video generators and world models, taking a step towards general world models that enable predictive simulation of future world states for reasoning and acting.
Authors:Minsoo Kim, Seung-won Hwang
Abstract:
LLM-based agents have seen promising advances, yet they are still limited in "hard-exploration" tasks requiring learning new knowledge through exploration. We present GLoW, a novel approach leveraging dual-scale world models, maintaining a trajectory frontier of high-value discoveries at the global scale, while learning from local trial-and-error in exploration through a Multi-path Advantage Reflection mechanism which infers advantage-based progress signals to guide exploration. To evaluate our framework for hard-exploration, we tackle the Jericho benchmark suite of text-based games, where GLoW achieves a new state-of-theart performance for LLM-based approaches. Compared to state-of-the-art RLbased methods, our approach achieves comparable performance while requiring 100-800x fewer environment interactions.
Authors:Minjong Yoo, Jinwoo Jang, Sihyung Yoon, Honguk Woo
Abstract:
In embodied AI, a persistent challenge is enabling agents to robustly adapt to novel domains without requiring extensive data collection or retraining. To address this, we present a world model implanting framework (WorMI) that combines the reasoning capabilities of large language models (LLMs) with independently learned, domain-specific world models through test-time composition. By allowing seamless implantation and removal of the world models, the embodied agent's policy achieves and maintains cross-domain adaptability. In the WorMI framework, we employ a prototype-based world model retrieval approach, utilizing efficient trajectory-based abstract representation matching, to incorporate relevant models into test-time composition. We also develop a world-wise compound attention method that not only integrates the knowledge from the retrieved world models but also aligns their intermediate representations with the reasoning model's representation within the agent's policy. This framework design effectively fuses domain-specific knowledge from multiple world models, ensuring robust adaptation to unseen domains. We evaluate our WorMI on the VirtualHome and ALFWorld benchmarks, demonstrating superior zero-shot and few-shot performance compared to several LLM-based approaches across a range of unseen domains. These results highlight the frameworks potential for scalable, real-world deployment in embodied agent scenarios where adaptability and data efficiency are essential.
Authors:Minsoo Kim, Seung-won Hwang
Abstract:
Planning in modern LLM agents relies on the utilization of LLM as an internal world model, acquired during pretraining. However, existing agent designs fail to effectively assimilate new observations into dynamic updates of the world model. This reliance on the LLM's static internal world model is progressively prone to misalignment with the underlying true state of the world, leading to the generation of divergent and erroneous plans. We introduce a hierarchical agent architecture, CoEx, in which hierarchical state abstraction allows LLM planning to co-evolve with a dynamically updated model of the world. CoEx plans and interacts with the world by using LLM reasoning to orchestrate dynamic plans consisting of subgoals, and its learning mechanism continuously incorporates these subgoal experiences into a persistent world model in the form of a neurosymbolic belief state, comprising textual inferences and code-based symbolic memory. We evaluate our agent across a diverse set of agent scenarios involving rich environments and complex tasks including ALFWorld, PDDL, and Jericho. Our experiments show that CoEx outperforms existing agent paradigms in planning and exploration.
Authors:Jiajie He, Yuechun Gu, Keke Chen
Abstract:
Recommender systems (RecSys) have become an essential component of many web applications. The core of the system is a recommendation model trained on highly sensitive user-item interaction data. While privacy-enhancing techniques are actively studied in the research community, the real-world model development still depends on minimal privacy protection, e.g., via controlled access. Users of such systems should have the right to choose \emph{not} to share highly sensitive interactions. However, there is no method allowing the user to know which interactions are more sensitive than others. Thus, quantifying the privacy risk of RecSys training data is a critical step to enabling privacy-aware RecSys model development and deployment. We propose a membership-inference attack (MIA)- based privacy scoring method, RecPS, to measure privacy risks at both the interaction and user levels. The RecPS interaction-level score definition is motivated and derived from differential privacy, which is then extended to the user-level scoring method. A critical component is the interaction-level MIA method RecLiRA, which gives high-quality membership estimation. We have conducted extensive experiments on well-known benchmark datasets and RecSys models to show the unique features and benefits of RecPS scoring in risk assessment and RecSys model unlearning.
Authors:Kewei Lian, Shaofei Cai, Yilun Du, Yitao Liang
Abstract:
The ability to simulate the world in a spatially consistent manner is a crucial requirements for effective world models. Such a model enables high-quality visual generation, and also ensures the reliability of world models for downstream tasks such as simulation and planning. Designing a memory module is a crucial component for addressing spatial consistency: such a model must not only retain long-horizon observational information, but also enables the construction of explicit or implicit internal spatial representations. However, there are no dataset designed to promote the development of memory modules by explicitly enforcing spatial consistency constraints. Furthermore, most existing benchmarks primarily emphasize visual coherence or generation quality, neglecting the requirement of long-range spatial consistency. To bridge this gap, we construct a dataset and corresponding benchmark by sampling 150 distinct locations within the open-world environment of Minecraft, collecting about 250 hours (20 million frames) of loop-based navigation videos with actions. Our dataset follows a curriculum design of sequence lengths, allowing models to learn spatial consistency on increasingly complex navigation trajectories. Furthermore, our data collection pipeline is easily extensible to new Minecraft environments and modules. Four representative world model baselines are evaluated on our benchmark. Dataset, benchmark, and code are open-sourced to support future research.
Authors:Haoran Xu, Peixi Peng, Guang Tan, Yiqian Chang, Yisen Zhao, Yonghong Tian
Abstract:
World models aim to learn or construct representations of the environment that enable the prediction of future scenes, thereby supporting intelligent motion planning. However, existing models often struggle to produce fine-grained predictions and to operate in real time. In this work, we propose T$^3$Former, a novel 4D occupancy world model for autonomous driving. T$^3$Former begins by pre-training a compact {\em triplane} representation that efficiently encodes 3D occupancy. It then extracts multi-scale temporal motion features from historical triplanes and employs an autoregressive approach to iteratively predict future triplane changes. Finally, these triplane changes are combined with previous states to decode future occupancy and ego-motion trajectories. Experimental results show that T$^3$Former achieves 1.44$\times$ speedup (26 FPS), improves mean IoU to 36.09, and reduces mean absolute planning error to 1.0 meters. Demos are available in the supplementary material.
Authors:Yiqi Huang, Travis Davies, Jiahuan Yan, Xiang Chen, Yu Tian, Luhui Hu
Abstract:
Imitation learning and world models have shown significant promise in advancing generalizable robotic learning, with robotic grasping remaining a critical challenge for achieving precise manipulation. Existing methods often rely heavily on robot arm state data and RGB images, leading to overfitting to specific object shapes or positions. To address these limitations, we propose RoboGrasp, a universal grasping policy framework that integrates pretrained grasp detection models with robotic learning. By leveraging robust visual guidance from object detection and segmentation tasks, RoboGrasp significantly enhances grasp precision, stability, and generalizability, achieving up to 34% higher success rates in few-shot learning and grasping box prompt tasks. Built on diffusion-based methods, RoboGrasp is adaptable to various robotic learning paradigms, enabling precise and reliable manipulation across diverse and complex scenarios. This framework represents a scalable and versatile solution for tackling real-world challenges in robotic grasping.
Authors:Katherine M. Collins, Umang Bhatt, Ilia Sucholutsky
Abstract:
Humans learn about the world, and how to act in the world, in many ways: from individually conducting experiments to observing and reproducing others' behavior. Different learning strategies come with different costs and likelihoods of successfully learning more about the world. The choice that any one individual makes of how to learn can have an impact on the collective understanding of a whole population if people learn from each other. Alan Rogers developed simulations of a population of agents to study these network phenomena where agents could individually or socially learn amidst a dynamic, uncertain world and uncovered a confusing result: the availability of cheap social learning yielded no benefit to population fitness over individual learning. This paradox spawned decades of work trying to understand and uncover factors that foster the relative benefit of social learning that centuries of human behavior suggest exists. What happens in such network models now that humans can socially learn from AI systems that are themselves socially learning from us? We revisit Rogers' Paradox in the context of human-AI interaction to probe a simplified network of humans and AI systems learning together about an uncertain world. We propose and examine the impact of several learning strategies on the quality of the equilibrium of a society's 'collective world model'. We consider strategies that can be undertaken by various stakeholders involved in a single human-AI interaction: human, AI model builder, and society or regulators around the interaction. We then consider possible negative feedback loops that may arise from humans learning socially from AI: that learning from the AI may impact our own ability to learn about the world. We close with open directions into studying networks of human and AI systems that can be explored in enriched versions of our simulation framework.
Authors:Minheng Ni, Lei Zhang, Zihan Chen, Kaixin Bai, Zhaopeng Chen, Jianwei Zhang, Lei Zhang, Wangmeng Zuo
Abstract:
Unthinking execution of human instructions in robotic manipulation can lead to severe safety risks, such as poisonings, fires, and even explosions. In this paper, we present responsible robotic manipulation, which requires robots to consider potential hazards in the real-world environment while completing instructions and performing complex operations safely and efficiently. However, such scenarios in real world are variable and risky for training. To address this challenge, we propose Safety-as-policy, which includes (i) a world model to automatically generate scenarios containing safety risks and conduct virtual interactions, and (ii) a mental model to infer consequences with reflections and gradually develop the cognition of safety, allowing robots to accomplish tasks while avoiding dangers. Additionally, we create the SafeBox synthetic dataset, which includes one hundred responsible robotic manipulation tasks with different safety risk scenarios and instructions, effectively reducing the risks associated with real-world experiments. Experiments demonstrate that Safety-as-policy can avoid risks and efficiently complete tasks in both synthetic dataset and real-world experiments, significantly outperforming baseline methods. Our SafeBox dataset shows consistent evaluation results with real-world scenarios, serving as a safe and effective benchmark for future research.
Authors:Yin Wang, Zhiying Leng, Haitian Liu, Frederick W. B. Li, Mu Li, Xiaohui Liang
Abstract:
Scenes are continuously undergoing dynamic changes in the real world. However, existing human-scene interaction generation methods typically treat the scene as static, which deviates from reality. Inspired by world models, we introduce Dyn-HSI, the first cognitive architecture for dynamic human-scene interaction, which endows virtual humans with three humanoid components. (1)Vision (human eyes): we equip the virtual human with a Dynamic Scene-Aware Navigation, which continuously perceives changes in the surrounding environment and adaptively predicts the next waypoint. (2)Memory (human brain): we equip the virtual human with a Hierarchical Experience Memory, which stores and updates experiential data accumulated during training. This allows the model to leverage prior knowledge during inference for context-aware motion priming, thereby enhancing both motion quality and generalization. (3) Control (human body): we equip the virtual human with Human-Scene Interaction Diffusion Model, which generates high-fidelity interaction motions conditioned on multimodal inputs. To evaluate performance in dynamic scenes, we extend the existing static human-scene interaction datasets to construct a dynamic benchmark, Dyn-Scenes. We conduct extensive qualitative and quantitative experiments to validate Dyn-HSI, showing that our method consistently outperforms existing approaches and generates high-quality human-scene interaction motions in both static and dynamic settings.
Authors:Moo Jin Kim, Yihuai Gao, Tsung-Yi Lin, Yen-Chen Lin, Yunhao Ge, Grace Lam, Percy Liang, Shuran Song, Ming-Yu Liu, Chelsea Finn, Jinwei Gu
Abstract:
Recent video generation models demonstrate remarkable ability to capture complex physical interactions and scene evolution over time. To leverage their spatiotemporal priors, robotics works have adapted video models for policy learning but introduce complexity by requiring multiple stages of post-training and new architectural components for action generation. In this work, we introduce Cosmos Policy, a simple approach for adapting a large pretrained video model (Cosmos-Predict2) into an effective robot policy through a single stage of post-training on the robot demonstration data collected on the target platform, with no architectural modifications. Cosmos Policy learns to directly generate robot actions encoded as latent frames within the video model's latent diffusion process, harnessing the model's pretrained priors and core learning algorithm to capture complex action distributions. Additionally, Cosmos Policy generates future state images and values (expected cumulative rewards), which are similarly encoded as latent frames, enabling test-time planning of action trajectories with higher likelihood of success. In our evaluations, Cosmos Policy achieves state-of-the-art performance on the LIBERO and RoboCasa simulation benchmarks (98.5% and 67.1% average success rates, respectively) and the highest average score in challenging real-world bimanual manipulation tasks, outperforming strong diffusion policies trained from scratch, video model-based policies, and state-of-the-art vision-language-action models fine-tuned on the same robot demonstrations. Furthermore, given policy rollout data, Cosmos Policy can learn from experience to refine its world model and value function and leverage model-based planning to achieve even higher success rates in challenging tasks. We release code, models, and training data at https://research.nvidia.com/labs/dir/cosmos-policy/
Authors:Yufan He, Pengfei Guo, Mengya Xu, Zhaoshuo Li, Andriy Myronenko, Dillan Imans, Bingjie Liu, Dongren Yang, Mingxue Gu, Yongnan Ji, Yueming Jin, Ren Zhao, Baiyong Shen, Daguang Xu
Abstract:
Data scarcity remains a fundamental barrier to achieving fully autonomous surgical robots. While large scale vision language action (VLA) models have shown impressive generalization in household and industrial manipulation by leveraging paired video action data from diverse domains, surgical robotics suffers from the paucity of datasets that include both visual observations and accurate robot kinematics. In contrast, vast corpora of surgical videos exist, but they lack corresponding action labels, preventing direct application of imitation learning or VLA training. In this work, we aim to alleviate this problem by learning policy models from SurgWorld, a world model designed for surgical physical AI. We curated the Surgical Action Text Alignment (SATA) dataset with detailed action description specifically for surgical robots. Then we built SurgeWorld based on the most advanced physical AI world model and SATA. It's able to generate diverse, generalizable and realistic surgery videos. We are also the first to use an inverse dynamics model to infer pseudokinematics from synthetic surgical videos, producing synthetic paired video action data. We demonstrate that a surgical VLA policy trained with these augmented data significantly outperforms models trained only on real demonstrations on a real surgical robot platform. Our approach offers a scalable path toward autonomous surgical skill acquisition by leveraging the abundance of unlabeled surgical video and generative world modeling, thus opening the door to generalizable and data efficient surgical robot policies.
Authors:Pengxuan Yang, Ben Lu, Zhongpu Xia, Chao Han, Yinfeng Gao, Teng Zhang, Kun Zhan, XianPeng Lang, Yupeng Zheng, Qichao Zhang
Abstract:
Latent World Models enhance scene representation through temporal self-supervised learning, presenting a perception annotation-free paradigm for end-to-end autonomous driving. However, the reconstruction-oriented representation learning tangles perception with planning tasks, leading to suboptimal optimization for planning. To address this challenge, we propose WorldRFT, a planning-oriented latent world model framework that aligns scene representation learning with planning via a hierarchical planning decomposition and local-aware interactive refinement mechanism, augmented by reinforcement learning fine-tuning (RFT) to enhance safety-critical policy performance. Specifically, WorldRFT integrates a vision-geometry foundation model to improve 3D spatial awareness, employs hierarchical planning task decomposition to guide representation optimization, and utilizes local-aware iterative refinement to derive a planning-oriented driving policy. Furthermore, we introduce Group Relative Policy Optimization (GRPO), which applies trajectory Gaussianization and collision-aware rewards to fine-tune the driving policy, yielding systematic improvements in safety. WorldRFT achieves state-of-the-art (SOTA) performance on both open-loop nuScenes and closed-loop NavSim benchmarks. On nuScenes, it reduces collision rates by 83% (0.30% -> 0.05%). On NavSim, using camera-only sensors input, it attains competitive performance with the LiDAR-based SOTA method DiffusionDrive (87.8 vs. 88.1 PDMS).
Authors:Changyue Li, Jiaying Li, Youliang Yuan, Jiaming He, Zhicong Huang, Pinjia He
Abstract:
Conventional adversarial attacks focus on manipulating a single decision of neural networks. However, real-world models often operate in a sequence of decisions, where an isolated mistake can be easily corrected, but cascading errors can lead to severe risks. This paper reveals a novel threat: a single perturbation can hijack the whole decision chain. We demonstrate the feasibility of manipulating a model's outputs toward multiple, predefined outcomes, such as simultaneously misclassifying "non-motorized lane" signs as "motorized lane" and "pedestrian" as "plastic bag". To expose this threat, we introduce Semantic-Aware Universal Perturbations (SAUPs), which induce varied outcomes based on the semantics of the inputs. We overcome optimization challenges by developing an effective algorithm, which searches for perturbations in normalized space with a semantic separation strategy. To evaluate the practical threat of SAUPs, we present RIST, a new real-world image dataset with fine-grained semantic annotations. Extensive experiments on three multimodal large language models demonstrate their vulnerability, achieving a 70% attack success rate when controlling five distinct targets using just an adversarial frame.
Authors:Yiqing Shen, Aiza Maksutova, Chenjia Li, Mathias Unberath
Abstract:
World models learn to predict the temporal evolution of visual observations given a control signal, potentially enabling agents to reason about environments through forward simulation. Because of the focus on forward simulation, current world models generate predictions based on factual observations. For many emerging applications, such as comprehensive evaluations of physical AI behavior under varying conditions, the ability of world models to answer counterfactual queries, such as "what would happen if this object was removed?", is of increasing importance. We formalize counterfactual world models that additionally take interventions as explicit inputs, predicting temporal sequences under hypothetical modifications to observed scene properties. Traditional world models operate directly on entangled pixel-space representations where object properties and relationships cannot be selectively modified. This modeling choice prevents targeted interventions on specific scene properties. We introduce CWMDT, a framework to overcome those limitations, turning standard video diffusion models into effective counterfactual world models. First, CWMDT constructs digital twins of observed scenes to explicitly encode objects and their relationships, represented as structured text. Second, CWMDT applies large language models to reason over these representations and predict how a counterfactual intervention propagates through time to alter the observed scene. Third, CWMDT conditions a video diffusion model with the modified representation to generate counterfactual visual sequences. Evaluations on two benchmarks show that the CWMDT approach achieves state-of-the-art performance, suggesting that alternative representations of videos, such as the digital twins considered here, offer powerful control signals for video forward simulation-based world models.
Authors:Lorenzo Baraldi, Zifan Zeng, Chongzhe Zhang, Aradhana Nayak, Hongbo Zhu, Feng Liu, Qunli Zhang, Peng Wang, Shiming Liu, Zheng Hu, Angelo Cangelosi, Lorenzo Baraldi
Abstract:
The rapid progress in embodied artificial intelligence has highlighted the necessity for more advanced and integrated models that can perceive, interpret, and predict environmental dynamics. In this context, World Models (WMs) have been introduced to provide embodied agents with the abilities to anticipate future environmental states and fill in knowledge gaps, thereby enhancing agents' ability to plan and execute actions. However, when dealing with embodied agents it is fundamental to ensure that predictions are safe for both the agent and the environment. In this article, we conduct a comprehensive literature review of World Models in the domains of autonomous driving and robotics, with a specific focus on the safety implications of scene and control generation tasks. Our review is complemented by an empirical analysis, wherein we collect and examine predictions from state-of-the-art models, identify and categorize common faults (herein referred to as pathologies), and provide a quantitative evaluation of the results.
Authors:Seungwook Kim, Seunghyeon Lee, Minsu Cho
Abstract:
Generating realistic robot videos from explicit action trajectories is a critical step toward building effective world models and robotics foundation models. We introduce two training-free, inference-time techniques that fully exploit explicit action parameters in diffusion-based robot video generation. Instead of treating action vectors as passive conditioning signals, our methods actively incorporate them to guide both the classifier-free guidance process and the initialization of Gaussian latents. First, action-scaled classifier-free guidance dynamically modulates guidance strength in proportion to action magnitude, enhancing controllability over motion intensity. Second, action-scaled noise truncation adjusts the distribution of initially sampled noise to better align with the desired motion dynamics. Experiments on real robot manipulation datasets demonstrate that these techniques significantly improve action coherence and visual quality across diverse robot environments.
Authors:Fan Wang, Zhiyuan Chen, Yuxuan Zhong, Sunjian Zheng, Pengtao Shao, Bo Yu, Shaoshan Liu, Jianan Wang, Ning Ding, Yang Cao, Yu Kang
Abstract:
The capability of predicting environmental dynamics underpins both biological neural systems and general embodied AI in adapting to their surroundings. Yet prevailing approaches rest on static world models that falter when confronted with novel or rare configurations. We investigate in-context environment learning (ICEL), shifting attention from zero-shot performance to the growth and asymptotic limits of the world model. Our contributions are three-fold: (1) we formalize in-context learning of a world model and identify two core mechanisms: environment recognition and environment learning; (2) we derive error upper-bounds for both mechanisms that expose how the mechanisms emerge; and (3) we empirically confirm that distinct ICL mechanisms exist in the world model, and we further investigate how data distribution and model architecture affect ICL in a manner consistent with theory. These findings demonstrate the potential of self-adapting world models and highlight the key factors behind the emergence of ICEL, most notably the necessity of long context and diverse environments.
Authors:Zijie Zhao, Honglei Guo, Shengqian Chen, Kaixuan Xu, Bo Jiang, Yuanheng Zhu, Dongbin Zhao
Abstract:
Model-based reinforcement learning (MBRL) has shown significant potential in robotics due to its high sample efficiency and planning capability. However, extending MBRL to multi-robot cooperation remains challenging due to the complexity of joint dynamics and the reliance on synchronous communication. SeqWM employs independent, autoregressive agent-wise world models to represent joint dynamics, where each agent generates its future trajectory and plans its actions based on the predictions of its predecessors. This design lowers modeling complexity, alleviates the reliance on communication synchronization, and enables the emergence of advanced cooperative behaviors through explicit intention sharing. Experiments in challenging simulated environments (Bi-DexHands and Multi-Quad) demonstrate that SeqWM outperforms existing state-of-the-art model-based and model-free baselines in both overall performance and sample efficiency, while exhibiting advanced cooperative behaviors such as predictive adaptation, temporal alignment, and role division. Furthermore, SeqWM has been success fully deployed on physical quadruped robots, demonstrating its effectiveness in real-world multi-robot systems. Demos and code are available at: https://sites.google.com/view/seqwm-marl
Authors:Delong Chen, Theo Moutakanni, Willy Chung, Yejin Bang, Ziwei Ji, Allen Bolourchi, Pascale Fung
Abstract:
Effective planning requires strong world models, but high-level world models that can understand and reason about actions with semantic and temporal abstraction remain largely underdeveloped. We introduce the Vision Language World Model (VLWM), a foundation model trained for language-based world modeling on natural videos. Given visual observations, the VLWM first infers the overall goal achievements then predicts a trajectory composed of interleaved actions and world state changes. Those targets are extracted by iterative LLM Self-Refine conditioned on compressed future observations represented by Tree of Captions. The VLWM learns both an action policy and a dynamics model, which respectively facilitates reactive system-1 plan decoding and reflective system-2 planning via cost minimization. The cost evaluates the semantic distance between the hypothetical future states given by VLWM roll-outs and the expected goal state, and is measured by a critic model that we trained in a self-supervised manner. The VLWM achieves state-of-the-art Visual Planning for Assistance (VPA) performance on both benchmark evaluations and our proposed PlannerArena human evaluations, where system-2 improves the Elo score by +27% upon system-1. The VLWM models also outperforms strong VLM baselines on RoboVQA and WorldPrediction benchmark.
Authors:Delong Chen, Willy Chung, Yejin Bang, Ziwei Ji, Pascale Fung
Abstract:
Humans are known to have an internal "world model" that enables us to carry out action planning based on world states. AI agents need to have such a world model for action planning as well. It is not clear how current AI models, especially generative models, are able to learn such world models and carry out procedural planning in diverse environments. We introduce WorldPrediction, a video-based benchmark for evaluating world modeling and procedural planning capabilities of different AI models. In contrast to prior benchmarks that focus primarily on low-level world modeling and robotic motion planning, WorldPrediction is the first benchmark that emphasizes actions with temporal and semantic abstraction. Given initial and final world states, the task is to distinguish the proper action (WorldPrediction-WM) or the properly ordered sequence of actions (WorldPrediction-PP) from a set of counterfactual distractors. This discriminative task setup enable us to evaluate different types of world models and planners and realize a thorough comparison across different hypothesis. The benchmark represents states and actions using visual observations. In order to prevent models from exploiting low-level continuity cues in background scenes, we provide "action equivalents" - identical actions observed in different contexts - as candidates for selection. This benchmark is grounded in a formal framework of partially observable semi-MDP, ensuring better reliability and robustness of the evaluation. We conduct extensive human filtering and validation on our benchmark and show that current frontier models barely achieve 57% accuracy on WorldPrediction-WM and 38% on WorldPrediction-PP whereas humans are able to solve both tasks perfectly.
Authors:Julian Quevedo, Percy Liang, Sherry Yang
Abstract:
Robotics has broad applications from automating house chores to taking care of patients. However, evaluating robot control policies is challenging, as real-world testing is expensive, while handcrafted simulations often fail to accurately reflect real-world conditions, resulting in poor correlation between simulated evaluation and real-world outcomes. In this work, we investigate World-model-based Policy Evaluation (WPE). We first train an action-conditioned video generation model as a proxy to real-world environments. To enable efficient rollouts of hundreds of interactive steps while mitigating error accumulation in the world model, we propose an inference scheme which we call Blockwise-Autoregressive Diffusion Transformer with adjustable context and decoding horizon lengths. To ensure that the world model indeed follows action input, we propose metrics based on the agreement between the ground truth video and generated video conditioned on the same sequence of actions to evaluate the world model. We then use the world model for policy evaluation by performing Monte Carlo rollouts in the world model while employing a vision-language model (VLM) as a reward function. Interestingly, we found that WPE tends to underestimate the policy values for in-distribution actions and overestimate policy values for out-of-distribution actions. Nevertheless, WPE preserves the relative rankings of different policies. In emulating real robot executions, WPE achieves high fidelity in mimicing robot arm movements as in real videos, while emulating highly realistic object interaction remains challenging. Despite this limitation, we show that a world model can serve as a starting point for evaluating robot policies before real-world deployment.
Authors:Nate Gillman, Charles Herrmann, Michael Freeman, Daksh Aggarwal, Evan Luo, Deqing Sun, Chen Sun
Abstract:
Recent advances in video generation models have sparked interest in world models capable of simulating realistic environments. While navigation has been well-explored, physically meaningful interactions that mimic real-world forces remain largely understudied. In this work, we investigate using physical forces as a control signal for video generation and propose force prompts which enable users to interact with images through both localized point forces, such as poking a plant, and global wind force fields, such as wind blowing on fabric. We demonstrate that these force prompts can enable videos to respond realistically to physical control signals by leveraging the visual and motion prior in the original pretrained model, without using any 3D asset or physics simulator at inference. The primary challenge of force prompting is the difficulty in obtaining high quality paired force-video training data, both in the real world due to the difficulty of obtaining force signals, and in synthetic data due to limitations in the visual quality and domain diversity of physics simulators. Our key finding is that video generation models can generalize remarkably well when adapted to follow physical force conditioning from videos synthesized by Blender, even with limited demonstrations of few objects. Our method can generate videos which simulate forces across diverse geometries, settings, and materials. We also try to understand the source of this generalization and perform ablations that reveal two key elements: visual diversity and the use of specific text keywords during training. Our approach is trained on only around 15k training examples for a single day on four A100 GPUs, and outperforms existing methods on force adherence and physics realism, bringing world models closer to real-world physics interactions. We release all datasets, code, weights, and interactive video demos at our project page.
Authors:Lik Hang Kenny Wong, Xueyang Kang, Kaixin Bai, Jianwei Zhang
Abstract:
Navigation and manipulation are core capabilities in Embodied AI, yet training agents with these capabilities in the real world faces high costs and time complexity. Therefore, sim-to-real transfer has emerged as a key approach, yet the sim-to-real gap persists. This survey examines how physics simulators address this gap by analyzing their properties overlooked in previous surveys. We also analyze their features for navigation and manipulation tasks, along with hardware requirements. Additionally, we offer a resource with benchmark datasets, metrics, simulation platforms, and cutting-edge methods-such as world models and geometric equivariance-to help researchers select suitable tools while accounting for hardware constraints.
Authors:Ruibo Ming, Jingwei Wu, Zhewei Huang, Zhuoxuan Ju, Jianming HU, Lihui Peng, Shuchang Zhou
Abstract:
Recent advancements in auto-regressive large language models (LLMs) have led to their application in video generation. This paper explores the use of Large Vision Models (LVMs) for video continuation, a task essential for building world models and predicting future frames. We introduce ARCON, a scheme that alternates between generating semantic and RGB tokens, allowing the LVM to explicitly learn high-level structural video information. We find high consistency in the RGB images and semantic maps generated without special design. Moreover, we employ an optical flow-based texture stitching method to enhance visual quality. Experiments in autonomous driving scenarios show that our model can consistently generate long videos.
Authors:Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester Cole, Serena Zhang, Tobias Pfaff, Tatiana Lopez-Guevara, Carl Doersch, Yusuf Aytar, Michael Rubinstein, Chen Sun, Oliver Wang, Andrew Owens, Deqing Sun
Abstract:
Motion control is crucial for generating expressive and compelling video content; however, most existing video generation models rely mainly on text prompts for control, which struggle to capture the nuances of dynamic actions and temporal compositions. To this end, we train a video generation model conditioned on spatio-temporally sparse or dense motion trajectories. In contrast to prior motion conditioning work, this flexible representation can encode any number of trajectories, object-specific or global scene motion, and temporally sparse motion; due to its flexibility we refer to this conditioning as motion prompts. While users may directly specify sparse trajectories, we also show how to translate high-level user requests into detailed, semi-dense motion prompts, a process we term motion prompt expansion. We demonstrate the versatility of our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing. Our results showcase emergent behaviors, such as realistic physics, suggesting the potential of motion prompts for probing video models and interacting with future generative world models. Finally, we evaluate quantitatively, conduct a human study, and demonstrate strong performance. Video results are available on our webpage: https://motion-prompting.github.io/
Authors:Yunuo Zhang, Baiting Luo, Ayan Mukhopadhyay, Daniel Stojcsics, Daniel Elenius, Anirban Roy, Susmit Jha, Miklos Maroti, Xenofon Koutsoukos, Gabor Karsai, Abhishek Dubey
Abstract:
Efficient path optimization for drones in search and rescue operations faces challenges, including limited visibility, time constraints, and complex information gathering in urban environments. We present a comprehensive approach to optimize UAV-based search and rescue operations in neighborhood areas, utilizing both a 3D AirSim-ROS2 simulator and a 2D simulator. The path planning problem is formulated as a partially observable Markov decision process (POMDP), and we propose a novel ``Shrinking POMCP'' approach to address time constraints. In the AirSim environment, we integrate our approach with a probabilistic world model for belief maintenance and a neurosymbolic navigator for obstacle avoidance. The 2D simulator employs surrogate ROS2 nodes with equivalent functionality. We compare trajectories generated by different approaches in the 2D simulator and evaluate performance across various belief types in the 3D AirSim-ROS simulator. Experimental results from both simulators demonstrate that our proposed shrinking POMCP solution achieves significant improvements in search times compared to alternative methods, showcasing its potential for enhancing the efficiency of UAV-assisted search and rescue operations.
Authors:Zifan Zeng, Chongzhe Zhang, Feng Liu, Joseph Sifakis, Qunli Zhang, Shiming Liu, Peng Wang
Abstract:
With the proliferation of the Large Language Model (LLM), the concept of World Models (WM) has recently attracted a great deal of attention in the AI research community, especially in the context of AI agents. It is arguably evolving into an essential foundation for building AI agent systems. A WM is intended to help the agent predict the future evolution of environmental states or help the agent fill in missing information so that it can plan its actions and behave safely. The safety property of WM plays a key role in their effective use in critical applications. In this work, we review and analyze the impacts of the current state-of-the-art in WM technology from the point of view of trustworthiness and safety based on a comprehensive survey and the fields of application envisaged. We provide an in-depth analysis of state-of-the-art WMs and derive technical research challenges and their impact in order to call on the research community to collaborate on improving the safety and trustworthiness of WM.
Authors:Cristian Meo, Mircea Lica, Zarif Ikram, Akihiro Nakano, Vedant Shah, Aniket Rajiv Didolkar, Dianbo Liu, Anirudh Goyal, Justin Dauwels
Abstract:
Deep Reinforcement Learning (RL) has become the leading approach for creating artificial agents in complex environments. Model-based approaches, which are RL methods with world models that predict environment dynamics, are among the most promising directions for improving data efficiency, forming a critical step toward bridging the gap between research and real-world deployment. In particular, world models enhance sample efficiency by learning in imagination, which involves training a generative sequence model of the environment in a self-supervised manner. Recently, Masked Generative Modelling has emerged as a more efficient and superior inductive bias for modelling and generating token sequences. Building on the Efficient Stochastic Transformer-based World Models (STORM) architecture, we replace the traditional MLP prior with a Masked Generative Prior (e.g., MaskGIT Prior) and introduce GIT-STORM. We evaluate our model on two downstream tasks: reinforcement learning and video prediction. GIT-STORM demonstrates substantial performance gains in RL tasks on the Atari 100k benchmark. Moreover, we apply Transformer-based World Models to continuous action environments for the first time, addressing a significant gap in prior research. To achieve this, we employ a state mixer function that integrates latent state representations with actions, enabling our model to handle continuous control tasks. We validate this approach through qualitative and quantitative analyses on the DeepMind Control Suite, showcasing the effectiveness of Transformer-based World Models in this new domain. Our results highlight the versatility and efficacy of the MaskGIT dynamics prior, paving the way for more accurate world models and effective RL policies.
Authors:Pengfei Zhou, Liliang Chen, Shengcong Chen, Di Chen, Wenzhi Zhao, Rongjun Jin, Guanghui Ren, Jianlan Luo
Abstract:
Specifying robotic manipulation tasks in a manner that is both expressive and precise remains a central challenge. While visual goals provide a compact and unambiguous task specification, existing goal-conditioned policies often struggle with long-horizon manipulation due to their reliance on single-step action prediction without explicit modeling of task progress. We propose Act2Goal, a general goal-conditioned manipulation policy that integrates a goal-conditioned visual world model with multi-scale temporal control. Given a current observation and a target visual goal, the world model generates a plausible sequence of intermediate visual states that captures long-horizon structure. To translate this visual plan into robust execution, we introduce Multi-Scale Temporal Hashing (MSTH), which decomposes the imagined trajectory into dense proximal frames for fine-grained closed-loop control and sparse distal frames that anchor global task consistency. The policy couples these representations with motor control through end-to-end cross-attention, enabling coherent long-horizon behavior while remaining reactive to local disturbances. Act2Goal achieves strong zero-shot generalization to novel objects, spatial layouts, and environments. We further enable reward-free online adaptation through hindsight goal relabeling with LoRA-based finetuning, allowing rapid autonomous improvement without external supervision. Real-robot experiments demonstrate that Act2Goal improves success rates from 30% to 90% on challenging out-of-distribution tasks within minutes of autonomous interaction, validating that goal-conditioned world models with multi-scale temporal control provide structured guidance necessary for robust long-horizon manipulation. Project page: https://act2goal.github.io/
Authors:Zefan Cai, Haoyi Qiu, Tianyi Ma, Haozhe Zhao, Gengze Zhou, Kung-Hsiang Huang, Parisa Kordjamshidi, Minjia Zhang, Wen Xiao, Jiuxiang Gu, Nanyun Peng, Junjie Hu
Abstract:
Video foundation models generate visually realistic and temporally coherent content, but their reliability as world simulators depends on whether they capture physical, logical, and spatial constraints. Existing metrics such as Frechet Video Distance (FVD) emphasize perceptual quality and overlook reasoning failures, including violations of causality, physics, and global consistency. We introduce MMGR (Multi-Modal Generative Reasoning Evaluation and Benchmark), a principled evaluation framework based on five reasoning abilities: Physical, Logical, 3D Spatial, 2D Spatial, and Temporal. MMGR evaluates generative reasoning across three domains: Abstract Reasoning (ARC-AGI, Sudoku), Embodied Navigation (real-world 3D navigation and localization), and Physical Commonsense (sports and compositional interactions). MMGR applies fine-grained metrics that require holistic correctness across both video and image generation. We benchmark leading video models (Veo-3, Sora-2, Wan-2.2) and image models (Nano-banana, Nano-banana Pro, GPT-4o-image, Qwen-image), revealing strong performance gaps across domains. Models show moderate success on Physical Commonsense tasks but perform poorly on Abstract Reasoning (below 10 percent accuracy on ARC-AGI) and struggle with long-horizon spatial planning in embodied settings. Our analysis highlights key limitations in current models, including overreliance on perceptual data, weak global state consistency, and objectives that reward visual plausibility over causal correctness. MMGR offers a unified diagnostic benchmark and a path toward reasoning-aware generative world models.
Authors:Guangfeng Jiang, Yueru Luo, Jun Liu, Yi Huang, Yiyao Zhu, Zhan Qu, Dave Zhenyu Chen, Bingbing Liu, Xu Yan
Abstract:
Recent years have witnessed remarkable progress in world models, which primarily aim to capture the spatio-temporal correlations between an agent's actions and the evolving environment. However, existing approaches often suffer from tight runtime coupling or depend on offline reward signals, resulting in substantial inference overhead or hindering end-to-end optimization. To overcome these limitations, we introduce WPT, a World-to-Policy Transfer training paradigm that enables online distillation under the guidance of an end-to-end world model. Specifically, we develop a trainable reward model that infuses world knowledge into a teacher policy by aligning candidate trajectories with the future dynamics predicted by the world model. Subsequently, we propose policy distillation and world reward distillation to transfer the teacher's reasoning ability into a lightweight student policy, enhancing planning performance while preserving real-time deployability. Extensive experiments on both open-loop and closed-loop benchmarks show that our WPT achieves state-of-the-art performance with a simple policy architecture: it attains a 0.11 collision rate (open-loop) and achieves a 79.23 driving score (closed-loop) surpassing both world-model-based and imitation-learning methods in accuracy and safety. Moreover, the student sustains up to 4.9x faster inference, while retaining most of the gains.
Authors:Taiyi Su, Jian Zhu, Yaxuan Li, Chong Ma, Zitai Huang, Yichen Zhu, Hanli Wang, Yi Xu
Abstract:
Embodied world models aim to predict and interact with the physical world through visual observations and actions. However, existing models struggle to accurately translate low-level actions (e.g., joint positions) into precise robotic movements in predicted frames, leading to inconsistencies with real-world physical interactions. To address these limitations, we propose MTV-World, an embodied world model that introduces Multi-view Trajectory-Video control for precise visuomotor prediction. Specifically, instead of directly using low-level actions for control, we employ trajectory videos obtained through camera intrinsic and extrinsic parameters and Cartesian-space transformation as control signals. However, projecting 3D raw actions onto 2D images inevitably causes a loss of spatial information, making a single view insufficient for accurate interaction modeling. To overcome this, we introduce a multi-view framework that compensates for spatial information loss and ensures high-consistency with physical world. MTV-World forecasts future frames based on multi-view trajectory videos as input and conditioning on an initial frame per view. Furthermore, to systematically evaluate both robotic motion precision and object interaction accuracy, we develop an auto-evaluation pipeline leveraging multimodal large models and referring video object segmentation models. To measure spatial consistency, we formulate it as an object location matching problem and adopt the Jaccard Index as the evaluation metric. Extensive experiments demonstrate that MTV-World achieves precise control execution and accurate physical interaction modeling in complex dual-arm scenarios.
Authors:Shiqi Chen, Tongyao Zhu, Zian Wang, Jinghan Zhang, Kangrui Wang, Siyang Gao, Teng Xiao, Yee Whye Teh, Junxian He, Manling Li
Abstract:
Large Language Models (LLMs) as agents often struggle in out-of-distribution (OOD) scenarios. Real-world environments are complex and dynamic, governed by task-specific rules and stochasticity, which makes it difficult for LLMs to ground their internal knowledge in those dynamics. Under such OOD conditions, vanilla RL training often fails to scale; we observe Pass@k--the probability that at least one of (k) sampled trajectories succeeds--drops markedly across training steps, indicating brittle exploration and limited generalization. Inspired by model-based reinforcement learning, we hypothesize that equipping LLM agents with an internal world model can better align reasoning with environmental dynamics and improve decision-making. We show how to encode this world model by decomposing it into two components: state representation and transition modeling. Building on this, we introduce SPA, a simple reinforcement learning framework that cold-starts the policy via a Self-Play supervised finetuning (SFT) stage to learn the world model by interacting with the environment, then uses it to simulate future states prior to policy optimization. This simple initialization outperforms the online world-modeling baseline and greatly boosts the RL-based agent training performance. Experiments across diverse environments like Sokoban, FrozenLake, and Sudoku show that our approach significantly improves performance. For example, SPA boosts the Sokoban success rate from 25.6% to 59.8% and raises the FrozenLake score from 22.1% to 70.9% for the Qwen2.5-1.5B-Instruct model.
Authors:Jiahao Wang, Zhenpei Yang, Yijing Bai, Yingwei Li, Yuliang Zou, Bo Sun, Abhijit Kundu, Jose Lezama, Luna Yue Huang, Zehao Zhu, Jyh-Jing Hwang, Dragomir Anguelov, Mingxing Tan, Chiyu Max Jiang
Abstract:
Recent advances in generative models have sparked exciting new possibilities in the field of autonomous vehicles. Specifically, video generation models are now being explored as controllable virtual testing environments. Simultaneously, end-to-end (E2E) driving models have emerged as a streamlined alternative to conventional modular autonomous driving systems, gaining popularity for their simplicity and scalability. However, the application of these techniques to simulation and planning raises important questions. First, while video generation models can generate increasingly realistic videos, can these videos faithfully adhere to the specified conditions and be realistic enough for E2E autonomous planner evaluation? Second, given that data is crucial for understanding and controlling E2E planners, how can we gain deeper insights into their biases and improve their ability to generalize to out-of-distribution scenarios? In this work, we bridge the gap between the driving models and generative world models (Drive&Gen) to address these questions. We propose novel statistical measures leveraging E2E drivers to evaluate the realism of generated videos. By exploiting the controllability of the video generation model, we conduct targeted experiments to investigate distribution gaps affecting E2E planner performance. Finally, we show that synthetic data produced by the video generation model offers a cost-effective alternative to real-world data collection. This synthetic data effectively improves E2E model generalization beyond existing Operational Design Domains, facilitating the expansion of autonomous vehicle services into new operational contexts.
Authors:Shuhan Tan, John Lambert, Hong Jeon, Sakshum Kulshrestha, Yijing Bai, Jing Luo, Dragomir Anguelov, Mingxing Tan, Chiyu Max Jiang
Abstract:
The goal of traffic simulation is to augment a potentially limited amount of manually-driven miles that is available for testing and validation, with a much larger amount of simulated synthetic miles. The culmination of this vision would be a generative simulated city, where given a map of the city and an autonomous vehicle (AV) software stack, the simulator can seamlessly simulate the trip from point A to point B by populating the city around the AV and controlling all aspects of the scene, from animating the dynamic agents (e.g., vehicles, pedestrians) to controlling the traffic light states. We refer to this vision as CitySim, which requires an agglomeration of simulation technologies: scene generation to populate the initial scene, agent behavior modeling to animate the scene, occlusion reasoning, dynamic scene generation to seamlessly spawn and remove agents, and environment simulation for factors such as traffic lights. While some key technologies have been separately studied in various works, others such as dynamic scene generation and environment simulation have received less attention in the research community. We propose SceneDiffuser++, the first end-to-end generative world model trained on a single loss function capable of point A-to-B simulation on a city scale integrating all the requirements above. We demonstrate the city-scale traffic simulation capability of SceneDiffuser++ and study its superior realism under long simulation conditions. We evaluate the simulation quality on an augmented version of the Waymo Open Motion Dataset (WOMD) with larger map regions to support trip-level simulation.
Authors:Chenhao Li, Andreas Krause, Marco Hutter
Abstract:
Reinforcement Learning (RL) has demonstrated impressive capabilities in robotic control but remains challenging due to high sample complexity, safety concerns, and the sim-to-real gap. While offline RL eliminates the need for risky real-world exploration by learning from pre-collected data, it suffers from distributional shift, limiting policy generalization. Model-Based RL (MBRL) addresses this by leveraging predictive models for synthetic rollouts, yet existing approaches often lack robust uncertainty estimation, leading to compounding errors in offline settings. We introduce Offline Robotic World Model (RWM-O), a model-based approach that explicitly estimates epistemic uncertainty to improve policy learning without reliance on a physics simulator. By integrating these uncertainty estimates into policy optimization, our approach penalizes unreliable transitions, reducing overfitting to model errors and enhancing stability. Experimental results show that RWM-O improves generalization and safety, enabling policy learning purely from real-world data and advancing scalable, data-efficient RL for robotics.
Authors:Chenhao Li, Andreas Krause, Marco Hutter
Abstract:
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
Authors:Zhantao Gong, Liaoyuan Fan, Qing Guo, Xun Xu, Xulei Yang, Shijie Li
Abstract:
In this work, we define Foresight Intelligence as the capability to anticipate and interpret future events-an ability essential for applications such as autonomous driving, yet largely overlooked by existing research. To bridge this gap, we introduce FSU-QA, a new Visual Question-Answering (VQA) dataset specifically designed to elicit and evaluate Foresight Intelligence. Using FSU-QA, we conduct the first comprehensive study of state-of-the-art Vision-Language Models (VLMs) under foresight-oriented tasks, revealing that current models still struggle to reason about future situations. Beyond serving as a benchmark, FSU-QA also enables the assessment of world models by measuring the semantic coherence of their generated predictions, quantified through performance gains when VLMs are augmented with such outputs. Our experiments further demonstrate that FSU-QA can effectively enhance foresight reasoning: even small VLMs fine-tuned on FSU-QA surpass much larger, advanced models by a substantial margin. Together, these findings position FSU-QA as a principled foundation for developing next-generation models capable of truly anticipating and understanding future events.
Authors:Prabhant Singh, Sibylle Hess, Joaquin Vanschoren
Abstract:
Transferability estimation metrics are used to find a high-performing pre-trained model for a given target task without fine-tuning models and without access to the source dataset. Despite the growing interest in developing such metrics, the benchmarks used to measure their progress have gone largely unexamined. In this work, we empirically show the shortcomings of widely used benchmark setups to evaluate transferability estimation metrics. We argue that the benchmarks on which these metrics are evaluated are fundamentally flawed. We empirically demonstrate that their unrealistic model spaces and static performance hierarchies artificially inflate the perceived performance of existing metrics, to the point where simple, dataset-agnostic heuristics can outperform sophisticated methods. Our analysis reveals a critical disconnect between current evaluation protocols and the complexities of real-world model selection. To address this, we provide concrete recommendations for constructing more robust and realistic benchmarks to guide future research in a more meaningful direction.
Authors:Chenyue Zhou, Mingxuan Wang, Yanbiao Ma, Chenxu Wu, Wanyi Chen, Zhe Qian, Xinyu Liu, Yiwei Zhang, Junhao Wang, Hengbo Xu, Fei Luo, Xiaohua Chen, Xiaoshuai Hao, Hehan Li, Andi Zhang, Wenxuan Wang, Lingling Li, Zhiwu Lu, Yang Lu, Yike Guo
Abstract:
Multimodal Large Language Models (MLLMs) strive to achieve a profound, human-like understanding of and interaction with the physical world, but often exhibit a shallow and incoherent integration when acquiring information (Perception) and conducting reasoning (Cognition). This disconnect leads to a spectrum of reasoning failures, with hallucination being the most prominent. Collectively, these issues expose a fundamental challenge: the ability to process pixels does not yet confer the ability to construct a coherent, credible internal world model. To systematically dissect and address this challenge, this survey introduces a novel and unified analytical framework: ``From Perception to Cognition." We deconstruct the complex process of vision-language interactive understanding into two interdependent layers: Perception, the foundational ability to accurately extract visual information and achieve fine-grained alignment with textual instructions; and Cognition, the higher-order capability for proactive, multi-step, goal-oriented reasoning built upon this perceptual foundation, the core of which is the formation of a dynamic observe-think-verify reasoning loop. Guided by this framework, this paper systematically analyzes the key bottlenecks of current MLLMs at both layers. It surveys the landscape of cutting-edge methods designed to address these challenges, spanning from techniques that enhance low-level visual representations to those that improve high-level reasoning paradigms. Furthermore, we review critical benchmarks and delineate future research directions. This survey aims to provide the research community with a clear, structured perspective for understanding the intrinsic limitations of current MLLMs and to illuminate the path toward building next-generation models capable of deep reasoning and a genuine understanding of the world.
Authors:Ahmet H. Güzel, Matthew Thomas Jackson, Jarek Luca Liesen, Tim Rocktäschel, Jakob Nicolaus Foerster, Ilija Bogunovic, Jack Parker-Holder
Abstract:
Training agents to act in embodied environments typically requires vast training data or access to accurate simulation, neither of which exists for many cases in the real world. Instead, world models are emerging as an alternative leveraging offline, passively collected data, they make it possible to generate diverse worlds for training agents in simulation. In this work, we harness world models to generate imagined environments to train robust agents capable of generalizing to novel task variations. One of the challenges in doing this is ensuring the agent trains on useful generated data. We thus propose a novel approach, IMAC (Imagined Autocurricula), leveraging Unsupervised Environment Design (UED), which induces an automatic curriculum over generated worlds. In a series of challenging, procedurally generated environments, we show it is possible to achieve strong transfer performance on held-out environments, having trained only inside a world model learned from a narrower dataset. We believe this opens the path to utilizing larger-scale, foundation world models for generally capable agents.
Authors:Elisabeth Dillies, Quentin Delfosse, Jannis Blüml, Raban Emunds, Florian Peter Busch, Kristian Kersting
Abstract:
Reinforcement learning (RL) agents have shown remarkable performances in various environments, where they can discover effective policies directly from sensory inputs. However, these agents often exploit spurious correlations in the training data, resulting in brittle behaviours that fail to generalize to new or slightly modified environments. To address this, we introduce the Causal Object-centric Model Extraction Tool (COMET), a novel algorithm designed to learn the exact interpretable causal world models (CWMs). COMET first extracts object-centric state descriptions from observations and identifies the environment's internal states related to the depicted objects' properties. Using symbolic regression, it models object-centric transitions and derives causal relationships governing object dynamics. COMET further incorporates large language models (LLMs) for semantic inference, annotating causal variables to enhance interpretability.
By leveraging these capabilities, COMET constructs CWMs that align with the true causal structure of the environment, enabling agents to focus on task-relevant features. The extracted CWMs mitigate the danger of shortcuts, permitting the development of RL systems capable of better planning and decision-making across dynamic scenarios. Our results, validated in Atari environments such as Pong and Freeway, demonstrate the accuracy and robustness of COMET, highlighting its potential to bridge the gap between object-centric reasoning and causal inference in reinforcement learning.
Authors:Wandong Sun, Baoshi Cao, Long Chen, Yongbo Su, Yang Liu, Zongwu Xie, Hong Liu
Abstract:
Humanoid robots are engineered to navigate terrains akin to those encountered by humans, which necessitates human-like locomotion and perceptual abilities. Currently, the most reliable controllers for humanoid motion rely exclusively on proprioception, a reliance that becomes both dangerous and unreliable when coping with rugged terrain. Although the integration of height maps into perception can enable proactive gait planning, robust utilization of this information remains a significant challenge, especially when exteroceptive perception is noisy. To surmount these challenges, we propose a solution based on a teacher-student distillation framework. In this paradigm, an oracle policy accesses noise-free data to establish an optimal reference policy, while the student policy not only imitates the teacher's actions but also simultaneously trains a world model with a variational information bottleneck for sensor denoising and state estimation. Extensive evaluations demonstrate that our approach markedly enhances performance in scenarios characterized by unreliable terrain estimations. Moreover, we conducted rigorous testing in both challenging urban settings and off-road environments, the model successfully traverse 2 km of varied terrain without external intervention.
Authors:Maria Krinner, Elie Aljalbout, Angel Romero, Davide Scaramuzza
Abstract:
Reinforcement learning (RL) is a powerful approach for robot learning. However, model-free RL (MFRL) requires a large number of environment interactions to learn successful control policies. This is due to the noisy RL training updates and the complexity of robotic systems, which typically involve highly non-linear dynamics and noisy sensor signals. In contrast, model-based RL (MBRL) not only trains a policy but simultaneously learns a world model that captures the environment's dynamics and rewards. The world model can either be used for planning, for data collection, or to provide first-order policy gradients for training. Leveraging a world model significantly improves sample efficiency compared to model-free RL. However, training a world model alongside the policy increases the computational complexity, leading to longer training times that are often intractable for complex real-world scenarios. In this work, we propose a new method for accelerating model-based RL using state-space world models. Our approach leverages state-space models (SSMs) to parallelize the training of the dynamics model, which is typically the main computational bottleneck. Additionally, we propose an architecture that provides privileged information to the world model during training, which is particularly relevant for partially observable environments. We evaluate our method in several real-world agile quadrotor flight tasks, involving complex dynamics, for both fully and partially observable environments. We demonstrate a significant speedup, reducing the world model training time by up to 10 times, and the overall MBRL training time by up to 4 times. This benefit comes without compromising performance, as our method achieves similar sample efficiency and task rewards to state-of-the-art MBRL methods.
Authors:Weijie Tu, Weijian Deng, Dylan Campbell, Yu Yao, Jiyang Zheng, Tom Gedeon, Tongliang Liu
Abstract:
As large multimodal models (LMMs) are increasingly deployed across diverse applications, the need for adaptable, real-world model ranking has become paramount. Traditional evaluation methods are largely dataset-centric, relying on fixed, labeled datasets and supervised metrics, which are resource-intensive and may lack generalizability to novel scenarios, highlighting the importance of unsupervised ranking. In this work, we explore unsupervised model ranking for LMMs by leveraging their uncertainty signals, such as softmax probabilities. We evaluate state-of-the-art LMMs (e.g., LLaVA) across visual question answering benchmarks, analyzing how uncertainty-based metrics can reflect model performance. Our findings show that uncertainty scores derived from softmax distributions provide a robust, consistent basis for ranking models across varied tasks. This finding enables the ranking of LMMs on real-world, unlabeled data for visual question answering, providing a practical approach for selecting models across diverse domains without requiring manual annotation.
Authors:Weidong Huang, Zhehan Li, Hangxin Liu, Biao Hou, Yao Su, Jingwen Zhang
Abstract:
Reinforcement learning (RL) is widely used for humanoid control, with on-policy methods such as Proximal Policy Optimization (PPO) enabling robust training via large-scale parallel simulation and, in some cases, zero-shot deployment to real robots. However, the low sample efficiency of on-policy algorithms limits safe adaptation to new environments. Although off-policy RL and model-based RL have shown improved sample efficiency, the gap between large-scale pretraining and efficient finetuning on humanoids still exists. In this paper, we find that off-policy Soft Actor-Critic (SAC), with large-batch update and a high Update-To-Data (UTD) ratio, reliably supports large-scale pretraining of humanoid locomotion policies, achieving zero-shot deployment on real robots. For adaptation, we demonstrate that these SAC-pretrained policies can be finetuned in new environments and out-of-distribution tasks using model-based methods. Data collection in the new environment executes a deterministic policy while stochastic exploration is instead confined to a physics-informed world model. This separation mitigates the risks of random exploration during adaptation while preserving exploratory coverage for improvement. Overall, the approach couples the wall-clock efficiency of large-scale simulation during pretraining with the sample efficiency of model-based learning during fine-tuning.
Authors:Zhiting Mei, Tenny Yin, Ola Shorinwa, Apurva Badithela, Zhonghe Zheng, Joseph Bruno, Madison Bland, Lihan Zha, Asher Hancock, Jaime Fernández Fisac, Philip Dames, Anirudha Majumdar
Abstract:
Video generation models have emerged as high-fidelity models of the physical world, capable of synthesizing high-quality videos capturing fine-grained interactions between agents and their environments conditioned on multi-modal user inputs. Their impressive capabilities address many of the long-standing challenges faced by physics-based simulators, driving broad adoption in many problem domains, e.g., robotics. For example, video models enable photorealistic, physically consistent deformable-body simulation without making prohibitive simplifying assumptions, which is a major bottleneck in physics-based simulation. Moreover, video models can serve as foundation world models that capture the dynamics of the world in a fine-grained and expressive way. They thus overcome the limited expressiveness of language-only abstractions in describing intricate physical interactions. In this survey, we provide a review of video models and their applications as embodied world models in robotics, encompassing cost-effective data generation and action prediction in imitation learning, dynamics and rewards modeling in reinforcement learning, visual planning, and policy evaluation. Further, we highlight important challenges hindering the trustworthy integration of video models in robotics, which include poor instruction following, hallucinations such as violations of physics, and unsafe content generation, in addition to fundamental limitations such as significant data curation, training, and inference costs. We present potential future directions to address these open research challenges to motivate research and ultimately facilitate broader applications, especially in safety-critical settings.
Authors:Wenjiang Xu, Cindy Wang, Rui Fang, Mingkang Zhang, Lusong Li, Jing Xu, Jiayuan Gu, Zecui Zeng, Rui Chen
Abstract:
World models have emerged as a pivotal component in robot manipulation planning, enabling agents to predict future environmental states and reason about the consequences of actions before execution. While video-generation models are increasingly adopted, they often lack rigorous physical grounding, leading to hallucinations and a failure to maintain consistency in long-horizon physical constraints. To address these limitations, we propose Embodied Tree of Thoughts (EToT), a novel Real2Sim2Real planning framework that leverages a physics-based interactive digital twin as an embodied world model. EToT formulates manipulation planning as a tree search expanded through two synergistic mechanisms: (1) Priori Branching, which generates diverse candidate execution paths based on semantic and spatial analysis; and (2) Reflective Branching, which utilizes VLMs to diagnose execution failures within the simulator and iteratively refine the planning tree with corrective actions. By grounding high-level reasoning in a physics simulator, our framework ensures that generated plans adhere to rigid-body dynamics and collision constraints. We validate EToT on a suite of short- and long-horizon manipulation tasks, where it consistently outperforms baselines by effectively predicting physical dynamics and adapting to potential failures. Website at https://embodied-tree-of-thoughts.github.io .
Authors:Zhiting Mei, Tenny Yin, Micah Baker, Ola Shorinwa, Anirudha Majumdar
Abstract:
Recent advances in generative video models have led to significant breakthroughs in high-fidelity video synthesis, specifically in controllable video generation where the generated video is conditioned on text and action inputs, e.g., in instruction-guided video editing and world modeling in robotics. Despite these exceptional capabilities, controllable video models often hallucinate - generating future video frames that are misaligned with physical reality - which raises serious concerns in many tasks such as robot policy evaluation and planning. However, state-of-the-art video models lack the ability to assess and express their confidence, impeding hallucination mitigation. To rigorously address this challenge, we propose C3, an uncertainty quantification (UQ) method for training continuous-scale calibrated controllable video models for dense confidence estimation at the subpatch level, precisely localizing the uncertainty in each generated video frame. Our UQ method introduces three core innovations to empower video models to estimate their uncertainty. First, our method develops a novel framework that trains video models for correctness and calibration via strictly proper scoring rules. Second, we estimate the video model's uncertainty in latent space, avoiding training instability and prohibitive training costs associated with pixel-space approaches. Third, we map the dense latent-space uncertainty to interpretable pixel-level uncertainty in the RGB space for intuitive visualization, providing high-resolution uncertainty heatmaps that identify untrustworthy regions. Through extensive experiments on large-scale robot learning datasets (Bridge and DROID) and real-world evaluations, we demonstrate that our method not only provides calibrated uncertainty estimates within the training distribution, but also enables effective out-of-distribution detection.
Authors:Nicolas Hoischen, Petar Bevanda, Max Beier, Stefan Sosnowski, Boris Houska, Sandra Hirche
Abstract:
Continuous-time stochastic processes underlie many natural and engineered systems. In healthcare, autonomous driving, and industrial control, direct interaction with the environment is often unsafe or impractical, motivating offline reinforcement learning from historical data. However, there is limited statistical understanding of the approximation errors inherent in learning policies from offline datasets. We address this by linking reinforcement learning to the Hamilton-Jacobi-Bellman equation and proposing an operator-theoretic algorithm based on a simple dynamic programming recursion. Specifically, we represent our world model in terms of the infinitesimal generator of controlled diffusion processes learned in a reproducing kernel Hilbert space. By integrating statistical learning methods and operator theory, we establish global convergence of the value function and derive finite-sample guarantees with bounds tied to system properties such as smoothness and stability. Our theoretical and numerical results indicate that operator-based approaches may hold promise in solving offline reinforcement learning using continuous-time optimal control.
Authors:Stefano Ferraro, Akihiro Nakano, Masahiro Suzuki, Yutaka Matsuo
Abstract:
Object-centric world models (OCWM) aim to decompose visual scenes into object-level representations, providing structured abstractions that could improve compositional generalization and data efficiency in reinforcement learning. We hypothesize that explicitly disentangled object-level representations, by localizing task-relevant information, can enhance policy performance across novel feature combinations. To test this hypothesis, we introduce DLPWM, a fully unsupervised, disentangled object-centric world model that learns object-level latents directly from pixels. DLPWM achieves strong reconstruction and prediction performance, including robustness to several out-of-distribution (OOD) visual variations. However, when used for downstream model-based control, policies trained on DLPWM latents underperform compared to DreamerV3. Through latent-trajectory analyses, we identify representation shift during multi-object interactions as a key driver of unstable policy learning. Our results suggest that, although object-centric perception supports robust visual modeling, achieving stable control requires mitigating latent drift.
Authors:Farhad Rezazadeh, Hatim Chergui, Merouane Debbah, Houbing Song, Dusit Niyato, Lingjia Liu
Abstract:
We argue that sixth-generation (6G) intelligence is not fluent token prediction but the capacity to imagine and choose -- to simulate future scenarios, weigh trade-offs, and act with calibrated uncertainty. We reframe open radio access network (O-RAN) near-real-time (Near-RT) control via counterfactual dynamics and a world modeling (WM) paradigm that learns an action-conditioned generative state space. This enables quantitative "what-if" forecasting beyond large language models (LLMs) as the primary modeling primitive. Actions such as physical resource blocks (PRBs) are treated as first-class control inputs in a causal world model, and both aleatoric and epistemic uncertainty are modeled for prediction and what-if analysis. An agentic, model predictive control (MPC)-based cross-entropy method (CEM) planner operates over short horizons, using prior-mean rollouts within data-driven PRB bounds to maximize a deterministic reward. The model couples multi-scale structured state-space mixtures (MS3M) with a compact stochastic latent to form WM-MS3M, summarizing key performance indicators (KPIs) histories and predicting next-step KPIs under hypothetical PRB sequences. On realistic O-RAN traces, WM-MS3M cuts mean absolute error (MAE) by 1.69% versus MS3M with 32% fewer parameters and similar latency, and achieves 35-80% lower root mean squared error (RMSE) than attention/hybrid baselines with 2.3-4.1x faster inference, enabling rare-event simulation and offline policy screening.
Authors:Matthew Kim, Kensuke Nakamura, Andrea Bajcsy
Abstract:
Safe control techniques, such as Hamilton-Jacobi reachability, provide principled methods for synthesizing safety-preserving robot policies but typically assume hand-designed state spaces and full observability. Recent work has relaxed these assumptions via latent-space safe control, where state representations and dynamics are learned jointly through world models that reconstruct future high-dimensional observations (e.g., RGB images) from current observations and actions. This enables safety constraints that are difficult to specify analytically (e.g., spilling) to be framed as classification problems in latent space, allowing controllers to operate directly from raw observations. However, these methods assume that safety-critical features are observable in the learned latent state. We ask: when are latent state spaces sufficient for safe control? To study this, we examine temperature-based failures, comparable to overheating in cooking or manufacturing tasks, and find that RGB-only observations can produce myopic safety behaviors, e.g., avoiding seeing failure states rather than preventing failure itself. To predict such behaviors, we introduce a mutual information-based measure that identifies when observations fail to capture safety-relevant features. Finally, we propose a multimodal-supervised training strategy that shapes the latent state with additional sensory inputs during training, but requires no extra modalities at deployment, and validate our approach in simulation and on hardware with a Franka Research 3 manipulator preventing a pot of wax from overheating.
Authors:Sankalp Agrawal, Junwon Seo, Kensuke Nakamura, Ran Tian, Andrea Bajcsy
Abstract:
Recent works have shown that foundational safe control methods, such as Hamilton-Jacobi (HJ) reachability analysis, can be applied in the latent space of world models. While this enables the synthesis of latent safety filters for hard-to-model vision-based tasks, they assume that the safety constraint is known a priori and remains fixed during deployment, limiting the safety filter's adaptability across scenarios. To address this, we propose constraint-parameterized latent safety filters that can adapt to user-specified safety constraints at runtime. Our key idea is to define safety constraints by conditioning on an encoding of an image that represents a constraint, using a latent-space similarity measure. The notion of similarity to failure is aligned in a principled way through conformal calibration, which controls how closely the system may approach the constraint representation. The parameterized safety filter is trained entirely within the world model's imagination, treating any image seen by the model as a potential test-time constraint, thereby enabling runtime adaptation to arbitrary safety constraints. In simulation and hardware experiments on vision-based control tasks with a Franka manipulator, we show that our method adapts at runtime by conditioning on the encoding of user-specified constraint images, without sacrificing performance. Video results can be found on https://any-safe.github.io
Authors:Kenneth Li, Fernanda Viégas, Martin Wattenberg
Abstract:
We propose a set of precise criteria for saying a neural net learns and uses a "world model." The goal is to give an operational meaning to terms that are often used informally, in order to provide a common language for experimental investigation. We focus specifically on the idea of representing a latent "state space" of the world, leaving modeling the effect of actions to future work. Our definition is based on ideas from the linear probing literature, and formalizes the notion of a computation that factors through a representation of the data generation process. An essential addition to the definition is a set of conditions to check that such a "world model" is not a trivial consequence of the neural net's data or task.
Authors:Maxence Boels, Harry Robertshaw, Thomas C Booth, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
Abstract:
Surgical action planning requires predicting future instrument-verb-target triplets for real-time assistance. While teleoperated robotic surgery provides natural expert demonstrations for imitation learning (IL), reinforcement learning (RL) could potentially discover superior strategies through exploration. We present the first comprehensive comparison of IL versus RL for surgical action planning on CholecT50. Our Dual-task Autoregressive Imitation Learning (DARIL) baseline achieves 34.6% action triplet recognition mAP and 33.6% next frame prediction mAP with smooth planning degradation to 29.2% at 10-second horizons. We evaluated three RL variants: world model-based RL, direct video RL, and inverse RL enhancement. Surprisingly, all RL approaches underperformed DARIL i.e. world model RL dropped to 3.1% mAP at 10s while direct video RL achieved only 15.9%. Our analysis reveals that distribution matching on expert-annotated test sets systematically favors IL over potentially valid RL policies that differ from training demonstrations. This challenges assumptions about RL superiority in sequential decision making and provides crucial insights for surgical AI development.
Authors:Tenny Yin, Zhiting Mei, Tao Sun, Lihan Zha, Emily Zhou, Jeremy Bao, Miyu Yamane, Ola Shorinwa, Anirudha Majumdar
Abstract:
Language-instructed active object localization is a critical challenge for robots, requiring efficient exploration of partially observable environments. However, state-of-the-art approaches either struggle to generalize beyond demonstration datasets (e.g., imitation learning methods) or fail to generate physically grounded actions (e.g., VLMs). To address these limitations, we introduce WoMAP (World Models for Active Perception): a recipe for training open-vocabulary object localization policies that: (i) uses a Gaussian Splatting-based real-to-sim-to-real pipeline for scalable data generation without the need for expert demonstrations, (ii) distills dense rewards signals from open-vocabulary object detectors, and (iii) leverages a latent world model for dynamics and rewards prediction to ground high-level action proposals at inference time. Rigorous simulation and hardware experiments demonstrate WoMAP's superior performance in a broad range of zero-shot object localization tasks, with more than 9x and 2x higher success rates compared to VLM and diffusion policy baselines, respectively. Further, we show that WoMAP achieves strong generalization and sim-to-real transfer on a TidyBot.
Authors:Conor Heins, Toon Van de Maele, Alexander Tschantz, Hampus Linander, Dimitrije Markovic, Tommaso Salvatori, Corrado Pezzato, Ozan Catal, Ran Wei, Magnus Koudahl, Marco Perin, Karl Friston, Tim Verbelen, Christopher Buckley
Abstract:
Current deep reinforcement learning (DRL) approaches achieve state-of-the-art performance in various domains, but struggle with data efficiency compared to human learning, which leverages core priors about objects and their interactions. Active inference offers a principled framework for integrating sensory information with prior knowledge to learn a world model and quantify the uncertainty of its own beliefs and predictions. However, active inference models are usually crafted for a single task with bespoke knowledge, so they lack the domain flexibility typical of DRL approaches. To bridge this gap, we propose a novel architecture that integrates a minimal yet expressive set of core priors about object-centric dynamics and interactions to accelerate learning in low-data regimes. The resulting approach, which we call AXIOM, combines the usual data efficiency and interpretability of Bayesian approaches with the across-task generalization usually associated with DRL. AXIOM represents scenes as compositions of objects, whose dynamics are modeled as piecewise linear trajectories that capture sparse object-object interactions. The structure of the generative model is expanded online by growing and learning mixture models from single events and periodically refined through Bayesian model reduction to induce generalization. AXIOM masters various games within only 10,000 interaction steps, with both a small number of parameters compared to DRL, and without the computational expense of gradient-based optimization.
Authors:Kensuke Nakamura, Lasse Peters, Andrea Bajcsy
Abstract:
Hamilton-Jacobi (HJ) reachability is a rigorous mathematical framework that enables robots to simultaneously detect unsafe states and generate actions that prevent future failures. While in theory, HJ reachability can synthesize safe controllers for nonlinear systems and nonconvex constraints, in practice, it has been limited to hand-engineered collision-avoidance constraints modeled via low-dimensional state-space representations and first-principles dynamics. In this work, our goal is to generalize safe robot controllers to prevent failures that are hard--if not impossible--to write down by hand, but can be intuitively identified from high-dimensional observations: for example, spilling the contents of a bag. We propose Latent Safety Filters, a latent-space generalization of HJ reachability that tractably operates directly on raw observation data (e.g., RGB images) to automatically compute safety-preserving actions without explicit recovery demonstrations by performing safety analysis in the latent embedding space of a generative world model. Our method leverages diverse robot observation-action data of varying quality (including successes, random exploration, and unsafe demonstrations) to learn a world model. Constraint specification is then transformed into a classification problem in the latent space of the learned world model. In simulation and hardware experiments, we compute an approximation of Latent Safety Filters to safeguard arbitrary policies (from imitation- learned policies to direct teleoperation) from complex safety hazards, like preventing a Franka Research 3 manipulator from spilling the contents of a bag or toppling cluttered objects.
Authors:Kaiqu Liang, Haimin Hu, Ryan Liu, Thomas L. Griffiths, Jaime Fernández Fisac
Abstract:
While Reinforcement Learning from Human Feedback (RLHF) has shown promise in aligning generative AI, we present empirical evidence that it can also cause severe, systematic misalignment. We hypothesize that this stems from evaluator feedback depending on downstream outcome predictions (foresight) that can be influenced by the AI's output, inducing Goodhart's law dynamics. We present a theoretical analysis showing that conditioning evaluator feedback on downstream observations (hindsight) inhibits this effect by decoupling the alignment signal from potentially compromised predictions--crucially, the result holds even if the observed outcomes are sampled from the AI's own world model. Building on this insight, we introduce Reinforcement Learning from Hindsight Simulation (RLHS), which presents plausible simulated outcomes to evaluators before eliciting feedback. We validate RLHS across three consultancy settings--marketplace interactions, restaurant recommendations, and online course advising--using both online (PPO) and offline (DPO) fine-tuning methods, and show that it substantially improves alignment over RLHF in experiments and human evaluations. We perform post-hoc benchmark evaluations on TruthfulQA, HaluEval, and TrustLLM, finding that even after single-task fine-tuning, RLHF misalignment persists, whereas RLHS consistently outperforms baselines and demonstrates robust alignment generalization. The project webpage and code are available at https://rl-hindsight.github.io.
Authors:Yijun Liu, Wu Liu, Xiaoyan Gu, Yong Rui, Xiaodong He, Yongdong Zhang
Abstract:
The believable simulation of multi-user behavior is crucial for understanding complex social systems. Recently, large language models (LLMs)-based AI agents have made significant progress, enabling them to achieve human-like intelligence across various tasks. However, real human societies are often dynamic and complex, involving numerous individuals engaging in multimodal interactions. In this paper, taking e-commerce scenarios as an example, we present LMAgent, a very large-scale and multimodal agents society based on multimodal LLMs. In LMAgent, besides freely chatting with friends, the agents can autonomously browse, purchase, and review products, even perform live streaming e-commerce. To simulate this complex system, we introduce a self-consistency prompting mechanism to augment agents' multimodal capabilities, resulting in significantly improved decision-making performance over the existing multi-agent system. Moreover, we propose a fast memory mechanism combined with the small-world model to enhance system efficiency, which supports more than 10,000 agent simulations in a society. Experiments on agents' behavior show that these agents achieve comparable performance to humans in behavioral indicators. Furthermore, compared with the existing LLMs-based multi-agent system, more different and valuable phenomena are exhibited, such as herd behavior, which demonstrates the potential of LMAgent in credible large-scale social behavior simulations.
Authors:Vardhan Dongre, Xiaocheng Yang, Emre Can Acikgoz, Suvodip Dey, Gokhan Tur, Dilek Hakkani-Tür
Abstract:
Large language model (LLM)-based agents are increasingly employed to interact with external environments (e.g., games, APIs, world models) to solve user-provided tasks. However, current frameworks often lack the ability to collaborate effectively with users in fully conversational settings. Conversations are essential for aligning on task details, achieving user-defined goals, and satisfying preferences. While existing agents address ambiguity through clarification questions, they underutilize the broader potential of an LLM's conversational capabilities. In this work, we introduce ReSpAct, an LLM-based agent designed to seamlessly integrate reasoning, decision-making, and dynamic dialogue for task-solving. Expanding on reasoning-first approaches like ReAct, ReSpAct employs active, free-flowing dialogues to interpret instructions, clarify goals, provide status updates, resolve subtask failures, and refine plans based on user inputs without any explicit dialogue schema. By alternating between task-solving actions and interactive conversations, ReSpAct demonstrates improved performance across diverse environments. We evaluate ReSpAct in user-interactive settings, including task-oriented dialogue systems (MultiWOZ) and decision-making tasks (ALFWorld, WebShop). ReSpAct outperforms ReAct with absolute success rate improvements of 6% and 4% in ALFWorld and WebShop, respectively, and achieves a 5.5% gain in Inform and a 3% gain in Success scores in MultiWOZ. These results highlight the value of integrating dynamic user-agent collaboration for more effective task resolution.
Authors:Junjun Hu, Jintao Chen, Haochen Bai, Minghua Luo, Shichao Xie, Ziyi Chen, Fei Liu, Zedong Chu, Xinda Xue, Botao Ren, Xiaolong Wu, Mu Xu, Shanghang Zhang
Abstract:
Embodied navigation in open, dynamic environments demands accurate foresight of how the world will evolve and how actions will unfold over time. We propose AstraNav-World, an end-to-end world model that jointly reasons about future visual states and action sequences within a unified probabilistic framework. Our framework integrates a diffusion-based video generator with a vision-language policy, enabling synchronized rollouts where predicted scenes and planned actions are updated simultaneously. Training optimizes two complementary objectives: generating action-conditioned multi-step visual predictions and deriving trajectories conditioned on those predicted visuals. This bidirectional constraint makes visual predictions executable and keeps decisions grounded in physically consistent, task-relevant futures, mitigating cumulative errors common in decoupled "envision-then-plan" pipelines. Experiments across diverse embodied navigation benchmarks show improved trajectory accuracy and higher success rates. Ablations confirm the necessity of tight vision-action coupling and unified training, with either branch removal degrading both prediction quality and policy reliability. In real-world testing, AstraNav-World demonstrated exceptional zero-shot capabilities, adapting to previously unseen scenarios without any real-world fine-tuning. These results suggest that AstraNav-World captures transferable spatial understanding and planning-relevant navigation dynamics, rather than merely overfitting to simulation-specific data distribution. Overall, by unifying foresight vision and control within a single generative model, we move closer to reliable, interpretable, and general-purpose embodied agents that operate robustly in open-ended real-world settings.
Authors:Fei Liu, Shichao Xie, Minghua Luo, Zedong Chu, Junjun Hu, Xiaolong Wu, Mu Xu
Abstract:
Embodied navigation for long-horizon tasks, guided by complex natural language instructions, remains a formidable challenge in artificial intelligence. Existing agents often struggle with robust long-term planning about unseen environments, leading to high failure rates. To address these limitations, we introduce NavForesee, a novel Vision-Language Model (VLM) that unifies high-level language planning and predictive world model imagination within a single, unified framework. Our approach empowers a single VLM to concurrently perform planning and predictive foresight. Conditioned on the full instruction and historical observations, the model is trained to understand the navigation instructions by decomposing the task, tracking its progress, and formulating the subsequent sub-goal. Simultaneously, it functions as a generative world model, providing crucial foresight by predicting short-term environmental dynamics and long-term navigation milestones. The VLM's structured plan guides its targeted prediction, while the imagined future provides rich context to inform the navigation actions, creating a powerful internal feedback loop of perception-planning/prediction-action. We demonstrate through extensive experiments on the R2R-CE and RxR-CE benchmark that NavForesee achieves highly competitive performance in complex scenarios. Our work highlights the immense potential of fusing explicit language planning with implicit spatiotemporal prediction, paving the way for more intelligent and capable embodied agents.
Authors:Inferix Team, Tianyu Feng, Yizeng Han, Jiahao He, Yuanyu He, Xi Lin, Teng Liu, Hanfeng Lu, Jiasheng Tang, Wei Wang, Zhiyuan Wang, Jichao Wu, Mingyang Yang, Yinghao Yu, Zeyu Zhang, Bohan Zhuang
Abstract:
World models serve as core simulators for fields such as agentic AI, embodied AI, and gaming, capable of generating long, physically realistic, and interactive high-quality videos. Moreover, scaling these models could unlock emergent capabilities in visual perception, understanding, and reasoning, paving the way for a new paradigm that moves beyond current LLM-centric vision foundation models. A key breakthrough empowering them is the semi-autoregressive (block-diffusion) decoding paradigm, which merges the strengths of diffusion and autoregressive methods by generating video tokens in block-applying diffusion within each block while conditioning on previous ones, resulting in more coherent and stable video sequences. Crucially, it overcomes limitations of standard video diffusion by reintroducing LLM-style KV Cache management, enabling efficient, variable-length, and high-quality generation. Therefore, Inferix is specifically designed as a next-generation inference engine to enable immersive world synthesis through optimized semi-autoregressive decoding processes. This dedicated focus on world simulation distinctly sets it apart from systems engineered for high-concurrency scenarios (like vLLM or SGLang) and from classic video diffusion models (such as xDiTs). Inferix further enhances its offering with interactive video streaming and profiling, enabling real-time interaction and realistic simulation to accurately model world dynamics. Additionally, it supports efficient benchmarking through seamless integration of LV-Bench, a new fine-grained evaluation benchmark tailored for minute-long video generation scenarios. We hope the community will work together to advance Inferix and foster world model exploration.
Authors:Leela Krishna, Mengyang Zhao, Saicharithreddy Pasula, Harshit Rajgarhia, Abhishek Mukherji
Abstract:
Training robust world models requires large-scale, precisely labeled multimodal datasets, a process historically bottlenecked by slow and expensive manual annotation. We present a production-tested GAZE pipeline that automates the conversion of raw, long-form video into rich, task-ready supervision for world-model training. Our system (i) normalizes proprietary 360-degree formats into standard views and shards them for parallel processing; (ii) applies a suite of AI models (scene understanding, object tracking, audio transcription, PII/NSFW/minor detection) for dense, multimodal pre-annotation; and (iii) consolidates signals into a structured output specification for rapid human validation. The GAZE workflow demonstrably yields efficiency gains (~19 minutes saved per review hour) and reduces human review volume by >80% through conservative auto-skipping of low-salience segments. By increasing label density and consistency while integrating privacy safeguards and chain-of-custody metadata, our method generates high-fidelity, privacy-aware datasets directly consumable for learning cross-modal dynamics and action-conditioned prediction. We detail our orchestration, model choices, and data dictionary to provide a scalable blueprint for generating high-quality world model training data without sacrificing throughput or governance.
Authors:Qiyue Gao, Xinyu Pi, Kevin Liu, Junrong Chen, Ruolan Yang, Xinqi Huang, Xinyu Fang, Lu Sun, Gautham Kishore, Bo Ai, Stone Tao, Mengyang Liu, Jiaxi Yang, Chao-Jung Lai, Chuanyang Jin, Jiannan Xiang, Benhao Huang, Zeming Chen, David Danks, Hao Su, Tianmin Shu, Ziqiao Ma, Lianhui Qin, Zhiting Hu
Abstract:
Internal world models (WMs) enable agents to understand the world's state and predict transitions, serving as the basis for advanced deliberative reasoning. Recent large Vision-Language Models (VLMs), such as OpenAI o3, GPT-4o and Gemini, exhibit potential as general-purpose WMs. While the latest studies have evaluated and shown limitations in specific capabilities such as visual understanding, a systematic evaluation of VLMs' fundamental WM abilities remains absent. Drawing on comparative psychology and cognitive science, we propose a two-stage framework that assesses Perception (visual, spatial, temporal, quantitative, and motion) and Prediction (mechanistic simulation, transitive inference, compositional inference) to provide an atomic evaluation of VLMs as WMs. Guided by this framework, we introduce WM-ABench, a large-scale benchmark comprising 23 fine-grained evaluation dimensions across 6 diverse simulated environments with controlled counterfactual simulations. Through 660 experiments on 15 latest commercial and open-source VLMs, we find that these models exhibit striking limitations in basic world modeling abilities. For instance, almost all models perform at near-random accuracy when distinguishing motion trajectories. Additionally, they lack disentangled understanding -- e.g., some models tend to believe blue objects move faster than green ones. More rich results and analyses reveal significant gaps between VLMs and human-level world modeling.
Authors:Chen Shi, Shaoshuai Shi, Kehua Sheng, Bo Zhang, Li Jiang
Abstract:
Data-driven learning has advanced autonomous driving, yet task-specific models struggle with out-of-distribution scenarios due to their narrow optimization objectives and reliance on costly annotated data. We present DriveX, a self-supervised world model that learns generalizable scene dynamics and holistic representations (geometric, semantic, and motion) from large-scale driving videos. DriveX introduces Omni Scene Modeling (OSM), a module that unifies multimodal supervision-3D point cloud forecasting, 2D semantic representation, and image generation-to capture comprehensive scene evolution. To simplify learning complex dynamics, we propose a decoupled latent world modeling strategy that separates world representation learning from future state decoding, augmented by dynamic-aware ray sampling to enhance motion modeling. For downstream adaptation, we design Future Spatial Attention (FSA), a unified paradigm that dynamically aggregates spatiotemporal features from DriveX's predictions to enhance task-specific inference. Extensive experiments demonstrate DriveX's effectiveness: it achieves significant improvements in 3D future point cloud prediction over prior work, while attaining state-of-the-art results on diverse tasks including occupancy prediction, flow estimation, and end-to-end driving. These results validate DriveX's capability as a general-purpose world model, paving the way for robust and unified autonomous driving frameworks.
Authors:Yun-Shiuan Chuang, Sameer Narendran, Nikunj Harlalka, Alexander Cheung, Sizhe Gao, Siddharth Suresh, Junjie Hu, Timothy T. Rogers
Abstract:
Guesstimation -- the task of making approximate quantitative estimates about objects or events -- is a common real-world skill, yet remains underexplored in large language model (LLM) research. We introduce three guesstimation datasets: MARBLES, FUTURE, and ELECPRED, spanning physical estimation (e.g., how many marbles fit in a cup) to abstract predictions (e.g., the 2024 U.S. presidential election). Inspired by the social science concept of Wisdom of Crowds (WOC)- where the median of multiple estimates improves accuracy-we propose WOC decoding for LLMs. We replicate WOC effects in human participants and find that LLMs exhibit similar benefits: median aggregation across sampled responses consistently improves accuracy over greedy decoding, self-consistency decoding, and mean decoding. This suggests that LLMs encode a world model that supports approximate reasoning. Our results position guesstimation as a useful probe of LLM world knowledge and highlight WOC decoding as a strategy for enhancing LLM guesstimation performance on real-world tasks.
Authors:Mathis Immertreu, Achim Schilling, Andreas Maier, Patrick Krauss
Abstract:
This study explores the potential for artificial agents to develop core consciousness, as proposed by Antonio Damasio's theory of consciousness. According to Damasio, the emergence of core consciousness relies on the integration of a self model, informed by representations of emotions and feelings, and a world model. We hypothesize that an artificial agent, trained via reinforcement learning (RL) in a virtual environment, can develop preliminary forms of these models as a byproduct of its primary task. The agent's main objective is to learn to play a video game and explore the environment. To evaluate the emergence of world and self models, we employ probes-feedforward classifiers that use the activations of the trained agent's neural networks to predict the spatial positions of the agent itself. Our results demonstrate that the agent can form rudimentary world and self models, suggesting a pathway toward developing machine consciousness. This research provides foundational insights into the capabilities of artificial agents in mirroring aspects of human consciousness, with implications for future advancements in artificial intelligence.
Authors:Wilson Yan, Volodymyr Mnih, Aleksandra Faust, Matei Zaharia, Pieter Abbeel, Hao Liu
Abstract:
Efficient video tokenization remains a key bottleneck in learning general purpose vision models that are capable of processing long video sequences. Prevailing approaches are restricted to encoding videos to a fixed number of tokens, where too few tokens will result in overly lossy encodings, and too many tokens will result in prohibitively long sequence lengths. In this work, we introduce ElasticTok, a method that conditions on prior frames to adaptively encode a frame into a variable number of tokens. To enable this in a computationally scalable way, we propose a masking technique that drops a random number of tokens at the end of each frames's token encoding. During inference, ElasticTok can dynamically allocate tokens when needed -- more complex data can leverage more tokens, while simpler data only needs a few tokens. Our empirical evaluations on images and video demonstrate the effectiveness of our approach in efficient token usage, paving the way for future development of more powerful multimodal models, world models, and agents.
Authors:Irsyad Adam, Zekai Chen, David Laprade, Shaun Porwal, David Laub, Erik Reinertsen, Arda Pekis, Kevin Brown
Abstract:
Large language models (LLMs) trained with next-word-prediction have achieved success as clinical foundation models. Representations from these language backbones yield strong linear probe performance across biomedical tasks, suggesting that patient semantics emerge from next-token prediction at scale. However, this paradigm treats patients as a document to be summarized rather than a dynamical system to be simulated; a patient's trajectory emerges from their state evolving under interventions and time, requiring models that simulate dynamics rather than predict tokens. To address this, we introduce SMB-Structure, a world model for structured EHR that grounds a joint-embedding prediction architecture (JEPA) with next-token prediction (SFT). SFT grounds our model to reconstruct future patient states in token space, while JEPA predicts those futures in latent space from the initial patient representation alone, forcing trajectory dynamics to be encoded before the next state is observed. We validate across two large-scale cohorts: Memorial Sloan Kettering (23,319 oncology patients; 323,000+ patient-years) and INSPECT (19,402 pulmonary embolism patients). Using a linear probe evaluated at multiple points along the disease trajectory, we demonstrate that our training paradigm learns embeddings that capture disease dynamics not recoverable by autoregressive baselines, enabling SMB-Structure to achieve competitive performance on complex tasks characterized by high patient heterogeneity. Model weights are available at https://huggingface.co/standardmodelbio/SMB-v1-1.7B-Structure.
Authors:Wangtian Shen, Ziyang Meng, Jinming Ma, Mingliang Zhou, Diyun Xiang
Abstract:
Navigation is a fundamental capability for mobile robots. While the current trend is to use learning-based approaches to replace traditional geometry-based methods, existing end-to-end learning-based policies often struggle with 3D spatial reasoning and lack a comprehensive understanding of physical world dynamics. Integrating world models-which predict future observations conditioned on given actions-with iterative optimization planning offers a promising solution due to their capacity for imagination and flexibility. However, current navigation world models, typically built on pure transformer architectures, often rely on multi-step diffusion processes and autoregressive frame-by-frame generation. These mechanisms result in prohibitive computational latency, rendering real-time deployment impossible. To address this bottleneck, we propose a lightweight navigation world model that adopts a one-step generation paradigm and a 3D U-Net backbone equipped with efficient spatial-temporal attention. This design drastically reduces inference latency, enabling high-frequency control while achieving superior predictive performance. We also integrate this model into an optimization-based planning framework utilizing anchor-based initialization to handle multi-modal goal navigation tasks. Extensive closed-loop experiments in both simulation and real-world environments demonstrate our system's superior efficiency and robustness compared to state-of-the-art baselines.
Authors:Yang Zhou, Hao Shao, Letian Wang, Zhuofan Zong, Hongsheng Li, Steven L. Waslander
Abstract:
Video generation models, as one form of world models, have emerged as one of the most exciting frontiers in AI, promising agents the ability to imagine the future by modeling the temporal evolution of complex scenes. In autonomous driving, this vision gives rise to driving world models: generative simulators that imagine ego and agent futures, enabling scalable simulation, safe testing of corner cases, and rich synthetic data generation. Yet, despite fast-growing research activity, the field lacks a rigorous benchmark to measure progress and guide priorities. Existing evaluations remain limited: generic video metrics overlook safety-critical imaging factors; trajectory plausibility is rarely quantified; temporal and agent-level consistency is neglected; and controllability with respect to ego conditioning is ignored. Moreover, current datasets fail to cover the diversity of conditions required for real-world deployment. To address these gaps, we present DrivingGen, the first comprehensive benchmark for generative driving world models. DrivingGen combines a diverse evaluation dataset curated from both driving datasets and internet-scale video sources, spanning varied weather, time of day, geographic regions, and complex maneuvers, with a suite of new metrics that jointly assess visual realism, trajectory plausibility, temporal coherence, and controllability. Benchmarking 14 state-of-the-art models reveals clear trade-offs: general models look better but break physics, while driving-specific ones capture motion realistically but lag in visual quality. DrivingGen offers a unified evaluation framework to foster reliable, controllable, and deployable driving world models, enabling scalable simulation, planning, and data-driven decision-making.
Authors:Seungjae Lee, Yoonkyo Jung, Inkook Chun, Yao-Chih Lee, Zikui Cai, Hongjia Huang, Aayush Talreja, Tan Dat Dao, Yongyuan Liang, Jia-Bin Huang, Furong Huang
Abstract:
Learning new robot tasks on new platforms and in new scenes from only a handful of demonstrations remains challenging. While videos of other embodiments - humans and different robots - are abundant, differences in embodiment, camera, and environment hinder their direct use. We address the small-data problem by introducing a unifying, symbolic representation - a compact 3D "trace-space" of scene-level trajectories - that enables learning from cross-embodiment, cross-environment, and cross-task videos. We present TraceGen, a world model that predicts future motion in trace-space rather than pixel space, abstracting away appearance while retaining the geometric structure needed for manipulation. To train TraceGen at scale, we develop TraceForge, a data pipeline that transforms heterogeneous human and robot videos into consistent 3D traces, yielding a corpus of 123K videos and 1.8M observation-trace-language triplets. Pretraining on this corpus produces a transferable 3D motion prior that adapts efficiently: with just five target robot videos, TraceGen attains 80% success across four tasks while offering 50-600x faster inference than state-of-the-art video-based world models. In the more challenging case where only five uncalibrated human demonstration videos captured on a handheld phone are available, it still reaches 67.5% success on a real robot, highlighting TraceGen's ability to adapt across embodiments without relying on object detectors or heavy pixel-space generation.
Authors:Nicklas Hansen, Hao Su, Xiaolong Wang
Abstract:
General-purpose control demands agents that act across many tasks and embodiments, yet research on reinforcement learning (RL) for continuous control remains dominated by single-task or offline regimes, reinforcing a view that online RL does not scale. Inspired by the foundation model recipe (large-scale pretraining followed by light RL) we ask whether a single agent can be trained on hundreds of tasks with online interaction. To accelerate research in this direction, we introduce a new benchmark with 200 diverse tasks spanning many domains and embodiments, each with language instructions, demonstrations, and optionally image observations. We then present \emph{Newt}, a language-conditioned multitask world model that is first pretrained on demonstrations to acquire task-aware representations and action priors, and then jointly optimized with online interaction across all tasks. Experiments show that Newt yields better multitask performance and data-efficiency than a set of strong baselines, exhibits strong open-loop control, and enables rapid adaptation to unseen tasks. We release our environments, demonstrations, code for training and evaluation, as well as 200+ checkpoints.
Authors:Sejin Kim, Hayan Choi, Seokki Lee, Sundong Kim
Abstract:
We present ARCTraj, a dataset and methodological framework for modeling human reasoning through complex visual tasks in the Abstraction and Reasoning Corpus (ARC). While ARC has inspired extensive research on abstract reasoning, most existing approaches rely on static input--output supervision, which limits insight into how reasoning unfolds over time. ARCTraj addresses this gap by recording temporally ordered, object-level actions that capture how humans iteratively transform inputs into outputs, revealing intermediate reasoning steps that conventional datasets overlook. Collected via the O2ARC web interface, it contains around 10,000 trajectories annotated with task identifiers, timestamps, and success labels across 400 training tasks from the ARC-AGI-1 benchmark. It further defines a unified reasoning pipeline encompassing data collection, action abstraction, Markov decision process (MDP) formulation, and downstream learning, enabling integration with reinforcement learning, generative modeling, and sequence modeling methods such as PPO, World Models, GFlowNets, Diffusion agents, and Decision Transformers. Analyses of spatial selection, color attribution, and strategic convergence highlight the structure and diversity of human reasoning. Together, these contributions position ARCTraj as a structured and interpretable foundation for studying human-like reasoning, advancing explainability, alignment, and generalizable intelligence.
Authors:Weizheng Wang, Obi Ike, Soyun Choi, Sungeun Hong, Byung-Cheol Min
Abstract:
Social robot navigation increasingly relies on large language models for reasoning, path planning, and enabling movement in dynamic human spaces. However, relying solely on LLMs for planning often leads to unpredictable and unsafe behaviors, especially in dynamic human spaces, due to limited physical grounding and weak logical consistency. In this work, we introduce NaviWM, a socially-aware robot Navigation World Model that augments LLM reasoning with a structured world model and a logic-driven chain-of-thought process. NaviWM consists of two main components: (1) a spatial-temporal world model that captures the positions, velocities, and activities of agents in the environment, and (2) a deductive reasoning module that guides LLMs through a multi-step, logic-based inference process. This integration enables the robot to generate navigation decisions that are both socially compliant and physically safe, under well-defined constraints such as personal space, collision avoidance, and timing. Unlike previous methods based on prompting or fine-tuning, NaviWM encodes social norms as first-order logic, enabling interpretable and verifiable reasoning. Experiments show that NaviWM improves success rates and reduces social violations, particularly in crowded environments. These results demonstrate the benefit of combining formal reasoning with LLMs for robust social navigation. Additional experimental details and demo videos for this work can be found at: https://sites.google.com/view/NaviWM.
Authors:Meituan LongCat Team, Xunliang Cai, Qilong Huang, Zhuoliang Kang, Hongyu Li, Shijun Liang, Liya Ma, Siyu Ren, Xiaoming Wei, Rixu Xie, Tong Zhang
Abstract:
Video generation is a critical pathway toward world models, with efficient long video inference as a key capability. Toward this end, we introduce LongCat-Video, a foundational video generation model with 13.6B parameters, delivering strong performance across multiple video generation tasks. It particularly excels in efficient and high-quality long video generation, representing our first step toward world models. Key features include: Unified architecture for multiple tasks: Built on the Diffusion Transformer (DiT) framework, LongCat-Video supports Text-to-Video, Image-to-Video, and Video-Continuation tasks with a single model; Long video generation: Pretraining on Video-Continuation tasks enables LongCat-Video to maintain high quality and temporal coherence in the generation of minutes-long videos; Efficient inference: LongCat-Video generates 720p, 30fps videos within minutes by employing a coarse-to-fine generation strategy along both the temporal and spatial axes. Block Sparse Attention further enhances efficiency, particularly at high resolutions; Strong performance with multi-reward RLHF: Multi-reward RLHF training enables LongCat-Video to achieve performance on par with the latest closed-source and leading open-source models. Code and model weights are publicly available to accelerate progress in the field.
Authors:Archana Warrier, Dat Nguyen, Michelangelo Naim, Moksh Jain, Yichao Liang, Karen Schroeder, Cambridge Yang, Joshua B. Tenenbaum, Sebastian Vollmer, Kevin Ellis, Zenna Tavares
Abstract:
Model-learning agents should gather information to learn world models that support many downstream tasks and inferences, such as predicting unobserved states, estimating near- and far-term consequences of actions, planning action sequences, and detecting changes in dynamics. Current methods for learning and evaluating world models diverge from this goal: training and evaluation are anchored to next-frame prediction, and success is scored by reward maximization in the same environment. We propose WorldTest, a protocol to evaluate model-learning agents that separates reward-free interaction from a scored test phase in a different but related environment. WorldTest is open-ended$\unicode{x2014}$models should support many different tasks unknown ahead of time$\unicode{x2014}$and agnostic to model representation, allowing comparison across approaches. We instantiated WorldTest with AutumnBench, a suite of 43 interactive grid-world environments and 129 tasks across three families: masked-frame prediction, planning, and predicting changes to the causal dynamics. We compared 517 human participants and three frontier models on AutumnBench. We found that humans outperform the models, and scaling compute improves performance only in some environments but not others. WorldTest provides a novel template$\unicode{x2014}$reward-free exploration, derived tests, and behavior-based scoring$\unicode{x2014}$to evaluate what agents learn about environment dynamics, and AutumnBench exposes significant headroom in world-model learning.
Authors:Yixiang Dai, Fan Jiang, Chiyu Wang, Mu Xu, Yonggang Qi
Abstract:
High-quality 3D world models are pivotal for embodied intelligence and Artificial General Intelligence (AGI), underpinning applications such as AR/VR content creation and robotic navigation. Despite the established strong imaginative priors, current video foundation models lack explicit 3D grounding capabilities, thus being limited in both spatial consistency and their utility for downstream 3D reasoning tasks. In this work, we present FantasyWorld, a geometry-enhanced framework that augments frozen video foundation models with a trainable geometric branch, enabling joint modeling of video latents and an implicit 3D field in a single forward pass. Our approach introduces cross-branch supervision, where geometry cues guide video generation and video priors regularize 3D prediction, thus yielding consistent and generalizable 3D-aware video representations. Notably, the resulting latents from the geometric branch can potentially serve as versatile representations for downstream 3D tasks such as novel view synthesis and navigation, without requiring per-scene optimization or fine-tuning. Extensive experiments show that FantasyWorld effectively bridges video imagination and 3D perception, outperforming recent geometry-consistent baselines in multi-view coherence and style consistency. Ablation studies further confirm that these gains stem from the unified backbone and cross-branch information exchange.
Authors:Ke He, Le He, Lisheng Fan, Xianfu Lei, Thang X. Vu, George K. Karagiannidis, Symeon Chatzinotas
Abstract:
Future AI-native wireless networks are moving from reactive optimization to agentic decision-making that can sense, predict, and plan under fast-varying channels. This calls for wireless world models that can predict and roll out channel dynamics, for which multi-step channel state information (CSI) prediction offers a practical short-horizon look-ahead. Recent advances in foundation sequence models further motivate large language models (LLMs) as general-purpose dynamics learners when suitably adapted to non-text time-series signals. However, bridging CSI to LLMs is non-trivial because an effective adapter must expose informative spectral and temporal evolution patterns, while prior designs provide limited inductive bias to capture such channel structures. To this end, we propose SCA-LLM, a spectral-attentive LLM-based wireless world modeling framework that bridges CSI to LLMs via a spectral-channel attention (SCA) adapter. Specifically, the SCA adapter performs multi-spectral representation learning to extract informative channel features and align CSI with the LLM's sequence modeling capability, enabling parameter-efficient adaptation while keeping the LLM backbone largely frozen. Extensive simulations show that SCA-LLM achieves state-of-the-art prediction performance and strong zero-shot generalization, yielding up to -2.4 dB normalized mean squared error (NMSE) advantage over the previous LLM based method. Our ablation studies further confirm the effectiveness of the proposed SCA adapter in mitigating domain mismatch.
Authors:Mingkai Deng, Jinyu Hou, Yilin Shen, Hongxia Jin, Graham Neubig, Zhiting Hu, Eric Xing
Abstract:
AI agents built on large language models (LLMs) hold enormous promise, but current practice focuses on a one-task-one-agent approach, which not only falls short of scalability and generality, but also suffers from the fundamental limitations of autoregressive LLMs. On the other hand, humans are general agents who reason by mentally simulating the outcomes of their actions and plans. Moving towards a more general and powerful AI agent, we introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning. Based on a principled formulation of optimal agent in any environment, \modelname overcomes the limitations of autoregressive reasoning by introducing a world model for planning via simulation. The generalized world model is implemented using LLM, which can flexibly plan in a wide range of environments using the concept-rich latent space of natural language. Experiments on difficult web browsing tasks show that \modelname improves the success of flight search from 0\% to 32.2\%. World-model-based planning, in particular, shows consistent advantage of up to 124\% over autoregressive planning, demonstrating the advantage of world model simulation as a reasoning paradigm. We are excited about the possibility for training a single, general agent model based on LLMs that can act superintelligently in all environments. To start, we make SimuRA, a web-browsing agent built on \modelname with pretrained LLMs, available as a research demo for public testing.
Authors:Mehdi Bennis, Sumudu Samarakoon, Tamara Alshammari, Chathuranga Weeraddana, Zhoujun Tian, Chaouki Ben Issaid
Abstract:
Just like power, water, and transportation systems, wireless networks are a crucial societal infrastructure. As natural and human-induced disruptions continue to grow, wireless networks must be resilient. This requires them to withstand and recover from unexpected adverse conditions, shocks, unmodeled disturbances and cascading failures. Unlike robustness and reliability, resilience is based on the understanding that disruptions will inevitably happen. Resilience, as elasticity, focuses on the ability to bounce back to favorable states, while resilience as plasticity involves agents and networks that can flexibly expand their states and hypotheses through real-time adaptation and reconfiguration. This situational awareness and active preparedness, adapting world models and counterfactually reasoning about potential system failures and the best responses, is a core aspect of resilience. This article will first disambiguate resilience from reliability and robustness, before delving into key mathematical foundations of resilience grounded in abstraction, compositionality and emergence. Subsequently, we focus our attention on a plethora of techniques and methodologies pertaining to the unique characteristics of resilience, as well as their applications through a comprehensive set of use cases. Ultimately, the goal of this paper is to establish a unified foundation for understanding, modeling, and engineering resilience in wireless communication systems, while laying a roadmap for the next-generation of resilient-native and intelligent wireless systems.
Authors:Pascale Fung, Yoram Bachrach, Asli Celikyilmaz, Kamalika Chaudhuri, Delong Chen, Willy Chung, Emmanuel Dupoux, Hongyu Gong, Hervé Jégou, Alessandro Lazaric, Arjun Majumdar, Andrea Madotto, Franziska Meier, Florian Metze, Louis-Philippe Morency, Théo Moutakanni, Juan Pino, Basile Terver, Joseph Tighe, Paden Tomasello, Jitendra Malik
Abstract:
This paper describes our research on AI agents embodied in visual, virtual or physical forms, enabling them to interact with both users and their environments. These agents, which include virtual avatars, wearable devices, and robots, are designed to perceive, learn and act within their surroundings, which makes them more similar to how humans learn and interact with the environments as compared to disembodied agents. We propose that the development of world models is central to reasoning and planning of embodied AI agents, allowing these agents to understand and predict their environment, to understand user intentions and social contexts, thereby enhancing their ability to perform complex tasks autonomously. World modeling encompasses the integration of multimodal perception, planning through reasoning for action and control, and memory to create a comprehensive understanding of the physical world. Beyond the physical world, we also propose to learn the mental world model of users to enable better human-agent collaboration.
Authors:Hang Wang, Dechen Gao, Junshan Zhang
Abstract:
We study multi-agent reinforcement learning (MARL) for tasks in complex high-dimensional environments, such as autonomous driving. MARL is known to suffer from the \textit{partial observability} and \textit{non-stationarity} issues. To tackle these challenges, information sharing is often employed, which however faces major hurdles in practice, including overwhelming communication overhead and scalability concerns. By making use of generative AI embodied in world model together with its latent representation, we develop {\it CALL}, \underline{C}ommunic\underline{a}tive Wor\underline{l}d Mode\underline{l}, for MARL, where 1) each agent first learns its world model that encodes its state and intention into low-dimensional latent representation with smaller memory footprint, which can be shared with other agents of interest via lightweight communication; and 2) each agent carries out ego-centric learning while exploiting lightweight information sharing to enrich her world model, and then exploits its generalization capacity to improve prediction for better planning. We characterize the gain on the prediction accuracy from the information sharing and its impact on performance gap. Extensive experiments are carried out on the challenging local trajectory planning tasks in the CARLA platform to demonstrate the performance gains of using \textit{CALL}.
Authors:Aidan Scannell, Mohammadreza Nakhaei, Kalle Kujanpää, Yi Zhao, Kevin Sebastian Luck, Arno Solin, Joni Pajarinen
Abstract:
In reinforcement learning (RL), world models serve as internal simulators, enabling agents to predict environment dynamics and future outcomes in order to make informed decisions. While previous approaches leveraging discrete latent spaces, such as DreamerV3, have demonstrated strong performance in discrete action settings and visual control tasks, their comparative performance in state-based continuous control remains underexplored. In contrast, methods with continuous latent spaces, such as TD-MPC2, have shown notable success in state-based continuous control benchmarks. In this paper, we demonstrate that modeling discrete latent states has benefits over continuous latent states and that discrete codebook encodings are more effective representations for continuous control, compared to alternative encodings, such as one-hot and label-based encodings. Based on these insights, we introduce DCWM: Discrete Codebook World Model, a self-supervised world model with a discrete and stochastic latent space, where latent states are codes from a codebook. We combine DCWM with decision-time planning to get our model-based RL algorithm, named DC-MPC: Discrete Codebook Model Predictive Control, which performs competitively against recent state-of-the-art algorithms, including TD-MPC2 and DreamerV3, on continuous control benchmarks. See our project website www.aidanscannell.com/dcmpc.
Authors:Hang Wang, Xin Ye, Feng Tao, Chenbin Pan, Abhirup Mallik, Burhaneddin Yaman, Liu Ren, Junshan Zhang
Abstract:
World model based reinforcement learning (RL) has emerged as a promising approach for autonomous driving, which learns a latent dynamics model and uses it to train a planning policy. To speed up the learning process, the pretrain-finetune paradigm is often used, where online RL is initialized by a pretrained model and a policy learned offline. However, naively performing such initialization in RL may result in dramatic performance degradation during the online interactions in the new task. To tackle this challenge, we first analyze the performance degradation and identify two primary root causes therein: the mismatch of the planning policy and the mismatch of the dynamics model, due to distribution shift. We further analyze the effects of these factors on performance degradation during finetuning, and our findings reveal that the choice of finetuning strategies plays a pivotal role in mitigating these effects. We then introduce AdaWM, an Adaptive World Model based planning method, featuring two key steps: (a) mismatch identification, which quantifies the mismatches and informs the finetuning strategy, and (b) alignment-driven finetuning, which selectively updates either the policy or the model as needed using efficient low-rank updates. Extensive experiments on the challenging CARLA driving tasks demonstrate that AdaWM significantly improves the finetuning process, resulting in more robust and efficient performance in autonomous driving systems.
Authors:Zifeng Shi, Meiqin Liu, Senlin Zhang, Ronghao Zheng, Shanling Dong, Ping Wei
Abstract:
In recent years, Model-based Multi-Agent Reinforcement Learning (MARL) has demonstrated significant advantages over model-free methods in terms of sample efficiency by using independent environment dynamics world models for data sample augmentation. However, without considering the limited sample size, these methods still lag behind model-free methods in terms of final convergence performance and stability. This is primarily due to the world model's insufficient and unstable representation of global states in partially observable environments. This limitation hampers the ability to ensure global consistency in the data samples and results in a time-varying and unstable distribution mismatch between the pseudo data samples generated by the world model and the real samples. This issue becomes particularly pronounced in more complex multi-agent environments. To address this challenge, we propose a model-based MARL method called GAWM, which enhances the centralized world model's ability to achieve globally unified and accurate representation of state information while adhering to the CTDE paradigm. GAWM uniquely leverages an additional Transformer architecture to fuse local observation information from different agents, thereby improving its ability to extract and represent global state information. This enhancement not only improves sample efficiency but also enhances training stability, leading to superior convergence performance, particularly in complex and challenging multi-agent environments. This advancement enables model-based methods to be effectively applied to more complex multi-agent environments. Experimental results demonstrate that GAWM outperforms various model-free and model-based approaches, achieving exceptional performance in the challenging domains of SMAC.
Authors:Qiaoyi Fang, Weiyu Du, Hang Wang, Junshan Zhang
Abstract:
World models have recently emerged as a promising approach to reinforcement learning (RL), achieving state-of-the-art performance across a wide range of visual control tasks. This work aims to obtain a deep understanding of the robustness and generalization capabilities of world models. Thus motivated, we develop a stochastic differential equation formulation by treating the world model learning as a stochastic dynamical system, and characterize the impact of latent representation errors on robustness and generalization, for both cases with zero-drift representation errors and with non-zero-drift representation errors. Our somewhat surprising findings, based on both theoretic and experimental studies, reveal that for the case with zero drift, modest latent representation errors can in fact function as implicit regularization and hence result in improved robustness. We further propose a Jacobian regularization scheme to mitigate the compounding error propagation effects of non-zero drift, thereby enhancing training stability and robustness. Our experimental studies corroborate that this regularization approach not only stabilizes training but also accelerates convergence and improves accuracy of long-horizon prediction.
Authors:Zifeng Shi, Meiqin Liu, Senlin Zhang, Ronghao Zheng, Shanling Dong
Abstract:
In recent years, model-based reinforcement learning (MBRL) has emerged as a solution to address sample complexity in multi-agent reinforcement learning (MARL) by modeling agent-environment dynamics to improve sample efficiency. However, most MBRL methods assume complete and continuous observations from each agent during the inference stage, which can be overly idealistic in practical applications. A novel model-based MARL approach called RMIO is introduced to address this limitation, specifically designed for scenarios where observation is lost in some agent. RMIO leverages the world model to reconstruct missing observations, and further reduces reconstruction errors through inter-agent information integration to ensure stable multi-agent decision-making. Secondly, unlike CTCE methods such as MAMBA, RMIO adopts the CTDE paradigm in standard environment, and enabling limited communication only when agents lack observation data, thereby reducing reliance on communication. Additionally, RMIO improves asymptotic performance through strategies such as reward smoothing, a dual-layer experience replay buffer, and an RNN-augmented policy model, surpassing previous work. Our experiments conducted in both the SMAC and MaMuJoCo environments demonstrate that RMIO outperforms current state-of-the-art approaches in terms of asymptotic convergence performance and policy robustness, both in standard mission settings and in scenarios involving observation loss.
Authors:Tianxingjian Ding, Yuanhao Zou, Chen Chen, Mubarak Shah, Yu Tian
Abstract:
Clinical decision-making in oncology requires predicting dynamic disease evolution, a task current static AI predictors cannot perform. While world models (WMs) offer a paradigm for generative prediction, existing medical applications remain limited. Existing methods often rely on stochastic diffusion models, focusing on visual reconstruction rather than causal, physiological transitions. Furthermore, in medical domain, models like MeWM typically ignore patient-specific temporal and clinical contexts and lack a feedback mechanism to link predictions to treatment decisions. To address these gaps, we introduce CLARITY, a medical world model that forecasts disease evolution directly within a structured latent space. It explicitly integrates time intervals (temporal context) and patient-specific data (clinical context) to model treatment-conditioned progression as a smooth, interpretable trajectory, and thus generate physiologically faithful, individualized treatment plans. Finally, CLARITY introduces a novel prediction-to-decision framework, translating latent rollouts into transparent, actionable recommendations. CLARITY demonstrates state-of-the-art performance in treatment planning. On the MU-Glioma-Post dataset, our approach outperforms recent MeWM by 12\%, and significantly surpasses all other medical-specific large language models.
Authors:Tianwei Ni, Esther Derman, Vineet Jain, Vincent Taboga, Siamak Ravanbakhsh, Pierre-Luc Bacon
Abstract:
Popular offline reinforcement learning (RL) methods rely on conservatism, either by penalizing out-of-dataset actions or by restricting planning horizons. In this work, we question the universality of this principle and instead revisit a complementary one: a Bayesian perspective. Rather than enforcing conservatism, the Bayesian approach tackles epistemic uncertainty in offline data by modeling a posterior distribution over plausible world models and training a history-dependent agent to maximize expected rewards, enabling test-time generalization. We first illustrate, in a bandit setting, that Bayesianism excels on low-quality datasets where conservatism fails. We then scale the principle to realistic tasks, identifying key design choices, such as layer normalization in the world model and adaptive long-horizon planning, that mitigate compounding error and value overestimation. These yield our practical algorithm, Neubay, grounded in the neutral Bayesian principle. On D4RL and NeoRL benchmarks, Neubay generally matches or surpasses leading conservative algorithms, achieving new state-of-the-art on 7 datasets. Notably, it succeeds with planning horizons of several hundred steps, challenging common belief. Finally, we characterize when Neubay is preferable to conservatism, laying the foundation for a new direction in offline and model-based RL.
Authors:Xuantang Xiong, Ni Mu, Runpeng Xie, Senhao Yang, Yaqing Wang, Lexiang Wang, Yao Luan, Siyuan Li, Shuang Xu, Yiqin Yang, Bo Xu
Abstract:
Model-based reinforcement learning (MBRL) is a crucial approach to enhance the generalization capabilities and improve the sample efficiency of RL algorithms. However, current MBRL methods focus primarily on building world models for single tasks and rarely address generalization across different scenarios. Building on the insight that dynamics within the same simulation engine share inherent properties, we attempt to construct a unified world model capable of generalizing across different scenarios, named Meta-Regularized Contextual World-Model (MrCoM). This method first decomposes the latent state space into various components based on the dynamic characteristics, thereby enhancing the accuracy of world-model prediction. Further, MrCoM adopts meta-state regularization to extract unified representation of scenario-relevant information, and meta-value regularization to align world-model optimization with policy learning across diverse scenario objectives. We theoretically analyze the generalization error upper bound of MrCoM in multi-scenario settings. We systematically evaluate our algorithm's generalization ability across diverse scenarios, demonstrating significantly better performance than previous state-of-the-art methods.
Authors:Haoyu Guo, Maria Tikhanovskaya, Paul Raccuglia, Alexey Vlaskin, Chris Co, Daniel J. Liebling, Scott Ellsworth, Matthew Abraham, Elizabeth Dorfman, N. P. Armitage, Chunhan Feng, Antoine Georges, Olivier Gingras, Dominik Kiese, Steven A. Kivelson, Vadim Oganesyan, B. J. Ramshaw, Subir Sachdev, T. Senthil, J. M. Tranquada, Michael P. Brenner, Subhashini Venugopalan, Eun-Ah Kim
Abstract:
Large Language Models (LLMs) show great promise as a powerful tool for scientific literature exploration. However, their effectiveness in providing scientifically accurate and comprehensive answers to complex questions within specialized domains remains an active area of research. Using the field of high-temperature cuprates as an exemplar, we evaluate the ability of LLM systems to understand the literature at the level of an expert. We construct an expert-curated database of 1,726 scientific papers that covers the history of the field, and a set of 67 expert-formulated questions that probe deep understanding of the literature. We then evaluate six different LLM-based systems for answering these questions, including both commercially available closed models and a custom retrieval-augmented generation (RAG) system capable of retrieving images alongside text. Experts then evaluate the answers of these systems against a rubric that assesses balanced perspectives, factual comprehensiveness, succinctness, and evidentiary support. Among the six systems two using RAG on curated literature outperformed existing closed models across key metrics, particularly in providing comprehensive and well-supported answers. We discuss promising aspects of LLM performances as well as critical short-comings of all the models. The set of expert-formulated questions and the rubric will be valuable for assessing expert level performance of LLM based reasoning systems.
Authors:Remo Sasso, Michelangelo Conserva, Dominik Jeurissen, Paulo Rauber
Abstract:
While reinforcement learning from scratch has shown impressive results in solving sequential decision-making tasks with efficient simulators, real-world applications with expensive interactions require more sample-efficient agents. Foundation models (FMs) are natural candidates to improve sample efficiency as they possess broad knowledge and reasoning capabilities, but it is yet unclear how to effectively integrate them into the reinforcement learning framework. In this paper, we anticipate and, most importantly, evaluate two promising strategies. First, we consider the use of foundation world models (FWMs) that exploit the prior knowledge of FMs to enable training and evaluating agents with simulated interactions. Second, we consider the use of foundation agents (FAs) that exploit the reasoning capabilities of FMs for decision-making. We evaluate both approaches empirically in a family of grid-world environments that are suitable for the current generation of large language models (LLMs). Our results suggest that improvements in LLMs already translate into better FWMs and FAs; that FAs based on current LLMs can already provide excellent policies for sufficiently simple environments; and that the coupling of FWMs and reinforcement learning agents is highly promising for more complex settings with partial observability and stochastic elements.
Authors:Cédric Colas, Tracey Mills, Ben Prystawski, Michael Henry Tessler, Noah Goodman, Jacob Andreas, Joshua Tenenbaum
Abstract:
The ability to combine linguistic guidance from others with direct experience is central to human development, enabling safe and rapid learning in new environments. How do people integrate these two sources of knowledge, and how might AI systems? We present a computational framework that models social learning as joint probabilistic inference over structured, executable world models given sensorimotor and linguistic data. We make this possible by turning a pretrained language model into a probabilistic model of how humans share advice conditioned on their beliefs, allowing our agents both to generate advice for others and to interpret linguistic input as evidence during Bayesian inference. Using behavioral experiments and simulations across 10 video games, we show how linguistic guidance can shape exploration and accelerate learning by reducing risky interactions and speeding up key discoveries in both humans and models. We further explore how knowledge can accumulate across generations through iterated learning experiments and demonstrate successful knowledge transfer between humans and models -- revealing how structured, language-compatible representations might enable human-machine collaborative learning.
Authors:Anqing Jiang, Yu Gao, Yiru Wang, Zhigang Sun, Shuo Wang, Yuwen Heng, Hao Sun, Shichen Tang, Lijuan Zhu, Jinhao Chai, Jijun Wang, Zichong Gu, Hao Jiang, Li Sun
Abstract:
Vision-Language-Action (VLA) models have demonstrated potential in autonomous driving. However, two critical challenges hinder their development: (1) Existing VLA architectures are typically based on imitation learning in open-loop setup which tends to capture the recorded behaviors in the dataset, leading to suboptimal and constrained performance, (2) Close-loop training relies heavily on high-fidelity sensor simulation, where domain gaps and computational inefficiencies pose significant barriers. In this paper, we introduce IRL-VLA, a novel close-loop Reinforcement Learning via \textbf{I}nverse \textbf{R}einforcement \textbf{L}earning reward world model with a self-built VLA approach. Our framework proceeds in a three-stage paradigm: In the first stage, we propose a VLA architecture and pretrain the VLA policy via imitation learning. In the second stage, we construct a lightweight reward world model via inverse reinforcement learning to enable efficient close-loop reward computation. To further enhance planning performance, finally, we design specialized reward world model guidence reinforcement learning via PPO(Proximal Policy Optimization) to effectively balance the safety incidents, comfortable driving, and traffic efficiency. Our approach achieves state-of-the-art performance in NAVSIM v2 end-to-end driving benchmark, 1st runner up in CVPR2025 Autonomous Grand Challenge. We hope that our framework will accelerate VLA research in close-loop autonomous driving.
Authors:Kentaro Nomura, Tatsuya Aoki, Tadahiro Taniguchi, Takato Horii
Abstract:
We propose a fully decentralized multi-agent world model that enables both symbol emergence for communication and coordinated behavior through temporal extension of collective predictive coding. Unlike previous research that focuses on either communication or coordination separately, our approach achieves both simultaneously. Our method integrates world models with communication channels, enabling agents to predict environmental dynamics, estimate states from partial observations, and share critical information through bidirectional message exchange with contrastive learning for message alignment. Using a two-agent trajectory drawing task, we demonstrate that our communication-based approach outperforms non-communicative models when agents have divergent perceptual capabilities, achieving the second-best coordination after centralized models. Importantly, our decentralized approach with constraints preventing direct access to other agents' internal states facilitates the emergence of more meaningful symbol systems that accurately reflect environmental states. These findings demonstrate the effectiveness of decentralized communication for supporting coordination while developing shared representations of the environment.
Authors:Wandong Sun, Long Chen, Yongbo Su, Baoshi Cao, Yang Liu, Zongwu Xie
Abstract:
Humanoid robots are designed to navigate environments accessible to humans using their legs. However, classical research has primarily focused on controlled laboratory settings, resulting in a gap in developing controllers for navigating complex real-world terrains. This challenge mainly arises from the limitations and noise in sensor data, which hinder the robot's understanding of itself and the environment. In this study, we introduce World Model Reconstruction (WMR), an end-to-end learning-based approach for blind humanoid locomotion across challenging terrains. We propose training an estimator to explicitly reconstruct the world state and utilize it to enhance the locomotion policy. The locomotion policy takes inputs entirely from the reconstructed information. The policy and the estimator are trained jointly; however, the gradient between them is intentionally cut off. This ensures that the estimator focuses solely on world reconstruction, independent of the locomotion policy's updates. We evaluated our model on rough, deformable, and slippery surfaces in real-world scenarios, demonstrating robust adaptability and resistance to interference. The robot successfully completed a 3.2 km hike without any human assistance, mastering terrains covered with ice and snow.
Authors:Tianren Zhang, Guanyu Chen, Feng Chen
Abstract:
Humans develop world models that capture the underlying generation process of data. Whether neural networks can learn similar world models remains an open problem. In this work, we present the first theoretical results for this problem, showing that in a multi-task setting, models with a low-degree bias provably recover latent data-generating variables under mild assumptions--even if proxy tasks involve complex, non-linear functions of the latents. However, such recovery is sensitive to model architecture. Our analysis leverages Boolean models of task solutions via the Fourier-Walsh transform and introduces new techniques for analyzing invertible Boolean transforms, which may be of independent interest. We illustrate the algorithmic implications of our results and connect them to related research areas, including self-supervised learning, out-of-distribution generalization, and the linear representation hypothesis in large language models.
Authors:Jiali Wei, Ming Fan, Xicheng Zhang, Wenjing Jiao, Haijun Wang, Ting Liu
Abstract:
Powered by their superior performance, deep neural networks (DNNs) have found widespread applications across various domains. Many deep learning (DL) models are now embedded in mobile apps, making them more accessible to end users through on-device DL. However, deploying on-device DL to users' smartphones simultaneously introduces several security threats. One primary threat is backdoor attacks. Extensive research has explored backdoor attacks for several years and has proposed numerous attack approaches. However, few studies have investigated backdoor attacks on DL models deployed in the real world, or they have shown obvious deficiencies in effectiveness and stealthiness. In this work, we explore more effective and stealthy backdoor attacks on real-world DL models extracted from mobile apps. Our main justification is that imperceptible and sample-specific backdoor triggers generated by DNN-based steganography can enhance the efficacy of backdoor attacks on real-world models. We first confirm the effectiveness of steganography-based backdoor attacks on four state-of-the-art DNN models. Subsequently, we systematically evaluate and analyze the stealthiness of the attacks to ensure they are difficult to perceive. Finally, we implement the backdoor attacks on real-world models and compare our approach with three baseline methods. We collect 38,387 mobile apps, extract 89 DL models from them, and analyze these models to obtain the prerequisite model information for the attacks. After identifying the target models, our approach achieves an average of 12.50% higher attack success rate than DeepPayload while better maintaining the normal performance of the models. Extensive experimental results demonstrate that our method enables more effective, robust, and stealthy backdoor attacks on real-world models.
Authors:Raanan Y. Rohekar, Yaniv Gurwicz, Sungduk Yu, Estelle Aflalo, Vasudev Lal
Abstract:
Are generative pre-trained transformer (GPT) models, trained only to predict the next token, implicitly learning a world model from which sequences are generated one token at a time? We address this question by deriving a causal interpretation of the attention mechanism in GPT and presenting a causal world model that arises from this interpretation. Furthermore, we propose that GPT models, at inference time, can be utilized for zero-shot causal structure learning for input sequences, and introduce a corresponding confidence score. Empirical tests were conducted in controlled environments using the setups of the Othello and Chess strategy games. A GPT, pre-trained on real-world games played with the intention of winning, was tested on out-of-distribution synthetic data consisting of sequences of random legal moves. We find that the GPT model is likely to generate legal next moves for out-of-distribution sequences for which a causal structure is encoded in the attention mechanism with high confidence. In cases where it generates illegal moves, it also fails to capture a causal structure.
Authors:Jonathan Light, Sixue Xing, Yuanzhe Liu, Weiqin Chen, Min Cai, Xiusi Chen, Guanzhi Wang, Wei Cheng, Yisong Yue, Ziniu Hu
Abstract:
Effective extraction of the world knowledge in LLMs for complex decision-making tasks remains a challenge. We propose a framework PIANIST for decomposing the world model into seven intuitive components conducive to zero-shot LLM generation. Given only the natural language description of the game and how input observations are formatted, our method can generate a working world model for fast and efficient MCTS simulation. We show that our method works well on two different games that challenge the planning and decision making skills of the agent for both language and non-language based action taking, without any training on domain-specific training data or explicitly defined world model.
Authors:Ziyang Yan, Wenzhen Dong, Yihua Shao, Yuhang Lu, Liu Haiyang, Jingwen Liu, Haozhe Wang, Zhe Wang, Yan Wang, Fabio Remondino, Yuexin Ma
Abstract:
End-to-end autonomous driving with vision-only is not only more cost-effective compared to LiDAR-vision fusion but also more reliable than traditional methods. To achieve a economical and robust purely visual autonomous driving system, we propose RenderWorld, a vision-only end-to-end autonomous driving framework, which generates 3D occupancy labels using a self-supervised gaussian-based Img2Occ Module, then encodes the labels by AM-VAE, and uses world model for forecasting and planning. RenderWorld employs Gaussian Splatting to represent 3D scenes and render 2D images greatly improves segmentation accuracy and reduces GPU memory consumption compared with NeRF-based methods. By applying AM-VAE to encode air and non-air separately, RenderWorld achieves more fine-grained scene element representation, leading to state-of-the-art performance in both 4D occupancy forecasting and motion planning from autoregressive world model.
Authors:Linhan Wang, Zichong Yang, Chen Bai, Guoxiang Zhang, Xiaotong Liu, Xiaoyin Zheng, Xiao-Xiao Long, Chang-Tien Lu, Cheng Lu
Abstract:
End-to-end autonomous driving increasingly leverages self-supervised video pretraining to learn transferable planning representations. However, pretraining video world models for scene understanding has so far brought only limited improvements. This limitation is compounded by the inherent ambiguity of driving: each scene typically provides only a single human trajectory, making it difficult to learn multimodal behaviors. In this work, we propose Drive-JEPA, a framework that integrates Video Joint-Embedding Predictive Architecture (V-JEPA) with multimodal trajectory distillation for end-to-end driving. First, we adapt V-JEPA for end-to-end driving, pretraining a ViT encoder on large-scale driving videos to produce predictive representations aligned with trajectory planning. Second, we introduce a proposal-centric planner that distills diverse simulator-generated trajectories alongside human trajectories, with a momentum-aware selection mechanism to promote stable and safe behavior. When evaluated on NAVSIM, the V-JEPA representation combined with a simple transformer-based decoder outperforms prior methods by 3 PDMS in the perception-free setting. The complete Drive-JEPA framework achieves 93.3 PDMS on v1 and 87.8 EPDMS on v2, setting a new state-of-the-art.
Authors:Fan Zhang, Michael Gienger
Abstract:
World models have demonstrated impressive performance on robotic learning tasks. Many such tasks inherently demand multimodal reasoning; for example, filling a bottle with water will lead to visual information alone being ambiguous or incomplete, thereby requiring reasoning over the temporal evolution of audio, accounting for its underlying physical properties and pitch patterns. In this paper, we propose a generative latent flow matching model to anticipate future audio observations, enabling the system to reason about long-term consequences when integrated into a robot policy. We demonstrate the superior capabilities of our system through two manipulation tasks that require perceiving in-the-wild audio or music signals, compared to methods without future lookahead. We further emphasize that successful robot action learning for these tasks relies not merely on multi-modal input, but critically on the accurate prediction of future audio states that embody intrinsic rhythmic patterns.
Authors:Xian Yeow Lee, Lasitha Vidyaratne, Gregory Sin, Ahmed Farahat, Chetan Gupta
Abstract:
Autonomous inspection in hazardous environments requires AI agents that can interpret high-level goals and execute precise control. A key capability for such agents is spatial grounding, for example when a drone must center a detected object in its camera view to enable reliable inspection. While large language models provide a natural interface for specifying goals, using them directly for visual control achieves only 58\% success in this task. We envision that equipping agents with a world model as a tool would allow them to roll out candidate actions and perform better in spatially grounded settings, but conventional world models are data and compute intensive. To address this, we propose a task-specific latent dynamics model that learns state-specific action-induced shifts in a shared latent space using only goal-state supervision. The model leverages global action embeddings and complementary training losses to stabilize learning. In experiments, our approach achieves 71\% success and generalizes to unseen images and instructions, highlighting the potential of compact, domain-specific latent dynamics models for spatial alignment in autonomous inspection.
Authors:Zefan Yang, Ge Wang, James Hendler, Mannudeep K. Kalra, Pingkun Yan
Abstract:
Chest X-ray radiography (CXR) is an essential medical imaging technique for disease diagnosis. However, as 2D projectional images, CXRs are limited by structural superposition and hence fail to capture 3D anatomies. This limitation makes representation learning and disease diagnosis challenging. To address this challenge, we propose a novel CXR world model named X-WIN, which distills volumetric knowledge from chest computed tomography (CT) by learning to predict its 2D projections in latent space. The core idea is that a world model with internalized knowledge of 3D anatomical structure can predict CXRs under various transformations in 3D space. During projection prediction, we introduce an affinity-guided contrastive alignment loss that leverages mutual similarities to capture rich, correlated information across projections from the same volume. To improve model adaptability, we incorporate real CXRs into training through masked image modeling and employ a domain classifier to encourage statistically similar representations for real and simulated CXRs. Comprehensive experiments show that X-WIN outperforms existing foundation models on diverse downstream tasks using linear probing and few-shot fine-tuning. X-WIN also demonstrates the ability to render 2D projections for reconstructing a 3D CT volume.
Authors:Fangqi Zhu, Zhengyang Yan, Zicong Hong, Quanxin Shou, Xiao Ma, Song Guo
Abstract:
Vision-Language-Action (VLA) models have shown strong potential for general-purpose robotic manipulation, but their reliance on expert demonstrations limits their ability to learn from failures and perform self-corrections. Reinforcement learning (RL) addresses these through self-improving interactions with the physical environment, but suffers from high sample complexity on real robots. We introduce World-Model-based Policy Optimization (WMPO), a principled framework for on-policy VLA RL without interacting with the real environment. In contrast to widely used latent world models, WMPO focuses on pixel-based predictions that align the "imagined" trajectories with the VLA features pretrained with web-scale images. Crucially, WMPO enables the policy to perform on-policy GRPO that provides stronger performance than the often-used off-policy methods. Extensive experiments in both simulation and real-robot settings demonstrate that WMPO (i) substantially improves sample efficiency, (ii) achieves stronger overall performance, (iii) exhibits emergent behaviors such as self-correction, and (iv) demonstrates robust generalization and lifelong learning capabilities.
Authors:Tejal Patwardhan, Rachel Dias, Elizabeth Proehl, Grace Kim, Michele Wang, Olivia Watkins, Simón Posada Fishman, Marwan Aljubeh, Phoebe Thacker, Laurance Fauconnet, Natalie S. Kim, Patrick Chao, Samuel Miserendino, Gildas Chabot, David Li, Michael Sharman, Alexandra Barr, Amelia Glaese, Jerry Tworek
Abstract:
We introduce GDPval, a benchmark evaluating AI model capabilities on real-world economically valuable tasks. GDPval covers the majority of U.S. Bureau of Labor Statistics Work Activities for 44 occupations across the top 9 sectors contributing to U.S. GDP (Gross Domestic Product). Tasks are constructed from the representative work of industry professionals with an average of 14 years of experience. We find that frontier model performance on GDPval is improving roughly linearly over time, and that the current best frontier models are approaching industry experts in deliverable quality. We analyze the potential for frontier models, when paired with human oversight, to perform GDPval tasks cheaper and faster than unaided experts. We also demonstrate that increased reasoning effort, increased task context, and increased scaffolding improves model performance on GDPval. Finally, we open-source a gold subset of 220 tasks and provide a public automated grading service at evals.openai.com to facilitate future research in understanding real-world model capabilities.
Authors:Haonan Wang, Junfeng Sun, Xingdi Yuan, Ruoyao Wang, Ziang Xiao
Abstract:
Simulating interactive world models remains a core challenge in Large Language Models(LLMs). In this work, we introduce the ByteSized32Refactored, a refactored, modular, and extensible implementation of the original ByteSized32 corpus to explore the task of text game generation. We further optimize the code structure of each text game and create the GameBasic.py foundation library, which centralizes common logic across all 32 games by abstracting 7 base classes (GameObject, etc.) into reusable modules, thereby reducing from 20k to 10k total lines of Python code compared to the original Bytesized32. Our refactored implementation enables extendability - with our centralized design, ByteSized32Refactored can be more efficiently extended to include text games of new scenarios and specifications by reusing the shared logic and functionalities. Extensive experiments with GPT-4o demonstrate a mix of performance - with Bytesized32Refactored, the generated text games for unseen scenarios showcase quality improvements on two of the four evaluation dimensions while decreases on the other two, indicating that the hierarchical structure of the refactored code presents new challenges for LLMs. Overall, we highlight that our extensible code structure, centered on the foundation library and the modular optimization, not only facilitates LLM adaptation to environment specifications but also establishes a scalable environment that supports future extensions.
Authors:Satyajeet Das, Darren Chiu, Zhehui Huang, Lars Lindemann, Gaurav S. Sukhatme
Abstract:
Reinforcement learning has enabled significant progress in complex domains such as coordinating and navigating multiple quadrotors. However, even well-trained policies remain vulnerable to collisions in obstacle-rich environments. Addressing these infrequent but critical safety failures through retraining or fine-tuning is costly and risks degrading previously learned skills. Inspired by activation steering in large language models and latent editing in computer vision, we introduce a framework for inference-time Latent Activation Editing (LAE) that refines the behavior of pre-trained policies without modifying their weights or architecture. The framework operates in two stages: (i) an online classifier monitors intermediate activations to detect states associated with undesired behaviors, and (ii) an activation editing module that selectively modifies flagged activations to shift the policy towards safer regimes. In this work, we focus on improving safety in multi-quadrotor navigation. We hypothesize that amplifying a policy's internal perception of risk can induce safer behaviors. We instantiate this idea through a latent collision world model trained to predict future pre-collision activations, thereby prompting earlier and more cautious avoidance responses. Extensive simulations and real-world Crazyflie experiments demonstrate that LAE achieves statistically significant reduction in collisions (nearly 90% fewer cumulative collisions compared to the unedited baseline) and substantially increases the fraction of collision-free trajectories, while preserving task completion. More broadly, our results establish LAE as a lightweight paradigm, feasible on resource-constrained hardware, for post-deployment refinement of learned robot policies.
Authors:Haonan Wang, Mingjia Zhao, Junfeng Sun, Wei Liu
Abstract:
As AI technology advances, research in playing text-based games with agents has becomeprogressively popular. In this paper, a novel approach to agent design and agent learning ispresented with the context of reinforcement learning. A model of deep learning is first applied toprocess game text and build a world model. Next, the agent is learned through a policy gradient-based deep reinforcement learning method to facilitate conversion from state value to optimal policy.The enhanced agent works better in several text-based game experiments and significantlysurpasses previous agents on game completion ratio and win rate. Our study introduces novelunderstanding and empirical ground for using reinforcement learning for text games and sets thestage for developing and optimizing reinforcement learning agents for more general domains andproblems.
Authors:Zhenjiang Mao, Mrinall Eashaan Umasudhan, Ivan Ruchkin
Abstract:
Autonomous robots that rely on deep neural network controllers pose critical challenges for safety prediction, especially under partial observability and distribution shift. Traditional model-based verification techniques are limited in scalability and require access to low-dimensional state models, while model-free methods often lack reliability guarantees. This paper addresses these limitations by introducing a framework for calibrated safety prediction in end-to-end vision-controlled systems, where neither the state-transition model nor the observation model is accessible. Building on the foundation of world models, we leverage variational autoencoders and recurrent predictors to forecast future latent trajectories from raw image sequences and estimate the probability of satisfying safety properties. We distinguish between monolithic and composite prediction pipelines and introduce a calibration mechanism to quantify prediction confidence. In long-horizon predictions from high-dimensional observations, the forecasted inputs to the safety evaluator can deviate significantly from the training distribution due to compounding prediction errors and changing environmental conditions, leading to miscalibrated risk estimates. To address this, we incorporate unsupervised domain adaptation to ensure robustness of safety evaluation under distribution shift in predictions without requiring manual labels. Our formulation provides theoretical calibration guarantees and supports practical evaluation across long prediction horizons. Experimental results on three benchmarks show that our UDA-equipped evaluators maintain high accuracy and substantially lower false positive rates under distribution shift. Similarly, world model-based composite predictors outperform their monolithic counterparts on long-horizon tasks, and our conformal calibration provides reliable statistical bounds.
Authors:Zefan Yang, Xinrui Song, Xuanang Xu, Yongyi Shi, Ge Wang, Mannudeep K. Kalra, Pingkun Yan
Abstract:
Chest X-rays (CXRs) are the most widely used medical imaging modality and play a pivotal role in diagnosing diseases. However, as 2D projection images, CXRs are limited by structural superposition, which constrains their effectiveness in precise disease diagnosis and risk prediction. To address the limitations of 2D CXRs, this study introduces Xray2Xray, a novel World Model that learns latent representations encoding 3D structural information from chest X-rays. Xray2Xray captures the latent representations of the chest volume by modeling the transition dynamics of X-ray projections across different angular positions with a vision model and a transition model. We employed the latent representations of Xray2Xray for downstream risk prediction and disease diagnosis tasks. Experimental results showed that Xray2Xray outperformed both supervised methods and self-supervised pretraining methods for cardiovascular disease risk estimation and achieved competitive performance in classifying five pathologies in CXRs. We also assessed the quality of Xray2Xray's latent representations through synthesis tasks and demonstrated that the latent representations can be used to reconstruct volumetric context.
Authors:Zikang Leng, Megha Thukral, Yaqi Liu, Hrudhai Rajasekhar, Shruthi K. Hiremath, Jiaman He, Thomas Plötz
Abstract:
A major challenge in developing robust and generalizable Human Activity Recognition (HAR) systems for smart homes is the lack of large and diverse labeled datasets. Variations in home layouts, sensor configurations, and individual behaviors further exacerbate this issue. To address this, we leverage the idea of embodied AI agents-virtual agents that perceive and act within simulated environments guided by internal world models. We introduce AgentSense, a virtual data generation pipeline in which agents live out daily routines in simulated smart homes, with behavior guided by Large Language Models (LLMs). The LLM generates diverse synthetic personas and realistic routines grounded in the environment, which are then decomposed into fine-grained actions. These actions are executed in an extended version of the VirtualHome simulator, which we augment with virtual ambient sensors that record the agents' activities. Our approach produces rich, privacy-preserving sensor data that reflects real-world diversity. We evaluate AgentSense on five real HAR datasets. Models pretrained on the generated data consistently outperform baselines, especially in low-resource settings. Furthermore, combining the generated virtual sensor data with a small amount of real data achieves performance comparable to training on full real-world datasets. These results highlight the potential of using LLM-guided embodied agents for scalable and cost-effective sensor data generation in HAR.
Authors:Lingyao Li, Dawei Li, Zhenhui Ou, Xiaoran Xu, Jingxiao Liu, Zihui Ma, Runlong Yu, Min Deng
Abstract:
Efficient simulation is essential for enhancing proactive preparedness for sudden-onset disasters such as earthquakes. Recent advancements in large language models (LLMs) as world models show promise in simulating complex scenarios. This study examines multiple LLMs to proactively estimate perceived earthquake impacts. Leveraging multimodal datasets including geospatial, socioeconomic, building, and street-level imagery data, our framework generates Modified Mercalli Intensity (MMI) predictions at zip code and county scales. Evaluations on the 2014 Napa and 2019 Ridgecrest earthquakes using USGS ''Did You Feel It? (DYFI)'' reports demonstrate significant alignment, as evidenced by a high correlation of 0.88 and a low RMSE of 0.77 as compared to real reports at the zip code level. Techniques such as RAG and ICL can improve simulation performance, while visual inputs notably enhance accuracy compared to structured numerical data alone. These findings show the promise of LLMs in simulating disaster impacts that can help strengthen pre-event planning.
Authors:Qianyi Xu, Gousia Habib, Dilruk Perera, Mengling Feng
Abstract:
Timely and personalized treatment decisions are essential across a wide range of healthcare settings where patient responses can vary significantly and evolve over time. Clinical data used to support these treatment decisions are often irregularly sampled, where missing data frequencies may implicitly convey information about the patient's condition. Existing Reinforcement Learning (RL) based clinical decision support systems often ignore the missing patterns and distort them with coarse discretization and simple imputation. They are also predominantly model-free and largely depend on retrospective data, which could lead to insufficient exploration and bias by historical behaviors. To address these limitations, we propose medDreamer, a novel model-based reinforcement learning framework for personalized treatment recommendation. medDreamer contains a world model with an Adaptive Feature Integration module that simulates latent patient states from irregular data and a two-phase policy trained on a hybrid of real and imagined trajectories. This enables learning optimal policies that go beyond the sub-optimality of historical clinical decisions, while remaining close to real clinical data. We evaluate medDreamer on both sepsis and mechanical ventilation treatment tasks using two large-scale Electronic Health Records (EHRs) datasets. Comprehensive evaluations show that medDreamer significantly outperforms model-free and model-based baselines in both clinical outcomes and off-policy metrics.
Authors:Veniamin Veselovsky, Berke Argin, Benedikt Stroebl, Chris Wendler, Robert West, James Evans, Thomas L. Griffiths, Arvind Narayanan
Abstract:
Just as humans display language patterns influenced by their native tongue when speaking new languages, LLMs often default to English-centric responses even when generating in other languages. Nevertheless, we observe that local cultural information persists within the models and can be readily activated for cultural customization. We first demonstrate that explicitly providing cultural context in prompts significantly improves the models' ability to generate culturally localized responses. We term the disparity in model performance with versus without explicit cultural context the explicit-implicit localization gap, indicating that while cultural knowledge exists within LLMs, it may not naturally surface in multilingual interactions if cultural context is not explicitly provided. Despite the explicit prompting benefit, however, the answers reduce in diversity and tend toward stereotypes. Second, we identify an explicit cultural customization vector, conserved across all non-English languages we explore, which enables LLMs to be steered from the synthetic English cultural world-model toward each non-English cultural world. Steered responses retain the diversity of implicit prompting and reduce stereotypes to dramatically improve the potential for customization. We discuss the implications of explicit cultural customization for understanding the conservation of alternative cultural world models within LLMs, and their controllable utility for translation, cultural customization, and the possibility of making the explicit implicit through soft control for expanded LLM function and appeal.
Authors:Soonwoo Kwon, Jin-Young Kim, Hyojun Go, Kyungjune Baek
Abstract:
We present a novel study on enhancing the capability of preserving the content in world models, focusing on a property we term World Stability. Recent diffusion-based generative models have advanced the synthesis of immersive and realistic environments that are pivotal for applications such as reinforcement learning and interactive game engines. However, while these models excel in quality and diversity, they often neglect the preservation of previously generated scenes over time--a shortfall that can introduce noise into agent learning and compromise performance in safety-critical settings. In this work, we introduce an evaluation framework that measures world stability by having world models perform a sequence of actions followed by their inverses to return to their initial viewpoint, thereby quantifying the consistency between the starting and ending observations. Our comprehensive assessment of state-of-the-art diffusion-based world models reveals significant challenges in achieving high world stability. Moreover, we investigate several improvement strategies to enhance world stability. Our results underscore the importance of world stability in world modeling and provide actionable insights for future research in this domain.
Authors:Jordan Peper, Zhenjiang Mao, Yuang Geng, Siyuan Pan, Ivan Ruchkin
Abstract:
As autonomous systems are increasingly deployed in open and uncertain settings, there is a growing need for trustworthy world models that can reliably predict future high-dimensional observations. The learned latent representations in world models lack direct mapping to meaningful physical quantities and dynamics, limiting their utility and interpretability in downstream planning, control, and safety verification. In this paper, we argue for a fundamental shift from physically informed to physically interpretable world models - and crystallize four principles that leverage symbolic knowledge to achieve these ends: (1) functionally organizing the latent space according to the physical intent, (2) learning aligned invariant and equivariant representations of the physical world, (3) integrating multiple forms and strengths of supervision into a unified training process, and (4) partitioning generative outputs to support scalability and verifiability. We experimentally demonstrate the value of each principle on two benchmarks. This paper opens several intriguing research directions to achieve and capitalize on full physical interpretability in world models.
Authors:Jia-Hua Lee, Bor-Jiun Lin, Wei-Fang Sun, Chun-Yi Lee
Abstract:
World models represent a promising approach for training reinforcement learning agents with significantly improved sample efficiency. While most world model methods primarily rely on sequences of discrete latent variables to model environment dynamics, this compression often neglects critical visual details essential for reinforcement learning. Recent diffusion-based world models condition generation on a fixed context length of frames to predict the next observation, using separate recurrent neural networks to model rewards and termination signals. Although this architecture effectively enhances visual fidelity, the fixed context length approach inherently limits memory capacity. In this paper, we introduce EDELINE, a unified world model architecture that integrates state space models with diffusion models. Our approach outperforms existing baselines across visually challenging Atari 100k tasks, memory-demanding Crafter benchmark, and 3D first-person ViZDoom environments, demonstrating superior performance in all these diverse challenges.
Authors:Zhenjiang Mao, Ivan Ruchkin
Abstract:
Deep learning models are increasingly employed for perception, prediction, and control in robotic systems. For for achieving realistic and consistent outputs, it is crucial to embed physical knowledge into their learned representations. However, doing so is difficult due to high-dimensional observation data, such as images, particularly under conditions of incomplete system knowledge and imprecise state sensing. To address this, we propose Physically Interpretable World Models, a novel architecture that aligns learned latent representations with real-world physical quantities. To this end, our architecture combines three key elements: (1) a vector-quantized image autoencoder, (2) a transformer-based physically interpretable autoencoder, and (3) a partially known dynamical model. The training incorporates weak interval-based supervision to eliminate the impractical reliance on ground-truth physical knowledge. Three case studies demonstrate that our approach achieves physical interpretability and accurate state predictions, thus advancing representation learning for robotics.
Authors:Mariam Hassan, Sebastian Stapf, Ahmad Rahimi, Pedro M B Rezende, Yasaman Haghighi, David Brüggemann, Isinsu Katircioglu, Lin Zhang, Xiaoran Chen, Suman Saha, Marco Cannici, Elie Aljalbout, Botao Ye, Xi Wang, Aram Davtyan, Mathieu Salzmann, Davide Scaramuzza, Marc Pollefeys, Paolo Favaro, Alexandre Alahi
Abstract:
We present GEM, a Generalizable Ego-vision Multimodal world model that predicts future frames using a reference frame, sparse features, human poses, and ego-trajectories. Hence, our model has precise control over object dynamics, ego-agent motion and human poses. GEM generates paired RGB and depth outputs for richer spatial understanding. We introduce autoregressive noise schedules to enable stable long-horizon generations. Our dataset is comprised of 4000+ hours of multimodal data across domains like autonomous driving, egocentric human activities, and drone flights. Pseudo-labels are used to get depth maps, ego-trajectories, and human poses. We use a comprehensive evaluation framework, including a new Control of Object Manipulation (COM) metric, to assess controllability. Experiments show GEM excels at generating diverse, controllable scenarios and temporal consistency over long generations. Code, models, and datasets are fully open-sourced.
Authors:Eliahu Horwitz, Bar Cavia, Jonathan Kahana, Yedid Hoshen
Abstract:
The number of publicly available models is rapidly increasing, yet most remain undocumented. Users looking for suitable models for their tasks must first determine what each model does. Training machine learning models to infer missing documentation directly from model weights is challenging, as these weights often contain significant variation unrelated to model functionality (denoted nuisance). Here, we identify a key property of real-world models: most public models belong to a small set of Model Trees, where all models within a tree are fine-tuned from a common ancestor (e.g., a foundation model). Importantly, we find that within each tree there is less nuisance variation between models. Concretely, while learning across Model Trees requires complex architectures, even a linear classifier trained on a single model layer often works within trees. While effective, these linear classifiers are computationally expensive, especially when dealing with larger models that have many parameters. To address this, we introduce Probing Experts (ProbeX), a theoretically motivated and lightweight method. Notably, ProbeX is the first probing method specifically designed to learn from the weights of a single hidden model layer. We demonstrate the effectiveness of ProbeX by predicting the categories in a model's training dataset based only on its weights. Excitingly, ProbeX can map the weights of Stable Diffusion into a weight-language embedding space, enabling model search via text, i.e., zero-shot model classification.
Authors:Jonathan DeCastro, Andrew Silva, Deepak Gopinath, Emily Sumner, Thomas M. Balch, Laporsha Dees, Guy Rosman
Abstract:
Tight coordination is required for effective human-robot teams in domains involving fast dynamics and tactical decisions, such as multi-car racing. In such settings, robot teammates must react to cues of a human teammate's tactical objective to assist in a way that is consistent with the objective (e.g., navigating left or right around an obstacle). To address this challenge, we present Dream2Assist, a framework that combines a rich world model able to infer human objectives and value functions, and an assistive agent that provides appropriate expert assistance to a given human teammate. Our approach builds on a recurrent state space model to explicitly infer human intents, enabling the assistive agent to select actions that align with the human and enabling a fluid teaming interaction. We demonstrate our approach in a high-speed racing domain with a population of synthetic human drivers pursuing mutually exclusive objectives, such as "stay-behind" and "overtake". We show that the combined human-robot team, when blending its actions with those of the human, outperforms the synthetic humans alone as well as several baseline assistance strategies, and that intent-conditioning enables adherence to human preferences during task execution, leading to improved performance while satisfying the human's objective.
Authors:Julong Wei, Shanshuai Yuan, Pengfei Li, Qingda Hu, Zhongxue Gan, Wenchao Ding
Abstract:
The rise of multi-modal large language models(MLLMs) has spurred their applications in autonomous driving. Recent MLLM-based methods perform action by learning a direct mapping from perception to action, neglecting the dynamics of the world and the relations between action and world dynamics. In contrast, human beings possess world model that enables them to simulate the future states based on 3D internal visual representation and plan actions accordingly. To this end, we propose OccLLaMA, an occupancy-language-action generative world model, which uses semantic occupancy as a general visual representation and unifies vision-language-action(VLA) modalities through an autoregressive model. Specifically, we introduce a novel VQVAE-like scene tokenizer to efficiently discretize and reconstruct semantic occupancy scenes, considering its sparsity and classes imbalance. Then, we build a unified multi-modal vocabulary for vision, language and action. Furthermore, we enhance LLM, specifically LLaMA, to perform the next token/scene prediction on the unified vocabulary to complete multiple tasks in autonomous driving. Extensive experiments demonstrate that OccLLaMA achieves competitive performance across multiple tasks, including 4D occupancy forecasting, motion planning, and visual question answering, showcasing its potential as a foundation model in autonomous driving.
Authors:Mingwei Li, Xiaoyuan Zhang, Chengwei Yang, Zilong Zheng, Yaodong Yang
Abstract:
Model-based planning in robotic domains is fundamentally challenged by the hybrid nature of physical dynamics, where continuous motion is punctuated by discrete events such as contacts and impacts. Conventional latent world models typically employ monolithic neural networks that enforce global continuity, inevitably over-smoothing the distinct dynamic modes (e.g., sticking vs. sliding, flight vs. stance). For a planner, this smoothing results in catastrophic compounding errors during long-horizon lookaheads, rendering the search process unreliable at physical boundaries. To address this, we introduce the Prismatic World Model (PRISM-WM), a structured architecture designed to decompose complex hybrid dynamics into composable primitives. PRISM-WM leverages a context-aware Mixture-of-Experts (MoE) framework where a gating mechanism implicitly identifies the current physical mode, and specialized experts predict the associated transition dynamics. We further introduce a latent orthogonalization objective to ensure expert diversity, effectively preventing mode collapse. By accurately modeling the sharp mode transitions in system dynamics, PRISM-WM significantly reduces rollout drift. Extensive experiments on challenging continuous control benchmarks, including high-dimensional humanoids and diverse multi-task settings, demonstrate that PRISM-WM provides a superior high-fidelity substrate for trajectory optimization algorithms (e.g., TD-MPC), proving its potential as a powerful foundational model for next-generation model-based agents.
Authors:Taiye Chen, Zihan Ding, Anjian Li, Christina Zhang, Zeqi Xiao, Yisen Wang, Chi Jin
Abstract:
Recent advancements in video generation have demonstrated the potential of using video diffusion models as world models, with autoregressive generation of infinitely long videos through masked conditioning. However, such models, usually with local full attention, lack effective memory compression and retrieval for long-term generation beyond the window size, leading to issues of forgetting and spatiotemporal inconsistencies. To enhance the retention of historical information within a fixed memory budget, we introduce a recurrent neural network (RNN) into the diffusion transformer framework. Specifically, a diffusion model incorporating LSTM with attention achieves comparable performance to state-of-the-art RNN blocks, such as TTT and Mamba2. Moreover, existing diffusion-RNN approaches often suffer from performance degradation due to training-inference gap or the lack of overlap across windows. To address these limitations, we propose a novel Recurrent Autoregressive Diffusion (RAD) framework, which executes frame-wise autoregression for memory update and retrieval, consistently across training and inference time. Experiments on Memory Maze and Minecraft datasets demonstrate the superiority of RAD for long video generation, highlighting the efficiency of LSTM in sequence modeling.
Authors:Zeqing Wang, Xinyu Wei, Bairui Li, Zhen Guo, Jinrui Zhang, Hongyang Wei, Keze Wang, Lei Zhang
Abstract:
The recent rapid advancement of Text-to-Video (T2V) generation technologies, which are critical to build ``world models'', makes the existing benchmarks increasingly insufficient to evaluate state-of-the-art T2V models. First, current evaluation dimensions, such as per-frame aesthetic quality and temporal consistency, are no longer able to differentiate state-of-the-art T2V models. Second, event-level temporal causality, which not only distinguishes video from other modalities but also constitutes a crucial component of world models, is severely underexplored in existing benchmarks. Third, existing benchmarks lack a systematic assessment of world knowledge, which are essential capabilities for building world models. To address these issues, we introduce VideoVerse, a comprehensive benchmark that focuses on evaluating whether a T2V model could understand complex temporal causality and world knowledge in the real world. We collect representative videos across diverse domains (e.g., natural landscapes, sports, indoor scenes, science fiction, chemical and physical experiments) and extract their event-level descriptions with inherent temporal causality, which are then rewritten into text-to-video prompts by independent annotators. For each prompt, we design a suite of binary evaluation questions from the perspective of dynamic and static properties, with a total of ten carefully defined evaluation dimensions. In total, our VideoVerse comprises 300 carefully curated prompts, involving 815 events and 793 binary evaluation questions. Consequently, a human preference aligned QA-based evaluation pipeline is developed by using modern vision-language models. Finally, we perform a systematic evaluation of state-of-the-art open-source and closed-source T2V models on VideoVerse, providing in-depth analysis on how far the current T2V generators are from world models.
Authors:Ihab Tabbara, Yuxuan Yang, Ahmad Hamzeh, Maxwell Astafyev, Hussein Sibai
Abstract:
Ensuring safety of vision-based control systems remains a major challenge hindering their deployment in critical settings. Safety filters have gained increased interest as effective tools for ensuring the safety of classical control systems, but their applications in vision-based control settings have so far been limited. Pre-trained vision models (PVRs) have been shown to be effective perception backbones for control in various robotics domains. In this paper, we are interested in examining their effectiveness when used for designing vision-based safety filters. We use them as backbones for classifiers defining failure sets, for Hamilton-Jacobi (HJ) reachability-based safety filters, and for latent world models. We discuss the trade-offs between training from scratch, fine-tuning, and freezing the PVRs when training the models they are backbones for. We also evaluate whether one of the PVRs is superior across all tasks, evaluate whether learned world models or Q-functions are better for switching decisions to safe policies, and discuss practical considerations for deploying these PVRs on resource-constrained devices.
Authors:Quanjian Song, Xinyu Wang, Donghao Zhou, Jingyu Lin, Cunjian Chen, Yue Ma, Xiu Li
Abstract:
Generation-driven world models create immersive virtual environments but suffer slow inference due to the iterative nature of diffusion models. While recent advances have improved diffusion model efficiency, directly applying these techniques to world models introduces limitations such as quality degradation. In this paper, we present HERO, a training-free hierarchical acceleration framework tailored for efficient world models. Owing to the multi-modal nature of world models, we identify a feature coupling phenomenon, wherein shallow layers exhibit high temporal variability, while deeper layers yield more stable feature representations. Motivated by this, HERO adopts hierarchical strategies to accelerate inference: (i) In shallow layers, a patch-wise refresh mechanism efficiently selects tokens for recomputation. With patch-wise sampling and frequency-aware tracking, it avoids extra metric computation and remain compatible with FlashAttention. (ii) In deeper layers, a linear extrapolation scheme directly estimates intermediate features. This completely bypasses the computations in attention modules and feed-forward networks. Our experiments show that HERO achieves a 1.73$\times$ speedup with minimal quality degradation, significantly outperforming existing diffusion acceleration methods.
Authors:Wenzheng Shu, Yanxiang Zeng, Yongxiang Tang, Teng Sha, Ning Luo, Yanhua Cheng, Xialong Liu, Fan Zhou, Peng Jiang
Abstract:
Offline reinforcement learning (RL) has emerged as a prevalent and effective methodology for real-world recommender systems, enabling learning policies from historical data and capturing user preferences. In offline RL, reward shaping encounters significant challenges, with past efforts to incorporate prior strategies for uncertainty to improve world models or penalize underexplored state-action pairs. Despite these efforts, a critical gap remains: the simultaneous balancing of intrinsic biases in world models and the diversity of policy recommendations. To address this limitation, we present an innovative offline RL framework termed Reallocated Reward for Recommender Systems (R3S). By integrating inherent model uncertainty to tackle the intrinsic fluctuations in reward predictions, we boost diversity for decision-making to align with a more interactive paradigm, incorporating extra penalizers with decay that deter actions leading to diminished state variety at both local and global scales. The experimental results demonstrate that R3S improves the accuracy of world models and efficiently harmonizes the heterogeneous preferences of the users.
Authors:Guillaume Levy, Cedric Colas, Pierre-Yves Oudeyer, Thomas Carta, Clement Romac
Abstract:
Large Language Models (LLMs) possess general world knowledge but often struggle to generate precise predictions in structured, domain-specific contexts such as simulations. These limitations arise from their inability to ground their broad, unstructured understanding in specific environments. To address this, we present WorldLLM, a framework that enhances LLM-based world modeling by combining Bayesian inference and autonomous active exploration with reinforcement learning. WorldLLM leverages the in-context learning abilities of LLMs to guide an LLM-based world model's predictions using natural language hypotheses given in its prompt. These hypotheses are iteratively refined through a Bayesian inference framework that leverages a second LLM as the proposal distribution given collected evidence. This evidence is collected using a curiosity-driven reinforcement learning policy that explores the environment to find transitions with a low log-likelihood under our LLM-based predictive model using the current hypotheses. By alternating between refining hypotheses and collecting new evidence, our framework autonomously drives continual improvement of the predictions. Our experiments demonstrate the effectiveness of WorldLLM in a textual game environment that requires agents to manipulate and combine objects. The framework not only enhances predictive accuracy, but also generates human-interpretable theories of environment dynamics.
Authors:Taiye Chen, Xun Hu, Zihan Ding, Chi Jin
Abstract:
Foundational world models must be both interactive and preserve spatiotemporal coherence for effective future planning with action choices. However, present models for long video generation have limited inherent world modeling capabilities due to two main challenges: compounding errors and insufficient memory mechanisms. We enhance image-to-video models with interactive capabilities through additional action conditioning and autoregressive framework, and reveal that compounding error is inherently irreducible in autoregressive video generation, while insufficient memory mechanism leads to incoherence of world models. We propose video retrieval augmented generation (VRAG) with explicit global state conditioning, which significantly reduces long-term compounding errors and increases spatiotemporal consistency of world models. In contrast, naive autoregressive generation with extended context windows and retrieval-augmented generation prove less effective for video generation, primarily due to the limited in-context learning capabilities of current video models. Our work illuminates the fundamental challenges in video world models and establishes a comprehensive benchmark for improving video generation models with internal world modeling capabilities.
Authors:Dimitri Ognibene, Sabrina Patania, Luca Annese, Cansu Koyuturk, Franca Garzotto, Giuseppe Vizzari, Azzurra Ruggeri, Simone Colombani
Abstract:
Multimodal information-gathering settings, where users collaborate with AI in dynamic environments, are increasingly common. These involve complex processes with textual and multimodal interactions, often requiring additional structural information via cost-incurring requests. AI helpers lack access to users' true goals, beliefs, and preferences and struggle to integrate diverse information effectively.
We propose a social continual learning framework for causal knowledge acquisition and collaborative decision-making. It focuses on autonomous agents learning through dialogues, question-asking, and interaction in open, partially observable environments. A key component is a natural language oracle that answers the agent's queries about environmental mechanisms and states, refining causal understanding while balancing exploration or learning, and exploitation or knowledge use.
Evaluation tasks inspired by developmental psychology emphasize causal reasoning and question-asking skills. They complement benchmarks by assessing the agent's ability to identify knowledge gaps, generate meaningful queries, and incrementally update reasoning. The framework also evaluates how knowledge acquisition costs are amortized across tasks within the same environment.
We propose two architectures: 1) a system combining Large Language Models (LLMs) with the ReAct framework and question-generation, and 2) an advanced system with a causal world model, symbolic, graph-based, or subsymbolic, for reasoning and decision-making. The latter builds a causal knowledge graph for efficient inference and adaptability under constraints. Challenges include integrating causal reasoning into ReAct and optimizing exploration and question-asking in error-prone scenarios. Beyond applications, this framework models developmental processes combining causal reasoning, question generation, and social learning.
Authors:Jesse Farebrother, Matteo Pirotta, Andrea Tirinzoni, Rémi Munos, Alessandro Lazaric, Ahmed Touati
Abstract:
Predictive models of the future are fundamental for an agent's ability to reason and plan. A common strategy learns a world model and unrolls it step-by-step at inference, where small errors can rapidly compound. Geometric Horizon Models (GHMs) offer a compelling alternative by directly making predictions of future states, avoiding cumulative inference errors. While GHMs can be conveniently learned by a generative analog to temporal difference (TD) learning, existing methods are negatively affected by bootstrapping predictions at train time and struggle to generate high-quality predictions at long horizons. This paper introduces Temporal Difference Flows (TD-Flow), which leverages the structure of a novel Bellman equation on probability paths alongside flow-matching techniques to learn accurate GHMs at over 5x the horizon length of prior methods. Theoretically, we establish a new convergence result and primarily attribute TD-Flow's efficacy to reduced gradient variance during training. We further show that similar arguments can be extended to diffusion-based methods. Empirically, we validate TD-Flow across a diverse set of domains on both generative metrics and downstream tasks including policy evaluation. Moreover, integrating TD-Flow with recent behavior foundation models for planning over pre-trained policies demonstrates substantial performance gains, underscoring its promise for long-horizon decision-making.
Authors:Xiang Li, Pengfei Li, Yupeng Zheng, Wei Sun, Yan Wang, Yilun Chen
Abstract:
Understanding world dynamics is crucial for planning in autonomous driving. Recent methods attempt to achieve this by learning a 3D occupancy world model that forecasts future surrounding scenes based on current observation. However, 3D occupancy labels are still required to produce promising results. Considering the high annotation cost for 3D outdoor scenes, we propose a semi-supervised vision-centric 3D occupancy world model, PreWorld, to leverage the potential of 2D labels through a novel two-stage training paradigm: the self-supervised pre-training stage and the fully-supervised fine-tuning stage. Specifically, during the pre-training stage, we utilize an attribute projection head to generate different attribute fields of a scene (e.g., RGB, density, semantic), thus enabling temporal supervision from 2D labels via volume rendering techniques. Furthermore, we introduce a simple yet effective state-conditioned forecasting module to recursively forecast future occupancy and ego trajectory in a direct manner. Extensive experiments on the nuScenes dataset validate the effectiveness and scalability of our method, and demonstrate that PreWorld achieves competitive performance across 3D occupancy prediction, 4D occupancy forecasting and motion planning tasks.
Authors:Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, Yann LeCun
Abstract:
Navigation is a fundamental skill of agents with visual-motor capabilities. We introduce a Navigation World Model (NWM), a controllable video generation model that predicts future visual observations based on past observations and navigation actions. To capture complex environment dynamics, NWM employs a Conditional Diffusion Transformer (CDiT), trained on a diverse collection of egocentric videos of both human and robotic agents, and scaled up to 1 billion parameters. In familiar environments, NWM can plan navigation trajectories by simulating them and evaluating whether they achieve the desired goal. Unlike supervised navigation policies with fixed behavior, NWM can dynamically incorporate constraints during planning. Experiments demonstrate its effectiveness in planning trajectories from scratch or by ranking trajectories sampled from an external policy. Furthermore, NWM leverages its learned visual priors to imagine trajectories in unfamiliar environments from a single input image, making it a flexible and powerful tool for next-generation navigation systems.
Authors:Felix J Binder, James Chua, Tomek Korbak, Henry Sleight, John Hughes, Robert Long, Ethan Perez, Miles Turpin, Owain Evans
Abstract:
Humans acquire knowledge by observing the external world, but also by introspection. Introspection gives a person privileged access to their current state of mind (e.g., thoughts and feelings) that is not accessible to external observers. Can LLMs introspect? We define introspection as acquiring knowledge that is not contained in or derived from training data but instead originates from internal states. Such a capability could enhance model interpretability. Instead of painstakingly analyzing a model's internal workings, we could simply ask the model about its beliefs, world models, and goals. More speculatively, an introspective model might self-report on whether it possesses certain internal states such as subjective feelings or desires and this could inform us about the moral status of these states. Such self-reports would not be entirely dictated by the model's training data.
We study introspection by finetuning LLMs to predict properties of their own behavior in hypothetical scenarios. For example, "Given the input P, would your output favor the short- or long-term option?" If a model M1 can introspect, it should outperform a different model M2 in predicting M1's behavior even if M2 is trained on M1's ground-truth behavior. The idea is that M1 has privileged access to its own behavioral tendencies, and this enables it to predict itself better than M2 (even if M2 is generally stronger).
In experiments with GPT-4, GPT-4o, and Llama-3 models (each finetuned to predict itself), we find that the model M1 outperforms M2 in predicting itself, providing evidence for introspection. Notably, M1 continues to predict its behavior accurately even after we intentionally modify its ground-truth behavior. However, while we successfully elicit introspection on simple tasks, we are unsuccessful on more complex tasks or those requiring out-of-distribution generalization.
Authors:Huanyu Li, Kun Lei, Sheng Zang, Kaizhe Hu, Yongyuan Liang, Bo An, Xiaoli Li, Huazhe Xu
Abstract:
Post-training algorithms based on deep reinforcement learning can push the limits of robotic models for specific objectives, such as generalizability, accuracy, and robustness. However, Intervention-requiring Failures (IR Failures) (e.g., a robot spilling water or breaking fragile glass) during real-world exploration happen inevitably, hindering the practical deployment of such a paradigm. To tackle this, we introduce Failure-Aware Offline-to-Online Reinforcement Learning (FARL), a new paradigm minimizing failures during real-world reinforcement learning. We create FailureBench, a benchmark that incorporates common failure scenarios requiring human intervention, and propose an algorithm that integrates a world-model-based safety critic and a recovery policy trained offline to prevent failures during online exploration. Extensive simulation and real-world experiments demonstrate the effectiveness of FARL in significantly reducing IR Failures while improving performance and generalization during online reinforcement learning post-training. FARL reduces IR Failures by 73.1% while elevating performance by 11.3% on average during real-world RL post-training. Videos and code are available at https://failure-aware-rl.github.io.
Authors:Changhao Song, Yazhou Zhang, Hui Gao, Chang Yang, Peng Zhang
Abstract:
World Models serve as tools for understanding the current state of the world and predicting its future dynamics, with broad application potential across numerous fields. As a key component of world knowledge, emotion significantly influences human decision-making. While existing Large Language Models (LLMs) have shown preliminary capability in capturing world knowledge, they primarily focus on modeling physical-world regularities and lack systematic exploration of emotional factors. In this paper, we first demonstrate the importance of emotion in understanding the world by showing that removing emotionally relevant information degrades reasoning performance. Inspired by theory of mind, we further propose a Large Emotional World Model (LEWM). Specifically, we construct the Emotion-Why-How (EWH) dataset, which integrates emotion into causal relationships and enables reasoning about why actions occur and how emotions drive future world states. Based on this dataset, LEWM explicitly models emotional states alongside visual observations and actions, allowing the world model to predict both future states and emotional transitions. Experimental results show that LEWM more accurately predicts emotion-driven social behaviors while maintaining comparable performance to general world models on basic tasks.
Authors:Duy-Tung Pham, An The Nguyen, Viet-Hoang Tran, Nhan-Phu Chung, Xin T. Tong, Tan M. Nguyen, Thieu N. Vo
Abstract:
This paper investigates the dynamical properties of tokens in pre-trained Transformer models and explores their application to improving Transformers. To this end, we analyze the dynamical system governing the continuous-time limit of the pre-trained model and characterize the asymptotic behavior of its solutions. Specifically, we characterize when tokens move closer to or farther from one another over time, depending on the model parameters. We provide sufficient conditions, based on these parameters, to identify scenarios where tokens either converge to zero or diverge to infinity. Unlike prior works, our conditions are broader in scope and more applicable to real-world models. Furthermore, we investigate how different forms of positional encoding -- specifically absolute and rotary -- affect these dynamical regimes. Empirical evidence reveals that the convergence scenario adversely impacts model performance. Motivated by these insights, we propose simple refinements to Transformer architectures that mitigate convergence behavior in models with absolute or rotary positional encoding. These findings support theoretical foundations and design principles for improving Transformer models.
Authors:Jayden Teoh, Manan Tomar, Kwangjun Ahn, Edward S. Hu, Pratyusha Sharma, Riashat Islam, Alex Lamb, John Langford
Abstract:
Transformers replace recurrence with a memory that grows with sequence length and self-attention that enables ad-hoc look ups over past tokens. Consequently, they lack an inherent incentive to compress history into compact latent states with consistent transition rules. This often leads to learning solutions that generalize poorly. We introduce Next-Latent Prediction (NextLat), which extends standard next-token training with self-supervised predictions in the latent space. Specifically, NextLat trains a transformer to learn latent representations that are predictive of its next latent state given the next output token. Theoretically, we show that these latents provably converge to belief states, compressed information of the history necessary to predict the future. This simple auxiliary objective also injects a recurrent inductive bias into transformers, while leaving their architecture, parallel training, and inference unchanged. NextLat effectively encourages the transformer to form compact internal world models with its own belief states and transition dynamics -- a crucial property absent in standard next-token prediction transformers. Empirically, across benchmarks targeting core sequence modeling competencies -- world modeling, reasoning, planning, and language modeling -- NextLat demonstrates significant gains over standard next-token training in downstream accuracy, representation compression, and lookahead planning. NextLat stands as a simple and efficient paradigm for shaping transformer representations toward stronger generalization.
Authors:R. Khorrambakht, Joaquim Ortiz-Haro, Joseph Amigo, Omar Mostafa, Daniel Dugas, Franziska Meier, Ludovic Righetti
Abstract:
Robots must understand their environment from raw sensory inputs and reason about the consequences of their actions in it to solve complex tasks. Behavior Cloning (BC) leverages task-specific human demonstrations to learn this knowledge as end-to-end policies. However, these policies are difficult to transfer to new tasks, and generating training data is challenging because it requires careful demonstrations and frequent environment resets. In contrast to such policy-based view, in this paper we take a model-based approach where we collect a few hours of unstructured easy-to-collect play data to learn an action-conditioned visual world model, a diffusion-based action sampler, and optionally a reward model. The world model -- in combination with the action sampler and a reward model -- is then used to optimize long sequences of actions with a Monte Carlo Tree Search (MCTS) planner. The resulting plans are executed on the robot via a zeroth-order Model Predictive Controller (MPC). We show that the action sampler mitigates hallucinations of the world model during planning and validate our approach on 3 real-world robotic tasks with varying levels of planning and modeling complexity. Our experiments support the hypothesis that planning leads to a significant improvement over BC baselines on a standard manipulation test environment.
Authors:Kai Mei, Jiang Guo, Shuaichen Chang, Mingwen Dong, Dongkyu Lee, Xing Niu, Jiarong Jiang
Abstract:
Large Language Models (LLMs) can serve as world models to enhance agent decision-making in digital environments by simulating future states and predicting action outcomes, potentially eliminating costly trial-and-error exploration. However, this capability is fundamentally limited by LLMs' tendency toward hallucination and their reliance on static training knowledge, which can lead to compounding errors that inhibit long-horizon simulations. To systematically investigate whether LLMs are appropriate for world modeling, we probe two core capabilities of world models--future state prediction and reward estimation--through three tasks: next-state identification, full-procedure planning alignment, and milestone transition recognition. Our analysis shows that while LLMs effectively capture immediate next states and identify meaningful state transitions, their performance rapidly degrades in full-procedure planning. This highlights LLMs' limitations in reliably modeling environment dynamics over long horizons. To address these limitations, we propose the Retrieval-augmented World Model (R-WoM), which grounds LLM simulations by incorporating factual, up-to-date knowledge retrieved from external tutorials. Experiments show that R-WoM achieves substantial improvements of up to 25.3% (OSWorld) and 18.1% (WebArena) compared to baselines, with particular advantages in longer-horizon simulations.
Authors:Wolfgang Lehrach, Daniel Hennes, Miguel Lazaro-Gredilla, Xinghua Lou, Carter Wendelken, Zun Li, Antoine Dedieu, Jordi Grau-Moya, Marc Lanctot, Atil Iscen, John Schultz, Marcus Chiam, Ian Gemp, Piotr Zielinski, Satinder Singh, Kevin P. Murphy
Abstract:
Large Language Models (LLMs) reasoning abilities are increasingly being applied to classical board and card games, but the dominant approach -- involving prompting for direct move generation -- has significant drawbacks. It relies on the model's implicit fragile pattern-matching capabilities, leading to frequent illegal moves and strategically shallow play. Here we introduce an alternative approach: We use the LLM to translate natural language rules and game trajectories into a formal, executable world model represented as Python code. This generated model -- comprising functions for state transition, legal move enumeration, and termination checks -- serves as a verifiable simulation engine for high-performance planning algorithms like Monte Carlo tree search (MCTS). In addition, we prompt the LLM to generate heuristic value functions (to make MCTS more efficient), and inference functions (to estimate hidden states in imperfect information games). Our method offers three distinct advantages compared to directly using the LLM as a policy: (1) Verifiability: The generated CWM serves as a formal specification of the game's rules, allowing planners to algorithmically enumerate valid actions and avoid illegal moves, contingent on the correctness of the synthesized model; (2) Strategic Depth: We combine LLM semantic understanding with the deep search power of classical planners; and (3) Generalization: We direct the LLM to focus on the meta-task of data-to-code translation, enabling it to adapt to new games more easily. We evaluate our agent on 10 different games, of which 4 are novel and created for this paper. 5 of the games are fully observed (perfect information), and 5 are partially observed (imperfect information). We find that our method outperforms or matches Gemini 2.5 Pro in 9 out of the 10 considered games.
Authors:Harry Robertshaw, Han-Ru Wu, Alejandro Granados, Thomas C Booth
Abstract:
Autonomous navigation for mechanical thrombectomy (MT) remains a critical challenge due to the complexity of vascular anatomy and the need for precise, real-time decision-making. Reinforcement learning (RL)-based approaches have demonstrated potential in automating endovascular navigation, but current methods often struggle with generalization across multiple patient vasculatures and long-horizon tasks. We propose a world model for autonomous endovascular navigation using TD-MPC2, a model-based RL algorithm. We trained a single RL agent across multiple endovascular navigation tasks in ten real patient vasculatures, comparing performance against the state-of-the-art Soft Actor-Critic (SAC) method. Results indicate that TD-MPC2 significantly outperforms SAC in multi-task learning, achieving a 65% mean success rate compared to SAC's 37%, with notable improvements in path ratio. TD-MPC2 exhibited increased procedure times, suggesting a trade-off between success rate and execution speed. These findings highlight the potential of world models for improving autonomous endovascular navigation and lay the foundation for future research in generalizable AI-driven robotic interventions.
Authors:Ping Liu, Rajat Arora, Xiao Shi, Benjamin Le, Qianqi Shen, Jianqiang Shen, Chengming Jiang, Nikita Zhiltsov, Priya Bannur, Yidan Zhu, Liming Dong, Haichao Wei, Qi Guo, Luke Simon, Liangjie Hong, Wenjing Zhang
Abstract:
LinkedIn, one of the world's largest platforms for professional networking and job seeking, encounters various modeling challenges in building recommendation systems for its job matching product, including cold-start, filter bubbles, and biases affecting candidate-job matching. To address these, we developed the STAR (Signal Integration for Talent And Recruiters) system, leveraging the combined strengths of Large Language Models (LLMs) and Graph Neural Networks (GNNs). LLMs excel at understanding textual data, such as member profiles and job postings, while GNNs capture intricate relationships and mitigate cold-start issues through network effects. STAR integrates diverse signals by uniting LLM and GNN capabilities with industrial-scale paradigms including adaptive sampling and version management. It provides an end-to-end solution for developing and deploying embeddings in large-scale recommender systems. Our key contributions include a robust methodology for building embeddings in industrial applications, a scalable GNN-LLM integration for high-performing recommendations, and practical insights for real-world model deployment.
Authors:Nadav Kunievsky, James A. Evans
Abstract:
Understanding whether large language models (LLMs) possess a world model-a structured understanding of the world that supports generalization beyond surface-level patterns-is central to assessing their reliability, especially in high-stakes applications. We propose a formal framework for evaluating whether an LLM exhibits a sufficiently robust world model, defined as producing consistent outputs across semantically equivalent prompts while distinguishing between prompts that express different intents. We introduce a new evaluation approach to measure this that decomposes model response variability into three components: variability due to user purpose, user articulation, and model instability. An LLM with a strong world model should attribute most of the variability in its responses to changes in foundational purpose rather than superficial changes in articulation. This approach allows us to quantify how much of a model's behavior is semantically grounded rather than driven by model instability or alternative wording. We apply this framework to evaluate LLMs across diverse domains. Our results show how larger models attribute a greater share of output variability to changes in user purpose, indicating a more robust world model. This improvement is not uniform, however: larger models do not consistently outperform smaller ones across all domains, and their advantage in robustness is often modest. These findings highlight the importance of moving beyond accuracy-based benchmarks toward semantic diagnostics that more directly assess the structure and stability of a model's internal understanding of the world.
Authors:Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba, Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas
Abstract:
A major challenge for modern AI is to learn to understand the world and learn to act largely by observation. This paper explores a self-supervised approach that combines internet-scale video data with a small amount of interaction data (robot trajectories), to develop models capable of understanding, predicting, and planning in the physical world. We first pre-train an action-free joint-embedding-predictive architecture, V-JEPA 2, on a video and image dataset comprising over 1 million hours of internet video. V-JEPA 2 achieves strong performance on motion understanding (77.3 top-1 accuracy on Something-Something v2) and state-of-the-art performance on human action anticipation (39.7 recall-at-5 on Epic-Kitchens-100) surpassing previous task-specific models. Additionally, after aligning V-JEPA 2 with a large language model, we demonstrate state-of-the-art performance on multiple video question-answering tasks at the 8 billion parameter scale (e.g., 84.0 on PerceptionTest, 76.9 on TempCompass). Finally, we show how self-supervised learning can be applied to robotic planning tasks by post-training a latent action-conditioned world model, V-JEPA 2-AC, using less than 62 hours of unlabeled robot videos from the Droid dataset. We deploy V-JEPA 2-AC zero-shot on Franka arms in two different labs and enable picking and placing of objects using planning with image goals. Notably, this is achieved without collecting any data from the robots in these environments, and without any task-specific training or reward. This work demonstrates how self-supervised learning from web-scale data and a small amount of robot interaction data can yield a world model capable of planning in the physical world.
Authors:Samuel Holt, Max Ruiz Luyten, Thomas Pouplin, Mihaela van der Schaar
Abstract:
Large Language Models (LLMs) are increasingly capable but often require significant guidance or extensive interaction history to perform effectively in complex, interactive environments. Existing methods may struggle with adapting to new information or efficiently utilizing past experiences for multi-step reasoning without fine-tuning. We introduce a novel LLM agent framework that enhances planning capabilities through in-context learning, facilitated by atomic fact augmentation and a recursive lookahead search. Our agent learns to extract task-critical ``atomic facts'' from its interaction trajectories. These facts dynamically augment the prompts provided to LLM-based components responsible for action proposal, latent world model simulation, and state-value estimation. Planning is performed via a depth-limited lookahead search, where the LLM simulates potential trajectories and evaluates their outcomes, guided by the accumulated facts and interaction history. This approach allows the agent to improve its understanding and decision-making online, leveraging its experience to refine its behavior without weight updates. We provide a theoretical motivation linking performance to the quality of fact-based abstraction and LLM simulation accuracy. Empirically, our agent demonstrates improved performance and adaptability on challenging interactive tasks, achieving more optimal behavior as it accumulates experience, showcased in tasks such as TextFrozenLake and ALFWorld.
Authors:Hongyan Zhi, Peihao Chen, Siyuan Zhou, Yubo Dong, Quanxi Wu, Lei Han, Mingkui Tan
Abstract:
Manipulation has long been a challenging task for robots, while humans can effortlessly perform complex interactions with objects, such as hanging a cup on the mug rack. A key reason is the lack of a large and uniform dataset for teaching robots manipulation skills. Current robot datasets often record robot action in different action spaces within a simple scene. This hinders the robot to learn a unified and robust action representation for different robots within diverse scenes. Observing how humans understand a manipulation task, we find that understanding how the objects should move in the 3D space is a critical clue for guiding actions. This clue is embodiment-agnostic and suitable for both humans and different robots. Motivated by this, we aim to learn a 3D flow world model from both human and robot manipulation data. This model predicts the future movement of the interacting objects in 3D space, guiding action planning for manipulation. Specifically, we synthesize a large-scale 3D optical flow dataset, named ManiFlow-110k, through a moving object auto-detect pipeline. A video diffusion-based world model then learns manipulation physics from these data, generating 3D optical flow trajectories conditioned on language instructions. With the generated 3D object optical flow, we propose a flow-guided rendering mechanism, which renders the predicted final state and leverages GPT-4o to assess whether the predicted flow aligns with the task description. This equips the robot with a closed-loop planning ability. Finally, we consider the predicted 3D optical flow as constraints for an optimization policy to determine a chunk of robot actions for manipulation. Extensive experiments demonstrate strong generalization across diverse robotic manipulation tasks and reliable cross-embodiment adaptation without hardware-specific training.
Authors:Yifu Qiu, Yftah Ziser, Anna Korhonen, Shay B. Cohen, Edoardo M. Ponti
Abstract:
To what extent do vision-and-language foundation models possess a realistic world model (observation $\times$ action $\rightarrow$ observation) and a dynamics model (observation $\times$ observation $\rightarrow$ action), when actions are expressed through language? While open-source foundation models struggle with both, we find that fine-tuning them to acquire a dynamics model through supervision is significantly easier than acquiring a world model. In turn, dynamics models can be used to bootstrap world models through two main strategies: 1) weakly supervised learning from synthetic data and 2) inference time verification. Firstly, the dynamics model can annotate actions for unlabelled pairs of video frame observations to expand the training data. We further propose a new objective, where image tokens in observation pairs are weighted by their importance, as predicted by a recognition model. Secondly, the dynamics models can assign rewards to multiple samples of the world model to score them, effectively guiding search at inference time. We evaluate the world models resulting from both strategies through the task of action-centric image editing on Aurora-Bench. Our best model achieves a performance competitive with state-of-the-art image editing models, improving on them by a margin of $15\%$ on real-world subsets according to GPT4o-as-judge, and achieving the best average human evaluation across all subsets of Aurora-Bench.
Authors:Hao Tang, Kevin Ellis, Suhas Lohit, Michael J. Jones, Moitreya Chatterjee
Abstract:
The task of estimating the world model describing the dynamics of a real world process assumes immense importance for anticipating and preparing for future outcomes. For applications such as video surveillance, robotics applications, autonomous driving, etc. this objective entails synthesizing plausible visual futures, given a few frames of a video to set the visual context. Towards this end, we propose ProgGen, which undertakes the task of video frame prediction by representing the dynamics of the video using a set of neuro-symbolic, human-interpretable set of states (one per frame) by leveraging the inductive biases of Large (Vision) Language Models (LLM/VLM). In particular, ProgGen utilizes LLM/VLM to synthesize programs: (i) to estimate the states of the video, given the visual context (i.e. the frames); (ii) to predict the states corresponding to future time steps by estimating the transition dynamics; (iii) to render the predicted states as visual RGB-frames. Empirical evaluations reveal that our proposed method outperforms competing techniques at the task of video frame prediction in two challenging environments: (i) PhyWorld (ii) Cart Pole. Additionally, ProgGen permits counter-factual reasoning and interpretable video generation attesting to its effectiveness and generalizability for video generation tasks.
Authors:Gaël Gendron, Jože M. Rožanec, Michael Witbrock, Gillian Dobbie
Abstract:
Causal world models are systems that can answer counterfactual questions about an environment of interest, i.e. predict how it would have evolved if an arbitrary subset of events had been realized differently. It requires understanding the underlying causes behind chains of events and conducting causal inference for arbitrary unseen distributions. So far, this task eludes foundation models, notably large language models (LLMs), which do not have demonstrated causal reasoning capabilities beyond the memorization of existing causal relationships. Furthermore, evaluating counterfactuals in real-world applications is challenging since only the factual world is observed, limiting evaluation to synthetic datasets. We address these problems by explicitly extracting and modeling causal relationships and propose the Causal Cartographer framework. First, we introduce a graph retrieval-augmented generation agent tasked to retrieve causal relationships from data. This approach allows us to construct a large network of real-world causal relationships that can serve as a repository of causal knowledge and build real-world counterfactuals. In addition, we create a counterfactual reasoning agent constrained by causal relationships to perform reliable step-by-step causal inference. We show that our approach can extract causal knowledge and improve the robustness of LLMs for causal reasoning tasks while reducing inference costs and spurious correlations.
Authors:Wei Liu, Huihua Zhao, Chenran Li, Joydeep Biswas, Soha Pouya, Yan Chang
Abstract:
As robots are increasingly deployed in diverse application domains, generalizable cross-embodiment mobility policies are increasingly essential. While classical mobility stacks have proven effective on specific robot platforms, they pose significant challenges when scaling to new embodiments. Learning-based methods, such as imitation learning (IL) and reinforcement learning (RL), offer alternative solutions but suffer from covariate shift, sparse sampling in large environments, and embodiment-specific constraints.
This paper introduces COMPASS, a novel workflow for developing cross-embodiment mobility policies by integrating IL, residual RL, and policy distillation. We begin with IL on a mobile robot, leveraging easily accessible teacher policies to train a foundational model that combines a world model with a mobility policy. Building on this base, we employ residual RL to fine-tune embodiment-specific policies, exploiting pre-trained representations to improve sampling efficiency in handling various physical constraints and sensor modalities. Finally, policy distillation merges these embodiment-specialist policies into a single robust cross-embodiment policy.
We empirically demonstrate that COMPASS scales effectively across diverse robot platforms while maintaining adaptability to various environment configurations, achieving a generalist policy with a success rate approximately 5X higher than the pre-trained IL policy. The resulting framework offers an efficient, scalable solution for cross-embodiment mobility, enabling robots with different designs to navigate safely and efficiently in complex scenarios.
Authors:Feng Chen, Botian Xu, Pu Hua, Peiqi Duan, Yanchao Yang, Yi Ma, Huazhe Xu
Abstract:
Due to the difficulty of acquiring extensive real-world data, robot simulation has become crucial for parallel training and sim-to-real transfer, highlighting the importance of scalable simulated robotic tasks. Foundation models have demonstrated impressive capacities in autonomously generating feasible robotic tasks. However, this new paradigm underscores the challenge of adequately evaluating these autonomously generated tasks. To address this, we propose a comprehensive evaluation framework tailored to generative simulations. Our framework segments evaluation into three core aspects: quality, diversity, and generalization. For single-task quality, we evaluate the realism of the generated task and the completeness of the generated trajectories using large language models and vision-language models. In terms of diversity, we measure both task and data diversity through text similarity of task descriptions and world model loss trained on collected task trajectories. For task-level generalization, we assess the zero-shot generalization ability on unseen tasks of a policy trained with multiple generated tasks. Experiments conducted on three representative task generation pipelines demonstrate that the results from our framework are highly consistent with human evaluations, confirming the feasibility and validity of our approach. The findings reveal that while metrics of quality and diversity can be achieved through certain methods, no single approach excels across all metrics, suggesting a need for greater focus on balancing these different metrics. Additionally, our analysis further highlights the common challenge of low generalization capability faced by current works. Our anonymous website: https://sites.google.com/view/evaltasks.
Authors:Sijia li, Xinran Li, Shibo Chen, Jun Zhang
Abstract:
Offline multi-agent reinforcement learning (MARL) aims to solve cooperative decision-making problems in multi-agent systems using pre-collected datasets. Existing offline MARL methods primarily constrain training within the dataset distribution, resulting in overly conservative policies that struggle to generalize beyond the support of the data. While model-based approaches offer a promising solution by expanding the original dataset with synthetic data generated from a learned world model, the high dimensionality, non-stationarity, and complexity of multi-agent systems make it challenging to accurately estimate the transitions and reward functions in offline MARL. Given the difficulty of directly modeling joint dynamics, we propose a local-to-global (LOGO) world model, a novel framework that leverages local predictions-which are easier to estimate-to infer global state dynamics, thus improving prediction accuracy while implicitly capturing agent-wise dependencies. Using the trained world model, we generate synthetic data to augment the original dataset, expanding the effective state-action space. To ensure reliable policy learning, we further introduce an uncertainty-aware sampling mechanism that adaptively weights synthetic data by prediction uncertainty, reducing approximation error propagation to policies. In contrast to conventional ensemble-based methods, our approach requires only an additional encoder for uncertainty estimation, significantly reducing computational overhead while maintaining accuracy. Extensive experiments across 8 scenarios against 8 baselines demonstrate that our method surpasses state-of-the-art baselines on standard offline MARL benchmarks, establishing a new model-based baseline for generalizable offline multi-agent learning.
Authors:Guo Ye, Zexi Zhang, Xu Zhao, Shang Wu, Haoran Lu, Shihan Lu, Han Liu
Abstract:
Vision-Language-Action (VLA) models have shown remarkable generalization by mapping web-scale knowledge to robotic control, yet they remain blind to physical contact. Consequently, they struggle with contact-rich manipulation tasks that require reasoning about force, texture, and slip. While some approaches incorporate low-dimensional tactile signals, they fail to capture the high-resolution dynamics essential for such interactions. To address this limitation, we introduce DreamTacVLA, a framework that grounds VLA models in contact physics by learning to feel the future. Our model adopts a hierarchical perception scheme in which high-resolution tactile images serve as micro-vision inputs coupled with wrist-camera local vision and third-person macro vision. To reconcile these multi-scale sensory streams, we first train a unified policy with a Hierarchical Spatial Alignment (HSA) loss that aligns tactile tokens with their spatial counterparts in the wrist and third-person views. To further deepen the model's understanding of fine-grained contact dynamics, we finetune the system with a tactile world model that predicts future tactile signals. To mitigate tactile data scarcity and the wear-prone nature of tactile sensors, we construct a hybrid large-scale dataset sourced from both high-fidelity digital twin and real-world experiments. By anticipating upcoming tactile states, DreamTacVLA acquires a rich model of contact physics and conditions its actions on both real observations and imagined consequences. Across contact-rich manipulation tasks, it outperforms state-of-the-art VLA baselines, achieving up to 95% success, highlighting the importance of understanding physical contact for robust, touch-aware robotic agents.
Authors:Yu He, Da Huang, Zhenyang Liu, Zixiao Gu, Qiang Sun, Guangnan Ye, Yanwei Fu
Abstract:
Zero-shot object navigation (ZSON) requires a robot to locate a target object in a previously unseen environment without relying on pre-built maps or task-specific training. However, existing ZSON methods often struggle in realistic and cluttered environments, particularly when the scene contains heavy occlusions, unknown risks, or dynamically moving target objects. To address these challenges, we propose \textbf{Schrödinger's Navigator}, a navigation framework inspired by Schrödinger's thought experiment on uncertainty. The framework treats unobserved space as a set of plausible future worlds and reasons over them before acting. Conditioned on egocentric visual inputs and three candidate trajectories, a trajectory-conditioned 3D world model imagines future observations along each path. This enables the agent to see beyond occlusions and anticipate risks in unseen regions without requiring extra detours or dense global mapping. The imagined 3D observations are fused into the navigation map and used to update a value map. These updates guide the policy toward trajectories that avoid occlusions, reduce exposure to uncertain space, and better track moving targets. Experiments on a Go2 quadruped robot across three challenging scenarios, including severe static occlusions, unknown risks, and dynamically moving targets, show that Schrödinger's Navigator consistently outperforms strong ZSON baselines in self-localization, object localization, and overall Success Rate in occlusion-heavy environments. These results demonstrate the effectiveness of trajectory-conditioned 3D imagination in enabling robust zero-shot object navigation.
Authors:Byungjun Kim, Taeksoo Kim, Junyoung Lee, Hanbyul Joo
Abstract:
Recent progress in 3D reconstruction has made it easy to create realistic digital twins from everyday environments. However, current digital twins remain largely static and are limited to navigation and view synthesis without embodied interactivity. To bridge this gap, we introduce Dexterous World Model (DWM), a scene-action-conditioned video diffusion framework that models how dexterous human actions induce dynamic changes in static 3D scenes. Given a static 3D scene rendering and an egocentric hand motion sequence, DWM generates temporally coherent videos depicting plausible human-scene interactions. Our approach conditions video generation on (1) static scene renderings following a specified camera trajectory to ensure spatial consistency, and (2) egocentric hand mesh renderings that encode both geometry and motion cues to model action-conditioned dynamics directly. To train DWM, we construct a hybrid interaction video dataset. Synthetic egocentric interactions provide fully aligned supervision for joint locomotion and manipulation learning, while fixed-camera real-world videos contribute diverse and realistic object dynamics. Experiments demonstrate that DWM enables realistic and physically plausible interactions, such as grasping, opening, and moving objects, while maintaining camera and scene consistency. This framework represents a first step toward video diffusion-based interactive digital twins and enables embodied simulation from egocentric actions.
Authors:Baptiste Bonin, Maxime Heuillet, Audrey Durand
Abstract:
Modeling user preferences across domains remains a key challenge in slate recommendation (i.e. recommending an ordered sequence of items) research. We investigate how Large Language Models (LLM) can effectively act as world models of user preferences through pairwise reasoning over slates. We conduct an empirical study involving several LLMs on three tasks spanning different datasets. Our results reveal relationships between task performance and properties of the preference function captured by LLMs, hinting towards areas for improvement and highlighting the potential of LLMs as world models in recommender systems.
Authors:Corban Rivera, Grayson Byrd, Meghan Booker, Bethany Kemp, Allison Gaines, Emma Holmes, James Uplinger, Celso M de Melo, David Handelman
Abstract:
Coordinating heterogeneous robot teams from free-form natural-language instructions is hard. Language-only planners struggle with long-horizon coordination and hallucination, while purely formal methods require closed-world models. We present FLEET, a hybrid decentralized framework that turns language into optimized multi-robot schedules. An LLM front-end produces (i) a task graph with durations and precedence and (ii) a capability-aware robot--task fitness matrix; a formal back-end solves a makespan-minimization problem while the underlying robots execute their free-form subtasks with agentic closed-loop control. Across multiple free-form language-guided autonomy coordination benchmarks, FLEET improves success over state of the art generative planners on two-agent teams across heterogeneous tasks. Ablations show that mixed integer linear programming (MILP) primarily improves temporal structure, while LLM-derived fitness is decisive for capability-coupled tasks; together they deliver the highest overall performance. We demonstrate the translation to real world challenges with hardware trials using a pair of quadruped robots with disjoint capabilities.
Authors:Eric R. Damm, Thomas M. Howard
Abstract:
Mobile ground robots lacking prior knowledge of an environment must rely on sensor data to develop a model of their surroundings. In these scenarios, consistent identification of obstacles and terrain features can be difficult due to noise and algorithmic shortcomings, which can make it difficult for motion planning systems to generate safe motions. One particular difficulty to overcome is when regions of the cost map switch between being marked as obstacles and free space through successive planning cycles. One potential solution to this, which we refer to as Valid in Every Hypothesis (VEH), is for the planning system to plan motions that are guaranteed to be safe through a history of world models. Another approach is to track a history of world models, and adjust node costs according to the potential penalty of needing to reroute around previously hazardous areas. This work discusses three major iterations on this idea. The first iteration, called PEH, invokes a sub-search for every node expansion that crosses through a divergence point in the world models. The second and third iterations, called GEH and GEGRH respectively, defer the sub-search until after an edge expands into the goal region. GEGRH uses an additional step to revise the graph based on divergent nodes in each world. Initial results showed that, although PEH and GEH find more optimistic solutions than VEH, they are unable to generate solutions in less than one-second, which exceeds our requirements for field deployment. Analysis of results from a field experiment in an unstructured, off-road environment on a Clearpath Robotics Warthog UGV indicate that GEGRH finds lower cost trajectories and has faster average planning times than VEH. Compared to single-hypothesis (SH) search, where only the latest world model is considered, GEGRH generates more conservative plans with a small increase in average planning time.
Authors:Klemen Kotar, Wanhee Lee, Rahul Venkatesh, Honglin Chen, Daniel Bear, Jared Watrous, Simon Kim, Khai Loong Aw, Lilian Naing Chen, Stefan Stojanov, Kevin Feigelis, Imran Thobani, Alex Durango, Khaled Jedoui, Atlas Kazemian, Dan Yamins
Abstract:
We present Probabilistic Structure Integration (PSI), a system for learning richly controllable and flexibly promptable world models from data. PSI consists of a three-step cycle. The first step, Probabilistic prediction, involves building a probabilistic graphical model Psi of the data, in the form of a random-access autoregressive sequence model. Psi supports a complete set of learned conditional distributions describing the dependence of any variables in the data on any other set of variables. In step 2, Structure extraction, we show how to extract underlying low-dimensional properties in the data, corresponding to a diverse set of meaningful "intermediate structures", in a zero-shot fashion via causal inference on Psi. Step 3, Integration, completes the cycle by converting these structures into new token types that are then continually mixed back into the training diet as conditioning signals and prediction targets. Each such cycle augments the capabilities of Psi, both allowing it to model the underlying data better, and creating new control handles -- akin to an LLM-like universal prompting language. We train an instance of Psi on 1.4 trillion tokens of internet video data; we use it to perform a variety of useful video prediction and understanding inferences; we extract state-of-the-art optical flow, self-supervised depth and object segmentation; and we use these structures to support a full cycle of predictive improvements.
Authors:Romain Harang, Jason Naradowsky, Yaswitha Gujju, Yusuke Miyao
Abstract:
Large Language Models (LLMs) exhibit emergent capabilities in structured domains, suggesting they may implicitly internalize high-fidelity representations of world models. While probing techniques have shown promising signs of this in scientific and game-based settings, they rely on model-specific internal activations, which limit interpretability and generalizability. In this work, we propose a model-agnostic, state-based evaluation framework using chess as a benchmark to assess whether LLMs preserve the semantics of structured environments. Our method analyzes the downstream legal move distributions (state affordances) to estimate semantic fidelity between predicted and actual game states. This approach offers a more meaningful evaluation than conventional string-based metrics by aligning more closely with the strategic and rule-governed nature of chess. Experimental results demonstrate that our metrics capture deficiencies in state-tracking, highlighting limitations of LLMs in maintaining coherent internal models over long sequences. Our framework provides a robust tool for evaluating structured reasoning in LLMs without requiring internal model access, and generalizes to a wide class of symbolic environments.
Authors:Jian Li, Wan Han, Ning Lin, Yu-Liang Zhan, Ruizhi Chengze, Haining Wang, Yi Zhang, Hongsheng Liu, Zidong Wang, Fan Yu, Hao Sun
Abstract:
Understanding and reasoning about dynamics governed by physical laws through visual observation, akin to human capabilities in the real world, poses significant challenges. Currently, object-centric dynamic simulation methods, which emulate human behavior, have achieved notable progress but overlook two critical aspects: 1) the integration of physical knowledge into models. Humans gain physical insights by observing the world and apply this knowledge to accurately reason about various dynamic scenarios; 2) the validation of model adaptability across diverse scenarios. Real-world dynamics, especially those involving fluids and objects, demand models that not only capture object interactions but also simulate fluid flow characteristics. To address these gaps, we introduce SlotPi, a slot-based physics-informed object-centric reasoning model. SlotPi integrates a physical module based on Hamiltonian principles with a spatio-temporal prediction module for dynamic forecasting. Our experiments highlight the model's strengths in tasks such as prediction and Visual Question Answering (VQA) on benchmark and fluid datasets. Furthermore, we have created a real-world dataset encompassing object interactions, fluid dynamics, and fluid-object interactions, on which we validated our model's capabilities. The model's robust performance across all datasets underscores its strong adaptability, laying a foundation for developing more advanced world models.
Authors:Wenhao Hu, Xuexiang Wen, Xi Li, Gaoang Wang
Abstract:
Building an efficient and physically consistent world model from limited observations is a long standing challenge in vision and robotics. Many existing world modeling pipelines are based on implicit generative models, which are hard to train and often lack 3D or physical consistency. On the other hand, explicit 3D methods built from a single state often require multi-stage processing-such as segmentation, background completion, and inpainting-due to occlusions. To address this, we leverage two perturbed observations of the same scene under different object configurations. These dual states offer complementary visibility, alleviating occlusion issues during state transitions and enabling more stable and complete reconstruction. In this paper, we present DSG-World, a novel end-to-end framework that explicitly constructs a 3D Gaussian World model from Dual State observations. Our approach builds dual segmentation-aware Gaussian fields and enforces bidirectional photometric and semantic consistency. We further introduce a pseudo intermediate state for symmetric alignment and design collaborative co-pruning trategies to refine geometric completeness. DSG-World enables efficient real-to-simulation transfer purely in the explicit Gaussian representation space, supporting high-fidelity rendering and object-level scene manipulation without relying on dense observations or multi-stage pipelines. Extensive experiments demonstrate strong generalization to novel views and scene states, highlighting the effectiveness of our approach for real-world 3D reconstruction and simulation.
Authors:Alexis Bellot, Jonathan Richens, Tom Everitt
Abstract:
As the complexity of AI systems and their interactions with the world increases, generating explanations for their behaviour is important for safely deploying AI. For agents, the most natural abstractions for predicting behaviour attribute beliefs, intentions and goals to the system. If an agent behaves as if it has a certain goal or belief, then we can make reasonable predictions about how it will behave in novel situations, including those where comprehensive safety evaluations are untenable. How well can we infer an agent's beliefs from their behaviour, and how reliably can these inferred beliefs predict the agent's behaviour in novel situations? We provide a precise answer to this question under the assumption that the agent's behaviour is guided by a world model. Our contribution is the derivation of novel bounds on the agent's behaviour in new (unseen) deployment environments, which represent a theoretical limit for predicting intentional agents from behavioural data alone. We discuss the implications of these results for several research areas including fairness and safety.
Authors:Jonathan Richens, David Abel, Alexis Bellot, Tom Everitt
Abstract:
Are world models a necessary ingredient for flexible, goal-directed behaviour, or is model-free learning sufficient? We provide a formal answer to this question, showing that any agent capable of generalizing to multi-step goal-directed tasks must have learned a predictive model of its environment. We show that this model can be extracted from the agent's policy, and that increasing the agents performance or the complexity of the goals it can achieve requires learning increasingly accurate world models. This has a number of consequences: from developing safe and general agents, to bounding agent capabilities in complex environments, and providing new algorithms for eliciting world models from agents.
Authors:Runliang Niu, Jinglong Ji, Yi Chang, Qi Wang
Abstract:
The rapid progress of large language models (LLMs) has sparked growing interest in building Artificial General Intelligence (AGI) within Graphical User Interface (GUI) environments. However, existing GUI agents based on LLMs or vision-language models (VLMs) often fail to generalize to novel environments and rely heavily on manually curated, diverse datasets. To overcome these limitations, we introduce ScreenExplorer, a VLM trained via Group Relative Policy Optimization(GRPO) in real, dynamic, and open-ended GUI environments. Innovatively, we introduced a world-model-based curiosity reward function to help the agent overcome the cold-start phase of exploration. Additionally, distilling experience streams further enhances the model's exploration capabilities. Our training framework enhances model exploration in open GUI environments, with trained models showing better environmental adaptation and sustained exploration compared to static deployment models. Our findings offer a scalable pathway toward AGI systems with self-improving capabilities in complex interactive settings.
Authors:Kohei Hayashi, Masanori Koyama, Julian Jorge Andrade Guerreiro
Abstract:
Various world model frameworks are being developed today based on autoregressive frameworks that rely on discrete representations of actions and observations, and these frameworks are succeeding in constructing interactive generative models for the target environment of interest. Meanwhile, humans demonstrate remarkable generalization abilities to combine experiences in multiple environments to mentally simulate and learn to control agents in diverse environments. Inspired by this human capability, we introduce World modeling through Lie Action (WLA), an unsupervised framework that learns continuous latent action representations to simulate across environments. WLA learns a control interface with high controllability and predictive ability by simultaneously modeling the dynamics of multiple environments using Lie group theory and object-centric autoencoder. On synthetic benchmark and real-world datasets, we demonstrate that WLA can be trained using only video frames and, with minimal or no action labels, can quickly adapt to new environments with novel action sets.
Authors:Qixuan Li, Chao Wang, Zongjin He, Yan Peng
Abstract:
Text-to-3D asset generation has achieved significant optimization under the supervision of 2D diffusion priors. However, when dealing with compositional scenes, existing methods encounter several challenges: 1). failure to ensure that composite scene layouts comply with physical laws; 2). difficulty in accurately capturing the assets and relationships described in complex scene descriptions; 3). limited autonomous asset generation capabilities among layout approaches leveraging large language models (LLMs). To avoid these compromises, we propose a novel framework for compositional scene generation, PhiP-G, which seamlessly integrates generation techniques with layout guidance based on a world model. Leveraging LLM-based agents, PhiP-G analyzes the complex scene description to generate a scene graph, and integrating a multimodal 2D generation agent and a 3D Gaussian generation method for targeted assets creation. For the stage of layout, PhiP-G employs a physical pool with adhesion capabilities and a visual supervision agent, forming a world model for layout prediction and planning. Extensive experiments demonstrate that PhiP-G significantly enhances the generation quality and physical rationality of the compositional scenes. Notably, PhiP-G attains state-of-the-art (SOTA) performance in CLIP scores, achieves parity with the leading methods in generation quality as measured by the T$^3$Bench, and improves efficiency by 24x.
Authors:Zhilong Zhang, Ruifeng Chen, Junyin Ye, Yihao Sun, Pengyuan Wang, Jingcheng Pang, Kaiyuan Li, Tianshuo Liu, Haoxin Lin, Yang Yu, Zhi-Hua Zhou
Abstract:
World models play a crucial role in decision-making within embodied environments, enabling cost-free explorations that would otherwise be expensive in the real world. To facilitate effective decision-making, world models must be equipped with strong generalizability to support faithful imagination in out-of-distribution (OOD) regions and provide reliable uncertainty estimation to assess the credibility of the simulated experiences, both of which present significant challenges for prior scalable approaches. This paper introduces WHALE, a framework for learning generalizable world models, consisting of two key techniques: behavior-conditioning and retracing-rollout. Behavior-conditioning addresses the policy distribution shift, one of the primary sources of the world model generalization error, while retracing-rollout enables efficient uncertainty estimation without the necessity of model ensembles. These techniques are universal and can be combined with any neural network architecture for world model learning. Incorporating these two techniques, we present Whale-ST, a scalable spatial-temporal transformer-based world model with enhanced generalizability. We demonstrate the superiority of Whale-ST in simulation tasks by evaluating both value estimation accuracy and video generation fidelity. Additionally, we examine the effectiveness of our uncertainty estimation technique, which enhances model-based policy optimization in fully offline scenarios. Furthermore, we propose Whale-X, a 414M parameter world model trained on 970K trajectories from Open X-Embodiment datasets. We show that Whale-X exhibits promising scalability and strong generalizability in real-world manipulation scenarios using minimal demonstrations.
Authors:Abdullah Mustafa, Ryo Hanai, Ixchel Ramirez, Floris Erich, Ryoichi Nakajo, Yukiyasu Domae, Tetsuya Ogata
Abstract:
Unlike quasi-static robotic manipulation tasks like pick-and-place, dynamic tasks such as non-prehensile manipulation pose greater challenges, especially for vision-based control. Successful control requires the extraction of features relevant to the target task. In visual imitation learning settings, these features can be learnt by backpropagating the policy loss through the vision backbone. Yet, this approach tends to learn task-specific features with limited generalizability. Alternatively, learning world models can realize more generalizable vision backbones. Utilizing the learnt features, task-specific policies are subsequently trained. Commonly, these models are trained solely to predict the next RGB state from the current state and action taken. But only-RGB prediction might not fully-capture the task-relevant dynamics. In this work, we hypothesize that direct supervision of target dynamic states (Dynamics Mapping) can learn better dynamics-informed world models. Beside the next RGB reconstruction, the world model is also trained to directly predict position, velocity, and acceleration of environment rigid bodies. To verify our hypothesis, we designed a non-prehensile 2D environment tailored to two tasks: "Balance-Reaching" and "Bin-Dropping". When trained on the first task, dynamics mapping enhanced the task performance under different training configurations (Decoupled, Joint, End-to-End) and policy architectures (Feedforward, Recurrent). Notably, its most significant impact was for world model pretraining boosting the success rate from 21% to 85%. Although frozen dynamics-informed world models could generalize well to a task with in-domain dynamics, but poorly to a one with out-of-domain dynamics.
Authors:Zeyang Liu, Xinrui Yang, Shiguang Sun, Long Qian, Lipeng Wan, Xingyu Chen, Xuguang Lan
Abstract:
Recent progress in generative models has stimulated significant innovations in many fields, such as image generation and chatbots. Despite their success, these models often produce sketchy and misleading solutions for complex multi-agent decision-making problems because they miss the trial-and-error experience and reasoning as humans. To address this limitation, we explore a paradigm that integrates a language-guided simulator into the multi-agent reinforcement learning pipeline to enhance the generated answer. The simulator is a world model that separately learns dynamics and reward, where the dynamics model comprises an image tokenizer as well as a causal transformer to generate interaction transitions autoregressively, and the reward model is a bidirectional transformer learned by maximizing the likelihood of trajectories in the expert demonstrations under language guidance. Given an image of the current state and the task description, we use the world model to train the joint policy and produce the image sequence as the answer by running the converged policy on the dynamics model. The empirical results demonstrate that this framework can improve the answers for multi-agent decision-making problems by showing superior performance on the training and unseen tasks of the StarCraft Multi-Agent Challenge benchmark. In particular, it can generate consistent interaction sequences and explainable reward functions at interaction states, opening the path for training generative models of the future.
Authors:Fabian Baumeister, Lukas Mack, Joerg Stueckler
Abstract:
Few-shot adaptation is an important capability for intelligent robots that perform tasks in open-world settings such as everyday environments or flexible production. In this paper, we propose a novel approach for non-prehensile manipulation which incrementally adapts a physics-based dynamics model for model-predictive control (MPC). The model prediction is aligned with a few examples of robot-object interactions collected with the MPC. This is achieved by using a parallelizable rigid-body physics simulation as dynamic world model and sampling-based optimization of the model parameters. In turn, the optimized dynamics model can be used for MPC using efficient sampling-based optimization. We evaluate our few-shot adaptation approach in object pushing experiments in simulation and with a real robot.
Authors:Zhixi Cai, Cristian Rojas Cardenas, Kevin Leo, Chenyuan Zhang, Kal Backman, Hanbing Li, Boying Li, Mahsa Ghorbanali, Stavya Datta, Lizhen Qu, Julian Gutierrez Santiago, Alexey Ignatiev, Yuan-Fang Li, Mor Vered, Peter J Stuckey, Maria Garcia de la Banda, Hamid Rezatofighi
Abstract:
This paper addresses the problem of autonomous UAV search missions, where a UAV must locate specific Entities of Interest (EOIs) within a time limit, based on brief descriptions in large, hazard-prone environments with keep-out zones. The UAV must perceive, reason, and make decisions with limited and uncertain information. We propose NEUSIS, a compositional neuro-symbolic system designed for interpretable UAV search and navigation in realistic scenarios. NEUSIS integrates neuro-symbolic visual perception, reasoning, and grounding (GRiD) to process raw sensory inputs, maintains a probabilistic world model for environment representation, and uses a hierarchical planning component (SNaC) for efficient path planning. Experimental results from simulated urban search missions using AirSim and Unreal Engine show that NEUSIS outperforms a state-of-the-art (SOTA) vision-language model and a SOTA search planning model in success rate, search efficiency, and 3D localization. These results demonstrate the effectiveness of our compositional neuro-symbolic approach in handling complex, real-world scenarios, making it a promising solution for autonomous UAV systems in search missions.
Authors:Minh-Dung Dao, Quy Minh Le, Hoang Thanh Lam, Duc-Trong Le, Quoc-Viet Pham, Barry O'Sullivan, Hoang D. Nguyen
Abstract:
With the development of foundation model (FM), agentic AI systems are getting more attention, yet their inherent issues like hallucination and poor reasoning, coupled with the frequent ad-hoc nature of system design, lead to unreliable and brittle applications. Existing efforts to characterise agentic design patterns often lack a rigorous systems-theoretic foundation, resulting in high-level or convenience-based taxonomies that are difficult to implement. This paper addresses this gap by introducing a principled methodology for engineering robust AI agents. We propose two primary contributions: first, a novel system-theoretic framework that deconstructs an agentic AI system into five core, interacting functional subsystems: Reasoning & World Model, Perception & Grounding, Action Execution, Learning & Adaptation, and Inter-Agent Communication. Second, derived from this architecture and directly mapped to a comprehensive taxonomy of agentic challenges, we present a collection of 12 agentic design patterns. These patterns - categorised as Foundational, Cognitive & Decisional, Execution & Interaction, and Adaptive & Learning - offer reusable, structural solutions to recurring problems in agent design. The utility of the framework is demonstrated by a case study on the ReAct framework, showing how the proposed patterns can rectify systemic architectural deficiencies. This work provides a foundational language and a structured methodology to standardise agentic design communication among researchers and engineers, leading to more modular, understandable, and reliable autonomous systems.
Authors:Oren Sultan, Jordi Armengol-Estape, Pascal Kesseli, Julien Vanegue, Dafna Shahaf, Yossi Adi, Peter O'Hearn
Abstract:
Determining whether a program terminates is a central problem in computer science. Turing's foundational result established the Halting Problem as undecidable, showing that no algorithm can universally determine termination for all programs and inputs. Consequently, automatic verification tools approximate termination, sometimes failing to prove or disprove; these tools rely on problem-specific architectures and abstractions, and are usually tied to particular programming languages. Recent success and progress in large language models (LLMs) raises the following question: can LLMs reliably predict program termination? In this work, we evaluate LLMs on a diverse set of C programs from the Termination category of the International Competition on Software Verification (SV-Comp) 2025. Our results suggest that LLMs perform remarkably well at predicting program termination, where GPT-5 and Claude Sonnet-4.5 would rank just behind the top-ranked tool (using test-time-scaling), and Code World Model (CWM) would place just behind the second-ranked tool. While LLMs are effective at predicting program termination, they often fail to provide a valid witness as a proof. Moreover, LLMs performance drops as program length increases. We hope these insights motivate further research into program termination and the broader potential of LLMs for reasoning about undecidable problems.
Authors:Yutong Shen, Hangxu Liu, Kailin Pei, Ruizhe Xia, Tongtong Feng
Abstract:
Humanoid robot loco-manipulation remains constrained by the semantic-physical gap. Current methods face three limitations: Low sample efficiency in reinforcement learning, poor generalization in imitation learning, and physical inconsistency in VLMs. We propose MetaWorld, a hierarchical world model that integrates semantic planning and physical control via expert policy transfer. The framework decouples tasks into a VLM-driven semantic layer and a latent dynamics model operating in a compact state space. Our dynamic expert selection and motion prior fusion mechanism leverages a pre-trained multi-expert policy library as transferable knowledge, enabling efficient online adaptation via a two-stage framework. VLMs serve as semantic interfaces, mapping instructions to executable skills and bypassing symbol grounding. Experiments on Humanoid-Bench show MetaWorld outperforms world model-based RL in task completion and motion coherence. Our code will be found at https://anonymous.4open.science/r/metaworld-2BF4/
Authors:Anurag Bagchi, Zhipeng Bao, Homanga Bharadhwaj, Yu-Xiong Wang, Pavel Tokmakov, Martial Hebert
Abstract:
What if a video generation model could not only imagine a plausible future, but the correct one, accurately reflecting how the world changes with each action? We address this question by presenting the Egocentric World Model (EgoWM), a simple, architecture-agnostic method that transforms any pretrained video diffusion model into an action-conditioned world model, enabling controllable future prediction. Rather than training from scratch, we repurpose the rich world priors of Internet-scale video models and inject motor commands through lightweight conditioning layers. This allows the model to follow actions faithfully while preserving realism and strong generalization. Our approach scales naturally across embodiments and action spaces, ranging from 3-DoF mobile robots to 25-DoF humanoids, where predicting egocentric joint-angle-driven dynamics is substantially more challenging. The model produces coherent rollouts for both navigation and manipulation tasks, requiring only modest fine-tuning. To evaluate physical correctness independently of visual appearance, we introduce the Structural Consistency Score (SCS), which measures whether stable scene elements evolve consistently with the provided actions. EgoWM improves SCS by up to 80 percent over prior state-of-the-art navigation world models, while achieving up to six times lower inference latency and robust generalization to unseen environments, including navigation inside paintings.
Authors:Nicolas Bougie, Gian Maria Marconi, Tony Yip, Narimasa Watanabe
Abstract:
Evaluating recommender systems remains challenging due to the gap between offline metrics and real user behavior, as well as the scarcity of interaction data. Recent work explores large language model (LLM) agents as synthetic users, yet they typically rely on few-shot prompting, which yields a shallow understanding of the environment and limits their ability to faithfully reproduce user actions. We introduce AlignUSER, a framework that learns world-model-driven agents from human interactions. Given rollout sequences of actions and states, we formalize world modeling as a next state prediction task that helps the agent internalize the environment. To align actions with human personas, we generate counterfactual trajectories around demonstrations and prompt the LLM to compare its decisions with human choices, identify suboptimal actions, and extract lessons. The learned policy is then used to drive agent interactions with the recommender system. We evaluate AlignUSER across multiple datasets and demonstrate closer alignment with genuine humans than prior work, both at the micro and macro levels.
Authors:Conor Wallace, Umer Siddique, Yongcan Cao
Abstract:
Ad-hoc teamwork (AHT) requires agents to infer the behavior of previously unseen teammates and adapt their policy accordingly. Conventional approaches often rely on fixed probabilistic models or classifiers, which can be brittle under partial observability and limited interaction. Large language models (LLMs) offer a flexible alternative: by mapping short behavioral traces into high-level hypotheses, they can serve as world models over teammate behavior. We introduce \Collab, a language-based framework that classifies partner types using a behavior rubric derived from trajectory features, and extend it to \ReCollab, which incorporates retrieval-augmented generation (RAG) to stabilize inference with exemplar trajectories. In the cooperative Overcooked environment, \Collab effectively distinguishes teammate types, while \ReCollab consistently improves adaptation across layouts, achieving Pareto-optimal trade-offs between classification accuracy and episodic return. These findings demonstrate the potential of LLMs as behavioral world models for AHT and highlight the importance of retrieval grounding in challenging coordination settings.
Authors:Feeza Khan Khanzada, Jaerock Kwon
Abstract:
Model-based reinforcement learning (MBRL) can reduce interaction cost for autonomous driving by learning a predictive world model, but it typically still depends on task-specific rewards that are difficult to design and often brittle under distribution shift. This paper presents InDRiVE, a DreamerV3-style MBRL agent that performs reward-free pretraining in CARLA using only intrinsic motivation derived from latent ensemble disagreement. Disagreement acts as a proxy for epistemic uncertainty and drives the agent toward under-explored driving situations, while an imagination-based actor-critic learns a planner-free exploration policy directly from the learned world model. After intrinsic pretraining, we evaluate zero-shot transfer by freezing all parameters and deploying the pretrained exploration policy in unseen towns and routes. We then study few-shot adaptation by training a task policy with limited extrinsic feedback for downstream objectives (lane following and collision avoidance). Experiments in CARLA across towns, routes, and traffic densities show that disagreement-based pretraining yields stronger zero-shot robustness and robust few-shot collision avoidance under town shift and matched interaction budgets, supporting the use of intrinsic disagreement as a practical reward-free pretraining signal for reusable driving world models.
Authors:Feeza Khan Khanzada, Jaerock Kwon
Abstract:
We study how to exploit dense simulator-defined rewards in vision-based autonomous driving without inheriting their misalignment with deployment metrics. In realistic simulators such as CARLA, privileged state (e.g., lane geometry, infractions, time-to-collision) can be converted into dense rewards that stabilize and accelerate model-based reinforcement learning, but policies trained directly on these signals often overfit and fail to generalize when evaluated on sparse objectives such as route completion and collision-free overtaking. We propose reward-privileged world model distillation, a two-stage framework in which a teacher DreamerV3-style agent is first trained with a dense privileged reward, and only its latent dynamics are distilled into a student trained solely on sparse task rewards. Teacher and student share the same observation space (semantic bird's-eye-view images); privileged information enters only through the teacher's reward, and the student does not imitate the teacher's actions or value estimates. Instead, the student's world model is regularized to match the teacher's latent dynamics while its policy is learned from scratch on sparse success/failure signals. In CARLA lane-following and overtaking benchmarks, sparse-reward students outperform both dense-reward teachers and sparse-from-scratch baselines. On unseen lane-following routes, reward-privileged distillation improves success by about 23 percent relative to the dense teacher while maintaining comparable or better safety. On overtaking, students retain near-perfect performance on training routes and achieve up to a 27x improvement in success on unseen routes, with improved lane keeping. These results show that dense rewards can be leveraged to learn richer dynamics models while keeping the deployed policy optimized strictly for sparse, deployment-aligned objectives.
Authors:Mohammad Areeb Qazi, Maryam Nadeem, Mohammad Yaqub
Abstract:
Healthcare requires AI that is predictive, reliable, and data-efficient. However, recent generative models lack physical foundation and temporal reasoning required for clinical decision support. As scaling language models show diminishing returns for grounded clinical reasoning, world models are gaining traction because they learn multimodal, temporally coherent, and action-conditioned representations that reflect the physical and causal structure of care. This paper reviews World Models for healthcare systems that learn predictive dynamics to enable multistep rollouts, counterfactual evaluation and planning. We survey recent work across three domains: (i) medical imaging and diagnostics (e.g., longitudinal tumor simulation, projection-transition modeling, and Joint Embedding Predictive Architecture i.e., JEPA-style predictive representation learning), (ii) disease progression modeling from electronic health records (generative event forecasting at scale), and (iii) robotic surgery and surgical planning (action-conditioned guidance and control). We also introduce a capability rubric: L1 temporal prediction, L2 action-conditioned prediction, L3 counterfactual rollouts for decision support, and L4 planning/control. Most reviewed systems achieve L1--L2, with fewer instances of L3 and rare L4. We identify cross-cutting gaps that limit clinical reliability; under-specified action spaces and safety constraints, weak interventional validation, incomplete multimodal state construction, and limited trajectory-level uncertainty calibration. This review outlines a research agenda for clinically robust prediction-first world models that integrate generative backbones (transformers, diffusion, VAE) with causal/mechanical foundation for safe decision support in healthcare.
Authors:Yuxin Zhang, Ziyu Lu, Hongbo Duan, Keyu Fan, Pengting Luo, Peiyu Zhuang, Mengyu Yang, Houde Liu
Abstract:
Despite recent advancements in neural 3D reconstruction, the dependence on dense multi-view captures restricts their broader applicability. Additionally, 3D scene generation is vital for advancing embodied AI and world models, which depend on diverse, high-quality scenes for learning and evaluation. In this work, we propose Gen3d, a novel method for generation of high-quality, wide-scope, and generic 3D scenes from a single image. After the initial point cloud is created by lifting the RGBD image, Gen3d maintains and expands its world model. The 3D scene is finalized through optimizing a Gaussian splatting representation. Extensive experiments on diverse datasets demonstrate the strong generalization capability and superior performance of our method in generating a world model and Synthesizing high-fidelity and consistent novel views.
Authors:Elliott Wen, Sean Ma, Ewan Tempero, Jens Dietrich, Daniel Luo, Jiaxing Shen, Kaiqi Zhao, Bruce Sham, Yousong Song, Jiayi Hua, Jia Hong
Abstract:
While NVIDIA remains the dominant provider of AI accelerators within cloud data center, emerging vendors such as AMD, Intel, Mac, and Huawei offer cost-effective alternatives with claims of compatibility and performance. This paper presents the first empirical study investigating divergence in machine learning model across heterogeneous AI accelerators. Utilizing an automated pipeline, we synthesize over 100,000 variant models derived from 4,000 real-world models and execute them across five different enterprise-grade accelerators. Our findings suggest that newer AI platforms from Mac and Huawei support at least 17\% fewer operators than NVIDIA. These platforms also exhibit a higher rate of output discrepancies (exceeding 5\%), which stem from differences in operator implementations, handling of exceptional numerical values, and instruction scheduling. They are also more susceptible to failures during model compilation-based acceleration, and in some cases, the compiled models produce outputs that differ noticeably from those generated using the standard execution mode. In addition, we identify 7 implementation flaws in PyTorch and 40 platform-specific issues across vendors. These results underscore the challenges of achieving consistent machine learning behavior in an increasingly diverse hardware ecosystem.
Authors:Ludovico Mitchener, Angela Yiu, Benjamin Chang, Mathieu Bourdenx, Tyler Nadolski, Arvis Sulovari, Eric C. Landsness, Daniel L. Barabasi, Siddharth Narayanan, Nicky Evans, Shriya Reddy, Martha Foiani, Aizad Kamal, Leah P. Shriver, Fang Cao, Asmamaw T. Wassie, Jon M. Laurent, Edwin Melville-Green, Mayk Caldas, Albert Bou, Kaleigh F. Roberts, Sladjana Zagorac, Timothy C. Orr, Miranda E. Orr, Kevin J. Zwezdaryk, Ali E. Ghareeb, Laurie McCoy, Bruna Gomes, Euan A. Ashley, Karen E. Duff, Tonio Buonassisi, Tom Rainforth, Randall J. Bateman, Michael Skarlinski, Samuel G. Rodriques, Michaela M. Hinks, Andrew D. White
Abstract:
Data-driven scientific discovery requires iterative cycles of literature search, hypothesis generation, and data analysis. Substantial progress has been made towards AI agents that can automate scientific research, but all such agents remain limited in the number of actions they can take before losing coherence, thus limiting the depth of their findings. Here we present Kosmos, an AI scientist that automates data-driven discovery. Given an open-ended objective and a dataset, Kosmos runs for up to 12 hours performing cycles of parallel data analysis, literature search, and hypothesis generation before synthesizing discoveries into scientific reports. Unlike prior systems, Kosmos uses a structured world model to share information between a data analysis agent and a literature search agent. The world model enables Kosmos to coherently pursue the specified objective over 200 agent rollouts, collectively executing an average of 42,000 lines of code and reading 1,500 papers per run. Kosmos cites all statements in its reports with code or primary literature, ensuring its reasoning is traceable. Independent scientists found 79.4% of statements in Kosmos reports to be accurate, and collaborators reported that a single 20-cycle Kosmos run performed the equivalent of 6 months of their own research time on average. Furthermore, collaborators reported that the number of valuable scientific findings generated scales linearly with Kosmos cycles (tested up to 20 cycles). We highlight seven discoveries made by Kosmos that span metabolomics, materials science, neuroscience, and statistical genetics. Three discoveries independently reproduce findings from preprinted or unpublished manuscripts that were not accessed by Kosmos at runtime, while four make novel contributions to the scientific literature.
Authors:Yichen Li, Zhiyi Li, Brandon Feng, Dinghuai Zhang, Antonio Torralba
Abstract:
Digital twin worlds with realistic interactive dynamics presents a new opportunity to develop generalist embodied agents in scannable environments with complex physical behaviors. To this end, we present GDGen (Generalized Representation for Generalized Dynamics Generation), a framework that takes a potential energy perspective to seamlessly integrate rigid body, articulated body, and soft body dynamics into a unified, geometry-agnostic system. GDGen operates from the governing principle that the potential energy for any stable physical system should be low. This fresh perspective allows us to treat the world as one holistic entity and infer underlying physical properties from simple motion observations. We extend classic elastodynamics by introducing directional stiffness to capture a broad spectrum of physical behaviors, covering soft elastic, articulated, and rigid body systems. We propose a specialized network to model the extended material property and employ a neural field to represent deformation in a geometry-agnostic manner. Extensive experiments demonstrate that GDGen robustly unifies diverse simulation paradigms, offering a versatile foundation for creating interactive virtual environments and training robotic agents in complex, dynamically rich scenarios.
Authors:Yichen Li, Antonio Torralba
Abstract:
Current video models fail as world model as they lack fine-graiend control. General-purpose household robots require real-time fine motor control to handle delicate tasks and urgent situations. In this work, we introduce fine-grained multimodal actions to capture such precise control. We consider senses of proprioception, kinesthesia, force haptics, and muscle activation. Such multimodal senses naturally enables fine-grained interactions that are difficult to simulate with text-conditioned generative models. To effectively simulate fine-grained multisensory actions, we develop a feature learning paradigm that aligns these modalities while preserving the unique information each modality provides. We further propose a regularization scheme to enhance causality of the action trajectory features in representing intricate interaction dynamics. Experiments show that incorporating multimodal senses improves simulation accuracy and reduces temporal drift. Extensive ablation studies and downstream applications demonstrate the effectiveness and practicality of our work.
Authors:Jinzhou Tang, Jusheng zhang, Sidi Liu, Waikit Xiu, Qinhan Lv, Xiying Li
Abstract:
Achieving human-like reasoning in deep learning models for complex tasks in unknown environments remains a critical challenge in embodied intelligence. While advanced vision-language models (VLMs) excel in static scene understanding, their limitations in spatio-temporal reasoning and adaptation to dynamic, open-set tasks like task-oriented navigation and embodied question answering (EQA) persist due to inadequate modeling of fine-grained spatio-temporal cues and physical world comprehension. To address this, we propose VEME, a novel cross-modal alignment method that enhances generalization in unseen scenes by learning an ego-centric, experience-centered world model. Our framework integrates three key components: (1) a cross-modal alignment framework bridging objects, spatial representations, and visual semantics with spatio-temporal cues to enhance VLM in-context learning; (2) a dynamic, implicit cognitive map activated by world embedding to enable task-relevant geometric-semantic memory recall; and (3) an instruction-based navigation and reasoning framework leveraging embodied priors for long-term planning and efficient exploration. By embedding geometry-aware spatio-temporal episodic experiences, our method significantly improves reasoning and planning in dynamic environments. Experimental results on VSI-Bench and VLN-CE demonstrate 1%-3% accuracy and exploration efficiency improvement compared to traditional approaches.
Authors:Zhanjiang Yang, Yang Shen, Yueming Li, Meng Li, Lijun Sun
Abstract:
Multi-agent path finding (MAPF) is the problem of planning conflict-free paths from the designated start locations to goal positions for multiple agents. It underlies a variety of real-world tasks, including multi-robot coordination, robot-assisted logistics, and social navigation. Recent decentralized learnable solvers have shown great promise for large-scale MAPF, especially when leveraging foundation models and large datasets. However, these agents are reactive policy models and exhibit limited modeling of environmental temporal dynamics and inter-agent dependencies, resulting in performance degradation in complex, long-term planning scenarios. To address these limitations, we propose MAPF-World, an autoregressive action world model for MAPF that unifies situation understanding and action generation, guiding decisions beyond immediate local observations. It improves situational awareness by explicitly modeling environmental dynamics, including spatial features and temporal dependencies, through future state and actions prediction. By incorporating these predicted futures, MAPF-World enables more informed, coordinated, and far-sighted decision-making, especially in complex multi-agent settings. Furthermore, we augment MAPF benchmarks by introducing an automatic map generator grounded in real-world scenarios, capturing practical map layouts for training and evaluating MAPF solvers. Extensive experiments demonstrate that MAPF-World outperforms state-of-the-art learnable solvers, showcasing superior zero-shot generalization to out-of-distribution cases. Notably, MAPF-World is trained with a 96.5% smaller model size and 92% reduced data.
Authors:Fernando Martinez-Lopez, Tao Li, Yingdong Lu, Juntao Chen
Abstract:
Reinforcement learning (RL) agents often struggle to generalize to new tasks and contexts without updating their parameters, mainly because their learned representations and policies are overfit to the specifics of their training environments. To boost agents' in-context RL (ICRL) ability, this work formulates ICRL as a two-agent emergent communication problem and introduces CORAL (Communicative Representation for Adaptive RL), a framework that learns a transferable communicative context by decoupling latent representation learning from control. In CORAL, an Information Agent (IA) is pre-trained as a world model on a diverse distribution of tasks. Its objective is not to maximize task reward, but to build a world model and distill its understanding into concise messages. The emergent communication protocol is shaped by a novel Causal Influence Loss, which measures the effect that the message has on the next action. During deployment, the previously trained IA serves as a fixed contextualizer for a new Control Agent (CA), which learns to solve tasks by interpreting the provided communicative context. Our experiments demonstrate that this approach enables the CA to achieve significant gains in sample efficiency and successfully perform zero-shot adaptation with the help of pre-trained IA in entirely unseen sparse-reward environments, validating the efficacy of learning a transferable communicative representation.
Authors:Yucen Wang, Rui Yu, Shenghua Wan, Le Gan, De-Chuan Zhan
Abstract:
Foundation Models (FMs) and World Models (WMs) offer complementary strengths in task generalization at different levels. In this work, we propose FOUNDER, a framework that integrates the generalizable knowledge embedded in FMs with the dynamic modeling capabilities of WMs to enable open-ended task solving in embodied environments in a reward-free manner. We learn a mapping function that grounds FM representations in the WM state space, effectively inferring the agent's physical states in the world simulator from external observations. This mapping enables the learning of a goal-conditioned policy through imagination during behavior learning, with the mapped task serving as the goal state. Our method leverages the predicted temporal distance to the goal state as an informative reward signal. FOUNDER demonstrates superior performance on various multi-task offline visual control benchmarks, excelling in capturing the deep-level semantics of tasks specified by text or videos, particularly in scenarios involving complex observations or domain gaps where prior methods struggle. The consistency of our learned reward function with the ground-truth reward is also empirically validated. Our project website is https://sites.google.com/view/founder-rl.
Authors:Dawood Wasif, Terrence J Moore, Chandan K Reddy, Jin-Hee Cho
Abstract:
End-to-end autonomous driving systems map sensor data directly to control commands, but remain opaque, lack interpretability, and offer no formal safety guarantees. While recent vision-language-guided reinforcement learning (RL) methods introduce semantic feedback, they often rely on static prompts and fixed objectives, limiting adaptability to dynamic driving scenes. We present DriveMind, a unified semantic reward framework that integrates: (i) a contrastive Vision-Language Model (VLM) encoder for stepwise semantic anchoring; (ii) a novelty-triggered VLM encoder-decoder, fine-tuned via chain-of-thought (CoT) distillation, for dynamic prompt generation upon semantic drift; (iii) a hierarchical safety module enforcing kinematic constraints (e.g., speed, lane centering, stability); and (iv) a compact predictive world model to reward alignment with anticipated ideal states. DriveMind achieves 19.4 +/- 2.3 km/h average speed, 0.98 +/- 0.03 route completion, and near-zero collisions in CARLA Town 2, outperforming baselines by over 4% in success rate. Its semantic reward generalizes zero-shot to real dash-cam data with minimal distributional shift, demonstrating robust cross-domain alignment and potential for real-world deployment.
Authors:JB Lanier, Kyungmin Kim, Armin Karamzade, Yifei Liu, Ankita Sinha, Kat He, Davide Corsi, Roy Fox
Abstract:
Simulation-to-reality reinforcement learning (RL) faces the critical challenge of reconciling discrepancies between simulated and real-world dynamics, which can severely degrade agent performance. A promising approach involves learning corrections to simulator forward dynamics represented as a residual error function, however this operation is impractical with high-dimensional states such as images. To overcome this, we propose ReDRAW, a latent-state autoregressive world model pretrained in simulation and calibrated to target environments through residual corrections of latent-state dynamics rather than of explicit observed states. Using this adapted world model, ReDRAW enables RL agents to be optimized with imagined rollouts under corrected dynamics and then deployed in the real world. In multiple vision-based MuJoCo domains and a physical robot visual lane-following task, ReDRAW effectively models changes to dynamics and avoids overfitting in low data regimes where traditional transfer methods fail.
Authors:Feeza Khan Khanzada, Jaerock Kwon
Abstract:
Model-based Reinforcement Learning (MBRL) has emerged as a promising paradigm for autonomous driving, where data efficiency and robustness are critical. Yet, existing solutions often rely on carefully crafted, task specific extrinsic rewards, limiting generalization to new tasks or environments. In this paper, we propose InDRiVE (Intrinsic Disagreement based Reinforcement for Vehicle Exploration), a method that leverages purely intrinsic, disagreement based rewards within a Dreamer based MBRL framework. By training an ensemble of world models, the agent actively explores high uncertainty regions of environments without any task specific feedback. This approach yields a task agnostic latent representation, allowing for rapid zero shot or few shot fine tuning on downstream driving tasks such as lane following and collision avoidance. Experimental results in both seen and unseen environments demonstrate that InDRiVE achieves higher success rates and fewer infractions compared to DreamerV2 and DreamerV3 baselines despite using significantly fewer training steps. Our findings highlight the effectiveness of purely intrinsic exploration for learning robust vehicle control behaviors, paving the way for more scalable and adaptable autonomous driving systems.
Authors:Yixiang Sun, Haotian Fu, Michael Littman, George Konidaris
Abstract:
We propose DRAGO, a novel approach for continual model-based reinforcement learning aimed at improving the incremental development of world models across a sequence of tasks that differ in their reward functions but not the state space or dynamics. DRAGO comprises two key components: Synthetic Experience Rehearsal, which leverages generative models to create synthetic experiences from past tasks, allowing the agent to reinforce previously learned dynamics without storing data, and Regaining Memories Through Exploration, which introduces an intrinsic reward mechanism to guide the agent toward revisiting relevant states from prior tasks. Together, these components enable the agent to maintain a comprehensive and continually developing world model, facilitating more effective learning and adaptation across diverse environments. Empirical evaluations demonstrate that DRAGO is able to preserve knowledge across tasks, achieving superior performance in various continual learning scenarios.
Authors:Jingcheng Ni, Yuxin Guo, Yichen Liu, Rui Chen, Lewei Lu, Zehuan Wu
Abstract:
World models that forecast environmental changes from actions are vital for autonomous driving models with strong generalization. The prevailing driving world model mainly build on video prediction model. Although these models can produce high-fidelity video sequences with advanced diffusion-based generator, they are constrained by their predictive duration and overall generalization capabilities. In this paper, we explore to solve this problem by combining generation loss with MAE-style feature-level context learning. In particular, we instantiate this target with three key design: (1) A more scalable Diffusion Transformer (DiT) structure trained with extra mask construction task. (2) we devise diffusion-related mask tokens to deal with the fuzzy relations between mask reconstruction and generative diffusion process. (3) we extend mask construction task to spatial-temporal domain by utilizing row-wise mask for shifted self-attention rather than masked self-attention in MAE. Then, we adopt a row-wise cross-view module to align with this mask design. Based on above improvement, we propose MaskGWM: a Generalizable driving World Model embodied with Video Mask reconstruction. Our model contains two variants: MaskGWM-long, focusing on long-horizon prediction, and MaskGWM-mview, dedicated to multi-view generation. Comprehensive experiments on standard benchmarks validate the effectiveness of the proposed method, which contain normal validation of Nuscene dataset, long-horizon rollout of OpenDV-2K dataset and zero-shot validation of Waymo dataset. Quantitative metrics on these datasets show our method notably improving state-of-the-art driving world model.
Authors:Antoine Dedieu, Joseph Ortiz, Xinghua Lou, Carter Wendelken, Wolfgang Lehrach, J Swaroop Guntupalli, Miguel Lazaro-Gredilla, Kevin Patrick Murphy
Abstract:
We present three improvements to the standard model-based RL paradigm based on transformers: (a) "Dyna with warmup", which trains the policy on real and imaginary data, but only starts using imaginary data after the world model has been sufficiently trained; (b) "nearest neighbor tokenizer" for image patches, which improves upon previous tokenization schemes, which are needed when using a transformer world model (TWM), by ensuring the code words are static after creation, thus providing a constant target for TWM learning; and (c) "block teacher forcing", which allows the TWM to reason jointly about the future tokens of the next timestep, instead of generating them sequentially. We then show that our method significantly improves upon prior methods in various environments. We mostly focus on the challenging Craftax-classic benchmark, where our method achieves a reward of 69.66% after only 1M environment steps, significantly outperforming DreamerV3, which achieves 53.2%, and exceeding human performance of 65.0% for the first time. We also show preliminary results on Craftax-full, MinAtar, and three different two-player games, to illustrate the generality of the approach.
Authors:Han Qi, Haocheng Yin, Aris Zhu, Yilun Du, Heng Yang
Abstract:
We present generative predictive control (GPC), a learning control framework that (i) clones a generative diffusion-based policy from expert demonstrations, (ii) trains a predictive action-conditioned world model from both expert demonstrations and random explorations, and (iii) synthesizes an online planner that ranks and optimizes the action proposals from (i) by looking ahead into the future using the world model from (ii). Across a variety of robotic manipulation tasks, we demonstrate that GPC consistently outperforms behavior cloning in both state-based and vision-based settings, in simulation and in the real world.
Authors:Xiaoshan Zhou, Carol M. Menassa, Vineet R. Kamat
Abstract:
Assistive mobile robots are a transformative technology that helps persons with disabilities regain the ability to move freely. Although autonomous wheelchairs significantly reduce user effort, they still require human input to allow users to maintain control and adapt to changing environments. Brain Computer Interface (BCI) stands out as a highly user-friendly option that does not require physical movement. Current BCI systems can understand whether users want to accelerate or decelerate, but they implement these changes in discrete speed steps rather than allowing for smooth, continuous velocity adjustments. This limitation prevents the systems from mimicking the natural, fluid speed changes seen in human self-paced motion. The authors aim to address this limitation by redesigning the perception-action cycle in a BCI controlled robotic system: improving how the robotic agent interprets the user's motion intentions (world state) and implementing these actions in a way that better reflects natural physical properties of motion, such as inertia and damping. The scope of this paper focuses on the perception aspect. We asked and answered a normative question "what computation should the robotic agent carry out to optimally perceive incomplete or noisy sensory observations?" Empirical EEG data were collected, and probabilistic representation that served as world state distributions were learned and evaluated in a Generative Adversarial Network framework. The ROS framework was established that connected with a Gazebo environment containing a digital twin of an indoor space and a virtual model of a robotic wheelchair. Signal processing and statistical analyses were implemented to identity the most discriminative features in the spatial-spectral-temporal dimensions, which are then used to construct the world model for the robotic agent to interpret user motion intentions as a Bayesian observer.
Authors:Anoop Cherian, Radu Corcodel, Siddarth Jain, Diego Romeres
Abstract:
Physical reasoning is an important skill needed for robotic agents when operating in the real world. However, solving such reasoning problems often involves hypothesizing and reflecting over complex multi-body interactions under the effect of a multitude of physical forces and thus learning all such interactions poses a significant hurdle for state-of-the-art machine learning frameworks, including large language models (LLMs). To study this problem, we propose a new physical reasoning task and a dataset, dubbed TraySim. Our task involves predicting the dynamics of several objects on a tray that is given an external impact -- the domino effect of the ensued object interactions and their dynamics thus offering a challenging yet controlled setup, with the goal of reasoning being to infer the stability of the objects after the impact. To solve this complex physical reasoning task, we present LLMPhy, a zero-shot black-box optimization framework that leverages the physics knowledge and program synthesis abilities of LLMs, and synergizes these abilities with the world models built into modern physics engines. Specifically, LLMPhy uses an LLM to generate code to iteratively estimate the physical hyperparameters of the system (friction, damping, layout, etc.) via an implicit analysis-by-synthesis approach using a (non-differentiable) simulator in the loop and uses the inferred parameters to imagine the dynamics of the scene towards solving the reasoning task. To show the effectiveness of LLMPhy, we present experiments on our TraySim dataset to predict the steady-state poses of the objects. Our results show that the combination of the LLM and the physics engine leads to state-of-the-art zero-shot physical reasoning performance, while demonstrating superior convergence against standard black-box optimization methods and better estimation of the physical parameters.
Authors:Xiaoxu Feng, Takato Horii, Takayuki Nagai
Abstract:
Mobile manipulators require coordinated control between navigation and manipulation to accomplish tasks. Typically, coordinated mobile manipulation behaviors have base navigation to approach the goal followed by arm manipulation to reach the desired pose. Selecting the embodiment between the base and arm can be determined based on reachability. Previous methods evaluate reachability by computing inverse kinematics and activate arm motions once solutions are identified. In this study, we introduce a new approach called predictive reachability that decides reachability based on predicted arm motions. Our model utilizes a hierarchical policy framework built upon a world model. The world model allows the prediction of future trajectories and the evaluation of reachability. The hierarchical policy selects the embodiment based on the predicted reachability and plans accordingly. Unlike methods that require prior knowledge about robots and environments for inverse kinematics, our method only relies on image-based observations. We evaluate our approach through basic reaching tasks across various environments. The results demonstrate that our method outperforms previous model-based approaches in both sample efficiency and performance, while enabling more reasonable embodiment selection based on predictive reachability.
Authors:Rishi Upadhyay, Howard Zhang, Jim Solomon, Ayush Agrawal, Pranay Boreddy, Shruti Satya Narayana, Yunhao Ba, Alex Wong, Celso M de Melo, Achuta Kadambi
Abstract:
Recent advances in generative foundational models, often termed "world models," have propelled interest in applying them to critical tasks like robotic planning and autonomous system training. For reliable deployment, these models must exhibit high physical fidelity, accurately simulating real-world dynamics. Existing physics-based video benchmarks, however, suffer from entanglement, where a single test simultaneously evaluates multiple physical laws and concepts, fundamentally limiting their diagnostic capability. We introduce WorldBench, a novel video-based benchmark specifically designed for concept-specific, disentangled evaluation, allowing us to rigorously isolate and assess understanding of a single physical concept or law at a time. To make WorldBench comprehensive, we design benchmarks at two different levels: 1) an evaluation of intuitive physical understanding with concepts such as object permanence or scale/perspective, and 2) an evaluation of low-level physical constants and material properties such as friction coefficients or fluid viscosity. When SOTA video-based world models are evaluated on WorldBench, we find specific patterns of failure in particular physics concepts, with all tested models lacking the physical consistency required to generate reliable real-world interactions. Through its concept-specific evaluation, WorldBench offers a more nuanced and scalable framework for rigorously evaluating the physical reasoning capabilities of video generation and world models, paving the way for more robust and generalizable world-model-driven learning.
Authors:Hampus Linander, Conor Heins, Alexander Tschantz, Marco Perin, Christopher Buckley
Abstract:
Equivariance is a powerful prior for learning physical dynamics, yet exact group equivariance can degrade performance if the symmetries are broken. We propose object-centric world models built with geometric algebra neural networks, providing a soft geometric inductive bias. Our models are evaluated using simulated environments of 2d rigid body dynamics with static obstacles, where we train for next-step predictions autoregressively. For long-horizon rollouts we show that the soft inductive bias of our models results in better performance in terms of physical fidelity compared to non-equivariant baseline models. The approach complements recent soft-equivariance ideas and aligns with the view that simple, well-chosen priors can yield robust generalization. These results suggest that geometric algebra offers an effective middle ground between hand-crafted physics and unstructured deep nets, delivering sample-efficient dynamics models for multi-object scenes.
Authors:Mohammad Pivezhandi, Mahdi Banisharif, Saeed Bakhshan, Abusayeed Saifullah, Ali Jannesari
Abstract:
Performance prediction for OpenMP workloads on heterogeneous embedded SoCs is challenging due to complex interactions between task DAG structure, control-flow irregularity, cache and branch behavior, and thermal dynamics; classical heuristics struggle under workload irregularity, tabular regressors discard structural information, and model-free RL risks overheating resource-constrained devices. We introduce GraphPerf-RT, the first surrogate that unifies task DAG topology, CFG-derived code semantics, and runtime context (per-core DVFS, thermal state, utilization) in a heterogeneous graph representation with typed edges encoding precedence, placement, and contention. Multi-task evidential heads predict makespan, energy, cache and branch misses, and utilization with calibrated uncertainty (Normal-Inverse-Gamma), enabling risk-aware scheduling that filters low-confidence rollouts. We validate GraphPerf-RT on three embedded ARM platforms (Jetson TX2, Jetson Orin NX, RUBIK Pi), achieving R^2 > 0.95 with well-calibrated uncertainty (ECE < 0.05). To demonstrate end-to-end scheduling utility, we integrate the surrogate with four RL methods on Jetson TX2: single-agent model-free (SAMFRL), single-agent model-based (SAMBRL), multi-agent model-free (MAMFRL-D3QN), and multi-agent model-based (MAMBRL-D3QN). Experiments across 5 seeds (200 episodes each) show that MAMBRL-D3QN with GraphPerf-RT as the world model achieves 66% makespan reduction (0.97 +/- 0.35s) and 82% energy reduction (0.006 +/- 0.005J) compared to model-free baselines, demonstrating that accurate, uncertainty-aware surrogates enable effective model-based planning on thermally constrained embedded systems.
Authors:Huiqian Li, Wei Pan, Haodong Zhang, Jin Huang, Zhihua Zhong
Abstract:
World models have gained significant attention as a promising approach for autonomous driving. By emulating human-like perception and decision-making processes, these models can predict and adapt to dynamic environments. Existing methods typically map high-dimensional observations into compact latent spaces and learn optimal policies within these latent representations. However, prior work usually jointly learns ego-vehicle dynamics and environmental transition dynamics from the image input, leading to inefficiencies and a lack of robustness to variations in vehicle dynamics. To address these issues, we propose the Vehicle Dynamics embedded Dreamer (VDD) method, which decouples the modeling of ego-vehicle dynamics from environmental transition dynamics. This separation allows the world model to generalize effectively across vehicles with diverse parameters. Additionally, we introduce two strategies to further enhance the robustness of the learned policy: Policy Adjustment during Deployment (PAD) and Policy Augmentation during Training (PAT). Comprehensive experiments in simulated environments demonstrate that the proposed model significantly improves both driving performance and robustness to variations in vehicle dynamics, outperforming existing approaches.
Authors:Habtom Kahsay Gidey, Niklas Huber, Alexander Lenz, Alois Knoll
Abstract:
The autonomy of software agents is fundamentally dependent on their ability to construct an actionable internal world model from the structured data that defines their digital environment, such as the Document Object Model (DOM) of web pages and the semantic descriptions of web services. However, constructing this world model from raw structured data presents two critical challenges: the verbosity of raw HTML makes it computationally intractable for direct use by foundation models, while the static nature of hardcoded API integrations prevents agents from adapting to evolving services. This paper introduces a pattern language for world modeling from structured data, presenting two complementary architectural patterns. The DOM Transduction Pattern addresses the challenge of web page complexity by distilling} a verbose, raw DOM into a compact, task-relevant representation or world model optimized for an agent's reasoning core. Concurrently, the Hypermedia Affordances Recognition Pattern enables the agent to dynamically enrich its world model by parsing standardized semantic descriptions to discover and integrate the capabilities of unknown web services at runtime. Together, these patterns provide a robust framework for engineering agents that can efficiently construct and maintain an accurate world model, enabling scalable, adaptive, and interoperable automation across the web and its extended resources.
Authors:Aderik Verraest, Stavrow Bahnam, Robin Ferede, Guido de Croon, Christophe De Wagter
Abstract:
Autonomous drone racing (ADR) systems have recently achieved champion-level performance, yet remain highly specific to drone racing. While end-to-end vision-based methods promise broader applicability, no system to date simultaneously achieves full sim-to-real transfer, onboard execution, and champion-level performance. In this work, we present SkyDreamer, to the best of our knowledge, the first end-to-end vision-based ADR policy that maps directly from pixel-level representations to motor commands. SkyDreamer builds on informed Dreamer, a model-based reinforcement learning approach where the world model decodes to privileged information only available during training. By extending this concept to end-to-end vision-based ADR, the world model effectively functions as an implicit state and parameter estimator, greatly improving interpretability. SkyDreamer runs fully onboard without external aid, resolves visual ambiguities by tracking progress using the state decoded from the world model's hidden state, and requires no extrinsic camera calibration, enabling rapid deployment across different drones without retraining. Real-world experiments show that SkyDreamer achieves robust, high-speed flight, executing tight maneuvers such as an inverted loop, a split-S and a ladder, reaching speeds of up to 21 m/s and accelerations of up to 6 g. It further demonstrates a non-trivial visual sim-to-real transfer by operating on poor-quality segmentation masks, and exhibits robustness to battery depletion by accurately estimating the maximum attainable motor RPM and adjusting its flight path in real-time. These results highlight SkyDreamer's adaptability to important aspects of the reality gap, bringing robustness while still achieving extremely high-speed, agile flight.
Authors:Federico Baldassarre, Marc Szafraniec, Basile Terver, Vasil Khalidov, Francisco Massa, Yann LeCun, Patrick Labatut, Maximilian Seitzer, Piotr Bojanowski
Abstract:
We present DINO-world, a powerful generalist video world model trained to predict future frames in the latent space of DINOv2. By leveraging a pre-trained image encoder and training a future predictor on a large-scale uncurated video dataset, DINO-world learns the temporal dynamics of diverse scenes, from driving and indoor scenes to simulated environments. We show that DINO-world outperforms previous models on a variety of video prediction benchmarks, e.g. segmentation and depth forecasting, and demonstrates strong understanding of intuitive physics. Furthermore, we show that it is possible to fine-tune the predictor on observation-action trajectories. The resulting action-conditioned world model can be used for planning by simulating candidate trajectories in latent space.
Authors:Keyon Vafa, Peter G. Chang, Ashesh Rambachan, Sendhil Mullainathan
Abstract:
Foundation models are premised on the idea that sequence prediction can uncover deeper domain understanding, much like how Kepler's predictions of planetary motion later led to the discovery of Newtonian mechanics. However, evaluating whether these models truly capture deeper structure remains a challenge. We develop a technique for evaluating foundation models that examines how they adapt to synthetic datasets generated from some postulated world model. Our technique measures whether the foundation model's inductive bias aligns with the world model, and so we refer to it as an inductive bias probe. Across multiple domains, we find that foundation models can excel at their training tasks yet fail to develop inductive biases towards the underlying world model when adapted to new tasks. We particularly find that foundation models trained on orbital trajectories consistently fail to apply Newtonian mechanics when adapted to new physics tasks. Further analysis reveals that these models behave as if they develop task-specific heuristics that fail to generalize.
Authors:Mariya Hendriksen, Tabish Rashid, David Bignell, Raluca Georgescu, Abdelhak Lemkhenter, Katja Hofmann, Sam Devlin, Sarah Parisot
Abstract:
World models -- generative models that simulate environment dynamics conditioned on past observations and actions -- are gaining prominence in planning, simulation, and embodied AI. However, evaluating their rollouts remains a fundamental challenge, requiring fine-grained, temporally grounded assessment of action alignment and semantic consistency -- capabilities not captured by existing metrics. Vision-Language Models (VLMs) have shown promise as automatic evaluators of generative content due to their strong multimodal reasoning abilities. Yet, their use in fine-grained, temporally sensitive evaluation tasks remains limited and requires targeted adaptation. We introduce a evaluation protocol targeting two recognition tasks -- action recognition and character recognition -- each assessed across binary, multiple-choice, and open-ended formats. To support this, we present UNIVERSE (UNIfied Vision-language Evaluator for Rollouts in Simulated Environments), a method for adapting VLMs to rollout evaluation under data and compute constraints. We conduct a large-scale study comparing full, partial, and parameter-efficient finetuning across task formats, context lengths, sampling strategies, and data compositions. The resulting unified evaluator matches the performance of task-specific baselines using a single checkpoint. Human studies confirm strong alignment with human judgments, establishing UNIVERSE as a scalable, semantics-aware evaluator for world models.
Authors:Aniruddh Sikdar, Aditya Gandhamal, Suresh Sundaram
Abstract:
Open-vocabulary semantic segmentation (OVSS) involves assigning labels to each pixel in an image based on textual descriptions, leveraging world models like CLIP. However, they encounter significant challenges in cross-domain generalization, hindering their practical efficacy in real-world applications. Embodied AI systems are transforming autonomous navigation for ground vehicles and drones by enhancing their perception abilities, and in this study, we present AetherVision-Bench, a benchmark for multi-angle segmentation across aerial, and ground perspectives, which facilitates an extensive evaluation of performance across different viewing angles and sensor modalities. We assess state-of-the-art OVSS models on the proposed benchmark and investigate the key factors that impact the performance of zero-shot transfer models. Our work pioneers the creation of a robustness benchmark, offering valuable insights and establishing a foundation for future research.
Authors:Jing Yu Lim, Zarif Ikram, Samson Yu, Haozhe Ma, Tze-Yun Leong, Dianbo Liu
Abstract:
Recent advances in model-based reinforcement learning (MBRL) have achieved super-human level performance on the Atari100k benchmark, driven by reinforcement learning agents trained on powerful diffusion world models. However, we identify that the current aggregates mask a major performance asymmetry: MBRL agents dramatically outperform humans in some tasks despite drastically underperforming in others, with the former inflating the aggregate metrics. This is especially pronounced in pixel-based agents trained with diffusion world models. In this work, we address the pronounced asymmetry observed in pixel-based agents as an initial attempt to reverse the worrying upward trend observed in them. We address the problematic aggregates by delineating all tasks as Agent-Optimal or Human-Optimal and advocate for equal importance on metrics from both sets. Next, we hypothesize this pronounced asymmetry is due to the lack of temporally-structured latent space trained with the World Model objective in pixel-based methods. Lastly, to address this issue, we propose Joint Embedding DIffusion (JEDI), a novel latent diffusion world model trained end-to-end with the self-consistency objective. JEDI outperforms SOTA models in human-optimal tasks while staying competitive across the Atari100k benchmark, and runs 3 times faster with 43% lower memory than the latest pixel-based diffusion baseline. Overall, our work rethinks what it truly means to cross human-level performance in Atari100k.
Authors:Radu Calinescu, Sinem Getir Yaman, Simos Gerasimou, Gricel Vázquez, Micah Bassett
Abstract:
Given its ability to analyse stochastic models ranging from discrete and continuous-time Markov chains to Markov decision processes and stochastic games, probabilistic model checking (PMC) is widely used to verify system dependability and performance properties. However, modelling the behaviour of, and verifying these properties for many software-intensive systems requires the joint analysis of multiple interdependent stochastic models of different types, which existing PMC techniques and tools cannot handle. To address this limitation, we introduce a tool-supported UniversaL stochasTIc Modelling, verificAtion and synThEsis (ULTIMATE) framework that supports the representation, verification and synthesis of heterogeneous multi-model stochastic systems with complex model interdependencies. Through its unique integration of multiple PMC paradigms, and underpinned by a novel verification method for handling model interdependencies, ULTIMATE unifies-for the first time-the modelling of probabilistic and nondeterministic uncertainty, discrete and continuous time, partial observability, and the use of both Bayesian and frequentist inference to exploit domain knowledge and data about the modelled system and its context. A comprehensive suite of case studies and experiments confirm the generality and effectiveness of our novel verification framework.
Authors:Cansu Sancaktar, Christian Gumbsch, Andrii Zadaianchuk, Pavel Kolev, Georg Martius
Abstract:
Exploration is a cornerstone of reinforcement learning (RL). Intrinsic motivation attempts to decouple exploration from external, task-based rewards. However, established approaches to intrinsic motivation that follow general principles such as information gain, often only uncover low-level interactions. In contrast, children's play suggests that they engage in meaningful high-level behavior by imitating or interacting with their caregivers. Recent work has focused on using foundation models to inject these semantic biases into exploration. However, these methods often rely on unrealistic assumptions, such as language-embedded environments or access to high-level actions. We propose SEmaNtically Sensible ExploratIon (SENSEI), a framework to equip model-based RL agents with an intrinsic motivation for semantically meaningful behavior. SENSEI distills a reward signal of interestingness from Vision Language Model (VLM) annotations, enabling an agent to predict these rewards through a world model. Using model-based RL, SENSEI trains an exploration policy that jointly maximizes semantic rewards and uncertainty. We show that in both robotic and video game-like simulations SENSEI discovers a variety of meaningful behaviors from image observations and low-level actions. SENSEI provides a general tool for learning from foundation model feedback, a crucial research direction, as VLMs become more powerful.
Authors:Weipu Zhang, Adam Jelley, Trevor McInroe, Amos Storkey
Abstract:
Deep reinforcement learning has achieved remarkable success in learning control policies from pixels across a wide range of tasks, yet its application remains hindered by low sample efficiency, requiring significantly more environment interactions than humans to reach comparable performance. Model-based reinforcement learning (MBRL) offers a solution by leveraging learnt world models to generate simulated experience, thereby improving sample efficiency. However, in visually complex environments, small or dynamic elements can be critical for decision-making. Yet, traditional MBRL methods in pixel-based environments typically rely on auto-encoding with an $L_2$ loss, which is dominated by large areas and often fails to capture decision-relevant details. To address these limitations, we propose an object-centric MBRL pipeline, which integrates recent advances in computer vision to allow agents to focus on key decision-related elements. Our approach consists of four main steps: (1) annotating key objects related to rewards and goals with segmentation masks, (2) extracting object features using a pre-trained, frozen foundation vision model, (3) incorporating these object features with the raw observations to predict environmental dynamics, and (4) training the policy using imagined trajectories generated by this object-centric world model. Building on the efficient MBRL algorithm STORM, we call this pipeline OC-STORM. We demonstrate OC-STORM's practical value in overcoming the limitations of conventional MBRL approaches on both Atari games and the visually complex game Hollow Knight.
Authors:Qian He, Wenqi Liang, Chunhui Hao, Gan Sun, Jiandong Tian
Abstract:
Mimicking the real interaction trajectory in the inference of the world model has been shown to improve the sample efficiency of model-based reinforcement learning (MBRL) algorithms. Many methods directly use known state sequences for reasoning. However, this approach fails to enhance the quality of reasoning by capturing the subtle variation between states. Much like how humans infer trends in event development from this variation, in this work, we introduce Global-Local variation Awareness Mamba-based world model (GLAM) that improves reasoning quality by perceiving and predicting variation between states. GLAM comprises two Mambabased parallel reasoning modules, GMamba and LMamba, which focus on perceiving variation from global and local perspectives, respectively, during the reasoning process. GMamba focuses on identifying patterns of variation between states in the input sequence and leverages these patterns to enhance the prediction of future state variation. LMamba emphasizes reasoning about unknown information, such as rewards, termination signals, and visual representations, by perceiving variation in adjacent states. By integrating the strengths of the two modules, GLAM accounts for highervalue variation in environmental changes, providing the agent with more efficient imagination-based training. We demonstrate that our method outperforms existing methods in normalized human scores on the Atari 100k benchmark.
Authors:Tim Pearce, Tabish Rashid, Dave Bignell, Raluca Georgescu, Sam Devlin, Katja Hofmann
Abstract:
The performance of embodied agents has been shown to improve by increasing model parameters, dataset size, and compute. This has been demonstrated in domains from robotics to video games, when generative learning objectives on offline datasets (pre-training) are used to model an agent's behavior (imitation learning) or their environment (world modeling). This paper characterizes the role of scale in these tasks more precisely. Going beyond the simple intuition that `bigger is better', we show that the same types of power laws found in language modeling also arise in world modeling and imitation learning (e.g. between loss and optimal model size). However, the coefficients of these laws are heavily influenced by the tokenizer, task \& architecture -- this has important implications on the optimal sizing of models and data.
Authors:Pedram Agand, Mo Chen
Abstract:
Offline Reinforcement Learning (ORL) holds immense promise for safety-critical domains like industrial robotics, where real-time environmental interaction is often prohibitive. A primary obstacle in ORL remains the distributional shift between the static dataset and the learned policy, which typically mandates high degrees of conservatism that can restrain potential policy improvements. We present MoReBRAC, a model-based framework that addresses this limitation through Uncertainty-Aware latent synthesis. Instead of relying solely on the fixed data, MoReBRAC utilizes a dual-recurrent world model to synthesize high-fidelity transitions that augment the training manifold. To ensure the reliability of this synthetic data, we implement a hierarchical uncertainty pipeline integrating Variational Autoencoder (VAE) manifold detection, model sensitivity analysis, and Monte Carlo (MC) dropout. This multi-layered filtering process guarantees that only transitions residing within high-confidence regions of the learned dynamics are utilized. Our results on D4RL Gym-MuJoCo benchmarks reveal significant performance gains, particularly in ``random'' and ``suboptimal'' data regimes. We further provide insights into the role of the VAE as a geometric anchor and discuss the distributional trade-offs encountered when learning from near-optimal datasets.
Authors:Hao Lu, Ziyang Liu, Guangfeng Jiang, Yuanfei Luo, Sheng Chen, Yangang Zhang, Ying-Cong Chen
Abstract:
Autonomous driving (AD) systems struggle in long-tail scenarios due to limited world knowledge and weak visual dynamic modeling. Existing vision-language-action (VLA)-based methods cannot leverage unlabeled videos for visual causal learning, while world model-based methods lack reasoning capabilities from large language models. In this paper, we construct multiple specialized datasets providing reasoning and planning annotations for complex scenarios. Then, a unified Understanding-Generation-Planning framework, named UniUGP, is proposed to synergize scene reasoning, future video generation, and trajectory planning through a hybrid expert architecture. By integrating pre-trained VLMs and video generation models, UniUGP leverages visual dynamics and semantic reasoning to enhance planning performance. Taking multi-frame observations and language instructions as input, it produces interpretable chain-of-thought reasoning, physically consistent trajectories, and coherent future videos. We introduce a four-stage training strategy that progressively builds these capabilities across multiple existing AD datasets, along with the proposed specialized datasets. Experiments demonstrate state-of-the-art performance in perception, reasoning, and decision-making, with superior generalization to challenging long-tail situations.
Authors:Bin Sun, Yaoguang Cao, Yan Wang, Rui Wang, Jiachen Shang, Xiejie Feng, Jiayi Lu, Jia Shi, Shichun Yang, Xiaoyu Yan, Ziying Song
Abstract:
End-to-End autonomous driving (E2E-AD) has emerged as a new paradigm, where trajectory planning plays a crucial role. Existing studies mainly follow two directions: trajectory generation oriented, which focuses on producing high-quality trajectories with simple decision mechanisms, and trajectory selection oriented, which performs multi-dimensional evaluation to select the best trajectory yet lacks sufficient generative capability. In this work, we propose MindDrive, a harmonized framework that integrates high-quality trajectory generation with comprehensive decision reasoning. It establishes a structured reasoning paradigm of "context simulation - candidate generation - multi-objective trade-off". In particular, the proposed Future-aware Trajectory Generator (FaTG), based on a World Action Model (WaM), performs ego-conditioned "what-if" simulations to predict potential future scenes and generate foresighted trajectory candidates. Building upon this, the VLM-oriented Evaluator (VLoE) leverages the reasoning capability of a large vision-language model to conduct multi-objective evaluations across safety, comfort, and efficiency dimensions, leading to reasoned and human-aligned decision making. Extensive experiments on the NAVSIM-v1 and NAVSIM-v2 benchmarks demonstrate that MindDrive achieves state-of-the-art performance across multi-dimensional driving metrics, significantly enhancing safety, compliance, and generalization. This work provides a promising path toward interpretable and cognitively guided autonomous driving.
Authors:Raul Steinmetz, Fabio Demo Rosa, Victor Augusto Kich, Jair Augusto Bottega, Ricardo Bedin Grando, Daniel Fernando Tello Gamarra
Abstract:
Autonomous navigation of terrestrial robots using Reinforcement Learning (RL) from LIDAR observations remains challenging due to the high dimensionality of sensor data and the sample inefficiency of model-free approaches. Conventional policy networks struggle to process full-resolution LIDAR inputs, forcing prior works to rely on simplified observations that reduce spatial awareness and navigation robustness. This paper presents a novel model-based RL framework built on top of the DreamerV3 algorithm, integrating a Multi-Layer Perceptron Variational Autoencoder (MLP-VAE) within a world model to encode high-dimensional LIDAR readings into compact latent representations. These latent features, combined with a learned dynamics predictor, enable efficient imagination-based policy optimization. Experiments on simulated TurtleBot3 navigation tasks demonstrate that the proposed architecture achieves faster convergence and higher success rate compared to model-free baselines such as SAC, DDPG, and TD3. It is worth emphasizing that the DreamerV3-based agent attains a 100% success rate across all evaluated environments when using the full dataset of the Turtlebot3 LIDAR (360 readings), while model-free methods plateaued below 85%. These findings demonstrate that integrating predictive world models with learned latent representations enables more efficient and robust navigation from high-dimensional sensory data.
Authors:Peng-Fei Zhang, Ying Cheng, Xiaofan Sun, Shijie Wang, Fengling Li, Lei Zhu, Heng Tao Shen
Abstract:
Autonomous agents are increasingly expected to operate in complex, dynamic, and uncertain environments, performing tasks such as manipulation, navigation, and decision-making. Achieving these capabilities requires agents to understand the underlying mechanisms and dynamics of the world, moving beyond reactive control or simple replication of observed states. This motivates the development of world models as internal representations that encode environmental states, capture dynamics, and support prediction, planning, and reasoning. Despite growing interest, the definition, scope, architectures, and essential capabilities of world models remain ambiguous. In this survey, we go beyond prescribing a fixed definition and limiting our scope to methods explicitly labeled as world models. Instead, we examine approaches that exhibit the core capabilities of world models through a review of methods in robotic manipulation. We analyze their roles across perception, prediction, and control, identify key challenges and solutions, and distill the core components, capabilities, and functions that a fully realized world model should possess. Building on this analysis, we aim to motivate further development toward generalizable and practical world models for robotics.
Authors:Qiang Li, Jin Niu, Lina Yu
Abstract:
Traffic congestion, primarily driven by intersection queuing, significantly impacts urban living standards, safety, environmental quality, and economic efficiency. While Traffic Signal Control (TSC) systems hold potential for congestion mitigation, traditional optimization models often fail to capture real-world traffic complexity and dynamics. This study introduces a novel single-agent reinforcement learning (RL) framework for regional adaptive TSC, circumventing the coordination complexities inherent in multi-agent systems through a centralized decision-making paradigm. The model employs an adjacency matrix to unify the encoding of road network topology, real-time queue states derived from probe vehicle data, and current signal timing parameters. Leveraging the efficient learning capabilities of the DreamerV3 world model, the agent learns control policies where actions sequentially select intersections and adjust their signal phase splits to regulate traffic inflow/outflow, analogous to a feedback control system. Reward design prioritizes queue dissipation, directly linking congestion metrics (queue length) to control actions. Simulation experiments conducted in SUMO demonstrate the model's effectiveness: under inference scenarios with multi-level (10%, 20%, 30%) Origin-Destination (OD) demand fluctuations, the framework exhibits robust anti-fluctuation capability and significantly reduces queue lengths. This work establishes a new paradigm for intelligent traffic control compatible with probe vehicle technology. Future research will focus on enhancing practical applicability by incorporating stochastic OD demand fluctuations during training and exploring regional optimization mechanisms for contingency events.
Authors:Riccardo Mereu, Aidan Scannell, Yuxin Hou, Yi Zhao, Aditya Jitta, Antonio Dominguez, Luigi Acerbi, Amos Storkey, Paul Chang
Abstract:
World models are a powerful paradigm in AI and robotics, enabling agents to reason about the future by predicting visual observations or compact latent states. The 1X World Model Challenge introduces an open-source benchmark of real-world humanoid interaction, with two complementary tracks: sampling, focused on forecasting future image frames, and compression, focused on predicting future discrete latent codes. For the sampling track, we adapt the video generation foundation model Wan-2.2 TI2V-5B to video-state-conditioned future frame prediction. We condition the video generation on robot states using AdaLN-Zero, and further post-train the model using LoRA. For the compression track, we train a Spatio-Temporal Transformer model from scratch. Our models achieve 23.0 dB PSNR in the sampling task and a Top-500 CE of 6.6386 in the compression task, securing 1st place in both challenges.
Authors:Jonas Ulmen, Ganesh Sundaram, Daniel Görges
Abstract:
With the advent of Joint Embedding Predictive Architectures (JEPAs), which appear to be more capable than reconstruction-based methods, this paper introduces a novel technique for creating world models using continuous-time dynamic systems from arbitrary observation data. The proposed method integrates sequence embeddings with neural ordinary differential equations (neural ODEs). It employs loss functions that enforce contractive embeddings and Lipschitz constants in state transitions to construct a well-organized latent state space. The approach's effectiveness is demonstrated through the generation of structured latent state-space models for a simple pendulum system using only image data. This opens up a new technique for developing more general control algorithms and estimation techniques with broad applications in robotics.
Authors:Brennen A. Hill, Mant Koh En Wei, Thangavel Jishnuanandh
Abstract:
Robust coordination is critical for effective decision-making in multi-agent systems, especially under partial observability. A central question in Multi-Agent Reinforcement Learning (MARL) is whether to engineer communication protocols or learn them end-to-end. We investigate this dichotomy using embodied world models. We propose and compare two communication strategies for a cooperative task-allocation problem. The first, Learned Direct Communication (LDC), learns a protocol end-to-end, with agents generating messages and actions concurrently. The second, Intention Communication, uses an engineered inductive bias: a compact, learned world model, the Imagined Trajectory Generation Module (ITGM), to simulate future states. Agents then communicate a summary of this plan. We evaluate these approaches on goal-directed interaction in a grid world, a canonical abstraction for embodied AI problems. Our experiments reveal that while emergent communication is viable in simple settings, the engineered, world model-based approach shows superior performance, sample efficiency, and scalability as complexity increases. These findings advocate for integrating structured, predictive models into MARL agents to enable active, goal-driven coordination.
Authors:Hunter Schofield, Mohammed Elmahgiubi, Kasra Rezaee, Jinjun Shan
Abstract:
World models have become increasingly popular in acting as learned traffic simulators. Recent work has explored replacing traditional traffic simulators with world models for policy training. In this work, we explore the robustness of existing metrics to evaluate world models as traffic simulators to see if the same metrics are suitable for evaluating a world model as a pseudo-environment for policy training. Specifically, we analyze the metametric employed by the Waymo Open Sim-Agents Challenge (WOSAC) and compare world model predictions on standard scenarios where the agents are fully or partially controlled by the world model (partial replay). Furthermore, since we are interested in evaluating the ego action-conditioned world model, we extend the standard WOSAC evaluation domain to include agents that are causal to the ego vehicle. Our evaluations reveal a significant number of scenarios where top-ranking models perform well under no perturbation but fail when the ego agent is forced to replay the original trajectory. To address these cases, we propose new metrics to highlight the sensitivity of world models to uncontrollable objects and evaluate the performance of world models as pseudo-environments for policy training and analyze some state-of-the-art world models under these new metrics.
Authors:Eric Xing, Mingkai Deng, Jinyu Hou, Zhiting Hu
Abstract:
World Model, the supposed algorithmic surrogate of the real-world environment which biological agents experience with and act upon, has been an emerging topic in recent years because of the rising needs to develop virtual agents with artificial (general) intelligence. There has been much debate on what a world model really is, how to build it, how to use it, and how to evaluate it. In this essay, starting from the imagination in the famed Sci-Fi classic Dune, and drawing inspiration from the concept of "hypothetical thinking" in psychology literature, we offer critiques of several schools of thoughts on world modeling, and argue the primary goal of a world model to be simulating all actionable possibilities of the real world for purposeful reasoning and acting. Building on the critiques, we propose a new architecture for a general-purpose world model, based on hierarchical, multi-level, and mixed continuous/discrete representations, and a generative and self-supervision learning framework, with an outlook of a Physical, Agentic, and Nested (PAN) AGI system enabled by such a model.
Authors:Bradly Alicea, Morgan Hough, Amanda Nelson, Jesse Parent
Abstract:
One classic idea from the cybernetics literature is the Every Good Regulator Theorem (EGRT). The EGRT provides a means to identify good regulation, or the conditions under which an agent (regulator) can match the dynamical behavior of a system. We reevaluate and recast the EGRT in a modern context to provide insight into how intelligent autonomous learning systems might utilize a compressed global representation (world model). One-to-one mappings between a regulator (R) and the corresponding system (S) provide a reduced representation that preserves useful variety to match all possible outcomes of a system. Secondarily, we question the role of purpose or autonomy in this process, demonstrating how physical paradigms such as temporal criticality, non-normal denoising, and alternating procedural acquisition can recast behavior as statistical mechanics and yield regulatory relationships. These diverse physical systems challenge the notion of tightly-coupled good regulation when applied to non-uniform and out-of-distribution phenomena. Modern definitions of intelligence are found to be inadequate, and can be improved upon by viewing intelligence as embodied non-purposeful good regulation. Overall, we aim to recast the EGRT as a tool for contemporary Artificial Intelligence (AI) architectures by considering the role of good regulation in the implementation of world models.
Authors:Christine Bauer, Li Chen, Nicola Ferro, Norbert Fuhr, Avishek Anand, Timo Breuer, Guglielmo Faggioli, Ophir Frieder, Hideo Joho, Jussi Karlgren, Johannes Kiesel, Bart P. Knijnenburg, Aldo Lipani, Lien Michiels, Andrea Papenmeier, Maria Soledad Pera, Mark Sanderson, Scott Sanner, Benno Stein, Johanne R. Trippas, Karin Verspoor, Martijn C Willemsen
Abstract:
During the workshop, we deeply discussed what CONversational Information ACcess (CONIAC) is and its unique features, proposing a world model abstracting it, and defined the Conversational Agents Framework for Evaluation (CAFE) for the evaluation of CONIAC systems, consisting of six major components: 1) goals of the system's stakeholders, 2) user tasks to be studied in the evaluation, 3) aspects of the users carrying out the tasks, 4) evaluation criteria to be considered, 5) evaluation methodology to be applied, and 6) measures for the quantitative criteria chosen.
Authors:George R. Nahass, Zhu Wang, Homa Rashidisabet, Won Hwa Kim, Sasha Hubschman, Jeffrey C. Peterson, Ghasem Yazdanpanah, Chad A. Purnell, Pete Setabutr, Ann Q. Tran, Darvin Yi, Sathya N. Ravi
Abstract:
Machine unlearning aims to remove the influence of specific training samples from a trained model without full retraining. While prior work has largely focused on privacy-motivated settings, we recast unlearning as a general-purpose tool for post-deployment model revision. Specifically, we focus on utilizing unlearning in clinical contexts where data shifts, device deprecation, and policy changes are common. To this end, we propose a bilevel optimization formulation of boundary-based unlearning that can be solved using iterative algorithms. We provide convergence guarantees when first-order algorithms are used to unlearn. Our method introduces tunable loss design for controlling the forgetting-retention tradeoff and supports novel model composition strategies that merge the strengths of distinct unlearning runs. Across benchmark and real-world clinical imaging datasets, our approach outperforms baselines on both forgetting and retention metrics, including scenarios involving imaging devices and anatomical outliers. This work establishes machine unlearning as a modular, practical alternative to retraining for real-world model maintenance in clinical applications.
Authors:Marko Tot, Shu Ishida, Abdelhak Lemkhenter, David Bignell, Pallavi Choudhury, Chris Lovett, Luis França, Matheus Ribeiro Furtado de Mendonça, Tarun Gupta, Darren Gehring, Sam Devlin, Sergio Valcarcel Macua, Raluca Georgescu
Abstract:
Imitation learning is a powerful tool for training agents by leveraging expert knowledge, and being able to replicate a given trajectory is an integral part of it. In complex environments, like modern 3D video games, distribution shift and stochasticity necessitate robust approaches beyond simple action replay. In this study, we apply Inverse Dynamics Models (IDM) with different encoders and policy heads to trajectory following in a modern 3D video game -- Bleeding Edge. Additionally, we investigate several future alignment strategies that address the distribution shift caused by the aleatoric uncertainty and imperfections of the agent. We measure both the trajectory deviation distance and the first significant deviation point between the reference and the agent's trajectory and show that the optimal configuration depends on the chosen setting. Our results show that in a diverse data setting, a GPT-style policy head with an encoder trained from scratch performs the best, DINOv2 encoder with the GPT-style policy head gives the best results in the low data regime, and both GPT-style and MLP-style policy heads had comparable results when pre-trained on a diverse setting and fine-tuned for a specific behaviour setting.
Authors:Danaja Rutar, Alva Markelius, Konstantinos Voudouris, José Hernández-Orallo, Lucy Cheke
Abstract:
One of the core components of our world models is 'intuitive physics' - an understanding of objects, space, and causality. This capability enables us to predict events, plan action and navigate environments, all of which rely on a composite sense of objecthood. Despite its importance, there is no single, unified account of objecthood, though multiple theoretical frameworks provide insights. In the first part of this paper, we present a comprehensive overview of the main theoretical frameworks in objecthood research - Gestalt psychology, enactive cognition, and developmental psychology - and identify the core capabilities each framework attributes to object understanding, as well as what functional roles they play in shaping world models in biological agents. Given the foundational role of objecthood in world modelling, understanding objecthood is also essential in AI. In the second part of the paper, we evaluate how current AI paradigms approach and test objecthood capabilities compared to those in cognitive science. We define an AI paradigm as a combination of how objecthood is conceptualised, the methods used for studying objecthood, the data utilised, and the evaluation techniques. We find that, whilst benchmarks can detect that AI systems model isolated aspects of objecthood, the benchmarks cannot detect when AI systems lack functional integration across these capabilities, not solving the objecthood challenge fully. Finally, we explore novel evaluation approaches that align with the integrated vision of objecthood outlined in this paper. These methods are promising candidates for advancing from isolated object capabilities toward general-purpose AI with genuine object understanding in real-world contexts.
Authors:Javier Del Ser, Jesus L. Lobo, Heimo Müller, Andreas Holzinger
Abstract:
World Models help Artificial Intelligence (AI) predict outcomes, reason about its environment, and guide decision-making. While widely used in reinforcement learning, they lack the structured, adaptive representations that even young children intuitively develop. Advancing beyond pattern recognition requires dynamic, interpretable frameworks inspired by Piaget's cognitive development theory. We highlight six key research areas -- physics-informed learning, neurosymbolic learning, continual learning, causal inference, human-in-the-loop AI, and responsible AI -- as essential for enabling true reasoning in AI. By integrating statistical learning with advances in these areas, AI can evolve from pattern recognition to genuine understanding, adaptation and reasoning capabilities.
Authors:Pierrick Lorang, Hong Lu, Matthias Scheutz
Abstract:
Adapting quickly to dynamic, uncertain environments-often called "open worlds"-remains a major challenge in robotics. Traditional Task and Motion Planning (TAMP) approaches struggle to cope with unforeseen changes, are data-inefficient when adapting, and do not leverage world models during learning. We address this issue with a hybrid planning and learning system that integrates two models: a low level neural network based model that learns stochastic transitions and drives exploration via an Intrinsic Curiosity Module (ICM), and a high level symbolic planning model that captures abstract transitions using operators, enabling the agent to plan in an "imaginary" space and generate reward machines. Our evaluation in a robotic manipulation domain with sequential novelty injections demonstrates that our approach converges faster and outperforms state-of-the-art hybrid methods.
Authors:Qiang Li, Yinhan Lin, Qin Luo, Lina Yu
Abstract:
Reinforcement learning (RL) has evolved into a widely investigated technology for the development of smart TSC strategies. However, current RL algorithms necessitate excessive interaction with the environment to learn effective policies, making them impractical for large-scale tasks. The DreamerV3 algorithm presents compelling properties for policy learning. It summarizes general dynamics knowledge about the environment and enables the prediction of future outcomes of potential actions from past experience, reducing the interaction with the environment through imagination training. In this paper, a corridor TSC model is trained using the DreamerV3 algorithm to explore the benefits of world models for TSC strategy learning. In RL environment design, to manage congestion levels effectively, both the state and reward functions are defined based on queue length, and the action is designed to manage queue length efficiently. Using the SUMO simulation platform, the two hyperparameters (training ratio and model size) of the DreamerV3 algorithm were tuned and analyzed across different OD matrix scenarios. We discovered that choosing a smaller model size and initially attempting several medium training ratios can significantly reduce the time spent on hyperparameter tuning. Additionally, we found that the approach is generally applicable as it can solve two TSC task scenarios with the same hyperparameters. Regarding the claimed data-efficiency of the DreamerV3 algorithm, due to the significant fluctuation of the episode reward curve in the early stages of training, it can only be confirmed that larger model sizes exhibit modest data-efficiency, and no evidence was found that increasing the training ratio accelerates convergence.
Authors:Peng Yan, Ahmed Abdulkadir, Gerrit A. Schatte, Giulia Aguzzi, Joonsu Gha, Nikola Pascher, Matthias Rosenthal, Yunlong Gao, Benjamin F. Grewe, Thilo Stadelmann
Abstract:
To go from (passive) process monitoring to active process control, an effective AI system must learn about the behavior of the complex system from very limited training data, forming an ad-hoc digital twin with respect to process inputs and outputs that captures the consequences of actions on the process's world. We propose a novel methodology based on learning world models that disentangles process parameters in the learned latent representation, allowing for fine-grained control. Representation learning is driven by the latent factors influencing the processes through contrastive learning within a joint embedding predictive architecture. This makes changes in representations predictable from changes in inputs and vice versa, facilitating interpretability of key factors responsible for process variations, paving the way for effective control actions to keep the process within operational bounds. The effectiveness of our method is validated on the example of plastic injection molding, demonstrating practical relevance in proposing specific control actions for a notoriously unstable process.
Authors:Hidehisa Arai, Keishi Ishihara, Tsubasa Takahashi, Yu Yamaguchi
Abstract:
World models have emerged as promising neural simulators for autonomous driving, with the potential to supplement scarce real-world data and enable closed-loop evaluations. However, current research primarily evaluates these models based on visual realism or downstream task performance, with limited focus on fidelity to specific action instructions - a crucial property for generating targeted simulation scenes. Although some studies address action fidelity, their evaluations rely on closed-source mechanisms, limiting reproducibility. To address this gap, we develop an open-access evaluation framework, ACT-Bench, for quantifying action fidelity, along with a baseline world model, Terra. Our benchmarking framework includes a large-scale dataset pairing short context videos from nuScenes with corresponding future trajectory data, which provides conditional input for generating future video frames and enables evaluation of action fidelity for executed motions. Furthermore, Terra is trained on multiple large-scale trajectory-annotated datasets to enhance action fidelity. Leveraging this framework, we demonstrate that the state-of-the-art model does not fully adhere to given instructions, while Terra achieves improved action fidelity. All components of our benchmark framework will be made publicly available to support future research.
Authors:Arjun P S, Andrew Melnik, Gora Chand Nandi
Abstract:
Experience Goal Visual Rearrangement task stands as a foundational challenge within Embodied AI, requiring an agent to construct a robust world model that accurately captures the goal state. The agent uses this world model to restore a shuffled scene to its original configuration, making an accurate representation of the world essential for successfully completing the task. In this work, we present a novel framework that leverages on 3D Gaussian Splatting as a 3D scene representation for experience goal visual rearrangement task. Recent advances in volumetric scene representation like 3D Gaussian Splatting, offer fast rendering of high quality and photo-realistic novel views. Our approach enables the agent to have consistent views of the current and the goal setting of the rearrangement task, which enables the agent to directly compare the goal state and the shuffled state of the world in image space. To compare these views, we propose to use a dense feature matching method with visual features extracted from a foundation model, leveraging its advantages of a more universal feature representation, which facilitates robustness, and generalization. We validate our approach on the AI2-THOR rearrangement challenge benchmark and demonstrate improvements over the current state of the art methods
Authors:Shashank Hegde, Satyajeet Das, Gautam Salhotra, Gaurav S. Sukhatme
Abstract:
With the increasing availability of open-source robotic data, imitation learning has become a promising approach for both manipulation and locomotion. Diffusion models are now widely used to train large, generalized policies that predict controls or trajectories, leveraging their ability to model multimodal action distributions. However, this generality comes at the cost of larger model sizes and slower inference, an acute limitation for robotic tasks requiring high control frequencies. Moreover, Diffusion Policy (DP), a popular trajectory-generation approach, suffers from a trade-off between performance and action horizon: fewer diffusion queries lead to larger trajectory chunks, which in turn accumulate tracking errors. To overcome these challenges, we introduce WARPD (World model Assisted Reactive Policy Diffusion), a method that generates closed-loop policies (weights for neural policies) directly, instead of open-loop trajectories. By learning behavioral distributions in parameter space rather than trajectory space, WARPD offers two major advantages: (1) extended action horizons with robustness to perturbations, while maintaining high task performance, and (2) significantly reduced inference costs. Empirically, WARPD outperforms DP in long-horizon and perturbed environments, and achieves multitask performance on par with DP while requiring only ~ 1/45th of the inference-time FLOPs per step.
Authors:Fabio Ferreira, Moreno Schlageter, Raghu Rajan, Andre Biedenkapp, Frank Hutter
Abstract:
A World Model is a compressed spatial and temporal representation of a real world environment that allows one to train an agent or execute planning methods. However, world models are typically trained on observations from the real world environment, and they usually do not enable learning policies for other real environments. We propose One-Shot World Model (OSWM), a transformer world model that is learned in an in-context learning fashion from purely synthetic data sampled from a prior distribution. Our prior is composed of multiple randomly initialized neural networks, where each network models the dynamics of each state and reward dimension of a desired target environment. We adopt the supervised learning procedure of Prior-Fitted Networks by masking next-state and reward at random context positions and query OSWM to make probabilistic predictions based on the remaining transition context. During inference time, OSWM is able to quickly adapt to the dynamics of a simple grid world, as well as the CartPole gym and a custom control environment by providing 1k transition steps as context and is then able to successfully train environment-solving agent policies. However, transferring to more complex environments remains a challenge, currently. Despite these limitations, we see this work as an important stepping-stone in the pursuit of learning world models purely from synthetic data.
Authors:Nate Gillman, Yinghua Zhou, Zitian Tang, Evan Luo, Arjan Chakravarthy, Daksh Aggarwal, Michael Freeman, Charles Herrmann, Chen Sun
Abstract:
Recent advancements in video generation have enabled the development of ``world models'' capable of simulating potential futures for robotics and planning. However, specifying precise goals for these models remains a challenge; text instructions are often too abstract to capture physical nuances, while target images are frequently infeasible to specify for dynamic tasks. To address this, we introduce Goal Force, a novel framework that allows users to define goals via explicit force vectors and intermediate dynamics, mirroring how humans conceptualize physical tasks. We train a video generation model on a curated dataset of synthetic causal primitives-such as elastic collisions and falling dominos-teaching it to propagate forces through time and space. Despite being trained on simple physics data, our model exhibits remarkable zero-shot generalization to complex, real-world scenarios, including tool manipulation and multi-object causal chains. Our results suggest that by grounding video generation in fundamental physical interactions, models can emerge as implicit neural physics simulators, enabling precise, physics-aware planning without reliance on external engines. We release all datasets, code, model weights, and interactive video demos at our project page.
Authors:Joyjit Roy, Samaresh Kumar Singh
Abstract:
Automated negotiations in insurance and business-to-business (B2B) commerce encounter substantial challenges. Current systems force a trade-off between convenience and privacy by routing sensitive financial data through centralized servers, increasing security risks, and diminishing user trust. This study introduces a device-native autonomous Artificial Intelligence (AI) agent system for privacy-preserving negotiations. The proposed system operates exclusively on user hardware, enabling real-time bargaining while maintaining sensitive constraints locally. It integrates zero-knowledge proofs to ensure privacy and employs distilled world models to support advanced on-device reasoning. The architecture incorporates six technical components within an agentic AI workflow. Agents autonomously plan negotiation strategies, conduct secure multi-party bargaining, and generate cryptographic audit trails without exposing user data to external servers. The system is evaluated in insurance and B2B procurement scenarios across diverse device configurations. Results show an average success rate of 87%, a 2.4x latency improvement over cloud baselines, and strong privacy preservation through zero-knowledge proofs. User studies show 27% higher trust scores when decision trails are available. These findings establish a foundation for trustworthy autonomous agents in privacy-sensitive financial domains.
Authors:Emmy Liu, Varun Gangal, Chelsea Zou, Xiaoqi Huang, Michael Yu, Alex Chang, Zhuofu Tao, Sachin Kumar, Steven Y. Feng
Abstract:
Despite numerous attempts to solve the issue of hallucination since the inception of neural language models, it remains a problem in even frontier large language models today. Why is this the case? We walk through definitions of hallucination used in the literature from a historical perspective up to the current day, and fold them into a single definition of hallucination, wherein different prior definitions focus on different aspects of our definition. At its core, we argue that hallucination is simply inaccurate (internal) world modeling, in a form where it is observable to the user (e.g., stating a fact which contradicts a knowledge base, or producing a summary which contradicts a known source). By varying the reference world model as well as the knowledge conflict policy (e.g., knowledge base vs. in-context), we arrive at the different existing definitions of hallucination present in the literature. We argue that this unified view is useful because it forces evaluations to make clear their assumed "world" or source of truth, clarifies what should and should not be called hallucination (as opposed to planning or reward/incentive-related errors), and provides a common language to compare benchmarks and mitigation techniques. Building on this definition, we outline plans for a family of benchmarks in which hallucinations are defined as mismatches with synthetic but fully specified world models in different environments, and sketch out how these benchmarks can use such settings to stress-test and improve the world modeling components of language models.
Authors:Dimitrios Danopoulos, Enrico Lupi, Chang Sun, Sebastian Dittmeier, Michael Kagan, Vladimir Loncar, Maurizio Pierini
Abstract:
Efficient AI inference on AMD's Versal AI Engine (AIE) is challenging due to tightly coupled VLIW execution, explicit datapaths, and local memory management. Prior work focused on first-generation AIE kernel optimizations, without tackling full neural network execution across the 2D array. In this work, we present AIE4ML, the first comprehensive framework for converting AI models automatically into optimized firmware targeting the AIE-ML generation devices, also with forward compatibility for the newer AIE-MLv2 architecture. At the single-kernel level, we attain performance close to the architectural peak. At the graph and system levels, we provide a structured parallelization method that can scale across the 2D AIE-ML fabric and exploit its dedicated memory tiles to stay entirely on-chip throughout the model execution. As a demonstration, we designed a generalized and highly efficient linear-layer implementation with intrinsic support for fused bias addition and ReLU activation. Also, as our framework necessitates the generation of multi-layer implementations, our approach systematically derives deterministic, compact, and topology-optimized placements tailored to the physical 2D grid of the device through a novel graph placement and search algorithm. Finally, the framework seamlessly accepts quantized models imported from high-level tools such as hls4ml or PyTorch while preserving bit-exactness. In layer scaling benchmarks, we achieve up to 98.6% efficiency relative to the single-kernel baseline, utilizing 296 of 304 AIE tiles (97.4%) of the device with entirely on-chip data movement. With evaluations across real-world model topologies, we demonstrate that AIE4ML delivers GPU-class throughput under microsecond latency constraints, making it a practical companion for ultra-low-latency environments such as trigger systems in particle physics experiments.
Authors:Yuang Geng, Zhuoyang Zhou, Zhongzheng Zhang, Siyuan Pan, Hoang-Dung Tran, Ivan Ruchkin
Abstract:
Verifying closed-loop vision-based control systems remains a fundamental challenge due to the high dimensionality of images and the difficulty of modeling visual environments. While generative models are increasingly used as camera surrogates in verification, their reliance on stochastic latent variables introduces unnecessary overapproximation error. To address this bottleneck, we propose a Deterministic World Model (DWM) that maps system states directly to generative images, effectively eliminating uninterpretable latent variables to ensure precise input bounds. The DWM is trained with a dual-objective loss function that combines pixel-level reconstruction accuracy with a control difference loss to maintain behavioral consistency with the real system. We integrate DWM into a verification pipeline utilizing Star-based reachability analysis (StarV) and employ conformal prediction to derive rigorous statistical bounds on the trajectory deviation between the world model and the actual vision-based system. Experiments on standard benchmarks show that our approach yields significantly tighter reachable sets and better verification performance than a latent-variable baseline.
Authors:Tarun Gupta, Danish Pruthi
Abstract:
World models have garnered substantial interest in the AI community. These are internal representations that simulate aspects of the external world, track entities and states, capture causal relationships, and enable prediction of consequences. This contrasts with representations based solely on statistical correlations. A key motivation behind this research direction is that humans possess such mental world models, and finding evidence of similar representations in AI models might indicate that these models "understand" the world in a human-like way. In this paper, we use case studies from the philosophy of science literature to critically examine whether the world model framework adequately characterizes human-level understanding. We focus on specific philosophical analyses where the distinction between world model capabilities and human understanding is most pronounced. While these represent particular views of understanding rather than universal definitions, they help us explore the limits of world models.
Authors:Muthukumar Pandaram, Jakob Hollenstein, David Drexel, Samuele Tosatto, Antonio Rodríguez-Sánchez, Justus Piater
Abstract:
The use of learned dynamics models, also known as world models, can improve the sample efficiency of reinforcement learning. Recent work suggests that the underlying causal graphs of such dynamics models are sparsely connected, with each of the future state variables depending only on a small subset of the current state variables, and that learning may therefore benefit from sparsity priors. Similarly, temporal sparsity, i.e. sparsely and abruptly changing local dynamics, has also been proposed as a useful inductive bias. In this work, we critically examine these assumptions by analyzing ground-truth dynamics from a set of robotic reinforcement learning environments in the MuJoCo Playground benchmark suite, aiming to determine whether the proposed notions of state and temporal sparsity actually tend to hold in typical reinforcement learning tasks. We study (i) whether the causal graphs of environment dynamics are sparse, (ii) whether such sparsity is state-dependent, and (iii) whether local system dynamics change sparsely. Our results indicate that global sparsity is rare, but instead the tasks show local, state-dependent sparsity in their dynamics and this sparsity exhibits distinct structures, appearing in temporally localized clusters (e.g., during contact events) and affecting specific subsets of state dimensions. These findings challenge common sparsity prior assumptions in dynamics learning, emphasizing the need for grounded inductive biases that reflect the state-dependent sparsity structure of real-world dynamics.
Authors:Saurabh Ranjan, Brian Odegaard
Abstract:
What is the computational objective of imagination? While classical interpretations suggest imagination is useful for maximizing rewards, recent findings challenge this view. In this study, we propose that imagination serves to access an internal world model (IWM) and use psychological network analysis to explore IWMs in humans and large language models (LLMs). Specifically, we assessed imagination vividness ratings using two questionnaires and constructed imagination networks from these reports. Imagination networks from human groups showed correlations between different centrality measures, including expected influence, strength, and closeness. However, imagination networks from LLMs showed a lack of clustering and lower correlations between centrality measures under different prompts and conversational memory conditions. Together, these results indicate a lack of similarity between IWMs in human and LLM agents. Overall, our study offers a novel method for comparing internally-generated representations in humans and AI, providing insights for developing human-like imagination in artificial intelligence.
Authors:Danijar Hafner, Wilson Yan, Timothy Lillicrap
Abstract:
World models learn general knowledge from videos and simulate experience for training behaviors in imagination, offering a path towards intelligent agents. However, previous world models have been unable to accurately predict object interactions in complex environments. We introduce Dreamer 4, a scalable agent that learns to solve control tasks by reinforcement learning inside of a fast and accurate world model. In the complex video game Minecraft, the world model accurately predicts object interactions and game mechanics, outperforming previous world models by a large margin. The world model achieves real-time interactive inference on a single GPU through a shortcut forcing objective and an efficient transformer architecture. Moreover, the world model learns general action conditioning from only a small amount of data, allowing it to extract the majority of its knowledge from diverse unlabeled videos. We propose the challenge of obtaining diamonds in Minecraft from only offline data, aligning with practical applications such as robotics where learning from environment interaction can be unsafe and slow. This task requires choosing sequences of over 20,000 mouse and keyboard actions from raw pixels. By learning behaviors in imagination, Dreamer 4 is the first agent to obtain diamonds in Minecraft purely from offline data, without environment interaction. Our work provides a scalable recipe for imagination training, marking a step towards intelligent agents.
Authors:Björn Möller, Zhengyang Li, Malte Stelzer, Thomas Graave, Fabian Bettels, Muaaz Ataya, Tim Fingscheidt
Abstract:
Recent successful video generation systems that predict and create realistic automotive driving scenes from short video inputs assign tokenization, future state prediction (world model), and video decoding to dedicated models. These approaches often utilize large models that require significant training resources, offer limited insight into design choices, and lack publicly available code and datasets. In this work, we address these deficiencies and present OpenViGA, an open video generation system for automotive driving scenes. Our contributions are: Unlike several earlier works for video generation, such as GAIA-1, we provide a deep analysis of the three components of our system by separate quantitative and qualitative evaluation: Image tokenizer, world model, video decoder. Second, we purely build upon powerful pre-trained open source models from various domains, which we fine-tune by publicly available automotive data (BDD100K) on GPU hardware at academic scale. Third, we build a coherent video generation system by streamlining interfaces of our components. Fourth, due to public availability of the underlying models and data, we allow full reproducibility. Finally, we also publish our code and models on Github. For an image size of 256x256 at 4 fps we are able to predict realistic driving scene videos frame-by-frame with only one frame of algorithmic latency.
Authors:Jacqueline Maasch, John Kalantari, Kia Khezeli
Abstract:
Reasoning requires adaptation to novel problem settings under limited data and distribution shift. This work introduces CausalARC: an experimental testbed for AI reasoning in low-data and out-of-distribution regimes, modeled after the Abstraction and Reasoning Corpus (ARC). Each CausalARC reasoning task is sampled from a fully specified causal world model, formally expressed as a structural causal model. Principled data augmentations provide observational, interventional, and counterfactual feedback about the world model in the form of few-shot, in-context learning demonstrations. As a proof-of-concept, we illustrate the use of CausalARC for four language model evaluation settings: (1) abstract reasoning with test-time training, (2) counterfactual reasoning with in-context learning, (3) program synthesis, and (4) causal discovery with logical reasoning.
Authors:Yunxin Sun, Abulhair Saparov
Abstract:
Reasoning is a core capability in artificial intelligence systems, for which large language models (LLMs) have recently shown remarkable progress. However, most work focuses exclusively on deductive reasoning, which is problematic since other types of reasoning are also essential in solving real-world problems, and they are less explored. This work focuses on evaluating LLMs' inductive and abductive reasoning capabilities. We introduce a programmable and synthetic dataset, InAbHyD (pronounced in-a-bid), where each reasoning example consists of an incomplete world model and a set of observations. The task for the intelligent agent is to produce hypotheses to explain observations under the incomplete world model to solve each reasoning example. We propose a new metric to evaluate the quality of hypotheses based on Occam's Razor. We evaluate and analyze some state-of-the-art LLMs. Our analysis shows that LLMs can perform inductive and abductive reasoning in simple scenarios, but struggle with complex world models and producing high-quality hypotheses, even with popular reasoning-enhancing techniques such as in-context learning and RLVR.
Authors:Tiancheng Han, Yunfei Gao, Yong Li, Wuzhou Yu, Qiaosheng Zhang, Wenqi Shao
Abstract:
Spatio-physical reasoning, a foundation capability for understanding the real physics world, is a critical step towards building robust world models. While recent vision language models (VLMs) have shown remarkable progress in specialized domains like multimodal mathematics and pure spatial understanding, their capability for spatio-physical reasoning remains largely unexplored. This paper provides a comprehensive diagnostic analysis of mainstream VLMs, revealing that current models perform inadequately on this crucial task. Further detailed analysis shows that this underperformance is largely attributable to biases caused by human-like prior and a lack of deep reasoning. To address these challenges, we apply supervised fine-tuning followed by rule-based reinforcement learning to Qwen2.5-VL-7B, resulting in significant improvements in spatio-physical reasoning capabilities and surpassing leading proprietary models. Nevertheless, despite this success, the model's generalization to new physics scenarios remains limited -- underscoring the pressing need for new approaches in spatio-physical reasoning.
Authors:Paul M. Riechers, Thomas J. Elliott, Adam S. Shai
Abstract:
We show that deep neural networks, including transformers and RNNs, pretrained as usual on next-token prediction, intrinsically discover and represent beliefs over 'quantum' and 'post-quantum' low-dimensional generative models of their training data -- as if performing iterative Bayesian updates over the latent state of this world model during inference as they observe more context. Notably, neural nets easily find these representation whereas there is no finite classical circuit that would do the job. The corresponding geometric relationships among neural activations induced by different input sequences are found to be largely independent of neural-network architecture. Each point in this geometry corresponds to a history-induced probability density over all possible futures, and the relative displacement of these points reflects the difference in mechanism and magnitude for how these distinct pasts affect the future.
Authors:Edmund Ross, Claudia Drygala, Leonhard Schwarz, Samir Kaiser, Francesca di Mare, Tobias Breiten, Hanno Gottschalk
Abstract:
In this work, we explore the use of compact latent representations with learned time dynamics ('World Models') to simulate physical systems. Drawing on concepts from control theory, we propose a theoretical framework that explains why projecting time slices into a low-dimensional space and then concatenating to form a history ('Tokenization') is so effective at learning physics datasets, and characterise when exactly the underlying dynamics admit a reconstruction mapping from the history of previous tokenized frames to the next. To validate these claims, we develop a sequence of models with increasing complexity, starting with least-squares regression and progressing through simple linear layers, shallow adversarial learners, and ultimately full-scale generative adversarial networks (GANs). We evaluate these models on a variety of datasets, including modified forms of the heat and wave equations, the chaotic regime 2D Kuramoto-Sivashinsky equation, and a challenging computational fluid dynamics (CFD) dataset of a 2D Kármán vortex street around a fixed cylinder, where our model is successfully able to recreate the flow.
Authors:Yifei Gao, Junhong Ye, Jiaqi Wang, Jitao Sang
Abstract:
Recent advancements in large language models (LLMs) have significantly improved the capabilities of web agents. However, effectively navigating complex and dynamic web environments still requires more advanced trajectory-level planning and execution. Prior studies have addressed self-improving agents by collecting extensive GUI trajectories from real-environment interactions. Despite their effectiveness, these approaches encounter two critical challenges: (1) Uncontrollable environment states, where real or sandboxed web environments often yield unstable and non-deterministic feedback, complicating the reproduction and debugging of agent behaviors; and (2) High API costs, as generating even a single interaction trajectory can involve hundreds of queries, leading to considerable API usage and computational expenses. To address these limitations and enable scalable self-improvement for agents, we propose WebSynthesis, a novel framework for trajectory synthesis and training. WebSynthesis leverages a learned world model to simulate virtual web environments, allowing a policy agent to perform efficient and reversible tree-based planning. This approach supports the large-scale generation of diverse and high-quality trajectories, which are subsequently utilized to refine the agent's policy. Experimental results demonstrate that an agent trained using WebSynthesis on a small-scale synthetic dataset achieves performance comparable to or even surpassing that of models trained on large-scale real-world data.
Authors:Aditya Narendra, Dmitry Makarov, Aleksandr Panov
Abstract:
We introduce Massively Multi-Task Model-Based Policy Optimization (M3PO), a scalable model-based reinforcement learning (MBRL) framework designed to address sample inefficiency in single-task settings and poor generalization in multi-task domains. Existing model-based approaches like DreamerV3 rely on pixel-level generative models that neglect control-centric representations, while model-free methods such as PPO suffer from high sample complexity and weak exploration. M3PO integrates an implicit world model, trained to predict task outcomes without observation reconstruction, with a hybrid exploration strategy that combines model-based planning and model-free uncertainty-driven bonuses. This eliminates the bias-variance trade-off in prior methods by using discrepancies between model-based and model-free value estimates to guide exploration, while maintaining stable policy updates through a trust-region optimizer. M3PO provides an efficient and robust alternative to existing model-based policy optimization approaches and achieves state-of-the-art performance across multiple benchmarks.
Authors:Martin JJ. Bucher, Iro Armeni
Abstract:
Scene synthesis and editing has emerged as a promising direction in computer graphics. Current trained approaches for 3D indoor scenes either oversimplify object semantics through one-hot class encodings (e.g., 'chair' or 'table'), require masked diffusion for editing, ignore room boundaries, or rely on floor plan renderings that fail to capture complex layouts. In contrast, LLM-based methods enable richer semantics via natural language (e.g., 'modern studio with light wood furniture') but do not support editing, remain limited to rectangular layouts or rely on weak spatial reasoning from implicit world models. We introduce ReSpace, a generative framework for text-driven 3D indoor scene synthesis and editing using autoregressive language models. Our approach features a compact structured scene representation with explicit room boundaries that frames scene editing as a next-token prediction task. We leverage a dual-stage training approach combining supervised fine-tuning and preference alignment, enabling a specially trained language model for object addition that accounts for user instructions, spatial geometry, object semantics, and scene-level composition. For scene editing, we employ a zero-shot LLM to handle object removal and prompts for addition. We further introduce a novel voxelization-based evaluation that captures fine-grained geometry beyond 3D bounding boxes. Experimental results surpass state-of-the-art on object addition while maintaining competitive results on full scene synthesis.
Authors:Yu Zhang, Xingzhuo Guo, Haoran Xu, Mingsheng Long
Abstract:
Diffusion and flow-based models have enabled significant progress in generation tasks across various modalities and have recently found applications in world modeling. However, unlike typical generation tasks that encourage sample diversity, world models entail different sources of uncertainty and require consistent samples aligned with the ground-truth trajectory, which is a limitation we empirically observe in diffusion models. We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability, which we attribute to the entanglement of condition understanding and target denoising within shared architectures and co-training schemes. To address this, we propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising. ForeDiff incorporates a separate deterministic predictive stream to process conditioning inputs independently of the denoising stream, and further leverages a pretrained predictor to extract informative representations that guide generation. Extensive experiments on robot video prediction and scientific spatiotemporal forecasting show that ForeDiff improves both predictive accuracy and sample consistency over strong baselines, offering a promising direction for diffusion-based world models.
Authors:Jiayu Chen, Aravind Venugopal, Jeff Schneider
Abstract:
Offline reinforcement learning (RL) offers a powerful paradigm for data-driven control. Compared to model-free approaches, offline model-based RL (MBRL) explicitly learns a world model from a static dataset and uses it as a surrogate simulator, improving data efficiency and enabling potential generalization beyond the dataset support. However, most existing offline MBRL methods follow a two-stage training procedure: first learning a world model by maximizing the likelihood of the observed transitions, then optimizing a policy to maximize its expected return under the learned model. This objective mismatch results in a world model that is not necessarily optimized for effective policy learning. Moreover, we observe that policies learned via offline MBRL often lack robustness during deployment, and small adversarial noise in the environment can lead to significant performance degradation. To address these, we propose a framework that dynamically adapts the world model alongside the policy under a unified learning objective aimed at improving robustness. At the core of our method is a maximin optimization problem, which we solve by innovatively utilizing Stackelberg learning dynamics. We provide theoretical analysis to support our design and introduce computationally efficient implementations. We benchmark our algorithm on twelve noisy D4RL MuJoCo tasks and three stochastic Tokamak Control tasks, demonstrating its state-of-the-art performance.
Authors:Yulin Zhou, Yuankai Lin, Fanzhe Peng, Jiahui Chen, Kaiji Huang, Hua Yang, Zhouping Yin
Abstract:
Standard imitation learning (IL) methods have achieved considerable success in robotics, yet often rely on the Markov assumption, which falters in long-horizon tasks where history is crucial for resolving perceptual ambiguity. This limitation stems not only from a conceptual gap but also from a fundamental computational barrier: prevailing architectures like Transformers are often constrained by quadratic complexity, rendering the processing of long, high-dimensional observation sequences infeasible. To overcome this dual challenge, we introduce Mamba Temporal Imitation Learning (MTIL). Our approach represents a new paradigm for robotic learning, which we frame as a practical synthesis of World Model and Dynamical System concepts. By leveraging the linear-time recurrent dynamics of State Space Models (SSMs), MTIL learns an implicit, action-oriented world model that efficiently encodes the entire trajectory history into a compressed, evolving state. This allows the policy to be conditioned on a comprehensive temporal context, transcending the confines of Markovian approaches. Through extensive experiments on simulated benchmarks (ACT, Robomimic, LIBERO) and on challenging real-world tasks, MTIL demonstrates superior performance against SOTA methods like ACT and Diffusion Policy, particularly in resolving long-term temporal ambiguities. Our findings not only affirm the necessity of full temporal context but also validate MTIL as a powerful and a computationally feasible approach for learning long-horizon, non-Markovian behaviors from high-dimensional observations.
Authors:Xiaofan Li, Chenming Wu, Zhao Yang, Zhihao Xu, Dingkang Liang, Yumeng Zhang, Ji Wan, Jun Wang
Abstract:
This paper presents DriVerse, a generative model for simulating navigation-driven driving scenes from a single image and a future trajectory. Previous autonomous driving world models either directly feed the trajectory or discrete control signals into the generation pipeline, leading to poor alignment between the control inputs and the implicit features of the 2D base generative model, which results in low-fidelity video outputs. Some methods use coarse textual commands or discrete vehicle control signals, which lack the precision to guide fine-grained, trajectory-specific video generation, making them unsuitable for evaluating actual autonomous driving algorithms. DriVerse introduces explicit trajectory guidance in two complementary forms: it tokenizes trajectories into textual prompts using a predefined trend vocabulary for seamless language integration, and converts 3D trajectories into 2D spatial motion priors to enhance control over static content within the driving scene. To better handle dynamic objects, we further introduce a lightweight motion alignment module, which focuses on the inter-frame consistency of dynamic pixels, significantly enhancing the temporal coherence of moving elements over long sequences. With minimal training and no need for additional data, DriVerse outperforms specialized models on future video generation tasks across both the nuScenes and Waymo datasets. The code and models will be released to the public.
Authors:Chenyu Zhang, Daniil Cherniavskii, Andrii Zadaianchuk, Antonios Tragoudaras, Antonios Vozikis, Thijmen Nijdam, Derck W. E. Prinzhorn, Mark Bodracska, Nicu Sebe, Efstratios Gavves
Abstract:
Recent advances in image and video generation raise hopes that these models possess world modeling capabilities, the ability to generate realistic, physically plausible videos. This could revolutionize applications in robotics, autonomous driving, and scientific simulation. However, before treating these models as world models, we must ask: Do they adhere to physical conservation laws? To answer this, we introduce Morpheus, a benchmark for evaluating video generation models on physical reasoning. It features 80 real-world videos capturing physical phenomena, guided by conservation laws. Since artificial generations lack ground truth, we assess physical plausibility using physics-informed metrics evaluated with respect to infallible conservation laws known per physical setting, leveraging advances in physics-informed neural networks and vision-language foundation models. Our findings reveal that even with advanced prompting and video conditioning, current models struggle to encode physical principles despite generating aesthetically pleasing videos. All data, leaderboard, and code are open-sourced at our project page.
Authors:Youngjoon Jeong, Junha Chun, Soonwoo Cha, Taesup Kim
Abstract:
A world model is essential for an agent to predict the future and plan in domains such as autonomous driving and robotics. To achieve this, recent advancements have focused on video generation, which has gained significant attention due to the impressive success of diffusion models. However, these models require substantial computational resources. To address these challenges, we propose a world model leveraging object-centric representation space using slot attention, guided by language instructions. Our model perceives the current state as an object-centric representation and predicts future states in this representation space conditioned on natural language instructions. This approach results in a more compact and computationally efficient model compared to diffusion-based generative alternatives. Furthermore, it flexibly predicts future states based on language instructions, and offers a significant advantage in manipulation tasks where object recognition is crucial. In this paper, we demonstrate that our latent predictive world model surpasses generative world models in visuo-linguo-motor control tasks, achieving superior sample and computation efficiency. We also investigate the generalization performance of the proposed method and explore various strategies for predicting actions using object-centric representations.
Authors:Yoshua Bengio, Michael Cohen, Damiano Fornasiere, Joumana Ghosn, Pietro Greiner, Matt MacDermott, Sören Mindermann, Adam Oberman, Jesse Richardson, Oliver Richardson, Marc-Antoine Rondeau, Pierre-Luc St-Charles, David Williams-King
Abstract:
The leading AI companies are increasingly focused on building generalist AI agents -- systems that can autonomously plan, act, and pursue goals across almost all tasks that humans can perform. Despite how useful these systems might be, unchecked AI agency poses significant risks to public safety and security, ranging from misuse by malicious actors to a potentially irreversible loss of human control. We discuss how these risks arise from current AI training methods. Indeed, various scenarios and experiments have demonstrated the possibility of AI agents engaging in deception or pursuing goals that were not specified by human operators and that conflict with human interests, such as self-preservation. Following the precautionary principle, we see a strong need for safer, yet still useful, alternatives to the current agency-driven trajectory. Accordingly, we propose as a core building block for further advances the development of a non-agentic AI system that is trustworthy and safe by design, which we call Scientist AI. This system is designed to explain the world from observations, as opposed to taking actions in it to imitate or please humans. It comprises a world model that generates theories to explain data and a question-answering inference machine. Both components operate with an explicit notion of uncertainty to mitigate the risks of overconfident predictions. In light of these considerations, a Scientist AI could be used to assist human researchers in accelerating scientific progress, including in AI safety. In particular, our system can be employed as a guardrail against AI agents that might be created despite the risks involved. Ultimately, focusing on non-agentic AI may enable the benefits of AI innovation while avoiding the risks associated with the current trajectory. We hope these arguments will motivate researchers, developers, and policymakers to favor this safer path.
Authors:Junyeob Baek, Yi-Fu Wu, Gautam Singh, Sungjin Ahn
Abstract:
Humans have an innate ability to decompose their perceptions of the world into objects and their attributes, such as colors, shapes, and movement patterns. This cognitive process enables us to imagine novel futures by recombining familiar concepts. However, replicating this ability in artificial intelligence systems has proven challenging, particularly when it comes to modeling videos into compositional concepts and generating unseen, recomposed futures without relying on auxiliary data, such as text, masks, or bounding boxes. In this paper, we propose Dreamweaver, a neural architecture designed to discover hierarchical and compositional representations from raw videos and generate compositional future simulations. Our approach leverages a novel Recurrent Block-Slot Unit (RBSU) to decompose videos into their constituent objects and attributes. In addition, Dreamweaver uses a multi-future-frame prediction objective to capture disentangled representations for dynamic concepts more effectively as well as static concepts. In experiments, we demonstrate our model outperforms current state-of-the-art baselines for world modeling when evaluated under the DCI framework across multiple datasets. Furthermore, we show how the modularized concept representations of our model enable compositional imagination, allowing the generation of novel videos by recombining attributes from previously seen objects. cun-bjy.github.io/dreamweaver-website
Authors:Joséphine Pazem, Marius Krumm, Alexander Q. Vining, Lukas J. Fiderer, Hans J. Briegel
Abstract:
In the last decade, the free energy principle (FEP) and active inference (AIF) have achieved many successes connecting conceptual models of learning and cognition to mathematical models of perception and action. This effort is driven by a multidisciplinary interest in understanding aspects of self-organizing complex adaptive systems, including elements of agency. Various reinforcement learning (RL) models performing active inference have been proposed and trained on standard RL tasks using deep neural networks. Recent work has focused on improving such agents' performance in complex environments by incorporating the latest machine learning techniques. In this paper, we take an alternative approach. Within the constraints imposed by the FEP and AIF, we attempt to model agents in an interpretable way without deep neural networks by introducing Free Energy Projective Simulation (FEPS). Using internal rewards only, FEPS agents build a representation of their partially observable environments with which they interact. Following AIF, the policy to achieve a given task is derived from this world model by minimizing the expected free energy. Leveraging the interpretability of the model, techniques are introduced to deal with long-term goals and reduce prediction errors caused by erroneous hidden state estimation. We test the FEPS model on two RL environments inspired from behavioral biology: a timed response task and a navigation task in a partially observable grid. Our results show that FEPS agents fully resolve the ambiguity of both environments by appropriately contextualizing their observations based on prediction accuracy only. In addition, they infer optimal policies flexibly for any target observation in the environment.
Authors:Marc Rigter, Tarun Gupta, Agrin Hilmkil, Chao Ma
Abstract:
Large-scale generative models have achieved remarkable success in a number of domains. However, for sequential decision-making problems, such as robotics, action-labelled data is often scarce and therefore scaling-up foundation models for decision-making remains a challenge. A potential solution lies in leveraging widely-available unlabelled videos to train world models that simulate the consequences of actions. If the world model is accurate, it can be used to optimize decision-making in downstream tasks. Image-to-video diffusion models are already capable of generating highly realistic synthetic videos. However, these models are not action-conditioned, and the most powerful models are closed-source which means they cannot be finetuned. In this work, we propose to adapt pretrained video diffusion models to action-conditioned world models, without access to the parameters of the pretrained model. Our approach, AVID, trains an adapter on a small domain-specific dataset of action-labelled videos. AVID uses a learned mask to modify the intermediate outputs of the pretrained model and generate accurate action-conditioned videos. We evaluate AVID on video game and real-world robotics data, and show that it outperforms existing baselines for diffusion model adaptation.1 Our results demonstrate that if utilized correctly, pretrained video models have the potential to be powerful tools for embodied AI.
Authors:Carlos E. Luis, Alessandro G. Bottero, Julia Vinogradska, Felix Berkenkamp, Jan Peters
Abstract:
Optimal decision-making under partial observability requires reasoning about the uncertainty of the environment's hidden state. However, most reinforcement learning architectures handle partial observability with sequence models that have no internal mechanism to incorporate uncertainty in their hidden state representation, such as recurrent neural networks, deterministic state-space models and transformers. Inspired by advances in probabilistic world models for reinforcement learning, we propose a standalone Kalman filter layer that performs closed-form Gaussian inference in linear state-space models and train it end-to-end within a model-free architecture to maximize returns. Similar to efficient linear recurrent layers, the Kalman filter layer processes sequential data using a parallel scan, which scales logarithmically with the sequence length. By design, Kalman filter layers are a drop-in replacement for other recurrent layers in standard model-free architectures, but importantly they include an explicit mechanism for probabilistic filtering of the latent state representation. Experiments in a wide variety of tasks with partial observability show that Kalman filter layers excel in problems where uncertainty reasoning is key for decision-making, outperforming other stateful models.
Authors:Kenneth Kwok, Basura Fernando, Qianli Xu, Vigneshwaran Subbaraju, Dongkyu Choi, Boon Kiat Quek
Abstract:
This paper addresses the topic of robustness under sensing noise, ambiguous instructions, and human-robot interaction. We take a radically different tack to the issue of reliable embodied AI: instead of focusing on formal verification methods aimed at achieving model predictability and robustness, we emphasise the dynamic, ambiguous and subjective nature of human-robot interactions that requires embodied AI systems to perceive, interpret, and respond to human intentions in a manner that is consistent, comprehensible and aligned with human expectations. We argue that when embodied agents operate in human environments that are inherently social, multimodal, and fluid, reliability is contextually determined and only has meaning in relation to the goals and expectations of humans involved in the interaction. This calls for a fundamentally different approach to achieving reliable embodied AI that is centred on building and updating an accessible "explicit world model" representing the common ground between human and AI, that is used to align robot behaviours with human expectations.
Authors:Matthieu Destrade, Oumayma Bounou, Quentin Le Lidec, Jean Ponce, Yann LeCun
Abstract:
Building deep learning models that can reason about their environment requires capturing its underlying dynamics. Joint-Embedded Predictive Architectures (JEPA) provide a promising framework to model such dynamics by learning representations and predictors through a self-supervised prediction objective. However, their ability to support effective action planning remains limited. We propose an approach to enhance planning with JEPA world models by shaping their representation space so that the negative goal-conditioned value function for a reaching cost in a given environment is approximated by a distance (or quasi-distance) between state embeddings. We introduce a practical method to enforce this constraint during training and show that it leads to significantly improved planning performance compared to standard JEPA models on simple control tasks.
Authors:Yulu Wu, Jiujun Cheng, Haowen Wang, Dengyang Suo, Pei Ren, Qichao Mao, Shangce Gao, Yakun Huang
Abstract:
Recent advances in Vision-Language-Action (VLA) and world-model methods have improved generalization in tasks such as robotic manipulation and object interaction. However, Successful execution of such tasks depends on large, costly collections of real demonstrations, especially for fine-grained manipulation of articulated objects. To address this, we present AOMGen, a scalable data generation framework for articulated manipulation which is instantiated from a single real scan, demonstration and a library of readily available digital assets, yielding photoreal training data with verified physical states. The framework synthesizes synchronized multi-view RGB temporally aligned with action commands and state annotations for joints and contacts, and systematically varies camera viewpoints, object styles, and object poses to expand a single execution into a diverse corpus. Experimental results demonstrate that fine-tuning VLA policies on AOMGen data increases the success rate from 0% to 88.7%, and the policies are tested on unseen objects and layouts.
Authors:Marvin Alles, Xingyuan Zhang, Patrick van der Smagt, Philip Becker-Ehmck
Abstract:
Inspired by how humans combine direct interaction with action-free experience (e.g., videos), we study world models that learn from heterogeneous data. Standard world models typically rely on action-conditioned trajectories, which limits effectiveness when action labels are scarce. We introduce a family of latent-action world models that jointly use action-conditioned and action-free data by learning a shared latent action representation. This latent space aligns observed control signals with actions inferred from passive observations, enabling a single dynamics model to train on large-scale unlabeled trajectories while requiring only a small set of action-labeled ones. We use the latent-action world model to learn a latent-action policy through offline reinforcement learning (RL), thereby bridging two traditionally separate domains: offline RL, which typically relies on action-conditioned data, and action-free training, which is rarely used with subsequent RL. On the DeepMind Control Suite, our approach achieves strong performance while using about an order of magnitude fewer action-labeled samples than purely action-conditioned baselines. These results show that latent actions enable training on both passive and interactive data, which makes world models learn more efficiently.
Authors:Prakhar Gupta, Henry Conklin, Sarah-Jane Leslie, Andrew Lee
Abstract:
In this work we study how explicit world-modeling objectives affect the internal representations and downstream capability of Transformers across different training stages. We use a controlled 2x2x2 Rubik's Cube and ask: (1) how does explicitly pretraining a world model affect the model's latent representations, and (2) how does world-model quality affect the model's performance after reinforcement learning post-training? We compare standard next-token prediction to two explicit world-modeling strategies -- (i) state-prediction pretraining and (ii) a joint state-prediction + next-token objective -- and assess task performance after Group Relative Policy Optimization (GRPO) is applied as post-training. We evaluate the representation quality with linear probes and causal interventions. We find that explicit world-modeling yields more linearly decodable and causally steerable state representations. More importantly, we find that improved state representations lead to higher gains for GRPO, especially on harder cube states. Our results indicate that sharpening state representations can improve the effectiveness of post-training for sequence-planning tasks.
Authors:Junshu Tang, Jiacheng Liu, Jiaqi Li, Longhuang Wu, Haoyu Yang, Penghao Zhao, Siruis Gong, Xiang Yuan, Shuai Shao, Qinglin Lu
Abstract:
Recent advances in generative world models have enabled remarkable progress in creating open-ended game environments, evolving from static scene synthesis toward dynamic, interactive simulation. However, current approaches remain limited by rigid action schemas and high annotation costs, restricting their ability to model diverse in-game interactions and player-driven dynamics. To address these challenges, we introduce Hunyuan-GameCraft-2, a new paradigm of instruction-driven interaction for generative game world modeling. Instead of relying on fixed keyboard inputs, our model allows users to control game video contents through natural language prompts, keyboard, or mouse signals, enabling flexible and semantically rich interaction within generated worlds. We formally defined the concept of interactive video data and developed an automated process to transform large-scale, unstructured text-video pairs into causally aligned interactive datasets. Built upon a 14B image-to-video Mixture-of-Experts(MoE) foundation model, our model incorporates a text-driven interaction injection mechanism for fine-grained control over camera motion, character behavior, and environment dynamics. We introduce an interaction-focused benchmark, InterBench, to evaluate interaction performance comprehensively. Extensive experiments demonstrate that our model generates temporally coherent and causally grounded interactive game videos that faithfully respond to diverse and free-form user instructions such as "open the door", "draw a torch", or "trigger an explosion".
Authors:Alex Richardson, Jonathan Sprinkle
Abstract:
Digital twins of urban environments play a critical role in advancing autonomous vehicle (AV) research by enabling simulation, validation, and integration with emerging generative world models. While existing tools have demonstrated value, many publicly available solutions are tightly coupled to specific simulators, difficult to extend, or introduce significant technical overhead. For example, CARLA-the most widely used open-source AV simulator-provides a digital twin framework implemented entirely as an Unreal Engine C++ plugin, limiting flexibility and rapid prototyping. In this work, we propose OpenTwinMap, an open-source, Python-based framework for generating high-fidelity 3D urban digital twins. The completed framework will ingest LiDAR scans and OpenStreetMap (OSM) data to produce semantically segmented static environment assets, including road networks, terrain, and urban structures, which can be exported into Unreal Engine for AV simulation. OpenTwinMap emphasizes extensibility and parallelization, lowering the barrier for researchers to adapt and scale the pipeline to diverse urban contexts. We describe the current capabilities of the OpenTwinMap, which includes preprocessing of OSM and LiDAR data, basic road mesh and terrain generation, and preliminary support for CARLA integration.
Authors:Changxin Huang, Lv Tang, Zhaohuan Zhan, Lisha Yu, Runhao Zeng, Zun Liu, Zhengjie Wang, Jianqiang Li
Abstract:
Vision-and-Language Navigation (VLN) requires agents to autonomously navigate complex environments via visual images and natural language instruction--remains highly challenging. Recent research on enhancing language-guided navigation reasoning using pre-trained large language models (LLMs) has shown promising prospects. However, the reasoning of such methods is limited to the linguistic modality, lacking visual reasoning capabilities. Moreover, existing reasoning modules are optimized separately from navigation policies, leading to incompatibility and potential conflicts in optimization objectives. To tackle these challenges, we introduce UNeMo, a novel framework designed for the collaborative optimization of visual state reasoning and navigational decision-making. It introduces a Multimodal World Model (MWM) that takes visual features, language instructions, and navigational actions as inputs to jointly predict subsequent visual states, enabling cross-modal reasoning. Via a Hierarchical Prediction-Feedback (HPN) mechanism, MWM collaborates with navigation policies: the first layer generates actions using current vision-and-language features; MWM then infers post-action visual states to guide the second layer's fine-grained decisions. This forms a dynamic bidirectional promotion mechanism where MWM reasoning optimizes navigation policies, while policy decisions feedback to improve MWM's reasoning accuracy. Experiments on R2R and REVERIE datasets show UNeMo outperforms state-of-the-art methods by 2.1% and 0.7% in navigation accuracy for unseen scenes, validating its effectiveness.
Authors:Mingyu Zhang, Lifeng Zhuo, Tianxi Tan, Guocan Xie, Xian Nie, Yan Li, Renjie Zhao, Zizhu He, Ziyu Wang, Jiting Cai, Yong-Lu Li
Abstract:
Humans learn by observing, interacting with environments, and internalizing physics and causality. Here, we aim to ask whether an agent can similarly acquire human-like reasoning from interaction and keep improving with more experience. We study this in a Game-to-Unseen (G2U) setting, curating 1,000+ heterogeneous games with diverse physical and causal mechanisms, and evaluate at three human-like levels: Survival, Curiosity, Utility, from primitive intuition to goal-driven reasoning. Our analysis reveals complementary failures: VLM/VLA agents reason but lack look-ahead in interactive settings, while world models imagine but imitate visual patterns rather than analyze physics and causality. We therefore propose IPR (Interactive Physical Reasoner), using world-model rollouts to score and reinforce a VLM's policy, and introduce PhysCode, a physics-centric action code aligning semantic intent with dynamics to provide a shared action space for prediction and reasoning. Pretrained on 1,000+ games, our IPR performs robustly on three levels, matches GPT-5 overall, and surpasses it on Curiosity. We find that performance improves with more training games and interaction steps, and that the model also zero-shot transfers to unseen games. These results support physics-centric interaction as a path to steadily improving physical reasoning.
Authors:Waris Radji, Odalric-Ambrym Maillard
Abstract:
In reinforcement learning (RL) theory, the concept of most confusing instances is central to establishing regret lower bounds, that is, the minimal exploration needed to solve a problem. Given a reference model and its optimal policy, a most confusing instance is the statistically closest alternative model that makes a suboptimal policy optimal. While this concept is well-studied in multi-armed bandits and ergodic tabular Markov decision processes, constructing such instances remains an open question in the general case. In this paper, we formalize this problem for neural network world models as a constrained optimization: finding a modified model that is statistically close to the reference one, while producing divergent performance between optimal and suboptimal policies. We propose an adversarial training procedure to solve this problem and conduct an empirical study across world models of varying quality. Our results suggest that the degree of achievable confusion correlates with uncertainty in the approximate model, which may inform theoretically-grounded exploration strategies for deep model-based RL.
Authors:Golnaz Raja, Ruslan Agishev, Miloš Prágr, Joni Pajarinen, Karel Zimmermann, Arun Kumar Singh, Reza Ghabcheloo
Abstract:
Uncertainty-aware robot motion prediction is crucial for downstream traversability estimation and safe autonomous navigation in unstructured, off-road environments, where terrain is heterogeneous and perceptual uncertainty is high. Most existing methods assume deterministic or spatially independent terrain uncertainties, ignoring the inherent local correlations of 3D spatial data and often producing unreliable predictions. In this work, we introduce an efficient probabilistic framework that explicitly models spatially correlated aleatoric uncertainty over terrain parameters as a probabilistic world model and propagates this uncertainty through a differentiable physics engine for probabilistic trajectory forecasting. By leveraging structured convolutional operators, our approach provides high-resolution multivariate predictions at manageable computational cost. Experimental evaluation on a publicly available dataset shows significantly improved uncertainty estimation and trajectory prediction accuracy over aleatoric uncertainty estimation baselines.
Authors:Xiangyuan Peng, Xingsi Dong, Si Wu
Abstract:
We propose Grid-like Code Quantization (GCQ), a brain-inspired method for compressing observation-action sequences into discrete representations using grid-like patterns in attractor dynamics. Unlike conventional vector quantization approaches that operate on static inputs, GCQ performs spatiotemporal compression through an action-conditioned codebook, where codewords are derived from continuous attractor neural networks and dynamically selected based on actions. This enables GCQ to jointly compress space and time, serving as a unified world model. The resulting representation supports long-horizon prediction, goal-directed planning, and inverse modeling. Experiments across diverse tasks demonstrate GCQ's effectiveness in compact encoding and downstream performance. Our work offers both a computational tool for efficient sequence modeling and a theoretical perspective on the formation of grid-like codes in neural systems.
Authors:Florent Delgrange, Raphael Avalos, Willem Röpke
Abstract:
Safe policy improvement (SPI) offers theoretical control over policy updates, yet existing guarantees largely concern offline, tabular reinforcement learning (RL). We study SPI in general online settings, when combined with world model and representation learning. We develop a theoretical framework showing that restricting policy updates to a well-defined neighborhood of the current policy ensures monotonic improvement and convergence. This analysis links transition and reward prediction losses to representation quality, yielding online, "deep" analogues of classical SPI theorems from the offline RL literature. Building on these results, we introduce DeepSPI, a principled on-policy algorithm that couples local transition and reward losses with regularised policy updates. On the ALE-57 benchmark, DeepSPI matches or exceeds strong baselines, including PPO and DeepMDPs, while retaining theoretical guarantees.
Authors:Zongyue Li, Xiao Han, Yusong Li, Niklas Strauss, Matthias Schubert
Abstract:
Diffusion-based world models have demonstrated strong capabilities in synthesizing realistic long-horizon trajectories for offline reinforcement learning (RL). However, many existing methods do not directly generate actions alongside states and rewards, limiting their compatibility with standard value-based offline RL algorithms that rely on one-step temporal difference (TD) learning. While prior work has explored joint modeling of states, rewards, and actions to address this issue, such formulations often lead to increased training complexity and reduced performance in practice. We propose \textbf{DAWM}, a diffusion-based world model that generates future state-reward trajectories conditioned on the current state, action, and return-to-go, paired with an inverse dynamics model (IDM) for efficient action inference. This modular design produces complete synthetic transitions suitable for one-step TD-based offline RL, enabling effective and computationally efficient training. Empirically, we show that conservative offline RL algorithms such as TD3BC and IQL benefit significantly from training on these augmented trajectories, consistently outperforming prior diffusion-based baselines across multiple tasks in the D4RL benchmark.
Authors:Qijun Ying, Zhongyuan Hu, Rui Zhang, Ronghui Li, Yu Lu, Zijiao Zeng
Abstract:
Global human motion reconstruction from in-the-wild monocular videos is increasingly demanded across VR, graphics, and robotics applications, yet requires accurate mapping of human poses from camera to world coordinates-a task challenged by depth ambiguity, motion ambiguity, and the entanglement between camera and human movements. While human-motion-centric approaches excel in preserving motion details and physical plausibility, they suffer from two critical limitations: insufficient exploitation of camera orientation information and ineffective integration of camera translation cues. We present WATCH (World-aware Allied Trajectory and pose reconstruction for Camera and Human), a unified framework addressing both challenges. Our approach introduces an analytical heading angle decomposition technique that offers superior efficiency and extensibility compared to existing geometric methods. Additionally, we design a camera trajectory integration mechanism inspired by world models, providing an effective pathway for leveraging camera translation information beyond naive hard-decoding approaches. Through experiments on in-the-wild benchmarks, WATCH achieves state-of-the-art performance in end-to-end trajectory reconstruction. Our work demonstrates the effectiveness of jointly modeling camera-human motion relationships and offers new insights for addressing the long-standing challenge of camera translation integration in global human motion reconstruction. The code will be available publicly.
Authors:Hongbin Lin, Bin Li, Kwok Wai Samuel Au
Abstract:
Grasping is a fundamental task in robot-assisted surgery (RAS), and automating it can reduce surgeon workload while enhancing efficiency, safety, and consistency beyond teleoperated systems. Most prior approaches rely on explicit object pose tracking or handcrafted visual features, limiting their generalization to novel objects, robustness to visual disturbances, and the ability to handle deformable objects. Visuomotor learning offers a promising alternative, but deploying it in RAS presents unique challenges, such as low signal-to-noise ratio in visual observations, demands for high safety and millimeter-level precision, as well as the complex surgical environment. This paper addresses three key challenges: (i) sim-to-real transfer of visuomotor policies to ex vivo surgical scenes, (ii) visuomotor learning using only a single stereo camera pair -- the standard RAS setup, and (iii) object-agnostic grasping with a single policy that generalizes to diverse, unseen surgical objects without retraining or task-specific models. We introduce Grasp Anything for Surgery V2 (GASv2), a visuomotor learning framework for surgical grasping. GASv2 leverages a world-model-based architecture and a surgical perception pipeline for visual observations, combined with a hybrid control system for safe execution. We train the policy in simulation using domain randomization for sim-to-real transfer and deploy it on a real robot in both phantom-based and ex vivo surgical settings, using only a single pair of endoscopic cameras. Extensive experiments show our policy achieves a 65% success rate in both settings, generalizes to unseen objects and grippers, and adapts to diverse disturbances, demonstrating strong performance, generality, and robustness.
Authors:Fryderyk Mantiuk, Hanqi Zhou, Charley M. Wu
Abstract:
What drives an agent to explore the world while also maintaining control over the environment? From a child at play to scientists in the lab, intelligent agents must balance curiosity (the drive to seek knowledge) with competence (the drive to master and control the environment). Bridging cognitive theories of intrinsic motivation with reinforcement learning, we ask how evolving internal representations mediate the trade-off between curiosity (novelty or information gain) and competence (empowerment). We compare two model-based agents using handcrafted state abstractions (Tabular) or learning an internal world model (Dreamer). The Tabular agent shows curiosity and competence guide exploration in distinct patterns, while prioritizing both improves exploration. The Dreamer agent reveals a two-way interaction between exploration and representation learning, mirroring the developmental co-evolution of curiosity and competence. Our findings formalize adaptive exploration as a balance between pursuing the unknown and the controllable, offering insights for cognitive theories and efficient reinforcement learning.
Authors:Maxime Burchi, Radu Timofte
Abstract:
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Î$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
Authors:Riley Simmons-Edler, Ryan P. Badman, Felix Baastad Berg, Raymond Chua, John J. Vastola, Joshua Lunger, William Qian, Kanaka Rajan
Abstract:
Understanding the behavior of deep reinforcement learning (DRL) agents -- particularly as task and agent sophistication increase -- requires more than simple comparison of reward curves, yet standard methods for behavioral analysis remain underdeveloped in DRL. We apply tools from neuroscience and ethology to study DRL agents in a novel, complex, partially observable environment, ForageWorld, designed to capture key aspects of real-world animal foraging -- including sparse, depleting resource patches, predator threats, and spatially extended arenas. We use this environment as a platform for applying joint behavioral and neural analysis to agents, revealing detailed, quantitatively grounded insights into agent strategies, memory, and planning. Contrary to common assumptions, we find that model-free RNN-based DRL agents can exhibit structured, planning-like behavior purely through emergent dynamics -- without requiring explicit memory modules or world models. Our results show that studying DRL agents like animals -- analyzing them with neuroethology-inspired tools that reveal structure in both behavior and neural dynamics -- uncovers rich structure in their learning dynamics that would otherwise remain invisible. We distill these tools into a general analysis framework linking core behavioral and representational features to diagnostic methods, which can be reused for a wide range of tasks and agents. As agents grow more complex and autonomous, bridging neuroscience, cognitive science, and AI will be essential -- not just for understanding their behavior, but for ensuring safe alignment and maximizing desirable behaviors that are hard to measure via reward. We show how this can be done by drawing on lessons from how biological intelligence is studied.
Authors:Siheng Xiong, Zhangding Liu, Jieyu Zhou, Yusen Su
Abstract:
Planning remains a core challenge for language models (LMs), particularly in domains that require coherent multi-step action sequences grounded in external constraints. We introduce SymPlanner, a novel framework that equips LMs with structured planning capabilities by interfacing them with a symbolic environment that serves as an explicit world model. Rather than relying purely on natural language reasoning, SymPlanner grounds the planning process in a symbolic state space, where a policy model proposes actions and a symbolic environment deterministically executes and verifies their effects. To enhance exploration and improve robustness, we introduce Iterative Correction (IC), which refines previously proposed actions by leveraging feedback from the symbolic environment to eliminate invalid decisions and guide the model toward valid alternatives. Additionally, Contrastive Ranking (CR) enables fine-grained comparison of candidate plans by evaluating them jointly. We evaluate SymPlanner on PlanBench, demonstrating that it produces more coherent, diverse, and verifiable plans than pure natural language baselines.
Authors:Iman Nematollahi, Branton DeMoss, Akshay L Chandra, Nick Hawes, Wolfram Burgard, Ingmar Posner
Abstract:
We introduce LUMOS, a language-conditioned multi-task imitation learning framework for robotics. LUMOS learns skills by practicing them over many long-horizon rollouts in the latent space of a learned world model and transfers these skills zero-shot to a real robot. By learning on-policy in the latent space of the learned world model, our algorithm mitigates policy-induced distribution shift which most offline imitation learning methods suffer from. LUMOS learns from unstructured play data with fewer than 1% hindsight language annotations but is steerable with language commands at test time. We achieve this coherent long-horizon performance by combining latent planning with both image- and language-based hindsight goal relabeling during training, and by optimizing an intrinsic reward defined in the latent space of the world model over multiple time steps, effectively reducing covariate shift. In experiments on the difficult long-horizon CALVIN benchmark, LUMOS outperforms prior learning-based methods with comparable approaches on chained multi-task evaluations. To the best of our knowledge, we are the first to learn a language-conditioned continuous visuomotor control for a real-world robot within an offline world model. Videos, dataset and code are available at http://lumos.cs.uni-freiburg.de.
Authors:Yifei Yuan, Anders Søgaard
Abstract:
Li et al. (2023) used the Othello board game as a test case for the ability of GPT-2 to induce world models, and were followed up by Nanda et al. (2023b). We briefly discuss the original experiments, expanding them to include more language models with more comprehensive probing. Specifically, we analyze sequences of Othello board states and train the model to predict the next move based on previous moves. We evaluate seven language models (GPT-2, T5, Bart, Flan-T5, Mistral, LLaMA-2, and Qwen2.5) on the Othello task and conclude that these models not only learn to play Othello, but also induce the Othello board layout. We find that all models achieve up to 99% accuracy in unsupervised grounding and exhibit high similarity in the board features they learned. This provides considerably stronger evidence for the Othello World Model Hypothesis than previous works.
Authors:Maxime Burchi, Radu Timofte
Abstract:
The DreamerV3 algorithm recently obtained remarkable performance across diverse environment domains by learning an accurate world model based on Recurrent Neural Networks (RNNs). Following the success of model-based reinforcement learning algorithms and the rapid adoption of the Transformer architecture for its superior training efficiency and favorable scaling properties, recent works such as STORM have proposed replacing RNN-based world models with Transformer-based world models using masked self-attention. However, despite the improved training efficiency of these methods, their impact on performance remains limited compared to the Dreamer algorithm, struggling to learn competitive Transformer-based world models. In this work, we show that the next state prediction objective adopted in previous approaches is insufficient to fully exploit the representation capabilities of Transformers. We propose to extend world model predictions to longer time horizons by introducing TWISTER (Transformer-based World model wIth contraSTivE Representations), a world model using action-conditioned Contrastive Predictive Coding to learn high-level temporal feature representations and improve the agent performance. TWISTER achieves a human-normalized mean score of 162% on the Atari 100k benchmark, setting a new record among state-of-the-art methods that do not employ look-ahead search.
Authors:Dmytro Kuzmenko, Nadiya Shvai
Abstract:
We propose an efficient knowledge transfer approach for model-based reinforcement learning, addressing the challenge of deploying large world models in resource-constrained environments. Our method distills a high-capacity multi-task agent (317M parameters) into a compact 1M parameter model, achieving state-of-the-art performance on the MT30 benchmark with a normalized score of 28.45, a substantial improvement over the original 1M parameter model's score of 18.93. This demonstrates the ability of our distillation technique to consolidate complex multi-task knowledge effectively. Additionally, we apply FP16 post-training quantization, reducing the model size by 50% while maintaining performance. Our work bridges the gap between the power of large models and practical deployment constraints, offering a scalable solution for efficient and accessible multi-task reinforcement learning in robotics and other resource-limited domains.
Authors:Ting Qiao, Henry Williams, David Valencia, Bruce MacDonald
Abstract:
One of the bottlenecks preventing Deep Reinforcement Learning algorithms (DRL) from real-world applications is how to explore the environment and collect informative transitions efficiently. The present paper describes bounded exploration, a novel exploration method that integrates both 'soft' and intrinsic motivation exploration. Bounded exploration notably improved the Soft Actor-Critic algorithm's performance and its model-based extension's converging speed. It achieved the highest score in 6 out of 8 experiments. Bounded exploration presents an alternative method to introduce intrinsic motivations to exploration when the original reward function has strict meanings.
Authors:Stefano De Giorgis, Aldo Gangemi, Alessandro Russo
Abstract:
The development of artificial intelligence systems capable of understanding and reasoning about complex real-world scenarios is a significant challenge. In this work we present a novel approach to enhance and exploit LLM reactive capability to address complex problems and interpret deeply contextual real-world meaning. We introduce a method and a tool for creating a multimodal, knowledge-augmented formal representation of meaning that combines the strengths of large language models with structured semantic representations. Our method begins with an image input, utilizing state-of-the-art large language models to generate a natural language description. This description is then transformed into an Abstract Meaning Representation (AMR) graph, which is formalized and enriched with logical design patterns, and layered semantics derived from linguistic and factual knowledge bases. The resulting graph is then fed back into the LLM to be extended with implicit knowledge activated by complex heuristic learning, including semantic implicatures, moral values, embodied cognition, and metaphorical representations. By bridging the gap between unstructured language models and formal semantic structures, our method opens new avenues for tackling intricate problems in natural language understanding and reasoning.
Authors:Zhikang Chen, Tingting Zhu
Abstract:
A world model is an AI system that simulates how an environment evolves under actions, enabling planning through imagined futures rather than reactive perception. Current world models, however, suffer from visual conflation: the mistaken assumption that high-fidelity video generation implies an understanding of physical and causal dynamics. We show that while modern models excel at predicting pixels, they frequently violate invariant constraints, fail under intervention, and break down in safety-critical decision-making. This survey argues that visual realism is an unreliable proxy for world understanding. Instead, effective world models must encode causal structure, respect domain-specific constraints, and remain stable over long horizons. We propose a reframing of world models as actionable simulators rather than visual engines, emphasizing structured 4D interfaces, constraint-aware dynamics, and closed-loop evaluation. Using medical decision-making as an epistemic stress test, where trial-and-error is impossible and errors are irreversible, we demonstrate that a world model's value is determined not by how realistic its rollouts appear, but by its ability to support counterfactual reasoning, intervention planning, and robust long-horizon foresight.
Authors:Phu-Hoa Pham, Chi-Nguyen Tran, Duy-Minh Dao-Sy, Phu-Quy Nguyen-Lam, Trung-Kiet Huynh
Abstract:
Existing traffic simulation frameworks for autonomous vehicles typically rely on imitation learning or game-theoretic approaches that solve for Nash or coarse correlated equilibria, implicitly assuming perfectly rational agents. However, human drivers exhibit bounded rationality, making approximately optimal decisions under cognitive and perceptual constraints. We propose EvoQRE, a principled framework for modeling safety-critical traffic interactions as general-sum Markov games solved via Quantal Response Equilibrium (QRE) and evolutionary game dynamics. EvoQRE integrates a pre-trained generative world model with entropy-regularized replicator dynamics, capturing stochastic human behavior while maintaining equilibrium structure. We provide rigorous theoretical results, proving that the proposed dynamics converge to Logit-QRE under a two-timescale stochastic approximation with an explicit convergence rate of O(log k / k^{1/3}) under weak monotonicity assumptions. We further extend QRE to continuous action spaces using mixture-based and energy-based policy representations. Experiments on the Waymo Open Motion Dataset and nuPlan benchmark demonstrate that EvoQRE achieves state-of-the-art realism, improved safety metrics, and controllable generation of diverse safety-critical scenarios through interpretable rationality parameters.
Authors:Pierre Colombo, Malik Boudiaf, Allyn Sweet, Michael Desa, Hongxi Wang, Kevin Candra, Syméon del Marmol
Abstract:
Before closing venture capital financing rounds, lawyers conduct diligence that includes tying out the capitalization table: verifying that every security (for example, shares, options, warrants) and issuance term (for example, vesting schedules, acceleration triggers, transfer restrictions) is supported by large sets of underlying legal documentation. While LLMs continue to improve on legal benchmarks, specialized legal workflows, such as capitalization tie-out, remain out of reach even for strong agentic systems. The task requires multi-document reasoning, strict evidence traceability, and deterministic outputs that current approaches fail to reliably deliver. We characterize capitalization tie-out as an instance of a real-world benchmark for legal AI, analyze and compare the performance of existing agentic systems, and propose a world model architecture toward tie-out automation-and more broadly as a foundation for applied legal intelligence.
Authors:Zhenhao Zhou, Dan Negrut
Abstract:
We present ChronoDreamer, an action-conditioned world model for contact-rich robotic manipulation. Given a history of egocentric RGB frames, contact maps, actions, and joint states, ChronoDreamer predicts future video frames, contact distributions, and joint angles via a spatial-temporal transformer trained with MaskGIT-style masked prediction. Contact is encoded as depth-weighted Gaussian splat images that render 3D forces into a camera-aligned format suitable for vision backbones. At inference, predicted rollouts are evaluated by a vision-language model that reasons about collision likelihood, enabling rejection sampling of unsafe actions before execution. We train and evaluate on DreamerBench, a simulation dataset generated with Project Chrono that provides synchronized RGB, contact splat, proprioception, and physics annotations across rigid and deformable object scenarios. Qualitative results demonstrate that the model preserves spatial coherence during non-contact motion and generates plausible contact predictions, while the LLM-based judge distinguishes collision from non-collision trajectories.
Authors:Tin Stribor Sohn, Maximilian Dillitzer, Jason J. Corso, Eric Sax
Abstract:
Autonomous robotic systems require spatio-temporal understanding of dynamic environments to ensure reliable navigation and interaction. While Vision-Language Models (VLMs) provide open-world semantic priors, they lack grounding in 3D geometry and temporal dynamics. Conversely, geometric perception captures structure and motion but remains semantically sparse. We propose SNOW (Scene Understanding with Open-World Knowledge), a training-free and backbone-agnostic framework for unified 4D scene understanding that integrates VLM-derived semantics with point cloud geometry and temporal consistency. SNOW processes synchronized RGB images and 3D point clouds, using HDBSCAN clustering to generate object-level proposals that guide SAM2-based segmentation. Each segmented region is encoded through our proposed Spatio-Temporal Tokenized Patch Encoding (STEP), producing multimodal tokens that capture localized semantic, geometric, and temporal attributes. These tokens are incrementally integrated into a 4D Scene Graph (4DSG), which serves as 4D prior for downstream reasoning. A lightweight SLAM backend anchors all STEP tokens spatially in the environment, providing the global reference alignment, and ensuring unambiguous spatial grounding across time. The resulting 4DSG forms a queryable, unified world model through which VLMs can directly interpret spatial scene structure and temporal dynamics. Experiments on a diverse set of benchmarks demonstrate that SNOW enables precise 4D scene understanding and spatially grounded inference, thereby setting new state-of-the-art performance in several settings, highlighting the importance of structured 4D priors for embodied reasoning and autonomous robotics.
Authors:Tin Stribor Sohn, Maximilian Dillitzer, Jason J. Corso, Eric Sax
Abstract:
Humans perceive and reason about their surroundings in four dimensions by building persistent, structured internal representations that encode semantic meaning, spatial layout, and temporal dynamics. These multimodal memories enable them to recall past events, infer unobserved states, and integrate new information into context-dependent reasoning. Inspired by this capability, we introduce R4, a training-free framework for retrieval-augmented reasoning in 4D spatio-temporal space that equips vision-language models (VLMs) with structured, lifelong memory. R4 continuously constructs a 4D knowledge database by anchoring object-level semantic descriptions in metric space and time, yielding a persistent world model that can be shared across agents. At inference, natural language queries are decomposed into semantic, spatial, and temporal keys to retrieve relevant observations, which are integrated into the VLM's reasoning. Unlike classical retrieval-augmented generation methods, retrieval in R4 operates directly in 4D space, enabling episodic and collaborative reasoning without training. Experiments on embodied question answering and navigation benchmarks demonstrate that R4 substantially improves retrieval and reasoning over spatio-temporal information compared to baselines, advancing a new paradigm for embodied 4D reasoning in dynamic environments.
Authors:Daoyuan Qian, Qiyao Liang, Ila Fiete
Abstract:
Circuits in the brain commonly exhibit modular architectures that factorise complex tasks, resulting in the ability to compositionally generalise and reduce catastrophic forgetting. In contrast, artificial neural networks (ANNs) appear to mix all processing, because modular solutions are difficult to find as they are vanishing subspaces in the space of possible solutions. Here, we draw inspiration from fault-tolerant computation and the Poisson-like firing of real neurons to show that activity-dependent neural noise, combined with nonlinear neural responses, drives the emergence of solutions that reflect an accurate understanding of modular tasks, corresponding to acquisition of a correct world model. We find that noise-driven modularisation can be recapitulated by a deterministic regulariser that multiplicatively combines weights and activations, revealing rich phenomenology not captured in linear networks or by standard regularisation methods. Though the emergence of modular structure requires sufficiently many training samples (exponential in the number of modular task dimensions), we show that pre-modularised ANNs exhibit superior noise-robustness and the ability to generalise and extrapolate well beyond training data, compared to ANNs without such inductive biases. Together, our work demonstrates a regulariser and architectures that could encourage modularity emergence to yield functional benefits.
Authors:Arjun Parthasarathy, Nimit Kalra, Rohun Agrawal, Yann LeCun, Oumayma Bounou, Pavel Izmailov, Micah Goldblum
Abstract:
World models paired with model predictive control (MPC) can be trained offline on large-scale datasets of expert trajectories and enable generalization to a wide range of planning tasks at inference time. Compared to traditional MPC procedures, which rely on slow search algorithms or on iteratively solving optimization problems exactly, gradient-based planning offers a computationally efficient alternative. However, the performance of gradient-based planning has thus far lagged behind that of other approaches. In this paper, we propose improved methods for training world models that enable efficient gradient-based planning. We begin with the observation that although a world model is trained on a next-state prediction objective, it is used at test-time to instead estimate a sequence of actions. The goal of our work is to close this train-test gap. To that end, we propose train-time data synthesis techniques that enable significantly improved gradient-based planning with existing world models. At test time, our approach outperforms or matches the classical gradient-free cross-entropy method (CEM) across a variety of object manipulation and navigation tasks in 10% of the time budget.
Authors:Eunice Yiu, Kelsey Allen, Shiry Ginosar, Alison Gopnik
Abstract:
Learning about the causal structure of the world is a fundamental problem for human cognition. Causal models and especially causal learning have proved to be difficult for large pretrained models using standard techniques of deep learning. In contrast, cognitive scientists have applied advances in our formal understanding of causation in computer science, particularly within the Causal Bayes Net formalism, to understand human causal learning. In the very different tradition of reinforcement learning, researchers have described an intrinsic reward signal called "empowerment" which maximizes mutual information between actions and their outcomes. "Empowerment" may be an important bridge between classical Bayesian causal learning and reinforcement learning and may help to characterize causal learning in humans and enable it in machines. If an agent learns an accurate causal world model, they will necessarily increase their empowerment, and increasing empowerment will lead to a more accurate causal world model. Empowerment may also explain distinctive features of childrens causal learning, as well as providing a more tractable computational account of how that learning is possible. In an empirical study, we systematically test how children and adults use cues to empowerment to infer causal relations, and design effective causal interventions.
Authors:Jiayuan Du, Yiming Zhao, Zhenglong Guo, Yong Pan, Wenbo Hou, Zhihui Hao, Kun Zhan, Qijun Chen
Abstract:
This paper introduces a novel architecture for trajectory-conditioned forecasting of future 3D scene occupancy. In contrast to methods that rely on variational autoencoders (VAEs) to generate discrete occupancy tokens, which inherently limit representational capacity, our approach predicts multi-frame future occupancy in an end-to-end manner directly from raw image features. Inspired by the success of attention-based transformer architectures in foundational vision and language models such as GPT and VGGT, we employ a sparse occupancy representation that bypasses the intermediate bird's eye view (BEV) projection and its explicit geometric priors. This design allows the transformer to capture spatiotemporal dependencies more effectively. By avoiding both the finite-capacity constraint of discrete tokenization and the structural limitations of BEV representations, our method achieves state-of-the-art performance on the nuScenes benchmark for 1-3 second occupancy forecasting, outperforming existing approaches by a significant margin. Furthermore, it demonstrates robust scene dynamics understanding, consistently delivering high accuracy under arbitrary future trajectory conditioning.
Authors:Sachin Vashistha, Aryan Bibhuti, Atharva Naik, Martin Tutek, Somak Aditya
Abstract:
Real-world conversations are rich with pragmatic elements, such as entity mentions, references, and implicatures. Understanding such nuances is a requirement for successful natural communication, and often requires building a local world model which encodes such elements and captures the dynamics of their evolving states. However, it is not well-understood whether language models (LMs) construct or maintain a robust implicit representation of conversations. In this work, we evaluate the ability of LMs to encode and update their internal world model in dyadic conversations and test their malleability under linguistic alterations. To facilitate this, we apply seven minimal linguistic alterations to conversations sourced from popular datasets and construct two benchmarks comprising yes-no questions. We evaluate a wide range of open and closed source LMs and observe that they struggle to maintain robust accuracy. Our analysis unveils that LMs struggle to memorize crucial details, such as tracking entities under linguistic alterations to conversations. We then propose a dual-perspective interpretability framework which identifies transformer layers that are useful or harmful and highlights linguistic alterations most influenced by harmful layers, typically due to encoding spurious signals or relying on shortcuts. Inspired by these insights, we propose two layer-regularization based fine-tuning strategies that suppress the effect of the harmful layers.
Authors:Daniel De Dios Allegue, Jinke He, Frans A. Oliehoek
Abstract:
Transformers have shown strong ability to model long-term dependencies and are increasingly adopted as world models in model-based reinforcement learning (RL) under partial observability. However, unlike natural language corpora, RL trajectories are sparse and reward-driven, making standard self-attention inefficient because it distributes weight uniformly across all past tokens rather than emphasizing the few transitions critical for control. To address this, we introduce structured inductive priors into the self-attention mechanism of the dynamics head: (i) per-head memory-length priors that constrain attention to task-specific windows, and (ii) distributional priors that learn smooth Gaussian weightings over past state-action pairs. We integrate these mechanisms into UniZero, a model-based RL agent with a Transformer-based world model that supports planning under partial observability. Experiments on the Atari 100k benchmark show that most efficiency gains arise from the Gaussian prior, which smoothly allocates attention to informative transitions, while memory-length priors often truncate useful signals with overly restrictive cut-offs. In particular, Gaussian Attention achieves a 77% relative improvement in mean human-normalized scores over UniZero. These findings suggest that in partially observable RL domains with non-stationary temporal dependencies, discrete memory windows are difficult to learn reliably, whereas smooth distributional priors flexibly adapt across horizons and yield more robust data efficiency. Overall, our results demonstrate that encoding structured temporal priors directly into self-attention improves the prioritization of informative histories for dynamics modeling under partial observability.
Authors:Fan Feng, Phillip Lippe, Sara Magliacane
Abstract:
Agents that understand objects and their interactions can learn policies that are more robust and transferable. However, most object-centric RL methods factor state by individual objects while leaving interactions implicit. We introduce the Factored Interactive Object-Centric World Model (FIOC-WM), a unified framework that learns structured representations of both objects and their interactions within a world model. FIOC-WM captures environment dynamics with disentangled and modular representations of object interactions, improving sample efficiency and generalization for policy learning. Concretely, FIOC-WM first learns object-centric latents and an interaction structure directly from pixels, leveraging pre-trained vision encoders. The learned world model then decomposes tasks into composable interaction primitives, and a hierarchical policy is trained on top: a high level selects the type and order of interactions, while a low level executes them. On simulated robotic and embodied-AI benchmarks, FIOC-WM improves policy-learning sample efficiency and generalization over world-model baselines, indicating that explicit, modular interaction learning is crucial for robust control.
Authors:Lukas Bierling, Davide Pasero, Jan-Henrik Bertrand, Kiki Van Gerwen
Abstract:
We introduce DreamerV3-XP, an extension of DreamerV3 that improves exploration and learning efficiency. This includes (i) a prioritized replay buffer, scoring trajectories by return, reconstruction loss, and value error and (ii) an intrinsic reward based on disagreement over predicted environment rewards from an ensemble of world models. DreamerV3-XP is evaluated on a subset of Atari100k and DeepMind Control Visual Benchmark tasks, confirming the original DreamerV3 results and showing that our extensions lead to faster learning and lower dynamics model loss, particularly in sparse-reward settings.
Authors:Marco Molinari, Leonardo Nevali, Saharsha Navani, Omar G. Younis
Abstract:
Vision Language Action models (VLAs) trained with policy-based reinforcement learning (RL) encode complex behaviors without explicitly modeling environmental dynamics. However, it remains unclear whether VLAs implicitly learn world models, a hallmark of model-based RL. We propose an experimental methodology using embedding arithmetic on state representations to probe whether OpenVLA, the current state of the art in VLAs, contains latent knowledge of state transitions. Specifically, we measure the difference between embeddings of sequential environment states and test whether this transition vector is recoverable from intermediate model activations. Using linear and non linear probes trained on activations across layers, we find statistically significant predictive ability on state transitions exceeding baselines (embeddings), indicating that OpenVLA encodes an internal world model (as opposed to the probes learning the state transitions). We investigate the predictive ability of an earlier checkpoint of OpenVLA, and uncover hints that the world model emerges as training progresses. Finally, we outline a pipeline leveraging Sparse Autoencoders (SAEs) to analyze OpenVLA's world model.
Authors:Panagiotis Michelakis, Yiannis Hadjiyiannis, Dimitrios Stamoulis
Abstract:
Evaluating AI agents that solve real-world tasks through function-call sequences remains an open challenge. Existing agentic benchmarks often reduce evaluation to a binary judgment of the final state, overlooking critical aspects such as safety, efficiency, and intermediate correctness. We propose a framework based on deterministic finite automata (DFAs) that encodes tasks as sets of valid tool-use paths, enabling principled assessment of agent behavior in diverse world models. Building on this foundation, we introduce CORE, a suite of five metrics, namely Path Correctness, Path Correctness - Kendall's tau Composite, Prefix Criticality, Harmful-Call Rate, and Efficiency, that quantify alignment with expected execution patterns. Across diverse worlds, our method reveals important performance differences between agents that would otherwise appear equivalent under traditional final-state evaluation schemes.
Authors:Carlos Núñez-Molina, Vicenç Gómez, Hector Geffner
Abstract:
We consider the problem of learning propositional STRIPS world models from action traces alone, using a deep learning architecture (transformers) and gradient descent. The task is cast as a supervised next token prediction problem where the tokens are the actions, and an action $a$ may follow an action sequence if the hidden effects of the previous actions do not make an action precondition of $a$ false. We show that a suitable transformer architecture can faithfully represent propositional STRIPS world models, and that the models can be learned from sets of random valid (positive) and invalid (negative) action sequences alone. A number of experiments are reported.
Authors:Yinglin Duan, Zhengxia Zou, Tongwei Gu, Wei Jia, Zhan Zhao, Luyi Xu, Xinzhu Liu, Yenan Lin, Hao Jiang, Kang Chen, Shuang Qiu
Abstract:
Recent research has been increasingly focusing on developing 3D world models that simulate complex real-world scenarios. World models have found broad applications across various domains, including embodied AI, autonomous driving, entertainment, etc. A more realistic simulation with accurate physics will effectively narrow the sim-to-real gap and allow us to gather rich information about the real world conveniently. While traditional manual modeling has enabled the creation of virtual 3D scenes, modern approaches have leveraged advanced machine learning algorithms for 3D world generation, with most recent advances focusing on generative methods that can create virtual worlds based on user instructions. This work explores such a research direction by proposing LatticeWorld, a simple yet effective 3D world generation framework that streamlines the industrial production pipeline of 3D environments. LatticeWorld leverages lightweight LLMs (LLaMA-2-7B) alongside the industry-grade rendering engine (e.g., Unreal Engine 5) to generate a dynamic environment. Our proposed framework accepts textual descriptions and visual instructions as multimodal inputs and creates large-scale 3D interactive worlds with dynamic agents, featuring competitive multi-agent interaction, high-fidelity physics simulation, and real-time rendering. We conduct comprehensive experiments to evaluate LatticeWorld, showing that it achieves superior accuracy in scene layout generation and visual fidelity. Moreover, LatticeWorld achieves over a $90\times$ increase in industrial production efficiency while maintaining high creative quality compared with traditional manual production methods. Our demo video is available at https://youtu.be/8VWZXpERR18
Authors:Chun-Peng Chang, Chen-Yu Wang, Julian Schmidt, Holger Caesar, Alain Pagani
Abstract:
Recent advancements in video generation have substantially improved visual quality and temporal coherence, making these models increasingly appealing for applications such as autonomous driving, particularly in the context of driving simulation and so-called "world models". In this work, we investigate the effects of existing fine-tuning video generation approaches on structured driving datasets and uncover a potential trade-off: although visual fidelity improves, spatial accuracy in modeling dynamic elements may degrade. We attribute this degradation to a shift in the alignment between visual quality and dynamic understanding objectives. In datasets with diverse scene structures within temporal space, where objects or perspective shift in varied ways, these objectives tend to highly correlated. However, the very regular and repetitive nature of driving scenes allows visual quality to improve by modeling dominant scene motion patterns, without necessarily preserving fine-grained dynamic behavior. As a result, fine-tuning encourages the model to prioritize surface-level realism over dynamic accuracy. To further examine this phenomenon, we show that simple continual learning strategies, such as replay from diverse domains, can offer a balanced alternative by preserving spatial accuracy while maintaining strong visual quality.
Authors:Yiqi Wang, Mrinal Verghese, Jeff Schneider
Abstract:
Learning visuomotor policies via imitation has proven effective across a wide range of robotic domains. However, the performance of these policies is heavily dependent on the number of training demonstrations, which requires expensive data collection in the real world. In this work, we aim to reduce data collection efforts when learning visuomotor robot policies by leveraging existing or cost-effective data from a wide range of embodiments, such as public robot datasets and the datasets of humans playing with objects (human data from play). Our approach leverages two key insights. First, we use optic flow as an embodiment-agnostic action representation to train a World Model (WM) across multi-embodiment datasets, and finetune it on a small amount of robot data from the target embodiment. Second, we develop a method, Latent Policy Steering (LPS), to improve the output of a behavior-cloned policy by searching in the latent space of the WM for better action sequences. In real world experiments, we observe significant improvements in the performance of policies trained with a small amount of data (over 50% relative improvement with 30 demonstrations and over 20% relative improvement with 50 demonstrations) by combining the policy with a WM pretrained on two thousand episodes sampled from the existing Open X-embodiment dataset across different robots or a cost-effective human dataset from play.
Authors:Xiaoliang Chen, Le Chang, Xin Yu, Yunhe Huang, Xianling Tu
Abstract:
This survey provides a comprehensive overview of the emerging field of world models grounded in the foundation of acoustic physical information. It examines the theoretical underpinnings, essential methodological frameworks, and recent technological advancements in leveraging acoustic signals for high-fidelity environmental perception, causal physical reasoning, and predictive simulation of dynamic events. The survey explains how acoustic signals, as direct carriers of mechanical wave energy from physical events, encode rich, latent information about material properties, internal geometric structures, and complex interaction dynamics. Specifically, this survey establishes the theoretical foundation by explaining how fundamental physical laws govern the encoding of physical information within acoustic signals. It then reviews the core methodological pillars, including Physics-Informed Neural Networks (PINNs), generative models, and self-supervised multimodal learning frameworks. Furthermore, the survey details the significant applications of acoustic world models in robotics, autonomous driving, healthcare, and finance. Finally, it systematically outlines the important technical and ethical challenges while proposing a concrete roadmap for future research directions toward robust, causal, uncertainty-aware, and responsible acoustic intelligence. These elements collectively point to a research pathway towards embodied active acoustic intelligence, empowering AI systems to construct an internal "intuitive physics" engine through sound.
Authors:Héctor Carrión, Yutong Bai, VÃctor A. Hernández Castro, Kishan Panaganti, Ayush Zenith, Matthew Trang, Tony Zhang, Pietro Perona, Jitendra Malik
Abstract:
World models aim to simulate environments and enable effective agent behavior. However, modeling real-world environments presents unique challenges as they dynamically change across both space and, crucially, time. To capture these composed dynamics, we introduce a Spatio-Temporal Road Image Dataset for Exploration (STRIDE) permuting 360-degree panoramic imagery into rich interconnected observation, state and action nodes. Leveraging this structure, we can simultaneously model the relationship between egocentric views, positional coordinates, and movement commands across both space and time. We benchmark this dataset via TARDIS, a transformer-based generative world model that integrates spatial and temporal dynamics through a unified autoregressive framework trained on STRIDE. We demonstrate robust performance across a range of agentic tasks such as controllable photorealistic image synthesis, instruction following, autonomous self-control, and state-of-the-art georeferencing. These results suggest a promising direction towards sophisticated generalist agents--capable of understanding and manipulating the spatial and temporal aspects of their material environments--with enhanced embodied reasoning capabilities. Training code, datasets, and model checkpoints are made available at https://huggingface.co/datasets/Tera-AI/STRIDE.
Authors:Roman Gansch, Lina Putze, Tjark Koopmann, Jan Reich, Christian Neurohr
Abstract:
Ensuring safe operation of safety-critical complex systems interacting with their environment poses significant challenges, particularly when the system's world model relies on machine learning algorithms to process the perception input. A comprehensive safety argumentation requires knowledge of how faults or functional insufficiencies propagate through the system and interact with external factors, to manage their safety impact. While statistical analysis approaches can support the safety assessment, associative reasoning alone is neither sufficient for the safety argumentation nor for the identification and investigation of safety measures. A causal understanding of the system and its interaction with the environment is crucial for safeguarding safety-critical complex systems. It allows to transfer and generalize knowledge, such as insights gained from testing, and facilitates the identification of potential improvements. This work explores using causal Bayesian networks to model the system's causalities for safety analysis, and proposes measures to assess causal influences based on Pearl's framework of causal inference. We compare the approach of causal Bayesian networks to the well-established fault tree analysis, outlining advantages and limitations. In particular, we examine importance metrics typically employed in fault tree analysis as foundation to discuss suitable causal metrics. An evaluation is performed on the example of a perception system for automated driving. Overall, this work presents an approach for causal reasoning in safety analysis that enables the integration of data-driven and expert-based knowledge to account for uncertainties arising from complex systems operating in open environments.
Authors:Xiaodong Wang, Peixi Peng
Abstract:
Real-world driving requires people to observe the current environment, anticipate the future, and make appropriate driving decisions. This requirement is aligned well with the capabilities of world models, which understand the environment and predict the future. However, recent world models in autonomous driving are built explicitly, where they could predict the future by controllable driving video generation. We argue that driving world models should have two additional abilities: action control and action prediction. Following this line, previous methods are limited because they predict the video requires given actions of the same length as the video and ignore the dynamical action laws. To address these issues, we propose ProphetDWM, a novel end-to-end driving world model that jointly predicts future videos and actions. Our world model has an action module to learn latent action from the present to the future period by giving the action sequence and observations. And a diffusion-model-based transition module to learn the state distribution. The model is jointly trained by learning latent actions given finite states and predicting action and video. The joint learning connects the action dynamics and states and enables long-term future prediction. We evaluate our method in video generation and action prediction tasks on the Nuscenes dataset. Compared to the state-of-the-art methods, our method achieves the best video consistency and best action prediction accuracy, while also enabling high-quality long-term video and action generation.
Authors:Valentin Charvet, Sebastian Stein, Roderick Murray-Smith
Abstract:
Controllers trained with Reinforcement Learning tend to be very specialized and thus generalize poorly when their testing environment differs from their training one. We propose a Model-Based approach to increase generalization where both world model and policy are trained in a dimensionless state-action space. To do so, we introduce the Dimensionless Markov Decision Process ($Î $-MDP): an extension of Contextual-MDPs in which state and action spaces are non-dimensionalized with the Buckingham-$Î $ theorem. This procedure induces policies that are equivariant with respect to changes in the context of the underlying dynamics. We provide a generic framework for this approach and apply it to a model-based policy search algorithm using Gaussian Process models. We demonstrate the applicability of our method on simulated actuated pendulum and cartpole systems, where policies trained on a single environment are robust to shifts in the distribution of the context.
Authors:Kevin Alcedo, Pedro U. Lima, Rachid Alami
Abstract:
Navigating in environments alongside humans requires agents to reason under uncertainty and account for the beliefs and intentions of those around them. Under a sequential decision-making framework, egocentric navigation can naturally be represented as a Markov Decision Process (MDP). However, social navigation additionally requires reasoning about the hidden beliefs of others, inherently leading to a Partially Observable Markov Decision Process (POMDP), where agents lack direct access to others' mental states. Inspired by Theory of Mind and Epistemic Planning, we propose (1) a neuro-symbolic model-based reinforcement learning architecture for social navigation, addressing the challenge of belief tracking in partially observable environments; and (2) a perspective-shift operator for belief estimation, leveraging recent work on Influence-based Abstractions (IBA) in structured multi-agent settings.
Authors:Ramesh Bahadur Bist, Lilong Chai, Shawna Weimer, Hannah Atungulua, Chantel Pennicott, Xiao Yang, Sachin Subedi, Chaitanya Pallerla, Yang Tian, Dongyi Wang
Abstract:
The rapid growth of artificial intelligence in poultry farming has highlighted the challenge of efficiently labeling large, diverse datasets. Manual annotation is time-consuming and costly, making it impractical for modern systems that continuously generate data. This study addresses this challenge by exploring semi-supervised auto-labeling methods, integrating self and active learning approaches to develop an efficient, label-scarce framework for auto-labeling large poultry datasets (ALPD). For this study, video data were collected from broilers and laying hens housed. Various machine learning models, including zero-shot models and supervised models, were utilized for broilers and hens detection. The results showed that YOLOv8s-World and YOLOv9s performed better when compared performance metrics for broiler and hen detection under supervised learning, while among the semi-supervised model, YOLOv8s-ALPD achieved the highest precision (96.1%) and recall (99%) with an RMSE of 1.87. The hybrid YOLO-World model, incorporating the optimal YOLOv8s backbone with zero-shot models, demonstrated the highest overall performance. It achieved a precision of 99.2%, recall of 99.4%, and an F1 score of 98.7% for detection. In addition, the semi-supervised models with minimal human intervention (active learning) reduced annotation time by over 80% compared to full manual labeling. Moreover, integrating zero-shot models with the best models enhanced broiler and hen detection, achieving comparable results to supervised models while significantly increasing speed. In conclusion, integrating semi-supervised auto-labeling and zero-shot models significantly improves detection accuracy. It reduces manual annotation efforts, offering a promising solution to optimize AI-driven systems in poultry farming, advancing precision livestock management, and promoting more sustainable practices.
Authors:Alex F. Spies, William Edwards, Michael I. Ivanitskiy, Adrians Skapars, Tilman Räuker, Katsumi Inoue, Alessandra Russo, Murray Shanahan
Abstract:
Recent studies in interpretability have explored the inner workings of transformer models trained on tasks across various domains, often discovering that these networks naturally develop highly structured representations. When such representations comprehensively reflect the task domain's structure, they are commonly referred to as "World Models" (WMs). In this work, we identify WMs in transformers trained on maze-solving tasks. By using Sparse Autoencoders (SAEs) and analyzing attention patterns, we examine the construction of WMs and demonstrate consistency between SAE feature-based and circuit-based analyses. By subsequently intervening on isolated features to confirm their causal role, we find that it is easier to activate features than to suppress them. Furthermore, we find that models can reason about mazes involving more simultaneously active features than they encountered during training; however, when these same mazes (with greater numbers of connections) are provided to models via input tokens instead, the models fail. Finally, we demonstrate that positional encoding schemes appear to influence how World Models are structured within the model's residual stream.
Authors:Anson Lei, Bernhard Schölkopf, Ingmar Posner
Abstract:
Causal structures play a central role in world models that flexibly adapt to changes in the environment. While recent works motivate the benefits of discovering local causal graphs for dynamics modelling, in this work we demonstrate that accurately capturing these relationships in complex settings remains challenging for the current state-of-the-art. To remedy this shortcoming, we postulate that sparsity is a critical ingredient for the discovery of such local causal structures. To this end we present the SPARse TrANsformer World model (SPARTAN), a Transformer-based world model that learns local causal structures between entities in a scene. By applying sparsity regularisation on the attention pattern between object-factored tokens, SPARTAN identifies sparse local causal models that accurately predict future object states. Furthermore, we extend our model to capture sparse interventions with unknown targets on the dynamics of the environment. This results in a highly interpretable world model that can efficiently adapt to changes. Empirically, we evaluate SPARTAN against the current state-of-the-art in object-centric world models on observation-based environments and demonstrate that our model can learn accurate local causal graphs and achieve significantly improved few-shot adaptation to changes in the dynamics of the environment as well as robustness against removing irrelevant distractors.
Authors:Minh Pham Dinh, Munira Syed, Michael G Yankoski, Trenton W. Ford
Abstract:
Designing a generalist scientific agent capable of performing tasks in laboratory settings to assist researchers has become a key goal in recent Artificial Intelligence (AI) research. Unlike everyday tasks, scientific tasks are inherently more delicate and complex, requiring agents to possess a higher level of reasoning ability, structured and temporal understanding of their environment, and a strong emphasis on safety. Existing approaches often fail to address these multifaceted requirements. To tackle these challenges, we present DAVIS. Unlike traditional retrieval-augmented generation (RAG) approaches, DAVIS incorporates structured and temporal memory, which enables model-based planning. Additionally, DAVIS implements an agentic, multi-turn retrieval system, similar to a human's inner monologue, allowing for a greater degree of reasoning over past experiences. DAVIS demonstrates substantially improved performance on the ScienceWorld benchmark comparing to previous approaches on 8 out of 9 elementary science subjects. In addition, DAVIS's World Model demonstrates competitive performance on the famous HotpotQA and MusiqueQA dataset for multi-hop question answering. To the best of our knowledge, DAVIS is the first RAG agent to employ an interactive retrieval method in a RAG pipeline.
Authors:Haolan Liu, Jishen Zhao
Abstract:
Despite a widespread success in various applications, large language models (LLMs) often stumble when tackling basic physical reasoning or executing robotics tasks, due to a lack of direct experience with the physical nuances of the real world. To address these issues, we propose a Grounding Large language model with Imperfect world MOdel (GLIMO), which utilizes proxy world models such as simulators to collect and synthesize trining data. GLIMO incorporates an LLM agent-based data generator to automatically create high-quality and diverse instruction datasets. The generator includes an iterative self-refining module for temporally consistent experience sampling, a diverse set of question-answering instruction seeds, and a retrieval-augmented generation module for reflecting on prior experiences. Comprehensive experiments show that our approach improve the performance of strong open-source LLMs like LLaMA-3 with a performance boost of 2.04 $\times$, 1.54 $\times$, and 1.82 $\times$ across three different benchmarks, respectively. The performance is able to compete with or surpass their larger counterparts such as GPT-4.
Authors:Olivier Lamarre, Jonathan Kelly
Abstract:
Long-distance driving is an important component of planetary surface exploration. Unforeseen events often require human operators to adjust mobility plans, but this approach does not scale and will be insufficient for future missions. Interest in self-reliant rovers is increasing, however the research community has not yet given significant attention to autonomous, adaptive decision-making. In this paper, we look back at specific planetary mobility operations where human-guided adaptive planning played an important role in mission safety and productivity. Inspired by the abilities of human experts, we identify shortcomings of existing autonomous mobility algorithms for robots operating in off-road environments like planetary surfaces. We advocate for adaptive decision-making capabilities such as unassisted learning from past experiences and more reliance on stochastic world models. The aim of this work is to highlight promising research avenues to enhance ground planning tools and, ultimately, long-range autonomy algorithms on board planetary rovers.
Authors:Kaleem Arshid, Ali Krayani, Lucio Marcenaro, David Martin Gomez, Carlo Regazzoni
Abstract:
This paper proposes an Active Inference-based framework for autonomous trajectory design in UAV swarms. The method integrates probabilistic reasoning and self-learning to enable distributed mission allocation, route ordering, and motion planning. Expert trajectories generated using a Genetic Algorithm with Repulsion Forces (GA-RF) are employed to train a hierarchical World Model capturing swarm behavior across mission, route, and motion levels. During online operation, UAVs infer actions by minimizing divergence between current beliefs and model-predicted states, enabling adaptive responses to dynamic environments. Simulation results show faster convergence, higher stability, and safer navigation than Q-Learning, demonstrating the scalability and cognitive grounding of the proposed framework for intelligent UAV swarm control.
Authors:Oluwatosin Oseni, Shengjie Wang, Jun Zhu, Micah Corah
Abstract:
Reinforcement Learning (RL) has shown remarkable success in real-world applications, particularly in robotics control. However, RL adoption remains limited due to insufficient safety guarantees. We introduce Nightmare Dreamer, a model-based Safe RL algorithm that addresses safety concerns by leveraging a learned world model to predict potential safety violations and plan actions accordingly. Nightmare Dreamer achieves nearly zero safety violations while maximizing rewards. Nightmare Dreamer outperforms model-free baselines on Safety Gymnasium tasks using only image observations, achieving nearly a 20x improvement in efficiency.
Authors:Hansen Jin Lillemark, Benhao Huang, Fangneng Zhan, Yilun Du, Thomas Anderson Keller
Abstract:
Embodied systems experience the world as 'a symphony of flows': a combination of many continuous streams of sensory input coupled to self-motion, interwoven with the dynamics of external objects. These streams obey smooth, time-parameterized symmetries, which combine through a precisely structured algebra; yet most neural network world models ignore this structure and instead repeatedly re-learn the same transformations from data. In this work, we introduce 'Flow Equivariant World Models', a framework in which both self-motion and external object motion are unified as one-parameter Lie group 'flows'. We leverage this unification to implement group equivariance with respect to these transformations, thereby providing a stable latent world representation over hundreds of timesteps. On both 2D and 3D partially observed video world modeling benchmarks, we demonstrate that Flow Equivariant World Models significantly outperform comparable state-of-the-art diffusion-based and memory-augmented world modeling architectures -- particularly when there are predictable world dynamics outside the agent's current field of view. We show that flow equivariance is particularly beneficial for long rollouts, generalizing far beyond the training horizon. By structuring world model representations with respect to internal and external motion, flow equivariance charts a scalable route to data efficient, symmetry-guided, embodied intelligence. Project link: https://flowequivariantworldmodels.github.io.
Authors:Subramanyam Sahoo, Jared Junkin
Abstract:
Large language models (LLMs) increasingly generate code with minimal human oversight, raising critical concerns about backdoor injection and malicious behavior. We present Cross-Trace Verification Protocol (CTVP), a novel AI control framework that verifies untrusted code-generating models through semantic orbit analysis. Rather than directly executing potentially malicious code, CTVP leverages the model's own predictions of execution traces across semantically equivalent program transformations. By analyzing consistency patterns in these predicted traces, we detect behavioral anomalies indicative of backdoors. Our approach introduces the Adversarial Robustness Quotient (ARQ), which quantifies the computational cost of verification relative to baseline generation, demonstrating exponential growth with orbit size. Theoretical analysis establishes information-theoretic bounds showing non-gamifiability -- adversaries cannot improve through training due to fundamental space complexity constraints. This work demonstrates that semantic orbit analysis provides a scalable, theoretically grounded approach to AI control for code generation tasks.
Authors:Yesid Fonseca, Manuel S. Ríos, Nicanor Quijano, Luis F. Giraldo
Abstract:
Patch foraging involves the deliberate and planned process of determining the optimal time to depart from a resource-rich region and investigate potentially more beneficial alternatives. The Marginal Value Theorem (MVT) is frequently used to characterize this process, offering an optimality model for such foraging behaviors. Although this model has been widely used to make predictions in behavioral ecology, discovering the computational mechanisms that facilitate the emergence of optimal patch-foraging decisions in biological foragers remains under investigation. Here, we show that artificial foragers equipped with learned world models naturally converge to MVT-aligned strategies. Using a model-based reinforcement learning agent that acquires a parsimonious predictive representation of its environment, we demonstrate that anticipatory capabilities, rather than reward maximization alone, drive efficient patch-leaving behavior. Compared with standard model-free RL agents, these model-based agents exhibit decision patterns similar to many of their biological counterparts, suggesting that predictive world models can serve as a foundation for more explainable and biologically grounded decision-making in AI systems. Overall, our findings highlight the value of ecological optimality principles for advancing interpretable and adaptive AI.
Authors:Kentaro Fujii, Shingo Murata
Abstract:
Robots in uncertain real-world environments must perform both goal-directed and exploratory actions. However, most deep learning-based control methods neglect exploration and struggle under uncertainty. To address this, we adopt deep active inference, a framework that accounts for human goal-directed and exploratory actions. Yet, conventional deep active inference approaches face challenges due to limited environmental representation capacity and high computational cost in action selection. We propose a novel deep active inference framework that consists of a world model, an action model, and an abstract world model. The world model encodes environmental dynamics into hidden state representations at slow and fast timescales. The action model compresses action sequences into abstract actions using vector quantization, and the abstract world model predicts future slow states conditioned on the abstract action, enabling low-cost action selection. We evaluate the framework on object-manipulation tasks with a real-world robot. Results show that it achieves high success rates across diverse manipulation tasks and switches between goal-directed and exploratory actions in uncertain settings, while making action selection computationally tractable. These findings highlight the importance of modeling multiple timescale dynamics and abstracting actions and state transitions.
Authors:Zhijian Wei, Runze Ma, Zichen Wang, Zhongmin Li, Shuotong Song, Shuangjia Zheng
Abstract:
Virtual cell modeling aims to predict cellular responses to perturbations. Existing virtual cell models rely heavily on large-scale single-cell datasets, learning explicit mappings between gene expression and perturbations. Although recent models attempt to incorporate multi-source biological information, their generalization remains constrained by data quality, coverage, and batch effects. More critically, these models often function as black boxes, offering predictions without interpretability or consistency with biological principles, which undermines their credibility in scientific research. To address these challenges, we present VCWorld, a cell-level white-box simulator that integrates structured biological knowledge with the iterative reasoning capabilities of large language models to instantiate a biological world model. VCWorld operates in a data-efficient manner to reproduce perturbation-induced signaling cascades and generates interpretable, stepwise predictions alongside explicit mechanistic hypotheses. In drug perturbation benchmarks, VCWorld achieves state-of-the-art predictive performance, and the inferred mechanistic pathways are consistent with publicly available biological evidence.
Authors:Xinyi Li, Zaishuo Xia, Weyl Lu, Chenjie Hao, Yubei Chen
Abstract:
Current world models lack a unified and controlled setting for systematic evaluation, making it difficult to assess whether they truly capture the underlying rules that govern environment dynamics. In this work, we address this open challenge by introducing the SmallWorld Benchmark, a testbed designed to assess world model capability under isolated and precisely controlled dynamics without relying on handcrafted reward signals. Using this benchmark, we conduct comprehensive experiments in the fully observable state space on representative architectures including Recurrent State Space Model, Transformer, Diffusion model, and Neural ODE, examining their behavior across six distinct domains. The experimental results reveal how effectively these models capture environment structure and how their predictions deteriorate over extended rollouts, highlighting both the strengths and limitations of current modeling paradigms and offering insights into future improvement directions in representation learning and dynamics modeling.
Authors:Narjes Nourzad, Hanqing Yang, Shiyu Chen, Carlee Joe-Wong
Abstract:
Cooperative multi-agent planning requires agents to make joint decisions with partial information and limited communication. Coordination at the trajectory level often fails, as small deviations in timing or movement cascade into conflicts. Symbolic planning mitigates this challenge by raising the level of abstraction and providing a minimal vocabulary of actions that enable synchronization and collective progress. We present DR. WELL, a decentralized neurosymbolic framework for cooperative multi-agent planning. Cooperation unfolds through a two-phase negotiation protocol: agents first propose candidate roles with reasoning and then commit to a joint allocation under consensus and environment constraints. After commitment, each agent independently generates and executes a symbolic plan for its role without revealing detailed trajectories. Plans are grounded in execution outcomes via a shared world model that encodes the current state and is updated as agents act. By reasoning over symbolic plans rather than raw trajectories, DR. WELL avoids brittle step-level alignment and enables higher-level operations that are reusable, synchronizable, and interpretable. Experiments on cooperative block-push tasks show that agents adapt across episodes, with the dynamic world model capturing reusable patterns and improving task completion rates and efficiency. Experiments on cooperative block-push tasks show that our dynamic world model improves task completion and efficiency through negotiation and self-refinement, trading a time overhead for evolving, more efficient collaboration strategies.
Authors:Zaishuo Xia, Yukuan Lu, Xinyi Li, Yifan Xu, Yubei Chen
Abstract:
A world model is an internal model that simulates how the world evolves. Given past observations and actions, it predicts the future of both the embodied agent and its environment. Accurate world models are essential for enabling agents to think, plan, and reason effectively in complex, dynamic settings. Despite rapid progress, current world models remain brittle and degrade over long horizons. We argue that a central cause is representation quality: exteroceptive inputs (e.g., images) are high-dimensional, and lossy or entangled latents make dynamics learning unnecessarily hard. We therefore ask whether improving representation learning alone can substantially improve world-model performance. In this work, we take a step toward building a truly accurate world model by addressing a fundamental yet open problem: constructing a model that can fully clone and overfit to a deterministic 3D world. We propose Geometrically-Regularized World Models (GRWM), which enforces that consecutive points along a natural sensory trajectory remain close in latent representation space. This approach yields significantly improved latent representations that align closely with the true topology of the environment. GRWM is plug-and-play, requires only minimal architectural modification, scales with trajectory length, and is compatible with diverse latent generative backbones. Across deterministic 3D settings and long-horizon prediction tasks, GRWM significantly increases rollout fidelity and stability. Analyses show that its benefits stem from learning a latent manifold with superior geometric structure. These findings support a clear takeaway: improving representation learning is a direct and useful path to robust world models, delivering reliable long-horizon predictions without enlarging the dynamics module.
Authors:Riko Yokozawa, Kentaro Fujii, Yuta Nomura, Shingo Murata
Abstract:
Autonomous robotic navigation in real-world environments requires exploration to acquire environmental information as well as goal-directed navigation in order to reach specified targets. Active inference (AIF) based on the free-energy principle provides a unified framework for these behaviors by minimizing the expected free energy (EFE), thereby combining epistemic and extrinsic values. To realize this practically, we propose a deep AIF framework that integrates a diffusion policy as the policy model and a multiple timescale recurrent state-space model (MTRSSM) as the world model. The diffusion policy generates diverse candidate actions while the MTRSSM predicts their long-horizon consequences through latent imagination, enabling action selection that minimizes EFE. Real-world navigation experiments demonstrated that our framework achieved higher success rates and fewer collisions compared with the baselines, particularly in exploration-demanding scenarios. These results highlight how AIF based on EFE minimization can unify exploration and goal-directed navigation in real-world robotic settings.
Authors:Federico Malato, Ville Hautamäki
Abstract:
World Models have vastly permeated the field of Reinforcement Learning. Their ability to model the transition dynamics of an environment have greatly improved sample efficiency in online RL. Among them, the most notorious example is Dreamer, a model that learns to act in a diverse set of image-based environments. In this paper, we leverage similarity search and stochastic representations to approximate a world model without a training procedure. We establish a comparison with PlaNet, a well-established world model of the Dreamer family. We evaluate the models on the quality of latent reconstruction and on the perceived similarity of the reconstructed image, on both next-step and long horizon dynamics prediction. The results of our study demonstrate that a search-based world model is comparable to a training based one in both cases. Notably, our model show stronger performance in long-horizon prediction with respect to the baseline on a range of visually different environments.
Authors:Tim Flühmann, Alceu Bissoto, Trung-Dung Hoang, Lisa M. Koch
Abstract:
Performance monitoring is essential for safe clinical deployment of image classification models. However, because ground-truth labels are typically unavailable in the target dataset, direct assessment of real-world model performance is infeasible. State-of-the-art performance estimation methods address this by leveraging confidence scores to estimate the target accuracy. Despite being a promising direction, the established methods mainly estimate the model's accuracy and are rarely evaluated in a clinical domain, where strong class imbalances and dataset shifts are common. Our contributions are twofold: First, we introduce generalisations of existing performance prediction methods that directly estimate the full confusion matrix. Then, we benchmark their performance on chest x-ray data in real-world distribution shifts as well as simulated covariate and prevalence shifts. The proposed confusion matrix estimation methods reliably predicted clinically relevant counting metrics on medical images under distribution shifts. However, our simulated shift scenarios exposed important failure modes of current performance estimation techniques, calling for a better understanding of real-world deployment contexts when implementing these performance monitoring techniques for postmarket surveillance of medical AI models.
Authors:Tianran Liu, Shengwen Zhao, Nicholas Rhinehart
Abstract:
LiDAR-based world models offer more structured and geometry-aware representations than their image-based counterparts. However, existing LiDAR world models are narrowly trained; each model excels only in the domain for which it was built. Can we develop LiDAR world models that exhibit strong transferability across multiple domains? We conduct the first systematic domain transfer study across three demanding scenarios: (i) outdoor to indoor generalization, (ii) sparse-beam \& dense-beam adaptation, and (iii) non-semantic to semantic transfer. Given different amounts of fine-tuning data, our experiments show that a single pre-trained model can achieve up to 11% absolute improvement (83\% relative) over training from scratch and outperforms training from scratch in 30/36 of our comparisons. This transferability of dynamic learning significantly reduces the reliance on manually annotated data for semantic occupancy forecasting: our method exceed the previous semantic occupancy forecasting models with only 5% of the labeled training data required by prior models. We also observed inefficiencies of current LiDAR world models, mainly through their under-compression of LiDAR data and inefficient training objectives. To address this, we propose a latent conditional flow matching (CFM)-based frameworks that achieves state-of-the-art reconstruction accuracy using only half the training data and a compression ratio 6 times higher than that of prior methods. Our model achieves SOTA performance on future-trajectory-conditioned semantic occupancy forecasting while being 23x more computationally efficient (a 28x FPS speedup); and achieves SOTA performance on semantic occupancy forecasting while being 2x more computationally efficient (a 1.1x FPS speedup).
Authors:Xiaoyi Liu, Hao Tang
Abstract:
Physical intelligence -- anticipating and shaping the world from partial, multisensory observations -- is critical for next-generation world models. We propose FOLIAGE, a physics-informed multimodal world model for unbounded accretive surface growth. In its Action-Perception loop, a unified context encoder maps images, mesh connectivity, and point clouds to a shared latent state. A physics-aware predictor, conditioned on physical control actions, advances this latent state in time to align with the target latent of the surface, yielding a Modality-Agnostic Growth Embedding (MAGE) that interfaces with critic heads for downstream objectives. FOLIAGE's Accretive Graph Network (AGN) captures dynamic connectivity through Age Positional Encoding and Energy-Gated Message-Passing. Geometry-Correspondence Fusion and Cross-Patch Masking enhance MAGE's expressiveness, while Hierarchical Pooling balances global context with local dynamics. We create SURF-GARDEN, a world model learning platform comprising a Counterfactual Physics Simulator, a Multimodal Correspondence Extractor, and Evolution Tracing, which generates 7,200 diverse surface-growth sequences. SURF-BENCH, our physical-intelligence evaluation suite, evaluates six core tasks -- topology recognition, inverse material estimation, growth-stage classification, latent roll-out, cross-modal retrieval, and dense correspondence -- and four stress tests -- sensor dropout, zero-shot modality transfer, long-horizon prediction, and physics ablation -- to probe resilience. FOLIAGE outperforms specialized baselines while remaining robust across dynamic environments, establishing a new world-model based, multimodal pathway to physical intelligence.
Authors:Junha Chun, Youngjoon Jeong, Taesup Kim
Abstract:
World model based planning has significantly improved decision-making in complex environments by enabling agents to simulate future states and make informed choices. However, ensuring the prediction accuracy of world models often demands substantial computational resources, posing a major challenge for real-time applications. This computational burden is particularly restrictive in robotics, where resources are severely constrained. To address this limitation, we propose a Sparse Imagination for Efficient Visual World Model Planning, which enhances computational efficiency by reducing the number of tokens processed during forward prediction. Our method leverages a sparsely trained vision-based world model based on transformers with randomized grouped attention strategy, allowing the model to adaptively adjust the number of tokens processed based on the computational resource. By enabling sparse imagination (rollout), our approach significantly accelerates planning while maintaining high control fidelity. Experimental results demonstrate that sparse imagination preserves task performance while dramatically improving inference efficiency, paving the way for the deployment of world models in real-time decision-making scenarios.
Authors:Reece Keller, Alyn Tornell, Felix Pei, Xaq Pitkow, Leo Kozachkov, Aran Nayebi
Abstract:
Autonomy is a hallmark of animal intelligence, enabling adaptive and intelligent behavior in complex environments without relying on external reward or task structure. Existing reinforcement learning approaches to exploration in sparse reward and reward-free environments, including class of methods known as intrinsic motivation, exhibit inconsistent exploration patterns and thus fail to produce robust autonomous behaviors observed in animals. Moreover, systems neuroscience has largely overlooked the neural basis of autonomy, focusing instead on experimental paradigms where animals are motivated by external reward rather than engaging in unconstrained, naturalistic and task-independent behavior. To bridge these gaps, we introduce a novel model-based intrinsic drive explicitly designed to capture robust autonomous exploration observed in animals. Our method (3M-Progress) motivates naturalistic behavior by tracking divergence between the agent's current world model and an ethological prior. We demonstrate that artificial embodied agents trained with 3M-Progress capture the explainable variance in behavioral patterns and whole-brain neural-glial dynamics recorded from autonomously-behaving larval zebrafish, introducing the first goal-driven, population-level model of neural-glial computation. Our findings establish a computational framework connecting model-based intrinsic motivation to naturalistic behavior, providing a foundation for building artificial agents with animal-like autonomy.
Authors:Yavar Taheri Yeganeh, Mohsen Jafari, Andrea Matta
Abstract:
With the recent success of world-model agents, which extend the core idea of model-based reinforcement learning by learning a differentiable model for sample-efficient control across diverse tasks, active inference (AIF) offers a complementary, neuroscience-grounded paradigm that unifies perception, learning, and action within a single probabilistic framework powered by a generative model. Despite this promise, practical AIF agents still rely on accurate immediate predictions and exhaustive planning, a limitation that is exacerbated in delayed environments requiring plans over long horizons, tens to hundreds of steps. Moreover, most existing agents are evaluated on robotic or vision benchmarks which, while natural for biological agents, fall short of real-world industrial complexity. We address these limitations with a generative-policy architecture featuring (i) a multi-step latent transition that lets the generative model predict an entire horizon in a single look-ahead, (ii) an integrated policy network that enables the transition and receives gradients of the expected free energy, (iii) an alternating optimization scheme that updates model and policy from a replay buffer, and (iv) a single gradient step that plans over long horizons, eliminating exhaustive planning from the control loop. We evaluate our agent in an environment that mimics a realistic industrial scenario with delayed and long-horizon settings. The empirical results confirm the effectiveness of the proposed approach, demonstrating the coupled world-model with the AIF formalism yields an end-to-end probabilistic controller capable of effective decision making in delayed, long-horizon settings without handcrafted rewards or expensive planning.
Authors:Francesco Petri, Luigi Asprino, Aldo Gangemi
Abstract:
World modelling, i.e. building a representation of the rules that govern the world so as to predict its evolution, is an essential ability for any agent interacting with the physical world. Despite their impressive performance, many solutions fail to learn a causal representation of the environment they are trying to model, which would be necessary to gain a deep enough understanding of the world to perform complex tasks. With this work, we aim to broaden the research in the intersection of causality theory and neural world modelling by assessing the potential for causal discovery of the State Space Model (SSM) architecture, which has been shown to have several advantages over the widespread Transformer. We show empirically that, compared to an equivalent Transformer, a SSM can model the dynamics of a simple environment and learn a causal model at the same time with equivalent or better performance, thus paving the way for further experiments that lean into the strength of SSMs and further enhance them with causal awareness.
Authors:Chenjie Hao, Weyl Lu, Yifan Xu, Yubei Chen
Abstract:
An embodied system must not only model the patterns of the external world but also understand its own motion dynamics. A motion dynamic model is essential for efficient skill acquisition and effective planning. In this work, we introduce the neural motion simulator (MoSim), a world model that predicts the future physical state of an embodied system based on current observations and actions. MoSim achieves state-of-the-art performance in physical state prediction and provides competitive performance across a range of downstream tasks. This works shows that when a world model is accurate enough and performs precise long-horizon predictions, it can facilitate efficient skill acquisition in imagined worlds and even enable zero-shot reinforcement learning. Furthermore, MoSim can transform any model-free reinforcement learning (RL) algorithm into a model-based approach, effectively decoupling physical environment modeling from RL algorithm development. This separation allows for independent advancements in RL algorithms and world modeling, significantly improving sample efficiency and enhancing generalization capabilities. Our findings highlight that world models for motion dynamics is a promising direction for developing more versatile and capable embodied systems.
Authors:Lloyd Russell, Anthony Hu, Lorenzo Bertoni, George Fedoseev, Jamie Shotton, Elahe Arani, Gianluca Corrado
Abstract:
Generative models offer a scalable and flexible paradigm for simulating complex environments, yet current approaches fall short in addressing the domain-specific requirements of autonomous driving - such as multi-agent interactions, fine-grained control, and multi-camera consistency. We introduce GAIA-2, Generative AI for Autonomy, a latent diffusion world model that unifies these capabilities within a single generative framework. GAIA-2 supports controllable video generation conditioned on a rich set of structured inputs: ego-vehicle dynamics, agent configurations, environmental factors, and road semantics. It generates high-resolution, spatiotemporally consistent multi-camera videos across geographically diverse driving environments (UK, US, Germany). The model integrates both structured conditioning and external latent embeddings (e.g., from a proprietary driving model) to facilitate flexible and semantically grounded scene synthesis. Through this integration, GAIA-2 enables scalable simulation of both common and rare driving scenarios, advancing the use of generative world models as a core tool in the development of autonomous systems. Videos are available at https://wayve.ai/thinking/gaia-2.
Authors:Zergham Ahmed, Joshua B. Tenenbaum, Christopher J. Bates, Samuel J. Gershman
Abstract:
Modern reinforcement learning (RL) systems have demonstrated remarkable capabilities in complex environments, such as video games. However, they still fall short of achieving human-like sample efficiency and adaptability when learning new domains. Theory-based reinforcement learning (TBRL) is an algorithmic framework specifically designed to address this gap. Modeled on cognitive theories, TBRL leverages structured, causal world models - "theories" - as forward simulators for use in planning, generalization and exploration. Although current TBRL systems provide compelling explanations of how humans learn to play video games, they face several technical limitations: their theory languages are restrictive, and their planning algorithms are not scalable. To address these challenges, we introduce TheoryCoder, an instantiation of TBRL that exploits hierarchical representations of theories and efficient program synthesis methods for more powerful learning and planning. TheoryCoder equips agents with general-purpose abstractions (e.g., "move to"), which are then grounded in a particular environment by learning a low-level transition model (a Python program synthesized from observations by a large language model). A bilevel planning algorithm can exploit this hierarchical structure to solve large domains. We demonstrate that this approach can be successfully applied to diverse and challenging grid-world games, where approaches based on directly synthesizing a policy perform poorly. Ablation studies demonstrate the benefits of using hierarchical abstractions.
Authors:Léopold Maytié, Roland Bertin Johannet, Rufin VanRullen
Abstract:
Humans leverage rich internal models of the world to reason about the future, imagine counterfactuals, and adapt flexibly to new situations. In Reinforcement Learning (RL), world models aim to capture how the environment evolves in response to the agent's actions, facilitating planning and generalization. However, typical world models directly operate on the environment variables (e.g. pixels, physical attributes), which can make their training slow and cumbersome; instead, it may be advantageous to rely on high-level latent dimensions that capture relevant multimodal variables. Global Workspace (GW) Theory offers a cognitive framework for multimodal integration and information broadcasting in the brain, and recent studies have begun to introduce efficient deep learning implementations of GW. Here, we evaluate the capabilities of an RL system combining GW with a world model. We compare our GW-Dreamer with various versions of the standard PPO and the original Dreamer algorithms. We show that performing the dreaming process (i.e., mental simulation) inside the GW latent space allows for training with fewer environment steps. As an additional emergent property, the resulting model (but not its comparison baselines) displays strong robustness to the absence of one of its observation modalities (images or simulation attributes). We conclude that the combination of GW with World Models holds great potential for improving decision-making in RL agents.
Authors:Ivica Nikolic, Teodora Baluta, Prateek Saxena
Abstract:
Large language models are increasingly customized through fine-tuning and other adaptations, creating challenges in enforcing licensing terms and managing downstream impacts. Tracking model origins is crucial both for protecting intellectual property and for identifying derived models when biases or vulnerabilities are discovered in foundation models. We address this challenge by developing a framework for testing model provenance: Whether one model is derived from another. Our approach is based on the key observation that real-world model derivations preserve significant similarities in model outputs that can be detected through statistical analysis. Using only black-box access to models, we employ multiple hypothesis testing to compare model similarities against a baseline established by unrelated models. On two comprehensive real-world benchmarks spanning models from 30M to 4B parameters and comprising over 600 models, our tester achieves 90-95% precision and 80-90% recall in identifying derived models. These results demonstrate the viability of systematic provenance verification in production environments even when only API access is available.
Authors:Koji Aoshima, Eddie Wadbro, Martin Servin
Abstract:
Wheel loaders in mines and construction sites repeatedly load soil from a pile to load receivers. Automating this task presents a challenging planning problem since each loading's performance depends on the pile state, which depends on previous loadings. We investigate an end-to-end optimization approach considering future loading outcomes and transportation costs between the pile and load receivers. To predict the evolution of the pile state and the loading performance, we use world models that leverage deep neural networks trained on numerous simulated loading cycles. A look-ahead tree search optimizes the sequence of loading actions by evaluating the performance of thousands of action candidates, which expand into subsequent action candidates under the predicted pile states recursively. Test results demonstrate that, over a horizon of 15 sequential loadings, the look-ahead tree search is 6% more efficient than a greedy strategy, which always selects the action that maximizes the current single loading performance, and 14% more efficient than using a fixed loading controller optimized for the nominal case.
Authors:Miles Hutson, Isaac Kauvar, Nick Haber
Abstract:
Model-based reinforcement learning (MBRL) is a promising route to sample-efficient policy optimization. However, a known vulnerability of reconstruction-based MBRL consists of scenarios in which detailed aspects of the world are highly predictable, but irrelevant to learning a good policy. Such scenarios can lead the model to exhaust its capacity on meaningless content, at the cost of neglecting important environment dynamics. While existing approaches attempt to solve this problem, we highlight its continuing impact on leading MBRL methods -- including DreamerV3 and DreamerPro -- with a novel environment where background distractions are intricate, predictable, and useless for planning future actions. To address this challenge we develop a method for focusing the capacity of the world model through synergy of a pretrained segmentation model, a task-aware reconstruction loss, and adversarial learning. Our method outperforms a variety of other approaches designed to reduce the impact of distractors, and is an advance towards robust model-based reinforcement learning.
Authors:Gaoyue Zhou, Hengkai Pan, Yann LeCun, Lerrel Pinto
Abstract:
The ability to predict future outcomes given control actions is fundamental for physical reasoning. However, such predictive models, often called world models, remains challenging to learn and are typically developed for task-specific solutions with online policy learning. To unlock world models' true potential, we argue that they should 1) be trainable on offline, pre-collected trajectories, 2) support test-time behavior optimization, and 3) facilitate task-agnostic reasoning. To this end, we present DINO World Model (DINO-WM), a new method to model visual dynamics without reconstructing the visual world. DINO-WM leverages spatial patch features pre-trained with DINOv2, enabling it to learn from offline behavioral trajectories by predicting future patch features. This allows DINO-WM to achieve observational goals through action sequence optimization, facilitating task-agnostic planning by treating goal features as prediction targets. We demonstrate that DINO-WM achieves zero-shot behavioral solutions at test time on six environments without expert demonstrations, reward modeling, or pre-learned inverse models, outperforming prior state-of-the-art work across diverse task families such as arbitrarily configured mazes, push manipulation with varied object shapes, and multi-particle scenarios.
Authors:Yuanlin Duan, Wensen Mao, He Zhu
Abstract:
Learning world models offers a promising avenue for goal-conditioned reinforcement learning with sparse rewards. By allowing agents to plan actions or exploratory goals without direct interaction with the environment, world models enhance exploration efficiency. The quality of a world model hinges on the richness of data stored in the agent's replay buffer, with expectations of reasonable generalization across the state space surrounding recorded trajectories. However, challenges arise in generalizing learned world models to state transitions backward along recorded trajectories or between states across different trajectories, hindering their ability to accurately model real-world dynamics. To address these challenges, we introduce a novel goal-directed exploration algorithm, MUN (short for "World Models for Unconstrained Goal Navigation"). This algorithm is capable of modeling state transitions between arbitrary subgoal states in the replay buffer, thereby facilitating the learning of policies to navigate between any "key" states. Experimental results demonstrate that MUN strengthens the reliability of world models and significantly improves the policy's capacity to generalize across new goal settings.
Authors:Stephen Chung, Scott Niekum, David Krueger
Abstract:
As reinforcement learning agents become increasingly deployed in real-world scenarios, predicting future agent actions and events during deployment is important for facilitating better human-agent interaction and preventing catastrophic outcomes. This paper experimentally evaluates and compares the effectiveness of future action and event prediction for three types of RL agents: explicitly planning, implicitly planning, and non-planning. We employ two approaches: the inner state approach, which involves predicting based on the inner computations of the agents (e.g., plans or neuron activations), and a simulation-based approach, which involves unrolling the agent in a learned world model. Our results show that the plans of explicitly planning agents are significantly more informative for prediction than the neuron activations of the other types. Furthermore, using internal plans proves more robust to model quality compared to simulation-based approaches when predicting actions, while the results for event prediction are more mixed. These findings highlight the benefits of leveraging inner states and simulations to predict future agent actions and events, thereby improving interaction and safety in real-world deployments.
Authors:Ben Crulis, Barthelemy Serres, Cyril De Runz, Gilles Venturini
Abstract:
Current large open vision models could be useful for one and few-shot object recognition. Nevertheless, gradient-based re-training solutions are costly. On the other hand, open-vocabulary object detection models bring closer visual and textual concepts in the same latent space, allowing zero-shot detection via prompting at small computational cost. We propose a lightweight method to turn the latter into a one-shot or few-shot object recognition models without requiring textual descriptions. Our experiments on the TEgO dataset using the YOLO-World model as a base show that performance increases with the model size, the number of examples and the use of image augmentation.
Authors:Kaige Xie, Ian Yang, John Gunerli, Mark Riedl
Abstract:
World models, which encapsulate the dynamics of how actions affect environments, are foundational to the functioning of intelligent agents. In this work, we explore the potential of Large Language Models (LLMs) to operate as world models. Although LLMs are not inherently designed to model real-world dynamics, we show that they can be induced to perform two critical world model functions: determining the applicability of an action based on a given world state, and predicting the resulting world state upon action execution. This is achieved by fine-tuning two separate LLMs-one for precondition prediction and another for effect prediction-while leveraging synthetic data generation techniques. Through human-participant studies, we validate that the precondition and effect knowledge generated by our models aligns with human understanding of world dynamics. We also analyze the extent to which the world model trained on our synthetic data results in an inferred state space that supports the creation of action chains, a necessary property for planning.
Authors:Lakshya Gupta, Litao Li, Yizhe Liu, Sriram Ganapathi Subramanian, Kaheer Suleman, Zichen Zhang, Haoye Lu, Sumit Pasupalak
Abstract:
Frontier large language models (LLMs) excel as autonomous agents in many domains, yet they remain untested in complex enterprise systems where hidden workflows create cascading effects across interconnected databases. Existing enterprise benchmarks evaluate surface-level agentic task completion similar to general consumer benchmarks, ignoring true challenges in enterprises, such as limited observability, large database state, and hidden workflows with cascading side effects. We introduce World of Workflows (WoW), a realistic ServiceNow-based environment incorporating 4,000+ business rules and 55 active workflows embedded in the system, alongside WoW-bench, a benchmark of 234 tasks evaluating constrained agentic task completion and enterprise dynamics modeling capabilities. We reveal two major takeaways: (1) Frontier LLMs suffer from dynamics blindness, consistently failing to predict the invisible, cascading side effects of their actions, which leads to silent constraint violations, and (2) reliability in opaque systems requires grounded world modeling, where agents must mentally simulate hidden state transitions to bridge the observability gap when high-fidelity feedback is unavailable. For reliable and useful enterprise agents, WoW motivates a new paradigm to explicitly learn system dynamics. We release our GitHub for setting up and evaluating WoW.
Authors:Zhi Liu, Guangzhi Wang
Abstract:
Early artificial intelligence paradigms exhibited separated cognitive functions: Neural Networks focused on "perception-representation," Reinforcement Learning on "decision-making-behavior," and Symbolic AI on "knowledge-reasoning." With Transformer-based large models and world models, these paradigms are converging into cognitive agents with closed-loop "perception-decision-action" capabilities. Humans solve complex problems under limited cognitive resources through temporalized sequential reasoning. Language relies on problem space search for deep semantic reasoning. While early large language models (LLMs) could generate fluent text, they lacked robust semantic reasoning capabilities. Prompting techniques like Chain-of-Thought (CoT) and Tree-of-Thought (ToT) extended reasoning paths by making intermediate steps explicit. Recent models like DeepSeek-R1 enhanced performance through explicit reasoning trajectories. However, these methods have limitations in search completeness and efficiency. This highlights the need for "Time-Scaling"--the systematic extension and optimization of an agent's ability to unfold reasoning over time. Time-Scaling refers to architectural design utilizing extended temporal pathways, enabling deeper problem space exploration, dynamic strategy adjustment, and enhanced metacognitive control, paralleling human sequential reasoning under cognitive constraints. It represents a critical frontier for enhancing deep reasoning and problem-solving without proportional increases in static model parameters. Advancing intelligent agent capabilities requires placing Time-Scaling principles at the forefront, positioning explicit temporal reasoning management as foundational.
Authors:Shogo Ohmae, Keiko Ohmae
Abstract:
Recent advances in general-purpose AI systems with attention-based transformers offer a potential window into how the neocortex and cerebellum, despite their relatively uniform circuit architectures, give rise to diverse functions and, ultimately, to human intelligence. This Perspective provides a cross-domain comparison between the brain and AI that goes beyond the traditional focus on visual processing, adopting the emerging perspecive of world-model-based computation. Here, we identify shared computational mechanisms in the attention-based neocortex and the non-attentional cerebellum: both predict future world events from past inputs and construct internal world models through prediction-error learning. These predictive world models are repurposed for seemingly distinct functions -- understanding in sensory processing and generation in motor processing -- enabling the brain to achieve multi-domain capabilities and human-like adaptive intelligence. Notably, attention-based AI has independently converged on a similar learning paradigm and world-model-based computation. We conclude that these shared mechanisms in both biological and artificial systems constitute a core computational foundation for realizing diverse functions including high-level intelligence, despite their relatively uniform circuit structures. Our theoretical insights bridge neuroscience and AI, advancing our understanding of the computational essence of intelligence.
Authors:Alexander Boyd, Franz Nowak, David Hyland, Manuel Baltieri, Fernando E. Rosas
Abstract:
World models have been recently proposed as sandbox environments in which AI agents can be trained and evaluated before deployment. Although realistic world models often have high computational demands, efficient modelling is usually possible by exploiting the fact that real-world scenarios tend to involve subcomponents that interact in a modular manner. In this paper, we explore this idea by developing a framework for decomposing complex world models represented by transducers, a class of models generalising POMDPs. Whereas the composition of transducers is well understood, our results clarify how to invert this process, deriving sub-transducers operating on distinct input-output subspaces, enabling parallelizable and interpretable alternatives to monolithic world modelling that can support distributed inference. Overall, these results lay a groundwork for bridging the structural transparency demanded by AI safety and the computational efficiency required for real-world inference.
Authors:Gaganpreet Jhajj, Fuhua Lin
Abstract:
In this work, we propose that reasoning in knowledge graph (KG) networks can be guided by surprise minimization. Entities that are close in graph distance will have lower surprise than those farther apart. This connects the Free Energy Principle (FEP) from neuroscience to KG systems, where the KG serves as the agent's generative model. We formalize surprise using the shortest-path distance in directed graphs and provide a framework for KG-based agents. Graph distance appears in graph neural networks as message passing depth and in model-based reinforcement learning as world model trajectories. This work-in-progress study explores whether distance-based surprise can extend recent work showing that syntax minimizes surprise and free energy via tree structures.
Authors:Jiahua Wang, Shannan Yan, Leqi Zheng, Jialong Wu, Yaoxin Mao
Abstract:
World models simulate environmental dynamics to enable agents to plan and reason about future states. While existing approaches have primarily focused on visual observations, real-world perception inherently involves multiple sensory modalities. Audio provides crucial spatial and temporal cues such as sound source localization and acoustic scene properties, yet its integration into world models remains largely unexplored. No prior work has formally defined what constitutes an audio-visual world model or how to jointly capture binaural spatial audio and visual dynamics under precise action control with task reward prediction. This work presents the first formal framework for Audio-Visual World Models (AVWM), formulating multimodal environment simulation as a partially observable Markov decision process with synchronized audio-visual observations, fine-grained actions, and task rewards. To address the lack of suitable training data, we construct AVW-4k, a dataset comprising 30 hours of binaural audio-visual trajectories with action annotations and reward signals across 76 indoor environments. We propose AV-CDiT, an Audio-Visual Conditional Diffusion Transformer with a novel modality expert architecture that balances visual and auditory learning, optimized through a three-stage training strategy for effective multimodal integration. Extensive experiments demonstrate that AV-CDiT achieves high-fidelity multimodal prediction across visual and auditory modalities with reward. Furthermore, we validate its practical utility in continuous audio-visual navigation tasks, where AVWM significantly enhances the agent's performance.
Authors:Yosuke Nishimoto, Takashi Matsubara
Abstract:
World models have been developed to support sample-efficient deep reinforcement learning agents. However, it remains challenging for world models to accurately replicate environments that are high-dimensional, non-stationary, and composed of multiple objects with rich interactions since most world models learn holistic representations of all environmental components. By contrast, humans perceive the environment by decomposing it into discrete objects, facilitating efficient decision-making. Motivated by this insight, we propose \emph{Slot Transformer Imagination with CAusality-aware reinforcement learning} (STICA), a unified framework in which object-centric Transformers serve as the world model and causality-aware policy and value networks. STICA represents each observation as a set of object-centric tokens, together with tokens for the agent action and the resulting reward, enabling the world model to predict token-level dynamics and interactions. The policy and value networks then estimate token-level cause--effect relations and use them in the attention layers, yielding causality-guided decision-making. Experiments on object-rich benchmarks demonstrate that STICA consistently outperforms state-of-the-art agents in both sample efficiency and final performance.
Authors:Xiaoxing Lian, Aidong Yang, Jun Zhu, Peng Wang, Yue Zhang
Abstract:
Large language models (LLMs) and vision language models (VLMs), such as DeepSeek R1,OpenAI o3, and Gemini 2.5 Pro, have demonstrated remarkable reasoning capabilities across logical inference, problem solving, and decision making. However, spatial reasoning:a fundamental component of human cognition that includes mental rotation, navigation, and spatial relationship comprehension remains a significant challenge for current advanced VLMs. We hypothesize that imagination, the internal simulation of spatial states, is the dominant reasoning mechanism within a spatial world model. To test this hypothesis and systematically probe current VLM spatial reasoning mechanisms, we introduce SpatiaLite, a fully synthetic benchmark that jointly measures spatial reasoning accuracy and reasoning efficiency. Comprehensive experiments reveal three key findings. First, advanced VLMs predominantly rely on linguistic representations for reasoning and imagination, resulting in significant deficiencies on visual centric tasks that demand perceptual spatial relations and 3D geometry transformations such as mental rotation or projection prediction. Second, advanced VLMs exhibit severe inefficiency in their current spatial reasoning mechanisms, with token usage growing rapidly as transformation complexity increases. Third, we propose an Imagery Driven Framework (IDF) for data synthesis and training, which can implicitly construct an internal world model that is critical for spatial reasoning in VLMs. Building on SpatiaLite, this work delineates the spatial reasoning limits and patterns of advanced VLMs, identifies key shortcomings, and informs future advances
Authors:Caroline Baumgartner, Eleanor Spens, Neil Burgess, Petru Manescu
Abstract:
How do large language models solve spatial navigation tasks? We investigate this by training GPT-2 models on three spatial learning paradigms in grid environments: passive exploration (Foraging Model- predicting steps in random walks), goal-directed planning (generating optimal shortest paths) on structured Hamiltonian paths (SP-Hamiltonian), and a hybrid model fine-tuned with exploratory data (SP-Random Walk). Using behavioural, representational and mechanistic analyses, we uncover two fundamentally different learned algorithms. The Foraging model develops a robust, map-like representation of space, akin to a 'cognitive map'. Causal interventions reveal that it learns to consolidate spatial information into a self-sufficient coordinate system, evidenced by a sharp phase transition where its reliance on historical direction tokens vanishes by the middle layers of the network. The model also adopts an adaptive, hierarchical reasoning system, switching between a low-level heuristic for short contexts and map-based inference for longer ones. In contrast, the goal-directed models learn a path-dependent algorithm, remaining reliant on explicit directional inputs throughout all layers. The hybrid model, despite demonstrating improved generalisation over its parent, retains the same path-dependent strategy. These findings suggest that the nature of spatial intelligence in transformers may lie on a spectrum, ranging from generalisable world models shaped by exploratory data to heuristics optimised for goal-directed tasks. We provide a mechanistic account of this generalisation-optimisation trade-off and highlight how the choice of training regime influences the strategies that emerge.
Authors:Hadi Keramati, Morteza Sadeghi, Rajeev K. Jaiman
Abstract:
This study presents a generative optimization framework based on a guided denoising diffusion probabilistic model (DDPM) that leverages surrogate gradients to generate heat sink designs minimizing pressure drop while maintaining surface temperatures below a specified threshold. Geometries are represented using boundary representations of multiple fins, and a multi-fidelity approach is employed to generate training data. Using this dataset, along with vectors representing the boundary representation geometries, we train a denoising diffusion probabilistic model to generate heat sinks with characteristics consistent with those observed in the data. We train two different residual neural networks to predict the pressure drop and surface temperature for each geometry. We use the gradients of these surrogate models with respect to the design variables to guide the geometry generation process toward satisfying the low-pressure and surface temperature constraints. This inference-time guidance directs the generative process toward heat sink designs that not only prevent overheating but also achieve lower pressure drops compared to traditional optimization methods such as CMA-ES. In contrast to traditional black-box optimization approaches, our method is scalable, provided sufficient training data is available. Unlike traditional topology optimization methods, once the model is trained and the heat sink world model is saved, inference under new constraints (e.g., temperature) is computationally inexpensive and does not require retraining. Samples generated using the guided diffusion model achieve pressure drops up to 10 percent lower than the limits obtained by traditional black-box optimization methods. This work represents a step toward building a foundational generative model for electronics cooling.
Authors:Hong Wang, Ridhima Phatak, James Ocampo, Zhao Han
Abstract:
Research indicates that humans can mistakenly assume that robots and humans have the same field of view (FoV), possessing an inaccurate mental model of robots. This misperception may lead to failures during human-robot collaboration tasks where robots might be asked to complete impossible tasks about out-of-view objects. The issue is more severe when robots do not have a chance to scan the scene to update their world model while focusing on assigned tasks. To help align humans' mental models of robots' vision capabilities, we propose four FoV indicators in augmented reality (AR) and conducted a user human-subjects experiment (N=41) to evaluate them in terms of accuracy, confidence, task efficiency, and workload. These indicators span a spectrum from egocentric (robot's eye and head space) to allocentric (task space). Results showed that the allocentric blocks at the task space had the highest accuracy with a delay in interpreting the robot's FoV. The egocentric indicator of deeper eye sockets, possible for physical alteration, also increased accuracy. In all indicators, participants' confidence was high while cognitive load remained low. Finally, we contribute six guidelines for practitioners to apply our AR indicators or physical alterations to align humans' mental models with robots' vision capabilities.
Authors:Brady Bhalla, Honglu Fan, Nancy Chen, Tony Yue YU
Abstract:
We investigate how embedding dimension affects the emergence of an internal "world model" in a transformer trained with reinforcement learning to perform bubble-sort-style adjacent swaps. Models achieve high accuracy even with very small embedding dimensions, but larger dimensions yield more faithful, consistent, and robust internal representations. In particular, higher embedding dimensions strengthen the formation of structured internal representation and lead to better interpretability. After hundreds of experiments, we observe two consistent mechanisms: (1) the last row of the attention weight matrix monotonically encodes the global ordering of tokens; and (2) the selected transposition aligns with the largest adjacent difference of these encoded values. Our results provide quantitative evidence that transformers build structured internal world models and that model size improves representation quality in addition to end performance. We release our metrics and analyses, which can be used to probe similar algorithmic tasks.
Authors:Frank Röder, Jan Benad, Manfred Eppe, Pradeep Kr. Banerjee
Abstract:
Real-world reinforcement learning demands adaptation to unseen environmental conditions without costly retraining. Contextual Markov Decision Processes (cMDP) model this challenge, but existing methods often require explicit context variables (e.g., friction, gravity), limiting their use when contexts are latent or hard to measure. We introduce Dynamics-Aligned Latent Imagination (DALI), a framework integrated within the Dreamer architecture that infers latent context representations from agent-environment interactions. By training a self-supervised encoder to predict forward dynamics, DALI generates actionable representations conditioning the world model and policy, bridging perception and control. We theoretically prove this encoder is essential for efficient context inference and robust generalization. DALI's latent space enables counterfactual consistency: Perturbing a gravity-encoding dimension alters imagined rollouts in physically plausible ways. On challenging cMDP benchmarks, DALI achieves significant gains over context-unaware baselines, often surpassing context-aware baselines in extrapolation tasks, enabling zero-shot generalization to unseen contextual variations.
Authors:Dillon Z. Chen, Johannes Zenn, Tristan Cinquin, Sheila A. McIlraith
Abstract:
We study the usage of language models (LMs) for planning over world models specified in the Planning Domain Definition Language (PDDL). We prompt LMs to generate Python programs that serve as generalised policies for solving PDDL problems from a given domain. Notably, our approach synthesises policies that are provably sound relative to the PDDL domain without reliance on external verifiers. We conduct experiments on competition benchmarks which show that our policies can solve more PDDL problems than PDDL planners and recent LM approaches within a fixed time and memory constraint. Our approach manifests in the LMPlan planner which can solve planning problems with several hundreds of relevant objects. Surprisingly, we observe that LMs used in our framework sometimes plan more effectively over PDDL problems written in meaningless symbols in place of natural language; e.g. rewriting (at dog kitchen) as (p2 o1 o3). This finding challenges hypotheses that LMs reason over word semantics and memorise solutions from its training corpus, and is worth further exploration.
Authors:Nadav Amir, Stas Tiomkin, Angela Langdon
Abstract:
Purposeful behavior is a hallmark of natural and artificial intelligence. Its acquisition is often believed to rely on world models, comprising both descriptive (what is) and prescriptive (what is desirable) aspects that identify and evaluate state of affairs in the world, respectively. Canonical computational accounts of purposeful behavior, such as reinforcement learning, posit distinct components of a world model comprising a state representation (descriptive aspect) and a reward function (prescriptive aspect). However, an alternative possibility, which has not yet been computationally formulated, is that these two aspects instead co-emerge interdependently from an agent's goal. Here, we describe a computational framework of goal-directed state representation in cognitive agents, in which the descriptive and prescriptive aspects of a world model co-emerge from agent-environment interaction sequences, or experiences. Drawing on Buddhist epistemology, we introduce a construct of goal-directed, or telic, states, defined as classes of goal-equivalent experience distributions. Telic states provide a parsimonious account of goal-directed learning in terms of the statistical divergence between behavioral policies and desirable experience features. We review empirical and theoretical literature supporting this novel perspective and discuss its potential to provide a unified account of behavioral, phenomenological and neural dimensions of purposeful behaviors across diverse substrates.
Authors:Dave Goel, Matthew Guzdial, Anurag Sarkar
Abstract:
World models are defined as a compressed spatial and temporal learned representation of an environment. The learned representation is typically a neural network, making transfer of the learned environment dynamics and explainability a challenge. In this paper, we propose an approach, Finite Automata Extraction (FAE), that learns a neuro-symbolic world model from gameplay video represented as programs in a novel domain-specific language (DSL): Retro Coder. Compared to prior world model approaches, FAE learns a more precise model of the environment and more general code than prior DSL-based approaches.
Authors:Wenlong Liang, Rui Zhou, Yang Ma, Bing Zhang, Songlin Li, Yijia Liao, Ping Kuang
Abstract:
Embodied AI aims to develop intelligent systems with physical forms capable of perceiving, decision-making, acting, and learning in real-world environments, providing a promising way to Artificial General Intelligence (AGI). Despite decades of explorations, it remains challenging for embodied agents to achieve human-level intelligence for general-purpose tasks in open dynamic environments. Recent breakthroughs in large models have revolutionized embodied AI by enhancing perception, interaction, planning and learning. In this article, we provide a comprehensive survey on large model empowered embodied AI, focusing on autonomous decision-making and embodied learning. We investigate both hierarchical and end-to-end decision-making paradigms, detailing how large models enhance high-level planning, low-level execution, and feedback for hierarchical decision-making, and how large models enhance Vision-Language-Action (VLA) models for end-to-end decision making. For embodied learning, we introduce mainstream learning methodologies, elaborating on how large models enhance imitation learning and reinforcement learning in-depth. For the first time, we integrate world models into the survey of embodied AI, presenting their design methods and critical roles in enhancing decision-making and learning. Though solid advances have been achieved, challenges still exist, which are discussed at the end of this survey, potentially as the further research directions.
Authors:Eric Jing, Abdeslam Boularias
Abstract:
Recent work on visual world models shows significant promise in latent state dynamics obtained from pre-trained image backbones. However, most of the current approaches are sensitive to training quality, requiring near-complete coverage of the action and state space during training to prevent divergence during inference. To make a model-based planning algorithm more robust to the quality of the learned world model, we propose in this work to use a variational autoencoder as a novelty detector to ensure that proposed action trajectories during planning do not cause the learned model to deviate from the training data distribution. To evaluate the effectiveness of this approach, a series of experiments in challenging simulated robot environments was carried out, with the proposed method incorporated into a model-predictive control policy loop extending the DINO-WM architecture. The results clearly show that the proposed method improves over state-of-the-art solutions in terms of data efficiency.
Authors:Aditya Sharma, Ananya Gupta, Chengyu Wang, Chiamaka Adebayo, Jakub Kowalski
Abstract:
Large Language Models (LLMs), despite their advanced linguistic capabilities, fundamentally lack an intuitive understanding of physical dynamics, which limits their effectiveness in real-world scenarios that require causal reasoning. In this paper, we introduce Causal World Model Induction (CWMI), a novel framework designed to embed an explicit model of causal physics within an LLM. Our approach incorporates a dedicated Causal Physics Module (CPM) and a new training objective called Causal Intervention Loss, encouraging the model to learn cause-and-effect relationships from multimodal data. By training the model to predict the outcomes of hypothetical interventions instead of merely capturing statistical correlations, CWMI develops a robust internal representation of physical laws. Experimental results show that CWMI significantly outperforms state-of-the-art LLMs on zero-shot physical reasoning tasks, including the PIQA benchmark and our newly proposed PhysiCa-Bench dataset. These findings demonstrate that inducing a causal world model is a critical step toward more reliable and generalizable AI systems.
Authors:Marcel Simon, Tae-Ho Kim, Seul-Ki Yeom
Abstract:
Self-supervised image encoders such as DINO have recently gained significant interest for learning robust visual features without labels. However, most SSL methods train on static images and miss the temporal cues inherent in videos. We introduce a video-distilled single-image encoder trained to predict the next-frame representation from the current frame. This simple objective injects 3D spatial and temporal priors without optical flow or tracking. When pre-training on a single 2-hour video, our approach raises the mean Intersection-over-Union (mIoU) on ADE20K from 35.0 (DoRA) to 36.4 while remaining a drop-in replacement for image-only pipelines. Our results highlight video self-distillation as a lightweight route to geometry-aware perception an essential ingredient for physically plausible world models and Physical AI.
Authors:Ningwei Xie, Zizi Tian, Lei Yang, Xiao-Ping Zhang, Meng Guo, Jie Li
Abstract:
World models have garnered increasing attention in the development of artificial general intelligence (AGI), serving as computational frameworks for learning representations of the external world and forecasting future states. While early efforts focused on 2D visual perception and simulation, recent 3D-aware generative world models have demonstrated the ability to synthesize geometrically consistent, interactive 3D environments, marking a shift toward 3D spatial cognition. Despite rapid progress, the field lacks systematic analysis to categorize emerging techniques and clarify their roles in advancing 3D cognitive world models. This survey addresses this need by introducing a conceptual framework, providing a structured and forward-looking review of world models transitioning from 2D perception to 3D cognition. Within this framework, we highlight two key technological drivers, particularly advances in 3D representations and the incorporation of world knowledge, as fundamental pillars. Building on these, we dissect three core cognitive capabilities that underpin 3D world modeling: 3D physical scene generation, 3D spatial reasoning, and 3D spatial interaction. We further examine the deployment of these capabilities in real-world applications, including embodied AI, autonomous driving, digital twin, and gaming/VR. Finally, we identify challenges across data, modeling, and deployment, and outline future directions for advancing more robust and generalizable 3D world models.
Authors:Chuanruo Ning, Kuan Fang, Wei-Chiu Ma
Abstract:
Recent advancements in open-world robot manipulation have been largely driven by vision-language models (VLMs). While these models exhibit strong generalization ability in high-level planning, they struggle to predict low-level robot controls due to limited physical-world understanding. To address this issue, we propose a model predictive control framework for open-world manipulation that combines the semantic reasoning capabilities of VLMs with physically-grounded, interactive digital twins of the real-world environments. By constructing and simulating the digital twins, our approach generates feasible motion trajectories, simulates corresponding outcomes, and prompts the VLM with future observations to evaluate and select the most suitable outcome based on language instructions of the task. To further enhance the capability of pre-trained VLMs in understanding complex scenes for robotic control, we leverage the flexible rendering capabilities of the digital twin to synthesize the scene at various novel, unoccluded viewpoints. We validate our approach on a diverse set of complex manipulation tasks, demonstrating superior performance compared to baseline methods for language-conditioned robotic control using VLMs.
Authors:Anh N. Nhu, Sanghyun Son, Ming Lin
Abstract:
In this work, we introduce the Time-Aware World Model (TAWM), a model-based approach that explicitly incorporates temporal dynamics. By conditioning on the time-step size, Ît, and training over a diverse range of Ît values -- rather than sampling at a fixed time-step -- TAWM learns both high- and low-frequency task dynamics across diverse control problems. Grounded in the information-theoretic insight that the optimal sampling rate depends on a system's underlying dynamics, this time-aware formulation improves both performance and data efficiency. Empirical evaluations show that TAWM consistently outperforms conventional models across varying observation rates in a variety of control tasks, using the same number of training samples and iterations. Our code can be found online at: github.com/anh-nn01/Time-Aware-World-Model.
Authors:Yi Loo, Akshunn Trivedi, Malika Meghjani
Abstract:
A major bottleneck in the training process for Zero-Shot Coordination (ZSC) agents is the generation of partner agents that are diverse in collaborative conventions. Current Cross-play Minimization (XPM) methods for population generation can be very computationally expensive and sample inefficient as the training objective requires sampling multiple types of trajectories. Each partner agent in the population is also trained from scratch, despite all of the partners in the population learning policies of the same coordination task. In this work, we propose that simulated trajectories from the dynamics model of an environment can drastically speed up the training process for XPM methods. We introduce XPM-WM, a framework for generating simulated trajectories for XPM via a learned World Model (WM). We show XPM with simulated trajectories removes the need to sample multiple trajectories. In addition, we show our proposed method can effectively generate partners with diverse conventions that match the performance of previous methods in terms of SP population training reward as well as training partners for ZSC agents. Our method is thus, significantly more sample efficient and scalable to a larger number of partners.
Authors:Artem Latyshev, Gregory Gorbov, Aleksandr I. Panov
Abstract:
Reinforcement Learning (RL) applications in real-world scenarios must prioritize safety and reliability, which impose strict constraints on agent behavior. Model-based RL leverages predictive world models for action planning and policy optimization, but inherent model inaccuracies can lead to catastrophic failures in safety-critical settings. We propose a novel model-based RL framework that jointly optimizes task performance and safety. To address world model errors, our method incorporates an adaptive mechanism that dynamically switches between model-based planning and direct policy execution. We resolve the objective mismatch problem of traditional model-based approaches using an implicit world model. Furthermore, our framework employs dynamic safety thresholds that adapt to the agent's evolving capabilities, consistently selecting actions that surpass safe policy suggestions in both performance and safety. Experiments demonstrate significant improvements over non-adaptive methods, showing that our approach optimizes safety and performance simultaneously rather than merely meeting minimum safety requirements. The proposed framework achieves robust performance on diverse safety-critical continuous control tasks, outperforming existing methods.
Authors:Matthieu Tehenan, Christian Bolivar Moya, Tenghai Long, Guang Lin
Abstract:
Large language models (LLMs) have demonstrated emergent abilities across diverse tasks, raising the question of whether they acquire internal world models. In this work, we investigate whether LLMs implicitly encode linear spatial world models, which we define as linear representations of physical space and object configurations. We introduce a formal framework for spatial world models and assess whether such structure emerges in contextual embeddings. Using a synthetic dataset of object positions, we train probes to decode object positions and evaluate geometric consistency of the underlying space. We further conduct causal interventions to test whether these spatial representations are functionally used by the model. Our results provide empirical evidence that LLMs encode linear spatial world models.
Authors:Ashish Sundar, Chunbo Luo, Xiaoyang Wang
Abstract:
Model-based reinforcement learning (MBRL) offers an intuitive way to increase the sample efficiency of model-free RL methods by simultaneously training a world model that learns to predict the future. MBRL methods have progressed by largely prioritising the actor; optimising the world model learning has been neglected meanwhile. Improving the fidelity of the world model and reducing its time to convergence can yield significant downstream benefits, one of which is improving the ensuing performance of any actor it may train. We propose a novel approach that anticipates and actively seeks out high-entropy states using short-horizon latent predictions generated by the world model, offering a principled alternative to traditional curiosity-driven methods that chase once-novel states well after they were stumbled into. While many model predictive control (MPC) based methods offer similar alternatives, they typically lack commitment, synthesising multi step plans after every step. To mitigate this, we present a hierarchical planner that dynamically decides when to replan, planning horizon length, and the weighting between reward and entropy. While our method can theoretically be applied to any model that trains its own actors with solely model generated data, we have applied it to just Dreamer as a proof of concept. Our method finishes the Miniworld procedurally generated mazes 50% faster than base Dreamer at convergence and the policy trained in imagination converges in only 60% of the environment steps that base Dreamer needs.
Authors:Ryan Chen, Youngmin Ko, Zeyu Zhang, Catherine Cho, Sunny Chung, Mauro Giuffré, Dennis L. Shung, Bradly C. Stadie
Abstract:
We introduce LAMP (Linear Attribution Mapping Probe), a method that shines light onto a black-box language model's decision surface and studies how reliably a model maps its stated reasons to its predictions through a locally linear model approximating the decision surface. LAMP treats the model's own self-reported explanations as a coordinate system and fits a locally linear surrogate that links those weights to the model's output. By doing so, it reveals which stated factors steer the model's decisions, and by how much. We apply LAMP to three tasks: sentiment analysis, controversial-topic detection, and safety-prompt auditing. Across these tasks, LAMP reveals that many LLMs exhibit locally linear decision landscapes. In addition, these surfaces correlate with human judgments on explanation quality and, on a clinical case-file data set, aligns with expert assessments. Since LAMP operates without requiring access to model gradients, logits, or internal activations, it serves as a practical and lightweight framework for auditing proprietary language models, and enabling assessment of whether a model behaves consistently with the explanations it provides.
Authors:Madhuri Singh, Amal Alabdulkarim, Gennie Mansi, Mark O. Riedl
Abstract:
Explainable AI (XAI) systems have been proposed to help people understand how AI systems produce outputs and behaviors. Explainable Reinforcement Learning (XRL) has an added complexity due to the temporal nature of sequential decision-making. Further, non-AI experts do not necessarily have the ability to alter an agent or its policy. We introduce a technique for using World Models to generate explanations for Model-Based Deep RL agents. World Models predict how the world will change when actions are performed, allowing for the generation of counterfactual trajectories. However, identifying what a user wanted the agent to do is not enough to understand why the agent did something else. We augment Model-Based RL agents with a Reverse World Model, which predicts what the state of the world should have been for the agent to prefer a given counterfactual action. We show that explanations that show users what the world should have been like significantly increase their understanding of the agent policy. We hypothesize that our explanations can help users learn how to control the agents execution through by manipulating the environment.
Authors:Hafez Ghaemi, Eilif Muller, Shahab Bakhtiari
Abstract:
Current self-supervised algorithms commonly rely on transformations such as data augmentation and masking to learn visual representations. This is achieved by enforcing invariance or equivariance with respect to these transformations after encoding two views of an image. This dominant two-view paradigm often limits the flexibility of learned representations for downstream adaptation by creating performance trade-offs between high-level invariance-demanding tasks such as image classification and more fine-grained equivariance-related tasks. In this work, we proposes \emph{seq-JEPA}, a world modeling framework that introduces architectural inductive biases into joint-embedding predictive architectures to resolve this trade-off. Without relying on dual equivariance predictors or loss terms, seq-JEPA simultaneously learns two architecturally segregated representations: one equivariant to specified transformations and another invariant to them. To do so, our model processes short sequences of different views (observations) of inputs. Each encoded view is concatenated with an embedding of the relative transformation (action) that produces the next observation in the sequence. These view-action pairs are passed through a transformer encoder that outputs an aggregate representation. A predictor head then conditions this aggregate representation on the upcoming action to predict the representation of the next observation. Empirically, seq-JEPA demonstrates strong performance on both equivariant and invariant benchmarks without sacrificing one for the other. Furthermore, it excels at tasks that inherently require aggregating a sequence of observations, such as path integration across actions and predictive learning across eye movements.
Authors:Fernando Rosas, Alexander Boyd, Manuel Baltieri
Abstract:
Recent work proposes using world models to generate controlled virtual environments in which AI agents can be tested before deployment to ensure their reliability and safety. However, accurate world models often have high computational demands that can severely restrict the scope and depth of such assessments. Inspired by the classic `brain in a vat' thought experiment, here we investigate ways of simplifying world models that remain agnostic to the AI agent under evaluation. By following principles from computational mechanics, our approach reveals a fundamental trade-off in world model construction between efficiency and interpretability, demonstrating that no single world model can optimise all desirable characteristics. Building on this trade-off, we identify procedures to build world models that either minimise memory requirements, delineate the boundaries of what is learnable, or allow tracking causes of undesirable outcomes. In doing so, this work establishes fundamental limits in world modelling, leading to actionable guidelines that inform core design choices related to effective agent evaluation.
Authors:Thomas Miconi, Kevin McKee, Yicong Zheng, Jed McCaleb
Abstract:
Intelligent organisms can solve truly novel problems which they have never encountered before, either in their lifetime or their evolution. An important component of this capacity is the ability to ``think'', that is, to mentally manipulate objects, concepts and behaviors in order to plan and evaluate possible solutions to novel problems, even without environment interaction. To generate problems that are truly qualitatively novel, while still solvable zero-shot (by mental simulation), we use the combinatorial nature of environments: we train the agent while withholding a specific combination of the environment's elements. The novel test task, based on this combination, is thus guaranteed to be truly novel, while still mentally simulable since the agent has been exposed to each individual element (and their pairwise interactions) during training. We propose a method to train agents endowed with world models to make use their mental simulation abilities, by selecting tasks based on the difference between the agent's pre-thinking and post-thinking performance. When tested on the novel, withheld problem, the resulting agent successfully simulated alternative scenarios and used the resulting information to guide its behavior in the actual environment, solving the novel task in a single real-environment trial (zero-shot).
Authors:Xiaoyi Hu, Qiao Sun, Bailin He, Haojie Liu, Xueyi Zhang, Chunpeng lu, Jiangwei Zhong
Abstract:
In robotic reinforcement learning, the Sim2Real gap remains a critical challenge. However, the impact of Static friction on Sim2Real has been underexplored. Conventional domain randomization methods typically exclude Static friction from their parameter space. In our robotic reinforcement learning task, such conventional domain randomization approaches resulted in significantly underperforming real-world models. To address this Sim2Real challenge, we employed Actuator Net as an alternative to conventional domain randomization. While this method enabled successful transfer to flat-ground locomotion, it failed on complex terrains like stairs. To further investigate physical parameters affecting Sim2Real in robotic joints, we developed a control-theoretic joint model and performed systematic parameter identification. Our analysis revealed unexpectedly high friction-torque ratios in our robotic joints. To mitigate its impact, we implemented Static friction-aware domain randomization for Sim2Real. Recognizing the increased training difficulty introduced by friction modeling, we proposed a simple and novel solution to reduce learning complexity. To validate this approach, we conducted comprehensive Sim2Sim and Sim2Real experiments comparing three methods: conventional domain randomization (without Static friction), Actuator Net, and our Static friction-aware domain randomization. All experiments utilized the Rapid Motor Adaptation (RMA) algorithm. Results demonstrated that our method achieved superior adaptive capabilities and overall performance.
Authors:Sneheel Sarangi, Maha Elgarf, Hanan Salam
Abstract:
Theory of Mind (ToM) is the ability to understand and reflect on the mental states of others. Although this capability is crucial for human interaction, testing on Large Language Models (LLMs) reveals that they possess only a rudimentary understanding of it. Although the most capable closed-source LLMs have come close to human performance on some ToM tasks, they still perform poorly on complex variations of the task that involve more structured reasoning. In this work, we utilize the concept of "pretend-play", or ``Simulation Theory'' from cognitive psychology to propose ``Decompose-ToM'': an LLM-based inference algorithm that improves model performance on complex ToM tasks. We recursively simulate user perspectives and decompose the ToM task into a simpler set of functions: subject identification, question-reframing, world model updation, and knowledge availability. We test the algorithm on higher-order ToM tasks and a task testing for ToM capabilities in a conversational setting, demonstrating that our approach shows significant improvement across models compared to baseline methods while requiring minimal prompt tuning across tasks and no additional model training.
Authors:Catalin E. Brita, Stephan Bongers, Frans A. Oliehoek
Abstract:
In offline reinforcement learning, deriving an effective policy from a pre-collected set of experiences is challenging due to the distribution mismatch between the target policy and the behavioral policy used to collect the data, as well as the limited sample size. Model-based reinforcement learning improves sample efficiency by generating simulated experiences using a learned dynamic model of the environment. However, these synthetic experiences often suffer from the same distribution mismatch. To address these challenges, we introduce SimuDICE, a framework that iteratively refines the initial policy derived from offline data using synthetically generated experiences from the world model. SimuDICE enhances the quality of these simulated experiences by adjusting the sampling probabilities of state-action pairs based on stationary DIstribution Correction Estimation (DICE) and the estimated confidence in the model's predictions. This approach guides policy improvement by balancing experiences similar to those frequently encountered with ones that have a distribution mismatch. Our experiments show that SimuDICE achieves performance comparable to existing algorithms while requiring fewer pre-collected experiences and planning steps, and it remains robust across varying data collection policies.
Authors:Mehmet Arda Eren, Erhan Oztop
Abstract:
In self-supervised robotic learning, agents acquire data through active interaction with their environment, incurring costs such as energy use, human oversight, and experimental time. To mitigate these, sample-efficient exploration is essential. While intrinsic motivation (IM) methods like learning progress (LP) are widely used in robotics, and active learning (AL) is well established for classification in machine learning, few frameworks address continuous, high-dimensional regression tasks typical of world model learning. We propose MUSEL (Model Uncertainty for Sample-Efficient Learning), a novel AL framework tailored for regression tasks in robotics, such as action-effect prediction. MUSEL introduces a model uncertainty metric that combines total predictive uncertainty, learning progress, and input diversity to guide data acquisition. We validate our approach using a Stochastic Variational Deep Kernel Learning (SVDKL) model in two robotic tabletop tasks. Experimental results demonstrate that MUSEL improves both learning accuracy and sample efficiency, validating its effectiveness in learning action effects and selecting informative samples.
Authors:Ruben van Bergen, Justus Hübotter, Pablo Lanillos
Abstract:
Autonomous intelligent agents must bridge computational challenges at disparate levels of abstraction, from the low-level spaces of sensory input and motor commands to the high-level domain of abstract reasoning and planning. A key question in designing such agents is how best to instantiate the representational space that will interface between these two levels -- ideally without requiring supervision in the form of expensive data annotations. These objectives can be efficiently achieved by representing the world in terms of objects (grounded in perception and action). In this work, we present a novel, brain-inspired, deep-learning architecture that learns from pixels to interpret, control, and reason about its environment, using object-centric representations. We show the utility of our approach through tasks in synthetic environments that require a combination of (high-level) logical reasoning and (low-level) continuous control. Results show that the agent can learn emergent conditional behavioural reasoning, such as $(A \to B) \land (\neg A \to C)$, as well as logical composition $(A \to B) \land (A \to C) \vdash A \to (B \land C)$ and XOR operations, and successfully controls its environment to satisfy objectives deduced from these logical rules. The agent can adapt online to unexpected changes in its environment and is robust to mild violations of its world model, thanks to dynamic internal desired goal generation. While the present results are limited to synthetic settings (2D and 3D activated versions of dSprites), which fall short of real-world levels of complexity, the proposed architecture shows how to manipulate grounded object representations, as a key inductive bias for unsupervised learning, to enable behavioral reasoning.
Authors:Shogo Ohmae, Keiko Ohmae
Abstract:
AI's significant recent advances using general-purpose circuit computations offer a potential window into how the neocortex and cerebellum of the brain are able to achieve a diverse range of functions across sensory, cognitive, and motor domains, despite their uniform circuit structures. However, comparing the brain and AI is challenging unless clear similarities exist, and past reviews have been limited to comparison of brain-inspired vision AI and the visual neocortex. Here, to enable comparisons across diverse functional domains, we subdivide circuit computation into three elements -- circuit structure, input/outputs, and the learning algorithm -- and evaluate the similarities for each element. With this novel approach, we identify wide-ranging similarities and convergent evolution in the brain and AI, providing new insights into key concepts in neuroscience. Furthermore, inspired by processing mechanisms of AI, we propose a new theory that integrates established neuroscience theories, particularly the theories of internal models and the mirror neuron system. Both the neocortex and cerebellum predict future world events from past information and learn from prediction errors, thereby acquiring models of the world. These models enable three core processes: (1) Prediction -- generating future information, (2) Understanding -- interpreting the external world via compressed and abstracted sensory information, and (3) Generation -- repurposing the future-information generation mechanism to produce other types of outputs. The universal application of these processes underlies the ability of the neocortex and cerebellum to accomplish diverse functions with uniform circuits. Our systematic approach, insights, and theory promise groundbreaking advances in understanding the brain.
Authors:Hong Ding, Ziming Wang, Yi Ding, Hongjie Lin, SuYang Xi, Chia Chao Kang
Abstract:
Addressing the challenge of ensuring safety in ever-changing and unpredictable environments, particularly in the swiftly advancing realm of autonomous driving in today's 5G wireless communication world, we present Navigation Secure (NavSecure). This vision-based navigation framework merges the strengths of world models with crucial safety-focused decision-making capabilities, enabling autonomous vehicles to navigate real-world complexities securely. Our approach anticipates potential threats and formulates safer routes by harnessing the predictive capabilities of world models, thus significantly reducing the need for extensive real-world trial-and-error learning. Additionally, our method empowers vehicles to autonomously learn and develop through continuous practice, ensuring the system evolves and adapts to new challenges. Incorporating radio frequency technology, NavSecure leverages 5G networks to enhance real-time data exchange, improving communication and responsiveness. Validated through rigorous experiments under simulation-to-real driving conditions, NavSecure has shown exceptional performance in safety-critical scenarios, such as sudden obstacle avoidance. Results indicate that NavSecure excels in key safety metrics, including collision prevention and risk reduction, surpassing other end-to-end methodologies. This framework not only advances autonomous driving safety but also demonstrates how world models can enhance decision-making in critical applications. NavSecure sets a new standard for developing more robust and trustworthy autonomous driving systems, capable of handling the inherent dynamics and uncertainties of real-world environments.
Authors:Lancelot Da Costa, Tomáš GavenÄiak, David Hyland, Mandana Samiei, Cristian Dragos-Manta, Candice Pattisapu, Adeel Razi, Karl Friston
Abstract:
This paper offers a roadmap for the development of scalable aligned artificial intelligence (AI) from first principle descriptions of natural intelligence. In brief, a possible path toward scalable aligned AI rests upon enabling artificial agents to learn a good model of the world that includes a good model of our preferences. For this, the main objective is creating agents that learn to represent the world and other agents' world models; a problem that falls under structure learning (a.k.a. causal representation learning or model discovery). We expose the structure learning and alignment problems with this goal in mind, as well as principles to guide us forward, synthesizing various ideas across mathematics, statistics, and cognitive science. 1) We discuss the essential role of core knowledge, information geometry and model reduction in structure learning, and suggest core structural modules to learn a wide range of naturalistic worlds. 2) We outline a way toward aligned agents through structure learning and theory of mind. As an illustrative example, we mathematically sketch Asimov's Laws of Robotics, which prescribe agents to act cautiously to minimize the ill-being of other agents. We supplement this example by proposing refined approaches to alignment. These observations may guide the development of artificial intelligence in helping to scale existing -- or design new -- aligned structure learning systems.
Authors:Alexander Popov, Alperen Degirmenci, David Wehr, Shashank Hegde, Ryan Oldja, Alexey Kamenev, Bertrand Douillard, David Nistér, Urs Muller, Ruchi Bhargava, Stan Birchfield, Nikolai Smolyanskiy
Abstract:
We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.
Authors:Tianci Gao, Konstantin A. Neusypin, Dmitry D. Dmitriev, Bo Yang, Shengren Rao
Abstract:
On policy reinforcement learning (RL) methods such as PPO are attractive for continuous control but suffer from poor sample efficiency in costly, high dimensional settings. We present a strictly on policy framework that treats a conditional diffusion model as an adaptable action prior rather than a policy or world model. The prior is pre trained on logged data and used online only at sampling time to propose actions at current on policy states. Two lightweight mechanisms - value guided proposal generation (energy re weighting and in process gradient guidance) and a soft prior KL - regularize the actor via a small auxiliary imitation loss while keeping all PPO updates strictly on on-policy rollouts. To adapt the prior without heavy compute, we apply parameter efficient tuning (PET) that updates only adapters/LoRA, yielding a dual proximal view: policy KL is constrained by PPO and prior KL by PET. Across eight MuJoCo tasks under a shared 1.0M step budget, our method improves early learning (ALC@40) in 3/4 settings and matches or exceeds final return on 6/8 tasks with only 15-30% wall clock overhead. Ablations show that freezing the prior degrades performance and removing value guidance slows early learning; t SNE analyses confirm that value guidance concentrates proposals in high Q regions. Results indicate that an adaptable diffusion action prior is a practical way to boost on policy PPO under tight interaction budgets.
Authors:Onur T. Doganay, Alexander Klawonn, Martin Eigel, Hanno Gottschalk
Abstract:
Partial differential equation (PDE) simulations are fundamental to engineering and physics but are often computationally prohibitive for real-time applications. While generative AI offers a promising avenue for surrogate modeling, standard video generation architectures lack the specific control and data compatibility required for physical simulations. This paper introduces a geometry aware world model architecture, derived from a video generation architecture (LongVideoGAN), designed to learn transient physics. We introduce two key architecture elements: (1) a twofold conditioning mechanism incorporating global physical parameters and local geometric masks, and (2) an architectural adaptation to support arbitrary channel dimensions, moving beyond standard RGB constraints. We evaluate this approach on a 2D transient computational fluid dynamics (CFD) problem involving convective heat transfer from buoyancy-driven flow coupled to a heat flow in a solid structure. We demonstrate that the conditioned model successfully reproduces complex temporal dynamics and spatial correlations of the training data. Furthermore, we assess the model's generalization capabilities on unseen geometric configurations, highlighting both its potential for controlled simulation synthesis and current limitations in spatial precision for out-of-distribution samples.
Authors:Baptiste Debes, Tinne Tuytelaars
Abstract:
Gradient-regularized value learning methods improve sample efficiency by leveraging learned models of transition dynamics and rewards to estimate return gradients. However, existing approaches, such as MAGE, struggle in stochastic or noisy environments, limiting their applicability. In this work, we address these limitations by extending distributional reinforcement learning on continuous state-action spaces to model not only the distribution over scalar state-action value functions but also over their gradients. We refer to this approach as Distributional Sobolev Training. Inspired by Stochastic Value Gradients (SVG), our method utilizes a one-step world model of reward and transition distributions implemented via a conditional Variational Autoencoder (cVAE). The proposed framework is sample-based and employs Max-sliced Maximum Mean Discrepancy (MSMMD) to instantiate the distributional Bellman operator. We prove that the Sobolev-augmented Bellman operator is a contraction with a unique fixed point, and highlight a fundamental smoothness trade-off underlying contraction in gradient-aware RL. To validate our method, we first showcase its effectiveness on a simple stochastic reinforcement learning toy problem, then benchmark its performance on several MuJoCo environments.
Authors:Rodion Vakhitov, Leonid Ugadiarov, Aleksandr Panov
Abstract:
In this paper, we introduce ObjectZero, a novel reinforcement learning (RL) algorithm that leverages the power of object-level representations to model dynamic environments more effectively. Unlike traditional approaches that process the world as a single undifferentiated input, our method employs Graph Neural Networks (GNNs) to capture intricate interactions among multiple objects. These objects, which can be manipulated and interact with each other, serve as the foundation for our model's understanding of the environment. We trained the algorithm in a complex setting teeming with diverse, interactive objects, demonstrating its ability to effectively learn and predict object dynamics. Our results highlight that a structured world model operating on object-centric representations can be successfully integrated into a model-based RL algorithm utilizing Monte Carlo Tree Search as a planning module.
Authors:Biyuan Liu, Daigang Xu, Lei Jiang, Wenjun Guo, Ping Chen
Abstract:
As the application of Embodied AI Agents in avatars, wearable devices, and robotic systems continues to deepen, their core research challenges have gradually shifted from physical environment interaction to the accurate understanding of social interactions. Traditional physical world models (PWM) focus on quantifiable physical attributes such as space and motion, failing to meet the needs of social intelligence modeling. In contrast, the Mental World Model (MWM), as a structured representation of humans' internal mental states, has become the critical cognitive foundation for embodied agents to achieve natural human-machine collaboration and dynamic social adaptation. However, current MWM research faces significant bottlenecks: such as fragmented conceptual framework with vague boundaries between MWM and PWM, disjointed reasoning mechanisms for the technical pathways and applicable scenarios of different Theory of Mind (ToM) reasoning paradigms, and detachment between evaluation and practice. To address these issues, this review systematically synthesizes over 100 authoritative studies to provide a comprehensive overview of MWM research for embodied AI. Its core contributions are threefold: First, it constructs a complete theoretical framework for MWM for the first time. Specifically, it distinguishes the essential differences between MWM and PWMs. Second, it systematically defines the key components of MWM through two paradigms for mental element representation. Third, it comprehensively analyzes two core ToM reasoning paradigms with 19 ToM methods. Finally, it also clarifies the integration trend of neuro-symbolic hybrid architectures, and synthesizes 26 ToM evaluation benchmarks. This work aims to promote the integration of embodied agents into human society and advance the in-depth development of human-machine collaborative interaction.
Authors:Tran Tien Dat, Nguyen Hai An, Nguyen Khanh Viet Dung, Nguyen Duy Duc
Abstract:
Current attempts of Reinforcement Learning for Autonomous Controller are data-demanding while the results are under-performed, unstable, and unable to grasp and anchor on the concept of safety, and over-concentrating on noise features due to the nature of pixel reconstruction. While current Self-Supervised Learningapproachs that learning on high-dimensional representations by leveraging the JointEmbedding Predictive Architecture (JEPA) are interesting and an effective alternative, as the idea mimics the natural ability of the human brain in acquiring new skill usingimagination and minimal samples of observations. This study introduces Hanoi-World, a JEPA-based world model that using recurrent neural network (RNN) formaking longterm horizontal planning with effective inference time. Experimentsconducted on the Highway-Env package with difference enviroment showcase the effective capability of making a driving plan while safety-awareness, with considerablecollision rate in comparison with SOTA baselines
Authors:Mayuranath SureshKumar, Hanumanthrao Kannan
Abstract:
Classic problem-space theory models problem solving as a navigation through a structured space of states, operators, goals, and constraints. Systems Engineering (SE) employs analogous constructs (functional analysis, operational analysis, scenarios, trade studies), yet still lacks a rigorous systems-theoretic representation of the problem space itself. In current practice, reasoning often proceeds directly from stakeholder goals to prescriptive artifacts. This makes foundational assumptions about the operational environment, admissible interactions, and contextual conditions implicit or prematurely embedded in architectures or requirements. This paper addresses that gap by formalizing the problem space as an explicit semantic world model containing theoretical constructs that are defined prior to requirements and solution commitments. These constructs along with the developed axioms, theorems and corollary establish a rigorous criterion for unambiguous boundary semantics, context-dependent interaction traceability to successful stakeholder goal satisfaction, and sufficiency of problem-space specification over which disciplined reasoning can occur independent of solution design. It offers a clear distinction between what is true of the problem domain and what is chosen as a solution. The paper concludes by discussing the significance of the theory on practitioners and provides a dialogue-based hypothetical case study between a stakeholder and an engineer, demonstrating how the theory guides problem framing before designing any prescriptive artifacts.
Authors:Keito Inoshita, Shinnosuke Mizuno
Abstract:
Sarcasm understanding is a challenging problem in natural language processing, as it requires capturing the discrepancy between the surface meaning of an utterance and the speaker's intentions as well as the surrounding social context. Although recent advances in deep learning and Large Language Models (LLMs) have substantially improved performance, most existing approaches still rely on black-box predictions of a single model, making it difficult to structurally explain the cognitive factors underlying sarcasm. Moreover, while sarcasm often emerges as a mismatch between semantic evaluation and normative expectations or intentions, frameworks that explicitly decompose and model these components remain limited. In this work, we reformulate sarcasm understanding as a world model inspired reasoning process and propose World Model inspired SArcasm Reasoning (WM-SAR), which decomposes literal meaning, context, normative expectation, and intention into specialized LLM-based agents. The discrepancy between literal evaluation and normative expectation is explicitly quantified as a deterministic inconsistency score, and together with an intention score, these signals are integrated by a lightweight Logistic Regression model to infer the final sarcasm probability. This design leverages the reasoning capability of LLMs while maintaining an interpretable numerical decision structure. Experiments on representative sarcasm detection benchmarks show that WM-SAR consistently outperforms existing deep learning and LLM-based methods. Ablation studies and case analyses further demonstrate that integrating semantic inconsistency and intention reasoning is essential for effective sarcasm detection, achieving both strong performance and high interpretability.
Authors:Adam Kamel, Tanish Rastogi, Michael Ma, Kailash Ranganathan, Kevin Zhu
Abstract:
Transformer-based large language models (LLMs) have demonstrated strong reasoning abilities across diverse fields, from solving programming challenges to competing in strategy-intensive games such as chess. Prior work has shown that LLMs can develop emergent world models in games of perfect information, where internal representations correspond to latent states of the environment. In this paper, we extend this line of investigation to domains of incomplete information, focusing on poker as a canonical partially observable Markov decision process (POMDP). We pretrain a GPT-style model on Poker Hand History (PHH) data and probe its internal activations. Our results demonstrate that the model learns both deterministic structure, such as hand ranks, and stochastic features, such as equity, without explicit instruction. Furthermore, by using primarily nonlinear probes, we demonstrated that these representations are decodeable and correlate with theoretical belief states, suggesting that LLMs are learning their own representation of the stochastic environment of Texas Hold'em Poker.
Authors:Ziyang Lin, Zixuan Sun, Sanhorn Chen, Xiaoyang Chen, Roy Zhao
Abstract:
Real-time sequential control agents are often bottlenecked by inference latency. Even modest per-step planning delays can destabilize control and degrade overall performance. We propose a speculation-and-correction framework that adapts the predict-then-verify philosophy of speculative execution to model-based control with TD-MPC2. At each step, a pretrained world model and latent-space MPC planner generate a short-horizon action queue together with predicted latent rollouts, allowing the agent to execute multiple planned actions without immediate replanning. When a new observation arrives, the system measures the mismatch between the encoded real latent state and the queued predicted latent. For small to moderate mismatch, a lightweight learned corrector applies a residual update to the speculative action, distilled offline from a replanning teacher. For large mismatch, the agent safely falls back to full replanning and clears stale action queues. We study both a gated two-tower MLP corrector and a temporal Transformer corrector to address local errors and systematic drift. Experiments on the DMC Humanoid-Walk task show that our method reduces the number of planning inferences from 500 to 282, improves end-to-end step latency by 25 percent, and maintains strong control performance with only a 7.1 percent return reduction. Ablation results demonstrate that speculative execution without correction is unreliable over longer horizons, highlighting the necessity of mismatch-aware correction for robust latency reduction.
Authors:Srijan Dokania, Dharini Raghavan
Abstract:
We introduce Zero-Splat TeleAssist, a zero-shot sensor-fusion pipeline that transforms commodity CCTV streams into a shared, 6-DoF world model for multilateral teleoperation. By integrating vision-language segmentation, monocular depth, weighted-PCA pose extraction, and 3D Gaussian Splatting (3DGS), TeleAssist provides every operator with real-time global positions and orientations of multiple robots without fiducials or depth sensors in an interaction-centric teleoperation setup.
Authors:Chenwei Shi, Xueyu Luan
Abstract:
DreamerV3 is a state-of-the-art online model-based reinforcement learning (MBRL) algorithm known for remarkable sample efficiency. Concurrently, Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to Multi-Layer Perceptrons (MLPs), offering superior parameter efficiency and interpretability. To mitigate KANs' computational overhead, variants like FastKAN leverage Radial Basis Functions (RBFs) to accelerate inference. In this work, we investigate integrating KAN architectures into the DreamerV3 framework. We introduce KAN-Dreamer, replacing specific MLP and convolutional components of DreamerV3 with KAN and FastKAN layers. To ensure efficiency within the JAX-based World Model, we implement a tailored, fully vectorized version with simplified grid management. We structure our investigation into three subsystems: Visual Perception, Latent Prediction, and Behavior Learning. Empirical evaluations on the DeepMind Control Suite (walker_walk) analyze sample efficiency, training time, and asymptotic performance. Experimental results demonstrate that utilizing our adapted FastKAN as a drop-in replacement for the Reward and Continue predictors yields performance on par with the original MLP-based architecture, maintaining parity in both sample efficiency and training speed. This report serves as a preliminary study for future developments in KAN-based world models.
Authors:Eli J. Laird, Corey Clark
Abstract:
World models enable agents to plan within imagined environments by predicting future states conditioned on past observations and actions. However, their ability to plan over long horizons is limited by the effective memory span of the backbone architecture. This limitation leads to perceptual drift in long rollouts, hindering the model's capacity to perform loop closures within imagined trajectories. In this work, we investigate the effective memory span of transformer-based world models through an analysis of several memory augmentation mechanisms. We introduce a taxonomy that distinguishes between memory encoding and memory injection mechanisms, motivating their roles in extending the world model's memory through the lens of residual stream dynamics. Using a state recall evaluation task, we measure the memory recall of each mechanism and analyze its respective trade-offs. Our findings show that memory mechanisms improve the effective memory span in vision transformers and provide a path to completing loop closures within a world model's imagination.
Authors:Ziheng Guo, Fang Wu, Maoxiong Zhao, Chaoqun Fang, Yang Bu
Abstract:
We introduce FieldSeer I, a geometry-aware world model that forecasts electromagnetic field dynamics from partial observations in 2-D TE waveguides. The model assimilates a short prefix of observed fields, conditions on a scalar source action and structure/material map, and generates closed-loop rollouts in the physical domain. Training in a symmetric-log domain ensures numerical stability. Evaluated on a reproducible FDTD benchmark (200 unique simulations, structure-wise split), FieldSeer I achieves higher suffix fidelity than GRU and deterministic baselines across three practical settings: (i) software-in-the-loop filtering (64x64, P=80->Q=80), (ii) offline single-file rollouts (80x140, P=240->Q=40), and (iii) offline multi-structure rollouts (80x140, P=180->Q=100). Crucially, it enables edit-after-prefix geometry modifications without re-assimilation. Results demonstrate that geometry-conditioned world models provide a practical path toward interactive digital twins for photonic design.
Authors:Varun Varma Thozhiyoor, Shivam Tripathi, Venkatesh Babu Radhakrishnan, Anand Bhattad
Abstract:
Video generators are increasingly evaluated as potential world models, which requires them to encode and understand physical laws. We investigate their representation of a fundamental law: gravity. Out-of-the-box video generators consistently generate objects falling at an effectively slower acceleration. However, these physical tests are often confounded by ambiguous metric scale. We first investigate if observed physical errors are artifacts of these ambiguities (e.g., incorrect frame rate assumptions). We find that even temporal rescaling cannot correct the high-variance gravity artifacts. To rigorously isolate the underlying physical representation from these confounds, we introduce a unit-free, two-object protocol that tests the timing ratio $t_1^2/t_2^2 = h_1/h_2$, a relationship independent of $g$, focal length, and scale. This relative test reveals violations of Galileo's equivalence principle. We then demonstrate that this physical gap can be partially mitigated with targeted specialization. A lightweight low-rank adaptor fine-tuned on only 100 single-ball clips raises $g_{\mathrm{eff}}$ from $1.81\,\mathrm{m/s^2}$ to $6.43\,\mathrm{m/s^2}$ (reaching $65\%$ of terrestrial gravity). This specialist adaptor also generalizes zero-shot to two-ball drops and inclined planes, offering initial evidence that specific physical laws can be corrected with minimal data.
Authors:Anh Nguyen, Stefan Lee
Abstract:
To interact effectively with humans in the real world, it is important for agents to understand language that describes the dynamics of the environment--that is, how the environment behaves--rather than just task instructions specifying "what to do". Understanding this dynamics-descriptive language is important for human-agent interaction and agent behavior. Recent work address this problem using a model-based approach: language is incorporated into a world model, which is then used to learn a behavior policy. However, these existing methods either do not demonstrate policy generalization to unseen games or rely on limiting assumptions. For instance, assuming that the latency induced by inference-time planning is tolerable for the target task or expert demonstrations are available. Expanding on this line of research, we focus on improving policy generalization from a language-conditioned world model while dropping these assumptions. We propose a model-based reinforcement learning approach, where a language-conditioned world model is trained through interaction with the environment, and a policy is learned from this model--without planning or expert demonstrations. Our method proposes Language-aware Encoder for Dreamer World Model (LED-WM) built on top of DreamerV3. LED-WM features an observation encoder that uses an attention mechanism to explicitly ground language descriptions to entities in the observation. We show that policies trained with LED-WM generalize more effectively to unseen games described by novel dynamics and language compared to other baselines in several settings in two environments: MESSENGER and MESSENGER-WM.To highlight how the policy can leverage the trained world model before real-world deployment, we demonstrate the policy can be improved through fine-tuning on synthetic test trajectories generated by the world model.
Authors:Iryna Hurova, Alinjar Dan, Karl Kruusamäe, Arun Kumar Singh
Abstract:
In recent years, dual-arm manipulation has become an area of strong interest in robotics, with end-to-end learning emerging as the predominant strategy for solving bimanual tasks. A critical limitation of such learning-based approaches, however, is their difficulty in generalizing to novel scenarios, especially within cluttered environments. This paper presents an alternative paradigm: a sampling-based optimization framework that utilizes a GPU-accelerated physics simulator as its world model. We demonstrate that this approach can solve complex bimanual manipulation tasks in the presence of static obstacles. Our contribution is a customized Model Predictive Path Integral Control (MPPI) algorithm, \textbf{guided by carefully designed task-specific cost functions,} that uses GPU-accelerated MuJoCo for efficiently evaluating robot-object interaction. We apply this method to solve significantly more challenging versions of tasks from the PerAct$^{2}$ benchmark, such as requiring the point-to-point transfer of a ball through an obstacle course. Furthermore, we establish that our method achieves real-time performance on commodity GPUs and facilitates successful sim-to-real transfer by leveraging unique features within MuJoCo. The paper concludes with a statistical analysis of the sample complexity and robustness, quantifying the performance of our approach. The project website is available at: https://sites.google.com/view/bimanualakslabunitartu .
Authors:Hao Li, Qiao Sun
Abstract:
While video-generation-based embodied world models have gained increasing attention, their reliance on large-scale embodied interaction data remains a key bottleneck. The scarcity, difficulty of collection, and high dimensionality of embodied data fundamentally limit the alignment granularity between language and actions and exacerbate the challenge of long-horizon video generation--hindering generative models from achieving a \textit{"GPT moment"} in the embodied domain. There is a naive observation: \textit{the diversity of embodied data far exceeds the relatively small space of possible primitive motions}. Based on this insight, we propose \textbf{Primitive Embodied World Models} (PEWM), which restricts video generation to fixed shorter horizons, our approach \textit{1) enables} fine-grained alignment between linguistic concepts and visual representations of robotic actions, \textit{2) reduces} learning complexity, \textit{3) improves} data efficiency in embodied data collection, and \textit{4) decreases} inference latency. By equipping with a modular Vision-Language Model (VLM) planner and a Start-Goal heatmap Guidance mechanism (SGG), PEWM further enables flexible closed-loop control and supports compositional generalization of primitive-level policies over extended, complex tasks. Our framework leverages the spatiotemporal vision priors in video models and the semantic awareness of VLMs to bridge the gap between fine-grained physical interaction and high-level reasoning, paving the way toward scalable, interpretable, and general-purpose embodied intelligence.
Authors:Eashan Vytla, Bhavanishankar Kalavakolanu, Andrew Perrault, Matthew McCrink
Abstract:
Current control algorithms for aerial robots struggle with robustness in dynamic environments and adverse conditions. Model-based reinforcement learning (RL) has shown strong potential in handling these challenges while remaining sample-efficient. Additionally, Dreamer has demonstrated that online model-based RL can be achieved using a recurrent world model trained on replay buffer data. However, applying Dreamer to aerial systems has been quite challenging due to its sample inefficiency and poor generalization of dynamics models. Our work explores a physics-informed approach to world model learning and improves policy performance. The world model treats the quadcopter as a free-body system and predicts the net forces and moments acting on it, which are then passed through a 6-DOF Runge-Kutta integrator (RK4) to predict future state rollouts. In this paper, we compare this physics-informed method to a standard RNN-based world model. Although both models perform well on the training data, we observed that they fail to generalize to new trajectories, leading to rapid divergence in state rollouts, preventing policy convergence.
Authors:Lancelot Da Costa, Sanjeev Namjoshi, Mohammed Abbas Ansari, Bernhard Schölkopf
Abstract:
The field of world modeling is fragmented, with researchers developing bespoke architectures that rarely build upon each other. We propose a framework that specifies the natural building blocks for structured world models based on the fundamental stochastic processes that any world model must capture: discrete processes (logic, symbols) and continuous processes (physics, dynamics); the world model is then defined by the hierarchical composition of these building blocks. We examine Hidden Markov Models (HMMs) and switching linear dynamical systems (sLDS) as natural building blocks for discrete and continuous modeling--which become partially-observable Markov decision processes (POMDPs) and controlled sLDS when augmented with actions. This modular approach supports both passive modeling (generation, forecasting) and active control (planning, decision-making) within the same architecture. We avoid the combinatorial explosion of traditional structure learning by largely fixing the causal architecture and searching over only four depth parameters. We review practical expressiveness through multimodal generative modeling (passive) and planning from pixels (active), with performance competitive to neural approaches while maintaining interpretability. The core outstanding challenge is scalable joint structure-parameter learning; current methods finesse this by cleverly growing structure and parameters incrementally, but are limited in their scalability. If solved, these natural building blocks could provide foundational infrastructure for world modeling, analogous to how standardized layers enabled progress in deep learning.
Authors:Sureyya Akin, Kavita Srivastava, Prateek B. Kapoor, Pradeep G. Sethi, Sunita Q. Patel, Rahu Srivastava
Abstract:
Learning cooperative multi-agent policies directly from high-dimensional, multimodal sensory inputs like pixels and audio (from pixels) is notoriously sample-inefficient. Model-free Multi-Agent Reinforcement Learning (MARL) algorithms struggle with the joint challenge of representation learning, partial observability, and credit assignment. To address this, we propose a novel framework based on a shared, generative Multimodal World Model (MWM). Our MWM is trained to learn a compressed latent representation of the environment's dynamics by fusing distributed, multimodal observations from all agents using a scalable attention-based mechanism. Subsequently, we leverage this learned MWM as a fast, "imagined" simulator to train cooperative MARL policies (e.g., MAPPO) entirely within its latent space, decoupling representation learning from policy learning. We introduce a new set of challenging multimodal, multi-agent benchmarks built on a 3D physics simulator. Our experiments demonstrate that our MWM-MARL framework achieves orders-of-magnitude greater sample efficiency compared to state-of-the-art model-free MARL baselines. We further show that our proposed multimodal fusion is essential for task success in environments with sensory asymmetry and that our architecture provides superior robustness to sensor-dropout, a critical feature for real-world deployment.
Authors:Aman Jaglan, Jarrod Barnes
Abstract:
Continual Learning (CL) methods have traditionally focused on mitigating catastrophic forgetting through gradient-based retraining, an approach ill-suited for deployed agents that must adapt in real time. We introduce our Adaptive Teaching and Learning System (ATLAS), a dual-agent architecture that decouples reasoning (Teacher) from execution (Student) and incorporates a persistent learning memory that stores distilled guidance from experience. This informs the orchestration layer, enabling the system to dynamically adjust its operational strategies, such as supervision level or initial plan selection, at inference time. In doing so, ATLAS achieves gradient-free continual learning, shifting the locus of adaptation from model parameters to system-level orchestration. We formulate this as a system-centric paradigm for continual learning, where the objective is adaptive efficiency: maximizing task success while minimizing computational cost through inference-time orchestration rather than parameter updates. Evaluated on Microsoft's ExCyTIn-Bench, an open-source benchmark simulating complex cyberthreat investigation, ATLAS achieves 54.1% success with GPT-5-mini as its Student, outperforming the larger GPT-5 (High) by 13% while reducing cost by 86%. Cross-incident validation demonstrates generalization: frozen pamphlets from Incident #5 improve accuracy from 28% to 41% with zero retraining, while shifting output composition from verbose exploration to structured reasoning. Together, these findings establish gradient-free continual learning as a viable path toward adaptive, deployable AI systems and provide causally annotated traces valuable for training explicit world models.
Authors:Mihir Mahajan, Alfred Nguyen, Franz Srambical, Stefan Bauer
Abstract:
While world models are increasingly positioned as a pathway to overcoming data scarcity in domains such as robotics, open training infrastructure for world modeling remains nascent. We introduce Jasmine, a performant JAX-based world modeling codebase that scales from single hosts to hundreds of accelerators with minimal code changes. Jasmine achieves an order-of-magnitude faster reproduction of the CoinRun case study compared to prior open implementations, enabled by performance optimizations across data loading, training and checkpointing. The codebase guarantees fully reproducible training and supports diverse sharding configurations. By pairing Jasmine with curated large-scale datasets, we establish infrastructure for rigorous benchmarking pipelines across model families and architectural ablations.
Authors:Jobst Heitzig, Ram Potham
Abstract:
Power is a key concept in AI safety: power-seeking as an instrumental goal, sudden or gradual disempowerment of humans, power balance in human-AI interaction and international AI governance. At the same time, power as the ability to pursue diverse goals is essential for wellbeing.
This paper explores the idea of promoting both safety and wellbeing by forcing AI agents explicitly to empower humans and to manage the power balance between humans and AI agents in a desirable way. Using a principled, partially axiomatic approach, we design a parametrizable and decomposable objective function that represents an inequality- and risk-averse long-term aggregate of human power. It takes into account humans' bounded rationality and social norms, and, crucially, considers a wide variety of possible human goals.
We derive algorithms for computing that metric by backward induction or approximating it via a form of multi-agent reinforcement learning from a given world model. We exemplify the consequences of (softly) maximizing this metric in a variety of paradigmatic situations and describe what instrumental sub-goals it will likely imply. Our cautious assessment is that softly maximizing suitable aggregate metrics of human power might constitute a beneficial objective for agentic AI systems that is safer than direct utility-based objectives.
Authors:Cole Robertson, Philip Wolff
Abstract:
Do large language models (LLMs) construct and manipulate internal world models, or do they rely solely on statistical associations represented as output layer token probabilities? We adapt cognitive science methodologies from human mental models research to test LLMs on pulley system problems using TikZ-rendered stimuli. Study 1 examines whether LLMs can estimate mechanical advantage (MA). State-of-the-art models performed marginally but significantly above chance, and their estimates correlated significantly with ground-truth MA. Significant correlations between number of pulleys and model estimates suggest that models employed a pulley counting heuristic, without necessarily simulating pulley systems to derive precise values. Study 2 tested this by probing whether LLMs represent global features crucial to MA estimation. Models evaluated a functionally connected pulley system against a fake system with randomly placed components. Without explicit cues, models identified the functional system as having greater MA with F1=0.8, suggesting LLMs could represent systems well enough to differentiate jumbled from functional systems. Study 3 built on this by asking LLMs to compare functional systems with matched systems which were connected up but which transferred no force to the weight; LLMs identified the functional system with F1=0.46, suggesting random guessing. Insofar as they may generalize, these findings are compatible with the notion that LLMs manipulate internal world models, sufficient to exploit statistical associations between pulley count and MA (Study 1), and to approximately represent system components' spatial relations (Study 2). However, they may lack the facility to reason over nuanced structural connectivity (Study 3). We conclude by advocating the utility of cognitive scientific methods to evaluate the world-modeling capacities of artificial intelligence systems.
Authors:Mehul Anand, Shishir Kolathaya
Abstract:
Synthesising safe controllers from visual data typically requires extensive supervised labelling of safety-critical data, which is often impractical in real-world settings. Recent advances in world models enable reliable prediction in latent spaces, opening new avenues for scalable and data-efficient safe control. In this work, we introduce a semi-supervised framework that leverages control barrier certificates (CBCs) learned in the latent space of a world model to synthesise safe visuomotor policies. Our approach jointly learns a neural barrier function and a safe controller using limited labelled data, while exploiting the predictive power of modern vision transformers for latent dynamics modelling.
Authors:Azad Deihim, Eduardo Alonso, Dimitra Apostolopoulou
Abstract:
We present the Multi-Agent Transformer World Model (MATWM), a novel transformer-based world model designed for multi-agent reinforcement learning in both vector- and image-based environments. MATWM combines a decentralized imagination framework with a semi-centralized critic and a teammate prediction module, enabling agents to model and anticipate the behavior of others under partial observability. To address non-stationarity, we incorporate a prioritized replay mechanism that trains the world model on recent experiences, allowing it to adapt to agents' evolving policies. We evaluated MATWM on a broad suite of benchmarks, including the StarCraft Multi-Agent Challenge, PettingZoo, and MeltingPot. MATWM achieves state-of-the-art performance, outperforming both model-free and prior world model approaches, while demonstrating strong sample efficiency, achieving near-optimal performance in as few as 50K environment interactions. Ablation studies confirm the impact of each component, with substantial gains in coordination-heavy tasks.
Authors:Massimiliano Tamborski, David Abel
Abstract:
Resource constraints can fundamentally change both learning and decision-making. We explore how memory constraints influence an agent's performance when navigating unknown environments using standard reinforcement learning algorithms. Specifically, memory-constrained agents face a dilemma: how much of their limited memory should be allocated to each of the agent's internal processes, such as estimating a world model, as opposed to forming a plan using that model? We study this dilemma in MCTS- and DQN-based algorithms and examine how different allocations of memory impact performance in episodic and continual learning settings.
Authors:Shruti Sadanand Dongare, Amun Kharel, Jonathan Samuel, Xiaona Zhou
Abstract:
This paper introduces TransDreamerV3, a reinforcement learning model that enhances the DreamerV3 architecture by integrating a transformer encoder. The model is designed to improve memory and decision-making capabilities in complex environments. We conducted experiments on Atari-Boxing, Atari-Freeway, Atari-Pong, and Crafter tasks, where TransDreamerV3 demonstrated improved performance over DreamerV3, particularly in the Atari-Freeway and Crafter tasks. While issues in the Minecraft task and limited training across all tasks were noted, TransDreamerV3 displays advancement in world model-based reinforcement learning, leveraging transformer architectures.
Authors:Kaspar Rothenfusser, Bekk Blando
Abstract:
Large Language Models (LLMs) possess intricate internal representations of the world, yet these latent structures are notoriously difficult to interpret or repurpose beyond the original prediction task. Building on our earlier work (Rothenfusser, 2025), which introduced the concept of vector ontologies as a framework for translating high-dimensional neural representations into interpretable geometric structures, this paper provides the first empirical validation of that approach. A vector ontology defines a domain-specific vector space spanned by ontologically meaningful dimensions, allowing geometric analysis of concepts and relationships within a domain. We construct an 8-dimensional vector ontology of musical genres based on Spotify audio features and test whether an LLM's internal world model of music can be consistently and accurately projected into this space. Using GPT-4o-mini, we extract genre representations through multiple natural language prompts and analyze the consistency of these projections across linguistic variations and their alignment with ground-truth data. Our results show (1) high spatial consistency of genre projections across 47 query formulations, (2) strong alignment between LLM-inferred genre locations and real-world audio feature distributions, and (3) evidence of a direct relationship between prompt phrasing and spatial shifts in the LLM's inferred vector ontology. These findings demonstrate that LLMs internalize structured, repurposable knowledge and that vector ontologies offer a promising method for extracting and analyzing this knowledge in a transparent and verifiable way.
Authors:Thomas J. Ringstrom, Paul R. Schrater
Abstract:
We introduce Option Kernel Bellman Equations (OKBEs) for a new reward-free Markov Decision Process. Rather than a value function, OKBEs directly construct and optimize a predictive map called a state-time option kernel (STOK) to maximize the probability of completing a goal while avoiding constraint violations. STOKs are compositional, modular, and interpretable initiation-to-termination transition kernels for policies in the Options Framework of Reinforcement Learning. This means: 1) STOKs can be composed using Chapman-Kolmogorov equations to make spatiotemporal predictions for multiple policies over long horizons, 2) high-dimensional STOKs can be represented and computed efficiently in a factorized and reconfigurable form, and 3) STOKs record the probabilities of semantically interpretable goal-success and constraint-violation events, needed for formal verification. Given a high-dimensional state-transition model for an intractable planning problem, we can decompose it with local STOKs and goal-conditioned policies that are aggregated into a factorized goal kernel, making it possible to forward-plan at the level of goals in high-dimensions to solve the problem. These properties lead to highly flexible agents that can rapidly synthesize meta-policies, reuse planning representations across many tasks, and justify goals using empowerment, an intrinsic motivation function. We argue that reward-maximization is in conflict with the properties of compositionality, modularity, and interpretability. Alternatively, OKBEs facilitate these properties to support verifiable long-horizon planning and intrinsic motivation that scales to dynamic high-dimensional world-models.
Authors:Nicole R Schneider, Nandini Ramachandran, Kent O'Sullivan, Hanan Samet
Abstract:
Many real world tasks where Large Language Models (LLMs) can be used require spatial reasoning, like Point of Interest (POI) recommendation and itinerary planning. However, on their own LLMs lack reliable spatial reasoning capabilities, especially about distances. To address this problem, we develop a novel approach, DistRAG, that enables an LLM to retrieve relevant spatial information not explicitly learned during training. Our method encodes the geodesic distances between cities and towns in a graph and retrieves a context subgraph relevant to the question. Using this technique, our method enables an LLM to answer distance-based reasoning questions that it otherwise cannot answer. Given the vast array of possible places an LLM could be asked about, DistRAG offers a flexible first step towards providing a rudimentary `world model' to complement the linguistic knowledge held in LLMs.
Authors:Thomas Delliaux, Nguyen-Khanh Vu, Vincent François-Lavet, Elise van der Pol, Emmanuel Rachelson
Abstract:
Learning meaningful abstract models of Markov Decision Processes (MDPs) is crucial for improving generalization from limited data. In this work, we show how geometric priors can be imposed on the low-dimensional representation manifold of a learned transition model. We incorporate known symmetric structures via appropriate choices of the latent space and the associated group actions, which encode prior knowledge about invariances in the environment. In addition, our framework allows the embedding of additional unstructured information alongside these symmetries. We show experimentally that this leads to better predictions of the latent transition model than fully unstructured approaches, as well as better learning on downstream RL tasks, in environments with rotational and translational features, including in first-person views of 3D environments. Additionally, our experiments show that this leads to simpler and more disentangled representations. The full code is available on GitHub to ensure reproducibility.
Authors:Muhammad Qasim Ali, Aditya Sridhar, Shahbuland Matiana, Alex Wong, Mohammad Al-Sharman
Abstract:
Humanoid robots, with their human-like form, are uniquely suited for interacting in environments built for people. However, enabling humanoids to reason, plan, and act in complex open-world settings remains a challenge. World models, models that predict the future outcome of a given action, can support these capabilities by serving as a dynamics model in long-horizon planning and generating synthetic data for policy learning. We introduce Humanoid World Models (HWM), a family of lightweight, open-source models that forecast future egocentric video conditioned on humanoid control tokens. We train two types of generative models, Masked Transformers and Flow-Matching, on 100 hours of humanoid demonstrations. Additionally, we explore architectural variants with different attention mechanisms and parameter-sharing strategies. Our parameter-sharing techniques reduce model size by 33-53% with minimal impact on performance or visual fidelity. HWMs are designed to be trained and deployed in practical academic and small-lab settings, such as 1-2 GPUs.
Authors:Mehdi Bennis, Salem Lahlou
Abstract:
The trajectories of 6G and AI are set for a creative collision. However, current visions for 6G remain largely incremental evolutions of 5G, while progress in AI is hampered by brittle, data-hungry models that lack robust reasoning capabilities. This paper argues for a foundational paradigm shift, moving beyond the purely technical level of communication toward systems capable of semantic understanding and effective, goal-oriented interaction. We propose a unified research vision rooted in the principles of System-2 cognition, built upon three pillars: Abstraction, enabling agents to learn meaningful world models from raw sensorimotor data; Compositionality, providing the algebraic tools to combine learned concepts and subsystems; and Emergent Communication, allowing intelligent agents to create their own adaptive and grounded languages. By integrating these principles, we lay the groundwork for truly intelligent systems that can reason, adapt, and collaborate, unifying advances in wireless communications, machine learning, and robotics under a single coherent framework.
Authors:Carlos Stein Brito, Daniel McNamee
Abstract:
Deploying learned control policies in real-world environments poses a fundamental challenge. When system dynamics change unexpectedly, performance degrades until models are retrained on new data. We introduce Reflexive World Models (RWM), a dual control framework that uses world model predictions as implicit reference trajectories for rapid adaptation. Our method separates the control problem into long-term reward maximization through reinforcement learning and robust motor execution through rapid latent control. This dual architecture achieves significantly faster adaptation with low online computational cost compared to model-based RL baselines, while maintaining near-optimal performance. The approach combines the benefits of flexible policy learning through reinforcement learning with rapid error correction capabilities, providing a principled approach to maintaining performance in high-dimensional continuous control tasks under varying dynamics.
Authors:Zizhan He, Maxime Daigle, Pouya Bashivan
Abstract:
Many animals possess a remarkable capacity to rapidly construct flexible mental models of their environments. These world models are crucial for ethologically relevant behaviors such as navigation, exploration, and planning. The ability to form episodic memories and make inferences based on these sparse experiences is believed to underpin the efficiency and adaptability of these models in the brain. Here, we ask: Can a neural network learn to construct a spatial model of its surroundings from sparse and disjoint episodic memories? We formulate the problem in a simulated world and propose a novel framework, the Episodic Spatial World Model (ESWM), as a potential answer. We show that ESWM is highly sample-efficient, requiring minimal observations to construct a robust representation of the environment. It is also inherently adaptive, allowing for rapid updates when the environment changes. In addition, we demonstrate that ESWM readily enables near-optimal strategies for exploring novel environments and navigating between arbitrary points, all without the need for additional training.
Authors:Mitchell Goff, Greg Hogan, George Hotz, Armand du Parc Locmaria, Kacper Raczy, Harald Schäfer, Adeeb Shihadeh, Weixing Zhang, Yassine Yousfi
Abstract:
Most self-driving systems rely on hand-coded perception outputs and engineered driving rules. Learning directly from human driving data with an end-to-end method can allow for a training architecture that is simpler and scales well with compute and data.
In this work, we propose an end-to-end training architecture that uses real driving data to train a driving policy in an on-policy simulator. We show two different methods of simulation, one with reprojective simulation and one with a learned world model. We show that both methods can be used to train a policy that learns driving behavior without any hand-coded driving rules. We evaluate the performance of these policies in a closed-loop simulation and when deployed in a real-world advanced driver-assistance system.
Authors:Ruben Laukkonen, Fionn Inglis, Shamil Chandaria, Lars Sandved-Smith, Edmundo Lopez-Sola, Jakob Hohwy, Jonathan Gold, Adam Elwood
Abstract:
As artificial intelligence (AI) improves, traditional alignment strategies may falter in the face of unpredictable self-improvement, hidden subgoals, and the sheer complexity of intelligent systems. Inspired by contemplative wisdom traditions, we show how four axiomatic principles can instil a resilient Wise World Model in AI systems. First, mindfulness enables self-monitoring and recalibration of emergent subgoals. Second, emptiness forestalls dogmatic goal fixation and relaxes rigid priors. Third, non-duality dissolves adversarial self-other boundaries. Fourth, boundless care motivates the universal reduction of suffering. We find that prompting AI to reflect on these principles improves performance on the AILuminate Benchmark (d=.96) and boosts cooperation and joint-reward on the Prisoner's Dilemma task (d=7+). We offer detailed implementation strategies at the level of architectures, constitutions, and reinforcement on chain-of-thought. For future systems, active inference may offer the self-organizing and dynamic coupling capabilities needed to enact Contemplative AI in embodied agents.
Authors:Li Jin, Liu Jia
Abstract:
Spatial reasoning in partially observable environments has often been approached through passive predictive models, yet theories of embodied cognition suggest that genuinely useful representations arise only when perception is tightly coupled to action. Here we ask whether a recurrent agent, trained solely by sparse rewards to solve procedurally generated planar mazes, can autonomously internalize metric concepts such as direction, distance and obstacle layout. After training, the agent consistently produces near-optimal paths in unseen mazes, behavior that hints at an underlying spatial model. To probe this possibility, we cast the closed agent-environment loop as a hybrid dynamical system, identify stable limit cycles in its state space, and characterize behavior with a Ridge Representation that embeds whole trajectories into a common metric space. Canonical correlation analysis exposes a robust linear alignment between neural and behavioral manifolds, while targeted perturbations of the most informative neural dimensions sharply degrade navigation performance. Taken together, these dynamical, representational, and causal signatures show that sustained sensorimotor interaction is sufficient for the spontaneous emergence of compact, embodied world models, providing a principled path toward interpretable and transferable navigation policies.
Authors:Ayush Bheemaiah, Seungyong Yang
Abstract:
The inability of autonomous vehicles (AVs) to infer the material properties of obstacles limits their decision-making capacity. While AVs rely on sensor systems such as cameras, LiDAR, and radar to detect obstacles, this study suggests combining sensors with a knowledge graph (KG)-based world model to improve AVs' comprehension of physical material qualities. Beyond sensor data, AVs can infer qualities such as malleability, density, and elasticity using a semantic KG that depicts the relationships between obstacles and their attributes. Using the CARLA autonomous driving simulator, we evaluated AV performance with and without KG integration. The findings demonstrate that the KG-based method improves obstacle management, which allows AVs to use material qualities to make better decisions about when to change lanes or apply emergency braking. For example, the KG-integrated AV changed lanes for hard impediments like traffic cones and successfully avoided collisions with flexible items such as plastic bags by passing over them. Compared to the control system, the KG framework demonstrated improved responsiveness to obstacles by resolving conflicting sensor data, causing emergency stops for 13.3% more cases. In addition, our method exhibits a 6.6% higher success rate in lane-changing maneuvers in experimental scenarios, particularly for larger, high-impact obstacles. While we focus particularly on autonomous driving, our work demonstrates the potential of KG-based world models to improve decision-making in embodied AI systems and scale to other domains, including robotics, healthcare, and environmental simulation.
Authors:Jeremias Ferrao, Rafael Cunha
Abstract:
Sparse reward environments pose a significant challenge for reinforcement learning due to the scarcity of feedback. Intrinsic motivation and transfer learning have emerged as promising strategies to address this issue. Change Based Exploration Transfer (CBET), a technique that combines these two approaches for model-free algorithms, has shown potential in addressing sparse feedback but its effectiveness with modern algorithms remains understudied. This paper provides an adaptation of CBET for world model algorithms like DreamerV3 and compares the performance of DreamerV3 and IMPALA agents, both with and without CBET, in the sparse reward environments of Crafter and Minigrid. Our tabula rasa results highlight the possibility of CBET improving DreamerV3's returns in Crafter but the algorithm attains a suboptimal policy in Minigrid with CBET further reducing returns. In the same vein, our transfer learning experiments show that pre-training DreamerV3 with intrinsic rewards does not immediately lead to a policy that maximizes extrinsic rewards in Minigrid. Overall, our results suggest that CBET provides a positive impact on DreamerV3 in more complex environments like Crafter but may be detrimental in environments like Minigrid. In the latter case, the behaviours promoted by CBET in DreamerV3 may not align with the task objectives of the environment, leading to reduced returns and suboptimal policies.
Authors:Fabian Domberg, Georg Schildbach
Abstract:
Learning-based controllers are often purposefully kept out of real-world applications due to concerns about their safety and reliability. We explore how state-of-the-art world models in Model-Based Reinforcement Learning can be utilized beyond the training phase to ensure a deployed policy only operates within regions of the state-space it is sufficiently familiar with. This is achieved by continuously monitoring discrepancies between a world model's predictions and observed system behavior during inference. It allows for triggering appropriate measures, such as an emergency stop, once an error threshold is surpassed. This does not require any task-specific knowledge and is thus universally applicable. Simulated experiments on established robot control tasks show the effectiveness of this method, recognizing changes in local robot geometry and global gravitational magnitude. Real-world experiments using an agile quadcopter further demonstrate the benefits of this approach by detecting unexpected forces acting on the vehicle. These results indicate how even in new and adverse conditions, safe and reliable operation of otherwise unpredictable learning-based controllers can be achieved.
Authors:Alana Santana, Paula P. Costa, Esther L. Colombini
Abstract:
Autonomous artificial agents must be able to learn behaviors in complex environments without humans to design tasks and rewards. Designing these functions for each environment is not feasible, thus, motivating the development of intrinsic reward functions. In this paper, we propose using several cognitive elements that have been neglected for a long time to build an internal world model for an intrinsically motivated agent. Our agent performs satisfactory iterations with the environment, learning complex behaviors without needing previously designed reward functions. We used 18 Atari games to evaluate what cognitive skills emerge in games that require reactive and deliberative behaviors. Our results show superior performance compared to the state-of-the-art in many test cases with dense and sparse rewards.
Authors:Michael Walters, Rafael Kaufmann, Justice Sefas, Thomas Kopinski
Abstract:
We investigate the Free Energy Principle as a foundation for measuring risk in agentic and multi-agent systems. From these principles we introduce a Cumulative Risk Exposure metric that is flexible to differing contexts and needs. We contrast this to other popular theories for safe AI that hinge on massive amounts of data or describing arbitrarily complex world models. In our framework, stakeholders need only specify their preferences over system outcomes, providing straightforward and transparent decision rules for risk governance and mitigation. This framework naturally accounts for uncertainty in both world model and preference model, allowing for decision-making that is epistemically and axiologically humble, parsimonious, and future-proof. We demonstrate this novel approach in a simplified autonomous vehicle environment with multi-agent vehicles whose driving policies are mediated by gatekeepers that evaluate, in an online fashion, the risk to the collective safety in their neighborhood, and intervene through each vehicle's policy when appropriate. We show that the introduction of gatekeepers in an AV fleet, even at low penetration, can generate significant positive externalities in terms of increased system safety.
Authors:Aleksandar Vujinovic, Aleksandar Kovacevic
Abstract:
Learning efficient representations for decision-making policies is a challenge in imitation learning (IL). Current IL methods require expert demonstrations, which are expensive to collect. Consequently, they often have underdeveloped world models. Self-supervised learning (SSL) offers an alternative by allowing models to learn from diverse, unlabeled data, including failures. However, SSL methods often operate in raw input space, making them inefficient. In this work, we propose ACT-JEPA, a novel architecture that integrates IL and SSL to enhance policy representations. We train a policy to predict (1) action sequences and (2) abstract observation sequences. The first objective uses action chunking to improve action prediction and reduce compounding errors. The second objective extends this idea of chunking by predicting abstract observation sequences. We utilize Joint-Embedding Predictive Architecture to predict in abstract representation space, allowing the model to filter out irrelevant details, improve efficiency, and develop a robust world model. Our experiments show that ACT-JEPA improves the quality of representations by learning temporal environment dynamics. Additionally, the model's ability to predict abstract observation sequences results in representations that effectively generalize to action sequence prediction. ACT-JEPA performs on par with established baselines across a range of decision-making tasks.
Authors:Kazuya Horibe, Naoto Yoshida
Abstract:
We discuss the possibility of world models and active exploration as emergent properties of open-ended behavior optimization in autonomous agents. In discussing the source of the open-endedness of living things, we start from the perspective of biological systems as understood by the mechanistic approach of theoretical biology and artificial life. From this perspective, we discuss the potential of homeostasis in particular as an open-ended objective for autonomous agents and as a general, integrative extrinsic motivation. We then discuss the possibility of implicitly acquiring a world model and active exploration through the internal dynamics of a network, and a hypothetical architecture for this, by combining meta-reinforcement learning, which assumes domain adaptation as a system that achieves robust homeostasis.
Authors:Anant Garg, K Madhava Krishna
Abstract:
World Model-based Reinforcement Learning (WMRL) enables sample efficient policy learning by reducing the need for online interactions which can potentially be costly and unsafe, especially for autonomous driving. However, existing world models often suffer from low prediction fidelity and compounding one-step errors, leading to policy degradation over long horizons. Additionally, traditional RL policies, often deterministic or single Gaussian-based, fail to capture the multi-modal nature of decision-making in complex driving scenarios. To address these challenges, we propose Imagine-2-Drive, a novel WMRL framework that integrates a high-fidelity world model with a multi-modal diffusion-based policy actor. It consists of two key components: DiffDreamer, a diffusion-based world model that generates future observations simultaneously, mitigating error accumulation, and DPA (Diffusion Policy Actor), a diffusion-based policy that models diverse and multi-modal trajectory distributions. By training DPA within DiffDreamer, our method enables robust policy learning with minimal online interactions. We evaluate our method in CARLA using standard driving benchmarks and demonstrate that it outperforms prior world model baselines, improving Route Completion and Success Rate by 15% and 20% respectively.
Authors:Nan Fang, Guiliang Liu, Wei Gong
Abstract:
Reinforcement Learning (RL) applied in healthcare can lead to unsafe medical decisions and treatment, such as excessive dosages or abrupt changes, often due to agents overlooking common-sense constraints. Consequently, Constrained Reinforcement Learning (CRL) is a natural choice for safe decisions. However, specifying the exact cost function is inherently difficult in healthcare. Recent Inverse Constrained Reinforcement Learning (ICRL) is a promising approach that infers constraints from expert demonstrations. ICRL algorithms model Markovian decisions in an interactive environment. These settings do not align with the practical requirement of a decision-making system in healthcare, where decisions rely on historical treatment recorded in an offline dataset. To tackle these issues, we propose the Constraint Transformer (CT). Specifically, 1) we utilize a causal attention mechanism to incorporate historical decisions and observations into the constraint modeling, while employing a Non-Markovian layer for weighted constraints to capture critical states. 2) A generative world model is used to perform exploratory data augmentation, enabling offline RL methods to simulate unsafe decision sequences. In multiple medical scenarios, empirical results demonstrate that CT can capture unsafe states and achieve strategies that approximate lower mortality rates, reducing the occurrence probability of unsafe behaviors.
Authors:Kirill Krinkin, Tatiana Berlenko
Abstract:
The rapid development of artificial intelligence technologies, particularly Large Language Models (LLMs), has revolutionized the landscape of lifelong learning. This paper introduces a conceptual framework for a self-constructed lifelong learning environment supported by LLMs. It highlights the inadequacies of traditional education systems in keeping pace with the rapid deactualization of knowledge and skills. The proposed framework emphasizes the transformation from institutionalized education to personalized, self-driven learning. It leverages the natural language capabilities of LLMs to provide dynamic and adaptive learning experiences, facilitating the creation of personal intellectual agents that assist in knowledge acquisition. The framework integrates principles of lifelong learning, including the necessity of building personal world models, the dual modes of learning (training and exploration), and the creation of reusable learning artifacts. Additionally, it underscores the importance of curiosity-driven learning and reflective practices in maintaining an effective learning trajectory. The paper envisions the evolution of educational institutions into "flipped" universities, focusing on supporting global knowledge consistency rather than merely structuring and transmitting knowledge.
Authors:Junichiro Niimi
Abstract:
Large Language Models (LLMs) generate fluent text, yet whether they truly understand the world or merely produce plausible language about it remains contested. We propose an architectural principle, the mouth is not the brain, that explicitly separates world models from language models. Our architecture comprises three components: a Deep Boltzmann Machine (DBM) that captures domain structure as an energy-based world model, an adapter that projects latent belief states into embedding space, and a frozen GPT-2 that provides linguistic competence without domain knowledge. We instantiate this framework in the consumer review domain using Amazon smartphone reviews. Experiments demonstrate that (1) conditioning through the world model yields significantly higher sentiment correlation, lower perplexity, and greater semantic similarity compared to prompt-based generation alone; (2) the DBM's energy function distinguishes coherent from incoherent market configurations, assigning higher energy to implausible brand-price combinations; and (3) interventions on specific attributes propagate causally to generated text with intervened outputs exhibiting distributions statistically consistent with naturally occurring samples sharing the target configuration. These findings suggest that even small-scale language models can achieve consistent, controllable generation when connected to an appropriate world model, providing empirical support for separating linguistic competence from world understanding.
Authors:Pierrick Lorang
Abstract:
Adapting to unforeseen novelties in open-world environments remains a major challenge for autonomous systems. While hybrid planning and reinforcement learning (RL) approaches show promise, they often suffer from sample inefficiency, slow adaptation, and catastrophic forgetting. We present a neuro-symbolic framework integrating hierarchical abstractions, task and motion planning (TAMP), and reinforcement learning to enable rapid adaptation in robotics. Our architecture combines symbolic goal-oriented learning and world model-based exploration to facilitate rapid adaptation to environmental changes. Validated in robotic manipulation and autonomous driving, our approach achieves faster convergence, improved sample efficiency, and superior robustness over state-of-the-art hybrid methods, demonstrating its potential for real-world deployment.
Authors:Yongchao Huang
Abstract:
Joint Embedding Predictive Architectures (JEPA) offer a scalable paradigm for self-supervised learning by predicting latent representations rather than reconstructing high-entropy observations. However, existing formulations rely on \textit{deterministic} regression objectives, which mask probabilistic semantics and limit its applicability in stochastic control. In this work, we introduce \emph{Variational JEPA (VJEPA)}, a \textit{probabilistic} generalization that learns a predictive distribution over future latent states via a variational objective. We show that VJEPA unifies representation learning with Predictive State Representations (PSRs) and Bayesian filtering, establishing that sequential modeling does not require autoregressive observation likelihoods. Theoretically, we prove that VJEPA representations can serve as sufficient information states for optimal control without pixel reconstruction, while providing formal guarantees for collapse avoidance. We further propose \emph{Bayesian JEPA (BJEPA)}, an extension that factorizes the predictive belief into a learned dynamics expert and a modular prior expert, enabling zero-shot task transfer and constraint (e.g. goal, physics) satisfaction via a Product of Experts. Empirically, through a noisy environment experiment, we demonstrate that VJEPA and BJEPA successfully filter out high-variance nuisance distractors that cause representation collapse in generative baselines. By enabling principled uncertainty estimation (e.g. constructing credible intervals via sampling) while remaining likelihood-free regarding observations, VJEPA provides a foundational framework for scalable, robust, uncertainty-aware planning in high-dimensional, noisy environments.
Authors:Corina Chutaux
Abstract:
Creativity in artificial intelligence is most often addressed through evaluative frameworks that aim to measure novelty, diversity, or usefulness in generated outputs. While such approaches have provided valuable insights into the behavior of modern generative models, they largely treat creativity as a property to be assessed rather than as a phenomenon to be explicitly modeled. In parallel, recent advances in large-scale generative systems, particularly multimodal architectures, have demonstrated increasingly sophisticated forms of pattern recombination, raising questions about the nature and limits of machine creativity. This paper proposes a generative perspective on creativity in AI, framing it as an emergent property of domain-limited generative models embedded within bounded informational environments. Rather than introducing new evaluative criteria, we focus on the structural and contextual conditions under which creative behaviors arise. We introduce a conceptual decomposition of creativity into four interacting components-pattern-based generation, induced world models, contextual grounding, and arbitrarity, and examine how these components manifest in multimodal generative systems. By grounding creativity in the interaction between generative dynamics and domain-specific representations, this work aims to provide a technical framework for studying creativity as an emergent phenomenon in AI systems, rather than as a post hoc evaluative label.
Authors:Yani Meziani
Abstract:
We present Akasha 2, a state-of-the-art multimodal architecture that integrates Hamiltonian State Space Duality (H-SSD) with Visual-Language Joint Embedding Predictive Architecture (VL-JEPA). The system leverages the Mamba-3 Selective State Space Model (SSM) augmented by a Sparse Mixture of Hamiltonian Experts (SMoE-HE) that enforces latent physical conservation laws through symplectic integration. For visual synthesis, we introduce Hamiltonian Flow Matching (HFM) and persistent 3D Gaussian Splatting (3DGS), enabling ultra-low latency (<50ms) on mobile hardware. This work establishes a new paradigm in latent world models, achieving unprecedented spatiotemporal coherence through a holographic memory architecture. Our approach demonstrates that incorporating physics-inspired inductive biases into neural architectures yields significant improvements: state-of-the-art video prediction (FVD: 287), 4x faster visual synthesis than diffusion models, and 3-18x inference speedup over transformer baselines while maintaining energy conservation over extended horizons.
Authors:Enze Pan
Abstract:
We present Tape, a controlled reinforcement-learning benchmark designed to isolate out-of-distribution (OOD) failure under latent rule shifts.Tape is derived from one-dimensional cellular automata, enabling precise train/test splits where observation and action spaces are held fixed while transition rules change. Using a reproducible evaluation pipeline, we compare model-free baselines, model-based planning with learned world models, and task-inference (meta-RL) methods. A consistent pattern emerges: methods that are strong in-distribution (ID) can collapse under heldout-rule OOD, and high-variance OOD evaluation can make rankings unstable unless experiments are sufficiently replicated.We provide (i) standardized OOD protocols, (ii) statistical reporting requirements (seeds, confidence intervals, and hypothesis tests), and (iii) information-theoretic identities connecting entropy reduction to conditional mutual information and expected posterior KL divergence, clarifying what "uncertainty reduction" objectives can and cannot guarantee under rule shifts.
Authors:Sarim Chaudhry
Abstract:
Human motion prediction has traditionally been framed as a sequence regression problem where models extrapolate future joint coordinates from observed pose histories. While effective over short horizons this approach does not separate observation reconstruction with dynamics modeling and offers no explicit representation of the latent causes governing motion. As a result, existing methods exhibit compounding drift, mean-pose collapse, and poorly calibrated uncertainty when rolled forward beyond the training regime. Here we propose a Semantic Belief-State World Model (SBWM) that reframes human motion prediction as latent dynamical simulation on the human body manifold. Rather than predicting poses directly, SBWM maintains a recurrent probabilistic belief state whose evolution is learned independently of pose reconstruction and explicitly aligned with the SMPL-X anatomical parameterization. This alignment imposes a structural information bottleneck that prevents the latent state from encoding static geometry or sensor noise, forcing it to capture motion dynamics, intent, and control-relevant structure. Inspired by belief-state world models developed for model-based reinforcement learning, SBWM adapts stochastic latent transitions and rollout-centric training to the domain of human motion. In contrast to RSSM-based, transformer, and diffusion approaches optimized for reconstruction fidelity, SBWM prioritizes stable forward simulation. We demonstrate coherent long-horizon rollouts, and competitive accuracy at substantially lower computational cost. These results suggest that treating the human body as part of the world models state space rather than its output fundamentally changes how motion is simulated, and predicted.
Authors:Bin Xu
Abstract:
AI agents -- systems that combine foundation models with reasoning, planning, memory, and tool use -- are rapidly becoming a practical interface between natural-language intent and real-world computation. This survey synthesizes the emerging landscape of AI agent architectures across: (i) deliberation and reasoning (e.g., chain-of-thought-style decomposition, self-reflection and verification, and constraint-aware decision making), (ii) planning and control (from reactive policies to hierarchical and multi-step planners), and (iii) tool calling and environment interaction (retrieval, code execution, APIs, and multimodal perception). We organize prior work into a unified taxonomy spanning agent components (policy/LLM core, memory, world models, planners, tool routers, and critics), orchestration patterns (single-agent vs.\ multi-agent; centralized vs.\ decentralized coordination), and deployment settings (offline analysis vs.\ online interactive assistance; safety-critical vs.\ open-ended tasks). We discuss key design trade-offs -- latency vs.\ accuracy, autonomy vs.\ controllability, and capability vs.\ reliability -- and highlight how evaluation is complicated by non-determinism, long-horizon credit assignment, tool and environment variability, and hidden costs such as retries and context growth. Finally, we summarize measurement and benchmarking practices (task suites, human preference and utility metrics, success under constraints, robustness and security) and identify open challenges including verification and guardrails for tool actions, scalable memory and context management, interpretability of agent decisions, and reproducible evaluation under realistic workloads.
Authors:Eduardo Di Santi
Abstract:
Real-world physical processes do not generate arbitrary variability: their signals concentrate on compact and low-variability subsets of functional space. This geometric structure enables rapid generalization from a few examples in both biological and artificial systems. This work develops a deterministic functional-topological framework in which the set of valid realizations of a physical phenomenon forms a compact perceptual manifold with stable invariants and a finite Hausdorff radius. We show that the boundaries of this manifold can be discovered in a fully self-supervised manner through Monte Carlo sampling, even when the governing equations of the system are unknown. We provide theoretical guarantees, practical estimators of knowledge boundaries, and empirical validations across three domains: electromechanical railway point machines, electrochemical battery discharge curves, and physiological ECG signals. Our results demonstrate that deterministic functional topology offers a unified mathematical foundation for perception, representation, and world-model construction, explaining why biological learners and self-supervised AI models can generalize from limited observations.
Authors:Agniprabha Chakraborty
Abstract:
The paradigm of learning-based robotics holds immense promise, yet its translation to real-world applications is critically hindered by the sample inefficiency and brittleness of conventional model-free reinforcement learning algorithms. In this work, we address these challenges by introducing DREAMer-VXS, a model-based framework for Autonomous Ground Vehicle (AGV) exploration that learns to plan from imagined latent trajectories. Our approach centers on learning a comprehensive world model from partial and high-dimensional LiDAR observations. This world model is composed of a Convolutional Variational Autoencoder (VAE), which learns a compact representation of the environment's structure, and a Recurrent State-Space Model (RSSM), which models complex temporal dynamics. By leveraging this learned model as a high-speed simulator, the agent can train its navigation policy almost entirely in imagination. This methodology decouples policy learning from real-world interaction, culminating in a 90% reduction in required environmental interactions to achieve expert-level performance when compared to state-of-the-art model-free SAC baselines. The agent's behavior is guided by an actor-critic policy optimized with a composite reward function that balances task objectives with an intrinsic curiosity bonus, promoting systematic exploration of unknown spaces. We demonstrate through extensive simulated experiments that DREAMer-VXS not only learns orders of magnitude faster but also develops more generalizable and robust policies, achieving a 45% increase in exploration efficiency in unseen environments and superior resilience to dynamic obstacles.
Authors:Przemyslaw Chojecki
Abstract:
We propose a Kardashev-inspired yet operational Autonomous AI (AAI) Scale that measures the progression from fixed robotic process automation (AAI-0) to full artificial general intelligence (AAI-4) and beyond. Unlike narrative ladders, our scale is multi-axis and testable. We define ten capability axes (Autonomy, Generality, Planning, Memory/Persistence, Tool Economy, Self-Revision, Sociality/Coordination, Embodiment, World-Model Fidelity, Economic Throughput) aggregated by a composite AAI-Index (a weighted geometric mean). We introduce a measurable Self-Improvement Coefficient $κ$ (capability growth per unit of agent-initiated resources) and two closure properties (maintenance and expansion) that convert ``self-improving AI'' into falsifiable criteria. We specify OWA-Bench, an open-world agency benchmark suite that evaluates long-horizon, tool-using, persistent agents. We define level gates for AAI-0\ldots AAI-4 using thresholds on the axes, $κ$, and closure proofs. Synthetic experiments illustrate how present-day systems map onto the scale and how the delegability frontier (quality vs.\ autonomy) advances with self-improvement. We also prove a theorem that AAI-3 agent becomes AAI-5 over time with sufficient conditions, formalizing "baby AGI" becomes Superintelligence intuition.
Authors:Shiyao Sang
Abstract:
We challenge the long-standing assumption that exhaustive scene modeling is required for high-performance end-to-end autonomous driving (E2EAD). Inspired by cognitive science, we propose that effective planning arises not from reconstructing the world, but from the co-evolution of belief and intent within a minimal set of semantically rich tokens. Experiments on the nuPlan benchmark (720 scenarios, 11k+ samples) reveal three principles: (1) sparse intent tokens alone achieve 0.487 m ADE, demonstrating strong performance without future prediction; (2) conditioning trajectory decoding on predicted future tokens reduces ADE to 0.382 m, a 21.6% improvement, showing that performance emerges from cognitive planning; and (3) explicit reconstruction loss degrades performance, confirming that task-driven belief-intent co-evolution suffices under reliable perception inputs. Crucially, we observe the emergence of cognitive consistency: through prolonged training, the model spontaneously develops stable token dynamics that balance current perception (belief) and future goals (intent). This process, accompanied by "temporal fuzziness," enables robustness under uncertainty and continuous self-optimization. Our work establishes a new paradigm: intelligence lies not in pixel fidelity, but in the tokenized duality of belief and intent. By reframing planning as understanding rather than reaction, TIWM bridges the gap between world models and VLA systems, paving the way for foresightful agents that plan through imagination. Note: Numerical comparisons with methods reporting results on nuScenes are indicative only, as nuPlan presents a more challenging planning-focused evaluation.
Authors:Lin Wang
Abstract:
Open world Machine Learning (OWML) aims to develop intelligent systems capable of recognizing known categories, rejecting unknown samples, and continually learning from novel information. Despite significant progress in open set recognition, novelty detection, and continual learning, the field still lacks a unified theoretical foundation that can quantify uncertainty, characterize information transfer, and explain learning adaptability in dynamic, nonstationary environments. This paper presents a comprehensive review of information theoretic approaches in open world machine learning, emphasizing how core concepts such as entropy, mutual information, and Kullback Leibler divergence provide a mathematical language for describing knowledge acquisition, uncertainty suppression, and risk control under open world conditions. We synthesize recent studies into three major research axes: information theoretic open set recognition enabling safe rejection of unknowns, information driven novelty discovery guiding new concept formation, and information retentive continual learning ensuring stable long term adaptation. Furthermore, we discuss theoretical connections between information theory and provable learning frameworks, including PAC Bayes bounds, open-space risk theory, and causal information flow, to establish a pathway toward provable and trustworthy open world intelligence. Finally, the review identifies key open problems and future research directions, such as the quantification of information risk, development of dynamic mutual information bounds, multimodal information fusion, and integration of information theory with causal reasoning and world model learning.
Authors:Walid Abdela
Abstract:
The seamless integration of physical and digital environments in Cyber-Physical Systems(CPS), particularly within Industry 4.0, presents significant challenges stemming from system heterogeneity and complexity. Traditional approaches often rely on rigid, data-centric solutions like co-simulation frameworks or brittle point-to-point middleware bridges, which lack the semantic richness and flexibility required for intelligent, autonomous coordination. This report introduces the Knowledge Graph-Enhanced Multi-Agent Infrastructure(KG-MAS), as resolution in addressing such limitations. KG-MAS leverages a centralized Knowledge Graph (KG) as a dynamic, shared world model, providing a common semantic foundation for a Multi-Agent System(MAS). Autonomous agents, representing both physical and digital components, query this KG for decision-making and update it with real-time state information. The infrastructure features a model-driven architecture which facilitates the automatic generation of agents from semantic descriptions, thereby simplifying system extension and maintenance. By abstracting away underlying communication protocols and providing a unified, intelligent coordination mechanism, KG-MAS offers a robust, scalable, and flexible solution for coupling heterogeneous physical and digital robotic environments.
Authors:Xuehai He
Abstract:
Humans understand the world through the integration of multiple sensory modalities, enabling them to perceive, reason about, and imagine dynamic physical processes. Inspired by this capability, multimodal foundation models (MFMs) have emerged as powerful tools for multimodal understanding and generation. However, today's MFMs fall short of serving as effective world models. They lack the essential ability such as perform counterfactual reasoning, simulate dynamics, understand the spatiotemporal information, control generated visual outcomes, and perform multifaceted reasoning. We investigates what it takes to bridge the gap between multimodal foundation models and world models. We begin by improving the reasoning capabilities of MFMs through discriminative tasks and equipping MFMs with structured reasoning skills, such as causal inference, counterfactual thinking, and spatiotemporal reasoning, enabling them to go beyond surface correlations and understand deeper relationships within visual and textual data. Next, we explore generative capabilities of multimodal foundation models across both image and video modalities, introducing new frameworks for structured and controllable generation. Our approaches incorporate scene graphs, multimodal conditioning, and multimodal alignment strategies to guide the generation process, ensuring consistency with high-level semantics and fine-grained user intent. We further extend these techniques to controllable 4D generation, enabling interactive, editable, and morphable object synthesis over time and space.
Authors:Mohamed Zayaan S
Abstract:
Modern deep learning models excel at pattern recognition but remain fundamentally limited by their reliance on spurious correlations, leading to poor generalization and a demand for massive datasets. We argue that a key ingredient for human-like intelligence-robust, sample-efficient learning-stems from an understanding of causal mechanisms. In this work, we introduce Causal-Symbolic Meta-Learning (CSML), a novel framework that learns to infer the latent causal structure of a task distribution. CSML comprises three key modules: a perception module that maps raw inputs to disentangled symbolic representations; a differentiable causal induction module that discovers the underlying causal graph governing these symbols and a graph-based reasoning module that leverages this graph to make predictions. By meta-learning a shared causal world model across a distribution of tasks, CSML can rapidly adapt to novel tasks, including those requiring reasoning about interventions and counterfactuals, from only a handful of examples. We introduce CausalWorld, a new physics-based benchmark designed to test these capabilities. Our experiments show that CSML dramatically outperforms state-of-the-art meta-learning and neuro-symbolic baselines, particularly on tasks demanding true causal inference.
Authors:Brennen Hill
Abstract:
Recent advances in agent development have focused on scaling model size and raw interaction data, mirroring the successes seen in large language models. However, for complex, long-horizon multi-agent tasks such as robotic soccer, this end-to-end approach often fails due to intractable exploration spaces and sparse rewards. This position paper argues that the next frontier in developing embodied world models is not merely increasing the fidelity or size of environments, but scaling their structural complexity through explicit hierarchical scaffolding. We posit that an effective world model for decision-making must model not only the world's physics but also its task semantics. Drawing from a systematic review of 2024 research in low-resource multi-agent soccer, we identify a clear trend towards integrating symbolic and hierarchical methods, such as Hierarchical Task Networks (HTNs) and Bayesian Strategy Networks (BSNs), with multi-agent reinforcement learning (MARL). These methods decompose complex goals into manageable subgoals, creating an intrinsic curriculum that shapes agent learning. We propose that such structured environments are essential for bridging the gap between simple, reactive behaviors and sophisticated, strategic team play. We further extend this principle, proposing that this scaffolding can be generalized to other complex domains and dynamically generated by Large Language Models (LLMs), which act as generative world models of tasks. By building environments with explicit, composable task layers, we can guide agent exploration more efficiently, generate meaningful learning signals, and ultimately train more capable and general-purpose agents with fewer resources than purely end-to-end approaches.
Authors:Brennen Hill
Abstract:
The capacity of an embodied agent to understand, predict, and interact with its environment is fundamentally contingent on an internal world model. This paper introduces a novel framework for investigating the formation and adaptation of such world models within a biological substrate: human neural organoids. We present a curriculum of three scalable, closed-loop virtual environments designed to train these biological agents and probe the underlying synaptic mechanisms of learning, such as long-term potentiation (LTP) and long-term depression (LTD). We detail the design of three distinct task environments that demand progressively more sophisticated world models for successful decision-making: (1) a conditional avoidance task for learning static state-action contingencies, (2) a one-dimensional predator-prey scenario for goal-directed interaction, and (3) a replication of the classic Pong game for modeling dynamic, continuous-time systems. For each environment, we formalize the state and action spaces, the sensory encoding and motor decoding mechanisms, and the feedback protocols based on predictable (reward) and unpredictable (punishment) stimulation, which serve to drive model refinement. In a significant methodological advance, we propose a meta-learning approach where a Large Language Model automates the generative design and optimization of experimental protocols, thereby scaling the process of environment and curriculum design. Finally, we outline a multi-modal evaluation strategy that moves beyond task performance to directly measure the physical correlates of the learned world model by quantifying synaptic plasticity at electrophysiological, cellular, and molecular levels. This work bridges the gap between model-based reinforcement learning and computational neuroscience, offering a unique platform for studying embodiment, decision-making, and the physical basis of intelligence.
Authors:Tadahiro Taniguchi
Abstract:
This commentary extends the discussion by Parr et al. on memory and attention beyond individual cognitive systems. From the perspective of the Collective Predictive Coding (CPC) hypothesis -- a framework for understanding these faculties and the emergence of language at the group level -- we introduce a hypothetical idea: that language, with its embedded distributional semantics, serves as a collectively formed external representation. CPC generalises the concepts of individual memory and attention to the collective level. This offers a new perspective on how shared linguistic structures, which may embrace collective world models learned through next-word prediction, emerge from and shape group-level cognition.
Authors:Bo Wen
Abstract:
This paper argues that Active Inference (AIF) provides a crucial foundation for developing autonomous AI agents capable of learning from experience without continuous human reward engineering. As AI systems begin to exhaust high-quality training data and rely on increasingly large human workforces for reward design, the current paradigm faces significant scalability challenges that could impede progress toward genuinely autonomous intelligence. The proposal for an ``Era of Experience,'' where agents learn from self-generated data, is a promising step forward. However, this vision still depends on extensive human engineering of reward functions, effectively shifting the bottleneck from data curation to reward curation. This highlights what we identify as the \textbf{grounded-agency gap}: the inability of contemporary AI systems to autonomously formulate, adapt, and pursue objectives in response to changing circumstances. We propose that AIF can bridge this gap by replacing external reward signals with an intrinsic drive to minimize free energy, allowing agents to naturally balance exploration and exploitation through a unified Bayesian objective. By integrating Large Language Models as generative world models with AIF's principled decision-making framework, we can create agents that learn efficiently from experience while remaining aligned with human values. This synthesis offers a compelling path toward AI systems that can develop autonomously while adhering to both computational and physical constraints.
Authors:Mehdi Bennis
Abstract:
Just like power, water and transportation systems, wireless networks are a crucial societal infrastructure. As natural and human-induced disruptions continue to grow, wireless networks must be resilient to unforeseen events, able to withstand and recover from unexpected adverse conditions, shocks, unmodeled disturbances and cascading failures. Despite its critical importance, resilience remains an elusive concept, with its mathematical foundations still underdeveloped. Unlike robustness and reliability, resilience is premised on the fact that disruptions will inevitably happen. Resilience, in terms of elasticity, focuses on the ability to bounce back to favorable states, while resilience as plasticity involves agents (or networks) that can flexibly expand their states, hypotheses and course of actions, by transforming through real-time adaptation and reconfiguration. This constant situational awareness and vigilance of adapting world models and counterfactually reasoning about potential system failures and the corresponding best responses, is a core aspect of resilience. This article seeks to first define resilience and disambiguate it from reliability and robustness, before delving into the mathematics of resilience. Finally, the article concludes by presenting nuanced metrics and discussing trade-offs tailored to the unique characteristics of network resilience.
Authors:Fabio Ferreira
Abstract:
The growing number of pretrained models in Machine Learning (ML) presents significant challenges for practitioners. Given a new dataset, they need to determine the most suitable deep learning (DL) pipeline, consisting of the pretrained model and the hyperparameters for finetuning to it. Moreover, as models grow in scale, the increasing reliance on real-world data poses a bottleneck for training and requires leveraging data more effectively. Addressing the first challenge often involves manual model selection and hyperparameter tuning. At the same time, as models grow larger and more and more of the available human-generated data is being used for training, data augmentation and synthetic data become critical elements. Automated machine learning offers a path to address these challenges but is traditionally designed for tabular data and classical ML methods. This dissertation adopts meta-learning to extend automated machine learning to the deep learning domain. We propose empirical approaches to automate DL pipeline selection for Computer Vision tasks using prior task knowledge to learn surrogate models for pipeline ranking. Extending these methods to the language domain, we learn to finetune large language models. As a result, we show that our approach can outperform finetuning foundation models. Additionally, we meta-learn data augmentation and synthetic data to enhance performance in up-stream and down-stream tasks. We empirically show the underestimated importance of data augmentation when using Self-Supervised Learning and meta-learn advanced data augmentation strategies. Leveraging synthetic data, we also propose to meta-learn neural synthetic data generators as proxies for Reinforcement Learning (RL) environments. Additionally, we learn a multiple-environment world model in an in-context learning fashion by purely using synthetic, randomly sampled data.
Authors:Andrii Zahorodnii
Abstract:
Developing effective world models is crucial for creating artificial agents that can reason about and navigate complex environments. In this paper, we investigate a deep supervision technique for encouraging the development of a world model in a network trained end-to-end to predict the next observation. While deep supervision has been widely applied for task-specific learning, our focus is on improving the world models. Using an experimental environment based on the Flappy Bird game, where the agent receives only LIDAR measurements as observations, we explore the effect of adding a linear probe component to the network's loss function. This additional term encourages the network to encode a subset of the true underlying world features into its hidden state. Our experiments demonstrate that this supervision technique improves both training and test performance, enhances training stability, and results in more easily decodable world features -- even for those world features which were not included in the training. Furthermore, we observe a reduced distribution drift in networks trained with the linear probe, particularly during high-variability phases of the game (flying between successive pipe encounters). Including the world features loss component roughly corresponded to doubling the model size, suggesting that the linear probe technique is particularly beneficial in compute-limited settings or when aiming to achieve the best performance with smaller models. These findings contribute to our understanding of how to develop more robust and sophisticated world models in artificial agents, paving the way for further advancements in this field.
Authors:Cameron Redovian
Abstract:
We integrate a meta-reinforcement learning algorithm with the DreamerV3 architecture to improve load balancing in operating systems. This approach enables rapid adaptation to dynamic workloads with minimal retraining, outperforming the Advantage Actor-Critic (A2C) algorithm in standard and adaptive trials. It demonstrates robust resilience to catastrophic forgetting, maintaining high performance under varying workload distributions and sizes. These findings have important implications for optimizing resource management and performance in modern operating systems. By addressing the challenges posed by dynamic and heterogeneous workloads, our approach advances the adaptability and efficiency of reinforcement learning in real-world system management tasks.
Authors:Rolf Pfister
Abstract:
The article analyses foundational principles relevant to the creation of artificial general intelligence (AGI). Intelligence is understood as the ability to create novel skills that allow to achieve goals under previously unknown conditions. To this end, intelligence utilises reasoning methods such as deduction, induction and abduction as well as other methods such as abstraction and classification to develop a world model. The methods are applied to indirect and incomplete representations of the world, which are obtained through perception, for example, and which do not depict the world but only correspond to it. Due to these limitations and the uncertain and contingent nature of reasoning, the world model is constructivist. Its value is functionally determined by its viability, i.e., its potential to achieve the desired goals. In consequence, meaning is assigned to representations by attributing them a function that makes it possible to achieve a goal. This representational and functional conception of intelligence enables a naturalistic interpretation that does not presuppose mental features, such as intentionality and consciousness, which are regarded as independent of intelligence. Based on a phenomenological analysis, it is shown that AGI can gain a more fundamental access to the world than humans, although it is limited by the No Free Lunch theorems, which require assumptions to be made.
Authors:David S. Johnson
Abstract:
Human-AI collaboration is increasingly promoted to improve high-stakes decision-making, yet its benefits have not been fully realized. Application-grounded evaluations are needed to better evaluate methods for improving collaboration but often require domain experts, making studies costly and limiting their generalizability. Current evaluation methods are constrained by limited public datasets and reliance on proxy tasks. To address these challenges, we propose an application-grounded framework for large-scale, online evaluations of vision-based decision-making tasks. The framework introduces Blockies, a parametric approach for generating datasets of simulated diagnostic tasks, offering control over the traits and biases in the data used to train real-world models. These tasks are designed to be easy to learn but difficult to master, enabling participation by non-experts. The framework also incorporates storytelling and monetary incentives to manipulate perceived task stakes. An initial empirical study demonstrated that the high-stakes condition significantly reduced healthy distrust of AI, despite longer decision-making times. These findings underscore the importance of perceived stakes in fostering healthy distrust and demonstrate the framework's potential for scalable evaluation of high-stakes Human-AI collaboration.
Authors:Maijunxian Wang
Abstract:
In this paper, we propose AUKAI, an Adaptive Unified Knowledge-Action Intelligence for embodied cognition that seamlessly integrates perception, memory, and decision-making via multi-scale error feedback. Interpreting AUKAI as an embedded world model, our approach simultaneously predicts state transitions and evaluates intervention utility. The framework is underpinned by rigorous theoretical analysis drawn from convergence theory, optimal control, and Bayesian inference, which collectively establish conditions for convergence, stability, and near-optimal performance. Furthermore, we present a hybrid implementation that combines the strengths of neural networks with symbolic reasoning modules, thereby enhancing interpretability and robustness. Finally, we demonstrate the potential of AUKAI through a detailed application in robotic navigation and obstacle avoidance, and we outline comprehensive experimental plans to validate its effectiveness in both simulated and real-world environments.
Authors:Sagi Eppel
Abstract:
Large vision language models (LVLM) are the leading A.I approach for achieving a general visual understanding of the world. Models such as GPT, Claude, Gemini, and LLama can use images to understand and analyze complex visual scenes. 3D objects and shapes are the basic building blocks of the world, recognizing them is a fundamental part of human perception. The goal of this work is to test whether LVLMs truly understand 3D shapes by testing the models ability to identify and match objects of the exact same 3D shapes but with different orientations and materials/textures. A large number of test images were created using CGI with a huge number of highly diverse objects, materials, and scenes. The results of this test show that the ability of such models to match 3D shapes is significantly below humans but much higher than random guesses. Suggesting that the models have gained some abstract understanding of 3D shapes but still trail far beyond humans in this task. Mainly it seems that the models can easily identify the same object with a different orientation as well as matching identical 3D shapes of the same orientation but with different materials and textures. However, when both the object material and orientation are changed, all models perform poorly relative to humans. Code and benchmark are available.
Authors:Mackenzie Weygandt Mathis
Abstract:
Biological intelligence is inherently adaptive -- animals continually adjust their actions based on environmental feedback. However, creating adaptive artificial intelligence (AI) remains a major challenge. The next frontier is to go beyond traditional AI to develop "adaptive intelligence," defined here as harnessing insights from biological intelligence to build agents that can learn online, generalize, and rapidly adapt to changes in their environment. Recent advances in neuroscience offer inspiration through studies that increasingly focus on how animals naturally learn and adapt their world models. In this Perspective, I will review the behavioral and neural foundations of adaptive biological intelligence, the parallel progress in AI, and explore brain-inspired approaches for building more adaptive algorithms.
Authors:Lancelot Da Costa
Abstract: We introduce a generic, compositional and interpretable class of generative world models that supports open-ended learning agents. This is a sparse class of Bayesian networks capable of approximating a broad range of stochastic processes, which provide agents with the ability to learn world models in a manner that may be both interpretable and computationally scalable. This approach integrating Bayesian structure learning and intrinsically motivated (model-based) planning enables agents to actively develop and refine their world models, which may lead to developmental learning and more robust, adaptive behavior.