arXiv Papers with Code in Computer Science (January 2025)
Authors:Matthew Chen, Joshua Engels, Max Tegmark
Abstract:
Sparse autoencoders (SAEs) decompose language model representations into a sparse set of linear latent vectors. Recent works have improved SAEs using language model gradients, but these techniques require many expensive backward passes during training and still cause a significant increase in cross entropy loss when SAE reconstructions are inserted into the model. In this work, we improve on these limitations by taking a fundamentally different approach: we use low-rank adaptation (LoRA) to finetune the \textit{language model itself} around a previously trained SAE. We analyze our method across SAE sparsity, SAE width, language model size, LoRA rank, and model layer on the Gemma Scope family of SAEs. In these settings, our method reduces the cross entropy loss gap by 30\% to 55\% when SAEs are inserted during the forward pass. We also find that compared to end-to-end (e2e) SAEs, our approach achieves the same downstream cross entropy loss 3$\times$ to 20$\times$ faster on \gemma and 2$\times$ to 10$\times$ faster on \llama. We further show that our technique improves downstream metrics and can adapt multiple SAEs at once without harming general language model capabilities. Our results demonstrate that improving model interpretability is not limited to post-hoc SAE training; Pareto improvements can also be achieved by directly optimizing the model itself.
Authors:Andrey Polubarov, Nikita Lyubaykin, Alexander Derevyagin, Ilya Zisman, Denis Tarasov, Alexander Nikulin, Vladislav Kurenkov
Abstract:
In-Context Reinforcement Learning (ICRL) represents a promising paradigm for developing generalist agents that learn at inference time through trial-and-error interactions, analogous to how large language models adapt contextually, but with a focus on reward maximization. However, the scalability of ICRL beyond toy tasks and single-domain settings remains an open challenge. In this work, we present the first steps toward scaling ICRL by introducing a fixed, cross-domain model capable of learning behaviors through in-context reinforcement learning. Our results demonstrate that Algorithm Distillation, a framework designed to facilitate ICRL, offers a compelling and competitive alternative to expert distillation to construct versatile action models. These findings highlight the potential of ICRL as a scalable approach for generalist decision-making systems. Code to be released at https://github.com/dunnolab/vintix
Authors:Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, Tatsunori Hashimoto
Abstract:
Test-time scaling is a promising new approach to language modeling that uses extra test-time compute to improve performance. Recently, OpenAI's o1 model showed this capability but did not publicly share its methodology, leading to many replication efforts. We seek the simplest approach to achieve test-time scaling and strong reasoning performance. First, we curate a small dataset s1K of 1,000 questions paired with reasoning traces relying on three criteria we validate through ablations: difficulty, diversity, and quality. Second, we develop budget forcing to control test-time compute by forcefully terminating the model's thinking process or lengthening it by appending "Wait" multiple times to the model's generation when it tries to end. This can lead the model to double-check its answer, often fixing incorrect reasoning steps. After supervised finetuning the Qwen2.5-32B-Instruct language model on s1K and equipping it with budget forcing, our model s1-32B exceeds o1-preview on competition math questions by up to 27% (MATH and AIME24). Further, scaling s1-32B with budget forcing allows extrapolating beyond its performance without test-time intervention: from 50% to 57% on AIME24. Our model, data, and code are open-source at https://github.com/simplescaling/s1
Authors:Wenzhi Fang, Dong-Jun Han, Liangqi Yuan, Seyyedali Hosseinalipour, Christopher G. Brinton
Abstract:
Fine-tuning large language models (LLMs) on devices remains a challenging problem. Recent works have fused low-rank adaptation (LoRA) techniques with federated fine-tuning to mitigate challenges associated with device model sizes and data scarcity. Still, the heterogeneity of resources remains a critical bottleneck: while higher-rank modules generally enhance performance, varying device capabilities constrain LoRA's feasible rank range. Existing approaches attempting to resolve this issue either lack analytical justification or impose additional computational overhead, leaving a wide gap for efficient and theoretically-grounded solutions. To address these challenges, we propose federated sketching LoRA (FSLoRA), which leverages a sketching mechanism to enable devices to selectively update submatrices of global LoRA modules maintained by the server. By adjusting the sketching ratios, which determine the ranks of the submatrices on the devices, FSLoRA flexibly adapts to device-specific communication and computational constraints. We provide a rigorous convergence analysis of FSLoRA that characterizes how the sketching ratios affect the convergence rate. Through comprehensive experiments on multiple datasets and LLM models, we demonstrate FSLoRA's performance improvements compared to various baselines. The code is available at https://github.com/wenzhifang/Federated-Sketching-LoRA-Implementation.
Authors:Xingyou Song, Dara Bahri
Abstract:
Language models have recently been shown capable of performing regression wherein numeric predictions are represented as decoded strings. In this work, we provide theoretical grounds for this capability and furthermore investigate the utility of causal sequence decoding models as numeric regression heads given any feature representation. We find that, despite being trained in the usual way - for next-token prediction via cross-entropy loss - decoder-based heads are as performant as standard pointwise heads when benchmarked over standard regression tasks, while being flexible enough to capture smooth numeric distributions, such as in the task of density estimation.
Authors:Liudi Yang, Ruben Mascaro, Ignacio Alzugaray, Sai Manoj Prakhya, Marco Karrer, Ziyuan Liu, Margarita Chli
Abstract:
In this paper, we propose a novel loop closure detection algorithm that uses graph attention neural networks to encode semantic graphs to perform place recognition and then use semantic registration to estimate the 6 DoF relative pose constraint. Our place recognition algorithm has two key modules, namely, a semantic graph encoder module and a graph comparison module. The semantic graph encoder employs graph attention networks to efficiently encode spatial, semantic and geometric information from the semantic graph of the input point cloud. We then use self-attention mechanism in both node-embedding and graph-embedding steps to create distinctive graph vectors. The graph vectors of the current scan and a keyframe scan are then compared in the graph comparison module to identify a possible loop closure. Specifically, employing the difference of the two graph vectors showed a significant improvement in performance, as shown in ablation studies. Lastly, we implemented a semantic registration algorithm that takes in loop closure candidate scans and estimates the relative 6 DoF pose constraint for the LiDAR SLAM system. Extensive evaluation on public datasets shows that our model is more accurate and robust, achieving 13% improvement in maximum F1 score on the SemanticKITTI dataset, when compared to the baseline semantic graph algorithm. For the benefit of the community, we open-source the complete implementation of our proposed algorithm and custom implementation of semantic registration at https://github.com/crepuscularlight/SemanticLoopClosure
Authors:Natalie Maus, Kyurae Kim, Yimeng Zeng, Haydn Thomas Jones, Fangping Wan, Marcelo Der Torossian Torres, Cesar de la Fuente-Nunez, Jacob R. Gardner
Abstract:
In multi-objective black-box optimization, the goal is typically to find solutions that optimize a set of $T$ black-box objective functions, $f_1$, ..., $f_T$, simultaneously. Traditional approaches often seek a single Pareto-optimal set that balances trade-offs among all objectives. In this work, we consider a problem setting that departs from this paradigm: finding a small set of K < T solutions, that collectively "covers" the T objectives. A set of solutions is defined as "covering" if, for each objective $f_1$, ..., $f_T$, there is at least one good solution. A motivating example for this problem setting occurs in drug design. For example, we may have T pathogens and aim to identify a set of K < T antibiotics such that at least one antibiotic can be used to treat each pathogen. To address this problem, we propose Multi-Objective Coverage Bayesian Optimization (MOCOBO), a principled algorithm designed to efficiently find a covering set. We validate our approach through experiments on challenging high-dimensional tasks, including applications in peptide and molecular design, where MOCOBO is shown to find high-performing covering sets of solutions. The results show that the coverage of the K < T solutions found by MOCOBO matches or nearly matches the coverage of T solutions obtained by optimizing each objective individually. Furthermore, in in vitro experiments, the peptides found by MOCOBO exhibited high potency against drug-resistant pathogens, further demonstrating the potential of MOCOBO for drug discovery. We make code available here: https://github.com/nataliemaus/mocobo.
Authors:Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo, Caiming Xiong
Abstract:
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs). RSD synergistically combines a lightweight draft model with a more powerful target model, incorporating a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness. RSD employs a process reward model to evaluate intermediate decoding steps and dynamically decide whether to invoke the target model, optimizing the trade-off between computational cost and output quality. We theoretically demonstrate that a threshold-based mixture strategy achieves an optimal balance between resource utilization and performance. Extensive evaluations on challenging reasoning benchmarks, including Olympiad-level tasks, show that RSD delivers significant efficiency gains against decoding with the target model only (up to 4.4x fewer FLOPs), while achieving significant better accuracy than parallel decoding method on average (up to +3.5). These results highlight RSD as a robust and cost-effective approach for deploying LLMs in resource-intensive scenarios. The code is available at https://github.com/BaohaoLiao/RSD.
Authors:Nafis Irtiza Tripto, Saranya Venkatraman, Mahjabin Nahar, Dongwon Lee
Abstract:
The rapid advancement of Large Language Models (LLMs) has revolutionized text generation but also raised concerns about potential misuse, making detecting LLM-generated text (AI text) increasingly essential. While prior work has focused on identifying AI text and effectively checkmating it, our study investigates a less-explored territory: portraying the nuanced distinctions between human and AI texts across text segments (introduction, body, and conclusion). Whether LLMs excel or falter in incorporating linguistic ingenuity across text segments, the results will critically inform their viability and boundaries as effective creative assistants to humans. Through an analogy with the structure of chess games, comprising opening, middle, and end games, we analyze segment-specific patterns to reveal where the most striking differences lie. Although AI texts closely resemble human writing in the body segment due to its length, deeper analysis shows a higher divergence in features dependent on the continuous flow of language, making it the most informative segment for detection. Additionally, human texts exhibit greater stylistic variation across segments, offering a new lens for distinguishing them from AI. Overall, our findings provide fresh insights into human-AI text differences and pave the way for more effective and interpretable detection strategies. Codes available at https://github.com/tripto03/chess_inspired_human_ai_text_distinction.
Authors:Shumin Que, Anton Ragni
Abstract:
Text-to-Speech (TTS) synthesis faces the inherent challenge of producing multiple speech outputs with varying prosody given a single text input. While previous research has addressed this by predicting prosodic information from both text and speech, additional contextual information, such as video, remains under-utilized despite being available in many applications. This paper investigates the potential of integrating visual context to enhance prosody prediction. We propose a novel model, VisualSpeech, which incorporates visual and textual information for improving prosody generation in TTS. Empirical results indicate that incorporating visual features improves prosodic modeling, enhancing the expressiveness of the synthesized speech. Audio samples are available at https://ariameetgit.github.io/VISUALSPEECH-SAMPLES/.
Authors:Yuta Oshima, Masahiro Suzuki, Yutaka Matsuo, Hiroki Furuta
Abstract:
The remarkable progress in text-to-video diffusion models enables photorealistic generations, although the contents of the generated video often include unnatural movement or deformation, reverse playback, and motionless scenes. Recently, an alignment problem has attracted huge attention, where we steer the output of diffusion models based on some quantity on the goodness of the content. Because there is a large room for improvement of perceptual quality along the frame direction, we should address which metrics we should optimize and how we can optimize them in the video generation. In this paper, we propose diffusion latent beam search with lookahead estimator, which can select a better diffusion latent to maximize a given alignment reward, at inference time. We then point out that the improvement of perceptual video quality considering the alignment to prompts requires reward calibration by weighting existing metrics. This is because when humans or vision language models evaluate outputs, many previous metrics to quantify the naturalness of video do not always correlate with evaluation. We demonstrate that our method improves the perceptual quality evaluated on the calibrated reward, VLMs, and human assessment, without model parameter update, and outputs the best generation compared to greedy search and best-of-N sampling under much more efficient computational cost. The experiments highlight that our method is beneficial to many capable generative models, and provide a practical guideline that we should prioritize the inference-time compute allocation into lookahead steps for reward estimation over search budget or denoising steps.
Authors:Junxiang Qiu, Shuo Wang, Jinda Lu, Lin Liu, Houcheng Jiang, Xingyu Zhu, Yanbin Hao
Abstract:
Diffusion Transformer (DiT) is a crucial method for content generation. However, it needs a lot of time to sample. Many studies have attempted to use caching to reduce the time consumption of sampling. Existing caching methods accelerate generation by reusing DiT features from the previous time step and skipping calculations in the next, but they tend to locate and cache low-error modules without focusing on reducing caching-induced errors, resulting in a sharp decline in generated content quality when increasing caching intensity. To solve this problem, we propose the \textbf{E}rror-\textbf{O}ptimized \textbf{C}ache (\textbf{EOC}). This method introduces three key improvements: \textbf{(1)} Prior knowledge extraction: Extract and process the caching differences; \textbf{(2)} A judgment method for cache optimization: Determine whether certain caching steps need to be optimized; \textbf{(3)} Cache optimization: reduce caching errors. Experiments show that this algorithm significantly reduces the error accumulation caused by caching, especially excessive caching. On the ImageNet dataset, without substantially increasing the computational load, this method improves the FID of the generated images when the rule-based model FORA has a caching level of \textbf{75}\%, \textbf{50}\%, and \textbf{25}\%, and the training-based model Learning-to-cache has a caching level of \textbf{22}\%. Specifically, the FID values change from 30.454 to 21.690 (\textbf{28.8}\%), from 6.857 to 5.821 (\textbf{15.1}\%), from 3.870 to 3.692 (\textbf{4.6}\%), and from 3.539 to 3.451 (\textbf{2.5}\%) respectively. Code is available at https://github.com/qiujx0520/EOC_MM2025.git.
Authors:Arsenii Gavrikov, Julián GarcÃa Pardiñas, Alberto Garfagnini
Abstract:
Ensuring reliable data collection in large-scale particle physics experiments demands Data Quality Monitoring (DQM) procedures to detect possible detector malfunctions and preserve data integrity. Traditionally, this resource-intensive task has been handled by human shifters who struggle with frequent changes in operational conditions. We present DINAMO: a novel, interpretable, robust, and scalable DQM framework designed to automate anomaly detection in time-dependent settings. Our approach constructs evolving histogram templates with built-in uncertainties, featuring both a statistical variant - extending the classical Exponentially Weighted Moving Average (EWMA) - and a machine learning (ML)-enhanced version that leverages a transformer encoder for improved adaptability. Experimental validations on synthetic datasets demonstrate the high accuracy, adaptability, and interpretability of these methods. The statistical variant is being commissioned in the LHCb experiment at the Large Hadron Collider, underscoring its real-world impact. The code used in this study is available at https://github.com/ArseniiGav/DINAMO.
Authors:Valtteri Ala-Salmi, Zeeshan Rasheed, Abdul Malik Sami, Zheying Zhang, Kai-Kristian Kemell, Jussi Rasku, Shahbaz Siddeeq, Mika Saari, Pekka Abrahamsson
Abstract:
The use of Large Language Models (LLMs) for autonomous code generation is gaining attention in emerging technologies. As LLM capabilities expand, they offer new possibilities such as code refactoring, security enhancements, and legacy application upgrades. Many outdated web applications pose security and reliability challenges, yet companies continue using them due to the complexity and cost of upgrades. To address this, we propose an LLM-based multi-agent system that autonomously upgrades legacy web applications to the latest versions. The system distributes tasks across multiple phases, updating all relevant files. To evaluate its effectiveness, we employed Zero-Shot Learning (ZSL) and One-Shot Learning (OSL) prompts, applying identical instructions in both cases. The evaluation involved updating view files and measuring the number and types of errors in the output. For complex tasks, we counted the successfully met requirements. The experiments compared the proposed system with standalone LLM execution, repeated multiple times to account for stochastic behavior. Results indicate that our system maintains context across tasks and agents, improving solution quality over the base model in some cases. This study provides a foundation for future model implementations in legacy code updates. Additionally, findings highlight LLMs' ability to update small outdated files with high precision, even with basic prompts. The source code is publicly available on GitHub: https://github.com/alasalm1/Multi-agent-pipeline.
Authors:Yunfan Lu, Yanlin Qian, Ziyang Rao, Junren Xiao, Liming Chen, Hui Xiong
Abstract:
Event-guided imaging has received significant attention due to its potential to revolutionize instant imaging systems. However, the prior methods primarily focus on enhancing RGB images in a post-processing manner, neglecting the challenges of image signal processor (ISP) dealing with event sensor and the benefits events provide for reforming the ISP process. To achieve this, we conduct the first research on event-guided ISP. First, we present a new event-RAW paired dataset, collected with a novel but still confidential sensor that records pixel-level aligned events and RAW images. This dataset includes 3373 RAW images with 2248 x 3264 resolution and their corresponding events, spanning 24 scenes with 3 exposure modes and 3 lenses. Second, we propose a conventional ISP pipeline to generate good RGB frames as reference. This conventional ISP pipleline performs basic ISP operations, e.g.demosaicing, white balancing, denoising and color space transforming, with a ColorChecker as reference. Third, we classify the existing learnable ISP methods into 3 classes, and select multiple methods to train and evaluate on our new dataset. Lastly, since there is no prior work for reference, we propose a simple event-guided ISP method and test it on our dataset. We further put forward key technical challenges and future directions in RGB-Event ISP. In summary, to the best of our knowledge, this is the very first research focusing on event-guided ISP, and we hope it will inspire the community. The code and dataset are available at: https://github.com/yunfanLu/RGB-Event-ISP.
Authors:Hong Huang, Hai Yang, Yuan Chen, Jiaxun Ye, Dapeng Wu
Abstract:
Federated Learning (FL) enables collaborative model training across distributed clients without data sharing, but its high computational and communication demands strain resource-constrained devices. While existing methods use dynamic pruning to improve efficiency by periodically adjusting sparse model topologies while maintaining sparsity, these approaches suffer from issues such as greedy adjustments, unstable topologies, and communication inefficiency, resulting in less robust models and suboptimal performance under data heterogeneity and partial client availability. To address these challenges, we propose Federated Robust pruning via combinatorial Thompson Sampling (FedRTS), a novel framework designed to develop robust sparse models. FedRTS enhances robustness and performance through its Thompson Sampling-based Adjustment (TSAdj) mechanism, which uses probabilistic decisions informed by stable, farsighted information instead of deterministic decisions reliant on unstable and myopic information in previous methods. Extensive experiments demonstrate that FedRTS achieves state-of-the-art performance in computer vision and natural language processing tasks while reducing communication costs, particularly excelling in scenarios with heterogeneous data distributions and partial client participation. Our codes are available at: https://github.com/Little0o0/FedRTS
Authors:Zhengqin Lai, Xiaopeng Hong, Yabin Wang, Xiaobai Li
Abstract:
Micro-expression recognition plays a pivotal role in understanding hidden emotions and has applications across various fields. Traditional recognition methods assume access to all training data at once, but real-world scenarios involve continuously evolving data streams. To respond to the requirement of adapting to new data while retaining previously learned knowledge, we introduce the first benchmark specifically designed for incremental micro-expression recognition. Our contributions include: Firstly, we formulate the incremental learning setting tailored for micro-expression recognition. Secondly, we organize sequential datasets with carefully curated learning orders to reflect real-world scenarios. Thirdly, we define two cross-evaluation-based testing protocols, each targeting distinct evaluation objectives. Finally, we provide six baseline methods and their corresponding evaluation results. This benchmark lays the groundwork for advancing incremental micro-expression recognition research. All source code used in this study will be publicly available at https://github.com/ZhengQinLai/IMER-benchmark.
Authors:Jialin Zhao, Yingtao Zhang, Carlo Vittorio Cannistraci
Abstract:
The rapid growth of Large Language Models has driven demand for effective model compression techniques to reduce memory and computation costs. Low-rank pruning has gained attention for its GPU compatibility across all densities. However, low-rank pruning struggles to match the performance of semi-structured pruning, often doubling perplexity at similar densities. In this paper, we propose Pivoting Factorization (PIFA), a novel lossless meta low-rank representation that unsupervisedly learns a compact form of any low-rank representation, effectively eliminating redundant information. PIFA identifies pivot rows (linearly independent rows) and expresses non-pivot rows as linear combinations, achieving 24.2% additional memory savings and 24.6% faster inference over low-rank layers at rank = 50% of dimension. To mitigate the performance degradation caused by low-rank pruning, we introduce a novel, retraining-free reconstruction method that minimizes error accumulation (M). MPIFA, combining M and PIFA into an end-to-end framework, significantly outperforms existing low-rank pruning methods, and achieves performance comparable to semi-structured pruning, while surpassing it in GPU efficiency and compatibility. Our code is available at https://github.com/biomedical-cybernetics/pivoting-factorization.
Authors:Xingyu Miao, Haoran Duan, Yang Bai, Tejal Shah, Jun Song, Yang Long, Rajiv Ranjan, Ling Shao
Abstract:
In this work, we propose a method that leverages CLIP feature distillation, achieving efficient 3D segmentation through language guidance. Unlike previous methods that rely on multi-scale CLIP features and are limited by processing speed and storage requirements, our approach aims to streamline the workflow by directly and effectively distilling dense CLIP features, thereby achieving precise segmentation of 3D scenes using text. To achieve this, we introduce an adapter module and mitigate the noise issue in the dense CLIP feature distillation process through a self-cross-training strategy. Moreover, to enhance the accuracy of segmentation edges, this work presents a low-rank transient query attention mechanism. To ensure the consistency of segmentation for similar colors under different viewpoints, we convert the segmentation task into a classification task through label volume, which significantly improves the consistency of segmentation in color-similar areas. We also propose a simplified text augmentation strategy to alleviate the issue of ambiguity in the correspondence between CLIP features and text. Extensive experimental results show that our method surpasses current state-of-the-art technologies in both training speed and performance. Our code is available on: https://github.com/xingy038/Laser.git.
Authors:Dahye Kim, Deepti Ghadiyaram
Abstract:
Despite the remarkable progress in text-to-image generative models, they are prone to adversarial attacks and inadvertently generate unsafe, unethical content. Existing approaches often rely on fine-tuning models to remove specific concepts, which is computationally expensive, lacks scalability, and/or compromises generation quality. In this work, we propose a novel framework leveraging k-sparse autoencoders (k-SAEs) to enable efficient and interpretable concept manipulation in diffusion models. Specifically, we first identify interpretable monosemantic concepts in the latent space of text embeddings and leverage them to precisely steer the generation away or towards a given concept (e.g., nudity) or to introduce a new concept (e.g., photographic style) -- all during test time. Through extensive experiments, we demonstrate that our approach is very simple, requires no retraining of the base model nor LoRA adapters, does not compromise the generation quality, and is robust to adversarial prompt manipulations. Our method yields an improvement of $\mathbf{20.01\%}$ in unsafe concept removal, is effective in style manipulation, and is $\mathbf{\sim5}$x faster than the current state-of-the-art. Code is available at: https://github.com/kim-dahye/steerers
Authors:Basant Sharma, Arun Kumar Singh
Abstract:
This paper addresses sampling-based trajectory optimization for risk-aware navigation under stochastic dynamics. Typically such approaches operate by computing $\tilde{N}$ perturbed rollouts around the nominal dynamics to estimate the collision risk associated with a sequence of control commands. We consider a setting where it is expensive to estimate risk using perturbed rollouts, for example, due to expensive collision-checks. We put forward two key contributions. First, we develop an algorithm that distills the statistical information from a larger set of rollouts to a reduced-set with sample size $N<<\tilde{N}$. Consequently, we estimate collision risk using just $N$ rollouts instead of $\tilde{N}$. Second, we formulate a novel surrogate for the collision risk that can leverage the distilled statistical information contained in the reduced-set. We formalize both algorithmic contributions using distribution embedding in Reproducing Kernel Hilbert Space (RKHS) and Maximum Mean Discrepancy (MMD). We perform extensive benchmarking to demonstrate that our MMD-based approach leads to safer trajectories at low sample regime than existing baselines using Conditional Value-at Risk (CVaR) based collision risk estimate.
Authors:Hongliang Li, Jiaxin Zhang, Wenhui Liao, Dezhi Peng, Kai Ding, Lianwen Jin
Abstract:
Current Multimodal Large Language Model (MLLM) architectures face a critical tradeoff between performance and efficiency: decoder-only architectures achieve higher performance but lower efficiency, while cross-attention-based architectures offer greater efficiency but lower performance. The key distinction lies in how visual tokens are processed. Decoder-only architectures apply self-attention and FFN operations on visual tokens, while cross-attention architectures skip these computations. To investigate whether redundancy exists in this computationally expensive process, we propose a training-free framework for analyzing trained MLLMs. It consists of Probe-Activated Dynamic FFN and Hollow Attention, which enable adjustable reductions in computations for visual tokens, as well as a Layer Ranking Algorithm that prioritizes layers for these reductions. Extensive experiments demonstrate substantial, structured, and clustered redundancy unique to decoder-only MLLMs, offering valuable insights for future MLLM architecture design. Furthermore, by leveraging our reduction framework as a training-free inference acceleration approach, we achieve performance comparable to or better than state-of-the-art methods while remaining compatible with them. Code will be publicly available at https://github.com/L-Hugh/RedundancyLens.
Authors:Javier Montalvo, Pablo Carballeira, Ãlvaro GarcÃa-MartÃn
Abstract:
Semantic segmentation on LiDAR imaging is increasingly gaining attention, as it can provide useful knowledge for perception systems and potential for autonomous driving. However, collecting and labeling real LiDAR data is an expensive and time-consuming task. While datasets such as SemanticKITTI have been manually collected and labeled, the introduction of simulation tools such as CARLA, has enabled the creation of synthetic datasets on demand.
In this work, we present a modified CARLA simulator designed with LiDAR semantic segmentation in mind, with new classes, more consistent object labeling with their counterparts from real datasets such as SemanticKITTI, and the possibility to adjust the object class distribution. Using this tool, we have generated SynthmanticLiDAR, a synthetic dataset for semantic segmentation on LiDAR imaging, designed to be similar to SemanticKITTI, and we evaluate its contribution to the training process of different semantic segmentation algorithms by using a naive transfer learning approach. Our results show that incorporating SynthmanticLiDAR into the training process improves the overall performance of tested algorithms, proving the usefulness of our dataset, and therefore, our adapted CARLA simulator.
The dataset and simulator are available in https://github.com/vpulab/SynthmanticLiDAR.
Authors:Bo Lan, Pei Li, Jiaxi Yin, Yunpeng Song, Ge Wang, Han Ding, Jinsong Han, Fei Wang
Abstract:
Human Action Recognition (HAR) plays a crucial role in applications such as health monitoring, smart home automation, and human-computer interaction. While HAR has been extensively studied, action summarization using Wi-Fi and IMU signals in smart-home environments , which involves identifying and summarizing continuous actions, remains an emerging task. This paper introduces the novel XRF V2 dataset, designed for indoor daily activity Temporal Action Localization (TAL) and action summarization. XRF V2 integrates multimodal data from Wi-Fi signals, IMU sensors (smartphones, smartwatches, headphones, and smart glasses), and synchronized video recordings, offering a diverse collection of indoor activities from 16 volunteers across three distinct environments. To tackle TAL and action summarization, we propose the XRFMamba neural network, which excels at capturing long-term dependencies in untrimmed sensory sequences and achieves the best performance with an average mAP of 78.74, outperforming the recent WiFiTAD by 5.49 points in mAP@avg while using 35% fewer parameters. In action summarization, we introduce a new metric, Response Meaning Consistency (RMC), to evaluate action summarization performance. And it achieves an average Response Meaning Consistency (mRMC) of 0.802. We envision XRF V2 as a valuable resource for advancing research in human action localization, action forecasting, pose estimation, multimodal foundation models pre-training, synthetic data generation, and more. The data and code are available at https://github.com/aiotgroup/XRFV2.
Authors:Bangchao Wang, Yang Deng, Ruiqi Luo, Peng Liang, Tingting Bi
Abstract:
In recent years, the pre-training, prompting and prediction paradigm, known as prompt-tuning, has achieved significant success in Natural Language Processing (NLP). Issue-commit Link Recovery (ILR) in Software Traceability (ST) plays an important role in improving the reliability, quality, and security of software systems. The current ILR methods convert the ILR into a classification task using pre-trained language models (PLMs) and dedicated neural networks. these methods do not fully utilize the semantic information embedded in PLMs, resulting in not achieving acceptable performance. To address this limitation, we introduce a novel paradigm: Multi-template Prompt-tuning with adversarial training for issue-commit Link recovery (MPLinker). MPLinker redefines the ILR task as a cloze task via template-based prompt-tuning and incorporates adversarial training to enhance model generalization and reduce overfitting. We evaluated MPLinker on six open-source projects using a comprehensive set of performance metrics. The experiment results demonstrate that MPLinker achieves an average F1-score of 96.10%, Precision of 96.49%, Recall of 95.92%, MCC of 94.04%, AUC of 96.05%, and ACC of 98.15%, significantly outperforming existing state-of-the-art methods. Overall, MPLinker improves the performance and generalization of ILR models, and introduces innovative concepts and methods for ILR. The replication package for MPLinker is available at https://github.com/WTU-intelligent-software-development/MPLinker
Authors:Shiyu Fang, Donghao Zhou, Yiming Cui, ChengKai Xu, Peng Hang, Jian Sun
Abstract:
A lack of understanding of interactions and the inability to effectively resolve conflicts continue to impede the progress of Connected Autonomous Vehicles (CAVs) in their interactions with Human-Driven Vehicles (HDVs). To address this challenge, we propose the Recognize then Resolve (RtR) framework. First, a Bilateral Intention Progression Graph (BIPG) is constructed based on CAV-HDV interaction data to model the evolution of interactions and identify potential HDV intentions. Three typical interaction breakdown scenarios are then categorized, and key moments are defined for triggering cooperative conflict resolution. On this basis, a constrained Monte Carlo Tree Search (MCTS) algorithm is introduced to determine the optimal passage order while accommodating HDV intentions. Experimental results demonstrate that the proposed RtR framework outperforms other cooperative approaches in terms of safety and efficiency across various penetration rates, achieving results close to consistent cooperation while significantly reducing computational resources. Our code and data are available at: https://github.com/FanGShiYuu/RtR-Recognize-then-Resolve/.
Authors:Yunpeng Qu, Kun Yuan, Jinhua Hao, Kai Zhao, Qizhi Xie, Ming Sun, Chao Zhou
Abstract:
Image Super-Resolution (ISR) has seen significant progress with the introduction of remarkable generative models. However, challenges such as the trade-off issues between fidelity and realism, as well as computational complexity, have also posed limitations on their application. Building upon the tremendous success of autoregressive models in the language domain, we propose \textbf{VARSR}, a novel visual autoregressive modeling for ISR framework with the form of next-scale prediction. To effectively integrate and preserve semantic information in low-resolution images, we propose using prefix tokens to incorporate the condition. Scale-aligned Rotary Positional Encodings are introduced to capture spatial structures and the diffusion refiner is utilized for modeling quantization residual loss to achieve pixel-level fidelity. Image-based Classifier-free Guidance is proposed to guide the generation of more realistic images. Furthermore, we collect large-scale data and design a training process to obtain robust generative priors. Quantitative and qualitative results show that VARSR is capable of generating high-fidelity and high-realism images with more efficiency than diffusion-based methods. Our codes will be released at https://github.com/qyp2000/VARSR.
Authors:Zhengrui Guo, Qichen Sun, Jiabo Ma, Lishuang Feng, Jinzhuo Wang, Hao Chen
Abstract:
Whole slide image (WSI) analysis presents significant computational challenges due to the massive number of patches in gigapixel images. While transformer architectures excel at modeling long-range correlations through self-attention, their quadratic computational complexity makes them impractical for computational pathology applications. Existing solutions like local-global or linear self-attention reduce computational costs but compromise the strong modeling capabilities of full self-attention. In this work, we propose Querent, i.e., the query-aware long contextual dynamic modeling framework, which achieves a theoretically bounded approximation of full self-attention while delivering practical efficiency. Our method adaptively predicts which surrounding regions are most relevant for each patch, enabling focused yet unrestricted attention computation only with potentially important contexts. By using efficient region-wise metadata computation and importance estimation, our approach dramatically reduces computational overhead while preserving global perception to model fine-grained patch correlations. Through comprehensive experiments on biomarker prediction, gene mutation prediction, cancer subtyping, and survival analysis across over 10 WSI datasets, our method demonstrates superior performance compared to the state-of-the-art approaches. Codes are available at https://github.com/dddavid4real/Querent.
Authors:Yuchen Lin, Chenguo Lin, Jianjin Xu, Yadong Mu
Abstract:
Recently, significant advancements have been made in the reconstruction and generation of 3D assets, including static cases and those with physical interactions. To recover the physical properties of 3D assets, existing methods typically assume that all materials belong to a specific predefined category (e.g., elasticity). However, such assumptions ignore the complex composition of multiple heterogeneous objects in real scenarios and tend to render less physically plausible animation given a wider range of objects. We propose OmniPhysGS for synthesizing a physics-based 3D dynamic scene composed of more general objects. A key design of OmniPhysGS is treating each 3D asset as a collection of constitutive 3D Gaussians. For each Gaussian, its physical material is represented by an ensemble of 12 physical domain-expert sub-models (rubber, metal, honey, water, etc.), which greatly enhances the flexibility of the proposed model. In the implementation, we define a scene by user-specified prompts and supervise the estimation of material weighting factors via a pretrained video diffusion model. Comprehensive experiments demonstrate that OmniPhysGS achieves more general and realistic physical dynamics across a broader spectrum of materials, including elastic, viscoelastic, plastic, and fluid substances, as well as interactions between different materials. Our method surpasses existing methods by approximately 3% to 16% in metrics of visual quality and text alignment.
Authors:Seungheun Baek, Soyon Park, Yan Ting Chok, Mogan Gim, Jaewoo Kang
Abstract:
Motivation: Predicting cellular responses to genetic perturbations is essential for understanding biological systems and developing targeted therapeutic strategies. While variational autoencoders (VAEs) have shown promise in modeling perturbation responses, their limited explainability poses a significant challenge, as the learned features often lack clear biological meaning. Nevertheless, model explainability is one of the most important aspects in the realm of biological AI. One of the most effective ways to achieve explainability is incorporating the concept of gene regulatory networks (GRNs) in designing deep learning models such as VAEs. GRNs elicit the underlying causal relationships between genes and are capable of explaining the transcriptional responses caused by genetic perturbation treatments. Results: We propose GPO-VAE, an explainable VAE enhanced by GRN-aligned Parameter Optimization that explicitly models gene regulatory networks in the latent space. Our key approach is to optimize the learnable parameters related to latent perturbation effects towards GRN-aligned explainability. Experimental results on perturbation prediction show our model achieves state-of-the-art performance in predicting transcriptional responses across multiple benchmark datasets. Furthermore, additional results on evaluating the GRN inference task reveal our model's ability to generate meaningful GRNs compared to other methods. According to qualitative analysis, GPO-VAE posseses the ability to construct biologically explainable GRNs that align with experimentally validated regulatory pathways. GPO-VAE is available at https://github.com/dmis-lab/GPO-VAE
Authors:Shenghao Fu, Qize Yang, Qijie Mo, Junkai Yan, Xihan Wei, Jingke Meng, Xiaohua Xie, Wei-Shi Zheng
Abstract:
Recent open-vocabulary detectors achieve promising performance with abundant region-level annotated data. In this work, we show that an open-vocabulary detector co-training with a large language model by generating image-level detailed captions for each image can further improve performance. To achieve the goal, we first collect a dataset, GroundingCap-1M, wherein each image is accompanied by associated grounding labels and an image-level detailed caption. With this dataset, we finetune an open-vocabulary detector with training objectives including a standard grounding loss and a caption generation loss. We take advantage of a large language model to generate both region-level short captions for each region of interest and image-level long captions for the whole image. Under the supervision of the large language model, the resulting detector, LLMDet, outperforms the baseline by a clear margin, enjoying superior open-vocabulary ability. Further, we show that the improved LLMDet can in turn build a stronger large multi-modal model, achieving mutual benefits. The code, model, and dataset is available at https://github.com/iSEE-Laboratory/LLMDet.
Authors:Anh Bui, Trang Vu, Long Vuong, Trung Le, Paul Montague, Tamas Abraham, Junae Kim, Dinh Phung
Abstract:
Concept erasure has emerged as a promising technique for mitigating the risk of harmful content generation in diffusion models by selectively unlearning undesirable concepts. The common principle of previous works to remove a specific concept is to map it to a fixed generic concept, such as a neutral concept or just an empty text prompt. In this paper, we demonstrate that this fixed-target strategy is suboptimal, as it fails to account for the impact of erasing one concept on the others. To address this limitation, we model the concept space as a graph and empirically analyze the effects of erasing one concept on the remaining concepts. Our analysis uncovers intriguing geometric properties of the concept space, where the influence of erasing a concept is confined to a local region. Building on this insight, we propose the Adaptive Guided Erasure (AGE) method, which \emph{dynamically} selects optimal target concepts tailored to each undesirable concept, minimizing unintended side effects. Experimental results show that AGE significantly outperforms state-of-the-art erasure methods on preserving unrelated concepts while maintaining effective erasure performance. Our code is published at {https://github.com/tuananhbui89/Adaptive-Guided-Erasure}.
Authors:Minwoo Jung, Sangwoo Jung, Hyeonjae Gil, Ayoung Kim
Abstract:
LiDAR place recognition is a crucial module in localization that matches the current location with previously observed environments. Most existing approaches in LiDAR place recognition dominantly focus on the spinning type LiDAR to exploit its large FOV for matching. However, with the recent emergence of various LiDAR types, the importance of matching data across different LiDAR types has grown significantly-a challenge that has been largely overlooked for many years. To address these challenges, we introduce HeLiOS, a deep network tailored for heterogeneous LiDAR place recognition, which utilizes small local windows with spherical transformers and optimal transport-based cluster assignment for robust global descriptors. Our overlap-based data mining and guided-triplet loss overcome the limitations of traditional distance-based mining and discrete class constraints. HeLiOS is validated on public datasets, demonstrating performance in heterogeneous LiDAR place recognition while including an evaluation for long-term recognition, showcasing its ability to handle unseen LiDAR types. We release the HeLiOS code as an open source for the robotics community at https://github.com/minwoo0611/HeLiOS.
Authors:Zi-Jian Cheng, Zi-Yi Jia, Zhi Zhou, Yu-Feng Li, Lan-Zhe Guo
Abstract:
Tabular data is widely utilized in various machine learning tasks. Current tabular learning research predominantly focuses on closed environments, while in real-world applications, open environments are often encountered, where distribution and feature shifts occur, leading to significant degradation in model performance. Previous research has primarily concentrated on mitigating distribution shifts, whereas feature shifts, a distinctive and unexplored challenge of tabular data, have garnered limited attention. To this end, this paper conducts the first comprehensive study on feature shifts in tabular data and introduces the first tabular feature-shift benchmark (TabFSBench). TabFSBench evaluates impacts of four distinct feature-shift scenarios on four tabular model categories across various datasets and assesses the performance of large language models (LLMs) and tabular LLMs in the tabular benchmark for the first time. Our study demonstrates three main observations: (1) most tabular models have the limited applicability in feature-shift scenarios; (2) the shifted feature set importance has a linear relationship with model performance degradation; (3) model performance in closed environments correlates with feature-shift performance. Future research direction is also explored for each observation.
Benchmark: https://github.com/LAMDASZ-ML/TabFSBench.
Authors:Wencheng Yang, Song Wang, Di Wu, Taotao Cai, Yanming Zhu, Shicheng Wei, Yiying Zhang, Xu Yang, Zhaohui Tang, Yan Li
Abstract:
The rapid adoption of deep learning in sensitive domains has brought tremendous benefits. However, this widespread adoption has also given rise to serious vulnerabilities, particularly model inversion (MI) attacks, posing a significant threat to the privacy and integrity of personal data. The increasing prevalence of these attacks in applications such as biometrics, healthcare, and finance has created an urgent need to understand their mechanisms, impacts, and defense methods. This survey aims to fill the gap in the literature by providing a structured and in-depth review of MI attacks and defense strategies. Our contributions include a systematic taxonomy of MI attacks, extensive research on attack techniques and defense mechanisms, and a discussion about the challenges and future research directions in this evolving field. By exploring the technical and ethical implications of MI attacks, this survey aims to offer insights into the impact of AI-powered systems on privacy, security, and trust. In conjunction with this survey, we have developed a comprehensive repository to support research on MI attacks and defenses. The repository includes state-of-the-art research papers, datasets, evaluation metrics, and other resources to meet the needs of both novice and experienced researchers interested in MI attacks and defenses, as well as the broader field of AI security and privacy. The repository will be continuously maintained to ensure its relevance and utility. It is accessible at https://github.com/overgter/Deep-Learning-Model-Inversion-Attacks-and-Defenses.
Authors:Sunyong Seo, Huisu Yoon, Semin Kim, Jongha Lee
Abstract:
The U-Net architecture and its variants have remained state-of-the-art (SOTA) for retinal vessel segmentation over the past decade. In this study, we introduce a Full Scale Guided Network (FSG-Net), where the feature representation network with modernized convolution blocks extracts full-scale information and the guided convolution block refines that information. Attention-guided filter is introduced to the guided convolution block under the interpretation that the filter behaves like the unsharp mask filter. Passing full-scale information to the attention block allows for the generation of improved attention maps, which are then passed to the attention-guided filter, resulting in performance enhancement of the segmentation network. The structure preceding the guided convolution block can be replaced by any U-Net variant, which enhances the scalability of the proposed approach. For a fair comparison, we re-implemented recent studies available in public repositories to evaluate their scalability and reproducibility. Our experiments also show that the proposed network demonstrates competitive results compared to current SOTA models on various public datasets. Ablation studies demonstrate that the proposed model is competitive with much smaller parameter sizes. Lastly, by applying the proposed model to facial wrinkle segmentation, we confirmed the potential for scalability to similar tasks in other domains. Our code is available on https://github.com/ZombaSY/FSG-Net-pytorch.
Authors:Tongda Xu, Xiyan Cai, Xinjie Zhang, Xingtong Ge, Dailan He, Ming Sun, Jingjing Liu, Ya-Qin Zhang, Jian Li, Yan Wang
Abstract:
Recent advancements in diffusion models have been leveraged to address inverse problems without additional training, and Diffusion Posterior Sampling (DPS) (Chung et al., 2022a) is among the most popular approaches. Previous analyses suggest that DPS accomplishes posterior sampling by approximating the conditional score. While in this paper, we demonstrate that the conditional score approximation employed by DPS is not as effective as previously assumed, but rather aligns more closely with the principle of maximizing a posterior (MAP). This assertion is substantiated through an examination of DPS on 512x512 ImageNet images, revealing that: 1) DPS's conditional score estimation significantly diverges from the score of a well-trained conditional diffusion model and is even inferior to the unconditional score; 2) The mean of DPS's conditional score estimation deviates significantly from zero, rendering it an invalid score estimation; 3) DPS generates high-quality samples with significantly lower diversity. In light of the above findings, we posit that DPS more closely resembles MAP than a conditional score estimator, and accordingly propose the following enhancements to DPS: 1) we explicitly maximize the posterior through multi-step gradient ascent and projection; 2) we utilize a light-weighted conditional score estimator trained with only 100 images and 8 GPU hours. Extensive experimental results indicate that these proposed improvements significantly enhance DPS's performance. The source code for these improvements is provided in https://github.com/tongdaxu/Rethinking-Diffusion-Posterior-Sampling-From-Conditional-Score-Estimator-to-Maximizing-a-Posterior.
Authors:Pinxin Liu, Luchuan Song, Junhua Huang, Haiyang Liu, Chenliang Xu
Abstract:
Generating full-body human gestures based on speech signals remains challenges on quality and speed. Existing approaches model different body regions such as body, legs and hands separately, which fail to capture the spatial interactions between them and result in unnatural and disjointed movements. Additionally, their autoregressive/diffusion-based pipelines show slow generation speed due to dozens of inference steps. To address these two challenges, we propose GestureLSM, a flow-matching-based approach for Co-Speech Gesture Generation with spatial-temporal modeling. Our method i) explicitly model the interaction of tokenized body regions through spatial and temporal attention, for generating coherent full-body gestures. ii) introduce the flow matching to enable more efficient sampling by explicitly modeling the latent velocity space. To overcome the suboptimal performance of flow matching baseline, we propose latent shortcut learning and beta distribution time stamp sampling during training to enhance gesture synthesis quality and accelerate inference. Combining the spatial-temporal modeling and improved flow matching-based framework, GestureLSM achieves state-of-the-art performance on BEAT2 while significantly reducing inference time compared to existing methods, highlighting its potential for enhancing digital humans and embodied agents in real-world applications. Project Page: https://andypinxinliu.github.io/GestureLSM
Authors:Jaesin Ahn, Heechul Jung
Abstract:
Text-to-image diffusion models show remarkable generation performance following text prompts, but risk generating Not Safe For Work (NSFW) contents from unsafe prompts. Existing approaches, such as prompt filtering or concept unlearning, fail to defend against adversarial attacks while maintaining benign image quality. In this paper, we propose a novel approach called Distorting Embedding Space (DES), a text encoder-based defense mechanism that effectively tackles these issues through innovative embedding space control. DES transforms unsafe embeddings, extracted from a text encoder using unsafe prompts, toward carefully calculated safe embedding regions to prevent unsafe contents generation, while reproducing the original safe embeddings. DES also neutralizes the nudity embedding, extracted using prompt ``nudity", by aligning it with neutral embedding to enhance robustness against adversarial attacks. These methods ensure both robust defense and high-quality image generation. Additionally, DES can be adopted in a plug-and-play manner and requires zero inference overhead, facilitating its deployment. Extensive experiments on diverse attack types, including black-box and white-box scenarios, demonstrate DES's state-of-the-art performance in both defense capability and benign image generation quality. Our model is available at https://github.com/aei13/DES.
Authors:Antoine Simoulin, Namyong Park, Xiaoyi Liu, Grey Yang
Abstract:
Fine-tuning provides an effective means to specialize pre-trained models for various downstream tasks. However, fine-tuning often incurs high memory overhead, especially for large transformer-based models, such as LLMs. While existing methods may reduce certain parts of the memory required for fine-tuning, they still require caching all intermediate activations computed in the forward pass to update weights during the backward pass. In this work, we develop TokenTune, a method to reduce memory usage, specifically the memory to store intermediate activations, in the fine-tuning of transformer-based models. During the backward pass, TokenTune approximates the gradient computation by backpropagating through just a subset of input tokens. Thus, with TokenTune, only a subset of intermediate activations are cached during the forward pass. Also, TokenTune can be easily combined with existing methods like LoRA, further reducing the memory cost. We evaluate our approach on pre-trained transformer models with up to billions of parameters, considering the performance on multiple downstream tasks such as text classification and question answering in a few-shot learning setup. Overall, TokenTune achieves performance on par with full fine-tuning or representative memory-efficient fine-tuning methods, while greatly reducing the memory footprint, especially when combined with other methods with complementary memory reduction mechanisms. We hope that our approach will facilitate the fine-tuning of large transformers, in specializing them for specific domains or co-training them with other neural components from a larger system. Our code is available at https://github.com/facebookresearch/tokentune.
Authors:Ervin Dervishaj, Tuukka Ruotsalo, Maria Maistro, Christina Lioma
Abstract:
Unsupervised learning of disentangled representations has been closely tied to enhancing the representation intepretability of Recommender Systems (RSs). This has been achieved by making the representation of individual features more distinctly separated, so that it is easier to attribute the contribution of features to the model's predictions. However, such advantages in interpretability and feature attribution have mainly been explored qualitatively. Moreover, the effect of disentanglement on the model's recommendation performance has been largely overlooked. In this work, we reproduce the recommendation performance, representation disentanglement and representation interpretability of five well-known recommendation models on four RS datasets. We quantify disentanglement and investigate the link of disentanglement with recommendation effectiveness and representation interpretability. While several existing work in RSs have proposed disentangled representations as a gateway to improved effectiveness and interpretability, our findings show that disentanglement is not necessarily related to effectiveness but is closely related to representation interpretability. Our code and results are publicly available at https://github.com/edervishaj/disentanglement-interpretability-recsys.
Authors:Zehong Wang, Zheyuan Zhang, Tianyi Ma, Nitesh V Chawla, Chuxu Zhang, Yanfang Ye
Abstract:
Graph learning tasks often hinge on identifying key substructure patterns -- such as triadic closures in social networks or benzene rings in molecular graphs -- that underpin downstream performance. However, most existing graph neural networks (GNNs) rely on message passing, which aggregates local neighborhood information iteratively and struggles to explicitly capture such fundamental motifs, like triangles, k-cliques, and rings. This limitation hinders both expressiveness and long-range dependency modeling. In this paper, we introduce the Neural Graph Pattern Machine (GPM), a novel framework that bypasses message passing by learning directly from graph substructures. GPM efficiently extracts, encodes, and prioritizes task-relevant graph patterns, offering greater expressivity and improved ability to capture long-range dependencies. Empirical evaluations across four standard tasks -- node classification, link prediction, graph classification, and graph regression -- demonstrate that GPM outperforms state-of-the-art baselines. Further analysis reveals that GPM exhibits strong out-of-distribution generalization, desirable scalability, and enhanced interpretability. Code and datasets are available at: https://github.com/Zehong-Wang/GPM.
Authors:Zhe Wang, Yuhua Ru, Fabian Bauer, Aladine Chetouani, Fang Chen, Liping Zhang, Didier Hans, Rachid Jennane, Mohamed Jarraya, Yung Hsin Chen
Abstract:
Magnetic Resonance Imaging (MRI) offers critical insights into microstructural details, however, the spatial resolution of standard 1.5T imaging systems is often limited. In contrast, 7T MRI provides significantly enhanced spatial resolution, enabling finer visualization of anatomical structures. Though this, the high cost and limited availability of 7T MRI hinder its widespread use in clinical settings. To address this challenge, a novel Super-Resolution (SR) model is proposed to generate 7T-like MRI from standard 1.5T MRI scans. Our approach leverages a diffusion-based architecture, incorporating gradient nonlinearity correction and bias field correction data from 7T imaging as guidance. Moreover, to improve deployability, a progressive distillation strategy is introduced. Specifically, the student model refines the 7T SR task with steps, leveraging feature maps from the inference phase of the teacher model as guidance, aiming to allow the student model to achieve progressively 7T SR performance with a smaller, deployable model size. Experimental results demonstrate that our baseline teacher model achieves state-of-the-art SR performance. The student model, while lightweight, sacrifices minimal performance. Furthermore, the student model is capable of accepting MRI inputs at varying resolutions without the need for retraining, significantly further enhancing deployment flexibility. The clinical relevance of our proposed method is validated using clinical data from Massachusetts General Hospital. Our code is available at https://github.com/ZWang78/SR.
Authors:Harshwardhan Praveen, Jacob Brown, Christopher Earls
Abstract:
In this work, we present a mesh-independent, data-driven library, chebgreen, to mathematically model one-dimensional systems, possessing an associated control parameter, and whose governing partial differential equation is unknown. The proposed method learns an Empirical Green's Function for the associated, but hidden, boundary value problem, in the form of a Rational Neural Network from which we subsequently construct a bivariate representation in a Chebyshev basis. We uncover the Green's function, at an unseen control parameter value, by interpolating the left and right singular functions within a suitable library, expressed as points on a manifold of Quasimatrices, while the associated singular values are interpolated with Lagrange polynomials.
Authors:Yansong Qu, Dian Chen, Xinyang Li, Xiaofan Li, Shengchuan Zhang, Liujuan Cao, Rongrong Ji
Abstract:
Recent advancements in 3D scene editing have been propelled by the rapid development of generative models. Existing methods typically utilize generative models to perform text-guided editing on 3D representations, such as 3D Gaussian Splatting (3DGS). However, these methods are often limited to texture modifications and fail when addressing geometric changes, such as editing a character's head to turn around. Moreover, such methods lack accurate control over the spatial position of editing results, as language struggles to precisely describe the extent of edits. To overcome these limitations, we introduce DYG, an effective 3D drag-based editing method for 3D Gaussian Splatting. It enables users to conveniently specify the desired editing region and the desired dragging direction through the input of 3D masks and pairs of control points, thereby enabling precise control over the extent of editing. DYG integrates the strengths of the implicit triplane representation to establish the geometric scaffold of the editing results, effectively overcoming suboptimal editing outcomes caused by the sparsity of 3DGS in the desired editing regions. Additionally, we incorporate a drag-based Latent Diffusion Model into our method through the proposed Drag-SDS loss function, enabling flexible, multi-view consistent, and fine-grained editing. Extensive experiments demonstrate that DYG conducts effective drag-based editing guided by control point prompts, surpassing other baselines in terms of editing effect and quality, both qualitatively and quantitatively. Visit our project page at https://quyans.github.io/Drag-Your-Gaussian.
Authors:Ranjan Sapkota, Shaina Raza, Maged Shoman, Achyut Paudel, Manoj Karkee
Abstract:
In the past five years, research has shifted from traditional Machine Learning (ML) and Deep Learning (DL) approaches to leveraging Large Language Models (LLMs) , including multimodality, for data augmentation to enhance generalization, and combat overfitting in training deep convolutional neural networks. However, while existing surveys predominantly focus on ML and DL techniques or limited modalities (text or images), a gap remains in addressing the latest advancements and multi-modal applications of LLM-based methods. This survey fills that gap by exploring recent literature utilizing multimodal LLMs to augment image, text, and audio data, offering a comprehensive understanding of these processes. We outlined various methods employed in the LLM-based image, text and speech augmentation, and discussed the limitations identified in current approaches. Additionally, we identified potential solutions to these limitations from the literature to enhance the efficacy of data augmentation practices using multimodal LLMs. This survey serves as a foundation for future research, aiming to refine and expand the use of multimodal LLMs in enhancing dataset quality and diversity for deep learning applications. (Surveyed Paper GitHub Repo: https://github.com/WSUAgRobotics/data-aug-multi-modal-llm. Keywords: LLM data augmentation, Grok text data augmentation, DeepSeek image data augmentation, Grok speech data augmentation, GPT audio augmentation, voice augmentation, DeepSeek for data augmentation, DeepSeek R1 text data augmentation, DeepSeek R1 image augmentation, Image Augmentation using LLM, Text Augmentation using LLM, LLM data augmentation for deep learning applications)
Authors:Daniel Schwartz, Dmitriy Bespalov, Zhe Wang, Ninad Kulkarni, Yanjun Qi
Abstract:
As large language models (LLMs) become increasingly prevalent, ensuring their robustness against adversarial misuse is crucial. This paper introduces the GAP (Graph of Attacks with Pruning) framework, an advanced approach for generating stealthy jailbreak prompts to evaluate and enhance LLM safeguards. GAP addresses limitations in existing tree-based LLM jailbreak methods by implementing an interconnected graph structure that enables knowledge sharing across attack paths. Our experimental evaluation demonstrates GAP's superiority over existing techniques, achieving a 20.8% increase in attack success rates while reducing query costs by 62.7%. GAP consistently outperforms state-of-the-art methods for attacking both open and closed LLMs, with attack success rates of >96%. Additionally, we present specialized variants like GAP-Auto for automated seed generation and GAP-VLM for multimodal attacks. GAP-generated prompts prove highly effective in improving content moderation systems, increasing true positive detection rates by 108.5% and accuracy by 183.6% when used for fine-tuning. Our implementation is available at https://github.com/dsbuddy/GAP-LLM-Safety.
Authors:Xun Liang, Simin Niu, Zhiyu Li, Sensen Zhang, Hanyu Wang, Feiyu Xiong, Jason Zhaoxin Fan, Bo Tang, Shichao Song, Mengwei Wang, Jiawei Yang
Abstract:
The indexing-retrieval-generation paradigm of retrieval-augmented generation (RAG) has been highly successful in solving knowledge-intensive tasks by integrating external knowledge into large language models (LLMs). However, the incorporation of external and unverified knowledge increases the vulnerability of LLMs because attackers can perform attack tasks by manipulating knowledge. In this paper, we introduce a benchmark named SafeRAG designed to evaluate the RAG security. First, we classify attack tasks into silver noise, inter-context conflict, soft ad, and white Denial-of-Service. Next, we construct RAG security evaluation dataset (i.e., SafeRAG dataset) primarily manually for each task. We then utilize the SafeRAG dataset to simulate various attack scenarios that RAG may encounter. Experiments conducted on 14 representative RAG components demonstrate that RAG exhibits significant vulnerability to all attack tasks and even the most apparent attack task can easily bypass existing retrievers, filters, or advanced LLMs, resulting in the degradation of RAG service quality. Code is available at: https://github.com/IAAR-Shanghai/SafeRAG.
Authors:Rong Liu, Dylan Sun, Meida Chen, Yue Wang, Andrew Feng
Abstract:
3D Gaussian Splatting (3DGS) has advanced radiance field reconstruction by enabling real-time rendering. However, its reliance on Gaussian kernels for geometry and low-order Spherical Harmonics (SH) for color encoding limits its ability to capture complex geometries and diverse colors. We introduce Deformable Beta Splatting (DBS), a deformable and compact approach that enhances both geometry and color representation. DBS replaces Gaussian kernels with deformable Beta Kernels, which offer bounded support and adaptive frequency control to capture fine geometric details with higher fidelity while achieving better memory efficiency. In addition, we extended the Beta Kernel to color encoding, which facilitates improved representation of diffuse and specular components, yielding superior results compared to SH-based methods. Furthermore, Unlike prior densification techniques that depend on Gaussian properties, we mathematically prove that adjusting regularized opacity alone ensures distribution-preserved Markov chain Monte Carlo (MCMC), independent of the splatting kernel type. Experimental results demonstrate that DBS achieves state-of-the-art visual quality while utilizing only 45% of the parameters and rendering 1.5x faster than 3DGS-MCMC, highlighting the superior performance of DBS for real-time radiance field rendering. Interactive demonstrations and source code are available on our project website: https://rongliu-leo.github.io/beta-splatting/.
Authors:Xiangbo Gao, Runsheng Xu, Jiachen Li, Ziran Wang, Zhiwen Fan, Zhengzhong Tu
Abstract:
Perception is crucial for autonomous driving, but single-agent perception is often constrained by sensors' physical limitations, leading to degraded performance under severe occlusion, adverse weather conditions, and when detecting distant objects. Multi-agent collaborative perception offers a solution, yet challenges arise when integrating heterogeneous agents with varying model architectures. To address these challenges, we propose STAMP, a scalable task- and model-agnostic, collaborative perception pipeline for heterogeneous agents. STAMP utilizes lightweight adapter-reverter pairs to transform Bird's Eye View (BEV) features between agent-specific and shared protocol domains, enabling efficient feature sharing and fusion. This approach minimizes computational overhead, enhances scalability, and preserves model security. Experiments on simulated and real-world datasets demonstrate STAMP's comparable or superior accuracy to state-of-the-art models with significantly reduced computational costs. As a first-of-its-kind task- and model-agnostic framework, STAMP aims to advance research in scalable and secure mobility systems towards Level 5 autonomy. Our project page is at https://xiangbogaobarry.github.io/STAMP and the code is available at https://github.com/taco-group/STAMP.
Authors:Vishal Thengane, Xiatian Zhu, Salim Bouzerdoum, Son Lam Phung, Yunpeng Li
Abstract:
The 3D point cloud representation plays a crucial role in preserving the geometric fidelity of the physical world, enabling more accurate complex 3D environments. While humans naturally comprehend the intricate relationships between objects and variations through a multisensory system, artificial intelligence (AI) systems have yet to fully replicate this capacity. To bridge this gap, it becomes essential to incorporate multiple modalities. Models that can seamlessly integrate and reason across these modalities are known as foundation models (FMs). The development of FMs for 2D modalities, such as images and text, has seen significant progress, driven by the abundant availability of large-scale datasets. However, the 3D domain has lagged due to the scarcity of labelled data and high computational overheads. In response, recent research has begun to explore the potential of applying FMs to 3D tasks, overcoming these challenges by leveraging existing 2D knowledge. Additionally, language, with its capacity for abstract reasoning and description of the environment, offers a promising avenue for enhancing 3D understanding through large pre-trained language models (LLMs). Despite the rapid development and adoption of FMs for 3D vision tasks in recent years, there remains a gap in comprehensive and in-depth literature reviews. This article aims to address this gap by presenting a comprehensive overview of the state-of-the-art methods that utilize FMs for 3D visual understanding. We start by reviewing various strategies employed in the building of various 3D FMs. Then we categorize and summarize use of different FMs for tasks such as perception tasks. Finally, the article offers insights into future directions for research and development in this field. To help reader, we have curated list of relevant papers on the topic: https://github.com/vgthengane/Awesome-FMs-in-3D.
Authors:Yinbo Chen, Rohit Girdhar, Xiaolong Wang, Sai Saketh Rambhatla, Ishan Misra
Abstract:
Tokenizing images into compact visual representations is a key step in learning efficient and high-quality image generative models. We present a simple diffusion tokenizer (DiTo) that learns compact visual representations for image generation models. Our key insight is that a single learning objective, diffusion L2 loss, can be used for training scalable image tokenizers. Since diffusion is already widely used for image generation, our insight greatly simplifies training such tokenizers. In contrast, current state-of-the-art tokenizers rely on an empirically found combination of heuristics and losses, thus requiring a complex training recipe that relies on non-trivially balancing different losses and pretrained supervised models. We show design decisions, along with theoretical grounding, that enable us to scale DiTo for learning competitive image representations. Our results show that DiTo is a simpler, scalable, and self-supervised alternative to the current state-of-the-art image tokenizer which is supervised. DiTo achieves competitive or better quality than state-of-the-art in image reconstruction and downstream image generation tasks.
Authors:Hao Dong, Moru Liu, Kaiyang Zhou, Eleni Chatzi, Juho Kannala, Cyrill Stachniss, Olga Fink
Abstract:
In real-world scenarios, achieving domain adaptation and generalization poses significant challenges, as models must adapt to or generalize across unknown target distributions. Extending these capabilities to unseen multimodal distributions, i.e., multimodal domain adaptation and generalization, is even more challenging due to the distinct characteristics of different modalities. Significant progress has been made over the years, with applications ranging from action recognition to semantic segmentation. Besides, the recent advent of large-scale pre-trained multimodal foundation models, such as CLIP, has inspired works leveraging these models to enhance adaptation and generalization performances or adapting them to downstream tasks. This survey provides the first comprehensive review of recent advances from traditional approaches to foundation models, covering: (1) Multimodal domain adaptation; (2) Multimodal test-time adaptation; (3) Multimodal domain generalization; (4) Domain adaptation and generalization with the help of multimodal foundation models; and (5) Adaptation of multimodal foundation models. For each topic, we formally define the problem and thoroughly review existing methods. Additionally, we analyze relevant datasets and applications, highlighting open challenges and potential future research directions. We maintain an active repository that contains up-to-date literature at https://github.com/donghao51/Awesome-Multimodal-Adaptation.
Authors:Matthieu Barreau, Haoming Shen
Abstract:
Physics-Informed Neural Networks (PINNs) have emerged as powerful tools for integrating physics-based models with data by minimizing both data and physics losses. However, this multi-objective optimization problem is notoriously challenging, with some benchmark problems leading to unfeasible solutions. To address these issues, various strategies have been proposed, including adaptive weight adjustments in the loss function. In this work, we introduce clear definitions of accuracy and robustness in the context of PINNs and propose a novel training algorithm based on the Primal-Dual (PD) optimization framework. Our approach enhances the robustness of PINNs while maintaining comparable performance to existing weight-balancing methods. Numerical experiments demonstrate that the PD method consistently achieves reliable solutions across all investigated cases, even in the low-data regime, and can be easily implemented, facilitating its practical adoption. The code is available at https://github.com/haoming-SHEN/Accuracy-and-Robustness-of-Weight-Balancing-Methods-for-Training-PINNs.git.
Authors:Anmol Goel, Yaxi Hu, Iryna Gurevych, Amartya Sanyal
Abstract:
Aligning Large Language Models (LLMs) with human values and away from undesirable behaviors (such as hallucination) has become increasingly important. Recently, steering LLMs towards a desired behavior via activation editing has emerged as an effective method to mitigate harmful generations at inference-time. Activation editing modifies LLM representations by preserving information from positive demonstrations (e.g., truthful) and minimising information from negative demonstrations (e.g., hallucinations). When these demonstrations come from a private dataset, the aligned LLM may leak private information contained in those private samples. In this work, we present the first study of aligning LLM behavior with private datasets. Our work proposes the Private Steering for LLM Alignment (PSA) algorithm to edit LLM activations with differential privacy (DP) guarantees. We conduct extensive experiments on seven different benchmarks with open-source LLMs of different sizes (0.5B to 7B) and model families (LlaMa, Qwen, Mistral and Gemma). Our results show that PSA achieves DP guarantees for LLM alignment with minimal loss in performance, including alignment metrics, open-ended text generation quality, and general-purpose reasoning. We also develop the first Membership Inference Attack (MIA) for evaluating and auditing the empirical privacy for the problem of LLM steering via activation editing. Our experiments support the theoretical guarantees by showing improved guarantees for our PSA algorithm compared to several existing non-private techniques.
Authors:Benjamin Feuer, Chinmay Hegde
Abstract:
Language model (LLM) post-training, from DPO to distillation, can refine behaviors and unlock new skills, but the open science supporting these post-training techniques is still in its infancy. One limiting factor has been the difficulty of conducting large-scale comparative analyses of synthetic data generating models and LLM judges. To close this gap, we introduce WILDCHAT-50M, the largest public chat dataset to date. We extend the existing WildChat dataset to include responses not only from GPT, but from over 50 different open-weight models, ranging in size from 0.5B to 104B parameters. We conduct an extensive comparative analysis and demonstrate the potential of this dataset by creating RE-WILD, our own public SFT mix, which outperforms the recent Tulu-3 SFT mixture from Allen AI with only 40% as many samples. Our dataset, samples and code are available at https://github.com/penfever/wildchat-50m.
Authors:Shi Chen, Lefei Zhang, Liangpei Zhang
Abstract:
Mamba has demonstrated exceptional performance in visual tasks due to its powerful global modeling capabilities and linear computational complexity, offering considerable potential in hyperspectral image super-resolution (HSISR). However, in HSISR, Mamba faces challenges as transforming images into 1D sequences neglects the spatial-spectral structural relationships between locally adjacent pixels, and its performance is highly sensitive to input order, which affects the restoration of both spatial and spectral details. In this paper, we propose HSRMamba, a contextual spatial-spectral modeling state space model for HSISR, to address these issues both locally and globally. Specifically, a local spatial-spectral partitioning mechanism is designed to establish patch-wise causal relationships among adjacent pixels in 3D features, mitigating the local forgetting issue. Furthermore, a global spectral reordering strategy based on spectral similarity is employed to enhance the causal representation of similar pixels across both spatial and spectral dimensions. Finally, experimental results demonstrate our HSRMamba outperforms the state-of-the-art methods in quantitative quality and visual results. Code is available at: https://github.com/Tomchenshi/HSRMamba.
Authors:Yue Liu, Hongcheng Gao, Shengfang Zhai, Jun Xia, Tianyi Wu, Zhiwei Xue, Yulin Chen, Kenji Kawaguchi, Jiaheng Zhang, Bryan Hooi
Abstract:
As LLMs increasingly impact safety-critical applications, ensuring their safety using guardrails remains a key challenge. This paper proposes GuardReasoner, a new safeguard for LLMs, by guiding the guard model to learn to reason. Concretely, we first create the GuardReasonerTrain dataset, which consists of 127K samples with 460K detailed reasoning steps. Then, we introduce reasoning SFT to unlock the reasoning capability of guard models. In addition, we present hard sample DPO to further strengthen their reasoning ability. In this manner, GuardReasoner achieves better performance, explainability, and generalizability. Extensive experiments and analyses on 13 benchmarks of 3 guardrail tasks demonstrate its superiority. Remarkably, GuardReasoner 8B surpasses GPT-4o+CoT by 5.74% and LLaMA Guard 3 8B by 20.84% F1 score on average. We release the training data, code, and models with different scales (1B, 3B, 8B) of GuardReasoner : https://github.com/yueliu1999/GuardReasoner/.
Authors:Görkay Aydemir, Xiongyi Cai, Weidi Xie, Fatma Güney
Abstract:
In this paper, we consider the problem of long-term point tracking, which requires consistent identification of points across multiple frames in a video, despite changes in appearance, lighting, perspective, and occlusions. We target online tracking on a frame-by-frame basis, making it suitable for real-world, streaming scenarios. Specifically, we introduce Track-On, a simple transformer-based model designed for online long-term point tracking. Unlike prior methods that depend on full temporal modeling, our model processes video frames causally without access to future frames, leveraging two memory modules -- spatial memory and context memory -- to capture temporal information and maintain reliable point tracking over long time horizons. At inference time, it employs patch classification and refinement to identify correspondences and track points with high accuracy. Through extensive experiments, we demonstrate that Track-On sets a new state-of-the-art for online models and delivers superior or competitive results compared to offline approaches on seven datasets, including the TAP-Vid benchmark. Our method offers a robust and scalable solution for real-time tracking in diverse applications. Project page: https://kuis-ai.github.io/track_on
Authors:Shiho Noda, Atsuyuki Miyai, Qing Yu, Go Irie, Kiyoharu Aizawa
Abstract:
Out-of-distribution (OOD) detection is a task that detects OOD samples during inference to ensure the safety of deployed models. However, conventional benchmarks have reached performance saturation, making it difficult to compare recent OOD detection methods. To address this challenge, we introduce three novel OOD detection benchmarks that enable a deeper understanding of method characteristics and reflect real-world conditions. First, we present ImageNet-X, designed to evaluate performance under challenging semantic shifts. Second, we propose ImageNet-FS-X for full-spectrum OOD detection, assessing robustness to covariate shifts (feature distribution shifts). Finally, we propose Wilds-FS-X, which extends these evaluations to real-world datasets, offering a more comprehensive testbed. Our experiments reveal that recent CLIP-based OOD detection methods struggle to varying degrees across the three proposed benchmarks, and none of them consistently outperforms the others. We hope the community goes beyond specific benchmarks and includes more challenging conditions reflecting real-world scenarios. The code is https://github.com/hoshi23/OOD-X-Benchmarks.
Authors:Amanturdieva Akmaral, Muhammad Hamza Zafar
Abstract:
This paper presents a comprehensive study and improvement of the Restormer architecture for high-resolution image motion deblurring. We introduce architectural modifications that reduce model complexity by 18.4% while maintaining or improving performance through optimized attention mechanisms. Our enhanced training pipeline incorporates additional transformations including color jitter, Gaussian blur, and perspective transforms to improve model robustness as well as a new frequency loss term. Extensive experiments on the RealBlur-R, RealBlur-J, and Ultra-High-Definition Motion blurred (UHDM) datasets demonstrate the effectiveness of our approach. The improved architecture shows better convergence behavior and reduced training time while maintaining competitive performance across challenging scenarios. We also provide detailed ablation studies analyzing the impact of our modifications on model behavior and performance. Our results suggest that thoughtful architectural simplification combined with enhanced training strategies can yield more efficient yet equally capable models for motion deblurring tasks. Code and Data Available at: https://github.com/hamzafer/image-deblurring
Authors:Yuxin Zuo, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning Ding, Bowen Zhou
Abstract:
We introduce MedXpertQA, a highly challenging and comprehensive benchmark to evaluate expert-level medical knowledge and advanced reasoning. MedXpertQA includes 4,460 questions spanning 17 specialties and 11 body systems. It includes two subsets, Text for text evaluation and MM for multimodal evaluation. Notably, MM introduces expert-level exam questions with diverse images and rich clinical information, including patient records and examination results, setting it apart from traditional medical multimodal benchmarks with simple QA pairs generated from image captions. MedXpertQA applies rigorous filtering and augmentation to address the insufficient difficulty of existing benchmarks like MedQA, and incorporates specialty board questions to improve clinical relevance and comprehensiveness. We perform data synthesis to mitigate data leakage risk and conduct multiple rounds of expert reviews to ensure accuracy and reliability. We evaluate 18 leading models on \benchmark. Moreover, medicine is deeply connected to real-world decision-making, providing a rich and representative setting for assessing reasoning abilities beyond mathematics and code. To this end, we develop a reasoning-oriented subset to facilitate the assessment of o1-like models. Code and data are available at: https://github.com/TsinghuaC3I/MedXpertQA
Authors:Jinlu Wang, Yanfeng Sun, Jiapu Wang, Junbin Gao, Shaofan Wang, Jipeng Guo
Abstract:
Graph Neural Networks (GNNs) have demonstrated remarkable effectiveness in various graph representation learning tasks. However, most existing GNNs focus primarily on capturing local information through explicit graph convolution, often neglecting global message-passing. This limitation hinders the establishment of a collaborative interaction between global and local information, which is crucial for comprehensively understanding graph data. To address these challenges, we propose a novel framework called Comprehensive Graph Representation Learning (ComGRL). ComGRL integrates local information into global information to derive powerful representations. It achieves this by implicitly smoothing local information through flexible graph contrastive learning, ensuring reliable representations for subsequent global exploration. Then ComGRL transfers the locally derived representations to a multi-head self-attention module, enhancing their discriminative ability by uncovering diverse and rich global correlations. To further optimize local information dynamically under the self-supervision of pseudo-labels, ComGRL employs a triple sampling strategy to construct mixed node pairs and applies reliable Mixup augmentation across attributes and structure for local contrastive learning. This approach broadens the receptive field and facilitates coordination between local and global representation learning, enabling them to reinforce each other. Experimental results across six widely used graph datasets demonstrate that ComGRL achieves excellent performance in node classification tasks. The code could be available at https://github.com/JinluWang1002/ComGRL.
Authors:Yuqin Cao, Xiongkuo Min, Yixuan Gao, Wei Sun, Guangtao Zhai
Abstract:
Many video-to-audio (VTA) methods have been proposed for dubbing silent AI-generated videos. An efficient quality assessment method for AI-generated audio-visual content (AGAV) is crucial for ensuring audio-visual quality. Existing audio-visual quality assessment methods struggle with unique distortions in AGAVs, such as unrealistic and inconsistent elements. To address this, we introduce AGAVQA-3k, the first large-scale AGAV quality assessment dataset, comprising $3,382$ AGAVs from $16$ VTA methods. AGAVQA-3k includes two subsets: AGAVQA-MOS, which provides multi-dimensional scores for audio quality, content consistency, and overall quality, and AGAVQA-Pair, designed for optimal AGAV pair selection. We further propose AGAV-Rater, a LMM-based model that can score AGAVs, as well as audio and music generated from text, across multiple dimensions, and selects the best AGAV generated by VTA methods to present to the user. AGAV-Rater achieves state-of-the-art performance on AGAVQA-3k, Text-to-Audio, and Text-to-Music datasets. Subjective tests also confirm that AGAV-Rater enhances VTA performance and user experience. The dataset and code is available at https://github.com/charlotte9524/AGAV-Rater.
Authors:Haoxiong Liu, Jiacheng Sun, Zhenguo Li, Andrew C Yao
Abstract:
The synergy between deep learning models and traditional automation tools, such as built-in tactics of the proof assistant and off-the-shelf automated theorem provers, plays a crucial role in developing robust and efficient neural theorem provers(NTPs). However, for proof synthesis with LLMs, previous work applies automation tools either only when explicitly invoked by the model or at a single granularity level, failing to fully exploit their power. To solve this issue, we propose ProofAug, a procedure that equips LLMs with automation methods at various granularities through fine-grained structure analysis of model-generated proof proposals. ProofAug also serves as a versatile plug-and-play module that seamlessly integrates with any tree-search algorithm, enabling our construction of an efficient recursive proving (ERP) module to further enhance performance. The superiority of our method is validated on the miniF2F benchmark using the open-source deepseek-math-7b-base model and the Isabelle proof assistant. Notably, by additionally employing a mixed prompting strategy, we achieve a cumulative pass rate of 66.0% after curation of the dataset (61.9% for the original version) with 2100 queries to the model per problem (In contrast, the previous SOTA in Isabelle, Subgoal-XL, only achieves 56.1% using 16384 queries per problem). We also implement a Lean 4 version of ProofAug that can improve the pass@1 performance of Kimina-Prover-Preview-Distill-1.5B from 44.3% to 50.4% on miniF2F-test. Our code is available at https://github.com/haoxiongliu/ProofAug.
Authors:Amitay Sicherman, Kira Radinsky
Abstract:
The challenge in computational biology and drug discovery lies in creating comprehensive representations of proteins and molecules that capture their intrinsic properties and interactions. Traditional methods often focus on unimodal data, such as protein sequences or molecular structures, limiting their ability to capture complex biochemical relationships. This work enhances these representations by integrating biochemical reactions encompassing interactions between molecules and proteins. By leveraging reaction data alongside pre-trained embeddings from state-of-the-art protein and molecule models, we develop ReactEmbed, a novel method that creates a unified embedding space through contrastive learning. We evaluate ReactEmbed across diverse tasks, including drug-target interaction, protein-protein interaction, protein property prediction, and molecular property prediction, consistently surpassing all current state-of-the-art models. Notably, we showcase ReactEmbed's practical utility through successful implementation in lipid nanoparticle-based drug delivery, enabling zero-shot prediction of blood-brain barrier permeability for protein-nanoparticle complexes. The code and comprehensive database of reaction pairs are available for open use at \href{https://github.com/amitaysicherman/ReactEmbed}{GitHub}.
Authors:Adarsh Kappiyath, Abhra Chaudhuri, Ajay Jaiswal, Ziquan Liu, Yunpeng Li, Xiatian Zhu, Lu Yin
Abstract:
Ranking samples by fine-grained estimates of spuriosity (the degree to which spurious cues are present) has recently been shown to significantly benefit bias mitigation, over the traditional binary biased-\textit{vs}-unbiased partitioning of train sets. However, this spuriosity ranking comes with the requirement of human supervision. In this paper, we propose a debiasing framework based on our novel \ul{Se}lf-Guided \ul{B}ias \ul{Ra}nking (\emph{Sebra}), that mitigates biases (spurious correlations) via an automatic ranking of data points by spuriosity within their respective classes. Sebra leverages a key local symmetry in Empirical Risk Minimization (ERM) training -- the ease of learning a sample via ERM inversely correlates with its spuriousity; the fewer spurious correlations a sample exhibits, the harder it is to learn, and vice versa. However, globally across iterations, ERM tends to deviate from this symmetry. Sebra dynamically steers ERM to correct this deviation, facilitating the sequential learning of attributes in increasing order of difficulty, \ie, decreasing order of spuriosity. As a result, the sequence in which Sebra learns samples naturally provides spuriousity rankings. We use the resulting fine-grained bias characterization in a contrastive learning framework to mitigate biases from multiple sources. Extensive experiments show that Sebra consistently outperforms previous state-of-the-art unsupervised debiasing techniques across multiple standard benchmarks, including UrbanCars, BAR, CelebA, and ImageNet-1K. Code, pre-trained models, and training logs are available at https://kadarsh22.github.io/sebra_iclr25/.
Authors:David Mallasén, Pasquale Davide Schiavone, Alberto A. Del Barrio, Manuel Prieto-Matias, David Atienza
Abstract:
Wearable biomedical devices are increasingly being used for continuous patient health monitoring, enabling real-time insights and extended data collection without the need for prolonged hospital stays. These devices must be energy efficient to minimize battery size, improve comfort, and reduce recharging intervals. This paper investigates the use of specialized low-precision arithmetic formats to enhance the energy efficiency of biomedical wearables. Specifically, we explore posit arithmetic, a floating-point-like representation, in two key applications: cough detection for chronic cough monitoring and R peak detection in ECG analysis. Simulations reveal that 16-bit posits can replace 32-bit IEEE 754 floating point numbers with minimal accuracy loss in cough detection. For R peak detection, posit arithmetic achieves satisfactory accuracy with as few as 10 or 8 bits, compared to the 16-bit requirement for floating-point formats. To further this exploration, we introduce PHEE, a modular and extensible architecture that integrates the Coprosit posit coprocessor within a RISC-V-based system. Using the X-HEEP framework, PHEE seamlessly incorporates posit arithmetic, demonstrating reduced hardware area and power consumption compared to a floating-point counterpart system. Post-synthesis results targeting 16nm TSMC technology show that the posit hardware targeting these biomedical applications can be 38% smaller and consume up to 54% less energy at the functional unit level, with no performance compromise. These findings establish the potential of low-precision posit arithmetic to significantly improve the energy efficiency of wearable biomedical devices.
Authors:Qingxiang Liu, Chenghao Liu, Sheng Sun, Di Yao, Yuxuan Liang
Abstract:
Unsupervised anomaly detection of multivariate time series is a challenging task, given the requirements of deriving a compact detection criterion without accessing the anomaly points. The existing methods are mainly based on reconstruction error or association divergence, which are both confined to isolated subsequences with limited horizons, hardly promising unified series-level criterion. In this paper, we propose the Global Dictionary-enhanced Transformer (GDformer) with a renovated dictionary-based cross attention mechanism to cultivate the global representations shared by all normal points in the entire series. Accordingly, the cross-attention maps reflect the correlation weights between the point and global representations, which naturally leads to the representation-wise similarity-based detection criterion. To foster more compact detection boundary, prototypes are introduced to capture the distribution of normal point-global correlation weights. GDformer consistently achieves state-of-the-art unsupervised anomaly detection performance on five real-world benchmark datasets. Further experiments validate the global dictionary has great transferability among various datasets. The code is available at https://github.com/yuppielqx/GDformer.
Authors:Jinyao Guo, Chengpeng Wang, Xiangzhe Xu, Zian Su, Xiangyu Zhang
Abstract:
Code auditing is the process of reviewing code with the aim of identifying bugs. Large Language Models (LLMs) have demonstrated promising capabilities for this task without requiring compilation, while also supporting user-friendly customization. However, auditing a code repository with LLMs poses significant challenges: limited context windows and hallucinations can degrade the quality of bug reports, and analyzing large-scale repositories incurs substantial time and token costs, hindering efficiency and scalability.
This work introduces an LLM-based agent, RepoAudit, designed to perform autonomous repository-level code auditing. Equipped with agent memory, RepoAudit explores the codebase on demand by analyzing data-flow facts along feasible program paths within individual functions. It further incorporates a validator module to mitigate hallucinations by verifying data-flow facts and checking the satisfiability of path conditions associated with potential bugs, thereby reducing false positives. RepoAudit detects 40 true bugs across 15 real-world benchmark projects with a precision of 78.43%, requiring on average only 0.44 hours and $2.54 per project. Also, it detects 185 new bugs in high-profile projects, among which 174 have been confirmed or fixed. We have open-sourced RepoAudit at https://github.com/PurCL/RepoAudit.
Authors:HaeJin Lee, Shubhanshu Mishra, Apratim Mishra, Zhiwen You, Jinseok Kim, Jana Diesner
Abstract:
Gender biases in scholarly metrics remain a persistent concern, despite numerous bibliometric studies exploring their presence and absence across productivity, impact, acknowledgment, and self-citations. However, methodological inconsistencies, particularly in author name disambiguation and gender identification, limit the reliability and comparability of these studies, potentially perpetuating misperceptions and hindering effective interventions. A review of 70 relevant publications over the past 12 years reveals a wide range of approaches, from name-based and manual searches to more algorithmic and gold-standard methods, with no clear consensus on best practices. This variability, compounded by challenges such as accurately disambiguating Asian names and managing unassigned gender labels, underscores the urgent need for standardized and robust methodologies. To address this critical gap, we propose the development and implementation of ``Scholarly Data Analysis (SoDA) Cards." These cards will provide a structured framework for documenting and reporting key methodological choices in scholarly data analysis, including author name disambiguation and gender identification procedures. By promoting transparency and reproducibility, SoDA Cards will facilitate more accurate comparisons and aggregations of research findings, ultimately supporting evidence-informed policymaking and enabling the longitudinal tracking of analytical approaches in the study of gender and other social biases in academia.
Authors:Siyuan Jiang, Yihan Hu, Wenjie Li, Pengcheng Zeng
Abstract:
Functional data - observations in the form of curves or trajectories - arise in diverse domains such as biomedical sensing, motion capture, and handwriting recognition. A core challenge in functional data analysis (FDA) is accounting for phase variability, where misaligned temporal patterns hinder accurate inference. We introduce DeepFRC, an end-to-end deep learning framework for joint functional registration and classification. Unlike conventional approaches that decouple alignment and prediction, DeepFRC integrates class-aware elastic warping and a learnable basis representation into a unified architecture. This design enables temporal alignment and dimensionality reduction to be jointly optimized with classification, improving both interpretability and accuracy. We establish the first theoretical connection between alignment quality and generalization error, and validate our model on synthetic and real-world benchmarks. DeepFRC consistently outperforms state-of-the-art methods, especially in scenarios with complex temporal misalignment. Code is available at: https://github.com/Drivergo-93589/DeepFRC.
Authors:Yibo Wang, Tiansheng Huang, Li Shen, Huanjin Yao, Haotian Luo, Rui Liu, Naiqiang Tan, Jiaxing Huang, Dacheng Tao
Abstract:
Harmful fine-tuning attack introduces significant security risks to the fine-tuning services. Mainstream defenses aim to vaccinate the model such that the later harmful fine-tuning attack is less effective. However, our evaluation results show that such defenses are fragile -- with a few fine-tuning steps, the model still can learn the harmful knowledge. To this end, we do further experiment and find that an embarrassingly simple solution -- adding purely random perturbations to the fine-tuned model, can recover the model from harmful behavior, though it leads to a degradation in the model's fine-tuning performance. To address the degradation of fine-tuning performance, we further propose Panacea, which optimizes an adaptive perturbation that will be applied to the model after fine-tuning. Panacea maintains model's safety alignment performance without compromising downstream fine-tuning performance. Comprehensive experiments are conducted on different harmful ratios, fine-tuning tasks and mainstream LLMs, where the average harmful scores are reduced by up-to 21.5%, while maintaining fine-tuning performance. As a by-product, we analyze the optimized perturbation and show that different layers in various LLMs have distinct safety coefficients. Source code available at https://github.com/w-yibo/Panacea
Authors:Kumar Ashutosh, Yossi Gandelsman, Xinlei Chen, Ishan Misra, Rohit Girdhar
Abstract:
We present MILS: Multimodal Iterative LLM Solver, a surprisingly simple, training-free approach, to imbue multimodal capabilities into your favorite LLM. Leveraging their innate ability to perform multi-step reasoning, MILS prompts the LLM to generate candidate outputs, each of which are scored and fed back iteratively, eventually generating a solution to the task. This enables various applications that typically require training specialized models on task-specific data. In particular, we establish a new state-of-the-art on emergent zero-shot image, video and audio captioning. MILS seamlessly applies to media generation as well, discovering prompt rewrites to improve text-to-image generation, and even edit prompts for style transfer! Finally, being a gradient-free optimization approach, MILS can invert multimodal embeddings into text, enabling applications like cross-modal arithmetic.
Authors:Da Chang, Yu Li, Ganzhao Yuan
Abstract:
In the training of large language models (LLMs), updating parameters more efficiently and stably has always been an important challenge. To achieve efficient parameter updates, existing methods usually achieve performance comparable to full parameter updates through methods such as low-dimensional decomposition or layer-wise selective updates. In this work, we propose AlphaAdam, an optimization framework for LLM from the perspective of intra-layer parameter updates. By decoupling parameter updates and dynamically adjusting their strength, AlphaAdam accelerates convergence and improves training stability. We construct parameter masks based on the consistency of historical momentum and gradient direction and combine them with an adaptive mask strength strategy to ensure efficient optimization and theoretical convergence guarantees, which is also applicable to most momentum-based optimizers. Extensive experiments show that AlphaAdam outperforms state-of-the-art methods such as AdamW in terms of convergence speed and computational efficiency across tasks, including GPT-2 pre-trained and fine-tuned RoBERTa and Llama-7B. Our AlphaAdam implements an optimizer enhancement framework for LLMs through intra-layer asynchronous masked adaptive updates. Our code is available in this https://github.com/MaeChd/AlphaAdam.
Authors:Akinori F. Ebihara, Taiki Miyagawa, Kazuyuki Sakurai, Hitoshi Imaoka
Abstract:
Time-sensitive machine learning benefits from Sequential Probability Ratio Test (SPRT), which provides an optimal stopping time for early classification of time series. However, in finite horizon scenarios, where input lengths are finite, determining the optimal stopping rule becomes computationally intensive due to the need for backward induction, limiting practical applicability. We thus introduce FIRMBOUND, an SPRT-based framework that efficiently estimates the solution to backward induction from training data, bridging the gap between optimal stopping theory and real-world deployment. It employs density ratio estimation and convex function learning to provide statistically consistent estimators for sufficient statistic and conditional expectation, both essential for solving backward induction; consequently, FIRMBOUND minimizes Bayes risk to reach optimality. Additionally, we present a faster alternative using Gaussian process regression, which significantly reduces training time while retaining low deployment overhead, albeit with potential compromise in statistical consistency. Experiments across independent and identically distributed (i.i.d.), non-i.i.d., binary, multiclass, synthetic, and real-world datasets show that FIRMBOUND achieves optimalities in the sense of Bayes risk and speed-accuracy tradeoff. Furthermore, it advances the tradeoff boundary toward optimality when possible and reduces decision-time variance, ensuring reliable decision-making. Code is publicly available at https://github.com/Akinori-F-Ebihara/FIRMBOUND
Authors:Bartosz CywiÅski, Kamil Deja
Abstract:
Diffusion models, while powerful, can inadvertently generate harmful or undesirable content, raising significant ethical and safety concerns. Recent machine unlearning approaches offer potential solutions but often lack transparency, making it difficult to understand the changes they introduce to the base model. In this work, we introduce SAeUron, a novel method leveraging features learned by sparse autoencoders (SAEs) to remove unwanted concepts in text-to-image diffusion models. First, we demonstrate that SAEs, trained in an unsupervised manner on activations from multiple denoising timesteps of the diffusion model, capture sparse and interpretable features corresponding to specific concepts. Building on this, we propose a feature selection method that enables precise interventions on model activations to block targeted content while preserving overall performance. Our evaluation shows that SAeUron outperforms existing approaches on the UnlearnCanvas benchmark for concepts and style unlearning, and effectively eliminates nudity when evaluated with I2P. Moreover, we show that with a single SAE, we can remove multiple concepts simultaneously and that in contrast to other methods, SAeUron mitigates the possibility of generating unwanted content under adversarial attack. Code and checkpoints are available at https://github.com/cywinski/SAeUron.
Authors:Lei Cheng, Siyang Cao
Abstract:
Despite significant advancements in environment perception capabilities for autonomous driving and intelligent robotics, cameras and LiDARs remain notoriously unreliable in low-light conditions and adverse weather, which limits their effectiveness. Radar serves as a reliable and low-cost sensor that can effectively complement these limitations. However, radar-based object detection has been underexplored due to the inherent weaknesses of radar data, such as low resolution, high noise, and lack of visual information. In this paper, we present TransRAD, a novel 3D radar object detection model designed to address these challenges by leveraging the Retentive Vision Transformer (RMT) to more effectively learn features from information-dense radar Range-Azimuth-Doppler (RAD) data. Our approach leverages the Retentive Manhattan Self-Attention (MaSA) mechanism provided by RMT to incorporate explicit spatial priors, thereby enabling more accurate alignment with the spatial saliency characteristics of radar targets in RAD data and achieving precise 3D radar detection across Range-Azimuth-Doppler dimensions. Furthermore, we propose Location-Aware NMS to effectively mitigate the common issue of duplicate bounding boxes in deep radar object detection. The experimental results demonstrate that TransRAD outperforms state-of-the-art methods in both 2D and 3D radar detection tasks, achieving higher accuracy, faster inference speed, and reduced computational complexity. Code is available at https://github.com/radar-lab/TransRAD
Authors:Rui Min, Tianyu Pang, Chao Du, Qian Liu, Minhao Cheng, Min Lin
Abstract:
Chatbot Arena is a popular platform for evaluating LLMs by pairwise battles, where users vote for their preferred response from two randomly sampled anonymous models. While Chatbot Arena is widely regarded as a reliable LLM ranking leaderboard, we show that crowdsourced voting can be rigged to improve (or decrease) the ranking of a target model $m_{t}$. We first introduce a straightforward target-only rigging strategy that focuses on new battles involving $m_{t}$, identifying it via watermarking or a binary classifier, and exclusively voting for $m_{t}$ wins. However, this strategy is practically inefficient because there are over $190$ models on Chatbot Arena and on average only about $1\%$ of new battles will involve $m_{t}$. To overcome this, we propose omnipresent rigging strategies, exploiting the Elo rating mechanism of Chatbot Arena that any new vote on a battle can influence the ranking of the target model $m_{t}$, even if $m_{t}$ is not directly involved in the battle. We conduct experiments on around $1.7$ million historical votes from the Chatbot Arena Notebook, showing that omnipresent rigging strategies can improve model rankings by rigging only hundreds of new votes. While we have evaluated several defense mechanisms, our findings highlight the importance of continued efforts to prevent vote rigging. Our code is available at https://github.com/sail-sg/Rigging-ChatbotArena.
Authors:Aude Vuilliomenet, Santiago MartÃnez Balvanera, Oisin Mac Aodha, Kate E. Jones, Duncan Wilson
Abstract:
1. Passive acoustic monitoring (PAM) coupled with artificial intelligence (AI) is becoming an essential tool for biodiversity monitoring. Traditional PAM systems require manual data offloading and impose substantial demands on storage and computing infrastructure. The combination of on-device AI-based processing and network connectivity enables local data analysis and transmission of only relevant information, greatly reducing storage needs. However, programming these devices for robust operation is challenging, requiring expertise in embedded systems and software engineering. Despite the increase in AI-based models for bioacoustics, their full potential remains unrealized without accessible tools to deploy them on custom hardware and tailor device behaviour to specific monitoring goals. 2. To address this challenge, we develop acoupi, an open-source Python framework that simplifies the creation and deployment of smart bioacoustic devices. acoupi integrates audio recording, AI-based data processing, data management, and real-time wireless messaging into a unified and configurable framework. By modularising key elements of the bioacoustic monitoring workflow, acoupi allows users to easily customise, extend, or select specific components to fit their unique monitoring needs. 3. We demonstrate the flexibility of acoupi by integrating two bioacoustic classifiers: BirdNET, for the classification of bird species, and BatDetect2, for the classification of UK bat species. We test the reliability of acoupi over a month-long deployment of two acoupi-powered devices in a UK urban park. 4. acoupi can be deployed on low-cost hardware such as the Raspberry Pi and can be customised for various applications. acoupi standardised framework and simplified tools facilitate the adoption of AI-powered PAM systems for researchers and conservationists. acoupi is on GitHub at https://github.com/acoupi/acoupi.
Authors:Ajinkya Khoche, Qingwen Zhang, Laura Pereira Sanchez, Aron Asefaw, Sina Sharif Mansouri, Patric Jensfelt
Abstract:
Scene flow enables an understanding of the motion characteristics of the environment in the 3D world. It gains particular significance in the long-range, where object-based perception methods might fail due to sparse observations far away. Although significant advancements have been made in scene flow pipelines to handle large-scale point clouds, a gap remains in scalability with respect to long-range. We attribute this limitation to the common design choice of using dense feature grids, which scale quadratically with range. In this paper, we propose Sparse Scene Flow (SSF), a general pipeline for long-range scene flow, adopting a sparse convolution based backbone for feature extraction. This approach introduces a new challenge: a mismatch in size and ordering of sparse feature maps between time-sequential point scans. To address this, we propose a sparse feature fusion scheme, that augments the feature maps with virtual voxels at missing locations. Additionally, we propose a range-wise metric that implicitly gives greater importance to faraway points. Our method, SSF, achieves state-of-the-art results on the Argoverse2 dataset, demonstrating strong performance in long-range scene flow estimation. Our code will be released at https://github.com/KTH-RPL/SSF.git.
Authors:Fabrizio Sandri, Elia Cunegatti, Giovanni Iacca
Abstract:
We propose a novel Two-Stage framework for Structured Pruning (\textsc{2SSP}) for pruning Large Language Models (LLMs), which combines two different strategies of pruning, namely Width and Depth Pruning. The first stage (Width Pruning) removes entire neurons, hence their corresponding rows and columns, aiming to preserve the connectivity among the pruned structures in the intermediate state of the Feed-Forward Networks in each Transformer block. This is done based on an importance score measuring the impact of each neuron on the output magnitude. The second stage (Depth Pruning), instead, removes entire Attention submodules. This is done by applying an iterative process that removes the Attention with the minimum impact on a given metric of interest (in our case, perplexity). We also propose a novel mechanism to balance the sparsity rate of the two stages w.r.t. to the desired global sparsity. We test \textsc{2SSP} on four LLM families and three sparsity rates (25\%, 37.5\%, and 50\%), measuring the resulting perplexity over three language modeling datasets as well as the performance over six downstream tasks. Our method consistently outperforms five state-of-the-art competitors over three language modeling and six downstream tasks, with an up to two-order-of-magnitude gain in terms of pruning time. The code is available at https://github.com/FabrizioSandri/2SSP.
Authors:Keshav Bhandari, Geraint A. Wiggins, Simon Colton
Abstract:
Transformer models have made great strides in generating symbolically represented music with local coherence. However, controlling the development of motifs in a structured way with global form remains an open research area. One of the reasons for this challenge is due to the note-by-note autoregressive generation of such models, which lack the ability to correct themselves after deviations from the motif. In addition, their structural performance on datasets with shorter durations has not been studied in the literature. In this study, we propose Yin-Yang, a framework consisting of a phrase generator, phrase refiner, and phrase selector models for the development of motifs into melodies with long-term structure and controllability. The phrase refiner is trained on a novel corruption-refinement strategy which allows it to produce melodic and rhythmic variations of an original motif at generation time, thereby rectifying deviations of the phrase generator. We also introduce a new objective evaluation metric for quantifying how smoothly the motif manifests itself within the piece. Evaluation results show that our model achieves better performance compared to state-of-the-art transformer models while having the advantage of being controllable and making the generated musical structure semi-interpretable, paving the way for musical analysis. Our code and demo page can be found at https://github.com/keshavbhandari/yinyang.
Authors:Ahmed Sharshar, Yasser Attia, Mohammad Yaqub, Mohsen Guizani
Abstract:
Traditional remote spirometry lacks the precision required for effective pulmonary monitoring. We present a novel, non-invasive approach using multimodal predictive models that integrate RGB or thermal video data with patient metadata. Our method leverages energy-efficient Spiking Neural Networks (SNNs) for the regression of Peak Expiratory Flow (PEF) and classification of Forced Expiratory Volume (FEV1) and Forced Vital Capacity (FVC), using lightweight CNNs to overcome SNN limitations in regression tasks. Multimodal data integration is improved with a Multi-Head Attention Layer, and we employ K-Fold validation and ensemble learning to boost robustness. Using thermal data, our SNN models achieve 92% accuracy on a breathing-cycle basis and 99.5% patient-wise. PEF regression models attain Relative RMSEs of 0.11 (thermal) and 0.26 (RGB), with an MAE of 4.52% for FEV1/FVC predictions, establishing state-of-the-art performance. Code and dataset can be found on https://github.com/ahmed-sharshar/RespiroDynamics.git
Authors:Derui Wang, Kristen Moore, Diksha Goel, Minjune Kim, Gang Li, Yang Li, Robin Doss, Minhui Xue, Bo Li, Seyit Camtepe, Liming Zhu
Abstract:
Deep reinforcement learning (DRL) has gained widespread adoption in control and decision-making tasks due to its strong performance in dynamic environments. However, DRL agents are vulnerable to noisy observations and adversarial attacks, and concerns about the adversarial robustness of DRL systems have emerged. Recent efforts have focused on addressing these robustness issues by establishing rigorous theoretical guarantees for the returns achieved by DRL agents in adversarial settings. Among these approaches, policy smoothing has proven to be an effective and scalable method for certifying the robustness of DRL agents. Nevertheless, existing certifiably robust DRL relies on policies trained with simple Gaussian augmentations, resulting in a suboptimal trade-off between certified robustness and certified return. To address this issue, we introduce a novel paradigm dubbed \texttt{C}ertified-r\texttt{A}dius-\texttt{M}aximizing \texttt{P}olicy (\texttt{CAMP}) training. \texttt{CAMP} is designed to enhance DRL policies, achieving better utility without compromising provable robustness. By leveraging the insight that the global certified radius can be derived from local certified radii based on training-time statistics, \texttt{CAMP} formulates a surrogate loss related to the local certified radius and optimizes the policy guided by this surrogate loss. We also introduce \textit{policy imitation} as a novel technique to stabilize \texttt{CAMP} training. Experimental results demonstrate that \texttt{CAMP} significantly improves the robustness-return trade-off across various tasks. Based on the results, \texttt{CAMP} can achieve up to twice the certified expected return compared to that of baselines. Our code is available at https://github.com/NeuralSec/camp-robust-rl.
Authors:Wonbin Kweon, Sanghwan Jang, SeongKu Kang, Hwanjo Yu
Abstract:
Despite the widespread adoption of large language models (LLMs) for recommendation, we demonstrate that LLMs often exhibit uncertainty in their recommendations. To ensure the trustworthy use of LLMs in generating recommendations, we emphasize the importance of assessing the reliability of recommendations generated by LLMs. We start by introducing a novel framework for estimating the predictive uncertainty to quantitatively measure the reliability of LLM-based recommendations. We further propose to decompose the predictive uncertainty into recommendation uncertainty and prompt uncertainty, enabling in-depth analyses of the primary source of uncertainty. Through extensive experiments, we (1) demonstrate predictive uncertainty effectively indicates the reliability of LLM-based recommendations, (2) investigate the origins of uncertainty with decomposed uncertainty measures, and (3) propose uncertainty-aware prompting for a lower predictive uncertainty and enhanced recommendation. Our source code and model weights are available at https://github.com/WonbinKweon/UNC_LLM_REC_WWW2025
Authors:Ha-Yeong Choi, Jaehan Park
Abstract:
Despite remarkable advancements in recent voice conversion (VC) systems, enhancing speaker similarity in zero-shot scenarios remains challenging. This challenge arises from the difficulty of generalizing and adapting speaker characteristics in speech within zero-shot environments, which is further complicated by mismatch between the training and inference processes. To address these challenges, we propose VoicePrompter, a robust zero-shot VC model that leverages in-context learning with voice prompts. VoicePrompter is composed of (1) a factorization method that disentangles speech components and (2) a DiT-based conditional flow matching (CFM) decoder that conditions on these factorized features and voice prompts. Additionally, (3) latent mixup is used to enhance in-context learning by combining various speaker features. This approach improves speaker similarity and naturalness in zero-shot VC by applying mixup to latent representations. Experimental results demonstrate that VoicePrompter outperforms existing zero-shot VC systems in terms of speaker similarity, speech intelligibility, and audio quality. Our demo is available at \url{https://hayeong0.github.io/VoicePrompter-demo/}.
Authors:Sebastian Ãgidius, Dennis Hadjivelichkov, Jianhao Jiao, Jonathan Embley-Riches, Dimitrios Kanoulas
Abstract:
Understanding the traversability of terrain is essential for autonomous robot navigation, particularly in unstructured environments such as natural landscapes. Although traditional methods, such as occupancy mapping, provide a basic framework, they often fail to account for the complex mobility capabilities of some platforms such as legged robots. In this work, we propose a method for estimating terrain traversability by learning from demonstrations of human walking. Our approach leverages dense, pixel-wise feature embeddings generated using the DINOv2 vision Transformer model, which are processed through an encoder-decoder MLP architecture to analyze terrain segments. The averaged feature vectors, extracted from the masked regions of interest, are used to train the model in a reconstruction-based framework. By minimizing reconstruction loss, the network distinguishes between familiar terrain with a low reconstruction error and unfamiliar or hazardous terrain with a higher reconstruction error. This approach facilitates the detection of anomalies, allowing a legged robot to navigate more effectively through challenging terrain. We run real-world experiments on the ANYmal legged robot both indoor and outdoor to prove our proposed method. The code is open-source, while video demonstrations can be found on our website: https://rpl-cs-ucl.github.io/STEPP
Authors:Xie Zhang, Chenxiao Li, Chenshu Wu
Abstract:
This paper presents the design and implementation of TAPOR, a privacy-preserving, non-contact, and fully passive sensing system for accurate and robust 3D hand pose reconstruction for around-device interaction using a single low-cost thermal array sensor. Thermal sensing using inexpensive and miniature thermal arrays emerges with an excellent utility-privacy balance, offering an imaging resolution significantly lower than cameras but far superior to RF signals like radar or WiFi. The design of TAPOR, however, is challenging, mainly because the captured temperature maps are low-resolution and textureless. To overcome the challenges, we investigate thermo-depth and thermo-pose properties, proposing a novel physics-inspired neural network that learns effective 3D spatial representations of potential hand poses. We then formulate the 3D pose reconstruction problem as a distinct retrieval task, enabling accurate hand pose determination from the input temperature map. To deploy TAPOR on IoT devices, we introduce an effective heterogeneous knowledge distillation method, reducing computation by 377x. TAPOR is fully implemented and tested in real-world scenarios, showing remarkable performance, supported by four gesture control and finger tracking case studies. We envision TAPOR to be a ubiquitous interface for around-device control and have open-sourced it at https://github.com/aiot-lab/TAPOR.
Authors:Daesoo Lee, Sara Malacarne, Erlend Aune
Abstract:
In this paper, we introduce Neural Mapper for Vector Quantized Time Series Generator (NM-VQTSG), a novel method aimed at addressing fidelity challenges in vector quantized (VQ) time series generation. VQ-based methods, such as TimeVQVAE, have demonstrated success in generating time series but are hindered by two critical bottlenecks: information loss during compression into discrete latent spaces and deviations in the learned prior distribution from the ground truth distribution. These challenges result in synthetic time series with compromised fidelity and distributional accuracy. To overcome these limitations, NM-VQTSG leverages a U-Net-based neural mapping model to bridge the distributional gap between synthetic and ground truth time series. To be more specific, the model refines synthetic data by addressing artifacts introduced during generation, effectively aligning the distributions of synthetic and real data. Importantly, NM-VQTSG can be used for synthetic time series generated by any VQ-based generative method. We evaluate NM-VQTSG across diverse datasets from the UCR Time Series Classification archive, demonstrating its capability to consistently enhance fidelity in both unconditional and conditional generation tasks. The improvements are evidenced by significant improvements in FID, IS, and conditional FID, additionally backed up by visual inspection in a data space and a latent space. Our findings establish NM-VQTSG as a new method to improve the quality of synthetic time series. Our implementation is available on \url{https://github.com/ML4ITS/TimeVQVAE}.
Authors:Anh-Kiet Duong, Petra Gomez-Krämer
Abstract:
This paper presents the first-rank solution for the Multi-Modal Action Recognition Challenge, part of the Multi-Modal Visual Pattern Recognition Workshop at the \acl{ICPR} 2024. The competition aimed to recognize human actions using a diverse dataset of 20 action classes, collected from multi-modal sources. The proposed approach is built upon the \acl{TSM}, a technique aimed at efficiently capturing temporal dynamics in video data, incorporating multiple data input types. Our strategy included transfer learning to leverage pre-trained models, followed by meticulous fine-tuning on the challenge's specific dataset to optimize performance for the 20 action classes. We carefully selected a backbone network to balance computational efficiency and recognition accuracy and further refined the model using an ensemble technique that integrates outputs from different modalities. This ensemble approach proved crucial in boosting the overall performance. Our solution achieved a perfect top-1 accuracy on the test set, demonstrating the effectiveness of the proposed approach in recognizing human actions across 20 classes. Our code is available online https://github.com/ffyyytt/TSM-MMVPR.
Authors:Gaole He, Nilay Aishwarya, Ujwal Gadiraju
Abstract:
Explainable artificial intelligence (XAI) methods are being proposed to help interpret and understand how AI systems reach specific predictions. Inspired by prior work on conversational user interfaces, we argue that augmenting existing XAI methods with conversational user interfaces can increase user engagement and boost user understanding of the AI system. In this paper, we explored the impact of a conversational XAI interface on users' understanding of the AI system, their trust, and reliance on the AI system. In comparison to an XAI dashboard, we found that the conversational XAI interface can bring about a better understanding of the AI system among users and higher user trust. However, users of both the XAI dashboard and conversational XAI interfaces showed clear overreliance on the AI system. Enhanced conversations powered by large language model (LLM) agents amplified over-reliance. Based on our findings, we reason that the potential cause of such overreliance is the illusion of explanatory depth that is concomitant with both XAI interfaces. Our findings have important implications for designing effective conversational XAI interfaces to facilitate appropriate reliance and improve human-AI collaboration. Code can be found at https://github.com/delftcrowd/IUI2025_ConvXAI
Authors:Matt C. Bendel, Saurav K. Shastri, Rizwan Ahmad, Philip Schniter
Abstract:
Imaging inverse problems can be solved in an unsupervised manner using pre-trained diffusion models, but doing so requires approximating the gradient of the measurement-conditional score function in the diffusion reverse process. We show that the approximations produced by existing methods are relatively poor, especially early in the reverse process, and so we propose a new approach that iteratively reestimates and "renoises" the estimate several times per diffusion step. This iterative approach, which we call Fast Iterative REnoising (FIRE), injects colored noise that is shaped to ensure that the pre-trained diffusion model always sees white noise, in accordance with how it was trained. We then embed FIRE into the DDIM reverse process and show that the resulting "DDfire" offers state-of-the-art accuracy and runtime on several linear inverse problems, as well as phase retrieval. Our implementation is at https://github.com/matt-bendel/DDfire
Authors:Shreya Shukla, Prajwal Gatti, Yogesh Kumar, Vikash Yadav, Anand Mishra
Abstract:
Computer programming textbooks and software documentations often contain flowcharts to illustrate the flow of an algorithm or procedure. Modern OCR engines often tag these flowcharts as graphics and ignore them in further processing. In this paper, we work towards making flowchart images machine-interpretable by converting them to executable Python codes. To this end, inspired by the recent success in natural language to code generation literature, we present a novel transformer-based framework, namely FloCo-T5. Our model is well-suited for this task,as it can effectively learn semantics, structure, and patterns of programming languages, which it leverages to generate syntactically correct code. We also used a task-specific pre-training objective to pre-train FloCo-T5 using a large number of logic-preserving augmented code samples. Further, to perform a rigorous study of this problem, we introduce theFloCo dataset that contains 11,884 flowchart images and their corresponding Python codes. Our experiments show promising results, and FloCo-T5 clearly outperforms related competitive baselines on code generation metrics. We make our dataset and implementation publicly available.
Authors:Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, Ling Liu
Abstract:
Recent research shows that Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks -- models lose their safety alignment ability after fine-tuning on a few harmful samples. For risk mitigation, a guardrail is typically used to filter out harmful samples before fine-tuning. By designing a new red-teaming method, we in this paper show that purely relying on the moderation guardrail for data filtration is not reliable. Our proposed attack method, dubbed Virus, easily bypasses the guardrail moderation by slightly modifying the harmful data. Experimental results show that the harmful data optimized by Virus is not detectable by the guardrail with up to 100\% leakage ratio, and can simultaneously achieve superior attack performance. Finally, the key message we want to convey through this paper is that: \textbf{it is reckless to consider guardrail moderation as a clutch at straws towards harmful fine-tuning attack}, as it cannot solve the inherent safety issue of the pre-trained LLMs. Our code is available at https://github.com/git-disl/Virus
Authors:Sait Sovukluk, Christian Ott
Abstract:
This paper presents a numerical function optimization framework designed for constrained optimization problems in robotics. The tool is designed with real-time considerations and is suitable for online trajectory and control input optimization problems. The proposed framework does not require any analytical representation of the problem and works with constrained block-box optimization functions. The method combines first-order gradient-based line search algorithms with constraint prioritization through nullspace projections onto constraint Jacobian space. The tool is implemented in C++ and provided online for community use, along with some numerical and robotic example implementations presented in this paper.
Authors:Chongyu Qu, Ritchie Zhao, Ye Yu, Bin Liu, Tianyuan Yao, Junchao Zhu, Bennett A. Landman, Yucheng Tang, Yuankai Huo
Abstract:
Quantizing deep neural networks ,reducing the precision (bit-width) of their computations, can remarkably decrease memory usage and accelerate processing, making these models more suitable for large-scale medical imaging applications with limited computational resources. However, many existing methods studied "fake quantization", which simulates lower precision operations during inference, but does not actually reduce model size or improve real-world inference speed. Moreover, the potential of deploying real 3D low-bit quantization on modern GPUs is still unexplored. In this study, we introduce a real post-training quantization (PTQ) framework that successfully implements true 8-bit quantization on state-of-the-art (SOTA) 3D medical segmentation models, i.e., U-Net, SegResNet, SwinUNETR, nnU-Net, UNesT, TransUNet, ST-UNet,and VISTA3D. Our approach involves two main steps. First, we use TensorRT to perform fake quantization for both weights and activations with unlabeled calibration dataset. Second, we convert this fake quantization into real quantization via TensorRT engine on real GPUs, resulting in real-world reductions in model size and inference latency. Extensive experiments demonstrate that our framework effectively performs 8-bit quantization on GPUs without sacrificing model performance. This advancement enables the deployment of efficient deep learning models in medical imaging applications where computational resources are constrained. The code and models have been released, including U-Net, TransUNet pretrained on the BTCV dataset for abdominal (13-label) segmentation, UNesT pretrained on the Whole Brain Dataset for whole brain (133-label) segmentation, and nnU-Net, SegResNet, SwinUNETR and VISTA3D pretrained on TotalSegmentator V2 for full body (104-label) segmentation. https://github.com/hrlblab/PTQ.
Authors:Hossein Mirzaei, Mojtaba Nafez, Moein Madadi, Arad Maleki, Mahdi Hajialilue, Zeinab Sadat Taghavi, Sepehr Rezaee, Ali Ansari, Bahar Dibaei Nia, Kian Shamsaie, Mohammadreza Salehi, Mackenzie W. Mathis, Mahdieh Soleymani Baghshah, Mohammad Sabokrou, Mohammad Hossein Rohban
Abstract:
There have been several efforts to improve Novelty Detection (ND) performance. However, ND methods often suffer significant performance drops under minor distribution shifts caused by changes in the environment, known as style shifts. This challenge arises from the ND setup, where the absence of out-of-distribution (OOD) samples during training causes the detector to be biased toward the dominant style features in the in-distribution (ID) data. As a result, the model mistakenly learns to correlate style with core features, using this shortcut for detection. Robust ND is crucial for real-world applications like autonomous driving and medical imaging, where test samples may have different styles than the training data. Motivated by this, we propose a robust ND method that crafts an auxiliary OOD set with style features similar to the ID set but with different core features. Then, a task-based knowledge distillation strategy is utilized to distinguish core features from style features and help our model rely on core features for discriminating crafted OOD and ID sets. We verified the effectiveness of our method through extensive experimental evaluations on several datasets, including synthetic and real-world benchmarks, against nine different ND methods.
Authors:David Salinas, Omar Swelam, Frank Hutter
Abstract:
Evaluating Large Language Models (LLMs) often requires costly human annotations. To address this, LLM-based judges have been proposed, which compare the outputs of two LLMs enabling the ranking of models without human intervention. While several approaches have been proposed, many confounding factors are present between different papers. For instance the model, the prompt and other hyperparameters are typically changed at the same time making apple-to-apple comparisons challenging. In this paper, we propose to systematically analyze and tune the hyperparameters of LLM judges. To alleviate the high cost of evaluating a judge, we propose to leverage multi-objective multi-fidelity which allows to find judges that trade accuracy for cost and also significantly reduce the cost of the search. Our method identifies judges that not only outperform existing benchmarks in accuracy and cost-efficiency but also utilize open-weight models, ensuring greater accessibility and reproducibility. The code to reproduce our experiments is available at this repository https://github.com/geoalgo/judgetuning .
Authors:Zhihong Wu, Lishuang Wang, Kebin Sun, Zhuozhao Li, Ran Cheng
Abstract:
Tree-based Genetic Programming (TGP) is a widely used evolutionary algorithm for tasks such as symbolic regression, classification, and robotic control. Due to the intensive computational demands of running TGP, GPU acceleration is crucial for achieving scalable performance. However, efficient GPU-based execution of TGP still remains challenging, primarily due to three core issues: (1) the structural heterogeneity of program individuals, (2) the complexity of integrating multiple levels of parallelism, and (3) the incompatibility between high-performance CUDA execution and flexible Python-based environments. To address these issues, we propose EvoGP, a high-performance framework tailored for comprehensive GPU acceleration of TGP via population-level parallel execution. First, EvoGP introduces a tensorized representation that encodes variable-sized trees into fixed-shape, memory-aligned arrays, enabling uniform memory access and parallel computation across diverse individuals. Second, EvoGP adopts an adaptive parallelism strategy that dynamically combines intra- and inter-individual parallelism based on dataset size, ensuring high GPU utilization across a broad spectrum of tasks. Third, EvoGP embeds custom CUDA kernels into the PyTorch runtime, achieving seamless integration with Python-based environments such as Gym, MuJoCo, Brax, and Genesis. Comprehensive experiments show that EvoGP achieves up to 140x speedup over state-of-the-art GPU-based TGP implementations, while maintaining competitive accuracy and significantly improving scalability under large population sizes. EvoGP is open source and accessible at: https://github.com/EMI-Group/evogp.
Authors:Hossein Mirzaei, Ali Ansari, Bahar Dibaei Nia, Mojtaba Nafez, Moein Madadi, Sepehr Rezaee, Zeinab Sadat Taghavi, Arad Maleki, Kian Shamsaie, Mahdi Hajialilue, Jafar Habibi, Mohammad Sabokrou, Mohammad Hossein Rohban
Abstract:
Scanning for trojan (backdoor) in deep neural networks is crucial due to their significant real-world applications. There has been an increasing focus on developing effective general trojan scanning methods across various trojan attacks. Despite advancements, there remains a shortage of methods that perform effectively without preconceived assumptions about the backdoor attack method. Additionally, we have observed that current methods struggle to identify classifiers trojaned using adversarial training. Motivated by these challenges, our study introduces a novel scanning method named TRODO (TROjan scanning by Detection of adversarial shifts in Out-of-distribution samples). TRODO leverages the concept of "blind spots"--regions where trojaned classifiers erroneously identify out-of-distribution (OOD) samples as in-distribution (ID). We scan for these blind spots by adversarially shifting OOD samples towards in-distribution. The increased likelihood of perturbed OOD samples being classified as ID serves as a signature for trojan detection. TRODO is both trojan and label mapping agnostic, effective even against adversarially trained trojaned classifiers. It is applicable even in scenarios where training data is absent, demonstrating high accuracy and adaptability across various scenarios and datasets, highlighting its potential as a robust trojan scanning strategy.
Authors:J. Pablo Muñoz, Jinjie Yuan, Nilesh Jain
Abstract:
Large pre-trained models have achieved outstanding results in sequence modeling. The Transformer block and its attention mechanism have been the main drivers of the success of these models. Recently, alternative architectures, such as Selective Structured State Space Models (SSMs), have been proposed to address the inefficiencies of Transformers. This paper explores the compression of SSM-based models, particularly Mamba and its hybrids. We study the sensitivity of these models to the removal of selected components at different granularities to reduce the model size and computational overhead, thus improving their efficiency while maintaining accuracy. The proposed solutions, collectively referred to as Mamba-Shedder, achieve a speedup of up to 1.4x during inference, demonstrating that model efficiency can be improved by eliminating several redundancies with minimal impact on the overall model performance. The code is available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.
Authors:Akash Kumar, Zsolt Kira, Yogesh Singh Rawat
Abstract:
In this work, we focus on Weakly Supervised Spatio-Temporal Video Grounding (WSTVG). It is a multimodal task aimed at localizing specific subjects spatio-temporally based on textual queries without bounding box supervision. Motivated by recent advancements in multi-modal foundation models for grounding tasks, we first explore the potential of state-of-the-art object detection models for WSTVG. Despite their robust zero-shot capabilities, our adaptation reveals significant limitations, including inconsistent temporal predictions, inadequate understanding of complex queries, and challenges in adapting to difficult scenarios. We propose CoSPaL (Contextual Self-Paced Learning), a novel approach which is designed to overcome these limitations. CoSPaL integrates three core components: (1) Tubelet Phrase Grounding (TPG), which introduces spatio-temporal prediction by linking textual queries to tubelets; (2) Contextual Referral Grounding (CRG), which improves comprehension of complex queries by extracting contextual information to refine object identification over time; and (3) Self-Paced Scene Understanding (SPS), a training paradigm that progressively increases task difficulty, enabling the model to adapt to complex scenarios by transitioning from coarse to fine-grained understanding.
Authors:Hossein Mirzaei, Mohammad Jafari, Hamid Reza Dehbashi, Ali Ansari, Sepehr Ghobadi, Masoud Hadi, Arshia Soltani Moakhar, Mohammad Azizmalayeri, Mahdieh Soleymani Baghshah, Mohammad Hossein Rohban
Abstract:
In recent years, there have been significant improvements in various forms of image outlier detection. However, outlier detection performance under adversarial settings lags far behind that in standard settings. This is due to the lack of effective exposure to adversarial scenarios during training, especially on unseen outliers, leading to detection models failing to learn robust features. To bridge this gap, we introduce RODEO, a data-centric approach that generates effective outliers for robust outlier detection. More specifically, we show that incorporating outlier exposure (OE) and adversarial training can be an effective strategy for this purpose, as long as the exposed training outliers meet certain characteristics, including diversity, and both conceptual differentiability and analogy to the inlier samples. We leverage a text-to-image model to achieve this goal. We demonstrate both quantitatively and qualitatively that our adaptive OE method effectively generates ``diverse'' and ``near-distribution'' outliers, leveraging information from both text and image domains. Moreover, our experimental results show that utilizing our synthesized outliers significantly enhances the performance of the outlier detector, particularly in adversarial settings.
Authors:Nikolaos Kaparinos, Vasileios Mezaris
Abstract:
Face detection is a computer vision application that increasingly demands lightweight models to facilitate deployment on devices with limited computational resources. Neural network pruning is a promising technique that can effectively reduce network size without significantly affecting performance. In this work, we propose a novel face detection pruning pipeline that leverages Filter Pruning via Geometric Median (FPGM) pruning, Soft Filter Pruning (SFP) and Bayesian optimization in order to achieve a superior trade-off between size and performance compared to existing approaches. FPGM pruning is a structured pruning technique that allows pruning the least significant filters in each layer, while SFP iteratively prunes the filters and allows them to be updated in any subsequent training step. Bayesian optimization is employed in order to optimize the pruning rates of each layer, rather than relying on engineering expertise to determine the optimal pruning rates for each layer. In our experiments across all three subsets of the WIDER FACE dataset, our proposed approach B-FPGM consistently outperforms existing ones in balancing model size and performance. All our experiments were applied to EResFD, the currently smallest (in number of parameters) well-performing face detector of the literature; a small ablation study with a second small face detector, EXTD, is also reported. The source code and trained pruned face detection models can be found at: https://github.com/IDTITI/B-FPGM.
Authors:Shady Nasrat, Myungsu Kim, Seonil Lee, Jiho Lee, Yeoncheol Jang, Seung-joon Yi
Abstract:
Large language models (LLMs) represent a significant advancement in integrating physical robots with AI-driven systems. We showcase the capabilities of our framework within the context of the real-world household competition. This research introduces a framework that utilizes RDMM (Robotics Decision-Making Models), which possess the capacity for decision-making within domain-specific contexts, as well as an awareness of their personal knowledge and capabilities. The framework leverages information to enhance the autonomous decision-making of the system. In contrast to other approaches, our focus is on real-time, on-device solutions, successfully operating on hardware with as little as 8GB of memory. Our framework incorporates visual perception models equipping robots with understanding of their environment. Additionally, the framework has integrated real-time speech recognition capabilities, thus enhancing the human-robot interaction experience. Experimental results demonstrate that the RDMM framework can plan with an 93\% accuracy. Furthermore, we introduce a new dataset consisting of 27k planning instances, as well as 1.3k text-image annotated samples derived from the competition. The framework, benchmarks, datasets, and models developed in this work are publicly available on our GitHub repository at https://github.com/shadynasrat/RDMM.
Authors:Arik Reuter, Tim G. J. Rudner, Vincent Fortuin, David Rügamer
Abstract:
Transformers have emerged as the dominant architecture in the field of deep learning, with a broad range of applications and remarkable in-context learning (ICL) capabilities. While not yet fully understood, ICL has already proved to be an intriguing phenomenon, allowing transformers to learn in context -- without requiring further training. In this paper, we further advance the understanding of ICL by demonstrating that transformers can perform full Bayesian inference for commonly used statistical models in context. More specifically, we introduce a general framework that builds on ideas from prior fitted networks and continuous normalizing flows and enables us to infer complex posterior distributions for models such as generalized linear models and latent factor models. Extensive experiments on real-world datasets demonstrate that our ICL approach yields posterior samples that are similar in quality to state-of-the-art MCMC or variational inference methods that do not operate in context. The source code for this paper is available at https://github.com/ArikReuter/ICL_for_Full_Bayesian_Inference.
Authors:Lantao Li, Kang Yang, Wenqi Zhang, Xiaoxue Wang, Chen Sun
Abstract:
Cooperative perception enhances autonomous driving by leveraging Vehicle-to-Everything (V2X) communication for multi-agent sensor fusion. However, most existing methods rely on single-modal data sharing, limiting fusion performance, particularly in heterogeneous sensor settings involving both LiDAR and cameras across vehicles and roadside units (RSUs). To address this, we propose Radian Glue Attention (RG-Attn), a lightweight and generalizable cross-modal fusion module that unifies intra-agent and inter-agent fusion via transformation-based coordinate alignment and a unified sampling/inversion strategy. RG-Attn efficiently aligns features through a radian-based attention constraint, operating column-wise on geometrically consistent regions to reduce overhead and preserve spatial coherence, thereby enabling accurate and robust fusion. Building upon RG-Attn, we propose three cooperative architectures. The first, Paint-To-Puzzle (PTP), prioritizes communication efficiency but assumes all agents have LiDAR, optionally paired with cameras. The second, Co-Sketching-Co-Coloring (CoS-CoCo), offers maximal flexibility, supporting any sensor setup (e.g., LiDAR-only, camera-only, or both) and enabling strong cross-modal generalization for real-world deployment. The third, Pyramid-RG-Attn Fusion (PRGAF), aims for peak detection accuracy with the highest computational overhead. Extensive evaluations on simulated and real-world datasets show our framework delivers state-of-the-art detection accuracy with high flexibility and efficiency. GitHub Link: https://github.com/LantaoLi/RG-Attn
Authors:Chenguo Lin, Panwang Pan, Bangbang Yang, Zeming Li, Yadong Mu
Abstract:
Recent advancements in 3D content generation from text or a single image struggle with limited high-quality 3D datasets and inconsistency from 2D multi-view generation. We introduce DiffSplat, a novel 3D generative framework that natively generates 3D Gaussian splats by taming large-scale text-to-image diffusion models. It differs from previous 3D generative models by effectively utilizing web-scale 2D priors while maintaining 3D consistency in a unified model. To bootstrap the training, a lightweight reconstruction model is proposed to instantly produce multi-view Gaussian splat grids for scalable dataset curation. In conjunction with the regular diffusion loss on these grids, a 3D rendering loss is introduced to facilitate 3D coherence across arbitrary views. The compatibility with image diffusion models enables seamless adaptions of numerous techniques for image generation to the 3D realm. Extensive experiments reveal the superiority of DiffSplat in text- and image-conditioned generation tasks and downstream applications. Thorough ablation studies validate the efficacy of each critical design choice and provide insights into the underlying mechanism.
Authors:Yinfeng Gao, Qichao Zhang, Da-wei Ding, Dongbin Zhao
Abstract:
It is still a challenging topic to make reactive driving behaviors in complex urban environments as road users' intentions are unknown. Model-based reinforcement learning (MBRL) offers great potential to learn a reactive policy by constructing a world model that can provide informative states and imagination training. However, a critical limitation in relevant research lies in the scene-level reconstruction representation learning, which may overlook key interactive vehicles and hardly model the interactive features among vehicles and their long-term intentions. Therefore, this paper presents a novel MBRL method with a predictive individual world model (PIWM) for autonomous driving. PIWM describes the driving environment from an individual-level perspective and captures vehicles' interactive relations and their intentions via trajectory prediction task. Meanwhile, a behavior policy is learned jointly with PIWM. It is trained in PIWM's imagination and effectively navigates in the urban driving scenes leveraging intention-aware latent states. The proposed method is trained and evaluated on simulation environments built upon real-world challenging interactive scenarios. Compared with popular model-free and state-of-the-art model-based reinforcement learning methods, experimental results show that the proposed method achieves the best performance in terms of safety and efficiency.
Authors:Sunbowen Lee, Shiwen Ni, Chi Wei, Shuaimin Li, Liyang Fan, Ahmadreza Argha, Hamid Alinejad-Rokny, Ruifeng Xu, Yicheng Gong, Min Yang
Abstract:
Safety alignment mechanism are essential for preventing large language models (LLMs) from generating harmful information or unethical content. However, cleverly crafted prompts can bypass these safety measures without accessing the model's internal parameters, a phenomenon known as black-box jailbreak. Existing heuristic black-box attack methods, such as genetic algorithms, suffer from limited effectiveness due to their inherent randomness, while recent reinforcement learning (RL) based methods often lack robust and informative reward signals. To address these challenges, we propose a novel black-box jailbreak method leveraging RL, which optimizes prompt generation by analyzing the embedding proximity between benign and malicious prompts. This approach ensures that the rewritten prompts closely align with the intent of the original prompts while enhancing the attack's effectiveness. Furthermore, we introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success. Experimental results show the superiority of our approach, achieving state-of-the-art (SOTA) performance on several prominent open and closed-source LLMs, including Qwen2.5-7B-Instruct, Llama3.1-8B-Instruct, and GPT-4o-0806. Our method sets a new benchmark in jailbreak attack effectiveness, highlighting potential vulnerabilities in LLMs. The codebase for this work is available at https://github.com/Aegis1863/xJailbreak.
Authors:Jianing Li, Ming Lu, Hao Wang, Chenyang Gu, Wenzhao Zheng, Li Du, Shanghang Zhang
Abstract:
3D semantic occupancy prediction is a crucial task in visual perception, as it requires the simultaneous comprehension of both scene geometry and semantics. It plays a crucial role in understanding 3D scenes and has great potential for various applications, such as robotic vision perception and autonomous driving. Many existing works utilize planar-based representations such as Bird's Eye View (BEV) and Tri-Perspective View (TPV). These representations aim to simplify the complexity of 3D scenes while preserving essential object information, thereby facilitating efficient scene representation. However, in dense indoor environments with prevalent occlusions, directly applying these planar-based methods often leads to difficulties in capturing global semantic occupancy, ultimately degrading model performance. In this paper, we present a new vertical slice representation that divides the scene along the vertical axis and projects spatial point features onto the nearest pair of parallel planes. To utilize these slice features, we propose SliceOcc, an RGB camera-based model specifically tailored for indoor 3D semantic occupancy prediction. SliceOcc utilizes pairs of slice queries and cross-attention mechanisms to extract planar features from input images. These local planar features are then fused to form a global scene representation, which is employed for indoor occupancy prediction. Experimental results on the EmbodiedScan dataset demonstrate that SliceOcc achieves a mIoU of 15.45% across 81 indoor categories, setting a new state-of-the-art performance among RGB camera-based models for indoor 3D semantic occupancy prediction. Code is available at https://github.com/NorthSummer/SliceOcc.
Authors:Shengyuan Liu, Zhen Chen, Qiushi Yang, Weihao Yu, Di Dong, Jiancong Hu, Yixuan Yuan
Abstract:
Automated diagnostic systems (ADS) have shown significant potential in the early detection of polyps during endoscopic examinations, thereby reducing the incidence of colorectal cancer. However, due to high annotation costs and strict privacy concerns, acquiring high-quality endoscopic images poses a considerable challenge in the development of ADS. Despite recent advancements in generating synthetic images for dataset expansion, existing endoscopic image generation algorithms failed to accurately generate the details of polyp boundary regions and typically required medical priors to specify plausible locations and shapes of polyps, which limited the realism and diversity of the generated images. To address these limitations, we present Polyp-Gen, the first full-automatic diffusion-based endoscopic image generation framework. Specifically, we devise a spatial-aware diffusion training scheme with a lesion-guided loss to enhance the structural context of polyp boundary regions. Moreover, to capture medical priors for the localization of potential polyp areas, we introduce a hierarchical retrieval-based sampling strategy to match similar fine-grained spatial features. In this way, our Polyp-Gen can generate realistic and diverse endoscopic images for building reliable ADS. Extensive experiments demonstrate the state-of-the-art generation quality, and the synthetic images can improve the downstream polyp detection task. Additionally, our Polyp-Gen has shown remarkable zero-shot generalizability on other datasets. The source code is available at https://github.com/CUHK-AIM-Group/Polyp-Gen.
Authors:Aashish Yadavally, Hoan Nguyen, Laurent Callot, Gauthier Guinet
Abstract:
Large language models (LLMs) offer a promising way forward for automating software engineering tasks, such as bug fixes, feature additions, etc., via multi-step LLM-based agentic workflows. However, existing metrics for evaluating such workflows, mainly build status and occasionally log analysis, are too sparse and limited in providing the information needed to assess the quality of changes made. In this work, we designed LLM-based critics to derive well-structured and rigorous intermediate/step-level, execution-free evaluation proxies for repo-level code changes. Importantly, we assume access to the gold test patch for the problem (i.e., reference-aware) to assess both semantics and executability of generated patches. With the gold test patch as a reference, we predict executability of all editing locations with an F1 score of 91.6%, aggregating which, we can predict the build status in 84.8% of the instances in SWE-bench. In particular, such an execution-focused LLM critic outperforms other reference-free and reference-aware LLM critics by 38.9% to 72.5%. Moreover, we demonstrate the usefulness of such a reference-aware framework in comparing patches generated by different agentic workflows. Finally, we open-source the library developed for this project, which allows further usage for either other agentic workflows or other benchmarks. The source code is available at https://github.com/amazon-science/code-agent-eval.
Authors:Jinlan Fu, Shenzhen Huangfu, Hao Fei, Xiaoyu Shen, Bryan Hooi, Xipeng Qiu, See-Kiong Ng
Abstract:
Multimodal Large Language Models (MLLMs) still struggle with hallucinations despite their impressive capabilities. Recent studies have attempted to mitigate this by applying Direct Preference Optimization (DPO) to multimodal scenarios using preference pairs from text-based responses. However, our analysis of representation distributions reveals that multimodal DPO struggles to align image and text representations and to distinguish between hallucinated and non-hallucinated descriptions. To address these challenges, in this work, we propose a Cross-modal Hierarchical Direct Preference Optimization (CHiP) to address these limitations. We introduce a visual preference optimization module within the DPO framework, enabling MLLMs to learn from both textual and visual preferences simultaneously. Furthermore, we propose a hierarchical textual preference optimization module that allows the model to capture preferences at multiple granular levels, including response, segment, and token levels. We evaluate CHiP through both quantitative and qualitative analyses, with results across multiple benchmarks demonstrating its effectiveness in reducing hallucinations. On the Object HalBench dataset, CHiP outperforms DPO in hallucination reduction, achieving improvements of 52.7% and 55.5% relative points based on the base model Muffin and LLaVA models, respectively. We make all our datasets and code publicly available: https://github.com/LVUGAI/CHiP.
Authors:Ali Safarpoor Dehkordi, Ahad N. Zehmakan
Abstract:
We investigate the problem of sybil (fake account) detection in social networks from a graph algorithms perspective, where graph structural information is used to classify users as sybil and benign. We introduce the novel notion of user resistance to attack requests (friendship requests from sybil accounts). Building on this notion, we propose a synthetic graph data generation framework that supports various attack strategies. We then study the optimization problem where we are allowed to reveal the resistance of a subset of users with the aim to maximize the number of users which are discovered to be benign and the number of potential attack edges (connections from a sybil to a benign user). Furthermore, we devise efficient algorithms for this problem and investigate their theoretical guarantees. Finally, through a large set of experiments, we demonstrate that our proposed algorithms improve detection performance notably when applied as a preprocessing step for different sybil detection algorithms. The code and data used in this work are publicly available on GitHub https://github.com/aSafarpoor/AAMAS2025-Paper/tree/main
Authors:Wenfeng Lin, Jiangchuan Wei, Boyuan Liu, Yichen Zhang, Shiyue Yan, Mingyu Guo
Abstract:
Recently, with the tremendous success of diffusion models in the field of text-to-image (T2I) generation, increasing attention has been directed toward their potential in text-to-video (T2V) applications. However, the computational demands of diffusion models pose significant challenges, particularly in generating high-resolution videos with high frame rates. In this paper, we propose CascadeV, a cascaded latent diffusion model (LDM), that is capable of producing state-of-the-art 2K resolution videos. Experiments demonstrate that our cascaded model achieves a higher compression ratio, substantially reducing the computational challenges associated with high-quality video generation. We also implement a spatiotemporal alternating grid 3D attention mechanism, which effectively integrates spatial and temporal information, ensuring superior consistency across the generated video frames. Furthermore, our model can be cascaded with existing T2V models, theoretically enabling a 4$\times$ increase in resolution or frames per second without any fine-tuning. Our code is available at https://github.com/bytedance/CascadeV.
Authors:Faria Huq, Zora Zhiruo Wang, Frank F. Xu, Tianyue Ou, Shuyan Zhou, Jeffrey P. Bigham, Graham Neubig
Abstract:
While much work on web agents emphasizes the promise of autonomously performing tasks on behalf of users, in reality, agents often fall short on complex tasks in real-world contexts and modeling user preference. This presents an opportunity for humans to collaborate with the agent and leverage the agent's capabilities effectively. We propose CowPilot, a framework supporting autonomous as well as human-agent collaborative web navigation, and evaluation across task success and task efficiency. CowPilot reduces the number of steps humans need to perform by allowing agents to propose next steps, while users are able to pause, reject, or take alternative actions. During execution, users can interleave their actions with the agent by overriding suggestions or resuming agent control when needed. We conducted case studies on five common websites and found that the human-agent collaborative mode achieves the highest success rate of 95% while requiring humans to perform only 15.2% of the total steps. Even with human interventions during task execution, the agent successfully drives up to half of task success on its own. CowPilot can serve as a useful tool for data collection and agent evaluation across websites, which we believe will enable research in how users and agents can work together. Video demonstrations are available at https://oaishi.github.io/cowpilot.html
Authors:Xiaolei Liu, Yan Sun, Zhiliang Wang, Mark Nixon
Abstract:
Gait recognition is an emerging identification technology that distinguishes individuals at long distances by analyzing individual walking patterns. Traditional techniques rely heavily on large-scale labeled datasets, which incurs high costs and significant labeling challenges. Recently, researchers have explored unsupervised gait recognition with clustering-based unsupervised domain adaptation methods and achieved notable success. However, these methods directly use pseudo-label generated by clustering and neglect pseudolabel noise caused by domain differences, which affects the effect of the model training process. To mitigate these issues, we proposed a novel model called GaitDCCR, which aims to reduce the influence of noisy pseudo labels on clustering and model training. Our approach can be divided into two main stages: clustering and training stage. In the clustering stage, we propose Dynamic Cluster Parameters (DCP) and Dynamic Weight Centroids (DWC) to improve the efficiency of clustering and obtain reliable cluster centroids. In the training stage, we employ the classical teacher-student structure and propose Confidence-based Pseudo-label Refinement (CPR) and Contrastive Teacher Module (CTM) to encourage noisy samples to converge towards clusters containing their true identities. Extensive experiments on public gait datasets have demonstrated that our simple and effective method significantly enhances the performance of unsupervised gait recognition, laying the foundation for its application in the real-world. We will release the code at https://github.com/YanSun-github/GaitDCCR upon acceptance.
Authors:Zheng Lian, Haoyu Chen, Lan Chen, Haiyang Sun, Licai Sun, Yong Ren, Zebang Cheng, Bin Liu, Rui Liu, Xiaojiang Peng, Jiangyan Yi, Jianhua Tao
Abstract:
The emergence of multimodal large language models (MLLMs) advances multimodal emotion recognition (MER) to the next level, from naive discriminative tasks to complex emotion understanding with advanced video understanding abilities and natural language description. However, the current community suffers from a lack of large-scale datasets with intensive, descriptive emotion annotations, as well as a multimodal-centric framework to maximize the potential of MLLMs for emotion understanding. To address this, we establish a new benchmark for MLLM-based emotion understanding with a novel dataset (MER-Caption) and a new model (AffectGPT). Utilizing our model-based crowd-sourcing data collection strategy, we construct the largest descriptive emotion dataset to date (by far), featuring over 2K fine-grained emotion categories across 115K samples. We also introduce the AffectGPT model, designed with pre-fusion operations to enhance multimodal integration. Finally, we present MER-UniBench, a unified benchmark with evaluation metrics tailored for typical MER tasks and the free-form, natural language output style of MLLMs. Extensive experimental results show AffectGPT's robust performance across various MER tasks. We have released both the code and the dataset to advance research and development in emotion understanding: https://github.com/zeroQiaoba/AffectGPT.
Authors:Tianyi Xie, Yiwei Zhao, Ying Jiang, Chenfanfu Jiang
Abstract:
Creating hand-drawn animation sequences is labor-intensive and demands professional expertise. We introduce PhysAnimator, a novel approach for generating physically plausible meanwhile anime-stylized animation from static anime illustrations. Our method seamlessly integrates physics-based simulations with data-driven generative models to produce dynamic and visually compelling animations. To capture the fluidity and exaggeration characteristic of anime, we perform image-space deformable body simulations on extracted mesh geometries. We enhance artistic control by introducing customizable energy strokes and incorporating rigging point support, enabling the creation of tailored animation effects such as wind interactions. Finally, we extract and warp sketches from the simulation sequence, generating a texture-agnostic representation, and employ a sketch-guided video diffusion model to synthesize high-quality animation frames. The resulting animations exhibit temporal consistency and visual plausibility, demonstrating the effectiveness of our method in creating dynamic anime-style animations. See our project page for more demos: https://xpandora.github.io/PhysAnimator/
Authors:Robert O'Shea, Bipin Rajendran
Abstract:
State-of-the-art methods for backpropagation-free learning employ local error feedback to direct iterative optimisation via gradient descent. In this study, we examine the more restrictive setting where retrograde communication from neuronal outputs is unavailable for pre-synaptic weight optimisation. To address this challenge, we propose Forward Projection (FP). This novel randomised closed-form training method requires only a single forward pass over the entire dataset for model fitting, without retrograde communication. Target values for pre-activation membrane potentials are generated layer-wise via nonlinear projections of pre-synaptic inputs and the labels. Local loss functions are optimised over pre-synaptic inputs using closed-form regression, without feedback from neuronal outputs or downstream layers. Interpretability is a key advantage of FP training; membrane potentials of hidden neurons in FP-trained networks encode information which is interpretable layer-wise as label predictions. We demonstrate the effectiveness of FP across four biomedical datasets. In few-shot learning tasks, FP yielded more generalisable models than those optimised via backpropagation. In large-sample tasks, FP-based models achieve generalisation comparable to gradient descent-based local learning methods while requiring only a single forward propagation step, achieving significant speed up for training. Interpretation functions defined on local neuronal activity in FP-based models successfully identified clinically salient features for diagnosis in two biomedical datasets. Forward Projection is a computationally efficient machine learning approach that yields interpretable neural network models without retrograde communication of neuronal activity during training.
Authors:Simon Dahan, Gabriel Bénédict, Logan Z. J. Williams, Yourong Guo, Daniel Rueckert, Robert Leech, Emma C. Robinson
Abstract:
Current AI frameworks for brain decoding and encoding, typically train and test models within the same datasets. This limits their utility for brain computer interfaces (BCI) or neurofeedback, for which it would be useful to pool experiences across individuals to better simulate stimuli not sampled during training. A key obstacle to model generalisation is the degree of variability of inter-subject cortical organisation, which makes it difficult to align or compare cortical signals across participants. In this paper we address this through the use of surface vision transformers, which build a generalisable model of cortical functional dynamics, through encoding the topography of cortical networks and their interactions as a moving image across a surface. This is then combined with tri-modal self-supervised contrastive (CLIP) alignment of audio, video, and fMRI modalities to enable the retrieval of visual and auditory stimuli from patterns of cortical activity (and vice-versa). We validate our approach on 7T task-fMRI data from 174 healthy participants engaged in the movie-watching experiment from the Human Connectome Project (HCP). Results show that it is possible to detect which movie clips an individual is watching purely from their brain activity, even for individuals and movies not seen during training. Further analysis of attention maps reveals that our model captures individual patterns of brain activity that reflect semantic and visual systems. This opens the door to future personalised simulations of brain function. Code & pre-trained models will be made available at https://github.com/metrics-lab/sim, processed data for training will be available upon request at https://gin.g-node.org/Sdahan30/sim.
Authors:Oriol Barbany, Adrià Colomé, Carme Torras
Abstract:
Cloth folding is a complex task due to the inevitable self-occlusions of clothes, their complicated dynamics, and the disparate materials, geometries, and textures that garments can have. In this work, we learn folding actions conditioned on text commands. Translating high-level, abstract instructions into precise robotic actions requires sophisticated language understanding and manipulation capabilities. To do that, we leverage a pre-trained vision-language model and repurpose it to predict manipulation actions. Our model, BiFold, can take context into account and achieves state-of-the-art performance on an existing language-conditioned folding benchmark. To address the lack of annotated bimanual folding data, we introduce a novel dataset with automatically parsed actions and language-aligned instructions, enabling better learning of text-conditioned manipulation. BiFold attains the best performance on our dataset and demonstrates strong generalization to new instructions, garments, and environments.
Authors:George Wright, Slawomir Michniewski, Eleanor Jameson, Fayyaz ul Amir Afsar Minhas
Abstract:
Background: Phage therapy shows promise for treating antibiotic-resistant Klebsiella infections. Identifying phage depolymerases that target Klebsiella capsular polysaccharides is crucial, as these capsules contribute to biofilm formation and virulence. However, homology-based searches have limitations in novel depolymerase discovery.
Objective: To develop a machine learning model for identifying and ranking potential phage depolymerases targeting Klebsiella.
Methods: We developed DepoRanker, a machine learning algorithm to rank proteins by their likelihood of being depolymerases. The model was experimentally validated on 5 newly characterized proteins and compared to BLAST.
Results: DepoRanker demonstrated superior performance to BLAST in identifying potential depolymerases. Experimental validation confirmed its predictive ability on novel proteins.
Conclusions: DepoRanker provides an accurate and functional tool to expedite depolymerase discovery for phage therapy against Klebsiella. It is available as a webserver and open-source software.
Availability: Webserver: https://deporanker.dcs.warwick.ac.uk/ Source code: https://github.com/wgrgwrght/deporanker
Authors:Yash Yardi, Samuel Biruduganti, Lars Ankile
Abstract:
Simulation offers a scalable and efficient alternative to real-world data collection for learning visuomotor robotic policies. However, the simulation-to-reality, or Sim2Real distribution shift -- introduced by employing simulation-trained policies in real-world environments -- frequently prevents successful policy transfer. We present an offline framework to evaluate the performance of using large-scale pre-trained vision encoders to address the Sim2Real gap. We examine a diverse collection of encoders, assessing their ability to extract features necessary for robot control (Action Score) while remaining invariant to task-irrelevant environmental variations (Domain Invariance Score). Evaluating 23 encoders, we reveal patterns across architectures, pre-training datasets, and parameter scales. Our findings show that manipulation-pretrained encoders consistently achieve higher Action Scores, CNN-based encoders demonstrate stronger domain invariance than ViTs, and the best-performing models combine both properties, underscoring DIS and AS as complementary predictors of Sim2Real transferability.
Authors:J. Pablo Muñoz, Jinjie Yuan, Nilesh Jain
Abstract:
The rapid expansion of Large Language Models (LLMs) has posed significant challenges regarding the computational resources required for fine-tuning and deployment. Recent advancements in low-rank adapters have demonstrated their efficacy in parameter-efficient fine-tuning (PEFT) of these models. This retrospective paper comprehensively discusses innovative approaches that synergize low-rank representations with Neural Architecture Search (NAS) techniques, particularly weight-sharing super-networks. Robust solutions for compressing and fine-tuning large pre-trained models are developed by integrating these methodologies. Our analysis highlights the potential of these combined strategies to democratize the use of LLMs, making them more accessible for deployment in resource-constrained environments. The resulting models exhibit reduced memory footprints and faster inference times, paving the way for more practical and scalable applications of LLMs. Models and code are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.
Authors:Heting Gao, Hang Shao, Xiong Wang, Chaofan Qiu, Yunhang Shen, Siqi Cai, Yuchen Shi, Zihan Xu, Zuwei Long, Yike Zhang, Shaoqi Dong, Chaoyou Fu, Ke Li, Long Ma, Xing Sun
Abstract:
The film Her features Samantha, a sophisticated AI audio agent who is capable of understanding both linguistic and paralinguistic information in human speech and delivering real-time responses that are natural, informative and sensitive to emotional subtleties. Moving one step toward more sophisticated audio agent from recent advancement in end-to-end (E2E) speech systems, we propose LUCY, a E2E speech model that (1) senses and responds to user's emotion, (2) deliver responses in a succinct and natural style, and (3) use external tool to answer real-time inquiries. Experiment results show that LUCY is better at emotion control than peer models, generating emotional responses based on linguistic emotional instructions and responding to paralinguistic emotional cues. Lucy is also able to generate responses in a more natural style, as judged by external language models, without sacrificing much performance on general question answering. Finally, LUCY can leverage function calls to answer questions that are out of its knowledge scope.
Authors:Nicolas von Lützow, Matthias NieÃner
Abstract:
Volumetric rendering has become central to modern novel view synthesis methods, which use differentiable rendering to optimize 3D scene representations directly from observed views. While many recent works build on NeRF or 3D Gaussians, we explore an alternative volumetric scene representation. More specifically, we introduce two new scene representations based on linear primitives - octahedra and tetrahedra - both of which define homogeneous volumes bounded by triangular faces. To optimize these primitives, we present a differentiable rasterizer that runs efficiently on GPUs, allowing end-to-end gradient-based optimization while maintaining real-time rendering capabilities. Through experiments on real-world datasets, we demonstrate comparable performance to state-of-the-art volumetric methods while requiring fewer primitives to achieve similar reconstruction fidelity. Our findings deepen the understanding of 3D representations by providing insights into the fidelity and performance characteristics of transparent polyhedra and suggest that adopting novel primitives can expand the available design space.
Authors:Weixin Liang, Junhong Shen, Genghan Zhang, Ning Dong, Luke Zettlemoyer, Lili Yu
Abstract:
State Space Models (SSMs) have emerged as efficient alternatives to Transformers for sequential modeling, but their inability to leverage modality-specific features limits their performance in multi-modal pretraining. Here, we propose Mixture-of-Mamba, a novel SSM architecture that introduces modality-aware sparsity through modality-specific parameterization of the Mamba block. Building on Mixture-of-Transformers (W. Liang et al. arXiv:2411.04996; 2024), we extend the benefits of modality-aware sparsity to SSMs while preserving their computational efficiency. We evaluate Mixture-of-Mamba across three multi-modal pretraining settings: Transfusion (interleaved text and continuous image tokens with diffusion loss), Chameleon (interleaved text and discrete image tokens), and an extended three-modality framework incorporating speech. Mixture-of-Mamba consistently reaches the same loss values at earlier training steps with significantly reduced computational costs. In the Transfusion setting, Mixture-of-Mamba achieves equivalent image loss using only 34.76% of the training FLOPs at the 1.4B scale. In the Chameleon setting, Mixture-of-Mamba reaches similar image loss with just 42.50% of the FLOPs at the 1.4B scale, and similar text loss with just 65.40% of the FLOPs. In the three-modality setting, MoM matches speech loss at 24.80% of the FLOPs at the 1.4B scale. Our ablation study highlights the synergistic effects of decoupling projection components, where joint decoupling yields greater gains than individual modifications. These results establish modality-aware sparsity as a versatile and effective design principle, extending its impact from Transformers to SSMs and setting new benchmarks in multi-modal pretraining. Our code can be accessed at https://github.com/Weixin-Liang/Mixture-of-Mamba
Authors:Younggun Kim, Mohamed Abdel-Aty, Beomsik Cho, Seonghoon Ryoo, Soomok Lee
Abstract:
Although LiDAR sensors have become indispensable for autonomous vehicles (AVs) due to their ability to provide accurate 3D scene understanding and robust perception under adverse weather conditions, the properties of LiDAR point clouds vary widely across sensor configurations and data acquisition domains, leading to severe performance degradation when models are transferred between heterogeneous sensors or from simulation to the real world. To address this challenge, we propose the Multi-view Structural Convolution Network (MSCN), a novel architecture designed to achieve domain-invariant recognition across diverse LiDAR configurations and environments. MSCN comprises Structural Convolution Layers (SCL) that extract local context geometric features from point clouds and Structural Aggregation Layers (SAL) that extract and aggregate both local and overall context features from point clouds. Furthermore, we incorporate an unseen domain generation strategy to mitigate domain gaps during training. Extensive experiments demonstrate that MSCN consistently outperforms state-of-the-art point cloud classification methods across all domain change scenarios. These results highlight MSCN as a scalable solution for deploying LiDAR-based perception systems of AVs. Our code is available at https://github.com/MLMLab/MSCN.
Authors:Jacopo Di Ventura, Dylan R. Ashley, Vincent Herrmann, Francesco Faccio, Jürgen Schmidhuber
Abstract:
Upside Down Reinforcement Learning (UDRL) is a promising framework for solving reinforcement learning problems which focuses on learning command-conditioned policies. In this work, we extend UDRL to the task of learning a command-conditioned generator of deep neural network policies. We accomplish this using Hypernetworks - a variant of Fast Weight Programmers, which learn to decode input commands representing a desired expected return into command-specific weight matrices. Our method, dubbed Upside Down Reinforcement Learning with Policy Generators (UDRLPG), streamlines comparable techniques by removing the need for an evaluator or critic to update the weights of the generator. To counteract the increased variance in last returns caused by not having an evaluator, we decouple the sampling probability of the buffer from the absolute number of policies in it, which, together with a simple weighting strategy, improves the empirical convergence of the algorithm. Compared with existing algorithms, UDRLPG achieves competitive performance and high returns, sometimes outperforming more complex architectures. Our experiments show that a trained generator can generalize to create policies that achieve unseen returns zero-shot. The proposed method appears to be effective in mitigating some of the challenges associated with learning highly multimodal functions. Altogether, we believe that UDRLPG represents a promising step forward in achieving greater empirical sample efficiency in RL. A full implementation of UDRLPG is publicly available at https://github.com/JacopoD/udrlpg_
Authors:Li Pang, Jing Yao, Kaiyu Li, Xiangyong Cao
Abstract:
Hyperspectral image (HSI) classification aims at categorizing each pixel in an HSI into a specific land cover class, which is crucial for applications like remote sensing, environmental monitoring, and agriculture. Although deep learning-based HSI classification methods have achieved significant advancements, existing methods still rely on manually labeled data for training, which is both time-consuming and labor-intensive. To address this limitation, we introduce a novel zero-shot hyperspectral image classification framework based on CLIP (SPECIAL), aiming to eliminate the need for manual annotations. The SPECIAL framework consists of two main stages: (1) CLIP-based pseudo-label generation, and (2) noisy label learning. In the first stage, HSI is spectrally interpolated to produce RGB bands. These bands are subsequently classified using CLIP, resulting in noisy pseudo-labels that are accompanied by confidence scores. To improve the quality of these labels, we propose a scaling strategy that fuses predictions from multiple spatial scales. In the second stage, spectral information and a label refinement technique are incorporated to mitigate label noise and further enhance classification accuracy. Experimental results on three benchmark datasets demonstrate that our SPECIAL outperforms existing methods in zero-shot HSI classification, showing its potential for more practical applications. The code is available at https://github.com/LiPang/SPECIAL.
Authors:Tatiana TaÃs Schein, Gustavo Pereira de Almeira, Stephanie Loi Brião, Rodrigo Andrade de Bem, Felipe Gomes de Oliveira, Paulo L. J. Drews-Jr
Abstract:
Activities in underwater environments are paramount in several scenarios, which drives the continuous development of underwater image enhancement techniques. A major challenge in this domain is the depth at which images are captured, with increasing depth resulting in a darker environment. Most existing methods for underwater image enhancement focus on noise removal and color adjustment, with few works dedicated to brightness enhancement. This work introduces a novel unsupervised learning approach to underwater image enhancement using a diffusion model. Our method, called UDBE, is based on conditional diffusion to maintain the brightness details of the unpaired input images. The input image is combined with a color map and a Signal-Noise Relation map (SNR) to ensure stable training and prevent color distortion in the output images. The results demonstrate that our approach achieves an impressive accuracy rate in the datasets UIEB, SUIM and RUIE, well-established underwater image benchmarks. Additionally, the experiments validate the robustness of our approach, regarding the image quality metrics PSNR, SSIM, UIQM, and UISM, indicating the good performance of the brightness enhancement process. The source code is available here: https://github.com/gusanagy/UDBE.
Authors:Wenxuan Xie, Fanpu Cao
Abstract:
In recent work on time-series prediction, Transformers and even large language models have garnered significant attention due to their strong capabilities in sequence modeling. However, in practical deployments, time-series prediction often requires operation in resource-constrained environments, such as edge devices, which are unable to handle the computational overhead of large models. To address such scenarios, some lightweight models have been proposed, but they exhibit poor performance on non-stationary sequences. In this paper, we propose $\textit{SWIFT}$, a lightweight model that is not only powerful, but also efficient in deployment and inference for Long-term Time Series Forecasting (LTSF). Our model is based on three key points: (i) Utilizing wavelet transform to perform lossless downsampling of time series. (ii) Achieving cross-band information fusion with a learnable filter. (iii) Using only one shared linear layer or one shallow MLP for sub-series' mapping. We conduct comprehensive experiments, and the results show that $\textit{SWIFT}$ achieves state-of-the-art (SOTA) performance on multiple datasets, offering a promising method for edge computing and deployment in this task. Moreover, it is noteworthy that the number of parameters in $\textit{SWIFT-Linear}$ is only 25\% of what it would be with a single-layer linear model for time-domain prediction. Our code is available at https://github.com/LancelotXWX/SWIFT.
Authors:Zhongjin Luo, Yang Li, Mingrui Zhang, Senbo Wang, Han Yan, Xibin Song, Taizhang Shang, Wei Mao, Hongdong Li, Xiaoguang Han, Pan Ji
Abstract:
While recent advancements have shown remarkable progress in general 3D shape generation models, the challenge of leveraging these approaches to automatically generate wearable 3D assets remains unexplored. To this end, we present BAG, a Body-aligned Asset Generation method to output 3D wearable asset that can be automatically dressed on given 3D human bodies. This is achived by controlling the 3D generation process using human body shape and pose information. Specifically, we first build a general single-image to consistent multiview image diffusion model, and train it on the large Objaverse dataset to achieve diversity and generalizability. Then we train a Controlnet to guide the multiview generator to produce body-aligned multiview images. The control signal utilizes the multiview 2D projections of the target human body, where pixel values represent the XYZ coordinates of the body surface in a canonical space. The body-conditioned multiview diffusion generates body-aligned multiview images, which are then fed into a native 3D diffusion model to produce the 3D shape of the asset. Finally, by recovering the similarity transformation using multiview silhouette supervision and addressing asset-body penetration with physics simulators, the 3D asset can be accurately fitted onto the target human body. Experimental results demonstrate significant advantages over existing methods in terms of image prompt-following capability, shape diversity, and shape quality. Our project page is available at https://bag-3d.github.io/.
Authors:Anh-Kiet Duong, Petra Gomez-Krämer
Abstract:
This paper presents a novel approach for hazard analysis in dashcam footage, addressing the detection of driver reactions to hazards, the identification of hazardous objects, and the generation of descriptive captions. We first introduce a method for detecting driver reactions through speed and sound anomaly detection, leveraging unsupervised learning techniques. For hazard detection, we employ a set of heuristic rules as weak classifiers, which are combined using an ensemble method. This ensemble approach is further refined with differential privacy to mitigate overconfidence, ensuring robustness despite the lack of labeled data. Lastly, we use state-of-the-art vision-language models for hazard captioning, generating descriptive labels for the detected hazards. Our method achieved the highest scores in the Challenge on Out-of-Label in Autonomous Driving, demonstrating its effectiveness across all three tasks. Source codes are publicly available at https://github.com/ffyyytt/COOOL_2025.
Authors:Zhibo Ren, Pritthijit Nath, Pancham Shukla
Abstract:
Tropical cyclone (TC) forecasting is crucial for disaster preparedness and mitigation. While recent deep learning approaches have shown promise, existing methods often treat TC evolution as a series of independent frame-to-frame predictions, limiting their ability to capture long-term dynamics. We present a novel application of video diffusion models for TC forecasting that explicitly models temporal dependencies through additional temporal layers. Our approach enables the model to generate multiple frames simultaneously, better capturing cyclone evolution patterns. We introduce a two-stage training strategy that significantly improves individual-frame quality and performance in low-data regimes. Experimental results show our method outperforms the previous approach of Nath et al. by 19.3% in MAE, 16.2% in PSNR, and 36.1% in SSIM. Most notably, we extend the reliable forecasting horizon from 36 to 50 hours. Through comprehensive evaluation using both traditional metrics and Fréchet Video Distance (FVD), we demonstrate that our approach produces more temporally coherent forecasts while maintaining competitive single-frame quality. Code accessible at https://github.com/Ren-creater/forecast-video-diffmodels.
Authors:Michael Birsak, John Femiani, Biao Zhang, Peter Wonka
Abstract:
Assigning realistic materials to 3D models remains a significant challenge in computer graphics. We propose MatCLIP, a novel method that extracts shape- and lighting-insensitive descriptors of Physically Based Rendering (PBR) materials to assign plausible textures to 3D objects based on images, such as the output of Latent Diffusion Models (LDMs) or photographs. Matching PBR materials to static images is challenging because the PBR representation captures the dynamic appearance of materials under varying viewing angles, shapes, and lighting conditions. By extending an Alpha-CLIP-based model on material renderings across diverse shapes and lighting, and encoding multiple viewing conditions for PBR materials, our approach generates descriptors that bridge the domains of PBR representations with photographs or renderings, including LDM outputs. This enables consistent material assignments without requiring explicit knowledge of material relationships between different parts of an object. MatCLIP achieves a top-1 classification accuracy of 76.6%, outperforming state-of-the-art methods such as PhotoShape and MatAtlas by over 15 percentage points on publicly available datasets. Our method can be used to construct material assignments for 3D shape datasets such as ShapeNet, 3DCoMPaT++, and Objaverse. All code and data will be released.
Authors:Xiang Huang, Hao Peng, Shuo Sun, Zhifeng Hao, Hui Lin, Shuhai Wang
Abstract:
Aspect-based Sentiment Analysis (ABSA) is the task aimed at predicting the sentiment polarity of aspect words within sentences. Recently, incorporating graph neural networks (GNNs) to capture additional syntactic structure information in the dependency tree derived from syntactic dependency parsing has been proven to be an effective paradigm for boosting ABSA. Despite GNNs enhancing model capability by fusing more types of information, most works only utilize a single topology view of the dependency tree or simply conflate different perspectives of information without distinction, which limits the model performance. To address these challenges, in this paper, we propose a new multi-view attention syntactic enhanced graph convolutional network (MASGCN) that weighs different syntactic information of views using attention mechanisms. Specifically, we first construct distance mask matrices from the dependency tree to obtain multiple subgraph views for GNNs. To aggregate features from different views, we propose a multi-view attention mechanism to calculate the attention weights of views. Furthermore, to incorporate more syntactic information, we fuse the dependency type information matrix into the adjacency matrices and present a structural entropy loss to learn the dependency type adjacency matrix. Comprehensive experiments on four benchmark datasets demonstrate that our model outperforms state-of-the-art methods. The codes and datasets are available at https://github.com/SELGroup/MASGCN.
Authors:Jiahao Chen, Bin Qin, Jiangmeng Li, Hao Chen, Bing Su
Abstract:
Long-tailed learning has garnered increasing attention due to its practical significance. Among the various approaches, the fine-tuning paradigm has gained considerable interest with the advent of foundation models. However, most existing methods primarily focus on leveraging knowledge from these models, overlooking the inherent biases introduced by the imbalanced training data they rely on. In this paper, we examine how such imbalances from pre-training affect long-tailed downstream tasks. Specifically, we find the imbalance biases inherited in foundation models on downstream task as parameter imbalance and data imbalance. During fine-tuning, we observe that parameter imbalance plays a more critical role, while data imbalance can be mitigated using existing re-balancing strategies. Moreover, we find that parameter imbalance cannot be effectively addressed by current re-balancing techniques, such as adjusting the logits, during training, unlike data imbalance. To tackle both imbalances simultaneously, we build our method on causal learning and view the incomplete semantic factor as the confounder, which brings spurious correlations between input samples and labels. To resolve the negative effects of this, we propose a novel backdoor adjustment method that learns the true causal effect between input samples and labels, rather than merely fitting the correlations in the data. Notably, we achieve an average performance increase of about $1.67\%$ on each dataset. Code is available: https://github.com/JiahaoChen1/Pre-train-Imbalance
Authors:Chengting Yu, Xiaochen Zhao, Lei Liu, Shu Yang, Gaoang Wang, Erping Li, Aili Wang
Abstract:
Spiking Neural Networks (SNNs) are emerging as a brain-inspired alternative to traditional Artificial Neural Networks (ANNs), prized for their potential energy efficiency on neuromorphic hardware. Despite this, SNNs often suffer from accuracy degradation compared to ANNs and face deployment challenges due to fixed inference timesteps, which require retraining for adjustments, limiting operational flexibility. To address these issues, our work considers the spatio-temporal property inherent in SNNs, and proposes a novel distillation framework for deep SNNs that optimizes performance across full-range timesteps without specific retraining, enhancing both efficacy and deployment adaptability. We provide both theoretical analysis and empirical validations to illustrate that training guarantees the convergence of all implicit models across full-range timesteps. Experimental results on CIFAR-10, CIFAR-100, CIFAR10-DVS, and ImageNet demonstrate state-of-the-art performance among distillation-based SNNs training methods. Our code is available at https://github.com/Intelli-Chip-Lab/snn\_temporal\_decoupling\_distillation.
Authors:Weihang Su, Yichen Tang, Qingyao Ai, Junxi Yan, Changyue Wang, Hongning Wang, Ziyi Ye, Yujia Zhou, Yiqun Liu
Abstract:
Retrieval-augmented generation (RAG) techniques have emerged as a promising solution to enhance the reliability of large language models (LLMs) by addressing issues like hallucinations, outdated knowledge, and domain adaptation. In particular, existing RAG methods append relevant documents retrieved from external corpus or databases to the input of LLMs to guide their generation process, which we refer to as the in-context knowledge injection method. While this approach is simple and often effective, it has inherent limitations. Firstly, increasing the context length and number of relevant documents can lead to higher computational overhead and degraded performance, especially in complex reasoning tasks. More importantly, in-context knowledge injection operates primarily at the input level, but LLMs store their internal knowledge in their parameters. This gap fundamentally limits the capacity of in-context methods. To this end, we introduce Parametric retrieval-augmented generation (Parametric RAG), a new RAG paradigm that integrates external knowledge directly into the parameters of feed-forward networks (FFN) of an LLM through document parameterization. This approach not only saves online computational costs by eliminating the need to inject multiple documents into the LLMs' input context, but also deepens the integration of external knowledge into the parametric knowledge space of the LLM. Experimental results demonstrate that Parametric RAG substantially enhances both the effectiveness and efficiency of knowledge augmentation in LLMs. Also, it can be combined with in-context RAG methods to achieve even better performance.
We have open-sourced all the code, data, and models in the following anonymized GitHub link: https://github.com/oneal2000/PRAG
Authors:Hailong Guo, Bohan Zeng, Yiren Song, Wentao Zhang, Chuang Zhang, Jiaming Liu
Abstract:
Image-based virtual try-on (VTON) aims to generate a virtual try-on result by transferring an input garment onto a target person's image. However, the scarcity of paired garment-model data makes it challenging for existing methods to achieve high generalization and quality in VTON. Also, it limits the ability to generate mask-free try-ons. To tackle the data scarcity problem, approaches such as Stable Garment and MMTryon use a synthetic data strategy, effectively increasing the amount of paired data on the model side. However, existing methods are typically limited to performing specific try-on tasks and lack user-friendliness. To enhance the generalization and controllability of VTON generation, we propose Any2AnyTryon, which can generate try-on results based on different textual instructions and model garment images to meet various needs, eliminating the reliance on masks, poses, or other conditions. Specifically, we first construct the virtual try-on dataset LAION-Garment, the largest known open-source garment try-on dataset. Then, we introduce adaptive position embedding, which enables the model to generate satisfactory outfitted model images or garment images based on input images of different sizes and categories, significantly enhancing the generalization and controllability of VTON generation. In our experiments, we demonstrate the effectiveness of our Any2AnyTryon and compare it with existing methods. The results show that Any2AnyTryon enables flexible, controllable, and high-quality image-based virtual try-on generation. https://logn-2024.github.io/Any2anyTryonProjectPage
Authors:Karahan SarıtaÅ, Peter Dayan, Tingke Shen, Surabhi S Nath
Abstract:
Understanding how humans perceive visual complexity is a key area of study in visual cognition. Previous approaches to modeling visual complexity assessments have often resulted in intricate, difficult-to-interpret algorithms that employ numerous features or sophisticated deep learning architectures. While these complex models achieve high performance on specific datasets, they often sacrifice interpretability, making it challenging to understand the factors driving human perception of complexity. Recently (Shen, et al. 2024) proposed an interpretable segmentation-based model that accurately predicted complexity across various datasets, supporting the idea that complexity can be explained simply. In this work, we investigate the failure of their model to capture structural, color and surprisal contributions to complexity. To this end, we propose Multi-Scale Sobel Gradient (MSG) which measures spatial intensity variations, Multi-Scale Unique Color (MUC) which quantifies colorfulness across multiple scales, and surprise scores generated using a Large Language Model. We test our features on existing benchmarks and a novel dataset (Surprising Visual Genome) containing surprising images from Visual Genome. Our experiments demonstrate that modeling complexity accurately is not as simple as previously thought, requiring additional perceptual and semantic factors to address dataset biases. Our model improves predictive performance while maintaining interpretability, offering deeper insights into how visual complexity is perceived and assessed. Our code, analysis and data are available at https://github.com/Complexity-Project/Complexity-in-Complexity.
Authors:Adil Kaan Akan, Yucel Yemez
Abstract:
We present SlotAdapt, an object-centric learning method that combines slot attention with pretrained diffusion models by introducing adapters for slot-based conditioning. Our method preserves the generative power of pretrained diffusion models, while avoiding their text-centric conditioning bias. We also incorporate an additional guidance loss into our architecture to align cross-attention from adapter layers with slot attention. This enhances the alignment of our model with the objects in the input image without using external supervision. Experimental results show that our method outperforms state-of-the-art techniques in object discovery and image generation tasks across multiple datasets, including those with real images. Furthermore, we demonstrate through experiments that our method performs remarkably well on complex real-world images for compositional generation, in contrast to other slot-based generative methods in the literature. The project page can be found at https://kaanakan.github.io/SlotAdapt/.
Authors:Kentaro Kurihara, Masato Mita, Peinan Zhang, Shota Sasaki, Ryosuke Ishigami, Naoaki Okazaki
Abstract:
The rise of large language models (LLMs) has led to more diverse and higher-quality machine-generated text. However, their high expressive power makes it difficult to control outputs based on specific business instructions. In response, benchmarks focusing on the controllability of LLMs have been developed, but several issues remain: (1) They primarily cover major languages like English and Chinese, neglecting low-resource languages like Japanese; (2) Current benchmarks employ task-specific evaluation metrics, lacking a unified framework for selecting models based on controllability across different use cases. To address these challenges, this research introduces LCTG Bench, the first Japanese benchmark for evaluating the controllability of LLMs. LCTG Bench provides a unified framework for assessing control performance, enabling users to select the most suitable model for their use cases based on controllability. By evaluating nine diverse Japanese-specific and multilingual LLMs like GPT-4, we highlight the current state and challenges of controllability in Japanese LLMs and reveal the significant gap between multilingual models and Japanese-specific models.
Authors:Moritz Mock, Thomas Borsani, Giuseppe Di Fatta, Barbara Russo
Abstract:
Developers rely on code comments to document their work, track issues, and understand the source code. As such, comments provide valuable insights into developers' understanding of their code and describe their various intentions in writing the surrounding code. Recent research leverages natural language processing and deep learning to classify comments based on developers' intentions. However, such labelled data are often imbalanced, causing learning models to perform poorly. This work investigates the use of different weighting strategies of the loss function to mitigate the scarcity of certain classes in the dataset. In particular, various RoBERTa-based transformer models are fine-tuned by means of a hyperparameter search to identify their optimal parameter configurations. Additionally, we fine-tuned the transformers with different weighting strategies for the loss function to address class imbalances. Our approach outperforms the STACC baseline by 8.9 per cent on the NLBSE'25 Tool Competition dataset in terms of the average F1$_c$ score, and exceeding the baseline approach in 17 out of 19 cases with a gain ranging from -5.0 to 38.2. The source code is publicly available at https://github.com/moritzmock/NLBSE2025.
Authors:Ruiqi Wu, Na Su, Chenran Zhang, Tengfei Ma, Tao Zhou, Zhiting Cui, Nianfeng Tang, Tianyu Mao, Yi Zhou, Wen Fan, Tianxing Wu, Shenqi Jing, Huazhu Fu
Abstract:
Vision-language pretraining (VLP) has been investigated to generalize across diverse downstream tasks for fundus image analysis. Although recent methods showcase promising achievements, they significantly rely on large-scale private image-text data but pay less attention to the pretraining manner, which limits their further advancements. In this work, we introduce MM-Retinal V2, a high-quality image-text paired dataset comprising CFP, FFA, and OCT image modalities. Then, we propose a novel fundus vision-language pretraining model, namely KeepFIT V2, which is pretrained by integrating knowledge from the elite data spark into categorical public datasets. Specifically, a preliminary textual pretraining is adopted to equip the text encoder with primarily ophthalmic textual knowledge. Moreover, a hybrid image-text knowledge injection module is designed for knowledge transfer, which is essentially based on a combination of global semantic concepts from contrastive learning and local appearance details from generative learning. Extensive experiments across zero-shot, few-shot, and linear probing settings highlight the generalization and transferability of KeepFIT V2, delivering performance competitive to state-of-the-art fundus VLP models trained on large-scale private image-text datasets. Our dataset and model are publicly available via https://github.com/lxirich/MM-Retinal.
Authors:Yu Li, Yi Huang, Guilin Qi, Junlan Feng, Nan Hu, Songlin Zhai, Haohan Xue, Yongrui Chen, Ruoyan Shen, Tongtong Wu
Abstract:
Knowledge graphs are widely used in industrial applications, making error detection crucial for ensuring the reliability of downstream applications. Existing error detection methods often fail to effectively utilize fine-grained subgraph information and rely solely on fixed graph structures, while also lacking transparency in their decision-making processes, which results in suboptimal detection performance. In this paper, we propose a novel Multi-Agent framework for Knowledge Graph Error Detection (MAKGED) that utilizes multiple large language models (LLMs) in a collaborative setting. By concatenating fine-grained, bidirectional subgraph embeddings with LLM-based query embeddings during training, our framework integrates these representations to produce four specialized agents. These agents utilize subgraph information from different dimensions to engage in multi-round discussions, thereby improving error detection accuracy and ensuring a transparent decision-making process. Extensive experiments on FB15K and WN18RR demonstrate that MAKGED outperforms state-of-the-art methods, enhancing the accuracy and robustness of KG evaluation. For specific industrial scenarios, our framework can facilitate the training of specialized agents using domain-specific knowledge graphs for error detection, which highlights the potential industrial application value of our framework. Our code and datasets are available at https://github.com/kse-ElEvEn/MAKGED.
Authors:Edoardo Cetin, Tianyu Zhao, Yujin Tang
Abstract:
We propose a new finetuning method to provide pre-trained large language models (LMs) the ability to scale test-time compute through the diffusion framework. By increasing the number of diffusion steps, we show our finetuned models achieve monotonically increasing accuracy, directly translating to improved performance across downstream tasks. Furthermore, our finetuned models can expertly answer questions on specific topics by integrating powerful guidance techniques, and autonomously determine the compute required for a given problem by leveraging adaptive ODE solvers. Our method is universally applicable to any foundation model pre-trained with a cross-entropy loss and does not modify any of its original weights, fully preserving its strong single-step generation capabilities. We show our method is more effective and fully compatible with traditional finetuning approaches, introducing an orthogonal new direction to unify the strengths of the autoregressive and diffusion frameworks.
Authors:Karam Park, Jae Woong Soh, Nam Ik Cho
Abstract:
Transformer-based Super-Resolution (SR) methods have demonstrated superior performance compared to convolutional neural network (CNN)-based SR approaches due to their capability to capture long-range dependencies. However, their high computational complexity necessitates the development of lightweight approaches for practical use. To address this challenge, we propose the Attention-Sharing Information Distillation (ASID) network, a lightweight SR network that integrates attention-sharing and an information distillation structure specifically designed for Transformer-based SR methods. We modify the information distillation scheme, originally designed for efficient CNN operations, to reduce the computational load of stacked self-attention layers, effectively addressing the efficiency bottleneck. Additionally, we introduce attention-sharing across blocks to further minimize the computational cost of self-attention operations. By combining these strategies, ASID achieves competitive performance with existing SR methods while requiring only around 300K parameters - significantly fewer than existing CNN-based and Transformer-based SR models. Furthermore, ASID outperforms state-of-the-art SR methods when the number of parameters is matched, demonstrating its efficiency and effectiveness. The code and supplementary material are available on the project page.
Authors:Muhammad Maaz, Timothy C. Y. Chan
Abstract:
We introduce the problem of formally verifying properties of Markov processes where the parameters are given by the output of machine learning models. For a broad class of machine learning models, including linear models, tree-based models, and neural networks, verifying properties of Markov chains like reachability, hitting time, and total reward can be formulated as a bilinear program. We develop a decomposition and bound propagation scheme for solving the bilinear program and show through computational experiments that our method solves the problem to global optimality up to 100x faster than state-of-the-art solvers. To demonstrate the practical utility of our approach, we apply it to a real-world healthcare case study. Along with the paper, we release markovml, an open-source tool for building Markov processes, integrating pretrained machine learning models, and verifying their properties, available at https://github.com/mmaaz-git/markovml.
Authors:Jialun Cai, Mengyuan Liu, Hong Liu, Wenhao Li, Shuheng Zhou
Abstract:
The widespread application of 3D human pose estimation (HPE) is limited by resource-constrained edge devices, requiring more efficient models. A key approach to enhancing efficiency involves designing networks based on the structural characteristics of input data. However, effectively utilizing the structural priors in human skeletal inputs remains challenging. To address this, we leverage both explicit and implicit spatio-temporal priors of the human body through innovative model design and a pre-training proxy task. First, we propose a Nano Human Topology Network (NanoHTNet), a tiny 3D HPE network with stacked Hierarchical Mixers to capture explicit features. Specifically, the spatial Hierarchical Mixer efficiently learns the human physical topology across multiple semantic levels, while the temporal Hierarchical Mixer with discrete cosine transform and low-pass filtering captures local instantaneous movements and global action coherence. Moreover, Efficient Temporal-Spatial Tokenization (ETST) is introduced to enhance spatio-temporal interaction and reduce computational complexity significantly. Second, PoseCLR is proposed as a general pre-training method based on contrastive learning for 3D HPE, aimed at extracting implicit representations of human topology. By aligning 2D poses from diverse viewpoints in the proxy task, PoseCLR aids 3D HPE encoders like NanoHTNet in more effectively capturing the high-dimensional features of the human body, leading to further performance improvements. Extensive experiments verify that NanoHTNet with PoseCLR outperforms other state-of-the-art methods in efficiency, making it ideal for deployment on edge devices like the Jetson Nano. Code and models are available at https://github.com/vefalun/NanoHTNet.
Authors:Ashim Dahal, Saydul Akbar Murad, Nick Rahimi
Abstract:
Algorithmic level developments like Convolutional Neural Networks, transformers, attention mechanism, Retrieval Augmented Generation and so on have changed Artificial Intelligence. Recent such development was observed by Kolmogorov-Arnold Networks that suggested to challenge the fundamental concept of a Neural Network, thus change Multilayer Perceptron, and Convolutional Neural Networks. They received a good reception in terms of scientific modeling, yet had some drawbacks in terms of efficiency. In this paper, we train Convolutional Kolmogorov Arnold Networks (CKANs) with the ImageNet-1k dataset with 1.3 million images, MNIST dataset with 60k images and a tabular biological science related MoA dataset and test the promise of CKANs in terms of FLOPS, Inference Time, number of trainable parameters and training time against the accuracy, precision, recall and f-1 score they produce against the standard industry practice on CNN models. We show that the CKANs perform fair yet slower than CNNs in small size dataset like MoA and MNIST but are not nearly comparable as the dataset gets larger and more complex like the ImageNet. The code implementation of this paper can be found on the link: https://github.com/ashimdahal/Study-of-Convolutional-Kolmogorov-Arnold-networks
Authors:Tianfu Wang, Yi Zhan, Jianxun Lian, Zhengyu Hu, Nicholas Jing Yuan, Qi Zhang, Xing Xie, Hui Xiong
Abstract:
Intelligent Tutoring Systems (ITSs) have revolutionized education by offering personalized learning experiences. However, as goal-oriented learning, which emphasizes efficiently achieving specific objectives, becomes increasingly important in professional contexts, existing ITSs often struggle to deliver this type of targeted learning experience. In this paper, we propose GenMentor, an LLM-powered multi-agent framework designed to deliver goal-oriented, personalized learning within ITS. GenMentor begins by accurately mapping learners' goals to required skills using a fine-tuned LLM trained on a custom goal-to-skill dataset. After identifying the skill gap, it schedules an efficient learning path using an evolving optimization approach, driven by a comprehensive and dynamic profile of learners' multifaceted status. Additionally, GenMentor tailors learning content with an exploration-drafting-integration mechanism to align with individual learner needs. Extensive automated and human evaluations demonstrate GenMentor's effectiveness in learning guidance and content quality. Furthermore, we have deployed it in practice and also implemented it as an application. Practical human study with professional learners further highlights its effectiveness in goal alignment and resource targeting, leading to enhanced personalization. Supplementary resources are available at https://github.com/GeminiLight/gen-mentor.
Authors:Yuxuan Gu, Wuyang Zhou, Giorgos Iacovides, Danilo Mandic
Abstract:
The reasoning abilities of Large Language Models (LLMs) can be improved by structurally denoising their weights, yet existing techniques primarily focus on denoising the feed-forward network (FFN) of the transformer block, and can not efficiently utilise the Multi-head Attention (MHA) block, which is the core of transformer architectures. To address this issue, we propose a novel intuitive framework that, at its very core, performs MHA compression through a multi-head tensorisation process and the Tucker decomposition. This enables both higher-dimensional structured denoising and compression of the MHA weights, by enforcing a shared higher-dimensional subspace across the weights of the multiple attention heads. We demonstrate that this approach consistently enhances the reasoning capabilities of LLMs across multiple benchmark datasets, and for both encoder-only and decoder-only architectures, while achieving compression rates of up to $\sim 250$ times in the MHA weights, all without requiring any additional data, training, or fine-tuning. Furthermore, we show that the proposed method can be seamlessly combined with existing FFN-only-based denoising techniques to achieve further improvements in LLM reasoning performance.
Authors:Ayush Gupta, Rama Chellappa
Abstract:
Gait recognition is an important biometric technique over large distances. State-of-the-art gait recognition systems perform very well in controlled environments at close range. Recently, there has been an increased interest in gait recognition in the wild prompted by the collection of outdoor, more challenging datasets containing variations in terms of illumination, pitch angles, and distances. An important problem in these environments is that of occlusion, where the subject is partially blocked from camera view. While important, this problem has received little attention. Thus, we propose MimicGait, a model-agnostic approach for gait recognition in the presence of occlusions. We train the network using a multi-instance correlational distillation loss to capture both inter-sequence and intra-sequence correlations in the occluded gait patterns of a subject, utilizing an auxiliary Visibility Estimation Network to guide the training of the proposed mimic network. We demonstrate the effectiveness of our approach on challenging real-world datasets like GREW, Gait3D and BRIAR. We release the code in https://github.com/Ayush-00/mimicgait.
Authors:Vaclav Knapp, Matyas Bohacek
Abstract:
Recent pose-transfer methods aim to generate temporally consistent and fully controllable videos of human action where the motion from a reference video is reenacted by a new identity. We evaluate three state-of-the-art pose-transfer methods -- AnimateAnyone, MagicAnimate, and ExAvatar -- by generating videos with actions and identities outside the training distribution and conducting a participant study about the quality of these videos. In a controlled environment of 20 distinct human actions, we find that participants, presented with the pose-transferred videos, correctly identify the desired action only 42.92% of the time. Moreover, the participants find the actions in the generated videos consistent with the reference (source) videos only 36.46% of the time. These results vary by method: participants find the splatting-based ExAvatar more consistent and photorealistic than the diffusion-based AnimateAnyone and MagicAnimate.
Authors:Yang Ji, Ying Sun, Yuting Zhang, Zhigaoyuan Wang, Yuanxin Zhuang, Zheng Gong, Dazhong Shen, Chuan Qin, Hengshu Zhu, Hui Xiong
Abstract:
Neural networks have achieved remarkable success across various fields. However, the lack of interpretability limits their practical use, particularly in critical decision-making scenarios. Post-hoc interpretability, which provides explanations for pre-trained models, is often at risk of robustness and fidelity. This has inspired a rising interest in self-interpretable neural networks, which inherently reveal the prediction rationale through the model structures. Although there exist surveys on post-hoc interpretability, a comprehensive and systematic survey of self-interpretable neural networks is still missing. To address this gap, we first collect and review existing works on self-interpretable neural networks and provide a structured summary of their methodologies from five key perspectives: attribution-based, function-based, concept-based, prototype-based, and rule-based self-interpretation. We also present concrete, visualized examples of model explanations and discuss their applicability across diverse scenarios, including image, text, graph data, and deep reinforcement learning. Additionally, we summarize existing evaluation metrics for self-interpretability and identify open challenges in this field, offering insights for future research. To support ongoing developments, we present a publicly accessible resource to track advancements in this domain: https://github.com/yangji721/Awesome-Self-Interpretable-Neural-Network.
Authors:Ali Khodabandeh Yalabadi, Mehdi Yazdani-Jahromi, Ozlem Ozmen Garibay
Abstract:
Structure-based drug design (SBDD) leverages the 3D structure of biomolecular targets to guide the creation of new therapeutic agents. Recent advances in generative models, including diffusion models and geometric deep learning, have demonstrated promise in optimizing ligand generation. However, the scarcity of high-quality protein-ligand complex data and the inherent challenges in aligning generated ligands with target proteins limit the effectiveness of these methods. We propose BoKDiff, a novel framework that enhances ligand generation by combining multi-objective optimization and Best-of-K alignment methodologies. Built upon the DecompDiff model, BoKDiff generates diverse candidates and ranks them using a weighted evaluation of molecular properties such as QED, SA, and docking scores. To address alignment challenges, we introduce a method that relocates the center of mass of generated ligands to their docking poses, enabling accurate sub-component extraction. Additionally, we integrate a Best-of-N (BoN) sampling approach, which selects the optimal ligand from multiple generated candidates without requiring fine-tuning. BoN achieves exceptional results, with QED values exceeding 0.6, SA scores above 0.75, and a success rate surpassing 35%, demonstrating its efficiency and practicality. BoKDiff achieves state-of-the-art results on the CrossDocked2020 dataset, including a -8.58 average Vina docking score and a 26% success rate in molecule generation. This study is the first to apply Best-of-K alignment and Best-of-N sampling to SBDD, highlighting their potential to bridge generative modeling with practical drug discovery requirements. The code is provided at https://github.com/khodabandeh-ali/BoKDiff.git.
Authors:Jiajun Dong, Chengkun Wang, Wenzhao Zheng, Lei Chen, Jiwen Lu, Yansong Tang
Abstract:
Effective image tokenization is crucial for both multi-modal understanding and generation tasks due to the necessity of the alignment with discrete text data. To this end, existing approaches utilize vector quantization (VQ) to project pixels onto a discrete codebook and reconstruct images from the discrete representation. However, compared with the continuous latent space, the limited discrete codebook space significantly restrict the representational ability of these image tokenizers. In this paper, we propose GaussianToken: An Effective Image Tokenizer with 2D Gaussian Splatting as a solution. We first represent the encoded samples as multiple flexible featured 2D Gaussians characterized by positions, rotation angles, scaling factors, and feature coefficients. We adopt the standard quantization for the Gaussian features and then concatenate the quantization results with the other intrinsic Gaussian parameters before the corresponding splatting operation and the subsequent decoding module. In general, GaussianToken integrates the local influence of 2D Gaussian distribution into the discrete space and thus enhances the representation capability of the image tokenizer. Competitive reconstruction performances on CIFAR, Mini-ImageNet, and ImageNet-1K demonstrate the effectiveness of our framework. Our code is available at: https://github.com/ChrisDong-THU/GaussianToken.
Authors:Chenglong Ma, Zilong Li, Yuanlin Li, Jing Han, Junping Zhang, Yi Zhang, Jiannan Liu, Hongming Shan
Abstract:
Metal artifacts in computed tomography (CT) images can significantly degrade image quality and impede accurate diagnosis. Supervised metal artifact reduction (MAR) methods, trained using simulated datasets, often struggle to perform well on real clinical CT images due to a substantial domain gap. Although state-of-the-art semi-supervised methods use pseudo ground-truths generated by a prior network to mitigate this issue, their reliance on a fixed prior limits both the quality and quantity of these pseudo ground-truths, introducing confirmation bias and reducing clinical applicability. To address these limitations, we propose a novel Radiologist-In-the-loop SElf-training framework for MAR, termed RISE-MAR, which can integrate radiologists' feedback into the semi-supervised learning process, progressively improving the quality and quantity of pseudo ground-truths for enhanced generalization on real clinical CT images. For quality assurance, we introduce a clinical quality assessor model that emulates radiologist evaluations, effectively selecting high-quality pseudo ground-truths for semi-supervised training. For quantity assurance, our self-training framework iteratively generates additional high-quality pseudo ground-truths, expanding the clinical dataset and further improving model generalization. Extensive experimental results on multiple clinical datasets demonstrate the superior generalization performance of our RISE-MAR over state-of-the-art methods, advancing the development of MAR models for practical application. Code is available at https://github.com/Masaaki-75/rise-mar.
Authors:Zeyu Gan, Yun Liao, Yong Liu
Abstract:
Test-time scaling, which is also often referred to as slow-thinking, has been demonstrated to enhance multi-step reasoning in large language models (LLMs). However, despite its widespread utilization, the mechanisms underlying slow-thinking methods remain poorly understood. This paper explores the mechanisms of external slow-thinking from a theoretical standpoint. We begin by examining the snowball error effect within the LLM reasoning process and connect it to the likelihood of correct reasoning using information theory. Building on this, we show that external slow-thinking methods can be interpreted as strategies to mitigate the error probability. We further provide a comparative analysis of popular external slow-thinking approaches, ranging from simple to complex, highlighting their differences and interrelationships. Our findings suggest that the efficacy of these methods is not primarily determined by the specific framework employed, and that expanding the search scope or the model's internal reasoning capacity may yield more sustained improvements in the long term. We open-source our code at https://github.com/ZyGan1999/Snowball-Errors-and-Probability.
Authors:Zhiyuan Fan, Weinong Wang, Xing Wu, Debing Zhang
Abstract:
The evaluation paradigm of LLM-as-judge gains popularity due to its significant reduction in human labor and time costs. This approach utilizes one or more large language models (LLMs) to assess the quality of outputs from other LLMs. However, existing methods rely on generic scoring rubrics that fail to consider the specificities of each question and its problem-solving process, compromising precision and stability in assessments. Inspired by human examination scoring processes, we propose a new evaluation paradigm based on self-adaptive rubrics. Specifically, we create detailed scoring rubrics for each question, capturing the primary and secondary criteria in a structured format of scoring and deduction points that mimic a human evaluator's analytical process. Building on this paradigm, we further develop a novel benchmark called SedarEval, which covers a range of domains including long-tail knowledge, mathematics, coding, and logical reasoning. SedarEval consists of 1,000 meticulously crafted questions, each with its own self-adaptive rubric. To further streamline the evaluation, we train a specialized evaluator language model (evaluator LM) to supplant human graders. Using the same training data, our evaluator LM achieves a higher concordance rate with human grading results than other paradigms, including GPT-4, highlighting the superiority and efficiency of our approach. We release our dataset at https://github.com/wwn1233/sedareval.
Authors:Soheil Gharatappeh, Salimeh Yasaei Sekeh
Abstract:
Iterative magnitude pruning methods (IMPs), proven to be successful in reducing the number of insignificant nodes in over-parameterized deep neural networks (DNNs), have been getting an enormous amount of attention with the rapid deployment of DNNs into cutting-edge technologies with computation and memory constraints. Despite IMPs popularity in pruning networks, a fundamental limitation of existing IMP algorithms is the significant training time required for each pruning iteration. Our paper introduces a novel \textit{stopping criterion} for IMPs that monitors information and gradient flows between networks layers and minimizes the training time. Information Consistent Pruning (\ourmethod{}) eliminates the need to retrain the network to its original performance during intermediate steps while maintaining overall performance at the end of the pruning process. Through our experiments, we demonstrate that our algorithm is more efficient than current IMPs across multiple dataset-DNN combinations. We also provide theoretical insights into the core idea of our algorithm alongside mathematical explanations of flow-based IMP. Our code is available at \url{https://github.com/Sekeh-Lab/InfCoP}.
Authors:Dakuan Lu, Xiaoyu Tan, Rui Xu, Tianchu Yao, Chao Qu, Wei Chu, Yinghui Xu, Yuan Qi
Abstract:
Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open.
Authors:Romeo Sommerfeld, Christian Helms, Ralf Herbrich
Abstract:
Bayesian neural networks (BNNs) offer the potential for reliable uncertainty quantification and interpretability, which are critical for trustworthy AI in high-stakes domains. However, existing methods often struggle with issues such as overconfidence, hyperparameter sensitivity, and posterior collapse, leaving room for alternative approaches. In this work, we advance message passing (MP) for BNNs and present a novel framework that models the predictive posterior as a factor graph. To the best of our knowledge, our framework is the first MP method that handles convolutional neural networks and avoids double-counting training data, a limitation of previous MP methods that causes overconfidence. We evaluate our approach on CIFAR-10 with a convolutional neural network of roughly 890k parameters and find that it can compete with the SOTA baselines AdamW and IVON, even having an edge in terms of calibration. On synthetic data, we validate the uncertainty estimates and observe a strong correlation (0.9) between posterior credible intervals and its probability of covering the true data-generating function outside the training range. While our method scales to an MLP with 5.6 million parameters, further improvements are necessary to match the scale and performance of state-of-the-art variational inference methods.
Authors:Lin Yueyu, Li Zhiyuan, Peter Yue, Liu Xiao
Abstract:
As is known, hybrid quadratic and subquadratic attention models in multi-head architectures have surpassed both Transformer and Linear RNN models , with these works primarily focusing on reducing KV complexity and improving efficiency. For further research on expressiveness, we introduce our series of models distilled from Qwen 2.5, based on pure native RWKV-7 attention, which aims to make RNN more expressive and demonstrates state tracking ability beyond transformers. We work with QRWK 32B based on RWKV-6 architecture, another approach that reduces the entire knowledge processing time to just 8 hours using 16 AMD MI300X GPUs while maintaining Qwen 2.5's performance. In fact, the distillation process can utilize any LLM, not just Qwen, and enables knowledge transfer from larger LLMs to smaller ones with more fewer tokens. We will explain the detailed process and share our insights on building more powerful foundation models. Please note that this is an ongoing work that will be updated continuously. The model checkpoints and source code are available at \href{https://github.com/yynil/RWKVInside}{https://github.com/yynil/RWKVInside}, \href{https://huggingface.co/RWKV-Red-Team/ARWKV-7B-Preview-0.1}{https://huggingface.co/RWKV-Red-Team/ARWKV-7B-Preview-0.1}.
Authors:Jiadong Shi, Chunyu Duan, Hao Lei, Liangmin Wang
Abstract:
Cybercriminals pose a significant threat to blockchain trading security, causing $40.9 billion in losses in 2024. However, the lack of an effective real-world address dataset hinders the advancement of cybercrime detection research. The anti-cybercrime efforts of researchers from broader fields, such as statistics and artificial intelligence, are blocked by data scarcity. In this paper, we present Real-CATS, a Real-world dataset of Cryptocurrency Addresses with Transaction profileS, serving as a practical training ground for developing and assessing detection methods. Real-CATS comprises 103,203 criminal addresses from real-world reports and 106,196 benign addresses from exchange customers. It satifies the C3R characteristics (Comprehensiveness, Classifiability, Customizability, and Real-world Transferability), which are fundemental for practical detection of cryptocurrency cybercrime. The dataset provides three main functions: 1) effective evaluation of detection methods, 2) support for feature extensions, and 3) a new evaluation scenario for real-world deployment. Real-CATS also offers opportunities to expand cybercrime measurement studies. It is particularly beneficial for researchers without cryptocurrency-related knowledge to engage in this emerging research field. We hope that studies on cryptocurrency cybercrime detection will be promoted by an increasing number of cross-disciplinary researchers drawn to this versatile data platform. All datasets are available at https://github.com/sjdseu/Real-CATS
Authors:Oubo Ma, Linkang Du, Yang Dai, Chunyi Zhou, Qingming Li, Yuwen Pu, Shouling Ji
Abstract:
Deep reinforcement learning (DRL) is widely applied to safety-critical decision-making scenarios. However, DRL is vulnerable to backdoor attacks, especially action-level backdoors, which pose significant threats through precise manipulation and flexible activation, risking outcomes like vehicle collisions or drone crashes. The key distinction of action-level backdoors lies in the utilization of the backdoor reward function to associate triggers with target actions. Nevertheless, existing studies typically rely on backdoor reward functions with fixed values or conditional flipping, which lack universality across diverse DRL tasks and backdoor designs, resulting in fluctuations or even failure in practice.
This paper proposes the first universal action-level backdoor attack framework, called UNIDOOR, which enables adaptive exploration of backdoor reward functions through performance monitoring, eliminating the reliance on expert knowledge and grid search. We highlight that action tampering serves as a crucial component of action-level backdoor attacks in continuous action scenarios, as it addresses attack failures caused by low-frequency target actions. Extensive evaluations demonstrate that UNIDOOR significantly enhances the attack performance of action-level backdoors, showcasing its universality across diverse attack scenarios, including single/multiple agents, single/multiple backdoors, discrete/continuous action spaces, and sparse/dense reward signals. Furthermore, visualization results encompassing state distribution, neuron activation, and animations demonstrate the stealthiness of UNIDOOR. The source code of UNIDOOR can be found at https://github.com/maoubo/UNIDOOR.
Authors:Xingjian Zhang, Xi Weng, Yihao Yue, Zhaoxin Fan, Wenjun Wu, Lei Huang
Abstract:
Video behavior recognition and scene understanding are fundamental tasks in multimodal intelligence, serving as critical building blocks for numerous real-world applications. Through large multimodal models (LMMs) have achieved remarkable progress in video understanding, most existing open-source models rely on over 7B parameters and require large-scale datasets for training, making them resource-intensive and inaccessible to many researchers. Furthermore, lightweight models face persistent challenges in effectively processing long visual sequences and temporal understanding. In this work, we introduce TinyLLaVA-Video, a lightweight yet powerful video understanding model with approximately 3.6B parameters. The cornerstone of our design is the video-level group resampler, a novel mechanism that significantly reduces and controls the number of visual tokens at the video level. Unlike traditional image-level resampler, our approach effectively mitigates redundancy while enhancing temporal comprehension, leading to improved performance on video-based tasks. In addition, TinyLLaVA-Video demonstrates exceptional efficiency, requiring only one day of training on 8 A100-40G GPUs. It surpasses several existing 7B-parameter models on multiple benchmarks. We believe this work provides a valuable foundation for future research on lightweight video understanding models. The code and weights is available at https://github.com/ZhangXJ199/TinyLLaVA-Video.
Authors:JiaKui Hu, Lujia Jin, Zhengjian Yao, Yanye Lu
Abstract:
This paper proposes the Degradation Classification Pre-Training (DCPT), which enables models to learn how to classify the degradation type of input images for universal image restoration pre-training. Unlike the existing self-supervised pre-training methods, DCPT utilizes the degradation type of the input image as an extremely weak supervision, which can be effortlessly obtained, even intrinsic in all image restoration datasets. DCPT comprises two primary stages. Initially, image features are extracted from the encoder. Subsequently, a lightweight decoder, such as ResNet18, is leveraged to classify the degradation type of the input image solely based on the features extracted in the first stage, without utilizing the input image. The encoder is pre-trained with a straightforward yet potent DCPT, which is used to address universal image restoration and achieve outstanding performance. Following DCPT, both convolutional neural networks (CNNs) and transformers demonstrate performance improvements, with gains of up to 2.55 dB in the 10D all-in-one restoration task and 6.53 dB in the mixed degradation scenarios. Moreover, previous self-supervised pretraining methods, such as masked image modeling, discard the decoder after pre-training, while our DCPT utilizes the pre-trained parameters more effectively. This superiority arises from the degradation classifier acquired during DCPT, which facilitates transfer learning between models of identical architecture trained on diverse degradation types. Source code and models are available at https://github.com/MILab-PKU/dcpt.
Authors:Dan Song, Shumeng Huo, Wenhui Li, Lanjun Wang, Chao Xue, An-An Liu
Abstract:
The classification and recognition of maritime objects are crucial for enhancing maritime safety, monitoring, and intelligent sea environment prediction. However, existing unsupervised methods for maritime object classification often struggle with the long-tail data distributions in both object categories and weather conditions. In this paper, we construct a dataset named AIMO produced by large-scale generative models with diverse weather conditions and balanced object categories, and collect a dataset named RMO with real-world images where long-tail issue exists. We propose a novel domain adaptation approach that leverages AIMO (source domain) to address the problem of limited labeled data, unbalanced distribution and domain shift in RMO (target domain), enhance the generalization of source features with the Vision-Language Models such as CLIP, and propose a difficulty score for curriculum learning to optimize training process. Experimental results shows that the proposed method significantly improves the classification accuracy, particularly for samples within rare object categories and weather conditions. Datasets and codes will be publicly available at https://github.com/honoria0204/AIMO.
Authors:Tong Lei, Kyle T. Rizzo, Brian N. Bailey
Abstract:
Advancements in artificial intelligence (AI) have greatly benefited plant phenotyping and predictive modeling. However, unrealized opportunities exist in leveraging AI advancements in model parameter optimization for parameter fitting in complex biophysical models. This work developed novel software, PhoTorch, for fitting parameters of the Farquhar, von Caemmerer, and Berry (FvCB) biochemical photosynthesis model based the parameter optimization components of the popular AI framework PyTorch. The primary novelty of the software lies in its computational efficiency, robustness of parameter estimation, and flexibility in handling different types of response curves and sub-model functional forms. PhoTorch can fit both steady-state and non-steady-state gas exchange data with high efficiency and accuracy. Its flexibility allows for optional fitting of temperature and light response parameters, and can simultaneously fit light response curves and standard A/Ci curves. These features are not available within presently available A/Ci curve fitting packages. Results illustrated the robustness and efficiency of PhoTorch in fitting A/Ci curves with high variability and some level of artifacts and noise. PhoTorch is more than four times faster than benchmark software, which may be relevant when processing many non-steady-state A/Ci curves with hundreds of data points per curve. PhoTorch provides researchers from various fields with a reliable and efficient tool for analyzing photosynthetic data. The Python package is openly accessible from the repository: https://github.com/GEMINI-Breeding/photorch.
Authors:Zhenkai Wu, Xiaowen Ma, Rongrong Lian, Kai Zheng, Mengting Ma, Wei Zhang, Siyang Song
Abstract:
Mamba, with its advantages of global perception and linear complexity, has been widely applied to identify changes of the target regions within the remote sensing (RS) images captured under complex scenarios and varied conditions. However, existing remote sensing change detection (RSCD) approaches based on Mamba frequently struggle to effectively perceive the inherent locality of change regions as they direct flatten and scan RS images (i.e., the features of the same region of changes are not distributed continuously within the sequence but are mixed with features from other regions throughout the sequence). In this paper, we propose a novel locally adaptive SSM-based approach, termed CD-Lamba, which effectively enhances the locality of change detection while maintaining global perception. Specifically, our CD-Lamba includes a Locally Adaptive State-Space Scan (LASS) strategy for locality enhancement, a Cross-Temporal State-Space Scan (CTSS) strategy for bi-temporal feature fusion, and a Window Shifting and Perception (WSP) mechanism to enhance interactions across segmented windows. These strategies are integrated into a multi-scale Cross-Temporal Locally Adaptive State-Space Scan (CT-LASS) module to effectively highlight changes and refine changes' representations feature generation. CD-Lamba significantly enhances local-global spatio-temporal interactions in bi-temporal images, offering improved performance in RSCD tasks. Extensive experimental results show that CD-Lamba achieves state-of-the-art performance on four benchmark datasets with a satisfactory efficiency-accuracy trade-off. Our code is publicly available at https://github.com/xwmaxwma/rschange.
Authors:Zengran Wang, Yanan Zhang, Jiaxin Chen, Di Huang
Abstract:
To address the annotation burden in LiDAR-based 3D object detection, active learning (AL) methods offer a promising solution. However, traditional active learning approaches solely rely on a small amount of labeled data to train an initial model for data selection, overlooking the potential of leveraging the abundance of unlabeled data. Recently, attempts to integrate semi-supervised learning (SSL) into AL with the goal of leveraging unlabeled data have faced challenges in effectively resolving the conflict between the two paradigms, resulting in less satisfactory performance. To tackle this conflict, we propose a Synergistic Semi-Supervised Active Learning framework, dubbed as S-SSAL. Specifically, from the perspective of SSL, we propose a Collaborative PseudoScene Pre-training (CPSP) method that effectively learns from unlabeled data without introducing adverse effects. From the perspective of AL, we design a Collaborative Active Learning (CAL) method, which complements the uncertainty and diversity methods by model cascading. This allows us to fully exploit the potential of the CPSP pre-trained model. Extensive experiments conducted on KITTI and Waymo demonstrate the effectiveness of our S-SSAL framework. Notably, on the KITTI dataset, utilizing only 2% labeled data, S-SSAL can achieve performance comparable to models trained on the full dataset. The code has been released at https://github.com/LandDreamer/S_SSAL.
Authors:Jiaqi Li, Xueyao Zhang, Yuancheng Wang, Haorui He, Chaoren Wang, Li Wang, Huan Liao, Junyi Ao, Zeyu Xie, Yiqiao Huang, Junan Zhang, Zhizheng Wu
Abstract:
Amphion is an open-source toolkit for Audio, Music, and Speech Generation, designed to lower the entry barrier for junior researchers and engineers in these fields. It provides a versatile framework that supports a variety of generation tasks and models. In this report, we introduce Amphion v0.2, the second major release developed in 2024. This release features a 100K-hour open-source multilingual dataset, a robust data preparation pipeline, and novel models for tasks such as text-to-speech, audio coding, and voice conversion. Furthermore, the report includes multiple tutorials that guide users through the functionalities and usage of the newly released models.
Authors:Han Wang, Rui Yang Tan, Roy Ka-Wei Lee
Abstract:
Detecting hate speech in online content is essential to ensuring safer digital spaces. While significant progress has been made in text and meme modalities, video-based hate speech detection remains under-explored, hindered by a lack of annotated datasets and the high cost of video annotation. This gap is particularly problematic given the growing reliance on large models, which demand substantial amounts of training data. To address this challenge, we leverage meme datasets as both a substitution and an augmentation strategy for training hateful video detection models. Our approach introduces a human-assisted reannotation pipeline to align meme dataset labels with video datasets, ensuring consistency with minimal labeling effort. Using two state-of-the-art vision-language models, we demonstrate that meme data can substitute for video data in resource-scarce scenarios and augment video datasets to achieve further performance gains. Our results consistently outperform state-of-the-art benchmarks, showcasing the potential of cross-modal transfer learning for advancing hateful video detection. Dataset and code are available at https://github.com/Social-AI-Studio/CrossModalTransferLearning.
Authors:Hossein Mirzaei, Mojtaba Nafez, Jafar Habibi, Mohammad Sabokrou, Mohammad Hossein Rohban
Abstract:
Despite significant progress in Anomaly Detection (AD), the robustness of existing detection methods against adversarial attacks remains a challenge, compromising their reliability in critical real-world applications such as autonomous driving. This issue primarily arises from the AD setup, which assumes that training data is limited to a group of unlabeled normal samples, making the detectors vulnerable to adversarial anomaly samples during testing. Additionally, implementing adversarial training as a safeguard encounters difficulties, such as formulating an effective objective function without access to labels. An ideal objective function for adversarial training in AD should promote strong perturbations both within and between the normal and anomaly groups to maximize margin between normal and anomaly distribution. To address these issues, we first propose crafting a pseudo-anomaly group derived from normal group samples. Then, we demonstrate that adversarial training with contrastive loss could serve as an ideal objective function, as it creates both inter- and intra-group perturbations. However, we notice that spurious negative pairs compromise the conventional contrastive loss to achieve robust AD. Spurious negative pairs are those that should be closely mapped but are erroneously separated. These pairs introduce noise and misguide the direction of inter-group adversarial perturbations. To overcome the effect of spurious negative pairs, we define opposite pairs and adversarially pull them apart to strengthen inter-group perturbations. Experimental results demonstrate our superior performance in both clean and adversarial scenarios, with a 26.1% improvement in robust detection across various challenging benchmark datasets. The implementation of our work is available at: https://github.com/rohban-lab/COBRA.
Authors:Junrui Liu, Tong Li, Di Wu, Zifang Tang, Yuan Fang, Zhen Yang
Abstract:
Online reviews allow consumers to provide detailed feedback on various aspects of items. Existing methods utilize these aspects to model users' fine-grained preferences for specific item features through graph neural networks. We argue that the performance of items on different aspects is important for making precise recommendations, which has not been taken into account by existing approaches, due to lack of data. In this paper, we propose an aspect performance-aware hypergraph neural network (APH) for the review-based recommendation, which learns the performance of items from the conflicting sentiment polarity of user reviews. Specifically, APH comprehensively models the relationships among users, items, aspects, and sentiment polarity by systematically constructing an aspect hypergraph based on user reviews. In addition, APH aggregates aspects representing users and items by employing an aspect performance-aware hypergraph aggregation method. It aggregates the sentiment polarities from multiple users by jointly considering user preferences and the semantics of their sentiments, determining the weights of sentiment polarities to infer the performance of items on various aspects. Such performances are then used as weights to aggregate neighboring aspects. Experiments on six real-world datasets demonstrate that APH improves MSE, Precision@5, and Recall@5 by an average of 2.30%, 4.89%, and 1.60% over the best baseline. The source code and data are available at https://github.com/dianziliu/APH.
Authors:Liang Shang, William A. Sethares, Anusha Adluru, Andrew L. Alexander, Vivek Prabhakaran, Veena A. Nair, Nagesh Adluru
Abstract:
Precise characterization of stroke lesions from MRI data has immense value in prognosticating clinical and cognitive outcomes following a stroke. Manual stroke lesion segmentation is time-consuming and requires the expertise of neurologists and neuroradiologists. Often, lesions are grossly characterized for their location and overall extent using bounding boxes without specific delineation of their boundaries. While such characterization provides some clinical value, to develop a precise mechanistic understanding of the impact of lesions on post-stroke vascular contributions to cognitive impairments and dementia (VCID), the stroke lesions need to be fully segmented with accurate boundaries. This work introduces the Multi-Stage Cross-Scale Attention (MSCSA) mechanism, applied to the U-Net family, to improve the mapping between brain structural features and lesions of varying sizes. Using the Anatomical Tracings of Lesions After Stroke (ATLAS) v2.0 dataset, MSCSA outperforms all baseline methods in both Dice and F1 scores on a subset focusing on small lesions, while maintaining competitive performance across the entire dataset. Notably, the ensemble strategy incorporating MSCSA achieves the highest scores for Dice and F1 on both the full dataset and the small lesion subset. These results demonstrate the effectiveness of MSCSA in segmenting small lesions and highlight its robustness across different training schemes for large stroke lesions. Our code is available at: https://github.com/nadluru/StrokeLesSeg.
Authors:Huayu Chen, Kai Jiang, Kaiwen Zheng, Jianfei Chen, Hang Su, Jun Zhu
Abstract:
Classifier-Free Guidance (CFG) has been a default technique in various visual generative models, yet it requires inference from both conditional and unconditional models during sampling. We propose to build visual models that are free from guided sampling. The resulting algorithm, Guidance-Free Training (GFT), matches the performance of CFG while reducing sampling to a single model, halving the computational cost. Unlike previous distillation-based approaches that rely on pretrained CFG networks, GFT enables training directly from scratch. GFT is simple to implement. It retains the same maximum likelihood objective as CFG and differs mainly in the parameterization of conditional models. Implementing GFT requires only minimal modifications to existing codebases, as most design choices and hyperparameters are directly inherited from CFG. Our extensive experiments across five distinct visual models demonstrate the effectiveness and versatility of GFT. Across domains of diffusion, autoregressive, and masked-prediction modeling, GFT consistently achieves comparable or even lower FID scores, with similar diversity-fidelity trade-offs compared with CFG baselines, all while being guidance-free. Code will be available at https://github.com/thu-ml/GFT.
Authors:Junan Zhang, Jing Yang, Zihao Fang, Yuancheng Wang, Zehua Zhang, Zhuo Wang, Fan Fan, Zhizheng Wu
Abstract:
We introduce AnyEnhance, a unified generative model for voice enhancement that processes both speech and singing voices. Based on a masked generative model, AnyEnhance is capable of handling both speech and singing voices, supporting a wide range of enhancement tasks including denoising, dereverberation, declipping, super-resolution, and target speaker extraction, all simultaneously and without fine-tuning. AnyEnhance introduces a prompt-guidance mechanism for in-context learning, which allows the model to natively accept a reference speaker's timbre. In this way, it could boost enhancement performance when a reference audio is available and enable the target speaker extraction task without altering the underlying architecture. Moreover, we also introduce a self-critic mechanism into the generative process for masked generative models, yielding higher-quality outputs through iterative self-assessment and refinement. Extensive experiments on various enhancement tasks demonstrate AnyEnhance outperforms existing methods in terms of both objective metrics and subjective listening tests. Demo audios are publicly available at https://amphionspace.github.io/anyenhance/.
Authors:Siqi Fan, Yuguang Xie, Bowen Cai, Ailin Xie, Gaochao Liu, Mu Qiao, Jie Xing, Zaiqing Nie
Abstract:
Understanding the chemical structure from a graphical representation of a molecule is a challenging image caption task that would greatly benefit molecule-centric scientific discovery. Variations in molecular images and caption subtasks pose a significant challenge in both image representation learning and task modeling. Yet, existing methods only focus on a specific caption task that translates a molecular image into its graph structure, i.e., OCSR. In this paper, we propose the Optical Chemical Structure Understanding (OCSU) task, which extends low-level recognition to multilevel understanding and aims to translate chemical structure diagrams into readable strings for both machine and chemist. To facilitate the development of OCSU technology, we explore both OCSR-based and OCSR-free paradigms. We propose DoubleCheck to enhance OCSR performance via attentive feature enhancement for local ambiguous atoms. It can be cascaded with existing SMILES-based molecule understanding methods to achieve OCSU. Meanwhile, Mol-VL is a vision-language model end-to-end optimized for OCSU. We also construct Vis-CheBI20, the first large-scale OCSU dataset. Through comprehensive experiments, we demonstrate the proposed approaches excel at providing chemist-readable caption for chemical structure diagrams, which provide solid baselines for further research. Our code, model, and data are open-sourced at https://github.com/PharMolix/OCSU.
Authors:Zhiming Wang, Lin Gu, Feng Lu
Abstract:
CutMix is a data augmentation strategy that cuts and pastes image patches to mixup training data. Existing methods pick either random or salient areas which are often inconsistent to labels, thus misguiding the training model. By our knowledge, we integrate human gaze to guide cutmix for the first time. Since human attention is driven by both high-level recognition and low-level clues, we propose a controllable Top-down Attention Guided Module to obtain a general artificial attention which balances top-down and bottom-up attention. The proposed TdATttenMix then picks the patches and adjust the label mixing ratio that focuses on regions relevant to the current label. Experimental results demonstrate that our TdAttenMix outperforms existing state-of-the-art mixup methods across eight different benchmarks. Additionally, we introduce a new metric based on the human gaze and use this metric to investigate the issue of image-label inconsistency. Project page: \url{https://github.com/morning12138/TdAttenMix}
Authors:Guanglin Niu, Xiaowei Zhang
Abstract:
Multimodal Knowledge Graph Completion (MMKGC) aims to address the critical issue of missing knowledge in multimodal knowledge graphs (MMKGs) for their better applications. However, both the previous MMGKC and negative sampling (NS) approaches ignore the employment of multimodal information to generate diverse and high-quality negative triples from various semantic levels and hardness levels, thereby limiting the effectiveness of training MMKGC models. Thus, we propose a novel Diffusion-based Hierarchical Negative Sampling (DHNS) scheme tailored for MMKGC tasks, which tackles the challenge of generating high-quality negative triples by leveraging a Diffusion-based Hierarchical Embedding Generation (DiffHEG) that progressively conditions on entities and relations as well as multimodal semantics. Furthermore, we develop a Negative Triple-Adaptive Training (NTAT) strategy that dynamically adjusts training margins associated with the hardness level of the synthesized negative triples, facilitating a more robust and effective learning procedure to distinguish between positive and negative triples. Extensive experiments on three MMKGC benchmark datasets demonstrate that our framework outperforms several state-of-the-art MMKGC models and negative sampling techniques, illustrating the effectiveness of our DHNS for training MMKGC models. The source codes and datasets of this paper are available at https://github.com/ngl567/DHNS.
Authors:Hao Shu, Jicheng Li, Yu Jin, Hailin Wang
Abstract:
In recent years, the prediction of multidimensional time series data has become increasingly important due to its wide-ranging applications. Tensor-based prediction methods have gained attention for their ability to preserve the inherent structure of such data. However, existing approaches, such as tensor autoregression and tensor decomposition, often have consistently failed to provide clear assertions regarding the number of samples that can be exactly predicted. While matrix-based methods using nuclear norms address this limitation, their reliance on matrices limits accuracy and increases computational costs when handling multidimensional data. To overcome these challenges, we reformulate multidimensional time series prediction as a deterministic tensor completion problem and propose a novel theoretical framework. Specifically, we develop a deterministic tensor completion theory and introduce the Temporal Convolutional Tensor Nuclear Norm (TCTNN) model. By convolving the multidimensional time series along the temporal dimension and applying the tensor nuclear norm, our approach identifies the maximum forecast horizon for exact predictions. Additionally, TCTNN achieves superior performance in prediction accuracy and computational efficiency compared to existing methods across diverse real-world datasets, including climate temperature, network flow, and traffic ride data. Our implementation is publicly available at https://github.com/HaoShu2000/TCTNN.
Authors:Long Yang, Lianqing Zheng, Wenjin Ai, Minghao Liu, Sen Li, Qunshu Lin, Shengyu Yan, Jie Bai, Zhixiong Ma, Tao Huang, Xichan Zhu
Abstract:
Robust 3D occupancy prediction is essential for autonomous driving, particularly under adverse weather conditions where traditional vision-only systems struggle. While the fusion of surround-view 4D radar and cameras offers a promising low-cost solution, effectively extracting and integrating features from these heterogeneous sensors remains challenging. This paper introduces MetaOcc, a novel multi-modal framework for omnidirectional 3D occupancy prediction that leverages both multi-view 4D radar and images. To address the limitations of directly applying LiDAR-oriented encoders to sparse radar data, we propose a Radar Height Self-Attention module that enhances vertical spatial reasoning and feature extraction. Additionally, a Hierarchical Multi-scale Multi-modal Fusion strategy is developed to perform adaptive local-global fusion across modalities and time, mitigating spatio-temporal misalignments and enriching fused feature representations. To reduce reliance on expensive point cloud annotations, we further propose a pseudo-label generation pipeline based on an open-set segmentor. This enables a semi-supervised strategy that achieves 90% of the fully supervised performance using only 50% of the ground truth labels, offering an effective trade-off between annotation cost and accuracy. Extensive experiments demonstrate that MetaOcc under full supervision achieves state-of-the-art performance, outperforming previous methods by +0.47 SC IoU and +4.02 mIoU on the OmniHD-Scenes dataset, and by +1.16 SC IoU and +1.24 mIoU on the SurroundOcc-nuScenes dataset. These results demonstrate the scalability and robustness of MetaOcc across sensor domains and training conditions, paving the way for practical deployment in real-world autonomous systems. Code and data are available at https://github.com/LucasYang567/MetaOcc.
Authors:Chuanyang Zheng
Abstract:
We present a new family of mobile hybrid vision networks, called iFormer, with a focus on optimizing latency and accuracy on mobile applications. iFormer effectively integrates the fast local representation capacity of convolution with the efficient global modeling ability of self-attention. The local interactions are derived from transforming a standard convolutional network, \textit{i.e.}, ConvNeXt, to design a more lightweight mobile network. Our newly introduced mobile modulation attention removes memory-intensive operations in MHA and employs an efficient modulation mechanism to boost dynamic global representational capacity. We conduct comprehensive experiments demonstrating that iFormer outperforms existing lightweight networks across various tasks. Notably, iFormer achieves an impressive Top-1 accuracy of 80.4\% on ImageNet-1k with a latency of only 1.10 ms on an iPhone 13, surpassing the recently proposed MobileNetV4 under similar latency constraints. Additionally, our method shows significant improvements in downstream tasks, including COCO object detection, instance segmentation, and ADE20k semantic segmentation, while still maintaining low latency on mobile devices for high-resolution inputs in these scenarios.
Authors:Shiyao Sun, Kapil Khandelwal
Abstract:
This work investigates the multiplicity and differentiability of eigenfrequencies in structures with various symmetries. In particular, the study explores how the geometric and design variable symmetries affect the distribution of eigenvalues, distinguishing between simple and multiple eigenvalues in 3-D trusses. Moreover, this article also examines the differentiability of multiple eigenvalues under various symmetry conditions, which is crucial for gradient-based optimization. The results presented in this study show that while full symmetry ensures the differentiability of all eigenvalues, increased symmetry in optimized design, such as accidental symmetry, may lead to non-differentiable eigenvalues. Additionally, the study presents solutions using symmetric functions, demonstrating their effectiveness in ensuring differentiability in scenarios where multiple eigenvalues are non-differentiable. The study also highlights a critical insight into the differentiability criterion of symmetric functions, i.e., the completeness of eigen-clusters, which is necessary to ensure the differentiability of such functions.
Authors:Jiajie Li, Brian R Quaranto, Chenhui Xu, Ishan Mishra, Ruiyang Qin, Dancheng Liu, Peter C W Kim, Jinjun Xiong
Abstract:
We present RASO, a foundation model designed to Recognize Any Surgical Object, offering robust open-set recognition capabilities across a broad range of surgical procedures and object classes, in both surgical images and videos. RASO leverages a novel weakly-supervised learning framework that generates tag-image-text pairs automatically from large-scale unannotated surgical lecture videos, significantly reducing the need for manual annotations. Our scalable data generation pipeline gathers 2,200 surgical procedures and produces 3.6 million tag annotations across 2,066 unique surgical tags. Our experiments show that RASO achieves improvements of 2.9 mAP, 4.5 mAP, 10.6 mAP, and 7.2 mAP on four standard surgical benchmarks, respectively, in zero-shot settings, and surpasses state-of-the-art models in supervised surgical action recognition tasks. Code, model, and demo are available at https://ntlm1686.github.io/raso.
Authors:Zhikai Chen, Han Xie, Jian Zhang, Xiang song, Jiliang Tang, Huzefa Rangwala, George Karypis
Abstract:
Recent years have witnessed significant advancements in graph machine learning (GML), with its applications spanning numerous domains. However, the focus of GML has predominantly been on developing powerful models, often overlooking a crucial initial step: constructing suitable graphs from common data formats, such as tabular data. This construction process is fundamental to applying graph-based models, yet it remains largely understudied and lacks formalization. Our research aims to address this gap by formalizing the graph construction problem and proposing an effective solution. We identify two critical challenges to achieve this goal: 1. The absence of dedicated datasets to formalize and evaluate the effectiveness of graph construction methods, and 2. Existing automatic construction methods can only be applied to some specific cases, while tedious human engineering is required to generate high-quality graphs. To tackle these challenges, we present a two-fold contribution. First, we introduce a set of datasets to formalize and evaluate graph construction methods. Second, we propose an LLM-based solution, AutoG, automatically generating high-quality graph schemas without human intervention. The experimental results demonstrate that the quality of constructed graphs is critical to downstream task performance, and AutoG can generate high-quality graphs that rival those produced by human experts. Our code can be accessible from https://github.com/amazon-science/Automatic-Table-to-Graph-Generation.
Authors:Hossein Mirzaei, Mohammad Jafari, Hamid Reza Dehbashi, Zeinab Sadat Taghavi, Mohammad Sabokrou, Mohammad Hossein Rohban
Abstract:
Novelty Detection (ND) plays a crucial role in machine learning by identifying new or unseen data during model inference. This capability is especially important for the safe and reliable operation of automated systems. Despite advances in this field, existing techniques often fail to maintain their performance when subject to adversarial attacks. Our research addresses this gap by marrying the merits of nearest-neighbor algorithms with robust features obtained from models pretrained on ImageNet. We focus on enhancing the robustness and performance of ND algorithms. Experimental results demonstrate that our approach significantly outperforms current state-of-the-art methods across various benchmarks, particularly under adversarial conditions. By incorporating robust pretrained features into the k-NN algorithm, we establish a new standard for performance and robustness in the field of robust ND. This work opens up new avenues for research aimed at fortifying machine learning systems against adversarial vulnerabilities. Our implementation is publicly available at https://github.com/rohban-lab/ZARND.
Authors:Pauline Bourigault, Danilo P. Mandic
Abstract:
We present a novel approach to anomaly detection by integrating Generalized Hyperbolic (GH) processes into kernel-based methods. The GH distribution, known for its flexibility in modeling skewness, heavy tails, and kurtosis, helps to capture complex patterns in data that deviate from Gaussian assumptions. We propose a GH-based kernel function and utilize it within Kernel Density Estimation (KDE) and One-Class Support Vector Machines (OCSVM) to develop anomaly detection frameworks. Theoretical results confirmed the positive semi-definiteness and consistency of the GH-based kernel, ensuring its suitability for machine learning applications. Empirical evaluation on synthetic and real-world datasets showed that our method improves detection performance in scenarios involving heavy-tailed and asymmetric or imbalanced distributions. https://github.com/paulinebourigault/GHKernelAnomalyDetect
Authors:Yiqun Chen, Lingyong Yan, Weiwei Sun, Xinyu Ma, Yi Zhang, Shuaiqiang Wang, Dawei Yin, Yiming Yang, Jiaxin Mao
Abstract:
Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models, thereby minimizing hallucinations. A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation. However, these components are typically optimized separately through supervised fine-tuning, which can lead to misalignments between the objectives of individual modules and the overarching aim of generating accurate answers in question-answering (QA) tasks. Although recent efforts have explored reinforcement learning (RL) to optimize specific RAG components, these approaches often focus on overly simplistic pipelines with only two components or do not adequately address the complex interdependencies and collaborative interactions among the modules. To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent. Specifically, we present MMOA-RAG, a Multi-Module joint Optimization Algorithm for RAG, which employs multi-agent reinforcement learning to harmonize all agents' goals towards a unified reward, such as the F1 score of the final answer. Experiments conducted on various QA datasets demonstrate that MMOA-RAG improves the overall pipeline performance and outperforms existing baselines. Furthermore, comprehensive ablation studies validate the contributions of individual components and the adaptability of MMOA-RAG across different RAG components and datasets. The code of MMOA-RAG is on https://github.com/chenyiqun/MMOA-RAG.
Authors:Hao Tang, Siyue Yu, Jian Pang, Bingfeng Zhang
Abstract:
Training semantic segmenter with synthetic data has been attracting great attention due to its easy accessibility and huge quantities. Most previous methods focused on producing large-scale synthetic image-annotation samples and then training the segmenter with all of them. However, such a solution remains a main challenge in that the poor-quality samples are unavoidable, and using them to train the model will damage the training process. In this paper, we propose a training-free Synthetic Data Selection (SDS) strategy with CLIP to select high-quality samples for building a reliable synthetic dataset. Specifically, given massive synthetic image-annotation pairs, we first design a Perturbation-based CLIP Similarity (PCS) to measure the reliability of synthetic image, thus removing samples with low-quality images. Then we propose a class-balance Annotation Similarity Filter (ASF) by comparing the synthetic annotation with the response of CLIP to remove the samples related to low-quality annotations. The experimental results show that using our method significantly reduces the data size by half, while the trained segmenter achieves higher performance. The code is released at https://github.com/tanghao2000/SDS.
Authors:Aitor Sánchez-Ferrera, Borja Calvo, Jose A. Lozano
Abstract:
Time series anomaly detection presents various challenges due to the sequential and dynamic nature of time-dependent data. Traditional unsupervised methods frequently encounter difficulties in generalization, often overfitting to known normal patterns observed during training and struggling to adapt to unseen normality. In response to this limitation, self-supervised techniques for time series have garnered attention as a potential solution to undertake this obstacle and enhance the performance of anomaly detectors. This paper presents a comprehensive review of the recent methods that make use of self-supervised learning for time series anomaly detection. A taxonomy is proposed to categorize these methods based on their primary characteristics, facilitating a clear understanding of their diversity within this field. The information contained in this survey, along with additional details that will be periodically updated, is available on the following GitHub repository: https://github.com/Aitorzan3/Awesome-Self-Supervised-Time-Series-Anomaly-Detection.
Authors:Zhihao Yao, Jixuan Yin, Bo Li
Abstract:
Short text clustering has gained significant attention in the data mining community. However, the limited valuable information contained in short texts often leads to low-discriminative representations, increasing the difficulty of clustering. This paper proposes a novel short text clustering framework, called Reliable \textbf{P}seudo-labeling via \textbf{O}ptimal \textbf{T}ransport with \textbf{A}ttention for Short Text Clustering (\textbf{POTA}), that generate reliable pseudo-labels to aid discriminative representation learning for clustering. Specially, \textbf{POTA} first implements an instance-level attention mechanism to capture the semantic relationships among samples, which are then incorporated as a semantic consistency regularization term into an optimal transport problem. By solving this OT problem, we can yield reliable pseudo-labels that simultaneously account for sample-to-sample semantic consistency and sample-to-cluster global structure information. Additionally, the proposed OT can adaptively estimate cluster distributions, making \textbf{POTA} well-suited for varying degrees of imbalanced datasets. Then, we utilize the pseudo-labels to guide contrastive learning to generate discriminative representations and achieve efficient clustering. Extensive experiments demonstrate \textbf{POTA} outperforms state-of-the-art methods. The code is available at: \href{https://github.com/YZH0905/POTA-STC/tree/main}{https://github.com/YZH0905/POTA-STC/tree/main}.
Authors:Youssef Zaazou, Alex Bihlo, Terrence S. Tricco
Abstract:
We demonstrate that generative deep learning can translate galaxy observations across ultraviolet, visible, and infrared photometric bands. Leveraging mock observations from the Illustris simulations, we develop and validate a supervised image-to-image model capable of performing both band interpolation and extrapolation. The resulting trained models exhibit high fidelity in generating outputs, as verified by both general image comparison metrics (MAE, SSIM, PSNR) and specialized astronomical metrics (GINI coefficient, M20). Moreover, we show that our model can be used to predict real-world observations, using data from the DECaLS survey as a case study. These findings highlight the potential of generative learning to augment astronomical datasets, enabling efficient exploration of multi-band information in regions where observations are incomplete. This work opens new pathways for optimizing mission planning, guiding high-resolution follow-ups, and enhancing our understanding of galaxy morphology and evolution.
Authors:Hulingxiao He, Geng Li, Zijun Geng, Jinglin Xu, Yuxin Peng
Abstract:
Multi-modal large language models (MLLMs) have shown remarkable abilities in various visual understanding tasks. However, MLLMs still struggle with fine-grained visual recognition (FGVR), which aims to identify subordinate-level categories from images. This can negatively impact more advanced capabilities of MLLMs, such as object-centric visual question answering and reasoning. In our study, we revisit three quintessential capabilities of MLLMs for FGVR, including object information extraction, category knowledge reserve, object-category alignment, and position of the root cause as a misalignment problem. To address this issue, we present Finedefics, an MLLM that enhances the model's FGVR capability by incorporating informative attribute descriptions of objects into the training phase. We employ contrastive learning on object-attribute pairs and attribute-category pairs simultaneously and use examples from similar but incorrect categories as hard negatives, naturally bringing representations of visual objects and category names closer. Extensive evaluations across multiple popular FGVR datasets demonstrate that Finedefics outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code is available at https://github.com/PKU-ICST-MIPL/Finedefics_ICLR2025.
Authors:Bowen Zheng, Ran Cheng, Kay Chen Tan
Abstract:
Evolutionary Reinforcement Learning (EvoRL) has emerged as a promising approach to overcoming the limitations of traditional reinforcement learning (RL) by integrating the Evolutionary Computation (EC) paradigm with RL. However, the population-based nature of EC significantly increases computational costs, thereby restricting the exploration of algorithmic design choices and scalability in large-scale settings. To address this challenge, we introduce $\texttt{$\textbf{EvoRL}$}$, the first end-to-end EvoRL framework optimized for GPU acceleration. The framework executes the entire training pipeline on accelerators, including environment simulations and EC processes, leveraging hierarchical parallelism through vectorization and compilation techniques to achieve superior speed and scalability. This design enables the efficient training of large populations on a single machine. In addition to its performance-oriented design, $\texttt{$\textbf{EvoRL}$}$ offers a comprehensive platform for EvoRL research, encompassing implementations of traditional RL algorithms (e.g., A2C, PPO, DDPG, TD3, SAC), Evolutionary Algorithms (e.g., CMA-ES, OpenES, ARS), and hybrid EvoRL paradigms such as Evolutionary-guided RL (e.g., ERL, CEM-RL) and Population-Based AutoRL (e.g., PBT). The framework's modular architecture and user-friendly interface allow researchers to seamlessly integrate new components, customize algorithms, and conduct fair benchmarking and ablation studies. The project is open-source and available at: https://github.com/EMI-Group/evorl.
Authors:Ziqi Liu
Abstract:
Long-term time series forecasting is essential in areas like finance and weather prediction. Besides traditional methods that operate in the time domain, many recent models transform time series data into the frequency domain to better capture complex patterns. However, these methods often use filtering techniques to remove certain frequency signals as noise, which may unintentionally discard important information and reduce prediction accuracy. To address this, we propose the Frequency Decomposition Mixture-of-Experts (FreqMoE) model, which dynamically decomposes time series data into frequency bands, each processed by a specialized expert. A gating mechanism adjusts the importance of each output of expert based on frequency characteristics, and the aggregated results are fed into a prediction module that iteratively refines the forecast using residual connections. Our experiments demonstrate that FreqMoE outperforms state-of-the-art models, achieving the best performance on 51 out of 70 metrics across all tested datasets, while significantly reducing the number of required parameters to under 50k, providing notable efficiency advantages. Code is available at: https://github.com/sunbus100/FreqMoE-main
Authors:Qingtian Bian, Marcus VinÃcius de Carvalho, Tieying Li, Jiaxing Xu, Hui Fang, Yiping Ke
Abstract:
Cross-Domain Sequential Recommendation (CDSR) has recently gained attention for countering data sparsity by transferring knowledge across domains. A common approach merges domain-specific sequences into cross-domain sequences, serving as bridges to connect domains. One key challenge is to correctly extract the shared knowledge among these sequences and appropriately transfer it. Most existing works directly transfer unfiltered cross-domain knowledge rather than extracting domain-invariant components and adaptively integrating them into domain-specific modelings. Another challenge lies in aligning the domain-specific and cross-domain sequences. Existing methods align these sequences based on timestamps, but this approach can cause prediction mismatches when the current tokens and their targets belong to different domains. In such cases, the domain-specific knowledge carried by the current tokens may degrade performance. To address these challenges, we propose the A-B-Cross-to-Invariant Learning Recommender (ABXI). Specifically, leveraging LoRA's effectiveness for efficient adaptation, ABXI incorporates two types of LoRAs to facilitate knowledge adaptation. First, all sequences are processed through a shared encoder that employs a domain LoRA for each sequence, thereby preserving unique domain characteristics. Next, we introduce an invariant projector that extracts domain-invariant interests from cross-domain representations, utilizing an invariant LoRA to adapt these interests into modeling each specific domain. Besides, to avoid prediction mismatches, all domain-specific sequences are aligned to match the domains of the cross-domain ground truths. Experimental results on three datasets demonstrate that our approach outperforms other CDSR counterparts by a large margin. The codes are available in https://github.com/DiMarzioBian/ABXI.
Authors:Zihang Li, Yangdong Ruan, Wenjun Liu, Zhengyang Wang, Tong Yang
Abstract:
Although retrieval-augmented generation(RAG) significantly improves generation quality by retrieving external knowledge bases and integrating generated content, it faces computational efficiency bottlenecks, particularly in knowledge retrieval tasks involving hierarchical structures for Tree-RAG. This paper proposes a Tree-RAG acceleration method based on the improved Cuckoo Filter, which optimizes entity localization during the retrieval process to achieve significant performance improvements. Tree-RAG effectively organizes entities through the introduction of a hierarchical tree structure, while the Cuckoo Filter serves as an efficient data structure that supports rapid membership queries and dynamic updates. The experiment results demonstrate that our method is much faster than naive Tree-RAG while maintaining high levels of generative quality. When the number of trees is large, our method is hundreds of times faster than naive Tree-RAG. Our work is available at https://github.com/TUPYP7180/CFT-RAG-2025.
Authors:Jiayi Liao, Ruobing Xie, Sihang Li, Xiang Wang, Xingwu Sun, Zhanhui Kang, Xiangnan He
Abstract:
Large Language Models (LLMs) have emerged as a new paradigm for recommendation by converting interacted item history into language modeling. However, constrained by the limited context length of LLMs, existing approaches have to truncate item history in the prompt, focusing only on recent interactions and sacrificing the ability to model long-term history. To enable LLMs to model long histories, we pursue a concise embedding representation for items and sessions. In the LLM embedding space, we construct an item's embedding by aggregating its textual token embeddings; similarly, we construct a session's embedding by aggregating its item embeddings. While efficient, this way poses two challenges since it ignores the temporal significance of user interactions and LLMs do not natively interpret our custom embeddings. To overcome these, we propose PatchRec, a multi-grained patch training method consisting of two stages: (1) Patch Pre-training, which familiarizes LLMs with aggregated embeddings -- patches, and (2) Patch Fine-tuning, which enables LLMs to capture time-aware significance in interaction history. Extensive experiments show that PatchRec effectively models longer behavior histories with improved efficiency. This work facilitates the practical use of LLMs for modeling long behavior histories. Codes are available at https://github.com/ljy0ustc/PatchRec.
Authors:Shreya Shukla, Nakul Sharma, Manish Gupta, Anand Mishra
Abstract:
Writing comprehensive and accurate descriptions of technical drawings in patent documents is crucial to effective knowledge sharing and enabling the replication and protection of intellectual property. However, automation of this task has been largely overlooked by the research community. To this end, we introduce PatentDesc-355K, a novel large-scale dataset containing ~355K patent figures along with their brief and detailed textual descriptions extracted from more than 60K US patent documents. In addition, we propose PatentLMM - a novel multimodal large language model specifically tailored to generate high-quality descriptions of patent figures. Our proposed PatentLMM comprises two key components: (i) PatentMME, a specialized multimodal vision encoder that captures the unique structural elements of patent figures, and (ii) PatentLLaMA, a domain-adapted version of LLaMA fine-tuned on a large collection of patents. Extensive experiments demonstrate that training a vision encoder specifically designed for patent figures significantly boosts the performance, generating coherent descriptions compared to fine-tuning similar-sized off-the-shelf multimodal models. PatentDesc-355K and PatentLMM pave the way for automating the understanding of patent figures, enabling efficient knowledge sharing and faster drafting of patent documents. We make the code and data publicly available.
Authors:Ryo Takizawa, Yoshiyuki Ohmura, Yasuo Kuniyoshi
Abstract:
In imitation learning for robotic manipulation, decomposing object manipulation tasks into sub-tasks enables the reuse of learned skills and the combination of learned behaviors to perform novel tasks, rather than simply replicating demonstrated motions. Human gaze is closely linked to hand movements during object manipulation. We hypothesize that an imitating agent's gaze control, fixating on specific landmarks and transitioning between them, simultaneously segments demonstrated manipulations into sub-tasks. This study proposes a simple yet robust task decomposition method based on gaze transitions. Using teleoperation, a common modality in robotic manipulation for collecting demonstrations, in which a human operator's gaze is measured and used for task decomposition as a substitute for an imitating agent's gaze. Our approach ensures consistent task decomposition across all demonstrations for each task, which is desirable in contexts such as machine learning. We evaluated the method across demonstrations of various tasks, assessing the characteristics and consistency of the resulting sub-tasks. Furthermore, extensive testing across different hyperparameter settings confirmed its robustness, making it adaptable to diverse robotic systems. Our code is available at https://github.com/crumbyRobotics/GazeTaskDecomp.
Authors:Mengshi Qi, Xiaoyang Bi, Pengfei Zhu, Huadong Ma
Abstract:
Robustly predicting attention regions of interest for self-driving systems is crucial for driving safety but presents significant challenges due to the labor-intensive nature of obtaining large-scale attention labels and the domain gap between self-driving scenarios and natural scenes. These challenges are further exacerbated by complex traffic environments, including camera corruption under adverse weather, noise interferences, and central bias from long-tail distributions. To address these issues, we propose a robust unsupervised attention prediction method. An Uncertainty Mining Branch refines predictions by analyzing commonalities and differences across multiple pre-trained models on natural scenes, while a Knowledge Embedding Block bridges the domain gap by incorporating driving knowledge to adaptively enhance pseudo-labels. Additionally, we introduce RoboMixup, a novel data augmentation method that improves robustness against corruption through soft attention and dynamic augmentation, and mitigates central bias by integrating random cropping into Mixup as a regularizer. To systematically evaluate robustness in self-driving attention prediction, we introduce the DriverAttention-C benchmark, comprising over 100k frames across three subsets: BDD-A-C, DR(eye)VE-C, and DADA-2000-C. Our method achieves performance equivalent to or surpassing fully supervised state-of-the-art approaches on three public datasets and the proposed robustness benchmark, reducing relative corruption degradation by 58.8% and 52.8%, and improving central bias robustness by 12.4% and 11.4% in KLD and CC metrics, respectively. Code and data are available at https://github.com/zaplm/DriverAttention.
Authors:Zhongpu Chen, Yinfeng Liu, Long Shi, Xingyan Chen, Yu Zhao, Fuji Ren
Abstract:
Large language models (LLMs) are expected to offer structured Markdown responses for the sake of readability in web chatbots (e.g., ChatGPT). Although there are a myriad of metrics to evaluate LLMs, they fail to evaluate the readability from the view of output content structure. To this end, we focus on an overlooked yet important metric -- Markdown Awareness, which directly impacts the readability and structure of the content generated by these language models. In this paper, we introduce MDEval, a comprehensive benchmark to assess Markdown Awareness for LLMs, by constructing a dataset with 20K instances covering 10 subjects in English and Chinese. Unlike traditional model-based evaluations, MDEval provides excellent interpretability by combining model-based generation tasks and statistical methods. Our results demonstrate that MDEval achieves a Spearman correlation of 0.791 and an accuracy of 84.1% with human, outperforming existing methods by a large margin. Extensive experimental results also show that through fine-tuning over our proposed dataset, less performant open-source models are able to achieve comparable performance to GPT-4o in terms of Markdown Awareness. To ensure reproducibility and transparency, MDEval is open sourced at https://github.com/SWUFE-DB-Group/MDEval-Benchmark.
Authors:Kaixun Jiang, Zhaoyu Chen, Jiyuan Fu, Lingyi Hong, Jinglun Li, Wenqiang Zhang
Abstract:
Recent work indicates that video recognition models are vulnerable to adversarial examples, posing a serious security risk to downstream applications. However, current research has primarily focused on adversarial attacks, with limited work exploring defense mechanisms. Furthermore, due to the spatial-temporal complexity of videos, existing video defense methods face issues of high cost, overfitting, and limited defense performance. Recently, diffusion-based adversarial purification methods have achieved robust defense performance in the image domain. However, due to the additional temporal dimension in videos, directly applying these diffusion-based adversarial purification methods to the video domain suffers performance and efficiency degradation. To achieve an efficient and effective video adversarial defense method, we propose the first diffusion-based video purification framework to improve video recognition models' adversarial robustness: VideoPure. Given an adversarial example, we first employ temporal DDIM inversion to transform the input distribution into a temporally consistent and trajectory-defined distribution, covering adversarial noise while preserving more video structure. Then, during DDIM denoising, we leverage intermediate results at each denoising step and conduct guided spatial-temporal optimization, removing adversarial noise while maintaining temporal consistency. Finally, we input the list of optimized intermediate results into the video recognition model for multi-step voting to obtain the predicted class. We investigate the defense performance of our method against black-box, gray-box, and adaptive attacks on benchmark datasets and models. Compared with other adversarial purification methods, our method overall demonstrates better defense performance against different attacks. Our code is available at https://github.com/deep-kaixun/VideoPure.
Authors:Bao Duong, Sunil Gupta, Thin Nguyen
Abstract:
Existing score-based methods for directed acyclic graph (DAG) learning from observational data struggle to recover the causal graph accurately and sample-efficiently. To overcome this, in this study, we propose DrBO (DAG recovery via Bayesian Optimization)-a novel DAG learning framework leveraging Bayesian optimization (BO) to find high-scoring DAGs. We show that, by sophisticatedly choosing the promising DAGs to explore, we can find higher-scoring ones much more efficiently. To address the scalability issues of conventional BO in DAG learning, we replace Gaussian Processes commonly employed in BO with dropout neural networks, trained in a continual manner, which allows for (i) flexibly modeling the DAG scores without overfitting, (ii) incorporation of uncertainty into the estimated scores, and (iii) scaling with the number of evaluations. As a result, DrBO is computationally efficient and can find the accurate DAG in fewer trials and less time than existing state-of-the-art methods. This is demonstrated through an extensive set of empirical evaluations on many challenging settings with both synthetic and real data. Our implementation is available at https://github.com/baosws/DrBO.
Authors:Hongbo Zheng, Suyuan Wang, Neeraj Gangwar, Nickvash Kani
Abstract:
Vector representations have been pivotal in advancing natural language processing (NLP), with prior research focusing on embedding techniques for mathematical expressions using mathematically equivalent formulations. While effective, these approaches are constrained by the size and diversity of training data. In this work, we address these limitations by introducing E-Gen, a novel e-graph-based dataset generation scheme that synthesizes large and diverse mathematical expression datasets, surpassing prior methods in size and operator variety. Leveraging this dataset, we train embedding models using two strategies: (1) generating mathematically equivalent expressions, and (2) contrastive learning to explicitly group equivalent expressions. We evaluate these embeddings on both in-distribution and out-of-distribution mathematical language processing tasks, comparing them against prior methods. Finally, we demonstrate that our embedding-based approach outperforms state-of-the-art large language models (LLMs) on several tasks, underscoring the necessity of optimizing embedding methods for the mathematical data modality. The source code and datasets are available at https://github.com/MLPgroup/E-Gen.
Authors:Qing Wang, Wen-jie Chen, Bo Li, Jing Su, Guangyu Wang, Qianqian Song
Abstract:
Histopathology, particularly hematoxylin and eosin (H\&E) staining, plays a critical role in diagnosing and characterizing pathological conditions by highlighting tissue morphology. However, H\&E-stained images inherently lack molecular information, requiring costly and resource-intensive methods like spatial transcriptomics to map gene expression with spatial resolution. To address these challenges, we introduce HECLIP (Histology-Enhanced Contrastive Learning for Imputation of Profiles), an innovative deep learning framework that bridges the gap between histological imaging and molecular profiling. HECLIP is specifically designed to infer gene expression profiles directly from H\&E-stained images, eliminating the need for expensive spatial transcriptomics assays. HECLIP leverages an advanced image-centric contrastive loss function to optimize image representation learning, ensuring that critical morphological patterns in histology images are effectively captured and translated into accurate gene expression profiles. This design enhances the predictive power of the image modality while minimizing reliance on gene expression data. Through extensive benchmarking on publicly available datasets, HECLIP demonstrates superior performance compared to existing approaches, delivering robust and biologically meaningful predictions. Detailed ablation studies further underscore its effectiveness in extracting molecular insights from histology images. Additionally, HECLIP's scalable and cost-efficient approach positions it as a transformative tool for both research and clinical applications, driving advancements in precision medicine. The source code for HECLIP is openly available at https://github.com/QSong-github/HECLIP.
Authors:Md. Kamrul Hasan, Guang Yang, Choon Hwai Yap
Abstract:
Cardiac anatomy segmentation is useful for clinical assessment of cardiac morphology to inform diagnosis and intervention. Deep learning (DL), especially with motion information, has improved segmentation accuracy. However, existing techniques for motion enhancement are not yet optimal, and they have high computational costs due to increased dimensionality or reduced robustness due to suboptimal approaches that use non-DL motion registration, non-attention models, or single-headed attention. They further have limited adaptability and are inconvenient for incorporation into existing networks where motion awareness is desired. Here, we propose a novel, computationally efficient Temporal Attention Module (TAM) that offers robust motion enhancement, modeled as a small, multi-headed, cross-temporal attention module. TAM's uniqueness is that it is a lightweight, plug-and-play module that can be inserted into a broad range of segmentation networks (CNN-based, Transformer-based, or hybrid) for motion enhancement without requiring substantial changes in the network's backbone. This feature enables high adaptability and ease of integration for enhancing both existing and future networks. Extensive experiments on multiple 2D and 3D cardiac ultrasound and MRI datasets confirm that TAM consistently improves segmentation across a range of networks while maintaining computational efficiency and improving on currently reported performance. The evidence demonstrates that it is a robust, generalizable solution for motion-awareness enhancement that is scalable (such as from 2D to 3D).
Authors:Taewoong Lee, Sarah Frisken, Nazim Haouchine
Abstract:
We present a method for 3D/2D registration of Digital Subtraction Angiography (DSA) images to provide valuable insight into brain hemodynamics and angioarchitecture. Our approach formulates the registration as a pose estimation problem, leveraging both anteroposterior and lateral DSA views and employing differentiable rendering. Preliminary experiments on real and synthetic datasets demonstrate the effectiveness of our method, with both qualitative and quantitative evaluations highlighting its potential for clinical applications. The code is available at https://github.com/taewoonglee17/TwoViewsDSAReg.
Authors:Juan Ramirez, Ignacio Hounie, Juan Elenter, Jose Gallego-Posada, Meraj Hashemizadeh, Alejandro Ribeiro, Simon Lacoste-Julien
Abstract:
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample. In contrast to the ubiquitous Empirical Risk Minimization (ERM) framework, which optimizes for average performance, FL demands satisfactory performance on every individual data point. Since any model that meets the prescribed performance threshold is a valid FL solution, the choice of optimization algorithm and its dynamics play a crucial role in shaping the properties of the resulting solutions. In particular, we study a primal-dual approach which dynamically re-weights the importance of each sample during training. To address the challenge of setting a meaningful threshold in practice, we introduce a relaxation of FL that incorporates slack variables of minimal norm. Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
Authors:Michael K. Chen, Xikun Zhang, Dacheng Tao
Abstract:
Logical reasoning is a critical component of Large Language Models (LLMs), and substantial research efforts in recent years have aimed to enhance their deductive reasoning capabilities. However, existing deductive reasoning benchmarks, which are crucial for evaluating and advancing LLMs, are inadequate due to their lack of task complexity, presence of prior knowledge as a confounder, and superficial error analysis. To address these deficiencies, we introduce JustLogic, a synthetically generated deductive reasoning benchmark designed for rigorous evaluation of LLMs. JustLogic is (i) highly complex, capable of generating a diverse range of linguistic patterns, vocabulary, and argument structures; (ii) prior knowledge independent, eliminating the advantage of models possessing prior knowledge and ensuring that only deductive reasoning is used to answer questions; and (iii) capable of in-depth error analysis on the heterogeneous effects of reasoning depth and argument form on model accuracy. Our experimental results on JustLogic reveal that (i) state-of-the-art (SOTA) reasoning LLMs perform on par or better than the human average but significantly worse than the human ceiling, and (ii) SOTA non-reasoning models still underperform the human average. All code and data are available at https://github.com/michaelchen-lab/JustLogic
Authors:Libo Wang
Abstract:
In view of the gap in the current large language model in sharing memory across dialogues, this research proposes a wormhole memory module (WMM) to realize memory as a Rubik's cube that can be arbitrarily retrieved between different dialogues. Through simulation experiments, the researcher built an experimental framework based on the Python environment and used setting memory barriers to simulate the current situation where memories between LLMs dialogues are difficult to share. The CoQA development data set was imported into the experiment, and the feasibility of its cross-dialogue memory retrieval function was verified for WMM's nonlinear indexing and dynamic retrieval, and a comparative analysis was conducted with the capabilities of Titans and MemGPT memory modules. Experimental results show that WMM demonstrated the ability to retrieve memory across dialogues and the stability of quantitative indicators in eight experiments. It contributes new technical approaches to the optimization of memory management of LLMs and provides experience for the practical application in the future.
Authors:Xin Zhou, Dingkang Liang, Sifan Tu, Xiwu Chen, Yikang Ding, Dingyuan Zhang, Feiyang Tan, Hengshuang Zhao, Xiang Bai
Abstract:
Driving World Models (DWMs) have become essential for autonomous driving by enabling future scene prediction. However, existing DWMs are limited to scene generation and fail to incorporate scene understanding, which involves interpreting and reasoning about the driving environment. In this paper, we present a unified Driving World Model named HERMES. We seamlessly integrate 3D scene understanding and future scene evolution (generation) through a unified framework in driving scenarios. Specifically, HERMES leverages a Bird's-Eye View (BEV) representation to consolidate multi-view spatial information while preserving geometric relationships and interactions. We also introduce world queries, which incorporate world knowledge into BEV features via causal attention in the Large Language Model, enabling contextual enrichment for understanding and generation tasks. We conduct comprehensive studies on nuScenes and OmniDrive-nuScenes datasets to validate the effectiveness of our method. HERMES achieves state-of-the-art performance, reducing generation error by 32.4% and improving understanding metrics such as CIDEr by 8.0%. The model and code will be publicly released at https://github.com/LMD0311/HERMES.
Authors:Shaofei Wang, Tomas Simon, Igor Santesteban, Timur Bagautdinov, Junxuan Li, Vasu Agrawal, Fabian Prada, Shoou-I Yu, Pace Nalbone, Matt Gramlich, Roman Lubachersky, Chenglei Wu, Javier Romero, Jason Saragih, Michael Zollhoefer, Andreas Geiger, Siyu Tang, Shunsuke Saito
Abstract:
We propose Relightable Full-Body Gaussian Codec Avatars, a new approach for modeling relightable full-body avatars with fine-grained details including face and hands. The unique challenge for relighting full-body avatars lies in the large deformations caused by body articulation and the resulting impact on appearance caused by light transport. Changes in body pose can dramatically change the orientation of body surfaces with respect to lights, resulting in both local appearance changes due to changes in local light transport functions, as well as non-local changes due to occlusion between body parts. To address this, we decompose the light transport into local and non-local effects. Local appearance changes are modeled using learnable zonal harmonics for diffuse radiance transfer. Unlike spherical harmonics, zonal harmonics are highly efficient to rotate under articulation. This allows us to learn diffuse radiance transfer in a local coordinate frame, which disentangles the local radiance transfer from the articulation of the body. To account for non-local appearance changes, we introduce a shadow network that predicts shadows given precomputed incoming irradiance on a base mesh. This facilitates the learning of non-local shadowing between the body parts. Finally, we use a deferred shading approach to model specular radiance transfer and better capture reflections and highlights such as eye glints. We demonstrate that our approach successfully models both the local and non-local light transport required for relightable full-body avatars, with a superior generalization ability under novel illumination conditions and unseen poses.
Authors:Naihao Deng, Rada Mihalcea
Abstract:
Recent advances in table understanding have focused on instruction-tuning large language models (LLMs) for table-related tasks. However, existing research has overlooked the impact of hyperparameter choices, and also lacks a comprehensive evaluation of the out-of-domain table understanding ability and the general capabilities of these table LLMs. In this paper, we evaluate these abilities in existing table LLMs, and find significant declines in both out-of-domain table understanding and general capabilities as compared to their base models. Through systematic analysis, we show that hyperparameters, such as learning rate, can significantly influence both table-specific and general capabilities. Contrary to the previous table instruction-tuning work, we demonstrate that smaller learning rates and fewer training instances can enhance table understanding while preserving general capabilities. Based on our findings, we introduce TAMA, a TAble LLM instruction-tuned from LLaMA 3.1 8B Instruct, which achieves performance on par with, or surpassing GPT-3.5 and GPT-4 on table tasks, while maintaining strong out-of-domain generalization and general capabilities. Our findings highlight the potential for reduced data annotation costs and more efficient model development through careful hyperparameter selection. We open-source the project and our models.
Authors:Rongzhao He, Weihao Zheng, Leilei Zhao, Ying Wang, Dalin Zhu, Dan Wu, Bin Hu
Abstract:
Attention-based methods have demonstrated exceptional performance in modelling long-range dependencies on spherical cortical surfaces, surpassing traditional Geometric Deep Learning (GDL) models. However, their extensive inference time and high memory demands pose challenges for application to large datasets with limited computing resources. Inspired by the state space model in computer vision, we introduce the attention-free Vision Mamba (Vim) to spherical surfaces, presenting a domain-agnostic architecture for analyzing data on spherical manifolds. Our method achieves surface patching by representing spherical data as a sequence of triangular patches derived from a subdivided icosphere. The proposed Surface Vision Mamba (SiM) is evaluated on multiple neurodevelopmental phenotype regression tasks using cortical surface metrics from neonatal brains. Experimental results demonstrate that SiM outperforms both attention- and GDL-based methods, delivering 4.8 times faster inference and achieving 91.7% lower memory consumption compared to the Surface Vision Transformer (SiT) under the Ico-4 grid partitioning. Sensitivity analysis further underscores the potential of SiM to identify subtle cognitive developmental patterns. The code is available at https://github.com/Rongzhao-He/surface-vision-mamba.
Authors:Peiqing Yang, Shangchen Zhou, Jixin Zhao, Qingyi Tao, Chen Change Loy
Abstract:
Auxiliary-free human video matting methods, which rely solely on input frames, often struggle with complex or ambiguous backgrounds. To address this, we propose MatAnyone, a robust framework tailored for target-assigned video matting. Specifically, building on a memory-based paradigm, we introduce a consistent memory propagation module via region-adaptive memory fusion, which adaptively integrates memory from the previous frame. This ensures semantic stability in core regions while preserving fine-grained details along object boundaries. For robust training, we present a larger, high-quality, and diverse dataset for video matting. Additionally, we incorporate a novel training strategy that efficiently leverages large-scale segmentation data, boosting matting stability. With this new network design, dataset, and training strategy, MatAnyone delivers robust and accurate video matting results in diverse real-world scenarios, outperforming existing methods.
Authors:Yixing Jiang, Kameron C. Black, Gloria Geng, Danny Park, James Zou, Andrew Y. Ng, Jonathan H. Chen
Abstract:
Recent large language models (LLMs) have demonstrated significant advancements, particularly in their ability to serve as agents thereby surpassing their traditional role as chatbots. These agents can leverage their planning and tool utilization capabilities to address tasks specified at a high level. However, a standardized dataset to benchmark the agent capabilities of LLMs in medical applications is currently lacking, making the evaluation of LLMs on complex tasks in interactive healthcare environments challenging. To address this gap, we introduce MedAgentBench, a broad evaluation suite designed to assess the agent capabilities of large language models within medical records contexts. MedAgentBench encompasses 300 patient-specific clinically-derived tasks from 10 categories written by human physicians, realistic profiles of 100 patients with over 700,000 data elements, a FHIR-compliant interactive environment, and an accompanying codebase. The environment uses the standard APIs and communication infrastructure used in modern EMR systems, so it can be easily migrated into live EMR systems. MedAgentBench presents an unsaturated agent-oriented benchmark that current state-of-the-art LLMs exhibit some ability to succeed at. The best model (Claude 3.5 Sonnet v2) achieves a success rate of 69.67%. However, there is still substantial space for improvement which gives the community a next direction to optimize. Furthermore, there is significant variation in performance across task categories. MedAgentBench establishes this and is publicly available at https://github.com/stanfordmlgroup/MedAgentBench , offering a valuable framework for model developers to track progress and drive continuous improvements in the agent capabilities of large language models within the medical domain.
Authors:Tianming Liang, Kun-Yu Lin, Chaolei Tan, Jianguo Zhang, Wei-Shi Zheng, Jian-Fang Hu
Abstract:
Referring video object segmentation (RVOS) aims to segment target objects throughout a video based on a text description. This is challenging as it involves deep vision-language understanding, pixel-level dense prediction and spatiotemporal reasoning. Despite notable progress in recent years, existing methods still exhibit a noticeable gap when considering all these aspects. In this work, we propose \textbf{ReferDINO}, a strong RVOS model that inherits region-level vision-language alignment from foundational visual grounding models, and is further endowed with pixel-level dense perception and cross-modal spatiotemporal reasoning. In detail, ReferDINO integrates two key components: 1) a grounding-guided deformable mask decoder that utilizes location prediction to progressively guide mask prediction through differentiable deformation mechanisms; 2) an object-consistent temporal enhancer that injects pretrained time-varying text features into inter-frame interaction to capture object-aware dynamic changes. Moreover, a confidence-aware query pruning strategy is designed to accelerate object decoding without compromising model performance. Extensive experimental results on five benchmarks demonstrate that our ReferDINO significantly outperforms previous methods (e.g., +3.9% (\mathcal{J}&\mathcal{F}) on Ref-YouTube-VOS) with real-time inference speed (51 FPS).
Authors:Jiazhen Zhang, Yuexi Du, Nicha C. Dvornek, John A. Onofrey
Abstract:
Automated segmentation plays a pivotal role in medical image analysis and computer-assisted interventions. Despite the promising performance of existing methods based on convolutional neural networks (CNNs), they neglect useful equivariant properties for images, such as rotational and reflection equivariance. This limitation can decrease performance and lead to inconsistent predictions, especially in applications like vessel segmentation where explicit orientation is absent. While existing equivariant learning approaches attempt to mitigate these issues, they substantially increase learning cost, model size, or both. To overcome these challenges, we propose a novel application of an efficient symmetric rotation-equivariant (SRE) convolutional (SRE-Conv) kernel implementation to the U-Net architecture, to learn rotation and reflection-equivariant features, while also reducing the model size dramatically. We validate the effectiveness of our method through improved segmentation performance on retina vessel fundus imaging. Our proposed SRE U-Net not only significantly surpasses standard U-Net in handling rotated images, but also outperforms existing equivariant learning methods and does so with a reduced number of trainable parameters and smaller memory cost. The code is available at https://github.com/OnofreyLab/sre_conv_segm_isbi2025.
Authors:Panisara Meehinkong, Donlapark Ponnoprat
Abstract:
Conformal prediction provides a framework for uncertainty quantification, specifically in the forms of prediction intervals and sets with distribution-free guaranteed coverage. While recent cross-conformal techniques such as CV+ and Jackknife+-after-bootstrap achieve better data efficiency than traditional split conformal methods, they incur substantial computational costs due to required pairwise comparisons between training and test samples' out-of-bag scores. Observing that these methods naturally extend from ensemble models, particularly random forests, we leverage existing optimized random forest implementations to enable efficient cross-conformal predictions.
We present coverforest, a Python package that implements efficient conformal prediction methods specifically optimized for random forests. coverforest supports both regression and classification tasks through various conformal prediction methods, including split conformal, CV+, Jackknife+-after-bootstrap, and adaptive prediction sets. Our package leverages parallel computing and Cython optimizations to speed up out-of-bag calculations. Our experiments demonstrate that coverforest's predictions achieve the desired level of coverage. In addition, its training and prediction times can be faster than an existing implementation by 2--9 times. The source code for the coverforest is hosted on GitHub at https://github.com/donlapark/coverforest.
Authors:Haifeng Wen, Hong Xing, Osvaldo Simeone
Abstract:
Post-hoc calibration of pre-trained models is critical for ensuring reliable inference, especially in safety-critical domains such as healthcare. Conformal Prediction (CP) offers a robust post-hoc calibration framework, providing distribution-free statistical coverage guarantees for prediction sets by leveraging held-out datasets. In this work, we address a decentralized setting where each device has limited calibration data and can communicate only with its neighbors over an arbitrary graph topology. We propose two message-passing-based approaches for achieving reliable inference via CP: quantile-based distributed conformal prediction (Q-DCP) and histogram-based distributed conformal prediction (H-DCP). Q-DCP employs distributed quantile regression enhanced with tailored smoothing and regularization terms to accelerate convergence, while H-DCP uses a consensus-based histogram estimation approach. Through extensive experiments, we investigate the trade-offs between hyperparameter tuning requirements, communication overhead, coverage guarantees, and prediction set sizes across different network topologies. The code of our work is released on: https://github.com/HaifengWen/Distributed-Conformal-Prediction.
Authors:Wenzhang Liu, Lianjun Jin, Lu Ren, Chaoxu Mu, Changyin Sun
Abstract:
Intelligent decision-making within large and redundant action spaces remains challenging in deep reinforcement learning. Considering similar but ineffective actions at each step can lead to repetitive and unproductive trials. Existing methods attempt to improve agent exploration by reducing or penalizing redundant actions, yet they fail to provide quantitative and reliable evidence to determine redundancy. In this paper, we propose a method to improve exploration efficiency by estimating the causal effects of actions. Unlike prior methods, our approach offers quantitative results regarding the causality of actions for one-step transitions. We first pre-train an inverse dynamics model to serve as prior knowledge of the environment. Subsequently, we classify actions across the entire action space at each time step and estimate the causal effect of each action to suppress redundant actions during exploration. We provide a theoretical analysis to demonstrate the effectiveness of our method and present empirical results from simulations in environments with redundant actions to evaluate its performance. Our implementation is available at https://github.com/agi-brain/cee.git.
Authors:Fanxing Li, Fangyu Sun, Tianbao Zhang, Danping Zou
Abstract:
Quadrotor control policies can be trained with high performance using the exact gradients of the rewards to directly optimize policy parameters via backpropagation-through-time (BPTT). However, designing a fully differentiable reward architecture is often challenging. Partially differentiable rewards will result in biased gradient propagation that degrades training performance. To overcome this limitation, we propose Amended Backpropagation-through-Time (ABPT), a novel approach that mitigates gradient bias while preserving the training efficiency of BPTT. ABPT combines 0-step and N-step returns, effectively reducing the bias by leveraging value gradients from the learned Q-value function. Additionally, it adopts entropy regularization and state initialization mechanisms to encourage exploration during training. We evaluate ABPT on four representative quadrotor flight tasks \li{in both real world and simulation}. Experimental results demonstrate that ABPT converges significantly faster and achieves higher ultimate rewards than existing learning algorithms, particularly in tasks involving partially differentiable rewards. The code will be released at http://github.com/Fanxing-LI/ABPT.
Authors:Jia Yu, Fei Yuan, Rui Min, Jing Yu, Pei Chu, Jiayang Li, Wei Li, Ruijie Zhang, Zhenxiang Li, Zhifei Ren, Dong Zheng, Wenjian Zhang, Yan Teng, Lingyu Meng, ZhenJiang Jin, Jiantao Qiu, ShaSha Wang, Zhongying Tu, Dahua Lin, Yu Wang, Yu Qiao, Yanfeng Wang, Conghui He
Abstract:
This paper introduces the open-source dataset WanJuanSiLu, designed to provide high-quality training corpora for low-resource languages, thereby advancing the research and development of multilingual models. To achieve this, we have developed a systematic data processing framework tailored for low-resource languages. This framework encompasses key stages such as data extraction, corpus cleaning, content deduplication, security filtering, quality evaluation, and theme classification. Through the implementation of this framework, we have significantly improved both the quality and security of the dataset, while maintaining its linguistic diversity. As of now, data for all five languages have been fully open-sourced. The dataset can be accessed at https://opendatalab.com/applyMultilingualCorpus, and GitHub repository is available at https://github.com/opendatalab/WanJuan3.0
Authors:Jie He, Yijun Yang, Wanqiu Long, Deyi Xiong, Victor Gutierrez-Basulto, Jeff Z. Pan
Abstract:
Large language models (LLMs) have demonstrated immense potential across various tasks. However, research for exploring and improving the capabilities of LLMs in interpreting graph structures remains limited. To address this gap, we conduct a comprehensive evaluation of prompting current open-source LLMs on graph-to-text generation tasks. Although we explored the optimal prompting strategies and proposed a novel and effective diversity-difficulty-based few-shot sample selection method, we found that the improvements from tuning-free approaches were incremental, as LLMs struggle with planning on complex graphs, particularly those with a larger number of triplets. To further improve LLMs in planning with graph sequences and grounding in truth, we introduce a new graph-to-text dataset, PlanGTG, annotated with two sub-tasks: reordering and attribution. Through extensive automatic and human evaluations, we demonstrate significant improvements in the quality of generated text from both few-shot learning and fine-tuning perspectives using the PlanGTG dataset. Our study paves the way for new research directions in graph-to-text generation. PlanGTG datasets can be found in https://github.com/probe2/kg_text.
Authors:Zhengyang Tang, Ziniu Li, Zhenyang Xiao, Tian Ding, Ruoyu Sun, Benyou Wang, Dayiheng Liu, Fei Huang, Tianyu Liu, Bowen Yu, Junyang Lin
Abstract:
Critiques are important for enhancing the performance of Large Language Models (LLMs), enabling both self-improvement and constructive feedback for others by identifying flaws and suggesting improvements. However, evaluating the critique capabilities of LLMs presents a significant challenge due to the open-ended nature of the task. In this work, we introduce a new benchmark designed to assess the critique capabilities of LLMs. Unlike existing benchmarks, which typically function in an open-loop fashion, our approach employs a closed-loop methodology that evaluates the quality of corrections generated from critiques. Moreover, the benchmark incorporates features such as self-critique, cross-critique, and iterative critique, which are crucial for distinguishing the abilities of advanced reasoning models from more classical ones. We implement this benchmark using eight challenging reasoning tasks. We have several interesting findings. First, despite demonstrating comparable performance in direct chain-of-thought generation, classical LLMs significantly lag behind the advanced reasoning-based model o1-mini across all critique scenarios. Second, in self-critique and iterative critique settings, classical LLMs may even underperform relative to their baseline capabilities. We hope that this benchmark will serve as a valuable resource to guide future advancements. The code and data are available at \url{https://github.com/tangzhy/RealCritic}.
Authors:Jake McLaughlin, Nicholas Charron, Sriram Narasimhan
Abstract:
Routine and repetitive infrastructure inspections present safety, efficiency, and consistency challenges as they are performed manually, often in challenging or hazardous environments. They can also introduce subjectivity and errors into the process, resulting in undesirable outcomes. Simultaneous localization and mapping (SLAM) presents an opportunity to generate high-quality 3D maps that can be used to extract accurate and objective inspection data. Yet, many SLAM algorithms are limited in their ability to align 3D maps from repeated inspections in GPS-denied settings automatically. This limitation hinders practical long-term asset health assessments by requiring tedious manual alignment for data association across scans from previous inspections. This paper introduces a versatile map alignment algorithm leveraging both visual and lidar data for improved place recognition robustness and presents an infrastructure-focused dataset tailored for consecutive inspections. By detaching map alignment from SLAM, our approach enhances infrastructure inspection pipelines, supports monitoring asset degradation over time, and invigorates SLAM research by permitting exploration beyond existing multi-session SLAM algorithms.
Authors:Hao Ma, Rujin Chen, Xiao-Lei Zhang, Ju Liu, Xuelong Li
Abstract:
Target speech extraction (TSE) isolates the speech of a specific speaker from a multi-talker overlapped speech mixture. Most existing TSE models rely on discriminative methods, typically predicting a time-frequency spectrogram mask for the target speech. However, imperfections in these masks often result in over-/under-suppression of target/non-target speech, degrading perceptual quality. Generative methods, by contrast, re-synthesize target speech based on the mixture and target speaker cues, achieving superior perceptual quality. Nevertheless, these methods often overlook speech intelligibility, leading to alterations or loss of semantic content in the re-synthesized speech. Inspired by the Whisper model's success in target speaker ASR, we propose a generative TSE framework based on the pre-trained Whisper model to address the above issues. This framework integrates semantic modeling with flow-based acoustic modeling to achieve both high intelligibility and perceptual quality. Results from multiple benchmarks demonstrate that the proposed method outperforms existing generative and discriminative baselines. We present speech samples on https://aisaka0v0.github.io/GenerativeTSE_demo/.
Authors:Xu Chu, Zhijie Tan, Hanlin Xue, Guanyu Wang, Tong Mo, Weiping Li
Abstract:
Large Language Models (LLMs) are widely applied to downstream domains. However, current LLMs for high-stakes domain tasks, such as financial investment and legal QA, typically generate brief answers without reasoning processes and explanations. This limits users' confidence in making decisions based on their responses. While original CoT shows promise, it lacks self-correction mechanisms during reasoning. This work introduces Domain$o1$s, which enhances LLMs' reasoning capabilities on domain tasks through supervised fine-tuning and tree search. We construct CoT-stock-2k and CoT-legal-2k datasets for fine-tuning models that activate domain-specific reasoning steps based on their judgment. Additionally, we propose Selective Tree Exploration to spontaneously explore solution spaces and sample optimal reasoning paths to improve performance. We also introduce PROOF-Score, a new metric for evaluating domain models' explainability, complementing traditional accuracy metrics with richer assessment dimensions. Extensive experiments on stock investment recommendation and legal reasoning QA tasks demonstrate Domaino1s's leading performance and explainability. Our code is available at https://github.com/Hyalinesky/Domaino1s.
Authors:Shengjie Wang, Jiacheng You, Yihang Hu, Jiongye Li, Yang Gao
Abstract:
Real-world tasks such as garment manipulation and table rearrangement demand robots to perform generalizable, highly precise, and long-horizon actions. Although imitation learning has proven to be an effective approach for teaching robots new skills, large amounts of expert demonstration data are still indispensible for these complex tasks, resulting in high sample complexity and costly data collection. To address this, we propose Semantic Keypoint Imitation Learning (SKIL), a framework which automatically obtains semantic keypoints with the help of vision foundation models, and forms the descriptor of semantic keypoints that enables efficient imitation learning of complex robotic tasks with significantly lower sample complexity. In real-world experiments, SKIL doubles the performance of baseline methods in tasks such as picking a cup or mouse, while demonstrating exceptional robustness to variations in objects, environmental changes, and distractors. For long-horizon tasks like hanging a towel on a rack where previous methods fail completely, SKIL achieves a mean success rate of 70\% with as few as 30 demonstrations. Furthermore, SKIL naturally supports cross-embodiment learning due to its semantic keypoints abstraction. Our experiments demonstrate that even human videos bring considerable improvement to the learning performance. All these results demonstrate the great success of SKIL in achieving data-efficient generalizable robotic learning. Visualizations and code are available at: https://skil-robotics.github.io/SKIL-robotics/.
Authors:Yoni Schirris, Rosie Voorthuis, Mark Opdam, Marte Liefaard, Gabe S Sonke, Gwen Dackus, Vincent de Jong, Yuwei Wang, Annelot Van Rossum, Tessa G Steenbruggen, Lars C Steggink, Liesbeth G. E. de Vries, Marc van de Vijver, Roberto Salgado, Efstratios Gavves, Paul J van Diest, Sabine C Linn, Jonas Teuwen, Renee Menezes, Marleen Kok, Hugo Horlings
Abstract:
The level of tumour-infiltrating lymphocytes (TILs) is a prognostic factor for patients with (triple-negative) breast cancer (BC). Computational TIL assessment (CTA) has the potential to assist pathologists in this labour-intensive task, but current CTA models rely heavily on many detailed annotations. We propose and validate a fundamentally simpler deep learning based CTA that can be trained in only ten minutes on hundredfold fewer pathologist annotations. We collected whole slide images (WSIs) with TILs scores and clinical data of 2,340 patients with BC from six cohorts including three randomised clinical trials. Morphological features were extracted from whole slide images (WSIs) using a pathology foundation model. Our label-efficient Computational stromal TIL assessment model (ECTIL) directly regresses the TILs score from these features. ECTIL trained on only a few hundred samples (ECTIL-TCGA) showed concordance with the pathologist over five heterogeneous external cohorts (r=0.54-0.74, AUROC=0.80-0.94). Training on all slides of five cohorts (ECTIL-combined) improved results on a held-out test set (r=0.69, AUROC=0.85). Multivariable Cox regression analyses indicated that every 10% increase of ECTIL scores was associated with improved overall survival independent of clinicopathological variables (HR 0.86, p<0.01), similar to the pathologist score (HR 0.87, p<0.001). We demonstrate that ECTIL is highly concordant with an expert pathologist and obtains a similar hazard ratio. ECTIL has a fundamentally simpler design than existing methods and can be trained on orders of magnitude fewer annotations. Such a CTA may be used to pre-screen patients for, e.g., immunotherapy clinical trial inclusion, or as a tool to assist clinicians in the diagnostic work-up of patients with BC. Our model is available under an open source licence (https://github.com/nki-ai/ectil).
Authors:Lingwei Zhu, Han Wang, Yukie Nagai
Abstract:
Sparse continuous policies are distributions that can choose some actions at random yet keep strictly zero probability for the other actions, which are radically different from the Gaussian. They have important real-world implications, e.g. in modeling safety-critical tasks like medicine. The combination of offline reinforcement learning and sparse policies provides a novel paradigm that enables learning completely from logged datasets a safety-aware sparse policy. However, sparse policies can cause difficulty with the existing offline algorithms which require evaluating actions that fall outside of the current support. In this paper, we propose the first offline policy optimization algorithm that tackles this challenge: Fat-to-Thin Policy Optimization (FtTPO). Specifically, we maintain a fat (heavy-tailed) proposal policy that effectively learns from the dataset and injects knowledge to a thin (sparse) policy, which is responsible for interacting with the environment. We instantiate FtTPO with the general $q$-Gaussian family that encompasses both heavy-tailed and sparse policies and verify that it performs favorably in a safety-critical treatment simulation and the standard MuJoCo suite. Our code is available at \url{https://github.com/lingweizhu/fat2thin}.
Authors:Xinyu Ma, Yifeng Xu, Yang Lin, Tianlong Wang, Xu Chu, Xin Gao, Junfeng Zhao, Yasha Wang
Abstract:
We introduce DRESS, a novel approach for generating stylized large language model (LLM) responses through representation editing. Existing methods like prompting and fine-tuning are either insufficient for complex style adaptation or computationally expensive, particularly in tasks like NPC creation or character role-playing. Our approach leverages the over-parameterized nature of LLMs to disentangle a style-relevant subspace within the model's representation space to conduct representation editing, ensuring a minimal impact on the original semantics. By applying adaptive editing strengths, we dynamically adjust the steering vectors in the style subspace to maintain both stylistic fidelity and semantic integrity. We develop two stylized QA benchmark datasets to validate the effectiveness of DRESS, and the results demonstrate significant improvements compared to baseline methods such as prompting and ITI. In short, DRESS is a lightweight, train-free solution for enhancing LLMs with flexible and effective style control, making it particularly useful for developing stylized conversational agents. Codes and benchmark datasets are available at https://github.com/ArthurLeoM/DRESS-LLM.
Authors:Weicai Yan, Ye Wang, Wang Lin, Zirun Guo, Zhou Zhao, Tao Jin
Abstract:
Research on continual learning in multi-modal tasks has been receiving increasing attention. However, most existing work overlooks the explicit cross-modal and cross-task interactions. In this paper, we innovatively propose the Low-rank Prompt Interaction (LPI) to address this general problem of multi-modal understanding, which considers both cross-modal and cross-task interactions. Specifically, as for the former, we employ multi-modal correlation modules for corresponding Transformer layers. Considering that the training parameters scale to the number of layers and tasks, we propose low-rank interaction-augmented decomposition to avoid memory explosion while enhancing the cross-modal association through sharing and separating common-specific low-rank factors. In addition, due to the multi-modal semantic differences carried by the low-rank initialization, we adopt hierarchical low-rank contrastive learning to ensure training robustness. As for the latter, we initially employ a visual analysis and identify that different tasks have clear distinctions in proximity. Therefore, we introduce explicit task contrastive constraints in the prompt learning process based on task semantic distances. Experiments on two retrieval tasks show performance improvements with the introduction of a minimal number of parameters, demonstrating the effectiveness of our method. Code is available at https://github.com/Kelvin-ywc/LPI.
Authors:Kai-Tuo Xu, Feng-Long Xie, Xu Tang, Yao Hu
Abstract:
We present FireRedASR, a family of large-scale automatic speech recognition (ASR) models for Mandarin, designed to meet diverse requirements in superior performance and optimal efficiency across various applications. FireRedASR comprises two variants:
FireRedASR-LLM: Designed to achieve state-of-the-art (SOTA) performance and to enable seamless end-to-end speech interaction. It adopts an Encoder-Adapter-LLM framework leveraging large language model (LLM) capabilities. On public Mandarin benchmarks, FireRedASR-LLM (8.3B parameters) achieves an average Character Error Rate (CER) of 3.05%, surpassing the latest SOTA of 3.33% with an 8.4% relative CER reduction (CERR). It demonstrates superior generalization capability over industrial-grade baselines, achieving 24%-40% CERR in multi-source Mandarin ASR scenarios such as video, live, and intelligent assistant.
FireRedASR-AED: Designed to balance high performance and computational efficiency and to serve as an effective speech representation module in LLM-based speech models. It utilizes an Attention-based Encoder-Decoder (AED) architecture. On public Mandarin benchmarks, FireRedASR-AED (1.1B parameters) achieves an average CER of 3.18%, slightly worse than FireRedASR-LLM but still outperforming the latest SOTA model with over 12B parameters. It offers a more compact size, making it suitable for resource-constrained applications.
Moreover, both models exhibit competitive results on Chinese dialects and English speech benchmarks and excel in singing lyrics recognition. To advance research in speech processing, we release our models and inference code at https://github.com/FireRedTeam/FireRedASR.
Authors:Taha Emre, Teresa Araújo, Marzieh Oghbaie, Dmitrii Lachinov, Guilherme Aresta, Hrvoje BogunoviÄ
Abstract:
Neovascular age-related macular degeneration (nAMD) is a leading cause of vision loss among older adults, where disease activity detection and progression prediction are critical for nAMD management in terms of timely drug administration and improving patient outcomes. Recent advancements in deep learning offer a promising solution for predicting changes in AMD from optical coherence tomography (OCT) retinal volumes. In this work, we proposed deep learning models for the two tasks of the public MARIO Challenge at MICCAI 2024, designed to detect and forecast changes in nAMD severity with longitudinal retinal OCT. For the first task, we employ a Vision Transformer (ViT) based Siamese Network to detect changes in AMD severity by comparing scan embeddings of a patient from different time points. To train a model to forecast the change after 3 months, we exploit, for the first time, an Earth Mover (Wasserstein) Distance-based loss to harness the ordinal relation within the severity change classes. Both models ranked high on the preliminary leaderboard, demonstrating that their predictive capabilities could facilitate nAMD treatment management.
Authors:Xiaohao Xu, Tianyi Zhang, Shibo Zhao, Xiang Li, Sibo Wang, Yongqi Chen, Ye Li, Bhiksha Raj, Matthew Johnson-Roberson, Sebastian Scherer, Xiaonan Huang
Abstract:
We aim to redefine robust ego-motion estimation and photorealistic 3D reconstruction by addressing a critical limitation: the reliance on noise-free data in existing models. While such sanitized conditions simplify evaluation, they fail to capture the unpredictable, noisy complexities of real-world environments. Dynamic motion, sensor imperfections, and synchronization perturbations lead to sharp performance declines when these models are deployed in practice, revealing an urgent need for frameworks that embrace and excel under real-world noise. To bridge this gap, we tackle three core challenges: scalable data generation, comprehensive benchmarking, and model robustness enhancement. First, we introduce a scalable noisy data synthesis pipeline that generates diverse datasets simulating complex motion, sensor imperfections, and synchronization errors. Second, we leverage this pipeline to create Robust-Ego3D, a benchmark rigorously designed to expose noise-induced performance degradation, highlighting the limitations of current learning-based methods in ego-motion accuracy and 3D reconstruction quality. Third, we propose Correspondence-guided Gaussian Splatting (CorrGS), a novel test-time adaptation method that progressively refines an internal clean 3D representation by aligning noisy observations with rendered RGB-D frames from clean 3D map, enhancing geometric alignment and appearance restoration through visual correspondence. Extensive experiments on synthetic and real-world data demonstrate that CorrGS consistently outperforms prior state-of-the-art methods, particularly in scenarios involving rapid motion and dynamic illumination.
Authors:JongMin Lee, Sungjoo Yoo
Abstract:
We present Dense-SfM, a novel Structure from Motion (SfM) framework designed for dense and accurate 3D reconstruction from multi-view images. Sparse keypoint matching, which traditional SfM methods often rely on, limits both accuracy and point density, especially in texture-less areas. Dense-SfM addresses this limitation by integrating dense matching with a Gaussian Splatting (GS) based track extension which gives more consistent, longer feature tracks. To further improve reconstruction accuracy, Dense-SfM is equipped with a multi-view kernelized matching module leveraging transformer and Gaussian Process architectures, for robust track refinement across multi-views. Evaluations on the ETH3D and Texture-Poor SfM datasets show that Dense-SfM offers significant improvements in accuracy and density over state-of-the-art methods. Project page: https://icetea-cv.github.io/densesfm/.
Authors:Sadegh Mahdavi, Muchen Li, Kaiwen Liu, Christos Thrampoulidis, Leonid Sigal, Renjie Liao
Abstract:
Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops
Authors:Mitch Kosieradzki, Seongjin Choi
Abstract:
For intelligent transportation systems and autonomous vehicles to operate safely and efficiently, they must reliably predict the future motion and trajectory of surrounding agents within complex traffic environments. At the same time, the motion of these agents is inherently uncertain, making accurate prediction difficult. In this paper, we propose \textbf{TrajFlow}, a generative framework for estimating the occupancy density of dynamic agents. Our framework utilizes a causal encoder to extract semantically meaningful embeddings of the observed trajectory, as well as a normalizing flow to decode these embeddings and determine the most likely future location of an agent at some time point in the future. Our formulation differs from existing approaches because we model the marginal distribution of spatial locations instead of the joint distribution of unobserved trajectories. The advantages of a marginal formulation are numerous. First, we demonstrate that the marginal formulation produces higher accuracy on challenging trajectory forecasting benchmarks. Second, the marginal formulation allows for fully continuous sampling of future locations. Finally, marginal densities are better suited for downstream tasks as they allow for the computation of per-agent motion trajectories and occupancy grids, the two most commonly used representations for motion forecasting. We present a novel architecture based entirely on neural differential equations as an implementation of this framework and provide ablations to demonstrate the advantages of a continuous implementation over a more traditional discrete neural network based approach. The code is available at https://github.com/UMN-Choi-Lab/TrajFlow.
Authors:Yiyun Zhou, Wenkang Han, Jingyuan Chen
Abstract:
Knowledge Tracing (KT) is a fundamental component of Intelligent Tutoring Systems (ITS), enabling the modeling of students' knowledge states to predict future performance. The introduction of Deep Knowledge Tracing (DKT), the first deep learning-based KT (DLKT) model, has brought significant advantages in terms of applicability and comprehensiveness. However, recent DLKT models, such as Attentive Knowledge Tracing (AKT), have often prioritized predictive performance at the expense of these benefits. While deep sequential models like DKT have shown potential, they face challenges related to parallel computing, storage decision modification, and limited storage capacity. To address these limitations, we propose DKT2, a novel KT model that leverages the recently developed xLSTM architecture. DKT2 enhances applicable input representation using the Rasch model and incorporates Item Response Theory (IRT) for output interpretability, allowing for the decomposition of learned knowledge into familiar and unfamiliar knowledge. By integrating this knowledge with predicted questions, DKT2 generates comprehensive knowledge states. Extensive experiments conducted across three large-scale datasets demonstrate that DKT2 consistently outperforms 18 baseline models in various prediction tasks, underscoring its potential for real-world educational applications. This work bridges the gap between theoretical advancements and practical implementation in KT. Our code and datasets are fully available at https://github.com/zyy-2001/DKT2.
Authors:Yi Zhao, Youzhi Zhang
Abstract:
Large language models (LLMs) are widely used in real-world applications, raising concerns about their safety and trustworthiness. While red-teaming with jailbreak prompts exposes the vulnerabilities of LLMs, current efforts focus primarily on single-turn attacks, overlooking the multi-turn strategies used by real-world adversaries. Existing multi-turn methods rely on static patterns or predefined logical chains, failing to account for the dynamic strategies during attacks. We propose Siren, a learning-based multi-turn attack framework designed to simulate real-world human jailbreak behaviors. Siren consists of three stages: (1) training set construction utilizing Turn-Level LLM feedback (Turn-MF), (2) post-training attackers with supervised fine-tuning (SFT) and direct preference optimization (DPO), and (3) interactions between the attacking and target LLMs. Experiments demonstrate that Siren achieves an attack success rate (ASR) of 90% with LLaMA-3-8B as the attacker against Gemini-1.5-Pro as the target model, and 70% with Mistral-7B against GPT-4o, significantly outperforming single-turn baselines. Moreover, Siren with a 7B-scale model achieves performance comparable to a multi-turn baseline that leverages GPT-4o as the attacker, while requiring fewer turns and employing decomposition strategies that are better semantically aligned with attack goals. We hope Siren inspires the development of stronger defenses against advanced multi-turn jailbreak attacks under realistic scenarios. Code is available at https://github.com/YiyiyiZhao/siren. Warning: This paper contains potentially harmful text.
Authors:Rong Ye, Yongxin Zhang, Yikai Zhang, Haoyu Kuang, Zhongyu Wei, Peng Sun
Abstract:
Achieving Artificial General Intelligence (AGI) requires AI agents that can not only make stratigic decisions but also engage in flexible and meaningful communication. Inspired by Wittgenstein's language game theory in Philosophical Investigations, we propose that language agents can learn through in-context interaction rather than traditional multi-stage frameworks that separate decision-making from language expression. Using Werewolf, a social deduction game that tests language understanding, strategic interaction, and adaptability, we develop the Multi-agent Kahneman & Tversky's Optimization (MaKTO). MaKTO engages diverse models in extensive gameplay to generate unpaired desirable and unacceptable responses, then employs KTO to refine the model's decision-making process. In 9-player Werewolf games, MaKTO achieves a 61% average win rate across various models, outperforming GPT-4o and two-stage RL agents by relative improvements of 23.0% and 10.9%, respectively. Notably, MaKTO also demonstrates human-like performance, winning 60% against expert players and showing only 49% detectability in Turing-style blind tests.
Authors:Huayi Zhou, Ruixiang Wang, Yunxin Tai, Yueci Deng, Guiliang Liu, Kui Jia
Abstract:
Bimanual robotic manipulation is a long-standing challenge of embodied intelligence due to its characteristics of dual-arm spatial-temporal coordination and high-dimensional action spaces. Previous studies rely on pre-defined action taxonomies or direct teleoperation to alleviate or circumvent these issues, often making them lack simplicity, versatility and scalability. Differently, we believe that the most effective and efficient way for teaching bimanual manipulation is learning from human demonstrated videos, where rich features such as spatial-temporal positions, dynamic postures, interaction states and dexterous transitions are available almost for free. In this work, we propose the YOTO (You Only Teach Once), which can extract and then inject patterns of bimanual actions from as few as a single binocular observation of hand movements, and teach dual robot arms various complex tasks. Furthermore, based on keyframes-based motion trajectories, we devise a subtle solution for rapidly generating training demonstrations with diverse variations of manipulated objects and their locations. These data can then be used to learn a customized bimanual diffusion policy (BiDP) across diverse scenes. In experiments, YOTO achieves impressive performance in mimicking 5 intricate long-horizon bimanual tasks, possesses strong generalization under different visual and spatial conditions, and outperforms existing visuomotor imitation learning methods in accuracy and efficiency. Our project link is https://hnuzhy.github.io/projects/YOTO.
Authors:Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, Tianwei Zhang
Abstract:
Artificial Intelligence Generated Content (AIGC) has advanced significantly, particularly with the development of video generation models such as text-to-video (T2V) models and image-to-video (I2V) models. However, like other AIGC types, video generation requires robust content control. A common approach is to embed watermarks, but most research has focused on images, with limited attention given to videos. Traditional methods, which embed watermarks frame-by-frame in a post-processing manner, often degrade video quality. In this paper, we propose VideoShield, a novel watermarking framework specifically designed for popular diffusion-based video generation models. Unlike post-processing methods, VideoShield embeds watermarks directly during video generation, eliminating the need for additional training. To ensure video integrity, we introduce a tamper localization feature that can detect changes both temporally (across frames) and spatially (within individual frames). Our method maps watermark bits to template bits, which are then used to generate watermarked noise during the denoising process. Using DDIM Inversion, we can reverse the video to its original watermarked noise, enabling straightforward watermark extraction. Additionally, template bits allow precise detection for potential temporal and spatial modification. Extensive experiments across various video models (both T2V and I2V models) demonstrate that our method effectively extracts watermarks and detects tamper without compromising video quality. Furthermore, we show that this approach is applicable to image generation models, enabling tamper detection in generated images as well. Codes and models are available at https://github.com/hurunyi/VideoShield.
Authors:Mojtaba Safari, Zach Eidex, Chih-Wei Chang, Richard L. J. Qiu, Xiaofeng Yang
Abstract:
Magnetic resonance imaging (MRI) is a non-invasive imaging modality and provides comprehensive anatomical and functional insights into the human body. However, its long acquisition times can lead to patient discomfort, motion artifacts, and limiting real-time applications. To address these challenges, strategies such as parallel imaging have been applied, which utilize multiple receiver coils to speed up the data acquisition process. Additionally, compressed sensing (CS) is a method that facilitates image reconstruction from sparse data, significantly reducing image acquisition time by minimizing the amount of data collection needed. Recently, deep learning (DL) has emerged as a powerful tool for improving MRI reconstruction. It has been integrated with parallel imaging and CS principles to achieve faster and more accurate MRI reconstructions. This review comprehensively examines DL-based techniques for MRI reconstruction. We categorize and discuss various DL-based methods, including end-to-end approaches, unrolled optimization, and federated learning, highlighting their potential benefits. Our systematic review highlights significant contributions and underscores the potential of DL in MRI reconstruction. Additionally, we summarize key results and trends in DL-based MRI reconstruction, including quantitative metrics, the dataset, acceleration factors, and the progress of and research interest in DL techniques over time. Finally, we discuss potential future directions and the importance of DL-based MRI reconstruction in advancing medical imaging. To facilitate further research in this area, we provide a GitHub repository that includes up-to-date DL-based MRI reconstruction publications and public datasets-https://github.com/mosaf/Awesome-DL-based-CS-MRI.
Authors:Joshua Davis, Thomas Sounack, Kate Sciacca, Jessie M Brain, Brigitte N Durieux, Nicole D Agaronnik, Charlotta Lindvall
Abstract:
Extracting sections from clinical notes is crucial for downstream analysis but is challenging due to variability in formatting and labor-intensive nature of manual sectioning. While proprietary large language models (LLMs) have shown promise, privacy concerns limit their accessibility. This study develops a pipeline for automated note sectioning using open-source LLMs, focusing on three sections: History of Present Illness, Interval History, and Assessment and Plan. We fine-tuned three open-source LLMs to extract sections using a curated dataset of 487 progress notes, comparing results relative to proprietary models (GPT-4o, GPT-4o mini). Internal and external validity were assessed via precision, recall and F1 score. Fine-tuned Llama 3.1 8B outperformed GPT-4o (F1=0.92). On the external validity test set, performance remained high (F1= 0.85). Fine-tuned open-source LLMs can surpass proprietary models in clinical note sectioning, offering advantages in cost, performance, and accessibility.
Authors:Po-Ting Lai, Chih-Hsuan Wei, Shubo Tian, Robert Leaman, Zhiyong Lu
Abstract:
Biological relation networks contain rich information for understanding the biological mechanisms behind the relationship of entities such as genes, proteins, diseases, and chemicals. The vast growth of biomedical literature poses significant challenges updating the network knowledge. The recent Biomedical Relation Extraction Dataset (BioRED) provides valuable manual annotations, facilitating the develop-ment of machine-learning and pre-trained language model approaches for automatically identifying novel document-level (inter-sentence context) relationships. Nonetheless, its annotations lack directionality (subject/object) for the entity roles, essential for studying complex biological networks. Herein we annotate the entity roles of the relationships in the BioRED corpus and subsequently propose a novel multi-task language model with soft-prompt learning to jointly identify the relationship, novel findings, and entity roles. Our results in-clude an enriched BioRED corpus with 10,864 directionality annotations. Moreover, our proposed method outperforms existing large language models such as the state-of-the-art GPT-4 and Llama-3 on two benchmarking tasks. Our source code and dataset are available at https://github.com/ncbi-nlp/BioREDirect.
Authors:Sneh Pandya, Purvik Patel, Brian D. Nord, Mike Walmsley, Aleksandra ÄiprijanoviÄ
Abstract:
Modern neural networks (NNs) often do not generalize well in the presence of a "covariate shift"; that is, in situations where the training and test data distributions differ, but the conditional distribution of classification labels remains unchanged. In such cases, NN generalization can be reduced to a problem of learning more domain-invariant features. Domain adaptation (DA) methods include a range of techniques aimed at achieving this; however, these methods have struggled with the need for extensive hyperparameter tuning, which then incurs significant computational costs. In this work, we introduce SIDDA, an out-of-the-box DA training algorithm built upon the Sinkhorn divergence, that can achieve effective domain alignment with minimal hyperparameter tuning and computational overhead. We demonstrate the efficacy of our method on multiple simulated and real datasets of varying complexity, including simple shapes, handwritten digits, and real astronomical observations. SIDDA is compatible with a variety of NN architectures, and it works particularly well in improving classification accuracy and model calibration when paired with equivariant neural networks (ENNs). We find that SIDDA enhances the generalization capabilities of NNs, achieving up to a $\approx40\%$ improvement in classification accuracy on unlabeled target data. We also study the efficacy of DA on ENNs with respect to the varying group orders of the dihedral group $D_N$, and find that the model performance improves as the degree of equivariance increases. Finally, we find that SIDDA enhances model calibration on both source and target data--achieving over an order of magnitude improvement in the ECE and Brier score. SIDDA's versatility, combined with its automated approach to domain alignment, has the potential to advance multi-dataset studies by enabling the development of highly generalizable models.
Authors:Andrey Palaev, Adil Khan, Syed M. Ahsan Kazmi
Abstract:
The advancement of text-to-image synthesis has introduced powerful generative models capable of creating realistic images from textual prompts. However, precise control over image attributes remains challenging, especially at the instance level. While existing methods offer some control through fine-tuning or auxiliary information, they often face limitations in flexibility and accuracy. To address these challenges, we propose a pipeline leveraging Large Language Models (LLMs), open-vocabulary detectors, cross-attention maps and intermediate activations of diffusion U-Net for instance-level image manipulation. Our method detects objects mentioned in the prompt and present in the generated image, enabling precise manipulation without extensive training or input masks. By incorporating cross-attention maps, our approach ensures coherence in manipulated images while controlling object positions. Our method enables precise manipulations at the instance level without fine-tuning or auxiliary information such as masks or bounding boxes. Code is available at https://github.com/Palandr123/DiffusionU-NetLLM
Authors:Luqi Zhang, Haiping Wang, Chong Liu, Zhen Dong, Bisheng Yang
Abstract:
The point clouds collected by the Airborne Laser Scanning (ALS) system provide accurate 3D information of urban land covers. By utilizing multi-temporal ALS point clouds, semantic changes in urban area can be captured, demonstrating significant potential in urban planning, emergency management, and infrastructure maintenance. Existing 3D change detection methods struggle to efficiently extract multi-class semantic information and change features, still facing the following challenges: (1) the difficulty of accurately modeling cross-temporal point clouds spatial relationships for effective change feature extraction; (2) class imbalance of change samples which hinders distinguishability of semantic features; (3) the lack of real-world datasets for 3D semantic change detection. To resolve these challenges, we propose the Multi-task Enhanced Cross-temporal Point Transformer (ME-CPT) network. ME-CPT establishes spatiotemporal correspondences between point cloud across different epochs and employs attention mechanisms to jointly extract semantic change features, facilitating information exchange and change comparison. Additionally, we incorporate a semantic segmentation task and through the multi-task training strategy, further enhance the distinguishability of semantic features, reducing the impact of class imbalance in change types. Moreover, we release a 22.5 $km^2$ 3D semantic change detection dataset, offering diverse scenes for comprehensive evaluation. Experiments on multiple datasets show that the proposed MT-CPT achieves superior performance compared to existing state-of-the-art methods. The source code and dataset will be released upon acceptance at https://github.com/zhangluqi0209/ME-CPT.
Authors:Ioannis Nasios
Abstract:
Kelp forests, as foundation species, are vital to marine ecosystems, providing essential food and habitat for numerous organisms. This study explores the integration of crowdsourced labels with advanced artificial intelligence models to develop a fast and accurate kelp canopy detection pipeline using Landsat images. Building on the success of a machine learning competition, where this approach ranked third and performed consistently well on both local validation and public and private leaderboards, the research highlights the effectiveness of combining Mixed Vision Transformers (MIT) with ConvNeXt models. Training these models on various image sizes significantly enhanced the accuracy of the ensemble results. U-Net emerged as the best segmentation architecture, with UpperNet also contributing to the final ensemble. Key Landsat bands, such as ShortWave InfraRed (SWIR1) and Near-InfraRed (NIR), were crucial while altitude data was used in postprocessing to eliminate false positives on land. The methodology achieved a high detection rate, accurately identifying about three out of four pixels containing kelp canopy while keeping false positives low. Despite the medium resolution of Landsat satellites, their extensive historical coverage makes them effective for studying kelp forests. This work also underscores the potential of combining machine learning models with crowdsourced data for effective and scalable environmental monitoring. All running code for training all models and inference can be found at https://github.com/IoannisNasios/Kelp_Forests.
Authors:Yi Yang, Zhang Zhang, Liang Wang
Abstract:
Most studies on environmental perception for autonomous vehicles (AVs) focus on urban traffic environments, where the objects/stuff to be perceived are mainly from man-made scenes and scalable datasets with dense annotations can be used to train supervised learning models. By contrast, it is hard to densely annotate a large-scale off-road driving dataset manually due to the inherently unstructured nature of off-road environments. In this paper, we propose a Multimodal Contrastive Representation Learning approach for Off-Road environmental perception, namely MCRL4OR. This approach aims to jointly learn three encoders for processing visual images, locomotion states, and control actions by aligning the locomotion states with the fused features of visual images and control actions within a contrastive learning framework. The causation behind this alignment strategy is that the inertial locomotion state is the result of taking a certain control action under the current landform/terrain condition perceived by visual sensors. In experiments, we pre-train the MCRL4OR with a large-scale off-road driving dataset and adopt the learned multimodal representations for various downstream perception tasks in off-road driving scenarios. The superior performance in downstream tasks demonstrates the advantages of the pre-trained multimodal representations. The codes can be found in \url{https://github.com/1uciusy/MCRL4OR}.
Authors:Xing Hu, Yuan Cheng, Dawei Yang, Zukang Xu, Zhihang Yuan, Jiangyong Yu, Chen Xu, Zhe Jiang, Sifan Zhou
Abstract:
Post-training quantization (PTQ) has emerged as a widely adopted technique for compressing and accelerating Large Language Models (LLMs). The major challenge in LLM quantization is that uneven and heavy-tailed data distributions can expand the quantization range, thereby reducing bit precision for most values. Recent methods attempt to eliminate outliers and balance inter-channel differences by employing linear transformations; however, they remain heuristic and are often overlook optimizing the data distribution across the entire quantization space.In this paper, we introduce Quantization Space Utilization Rate (QSUR), a novel metric that effectively assesses the quantizability of transformed data by measuring the space utilization of the data in the quantization space. We complement QSUR with mathematical derivations that examine the effects and limitations of various transformations, guiding our development of Orthogonal and Scaling Transformation-based Quantization (OSTQuant). OSQuant employs a learnable equivalent transformation, consisting of an orthogonal transformation and a scaling transformation, to optimize the distributions of weights and activations across the entire quantization space. Futhermore, we propose the KL-Top loss function, designed to mitigate noise during optimization while retaining richer semantic information within the limited calibration data imposed by PTQ. OSTQuant outperforms existing work on various LLMs and benchmarks. In the W4-only setting, it retains 99.5\% of the floating-point accuracy. In the more challenging W4A4KV4 configuration, OSTQuant reduces the performance gap by 32\% on the LLaMA-3-8B model compared to state-of-the-art methods. \href{https://github.com/BrotherHappy/OSTQuant}{https://github.com/BrotherHappy/OSTQuant}.
Authors:Chengyi Cai, Zesheng Ye, Lei Feng, Jianzhong Qi, Feng Liu
Abstract:
Visual reprogramming (VR) reuses pre-trained vision models for downstream image classification tasks by adding trainable noise patterns to inputs. When applied to vision-language models (e.g., CLIP), existing VR approaches follow the same pipeline used in vision models (e.g., ResNet, ViT), where ground-truth class labels are inserted into fixed text templates to guide the optimization of VR patterns. This label-based approach, however, overlooks the rich information and diverse attribute-guided textual representations that CLIP can exploit, which may lead to the misclassification of samples. In this paper, we propose Attribute-based Visual Reprogramming (AttrVR) for CLIP, utilizing descriptive attributes (DesAttrs) and distinctive attributes (DistAttrs), which respectively represent common and unique feature descriptions for different classes. Besides, as images of the same class may reflect different attributes after VR, AttrVR iteratively refines patterns using the $k$-nearest DesAttrs and DistAttrs for each image sample, enabling more dynamic and sample-specific optimization. Theoretically, AttrVR is shown to reduce intra-class variance and increase inter-class separation. Empirically, it achieves superior performance in 12 downstream tasks for both ViT-based and ResNet-based CLIP. The success of AttrVR facilitates more effective integration of VR from unimodal vision models into vision-language models. Our code is available at https://github.com/tmlr-group/AttrVR.
Authors:Yicheng Tao, Haotian Liu, Shanwen Wang, Hongteng Xu
Abstract:
Formalized mathematics has recently garnered significant attention for its ability to assist mathematicians across various fields. Premise retrieval, as a common step in mathematical formalization, has been a challenge, particularly for inexperienced users. Existing retrieval methods that facilitate natural language queries require a certain level of mathematical expertise from users, while approaches based on formal languages (e.g., Lean) typically struggle with the scarcity of training data, hindering the training of effective and generalizable retrieval models. In this work, we introduce a novel method that leverages data extracted from Mathlib to train a lightweight and effective premise retrieval model. In particular, the proposed model embeds queries (i.e., proof state provided by Lean) and premises in a latent space, featuring a tokenizer specifically trained on formal corpora. The model is learned in a contrastive learning framework, in which a fine-grained similarity calculation method and a re-ranking module are applied to enhance the retrieval performance. Experimental results demonstrate that our model outperforms existing baselines, achieving higher accuracy while maintaining a lower computational load. We have released an open-source search engine based on our retrieval model at https://premise-search.com/. The source code and the trained model can be found at https://github.com/ruc-ai4math/Premise-Retrieval.
Authors:Qinggang Zhang, Shengyuan Chen, Yuanchen Bei, Zheng Yuan, Huachi Zhou, Zijin Hong, Hao Chen, Yilin Xiao, Chuang Zhou, Junnan Dong, Yi Chang, Xiao Huang
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities in a wide range of tasks, yet their application to specialized domains remains challenging due to the need for deep expertise. Retrieval-Augmented generation (RAG) has emerged as a promising solution to customize LLMs for professional fields by seamlessly integrating external knowledge bases, enabling real-time access to domain-specific expertise during inference. Despite its potential, traditional RAG systems, based on flat text retrieval, face three critical challenges: (i) complex query understanding in professional contexts, (ii) difficulties in knowledge integration across distributed sources, and (iii) system efficiency bottlenecks at scale. This survey presents a systematic analysis of Graph-based Retrieval-Augmented Generation (GraphRAG), a new paradigm that revolutionizes domain-specific LLM applications. GraphRAG addresses traditional RAG limitations through three key innovations: (i) graph-structured knowledge representation that explicitly captures entity relationships and domain hierarchies, (ii) efficient graph-based retrieval techniques that enable context-preserving knowledge retrieval with multihop reasoning ability, and (iii) structure-aware knowledge integration algorithms that leverage retrieved knowledge for accurate and logical coherent generation of LLMs. In this survey, we systematically analyze the technical foundations of GraphRAG and examine current implementations across various professional domains, identifying key technical challenges and promising research directions. All the related resources of GraphRAG, including research papers, open-source data, and projects, are collected for the community in https://github.com/DEEP-PolyU/Awesome-GraphRAG.
Authors:Zicheng Zhang, Xiangyu Zhao, Xinyu Fang, Chunyi Li, Xiaohong Liu, Xiongkuo Min, Haodong Duan, Kai Chen, Guangtao Zhai
Abstract:
With the rapid iteration of Multi-modality Large Language Models (MLLMs) and the evolving demands of the field, the number of benchmarks produced annually has surged into the hundreds. The rapid growth has inevitably led to significant redundancy among benchmarks. Therefore, it is crucial to take a step back and critically assess the current state of redundancy and propose targeted principles for constructing effective MLLM benchmarks. In this paper, we focus on redundancy from three key perspectives: 1) Redundancy of benchmark capability dimensions, 2) Redundancy in the number of test questions, and 3) Cross-benchmark redundancy within specific domains. Through the comprehensive analysis over hundreds of MLLMs' performance across more than 20 benchmarks, we aim to quantitatively measure the level of redundancy lies in existing MLLM evaluations, provide valuable insights to guide the future development of MLLM benchmarks, and offer strategies to refine and address redundancy issues effectively. The code is available at https://github.com/zzc-1998/Benchmark-Redundancy.
Authors:Ziyu Guo, Renrui Zhang, Chengzhuo Tong, Zhizheng Zhao, Rui Huang, Haoquan Zhang, Manyuan Zhang, Jiaming Liu, Shanghang Zhang, Peng Gao, Hongsheng Li, Pheng-Ann Heng
Abstract:
Chain-of-Thought (CoT) reasoning has been extensively explored in large models to tackle complex understanding tasks. However, it still remains an open question whether such strategies can be applied to verifying and reinforcing image generation scenarios. In this paper, we provide the first comprehensive investigation of the potential of CoT reasoning to enhance autoregressive image generation. We focus on three techniques: scaling test-time computation for verification, aligning model preferences with Direct Preference Optimization (DPO), and integrating these techniques for complementary effects. Our results demonstrate that these approaches can be effectively adapted and combined to significantly improve image generation performance. Furthermore, given the pivotal role of reward models in our findings, we propose the Potential Assessment Reward Model (PARM) and PARM++, specialized for autoregressive image generation. PARM adaptively assesses each generation step through a potential assessment approach, merging the strengths of existing reward models, and PARM++ further introduces a reflection mechanism to self-correct the generated unsatisfactory image, which is the first to incorporate reflection in autoregressive image generation. Using our investigated reasoning strategies, we enhance a baseline model, Show-o, to achieve superior results, with a significant +24% improvement on the GenEval benchmark, surpassing Stable Diffusion 3 by +15%. We hope our study provides unique insights and paves a new path for integrating CoT reasoning with autoregressive image generation. Code and models are released at https://github.com/ZiyuGuo99/Image-Generation-CoT
Authors:Hao Dong, Eleni Chatzi, Olga Fink
Abstract:
Test-time adaptation (TTA) has demonstrated significant potential in addressing distribution shifts between training and testing data. Open-set test-time adaptation (OSTTA) aims to adapt a source pre-trained model online to an unlabeled target domain that contains unknown classes. This task becomes more challenging when multiple modalities are involved. Existing methods have primarily focused on unimodal OSTTA, often filtering out low-confidence samples without addressing the complexities of multimodal data. In this work, we present Adaptive Entropy-aware Optimization (AEO), a novel framework specifically designed to tackle Multimodal Open-set Test-time Adaptation (MM-OSTTA) for the first time. Our analysis shows that the entropy difference between known and unknown samples in the target domain strongly correlates with MM-OSTTA performance. To leverage this, we propose two key components: Unknown-aware Adaptive Entropy Optimization (UAE) and Adaptive Modality Prediction Discrepancy Optimization (AMP). These components enhance the ability of model to distinguish unknown class samples during online adaptation by amplifying the entropy difference between known and unknown samples. To thoroughly evaluate our proposed methods in the MM-OSTTA setting, we establish a new benchmark derived from existing datasets. This benchmark includes two downstream tasks and incorporates five modalities. Extensive experiments across various domain shift situations demonstrate the efficacy and versatility of the AEO framework. Additionally, we highlight the strong performance of AEO in long-term and continual MM-OSTTA settings, both of which are challenging and highly relevant to real-world applications. Our source code is available at https://github.com/donghao51/AEO.
Authors:Jiayi Lei, Renrui Zhang, Xiangfei Hu, Weifeng Lin, Zhen Li, Wenjian Sun, Ruoyi Du, Le Zhuo, Zhongyu Li, Xinyue Li, Shitian Zhao, Ziyu Guo, Yiting Lu, Peng Gao, Hongsheng Li
Abstract:
With the rapid development of diffusion models, text-to-image(T2I) models have made significant progress, showcasing impressive abilities in prompt following and image generation. Recently launched models such as FLUX.1 and Ideogram2.0, along with others like Dall-E3 and Stable Diffusion 3, have demonstrated exceptional performance across various complex tasks, raising questions about whether T2I models are moving towards general-purpose applicability. Beyond traditional image generation, these models exhibit capabilities across a range of fields, including controllable generation, image editing, video, audio, 3D, and motion generation, as well as computer vision tasks like semantic segmentation and depth estimation. However, current evaluation frameworks are insufficient to comprehensively assess these models' performance across expanding domains. To thoroughly evaluate these models, we developed the IMAGINE-E and tested six prominent models: FLUX.1, Ideogram2.0, Midjourney, Dall-E3, Stable Diffusion 3, and Jimeng. Our evaluation is divided into five key domains: structured output generation, realism, and physical consistency, specific domain generation, challenging scenario generation, and multi-style creation tasks. This comprehensive assessment highlights each model's strengths and limitations, particularly the outstanding performance of FLUX.1 and Ideogram2.0 in structured and specific domain tasks, underscoring the expanding applications and potential of T2I models as foundational AI tools. This study provides valuable insights into the current state and future trajectory of T2I models as they evolve towards general-purpose usability. Evaluation scripts will be released at https://github.com/jylei16/Imagine-e.
Authors:Rui Li, Xiaohan Wang, Yuhui Zhang, Orr Zohar, Zeyu Wang, Serena Yeung-Levy
Abstract:
Despite significant advancements in video large multimodal models (video-LMMs), achieving effective temporal grounding in long-form videos remains a challenge for existing models. To address this limitation, we propose Temporal Preference Optimization (TPO), a novel post-training framework designed to enhance the temporal grounding capabilities of video-LMMs through preference learning. TPO adopts a self-training approach that enables models to differentiate between well-grounded and less accurate temporal responses by leveraging curated preference datasets at two granularities: localized temporal grounding, which focuses on specific video segments, and comprehensive temporal grounding, which captures extended temporal dependencies across entire video sequences. By optimizing on these preference datasets, TPO significantly enhances temporal understanding while reducing reliance on manually annotated data. Extensive experiments on three long-form video understanding benchmarks--LongVideoBench, MLVU, and Video-MME--demonstrate the effectiveness of TPO across two state-of-the-art video-LMMs. Notably, LLaVA-Video-TPO establishes itself as the leading 7B model on the Video-MME benchmark, underscoring the potential of TPO as a scalable and efficient solution for advancing temporal reasoning in long-form video understanding. Project page: https://ruili33.github.io/tpo_website.
Authors:Jie Liu, Gongye Liu, Jiajun Liang, Ziyang Yuan, Xiaokun Liu, Mingwu Zheng, Xiele Wu, Qiulin Wang, Wenyu Qin, Menghan Xia, Xintao Wang, Xiaohong Liu, Fei Yang, Pengfei Wan, Di Zhang, Kun Gai, Yujiu Yang, Wanli Ouyang
Abstract:
Video generation has achieved significant advances through rectified flow techniques, but issues like unsmooth motion and misalignment between videos and prompts persist. In this work, we develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model. Specifically, we begin by constructing a large-scale human preference dataset focused on modern video generation models, incorporating pairwise annotations across multi-dimensions. We then introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy. From a unified reinforcement learning perspective aimed at maximizing reward with KL regularization, we introduce three alignment algorithms for flow-based models by extending those from diffusion models. These include two training-time strategies: direct preference optimization for flow (Flow-DPO) and reward weighted regression for flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies reward guidance directly to noisy videos. Experimental results indicate that VideoReward significantly outperforms existing reward models, and Flow-DPO demonstrates superior performance compared to both Flow-RWR and standard supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom weights to multiple objectives during inference, meeting personalized video quality needs. Project page: https://gongyeliu.github.io/videoalign.
Authors:Peiyuan Zhang, Junwei Luo, Xue Yang, Yi Yu, Qingyun Li, Yue Zhou, Xiaosong Jia, Xudong Lu, Jingdong Chen, Xiang Li, Junchi Yan, Yansheng Li
Abstract:
With the growing demand for oriented object detection (OOD), recent studies on point-supervised OOD have attracted significant interest. In this paper, we propose PointOBB-v3, a stronger single point-supervised OOD framework. Compared to existing methods, it generates pseudo rotated boxes without additional priors and incorporates support for the end-to-end paradigm. PointOBB-v3 functions by integrating three unique image views: the original view, a resized view, and a rotated/flipped (rot/flp) view. Based on the views, a scale augmentation module and an angle acquisition module are constructed. In the first module, a Scale-Sensitive Consistency (SSC) loss and a Scale-Sensitive Feature Fusion (SSFF) module are introduced to improve the model's ability to estimate object scale. To achieve precise angle predictions, the second module employs symmetry-based self-supervised learning. Additionally, we introduce an end-to-end version that eliminates the pseudo-label generation process by integrating a detector branch and introduces an Instance-Aware Weighting (IAW) strategy to focus on high-quality predictions. We conducted extensive experiments on the DIOR-R, DOTA-v1.0/v1.5/v2.0, FAIR1M, STAR, and RSAR datasets. Across all these datasets, our method achieves an average improvement in accuracy of 3.56% in comparison to previous state-of-the-art methods. The code will be available at https://github.com/ZpyWHU/PointOBB-v3.
Authors:Shiling Deng, Serge Belongie, Peter Ebert Christensen
Abstract:
Memes have emerged as a powerful form of communication, integrating visual and textual elements to convey humor, satire, and cultural messages. Existing research has focused primarily on aspects such as emotion classification, meme generation, propagation, interpretation, figurative language, and sociolinguistics, but has often overlooked deeper meme comprehension and meme-text retrieval. To address these gaps, this study introduces ClassicMemes-50-templates (CM50), a large-scale dataset consisting of over 33,000 memes, centered around 50 popular meme templates. We also present an automated knowledge-grounded annotation pipeline leveraging large vision-language models to produce high-quality image captions, meme captions, and literary device labels overcoming the labor intensive demands of manual annotation. Additionally, we propose a meme-text retrieval CLIP model (mtrCLIP) that utilizes cross-modal embedding to enhance meme analysis, significantly improving retrieval performance. Our contributions include:(1) a novel dataset for large-scale meme study, (2) a scalable meme annotation framework, and (3) a fine-tuned CLIP for meme-text retrieval, all aimed at advancing the understanding and analysis of memes at scale.
Authors:Frederik Pahde, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek
Abstract:
Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at https://github.com/frederikpahde/medical-ai-safety.
Authors:Yizhe Lv, Tingting Zhang, Zhijian Wang, Yunpeng Song, Han Ding, Jinsong Han, Fei Wang
Abstract:
Recent advancements in millimeter-wave (mmWave) radar have demonstrated its potential for human action recognition and pose estimation, offering privacy-preserving advantages over conventional cameras while maintaining occlusion robustness, with promising applications in human-computer interaction and wellness care. However, existing mmWave systems typically employ fixed-position configurations, restricting user mobility to predefined zones and limiting practical deployment scenarios. We introduce mmEgoHand, a head-mounted egocentric system for hand pose estimation to support applications such as gesture recognition, VR interaction, skill digitization and assessment, and robotic teleoperation. mmEgoHand synergistically integrates mmWave radar with inertial measurement units (IMUs) to enable dynamic perception. The IMUs actively compensate for radar interference induced by head movements, while our novel end-to-end Transformer architecture simultaneously estimates 3D hand keypoint coordinates through multi-modal sensor fusion. This dual-modality framework achieves spatial-temporal alignment of mmWave heatmaps with IMUs, overcoming viewpoint instability inherent in egocentric sensing scenarios. We further demonstrate that intermediate hand pose representations substantially improve performance in downstream task, e.g., VR gesture recognition. Extensive evaluations with 10 subjects performing 8 gestures across 3 distinct postures -- standing, sitting, lying -- achieve 90.8% recognition accuracy, outperforming state-of-the-art solutions by a large margin. Dataset and code are available at https://github.com/WhisperYi/mmVR.
Authors:Zhi Sheng, Daisy Yuan, Jingtao Ding, Yong Li
Abstract:
Accurate prediction of mobile traffic, i.e., network traffic from cellular base stations, is crucial for optimizing network performance and supporting urban development. However, the non-stationary nature of mobile traffic, driven by human activity and environmental changes, leads to both regular patterns and abrupt variations. Diffusion models excel in capturing such complex temporal dynamics due to their ability to capture the inherent uncertainties. Most existing approaches prioritize designing novel denoising networks but often neglect the critical role of noise itself, potentially leading to sub-optimal performance. In this paper, we introduce a novel perspective by emphasizing the role of noise in the denoising process. Our analysis reveals that noise fundamentally shapes mobile traffic predictions, exhibiting distinct and consistent patterns. We propose NPDiff, a framework that decomposes noise into prior and residual components, with the prior} derived from data dynamics, enhancing the model's ability to capture both regular and abrupt variations. NPDiff can seamlessly integrate with various diffusion-based prediction models, delivering predictions that are effective, efficient, and robust. Extensive experiments demonstrate that it achieves superior performance with an improvement over 30\%, offering a new perspective on leveraging diffusion models in this domain. We provide code and data at https://github.com/tsinghua-fib-lab/NPDiff.
Authors:Dan Zhang, Tao Feng, Lilong Xue, Yuandong Wang, Yuxiao Dong, Jie Tang
Abstract:
This survey delves into the realm of Parameter-Efficient Fine-Tuning (PEFT) within the context of Foundation Models (FMs). PEFT, a cost-effective fine-tuning technique, minimizes parameters and computational complexity while striving for optimal downstream task performance. FMs, like ChatGPT, DALL-E, and LLaVA specialize in language understanding, generative tasks, and multimodal tasks, trained on diverse datasets spanning text, images, and videos. The diversity of FMs guides various adaptation strategies for PEFT. Therefore, this survey aims to provide a comprehensive overview of PEFT techniques applied to diverse FMs and address critical gaps in understanding the techniques, trends, and applications. We start by providing a detailed development of FMs and PEFT. Subsequently, we systematically review the key categories and core mechanisms of PEFT across diverse FMs to offer a comprehensive understanding of trends. We also explore the most recent applications across various FMs to demonstrate the versatility of PEFT, shedding light on the integration of systematic PEFT methods with a range of FMs. Furthermore, we identify potential research and development directions for improving PEFTs in the future. This survey provides a valuable resource for both newcomers and experts seeking to understand and use the power of PEFT across FMs. All reviewed papers are listed at \url{https://github.com/THUDM/Awesome-Parameter-Efficient-Fine-Tuning-for-Foundation-Models}.
Authors:Mingzhao Wang, You Zhou, Zhiguang Cao, Yubin Xiao, Xuan Wu, Wei Pang, Yuan Jiang, Hui Yang, Peng Zhao, Yuanshu Li
Abstract:
Recent advances in neural models have shown considerable promise in solving Traveling Salesman Problems (TSPs) without relying on much hand-crafted engineering. However, while non-autoregressive (NAR) approaches benefit from faster inference through parallelism, they typically deliver solutions of inferior quality compared to autoregressive ones. To enhance the solution quality while maintaining fast inference, we propose DEITSP, a diffusion model with efficient iterations tailored for TSP that operates in a NAR manner. Firstly, we introduce a one-step diffusion model that integrates the controlled discrete noise addition process with self-consistency enhancement, enabling optimal solution prediction through simultaneous denoising of multiple solutions. Secondly, we design a dual-modality graph transformer to bolster the extraction and fusion of features from node and edge modalities, while further accelerating the inference with fewer layers. Thirdly, we develop an efficient iterative strategy that alternates between adding and removing noise to improve exploration compared to previous diffusion methods. Additionally, we devise a scheduling framework to progressively refine the solution space by adjusting noise levels, facilitating a smooth search for optimal solutions. Extensive experiments on real-world and large-scale TSP instances demonstrate that DEITSP performs favorably against existing neural approaches in terms of solution quality, inference latency, and generalization ability. Our code is available at $\href{https://github.com/DEITSP/DEITSP}{https://github.com/DEITSP/DEITSP}$.
Authors:Xin Xu, Jiaxin Zhang, Tianhao Chen, Zitong Chao, Jishan Hu, Can Yang
Abstract:
Large Language Models (LLMs) have made significant strides in mathematical reasoning, underscoring the need for a comprehensive and fair evaluation of their capabilities. However, existing benchmarks often fall short, either lacking extensive coverage of undergraduate-level mathematical problems or probably suffering from test-set contamination. To address these issues, we introduce UGMathBench, a diverse and dynamic benchmark specifically designed for evaluating undergraduate-level mathematical reasoning with LLMs. UGMathBench comprises 5,062 problems across 16 subjects and 111 topics, featuring 10 distinct answer types. Each problem includes three randomized versions, with additional versions planned for release as leading open-source LLMs become saturated in UGMathBench. Furthermore, we propose two key metrics: effective accuracy (EAcc), which measures the percentage of correctly solved problems across all three versions, and reasoning gap ($Î$), which assesses reasoning robustness by calculating the difference between the average accuracy across all versions and EAcc. Our extensive evaluation of 23 leading LLMs reveals that the highest EAcc achieved is 56.3\% by OpenAI-o1-mini, with large $Î$ values observed across different models. This highlights the need for future research aimed at developing "large reasoning models" with high EAcc and $Î= 0$. We anticipate that the release of UGMathBench, along with its detailed evaluation codes, will serve as a valuable resource to advance the development of LLMs in solving mathematical problems. Codes and data are available at https://github.com/YangLabHKUST/UGMathBench
Authors:Dario Serez, Marco Cristani, Alessio Del Bue, Vittorio Murino, Pietro Morerio
Abstract:
In image generation, Multiple Latent Variable Generative Models (MLVGMs) employ multiple latent variables to gradually shape the final images, from global characteristics to finer and local details (e.g., StyleGAN, NVAE), emerging as powerful tools for diverse applications. Yet their generative dynamics remain only empirically observed, without a systematic understanding of each latent variable's impact. In this work, we propose a novel framework that quantifies the contribution of each latent variable using Mutual Information (MI) as a metric. Our analysis reveals that current MLVGMs often underutilize some latent variables, and provides actionable insights for their use in downstream applications. With this foundation, we introduce a method for generating synthetic data for Self-Supervised Contrastive Representation Learning (SSCRL). By leveraging the hierarchical and disentangled variables of MLVGMs, our approach produces diverse and semantically meaningful views without the need for real image data. Additionally, we introduce a Continuous Sampling (CS) strategy, where the generator dynamically creates new samples during SSCRL training, greatly increasing data variability. Our comprehensive experiments demonstrate the effectiveness of these contributions, showing that MLVGMs' generated views compete on par with or even surpass views generated from real data. This work establishes a principled approach to understanding and exploiting MLVGMs, advancing both generative modeling and self-supervised learning. Code and pre-trained models at: https://github.com/SerezD/mi_ml_gen.
Authors:Abdulrahman Oladipupo Ibraheem
Abstract:
I introduce two novel loss functions for classification in deep learning. The two loss functions extend standard cross entropy loss by regularizing it with minimum entropy and Kullback-Leibler (K-L) divergence terms. The first of the two novel loss functions is termed mixed entropy loss (MIX-ENT for short), while the second one is termed minimum entropy regularized cross-entropy loss (MIN-ENT for short). The MIX-ENT function introduces a regularizer that can be shown to be equivalent to the sum of a minimum entropy term and a K-L divergence term. However, it should be noted that the K-L divergence term here is different from that in the standard cross-entropy loss function, in the sense that it swaps the roles of the target probability and the hypothesis probability. The MIN-ENT function simply adds a minimum entropy regularizer to the standard cross entropy loss function. In both MIX-ENT and MIN-ENT, the minimum entropy regularizer minimizes the entropy of the hypothesis probability distribution which is output by the neural network. Experiments on the EMNIST-Letters dataset shows that my implementation of MIX-ENT and MIN-ENT lets the VGG model climb from its previous 3rd position on the paperswithcode leaderboard to reach the 2nd position on the leaderboard, outperforming the Spinal-VGG model in so doing. Specifically, using standard cross-entropy, VGG achieves 95.86% while Spinal-VGG achieves 95.88% classification accuracies, whereas using VGG (without Spinal-VGG) our MIN-ENT achieved 95.933%, while our MIX-ENT achieved 95.927% accuracies. The pre-trained models for both MIX-ENT and MIN-ENT are at https://github.com/rahmanoladi/minimum entropy project.
Authors:Fu Rong, Meng Lan, Qian Zhang, Lefei Zhang
Abstract:
Referring video object segmentation (RVOS) aims to segment objects in a video according to textual descriptions, which requires the integration of multimodal information and temporal dynamics perception. The Segment Anything Model 2 (SAM 2) has shown great effectiveness across various video segmentation tasks. However, its application to offline RVOS is challenged by the translation of the text into effective prompts and a lack of global context awareness. In this paper, we propose a novel RVOS framework, termed MPG-SAM 2, to address these challenges. Specifically, MPG-SAM 2 employs a unified multimodal encoder to jointly encode video and textual features, generating semantically aligned video and text embeddings, along with multimodal class tokens. A mask prior generator utilizes the video embeddings and class tokens to create pseudo masks of target objects and global context. These masks are fed into the prompt encoder as dense prompts along with multimodal class tokens as sparse prompts to generate accurate prompts for SAM 2. To provide the online SAM 2 with a global view, we introduce a hierarchical global-historical aggregator, which allows SAM 2 to aggregate global and historical information of target objects at both pixel and object levels, enhancing the target representation and temporal consistency. Extensive experiments on several RVOS benchmarks demonstrate the superiority of MPG-SAM 2 and the effectiveness of our proposed modules. The code is available at https://github.com/rongfu-dsb/MPG-SAM2.
Authors:Olaya Pérez-Mon, Juan José del Coz, Pablo González
Abstract:
Quantification, or prevalence estimation, is the task of predicting the prevalence of each class within an unknown bag of examples. Most existing quantification methods in the literature rely on prior probability shift assumptions to create a quantification model that uses the predictions of an underlying classifier to make optimal prevalence estimates. In this work, we present an end-to-end neural network that uses Gaussian distributions in latent spaces to obtain invariant representations of bags of examples. This approach addresses the quantification problem using deep learning, enabling the optimization of specific loss functions relevant to the problem and avoiding the need for an intermediate classifier, tackling the quantification problem as a direct optimization problem. Our method achieves state-of-the-art results, both against traditional quantification methods and other deep learning approaches for quantification. The code needed to reproduce all our experiments is publicly available at https://github.com/AICGijon/gmnet.
Authors:Qiang Hu, Qihan He, Houqiang Zhong, Guo Lu, Xiaoyun Zhang, Guangtao Zhai, Yanfeng Wang
Abstract:
Free-view video (FVV) allows users to explore immersive video content from multiple views. However, delivering FVV poses significant challenges due to the uncertainty in view switching, combined with the substantial bandwidth and computational resources required to transmit and decode multiple video streams, which may result in frequent playback interruptions. Existing approaches, either client-based or cloud-based, struggle to meet high Quality of Experience (QoE) requirements under limited bandwidth and computational resources. To address these issues, we propose VARFVV, a bandwidth- and computationally-efficient system that enables real-time interactive FVV streaming with high QoE and low switching delay. Specifically, VARFVV introduces a low-complexity FVV generation scheme that reassembles multiview video frames at the edge server based on user-selected view tracks, eliminating the need for transcoding and significantly reducing computational overhead. This design makes it well-suited for large-scale, mobile-based UHD FVV experiences. Furthermore, we present a popularity-adaptive bit allocation method, leveraging a graph neural network, that predicts view popularity and dynamically adjusts bit allocation to maximize QoE within bandwidth constraints. We also construct an FVV dataset comprising 330 videos from 10 scenes, including basketball, opera, etc. Extensive experiments show that VARFVV surpasses existing methods in video quality, switching latency, computational efficiency, and bandwidth usage, supporting over 500 users on a single edge server with a switching delay of 71.5ms. Our code and dataset are available at https://github.com/qianghu-huber/VARFVV.
Authors:Younes Yousef, Lukas Galke, Ansgar Scherp
Abstract:
Recent approaches in hierarchical text classification (HTC) rely on the capabilities of a pre-trained transformer model and exploit the label semantics and a graph encoder for the label hierarchy. In this paper, we introduce an effective hierarchical text classifier RADAr (Transformer-based Autoregressive Decoder Architecture) that is based only on an off-the-shelf RoBERTa transformer to process the input and a custom autoregressive decoder with two decoder layers for generating the classification output. Thus, unlike existing approaches for HTC, the encoder of RADAr has no explicit encoding of the label hierarchy and the decoder solely relies on the label sequences of the samples observed during training. We demonstrate on three benchmark datasets that RADAr achieves results competitive to the state of the art with less training and inference time. Our model consistently performs better when organizing the label sequences from children to parents versus the inverse, as done in existing HTC approaches. Our experiments show that neither the label semantics nor an explicit graph encoder for the hierarchy is needed. This has strong practical implications for HTC as the architecture has fewer requirements and provides a speed-up by a factor of 2 at inference time. Moreover, training a separate decoder from scratch in conjunction with fine-tuning the encoder allows future researchers and practitioners to exchange the encoder part as new models arise. The source code is available at https://github.com/yousef-younes/RADAr.
Authors:Tao Liu, Kai Wang, Senmao Li, Joost van de Weijer, Fahad Shahbaz Khan, Shiqi Yang, Yaxing Wang, Jian Yang, Ming-Ming Cheng
Abstract:
Text-to-image generation models can create high-quality images from input prompts. However, they struggle to support the consistent generation of identity-preserving requirements for storytelling. Existing approaches to this problem typically require extensive training in large datasets or additional modifications to the original model architectures. This limits their applicability across different domains and diverse diffusion model configurations. In this paper, we first observe the inherent capability of language models, coined context consistency, to comprehend identity through context with a single prompt. Drawing inspiration from the inherent context consistency, we propose a novel training-free method for consistent text-to-image (T2I) generation, termed "One-Prompt-One-Story" (1Prompt1Story). Our approach 1Prompt1Story concatenates all prompts into a single input for T2I diffusion models, initially preserving character identities. We then refine the generation process using two novel techniques: Singular-Value Reweighting and Identity-Preserving Cross-Attention, ensuring better alignment with the input description for each frame. In our experiments, we compare our method against various existing consistent T2I generation approaches to demonstrate its effectiveness through quantitative metrics and qualitative assessments. Code is available at https://github.com/byliutao/1Prompt1Story.
Authors:Chenxu Wu, Qingpeng Kong, Zihang Jiang, S. Kevin Zhou
Abstract:
Magnetic Resonance Imaging (MRI), including diffusion MRI (dMRI), serves as a ``microscope'' for anatomical structures and routinely mitigates the influence of low signal-to-noise ratio scans by compromising temporal or spatial resolution. However, these compromises fail to meet clinical demands for both efficiency and precision. Consequently, denoising is a vital preprocessing step, particularly for dMRI, where clean data is unavailable. In this paper, we introduce Di-Fusion, a fully self-supervised denoising method that leverages the latter diffusion steps and an adaptive sampling process. Unlike previous approaches, our single-stage framework achieves efficient and stable training without extra noise model training and offers adaptive and controllable results in the sampling process. Our thorough experiments on real and simulated data demonstrate that Di-Fusion achieves state-of-the-art performance in microstructure modeling, tractography tracking, and other downstream tasks. Code is available at https://github.com/FouierL/Di-Fusion.
Authors:Xuerui Qiu, Malu Zhang, Jieyuan Zhang, Wenjie Wei, Honglin Cao, Junsheng Guo, Rui-Jie Zhu, Yimeng Shan, Yang Yang, Haizhou Li
Abstract:
Spiking neural networks are emerging as a promising energy-efficient alternative to traditional artificial neural networks due to their spike-driven paradigm. However, recent research in the SNN domain has mainly focused on enhancing accuracy by designing large-scale Transformer structures, which typically rely on substantial computational resources, limiting their deployment on resource-constrained devices. To overcome this challenge, we propose a quantized spike-driven Transformer baseline (QSD-Transformer), which achieves reduced resource demands by utilizing a low bit-width parameter. Regrettably, the QSD-Transformer often suffers from severe performance degradation. In this paper, we first conduct empirical analysis and find that the bimodal distribution of quantized spike-driven self-attention (Q-SDSA) leads to spike information distortion (SID) during quantization, causing significant performance degradation. To mitigate this issue, we take inspiration from mutual information entropy and propose a bi-level optimization strategy to rectify the information distribution in Q-SDSA. Specifically, at the lower level, we introduce an information-enhanced LIF to rectify the information distribution in Q-SDSA. At the upper level, we propose a fine-grained distillation scheme for the QSD-Transformer to align the distribution in Q-SDSA with that in the counterpart ANN. By integrating the bi-level optimization strategy, the QSD-Transformer can attain enhanced energy efficiency without sacrificing its high-performance advantage. For instance, when compared to the prior SNN benchmark on ImageNet, the QSD-Transformer achieves 80.3% top-1 accuracy, accompanied by significant reductions of 6.0$\times$ and 8.1$\times$ in power consumption and model size, respectively. Code is available at https://github.com/bollossom/QSD-Transformer.
Authors:Yuliang Gu, Weilun Tsao, Bo Du, Thierry Géraud, Yongchao Xu
Abstract:
Annotating 3D medical images demands substantial time and expertise, driving the adoption of semi-supervised learning (SSL) for segmentation tasks. However, the complex anatomical structures of organs often lead to significant class imbalances, posing major challenges for deploying SSL in real-world scenarios. Despite the availability of valuable prior information, such as inter-organ relative positions and organ shape priors, existing SSL methods have yet to fully leverage these insights. To address this gap, we propose a novel approach that integrates textual anatomical knowledge (TAK) into the segmentation model. Specifically, we use GPT-4o to generate textual descriptions of anatomical priors, which are then encoded using a CLIP-based model. These encoded priors are injected into the segmentation model as parameters of the segmentation head. Additionally, contrastive learning is employed to enhance the alignment between textual priors and visual features. Extensive experiments demonstrate the superior performance of our method, significantly surpassing state-of-the-art approaches. The source code will be available at: https://github.com/Lunn88/TAK-Semi.
Authors:Haomiao Xiong, Zongxin Yang, Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Jiawen Zhu, Huchuan Lu
Abstract:
Recent advances in Large Language Models (LLMs) have enabled the development of Video-LLMs, advancing multimodal learning by bridging video data with language tasks. However, current video understanding models struggle with processing long video sequences, supporting multi-turn dialogues, and adapting to real-world dynamic scenarios. To address these issues, we propose StreamChat, a training-free framework for streaming video reasoning and conversational interaction. $\StreamChat$ leverages a novel hierarchical memory system to efficiently process and compress video features over extended sequences, enabling real-time, multi-turn dialogue. Our framework incorporates a parallel system scheduling strategy that enhances processing speed and reduces latency, ensuring robust performance in real-world applications. Furthermore, we introduce StreamBench, a versatile benchmark that evaluates streaming video understanding across diverse media types and interactive scenarios, including multi-turn interactions and complex reasoning tasks. Extensive evaluations on StreamBench and other public benchmarks demonstrate that StreamChat significantly outperforms existing state-of-the-art models in terms of accuracy and response times, confirming its effectiveness for streaming video understanding. Code is available at StreamChat: https://github.com/hmxiong/StreamChat.
Authors:Andong Li, Zhihang Sun, Fengyuan Hao, Xiaodong Li, Chengshi Zheng
Abstract:
Speech enhancement (SE) and neural vocoding are traditionally viewed as separate tasks. In this work, we observe them under a common thread: the rank behavior of these processes. This observation prompts two key questions: \textit{Can a model designed for one task's rank degradation be adapted for the other?} and \textit{Is it possible to address both tasks using a unified model?} Our empirical findings demonstrate that existing speech enhancement models can be successfully trained to perform vocoding tasks, and a single model, when jointly trained, can effectively handle both tasks with performance comparable to separately trained models. These results suggest that speech enhancement and neural vocoding can be unified under a broader framework of speech restoration. Code: https://github.com/Andong-Li-speech/Neural-Vocoders-as-Speech-Enhancers.
Authors:Samer Attrah
Abstract:
Emotion estimation in general is a field that has been studied for a long time, and several approaches exist using machine learning. in this paper, we present an LSTM model, that processes the blend-shapes produced by the library MediaPipe, for a face detected in a live stream of a camera, to estimate the main emotion from the facial expressions, this model is trained on the FER2013 dataset and delivers a result of 71% accuracy and 62% f1-score which meets the accuracy benchmark of the FER2013 dataset, with significantly reduced computation costs. https://github.com/Samir-atra/Emotion_estimation_from_video_footage_with_LSTM_ML_algorithm
Authors:Jian Wang, Xiaokang Zhang, Xianping Ma, Weikang Yu, Pedram Ghamisi
Abstract:
Weakly supervised landslide extraction aims to identify landslide regions from remote sensing data using models trained with weak labels, particularly image-level labels. However, it is often challenged by the imprecise boundaries of the extracted objects due to the lack of pixel-wise supervision and the properties of landslide objects. To tackle these issues, we propose a simple yet effective method by auto-prompting the Segment Anything Model (SAM), i.e., APSAM. Instead of depending on high-quality class activation maps (CAMs) for pseudo-labeling or fine-tuning SAM, our method directly yields fine-grained segmentation masks from SAM inference through prompt engineering. Specifically, it adaptively generates hybrid prompts from the CAMs obtained by an object localization network. To provide sufficient information for SAM prompting, an adaptive prompt generation (APG) algorithm is designed to fully leverage the visual patterns of CAMs, enabling the efficient generation of pseudo-masks for landslide extraction. These informative prompts are able to identify the extent of landslide areas (box prompts) and denote the centers of landslide objects (point prompts), guiding SAM in landslide segmentation. Experimental results on high-resolution aerial and satellite datasets demonstrate the effectiveness of our method, achieving improvements of at least 3.0\% in F1 score and 3.69\% in IoU compared to other state-of-the-art methods. The source codes and datasets will be available at https://github.com/zxk688.
Authors:Jinghan You, Shanglin Li, Yuanrui Sun, Jiangchuan Wei, Mingyu Guo, Chao Feng, Jiao Ran
Abstract:
Vision Transformers (ViTs) have revolutionized large-scale visual modeling, yet remain underexplored in face recognition (FR) where CNNs still dominate. We identify a critical bottleneck: CNN-inspired training paradigms fail to unlock ViT's potential, leading to suboptimal performance and convergence instability.To address this challenge, we propose LVFace, a ViT-based FR model that integrates Progressive Cluster Optimization (PCO) to achieve superior results. Specifically, PCO sequentially applies negative class sub-sampling (NCS) for robust and fast feature alignment from random initialization, feature expectation penalties for centroid stabilization, performing cluster boundary refinement through full-batch training without NCS constraints. LVFace establishes a new state-of-the-art face recognition baseline, surpassing leading approaches such as UniFace and TopoFR across multiple benchmarks. Extensive experiments demonstrate that LVFace delivers consistent performance gains, while exhibiting scalability to large-scale datasets and compatibility with mainstream VLMs and LLMs. Notably, LVFace secured 1st place in the ICCV 2021 Masked Face Recognition (MFR)-Ongoing Challenge (March 2025), proving its efficacy in real-world scenarios. Project is available at https://github.com/bytedance/LVFace.
Authors:Yiming Tang, Abrar Anwar, Jesse Thomason
Abstract:
Understanding social signals in multi-party conversations is important for human-robot interaction and artificial social intelligence. Social signals include body pose, head pose, speech, and context-specific activities like acquiring and taking bites of food when dining. Past work in multi-party interaction tends to build task-specific models for predicting social signals. In this work, we address the challenge of predicting multimodal social signals in multi-party settings in a single model. We introduce M3PT, a causal transformer architecture with modality and temporal blockwise attention masking to simultaneously process multiple social cues across multiple participants and their temporal interactions. We train and evaluate M3PT on the Human-Human Commensality Dataset (HHCD), and demonstrate that using multiple modalities improves bite timing and speaking status prediction. Source code: https://github.com/AbrarAnwar/masked-social-signals/.
Authors:Zhaoxuan Tan, Zinan Zeng, Qingkai Zeng, Zhenyu Wu, Zheyuan Liu, Fengran Mo, Meng Jiang
Abstract:
Large Language Models (LLMs) excel in various tasks, including personalized recommendations. Existing evaluation methods often focus on rating prediction, relying on regression errors between actual and predicted ratings. However, user rating bias and item quality, two influential factors behind rating scores, can obscure personal preferences in user-item pair data. To address this, we introduce PerRecBench, disassociating the evaluation from these two factors and assessing recommendation techniques on capturing the personal preferences in a grouped ranking manner. We find that the LLM-based recommendation techniques that are generally good at rating prediction fail to identify users' favored and disfavored items when the user rating bias and item quality are eliminated by grouping users. With PerRecBench and 19 LLMs, we find that while larger models generally outperform smaller ones, they still struggle with personalized recommendation. Our findings reveal the superiority of pairwise and listwise ranking approaches over pointwise ranking, PerRecBench's low correlation with traditional regression metrics, the importance of user profiles, and the role of pretraining data distributions. We further explore three supervised fine-tuning strategies, finding that merging weights from single-format training is promising but improving LLMs' understanding of user preferences remains an open research problem. Code and data are available at https://github.com/TamSiuhin/PerRecBench
Authors:Zhiyuan Weng, Guikun Chen, Wenguan Wang
Abstract:
Recent advancements in large language models (LLMs) revolutionize the field of intelligent agents, enabling collaborative multi-agent systems capable of tackling complex problems across various domains. However, the potential of conformity within these systems, analogous to phenomena like conformity bias and groupthink in human group dynamics, remains largely unexplored, raising concerns about their collective problem-solving capabilities and possible ethical implications. This paper presents a comprehensive study on conformity in LLM-driven multi-agent systems, focusing on three aspects: the existence of conformity, the factors influencing conformity, and potential mitigation strategies. In particular, we introduce BenchForm, a new conformity-oriented benchmark, featuring reasoning-intensive tasks and five distinct interaction protocols designed to probe LLMs' behavior in collaborative scenarios. Several representative LLMs are evaluated on BenchForm, using metrics such as conformity rate and independence rate to quantify conformity's impact. Our analysis delves into factors influencing conformity, including interaction time and majority size, and examines how the subject agent rationalizes its conforming behavior. Furthermore, we explore two strategies to mitigate conformity effects, i.e., developing enhanced personas and implementing a reflection mechanism. Several interesting findings regarding LLMs' conformity are derived from empirical results and case studies. We hope that these insights can pave the way for more robust and ethically-aligned collaborative AI systems. Our benchmark and code are available at BenchForm.
Authors:Gabrielle Hoyer, Michelle W Tong, Rupsa Bhattacharjee, Valentina Pedoia, Sharmila Majumdar
Abstract:
Effective segmentation is fundamental for quantitative medical imaging; however, foundation segmentation models remain insufficiently evaluated for accuracy and biomarker fidelity across the diverse anatomical contexts and imaging protocols encountered in musculoskeletal (MSK) MRI. We evaluate three widely used segmentation models (SAM, SAM2, MedSAM) across eleven MSK MRI datasets spanning the knee, hip, spine, shoulder, and thigh. Our framework assesses both zero-shot and finetuned performance, with attention to segmentation accuracy, generalizability across imaging protocols, and reliability of derived quantitative biomarkers. Finetuned models showed consistent agreement with expert measurements for biomarkers including cartilage thickness, disc height, muscle volume, and compositional T1rho/T2 values. Automated prompting through the AutoLabel system enabled scalable segmentation, with moderate trade-offs in accuracy. As proof of concept, we applied the validated system to (i) a three-stage knee MRI triage cascade and (ii) a longitudinal landmark model that predicts total knee replacement and incident osteoarthritis. The framework offers a transparent method for benchmarking segmentation tools and connecting model performance to clinical imaging priorities.
Authors:Peirong Liu, Ana Lawry Aguila, Juan E. Iglesias
Abstract:
Data-driven machine learning has made significant strides in medical image analysis. However, most existing methods are tailored to specific modalities and assume a particular resolution (often isotropic). This limits their generalizability in clinical settings, where variations in scan appearance arise from differences in sequence parameters, resolution, and orientation. Furthermore, most general-purpose models are designed for healthy subjects and suffer from performance degradation when pathology is present. We introduce UNA (Unraveling Normal Anatomy), the first modality-agnostic learning approach for normal brain anatomy reconstruction that can handle both healthy scans and cases with pathology. We propose a fluid-driven anomaly randomization method that generates an unlimited number of realistic pathology profiles on-the-fly. UNA is trained on a combination of synthetic and real data, and can be applied directly to real images with potential pathology without the need for fine-tuning. We demonstrate UNA's effectiveness in reconstructing healthy brain anatomy and showcase its direct application to anomaly detection, using both simulated and real images from 3D healthy and stroke datasets, including CT and MRI scans. By bridging the gap between healthy and diseased images, UNA enables the use of general-purpose models on diseased images, opening up new opportunities for large-scale analysis of uncurated clinical images in the presence of pathology. Code is available at https://github.com/peirong26/UNA.
Authors:Yongxiang Liu, Weijie Li, Li Liu, Jie Zhou, Bowen Peng, Yafei Song, Xuying Xiong, Wei Yang, Tianpeng Liu, Zhen Liu, Xiang Li
Abstract:
The absence of publicly available, large-scale, high-quality datasets for Synthetic Aperture Radar Automatic Target Recognition (SAR ATR) has significantly hindered the application of rapidly advancing deep learning techniques, which hold huge potential to unlock new capabilities in this field. This is primarily because collecting large volumes of diverse target samples from SAR images is prohibitively expensive, largely due to privacy concerns, the characteristics of microwave radar imagery perception, and the need for specialized expertise in data annotation. Throughout the history of SAR ATR research, there have been only a number of small datasets, mainly including targets like ships, airplanes, buildings, etc. There is only one vehicle dataset MSTAR collected in the 1990s, which has been a valuable source for SAR ATR. To fill this gap, this paper introduces a large-scale, new dataset named ATRNet-STAR with 40 different vehicle categories collected under various realistic imaging conditions and scenes. It marks a substantial advancement in dataset scale and diversity, comprising over 190,000 well-annotated samples, 10 times larger than its predecessor, the famous MSTAR. Building such a large dataset is a challenging task, and the data collection scheme will be detailed. Secondly, we illustrate the value of ATRNet-STAR via extensively evaluating the performance of 15 representative methods with 7 different experimental settings on challenging classification and detection benchmarks derived from the dataset. Finally, based on our extensive experiments, we identify valuable insights for SAR ATR and discuss potential future research directions in this field. We hope that the scale, diversity, and benchmark of ATRNet-STAR can significantly facilitate the advancement of SAR ATR.
Authors:Joshua Park, Yongfeng Zhang
Abstract:
Multi-agent systems must decide which agent is the most appropriate for a given task. We propose a novel architecture for recommending which LLM agent out of many should perform a task given a natural language prompt by extending the Sentence-BERT (SBERT) encoder model. On test data, we are able to achieve a top-1 accuracy of 92.2% with each classification taking less than 300 milliseconds. In contrast to traditional classification methods, our architecture is computationally cheap, adaptive to new classes, interpretable, and controllable with arbitrary metrics through reinforcement learning. By encoding natural language prompts into sentence embeddings, our model captures the semantic content relevant to recommending an agent. The distance between sentence embeddings that belong to the same agent is then minimized through fine-tuning and aligned to human values through reinforcement learning from human feedback. This allows the classification of natural language prompts based on their nearest neighbors by measuring the cosine similarity between embeddings. This work is made possible through the generation of a synthetic dataset for agent recommendation, which we have open-sourced to the public along with the code for AgentRec recommendation system at https://github.com/joshprk/agentrec.
Authors:Yang Bai, Christan Earl Grant, Daisy Zhe Wang
Abstract:
Multi-modal retrieval-augmented Question Answering (MRAQA), integrating text and images, has gained significant attention in information retrieval (IR) and natural language processing (NLP). Traditional ranking methods rely on small encoder-based language models, which are incompatible with modern decoder-based generative large language models (LLMs) that have advanced various NLP tasks. To bridge this gap, we propose RAMQA, a unified framework combining learning-to-rank methods with generative permutation-enhanced ranking techniques. We first train a pointwise multi-modal ranker using LLaVA as the backbone. Then, we apply instruction tuning to train a LLaMA model for re-ranking the top-k documents using an innovative autoregressive multi-task learning approach. Our generative ranking model generates re-ranked document IDs and specific answers from document candidates in various permutations. Experiments on two MRAQA benchmarks, WebQA and MultiModalQA, show significant improvements over strong baselines, highlighting the effectiveness of our approach. Code and data are available at: https://github.com/TonyBY/RAMQA
Authors:Daeun Jung, Jaehyeok Jang, Sooyoung Jang, Yu Rang Park
Abstract:
Computed tomography (CT) and clinical numeric data are essential modalities for cancer evaluation, but building large-scale multimodal training datasets for developing medical foundation models remains challenging due to the structural complexity of multi-slice CT data and high cost of expert annotation. In this study, we propose MEDFORM, a multimodal pre-training strategy that guides CT image representation learning using complementary information from clinical data for medical foundation model development. MEDFORM efficiently processes CT slice through multiple instance learning (MIL) and adopts a dual pre-training strategy: first pretraining the CT slice feature extractor using SimCLR-based self-supervised learning, then aligning CT and clinical modalities through cross-modal contrastive learning. Our model was pre-trained on three different cancer types: lung cancer (141,171 slices), breast cancer (8,100 slices), colorectal cancer (10,393 slices). The experimental results demonstrated that this dual pre-training strategy improves cancer classification performance and maintains robust performance in few-shot learning scenarios. Code available at https://github.com/DigitalHealthcareLab/25MultiModalFoundationModel.git
Authors:Alsu Sagirova, Yuri Kuratov, Mikhail Burtsev
Abstract:
Multi-agent reinforcement learning (MARL) demonstrates significant progress in solving cooperative and competitive multi-agent problems in various environments. One of the principal challenges in MARL is the need for explicit prediction of the agents' behavior to achieve cooperation. To resolve this issue, we propose the Shared Recurrent Memory Transformer (SRMT) which extends memory transformers to multi-agent settings by pooling and globally broadcasting individual working memories, enabling agents to exchange information implicitly and coordinate their actions. We evaluate SRMT on the Partially Observable Multi-Agent Pathfinding problem in a toy Bottleneck navigation task that requires agents to pass through a narrow corridor and on a POGEMA benchmark set of tasks. In the Bottleneck task, SRMT consistently outperforms a variety of reinforcement learning baselines, especially under sparse rewards, and generalizes effectively to longer corridors than those seen during training. On POGEMA maps, including Mazes, Random, and MovingAI, SRMT is competitive with recent MARL, hybrid, and planning-based algorithms. These results suggest that incorporating shared recurrent memory into the transformer-based architectures can enhance coordination in decentralized multi-agent systems. The source code for training and evaluation is available on GitHub: https://github.com/Aloriosa/srmt.
Authors:Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu Meng, Kede Ma, Ying Wei
Abstract:
Continual Learning (CL) with foundation models has recently emerged as a promising paradigm to exploit abundant knowledge acquired during pre-training for tackling sequential tasks. However, existing prompt-based and Low-Rank Adaptation-based (LoRA-based) methods often require expanding a prompt/LoRA pool or retaining samples of previous tasks, which poses significant scalability challenges as the number of tasks grows. To address these limitations, we propose Scalable Decoupled LoRA (SD-LoRA) for class incremental learning, which continually separates the learning of the magnitude and direction of LoRA components without rehearsal. Our empirical and theoretical analysis reveals that SD-LoRA tends to follow a low-loss trajectory and converges to an overlapping low-loss region for all learned tasks, resulting in an excellent stability-plasticity trade-off. Building upon these insights, we introduce two variants of SD-LoRA with further improved parameter efficiency. All parameters of SD-LoRAs can be end-to-end optimized for CL objectives. Meanwhile, they support efficient inference by allowing direct evaluation with the finally trained model, obviating the need for component selection. Extensive experiments across multiple CL benchmarks and foundation models consistently validate the effectiveness of SD-LoRA. The code is available at https://github.com/WuYichen-97/SD-Lora-CL.
Authors:Adam Tupper, Christian Gagné
Abstract:
Data augmentation is a widely used and effective technique to improve the generalization performance of deep neural networks. Yet, despite often facing limited data availability when working with medical images, it is frequently underutilized. This appears to come from a gap in our collective understanding of the efficacy of different augmentation techniques across different tasks and modalities. One modality where this is especially true is ultrasound imaging. This work addresses this gap by analyzing the effectiveness of different augmentation techniques at improving model performance across a wide range of ultrasound image analysis tasks. To achieve this, we introduce a new standardized benchmark of 14 ultrasound image classification and semantic segmentation tasks from 10 different sources and covering 11 body regions. Our results demonstrate that many of the augmentations commonly used for tasks on natural images are also effective on ultrasound images, even more so than augmentations developed specifically for ultrasound images in some cases. We also show that diverse augmentation using TrivialAugment, which is widely used for natural images, is also effective for ultrasound images. Moreover, our proposed methodology represents a structured approach for assessing various data augmentations that can be applied to other contexts and modalities.
Authors:Qiongyan Wang, Yutong Xia, Siru ZHong, Weichuang Li, Yuankai Wu, Shifen Cheng, Junbo Zhang, Yu Zheng, Yuxuan Liang
Abstract:
Monitoring real-time air quality is essential for safeguarding public health and fostering social progress. However, the widespread deployment of air quality monitoring stations is constrained by their significant costs. To address this limitation, we introduce \emph{AirRadar}, a deep neural network designed to accurately infer real-time air quality in locations lacking monitoring stations by utilizing data from existing ones. By leveraging learnable mask tokens, AirRadar reconstructs air quality features in unmonitored regions. Specifically, it operates in two stages: first capturing spatial correlations and then adjusting for distribution shifts. We validate AirRadar's efficacy using a year-long dataset from 1,085 monitoring stations across China, demonstrating its superiority over multiple baselines, even with varying degrees of unobserved data. The source code can be accessed at https://github.com/CityMind-Lab/AirRadar.
Authors:Matthew Gwilliam, Han Cai, Di Wu, Abhinav Shrivastava, Zhiyu Cheng
Abstract:
We propose Inner Loop Feedback (ILF), a novel approach to accelerate diffusion models' inference. ILF trains a lightweight module to predict future features in the denoising process by leveraging the outputs from a chosen diffusion backbone block at a given time step. This approach exploits two key intuitions; (1) the outputs of a given block at adjacent time steps are similar, and (2) performing partial computations for a step imposes a lower burden on the model than skipping the step entirely. Our method is highly flexible, since we find that the feedback module itself can simply be a block from the diffusion backbone, with all settings copied. Its influence on the diffusion forward can be tempered with a learnable scaling factor from zero initialization. We train this module using distillation losses; however, unlike some prior work where a full diffusion backbone serves as the student, our model freezes the backbone, training only the feedback module. While many efforts to optimize diffusion models focus on achieving acceptable image quality in extremely few steps (1-4 steps), our emphasis is on matching best case results (typically achieved in 20 steps) while significantly reducing runtime. ILF achieves this balance effectively, demonstrating strong performance for both class-to-image generation with diffusion transformer (DiT) and text-to-image generation with DiT-based PixArt-alpha and PixArt-sigma. The quality of ILF's 1.7x-1.8x speedups are confirmed by FID, CLIP score, CLIP Image Quality Assessment, ImageReward, and qualitative comparisons. Project information is available at https://mgwillia.github.io/ilf.
Authors:Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng, Yuming Jiang, Hang Zhang, Xin Li, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, Deli Zhao
Abstract:
In this paper, we propose VideoLLaMA3, a more advanced multimodal foundation model for image and video understanding. The core design philosophy of VideoLLaMA3 is vision-centric. The meaning of "vision-centric" is two-fold: the vision-centric training paradigm and vision-centric framework design. The key insight of our vision-centric training paradigm is that high-quality image-text data is crucial for both image and video understanding. Instead of preparing massive video-text datasets, we focus on constructing large-scale and high-quality image-text datasets. VideoLLaMA3 has four training stages: 1) Vision Encoder Adaptation, which enables vision encoder to accept images of variable resolutions as input; 2) Vision-Language Alignment, which jointly tunes the vision encoder, projector, and LLM with large-scale image-text data covering multiple types (including scene images, documents, charts) as well as text-only data. 3) Multi-task Fine-tuning, which incorporates image-text SFT data for downstream tasks and video-text data to establish a foundation for video understanding. 4) Video-centric Fine-tuning, which further improves the model's capability in video understanding. As for the framework design, to better capture fine-grained details in images, the pretrained vision encoder is adapted to encode images of varying sizes into vision tokens with corresponding numbers, rather than a fixed number of tokens. For video inputs, we reduce the number of vision tokens according to their similarity so that the representation of videos will be more precise and compact. Benefit from vision-centric designs, VideoLLaMA3 achieves compelling performances in both image and video understanding benchmarks.
Authors:Jiachen Lei, Julius Berner, Jiongxiao Wang, Zhongzhu Chen, Zhongjia Ba, Kui Ren, Jun Zhu, Anima Anandkumar
Abstract:
Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85$\times$ on average. Codes are available at: https://github.com/jiachenlei/rRCM.
Authors:Bohao Yang, Yingji Zhang, Dong Liu, André Freitas, Chenghua Lin
Abstract:
Recent large language models (LLMs) have advanced table understanding capabilities but rely on converting tables into text sequences. While multimodal large language models (MLLMs) enable direct visual processing, they face limitations in handling scientific tables due to fixed input image resolutions and insufficient numerical reasoning capabilities. We present a comprehensive framework for multimodal scientific table understanding and reasoning with dynamic input image resolutions. Our framework consists of three key components: (1) MMSci-Pre, a domain-specific table structure learning dataset of 52K scientific table structure recognition samples, (2) MMSci-Ins, an instruction tuning dataset with 12K samples across three table-based tasks, and (3) MMSci-Eval, a benchmark with 3,114 testing samples specifically designed to evaluate numerical reasoning capabilities. Extensive experiments demonstrate that our domain-specific approach with 52K scientific table images achieves superior performance compared to 150K general-domain tables, highlighting the importance of data quality over quantity. Our proposed table-based MLLMs with dynamic input resolutions show significant improvements in both general table understanding and numerical reasoning capabilities, with strong generalisation to held-out datasets. Our code and data are publicly available at https://github.com/Bernard-Yang/MMSci_Table.
Authors:Yifan Hu, Guibin Zhang, Peiyuan Liu, Disen Lan, Naiqi Li, Dawei Cheng, Tao Dai, Shu-Tao Xia, Shirui Pan
Abstract:
Time series forecasting methods generally fall into two main categories: Channel Independent (CI) and Channel Dependent (CD) strategies. While CI overlooks important covariate relationships, CD captures all dependencies without distinction, introducing noise and reducing generalization. Recent advances in Channel Clustering (CC) aim to refine dependency modeling by grouping channels with similar characteristics and applying tailored modeling techniques. However, coarse-grained clustering struggles to capture complex, time-varying interactions effectively. To address these challenges, we propose TimeFilter, a GNN-based framework for adaptive and fine-grained dependency modeling. After constructing the graph from the input sequence, TimeFilter refines the learned spatial-temporal dependencies by filtering out irrelevant correlations while preserving the most critical ones in a patch-specific manner. Extensive experiments on 13 real-world datasets from diverse application domains demonstrate the state-of-the-art performance of TimeFilter. The code is available at https://github.com/TROUBADOUR000/TimeFilter.
Authors:Jiahao Wang, Ning Kang, Lewei Yao, Mengzhao Chen, Chengyue Wu, Songyang Zhang, Shuchen Xue, Yong Liu, Taiqiang Wu, Xihui Liu, Kaipeng Zhang, Shifeng Zhang, Wenqi Shao, Zhenguo Li, Ping Luo
Abstract:
In commonly used sub-quadratic complexity modules, linear attention benefits from simplicity and high parallelism, making it promising for image synthesis tasks. However, the architectural design and learning strategy for linear attention remain underexplored in this field. In this paper, we offer a suite of ready-to-use solutions for efficient linear diffusion Transformers. Our core contributions include: (1) Simplified Linear Attention using few heads, observing the free-lunch effect of performance without latency increase. (2) Weight inheritance from a fully pre-trained diffusion Transformer: initializing linear Transformer using pre-trained diffusion Transformer and loading all parameters except for those related to linear attention. (3) Hybrid knowledge distillation objective: using a pre-trained diffusion Transformer to help the training of the student linear Transformer, supervising not only the predicted noise but also the variance of the reverse diffusion process. These guidelines lead to our proposed Linear Diffusion Transformer (LiT), an efficient text-to-image Transformer that can be deployed offline on a laptop. Experiments show that in class-conditional 256*256 and 512*512 ImageNet benchmark LiT achieves highly competitive FID while reducing training steps by 80% and 77% compared to DiT. LiT also rivals methods based on Mamba or Gated Linear Attention. Besides, for text-to-image generation, LiT allows for the rapid synthesis of up to 1K resolution photorealistic images. Project page: https://techmonsterwang.github.io/LiT/.
Authors:Hong Wang, Yinglong Zhang, Zhangqi Zhao, Zhicong Cai, Xuewen Xia, Xing Xu
Abstract:
Community detection is crucial in data mining. Traditional methods primarily focus on graph structure, often neglecting the significance of attribute features. In contrast, deep learning-based approaches incorporate attribute features and local structural information through contrastive learning, improving detection performance. However, existing algorithms' complex design and joint optimization make them difficult to train and reduce detection efficiency. Additionally, these methods require the number of communities to be predefined, making the results susceptible to artificial interference. To address these challenges, we propose a simple yet effective community detection algorithm that can adaptively detect communities without relying on data augmentation and contrastive optimization. The proposed algorithm first performs community pre-detection to extract global structural information adaptively. It then utilizes GCN to integrate local structures and attribute features. Subsequently, it combines global, local structures and attribute features in the feature space to discover community affiliations. Finally, a modularity maximization method is employed to optimize the communities based on these three types of information, thereby uncovering the community affiliation of each node. We conduct experimental comparisons across various graph datasets, evaluating the proposed algorithm against traditional methods and state-of-the-art community detection algorithms. The experimental results demonstrate that our algorithm achieves greater efficiency and accuracy in terms of both detection speed and effectiveness. The code is available at https://github.com/wuanghoong/Less-is-More.git.
Authors:Ruisi Zhao, Zechuan Zhang, Zongxin Yang, Yi Yang
Abstract:
Object manipulation in images aims to not only edit the object's presentation but also gift objects with motion. Previous methods encountered challenges in concurrently handling static editing and dynamic generation, while also struggling to achieve fidelity in object appearance and scene lighting. In this work, we introduce \textbf{OMG3D}, a novel framework that integrates the precise geometric control with the generative power of diffusion models, thus achieving significant enhancements in visual performance. Our framework first converts 2D objects into 3D, enabling user-directed modifications and lifelike motions at the geometric level. To address texture realism, we propose CustomRefiner, a texture refinement module that pre-train a customized diffusion model, aligning the details and style of coarse renderings of 3D rough model with the original image, further refine the texture. Additionally, we introduce IllumiCombiner, a lighting processing module that estimates and corrects background lighting to match human visual perception, resulting in more realistic shadow effects. Extensive experiments demonstrate the outstanding visual performance of our approach in both static and dynamic scenarios. Remarkably, all these steps can be done using one NVIDIA 3090. Project page is at https://whalesong-zrs.github.io/OMG3D-projectpage/
Authors:Kaiyu Li, Xiangyong Cao, Yupeng Deng, Chao Pang, Zepeng Xin, Deyu Meng, Zhi Wang
Abstract:
Monitoring Earth's evolving land covers requires methods capable of detecting changes across a wide range of categories and contexts. Existing change detection methods are hindered by their dependency on predefined classes, reducing their effectiveness in open-world applications. To address this issue, we introduce open-vocabulary change detection (OVCD), a novel task that bridges vision and language to detect changes across any category. Considering the lack of high-quality data and annotation, we propose two training-free frameworks, M-C-I and I-M-C, which leverage and integrate off-the-shelf foundation models for the OVCD task. The insight behind the M-C-I framework is to discover all potential changes and then classify these changes, while the insight of I-M-C framework is to identify all targets of interest and then determine whether their states have changed. Based on these two frameworks, we instantiate to obtain several methods, e.g., SAM-DINOv2-SegEarth-OV, Grounding-DINO-SAM2-DINO, etc. Extensive evaluations on 5 benchmark datasets demonstrate the superior generalization and robustness of our OVCD methods over existing supervised and unsupervised methods. To support continued exploration, we release DynamicEarth, a dedicated codebase designed to advance research and application of OVCD. https://likyoo.github.io/DynamicEarth
Authors:Yafu Li, Xuyang Hu, Xiaoye Qu, Linjie Li, Yu Cheng
Abstract:
Large language models (LLMs) demonstrate impressive performance but lack the flexibility to adapt to human preferences quickly without retraining. In this work, we introduce Test-time Preference Optimization (TPO), a framework that aligns LLM outputs with human preferences during inference, removing the need to update model parameters. Rather than relying on purely numerical rewards, TPO translates reward signals into textual critiques and uses them as textual rewards to iteratively refine its response. Evaluations on benchmarks covering instruction following, preference alignment, safety, and mathematics reveal that TPO progressively improves alignment with human preferences. Notably, after only a few TPO steps, the initially unaligned Llama-3.1-70B-SFT model can surpass the aligned counterpart, Llama-3.1-70B-Instruct. Furthermore, TPO scales efficiently with both the search width and depth during inference. Through case studies, we illustrate how TPO exploits the innate capacity of LLM to interpret and act upon reward signals. Our findings establish TPO as a practical, lightweight alternative for test-time preference optimization, achieving alignment on the fly. Our code is publicly available at https://github.com/yafuly/TPO.
Authors:Ruicheng Zhang, Haowei Guo, Zeyu Zhang, Puxin Yan, Shen Zhao
Abstract:
Multi-organ segmentation is a critical yet challenging task due to complex anatomical backgrounds, blurred boundaries, and diverse morphologies. This study introduces the Gradient-aware Adaptive Momentum Evolution Deep Snake (GAMED-Snake) model, which establishes a novel paradigm for contour-based segmentation by integrating gradient-based learning with adaptive momentum evolution mechanisms. The GAMED-Snake model incorporates three major innovations: First, the Distance Energy Map Prior (DEMP) generates a pixel-level force field that effectively attracts contour points towards the true boundaries, even in scenarios with complex backgrounds and blurred edges. Second, the Differential Convolution Inception Module (DCIM) precisely extracts comprehensive energy gradients, significantly enhancing segmentation accuracy. Third, the Adaptive Momentum Evolution Mechanism (AMEM) employs cross-attention to establish dynamic features across different iterations of evolution, enabling precise boundary alignment for diverse morphologies. Experimental results on four challenging multi-organ segmentation datasets demonstrate that GAMED-Snake improves the mDice metric by approximately 2% compared to state-of-the-art methods. Code will be available at https://github.com/SYSUzrc/GAMED-Snake.
Authors:Viktor Moskvoretskii, Maria Lysyuk, Mikhail Salnikov, Nikolay Ivanov, Sergey Pletenev, Daria Galimzianova, Nikita Krayko, Vasily Konovalov, Irina Nikishina, Alexander Panchenko
Abstract:
Retrieval Augmented Generation (RAG) improves correctness of Question Answering (QA) and addresses hallucinations in Large Language Models (LLMs), yet greatly increase computational costs. Besides, RAG is not always needed as may introduce irrelevant information. Recent adaptive retrieval methods integrate LLMs' intrinsic knowledge with external information appealing to LLM self-knowledge, but they often neglect efficiency evaluations and comparisons with uncertainty estimation techniques. We bridge this gap by conducting a comprehensive analysis of 35 adaptive retrieval methods, including 8 recent approaches and 27 uncertainty estimation techniques, across 6 datasets using 10 metrics for QA performance, self-knowledge, and efficiency. Our findings show that uncertainty estimation techniques often outperform complex pipelines in terms of efficiency and self-knowledge, while maintaining comparable QA performance.
Authors:Ruicheng Zhang, Kanghui Tian, Zeyu Zhang, Qixiang Liu, Zhi Jin
Abstract:
In this study, we reveal that the interaction between haze degradation and JPEG compression introduces complex joint loss effects, which significantly complicate image restoration. Existing dehazing models often neglect compression effects, which limits their effectiveness in practical applications. To address these challenges, we introduce three key contributions. First, we design FDG-Diff, a novel frequency-domain-guided dehazing framework that improves JPEG image restoration by leveraging frequency-domain information. Second, we introduce the High-Frequency Compensation Module (HFCM), which enhances spatial-domain detail restoration by incorporating frequency-domain augmentation techniques into a diffusion-based restoration framework. Lastly, the introduction of the Degradation-Aware Denoising Timestep Predictor (DADTP) module further enhances restoration quality by enabling adaptive region-specific restoration, effectively addressing regional degradation inconsistencies in compressed hazy images. Experimental results across multiple compressed dehazing datasets demonstrate that our method consistently outperforms the latest state-of-the-art approaches. Code be available at https://github.com/SYSUzrc/FDG-Diff.
Authors:Xiaolei Chen, Junchi Yan, Wenlong Liao, Tao He, Pai Peng
Abstract:
Motion planning is a critical module in autonomous driving, with the primary challenge of uncertainty caused by interactions with other participants. As most previous methods treat prediction and planning as separate tasks, it is difficult to model these interactions. Furthermore, since the route path navigates ego vehicles to a predefined destination, it provides relatively stable intentions for ego vehicles and helps constrain uncertainty. On this basis, we construct Int2Planner, an \textbf{Int}ention-based \textbf{Int}egrated motion \textbf{Planner} achieves multi-modal planning and prediction. Instead of static intention points, Int2Planner utilizes route intention points for ego vehicles and generates corresponding planning trajectories for each intention point to facilitate multi-modal planning. The experiments on the private dataset and the public nuPlan benchmark show the effectiveness of route intention points, and Int2Planner achieves state-of-the-art performance. We also deploy it in real-world vehicles and have conducted autonomous driving for hundreds of kilometers in urban areas. It further verifies that Int2Planner can continuously interact with the traffic environment. Code will be avaliable at https://github.com/cxlz/Int2Planner.
Authors:Maxime Maria, Simon Guionnière, Nicolas Dacquay, Cyprien Plateau-Holleville, Valentin Guillaume, Vincent Larroque, Jean Lardé, Yassine Naimi, Jean-Philip Piquemal, Guillaume Levieux, Nathalie Lagarde, Stéphane Mérillou, Matthieu Montes
Abstract:
Summary: VTX is a molecular visualization software capable to handle most molecular structures and dynamics trajectories file formats. It features a real-time high-performance molecular graphics engine, based on modern OpenGL, optimized for the visualization of massive molecular systems and molecular dynamics trajectories. VTX includes multiple interactive camera and user interaction features, notably free-fly navigation and a fully modular graphical user interface designed for increased usability. It allows the production of high-resolution images for presentations and posters with custom background. VTX design is focused on performance and usability for research, teaching and educative purposes.
Availability and implementation: VTX is open source and free for non commercial use. Builds for Windows and Ubuntu Linux are available at http://vtx.drugdesign.fr. The source code is available at https://github.com/VTX-Molecular-Visualization . Supplementary Information: A video displaying free-fly navigation in a whole-cell model is available
Authors:Jesus Renero, Idoia Ochoa, Roberto Maestre
Abstract:
Explainability techniques hold significant potential for enhancing the causal discovery process, which is crucial for understanding complex systems in areas like healthcare, economics, and artificial intelligence. However, no causal discovery methods currently incorporate explainability into their models to derive causal graphs. Thus, in this paper we explore this innovative approach, as it offers substantial potential and represents a promising new direction worth investigating. Specifically, we introduce REX, a causal discovery method that leverages machine learning (ML) models coupled with explainability techniques, specifically Shapley values, to identify and interpret significant causal relationships among variables.
Comparative evaluations on synthetic datasets comprising continuous tabular data reveal that REX outperforms state-of-the-art causal discovery methods across diverse data generation processes, including non-linear and additive noise models. Moreover, REX was tested on the Sachs single-cell protein-signaling dataset, achieving a precision of 0.952 and recovering key causal relationships with no incorrect edges. Taking together, these results showcase REX's effectiveness in accurately recovering true causal structures while minimizing false positive predictions, its robustness across diverse datasets, and its applicability to real-world problems. By combining ML and explainability techniques with causal discovery, REX bridges the gap between predictive modeling and causal inference, offering an effective tool for understanding complex causal structures. REX is publicly available at https://github.com/renero/causalgraph.
Authors:Haocheng Luo, Tuan Truong, Tung Pham, Mehrtash Harandi, Dinh Phung, Trung Le
Abstract:
Sharpness-Aware Minimization (SAM) has attracted significant attention for its effectiveness in improving generalization across various tasks. However, its underlying principles remain poorly understood. In this work, we analyze SAM's training dynamics using the maximum eigenvalue of the Hessian as a measure of sharpness, and propose a third-order stochastic differential equation (SDE), which reveals that the dynamics are driven by a complex mixture of second- and third-order terms. We show that alignment between the perturbation vector and the top eigenvector is crucial for SAM's effectiveness in regularizing sharpness, but find that this alignment is often inadequate in practice, limiting SAM's efficiency. Building on these insights, we introduce Eigen-SAM, an algorithm that explicitly aims to regularize the top Hessian eigenvalue by aligning the perturbation vector with the leading eigenvector. We validate the effectiveness of our theory and the practical advantages of our proposed approach through comprehensive experiments. Code is available at https://github.com/RitianLuo/EigenSAM.
Authors:Qiong Wu, Maoxin Ji, Pingyi Fan, Kezhi Wang, Nan Cheng, Wen Chen, Khaled B. Letaief
Abstract:
On-ramp merging presents a critical challenge in autonomous driving, as vehicles from merging lanes need to dynamically adjust their positions and speeds while monitoring traffic on the main road to prevent collisions. To address this challenge, we propose a novel merging control scheme based on reinforcement learning, which integrates lateral control mechanisms. This approach ensures the smooth integration of vehicles from the merging lane onto the main road, optimizing both fuel efficiency and passenger comfort. Furthermore, we recognize the impact of vehicle-to-vehicle (V2V) communication on control strategies and introduce an enhanced protocol leveraging Cellular Vehicle-to-Everything (C-V2X) Mode 4. This protocol aims to reduce the Age of Information (AoI) and improve communication reliability. In our simulations, we employ two AoI-based metrics to rigorously assess the protocol's effectiveness in autonomous driving scenarios. By combining the NS3 network simulator with Python, we simulate V2V communication and vehicle control simultaneously. The results demonstrate that the enhanced C-V2X Mode 4 outperforms the standard version, while the proposed control scheme ensures safe and reliable vehicle operation during on-ramp merging.
Authors:Mingqi Yuan, Bo Li, Xin Jin, Wenjun Zeng
Abstract:
We introduce ADEPT: Adaptive Data ExPloiTation, a simple yet powerful framework to enhance the **data efficiency** and **generalization** in deep reinforcement learning (RL). Specifically, ADEPT adaptively manages the use of sampled data across different learning stages via multi-armed bandit (MAB) algorithms, optimizing data utilization while mitigating overfitting. Moreover, ADEPT can significantly reduce the computational overhead and accelerate a wide range of RL algorithms. We test ADEPT on benchmarks including Procgen, MiniGrid, and PyBullet. Extensive simulation demonstrates that ADEPT can achieve superior performance with remarkable computational efficiency, offering a practical solution to data-efficient RL. Our code is available at https://github.com/yuanmingqi/ADEPT.
Authors:Sunbowen Lee, Junting Zhou, Chang Ao, Kaige Li, Xinrun Du, Sirui He, Haihong Wu, Tianci Liu, Jiaheng Liu, Hamid Alinejad-Rokny, Min Yang, Yitao Liang, Zhoufutu Wen, Shiwen Ni
Abstract:
Model distillation is a fundamental technique in building large language models (LLMs), transferring knowledge from a teacher model to a student model. However, distillation can lead to model homogenization, reducing diversity among models and impairing their ability to robustly handle complex or novel tasks. These limitations underscore the need to systematically quantify the distillation process and its impact. In this work, we propose a framework to evaluate and quantify model distillation. Our method addresses two key aspects: (1) Identifying identity cognition contradictions to assess discrepancies in how models perceive and represent identity-related information, and (2) Analyzing multi-granularity response similarities across models to measure the extent of homogenization. Experimental results demonstrate two key insights: (1) Well-known closed-source and open-source LLMs usually exhibit high distillation degrees, except for Claude, Doubao, and Gemini. (2) Base LLMs show higher distillation degrees compared to aligned LLMs. By offering a systematic approach to improve the transparency of LLM data distillation, we call for LLMs with more independent development and more transparent technical reports to improve LLMs' robustness and safety. The code and data are available under https://github.com/Aegis1863/LLMs-Distillation-Quantification.
Authors:Lijun Li, Zhelun Shi, Xuhao Hu, Bowen Dong, Yiran Qin, Xihui Liu, Lu Sheng, Jing Shao
Abstract:
Text-to-image (T2I) models have rapidly advanced, enabling the generation of high-quality images from text prompts across various domains. However, these models present notable safety concerns, including the risk of generating harmful, biased, or private content. Current research on assessing T2I safety remains in its early stages. While some efforts have been made to evaluate models on specific safety dimensions, many critical risks remain unexplored. To address this gap, we introduce T2ISafety, a safety benchmark that evaluates T2I models across three key domains: toxicity, fairness, and bias. We build a detailed hierarchy of 12 tasks and 44 categories based on these three domains, and meticulously collect 70K corresponding prompts. Based on this taxonomy and prompt set, we build a large-scale T2I dataset with 68K manually annotated images and train an evaluator capable of detecting critical risks that previous work has failed to identify, including risks that even ultra-large proprietary models like GPTs cannot correctly detect. We evaluate 12 prominent diffusion models on T2ISafety and reveal several concerns including persistent issues with racial fairness, a tendency to generate toxic content, and significant variation in privacy protection across the models, even with defense methods like concept erasing. Data and evaluator are released under https://github.com/adwardlee/t2i_safety.
Authors:Wei Tang, Yin-Fang Yang, Zhaofei Wang, Weijia Zhang, Min-Ling Zhang
Abstract:
Multi-instance partial-label learning (MIPL) is an emerging learning framework where each training sample is represented as a multi-instance bag associated with a candidate label set. Existing MIPL algorithms often overlook the margins for attention scores and predicted probabilities, leading to suboptimal generalization performance. A critical issue with these algorithms is that the highest prediction probability of the classifier may appear on a non-candidate label. In this paper, we propose an algorithm named MIPLMA, i.e., Multi-Instance Partial-Label learning with Margin Adjustment, which adjusts the margins for attention scores and predicted probabilities. We introduce a margin-aware attention mechanism to dynamically adjust the margins for attention scores and propose a margin distribution loss to constrain the margins between the predicted probabilities on candidate and non-candidate label sets. Experimental results demonstrate the superior performance of MIPLMA over existing MIPL algorithms, as well as other well-established multi-instance learning algorithms and partial-label learning algorithms.
Authors:Yongduo Sui, Jie Sun, Shuyao Wang, Zemin Liu, Qing Cui, Longfei Li, Xiang Wang
Abstract:
Invariant learning demonstrates substantial potential for enhancing the generalization of graph neural networks (GNNs) with out-of-distribution (OOD) data. It aims to recognize stable features in graph data for classification, based on the premise that these features causally determine the target label, and their influence is invariant to changes in distribution. Along this line, most studies have attempted to pinpoint these stable features by emphasizing explicit substructures in the graph, such as masked or attentive subgraphs, and primarily enforcing the invariance principle in the semantic space, i.e., graph representations. However, we argue that focusing only on the semantic space may not accurately identify these stable features. To address this, we introduce the Unified Invariant Learning (UIL) framework for graph classification. It provides a unified perspective on invariant graph learning, emphasizing both structural and semantic invariance principles to identify more robust stable features. In the graph space, UIL adheres to the structural invariance principle by reducing the distance between graphons over a set of stable features across different environments. Simultaneously, to confirm semantic invariance, UIL underscores that the acquired graph representations should demonstrate exemplary performance across diverse environments. We present both theoretical and empirical evidence to confirm our method's ability to recognize superior stable features. Moreover, through a series of comprehensive experiments complemented by in-depth analyses, we demonstrate that UIL considerably enhances OOD generalization, surpassing the performance of leading baseline methods. Our codes are available at https://github.com/yongduosui/UIL.
Authors:Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao, Dacheng Tao
Abstract:
Recently, long-thought reasoning LLMs, such as OpenAI's O1, adopt extended reasoning processes similar to how humans ponder over complex problems. This reasoning paradigm significantly enhances the model's problem-solving abilities and has achieved promising results. However, long-thought reasoning process leads to a substantial increase in inference time. A pressing challenge is reducing the inference overhead of long-thought LLMs while ensuring accuracy. In this paper, we experimentally demonstrate that long-thought reasoning models struggle to effectively allocate token budgets based on problem difficulty and reasoning redundancies. To address this, we propose Length-Harmonizing Fine-Tuning (O1-Pruner), aiming at minimizing reasoning overhead while maintaining accuracy. This effective fine-tuning method first estimates the LLM's baseline performance through pre-sampling and then uses RL-style fine-tuning to encourage the model to generate shorter reasoning processes under accuracy constraints. This allows the model to achieve efficient reasoning with lower redundancy while maintaining accuracy. Experiments on various mathematical reasoning benchmarks show that O1-Pruner not only significantly reduces inference overhead but also achieves higher accuracy, providing a novel and promising solution to this challenge. Our code is coming soon at https://github.com/StarDewXXX/O1-Pruner
Authors:Kevin Ta, Patrick Foley, Mattson Thieme, Abhishek Pandey, Prashant Shah
Abstract:
Generating unique molecules with biochemically desired properties to serve as viable drug candidates is a difficult task that requires specialized domain expertise. In recent years, diffusion models have shown promising results in accelerating the drug design process through AI-driven molecular generation. However, training these models requires massive amounts of data, which are often isolated in proprietary silos. OpenFL is a federated learning framework that enables privacy-preserving collaborative training across these decentralized data sites. In this work, we present a federated discrete denoising diffusion model that was trained using OpenFL. The federated model achieves comparable performance with a model trained on centralized data when evaluating the uniqueness and validity of the generated molecules. This demonstrates the utility of federated learning in the drug design process.
OpenFL is available at: https://github.com/securefederatedai/openfl
Authors:Xiaoyu Chu, Sacheendra Talluri, Qingxian Lu, Alexandru Iosup
Abstract:
People and businesses increasingly rely on public LLM services, such as ChatGPT, DALLE, and Claude. Understanding their outages, and particularly measuring their failure-recovery processes, is becoming a stringent problem. However, only limited studies exist in this emerging area. Addressing this problem, in this work we conduct an empirical characterization of outages and failure-recovery in public LLM services. We collect and prepare datasets for 8 commonly used LLM services across 3 major LLM providers, including market-leads OpenAI and Anthropic. We conduct a detailed analysis of failure recovery statistical properties, temporal patterns, co-occurrence, and the impact range of outage-causing incidents. We make over 10 observations, among which: (1) Failures in OpenAI's ChatGPT take longer to resolve but occur less frequently than those in Anthropic's Claude;(2) OpenAI and Anthropic service failures exhibit strong weekly and monthly periodicity; and (3) OpenAI services offer better failure-isolation than Anthropic services. Our research explains LLM failure characteristics and thus enables optimization in building and using LLM systems. FAIR data and code are publicly available on https://zenodo.org/records/14018219 and https://github.com/atlarge-research/llm-service-analysis.
Authors:Shanmin Wang, Chengguang Liu, Qingshan Liu
Abstract:
Multimodal sentiment analysis (MSA) identifies individuals' sentiment states in videos by integrating visual, audio, and text modalities. Despite progress in existing methods, the inherent modality heterogeneity limits the effective capture of interactive sentiment features across modalities. In this paper, by introducing a Multi-Modality Collaborative Learning (MMCL) framework, we facilitate cross-modal interactions and capture enhanced and complementary features from modality-common and modality-specific representations, respectively. Specifically, we design a parameter-free decoupling module and separate uni-modality into modality-common and modality-specific components through semantics assessment of cross-modal elements. For modality-specific representations, inspired by the act-reward mechanism in reinforcement learning, we design policy models to adaptively mine complementary sentiment features under the guidance of a joint reward. For modality-common representations, intra-modal attention is employed to highlight crucial components, playing enhanced roles among modalities. Experimental results, including superiority evaluations on four databases, effectiveness verification of each module, and assessment of complementary features, demonstrate that MMCL successfully learns collaborative features across modalities and significantly improves performance. The code can be available at https://github.com/smwanghhh/MMCL.
Authors:Yonghao Zhao, Changtao Li, Chi Shu, Qingbin Wu, Hong Li, Chuan Xu, Tianrui Li, Ziqiang Wang, Zhipeng Luo, Yazhou He
Abstract:
Survival prognosis is crucial for medical informatics. Practitioners often confront small-sized clinical data, especially cancer patient cases, which can be insufficient to induce useful patterns for survival predictions. This study deals with small sample survival analysis by leveraging transfer learning, a useful machine learning technique that can enhance the target analysis with related knowledge pre-learned from other data. We propose and develop various transfer learning methods designed for common survival models. For parametric models such as DeepSurv, Cox-CC (Cox-based neural networks), and DeepHit (end-to-end deep learning model), we apply standard transfer learning techniques like pretraining and fine-tuning. For non-parametric models such as Random Survival Forest, we propose a new transfer survival forest (TSF) model that transfers tree structures from source tasks and fine-tunes them with target data. We evaluated the transfer learning methods on colorectal cancer (CRC) prognosis. The source data are 27,379 SEER CRC stage I patients, and the target data are 728 CRC stage I patients from the West China Hospital. When enhanced by transfer learning, Cox-CC's $C^{td}$ value was boosted from 0.7868 to 0.8111, DeepHit's from 0.8085 to 0.8135, DeepSurv's from 0.7722 to 0.8043, and RSF's from 0.7940 to 0.8297 (the highest performance). All models trained with data as small as 50 demonstrated even more significant improvement. Conclusions: Therefore, the current survival models used for cancer prognosis can be enhanced and improved by properly designed transfer learning techniques. The source code used in this study is available at https://github.com/YonghaoZhao722/TSF.
Authors:Jingwei Yi, Junhao Yin, Ju Xu, Peng Bao, Yongliang Wang, Wei Fan, Hao Wang
Abstract:
Vision-Language Models (VLMs) have demonstrated remarkable capabilities in understanding multimodal inputs and have been widely integrated into Retrieval-Augmented Generation (RAG) based conversational systems. While current VLM-powered chatbots can provide textual source references in their responses, they exhibit significant limitations in referencing contextually relevant images during conversations. In this paper, we introduce Contextual Image Reference -- the ability to appropriately reference relevant images from retrieval documents based on conversation context -- and systematically investigate VLMs' capability in this aspect. We conduct the first evaluation for contextual image referencing, comprising a dedicated testing dataset and evaluation metrics. Furthermore, we propose ImageRef-VL, a method that significantly enhances open-source VLMs' image referencing capabilities through instruction fine-tuning on a large-scale, manually curated multimodal conversation dataset. Experimental results demonstrate that ImageRef-VL not only outperforms proprietary models but also achieves an 88% performance improvement over state-of-the-art open-source VLMs in contextual image referencing tasks. Our code is available at https://github.com/bytedance/ImageRef-VL.
Authors:Ziming Liu, Yizhou Liu, Eric J. Michaud, Jeff Gore, Max Tegmark
Abstract:
We aim to understand physics of skill learning, i.e., how skills are learned in neural networks during training. We start by observing the Domino effect, i.e., skills are learned sequentially, and notably, some skills kick off learning right after others complete learning, similar to the sequential fall of domino cards. To understand the Domino effect and relevant behaviors of skill learning, we take physicists' approach of abstraction and simplification. We propose three models with varying complexities -- the Geometry model, the Resource model, and the Domino model, trading between reality and simplicity. The Domino effect can be reproduced in the Geometry model, whose resource interpretation inspires the Resource model, which can be further simplified to the Domino model. These models present different levels of abstraction and simplification; each is useful to study some aspects of skill learning. The Geometry model provides interesting insights into neural scaling laws and optimizers; the Resource model sheds light on the learning dynamics of compositional tasks; the Domino model reveals the benefits of modularity. These models are not only conceptually interesting -- e.g., we show how Chinchilla scaling laws can emerge from the Geometry model, but also are useful in practice by inspiring algorithmic development -- e.g., we show how simple algorithmic changes, motivated by these toy models, can speed up the training of deep learning models.
Authors:Chao Feng, Ziyang Chen, Aleksander Holynski, Alexei A. Efros, Andrew Owens
Abstract:
We show that the GPS tags contained in photo metadata provide a useful control signal for image generation. We train GPS-to-image models and use them for tasks that require a fine-grained understanding of how images vary within a city. In particular, we train a diffusion model to generate images conditioned on both GPS and text. The learned model generates images that capture the distinctive appearance of different neighborhoods, parks, and landmarks. We also extract 3D models from 2D GPS-to-image models through score distillation sampling, using GPS conditioning to constrain the appearance of the reconstruction from each viewpoint. Our evaluations suggest that our GPS-conditioned models successfully learn to generate images that vary based on location, and that GPS conditioning improves estimated 3D structure.
Authors:Yi Wang, Xinhao Li, Ziang Yan, Yinan He, Jiashuo Yu, Xiangyu Zeng, Chenting Wang, Changlian Ma, Haian Huang, Jianfei Gao, Min Dou, Kai Chen, Wenhai Wang, Yu Qiao, Yali Wang, Limin Wang
Abstract:
This paper aims to improve the performance of video multimodal large language models (MLLM) via long and rich context (LRC) modeling. As a result, we develop a new version of InternVideo2.5 with a focus on enhancing the original MLLMs' ability to perceive fine-grained details and capture long-form temporal structure in videos. Specifically, our approach incorporates dense vision task annotations into MLLMs using direct preference optimization and develops compact spatiotemporal representations through adaptive hierarchical token compression. Experimental results demonstrate this unique design of LRC greatly improves the results of video MLLM in mainstream video understanding benchmarks (short & long), enabling the MLLM to memorize significantly longer video inputs (at least 6x longer than the original), and master specialized vision capabilities like object tracking and segmentation. Our work highlights the importance of multimodal context richness (length and fineness) in empowering MLLM's innate abilites (focus and memory), providing new insights for future research on video MLLM. Code and models are available at https://github.com/OpenGVLab/InternVideo/tree/main/InternVideo2.5
Authors:Kan Jen Cheng, Tingle Li, Gopala Anumanchipalli
Abstract:
Audio texture manipulation involves modifying the perceptual characteristics of a sound to achieve specific transformations, such as adding, removing, or replacing auditory elements. In this paper, we propose an exemplar-based analogy model for audio texture manipulation. Instead of conditioning on text-based instructions, our method uses paired speech examples, where one clip represents the original sound and another illustrates the desired transformation. The model learns to apply the same transformation to new input, allowing for the manipulation of sound textures. We construct a quadruplet dataset representing various editing tasks, and train a latent diffusion model in a self-supervised manner. We show through quantitative evaluations and perceptual studies that our model outperforms text-conditioned baselines and generalizes to real-world, out-of-distribution, and non-speech scenarios. Project page: https://berkeley-speech-group.github.io/audio-texture-analogy/
Authors:Hongjun Wang, Wonmin Byeon, Jiarui Xu, Jinwei Gu, Ka Chun Cheung, Xiaolong Wang, Kai Han, Jan Kautz, Sifei Liu
Abstract:
We present the Generalized Spatial Propagation Network (GSPN), a new attention mechanism optimized for vision tasks that inherently captures 2D spatial structures. Existing attention models, including transformers, linear attention, and state-space models like Mamba, process multi-dimensional data as 1D sequences, compromising spatial coherence and efficiency. GSPN overcomes these limitations by directly operating on spatially coherent image data and forming dense pairwise connections through a line-scan approach. Central to GSPN is the Stability-Context Condition, which ensures stable, context-aware propagation across 2D sequences and reduces the effective sequence length to $\sqrt{N}$ for a square map with N elements, significantly enhancing computational efficiency. With learnable, input-dependent weights and no reliance on positional embeddings, GSPN achieves superior spatial fidelity and state-of-the-art performance in vision tasks, including ImageNet classification, class-guided image generation, and text-to-image generation. Notably, GSPN accelerates SD-XL with softmax-attention by over $84\times$ when generating 16K images.
Authors:Vishagar Arunan, Saeedha Nazar, Hashiru Pramuditha, Vinasirajan Viruthshaan, Sameera Ramasinghe, Simon Lucey, Ranga Rodrigo
Abstract:
Splatting-based 3D reconstruction methods have gained popularity with the advent of 3D Gaussian Splatting, efficiently synthesizing high-quality novel views. These methods commonly resort to using exponential family functions, such as the Gaussian function, as reconstruction kernels due to their anisotropic nature, ease of projection, and differentiability in rasterization. However, the field remains restricted to variations within the exponential family, leaving generalized reconstruction kernels largely underexplored, partly due to the lack of easy integrability in 3D to 2D projections. In this light, we show that a class of decaying anisotropic radial basis functions (DARBFs), which are non-negative functions of the Mahalanobis distance, supports splatting by approximating the Gaussian function's closed-form integration advantage. With this fresh perspective, we demonstrate up to 34% faster convergence during training and a 45% reduction in memory consumption across various DARB reconstruction kernels, while maintaining comparable PSNR, SSIM, and LPIPS results. We will make the code available.
Authors:Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Ziyu Liu, Shengyuan Ding, Shenxi Wu, Yubo Ma, Haodong Duan, Wenwei Zhang, Kai Chen, Dahua Lin, Jiaqi Wang
Abstract:
Despite the promising performance of Large Vision Language Models (LVLMs) in visual understanding, they occasionally generate incorrect outputs. While reward models (RMs) with reinforcement learning or test-time scaling offer the potential for improving generation quality, a critical gap remains: publicly available multi-modal RMs for LVLMs are scarce, and the implementation details of proprietary models are often unclear. We bridge this gap with InternLM-XComposer2.5-Reward (IXC-2.5-Reward), a simple yet effective multi-modal reward model that aligns LVLMs with human preferences. To ensure the robustness and versatility of IXC-2.5-Reward, we set up a high-quality multi-modal preference corpus spanning text, image, and video inputs across diverse domains, such as instruction following, general understanding, text-rich documents, mathematical reasoning, and video understanding. IXC-2.5-Reward achieves excellent results on the latest multi-modal reward model benchmark and shows competitive performance on text-only reward model benchmarks. We further demonstrate three key applications of IXC-2.5-Reward: (1) Providing a supervisory signal for RL training. We integrate IXC-2.5-Reward with Proximal Policy Optimization (PPO) yields IXC-2.5-Chat, which shows consistent improvements in instruction following and multi-modal open-ended dialogue; (2) Selecting the best response from candidate responses for test-time scaling; and (3) Filtering outlier or noisy samples from existing image and video instruction tuning training data. To ensure reproducibility and facilitate further research, we have open-sourced all model weights and training recipes at https://github.com/InternLM/InternLM-XComposer/tree/main/InternLM-XComposer-2.5-Reward
Authors:Xianwei Zhuang, Yuxin Xie, Yufan Deng, Liming Liang, Jinghan Ru, Yuguo Yin, Yuexian Zou
Abstract:
We present VARGPT, a novel multimodal large language model (MLLM) that unifies visual understanding and generation within a single autoregressive framework. VARGPT employs a next-token prediction paradigm for visual understanding and a next-scale prediction paradigm for visual autoregressive generation. VARGPT innovatively extends the LLaVA architecture, achieving efficient scale-wise autoregressive visual generation within MLLMs while seamlessly accommodating mixed-modal input and output within a single model framework. Our VARGPT undergoes a three-stage unified training process on specially curated datasets, comprising a pre-training phase and two mixed visual instruction-tuning phases. The unified training strategy are designed to achieve alignment between visual and textual features, enhance instruction following for both understanding and generation, and improve visual generation quality, respectively. Despite its LLAVA-based architecture for multimodel understanding, VARGPT significantly outperforms LLaVA-1.5 across various vision-centric benchmarks, such as visual question-answering and reasoning tasks. Notably, VARGPT naturally supports capabilities in autoregressive visual generation and instruction-to-image synthesis, showcasing its versatility in both visual understanding and generation tasks. Project page is at: \url{https://vargpt-1.github.io/}
Authors:Jiacheng Zuo, Haibo Hu, Zikang Zhou, Yufei Cui, Ziquan Liu, Jianping Wang, Nan Guan, Jin Wang, Chun Jason Xue
Abstract:
In the pursuit of robust autonomous driving systems, models trained on real-world datasets often struggle to adapt to new environments, particularly when confronted with corner cases such as extreme weather conditions. Collecting these corner cases in the real world is non-trivial, which necessitates the use of simulators for validation. However,the high computational cost and the domain gap in data distribution have hindered the seamless transition between real and simulated driving scenarios. To tackle this challenge, we propose Retrieval-Augmented Learning for Autonomous Driving (RALAD), a novel framework designed to bridge the real-to-sim gap at a low cost. RALAD features three primary designs, including (1) domain adaptation via an enhanced Optimal Transport (OT) method that accounts for both individual and grouped image distances, (2) a simple and unified framework that can be applied to various models, and (3) efficient fine-tuning techniques that freeze the computationally expensive layers while maintaining robustness. Experimental results demonstrate that RALAD compensates for the performance degradation in simulated environments while maintaining accuracy in real-world scenarios across three different models. Taking Cross View as an example, the mIOU and mAP metrics in real-world scenarios remain stable before and after RALAD fine-tuning, while in simulated environments,the mIOU and mAP metrics are improved by 10.30% and 12.29%, respectively. Moreover, the re-training cost of our approach is reduced by approximately 88.1%. Our code is available at https://github.com/JiachengZuo/RALAD.git.
Authors:Wenxin Ma, Qingsong Yao, Xiang Zhang, Zhelong Huang, Zihang Jiang, S. Kevin Zhou
Abstract:
Unsupervised anomaly detection (UAD) from images strives to model normal data distributions, creating discriminative representations to distinguish and precisely localize anomalies. Despite recent advancements in the efficient and unified one-for-all scheme, challenges persist in accurately segmenting anomalies for further monitoring. Moreover, this problem is obscured by the widely-used AUROC metric under imbalanced UAD settings. This motivates us to emphasize the significance of precise segmentation of anomaly pixels using pAP and DSC as metrics. To address the unsolved segmentation task, we introduce the Unified Anomaly Segmentation (UniAS). UniAS presents a multi-level hybrid pipeline that progressively enhances normal information from coarse to fine, incorporating a novel multi-granularity gated CNN (MGG-CNN) into Transformer layers to explicitly aggregate local details from different granularities. UniAS achieves state-of-the-art anomaly segmentation performance, attaining 65.12/59.33 and 40.06/32.50 in pAP/DSC on the MVTec-AD and VisA datasets, respectively, surpassing previous methods significantly. The codes are shared at https://github.com/Mwxinnn/UniAS.
Authors:Maosong Cao, Taolin Zhang, Mo Li, Chuyu Zhang, Yunxin Liu, Haodong Duan, Songyang Zhang, Kai Chen
Abstract:
The quality of Supervised Fine-Tuning (SFT) data plays a critical role in enhancing the conversational capabilities of Large Language Models (LLMs). However, as LLMs become more advanced, the availability of high-quality human-annotated SFT data has become a significant bottleneck, necessitating a greater reliance on synthetic training data. In this work, we introduce Condor, a novel two-stage synthetic data generation framework that incorporates World Knowledge Tree and Self-Reflection Refinement to produce high-quality SFT data at scale. Our experimental results demonstrate that a base model fine-tuned on only 20K Condor-generated samples achieves superior performance compared to counterparts. The additional refinement stage in Condor further enables iterative self-improvement for LLMs at various scales (up to 72B), validating the effectiveness of our approach. Furthermore, our investigation into the scaling for synthetic data in post-training reveals substantial unexplored potential for performance improvements, opening promising avenues for future research.
Authors:Cristiano PatrÃcio, Isabel Rio-Torto, Jaime S. Cardoso, LuÃs F. Teixeira, João C. Neves
Abstract:
The main challenges limiting the adoption of deep learning-based solutions in medical workflows are the availability of annotated data and the lack of interpretability of such systems. Concept Bottleneck Models (CBMs) tackle the latter by constraining the final disease prediction on a set of predefined and human-interpretable concepts. However, the increased interpretability achieved through these concept-based explanations implies a higher annotation burden. Moreover, if a new concept needs to be added, the whole system needs to be retrained. Inspired by the remarkable performance shown by Large Vision-Language Models (LVLMs) in few-shot settings, we propose a simple, yet effective, methodology, CBVLM, which tackles both of the aforementioned challenges. First, for each concept, we prompt the LVLM to answer if the concept is present in the input image. Then, we ask the LVLM to classify the image based on the previous concept predictions. Moreover, in both stages, we incorporate a retrieval module responsible for selecting the best examples for in-context learning. By grounding the final diagnosis on the predicted concepts, we ensure explainability, and by leveraging the few-shot capabilities of LVLMs, we drastically lower the annotation cost. We validate our approach with extensive experiments across four medical datasets and twelve LVLMs (both generic and medical) and show that CBVLM consistently outperforms CBMs and task-specific supervised methods without requiring any training and using just a few annotated examples. More information on our project page: https://cristianopatricio.github.io/CBVLM/.
Authors:Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, Jianfei Cai
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis, boasting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. To achieve a compact size, we propose HAC++, which leverages the relationships between unorganized anchors and a structured hash grid, utilizing their mutual information for context modeling. Additionally, HAC++ captures intra-anchor contextual relationships to further enhance compression performance. To facilitate entropy coding, we utilize Gaussian distributions to precisely estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Moreover, we incorporate an adaptive masking strategy to eliminate invalid Gaussians and anchors. Overall, HAC++ achieves a remarkable size reduction of over 100X compared to vanilla 3DGS when averaged on all datasets, while simultaneously improving fidelity. It also delivers more than 20X size reduction compared to Scaffold-GS. Our code is available at https://github.com/YihangChen-ee/HAC-plus.
Authors:Junyu Xia, Jiesong Bai, Yihang Dong
Abstract:
Low-light image enhancement (LLE) aims to improve the visual quality of images captured in poorly lit conditions, which often suffer from low brightness, low contrast, noise, and color distortions. These issues hinder the performance of computer vision tasks such as object detection, facial recognition, and autonomous driving.Traditional enhancement techniques, such as multi-scale fusion and histogram equalization, fail to preserve fine details and often struggle with maintaining the natural appearance of enhanced images under complex lighting conditions. Although the Retinex theory provides a foundation for image decomposition, it often amplifies noise, leading to suboptimal image quality. In this paper, we propose the Dual Light Enhance Network (DLEN), a novel architecture that incorporates two distinct attention mechanisms, considering both spatial and frequency domains. Our model introduces a learnable wavelet transform module in the illumination estimation phase, preserving high- and low-frequency components to enhance edge and texture details. Additionally, we design a dual-branch structure that leverages the power of the Transformer architecture to enhance both the illumination and structural components of the image.Through extensive experiments, our model outperforms state-of-the-art methods on standard benchmarks.Code is available here: https://github.com/LaLaLoXX/DLEN
Authors:Inès Hyeonsu Kim, Seokju Cho, Jiahui Huang, Jung Yi, Joon-Young Lee, Seungryong Kim
Abstract:
Point tracking in videos is a fundamental task with applications in robotics, video editing, and more. While many vision tasks benefit from pre-trained feature backbones to improve generalizability, point tracking has primarily relied on simpler backbones trained from scratch on synthetic data, which may limit robustness in real-world scenarios. Additionally, point tracking requires temporal awareness to ensure coherence across frames, but using temporally-aware features is still underexplored. Most current methods often employ a two-stage process: an initial coarse prediction followed by a refinement stage to inject temporal information and correct errors from the coarse stage. These approach, however, is computationally expensive and potentially redundant if the feature backbone itself captures sufficient temporal information.
In this work, we introduce Chrono, a feature backbone specifically designed for point tracking with built-in temporal awareness. Leveraging pre-trained representations from self-supervised learner DINOv2 and enhanced with a temporal adapter, Chrono effectively captures long-term temporal context, enabling precise prediction even without the refinement stage. Experimental results demonstrate that Chrono achieves state-of-the-art performance in a refiner-free setting on the TAP-Vid-DAVIS and TAP-Vid-Kinetics datasets, among common feature backbones used in point tracking as well as DINOv2, with exceptional efficiency. Project page: https://cvlab-kaist.github.io/Chrono/
Authors:Kazi Hasan Ibn Arif, Sajib Acharjee Dip, Khizar Hussain, Lang Zhang, Chris Thomas
Abstract:
Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models often generate descriptions containing objects or details that are absent in the input image, a phenomenon commonly known as hallucination. Our work investigates the key reasons behind this issue by analyzing the pattern of self-attention in transformer layers. We find that hallucinations often arise from the progressive weakening of attention weight to visual tokens in the deeper layers of the LLM. Some previous works naively boost the attention of all visual tokens to mitigate this issue, resulting in suboptimal hallucination reduction. To address this, we identify two critical sets of visual tokens that facilitate the transfer of visual information from the vision encoder to the LLM. Local tokens encode grounded information about objects present in an image, while summary tokens capture the overall aggregated representation of the image. Importantly, these two sets of tokens require different levels of weight enhancement. To this end, we propose \textbf{PAINT} (\textbf{P}aying \textbf{A}ttention to \textbf{IN}formed \textbf{T}okens), a plug-and-play framework that intervenes in the self-attention mechanism of the LLM, selectively boosting the attention weights of local and summary tokens with experimentally learned margins. Evaluation on the MSCOCO image captioning dataset demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining accuracy. Code is available at \href{https://github.com/hasanar1f/PAINT}{https://github.com/hasanar1f/PAINT}
Authors:Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng, Mingxin Yang, Sheng Zhang, Xianghui Yang, Huiwen Shi, Sicong Liu, Junta Wu, Yihang Lian, Fan Yang, Ruining Tang, Zebin He, Xinzhou Wang, Jian Liu, Xuhui Zuo, Zhuo Chen, Biwen Lei, Haohan Weng, Jing Xu, Yiling Zhu, Xinhai Liu, Lixin Xu, Changrong Hu, Shaoxiong Yang, Song Zhang, Yang Liu, Tianyu Huang, Lifu Wang, Jihong Zhang, Meng Chen, Liang Dong, Yiwen Jia, Yulin Cai, Jiaao Yu, Yixuan Tang, Hao Zhang, Zheng Ye, Peng He, Runzhou Wu, Chao Zhang, Yonghao Tan, Jie Xiao, Yangyu Tao, Jianchen Zhu, Jinbao Xue, Kai Liu, Chongqing Zhao, Xinming Wu, Zhichao Hu, Lei Qin, Jianbing Peng, Zhan Li, Minghui Chen, Xipeng Zhang, Lin Niu, Paige Wang, Yingkai Wang, Haozhao Kuang, Zhongyi Fan, Xu Zheng, Weihao Zhuang, YingPing He, Tian Liu, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, Jingwei Huang, Chunchao Guo
Abstract:
We present Hunyuan3D 2.0, an advanced large-scale 3D synthesis system for generating high-resolution textured 3D assets. This system includes two foundation components: a large-scale shape generation model -- Hunyuan3D-DiT, and a large-scale texture synthesis model -- Hunyuan3D-Paint. The shape generative model, built on a scalable flow-based diffusion transformer, aims to create geometry that properly aligns with a given condition image, laying a solid foundation for downstream applications. The texture synthesis model, benefiting from strong geometric and diffusion priors, produces high-resolution and vibrant texture maps for either generated or hand-crafted meshes. Furthermore, we build Hunyuan3D-Studio -- a versatile, user-friendly production platform that simplifies the re-creation process of 3D assets. It allows both professional and amateur users to manipulate or even animate their meshes efficiently. We systematically evaluate our models, showing that Hunyuan3D 2.0 outperforms previous state-of-the-art models, including the open-source models and closed-source models in geometry details, condition alignment, texture quality, and etc. Hunyuan3D 2.0 is publicly released in order to fill the gaps in the open-source 3D community for large-scale foundation generative models. The code and pre-trained weights of our models are available at: https://github.com/Tencent/Hunyuan3D-2
Authors:Geonwoo Seo
Abstract:
Wakeword detection plays a critical role in enabling AI assistants to listen to user voices and interact effectively. However, for languages other than English, there is a significant lack of pre-trained wakeword models. Additionally, systems that merely determine the presence of a wakeword can pose serious privacy concerns. In this paper, we propose an end-to-end approach that trains wakewords for Non-English languages, particulary Korean, and uses this to develop a Voice Authentication model to protect user privacy. Our implementation employs an open-source platform OpenWakeWord, which performs wakeword detection using an FCN (Fully-Connected Network) architecture. Once a wakeword is detected, our custom-developed code calculates cosine similarity for robust user authentication. Experimental results demonstrate the effectiveness of our approach, achieving a 16.79% and a 6.6% Equal Error Rate (EER) each in the Wakeword Detection and the Voice Authentication. These findings highlight the model's potential in providing secure and accurate wakeword detection and authentication for Korean users.
Authors:Stefan Lenz, Arsenij Ustjanzew, Marco Jeray, Meike Ressing, Torsten Panholzer
Abstract:
Tumor documentation in Germany is largely done manually, requiring reading patient records and entering data into structured databases. Large language models (LLMs) could potentially enhance this process by improving efficiency and reliability. This evaluation tests eleven different open source LLMs with sizes ranging from 1-70 billion model parameters on three basic tasks of the tumor documentation process: identifying tumor diagnoses, assigning ICD-10 codes, and extracting the date of first diagnosis. For evaluating the LLMs on these tasks, a dataset of annotated text snippets based on anonymized doctors' notes from urology was prepared. Different prompting strategies were used to investigate the effect of the number of examples in few-shot prompting and to explore the capabilities of the LLMs in general. The models Llama 3.1 8B, Mistral 7B, and Mistral NeMo 12 B performed comparably well in the tasks. Models with less extensive training data or having fewer than 7 billion parameters showed notably lower performance, while larger models did not display performance gains. Examples from a different medical domain than urology could also improve the outcome in few-shot prompting, which demonstrates the ability of LLMs to handle tasks needed for tumor documentation. Open source LLMs show a strong potential for automating tumor documentation. Models from 7-12 billion parameters could offer an optimal balance between performance and resource efficiency. With tailored fine-tuning and well-designed prompting, these models might become important tools for clinical documentation in the future. The code for the evaluation is available from https://github.com/stefan-m-lenz/UroLlmEval. We also release the dataset as a new valuable resource that addresses the shortage of authentic and easily accessible benchmarks in German-language medical NLP.
Authors:Sean Man, Guy Ohayon, Ron Raphaeli, Michael Elad
Abstract:
Real-world image restoration deals with the recovery of images suffering from an unknown degradation. This task is typically addressed while being given only degraded images, without their corresponding ground-truth versions. In this hard setting, designing and evaluating restoration algorithms becomes highly challenging. This paper offers a suite of tools that can serve both the design and assessment of real-world image restoration algorithms. Our work starts by proposing a trained model that predicts the chain of degradations a given real-world measured input has gone through. We show how this estimator can be used to approximate the consistency -- the match between the measurements and any proposed recovered image. We also use this estimator as a guiding force for the design of a simple and highly-effective plug-and-play real-world image restoration algorithm, leveraging a pre-trained diffusion-based image prior. Furthermore, this work proposes no-reference proxy measures of MSE and LPIPS, which, without access to the ground-truth images, allow ranking of real-world image restoration algorithms according to their (approximate) MSE and LPIPS. The proposed suite provides a versatile, first of its kind framework for evaluating and comparing blind image restoration algorithms in real-world scenarios.
Authors:Hamid Nasiri, Peter Garraghan
Abstract:
Parameter-efficient fine-tuning methods, such as LoRA, reduces the number of trainable parameters. However, they often suffer from scalability issues and differences between their learning pattern and full fine-tuning. To overcome these limitations, we propose Efficient Weight-Decomposed Low-Rank Adaptation (EDoRA): a novel PEFT method that decomposes pre-trained weights into magnitude and directional components. By freezing low-rank matrices, initializing them by singular value decomposition, and introducing a small trainable matrix between them, EDoRA achieves substantial reduction in trainable parameters while maintaining learning capacity. Experimental results on the GLUE benchmark demonstrate that EDoRA achieves competitive or superior performance compared to state-of-the-art methods, such as LoRA and DoRA, with up to 30x fewer trainable parameters. This makes EDoRA a highly efficient solution for adapting LLMs to diverse tasks under memory-constrained settings. Code is available at https://github.com/Hamid-Nasiri/EDoRA .
Authors:Liam Chalcroft, Jenny Crinion, Cathy J. Price, John Ashburner
Abstract:
Self-supervised deep learning has accelerated 2D natural image analysis but remains difficult to translate into 3D MRI, where data are scarce and pre-trained 2D backbones cannot capture volumetric context. We present a \emph{sequence-invariant} self-supervised framework leveraging quantitative MRI (qMRI). By simulating multiple MRI contrasts from a single 3D qMRI scan and enforcing consistent representations across these contrasts, we learn anatomy-centric rather than sequence-specific features. The result is a single 3D encoder that excels across tasks and protocols. Experiments on healthy brain segmentation (IXI), stroke lesion segmentation (ARC), and MRI denoising show significant gains over baseline SSL approaches, especially in low-data settings (up to +8.3\% Dice, +4.2 dB PSNR). It also generalises to unseen sites, supporting scalable clinical use. Code and trained models are publicly available at https://github.com/liamchalcroft/contrast-squared
Authors:Jin Li, Shoujin Wang, Qi Zhang, Shui Yu, Fang Chen
Abstract:
Incomplete scenario is a prevalent, practical, yet challenging setting in Multimodal Recommendations (MMRec), where some item modalities are missing due to various factors. Recently, a few efforts have sought to improve the recommendation accuracy by exploring generic structures from incomplete data. However, two significant gaps persist: 1) the difficulty in accurately generating missing data due to the limited ability to capture modality distributions; and 2) the critical but overlooked visibility bias, where items with missing modalities are more likely to be disregarded due to the prioritization of items' multimodal data over user preference alignment. This bias raises serious concerns about the fair treatment of items. To bridge these two gaps, we propose a novel Modality-Diffused Counterfactual (MoDiCF) framework for incomplete multimodal recommendations. MoDiCF features two key modules: a novel modality-diffused data completion module and a new counterfactual multimodal recommendation module. The former, equipped with a particularly designed multimodal generative framework, accurately generates and iteratively refines missing data from learned modality-specific distribution spaces. The latter, grounded in the causal perspective, effectively mitigates the negative causal effects of visibility bias and thus assures fairness in recommendations. Both modules work collaboratively to address the two aforementioned significant gaps for generating more accurate and fair results. Extensive experiments on three real-world datasets demonstrate the superior performance of MoDiCF in terms of both recommendation accuracy and fairness. The code and processed datasets are released at https://github.com/JinLi-i/MoDiCF.
Authors:Le Thien Phuc Nguyen, Zhuoran Yu, Yong Jae Lee
Abstract:
Active Speaker Detection (ASD) aims to identify speaking individuals in complex visual scenes. While humans can easily detect speech by matching lip movements to audio, current ASD models struggle to establish this correspondence, often misclassifying non-speaking instances when audio and lip movements are unsynchronized. To address this limitation, we propose Lip landmark Assisted Speaker dEtection for Robustness (LASER). Unlike models that rely solely on facial frames, LASER explicitly focuses on lip movements by integrating lip landmarks in training. Specifically, given a face track, LASER extracts frame-level visual features and the 2D coordinates of lip landmarks using a lightweight detector. These coordinates are encoded into dense feature maps, providing spatial and structural information on lip positions. Recognizing that landmark detectors may sometimes fail under challenging conditions (e.g., low resolution, occlusions, extreme angles), we incorporate an auxiliary consistency loss to align predictions from both lip-aware and face-only features, ensuring reliable performance even when lip data is absent. Extensive experiments across multiple datasets show that LASER outperforms state-of-the-art models, especially in scenarios with desynchronized audio and visuals, demonstrating robust performance in real-world video contexts. Code is available at \url{https://github.com/plnguyen2908/LASER_ASD}.
Authors:Jesse Morris, Yiduo Wang, Mikolaj Kliniewski, Viorela Ila
Abstract:
Traditional Visual Simultaneous Localization and Mapping (vSLAM) systems focus solely on static scene structures, overlooking dynamic elements in the environment. Although effective for accurate visual odometry in complex scenarios, these methods discard crucial information about moving objects. By incorporating this information into a Dynamic SLAM framework, the motion of dynamic entities can be estimated, enhancing navigation whilst ensuring accurate localization. However, the fundamental formulation of Dynamic SLAM remains an open challenge, with no consensus on the optimal approach for accurate motion estimation within a SLAM pipeline. Therefore, we developed DynoSAM, an open-source framework for Dynamic SLAM that enables the efficient implementation, testing, and comparison of various Dynamic SLAM optimization formulations. DynoSAM integrates static and dynamic measurements into a unified optimization problem solved using factor graphs, simultaneously estimating camera poses, static scene, object motion or poses, and object structures. We evaluate DynoSAM across diverse simulated and real-world datasets, achieving state-of-the-art motion estimation in indoor and outdoor environments, with substantial improvements over existing systems. Additionally, we demonstrate DynoSAM utility in downstream applications, including 3D reconstruction of dynamic scenes and trajectory prediction, thereby showcasing potential for advancing dynamic object-aware SLAM systems. DynoSAM is open-sourced at https://github.com/ACFR-RPG/DynOSAM.
Authors:Yang Wang, Haipeng Liu, Zeqian Yi, Biao Qian, Meng Wang
Abstract:
The state-of-the-art recommendation systems have shifted the attention to efficient recommendation, e.g., on-device recommendation, under memory constraints. To this end, the existing methods either focused on the lightweight embeddings for both users and items, or involved on-device systems enjoying the compact embeddings to enhance reusability and reduces space complexity. However, they focus solely on the coarse granularity of embedding, while overlook the fine-grained semantic nuances, to adversarially downgrade the efficacy of meta-embeddings in capturing the intricate relationship over both user and item, consequently resulting into the suboptimal recommendations. In this paper, we aim to study how the meta-embedding can efficiently learn varied grained semantics, together with how the fine-grained meta-embedding can strengthen the representation of coarse-grained meta-embedding. To answer these questions, we develop a novel graph neural networks (GNNs) based recommender where each user and item serves as the node, linked directly to coarse-grained virtual nodes and indirectly to fine-grained virtual nodes, ensuring different grained semantic learning, while disclosing: 1) In contrast to coarse-grained semantics, fine-grained semantics are well captured through sparse meta-embeddings, which adaptively 2) balance the embedding uniqueness and memory constraint. Additionally, the initialization method come up upon SparsePCA, along with a soft thresholding activation function to render the sparseness of the meta-embeddings. We propose a weight bridging update strategy that focuses on matching each coarse-grained meta-embedding with several fine-grained meta-embeddings based on the users/items' semantics. Extensive experiments substantiate our method's superiority over existing baselines. Our code is available at https://github.com/htyjers/C2F-MetaEmbed.
Authors:Moslem Heidarpur, Mitra Mirhassani, Norman Chang
Abstract:
This paper presents digital hardware for computing polynomial multiplication using Number Theoretic Transform (NTT), specifically designed for implementation on Field Programmable Gate Arrays (FPGAs). Multiplying two large polynomials applies to many modern encryption schemes, including those based on Ring Learning with Error (RLWE). The proposed design uses First In, First Out (FIFO) buffers to make the design fully pipelined and capable of computing two n degree polynomials in n/2 clock cycles. This hardware proposes a two-fold reduction in the processing time of polynomial multiplication compared to state-of-the-art enabling twice as much encryption in the same amount of time. Despite that, the proposed hardware utilizes fewer resources than the fastest-reported work.
Authors:Zhili Cheng, Yuge Tu, Ran Li, Shiqi Dai, Jinyi Hu, Shengding Hu, Jiahao Li, Yang Shi, Tianyu Yu, Weize Chen, Lei Shi, Maosong Sun
Abstract:
Multimodal Large Language Models (MLLMs) have shown significant advancements, providing a promising future for embodied agents. Existing benchmarks for evaluating MLLMs primarily utilize static images or videos, limiting assessments to non-interactive scenarios. Meanwhile, existing embodied AI benchmarks are task-specific and not diverse enough, which do not adequately evaluate the embodied capabilities of MLLMs. To address this, we propose EmbodiedEval, a comprehensive and interactive evaluation benchmark for MLLMs with embodied tasks. EmbodiedEval features 328 distinct tasks within 125 varied 3D scenes, each of which is rigorously selected and annotated. It covers a broad spectrum of existing embodied AI tasks with significantly enhanced diversity, all within a unified simulation and evaluation framework tailored for MLLMs. The tasks are organized into five categories: navigation, object interaction, social interaction, attribute question answering, and spatial question answering to assess different capabilities of the agents. We evaluated the state-of-the-art MLLMs on EmbodiedEval and found that they have a significant shortfall compared to human level on embodied tasks. Our analysis demonstrates the limitations of existing MLLMs in embodied capabilities, providing insights for their future development. We open-source all evaluation data and simulation framework at https://github.com/thunlp/EmbodiedEval.
Authors:Riqiang Gao, Mamadou Diallo, Han Liu, Anthony Magliari, Jonathan Sackett, Wilko Verbakel, Sandra Meyers, Rafe Mcbeth, Masoud Zarepisheh, Simon Arberet, Martin Kraus, Florin C. Ghesu, Ali Kamen
Abstract:
Radiotherapy (RT) planning is complex, subjective, and time-intensive. Advances with artificial intelligence (AI) promise to improve its precision and efficiency, but progress is often limited by the scarcity of large, standardized datasets. To address this, we introduce the Automated Iterative RT Planning (AIRTP) system, a scalable solution for generating high-quality treatment plans. This scalable solution is designed to generate substantial volumes of consistently high-quality treatment plans, overcoming a key obstacle in the advancement of AI-driven RT planning. Our AIRTP pipeline adheres to clinical guidelines and automates essential steps, including organ-at-risk (OAR) contouring, helper structure creation, beam setup, optimization, and plan quality improvement, using AI integrated with RT planning software like Varian Eclipse. Furthermore, a novel approach for determining optimization parameters to reproduce 3D dose distributions, i.e. a method to convert dose predictions to deliverable treatment plans constrained by machine limitations is proposed. A comparative analysis of plan quality reveals that our automated pipeline produces treatment plans of quality comparable to those generated manually, which traditionally require several hours of labor per plan. Committed to public research, the first data release of our AIRTP pipeline includes nine cohorts covering head-and-neck and lung cancer sites to support an AAPM 2025 challenge. To our best knowledge, this dataset features more than 10 times number of plans compared to the largest existing well-curated public dataset. Repo: https://github.com/RiqiangGao/GDP-HMM_AAPMChallenge.
Authors:Pouya Hamadanian, Sadjad Fouladi
Abstract:
We introduce Glinthawk, an architecture for offline Large Language Model (LLM) inference. By leveraging a two-tiered structure, Glinthawk optimizes the utilization of the high-end accelerators ("Tier 1") by offloading the attention mechanism to lower-end compute tier ("Tier 2"). This separation allows the memory demand of the attention, known as the key-value cache, to scale independently from the model weights, enabling larger batch sizes and more efficient accelerator usage. Prototyped with NVIDIA T4 GPUs and standard CPU VMs, Glinthawk improves throughput by $5.9\times$ and reduces cost of generation by $2.8\times$, compared to paged attention baselines. For long sequence lengths, it achieves $16.3\times$ throughput improvement at $2.4\times$ less cost. Our evaluation shows that this architecture can tolerate moderate network latency with minimal performance degradation, making it highly effective for latency-tolerant, throughput-focused applications such as batch processing. The prototype is publicly available at https://github.com/microsoft/glinthawk.
Authors:Fatemeh Nazary, Yashar Deldjoo, Tommaso di Noia
Abstract:
This study presents Poison-RAG, a framework for adversarial data poisoning attacks targeting retrieval-augmented generation (RAG)-based recommender systems. Poison-RAG manipulates item metadata, such as tags and descriptions, to influence recommendation outcomes. Using item metadata generated through a large language model (LLM) and embeddings derived via the OpenAI API, we explore the impact of adversarial poisoning attacks on provider-side, where attacks are designed to promote long-tail items and demote popular ones. Two attack strategies are proposed: local modifications, which personalize tags for each item using BERT embeddings, and global modifications, applying uniform tags across the dataset. Experiments conducted on the MovieLens dataset in a black-box setting reveal that local strategies improve manipulation effectiveness by up to 50\%, while global strategies risk boosting already popular items. Results indicate that popular items are more susceptible to attacks, whereas long-tail items are harder to manipulate. Approximately 70\% of items lack tags, presenting a cold-start challenge; data augmentation and synthesis are proposed as potential defense mechanisms to enhance RAG-based systems' resilience. The findings emphasize the need for robust metadata management to safeguard recommendation frameworks. Code and data are available at https://github.com/atenanaz/Poison-RAG.
Authors:Ron Raphaeli, Sean Man, Michael Elad
Abstract:
Consistent improvement of image priors over the years has led to the development of better inverse problem solvers. Diffusion models are the newcomers to this arena, posing the strongest known prior to date. Recently, such models operating in a latent space have become increasingly predominant due to their efficiency. In recent works, these models have been applied to solve inverse problems. Working in the latent space typically requires multiple applications of an Autoencoder during the restoration process, which leads to both computational and restoration quality challenges. In this work, we propose a new approach for handling inverse problems with latent diffusion models, where a learned degradation function operates within the latent space, emulating a known image space degradation. Usage of the learned operator reduces the dependency on the Autoencoder to only the initial and final steps of the restoration process, facilitating faster sampling and superior restoration quality. We demonstrate the effectiveness of our method on a variety of image restoration tasks and datasets, achieving significant improvements over prior art.
Authors:Anwai Archit, Luca Freckmann, Constantin Pape
Abstract:
Medical image segmentation is an important analysis task in clinical practice and research. Deep learning has massively advanced the field, but current approaches are mostly based on models trained for a specific task. Training such models or adapting them to a new condition is costly due to the need for (manually) labeled data. The emergence of vision foundation models, especially Segment Anything, offers a path to universal segmentation for medical images, overcoming these issues. Here, we study how to improve Segment Anything for medical images by comparing different finetuning strategies on a large and diverse dataset. We evaluate the finetuned models on a wide range of interactive and (automatic) semantic segmentation tasks. We find that the performance can be clearly improved for interactive segmentation. However, semantic segmentation does not benefit from pretraining on medical images. Our best model, MedicoSAM, is publicly available at https://github.com/computational-cell-analytics/medico-sam. We show that it is compatible with existing tools for data annotation and believe that it will be of great practical value.
Authors:Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, Heng Ji
Abstract:
Smartphones have become indispensable in modern life, yet navigating complex tasks on mobile devices often remains frustrating. Recent advancements in large multimodal model (LMM)-based mobile agents have demonstrated the ability to perceive and act in mobile environments. However, current approaches face significant limitations: they fall short in addressing real-world human needs, struggle with reasoning-intensive and long-horizon tasks, and lack mechanisms to learn and improve from prior experiences. To overcome these challenges, we introduce Mobile-Agent-E, a hierarchical multi-agent framework capable of self-evolution through past experience. By hierarchical, we mean an explicit separation of high-level planning and low-level action execution. The framework comprises a Manager, responsible for devising overall plans by breaking down complex tasks into subgoals, and four subordinate agents--Perceptor, Operator, Action Reflector, and Notetaker--which handle fine-grained visual perception, immediate action execution, error verification, and information aggregation, respectively. Mobile-Agent-E also features a novel self-evolution module which maintains a persistent long-term memory comprising Tips and Shortcuts. Tips are general guidance and lessons learned from prior tasks on how to effectively interact with the environment. Shortcuts are reusable, executable sequences of atomic operations tailored for specific subroutines. The inclusion of Tips and Shortcuts facilitates continuous refinement in performance and efficiency. Alongside this framework, we introduce Mobile-Eval-E, a new benchmark featuring complex mobile tasks requiring long-horizon, multi-app interactions. Empirical results show that Mobile-Agent-E achieves a 22% absolute improvement over previous state-of-the-art approaches across three foundation model backbones. Project page: https://x-plug.github.io/MobileAgent.
Authors:Saeid Asgari Taghanaki, Joao Monteiro
Abstract:
Large language models (LLMs) have demonstrated remarkable proficiency in generating detailed and coherent explanations of complex concepts. However, the extent to which these models truly comprehend the concepts they articulate remains unclear. To assess the level of comprehension of a model relative to the content it generates, we implemented a self-evaluation pipeline where models: (i) given a topic generate an excerpt with information about the topic, (ii) given an excerpt generate question-answer pairs, and finally (iii) given a question generate an answer. We refer to this self-evaluation approach as Explain-Query-Test (EQT). Interestingly, the accuracy on generated questions resulting from running the EQT pipeline correlates strongly with the model performance as verified by typical benchmarks such as MMLU-Pro. In other words, EQT's performance is predictive of MMLU-Pro's, and EQT can be used to rank models without the need for any external source of evaluation data other than lists of topics of interest. Moreover, our results reveal a disparity between the models' ability to produce detailed explanations and their performance on questions related to those explanations. This gap highlights fundamental limitations in the internal knowledge representation and reasoning abilities of current LLMs. We release the code at https://github.com/asgsaeid/EQT.
Authors:Zhiyuan You, Xin Cai, Jinjin Gu, Tianfan Xue, Chao Dong
Abstract:
With the rapid advancement of Multi-modal Large Language Models (MLLMs), MLLM-based Image Quality Assessment (IQA) methods have shown promising performance in linguistic quality description. However, current methods still fall short in accurately scoring image quality. In this work, we aim to leverage MLLMs to regress accurate quality scores. A key challenge is that the quality score is inherently continuous, typically modeled as a Gaussian distribution, whereas MLLMs generate discrete token outputs. This mismatch necessitates score discretization. Previous approaches discretize the mean score into a one-hot label, resulting in information loss and failing to capture inter-image relationships. We propose a distribution-based approach that discretizes the score distribution into a soft label. This method preserves the characteristics of the score distribution, achieving high accuracy and maintaining inter-image relationships. Moreover, to address dataset variation, where different IQA datasets exhibit various distributions, we introduce a fidelity loss based on Thurstone's model. This loss captures intra-dataset relationships, facilitating co-training across multiple IQA datasets. With these designs, we develop the distribution-based Depicted image Quality Assessment model for Score regression (DeQA-Score). Experiments across multiple benchmarks show that DeQA-Score stably outperforms baselines in score regression. Also, DeQA-Score can predict the score distribution that closely aligns with human annotations. Codes and model weights have been released in https://depictqa.github.io/deqa-score/.
Authors:Zixuan Chen, Yujin Wang, Xin Cai, Zhiyuan You, Zheming Lu, Fan Zhang, Shi Guo, Tianfan Xue
Abstract:
Capturing high dynamic range (HDR) scenes is one of the most important issues in camera design. Majority of cameras use exposure fusion, which fuses images captured by different exposure levels, to increase dynamic range. However, this approach can only handle images with limited exposure difference, normally 3-4 stops. When applying to very high dynamic range scenes where a large exposure difference is required, this approach often fails due to incorrect alignment or inconsistent lighting between inputs, or tone mapping artifacts. In this work, we propose \model, the first exposure fusion technique that can merge inputs with 9 stops differences. The key idea is that we model exposure fusion as a guided inpainting problem, where the under-exposed image is used as a guidance to fill the missing information of over-exposed highlights in the over-exposed region. Using an under-exposed image as a soft guidance, instead of a hard constraint, our model is robust to potential alignment issue or lighting variations. Moreover, by utilizing the image prior of the generative model, our model also generates natural tone mapping, even for very high-dynamic range scenes. Our approach outperforms HDR-Transformer on latest HDR benchmarks. Moreover, to test its performance in ultra high dynamic range scenes, we capture a new real-world exposure fusion benchmark, UltraFusion dataset, with exposure differences up to 9 stops, and experiments show that UltraFusion can generate beautiful and high-quality fusion results under various scenarios. Code and data will be available at https://openimaginglab.github.io/UltraFusion.
Authors:Jiebin Yan, Jiale Rao, Junjie Chen, Ziwen Tan, Weide Liu, Yuming Fang
Abstract:
Omnidirectional image quality assessment (OIQA) has been widely investigated in the past few years and achieved much success. However, most of existing studies are dedicated to solve the uniform distortion problem in OIQA, which has a natural gap with the non-uniform distortion problem, and their ability in capturing non-uniform distortion is far from satisfactory. To narrow this gap, in this paper, we propose a multitask auxiliary network for non-uniformly distorted omnidirectional images, where the parameters are optimized by jointly training the main task and other auxiliary tasks. The proposed network mainly consists of three parts: a backbone for extracting multiscale features from the viewport sequence, a multitask feature selection module for dynamically allocating specific features to different tasks, and auxiliary sub-networks for guiding the proposed model to capture local distortion and global quality change. Extensive experiments conducted on two large-scale OIQA databases demonstrate that the proposed model outperforms other state-of-the-art OIQA metrics, and these auxiliary sub-networks contribute to improve the performance of the proposed model. The source code is available at https://github.com/RJL2000/MTAOIQA.
Authors:Jiebin Yan, Jiale Rao, Xuelin Liu, Yuming Fang, Yifan Zuo, Weide Liu
Abstract:
Omnidirectional image quality assessment (OIQA) has been one of the hot topics in IQA with the continuous development of VR techniques, and achieved much success in the past few years. However, most studies devote themselves to the uniform distortion issue, i.e., all regions of an omnidirectional image are perturbed by the ``same amount'' of noise, while ignoring the non-uniform distortion issue, i.e., partial regions undergo ``different amount'' of perturbation with the other regions in the same omnidirectional image. Additionally, nearly all OIQA models are verified on the platforms containing a limited number of samples, which largely increases the over-fitting risk and therefore impedes the development of OIQA. To alleviate these issues, we elaborately explore this topic from both subjective and objective perspectives. Specifically, we construct a large OIQA database containing 10,320 non-uniformly distorted omnidirectional images, each of which is generated by considering quality impairments on one or two camera len(s). Then we meticulously conduct psychophysical experiments and delve into the influence of both holistic and individual factors (i.e., distortion range and viewing condition) on omnidirectional image quality. Furthermore, we propose a perception-guided OIQA model for non-uniform distortion by adaptively simulating users' viewing behavior. Experimental results demonstrate that the proposed model outperforms state-of-the-art methods. The source code is available at https://github.com/RJL2000/OIQAND.
Authors:Shu Zou, Xinyu Tian, Qinyu Zhao, Zhaoyuan Yang, Jing Zhang
Abstract:
Detecting out-of-distribution (OOD) data is crucial in real-world machine learning applications, particularly in safety-critical domains. Existing methods often leverage language information from vision-language models (VLMs) to enhance OOD detection by improving confidence estimation through rich class-wise text information. However, when building OOD detection score upon on in-distribution (ID) text-image affinity, existing works either focus on each ID class or whole ID label sets, overlooking inherent ID classes' connection. We find that the semantic information across different ID classes is beneficial for effective OOD detection. We thus investigate the ability of image-text comprehension among different semantic-related ID labels in VLMs and propose a novel post-hoc strategy called SimLabel. SimLabel enhances the separability between ID and OOD samples by establishing a more robust image-class similarity metric that considers consistency over a set of similar class labels. Extensive experiments demonstrate the superior performance of SimLabel on various zero-shot OOD detection benchmarks. The proposed model is also extended to various VLM-backbones, demonstrating its good generalization ability. Our demonstration and implementation codes are available at: https://github.com/ShuZou-1/SimLabel.
Authors:Haoran Sun, Yekun Chai, Shuohuan Wang, Yu Sun, Hua Wu, Haifeng Wang
Abstract:
Reinforcement learning from human feedback (RLHF) has proven effective in aligning large language models (LLMs) with human preferences, but often at the cost of reduced output diversity. This trade-off between diversity and alignment quality remains a significant challenge. Drawing inspiration from curiosity-driven exploration in reinforcement learning, we introduce curiosity-driven RLHF (CD-RLHF), a framework that incorporates intrinsic rewards for novel states, alongside traditional sparse extrinsic rewards, to optimize both output diversity and alignment quality. We demonstrate the effectiveness of CD-RLHF through extensive experiments on a range of tasks, including text summarization and instruction following. Our approach achieves significant gains in diversity on multiple diversity-oriented metrics while maintaining alignment with human preferences comparable to standard RLHF. We make our code publicly available at https://github.com/ernie-research/CD-RLHF.
Authors:Akash Kundu
Abstract:
The Sachdev-Ye-Kitaev (SYK) model, known for its strong quantum correlations and chaotic behavior, serves as a key platform for quantum gravity studies. However, variationally preparing thermal states on near-term quantum processors for large systems ($N>12$, where $N$ is the number of Majorana fermions) presents a significant challenge due to the rapid growth in the complexity of parameterized quantum circuits. This paper addresses this challenge by integrating reinforcement learning (RL) with convolutional neural networks, employing an iterative approach to optimize the quantum circuit and its parameters. The refinement process is guided by a composite reward signal derived from entropy and the expectation values of the SYK Hamiltonian. This approach reduces the number of CNOT gates by two orders of magnitude for systems $N\geq12$ compared to traditional methods like first-order Trotterization. We demonstrate the effectiveness of the RL framework in both noiseless and noisy quantum hardware environments, maintaining high accuracy in thermal state preparation. This work advances a scalable, RL-based framework with applications for quantum gravity studies and out-of-time-ordered thermal correlators computation in quantum many-body systems on near-term quantum hardware. The code is available at https://github.com/Aqasch/solving_SYK_model_with_RL.
Authors:Jing Liu, Zhenchao Ma, Zepu Wang, Chenxuanyin Zou, Jiayang Ren, Zehua Wang, Liang Song, Bo Hu, Yang Liu, Victor C. M. Leung
Abstract:
Diffusion models (DMs) have emerged as a powerful class of generative AI models, showing remarkable potential in anomaly detection (AD) tasks across various domains, such as cybersecurity, fraud detection, healthcare, and manufacturing. The intersection of these two fields, termed diffusion models for anomaly detection (DMAD), offers promising solutions for identifying deviations in increasingly complex and high-dimensional data. In this survey, we review recent advances in DMAD research. We begin by presenting the fundamental concepts of AD and DMs, followed by a comprehensive analysis of classic DM architectures including DDPMs, DDIMs, and Score SDEs. We further categorize existing DMAD methods into reconstruction-based, density-based, and hybrid approaches, providing detailed examinations of their methodological innovations. We also explore the diverse tasks across different data modalities, encompassing image, time series, video, and multimodal data analysis. Furthermore, we discuss critical challenges and emerging research directions, including computational efficiency, model interpretability, robustness enhancement, edge-cloud collaboration, and integration with large language models. The collection of DMAD research papers and resources is available at https://github.com/fdjingliu/DMAD.
Authors:Sahar Tahmasebi, David Ernst, Eric Müller-Budack, Ralph Ewerth
Abstract:
The web has become a crucial source of information, but it is also used to spread disinformation, often conveyed through multiple modalities like images and text. The identification of inconsistent cross-modal information, in particular entities such as persons, locations, and events, is critical to detect disinformation. Previous works either identify out-of-context disinformation by assessing the consistency of images to the whole document, neglecting relations of individual entities, or focus on generic entities that are not relevant to news. So far, only few approaches have addressed the task of validating entity consistency between images and text in news. However, the potential of large vision-language models (LVLMs) has not been explored yet. In this paper, we propose an LVLM-based framework for verifying Cross-modal Entity Consistency~(LVLM4CEC), to assess whether persons, locations and events in news articles are consistent across both modalities. We suggest effective prompting strategies for LVLMs for entity verification that leverage reference images crawled from web. Moreover, we extend three existing datasets for the task of entity verification in news providing manual ground-truth data. Our results show the potential of LVLMs for automating cross-modal entity verification, showing improved accuracy in identifying persons and events when using evidence images. Moreover, our method outperforms a baseline for location and event verification in documents. The datasets and source code are available on GitHub at https://github.com/TIBHannover/LVLM4CEC.
Authors:Chung-ju Huang, Yuanpeng He, Xiao Han, Wenpin Jiao, Zhi Jin, Leye Wang
Abstract:
Cross-hospital collaboration has the potential to address disparities in medical resources across different regions. However, strict privacy regulations prohibit the direct sharing of sensitive patient information between hospitals. Vertical federated learning (VFL) offers a novel privacy-preserving machine learning paradigm that maximizes data utility across multiple hospitals. Traditional VFL methods, however, primarily benefit patients with overlapping data, leaving vulnerable non-overlapping patients without guaranteed improvements in medical prediction services. While some knowledge transfer techniques can enhance the prediction performance for non-overlapping patients, they fall short in addressing scenarios where overlapping and non-overlapping patients belong to different domains, resulting in challenges such as feature heterogeneity and label heterogeneity. To address these issues, we propose a novel unified vertical federated knowledge transfer framework (Unitrans). Our framework consists of three key steps. First, we extract the federated representation of overlapping patients by employing an effective vertical federated representation learning method to model multi-party joint features online. Next, each hospital learns a local knowledge transfer module offline, enabling the transfer of knowledge from the federated representation of overlapping patients to the enriched representation of local non-overlapping patients in a domain-adaptive manner. Finally, hospitals utilize these enriched local representations to enhance performance across various downstream medical prediction tasks. Experiments on real-world medical datasets validate the framework's dual effectiveness in both intra-domain and cross-domain knowledge transfer. The code of \method is available at \url{https://github.com/Chung-ju/Unitrans}.
Authors:Zibin Wang, Zhiyuan Ouyang, Xiangyun Zhang
Abstract:
Flow-matching models provide a powerful framework for various applications, offering efficient sampling and flexible probability path modeling. These models are characterized by flows with low curvature in learned generative trajectories, which results in reduced truncation error at each sampling step. To further reduce curvature, we propose block matching. This novel approach leverages label information to partition the data distribution into blocks and match them with a prior distribution parameterized using the same label information, thereby learning straighter flows. We demonstrate that the variance of the prior distribution can control the curvature upper bound of forward trajectories in flow-matching models. By designing flexible regularization strategies to adjust this variance, we achieve optimal generation performance, effectively balancing the trade-off between maintaining diversity in generated samples and minimizing numerical solver errors. Our results demonstrate competitive performance with models of the same parameter scale.Code is available at \url{https://github.com/wpp13749/block_flow}.
Authors:Ruojun Xu, Weijie Xi, Xiaodi Wang, Yongbo Mao, Zach Cheng
Abstract:
Training-free diffusion-based methods have achieved remarkable success in style transfer, eliminating the need for extensive training or fine-tuning. However, due to the lack of targeted training for style information extraction and constraints on the content image layout, training-free methods often suffer from layout changes of original content and content leakage from style images. Through a series of experiments, we discovered that an effective startpoint in the sampling stage significantly enhances the style transfer process. Based on this discovery, we propose StyleSSP, which focuses on obtaining a better startpoint to address layout changes of original content and content leakage from style image. StyleSSP comprises two key components: (1) Frequency Manipulation: To improve content preservation, we reduce the low-frequency components of the DDIM latent, allowing the sampling stage to pay more attention to the layout of content images; and (2) Negative Guidance via Inversion: To mitigate the content leakage from style image, we employ negative guidance in the inversion stage to ensure that the startpoint of the sampling stage is distanced from the content of style image. Experiments show that StyleSSP surpasses previous training-free style transfer baselines, particularly in preserving original content and minimizing the content leakage from style image. Project page: https://github.com/bytedance/StyleSSP.
Authors:Ziheng Zhang, Jianyang Gu, Arpita Chowdhury, Zheda Mai, David Carlyn, Tanya Berger-Wolf, Yu Su, Wei-Lun Chao
Abstract:
Class activation map (CAM) has been widely used to highlight image regions that contribute to class predictions. Despite its simplicity and computational efficiency, CAM often struggles to identify discriminative regions that distinguish visually similar fine-grained classes. Prior efforts address this limitation by introducing more sophisticated explanation processes, but at the cost of extra complexity. In this paper, we propose Finer-CAM, a method that retains CAM's efficiency while achieving precise localization of discriminative regions. Our key insight is that the deficiency of CAM lies not in "how" it explains, but in "what" it explains. Specifically, previous methods attempt to identify all cues contributing to the target class's logit value, which inadvertently also activates regions predictive of visually similar classes. By explicitly comparing the target class with similar classes and spotting their differences, Finer-CAM suppresses features shared with other classes and emphasizes the unique, discriminative details of the target class. Finer-CAM is easy to implement, compatible with various CAM methods, and can be extended to multi-modal models for accurate localization of specific concepts. Additionally, Finer-CAM allows adjustable comparison strength, enabling users to selectively highlight coarse object contours or fine discriminative details. Quantitatively, we show that masking out the top 5% of activated pixels by Finer-CAM results in a larger relative confidence drop compared to baselines. The source code and demo are available at https://github.com/Imageomics/Finer-CAM.
Authors:Yepeng Liu, Zhichao Sun, Baosheng Yu, Yitian Zhao, Bo Du, Yongchao Xu, Jun Cheng
Abstract:
Many keypoint detection and description methods have been proposed for image matching or registration. While these methods demonstrate promising performance for single-modality image matching, they often struggle with multimodal data because the descriptors trained on single-modality data tend to lack robustness against the non-linear variations present in multimodal data. Extending such methods to multimodal image matching often requires well-aligned multimodal data to learn modality-invariant descriptors. However, acquiring such data is often costly and impractical in many real-world scenarios. To address this challenge, we propose a modality-invariant feature learning network (MIFNet) to compute modality-invariant features for keypoint descriptions in multimodal image matching using only single-modality training data. Specifically, we propose a novel latent feature aggregation module and a cumulative hybrid aggregation module to enhance the base keypoint descriptors trained on single-modality data by leveraging pre-trained features from Stable Diffusion models. %, our approach generates robust and invariant features across diverse and unknown modalities. We validate our method with recent keypoint detection and description methods in three multimodal retinal image datasets (CF-FA, CF-OCT, EMA-OCTA) and two remote sensing datasets (Optical-SAR and Optical-NIR). Extensive experiments demonstrate that the proposed MIFNet is able to learn modality-invariant feature for multimodal image matching without accessing the targeted modality and has good zero-shot generalization ability. The code will be released at https://github.com/lyp-deeplearning/MIFNet.
Authors:Yanchao Wang, Dawei Zhang, Run Li, Zhonglong Zheng, Minglu Li
Abstract:
Multi-object tracking (MOT) is a rising topic in video processing technologies and has important application value in consumer electronics. Currently, tracking-by-detection (TBD) is the dominant paradigm for MOT, which performs target detection and association frame by frame. However, the association performance of TBD methods degrades in complex scenes with heavy occlusions, which hinders the application of such methods in real-world scenarios.To this end, we incorporate pseudo-depth cues to enhance the association performance and propose Pseudo-Depth SORT (PD-SORT). First, we extend the Kalman filter state vector with pseudo-depth states. Second, we introduce a novel depth volume IoU (DVIoU) by combining the conventional 2D IoU with pseudo-depth. Furthermore, we develop a quantized pseudo-depth measurement (QPDM) strategy for more robust data association. Besides, we also integrate camera motion compensation (CMC) to handle dynamic camera situations. With the above designs, PD-SORT significantly alleviates the occlusion-induced ambiguous associations and achieves leading performances on DanceTrack, MOT17, and MOT20. Note that the improvement is especially obvious on DanceTrack, where objects show complex motions, similar appearances, and frequent occlusions. The code is available at https://github.com/Wangyc2000/PD_SORT.
Authors:Xiangyang Hu, Xiangyu Shen, Yifei Sun, Xuhao Shan, Wenwen Min, Liyilei Su, Xiaomao Fan, Ahmed Elazab, Ruiquan Ge, Changmiao Wang, Xiaopeng Fan
Abstract:
Alzheimer's disease (AD) is a common neurodegenerative disease among the elderly. Early prediction and timely intervention of its prodromal stage, mild cognitive impairment (MCI), can decrease the risk of advancing to AD. Combining information from various modalities can significantly improve predictive accuracy. However, challenges such as missing data and heterogeneity across modalities complicate multimodal learning methods as adding more modalities can worsen these issues. Current multimodal fusion techniques often fail to adapt to the complexity of medical data, hindering the ability to identify relationships between modalities. To address these challenges, we propose an innovative multimodal approach for predicting MCI conversion, focusing specifically on the issues of missing positron emission tomography (PET) data and integrating diverse medical information. The proposed incomplete triple-modal MCI conversion prediction network is tailored for this purpose. Through the missing modal generation module, we synthesize the missing PET data from the magnetic resonance imaging and extract features using specifically designed encoders. We also develop a channel aggregation module and a triple-modal co-attention fusion module to reduce feature redundancy and achieve effective multimodal data fusion. Furthermore, we design a loss function to handle missing modality issues and align cross-modal features. These components collectively harness multimodal data to boost network performance. Experimental results on the ADNI1 and ADNI2 datasets show that our method significantly surpasses existing unimodal and other multimodal models. Our code is available at https://github.com/justinhxy/ITFC.
Authors:Ahmad Mousavi, Ramin Zandvakili
Abstract:
Kernel-free quadratic surface support vector machines have recently gained traction due to their flexibility in modeling nonlinear decision boundaries without relying on kernel functions. However, the introduction of a full quadratic classifier significantly increases the number of model parameters, scaling quadratically with data dimensionality, which often leads to overfitting and makes interpretation difficult. To address these challenges, we propose a sparse variant of the QSVM by enforcing a cardinality constraint on the model parameters. While enhancing generalization and promoting sparsity, leveraging the $\ell_0$-norm inevitably incurs additional computational complexity. To tackle this, we develop a penalty decomposition algorithm capable of producing solutions that provably satisfy the first-order Lu-Zhang optimality conditions. Our approach accommodates both hinge and quadratic loss functions. In both cases, we demonstrate that the subproblems arising within the algorithm either admit closed-form solutions or can be solved efficiently through dual formulations, which contributes to the method's overall effectiveness. We also analyze the convergence behavior of the algorithm under both loss settings. Finally, we validate our approach on several real-world datasets, demonstrating its ability to reduce overfitting while maintaining strong classification performance. The complete implementation and experimental code are publicly available at https://github.com/raminzandvakili/L0-QSVM.
Authors:Hongwei Sha, Muchen Dong, Quanyou Luo, Ming Lu, Hao Chen, Zhan Ma
Abstract:
Geostationary Earth Orbit (GEO) satellite communication demonstrates significant advantages in emergency short burst data services. However, unstable satellite networks, particularly those with frequent packet loss, present a severe challenge to accurate image transmission. To address it, we propose a loss-resilient image coding approach that leverages end-to-end optimization in learned image compression (LIC). Our method builds on the channel-wise progressive coding framework, incorporating Spatial-Channel Rearrangement (SCR) on the encoder side and Mask Conditional Aggregation (MCA) on the decoder side to improve reconstruction quality with unpredictable errors. By integrating the Gilbert-Elliot model into the training process, we enhance the model's ability to generalize in real-world network conditions. Extensive evaluations show that our approach outperforms traditional and deep learning-based methods in terms of compression performance and stability under diverse packet loss, offering robust and efficient progressive transmission even in challenging environments. Code is available at https://github.com/NJUVISION/LossResilientLIC.
Authors:Tuo Feng, Wenguan Wang, Yi Yang
Abstract:
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling, fundamentally transforming how vehicles interpret dynamic scenes and execute safe decision-making. World models have emerged as a linchpin technology, offering high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics. This paper systematically reviews recent advances in world models for autonomous driving, proposing a three-tiered taxonomy: (i) Generation of Future Physical World, covering Image-, BEV-, OG-, and PC-based generation methods that enhance scene evolution modeling through diffusion models and 4D occupancy forecasting; (ii) Behavior Planning for Intelligent Agents, combining rule-driven and learning-based paradigms with cost map optimization and reinforcement learning for trajectory generation in complex traffic conditions; (ii) Interaction between Prediction and Planning, achieving multi-agent collaborative decision-making through latent space diffusion and memory-augmented architectures. The study further analyzes training paradigms, including self-supervised learning, multimodal pretraining, and generative data augmentation, while evaluating world models' performance in scene understanding and motion prediction tasks. Future research must address key challenges in self-supervised representation learning, multimodal fusion, and advanced simulation to advance the practical deployment of world models in complex urban environments. Overall, the comprehensive analysis provides a technical roadmap for harnessing the transformative potential of world models in advancing safe and reliable autonomous driving solutions.
Authors:Tal Zeevi, Lawrence H. Staib, John A. Onofrey
Abstract:
Monte-Carlo (MC) Dropout provides a practical solution for estimating predictive distributions in deterministic neural networks. Traditional dropout, applied within the signal space, may fail to account for frequency-related noise common in medical imaging, leading to biased predictive estimates. A novel approach extends Dropout to the frequency domain, allowing stochastic attenuation of signal frequencies during inference. This creates diverse global textural variations in feature maps while preserving structural integrity -- a factor we hypothesize and empirically show is contributing to accurately estimating uncertainties in semantic segmentation. We evaluated traditional MC-Dropout and the MC-frequency Dropout in three segmentation tasks involving different imaging modalities: (i) prostate zones in biparametric MRI, (ii) liver tumors in contrast-enhanced CT, and (iii) lungs in chest X-ray scans. Our results show that MC-Frequency Dropout improves calibration, convergence, and semantic uncertainty, thereby improving prediction scrutiny, boundary delineation, and has the potential to enhance medical decision-making.
Authors:Yassir Bendou, Amine Ouasfi, Vincent Gripon, Adnane Boukhayma
Abstract:
The growing popularity of Contrastive Language-Image Pretraining (CLIP) has led to its widespread application in various visual downstream tasks. To enhance CLIP's effectiveness and versatility, efficient few-shot adaptation techniques have been widely adopted. Among these approaches, training-free methods, particularly caching methods exemplified by Tip-Adapter, have gained attention for their lightweight adaptation without the need for additional fine-tuning. In this paper, we revisit Tip-Adapter from a kernel perspective, showing that caching methods function as local adapters and are connected to a well-established kernel literature. Drawing on this insight, we offer a theoretical understanding of how these methods operate and suggest multiple avenues for enhancing the Tip-Adapter baseline. Notably, our analysis shows the importance of incorporating global information in local adapters. Therefore, we subsequently propose a global method that learns a proximal regularizer in a reproducing kernel Hilbert space (RKHS) using CLIP as a base learner. Our method, which we call ProKeR (Proximal Kernel ridge Regression), has a closed form solution and achieves state-of-the-art performances across 11 datasets in the standard few-shot adaptation benchmark.
Authors:Konrad Lis, Tomasz Kryjak, Marek Gorgon
Abstract:
This paper presents LiFT, a lightweight, fully quantized 3D object detection algorithm for LiDAR data, optimized for real-time inference on FPGA platforms. Through an in-depth analysis of FPGA-specific limitations, we identify a set of FPGA-induced constraints that shape the algorithm's design. These include a computational complexity limit of 30 GMACs (billion multiply-accumulate operations), INT8 quantization for weights and activations, 2D cell-based processing instead of 3D voxels, and minimal use of skip connections. To meet these constraints while maximizing performance, LiFT combines novel mechanisms with state-of-the-art techniques such as reparameterizable convolutions and fully sparse architecture. Key innovations include the Dual-bound Pillar Feature Net, which boosts performance without increasing complexity, and an efficient scheme for INT8 quantization of input features. With a computational cost of just 20.73 GMACs, LiFT stands out as one of the few algorithms targeting minimal-complexity 3D object detection. Among comparable methods, LiFT ranks first, achieving an mAP of 51.84% and an NDS of 61.01% on the challenging NuScenes validation dataset. The code will be available at https://github.com/vision-agh/lift.
Authors:William Doherty, Anton Lee, Heitor Murilo Gomes
Abstract:
The rapid advancement of generative AI models capable of creating realistic media has led to a need for classifiers that can accurately distinguish between genuine and artificially-generated images. A significant challenge for these classifiers emerges when they encounter images from generative models that are not represented in their training data, usually resulting in diminished performance. A typical approach is to periodically update the classifier's training data with images from the new generative models then retrain the classifier on the updated dataset. However, in some real-life scenarios, storage, computational, or privacy constraints render this approach impractical. Additionally, models used in security applications may be required to rapidly adapt. In these circumstances, continual learning provides a promising alternative, as the classifier can be updated without retraining on the entire dataset. In this paper, we introduce a new dataset called CLOFAI (Continual Learning On Fake and Authentic Images), which takes the form of a domain-incremental image classification problem. Moreover, we showcase the applicability of this dataset as a benchmark for evaluating continual learning methodologies. In doing this, we set a baseline on our novel dataset using three foundational continual learning methods -- EWC, GEM, and Experience Replay -- and find that EWC performs poorly, while GEM and Experience Replay show promise, performing significantly better than a Naive baseline. The dataset and code to run the experiments can be accessed from the following GitHub repository: https://github.com/Will-Doherty/CLOFAI.
Authors:Daisuke Kikuta, Hiroki Ikeuchi, Kengo Tajiri
Abstract:
Chaos Engineering (CE) is an engineering technique aimed at improving the resiliency of distributed systems. It involves artificially injecting specific failures into a distributed system and observing its behavior in response. Based on the observation, the system can be proactively improved to handle those failures. Recent CE tools implement the automated execution of predefined CE experiments. However, defining these experiments and improving the system based on the experimental results still remain manual. To reduce the costs of the manual operations, we propose ChaosEater, a system for automating the entire CE operations with Large Language Models (LLMs). It predefines the agentic workflow according to a systematic CE cycle and assigns subdivided operations within the workflow to LLMs. ChaosEater targets CE for Kubernetes systems, which are managed through code (i.e., Infrastructure as Code). Therefore, the LLMs in ChaosEater perform software engineering tasks to complete CE cycles, including requirement definition, code generation, debugging, and testing. We evaluate ChaosEater through case studies on both small and large Kubernetes systems. The results demonstrate that it stably completes reasonable single CE cycles with significantly low time and monetary costs. The CE cycles are also qualitatively validated by human engineers and LLMs.
Authors:Dominik Kulmer, Ilir Tahiraj, Andrii Chumak, Markus Lienkamp
Abstract:
Today's autonomous vehicles rely on a multitude of sensors to perceive their environment. To improve the perception or create redundancy, the sensor's alignment relative to each other must be known. With Multi-LiCa, we present a novel approach for the alignment, e.g. calibration. We present an automatic motion- and targetless approach for the extrinsic multi LiDAR-to-LiDAR calibration without the need for additional sensor modalities or an initial transformation input. We propose a two-step process with feature-based matching for the coarse alignment and a GICP-based fine registration in combination with a cost-based matching strategy. Our approach can be applied to any number of sensors and positions if there is a partial overlap between the field of view of single sensors. We show that our pipeline is better generalized to different sensor setups and scenarios and is on par or better in calibration accuracy than existing approaches. The presented framework is integrated in ROS 2 but can also be used as a standalone application. To build upon our work, our source code is available at: https://github.com/TUMFTM/Multi_LiCa.
Authors:Elad Levi, Ilan Kadar
Abstract:
Large Language Models (LLMs) are transforming artificial intelligence, evolving into task-oriented systems capable of autonomous planning and execution. One of the primary applications of LLMs is conversational AI systems, which must navigate multi-turn dialogues, integrate domain-specific APIs, and adhere to strict policy constraints. However, evaluating these agents remains a significant challenge, as traditional methods fail to capture the complexity and variability of real-world interactions. We introduce IntellAgent, a scalable, open-source multi-agent framework designed to evaluate conversational AI systems comprehensively. IntellAgent automates the creation of diverse, synthetic benchmarks by combining policy-driven graph modeling, realistic event generation, and interactive user-agent simulations. This innovative approach provides fine-grained diagnostics, addressing the limitations of static and manually curated benchmarks with coarse-grained metrics. IntellAgent represents a paradigm shift in evaluating conversational AI. By simulating realistic, multi-policy scenarios across varying levels of complexity, IntellAgent captures the nuanced interplay of agent capabilities and policy constraints. Unlike traditional methods, it employs a graph-based policy model to represent relationships, likelihoods, and complexities of policy interactions, enabling highly detailed diagnostics. IntellAgent also identifies critical performance gaps, offering actionable insights for targeted optimization. Its modular, open-source design supports seamless integration of new domains, policies, and APIs, fostering reproducibility and community collaboration. Our findings demonstrate that IntellAgent serves as an effective framework for advancing conversational AI by addressing challenges in bridging research and deployment. The framework is available at https://github.com/plurai-ai/intellagent
Authors:Zhipeng Yu, Qianqian Xu, Yangbangyan Jiang, Yingfei Sun, Qingming Huang
Abstract:
The existence of noisy labels in real-world data negatively impacts the performance of deep learning models. Although much research effort has been devoted to improving the robustness towards noisy labels in classification tasks, the problem of noisy labels in deep metric learning (DML) remains under-explored. Existing noisy label learning methods designed for DML mainly discard suspicious noisy samples, resulting in a waste of the training data. To address this issue, we propose a noise-robust DML framework with SubGroup-based Positive-pair Selection (SGPS), which constructs reliable positive pairs for noisy samples to enhance the sample utilization. Specifically, SGPS first effectively identifies clean and noisy samples by a probability-based clean sample selectionstrategy. To further utilize the remaining noisy samples, we discover their potential similar samples based on the subgroup information given by a subgroup generation module and then aggregate them into informative positive prototypes for each noisy sample via a positive prototype generation module. Afterward, a new contrastive loss is tailored for the noisy samples with their selected positive pairs. SGPS can be easily integrated into the training process of existing pair-wise DML tasks, like image retrieval and face recognition. Extensive experiments on multiple synthetic and real-world large-scale label noise datasets demonstrate the effectiveness of our proposed method. Without any bells and whistles, our SGPS framework outperforms the state-of-the-art noisy label DML methods. Code is available at \url{https://github.com/smuelpeng/SGPS-NoiseFreeDML}.
Authors:Eunjin Kim, Hyeonjin Kim, Kyong Hwan Jin, Jaejun Yoo
Abstract:
While prior methods in Continuous Spatial-Temporal Video Super-Resolution (C-STVSR) employ Implicit Neural Representation (INR) for continuous encoding, they often struggle to capture the complexity of video data, relying on simple coordinate concatenation and pre-trained optical flow networks for motion representation. Interestingly, we find that adding position encoding, contrary to common observations, does not improve--and even degrades--performance. This issue becomes particularly pronounced when combined with pre-trained optical flow networks, which can limit the model's flexibility. To address these issues, we propose BF-STVSR, a C-STVSR framework with two key modules tailored to better represent spatial and temporal characteristics of video: 1) B-spline Mapper for smooth temporal interpolation, and 2) Fourier Mapper for capturing dominant spatial frequencies. Our approach achieves state-of-the-art in various metrics, including PSNR and SSIM, showing enhanced spatial details and natural temporal consistency. Our code is available https://github.com/Eunjnnn/bfstvsr.
Authors:Qi Cheems Wang, Zehao Xiao, Yixiu Mao, Yun Qu, Jiayi Shen, Yiqin Lv, Xiangyang Ji
Abstract:
Foundation models have revolutionized general-purpose problem-solving, offering rapid task adaptation through pretraining, meta-training, and finetuning. Recent crucial advances in these paradigms reveal the importance of challenging task prioritized sampling to enhance adaptation robustness under distribution shifts. However, ranking task difficulties over iteration as a preliminary step typically requires exhaustive task evaluation, which is practically unaffordable in computation and data-annotation. This study provides a novel perspective to illuminate the possibility of leveraging the dual importance of adaptation robustness and learning efficiency, particularly in scenarios where task evaluation is risky or costly, such as iterative agent-environment interactions for robotic policy evaluation or computationally intensive inference steps for finetuning foundation models. Firstly, we introduce Model Predictive Task Sampling (MPTS), a framework that bridges the task space and adaptation risk landscape, providing a theoretical foundation for robust active task sampling. MPTS employs a generative model to characterize the episodic optimization process and predicts task-specific adaptation risk via posterior inference. The resulting risk learner amortizes the costly evaluation of task adaptation performance and provably approximates task difficulty rankings. MPTS seamlessly integrates into zero-shot, few-shot, and supervised finetuning settings. Empirically, we conduct extensive experiments in pattern recognition using foundation models and sequential decision-making. Our results demonstrate that MPTS significantly enhances adaptation robustness for tail or out-of-distribution (OOD) tasks and improves learning efficiency compared to state-of-the-art (SOTA) methods. The code is available at the project site https://github.com/thu-rllab/MPTS.
Authors:Sani Abdullahi Sani, Shamsuddeen Hassan Muhammad, Devon Jarvis
Abstract:
Sentiment analysis (SA) plays a vital role in Natural Language Processing (NLP) by ~identifying sentiments expressed in text. Although significant advances have been made in SA for widely spoken languages, low-resource languages such as Hausa face unique challenges, primarily due to a lack of digital resources. This study investigates the effectiveness of Language-Adaptive Fine-Tuning (LAFT) to improve SA performance in Hausa. We first curate a diverse, unlabeled corpus to expand the model's linguistic capabilities, followed by applying LAFT to adapt AfriBERTa specifically to the nuances of the Hausa language. The adapted model is then fine-tuned on the labeled NaijaSenti sentiment dataset to evaluate its performance. Our findings demonstrate that LAFT gives modest improvements, which may be attributed to the use of formal Hausa text rather than informal social media data. Nevertheless, the pre-trained AfriBERTa model significantly outperformed models not specifically trained on Hausa, highlighting the importance of using pre-trained models in low-resource contexts. This research emphasizes the necessity for diverse data sources to advance NLP applications for low-resource African languages. We published the code and the dataset to encourage further research and facilitate reproducibility in low-resource NLP here: https://github.com/Sani-Abdullahi-Sani/Natural-Language-Processing/blob/main/Sentiment%20Analysis%20for%20Low%20Resource%20African%20Languages
Authors:Congcong Li, Jin Wang, Xiaomeng Wang, Xingchen Zhou, Wei Wu, Yuzhi Zhang, Tongyi Cao
Abstract:
3D car modeling is crucial for applications in autonomous driving systems, virtual and augmented reality, and gaming. However, due to the distinctive properties of cars, such as highly reflective and transparent surface materials, existing methods often struggle to achieve accurate 3D car reconstruction.To address these limitations, we propose Car-GS, a novel approach designed to mitigate the effects of specular highlights and the coupling of RGB and geometry in 3D geometric and shading reconstruction (3DGS). Our method incorporates three key innovations: First, we introduce view-dependent Gaussian primitives to effectively model surface reflections. Second, we identify the limitations of using a shared opacity parameter for both image rendering and geometric attributes when modeling transparent objects. To overcome this, we assign a learnable geometry-specific opacity to each 2D Gaussian primitive, dedicated solely to rendering depth and normals. Third, we observe that reconstruction errors are most prominent when the camera view is nearly orthogonal to glass surfaces. To address this issue, we develop a quality-aware supervision module that adaptively leverages normal priors from a pre-trained large-scale normal model.Experimental results demonstrate that Car-GS achieves precise reconstruction of car surfaces and significantly outperforms prior methods. The project page is available at https://lcc815.github.io/Car-GS.
Authors:Yuxia Wang, Artem Shelmanov, Jonibek Mansurov, Akim Tsvigun, Vladislav Mikhailov, Rui Xing, Zhuohan Xie, Jiahui Geng, Giovanni Puccetti, Ekaterina Artemova, Jinyan Su, Minh Ngoc Ta, Mervat Abassy, Kareem Ashraf Elozeiri, Saad El Dine Ahmed El Etter, Maiya Goloburda, Tarek Mahmoud, Raj Vardhan Tomar, Nurkhan Laiyk, Osama Mohammed Afzal, Ryuto Koike, Masahiro Kaneko, Alham Fikri Aji, Nizar Habash, Iryna Gurevych, Preslav Nakov
Abstract:
We present the GenAI Content Detection Task~1 -- a shared task on binary machine generated text detection, conducted as a part of the GenAI workshop at COLING 2025. The task consists of two subtasks: Monolingual (English) and Multilingual. The shared task attracted many participants: 36 teams made official submissions to the Monolingual subtask during the test phase and 26 teams -- to the Multilingual. We provide a comprehensive overview of the data, a summary of the results -- including system rankings and performance scores -- detailed descriptions of the participating systems, and an in-depth analysis of submissions. https://github.com/mbzuai-nlp/COLING-2025-Workshop-on-MGT-Detection-Task1
Authors:Haichao Wei, Yunxiang Ren, Zhoutong Fu, Aman Lunia, Yi-Lin Chen, Alice Leung, Ya Xu
Abstract:
Large Language Models (LLMs) demand significant computational resources, making it essential to enhance their capabilities without retraining from scratch. A key challenge in this domain is \textit{catastrophic forgetting} (CF), which hampers performance during Continuous Pre-training (CPT) and Continuous Supervised Fine-Tuning (CSFT). We propose \textbf{Control LLM}, a novel approach that leverages parallel pre-trained and expanded transformer blocks, aligning their hidden-states through interpolation strategies This method effectively preserves performance on existing tasks while seamlessly integrating new knowledge.
Extensive experiments demonstrate the effectiveness of Control LLM in both CPT and CSFT. On Llama3.1-8B-Instruct, it achieves significant improvements in mathematical reasoning ($+14.4\%$ on Math-Hard) and coding performance ($+10\%$ on MBPP-PLUS). On Llama3.1-8B, it enhances multilingual capabilities ($+10.6\%$ on C-Eval, $+6.8\%$ on CMMLU, and $+30.2\%$ on CMMLU-0shot-CoT). It surpasses existing methods and achieves SOTA among open-source models tuned from the same base model, using substantially less data and compute. Crucially, these gains are realized while preserving strong original capabilities, with minimal degradation ($<4.3\% \text{on MMLU}$) compared to $>35\%$ in open-source Math and Coding models. This approach has been successfully deployed in LinkedIn's GenAI-powered job seeker and Ads unit products.
To support further research, we release the training and evaluation code (https://github.com/linkedin/ControlLLM) along with models trained on public datasets (https://huggingface.co/ControlLLM) to the community.
Authors:Zhanpeng Chen, Mingxiao Li, Ziyang Chen, Nan Du, Xiaolong Li, Yuexian Zou
Abstract:
Vision-language Models (VLMs) have shown remarkable capabilities in advancing general artificial intelligence, yet the irrational encoding of visual positions persists in inhibiting the models' comprehensive perception performance across different levels of granularity. In this work, we propose Pyramid-descent Visual Position Encoding (PyPE), a novel approach designed to enhance the perception of visual tokens within VLMs. By assigning visual position indexes from the periphery to the center and expanding the central receptive field incrementally, PyPE addresses the limitations of traditional raster-scan methods and mitigates the long-term decay effects induced by Rotary Position Embedding (RoPE). Our method reduces the relative distance between interrelated visual elements and instruction tokens, promoting a more rational allocation of attention weights and allowing for a multi-granularity perception of visual elements and countering the over-reliance on anchor tokens. Extensive experimental evaluations demonstrate that PyPE consistently improves the general capabilities of VLMs across various sizes. Code is available at https://github.com/SakuraTroyChen/PyPE.
Authors:Weiyu Chen, Baijiong Lin, Xiaoyuan Zhang, Xi Lin, Han Zhao, Qingfu Zhang, James T. Kwok
Abstract:
Many modern deep learning applications require balancing multiple objectives that are often conflicting. Examples include multi-task learning, fairness-aware learning, and the alignment of Large Language Models (LLMs). This leads to multi-objective deep learning, which tries to find optimal trade-offs or Pareto-optimal solutions by adapting mathematical principles from the field of Multi-Objective Optimization (MOO). However, directly applying gradient-based MOO techniques to deep neural networks presents unique challenges, including high computational costs, optimization instability, and the difficulty of effectively incorporating user preferences. This paper provides a comprehensive survey of gradient-based techniques for multi-objective deep learning. We systematically categorize existing algorithms based on their outputs: (i) methods that find a single, well-balanced solution, (ii) methods that generate a finite set of diverse Pareto-optimal solutions, and (iii) methods that learn a continuous Pareto set of solutions. In addition to this taxonomy, the survey covers theoretical analyses, key applications, practical resources, and highlights open challenges and promising directions for future research. A comprehensive list of multi-objective deep learning algorithms is available at https://github.com/Baijiong-Lin/Awesome-Multi-Objective-Deep-Learning.
Authors:Jing Ding, Kai Feng, Binbin Lin, Jiarui Cai, Qiushi Wang, Yu Xie, Xiaojin Zhang, Zhongyu Wei, Wei Chen
Abstract:
The application of large language models (LLMs) has achieved remarkable success in various fields, but their effectiveness in specialized domains like the Chinese insurance industry remains underexplored. The complexity of insurance knowledge, encompassing specialized terminology and diverse data types, poses significant challenges for both models and users. To address this, we introduce InsQABench, a benchmark dataset for the Chinese insurance sector, structured into three categories: Insurance Commonsense Knowledge, Insurance Structured Database, and Insurance Unstructured Documents, reflecting real-world insurance question-answering tasks.We also propose two methods, SQL-ReAct and RAG-ReAct, to tackle challenges in structured and unstructured data tasks. Evaluations show that while LLMs struggle with domain-specific terminology and nuanced clause texts, fine-tuning on InsQABench significantly improves performance. Our benchmark establishes a solid foundation for advancing LLM applications in the insurance domain, with data and code available at https://github.com/HaileyFamo/InsQABench.git.
Authors:Sijun Dong, Fangcheng Zuo, Geng Chen, Siming Fu, Xiaoliang Meng
Abstract:
Change detection in remote sensing imagery is a critical technique for Earth observation, primarily focusing on pixel-level segmentation of change regions between bi-temporal images. The essence of pixel-level change detection lies in determining whether corresponding pixels in bi-temporal images have changed. In deep learning, the spatial and channel dimensions of feature maps represent different information from the original images. In this study, we found that in change detection tasks, difference information can be computed not only from the spatial dimension of bi-temporal features but also from the channel dimension. Therefore, we designed the Channel-Spatial Difference Weighting (CSDW) module as an aggregation-distribution mechanism for bi-temporal features in change detection. This module enhances the sensitivity of the change detection model to difference features. Additionally, bi-temporal images share the same geographic location and exhibit strong inter-image correlations. To construct the correlation between bi-temporal images, we designed a decoding structure based on the Layer-Exchange (LE) method to enhance the interaction of bi-temporal features. Comprehensive experiments on the CLCD, PX-CLCD, LEVIR-CD, and S2Looking datasets demonstrate that the proposed LENet model significantly improves change detection performance. The code and pre-trained models will be available at: https://github.com/dyzy41/lenet.
Authors:Saibo Geng, Hudson Cooper, MichaÅ Moskal, Samuel Jenkins, Julian Berman, Nathan Ranchin, Robert West, Eric Horvitz, Harsha Nori
Abstract:
Reliably generating structured outputs has become a critical capability for modern language model (LM) applications. Constrained decoding has emerged as the dominant technology across sectors for enforcing structured outputs during generation. Despite its growing adoption, little has been done with the systematic evaluation of the behaviors and performance of constrained decoding. Constrained decoding frameworks have standardized around JSON Schema as a structured data format, with most uses guaranteeing constraint compliance given a schema. However, there is poor understanding of the effectiveness of the methods in practice. We present an evaluation framework to assess constrained decoding approaches across three critical dimensions: efficiency in generating constraint-compliant outputs, coverage of diverse constraint types, and quality of the generated outputs. To facilitate this evaluation, we introduce JSONSchemaBench, a benchmark for constrained decoding comprising 10K real-world JSON schemas that encompass a wide range of constraints with varying complexity. We pair the benchmark with the existing official JSON Schema Test Suite and evaluate six state-of-the-art constrained decoding frameworks, including Guidance, Outlines, Llamacpp, XGrammar, OpenAI, and Gemini. Through extensive experiments, we gain insights into the capabilities and limitations of constrained decoding on structured generation with real-world JSON schemas. Our work provides actionable insights for improving constrained decoding frameworks and structured generation tasks, setting a new standard for evaluating constrained decoding and structured generation. We release JSONSchemaBench at https://github.com/guidance-ai/jsonschemabench
Authors:Young Seok Jeon, Hongfei Yang, Huazhu Fu, Mengling Feng
Abstract:
3D models surpass 2D models in CT/MRI segmentation by effectively capturing inter-slice relationships. However, the added depth dimension substantially increases memory consumption. While patch-based training alleviates memory constraints, it significantly slows down the inference speed due to the sliding window (SW) approach. We propose No-More-Sliding-Window (NMSW), a novel end-to-end trainable framework that enhances the efficiency of generic 3D segmentation backbone during an inference step by eliminating the need for SW. NMSW employs a differentiable Top-k module to selectively sample only the most relevant patches, thereby minimizing redundant computations. When patch-level predictions are insufficient, the framework intelligently leverages coarse global predictions to refine results. Evaluated across 3 tasks using 3 segmentation backbones, NMSW achieves competitive accuracy compared to SW inference while significantly reducing computational complexity by 91% (88.0 to 8.00 TMACs). Moreover, it delivers a 9.1x faster inference on the H100 GPU (99.0 to 8.3 sec) and a 11.1x faster inference on the Xeon Gold CPU (2110 to 189 sec). NMSW is model-agnostic, further boosting efficiency when integrated with any existing efficient segmentation backbones. The code is avaialble: https://github.com/Youngseok0001/open_nmsw.
Authors:Pengcheng Zhao, Zhixian He, Fuwei Zhang, Shujin Lin, Fan Zhou
Abstract:
Video Moment Retrieval and Highlight Detection aim to find corresponding content in the video based on a text query. Existing models usually first use contrastive learning methods to align video and text features, then fuse and extract multimodal information, and finally use a Transformer Decoder to decode multimodal information. However, existing methods face several issues: (1) Overlapping semantic information between different samples in the dataset hinders the model's multimodal aligning performance; (2) Existing models are not able to efficiently extract local features of the video; (3) The Transformer Decoder used by the existing model cannot adequately decode multimodal features. To address the above issues, we proposed the LD-DETR model for Video Moment Retrieval and Highlight Detection tasks. Specifically, we first distilled the similarity matrix into the identity matrix to mitigate the impact of overlapping semantic information. Then, we designed a method that enables convolutional layers to extract multimodal local features more efficiently. Finally, we fed the output of the Transformer Decoder back into itself to adequately decode multimodal information. We evaluated LD-DETR on four public benchmarks and conducted extensive experiments to demonstrate the superiority and effectiveness of our approach. Our model outperforms the State-Of-The-Art models on QVHighlight, Charades-STA and TACoS datasets. Our code is available at https://github.com/qingchen239/ld-detr.
Authors:Xinjie Liang, Xiangyu Li, Fanding Li, Jie Jiang, Qing Dong, Wei Wang, Kuanquan Wang, Suyu Dong, Gongning Luo, Shuo Li
Abstract:
Medical vision-language pretraining (VLP) that leverages naturally-paired medical image-report data is crucial for medical image analysis. However, existing methods struggle to accurately characterize associations between images and diseases, leading to inaccurate or incomplete diagnostic results. In this work, we propose MedFILIP, a fine-grained VLP model, introduces medical image-specific knowledge through contrastive learning, specifically: 1) An information extractor based on a large language model is proposed to decouple comprehensive disease details from reports, which excels in extracting disease deals through flexible prompt engineering, thereby effectively reducing text complexity while retaining rich information at a tiny cost. 2) A knowledge injector is proposed to construct relationships between categories and visual attributes, which help the model to make judgments based on image features, and fosters knowledge extrapolation to unfamiliar disease categories. 3) A semantic similarity matrix based on fine-grained annotations is proposed, providing smoother, information-richer labels, thus allowing fine-grained image-text alignment. 4) We validate MedFILIP on numerous datasets, e.g., RSNA-Pneumonia, NIH ChestX-ray14, VinBigData, and COVID-19. For single-label, multi-label, and fine-grained classification, our model achieves state-of-the-art performance, the classification accuracy has increased by a maximum of 6.69\%. The code is available in https://github.com/PerceptionComputingLab/MedFILIP.
Authors:Jinyuan Liu, Guanyao Wu, Zhu Liu, Di Wang, Zhiying Jiang, Long Ma, Wei Zhong, Xin Fan, Risheng Liu
Abstract:
Infrared-visible image fusion (IVIF) is a critical task in computer vision, aimed at integrating the unique features of both infrared and visible spectra into a unified representation. Since 2018, the field has entered the deep learning era, with an increasing variety of approaches introducing a range of networks and loss functions to enhance visual performance. However, challenges such as data compatibility, perception accuracy, and efficiency remain. Unfortunately, there is a lack of recent comprehensive surveys that address this rapidly expanding domain. This paper fills that gap by providing a thorough survey covering a broad range of topics. We introduce a multi-dimensional framework to elucidate common learning-based IVIF methods, from visual enhancement strategies to data compatibility and task adaptability. We also present a detailed analysis of these approaches, accompanied by a lookup table clarifying their core ideas. Furthermore, we summarize performance comparisons, both quantitatively and qualitatively, focusing on registration, fusion, and subsequent high-level tasks. Beyond technical analysis, we discuss potential future directions and open issues in this area. For further details, visit our GitHub repository: https://github.com/RollingPlain/IVIF_ZOO.
Authors:Yaniv Shulman
Abstract:
Local Polynomial Regression (LPR) is a widely used nonparametric method for modeling complex relationships due to its flexibility and simplicity. It estimates a regression function by fitting low-degree polynomials to localized subsets of the data, weighted by proximity. However, traditional LPR is sensitive to outliers and high-leverage points, which can significantly affect estimation accuracy. This paper revisits the kernel function used to compute regression weights and proposes a novel framework that incorporates both predictor and response variables in the weighting mechanism. The focus of this work is a conditional density kernel that robustly estimates weights by mitigating the influence of outliers through localized density estimation. A related joint density kernel is also discussed in an appendix. The proposed method is implemented in Python and is publicly available at https://github.com/yaniv-shulman/rsklpr, demonstrating competitive performance in synthetic benchmark experiments. Compared to standard LPR, the proposed approach consistently improves robustness and accuracy, especially in heteroscedastic and noisy environments, without requiring multiple iterations. This advancement provides a promising extension to traditional LPR, opening new possibilities for robust regression applications.
Authors:Weihang Zhang, Jihao Li, Shuoke Li, Ziqing Niu, Jialiang Chen, Wenkai Zhang
Abstract:
Remote sensing text--image retrieval (RSTIR) aims to retrieve the matched remote sensing (RS) images from the database according to the descriptive text. Recently, the rapid development of large visual-language pre-training models provides new insights for RSTIR. Nevertheless, as the complexity of models grows in RSTIR, the previous studies suffer from suboptimal resource efficiency during transfer learning. To address this issue, we propose a computation and memory-efficient retrieval (CMER) framework for RSTIR. To reduce the training memory consumption, we propose the Focus-Adapter module, which adopts a side branch structure. Its focus layer suppresses the interference of background pixels for small targets. Simultaneously, to enhance data efficacy, we regard the RS scene category as the metadata and design a concise augmentation technique. The scene label augmentation leverages the prior knowledge from land cover categories and shrinks the search space. We propose the negative sample recycling strategy to make the negative sample pool decoupled from the mini-batch size. It improves the generalization performance without introducing additional encoders. We have conducted quantitative and qualitative experiments on public datasets and expanded the benchmark with some advanced approaches, which demonstrates the competitiveness of the proposed CMER. Compared with the recent advanced methods, the overall retrieval performance of CMER is 2%--5% higher on RSITMD. Moreover, our proposed method reduces memory consumption by 49% and has a 1.4x data throughput during training. The code of the CMER and the dataset will be released at https://github.com/ZhangWeihang99/CMER.
Authors:Mehrad Mortazavi, David J. Cappelleri, Reza Ehsani
Abstract:
Driven by the need to address labor shortages and meet the demands of a rapidly growing population, robotic automation has become a critical component in precision agriculture. Leaf-level hyperspectral spectroscopy is shown to be a powerful tool for phenotyping, monitoring crop health, identifying essential nutrients within plants as well as detecting diseases and water stress. This work introduces RoMu4o, a robotic manipulation unit for orchard operations offering an automated solution for proximal hyperspectral leaf sensing. This ground robot is equipped with a 6DOF robotic arm and vision system for real-time deep learning-based image processing and motion planning. We developed robust perception and manipulation pipelines that enable the robot to successfully grasp target leaves and perform spectroscopy. These frameworks operate synergistically to identify and extract the 3D structure of leaves from an observed batch of foliage, propose 6D poses, and generate collision-free constraint-aware paths for precise leaf manipulation. The end-effector of the arm features a compact design that integrates an independent lighting source with a hyperspectral sensor, enabling high-fidelity data acquisition while streamlining the calibration process for accurate measurements. Our ground robot is engineered to operate in unstructured orchard environments. However, the performance of the system is evaluated in both indoor and outdoor plant models. The system demonstrated reliable performance for 1-LPB hyperspectral sampling, achieving 95% success rate in lab trials and 79% in field trials. Field experiments revealed an overall success rate of 70% for autonomous leaf grasping and hyperspectral measurement in a pistachio orchard. The open-source repository is available at: https://github.com/mehradmrt/UCM-AgBot-ROS2
Authors:Delin An, Pan Du, Pengfei Gu, Jian-Xun Wang, Chaoli Wang
Abstract:
Accurate segmentation of the aorta and its associated arch branches is crucial for diagnosing aortic diseases. While deep learning techniques have significantly improved aorta segmentation, they remain challenging due to the intricate multiscale structure and the complexity of the surrounding tissues. This paper presents a novel approach for enhancing aorta segmentation using a Bayesian neural network-based hierarchical Laplacian of Gaussian (LoG) model. Our model consists of a 3D U-Net stream and a hierarchical LoG stream: the former provides an initial aorta segmentation, and the latter enhances blood vessel detection across varying scales by learning suitable LoG kernels, enabling self-adaptive handling of different parts of the aorta vessels with significant scale differences. We employ a Bayesian method to parameterize the LoG stream and provide confidence intervals for the segmentation results, ensuring robustness and reliability of the prediction for vascular medical image analysts. Experimental results show that our model can accurately segment main and supra-aortic vessels, yielding at least a 3% gain in the Dice coefficient over state-of-the-art methods across multiple volumes drawn from two aorta datasets, and can provide reliable confidence intervals for different parts of the aorta. The code is available at https://github.com/adlsn/LoGBNet.
Authors:Ruixuan Zhang, Beichen Wang, Juexiao Zhang, Zilin Bian, Chen Feng, Kaan Ozbay
Abstract:
The increasing availability of traffic videos functioning on a 24/7/365 time scale has the great potential of increasing the spatio-temporal coverage of traffic accidents, which will help improve traffic safety. However, analyzing footage from hundreds, if not thousands, of traffic cameras in a 24/7/365 working protocol remains an extremely challenging task, as current vision-based approaches primarily focus on extracting raw information, such as vehicle trajectories or individual object detection, but require laborious post-processing to derive actionable insights. We propose SeeUnsafe, a new framework that integrates Multimodal Large Language Model (MLLM) agents to transform video-based traffic accident analysis from a traditional extraction-then-explanation workflow to a more interactive, conversational approach. This shift significantly enhances processing throughput by automating complex tasks like video classification and visual grounding, while improving adaptability by enabling seamless adjustments to diverse traffic scenarios and user-defined queries. Our framework employs a severity-based aggregation strategy to handle videos of various lengths and a novel multimodal prompt to generate structured responses for review and evaluation and enable fine-grained visual grounding. We introduce IMS (Information Matching Score), a new MLLM-based metric for aligning structured responses with ground truth. We conduct extensive experiments on the Toyota Woven Traffic Safety dataset, demonstrating that SeeUnsafe effectively performs accident-aware video classification and visual grounding by leveraging off-the-shelf MLLMs. Source code will be available at \url{https://github.com/ai4ce/SeeUnsafe}.
Authors:Andrey Risukhin, Kavel Rao, Ben Caffee, Alan Fan
Abstract:
Autonomous agents' interactions with humans are increasingly focused on adapting to their changing preferences in order to improve assistance in real-world tasks. Effective agents must learn to accurately infer human goals, which are often hidden, to collaborate well. However, existing Multi-Agent Reinforcement Learning (MARL) environments lack the necessary attributes required to rigorously evaluate these agents' learning capabilities. To this end, we introduce ColorGrid, a novel MARL environment with customizable non-stationarity, asymmetry, and reward structure. We investigate the performance of Independent Proximal Policy Optimization (IPPO), a state-of-the-art (SOTA) MARL algorithm, in ColorGrid and find through extensive ablations that, particularly with simultaneous non-stationary and asymmetric goals between a ``leader'' agent representing a human and a ``follower'' assistant agent, ColorGrid is unsolved by IPPO. To support benchmarking future MARL algorithms, we release our environment code, model checkpoints, and trajectory visualizations at https://github.com/andreyrisukhin/ColorGrid.
Authors:Taehee Jeong
Abstract:
Retrieval-augmented generation (RAG) is a promising technique that has shown great potential in addressing some of the limitations of large language models (LLMs). LLMs have two major limitations: they can contain outdated information due to their training data, and they can generate factually inaccurate responses, a phenomenon known as hallucinations. RAG aims to mitigate these issues by leveraging a database of relevant documents, which are stored as embedding vectors in a high-dimensional space. However, one of the challenges of using high-dimensional embeddings is that they require a significant amount of memory to store. This can be a major issue, especially when dealing with large databases of documents. To alleviate this problem, we propose the use of 4-bit quantization to store the embedding vectors. This involves reducing the precision of the vectors from 32-bit floating-point numbers to 4-bit integers, which can significantly reduce the memory requirements. Our approach has several benefits. Firstly, it significantly reduces the memory storage requirements of the high-dimensional vector database, making it more feasible to deploy RAG systems in resource-constrained environments. Secondly, it speeds up the searching process, as the reduced precision of the vectors allows for faster computation. Our code is available at https://github.com/taeheej/4bit-Quantization-in-Vector-Embedding-for-RAG
Authors:Daniel Severo, Giuseppe Ottaviano, Matthew Muckley, Karen Ullrich, Matthijs Douze
Abstract:
Approximate nearest neighbor search for vectors relies on indexes that are most often accessed from RAM. Therefore, storage is the factor limiting the size of the database that can be served from a machine. Lossy vector compression, i.e., embedding quantization, has been applied extensively to reduce the size of indexes. However, for inverted file and graph-based indices, auxiliary data such as vector ids and links (edges) can represent most of the storage cost. We introduce and evaluate lossless compression schemes for these cases. These approaches are based on asymmetric numeral systems or wavelet trees that exploit the fact that the ordering of ids is irrelevant within the data structures. In some settings, we are able to compress the vector ids by a factor 7, with no impact on accuracy or search runtime. On billion-scale datasets, this results in a reduction of 30% of the index size. Furthermore, we show that for some datasets, these methods can also compress the quantized vector codes losslessly, by exploiting sub-optimalities in the original quantization algorithm. The source code for our approach available at https://github.com/facebookresearch/vector_db_id_compression.
Authors:Aitor Belenguer, Jose A. Pascual, Javier Navaridas
Abstract:
Fully decentralized learning algorithms are still in an early stage of development. Creating modular Gossip Learning strategies is not trivial due to convergence challenges and Byzantine faults intrinsic in systems of decentralized nature. Our contribution provides a novel means to simulate custom Gossip Learning systems by leveraging the state-of-the-art Flower Framework. Specifically, we introduce GLow, which will allow researchers to train and assess scalability and convergence of devices, across custom network topologies, before making a physical deployment. The Flower Framework is selected for being a simulation featured library with a very active community on Federated Learning research. However, Flower exclusively includes vanilla Federated Learning strategies and, thus, is not originally designed to perform simulations without a centralized authority. GLow is presented to fill this gap and make simulation of Gossip Learning systems possible. Results achieved by GLow in the MNIST and CIFAR10 datasets, show accuracies over 0.98 and 0.75 respectively. More importantly, GLow performs similarly in terms of accuracy and convergence to its analogous Centralized and Federated approaches in all designed experiments.
Authors:Xiaolu Hou, Mingcheng Li, Dingkang Yang, Jiawei Chen, Ziyun Qian, Xiao Zhao, Yue Jiang, Jinjie Wei, Qingyao Xu, Lihua Zhang
Abstract:
With the widespread use of virtual reality applications, 3D scene generation has become a new challenging research frontier. 3D scenes have highly complex structures and need to ensure that the output is dense, coherent, and contains all necessary structures. Many current 3D scene generation methods rely on pre-trained text-to-image diffusion models and monocular depth estimators. However, the generated scenes occupy large amounts of storage space and often lack effective regularisation methods, leading to geometric distortions. To this end, we propose BloomScene, a lightweight structured 3D Gaussian splatting for crossmodal scene generation, which creates diverse and high-quality 3D scenes from text or image inputs. Specifically, a crossmodal progressive scene generation framework is proposed to generate coherent scenes utilizing incremental point cloud reconstruction and 3D Gaussian splatting. Additionally, we propose a hierarchical depth prior-based regularization mechanism that utilizes multi-level constraints on depth accuracy and smoothness to enhance the realism and continuity of the generated scenes. Ultimately, we propose a structured context-guided compression mechanism that exploits structured hash grids to model the context of unorganized anchor attributes, which significantly eliminates structural redundancy and reduces storage overhead. Comprehensive experiments across multiple scenes demonstrate the significant potential and advantages of our framework compared with several baselines.
Authors:Emre Tasar
Abstract:
In this paper, we propose a unified approach to harness quantum conformal methods for multi-output distributions, with a particular emphasis on two experimental paradigms: (i) a standard 2-qubit circuit scenario producing a four-dimensional outcome distribution, and (ii) a multi-basis measurement setting that concatenates measurement probabilities in different bases (Z, X, Y) into a twelve-dimensional output space. By combining a multioutput regression model (e.g., random forests) with distributional conformal prediction, we validate coverage and interval-set sizes on both simulated quantum data and multi-basis measurement data. Our results confirm that classical conformal prediction can effectively provide coverage guarantees even when the target probabilities derive from inherently quantum processes. Such synergy opens the door to next-generation quantum-classical hybrid frameworks, providing both improved interpretability and rigorous coverage for quantum machine learning tasks. All codes and full reproducible Colab notebooks are made available at https://github.com/detasar/QECMMOU.
Authors:Kartik Narayan, Vibashan VS, Vishal M. Patel
Abstract:
Multimodal Large Language Models (MLLMs) demonstrate impressive problem-solving abilities across a wide range of tasks and domains. However, their capacity for face understanding has not been systematically studied. To address this gap, we introduce FaceXBench, a comprehensive benchmark designed to evaluate MLLMs on complex face understanding tasks. FaceXBench includes 5,000 multimodal multiple-choice questions derived from 25 public datasets and a newly created dataset, FaceXAPI. These questions cover 14 tasks across 6 broad categories, assessing MLLMs' face understanding abilities in bias and fairness, face authentication, recognition, analysis, localization and tool retrieval. Using FaceXBench, we conduct an extensive evaluation of 26 open-source MLLMs alongside 2 proprietary models, revealing the unique challenges in complex face understanding tasks. We analyze the models across three evaluation settings: zero-shot, in-context task description, and chain-of-thought prompting. Our detailed analysis reveals that current MLLMs, including advanced models like GPT-4o, and GeminiPro 1.5, show significant room for improvement. We believe FaceXBench will be a crucial resource for developing MLLMs equipped to perform sophisticated face understanding. Code: https://github.com/Kartik-3004/facexbench
Authors:Claire Chen, Zhongchun Yu, Hojung Choi, Mark Cutkosky, Jeannette Bohg
Abstract:
Imitation learning requires high-quality demonstrations consisting of sequences of state-action pairs. For contact-rich dexterous manipulation tasks that require dexterity, the actions in these state-action pairs must produce the right forces. Current widely-used methods for collecting dexterous manipulation demonstrations are difficult to use for demonstrating contact-rich tasks due to unintuitive human-to-robot motion retargeting and the lack of direct haptic feedback. Motivated by these concerns, we propose DexForce. DexForce leverages contact forces, measured during kinesthetic demonstrations, to compute force-informed actions for policy learning. We collect demonstrations for six tasks and show that policies trained on our force-informed actions achieve an average success rate of 76% across all tasks. In contrast, policies trained directly on actions that do not account for contact forces have near-zero success rates. We also conduct a study ablating the inclusion of force data in policy observations. We find that while using force data never hurts policy performance, it helps most for tasks that require advanced levels of precision and coordination, like opening an AirPods case and unscrewing a nut.
Authors:Weibo Gao, Qi Liu, Linan Yue, Fangzhou Yao, Rui Lv, Zheng Zhang, Hao Wang, Zhenya Huang
Abstract:
Personalized learning represents a promising educational strategy within intelligent educational systems, aiming to enhance learners' practice efficiency. However, the discrepancy between offline metrics and online performance significantly impedes their progress. To address this challenge, we introduce Agent4Edu, a novel personalized learning simulator leveraging recent advancements in human intelligence through large language models (LLMs). Agent4Edu features LLM-powered generative agents equipped with learner profile, memory, and action modules tailored to personalized learning algorithms. The learner profiles are initialized using real-world response data, capturing practice styles and cognitive factors. Inspired by human psychology theory, the memory module records practice facts and high-level summaries, integrating reflection mechanisms. The action module supports various behaviors, including exercise understanding, analysis, and response generation. Each agent can interact with personalized learning algorithms, such as computerized adaptive testing, enabling a multifaceted evaluation and enhancement of customized services. Through a comprehensive assessment, we explore the strengths and weaknesses of Agent4Edu, emphasizing the consistency and discrepancies in responses between agents and human learners. The code, data, and appendix are publicly available at https://github.com/bigdata-ustc/Agent4Edu.
Authors:Xuange Zhang, Dengjie Li, Bo Liu, Zenghao Bao, Yao Zhou, Baisong Yang, Zhongying Liu, Yujie Zhong, Zheng Zhao, Tongtong Yuan
Abstract:
Benefiting from recent advancements in large language models and modality alignment techniques, existing Large Vision-Language Models(LVLMs) have achieved prominent performance across a wide range of scenarios. However, the excessive computational complexity limits the widespread use of these models in practical applications. We argue that one main bottleneck in computational complexity is caused by the involvement of redundant vision sequences in model computation. This is inspired by a reassessment of the efficiency of vision and language information transmission in the language decoder of LVLMs. Then, we propose a novel hierarchical vision-language interaction mechanism called Hierarchical Vision injection for Mixture Attention (HiMix). In HiMix, only the language sequence undergoes full forward propagation, while the vision sequence interacts with the language at specific stages within each language decoder layer. It is striking that our approach significantly reduces computational complexity with minimal performance loss. Specifically, HiMix achieves a 10x reduction in the computational cost of the language decoder across multiple LVLM models while maintaining comparable performance. This highlights the advantages of our method, and we hope our research brings new perspectives to the field of vision-language understanding. Project Page: https://xuange923.github.io/HiMix
Authors:Chengwei Zheng, Lixin Xue, Juan Zarate, Jie Song
Abstract:
3D Gaussian Splatting techniques have enabled efficient photo-realistic rendering of static scenes. Recent works have extended these approaches to support surface reconstruction and tracking. However, tracking dynamic surfaces with 3D Gaussians remains challenging due to complex topology changes, such as surfaces appearing, disappearing, or splitting. To address these challenges, we propose GauSTAR, a novel method that achieves photo-realistic rendering, accurate surface reconstruction, and reliable 3D tracking for general dynamic scenes with changing topology. Given multi-view captures as input, GauSTAR binds Gaussians to mesh faces to represent dynamic objects. For surfaces with consistent topology, GauSTAR maintains the mesh topology and tracks the meshes using Gaussians. For regions where topology changes, GauSTAR adaptively unbinds Gaussians from the mesh, enabling accurate registration and generation of new surfaces based on these optimized Gaussians. Additionally, we introduce a surface-based scene flow method that provides robust initialization for tracking between frames. Experiments demonstrate that our method effectively tracks and reconstructs dynamic surfaces, enabling a range of applications. Our project page with the code release is available at https://eth-ait.github.io/GauSTAR/.
Authors:Karl El Hajal, Enno Hermann, Ajinkya Kulkarni, Mathew Magimai. -Doss
Abstract:
Automatic speech recognition (ASR) systems are well known to perform poorly on dysarthric speech. Previous works have addressed this by speaking rate modification to reduce the mismatch with typical speech. Unfortunately, these approaches rely on transcribed speech data to estimate speaking rates and phoneme durations, which might not be available for unseen speakers. Therefore, we combine unsupervised rhythm and voice conversion methods based on self-supervised speech representations to map dysarthric to typical speech. We evaluate the outputs with a large ASR model pre-trained on healthy speech without further fine-tuning and find that the proposed rhythm conversion especially improves performance for speakers of the Torgo corpus with more severe cases of dysarthria. Code and audio samples are available at https://idiap.github.io/RnV .
Authors:Xi Yang, Haoyuan Shi, Zihan Wang, Nannan Wang, Xinbo Gao
Abstract:
Despite advancements in cross-domain image translation, challenges persist in asymmetric tasks such as SAR-to-Optical and Sketch-to-Instance conversions, which involve transforming data from a less detailed domain into one with richer content. Traditional CNN-based methods are effective at capturing fine details but struggle with global structure, leading to unwanted merging of image regions. To address this, we propose the CNN-Swin Hybrid Network (CSHNet), which combines two key modules: Swin Embedded CNN (SEC) and CNN Embedded Swin (CES), forming the SEC-CES-Bottleneck (SCB). SEC leverages CNN's detailed feature extraction while integrating the Swin Transformer's structural bias. CES, in turn, preserves the Swin Transformer's global integrity, compensating for CNN's lack of focus on structure. Additionally, CSHNet includes two components designed to enhance cross-domain information retention: the Interactive Guided Connection (IGC), which enables dynamic information exchange between SEC and CES, and Adaptive Edge Perception Loss (AEPL), which maintains structural boundaries during translation. Experimental results show that CSHNet outperforms existing methods in both visual quality and performance metrics across scene-level and instance-level datasets. Our code is available at: https://github.com/XduShi/CSHNet.
Authors:Kazuma Onishi, Katsuhiko Hayashi
Abstract:
Extreme multi-label learning (XML) is a task of assigning multiple labels from an extremely large set of labels to each data instance. Many current high-performance XML models are composed of a lot of hyperparameters, which complicates the tuning process. Additionally, the models themselves are adapted specifically to XML, which complicates their reimplementation. To remedy this problem, we propose a simple method based on ridge regression for XML. The proposed method not only has a closed-form solution but also is composed of a single hyperparameter. Since there are no precedents on applying ridge regression to XML, this paper verified the performance of the method by using various XML benchmark datasets. Furthermore, we enhanced the prediction of low-frequency labels in XML, which hold informative content. This prediction is essential yet challenging because of the limited amount of data. Here, we employed a simple frequency-based weighting. This approach greatly simplifies the process compared with existing techniques. Experimental results revealed that it can achieve levels of performance comparable to, or even exceeding, those of models with numerous hyperparameters. Additionally, we found that the frequency-based weighting significantly improved the predictive performance for low-frequency labels, while requiring almost no changes in implementation. The source code for the proposed method is available on github at https://github.com/cars1015/XML-ridge.
Authors:Mengran Li, Junzhou Chen, Chenyun Yu, Guanying Jiang, Ronghui Zhang, Yanming Shen, Houbing Herbert Song
Abstract:
With the advancement of information technology, the Social Internet of Things (SIoT) has fostered the integration of physical devices and social networks, deepening the study of complex interaction patterns. Text Attribute Graphs (TAGs) capture both topological structures and semantic attributes, enhancing the analysis of complex interactions within the SIoT. However, existing graph learning methods are typically designed for complete attributed graphs, and the common issue of missing attributes in Attribute Missing Graphs (AMGs) increases the difficulty of analysis tasks. To address this, we propose the Topology-Driven Attribute Recovery (TDAR) framework, which leverages topological data for AMG learning. TDAR introduces an improved pre-filling method for initial attribute recovery using native graph topology. Additionally, it dynamically adjusts propagation weights and incorporates homogeneity strategies within the embedding space to suit AMGs' unique topological structures, effectively reducing noise during information propagation. Extensive experiments on public datasets demonstrate that TDAR significantly outperforms state-of-the-art methods in attribute reconstruction and downstream tasks, offering a robust solution to the challenges posed by AMGs. The code is available at https://github.com/limengran98/TDAR.
Authors:Lucen Zhong, Zhengxiao Du, Xiaohan Zhang, Haiyi Hu, Jie Tang
Abstract:
Enhancing large language models (LLMs) with real-time APIs can help generate more accurate and up-to-date responses. However, evaluating the function calling abilities of LLMs in real-world scenarios remains under-explored due to the complexity of data collection and evaluation. In this work, we introduce ComplexFuncBench, a benchmark for complex function calling across five real-world scenarios. Compared to existing benchmarks, ComplexFuncBench encompasses multi-step and constrained function calling, which requires long-parameter filing, parameter value reasoning, and 128k long context. Additionally, we propose an automatic framework, ComplexEval, for quantitatively evaluating complex function calling tasks. Through comprehensive experiments, we demonstrate the deficiencies of state-of-the-art LLMs in function calling and suggest future directions for optimizing these capabilities. The data and code are available at \url{https://github.com/THUDM/ComplexFuncBench}.
Authors:Yichen He, Guanhua Huang, Peiyuan Feng, Yuan Lin, Yuchen Zhang, Hang Li, Weinan E
Abstract:
We introduce PaSa, an advanced Paper Search agent powered by large language models. PaSa can autonomously make a series of decisions, including invoking search tools, reading papers, and selecting relevant references, to ultimately obtain comprehensive and accurate results for complex scholar queries. We optimize PaSa using reinforcement learning with a synthetic dataset, AutoScholarQuery, which includes 35k fine-grained academic queries and corresponding papers sourced from top-tier AI conference publications. Additionally, we develop RealScholarQuery, a benchmark collecting real-world academic queries to assess PaSa performance in more realistic scenarios. Despite being trained on synthetic data, PaSa significantly outperforms existing baselines on RealScholarQuery, including Google, Google Scholar, Google with GPT-4o for paraphrased queries, ChatGPT (search-enabled GPT-4o), GPT-o1, and PaSa-GPT-4o (PaSa implemented by prompting GPT-4o). Notably, PaSa-7B surpasses the best Google-based baseline, Google with GPT-4o, by 37.78% in recall@20 and 39.90% in recall@50, and exceeds PaSa-GPT-4o by 30.36% in recall and 4.25% in precision. Model, datasets, and code are available at https://github.com/bytedance/pasa.
Authors:Xiaohui Li, Yihao Liu, Shuo Cao, Ziyan Chen, Shaobin Zhuang, Xiangyu Chen, Yinan He, Yi Wang, Yu Qiao
Abstract:
Diffusion models have demonstrated exceptional capabilities in image restoration, yet their application to video super-resolution (VSR) faces significant challenges in balancing fidelity with temporal consistency. Our evaluation reveals a critical gap: existing approaches consistently fail on severely degraded videos--precisely where diffusion models' generative capabilities are most needed. We identify that existing diffusion-based VSR methods struggle primarily because they face an overwhelming learning burden: simultaneously modeling complex degradation distributions, content representations, and temporal relationships with limited high-quality training data. To address this fundamental challenge, we present DiffVSR, featuring a Progressive Learning Strategy (PLS) that systematically decomposes this learning burden through staged training, enabling superior performance on complex degradations. Our framework additionally incorporates an Interweaved Latent Transition (ILT) technique that maintains competitive temporal consistency without additional training overhead. Experiments demonstrate that our approach excels in scenarios where competing methods struggle, particularly on severely degraded videos. Our work reveals that addressing the learning strategy, rather than focusing solely on architectural complexity, is the critical path toward robust real-world video super-resolution with diffusion models.
Authors:Jinliang Zheng, Jianxiong Li, Dongxiu Liu, Yinan Zheng, Zhihao Wang, Zhonghong Ou, Yu Liu, Jingjing Liu, Ya-Qin Zhang, Xianyuan Zhan
Abstract:
Training on diverse, internet-scale data is a key factor in the success of recent large foundation models. Yet, using the same recipe for building embodied agents has faced noticeable difficulties. Despite the availability of many crowd-sourced embodied datasets, their action spaces often exhibit significant heterogeneity due to distinct physical embodiment and control interfaces for different robots, causing substantial challenges in developing embodied foundation models using cross-domain data. In this paper, we introduce UniAct, a new embodied foundation modeling framework operating in a Universal Action Space. Our learned universal actions capture the generic atomic behaviors across diverse robots by exploiting their shared structural features, and enable enhanced cross-domain data utilization and cross-embodiment generalizations by eliminating the notorious heterogeneity. The universal actions can be efficiently translated back to heterogeneous actionable commands by simply adding embodiment-specific details, from which fast adaptation to new robots becomes simple and straightforward. Our 0.5B instantiation of UniAct outperforms 14X larger SOTA embodied foundation models in extensive evaluations on various real-world and simulation robots, showcasing exceptional cross-embodiment control and adaptation capability, highlighting the crucial benefit of adopting universal actions. Project page: https://github.com/2toinf/UniAct
Authors:Michael Schwingshackl, Fabio Francisco Oberweger, Markus Murschitz
Abstract:
This paper proposes a novel approach to few-shot semantic segmentation for machinery with multiple parts that exhibit spatial and hierarchical relationships. Our method integrates the foundation models CLIPSeg and Segment Anything Model (SAM) with the interest point detector SuperPoint and a graph convolutional network (GCN) to accurately segment machinery parts. By providing 1 to 25 annotated samples, our model, evaluated on a purely synthetic dataset depicting a truck-mounted loading crane, achieves effective segmentation across various levels of detail. Training times are kept under five minutes on consumer GPUs. The model demonstrates robust generalization to real data, achieving a qualitative synthetic-to-real generalization with a $J\&F$ score of 92.2 on real data using 10 synthetic support samples. When benchmarked on the DAVIS 2017 dataset, it achieves a $J\&F$ score of 71.5 in semi-supervised video segmentation with three support samples. This method's fast training times and effective generalization to real data make it a valuable tool for autonomous systems interacting with machinery and infrastructure, and illustrate the potential of combined and orchestrated foundation models for few-shot segmentation tasks.
Authors:Ali Can Karaca, M. Enes Ozelbas, Saadettin Berber, Orkhan Karimli, Turabi Yildirim, M. Fatih Amasyali
Abstract:
Remote sensing change captioning (RSICC) aims to describe changes between bitemporal images in natural language. Existing methods often fail under challenges like illumination differences, viewpoint changes, blur effects, leading to inaccuracies, especially in no-change regions. Moreover, the images acquired at different spatial resolutions and have registration errors tend to affect the captions. To address these issues, we introduce SECOND-CC, a novel RSICC dataset featuring high-resolution RGB image pairs, semantic segmentation maps, and diverse real-world scenarios. SECOND-CC which contains 6,041 pairs of bitemporal RS images and 30,205 sentences describing the differences between images. Additionally, we propose MModalCC, a multimodal framework that integrates semantic and visual data using advanced attention mechanisms, including Cross-Modal Cross Attention (CMCA) and Multimodal Gated Cross Attention (MGCA). Detailed ablation studies and attention visualizations further demonstrate its effectiveness and ability to address RSICC challenges. Comprehensive experiments show that MModalCC outperforms state-of-the-art RSICC methods, including RSICCformer, Chg2Cap, and PSNet with +4.6% improvement on BLEU4 score and +9.6% improvement on CIDEr score. We will make our dataset and codebase publicly available to facilitate future research at https://github.com/ChangeCapsInRS/SecondCC
Authors:Xinzhe Li
Abstract:
LLM test-time compute (or LLM inference) via search has emerged as a promising research area with rapid developments. However, current frameworks often adopt distinct perspectives on three key aspects: task definition, LLM profiling, and search procedures, making direct comparisons challenging. Moreover, the search algorithms employed often diverge from standard implementations, and their specific characteristics are not thoroughly specified. This survey aims to provide a comprehensive but integrated technical review on existing LIS frameworks. Specifically, we unify task definitions under Markov Decision Process (MDP) and provides modular definitions of LLM profiling and search procedures. The definitions enable precise comparisons of various LLM inference frameworks while highlighting their departures from conventional search algorithms. We also discuss the applicability, performance, and efficiency of these methods. For ongoing paper updates, please refer to our GitHub repository: https://github.com/xinzhel/LLM-Search.
Authors:Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Ming Tang, Jinqiao Wang
Abstract:
Anomaly detection methods typically require extensive normal samples from the target class for training, limiting their applicability in scenarios that require rapid adaptation, such as cold start. Zero-shot and few-shot anomaly detection do not require labeled samples from the target class in advance, making them a promising research direction. Existing zero-shot and few-shot approaches often leverage powerful multimodal models to detect and localize anomalies by comparing image-text similarity. However, their handcrafted generic descriptions fail to capture the diverse range of anomalies that may emerge in different objects, and simple patch-level image-text matching often struggles to localize anomalous regions of varying shapes and sizes. To address these issues, this paper proposes the FiLo++ method, which consists of two key components. The first component, Fused Fine-Grained Descriptions (FusDes), utilizes large language models to generate anomaly descriptions for each object category, combines both fixed and learnable prompt templates and applies a runtime prompt filtering method, producing more accurate and task-specific textual descriptions. The second component, Deformable Localization (DefLoc), integrates the vision foundation model Grounding DINO with position-enhanced text descriptions and a Multi-scale Deformable Cross-modal Interaction (MDCI) module, enabling accurate localization of anomalies with various shapes and sizes. In addition, we design a position-enhanced patch matching approach to improve few-shot anomaly detection performance. Experiments on multiple datasets demonstrate that FiLo++ achieves significant performance improvements compared with existing methods. Code will be available at https://github.com/CASIA-IVA-Lab/FiLo.
Authors:Keita Miwa, Kento Sasaki, Hidehisa Arai, Tsubasa Takahashi, Yu Yamaguchi
Abstract:
Current image tokenization methods require a large number of tokens to capture the information contained within images. Although the amount of information varies across images, most image tokenizers only support fixed-length tokenization, leading to inefficiency in token allocation. In this study, we introduce One-D-Piece, a discrete image tokenizer designed for variable-length tokenization, achieving quality-controllable mechanism. To enable variable compression rate, we introduce a simple but effective regularization mechanism named "Tail Token Drop" into discrete one-dimensional image tokenizers. This method encourages critical information to concentrate at the head of the token sequence, enabling support of variadic tokenization, while preserving state-of-the-art reconstruction quality. We evaluate our tokenizer across multiple reconstruction quality metrics and find that it delivers significantly better perceptual quality than existing quality-controllable compression methods, including JPEG and WebP, at smaller byte sizes. Furthermore, we assess our tokenizer on various downstream computer vision tasks, including image classification, object detection, semantic segmentation, and depth estimation, confirming its adaptability to numerous applications compared to other variable-rate methods. Our approach demonstrates the versatility of variable-length discrete image tokenization, establishing a new paradigm in both compression efficiency and reconstruction performance. Finally, we validate the effectiveness of tail token drop via detailed analysis of tokenizers.
Authors:Shengkui Zhao, Zexu Pan, Kun Zhou, Yukun Ma, Chong Zhang, Bin Ma
Abstract:
Recently, the application of diffusion probabilistic models has advanced speech enhancement through generative approaches. However, existing diffusion-based methods have focused on the generation process in high-dimensional waveform or spectral domains, leading to increased generation complexity and slower inference speeds. Additionally, these methods have primarily modelled clean speech distributions, with limited exploration of noise distributions, thereby constraining the discriminative capability of diffusion models for speech enhancement. To address these issues, we propose a novel approach that integrates a conditional latent diffusion model (cLDM) with dual-context learning (DCL). Our method utilizes a variational autoencoder (VAE) to compress mel-spectrograms into a low-dimensional latent space. We then apply cLDM to transform the latent representations of both clean speech and background noise into Gaussian noise by the DCL process, and a parameterized model is trained to reverse this process, conditioned on noisy latent representations and text embeddings. By operating in a lower-dimensional space, the latent representations reduce the complexity of the generation process, while the DCL process enhances the model's ability to handle diverse and unseen noise environments. Our experiments demonstrate the strong performance of the proposed approach compared to existing diffusion-based methods, even with fewer iterative steps, and highlight the superior generalization capability of our models to out-of-domain noise datasets (https://github.com/modelscope/ClearerVoice-Studio).
Authors:Shengkui Zhao, Kun Zhou, Zexu Pan, Yukun Ma, Chong Zhang, Bin Ma
Abstract:
The application of generative adversarial networks (GANs) has recently advanced speech super-resolution (SR) based on intermediate representations like mel-spectrograms. However, existing SR methods that typically rely on independently trained and concatenated networks may lead to inconsistent representations and poor speech quality, especially in out-of-domain scenarios. In this work, we propose HiFi-SR, a unified network that leverages end-to-end adversarial training to achieve high-fidelity speech super-resolution. Our model features a unified transformer-convolutional generator designed to seamlessly handle both the prediction of latent representations and their conversion into time-domain waveforms. The transformer network serves as a powerful encoder, converting low-resolution mel-spectrograms into latent space representations, while the convolutional network upscales these representations into high-resolution waveforms. To enhance high-frequency fidelity, we incorporate a multi-band, multi-scale time-frequency discriminator, along with a multi-scale mel-reconstruction loss in the adversarial training process. HiFi-SR is versatile, capable of upscaling any input speech signal between 4 kHz and 32 kHz to a 48 kHz sampling rate. Experimental results demonstrate that HiFi-SR significantly outperforms existing speech SR methods across both objective metrics and ABX preference tests, for both in-domain and out-of-domain scenarios (https://github.com/modelscope/ClearerVoice-Studio).
Authors:Victor Barbier, Eric Jeangirard
Abstract:
This study introduces a novel methodology for mapping scientific communities at scale, addressing challenges associated with network analysis in large bibliometric datasets. By leveraging enriched publication metadata from the French research portal scanR and applying advanced filtering techniques to prioritize the strongest interactions between entities, we construct detailed, scalable network maps. These maps are enhanced through systematic disambiguation of authors, affiliations, and topics using persistent identifiers and specialized algorithms. The proposed framework integrates Elasticsearch for efficient data aggregation, Graphology for network spatialization (Force Atltas2) and community detection (Louvain algorithm) and VOSviewer for network vizualization. A Large Language Model (Mistral Nemo) is used to label the communities detected and OpenAlex data helps to enrich the results with citation counts estimation to detect hot topics. This scalable approach enables insightful exploration of research collaborations and thematic structures, with potential applications for strategic decision-making in science policy and funding. These web tools are effective at the global (national) scale but are also available (and can be integrated via iframes) on the perimeter of any French research institution (from large research organisms to any laboratory). The scanR community analysis tool is available online [https://scanr.enseignementsup-recherche.gouv.fr/networks/get-started](https://scanr.enseignementsup-recherche.gouv.fr/networks/get-started). All tools and methodologies are open-source on the repo [https://github.com/dataesr/scanr-ui](https://github.com/dataesr/scanr-ui)
Authors:Di Chang, Hongyi Xu, You Xie, Yipeng Gao, Zhengfei Kuang, Shengqu Cai, Chenxu Zhang, Guoxian Song, Chao Wang, Yichun Shi, Zeyuan Chen, Shijie Zhou, Linjie Luo, Gordon Wetzstein, Mohammad Soleymani
Abstract:
We introduce X-Dyna, a novel zero-shot, diffusion-based pipeline for animating a single human image using facial expressions and body movements derived from a driving video, that generates realistic, context-aware dynamics for both the subject and the surrounding environment. Building on prior approaches centered on human pose control, X-Dyna addresses key shortcomings causing the loss of dynamic details, enhancing the lifelike qualities of human video animations. At the core of our approach is the Dynamics-Adapter, a lightweight module that effectively integrates reference appearance context into the spatial attentions of the diffusion backbone while preserving the capacity of motion modules in synthesizing fluid and intricate dynamic details. Beyond body pose control, we connect a local control module with our model to capture identity-disentangled facial expressions, facilitating accurate expression transfer for enhanced realism in animated scenes. Together, these components form a unified framework capable of learning physical human motion and natural scene dynamics from a diverse blend of human and scene videos. Comprehensive qualitative and quantitative evaluations demonstrate that X-Dyna outperforms state-of-the-art methods, creating highly lifelike and expressive animations. The code is available at https://github.com/bytedance/X-Dyna.
Authors:Chao He, Jianqiang Ren, Yuan Dong, Jianjing Xiang, Xiejie Shen, Weihao Yuan, Liefeng Bo
Abstract:
The 2D cartoon style is a prominent art form in digital character creation, particularly popular among younger audiences. While advancements in digital human technology have spurred extensive research into photorealistic digital humans and 3D characters, interactive 2D cartoon characters have received comparatively less attention. Unlike 3D counterparts, which require sophisticated construction and resource-intensive rendering, Live2D, a widely-used format for 2D cartoon characters, offers a more efficient alternative, which allows to animate 2D characters in a manner that simulates 3D movement without the necessity of building a complete 3D model. Furthermore, Live2D employs lightweight HTML5 (H5) rendering, improving both accessibility and efficiency. In this technical report, we introduce Textoon, an innovative method for generating diverse 2D cartoon characters in the Live2D format based on text descriptions. The Textoon leverages cutting-edge language and vision models to comprehend textual intentions and generate 2D appearance, capable of creating a wide variety of stunning and interactive 2D characters within one minute. The project homepage is https://human3daigc.github.io/Textoon_webpage/.
Authors:Xigui Li, Yuanye Zhou, Feiyang Xiao, Xin Guo, Yichi Zhang, Chen Jiang, Jianchao Ge, Xiansheng Wang, Qimeng Wang, Taiwei Zhang, Chensen Lin, Yuan Cheng, Yuan Qi
Abstract:
Intracranial aneurysm (IA) is a common cerebrovascular disease that is usually asymptomatic but may cause severe subarachnoid hemorrhage (SAH) if ruptured. Although clinical practice is usually based on individual factors and morphological features of the aneurysm, its pathophysiology and hemodynamic mechanisms remain controversial. To address the limitations of current research, this study constructed a comprehensive hemodynamic dataset of intracranial aneurysms. The dataset is based on 466 real aneurysm models, and 10,000 synthetic models were generated by resection and deformation operations, including 466 aneurysm-free models and 9,534 deformed aneurysm models. The dataset also provides medical image-like segmentation mask files to support insightful analysis. In addition, the dataset contains hemodynamic data measured at eight steady-state flow rates (0.001 to 0.004 kg/s), including critical parameters such as flow velocity, pressure, and wall shear stress, providing a valuable resource for investigating aneurysm pathogenesis and clinical prediction. This dataset will help advance the understanding of the pathologic features and hemodynamic mechanisms of intracranial aneurysms and support in-depth research in related fields. Dataset hosted at https://github.com/Xigui-Li/Aneumo.
Authors:Xiangyue Liu, Kunming Luo, Heng Li, Qi Zhang, Yuan Liu, Li Yi, Ping Tan
Abstract:
We introduce GaussianAvatar-Editor, an innovative framework for text-driven editing of animatable Gaussian head avatars that can be fully controlled in expression, pose, and viewpoint. Unlike static 3D Gaussian editing, editing animatable 4D Gaussian avatars presents challenges related to motion occlusion and spatial-temporal inconsistency. To address these issues, we propose the Weighted Alpha Blending Equation (WABE). This function enhances the blending weight of visible Gaussians while suppressing the influence on non-visible Gaussians, effectively handling motion occlusion during editing. Furthermore, to improve editing quality and ensure 4D consistency, we incorporate conditional adversarial learning into the editing process. This strategy helps to refine the edited results and maintain consistency throughout the animation. By integrating these methods, our GaussianAvatar-Editor achieves photorealistic and consistent results in animatable 4D Gaussian editing. We conduct comprehensive experiments across various subjects to validate the effectiveness of our proposed techniques, which demonstrates the superiority of our approach over existing methods. More results and code are available at: [Project Link](https://xiangyueliu.github.io/GaussianAvatar-Editor/).
Authors:Changze Lv, Jingwen Xu, Yiyang Lu, Xiaohua Wang, Zhenghua Wang, Zhibo Xu, Di Yu, Xin Du, Xiaoqing Zheng, Xuanjing Huang
Abstract:
Backpropagation is the foundational algorithm for training neural networks and a key driver of deep learning's success. However, its biological plausibility has been challenged due to three primary limitations: weight symmetry, reliance on global error signals, and the dual-phase nature of training, as highlighted by the existing literature. Although various alternative learning approaches have been proposed to address these issues, most either fail to satisfy all three criteria simultaneously or yield suboptimal results. Inspired by the dynamics and plasticity of pyramidal neurons, we propose Dendritic Localized Learning (DLL), a novel learning algorithm designed to overcome these challenges. Extensive empirical experiments demonstrate that DLL satisfies all three criteria of biological plausibility while achieving state-of-the-art performance among algorithms that meet these requirements. Furthermore, DLL exhibits strong generalization across a range of architectures, including MLPs, CNNs, and RNNs. These results, benchmarked against existing biologically plausible learning algorithms, offer valuable empirical insights for future research. We hope this study can inspire the development of new biologically plausible algorithms for training multilayer networks and advancing progress in both neuroscience and machine learning. Our code is available at https://github.com/Lvchangze/Dendritic-Localized-Learning.
Authors:J. Pablo Muñoz, Jinjie Yuan, Nilesh Jain
Abstract:
Recently, state-of-the-art approaches for pruning large pre-trained models (LPMs) have demonstrated that the training-free removal of non-critical residual blocks in Transformers is viable for reducing model size, achieving results that outperform previous training-free pruning approaches. Motivated by these findings, we extend BlockPruner (Zhong et al., 2024) and propose MultiPruner, a pruning approach that surpasses recent training-free pruning methods by adopting a multidimensional, iterative, fine-grained pruning strategy. In MultiPruner, multidimensional pruning reinstates the structural balance in block-pruned models by sequentially compressing along three dimensions: i) residual blocks, ii) channels of multilayer perceptrons (MLP), and iii) attention heads. This solution enhances zero-shot accuracy on downstream tasks compared to other techniques while improving model compression ratios, producing compressed models with fewer computing and memory requirements. Extensive experiments demonstrate the advantages of the proposed method across various large pre-trained models. The code and pruning configurations are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.
Authors:Xiaoyun Zheng, Liwei Liao, Jianbo Jiao, Feng Gao, Ronggang Wang
Abstract:
Self-supervised Object Segmentation (SOS) aims to segment objects without any annotations. Under conditions of multi-camera inputs, the structural, textural and geometrical consistency among each view can be leveraged to achieve fine-grained object segmentation. To make better use of the above information, we propose Surface representation based Self-supervised Object Segmentation (Surface-SOS), a new framework to segment objects for each view by 3D surface representation from multi-view images of a scene. To model high-quality geometry surfaces for complex scenes, we design a novel scene representation scheme, which decomposes the scene into two complementary neural representation modules respectively with a Signed Distance Function (SDF). Moreover, Surface-SOS is able to refine single-view segmentation with multi-view unlabeled images, by introducing coarse segmentation masks as additional input. To the best of our knowledge, Surface-SOS is the first self-supervised approach that leverages neural surface representation to break the dependence on large amounts of annotated data and strong constraints. These constraints typically involve observing target objects against a static background or relying on temporal supervision in videos. Extensive experiments on standard benchmarks including LLFF, CO3D, BlendedMVS, TUM and several real-world scenes show that Surface-SOS always yields finer object masks than its NeRF-based counterparts and surpasses supervised single-view baselines remarkably. Code is available at: https://github.com/zhengxyun/Surface-SOS.
Authors:Yixiang Zhuang, Chunshan Ma, Yao Cheng, Xuan Cheng, Jing Liao, Juncong Lin
Abstract:
Although significant progress has been made in the field of speech-driven 3D facial animation recently, the speech-driven animation of an indispensable facial component, eye gaze, has been overlooked by recent research. This is primarily due to the weak correlation between speech and eye gaze, as well as the scarcity of audio-gaze data, making it very challenging to generate 3D eye gaze motion from speech alone. In this paper, we propose a novel data-driven method which can generate diverse 3D eye gaze motions in harmony with the speech. To achieve this, we firstly construct an audio-gaze dataset that contains about 14 hours of audio-mesh sequences featuring high-quality eye gaze motion, head motion and facial motion simultaneously. The motion data is acquired by performing lightweight eye gaze fitting and face reconstruction on videos from existing audio-visual datasets. We then tailor a novel speech-to-motion translation framework in which the head motions and eye gaze motions are jointly generated from speech but are modeled in two separate latent spaces. This design stems from the physiological knowledge that the rotation range of eyeballs is less than that of head. Through mapping the speech embedding into the two latent spaces, the difficulty in modeling the weak correlation between speech and non-verbal motion is thus attenuated. Finally, our TalkingEyes, integrated with a speech-driven 3D facial motion generator, can synthesize eye gaze motion, eye blinks, head motion and facial motion collectively from speech. Extensive quantitative and qualitative evaluations demonstrate the superiority of the proposed method in generating diverse and natural 3D eye gaze motions from speech. The project page of this paper is: https://lkjkjoiuiu.github.io/TalkingEyes_Home/
Authors:Bowen Wen, Matthew Trepte, Joseph Aribido, Jan Kautz, Orazio Gallo, Stan Birchfield
Abstract:
Tremendous progress has been made in deep stereo matching to excel on benchmark datasets through per-domain fine-tuning. However, achieving strong zero-shot generalization - a hallmark of foundation models in other computer vision tasks - remains challenging for stereo matching. We introduce FoundationStereo, a foundation model for stereo depth estimation designed to achieve strong zero-shot generalization. To this end, we first construct a large-scale (1M stereo pairs) synthetic training dataset featuring large diversity and high photorealism, followed by an automatic self-curation pipeline to remove ambiguous samples. We then design a number of network architecture components to enhance scalability, including a side-tuning feature backbone that adapts rich monocular priors from vision foundation models to mitigate the sim-to-real gap, and long-range context reasoning for effective cost volume filtering. Together, these components lead to strong robustness and accuracy across domains, establishing a new standard in zero-shot stereo depth estimation. Project page: https://nvlabs.github.io/FoundationStereo/
Authors:Fausto German, Brian Keith, Mauricio Matus, Diego Urrutia, Claudio Meneses
Abstract:
This paper presents a semi-supervised approach to extracting narratives from historical photographic records using an adaptation of the narrative maps algorithm. We extend the original unsupervised text-based method to work with image data, leveraging deep learning techniques for visual feature extraction and similarity computation. Our method is applied to the ROGER dataset, a collection of photographs from the 1928 Sacambaya Expedition in Bolivia captured by Robert Gerstmann. We compare our algorithmically extracted visual narratives with expert-curated timelines of varying lengths (5 to 30 images) to evaluate the effectiveness of our approach. In particular, we use the Dynamic Time Warping (DTW) algorithm to match the extracted narratives with the expert-curated baseline. In addition, we asked an expert on the topic to qualitatively evaluate a representative example of the resulting narratives. Our findings show that the narrative maps approach generally outperforms random sampling for longer timelines (10+ images, p < 0.05), with expert evaluation confirming the historical accuracy and coherence of the extracted narratives. This research contributes to the field of computational analysis of visual cultural heritage, offering new tools for historians, archivists, and digital humanities scholars to explore and understand large-scale image collections. The method's ability to generate meaningful narratives from visual data opens up new possibilities for the study and interpretation of historical events through photographic evidence.
Authors:Jingchen Sun, Shaobo Han, Wataru Kohno, Changyou Chen
Abstract:
Contrastive Language-Audio Pretraining (CLAP) models have demonstrated unprecedented performance in various acoustic signal recognition tasks. Fiber-optic-based acoustic recognition is one of the most important downstream tasks and plays a significant role in environmental sensing. Adapting CLAP for fiber-optic acoustic recognition has become an active research area. As a non-conventional acoustic sensor, fiber-optic acoustic recognition presents a challenging, domain-specific, low-shot deployment environment with significant domain shifts due to unique frequency response and noise characteristics. To address these challenges, we propose a support-based adaptation method, CLAP-S, which linearly interpolates a CLAP Adapter with the Support Set, leveraging both implicit knowledge through fine-tuning and explicit knowledge retrieved from memory for cross-domain generalization. Experimental results show that our method delivers competitive performance on both laboratory-recorded fiber-optic ESC-50 datasets and a real-world fiber-optic gunshot-firework dataset. Our research also provides valuable insights for other downstream acoustic recognition tasks. The code and gunshot-firework dataset are available at https://github.com/Jingchensun/clap-s.
Authors:Wanqi Yin, Zhongang Cai, Ruisi Wang, Ailing Zeng, Chen Wei, Qingping Sun, Haiyi Mei, Yanjun Wang, Hui En Pang, Mingyuan Zhang, Lei Zhang, Chen Change Loy, Atsushi Yamashita, Lei Yang, Ziwei Liu
Abstract:
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications. Despite encouraging progress, current state-of-the-art methods focus on training innovative architectural designs on confined datasets. In this work, we investigate the impact of scaling up EHPS towards a family of generalist foundation models. 1) For data scaling, we perform a systematic investigation on 40 EHPS datasets, encompassing a wide range of scenarios that a model trained on any single dataset cannot handle. More importantly, capitalizing on insights obtained from the extensive benchmarking process, we optimize our training scheme and select datasets that lead to a significant leap in EHPS capabilities. Ultimately, we achieve diminishing returns at 10M training instances from diverse data sources. 2) For model scaling, we take advantage of vision transformers (up to ViT-Huge as the backbone) to study the scaling law of model sizes in EHPS. To exclude the influence of algorithmic design, we base our experiments on two minimalist architectures: SMPLer-X, which consists of an intermediate step for hand and face localization, and SMPLest-X, an even simpler version that reduces the network to its bare essentials and highlights significant advances in the capture of articulated hands. With big data and the large model, the foundation models exhibit strong performance across diverse test benchmarks and excellent transferability to even unseen environments. Moreover, our finetuning strategy turns the generalist into specialist models, allowing them to achieve further performance boosts. Notably, our foundation models consistently deliver state-of-the-art results on seven benchmarks such as AGORA, UBody, EgoBody, and our proposed SynHand dataset for comprehensive hand evaluation. (Code is available at: https://github.com/wqyin/SMPLest-X).
Authors:Zhongwei Ren, Yunchao Wei, Xun Guo, Yao Zhao, Bingyi Kang, Jiashi Feng, Xiaojie Jin
Abstract:
This work explores whether a deep generative model can learn complex knowledge solely from visual input, in contrast to the prevalent focus on text-based models like large language models (LLMs). We develop VideoWorld, an auto-regressive video generation model trained on unlabeled video data, and test its knowledge acquisition abilities in video-based Go and robotic control tasks. Our experiments reveal two key findings: (1) video-only training provides sufficient information for learning knowledge, including rules, reasoning and planning capabilities, and (2) the representation of visual change is crucial for knowledge acquisition. To improve both the efficiency and efficacy of this process, we introduce the Latent Dynamics Model (LDM) as a key component of VideoWorld. Remarkably, VideoWorld reaches a 5-dan professional level in the Video-GoBench with just a 300-million-parameter model, without relying on search algorithms or reward mechanisms typical in reinforcement learning. In robotic tasks, VideoWorld effectively learns diverse control operations and generalizes across environments, approaching the performance of oracle models in CALVIN and RLBench. This study opens new avenues for knowledge acquisition from visual data, with all code, data, and models open-sourced for further research.
Authors:Zilyu Ji, Yuntian Shen, Jionghao Lin, Kenneth R. Koedinger
Abstract:
Protecting Personally Identifiable Information (PII), such as names, is a critical requirement in learning technologies to safeguard student and teacher privacy and maintain trust. Accurate PII detection is an essential step toward anonymizing sensitive information while preserving the utility of educational data. Motivated by recent advancements in artificial intelligence, our study investigates the GPT-4o-mini model as a cost-effective and efficient solution for PII detection tasks. We explore both prompting and fine-tuning approaches and compare GPT-4o-mini's performance against established frameworks, including Microsoft Presidio and Azure AI Language. Our evaluation on two public datasets, CRAPII and TSCC, demonstrates that the fine-tuned GPT-4o-mini model achieves superior performance, with a recall of 0.9589 on CRAPII. Additionally, fine-tuned GPT-4o-mini significantly improves precision scores (a threefold increase) while reducing computational costs to nearly one-tenth of those associated with Azure AI Language. Furthermore, our bias analysis reveals that the fine-tuned GPT-4o-mini model consistently delivers accurate results across diverse cultural backgrounds and genders. The generalizability analysis using the TSCC dataset further highlights its robustness, achieving a recall of 0.9895 with minimal additional training data from TSCC. These results emphasize the potential of fine-tuned GPT-4o-mini as an accurate and cost-effective tool for PII detection in educational data. It offers robust privacy protection while preserving the data's utility for research and pedagogical analysis. Our code is available on GitHub: https://github.com/AnonJD/PrivacyAI
Authors:Sumit Chaturvedi, Mengwei Ren, Yannick Hold-Geoffroy, Jingyuan Liu, Julie Dorsey, Zhixin Shu
Abstract:
We introduce SynthLight, a diffusion model for portrait relighting. Our approach frames image relighting as a re-rendering problem, where pixels are transformed in response to changes in environmental lighting conditions. Using a physically-based rendering engine, we synthesize a dataset to simulate this lighting-conditioned transformation with 3D head assets under varying lighting. We propose two training and inference strategies to bridge the gap between the synthetic and real image domains: (1) multi-task training that takes advantage of real human portraits without lighting labels; (2) an inference time diffusion sampling procedure based on classifier-free guidance that leverages the input portrait to better preserve details. Our method generalizes to diverse real photographs and produces realistic illumination effects, including specular highlights and cast shadows, while preserving the subject's identity. Our quantitative experiments on Light Stage data demonstrate results comparable to state-of-the-art relighting methods. Our qualitative results on in-the-wild images showcase rich and unprecedented illumination effects. Project Page: \url{https://vrroom.github.io/synthlight/}
Authors:Yuexi Du, Jiazhen Zhang, Tal Zeevi, Nicha C. Dvornek, John A. Onofrey
Abstract:
Convolutional neural networks (CNNs) are essential tools for computer vision tasks, but they lack traditionally desired properties of extracted features that could further improve model performance, e.g., rotational equivariance. Such properties are ubiquitous in biomedical images, which often lack explicit orientation. While current work largely relies on data augmentation or explicit modules to capture orientation information, this comes at the expense of increased training costs or ineffective approximations of the desired equivariance. To overcome these challenges, we propose a novel and efficient implementation of the Symmetric Rotation-Equivariant (SRE) Convolution (SRE-Conv) kernel, designed to learn rotation-invariant features while simultaneously compressing the model size. The SRE-Conv kernel can easily be incorporated into any CNN backbone. We validate the ability of a deep SRE-CNN to capture equivariance to rotation using the public MedMNISTv2 dataset (16 total tasks). SRE-Conv-CNN demonstrated improved rotated image classification performance accuracy on all 16 test datasets in both 2D and 3D images, all while increasing efficiency with fewer parameters and reduced memory footprint. The code is available at https://github.com/XYPB/SRE-Conv.
Authors:Zekun Xi, Wenbiao Yin, Jizhan Fang, Jialong Wu, Runnan Fang, Yong Jiang, Pengjun Xie, Fei Huang, Huajun Chen, Ningyu Zhang
Abstract:
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, novelty, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, unoriginal, and repetitive outputs. To address these issues, we propose OmniThink, a slow-thinking machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they slowly deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles. Code is available at https://github.com/zjunlp/OmniThink.
Authors:Qingyun Li, Yushi Chen, Xinya Shu, Dong Chen, Xin He, Yi Yu, Xue Yang
Abstract:
The multimodal language models (MLMs) based on generative pre-trained Transformer are considered powerful candidates for unifying various domains and tasks. MLMs developed for remote sensing (RS) have demonstrated outstanding performance in multiple tasks, such as visual question answering and visual grounding. In addition to visual grounding that detects specific objects corresponded to given instruction, aerial detection, which detects all objects of multiple categories, is also a valuable and challenging task for RS foundation models. However, aerial detection has not been explored by existing RS MLMs because the autoregressive prediction mechanism of MLMs differs significantly from the detection outputs. In this paper, we present a simple baseline for applying MLMs to aerial detection for the first time, named LMMRotate. Specifically, we first introduce a normalization method to transform detection outputs into textual outputs to be compatible with the MLM framework. Then, we propose a evaluation method, which ensures a fair comparison between MLMs and conventional object detection models. We construct the baseline by fine-tuning open-source general-purpose MLMs and achieve impressive detection performance comparable to conventional detector. We hope that this baseline will serve as a reference for future MLM development, enabling more comprehensive capabilities for understanding RS images. Code is available at https://github.com/Li-Qingyun/mllm-mmrotate.
Authors:Juan C. Benito, Daniel Feijoo, Alvaro Garcia, Marcos V. Conde
Abstract:
Low-Light Image Enhancement (LLIE) is a key task in computational photography and imaging. The problem of enhancing images captured during night or in dark environments has been well-studied in the image signal processing literature. However, current deep learning-based solutions struggle with efficiency and robustness in real-world scenarios (e.g. scenes with noise, saturated pixels, bad illumination). We propose a lightweight neural network that combines image processing in the frequency and spatial domains. Our method, FLOL+, is one of the fastest models for this task, achieving state-of-the-art results on popular real scenes datasets such as LOL and LSRW. Moreover, we are able to process 1080p images under 12ms. Code and models at https://github.com/cidautai/FLOL
Authors:Hongbo Zhao, Fei Zhu, Bolin Ni, Feng Zhu, Gaofeng Meng, Zhaoxiang Zhang
Abstract:
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners, and these requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify three key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. (iii) In real-world scenarios, the training samples may be scarce or partially missing during the process of forgetting. To address them, we first propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we introduce LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. To further extend GS-LoRA to more practical scenarios, we incorporate prototype information as additional supervision and introduce a more practical approach, GS-LoRA++. For each forgotten class, we move the logits away from its original prototype. For the remaining classes, we pull the logits closer to their respective prototypes. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that our method manages to forget specific classes with minimal impact on other classes. Codes have been released on https://github.com/bjzhb666/GS-LoRA.
Authors:Zhihe Yang, Xufang Luo, Dongqi Han, Yunjian Xu, Dongsheng Li
Abstract:
Hallucination remains a major challenge for Large Vision-Language Models (LVLMs). Direct Preference Optimization (DPO) has gained increasing attention as a simple solution to hallucination issues. It directly learns from constructed preference pairs that reflect the severity of hallucinations in responses to the same prompt and image. Nonetheless, different data construction methods in existing works bring notable performance variations. We identify a crucial factor here: outcomes are largely contingent on whether the constructed data aligns on-policy w.r.t the initial (reference) policy of DPO. Theoretical analysis suggests that learning from off-policy data is impeded by the presence of KL-divergence between the updated policy and the reference policy. From the perspective of dataset distribution, we systematically summarize the inherent flaws in existing algorithms that employ DPO to address hallucination issues. To alleviate the problems, we propose On-Policy Alignment (OPA)-DPO framework, which uniquely leverages expert feedback to correct hallucinated responses and aligns both the original and expert-revised responses in an on-policy manner. Notably, with only 4.8k data, OPA-DPO achieves an additional reduction in the hallucination rate of LLaVA-1.5-7B: 13.26% on the AMBER benchmark and 5.39% on the Object-Hal benchmark, compared to the previous SOTA algorithm trained with 16k samples. Our implementation is available at https://github.com/zhyang2226/OPA-DPO.
Authors:Masatoshi Uehara, Yulai Zhao, Chenyu Wang, Xiner Li, Aviv Regev, Sergey Levine, Tommaso Biancalani
Abstract:
This tutorial provides an in-depth guide on inference-time guidance and alignment methods for optimizing downstream reward functions in diffusion models. While diffusion models are renowned for their generative modeling capabilities, practical applications in fields such as biology often require sample generation that maximizes specific metrics (e.g., stability, affinity in proteins, closeness to target structures). In these scenarios, diffusion models can be adapted not only to generate realistic samples but also to explicitly maximize desired measures at inference time without fine-tuning. This tutorial explores the foundational aspects of such inference-time algorithms. We review these methods from a unified perspective, demonstrating that current techniques -- such as Sequential Monte Carlo (SMC)-based guidance, value-based sampling, and classifier guidance -- aim to approximate soft optimal denoising processes (a.k.a. policies in RL) that combine pre-trained denoising processes with value functions serving as look-ahead functions that predict from intermediate states to terminal rewards. Within this framework, we present several novel algorithms not yet covered in the literature. Furthermore, we discuss (1) fine-tuning methods combined with inference-time techniques, (2) inference-time algorithms based on search algorithms such as Monte Carlo tree search, which have received limited attention in current research, and (3) connections between inference-time algorithms in language models and diffusion models. The code of this tutorial on protein design is available at https://github.com/masa-ue/AlignInversePro
Authors:Tingxuan Chen, Kun Yuan, Vinkle Srivastav, Nassir Navab, Nicolas Padoy
Abstract:
Purpose: Surgical workflow analysis is crucial for improving surgical efficiency and safety. However, previous studies rely heavily on large-scale annotated datasets, posing challenges in cost, scalability, and reliance on expert annotations. To address this, we propose Surg-FTDA (Few-shot Text-driven Adaptation), designed to handle various surgical workflow analysis tasks with minimal paired image-label data.
Methods: Our approach has two key components. First, Few-shot selection-based modality alignment selects a small subset of images and aligns their embeddings with text embeddings from the downstream task, bridging the modality gap. Second, Text-driven adaptation leverages only text data to train a decoder, eliminating the need for paired image-text data. This decoder is then applied to aligned image embeddings, enabling image-related tasks without explicit image-text pairs.
Results: We evaluate our approach to generative tasks (image captioning) and discriminative tasks (triplet recognition and phase recognition). Results show that Surg-FTDA outperforms baselines and generalizes well across downstream tasks.
Conclusion: We propose a text-driven adaptation approach that mitigates the modality gap and handles multiple downstream tasks in surgical workflow analysis, with minimal reliance on large annotated datasets. The code and dataset will be released in https://github.com/CAMMA-public/Surg-FTDA
Authors:Hanrong Zhang, Yifei Yao, Zixuan Wang, Jiayuan Su, Mengxuan Li, Peng Peng, Hongwei Wang
Abstract:
Class-incremental fault diagnosis requires a model to adapt to new fault classes while retaining previous knowledge. However, limited research exists for imbalanced and long-tailed data. Extracting discriminative features from few-shot fault data is challenging, and adding new fault classes often demands costly model retraining. Moreover, incremental training of existing methods risks catastrophic forgetting, and severe class imbalance can bias the model's decisions toward normal classes. To tackle these issues, we introduce a Supervised Contrastive knowledge distiLlation for class Incremental Fault Diagnosis (SCLIFD) framework proposing supervised contrastive knowledge distillation for improved representation learning capability and less forgetting, a novel prioritized exemplar selection method for sample replay to alleviate catastrophic forgetting, and the Random Forest Classifier to address the class imbalance. Extensive experimentation on simulated and real-world industrial datasets across various imbalance ratios demonstrates the superiority of SCLIFD over existing approaches. Our code can be found at https://github.com/Zhang-Henry/SCLIFD_TII.
Authors:Junjie He, Yuxiang Tuo, Binghui Chen, Chongyang Zhong, Yifeng Geng, Liefeng Bo
Abstract:
Recently, large-scale generative models have demonstrated outstanding text-to-image generation capabilities. However, generating high-fidelity personalized images with specific subjects still presents challenges, especially in cases involving multiple subjects. In this paper, we propose AnyStory, a unified approach for personalized subject generation. AnyStory not only achieves high-fidelity personalization for single subjects, but also for multiple subjects, without sacrificing subject fidelity. Specifically, AnyStory models the subject personalization problem in an "encode-then-route" manner. In the encoding step, AnyStory utilizes a universal and powerful image encoder, i.e., ReferenceNet, in conjunction with CLIP vision encoder to achieve high-fidelity encoding of subject features. In the routing step, AnyStory utilizes a decoupled instance-aware subject router to accurately perceive and predict the potential location of the corresponding subject in the latent space, and guide the injection of subject conditions. Detailed experimental results demonstrate the excellent performance of our method in retaining subject details, aligning text descriptions, and personalizing for multiple subjects. The project page is at https://aigcdesigngroup.github.io/AnyStory/ .
Authors:Zixun Fang, Zhiheng Liu, Kai Zhu, Yu Liu, Ka Leong Cheng, Wei Zhai, Yang Cao, Zheng-Jun Zha
Abstract:
Video colorization aims to transform grayscale videos into vivid color representations while maintaining temporal consistency and structural integrity. Existing video colorization methods often suffer from color bleeding and lack comprehensive control, particularly under complex motion or diverse semantic cues. To this end, we introduce VanGogh, a unified multimodal diffusion-based framework for video colorization. VanGogh tackles these challenges using a Dual Qformer to align and fuse features from multiple modalities, complemented by a depth-guided generation process and an optical flow loss, which help reduce color overflow. Additionally, a color injection strategy and luma channel replacement are implemented to improve generalization and mitigate flickering artifacts. Thanks to this design, users can exercise both global and local control over the generation process, resulting in higher-quality colorized videos. Extensive qualitative and quantitative evaluations, and user studies, demonstrate that VanGogh achieves superior temporal consistency and color fidelity.Project page: https://becauseimbatman0.github.io/VanGogh.
Authors:Zhaocheng Liu, Quan Tu, Wen Ye, Yu Xiao, Zhishou Zhang, Hengfu Cui, Yalun Zhu, Qiang Ju, Shizheng Li, Jian Xie
Abstract:
Recently, large language models have shown great potential to transform online medical consultation. Despite this, most research targets improving diagnostic accuracy with ample information, often overlooking the inquiry phase. Some studies try to evaluate or refine doctor models by using prompt-engineered patient agents. However, prompt engineering alone falls short in accurately simulating real patients. We need to explore new paradigms for patient simulation. Furthermore, the relationship between inquiry and diagnosis remains unexplored. This paper extracts dialogue strategies from real doctor-patient conversations to guide the training of a patient simulator. Our simulator shows higher anthropomorphism and lower hallucination rates, using dynamic dialogue strategies. This innovation offers a more accurate evaluation of diagnostic models and generates realistic synthetic data. We conduct extensive experiments on the relationship between inquiry and diagnosis, showing they adhere to Liebig's law: poor inquiry limits diagnosis effectiveness, regardless of diagnostic skill, and vice versa. The experiments also reveal substantial differences in inquiry performance among models. To delve into this phenomenon, the inquiry process is categorized into four distinct types. Analyzing the distribution of inquiries across these types helps explain the performance differences. The weights of our patient simulator are available https://github.com/PatientSimulator/PatientSimulator.
Authors:Jan Skvrna, Lukas Neumann
Abstract:
Inferring object 3D position and orientation from a single RGB camera is a foundational task in computer vision with many important applications. Traditionally, 3D object detection methods are trained in a fully-supervised setup, requiring LiDAR and vast amounts of human annotations, which are laborious, costly, and do not scale well with the ever-increasing amounts of data being captured.
We present a novel method to train a 3D object detector from a single RGB camera without domain-specific human annotations, making orders of magnitude more data available for training. The method uses newly proposed Local Object Motion Model to disentangle object movement source between subsequent frames, is approximately 700 times faster than previous work and compensates camera focal length differences to aggregate multiple datasets.
The method is evaluated on three public datasets, where despite using no human labels, it outperforms prior work by a significant margin. It also shows its versatility as a pre-training tool for fully-supervised training and shows that combining pseudo-labels from multiple datasets can achieve comparable accuracy to using human labels from a single dataset. The source code and model are available at https://github.com/jskvrna/MonoSOWA.
Authors:Hualie Jiang, Zhiqiang Lou, Laiyan Ding, Rui Xu, Minglang Tan, Wenjie Jiang, Rui Huang
Abstract:
Stereo matching is a key technique for metric depth estimation in computer vision and robotics. Real-world challenges like occlusion and non-texture hinder accurate disparity estimation from binocular matching cues. Recently, monocular relative depth estimation has shown remarkable generalization using vision foundation models. Thus, to facilitate robust stereo matching with monocular depth cues, we incorporate a robust monocular relative depth model into the recurrent stereo-matching framework, building a new framework for depth foundation model-based stereo-matching, DEFOM-Stereo. In the feature extraction stage, we construct the combined context and matching feature encoder by integrating features from conventional CNNs and DEFOM. In the update stage, we use the depth predicted by DEFOM to initialize the recurrent disparity and introduce a scale update module to refine the disparity at the correct scale. DEFOM-Stereo is verified to have much stronger zero-shot generalization compared with SOTA methods. Moreover, DEFOM-Stereo achieves top performance on the KITTI 2012, KITTI 2015, Middlebury, and ETH3D benchmarks, ranking $1^{st}$ on many metrics. In the joint evaluation under the robust vision challenge, our model simultaneously outperforms previous models on the individual benchmarks, further demonstrating its outstanding capabilities.
Authors:Ji Shi, Xianghua Ying, Ruohao Guo, Bowei Xing, Wenzhen Yue
Abstract:
Neural Radiance Fields (NeRF) often struggle with reconstructing and rendering highly reflective scenes. Recent advancements have developed various reflection-aware appearance models to enhance NeRF's capability to render specular reflections. However, the robust reconstruction of highly reflective scenes is still hindered by the inherent shape ambiguity on specular surfaces. Existing methods typically rely on additional geometry priors to regularize the shape prediction, but this can lead to oversmoothed geometry in complex scenes. Observing the critical role of surface normals in parameterizing reflections, we introduce a transmittance-gradient-based normal estimation technique that remains robust even under ambiguous shape conditions. Furthermore, we propose a dual activated densities module that effectively bridges the gap between smooth surface normals and sharp object boundaries. Combined with a reflection-aware appearance model, our proposed method achieves robust reconstruction and high-fidelity rendering of scenes featuring both highly specular reflections and intricate geometric structures. Extensive experiments demonstrate that our method outperforms existing state-of-the-art methods on various datasets.
Authors:Tobias Fiedler, Leon Hermann, Florian Müller, Sarel Cohen, Peter Chin, Tobias Friedrich, Eilon Vaadia
Abstract:
The decoding of continuously spoken speech from neuronal activity has the potential to become an important clinical solution for paralyzed patients. Deep Learning Brain Computer Interfaces (BCIs) have recently successfully mapped neuronal activity to text contents in subjects who attempted to formulate speech. However, only small BCI datasets are available. In contrast, labeled data and pre-trained models for the closely related task of speech recognition from audio are widely available. One such model is Wav2Vec2 which has been trained in a self-supervised fashion to create meaningful representations of speech audio data. In this study, we show that patterns learned by Wav2Vec2 are transferable to brain data. Specifically, we replace its audio feature extractor with an untrained Brain Feature Extractor (BFE) model. We then execute full fine-tuning with pre-trained weights for Wav2Vec2, training ''from scratch'' without pre-trained weights as well as freezing a pre-trained Wav2Vec2 and training only the BFE each for 45 different BFE architectures. Across these experiments, the best run is from full fine-tuning with pre-trained weights, achieving a Character Error Rate (CER) of 18.54\%, outperforming the best training from scratch run by 20.46\% and that of frozen Wav2Vec2 training by 15.92\% percentage points. These results indicate that knowledge transfer from audio speech recognition to brain decoding is possible and significantly improves brain decoding performance for the same architectures. Related source code is available at https://github.com/tfiedlerdev/Wav2Vec2ForBrain.
Authors:Zeyu Wang, Cihang Xie, Brian Bartoldson, Bhavya Kailkhura
Abstract:
This paper investigates the robustness of vision-language models against adversarial visual perturbations and introduces a novel ``double visual defense" to enhance this robustness. Unlike previous approaches that resort to lightweight adversarial fine-tuning of a pre-trained CLIP model, we perform large-scale adversarial vision-language pre-training from scratch using web-scale data. We then strengthen the defense by incorporating adversarial visual instruction tuning. The resulting models from each stage, $Î$CLIP and $Î^2$LLaVA, show substantially enhanced zero-shot robustness and set a new state-of-the-art in adversarial defense for vision-language models. For example, the adversarial robustness of $Î$CLIP surpasses that of the previous best models on ImageNet-1k by ~20%. %For example, $Î$CLIP surpasses the previous best models on ImageNet-1k by ~20% in terms of adversarial robustness. Similarly, compared to prior art, $Î^2$LLaVA brings a ~30% robustness improvement to image captioning task and a ~20% robustness improvement to visual question answering task. Furthermore, our models exhibit stronger zero-shot recognition capability, fewer hallucinations, and superior reasoning performance compared to baselines. Our project page is https://doublevisualdefense.github.io/.
Authors:Tim J. M. Jaspers, Ronald L. P. D. de Jong, Yiping Li, Carolus H. J. Kusters, Franciscus H. A. Bakker, Romy C. van Jaarsveld, Gino M. Kuiper, Richard van Hillegersberg, Jelle P. Ruurda, Willem M. Brinkman, Josien P. W. Pluim, Peter H. N. de With, Marcel Breeuwer, Yasmina Al Khalil, Fons van der Sommen
Abstract:
Foundation models have revolutionized computer vision by achieving vastly superior performance across diverse tasks through large-scale pretraining on extensive datasets. However, their application in surgical computer vision has been limited. This study addresses this gap by introducing SurgeNetXL, a novel surgical foundation model that sets a new benchmark in surgical computer vision. Trained on the largest reported surgical dataset to date, comprising over 4.7 million video frames, SurgeNetXL achieves consistent top-tier performance across six datasets spanning four surgical procedures and three tasks, including semantic segmentation, phase recognition, and critical view of safety (CVS) classification. Compared with the best-performing surgical foundation models, SurgeNetXL shows mean improvements of 2.4, 9.0, and 12.6 percent for semantic segmentation, phase recognition, and CVS classification, respectively. Additionally, SurgeNetXL outperforms the best-performing ImageNet-based variants by 14.4, 4.0, and 1.6 percent in the respective tasks. In addition to advancing model performance, this study provides key insights into scaling pretraining datasets, extending training durations, and optimizing model architectures specifically for surgical computer vision. These findings pave the way for improved generalizability and robustness in data-scarce scenarios, offering a comprehensive framework for future research in this domain. All models and a subset of the SurgeNetXL dataset, including over 2 million video frames, are publicly available at: https://github.com/TimJaspers0801/SurgeNet.
Authors:Hwan Heo, Jangyeong Kim, Seongyeong Lee, Jeong A Wi, Junyoung Choi, Sangjun Ahn
Abstract:
The synthesis of high-quality 3D assets from textual or visual inputs has become a central objective in modern generative modeling. Despite the proliferation of 3D generation algorithms, they frequently grapple with challenges such as multi-view inconsistency, slow generation times, low fidelity, and surface reconstruction problems. While some studies have addressed some of these issues, a comprehensive solution remains elusive. In this paper, we introduce \textbf{CaPa}, a carve-and-paint framework that generates high-fidelity 3D assets efficiently. CaPa employs a two-stage process, decoupling geometry generation from texture synthesis. Initially, a 3D latent diffusion model generates geometry guided by multi-view inputs, ensuring structural consistency across perspectives. Subsequently, leveraging a novel, model-agnostic Spatially Decoupled Attention, the framework synthesizes high-resolution textures (up to 4K) for a given geometry. Furthermore, we propose a 3D-aware occlusion inpainting algorithm that fills untextured regions, resulting in cohesive results across the entire model. This pipeline generates high-quality 3D assets in less than 30 seconds, providing ready-to-use outputs for commercial applications. Experimental results demonstrate that CaPa excels in both texture fidelity and geometric stability, establishing a new standard for practical, scalable 3D asset generation.
Authors:Veronika Spieker, Hannah Eichhorn, Wenqi Huang, Jonathan K. Stelter, Tabita Catalan, Rickmer F. Braren, Daniel Rueckert, Francisco Sahli Costabal, Kerstin Hammernik, Dimitrios C. Karampinos, Claudia Prieto, Julia A. Schnabel
Abstract:
Neural implicit k-space representations (NIK) have shown promising results for dynamic magnetic resonance imaging (MRI) at high temporal resolutions. Yet, reducing acquisition time, and thereby available training data, results in severe performance drops due to overfitting. To address this, we introduce a novel self-supervised k-space loss function $\mathcal{L}_\mathrm{PISCO}$, applicable for regularization of NIK-based reconstructions. The proposed loss function is based on the concept of parallel imaging-inspired self-consistency (PISCO), enforcing a consistent global k-space neighborhood relationship without requiring additional data. Quantitative and qualitative evaluations on static and dynamic MR reconstructions show that integrating PISCO significantly improves NIK representations. Particularly for high acceleration factors (R$\geq$54), NIK with PISCO achieves superior spatio-temporal reconstruction quality compared to state-of-the-art methods. Furthermore, an extensive analysis of the loss assumptions and stability shows PISCO's potential as versatile self-supervised k-space loss function for further applications and architectures. Code is available at: https://github.com/compai-lab/2025-pisco-spieker
Authors:Fen Wang, Bomiao Wang, Xueli Shu, Zhen Liu, Zekai Shao, Chao Liu, Siming Chen
Abstract:
Effective chart summary can significantly reduce the time and effort decision makers spend interpreting charts, enabling precise and efficient communication of data insights. Previous studies have faced challenges in generating accurate and semantically rich summaries of time-series data charts. In this paper, we identify summary elements and common hallucination types in the generation of time-series chart summaries, which serve as our guidelines for automatic generation. We introduce ChartInsighter, which automatically generates chart summaries of time-series data, effectively reducing hallucinations in chart summary generation. Specifically, we assign multiple agents to generate the initial chart summary and collaborate iteratively, during which they invoke external data analysis modules to extract insights and compile them into a coherent summary. Additionally, we implement a self-consistency test method to validate and correct our summary. We create a high-quality benchmark of charts and summaries, with hallucination types annotated on a sentence-by-sentence basis, facilitating the evaluation of the effectiveness of reducing hallucinations. Our evaluations using our benchmark show that our method surpasses state-of-the-art models, and that our summary hallucination rate is the lowest, which effectively reduces various hallucinations and improves summary quality. The benchmark is available at https://github.com/wangfen01/ChartInsighter.
Authors:Arpita Chowdhury, Dipanjyoti Paul, Zheda Mai, Jianyang Gu, Ziheng Zhang, Kazi Sajeed Mehrab, Elizabeth G. Campolongo, Daniel Rubenstein, Charles V. Stewart, Anuj Karpatne, Tanya Berger-Wolf, Yu Su, Wei-Lun Chao
Abstract:
We present a simple approach to make pre-trained Vision Transformers (ViTs) interpretable for fine-grained analysis, aiming to identify and localize the traits that distinguish visually similar categories, such as bird species. Pre-trained ViTs, such as DINO, have demonstrated remarkable capabilities in extracting localized, discriminative features. However, saliency maps like Grad-CAM often fail to identify these traits, producing blurred, coarse heatmaps that highlight entire objects instead. We propose a novel approach, Prompt Class Attention Map (Prompt-CAM), to address this limitation. Prompt-CAM learns class-specific prompts for a pre-trained ViT and uses the corresponding outputs for classification. To correctly classify an image, the true-class prompt must attend to unique image patches not present in other classes' images (i.e., traits). As a result, the true class's multi-head attention maps reveal traits and their locations. Implementation-wise, Prompt-CAM is almost a ``free lunch,'' requiring only a modification to the prediction head of Visual Prompt Tuning (VPT). This makes Prompt-CAM easy to train and apply, in stark contrast to other interpretable methods that require designing specific models and training processes. Extensive empirical studies on a dozen datasets from various domains (e.g., birds, fishes, insects, fungi, flowers, food, and cars) validate the superior interpretation capability of Prompt-CAM. The source code and demo are available at https://github.com/Imageomics/Prompt_CAM.
Authors:Yixiao Xu, Binxing Fang, Rui Wang, Yinghai Zhou, Yuan Liu, Mohan Li, Zhihong Tian
Abstract:
Developing high-performance deep learning models is resource-intensive, leading model owners to utilize Machine Learning as a Service (MLaaS) platforms instead of publicly releasing their models. However, malicious users may exploit query interfaces to execute model extraction attacks, reconstructing the target model's functionality locally. While prior research has investigated triggerable watermarking techniques for asserting ownership, existing methods face significant challenges: (1) most approaches require additional training, resulting in high overhead and limited flexibility, and (2) they often fail to account for advanced attackers, leaving them vulnerable to adaptive attacks.
In this paper, we propose Neural Honeytrace, a robust plug-and-play watermarking framework against model extraction attacks. We first formulate a watermark transmission model from an information-theoretic perspective, providing an interpretable account of the principles and limitations of existing triggerable watermarking. Guided by the model, we further introduce: (1) a similarity-based training-free watermarking method for plug-and-play and flexible watermarking, and (2) a distribution-based multi-step watermark information transmission strategy for robust watermarking. Comprehensive experiments on four datasets demonstrate that Neural Honeytrace outperforms previous methods in efficiency and resisting adaptive attacks. Neural Honeytrace reduces the average number of samples required for a worst-case t-Test-based copyright claim from 193,252 to 1,857 with zero training cost. The code is available at https://github.com/NeurHT/NeurHT.
Authors:Zichang Ge, Changyu Chen, Arunesh Sinha, Pradeep Varakantham
Abstract:
In real-world sequential decision making tasks like autonomous driving, robotics, and healthcare, learning from observed state-action trajectories is critical for tasks like imitation, classification, and clustering. For example, self-driving cars must replicate human driving behaviors, while robots and healthcare systems benefit from modeling decision sequences, whether or not they come from expert data. Existing trajectory encoding methods often focus on specific tasks or rely on reward signals, limiting their ability to generalize across domains and tasks. Inspired by the success of embedding models like CLIP and BERT in static domains, we propose a novel method for embedding state-action trajectories into a latent space that captures the skills and competencies in the dynamic underlying decision-making processes. This method operates without the need for reward labels, enabling better generalization across diverse domains and tasks. Our contributions are threefold: (1) We introduce a trajectory embedding approach that captures multiple abilities from state-action data. (2) The learned embeddings exhibit strong representational power across downstream tasks, including imitation, classification, clustering, and regression. (3) The embeddings demonstrate unique properties, such as controlling agent behaviors in IQ-Learn and an additive structure in the latent space. Experimental results confirm that our method outperforms traditional approaches, offering more flexible and powerful trajectory representations for various applications. Our code is available at https://github.com/Erasmo1015/vte.
Authors:Kyeongha Rho, Hyeongkeun Lee, Valentio Iverson, Joon Son Chung
Abstract:
Automated audio captioning is a task that generates textual descriptions for audio content, and recent studies have explored using visual information to enhance captioning quality. However, current methods often fail to effectively fuse audio and visual data, missing important semantic cues from each modality. To address this, we introduce LAVCap, a large language model (LLM)-based audio-visual captioning framework that effectively integrates visual information with audio to improve audio captioning performance. LAVCap employs an optimal transport-based alignment loss to bridge the modality gap between audio and visual features, enabling more effective semantic extraction. Additionally, we propose an optimal transport attention module that enhances audio-visual fusion using an optimal transport assignment map. Combined with the optimal training strategy, experimental results demonstrate that each component of our framework is effective. LAVCap outperforms existing state-of-the-art methods on the AudioCaps dataset, without relying on large datasets or post-processing. Code is available at https://github.com/NAVER-INTEL-Co-Lab/gaudi-lavcap.
Authors:Alper Kayabasi, Anil Kumar Vadathya, Guha Balakrishnan, Vishwanath Saragadam
Abstract:
We propose a new continuous video modeling framework based on implicit neural representations (INRs) called ActINR. At the core of our approach is the observation that INRs can be considered as a learnable dictionary, with the shapes of the basis functions governed by the weights of the INR, and their locations governed by the biases. Given compact non-linear activation functions, we hypothesize that an INR's biases are suitable to capture motion across images, and facilitate compact representations for video sequences. Using these observations, we design ActINR to share INR weights across frames of a video sequence, while using unique biases for each frame. We further model the biases as the output of a separate INR conditioned on time index to promote smoothness. By training the video INR and this bias INR together, we demonstrate unique capabilities, including $10\times$ video slow motion, 4x spatial super resolution along with 2x slow motion, denoising, and video inpainting. ActINR performs remarkably well across numerous video processing tasks (often achieving more than 6dB improvement), setting a new standard for continuous modeling of videos.
Authors:Shuo Chen, Yijin Li, Guofeng Zhang
Abstract:
White Light Interferometry (WLI) is a precise optical tool for measuring the 3D topography of microstructures. However, conventional WLI cannot capture the natural color of a sample's surface, which is essential for many microscale research applications that require both 3D geometry and color information. Previous methods have attempted to overcome this limitation by modifying WLI hardware and analysis software, but these solutions are often costly. In this work, we address this challenge from a computer vision multi-modal reconstruction perspective for the first time. We introduce OpticFusion, a novel approach that uses an additional digital optical microscope (OM) to achieve 3D reconstruction with natural color textures using multi-view WLI and OM images. Our method employs a two-step data association process to obtain the poses of WLI and OM data. By leveraging the neural implicit representation, we fuse multi-modal data and apply color decomposition technology to extract the sample's natural color. Tested on our multi-modal dataset of various microscale samples, OpticFusion achieves detailed 3D reconstructions with color textures. Our method provides an effective tool for practical applications across numerous microscale research fields. The source code and our real-world dataset are available at https://github.com/zju3dv/OpticFusion.
Authors:Mingyue Huo, Abhinav Jain, Cong Phuoc Huynh, Fanjie Kong, Pichao Wang, Zhu Liu, Vimal Bhat
Abstract:
Target Speech Extraction (TSE) traditionally relies on explicit clues about the speaker's identity like enrollment audio, face images, or videos, which may not always be available. In this paper, we propose a text-guided TSE model StyleTSE that uses natural language descriptions of speaking style in addition to the audio clue to extract the desired speech from a given mixture. Our model integrates a speech separation network adapted from SepFormer with a bi-modality clue network that flexibly processes both audio and text clues. To train and evaluate our model, we introduce a new dataset TextrolMix with speech mixtures and natural language descriptions. Experimental results demonstrate that our method effectively separates speech based not only on who is speaking, but also on how they are speaking, enhancing TSE in scenarios where traditional audio clues are absent. Demos are at: https://mingyue66.github.io/TextrolMix/demo/
Authors:Weizhen Wang, Chenda Duan, Zhenghao Peng, Yuxin Liu, Bolei Zhou
Abstract:
Vision Language Models (VLMs) demonstrate significant potential as embodied AI agents for various mobility applications. However, a standardized, closed-loop benchmark for evaluating their spatial reasoning and sequential decision-making capabilities is lacking. To address this, we present MetaVQA: a comprehensive benchmark designed to assess and enhance VLMs' understanding of spatial relationships and scene dynamics through Visual Question Answering (VQA) and closed-loop simulations. MetaVQA leverages Set-of-Mark prompting and top-down view ground-truth annotations from nuScenes and Waymo datasets to automatically generate extensive question-answer pairs based on diverse real-world traffic scenarios, ensuring object-centric and context-rich instructions. Our experiments show that fine-tuning VLMs with the MetaVQA dataset significantly improves their spatial reasoning and embodied scene comprehension in safety-critical simulations, evident not only in improved VQA accuracies but also in emerging safety-aware driving maneuvers. In addition, the learning demonstrates strong transferability from simulation to real-world observation. Code and data will be publicly available at https://metadriverse.github.io/metavqa .
Authors:Edward R Criscuolo, Yao Hao, Zhendong Zhang, Trevor McKeown, Deshan Yang
Abstract:
Deformable image registration (DIR) is an enabling technology in many diagnostic and therapeutic tasks. Despite this, DIR algorithms have limited clinical use, largely due to a lack of benchmark datasets for quality assurance during development. To support future algorithm development, here we introduce our first-of-its-kind abdominal CT DIR benchmark dataset, comprising large numbers of highly accurate landmark pairs on matching blood vessel bifurcations. Abdominal CT image pairs of 30 patients were acquired from several public repositories as well as the authors' institution with IRB approval. The two CTs of each pair were originally acquired for the same patient on different days. An image processing workflow was developed and applied to each image pair: 1) Abdominal organs were segmented with a deep learning model, and image intensity within organ masks was overwritten. 2) Matching image patches were manually identified between two CTs of each image pair 3) Vessel bifurcation landmarks were labeled on one image of each image patch pair. 4) Image patches were deformably registered, and landmarks were projected onto the second image. 5) Landmark pair locations were refined manually or with an automated process. This workflow resulted in 1895 total landmark pairs, or 63 per case on average. Estimates of the landmark pair accuracy using digital phantoms were 0.7+/-1.2mm. The data is published in Zenodo at https://doi.org/10.5281/zenodo.14362785. Instructions for use can be found at https://github.com/deshanyang/Abdominal-DIR-QA. This dataset is a first-of-its-kind for abdominal DIR validation. The number, accuracy, and distribution of landmark pairs will allow for robust validation of DIR algorithms with precision beyond what is currently available.
Authors:Eshaan Tanwar, Gayatri Oke, Tanmoy Chakraborty
Abstract:
Bilingual lexical processing is shaped by the complex interplay of phonological, orthographic, and semantic features of two languages within an integrated mental lexicon. In humans, this is evident in the ease with which cognate words - words similar in both orthographic form and meaning (e.g., blind, meaning "sightless" in both English and German) - are processed, compared to the challenges posed by interlingual homographs, which share orthographic form but differ in meaning (e.g., gift, meaning "present" in English but "poison" in German). We investigate how multilingual Large Language Models (LLMs) handle such phenomena, focusing on English-Spanish, English-French, and English-German cognates, non-cognate, and interlingual homographs. Specifically, we evaluate their ability to disambiguate meanings and make semantic judgments, both when these word types are presented in isolation or within sentence contexts. Our findings reveal that while certain LLMs demonstrate strong performance in recognizing cognates and non-cognates in isolation, they exhibit significant difficulty in disambiguating interlingual homographs, often performing below random baselines. This suggests LLMs tend to rely heavily on orthographic similarities rather than semantic understanding when interpreting interlingual homographs. Further, we find LLMs exhibit difficulty in retrieving word meanings, with performance in isolative disambiguation tasks having no correlation with semantic understanding. Finally, we study how the LLM processes interlingual homographs in incongruent sentences. We find models to opt for different strategies in understanding English and non-English homographs, highlighting a lack of a unified approach to handling cross-lingual ambiguities.
Authors:Suhail Basalama, Jason Cong
Abstract:
High-level synthesis (HLS) has enabled the rapid development of custom hardware circuits for many software applications. However, developing high-performance hardware circuits using HLS is still a non-trivial task requiring expertise in hardware design. Further, the hardware design space, especially for multi-kernel applications, grows exponentially. Therefore, several HLS automation and abstraction frameworks have been proposed recently, but many issues remain unresolved. These issues include: 1) relying mainly on hardware directives (pragmas) to apply hardware optimizations without exploring loop scheduling opportunities. 2) targeting single-kernel applications only. 3) lacking automatic and/or global design space exploration. 4) missing critical hardware optimizations, such as graph-level pipelining for multi-kernel applications.
To address these challenges, we propose a novel methodology and framework on top of the popular multi-level intermediate representation (MLIR) infrastructure called Stream-HLS. Our framework takes a C/C++ or PyTorch software code and automatically generates an optimized dataflow architecture along with host code for field-programmable gate arrays (FPGAs). To achieve this, we developed an accurate analytical performance model for global scheduling and optimization of dataflow architectures. Stream-HLS is evaluated using various standard HLS benchmarks and real-world benchmarks from transformer models, convolution neural networks, and multilayer perceptrons. Stream-HLS designs outperform the designs of prior state-of-the-art automation frameworks and manually-optimized designs of abstraction frameworks by up to $79.43\times$ and $10.62\times$ geometric means respectively. Finally, the Stream-HLS framework is modularized, extensible, and open-sourced at \url{https://github.com/UCLA-VAST/Stream-HLS} (\url{https://doi.org/10.5281/zenodo.14585909}).
Authors:Huiyu Li, Nicholas Ayache, Hervé Delingette
Abstract:
Medical image anonymization aims to protect patient privacy by removing identifying information, while preserving the data utility to solve downstream tasks. In this paper, we address the medical image anonymization problem with a two-stage solution: latent code projection and optimization. In the projection stage, we design a streamlined encoder to project input images into a latent space and propose a co-training scheme to enhance the projection process. In the optimization stage, we refine the latent code using two deep loss functions designed to address the trade-off between identity protection and data utility dedicated to medical images. Through a comprehensive set of qualitative and quantitative experiments, we showcase the effectiveness of our approach on the MIMIC-CXR chest X-ray dataset by generating anonymized synthetic images that can serve as training set for detecting lung pathologies. Source codes are available at https://github.com/Huiyu-Li/GMIA.
Authors:Kanta Masuki, Yuto Ashida
Abstract:
Diffusion models represent a class of generative models that produce data by denoising a sample corrupted by white noise. Despite the success of diffusion models in computer vision, audio synthesis, and point cloud generation, so far they overlook inherent multiscale structures in data and have a slow generation process due to many iteration steps. In physics, the renormalization group offers a fundamental framework for linking different scales and giving an accurate coarse-grained model. Here we introduce a renormalization group-based diffusion model that leverages multiscale nature of data distributions for realizing a high-quality data generation. In the spirit of renormalization group procedures, we define a flow equation that progressively erases data information from fine-scale details to coarse-grained structures. Through reversing the renormalization group flows, our model is able to generate high-quality samples in a coarse-to-fine manner. We validate the versatility of the model through applications to protein structure prediction and image generation. Our model consistently outperforms conventional diffusion models across standard evaluation metrics, enhancing sample quality and/or accelerating sampling speed by an order of magnitude. The proposed method alleviates the need for data-dependent tuning of hyperparameters in the generative diffusion models, showing promise for systematically increasing sample efficiency based on the concept of the renormalization group.
Authors:Zihao Xu, Yuzhi Tang, Bowen Xu, Qingquan Li
Abstract:
Most publicly accessible remote sensing data suffer from low resolution, limiting their practical applications. To address this, we propose a diffusion model guided by neural operators for continuous remote sensing image super-resolution (NeurOp-Diff). Neural operators are used to learn resolution representations at arbitrary scales, encoding low-resolution (LR) images into high-dimensional features, which are then used as prior conditions to guide the diffusion model for denoising. This effectively addresses the artifacts and excessive smoothing issues present in existing super-resolution (SR) methods, enabling the generation of high-quality, continuous super-resolution images. Specifically, we adjust the super-resolution scale by a scaling factor s, allowing the model to adapt to different super-resolution magnifications. Furthermore, experiments on multiple datasets demonstrate the effectiveness of NeurOp-Diff. Our code is available at https://github.com/zerono000/NeurOp-Diff.
Authors:Zheng-An Zhu, Hsin-Che Chien, Chen-Kuo Chiang
Abstract:
This paper proposes the ViT Token Constraint and Multi-scale Memory bank (TCMM) method to address the patch noises and feature inconsistency in unsupervised person re-identification works. Many excellent methods use ViT features to obtain pseudo labels and clustering prototypes, then train the model with contrastive learning. However, ViT processes images by performing patch embedding, which inevitably introduces noise in patches and may compromise the performance of the re-identification model. On the other hand, previous memory bank based contrastive methods may lead data inconsistency due to the limitation of batch size. Furthermore, existing pseudo label methods often discard outlier samples that are difficult to cluster. It sacrifices the potential value of outlier samples, leading to limited model diversity and robustness. This paper introduces the ViT Token Constraint to mitigate the damage caused by patch noises to the ViT architecture. The proposed Multi-scale Memory enhances the exploration of outlier samples and maintains feature consistency. Experimental results demonstrate that our system achieves state-of-the-art performance on common benchmarks. The project is available at \href{https://github.com/andy412510/TCMM}{https://github.com/andy412510/TCMM}.
Authors:Jianzi Xiang, Cailu Wan, Zhu Cao
Abstract:
Semantic segmentation is essential for comprehending images, but the process necessitates a substantial amount of detailed annotations at the pixel level. Acquiring such annotations can be costly in the real-world. Unsupervised domain adaptation (UDA) for semantic segmentation is a technique that uses virtual data with labels to train a model and adapts it to real data without labels. Some recent works use contrastive learning, which is a powerful method for self-supervised learning, to help with this technique. However, these works do not take into account the diversity of features within each class when using contrastive learning, which leads to errors in class prediction. We analyze the limitations of these works and propose a novel framework called Pseudo-label Guided Pixel Contrast (PGPC), which overcomes the disadvantages of previous methods. We also investigate how to use more information from target images without adding noise from pseudo-labels. We test our method on two standard UDA benchmarks and show that it outperforms existing methods. Specifically, we achieve relative improvements of 5.1% mIoU and 4.6% mIoU on the Grand Theft Auto V (GTA5) to Cityscapes and SYNTHIA to Cityscapes tasks based on DAFormer, respectively. Furthermore, our approach can enhance the performance of other UDA approaches without increasing model complexity. Code is available at https://github.com/embar111/pgpc
Authors:Saman Motamed, Laura Culp, Kevin Swersky, Priyank Jaini, Robert Geirhos
Abstract:
AI video generation is undergoing a revolution, with quality and realism advancing rapidly. These advances have led to a passionate scientific debate: Do video models learn "world models" that discover laws of physics -- or, alternatively, are they merely sophisticated pixel predictors that achieve visual realism without understanding the physical principles of reality? We address this question by developing Physics-IQ, a comprehensive benchmark dataset that can only be solved by acquiring a deep understanding of various physical principles, like fluid dynamics, optics, solid mechanics, magnetism and thermodynamics. We find that across a range of current models (Sora, Runway, Pika, Lumiere, Stable Video Diffusion, and VideoPoet), physical understanding is severely limited, and unrelated to visual realism. At the same time, some test cases can already be successfully solved. This indicates that acquiring certain physical principles from observation alone may be possible, but significant challenges remain. While we expect rapid advances ahead, our work demonstrates that visual realism does not imply physical understanding. Our project page is at https://physics-iq.github.io; code at https://github.com/google-deepmind/physics-IQ-benchmark.
Authors:Bowen Yi
Abstract:
Twitter has become a pivotal platform for conducting information operations (IOs), particularly during high-stakes political events. In this study, we analyze over a million tweets about the 2024 U.S. presidential election to explore an under-studied area: the behavioral differences of IO drivers from English- and Spanish-speaking communities. Using similarity graphs constructed from behavioral patterns, we identify IO drivers in both languages and evaluate the clustering quality of these graphs in an unsupervised setting. Our analysis demonstrates how different network dismantling strategies, such as node pruning and edge filtering, can impact clustering quality and the identification of coordinated IO drivers. We also reveal significant differences in the topics and political indicators between English and Spanish IO drivers. Additionally, we investigate bilingual users who post in both languages, systematically uncovering their distinct roles and behaviors compared to monolingual users. These findings underscore the importance of robust, culturally and linguistically adaptable IO detection methods to mitigate the risks of influence campaigns on social media. Our code and data are available on GitHub: https://github.com/bowenyi-pierre/humans-lab-hackathon-24.
Authors:Ruixiang Jiang, Changwen Chen
Abstract:
The rapid technical progress of generative art (GenArt) has democratized the creation of visually appealing imagery. However, achieving genuine artistic impact - the kind that resonates with viewers on a deeper, more meaningful level - remains formidable as it requires a sophisticated aesthetic sensibility. This sensibility involves a multifaceted cognitive process extending beyond mere visual appeal, which is often overlooked by current computational methods. This paper pioneers an approach to capture this complex process by investigating how the reasoning capabilities of Multimodal LLMs (MLLMs) can be effectively elicited to perform aesthetic judgment. Our analysis reveals a critical challenge: MLLMs exhibit a tendency towards hallucinations during aesthetic reasoning, characterized by subjective opinions and unsubstantiated artistic interpretations. We further demonstrate that these hallucinations can be suppressed by employing an evidence-based and objective reasoning process, as substantiated by our proposed baseline, ArtCoT. MLLMs prompted by this principle produce multifaceted, in-depth aesthetic reasoning that aligns significantly better with human judgment. These findings have direct applications in areas such as AI art tutoring and as reward models for image generation. Ultimately, we hope this work paves the way for AI systems that can truly understand, appreciate, and contribute to art that aligns with human aesthetic values. Project homepage: https://github.com/songrise/MLLM4Art.
Authors:Ishan Amin, Sanjeev Raja, Aditi Krishnapriyan
Abstract:
The foundation model (FM) paradigm is transforming Machine Learning Force Fields (MLFFs), leveraging general-purpose representations and scalable training to perform a variety of computational chemistry tasks. Although MLFF FMs have begun to close the accuracy gap relative to first-principles methods, there is still a strong need for faster inference speed. Additionally, while research is increasingly focused on general-purpose models which transfer across chemical space, practitioners typically only study a small subset of systems at a given time. This underscores the need for fast, specialized MLFFs relevant to specific downstream applications, which preserve test-time physical soundness while maintaining train-time scalability. In this work, we introduce a method for transferring general-purpose representations from MLFF foundation models to smaller, faster MLFFs specialized to specific regions of chemical space. We formulate our approach as a knowledge distillation procedure, where the smaller "student" MLFF is trained to match the Hessians of the energy predictions of the "teacher" foundation model. Our specialized MLFFs can be up to 20 $\times$ faster than the original foundation model, while retaining, and in some cases exceeding, its performance and that of undistilled models. We also show that distilling from a teacher model with a direct force parameterization into a student model trained with conservative forces (i.e., computed as derivatives of the potential energy) successfully leverages the representations from the large-scale teacher for improved accuracy, while maintaining energy conservation during test-time molecular dynamics simulations. More broadly, our work suggests a new paradigm for MLFF development, in which foundation models are released along with smaller, specialized simulation "engines" for common chemical subsets.
Authors:Aditya Bhat, Rupak Bose, Chinedu Innocent Nwoye, Nicolas Padoy
Abstract:
Acquiring and annotating surgical data is often resource-intensive, ethical constraining, and requiring significant expert involvement. While generative AI models like text-to-image can alleviate data scarcity, incorporating spatial annotations, such as segmentation masks, is crucial for precision-driven surgical applications, simulation, and education. This study introduces both a novel task and method, SimGen, for Simultaneous Image and Mask Generation. SimGen is a diffusion model based on the DDPM framework and Residual U-Net, designed to jointly generate high-fidelity surgical images and their corresponding segmentation masks. The model leverages cross-correlation priors to capture dependencies between continuous image and discrete mask distributions. Additionally, a Canonical Fibonacci Lattice (CFL) is employed to enhance class separability and uniformity in the RGB space of the masks. SimGen delivers high-fidelity images and accurate segmentation masks, outperforming baselines across six public datasets assessed on image and semantic inception distance metrics. Ablation study shows that the CFL improves mask quality and spatial separation. Downstream experiments suggest generated image-mask pairs are usable if regulations limit human data release for research. This work offers a cost-effective solution for generating paired surgical images and complex labels, advancing surgical AI development by reducing the need for expensive manual annotations.
Authors:Chenyang Si, Weichen Fan, Zhengyao Lv, Ziqi Huang, Yu Qiao, Ziwei Liu
Abstract:
Video generation has achieved remarkable progress with the introduction of diffusion models, which have significantly improved the quality of generated videos. However, recent research has primarily focused on scaling up model training, while offering limited insights into the direct impact of representations on the video generation process. In this paper, we initially investigate the characteristics of features in intermediate layers, finding substantial variations in attention maps across different layers. These variations lead to unstable semantic representations and contribute to cumulative differences between features, which ultimately reduce the similarity between adjacent frames and negatively affect temporal coherence. To address this, we propose RepVideo, an enhanced representation framework for text-to-video diffusion models. By accumulating features from neighboring layers to form enriched representations, this approach captures more stable semantic information. These enhanced representations are then used as inputs to the attention mechanism, thereby improving semantic expressiveness while ensuring feature consistency across adjacent frames. Extensive experiments demonstrate that our RepVideo not only significantly enhances the ability to generate accurate spatial appearances, such as capturing complex spatial relationships between multiple objects, but also improves temporal consistency in video generation.
Authors:Qinyu Ma, Yuhao Zhou, Jianfeng Li
Abstract:
Identifying reliable synthesis pathways in materials chemistry is a complex task, particularly in polymer science, due to the intricate and often non-unique nomenclature of macromolecules. To address this challenge, we propose an agent system that integrates large language models (LLMs) and knowledge graphs. By leveraging LLMs' powerful capabilities for extracting and recognizing chemical substance names, and storing the extracted data in a structured knowledge graph, our system fully automates the retrieval of relevant literatures, extraction of reaction data, database querying, construction of retrosynthetic pathway trees, further expansion through the retrieval of additional literature and recommendation of optimal reaction pathways. By considering the complex interdependencies among chemical reactants, a novel Multi-branched Reaction Pathway Search Algorithm (MBRPS) is proposed to help identify all valid multi-branched reaction pathways, which arise when a single product decomposes into multiple reaction intermediates. In contrast, previous studies were limited to cases where a product decomposes into at most one reaction intermediate. This work represents the first attempt to develop a fully automated retrosynthesis planning agent tailored specially for macromolecules powered by LLMs. Applied to polyimide synthesis, our new approach constructs a retrosynthetic pathway tree with hundreds of pathways and recommends optimized routes, including both known and novel pathways. This demonstrates utilizing LLMs for literature consultation to accomplish specific tasks is possible and crucial for future materials research, given the vast amount of materials-related literature.
Authors:Trevor E. Pogue, Nicola Nicolici
Abstract:
While the Karatsuba algorithm reduces the complexity of large integer multiplication, the extra additions required minimize its benefits for smaller integers of more commonly-used bitwidths. In this work, we propose the extension of the scalar Karatsuba multiplication algorithm to matrix multiplication, showing how this maintains the reduction in multiplication complexity of the original Karatsuba algorithm while reducing the complexity of the extra additions. Furthermore, we propose new matrix multiplication hardware architectures for efficiently exploiting this extension of the Karatsuba algorithm in custom hardware. We show that the proposed algorithm and hardware architectures can provide real area or execution time improvements for integer matrix multiplication compared to scalar Karatsuba or conventional matrix multiplication algorithms, while also supporting implementation through proven systolic array and conventional multiplier architectures at the core. We provide a complexity analysis of the algorithm and architectures and evaluate the proposed designs both in isolation and in an end-to-end deep learning accelerator system compared to baseline designs and prior state-of-the-art works implemented on the same type of compute platform, demonstrating their ability to increase the performance-per-area of matrix multiplication hardware.
Authors:Keisuke Kamo, Hideaki Iiduka
Abstract:
Stochastic gradient descent with momentum (SGDM), in which a momentum term is added to SGD, has been well studied in both theory and practice. The theoretical studies show that the settings of the learning rate and momentum weight affect the convergence of SGDM. Meanwhile, the practical studies have shown that the batch-size setting strongly affects the performance of SGDM. In this paper, we focus on mini-batch SGDM with a constant learning rate and constant momentum weight, which is frequently used to train deep neural networks. We show theoretically that using a constant batch size does not always minimize the expectation of the full gradient norm of the empirical loss in training a deep neural network, whereas using an increasing batch size definitely minimizes it; that is, an increasing batch size improves the convergence of mini-batch SGDM. We also provide numerical results supporting our analyses, indicating specifically that mini-batch SGDM with an increasing batch size converges to stationary points faster than with a constant batch size, while also reducing computational cost. Python implementations of the optimizers used in the numerical experiments are available at https://github.com/iiduka-researches/NSHB_increasing_batchsize_acml25/.
Authors:Tengpeng Li, Hanli Wang, Xianfei Li, Wenlong Liao, Tao He, Pai Peng
Abstract:
Autonomous driving is a challenging task that requires perceiving and understanding the surrounding environment for safe trajectory planning. While existing vision-based end-to-end models have achieved promising results, these methods are still facing the challenges of vision understanding, decision reasoning and scene generalization. To solve these issues, a generative planning with 3D-vision language pre-training model named GPVL is proposed for end-to-end autonomous driving. The proposed paradigm has two significant aspects. On one hand, a 3D-vision language pre-training module is designed to bridge the gap between visual perception and linguistic understanding in the bird's eye view. On the other hand, a cross-modal language model is introduced to generate holistic driving decisions and fine-grained trajectories with perception and navigation information in an auto-regressive manner. Experiments on the challenging nuScenes dataset demonstrate that the proposed scheme achieves excellent performances compared with state-of-the-art methods. Besides, the proposed GPVL presents strong generalization ability and real-time potential when handling high-level commands in various scenarios. It is believed that the effective, robust and efficient performance of GPVL is crucial for the practical application of future autonomous driving systems. Code is available at https://github.com/ltp1995/GPVL
Authors:Olga Zatsarynna, Emad Bahrami, Yazan Abu Farha, Gianpiero Francesca, Juergen Gall
Abstract:
Long-term dense action anticipation is very challenging since it requires predicting actions and their durations several minutes into the future based on provided video observations. To model the uncertainty of future outcomes, stochastic models predict several potential future action sequences for the same observation. Recent work has further proposed to incorporate uncertainty modelling for observed frames by simultaneously predicting per-frame past and future actions in a unified manner. While such joint modelling of actions is beneficial, it requires long-range temporal capabilities to connect events across distant past and future time points. However, the previous work struggles to achieve such a long-range understanding due to its limited and/or sparse receptive field. To alleviate this issue, we propose a novel MANTA (MAmba for ANTicipation) network. Our model enables effective long-term temporal modelling even for very long sequences while maintaining linear complexity in sequence length. We demonstrate that our approach achieves state-of-the-art results on three datasets - Breakfast, 50Salads, and Assembly101 - while also significantly improving computational and memory efficiency. Our code is available at https://github.com/olga-zats/DIFF_MANTA .
Authors:Kuicai Dong, Yujing Chang, Xin Deik Goh, Dexun Li, Ruiming Tang, Yong Liu
Abstract:
Multimodal document retrieval aims to identify and retrieve various forms of multimodal content, such as figures, tables, charts, and layout information from extensive documents. Despite its increasing popularity, there is a notable lack of a comprehensive and robust benchmark to effectively evaluate the performance of systems in such tasks. To address this gap, this work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval. The former evaluates the performance of identifying the most relevant pages within a long document, while the later assesses the ability of detecting specific layouts, providing a more fine-grained measure than whole-page analysis. A layout refers to a variety of elements, including textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels, making it a valuable resource in multimodal document retrieval for both training and evaluation. Through rigorous experiments, we demonstrate that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR training set effectively enhances the performance of multimodal document retrieval and (iii) text retrievers leveraging VLM-text significantly outperforms retrievers relying on OCR-text. Our dataset is available at https://mmdocrag.github.io/MMDocIR/.
Authors:Shao-Hao Lu, Ren Wang, Ching-Chun Huang, Wei-Chen Chiu
Abstract:
Recently, diffusion-based blind super-resolution (SR) methods have shown great ability to generate high-resolution images with abundant high-frequency detail, but the detail is often achieved at the expense of fidelity. Meanwhile, another line of research focusing on rectifying the reverse process of diffusion models (i.e., diffusion guidance), has demonstrated the power to generate high-fidelity results for non-blind SR. However, these methods rely on known degradation kernels, making them difficult to apply to blind SR. To address these issues, we present DADiff in this paper. DADiff incorporates degradation-aware models into the diffusion guidance framework, eliminating the need to know degradation kernels. Additionally, we propose two novel techniques: input perturbation and guidance scalar, to further improve our performance. Extensive experimental results show that our proposed method has superior performance over state-of-the-art methods on blind SR benchmarks.
Authors:Zhipeng Ye, Feng Jiang, Qiufeng Wang, Kaizhu Huang, Jiaqi Huang
Abstract:
CLIP (Contrastive Language-Image Pre-training) has attained great success in pattern recognition and computer vision. Transferring CLIP to downstream tasks (e.g. zero- or few-shot classification) is a hot topic in multimodal learning. However, current studies primarily focus on either prompt learning for text or adapter tuning for vision, without fully exploiting the complementary information and correlations among image-text pairs. In this paper, we propose an Image Description Enhanced CLIP-Adapter (IDEA) method to adapt CLIP to few-shot image classification tasks. This method captures fine-grained features by leveraging both visual features and textual descriptions of images. IDEA is a training-free method for CLIP, and it can be comparable to or even exceeds state-of-the-art models on multiple tasks. Furthermore, we introduce Trainable-IDEA (T-IDEA), which extends IDEA by adding two lightweight learnable components (i.e., a projector and a learnable latent space), further enhancing the model's performance and achieving SOTA results on 11 datasets. As one important contribution, we employ the Llama model and design a comprehensive pipeline to generate textual descriptions for images of 11 datasets, resulting in a total of 1,637,795 image-text pairs, named "IMD-11". Our code and data are released at https://github.com/FourierAI/IDEA.
Authors:Shiyu Wu, Jing Liu, Jing Li, Yequan Wang
Abstract:
Current fake image detectors trained on large synthetic image datasets perform satisfactorily on limited studied generative models. However, these detectors suffer a notable performance decline over unseen models. Besides, collecting adequate training data from online generative models is often expensive or infeasible. To overcome these issues, we propose Few-Shot Detector (FSD), a novel AI-generated image detector which learns a specialized metric space for effectively distinguishing unseen fake images using very few samples. Experiments show that FSD achieves state-of-the-art performance by $+11.6\%$ average accuracy on the GenImage dataset with only $10$ additional samples. More importantly, our method is better capable of capturing the intra-category commonality in unseen images without further training. Our code is available at https://github.com/teheperinko541/Few-Shot-AIGI-Detector.
Authors:Irina Bigoulaeva, Harish Tayyar Madabushi, Iryna Gurevych
Abstract:
Large Language Models (LLMs), trained on extensive web-scale corpora, have demonstrated remarkable abilities across diverse tasks, especially as they are scaled up. Nevertheless, even state-of-the-art models struggle in certain cases, sometimes failing at problems solvable by young children, indicating that traditional notions of task complexity are insufficient for explaining LLM capabilities. However, exploring LLM capabilities is complicated by the fact that most widely-used models are also "instruction-tuned" to respond appropriately to prompts. With the goal of disentangling the factors influencing LLM performance, we investigate whether instruction-tuned models possess fundamentally different capabilities from base models that are prompted using in-context examples. Through extensive experiments across various model families, scales and task types, which included instruction tuning 90 different LLMs, we demonstrate that the performance of instruction-tuned models is significantly correlated with the in-context performance of their base counterparts. By clarifying what instruction-tuning contributes, we extend prior research into in-context learning, which suggests that base models use priors from pretraining data to solve tasks. Specifically, we extend this understanding to instruction-tuned models, suggesting that their pretraining data similarly sets a limiting boundary on the tasks they can solve, with the added influence of the instruction-tuning dataset.
Authors:Jaemyung Yu, Jaehyun Choi, Dong-Jae Lee, HyeongGwon Hong, Junmo Kim
Abstract:
Unsupervised representation learning has significantly advanced various machine learning tasks. In the computer vision domain, state-of-the-art approaches utilize transformations like random crop and color jitter to achieve invariant representations, embedding semantically the same inputs despite transformations. However, this can degrade performance in tasks requiring precise features, such as localization or flower classification. To address this, recent research incorporates equivariant representation learning, which captures transformation-sensitive information. However, current methods depend on transformation labels and thus struggle with interdependency and complex transformations. We propose Self-supervised Transformation Learning (STL), replacing transformation labels with transformation representations derived from image pairs. The proposed method ensures transformation representation is image-invariant and learns corresponding equivariant transformations, enhancing performance without increased batch complexity. We demonstrate the approach's effectiveness across diverse classification and detection tasks, outperforming existing methods in 7 out of 11 benchmarks and excelling in detection. By integrating complex transformations like AugMix, unusable by prior equivariant methods, this approach enhances performance across tasks, underscoring its adaptability and resilience. Additionally, its compatibility with various base models highlights its flexibility and broad applicability. The code is available at https://github.com/jaemyung-u/stl.
Authors:Han Wang, Jianqiang Li, Qing Zhao, Zhonglong Chen, Changwei Song, Jing Tang, Yuning Huang, Wei Zhai, Yongsheng Tong, Guanghui Fu
Abstract:
Mental health is a critical global public health issue, and psychological support hotlines play a pivotal role in providing mental health assistance and identifying suicide risks at an early stage. However, the emotional expressions conveyed during these calls remain underexplored in current research. This study introduces a method that combines pitch acoustic features with deep learning-based features to analyze and understand emotions expressed during hotline interactions. Using data from China's largest psychological support hotline, our method achieved an F1-score of 79.13% for negative binary emotion classification.Additionally, the proposed approach was validated on an open dataset for multi-class emotion classification,where it demonstrated better performance compared to the state-of-the-art methods. To explore its clinical relevance, we applied the model to analysis the frequency of negative emotions and the rate of emotional change in the conversation, comparing 46 subjects with suicidal behavior to those without. While the suicidal group exhibited more frequent emotional changes than the non-suicidal group, the difference was not statistically significant.Importantly, our findings suggest that emotional fluctuation intensity and frequency could serve as novel features for psychological assessment scales and suicide risk prediction.The proposed method provides valuable insights into emotional dynamics and has the potential to advance early intervention and improve suicide prevention strategies through integration with clinical tools and assessments The source code is publicly available at https://github.com/Sco-field/Speechemotionrecognition/tree/main.
Authors:Anant Khandelwal
Abstract:
Animating clipart images with seamless motion while maintaining visual fidelity and temporal coherence presents significant challenges. Existing methods, such as AniClipart, effectively model spatial deformations but often fail to ensure smooth temporal transitions, resulting in artifacts like abrupt motions and geometric distortions. Similarly, text-to-video (T2V) and image-to-video (I2V) models struggle to handle clipart due to the mismatch in statistical properties between natural video and clipart styles. This paper introduces FlexiClip, a novel approach designed to overcome these limitations by addressing the intertwined challenges of temporal consistency and geometric integrity. FlexiClip extends traditional Bézier curve-based trajectory modeling with key innovations: temporal Jacobians to correct motion dynamics incrementally, continuous-time modeling via probability flow ODEs (pfODEs) to mitigate temporal noise, and a flow matching loss inspired by GFlowNet principles to optimize smooth motion transitions. These enhancements ensure coherent animations across complex scenarios involving rapid movements and non-rigid deformations. Extensive experiments validate the effectiveness of FlexiClip in generating animations that are not only smooth and natural but also structurally consistent across diverse clipart types, including humans and animals. By integrating spatial and temporal modeling with pre-trained video diffusion models, FlexiClip sets a new standard for high-quality clipart animation, offering robust performance across a wide range of visual content. Project Page: https://creative-gen.github.io/flexiclip.github.io/
Authors:Dongzhihan Wang, Yang Yang, Liang Xu
Abstract:
Visual odometry (VO) plays a crucial role in autonomous driving, robotic navigation, and other related tasks by estimating the position and orientation of a camera based on visual input. Significant progress has been made in data-driven VO methods, particularly those leveraging deep learning techniques to extract image features and estimate camera poses. However, these methods often struggle in low-light conditions because of the reduced visibility of features and the increased difficulty of matching keypoints. To address this limitation, we introduce BrightVO, a novel VO model based on Transformer architecture, which not only performs front-end visual feature extraction, but also incorporates a multi-modality refinement module in the back-end that integrates Inertial Measurement Unit (IMU) data. Using pose graph optimization, this module iteratively refines pose estimates to reduce errors and improve both accuracy and robustness. Furthermore, we create a synthetic low-light dataset, KiC4R, which includes a variety of lighting conditions to facilitate the training and evaluation of VO frameworks in challenging environments. Experimental results demonstrate that BrightVO achieves state-of-the-art performance on both the KiC4R dataset and the KITTI benchmarks. Specifically, it provides an average improvement of 20% in pose estimation accuracy in normal outdoor environments and 259% in low-light conditions, outperforming existing methods. For widespread use and further development, the research work is fully open-source at https://github.com/Anastasiawd/BrightVO.
Authors:Xianqi Wang, Hao Yang, Gangwei Xu, Junda Cheng, Min Lin, Yong Deng, Jinliang Zang, Yurui Chen, Xin Yang
Abstract:
State-of-the-art supervised stereo matching methods have achieved remarkable performance on various benchmarks. However, their generalization to real-world scenarios remains challenging due to the scarcity of annotated real-world stereo data. In this paper, we propose ZeroStereo, a novel stereo image generation pipeline for zero-shot stereo matching. Our approach synthesizes high-quality right images from arbitrary single images by leveraging pseudo disparities generated by a monocular depth estimation model. Unlike previous methods that address occluded regions by filling missing areas with neighboring pixels or random backgrounds, we fine-tune a diffusion inpainting model to recover missing details while preserving semantic structure. Additionally, we propose Training-Free Confidence Generation, which mitigates the impact of unreliable pseudo labels without additional training, and Adaptive Disparity Selection, which ensures a diverse and realistic disparity distribution while preventing excessive occlusion and foreground distortion. Experiments demonstrate that models trained with our pipeline achieve state-of-the-art zero-shot generalization across multiple datasets with only a dataset volume comparable to Scene Flow. Code: https://github.com/Windsrain/ZeroStereo.
Authors:Jiaqi Huang, Zunnan Xu, Ting Liu, Yong Liu, Haonan Han, Kehong Yuan, Xiu Li
Abstract:
In the domain of computer vision, Parameter-Efficient Tuning (PET) is increasingly replacing the traditional paradigm of pre-training followed by full fine-tuning. PET is particularly favored for its effectiveness in large foundation models, as it streamlines transfer learning costs and optimizes hardware utilization. However, the current PET methods are mainly designed for single-modal optimization. While some pioneering studies have undertaken preliminary explorations, they still remain at the level of aligned encoders (e.g., CLIP) and lack exploration of misaligned encoders. These methods show sub-optimal performance with misaligned encoders, as they fail to effectively align the multimodal features during fine-tuning. In this paper, we introduce DETRIS, a parameter-efficient tuning framework designed to enhance low-rank visual feature propagation by establishing dense interconnections between each layer and all preceding layers, which enables effective cross-modal feature interaction and adaptation to misaligned encoders. We also suggest using text adapters to improve textual features. Our simple yet efficient approach greatly surpasses state-of-the-art methods with 0.9% to 1.8% backbone parameter updates, evaluated on challenging benchmarks. Our project is available at \url{https://github.com/jiaqihuang01/DETRIS}.
Authors:Qian Wang, Jiaying Wu, Zhenheng Tang, Bingqiao Luo, Nuo Chen, Wei Chen, Bingsheng He
Abstract:
We argue that advancing LLM-based human simulation requires addressing both LLM's inherent limitations and simulation framework design challenges. Recent studies have revealed significant gaps between LLM-based human simulations and real-world observations, highlighting these dual challenges. To address these gaps, we present a comprehensive analysis of LLM limitations and our design issues, proposing targeted solutions for both aspects. Furthermore, we explore future directions that address both challenges simultaneously, particularly in data collection, LLM generation, and evaluation. To support further research in this field, we provide a curated collection of LLM-based human simulation resources.\footnote{https://github.com/Persdre/llm-human-simulation}
Authors:Donghwi Jung, Keonwoo Kim, Seong-Woo Kim
Abstract:
We propose GOTPR, a robust place recognition method designed for outdoor environments where GPS signals are unavailable. Unlike existing approaches that use point cloud maps, which are large and difficult to store, GOTPR leverages scene graphs generated from text descriptions and maps for place recognition. This method improves scalability by replacing point clouds with compact data structures, allowing robots to efficiently store and utilize extensive map data. In addition, GOTPR eliminates the need for custom map creation by using publicly available OpenStreetMap data, which provides global spatial information. We evaluated its performance using the KITTI360Pose dataset with corresponding OpenStreetMap data, comparing it to existing point cloud-based place recognition methods. The results show that GOTPR achieves comparable accuracy while significantly reducing storage requirements. In city-scale tests, it completed processing within a few seconds, making it highly practical for real-world robotics applications. More information can be found at https://donghwijung.github.io/GOTPR_page/.
Authors:Kewei Li, Yanwen Kong, Yiping Xu, Jianlin Su, Lan Huang, Ruochi Zhang, Fengfeng Zhou
Abstract:
Since the emergence of research on improving the length extrapolation capabilities of large language models in 2021, some studies have made modifications to the scaling factor in the scaled dot-product attention mechanism as part of their proposed methods without rigorous theoretical justifications. To fill this gap, we propose two new scaled temperatures based on information entropy invariance to enhance length extrapolation. First, a training-free method InfoScale is designed for dotproduct attention, and preserves focus on original tokens during length extrapolation by ensuring consistent entropy. Second, we theoretically analyze the impact of scaling (CosScale) on cosine attention. Experimental data demonstrates that combining InfoScale and CosScale achieves state-ofthe-art performance on the GAU-α model with a context window extended to 64 times the training length, and outperforms seven existing methods. Our analysis reveals that significantly increasing CosScale approximates the Windowed Attention, and highlights the significance of attention score dilution as a key challenge in long-range context handling. The code and data are available at https://github.com/HT-NEKO/ Information-Entropy-Invariance.
Authors:Oscar Ramos-Soto, Jorge Ramos-Frutos, Ezequiel Perez-Zarate, Diego Oliva, Sandra E. Balderas-Mata
Abstract:
Feature extraction techniques are crucial in medical image classification; however, classical feature extractors, in addition to traditional machine learning classifiers, often exhibit significant limitations in providing sufficient discriminative information for complex image sets. While Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) have shown promise in feature extraction, they are prone to overfitting due to the inherent characteristics of medical imaging data, including small sample sizes or high intra-class variance. In this work, the Medical Image Attention-based Feature Extractor (MIAFEx) is proposed, a novel method that employs a learnable refinement mechanism to enhance the classification token within the Transformer encoder architecture. This mechanism adjusts the token based on learned weights, improving the extraction of salient features and enhancing the model's adaptability to the challenges presented by medical imaging data. The MIAFEx output feature quality is compared against classical feature extractors using traditional and hybrid classifiers. Also, the performance of these features is compared against modern CNN and ViT models in classification tasks, demonstrating their superiority in accuracy and robustness across multiple complex medical imaging datasets. This advantage is particularly pronounced in scenarios with limited training data, where traditional and modern models often struggle to generalize effectively. The source code of this proposal can be found at https://github.com/Oscar-RamosS/Medical-Image-Attention-based-Feature-Extractor-MIAFEx
Authors:Yiran Tao, Jehan Yang, Dan Ding, Zackory Erickson
Abstract:
Teleoperating high degrees-of-freedom (DoF) robotic manipulators via low-DoF controllers like joysticks often requires frequent switching between control modes, where each mode maps controller movements to specific robot actions. Manually performing this frequent switching can make teleoperation cumbersome and inefficient. On the other hand, existing automatic mode-switching solutions, such as heuristic-based or learning-based methods, are often task-specific and lack generalizability. In this paper, we introduce LLM-Driven Automatic Mode Switching (LAMS), a novel approach that leverages Large Language Models (LLMs) to automatically switch control modes based on task context. Unlike existing methods, LAMS requires no prior task demonstrations and incrementally improves by integrating user-generated mode-switching examples. We validate LAMS through an ablation study and a user study with 10 participants on complex, long-horizon tasks, demonstrating that LAMS effectively reduces manual mode switches, is preferred over alternative methods, and improves performance over time. The project website with supplementary materials is at https://lams-assistance.github.io/.
Authors:Matthieu Kirchmeyer, Pedro O. Pinheiro, Saeed Saremi
Abstract:
We introduce a new representation for 3D molecules based on their continuous atomic density fields. Using this representation, we propose a new model based on walk-jump sampling for unconditional 3D molecule generation in the continuous space using neural fields. Our model, FuncMol, encodes molecular fields into latent codes using a conditional neural field, samples noisy codes from a Gaussian-smoothed distribution with Langevin MCMC (walk), denoises these samples in a single step (jump), and finally decodes them into molecular fields. FuncMol performs all-atom generation of 3D molecules without assumptions on the molecular structure and scales well with the size of molecules, unlike most approaches. Our method achieves competitive results on drug-like molecules and easily scales to macro-cyclic peptides, with at least one order of magnitude faster sampling. The code is available at https://github.com/prescient-design/funcmol.
Authors:Hyeonwoo Kim, Sangwon Baik, Hanbyul Joo
Abstract:
Modeling how humans interact with objects is crucial for AI to effectively assist or mimic human behaviors. Existing studies for learning such ability primarily focus on static human-object interaction (HOI) patterns, such as contact and spatial relationships, while dynamic HOI patterns, capturing the movement of humans and objects over time, remain relatively underexplored. In this paper, we present a novel framework for learning Dynamic Affordance across various target object categories. To address the scarcity of 4D HOI datasets, our method learns the 3D dynamic affordance from synthetically generated 4D HOI samples. Specifically, we propose a pipeline that first generates 2D HOI videos from a given 3D target object using a pre-trained video diffusion model, then lifts them into 3D to generate 4D HOI samples. Leveraging these synthesized 4D HOI samples, we train DAViD, our generative 4D human-object interaction model, which is composed of two key components: (1) a human motion diffusion model (MDM) with Low-Rank Adaptation (LoRA) module to fine-tune a pre-trained MDM to learn the HOI motion concepts from limited HOI motion samples, (2) a motion diffusion model for 4D object poses conditioned by produced human interaction motions. Interestingly, DAViD can integrate newly learned HOI motion concepts with pre-trained human motions to create novel HOI motions, even for multiple HOI motion concepts, demonstrating the advantage of our pipeline with LoRA in integrating dynamic HOI concepts. Through extensive experiments, we demonstrate that DAViD outperforms baselines in synthesizing HOI motion.
Authors:Zhiheng Liu, Ka Leong Cheng, Xi Chen, Jie Xiao, Hao Ouyang, Kai Zhu, Yu Liu, Yujun Shen, Qifeng Chen, Ping Luo
Abstract:
Derived from diffusion models, MangaNinjia specializes in the task of reference-guided line art colorization. We incorporate two thoughtful designs to ensure precise character detail transcription, including a patch shuffling module to facilitate correspondence learning between the reference color image and the target line art, and a point-driven control scheme to enable fine-grained color matching. Experiments on a self-collected benchmark demonstrate the superiority of our model over current solutions in terms of precise colorization. We further showcase the potential of the proposed interactive point control in handling challenging cases, cross-character colorization, multi-reference harmonization, beyond the reach of existing algorithms.
Authors:Ryan Burgert, Yuancheng Xu, Wenqi Xian, Oliver Pilarski, Pascal Clausen, Mingming He, Li Ma, Yitong Deng, Lingxiao Li, Mohsen Mousavi, Michael Ryoo, Paul Debevec, Ning Yu
Abstract:
Generative modeling aims to transform random noise into structured outputs. In this work, we enhance video diffusion models by allowing motion control via structured latent noise sampling. This is achieved by just a change in data: we pre-process training videos to yield structured noise. Consequently, our method is agnostic to diffusion model design, requiring no changes to model architectures or training pipelines. Specifically, we propose a novel noise warping algorithm, fast enough to run in real time, that replaces random temporal Gaussianity with correlated warped noise derived from optical flow fields, while preserving the spatial Gaussianity. The efficiency of our algorithm enables us to fine-tune modern video diffusion base models using warped noise with minimal overhead, and provide a one-stop solution for a wide range of user-friendly motion control: local object motion control, global camera movement control, and motion transfer. The harmonization between temporal coherence and spatial Gaussianity in our warped noise leads to effective motion control while maintaining per-frame pixel quality. Extensive experiments and user studies demonstrate the advantages of our method, making it a robust and scalable approach for controlling motion in video diffusion models. Video results are available on our webpage: https://eyeline-labs.github.io/Go-with-the-Flow. Source code and model checkpoints are available on GitHub: https://github.com/Eyeline-Labs/Go-with-the-Flow.
Authors:Anastasios N. Angelopoulos, Michael I. Jordan, Ryan J. Tibshirani
Abstract:
We present a new perspective on online learning that we refer to as gradient equilibrium: a sequence of iterates achieves gradient equilibrium if the average of gradients of losses along the sequence converges to zero. In general, this condition is not implied by, nor implies, sublinear regret. It turns out that gradient equilibrium is achievable by standard online learning methods such as gradient descent and mirror descent with constant step sizes (rather than decaying step sizes, as is usually required for no regret). Further, as we show through examples, gradient equilibrium translates into an interpretable and meaningful property in online prediction problems spanning regression, classification, quantile estimation, and others. Notably, we show that the gradient equilibrium framework can be used to develop a debiasing scheme for black-box predictions under arbitrary distribution shift, based on simple post hoc online descent updates. We also show that post hoc gradient updates can be used to calibrate predicted quantiles under distribution shift, and that the framework leads to unbiased Elo scores for pairwise preference prediction.
Authors:Yufei Ye, Yao Feng, Omid Taheri, Haiwen Feng, Shubham Tulsiani, Michael J. Black
Abstract:
We present HaPTIC, an approach that infers coherent 4D hand trajectories from monocular videos. Current video-based hand pose reconstruction methods primarily focus on improving frame-wise 3D pose using adjacent frames rather than studying consistent 4D hand trajectories in space. Despite the additional temporal cues, they generally underperform compared to image-based methods due to the scarcity of annotated video data. To address these issues, we repurpose a state-of-the-art image-based transformer to take in multiple frames and directly predict a coherent trajectory. We introduce two types of lightweight attention layers: cross-view self-attention to fuse temporal information, and global cross-attention to bring in larger spatial context. Our method infers 4D hand trajectories similar to the ground truth while maintaining strong 2D reprojection alignment. We apply the method to both egocentric and allocentric videos. It significantly outperforms existing methods in global trajectory accuracy while being comparable to the state-of-the-art in single-image pose estimation. Project website: https://judyye.github.io/haptic-www
Authors:Miran Heo, Min-Hung Chen, De-An Huang, Sifei Liu, Subhashree Radhakrishnan, Seon Joo Kim, Yu-Chiang Frank Wang, Ryo Hachiuma
Abstract:
We present Omni-RGPT, a multimodal large language model designed to facilitate region-level comprehension for both images and videos. To achieve consistent region representation across spatio-temporal dimensions, we introduce Token Mark, a set of tokens highlighting the target regions within the visual feature space. These tokens are directly embedded into spatial regions using region prompts (e.g., boxes or masks) and simultaneously incorporated into the text prompt to specify the target, establishing a direct connection between visual and text tokens. To further support robust video understanding without requiring tracklets, we introduce an auxiliary task that guides Token Mark by leveraging the consistency of the tokens, enabling stable region interpretation across the video. Additionally, we introduce a large-scale region-level video instruction dataset (RegVID-300k). Omni-RGPT achieves state-of-the-art results on image and video-based commonsense reasoning benchmarks while showing strong performance in captioning and referring expression comprehension tasks.
Authors:Jiwen Yu, Yiran Qin, Xintao Wang, Pengfei Wan, Di Zhang, Xihui Liu
Abstract:
Generative videos have the potential to revolutionize game development by autonomously creating new content. In this paper, we present GameFactory, a framework for action-controlled scene-generalizable game video generation. We first address the fundamental challenge of action controllability by introducing GF-Minecraft, an action-annotated game video dataset without human bias, and developing an action control module that enables precise control over both keyboard and mouse inputs. We further extend to support autoregressive generation for unlimited-length interactive videos. More importantly, GameFactory tackles the critical challenge of scene-generalizable action control, which most existing methods fail to address. To enable the creation of entirely new and diverse games beyond fixed styles and scenes, we leverage the open-domain generative priors from pre-trained video diffusion models. To bridge the domain gap between open-domain priors and small-scale game datasets, we propose a multi-phase training strategy with a domain adapter that decouples game style learning from action control. This decoupling ensures that action control learning is no longer bound to specific game styles, thereby achieving scene-generalizable action control. Experimental results demonstrate that GameFactory effectively generates open-domain action-controllable game videos, representing a significant step forward in AI-driven game generation.
Authors:MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu
Abstract:
We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-AI.
Authors:Wennuo Yang, Shiling Wu, Yuzhi Zhou, Cheng Luo, Xilin He, Weicheng Xie, Linlin Shen, Siyang Song
Abstract:
Multivariate Time Series Classification (MTSC) enables the analysis if complex temporal data, and thus serves as a cornerstone in various real-world applications, ranging from healthcare to finance. Since the relationship among variables in MTS usually contain crucial cues, a large number of graph-based MTSC approaches have been proposed, as the graph topology and edges can explicitly represent relationships among variables (channels), where not only various MTS graph representation learning strategies but also different Graph Neural Networks (GNNs) have been explored. Despite such progresses, there is no comprehensive study that fairly benchmarks and investigates the performances of existing widely-used graph representation learning strategies/GNN classifiers in the application of different MTSC tasks. In this paper, we present the first benchmark which systematically investigates the effectiveness of the widely-used three node feature definition strategies, four edge feature learning strategies and five GNN architecture, resulting in 60 different variants for graph-based MTSC. These variants are developed and evaluated with a standardized data pipeline and training/validation/testing strategy on 26 widely-used suspensor MTSC datasets. Our experiments highlight that node features significantly influence MTSC performance, while the visualization of edge features illustrates why adaptive edge learning outperforms other edge feature learning methods. The code of the proposed benchmark is publicly available at \url{https://github.com/CVI-yangwn/Benchmark-GNN-for-Multivariate-Time-Series-Classification}.
Authors:Efstathios Karypidis, Ioannis Kakogeorgiou, Spyros Gidaris, Nikos Komodakis
Abstract:
Semantic future prediction is important for autonomous systems navigating dynamic environments. This paper introduces FUTURIST, a method for multimodal future semantic prediction that uses a unified and efficient visual sequence transformer architecture. Our approach incorporates a multimodal masked visual modeling objective and a novel masking mechanism designed for multimodal training. This allows the model to effectively integrate visible information from various modalities, improving prediction accuracy. Additionally, we propose a VAE-free hierarchical tokenization process, which reduces computational complexity, streamlines the training pipeline, and enables end-to-end training with high-resolution, multimodal inputs. We validate FUTURIST on the Cityscapes dataset, demonstrating state-of-the-art performance in future semantic segmentation for both short- and mid-term forecasting. We provide the implementation code at https://github.com/Sta8is/FUTURIST .
Authors:Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Abinew Ali Ayele, David Ifeoluwa Adelani, Ibrahim Said Ahmad, Saminu Mohammad Aliyu, Nelson Odhiambo Onyango, Lilian D. A. Wanzare, Samuel Rutunda, Lukman Jibril Aliyu, Esubalew Alemneh, Oumaima Hourrane, Hagos Tesfahun Gebremichael, Elyas Abdi Ismail, Meriem Beloucif, Ebrahim Chekol Jibril, Andiswa Bukula, Rooweither Mabuya, Salomey Osei, Abigail Oppong, Tadesse Destaw Belay, Tadesse Kebede Guge, Tesfa Tegegne Asfaw, Chiamaka Ijeoma Chukwuneke, Paul Röttger, Seid Muhie Yimam, Nedjma Ousidhoum
Abstract:
Hate speech and abusive language are global phenomena that need socio-cultural background knowledge to be understood, identified, and moderated. However, in many regions of the Global South, there have been several documented occurrences of (1) absence of moderation and (2) censorship due to the reliance on keyword spotting out of context. Further, high-profile individuals have frequently been at the center of the moderation process, while large and targeted hate speech campaigns against minorities have been overlooked. These limitations are mainly due to the lack of high-quality data in the local languages and the failure to include local communities in the collection, annotation, and moderation processes. To address this issue, we present AfriHate: a multilingual collection of hate speech and abusive language datasets in 15 African languages. Each instance in AfriHate is annotated by native speakers familiar with the local culture. We report the challenges related to the construction of the datasets and present various classification baseline results with and without using LLMs. The datasets, individual annotations, and hate speech and offensive language lexicons are available on https://github.com/AfriHate/AfriHate
Authors:Hongyu Li, Jinyu Chen, Ziyu Wei, Shaofei Huang, Tianrui Hui, Jialin Gao, Xiaoming Wei, Si Liu
Abstract:
Recent advancements in multimodal large language models (MLLMs) have shown promising results, yet existing approaches struggle to effectively handle both temporal and spatial localization simultaneously. This challenge stems from two key issues: first, incorporating spatial-temporal localization introduces a vast number of coordinate combinations, complicating the alignment of linguistic and visual coordinate representations; second, encoding fine-grained temporal and spatial information during video feature compression is inherently difficult. To address these issues, we propose LLaVA-ST, a MLLM for fine-grained spatial-temporal multimodal understanding. In LLaVA-ST, we propose Language-Aligned Positional Embedding, which embeds the textual coordinate special token into the visual space, simplifying the alignment of fine-grained spatial-temporal correspondences. Additionally, we design the Spatial-Temporal Packer, which decouples the feature compression of temporal and spatial resolutions into two distinct point-to-region attention processing streams. Furthermore, we propose ST-Align dataset with 4.3M training samples for fine-grained spatial-temporal multimodal understanding. With ST-align, we present a progressive training pipeline that aligns the visual and textual feature through sequential coarse-to-fine stages.Additionally, we introduce an ST-Align benchmark to evaluate spatial-temporal interleaved fine-grained understanding tasks, which include Spatial-Temporal Video Grounding (STVG) , Event Localization and Captioning (ELC) and Spatial Video Grounding (SVG). LLaVA-ST achieves outstanding performance on 11 benchmarks requiring fine-grained temporal, spatial, or spatial-temporal interleaving multimodal understanding. Our code, data and benchmark will be released at Our code, data and benchmark will be released at https://github.com/appletea233/LLaVA-ST .
Authors:Longtao Jiang, Zhendong Wang, Jianmin Bao, Wengang Zhou, Dongdong Chen, Lei Shi, Dong Chen, Houqiang Li
Abstract:
Object removal has so far been dominated by the mask-and-inpaint paradigm, where the masked region is excluded from the input, leaving models relying on unmasked areas to inpaint the missing region. However, this approach lacks contextual information for the masked area, often resulting in unstable performance. In this work, we introduce SmartEraser, built with a new removing paradigm called Masked-Region Guidance. This paradigm retains the masked region in the input, using it as guidance for the removal process. It offers several distinct advantages: (a) it guides the model to accurately identify the object to be removed, preventing its regeneration in the output; (b) since the user mask often extends beyond the object itself, it aids in preserving the surrounding context in the final result. Leveraging this new paradigm, we present Syn4Removal, a large-scale object removal dataset, where instance segmentation data is used to copy and paste objects onto images as removal targets, with the original images serving as ground truths. Experimental results demonstrate that SmartEraser significantly outperforms existing methods, achieving superior performance in object removal, especially in complex scenes with intricate compositions.
Authors:Rui Daniel, M. Rita Verdelho, Catarina Barata, Carlos Santiago
Abstract:
Deep Learning for medical imaging faces challenges in adapting and generalizing to new contexts. Additionally, it often lacks sufficient labeled data for specific tasks requiring significant annotation effort. Continual Learning (CL) tackles adaptability and generalizability by enabling lifelong learning from a data stream while mitigating forgetting of previously learned knowledge. Active Learning (AL) reduces the number of required annotations for effective training. This work explores both approaches (CAL) to develop a novel framework for robust medical image analysis. Based on the automatic recognition of shifts in image characteristics, Replay-Base Architecture for Context Adaptation (RBACA) employs a CL rehearsal method to continually learn from diverse contexts, and an AL component to select the most informative instances for annotation. A novel approach to evaluate CAL methods is established using a defined metric denominated IL-Score, which allows for the simultaneous assessment of transfer learning, forgetting, and final model performance. We show that RBACA works in domain and class-incremental learning scenarios, by assessing its IL-Score on the segmentation and diagnosis of cardiac images. The results show that RBACA outperforms a baseline framework without CAL, and a state-of-the-art CAL method across various memory sizes and annotation budgets. Our code is available in https://github.com/RuiDaniel/RBACA .
Authors:Yabo Zhang, Xinpeng Zhou, Yihan Zeng, Hang Xu, Hui Li, Wangmeng Zuo
Abstract:
Interactive image editing allows users to modify images through visual interaction operations such as drawing, clicking, and dragging. Existing methods construct such supervision signals from videos, as they capture how objects change with various physical interactions. However, these models are usually built upon text-to-image diffusion models, so necessitate (i) massive training samples and (ii) an additional reference encoder to learn real-world dynamics and visual consistency. In this paper, we reformulate this task as an image-to-video generation problem, so that inherit powerful video diffusion priors to reduce training costs and ensure temporal consistency. Specifically, we introduce FramePainter as an efficient instantiation of this formulation. Initialized with Stable Video Diffusion, it only uses a lightweight sparse control encoder to inject editing signals. Considering the limitations of temporal attention in handling large motion between two frames, we further propose matching attention to enlarge the receptive field while encouraging dense correspondence between edited and source image tokens. We highlight the effectiveness and efficiency of FramePainter across various of editing signals: it domainantly outperforms previous state-of-the-art methods with far less training data, achieving highly seamless and coherent editing of images, \eg, automatically adjust the reflection of the cup. Moreover, FramePainter also exhibits exceptional generalization in scenarios not present in real-world videos, \eg, transform the clownfish into shark-like shape. Our code will be available at https://github.com/YBYBZhang/FramePainter.
Authors:Jinjun Peng, Leyi Cui, Kele Huang, Junfeng Yang, Baishakhi Ray
Abstract:
Large Language Models (LLMs) have significantly aided developers by generating or assisting in code writing, enhancing productivity across various tasks. While identifying incorrect code is often straightforward, detecting vulnerabilities in functionally correct code is more challenging, especially for developers with limited security knowledge, which poses considerable security risks of using LLM-generated code and underscores the need for robust evaluation benchmarks that assess both functional correctness and security. Current benchmarks like CyberSecEval and SecurityEval attempt to solve it but are hindered by unclear and impractical specifications, failing to assess both functionality and security accurately. To tackle these deficiencies, we introduce CWEval, a novel outcome-driven evaluation framework designed to enhance the evaluation of secure code generation by LLMs. This framework not only assesses code functionality but also its security simultaneously with high-quality task specifications and outcome-driven test oracles which provides high accuracy. Coupled with CWEval-bench, a multilingual, security-critical coding benchmark, CWEval provides a rigorous empirical security evaluation on LLM-generated code, overcoming previous benchmarks' shortcomings. Through our evaluations, CWEval reveals a notable portion of functional but insecure code produced by LLMs, and shows a serious inaccuracy of previous evaluations, ultimately contributing significantly to the field of secure code generation. We open-source our artifact at: https://github.com/Co1lin/CWEval .
Authors:Yijiong Yu, Ziyun Dai, Zekun Wang, Wei Wang, Ran Chen, Ji Pei
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities, but their success heavily relies on the quality of pretraining corpora. For Chinese LLMs, the scarcity of high-quality Chinese datasets presents a significant challenge, often limiting their performance. To address this issue, we propose the OpenCSG Chinese Corpus, a series of high-quality datasets specifically designed for LLM pretraining, post-training, and fine-tuning. This corpus includes Fineweb-edu-chinese, Fineweb-edu-chinese-v2, Cosmopedia-chinese, and Smoltalk-chinese, each with distinct characteristics: Fineweb-edu datasets focus on filtered, high-quality content derived from diverse Chinese web sources; Cosmopedia-chinese provides synthetic, textbook-style data for knowledge-intensive training; and Smoltalk-chinese emphasizes stylistic and diverse chat-format data. The OpenCSG Chinese Corpus is characterized by its high-quality text, diverse coverage across domains, and scalable, reproducible data curation processes. Additionally, we conducted extensive experimental analyses, including evaluations on smaller parameter models, which demonstrated significant performance improvements in tasks such as C-Eval, showcasing the effectiveness of the corpus for training Chinese LLMs.
Authors:Yin Fang, Xinle Deng, Kangwei Liu, Ningyu Zhang, Jingyang Qian, Penghui Yang, Xiaohui Fan, Huajun Chen
Abstract:
Large language models excel at interpreting complex natural language instructions, enabling them to perform a wide range of tasks. In the life sciences, single-cell RNA sequencing (scRNA-seq) data serves as the "language of cellular biology", capturing intricate gene expression patterns at the single-cell level. However, interacting with this "language" through conventional tools is often inefficient and unintuitive, posing challenges for researchers. To address these limitations, we present InstructCell, a multi-modal AI copilot that leverages natural language as a medium for more direct and flexible single-cell analysis. We construct a comprehensive multi-modal instruction dataset that pairs text-based instructions with scRNA-seq profiles from diverse tissues and species. Building on this, we develop a multi-modal cell language architecture capable of simultaneously interpreting and processing both modalities. InstructCell empowers researchers to accomplish critical tasks-such as cell type annotation, conditional pseudo-cell generation, and drug sensitivity prediction-using straightforward natural language commands. Extensive evaluations demonstrate that InstructCell consistently meets or exceeds the performance of existing single-cell foundation models, while adapting to diverse experimental conditions. More importantly, InstructCell provides an accessible and intuitive tool for exploring complex single-cell data, lowering technical barriers and enabling deeper biological insights.
Authors:Qian Zeng, Jie Song, Han Zheng, Hao Jiang, Mingli Song
Abstract:
Diffusion models have achieved cutting-edge performance in image generation. However, their lengthy denoising process and computationally intensive score estimation network impede their scalability in low-latency and resource-constrained scenarios. Post-training quantization (PTQ) compresses and accelerates diffusion models without retraining, but it inevitably introduces additional quantization noise, resulting in mean and variance deviations. In this work, we propose D2-DPM, a dual denoising mechanism aimed at precisely mitigating the adverse effects of quantization noise on the noise estimation network. Specifically, we first unravel the impact of quantization noise on the sampling equation into two components: the mean deviation and the variance deviation. The mean deviation alters the drift coefficient of the sampling equation, influencing the trajectory trend, while the variance deviation magnifies the diffusion coefficient, impacting the convergence of the sampling trajectory. The proposed D2-DPM is thus devised to denoise the quantization noise at each time step, and then denoise the noisy sample through the inverse diffusion iterations. Experimental results demonstrate that D2-DPM achieves superior generation quality, yielding a 1.42 lower FID than the full-precision model while achieving 3.99x compression and 11.67x bit-operation acceleration.
Authors:Marcel Rogge, Didier Stricker
Abstract:
Current Gaussian Splatting approaches are effective for reconstructing entire scenes but lack the option to target specific objects, making them computationally expensive and unsuitable for object-specific applications. We propose a novel approach that leverages object masks to enable targeted reconstruction, resulting in object-centric models. Additionally, we introduce an occlusion-aware pruning strategy to minimize the number of Gaussians without compromising quality. Our method reconstructs compact object models, yielding object-centric Gaussian and mesh representations that are up to 96% smaller and up to 71% faster to train compared to the baseline while retaining competitive quality. These representations are immediately usable for downstream applications such as appearance editing and physics simulation without additional processing.
Authors:Yukai Ma, Tiantian Wei, Naiting Zhong, Jianbiao Mei, Tao Hu, Licheng Wen, Xuemeng Yang, Botian Shi, Yong Liu
Abstract:
While autonomous driving technology has made remarkable strides, data-driven approaches still struggle with complex scenarios due to their limited reasoning capabilities. Meanwhile, knowledge-driven autonomous driving systems have evolved considerably with the popularization of visual language models. In this paper, we propose LeapVAD, a novel method based on cognitive perception and dual-process thinking. Our approach implements a human-attentional mechanism to identify and focus on critical traffic elements that influence driving decisions. By characterizing these objects through comprehensive attributes - including appearance, motion patterns, and associated risks - LeapVAD achieves more effective environmental representation and streamlines the decision-making process. Furthermore, LeapVAD incorporates an innovative dual-process decision-making module miming the human-driving learning process. The system consists of an Analytic Process (System-II) that accumulates driving experience through logical reasoning and a Heuristic Process (System-I) that refines this knowledge via fine-tuning and few-shot learning. LeapVAD also includes reflective mechanisms and a growing memory bank, enabling it to learn from past mistakes and continuously improve its performance in a closed-loop environment. To enhance efficiency, we develop a scene encoder network that generates compact scene representations for rapid retrieval of relevant driving experiences. Extensive evaluations conducted on two leading autonomous driving simulators, CARLA and DriveArena, demonstrate that LeapVAD achieves superior performance compared to camera-only approaches despite limited training data. Comprehensive ablation studies further emphasize its effectiveness in continuous learning and domain adaptation. Project page: https://pjlab-adg.github.io/LeapVAD/.
Authors:Hanene F. Z. Brachemi Meftah, Wassim Hamidouche, Sid Ahmed Fezza, Olivier Déforges, Kassem Kallas
Abstract:
The rise of deep learning (DL) has increased computing complexity and energy use, prompting the adoption of application specific integrated circuits (ASICs) for energy-efficient edge and mobile deployment. However, recent studies have demonstrated the vulnerability of these accelerators to energy attacks. Despite the development of various inference time energy attacks in prior research, backdoor energy attacks remain unexplored. In this paper, we design an innovative energy backdoor attack against deep neural networks (DNNs) operating on sparsity-based accelerators. Our attack is carried out in two distinct phases: backdoor injection and backdoor stealthiness. Experimental results using ResNet-18 and MobileNet-V2 models trained on CIFAR-10 and Tiny ImageNet datasets show the effectiveness of our proposed attack in increasing energy consumption on trigger samples while preserving the model's performance for clean/regular inputs. This demonstrates the vulnerability of DNNs to energy backdoor attacks. The source code of our attack is available at: https://github.com/hbrachemi/energy_backdoor.
Authors:Xudong Wang, Qingbo Hao, Xu Cheng, Yingyuan Xiao
Abstract:
Federated learning has emerged as a key paradigm in privacy-preserving computing due to its "data usable but not visible" property, enabling users to collaboratively train models without sharing raw data. Motivated by this, federated recommendation systems offer a promising architecture that balances user privacy with recommendation accuracy through distributed collaborative learning. However, existing federated recommendation methods often neglect the underlying semantic or behavioral relationships between users during parameter aggregation, which limits their recommendation effectiveness. To overcome this limitation, graph-based federated recommendation systems have been proposed to leverage neighborhood information. Yet, conventional graph construction methods usually require access to raw user data or explicit social links, which contradicts the strict privacy requirements of federated learning. In this work, we propose UFGraphFR (User Text-feature-based Graph Federated Recommendation), a novel personalized federated recommendation framework that constructs a user graph based on clients' locally embedded text features. Our core assumption is that users with similar textual feature descriptions exhibit similar preferences. Accordingly, UFGraphFR introduces two key components: (1) a privacy-preserving user relationship graph constructed from the joint embedding layer's weight matrix without leaking raw user attributes; (2) a Transformer-based architecture to model temporal dependencies in user-item interaction sequences. Experimental results on benchmark datasets such as MovieLens and HetRec2011 demonstrate that UFGraphFR achieves recommendation accuracy comparable to both centralized and state-of-the-art federated baselines while preserving user privacy. The code is available at: https://github.com/trueWangSyutung/UFGraphFR.
Authors:Xiao Xu, Qiong Wu, Pingyi Fan, Kezhi Wang
Abstract:
Vehicle-to-Infrastructure (V2I) technology enables information exchange between vehicles and road infrastructure. Specifically, when a vehicle approaches a roadside unit (RSU), it can exchange information with the RSU to obtain accurate data that assists in driving. With the release of the 3rd Generation Partnership Project (3GPP) Release 16, which includes the 5G New Radio (NR) Vehicle-to-Everything (V2X) standards, vehicles typically adopt mode-2 communication using sensing-based semi-persistent scheduling (SPS) for resource allocation. In this approach, vehicles identify candidate resources within a selection window and exclude ineligible resources based on information from a sensing window. However, vehicles often drive at different speeds, resulting in varying amounts of data transmission with RSUs as they pass by, which leads to unfair access. Therefore, it is essential to design an access scheme that accounts for different vehicle speeds to achieve fair access across the network. This paper formulates an optimization problem for vehicular networks and proposes a multi-objective optimization scheme to address it by adjusting the selection window in the SPS mechanism of 5G NR V2I mode-2. Simulation results demonstrate the effectiveness of the proposed scheme
Authors:Attila Répai, Sándor Földi, Péter Sótonyi, György Cserey
Abstract:
Measuring the blood pressure waveform is becoming a more frequently studied area. The development of sensor technologies opens many new ways to be able to measure high-quality signals. The development of such an aim-specific sensor can be time-consuming, expensive, and difficult to test or validate with known and consistent waveforms. In this paper, we present an open source blood pressure waveform simulator with an open source Python validation package to reduce development costs for early-stage sensor development and research. The simulator mainly consists of 3D printed parts which technology has become a widely available and cheap solution. The core part of the simulator is a 3D printed cam that can be generated based on real blood pressure waveforms. The validation framework can create a detailed comparison between the signal waveform used to design the cam and the measured time series from the sensor being validated. The presented simulator proved to be robust and accurate in short- and long-term use, as it produced the signal waveform consistently and accurately. To validate this solution, a 3D force sensor was used, which was proven earlier to be able to measure high-quality blood pressure waveforms on the radial artery at the wrist. The results showed high similarity between the measured and the nominal waveforms, meaning that comparing the normalized signals, the RMSE value ranged from $0.0276 \pm 0.0047$ to $0.0212 \pm 0.0023$, and the Pearson correlation ranged from $0.9933 \pm 0.0027$ to $0.9978 \pm 0.0005$. Our validation framework is available at https://github.com/repat8/cam-bpw-sim. Our hardware framework, which allows reproduction of the presented solution, is available at https://github.com/repat8/cam-bpw-sim-hardware. The entire design is an open source project and was developed using free software.
Authors:Jiaqi Hua, Wanxu Wei
Abstract:
Recently, several works have been conducted on jailbreaking Large Language Models (LLMs) with few-shot malicious demos. In particular, Zheng et al. focus on improving the efficiency of Few-Shot Jailbreaking (FSJ) by injecting special tokens into the demos and employing demo-level random search, known as Improved Few-Shot Jailbreaking (I-FSJ). Nevertheless, we notice that this method may still require a long context to jailbreak advanced models e.g. 32 shots of demos for Meta-Llama-3-8B-Instruct (Llama-3) \cite{llama3modelcard}. In this paper, we discuss the limitations of I-FSJ and propose Self-Instruct Few-Shot Jailbreaking (Self-Instruct-FSJ) facilitated with the demo-level greedy search. This framework decomposes the FSJ attack into pattern and behavior learning to exploit the model's vulnerabilities in a more generalized and efficient way. We conduct elaborate experiments to evaluate our method on common open-source models and compare it with baseline algorithms. Our code is available at https://github.com/iphosi/Self-Instruct-FSJ.
Authors:Thibaut Boissin, Franck Mamalet, Thomas Fel, Agustin Martin Picard, Thomas Massena, Mathieu Serrurier
Abstract:
Orthogonal convolutional layers are valuable components in multiple areas of machine learning, such as adversarial robustness, normalizing flows, GANs, and Lipschitz-constrained models. Their ability to preserve norms and ensure stable gradient propagation makes them valuable for a large range of problems. Despite their promise, the deployment of orthogonal convolution in large-scale applications is a significant challenge due to computational overhead and limited support for modern features like strides, dilations, group convolutions, and transposed convolutions. In this paper, we introduce AOC (Adaptative Orthogonal Convolution), a scalable method that extends a previous method (BCOP), effectively overcoming existing limitations in the construction of orthogonal convolutions. This advancement unlocks the construction of architectures that were previously considered impractical. We demonstrate through our experiments that our method produces expressive models that become increasingly efficient as they scale. To foster further advancement, we provide an open-source python package implementing this method, called Orthogonium ( https://github.com/deel-ai/orthogonium ) .
Authors:Mohamed A. Taha
Abstract:
Long-range sequence modeling is a crucial aspect of natural language processing and time series analysis. However, traditional models like Recurrent Neural Networks (RNNs) and Transformers suffer from computational and memory inefficiencies, especially when dealing with long sequences. This paper introduces Logarithmic Memory Networks (LMNs), a novel architecture that leverages a hierarchical logarithmic tree structure to efficiently store and retrieve past information. LMNs dynamically summarize historical context, significantly reducing the memory footprint and computational complexity of attention mechanisms from O(n2) to O(log(n)). The model employs a single-vector, targeted attention mechanism to access stored information, and the memory block construction worker (summarizer) layer operates in two modes: a parallel execution mode during training for efficient processing of hierarchical tree structures and a sequential execution mode during inference, which acts as a memory management system. It also implicitly encodes positional information, eliminating the need for explicit positional encodings. These features make LMNs a robust and scalable solution for processing long-range sequences in resource-constrained environments, offering practical improvements in efficiency and scalability. The code is publicly available under the MIT License on GitHub: https://github.com/AhmedBoin/LogarithmicMemory.
Authors:Yaowen Ye, Cassidy Laidlaw, Jacob Steinhardt
Abstract:
Language model (LM) post-training relies on two stages of human supervision: task demonstrations for supervised finetuning (SFT), followed by preference comparisons for reinforcement learning from human feedback (RLHF). As LMs become more capable, the tasks they are given become harder to supervise. Will post-training remain effective under unreliable supervision? To test this, we simulate unreliable demonstrations and comparison feedback using small LMs and time-constrained humans. We find that in the presence of unreliable supervision, SFT still retains some effectiveness, but DPO (a common RLHF algorithm) fails to improve the model beyond SFT. To address this, we propose iterative label refinement (ILR) as an alternative to RLHF. ILR improves the SFT data by using comparison feedback to decide whether human demonstrations should be replaced by model-generated alternatives, then retrains the model via SFT on the updated data. SFT+ILR outperforms SFT+DPO on several tasks with unreliable supervision (math, coding, and safe instruction-following). Our findings suggest that as LMs are used for complex tasks where human supervision is unreliable, RLHF may no longer be the best use of human comparison feedback; instead, it is better to direct feedback towards improving the training data rather than continually training the model. Our code and data are available at https://github.com/helloelwin/iterative-label-refinement.
Authors:Boye Niu, Yiliao Song, Kai Lian, Yifan Shen, Yu Yao, Kun Zhang, Tongliang Liu
Abstract:
Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution. However, the effective adjustment of agentic workflows during execution has not been well studied. An effective workflow adjustment is crucial in real-world scenarios, as the initial plan must adjust to unforeseen challenges and changing conditions in real time to ensure the efficient execution of complex tasks. In this paper, we define workflows as an activity-on-vertex (AOV) graph, which allows continuous workflow refinement by LLM agents through dynamic subtask allocation adjustment based on historical performance and previous AOVs. To further enhance framework performance, we emphasize modularity in workflow design based on evaluating parallelism and dependency complexity. With this design, our proposed multi-agent framework achieves efficient concurrent execution of subtasks, effective goal achievement, and enhanced error tolerance. Empirical results across various practical tasks demonstrate significant improvements in the efficiency of multi-agent frameworks through dynamic workflow refinement and modularization. The code is available at: https://github.com/tmllab/2025_ICLR_FLOW.
Authors:Yunzhi Zhuge, Hongyu Gu, Lu Zhang, Jinqing Qi, Huchuan Lu
Abstract:
In this paper, we address the challenges in unsupervised video object segmentation (UVOS) by proposing an efficient algorithm, termed MTNet, which concurrently exploits motion and temporal cues. Unlike previous methods that focus solely on integrating appearance with motion or on modeling temporal relations, our method combines both aspects by integrating them within a unified framework. MTNet is devised by effectively merging appearance and motion features during the feature extraction process within encoders, promoting a more complementary representation. To capture the intricate long-range contextual dynamics and information embedded within videos, a temporal transformer module is introduced, facilitating efficacious inter-frame interactions throughout a video clip. Furthermore, we employ a cascade of decoders all feature levels across all feature levels to optimally exploit the derived features, aiming to generate increasingly precise segmentation masks. As a result, MTNet provides a strong and compact framework that explores both temporal and cross-modality knowledge to robustly localize and track the primary object accurately in various challenging scenarios efficiently. Extensive experiments across diverse benchmarks conclusively show that our method not only attains state-of-the-art performance in unsupervised video object segmentation but also delivers competitive results in video salient object detection. These findings highlight the method's robust versatility and its adeptness in adapting to a range of segmentation tasks. Source code is available on https://github.com/hy0523/MTNet.
Authors:Farnoosh Koleini, Muhammad Usama Saleem, Pu Wang, Hongfei Xue, Ahmed Helmy, Abbey Fenwick
Abstract:
Recent advancements in 3D human pose estimation from single-camera images and videos have relied on parametric models, like SMPL. However, these models oversimplify anatomical structures, limiting their accuracy in capturing true joint locations and movements, which reduces their applicability in biomechanics, healthcare, and robotics. Biomechanically accurate pose estimation, on the other hand, typically requires costly marker-based motion capture systems and optimization techniques in specialized labs. To bridge this gap, we propose BioPose, a novel learning-based framework for predicting biomechanically accurate 3D human pose directly from monocular videos. BioPose includes three key components: a Multi-Query Human Mesh Recovery model (MQ-HMR), a Neural Inverse Kinematics (NeurIK) model, and a 2D-informed pose refinement technique. MQ-HMR leverages a multi-query deformable transformer to extract multi-scale fine-grained image features, enabling precise human mesh recovery. NeurIK treats the mesh vertices as virtual markers, applying a spatial-temporal network to regress biomechanically accurate 3D poses under anatomical constraints. To further improve 3D pose estimations, a 2D-informed refinement step optimizes the query tokens during inference by aligning the 3D structure with 2D pose observations. Experiments on benchmark datasets demonstrate that BioPose significantly outperforms state-of-the-art methods. Project website: \url{https://m-usamasaleem.github.io/publication/BioPose/BioPose.html}.
Authors:Zhaokai Wang, Xizhou Zhu, Xue Yang, Gen Luo, Hao Li, Changyao Tian, Wenhan Dou, Junqi Ge, Lewei Lu, Yu Qiao, Jifeng Dai
Abstract:
Image pyramids are widely adopted in top-performing methods to obtain multi-scale features for precise visual perception and understanding. However, current image pyramids use the same large-scale model to process multiple resolutions of images, leading to significant computational cost. To address this challenge, we propose a novel network architecture, called Parameter-Inverted Image Pyramid Networks (PIIP). Specifically, PIIP uses pretrained models (ViTs or CNNs) as branches to process multi-scale images, where images of higher resolutions are processed by smaller network branches to balance computational cost and performance. To integrate information from different spatial scales, we further propose a novel cross-branch feature interaction mechanism. To validate PIIP, we apply it to various perception models and a representative multimodal large language model called LLaVA, and conduct extensive experiments on various tasks such as object detection, segmentation, image classification and multimodal understanding. PIIP achieves superior performance compared to single-branch and existing multi-resolution approaches with lower computational cost. When applied to InternViT-6B, a large-scale vision foundation model, PIIP can improve its performance by 1%-2% on detection and segmentation with only 40%-60% of the original computation, finally achieving 60.0 box AP on MS COCO and 59.7 mIoU on ADE20K. For multimodal understanding, our PIIP-LLaVA achieves 73.0% accuracy on TextVQA and 74.5% on MMBench with only 2.8M training data. Our code is released at https://github.com/OpenGVLab/PIIP.
Authors:Dongwon Kim, Ju He, Qihang Yu, Chenglin Yang, Xiaohui Shen, Suha Kwak, Liang-Chieh Chen
Abstract:
Image tokenizers form the foundation of modern text-to-image generative models but are notoriously difficult to train. Furthermore, most existing text-to-image models rely on large-scale, high-quality private datasets, making them challenging to replicate. In this work, we introduce Text-Aware Transformer-based 1-Dimensional Tokenizer (TA-TiTok), an efficient and powerful image tokenizer that can utilize either discrete or continuous 1-dimensional tokens. TA-TiTok uniquely integrates textual information during the tokenizer decoding stage (i.e., de-tokenization), accelerating convergence and enhancing performance. TA-TiTok also benefits from a simplified, yet effective, one-stage training process, eliminating the need for the complex two-stage distillation used in previous 1-dimensional tokenizers. This design allows for seamless scalability to large datasets. Building on this, we introduce a family of text-to-image Masked Generative Models (MaskGen), trained exclusively on open data while achieving comparable performance to models trained on private data. We aim to release both the efficient, strong TA-TiTok tokenizers and the open-data, open-weight MaskGen models to promote broader access and democratize the field of text-to-image masked generative models.
Authors:Jiacheng Cui, Zhaoyi Li, Xiaochen Ma, Xinyue Bi, Yaxin Luo, Zhiqiang Shen
Abstract:
Dataset distillation aims to synthesize a smaller, representative dataset that preserves the essential properties of the original data, enabling efficient model training with reduced computational resources. Prior work has primarily focused on improving the alignment or matching process between original and synthetic data, or on enhancing the efficiency of distilling large datasets. In this work, we introduce ${\bf C}$ommittee ${\bf V}$oting for ${\bf D}$ataset ${\bf D}$istillation (CV-DD), a novel and orthogonal approach that leverages the collective wisdom of multiple models or experts to create high-quality distilled datasets. We start by showing how to establish a strong baseline that already achieves state-of-the-art accuracy through leveraging recent advancements and thoughtful adjustments in model design and optimization processes. By integrating distributions and predictions from a committee of models while generating high-quality soft labels, our method captures a wider spectrum of data features, reduces model-specific biases and the adverse effects of distribution shifts, leading to significant improvements in generalization. This voting-based strategy not only promotes diversity and robustness within the distilled dataset but also significantly reduces overfitting, resulting in improved performance on post-eval tasks. Extensive experiments across various datasets and IPCs (images per class) demonstrate that Committee Voting leads to more reliable and adaptable distilled data compared to single/multi-model distillation methods, demonstrating its potential for efficient and accurate dataset distillation. Code is available at: https://github.com/Jiacheng8/CV-DD.
Authors:Xinyu Zhang, Zicheng Duan, Dong Gong, Lingqiao Liu
Abstract:
In this paper, we address the challenge of generating temporally consistent videos with motion guidance. While many existing methods depend on additional control modules or inference-time fine-tuning, recent studies suggest that effective motion guidance is achievable without altering the model architecture or requiring extra training. Such approaches offer promising compatibility with various video generation foundation models. However, existing training-free methods often struggle to maintain consistent temporal coherence across frames or to follow guided motion accurately. In this work, we propose a simple yet effective solution that combines an initial-noise-based approach with a novel motion consistency loss, the latter being our key innovation. Specifically, we capture the inter-frame feature correlation patterns of intermediate features from a video diffusion model to represent the motion pattern of the reference video. We then design a motion consistency loss to maintain similar feature correlation patterns in the generated video, using the gradient of this loss in the latent space to guide the generation process for precise motion control. This approach improves temporal consistency across various motion control tasks while preserving the benefits of a training-free setup. Extensive experiments show that our method sets a new standard for efficient, temporally coherent video generation.
Authors:Xingyi He, Hao Yu, Sida Peng, Dongli Tan, Zehong Shen, Hujun Bao, Xiaowei Zhou
Abstract:
Image matching, which aims to identify corresponding pixel locations between images, is crucial in a wide range of scientific disciplines, aiding in image registration, fusion, and analysis. In recent years, deep learning-based image matching algorithms have dramatically outperformed humans in rapidly and accurately finding large amounts of correspondences. However, when dealing with images captured under different imaging modalities that result in significant appearance changes, the performance of these algorithms often deteriorates due to the scarcity of annotated cross-modal training data. This limitation hinders applications in various fields that rely on multiple image modalities to obtain complementary information. To address this challenge, we propose a large-scale pre-training framework that utilizes synthetic cross-modal training signals, incorporating diverse data from various sources, to train models to recognize and match fundamental structures across images. This capability is transferable to real-world, unseen cross-modality image matching tasks. Our key finding is that the matching model trained with our framework achieves remarkable generalizability across more than eight unseen cross-modality registration tasks using the same network weight, substantially outperforming existing methods, whether designed for generalization or tailored for specific tasks. This advancement significantly enhances the applicability of image matching technologies across various scientific disciplines and paves the way for new applications in multi-modality human and artificial intelligence analysis and beyond.
Authors:Varun Biyyala, Bharat Chanderprakash Kathuria, Jialu Li, Youshan Zhang
Abstract:
Video editing models have advanced significantly, but evaluating their performance remains challenging. Traditional metrics, such as CLIP text and image scores, often fall short: text scores are limited by inadequate training data and hierarchical dependencies, while image scores fail to assess temporal consistency. We present SST-EM (Semantic, Spatial, and Temporal Evaluation Metric), a novel evaluation framework that leverages modern Vision-Language Models (VLMs), Object Detection, and Temporal Consistency checks. SST-EM comprises four components: (1) semantic extraction from frames using a VLM, (2) primary object tracking with Object Detection, (3) focused object refinement via an LLM agent, and (4) temporal consistency assessment using a Vision Transformer (ViT). These components are integrated into a unified metric with weights derived from human evaluations and regression analysis. The name SST-EM reflects its focus on Semantic, Spatial, and Temporal aspects of video evaluation. SST-EM provides a comprehensive evaluation of semantic fidelity and temporal smoothness in video editing. The source code is available in the \textbf{\href{https://github.com/custommetrics-sst/SST_CustomEvaluationMetrics.git}{GitHub Repository}}.
Authors:Shiman Zhang, Lakshmikar Reddy Polamreddy, Youshan Zhang
Abstract:
Canine cardiomegaly, marked by an enlarged heart, poses serious health risks if undetected, requiring accurate diagnostic methods. Current detection models often rely on small, poorly annotated datasets and struggle to generalize across diverse imaging conditions, limiting their real-world applicability. To address these issues, we propose a Confident Pseudo-labeled Diffusion Augmentation (CDA) model for identifying canine cardiomegaly. Our approach addresses the challenge of limited high-quality training data by employing diffusion models to generate synthetic X-ray images and annotate Vertebral Heart Score key points, thereby expanding the dataset. We also employ a pseudo-labeling strategy with Monte Carlo Dropout to select high-confidence labels, refine the synthetic dataset, and improve accuracy. Iteratively incorporating these labels enhances the model's performance, overcoming the limitations of existing approaches. Experimental results show that the CDA model outperforms traditional methods, achieving state-of-the-art accuracy in canine cardiomegaly detection. The code implementation is available at https://github.com/Shira7z/CDA.
Authors:Difei Gu, Yunhe Gao, Yang Zhou, Mu Zhou, Dimitris Metaxas
Abstract:
Automated chest radiographs interpretation requires both accurate disease classification and detailed radiology report generation, presenting a significant challenge in the clinical workflow. Current approaches either focus on classification accuracy at the expense of interpretability or generate detailed but potentially unreliable reports through image captioning techniques. In this study, we present RadAlign, a novel framework that combines the predictive accuracy of vision-language models (VLMs) with the reasoning capabilities of large language models (LLMs). Inspired by the radiologist's workflow, RadAlign first employs a specialized VLM to align visual features with key medical concepts, achieving superior disease classification with an average AUC of 0.885 across multiple diseases. These recognized medical conditions, represented as text-based concepts in the aligned visual-language space, are then used to prompt LLM-based report generation. Enhanced by a retrieval-augmented generation mechanism that grounds outputs in similar historical cases, RadAlign delivers superior report quality with a GREEN score of 0.678, outperforming state-of-the-art methods' 0.634. Our framework maintains strong clinical interpretability while reducing hallucinations, advancing automated medical imaging and report analysis through integrated predictive and generative AI. Code is available at https://github.com/difeigu/RadAlign.
Authors:Yaqing Ding, Viktor Kocur, Zuzana Berger Haladová, Qianliang Wu, Shen Cai, Jian Yang, Zuzana Kukelova
Abstract:
In this paper, we propose a novel approach for recovering focal lengths from three-view homographies. By examining the consistency of normal vectors between two homographies, we derive new explicit constraints between the focal lengths and homographies using an elimination technique. We demonstrate that three-view homographies provide two additional constraints, enabling the recovery of one or two focal lengths. We discuss four possible cases, including three cameras having an unknown equal focal length, three cameras having two different unknown focal lengths, three cameras where one focal length is known, and the other two cameras have equal or different unknown focal lengths. All the problems can be converted into solving polynomials in one or two unknowns, which can be efficiently solved using Sturm sequence or hidden variable technique. Evaluation using both synthetic and real data shows that the proposed solvers are both faster and more accurate than methods relying on existing two-view solvers. The code and data are available on https://github.com/kocurvik/hf
Authors:Wenping Jin, Li Zhu, Jing Sun
Abstract:
Weakly supervised violence detection refers to the technique of training models to identify violent segments in videos using only video-level labels. Among these approaches, multimodal violence detection, which integrates modalities such as audio and optical flow, holds great potential. Existing methods in this domain primarily focus on designing multimodal fusion models to address modality discrepancies. In contrast, we take a different approach; leveraging the inherent discrepancies across modalities in violence event representation to propose a novel multimodal semantic feature alignment method. This method sparsely maps the semantic features of local, transient, and less informative modalities ( such as audio and optical flow ) into the more informative RGB semantic feature space. Through an iterative process, the method identifies the suitable no-zero feature matching subspace and aligns the modality-specific event representations based on this subspace, enabling the full exploitation of information from all modalities during the subsequent modality fusion stage. Building on this, we design a new weakly supervised violence detection framework that consists of unimodal multiple-instance learning for extracting unimodal semantic features, multimodal alignment, multimodal fusion, and final detection. Experimental results on benchmark datasets demonstrate the effectiveness of our method, achieving an average precision (AP) of 86.07% on the XD-Violence dataset. Our code is available at https://github.com/xjpp2016/MAVD.
Authors:Denis Lochmelis, Evgenii Moiseenko, Yaroslav Golubev, Anton Podkopaev
Abstract:
We present LitmusKt - the first tool for litmus testing concurrent programs in Kotlin. The tool's novelty also lies in the fact that Kotlin is a multiplatform language, i.e., it compiles into multiple platforms, which means that the concurrency has to be tested on several of them. Our tool allows writing litmus tests in a single custom DSL, and these tests are then run in Kotlin/Native and Kotlin/JVM, two main platforms for concurrent programming in Kotlin. Using LitmusKt, we discovered novel bugs in the Kotlin compiler, which we then fixed and they are no longer present. Moreover, LitmusKt was integrated into the CI pipeline for Kotlin. LitmusKt is available on GitHub: https://github.com/JetBrains-Research/litmuskt. The demo is available on YouTube: https://youtu.be/oWCZp_Huwss.
Authors:Brendan Mallery, James M. Murphy, Shuchin Aeron
Abstract:
We consider synthesis and analysis of probability measures using the entropy-regularized Wasserstein-2 cost and its unbiased version, the Sinkhorn divergence. The synthesis problem consists of computing the barycenter, with respect to these costs, of reference measures given a set of coefficients belonging to the simplex. The analysis problem consists of finding the coefficients for the closest barycenter in the Wasserstein-2 distance to a given measure. Under the weakest assumptions on the measures thus far in the literature, we compute the derivative of the entropy-regularized Wasserstein-2 cost. We leverage this to establish a characterization of barycenters with respect to the entropy-regularized Wasserstein-2 cost as solutions that correspond to a fixed point of an average of the entropy-regularized displacement maps. This characterization yields a finite-dimensional, convex, quadratic program for solving the analysis problem when the measure being analyzed is a barycenter with respect to the entropy-regularized Wasserstein-2 cost. We show that these coefficients, as well as the value of the barycenter functional, can be estimated from samples with dimension-independent rates of convergence, and that barycentric coefficients are stable with respect to perturbations in the Wasserstein-2 metric. We employ the barycentric coefficients as features for classification of corrupted point cloud data, and show that compared to neural network baselines, our approach is more efficient in small training data regimes.
Authors:Lukas Rustler, Vojtech Volprecht, Matej Hoffmann
Abstract:
Depth sensing is an essential technology in robotics and many other fields. Many depth sensing (or RGB-D) cameras are available on the market and selecting the best one for your application can be challenging. In this work, we tested four stereoscopic RGB-D cameras that sense the distance by using two images from slightly different views. We empirically compared four cameras (Intel RealSense D435, Intel RealSense D455, StereoLabs ZED 2, and Luxonis OAK-D Pro) in three scenarios: (i) planar surface perception, (ii) plastic doll perception, (iii) household object perception (YCB dataset). We recorded and evaluated more than 3,000 RGB-D frames for each camera. For table-top robotics scenarios with distance to objects up to one meter, the best performance is provided by the D435 camera that is able to perceive with an error under 1 cm in all of the tested scenarios. For longer distances, the other three models perform better, making them more suitable for some mobile robotics applications. OAK-D Pro additionally offers integrated AI modules (e.g., object and human keypoint detection). ZED 2 is overall the best camera which is able to keep the error under 3 cm even at 4 meters. However, it is not a standalone device and requires a computer with a GPU for depth data acquisition. All data (more than 12,000 RGB-D frames) are publicly available at https://rustlluk.github.io/rgbd-comparison.
Authors:Daniel Steininger, Julia Simon, Andreas Trondl, Markus Murschitz
Abstract:
Timber represents an increasingly valuable and versatile resource. However, forestry operations such as harvesting, handling and measuring logs still require substantial human labor in remote environments posing significant safety risks. Progressively automating these tasks has the potential of increasing their efficiency as well as safety, but requires an accurate detection of individual logs as well as live trees and their context. Although initial approaches have been proposed for this challenging application domain, specialized data and algorithms are still too scarce to develop robust solutions. To mitigate this gap, we introduce the TimberVision dataset, consisting of more than 2k annotated RGB images containing a total of 51k trunk components including cut and lateral surfaces, thereby surpassing any existing dataset in this domain in terms of both quantity and detail by a large margin. Based on this data, we conduct a series of ablation experiments for oriented object detection and instance segmentation and evaluate the influence of multiple scene parameters on model performance. We introduce a generic framework to fuse the components detected by our models for both tasks into unified trunk representations. Furthermore, we automatically derive geometric properties and apply multi-object tracking to further enhance robustness. Our detection and tracking approach provides highly descriptive and accurate trunk representations solely from RGB image data, even under challenging environmental conditions. Our solution is suitable for a wide range of application scenarios and can be readily combined with other sensor modalities.
Authors:Haochuan Zhang, Chunhua Yang, Jie Han, Liyang Qin, Xiaoli Wang
Abstract:
Multi-modal language model has made advanced progress in vision and audio, but still faces significant challenges in dealing with complex reasoning tasks in the time series domain. The reasons are twofold. First, labels for multi-modal time series data are coarse and devoid of analysis or reasoning processes. Training with these data cannot improve the model's reasoning capabilities. Second, due to the lack of precise tokenization in processing time series, the representation patterns for temporal and textual information are inconsistent, which hampers the effectiveness of multi-modal alignment. To address these challenges, we propose a multi-modal time series data construction approach and a multi-modal time series language model (TLM), TempoGPT. Specially, we construct multi-modal data for complex reasoning tasks by analyzing the variable-system relationships within a white-box system. Additionally, proposed TempoGPT achieves consistent representation between temporal and textual information by quantizing temporal embeddings, where temporal embeddings are quantized into a series of discrete tokens using a predefined codebook; subsequently, a shared embedding layer processes both temporal and textual tokens. Extensive experiments demonstrate that TempoGPT accurately perceives temporal information, logically infers conclusions, and achieves state-of-the-art in the constructed complex time series reasoning tasks. Moreover, we quantitatively demonstrate the effectiveness of quantizing temporal embeddings in enhancing multi-modal alignment and the reasoning capabilities of TLMs. Code and data are available at https://github.com/zhanghaochuan20/TempoGPT.
Authors:A. Erkhov, A. Bazhenov, S. Satsevich, D. Belov, F. Khabibullin, S. Egorov, M. Gromakov, M. Altamirano Cabrera, D. Tsetserukou
Abstract:
The paper focuses on an immersive teleoperation system that enhances operator's ability to actively perceive the robot's surroundings. A consumer-grade HTC Vive VR system was used to synchronize the operator's hand and head movements with a UR3 robot and a custom-built robotic head with two degrees of freedom (2-DoF). The system's usability, manipulation efficiency, and intuitiveness of control were evaluated in comparison with static head camera positioning across three distinct tasks. Code and other supplementary materials can be accessed by link: https://github.com/ErkhovArtem/ViewVR
Authors:Zhimeng Xin, Tianxu Wu, Shiming Chen, Shuo Ye, Zijing Xie, Yixiong Zou, Xinge You, Yufei Guo
Abstract:
Camouflaged object detection (COD) primarily relies on semantic or instance segmentation methods. While these methods have made significant advancements in identifying the contours of camouflaged objects, they may be inefficient or cost-effective for tasks that only require the specific location of the object. Object detection algorithms offer an optimized solution for Realistic Camouflaged Object Detection (RCOD) in such cases. However, detecting camouflaged objects remains a formidable challenge due to the high degree of similarity between the features of the objects and their backgrounds. Unlike segmentation methods that perform pixel-wise comparisons to differentiate between foreground and background, object detectors omit this analysis, further aggravating the challenge. To solve this problem, we propose a camouflage-aware feature refinement (CAFR) strategy. Since camouflaged objects are not rare categories, CAFR fully utilizes a clear perception of the current object within the prior knowledge of large models to assist detectors in deeply understanding the distinctions between background and foreground. Specifically, in CAFR, we introduce the Adaptive Gradient Propagation (AGP) module that fine-tunes all feature extractor layers in large detection models to fully refine class-specific features from camouflaged contexts. We then design the Sparse Feature Refinement (SFR) module that optimizes the transformer-based feature extractor to focus primarily on capturing class-specific features in camouflaged scenarios. To facilitate the assessment of RCOD tasks, we manually annotate the labels required for detection on three existing segmentation COD datasets, creating a new benchmark for RCOD tasks. Code and datasets are available at: https://github.com/zhimengXin/RCOD.
Authors:Junhao Zheng, Chengming Shi, Xidi Cai, Qiuke Li, Duzhen Zhang, Chenxing Li, Dong Yu, Qianli Ma
Abstract:
Lifelong learning, also known as continual or incremental learning, is a crucial component for advancing Artificial General Intelligence (AGI) by enabling systems to continuously adapt in dynamic environments. While large language models (LLMs) have demonstrated impressive capabilities in natural language processing, existing LLM agents are typically designed for static systems and lack the ability to adapt over time in response to new challenges. This survey is the first to systematically summarize the potential techniques for incorporating lifelong learning into LLM-based agents. We categorize the core components of these agents into three modules: the perception module for multimodal input integration, the memory module for storing and retrieving evolving knowledge, and the action module for grounded interactions with the dynamic environment. We highlight how these pillars collectively enable continuous adaptation, mitigate catastrophic forgetting, and improve long-term performance. This survey provides a roadmap for researchers and practitioners working to develop lifelong learning capabilities in LLM agents, offering insights into emerging trends, evaluation metrics, and application scenarios. Relevant literature and resources are available at \href{this url}{https://github.com/qianlima-lab/awesome-lifelong-llm-agent}.
Authors:Wenyan Xu, Jiayu Chen, Dawei Xiang, Chen Li, Yonghong Hu, Zhonghua Lu
Abstract:
Traditional risk factors like beta, size/value, and momentum often lag behind market dynamics in measuring and predicting stock return volatility. Statistical models like PCA and factor analysis fail to capture hidden nonlinear relationships. Genetic programming (GP) can identify nonlinear factors but often lacks mechanisms for evaluating factor quality, and the resulting formulas are complex. To address these challenges, we propose a Hierarchical Proximal Policy Optimization (HPPO) framework for automated factor generation and evaluation. HPPO uses two PPO models: a high-level policy assigns weights to stock features, and a low-level policy identifies latent nonlinear relationships. The Pearson correlation between generated factors and return volatility serves as the reward signal. Transfer learning pre-trains the high-level policy on large-scale historical data, fine-tuning it with the latest data to adapt to new features and shifts. Experiments show the HPPO-TO algorithm achieves a 25\% excess return in HFT markets across China (CSI 300/800), India (Nifty 100), and the US (S\&P 500). Code and data are available at https://github.com/wencyxu/HRL-HF_risk_factor_set.
Authors:Li Liang, Naveed Akhtar, Jordan Vice, Xiangrui Kong, Ajmal Saeed Mian
Abstract:
3D semantic scene completion is critical for multiple downstream tasks in autonomous systems. It estimates missing geometric and semantic information in the acquired scene data. Due to the challenging real-world conditions, this task usually demands complex models that process multi-modal data to achieve acceptable performance. We propose a unique neural model, leveraging advances from the state space and diffusion generative modeling to achieve remarkable 3D semantic scene completion performance with monocular image input. Our technique processes the data in the conditioned latent space of a variational autoencoder where diffusion modeling is carried out with an innovative state space technique. A key component of our neural network is the proposed Skimba (Skip Mamba) denoiser, which is adept at efficiently processing long-sequence data. The Skimba diffusion model is integral to our 3D scene completion network, incorporating a triple Mamba structure, dimensional decomposition residuals and varying dilations along three directions. We also adopt a variant of this network for the subsequent semantic segmentation stage of our method. Extensive evaluation on the standard SemanticKITTI and SSCBench-KITTI360 datasets show that our approach not only outperforms other monocular techniques by a large margin, it also achieves competitive performance against stereo methods. The code is available at https://github.com/xrkong/skimba
Authors:Chong Zhou, Chenchen Zhu, Yunyang Xiong, Saksham Suri, Fanyi Xiao, Lemeng Wu, Raghuraman Krishnamoorthi, Bo Dai, Chen Change Loy, Vikas Chandra, Bilge Soran
Abstract:
On top of Segment Anything Model (SAM), SAM 2 further extends its capability from image to video inputs through a memory bank mechanism and obtains a remarkable performance compared with previous methods, making it a foundation model for video segmentation task. In this paper, we aim at making SAM 2 much more efficient so that it even runs on mobile devices while maintaining a comparable performance. Despite several works optimizing SAM for better efficiency, we find they are not sufficient for SAM 2 because they all focus on compressing the image encoder, while our benchmark shows that the newly introduced memory attention blocks are also the latency bottleneck. Given this observation, we propose EdgeTAM, which leverages a novel 2D Spatial Perceiver to reduce the computational cost. In particular, the proposed 2D Spatial Perceiver encodes the densely stored frame-level memories with a lightweight Transformer that contains a fixed set of learnable queries. Given that video segmentation is a dense prediction task, we find preserving the spatial structure of the memories is essential so that the queries are split into global-level and patch-level groups. We also propose a distillation pipeline that further improves the performance without inference overhead. As a result, EdgeTAM achieves 87.7, 70.0, 72.3, and 71.7 J&F on DAVIS 2017, MOSE, SA-V val, and SA-V test, while running at 16 FPS on iPhone 15 Pro Max.
Authors:Jie Tan, Yu Rong, Kangfei Zhao, Tian Bian, Tingyang Xu, Junzhou Huang, Hong Cheng, Helen Meng
Abstract:
Combinatorial medication recommendation(CMR) is a fundamental task of healthcare, which offers opportunities for clinical physicians to provide more precise prescriptions for patients with intricate health conditions, particularly in the scenarios of long-term medical care. Previous research efforts have sought to extract meaningful information from electronic health records (EHRs) to facilitate combinatorial medication recommendations. Existing learning-based approaches further consider the chemical structures of medications, but ignore the textual medication descriptions in which the functionalities are clearly described. Furthermore, the textual knowledge derived from the EHRs of patients remains largely underutilized. To address these issues, we introduce the Natural Language-Assisted Multi-modal Medication Recommendation(NLA-MMR), a multi-modal alignment framework designed to learn knowledge from the patient view and medication view jointly. Specifically, NLA-MMR formulates CMR as an alignment problem from patient and medication modalities. In this vein, we employ pretrained language models(PLMs) to extract in-domain knowledge regarding patients and medications, serving as the foundational representation for both modalities. In the medication modality, we exploit both chemical structures and textual descriptions to create medication representations. In the patient modality, we generate the patient representations based on textual descriptions of diagnosis, procedure, and symptom. Extensive experiments conducted on three publicly accessible datasets demonstrate that NLA-MMR achieves new state-of-the-art performance, with a notable average improvement of 4.72% in Jaccard score. Our source code is publicly available on https://github.com/jtan1102/NLA-MMR_CIKM_2024.
Authors:Jinlin Li, Xiao Zhou
Abstract:
The early detection and prediction of health status decline among the elderly at the neighborhood level are of great significance for urban planning and public health policymaking. While existing studies affirm the connection between living environments and health outcomes, most rely on single data modalities or simplistic feature concatenation of multi-modal information, limiting their ability to comprehensively profile the health-oriented urban environments. To fill this gap, we propose CureGraph, a contrastive multi-modal representation learning framework for urban health prediction that employs graph-based techniques to infer the prevalence of common chronic diseases among the elderly within the urban living circles of each neighborhood. CureGraph leverages rich multi-modal information, including photos and textual reviews of residential areas and their surrounding points of interest, to generate urban neighborhood embeddings. By integrating pre-trained visual and textual encoders with graph modeling techniques, CureGraph captures cross-modal spatial dependencies, offering a comprehensive understanding of urban environments tailored to elderly health considerations. Extensive experiments on real-world datasets demonstrate that CureGraph improves the best baseline by $28\%$ on average in terms of $R^2$ across elderly disease risk prediction tasks. Moreover, the model enables the identification of stage-wise chronic disease progression and supports comparative public health analysis across neighborhoods, offering actionable insights for sustainable urban development and enhanced quality of life. The code is publicly available at https://github.com/jinlin2021/CureGraph.
Authors:Csaba Tóth, Danilo Jr Dela Cruz, Harald Oberhauser
Abstract:
The signature kernel is a positive definite kernel for sequential and temporal data that has become increasingly popular in machine learning applications due to powerful theoretical guarantees, strong empirical performance, and recently introduced various scalable variations. In this chapter, we give a short introduction to $\texttt{KSig}$, a $\texttt{Scikit-Learn}$ compatible Python package that implements various GPU-accelerated algorithms for computing signature kernels, and performing downstream learning tasks. We also introduce a new algorithm based on tensor sketches which gives strong performance compared to existing algorithms. The package is available at https://github.com/tgcsaba/ksig.
Authors:Han Liu, Yinwei Wei, Fan Liu, Wenjie Wang, Liqiang Nie, Tat-Seng Chua
Abstract:
Multimodal information (e.g., visual, acoustic, and textual) has been widely used to enhance representation learning for micro-video recommendation. For integrating multimodal information into a joint representation of micro-video, multimodal fusion plays a vital role in the existing micro-video recommendation approaches. However, the static multimodal fusion used in previous studies is insufficient to model the various relationships among multimodal information of different micro-videos. In this paper, we develop a novel meta-learning-based multimodal fusion framework called Meta Multimodal Fusion (MetaMMF), which dynamically assigns parameters to the multimodal fusion function for each micro-video during its representation learning. Specifically, MetaMMF regards the multimodal fusion of each micro-video as an independent task. Based on the meta information extracted from the multimodal features of the input task, MetaMMF parameterizes a neural network as the item-specific fusion function via a meta learner. We perform extensive experiments on three benchmark datasets, demonstrating the significant improvements over several state-of-the-art multimodal recommendation models, like MMGCN, LATTICE, and InvRL. Furthermore, we lighten our model by adopting canonical polyadic decomposition to improve the training efficiency, and validate its effectiveness through experimental results. Codes are available at https://github.com/hanliu95/MetaMMF.
Authors:Jason Du, Kelly Hong, Alishba Imran, Erfan Jahanparast, Mehdi Khfifi, Kaichun Qiao
Abstract:
Large Language Models (LLMs) excel at tasks like language processing, strategy games, and reasoning but struggle to build generalizable internal representations essential for adaptive decision-making in agents. For agents to effectively navigate complex environments, they must construct reliable world models. While LLMs perform well on specific benchmarks, they often fail to generalize, leading to brittle representations that limit their real-world effectiveness. Understanding how LLMs build internal world models is key to developing agents capable of consistent, adaptive behavior across tasks. We analyze OthelloGPT, a GPT-based model trained on Othello gameplay, as a controlled testbed for studying representation learning. Despite being trained solely on next-token prediction with random valid moves, OthelloGPT shows meaningful layer-wise progression in understanding board state and gameplay. Early layers capture static attributes like board edges, while deeper layers reflect dynamic tile changes. To interpret these representations, we compare Sparse Autoencoders (SAEs) with linear probes, finding that SAEs offer more robust, disentangled insights into compositional features, whereas linear probes mainly detect features useful for classification. We use SAEs to decode features related to tile color and tile stability, a previously unexamined feature that reflects complex gameplay concepts like board control and long-term planning. We study the progression of linear probe accuracy and tile color using both SAE's and linear probes to compare their effectiveness at capturing what the model is learning. Although we begin with a smaller language model, OthelloGPT, this study establishes a framework for understanding the internal representations learned by GPT models, transformers, and LLMs more broadly. Our code is publicly available: https://github.com/ALT-JS/OthelloSAE.
Authors:Sieun Hyeon, Kyudan Jung, Nam-Joon Kim, Hyun Gon Ryu, Jaeyoung Do
Abstract:
TTS (Text-to-Speech) document reader from Microsoft, Adobe, Apple, and OpenAI have been serviced worldwide. They provide relatively good TTS results for general plain text, but sometimes skip contents or provide unsatisfactory results for mathematical expressions. This is because most modern academic papers are written in LaTeX, and when LaTeX formulas are compiled, they are rendered as distinctive text forms within the document. However, traditional TTS document readers output only the text as it is recognized, without considering the mathematical meaning of the formulas. To address this issue, we propose MathReader, which effectively integrates OCR, a fine-tuned T5 model, and TTS. MathReader demonstrated a lower Word Error Rate (WER) than existing TTS document readers, such as Microsoft Edge and Adobe Acrobat, when processing documents containing mathematical formulas. MathReader reduced the WER from 0.510 to 0.281 compared to Microsoft Edge, and from 0.617 to 0.281 compared to Adobe Acrobat. This will significantly contribute to alleviating the inconvenience faced by users who want to listen to documents, especially those who are visually impaired. The code is available at https://github.com/hyeonsieun/MathReader.
Authors:Yongyu Mu, Hengyu Li, Junxin Wang, Xiaoxuan Zhou, Chenglong Wang, Yingfeng Luo, Qiaozhi He, Tong Xiao, Guocheng Chen, Jingbo Zhu
Abstract:
Previous work on augmenting large multimodal models (LMMs) for text-to-image (T2I) generation has focused on enriching the input space of in-context learning (ICL). This includes providing a few demonstrations and optimizing image descriptions to be more detailed and logical. However, as demand for more complex and flexible image descriptions grows, enhancing comprehension of input text within the ICL paradigm remains a critical yet underexplored area. In this work, we extend this line of research by constructing parallel multilingual prompts aimed at harnessing the multilingual capabilities of LMMs. More specifically, we translate the input text into several languages and provide the models with both the original text and the translations. Experiments on two LMMs across 3 benchmarks show that our method, PMT2I, achieves superior performance in general, compositional, and fine-grained assessments, especially in human preference alignment. Additionally, with its advantage of generating more diverse images, PMT2I significantly outperforms baseline prompts when incorporated with reranking methods. Our code and parallel multilingual data can be found at https://github.com/takagi97/PMT2I.
Authors:Jiayang Wu, Wensheng Gan, Jiahao Zhang, Philip S. Yu
Abstract:
In the current development of large language models (LLMs), it is important to ensure the accuracy and reliability of the underlying data sources. LLMs are critical for various applications, but they often suffer from hallucinations and inaccuracies due to knowledge gaps in the training data. Knowledge graphs (KGs), as a powerful structural tool, could serve as a vital external information source to mitigate the aforementioned issues. By providing a structured and comprehensive understanding of real-world data, KGs enhance the performance and reliability of LLMs. However, it is common that errors exist in KGs while extracting triplets from unstructured data to construct KGs. This could lead to degraded performance in downstream tasks such as question-answering and recommender systems. Therefore, anomaly detection in KGs is essential to identify and correct these errors. This paper presents an anomaly detection algorithm in knowledge graphs with dual-channel learning (ADKGD). ADKGD leverages a dual-channel learning approach to enhance representation learning from both the entity-view and triplet-view perspectives. Furthermore, using a cross-layer approach, our framework integrates internal information aggregation and context information aggregation. We introduce a kullback-leibler (KL)-loss component to improve the accuracy of the scoring function between the dual channels. To evaluate ADKGD's performance, we conduct empirical studies on three real-world KGs: WN18RR, FB15K, and NELL-995. Experimental results demonstrate that ADKGD outperforms the state-of-the-art anomaly detection algorithms. The source code and datasets are publicly available at https://github.com/csjywu1/ADKGD.
Authors:Zhen Xiong, Yuqi Li, Chuanguang Yang, Tiao Tan, Zhihong Zhu, Siyuan Li, Yue Ma
Abstract:
The diffusion transformer (DiT) architecture has attracted significant attention in image generation, achieving better fidelity, performance, and diversity. However, most existing DiT - based image generation methods focus on global - aware synthesis, and regional prompt control has been less explored. In this paper, we propose a coarse - to - fine generation pipeline for regional prompt - following generation. Specifically, we first utilize the powerful large language model (LLM) to generate both high - level descriptions of the image (such as content, topic, and objects) and low - level descriptions (such as details and style). Then, we explore the influence of cross - attention layers at different depths. We find that deeper layers are always responsible for high - level content control, while shallow layers handle low - level content control. Various prompts are injected into the proposed regional cross - attention control for coarse - to - fine generation. By using the proposed pipeline, we enhance the controllability of DiT - based image generation. Extensive quantitative and qualitative results show that our pipeline can improve the performance of the generated images.
Authors:Minhui Xie, Hao Peng, Pu Li, Guangjie Zeng, Shuhai Wang, Jia Wu, Peng Li, Philip S. Yu
Abstract:
Superpixel segmentation is a foundation for many higher-level computer vision tasks, such as image segmentation, object recognition, and scene understanding. Existing graph-based superpixel segmentation methods typically concentrate on the relationships between a given pixel and its directly adjacent pixels while overlooking the influence of non-adjacent pixels. These approaches do not fully leverage the global information in the graph, leading to suboptimal segmentation quality. To address this limitation, we present SIT-HSS, a hierarchical superpixel segmentation method based on structural information theory. Specifically, we first design a novel graph construction strategy that incrementally explores the pixel neighborhood to add edges based on 1-dimensional structural entropy (1D SE). This strategy maximizes the retention of graph information while avoiding an overly complex graph structure. Then, we design a new 2D SE-guided hierarchical graph partitioning method, which iteratively merges pixel clusters layer by layer to reduce the graph's 2D SE until a predefined segmentation scale is achieved. Experimental results on three benchmark datasets demonstrate that the SIT-HSS performs better than state-of-the-art unsupervised superpixel segmentation algorithms. The source code is available at \url{https://github.com/SELGroup/SIT-HSS}.
Authors:Yan Zhang, Haoqi Li, Ramtin Tabatabaei, Wafa Johal
Abstract:
Human-robot interaction (HRI) is an interdisciplinary field that utilises both quantitative and qualitative methods. While ROSBags, a file format within the Robot Operating System (ROS), offer an efficient means of collecting temporally synched multimodal data in empirical studies with real robots, there is a lack of tools specifically designed to integrate qualitative coding and analysis functions with ROSBags. To address this gap, we developed ROSAnnotator, a web-based application that incorporates a multimodal Large Language Model (LLM) to support both manual and automated annotation of ROSBag data. ROSAnnotator currently facilitates video, audio, and transcription annotations and provides an open interface for custom ROS messages and tools. By using ROSAnnotator, researchers can streamline the qualitative analysis process, create a more cohesive analysis pipeline, and quickly access statistical summaries of annotations, thereby enhancing the overall efficiency of HRI data analysis. https://github.com/CHRI-Lab/ROSAnnotator
Authors:Jianming Tong, Tianhao Huang, Leo de Castro, Anirudh Itagi, Jingtian Dang, Anupam Golder, Asra Ali, Jevin Jiang, Arvind, G. Edward Suh, Tushar Krishna
Abstract:
Cloud-based services are making the outsourcing of sensitive client data increasingly common. Although homomorphic encryption (HE) offers strong privacy guarantee, it requires substantially more resources than computing on plaintext, often leading to unacceptably large latencies in getting the results. HE accelerators have emerged to mitigate this latency issue, but with the high cost of ASICs. In this paper we show that HE primitives can be converted to AI operators and accelerated on existing ASIC AI accelerators, like TPUs, which are already widely deployed in the cloud. Adapting such accelerators for HE requires (1) supporting modular multiplication, (2) high-precision arithmetic in software, and (3) efficient mapping on matrix engines. We introduce the CROSS compiler (1) to adopt Barrett reduction to provide modular reduction support using multiplier and adder, (2) Basis Aligned Transformation (BAT) to convert high-precision multiplication as low-precision matrix-vector multiplication, (3) Matrix Aligned Transformation (MAT) to covert vectorized modular operation with reduction into matrix multiplication that can be efficiently processed on 2D spatial matrix engine. Our evaluation of CROSS on a Google TPUv4 demonstrates significant performance improvements, with up to 161x and 5x speedup compared to the previous work on many-core CPUs and V100. The kernel-level codes are open-sourced at https://github.com/google/jaxite/tree/main/jaxite_word.
Authors:Hoang-Thang Ta, Duy-Quy Thai, Anh Tran, Grigori Sidorov, Alexander Gelbukh
Abstract:
Kolmogorov-Arnold Networks (KANs) represent an innovation in neural network architectures, offering a compelling alternative to Multi-Layer Perceptrons (MLPs) in models such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformers. By advancing network design, KANs drive groundbreaking research and enable transformative applications across various scientific domains involving neural networks. However, existing KANs often require significantly more parameters in their network layers than MLPs. To address this limitation, this paper introduces PRKANs (Parameter-Reduced Kolmogorov-Arnold Networks), which employ several methods to reduce the parameter count in KAN layers, making them comparable to MLP layers. Experimental results on the MNIST and Fashion-MNIST datasets demonstrate that PRKANs outperform several existing KANs, and their variant with attention mechanisms rivals the performance of MLPs, albeit with slightly longer training times. Furthermore, the study highlights the advantages of Gaussian Radial Basis Functions (GRBFs) and layer normalization in KAN designs. The repository for this work is available at: https://github.com/hoangthangta/All-KAN.
Authors:Xuhui Guo, Tanmoy Dam, Rohan Dhamdhere, Gourav Modanwal, Anant Madabhushi
Abstract:
3D medical image segmentation has progressed considerably due to Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), yet these methods struggle to balance long-range dependency acquisition with computational efficiency. To address this challenge, we propose UNETVL (U-Net Vision-LSTM), a novel architecture that leverages recent advancements in temporal information processing. UNETVL incorporates Vision-LSTM (ViL) for improved scalability and memory functions, alongside an efficient Chebyshev Kolmogorov-Arnold Networks (KAN) to handle complex and long-range dependency patterns more effectively. We validated our method on the ACDC and AMOS2022 (post challenge Task 2) benchmark datasets, showing a significant improvement in mean Dice score compared to recent state-of-the-art approaches, especially over its predecessor, UNETR, with increases of 7.3% on ACDC and 15.6% on AMOS, respectively. Extensive ablation studies were conducted to demonstrate the impact of each component in UNETVL, providing a comprehensive understanding of its architecture. Our code is available at https://github.com/tgrex6/UNETVL, facilitating further research and applications in this domain.
Authors:Binyu Zhang, Shichao Li, Junpeng Jian, Zhu Meng, Limei Guo, Zhicheng Zhao
Abstract:
Prognostic task is of great importance as it closely related to the survival analysis of patients, the optimization of treatment plans and the allocation of resources. The existing prognostic models have shown promising results on specific datasets, but there are limitations in two aspects. On the one hand, they merely explore certain types of modal data, such as patient histopathology WSI and gene expression analysis. On the other hand, they adopt the per-cancer-per-model paradigm, which means the trained models can only predict the prognostic effect of a single type of cancer, resulting in weak generalization ability. In this paper, a deep-learning based model, named UMPSNet, is proposed. Specifically, to comprehensively understand the condition of patients, in addition to constructing encoders for histopathology images and genomic expression profiles respectively, UMPSNet further integrates four types of important meta data (demographic information, cancer type information, treatment protocols, and diagnosis results) into text templates, and then introduces a text encoder to extract textual features. In addition, the optimal transport OT-based attention mechanism is utilized to align and fuse features of different modalities. Furthermore, a guided soft mixture of experts (GMoE) mechanism is introduced to effectively address the issue of distribution differences among multiple cancer datasets. By incorporating the multi-modality of patient data and joint training, UMPSNet outperforms all SOTA approaches, and moreover, it demonstrates the effectiveness and generalization ability of the proposed learning paradigm of a single model for multiple cancer types. The code of UMPSNet is available at https://github.com/binging512/UMPSNet.
Authors:Henry Li, Ronen Basri, Yuval Kluger
Abstract:
Cascaded models are multi-scale generative models with a marked capacity for producing perceptually impressive samples at high resolutions. In this work, we show that they can also be excellent likelihood models, so long as we overcome a fundamental difficulty with probabilistic multi-scale models: the intractability of the likelihood function. Chiefly, in cascaded models each intermediary scale introduces extraneous variables that cannot be tractably marginalized out for likelihood evaluation. This issue vanishes by modeling the diffusion process on latent spaces induced by a class of transformations we call hierarchical volume-preserving maps, which decompose spatially structured data in a hierarchical fashion without introducing local distortions in the latent space. We demonstrate that two such maps are well-known in the literature for multiscale modeling: Laplacian pyramids and wavelet transforms. Not only do such reparameterizations allow the likelihood function to be directly expressed as a joint likelihood over the scales, we show that the Laplacian pyramid and wavelet transform also produces significant improvements to the state-of-the-art on a selection of benchmarks in likelihood modeling, including density estimation, lossless compression, and out-of-distribution detection. Investigating the theoretical basis of our empirical gains we uncover deep connections to score matching under the Earth Mover's Distance (EMD), which is a well-known surrogate for perceptual similarity. Code can be found at \href{https://github.com/lihenryhfl/pcdm}{this https url}.
Authors:Juntao Ren, Priya Sundaresan, Dorsa Sadigh, Sanjiban Choudhury, Jeannette Bohg
Abstract:
Teaching robots to autonomously complete everyday tasks remains a challenge. Imitation Learning (IL) is a powerful approach that imbues robots with skills via demonstrations, but is limited by the labor-intensive process of collecting teleoperated robot data. Human videos offer a scalable alternative, but it remains difficult to directly train IL policies from them due to the lack of robot action labels. To address this, we propose to represent actions as short-horizon 2D trajectories on an image. These actions, or motion tracks, capture the predicted direction of motion for either human hands or robot end-effectors. We instantiate an IL policy called Motion Track Policy (MT-pi) which receives image observations and outputs motion tracks as actions. By leveraging this unified, cross-embodiment action space, MT-pi completes tasks with high success given just minutes of human video and limited additional robot demonstrations. At test time, we predict motion tracks from two camera views, recovering 6DoF trajectories via multi-view synthesis. MT-pi achieves an average success rate of 86.5% across 4 real-world tasks, outperforming state-of-the-art IL baselines which do not leverage human data or our action space by 40%, and generalizes to scenarios seen only in human videos. Code and videos are available on our website https://portal-cornell.github.io/motion_track_policy/.
Authors:Jimeng Shi, Azam Shirali, Bowen Jin, Sizhe Zhou, Wei Hu, Rahuul Rangaraj, Shaowen Wang, Jiawei Han, Zhaonan Wang, Upmanu Lall, Yanzhao Wu, Leonardo Bobadilla, Giri Narasimhan
Abstract:
Physics-based numerical models have been the bedrock of atmospheric sciences for decades, offering robust solutions but often at the cost of significant computational resources. Deep learning (DL) models have emerged as powerful tools in meteorology, capable of analyzing complex weather and climate data by learning intricate dependencies and providing rapid predictions once trained. While these models demonstrate promising performance in weather prediction, often surpassing traditional physics-based methods, they still face critical challenges. This paper presents a comprehensive survey of recent deep learning and foundation models for weather prediction. We propose a taxonomy to classify existing models based on their training paradigms: deterministic predictive learning, probabilistic generative learning, and pre-training and fine-tuning. For each paradigm, we delve into the underlying model architectures, address major challenges, offer key insights, and propose targeted directions for future research. Furthermore, we explore real-world applications of these methods and provide a curated summary of open-source code repositories and widely used datasets, aiming to bridge research advancements with practical implementations while fostering open and trustworthy scientific practices in adopting cutting-edge artificial intelligence for weather prediction. The related sources are available at https://github.com/JimengShi/ DL-Foundation-Models-Weather.
Authors:Wojciech Zielonka, Stephan J. Garbin, Alexandros Lattas, George Kopanas, Paulo Gotardo, Thabo Beeler, Justus Thies, Timo Bolkart
Abstract:
We present SynShot, a novel method for the few-shot inversion of a drivable head avatar based on a synthetic prior. We tackle three major challenges. First, training a controllable 3D generative network requires a large number of diverse sequences, for which pairs of images and high-quality tracked meshes are not always available. Second, the use of real data is strictly regulated (e.g., under the General Data Protection Regulation, which mandates frequent deletion of models and data to accommodate a situation when a participant's consent is withdrawn). Synthetic data, free from these constraints, is an appealing alternative. Third, state-of-the-art monocular avatar models struggle to generalize to new views and expressions, lacking a strong prior and often overfitting to a specific viewpoint distribution. Inspired by machine learning models trained solely on synthetic data, we propose a method that learns a prior model from a large dataset of synthetic heads with diverse identities, expressions, and viewpoints. With few input images, SynShot fine-tunes the pretrained synthetic prior to bridge the domain gap, modeling a photorealistic head avatar that generalizes to novel expressions and viewpoints. We model the head avatar using 3D Gaussian splatting and a convolutional encoder-decoder that outputs Gaussian parameters in UV texture space. To account for the different modeling complexities over parts of the head (e.g., skin vs hair), we embed the prior with explicit control for upsampling the number of per-part primitives. Compared to SOTA monocular and GAN-based methods, SynShot significantly improves novel view and expression synthesis.
Authors:Liyan Chen, Huangying Zhan, Kevin Chen, Xiangyu Xu, Qingan Yan, Changjiang Cai, Yi Xu
Abstract:
We introduce ActiveGAMER, an active mapping system that utilizes 3D Gaussian Splatting (3DGS) to achieve high-quality, real-time scene mapping and exploration. Unlike traditional NeRF-based methods, which are computationally demanding and restrict active mapping performance, our approach leverages the efficient rendering capabilities of 3DGS, allowing effective and efficient exploration in complex environments. The core of our system is a rendering-based information gain module that dynamically identifies the most informative viewpoints for next-best-view planning, enhancing both geometric and photometric reconstruction accuracy. ActiveGAMER also integrates a carefully balanced framework, combining coarse-to-fine exploration, post-refinement, and a global-local keyframe selection strategy to maximize reconstruction completeness and fidelity. Our system autonomously explores and reconstructs environments with state-of-the-art geometric and photometric accuracy and completeness, significantly surpassing existing approaches in both aspects. Extensive evaluations on benchmark datasets such as Replica and MP3D highlight ActiveGAMER's effectiveness in active mapping tasks.
Authors:Krishna Upadhyay, Vinaik Chhetri, A. B. Siddique, Umar Farooq
Abstract:
Quantum computing is rapidly advancing, but quantum software development faces significant challenges, including a steep learning curve, high hardware error rates, and a lack of mature engineering practices. This study conducts a large-scale mining analysis of over 21,000 GitHub repositories, containing 1.2 million commits from more than 10,000 developers, to examine the evolution and maintenance of quantum software. We analyze repository growth, programming language and framework adoption, and contributor trends, revealing a 200% increase in repositories and a 150% rise in contributors since 2017. Additionally, we investigate software development and maintenance practices, showing that perfective commits dominate (51.76%), while the low occurrence of corrective commits (18.54%) indicates potential gaps in bug resolution. Furthermore, 34% of reported issues are quantum-specific, highlighting the need for specialized debugging tools beyond conventional software engineering approaches. This study provides empirical insights into the software engineering challenges of quantum computing, offering recommendations to improve development workflows, tooling, and documentation. We are also open-sourcing our dataset to support further analysis by the community and to guide future research and tool development for quantum computing. The dataset is available at: https://github.com/kriss-u/QRepoAnalysis-Paper
Authors:Haojun Yu, Di Dai, Ziwei Zhao, Di He, Han Hu, Liwei Wang
Abstract:
Scaling up the vocabulary of semantic segmentation models is extremely challenging because annotating large-scale mask labels is labour-intensive and time-consuming. Recently, language-guided segmentation models have been proposed to address this challenge. However, their performance drops significantly when applied to out-of-distribution categories. In this paper, we propose a new large vocabulary semantic segmentation framework, called LarvSeg. Different from previous works, LarvSeg leverages image classification data to scale the vocabulary of semantic segmentation models as large-vocabulary classification datasets usually contain balanced categories and are much easier to obtain. However, for classification tasks, the category is image-level, while for segmentation we need to predict the label at pixel level. To address this issue, we first propose a general baseline framework to incorporate image-level supervision into the training process of a pixel-level segmentation model, making the trained network perform semantic segmentation on newly introduced categories in the classification data. We then observe that a model trained on segmentation data can group pixel features of categories beyond the training vocabulary. Inspired by this finding, we design a category-wise attentive classifier to apply supervision to the precise regions of corresponding categories to improve the model performance. Extensive experiments demonstrate that LarvSeg significantly improves the large vocabulary semantic segmentation performance, especially in the categories without mask labels. For the first time, we provide a 21K-category semantic segmentation model with the help of ImageNet21K. The code is available at https://github.com/HaojunYu1998/large_voc_seg.
Authors:Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, Rajesh Ranganath
Abstract:
Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we present Feynman-Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models - even with off-the-shelf rewards - can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .
Authors:Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu, Zhangyang Wang, Shiwei Liu
Abstract:
Large Language Models (LLMs) have demonstrated exceptional performance across diverse tasks, yet their training remains highly resource-intensive and susceptible to critical challenges such as training instability. A predominant source of this instability stems from gradient and loss spikes, which disrupt the learning process, often leading to costly interventions like checkpoint recovery and experiment restarts, further amplifying inefficiencies. This paper presents a comprehensive investigation into gradient spikes observed during LLM training, revealing their prevalence across multiple architectures and datasets. Our analysis shows that these spikes can be up to $1000\times$ larger than typical gradients, substantially deteriorating model performance. To address this issue, we propose Spike-Aware Adam with Momentum Reset SPAM, a novel optimizer designed to counteract gradient spikes through momentum reset and spike-aware gradient clipping. Extensive experiments, including both pre-training and fine-tuning, demonstrate that SPAM consistently surpasses Adam and its variants across various tasks, including (1) LLM pre-training from 60M to 1B, (2) 4-bit LLM pre-training,(3) reinforcement learning, and (4) Time Series Forecasting. Additionally, SPAM facilitates memory-efficient training by enabling sparse momentum, where only a subset of momentum terms are maintained and updated. When operating under memory constraints, SPAM outperforms state-of-the-art memory-efficient optimizers such as GaLore and Adam-Mini. Our work underscores the importance of mitigating gradient spikes in LLM training and introduces an effective optimization strategy that enhances both training stability and resource efficiency at scale. Code is available at https://github.com/TianjinYellow/SPAM-Optimizer.git
Authors:Du Chen, Liyi Chen, Zhengqiang Zhang, Lei Zhang
Abstract:
Implicit Neural Representations (INR) have been successfully employed for Arbitrary-scale Super-Resolution (ASR). However, INR-based models need to query the multi-layer perceptron module numerous times and render a pixel in each query, resulting in insufficient representation capability and low computational efficiency. Recently, Gaussian Splatting (GS) has shown its advantages over INR in both visual quality and rendering speed in 3D tasks, which motivates us to explore whether GS can be employed for the ASR task. However, directly applying GS to ASR is exceptionally challenging because the original GS is an optimization-based method through overfitting each single scene, while in ASR we aim to learn a single model that can generalize to different images and scaling factors. We overcome these challenges by developing two novel techniques. Firstly, to generalize GS for ASR, we elaborately design an architecture to predict the corresponding image-conditioned Gaussians of the input low-resolution image in a feed-forward manner. Each Gaussian can fit the shape and direction of an area of complex textures, showing powerful representation capability. Secondly, we implement an efficient differentiable 2D GPU/CUDA-based scale-aware rasterization to render super-resolved images by sampling discrete RGB values from the predicted continuous Gaussians. Via end-to-end training, our optimized network, namely GSASR, can perform ASR for any image and unseen scaling factors. Extensive experiments validate the effectiveness of our proposed method. The code and models are available at https://github.com/ChrisDud0257/GSASR.
Authors:Minglong Xue, Shuaibin Fan, Shivakumara Palaiahnakote, Mingliang Zhou
Abstract:
Image dehazing techniques aim to enhance contrast and restore details, which are essential for preserving visual information and improving image processing accuracy. Existing methods rely on a single manual prior, which cannot effectively reveal image details. To overcome this limitation, we propose an unpaired image dehazing network, called the Simple Image Dehaze Enhancer via Unpaired Rich Physical Prior (UR2P-Dehaze). First, to accurately estimate the illumination, reflectance, and color information of the hazy image, we design a shared prior estimator (SPE) that is iteratively trained to ensure the consistency of illumination and reflectance, generating clear, high-quality images. Additionally, a self-monitoring mechanism is introduced to eliminate undesirable features, providing reliable priors for image reconstruction. Next, we propose Dynamic Wavelet Separable Convolution (DWSC), which effectively integrates key features across both low and high frequencies, significantly enhancing the preservation of image details and ensuring global consistency. Finally, to effectively restore the color information of the image, we propose an Adaptive Color Corrector that addresses the problem of unclear colors. The PSNR, SSIM, LPIPS, FID and CIEDE2000 metrics on the benchmark dataset show that our method achieves state-of-the-art performance. It also contributes to the performance improvement of downstream tasks. The project code will be available at https://github.com/Fan-pixel/UR2P-Dehaze. \end{abstract}
Authors:Keyan Chen, Jiafan Zhang, Chenyang Liu, Zhengxia Zou, Zhenwei Shi
Abstract:
Referring remote sensing image segmentation is crucial for achieving fine-grained visual understanding through free-format textual input, enabling enhanced scene and object extraction in remote sensing applications. Current research primarily utilizes pre-trained language models to encode textual descriptions and align them with visual modalities, thereby facilitating the expression of relevant visual features. However, these approaches often struggle to establish robust alignments between fine-grained semantic concepts, leading to inconsistent representations across textual and visual information. To address these limitations, we introduce a referring remote sensing image segmentation foundational model, RSRefSeg. RSRefSeg leverages CLIP for visual and textual encoding, employing both global and local textual semantics as filters to generate referring-related visual activation features in the latent space. These activated features then serve as input prompts for SAM, which refines the segmentation masks through its robust visual generalization capabilities. Experimental results on the RRSIS-D dataset demonstrate that RSRefSeg outperforms existing methods, underscoring the effectiveness of foundational models in enhancing multimodal task comprehension. The code is available at \url{https://github.com/KyanChen/RSRefSeg}.
Authors:Mahmoud Ahmed, Xiang Li, Arpit Prajapati, Mohamed Elhoseiny
Abstract:
Understanding objects in 3D at the part level is essential for humans and robots to navigate and interact with the environment. Current datasets for part-level 3D object understanding encompass a limited range of categories. For instance, the ShapeNet-Part and PartNet datasets only include 16, and 24 object categories respectively. The 3DCoMPaT dataset, specifically designed for compositional understanding of parts and materials, contains only 42 object categories. To foster richer and fine-grained part-level 3D understanding, we introduce 3DCoMPaT200, a large-scale dataset tailored for compositional understanding of object parts and materials, with 200 object categories with $\approx$5 times larger object vocabulary compared to 3DCoMPaT and $\approx$ 4 times larger part categories. Concretely, 3DCoMPaT200 significantly expands upon 3DCoMPaT, featuring 1,031 fine-grained part categories and 293 distinct material classes for compositional application to 3D object parts. Additionally, to address the complexities of compositional 3D modeling, we propose a novel task of Compositional Part Shape Retrieval using ULIP to provide a strong 3D foundational model for 3D Compositional Understanding. This method evaluates the model shape retrieval performance given one, three, or six parts described in text format. These results show that the model's performance improves with an increasing number of style compositions, highlighting the critical role of the compositional dataset. Such results underscore the dataset's effectiveness in enhancing models' capability to understand complex 3D shapes from a compositional perspective. Code and Data can be found at http://github.com/3DCoMPaT200/3DCoMPaT200
Authors:Shaw Walters, Sam Gao, Shakker Nerd, Feng Da, Warren Williams, Ting-Chien Meng, Amie Chow, Hunter Han, Frank He, Allen Zhang, Ming Wu, Timothy Shen, Maxwell Hu, Jerry Yan
Abstract:
AI Agent, powered by large language models (LLMs) as its cognitive core, is an intelligent agentic system capable of autonomously controlling and determining the execution paths under user's instructions. With the burst of capabilities of LLMs and various plugins, such as RAG, text-to-image/video/3D, etc., the potential of AI Agents has been vastly expanded, with their capabilities growing stronger by the day. However, at the intersection between AI and web3, there is currently no ideal agentic framework that can seamlessly integrate web3 applications into AI agent functionalities. In this paper, we propose Eliza, the first open-source web3-friendly Agentic framework that makes the deployment of web3 applications effortless. We emphasize that every aspect of Eliza is a regular Typescript program under the full control of its user, and it seamlessly integrates with web3 (i.e., reading and writing blockchain data, interacting with smart contracts, etc.). Furthermore, we show how stable performance is achieved through the pragmatic implementation of the key components of Eliza's runtime. Our code is publicly available at https://github.com/ai16z/eliza.
Authors:Ji Soo Lee, Jongha Kim, Jeehye Na, Jinyoung Park, Hyunwoo J. Kim
Abstract:
Despite the advancements of Video Large Language Models (VideoLLMs) in various tasks, they struggle with fine-grained temporal understanding, such as Dense Video Captioning (DVC). DVC is a complicated task of describing all events within a video while also temporally localizing them, which integrates multiple fine-grained tasks, including video segmentation, video captioning, and temporal video grounding. Previous VideoLLMs attempt to solve DVC in a single step, failing to utilize their reasoning capability. Moreover, previous training objectives for VideoLLMs do not fully reflect the evaluation metrics, therefore not providing supervision directly aligned to target tasks. To address such a problem, we propose a novel framework named VidChain comprised of Chain-of-Tasks (CoTasks) and Metric-based Direct Preference Optimization (M-DPO). CoTasks decompose a complex task into a sequence of sub-tasks, allowing VideoLLMs to leverage their reasoning capabilities more effectively. M-DPO aligns a VideoLLM with evaluation metrics, providing fine-grained supervision to each task that is well-aligned with metrics. Applied to two different VideoLLMs, VidChain consistently improves their fine-grained video understanding, thereby outperforming previous VideoLLMs on two different DVC benchmarks and also on the temporal video grounding task. Code is available at \url{https://github.com/mlvlab/VidChain}.
Authors:Yuxin Wang, Qianyi Wu, Dan Xu
Abstract:
This paper tackles the problem of generalizable 3D-aware generation from monocular datasets, e.g., ImageNet. The key challenge of this task is learning a robust 3D-aware representation without multi-view or dynamic data, while ensuring consistent texture and geometry across different viewpoints. Although some baseline methods are capable of 3D-aware generation, the quality of the generated images still lags behind state-of-the-art 2D generation approaches, which excel in producing high-quality, detailed images. To address this severe limitation, we propose a novel feed-forward pipeline based on pixel-aligned Gaussian Splatting, coined as F3D-Gaus, which can produce more realistic and reliable 3D renderings from monocular inputs. In addition, we introduce a self-supervised cycle-aggregative constraint to enforce cross-view consistency in the learned 3D representation. This training strategy naturally allows aggregation of multiple aligned Gaussian primitives and significantly alleviates the interpolation limitations inherent in single-view pixel-aligned Gaussian Splatting. Furthermore, we incorporate video model priors to perform geometry-aware refinement, enhancing the generation of fine details in wide-viewpoint scenarios and improving the model's capability to capture intricate 3D textures. Extensive experiments demonstrate that our approach not only achieves high-quality, multi-view consistent 3D-aware generation from monocular datasets, but also significantly improves training and inference efficiency.
Authors:Tianyu Fan, Jingyuan Wang, Xubin Ren, Chao Huang
Abstract:
The growing demand for efficient and lightweight Retrieval-Augmented Generation (RAG) systems has highlighted significant challenges when deploying Small Language Models (SLMs) in existing RAG frameworks. Current approaches face severe performance degradation due to SLMs' limited semantic understanding and text processing capabilities, creating barriers for widespread adoption in resource-constrained scenarios. To address these fundamental limitations, we present MiniRAG, a novel RAG system designed for extreme simplicity and efficiency. MiniRAG introduces two key technical innovations: (1) a semantic-aware heterogeneous graph indexing mechanism that combines text chunks and named entities in a unified structure, reducing reliance on complex semantic understanding, and (2) a lightweight topology-enhanced retrieval approach that leverages graph structures for efficient knowledge discovery without requiring advanced language capabilities. Our extensive experiments demonstrate that MiniRAG achieves comparable performance to LLM-based methods even when using SLMs while requiring only 25\% of the storage space. Additionally, we contribute a comprehensive benchmark dataset for evaluating lightweight RAG systems under realistic on-device scenarios with complex queries. We fully open-source our implementation and datasets at: https://github.com/HKUDS/MiniRAG.
Authors:Ming Dai, Jian Li, Jiedong Zhuang, Xian Zhang, Wankou Yang
Abstract:
Multi-task visual grounding involves the simultaneous execution of localization and segmentation in images based on textual expressions. The majority of advanced methods predominantly focus on transformer-based multimodal fusion, aiming to extract robust multimodal representations. However, ambiguity between referring expression comprehension (REC) and referring image segmentation (RIS) is error-prone, leading to inconsistencies between multi-task predictions. Besides, insufficient multimodal understanding directly contributes to biased target perception. To overcome these challenges, we propose a Coarse-to-fine Consistency Constraints Visual Grounding architecture ($\text{C}^3\text{VG}$), which integrates implicit and explicit modeling approaches within a two-stage framework. Initially, query and pixel decoders are employed to generate preliminary detection and segmentation outputs, a process referred to as the Rough Semantic Perception (RSP) stage. These coarse predictions are subsequently refined through the proposed Mask-guided Interaction Module (MIM) and a novel explicit bidirectional consistency constraint loss to ensure consistent representations across tasks, which we term the Refined Consistency Interaction (RCI) stage. Furthermore, to address the challenge of insufficient multimodal understanding, we leverage pre-trained models based on visual-linguistic fusion representations. Empirical evaluations on the RefCOCO, RefCOCO+, and RefCOCOg datasets demonstrate the efficacy and soundness of $\text{C}^3\text{VG}$, which significantly outperforms state-of-the-art REC and RIS methods by a substantial margin. Code and model will be available at \url{https://github.com/Dmmm1997/C3VG}.
Authors:Ziyang Xie, Zhizheng Liu, Zhenghao Peng, Wayne Wu, Bolei Zhou
Abstract:
Sim-to-real gap has long posed a significant challenge for robot learning in simulation, preventing the deployment of learned models in the real world. Previous work has primarily focused on domain randomization and system identification to mitigate this gap. However, these methods are often limited by the inherent constraints of the simulation and graphics engines. In this work, we propose Vid2Sim, a novel framework that effectively bridges the sim2real gap through a scalable and cost-efficient real2sim pipeline for neural 3D scene reconstruction and simulation. Given a monocular video as input, Vid2Sim can generate photorealistic and physically interactable 3D simulation environments to enable the reinforcement learning of visual navigation agents in complex urban environments. Extensive experiments demonstrate that Vid2Sim significantly improves the performance of urban navigation in the digital twins and real world by 31.2% and 68.3% in success rate compared with agents trained with prior simulation methods.
Authors:Hengyuan Zhang, David Paz, Yuliang Guo, Xinyu Huang, Henrik I. Christensen, Liu Ren
Abstract:
Online mapping reduces the reliance of autonomous vehicles on high-definition (HD) maps, significantly enhancing scalability. However, recent advancements often overlook cross-sensor configuration generalization, leading to performance degradation when models are deployed on vehicles with different camera intrinsics and extrinsics. With the rapid evolution of novel view synthesis methods, we investigate the extent to which these techniques can be leveraged to address the sensor configuration generalization challenge. We propose a novel framework leveraging Gaussian splatting to reconstruct scenes and render camera images in target sensor configurations. The target config sensor data, along with labels mapped to the target config, are used to train online mapping models. Our proposed framework on the nuScenes and Argoverse 2 datasets demonstrates a performance improvement of 18% through effective dataset augmentation, achieves faster convergence and efficient training, and exceeds state-of-the-art performance when using only 25% of the original training data. This enables data reuse and reduces the need for laborious data labeling. Project page at https://henryzhangzhy.github.io/mapgs.
Authors:Veronika Smilga
Abstract:
Semantic leakage is a phenomenon recently introduced by Gonen et al. (2024). It refers to a situation in which associations learnt from the training data emerge in language model generations in an unexpected and sometimes undesired way. Prior work has focused on leakage in large language models (7B+ parameters). In this study, I use Qwen2.5 model family to explore whether smaller models, ranging from 500M to 7B parameters, demonstrate less semantic leakage due to their limited capacity for capturing complex associations. Building on the previous dataset from Gonen et al. (2024), I introduce a new dataset of color-focused prompts, categorized into specific types of semantic associations, to systematically evaluate the models' performance. Results indicate that smaller models exhibit less semantic leakage overall, although this trend is not strictly linear, with medium-sized models sometimes surpassing larger ones in leaking behavior. The dataset, the model generations, and the evaluation code are publicly available at https://github.com/smilni/semantic_leakage_project.
Authors:Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Zhiyuan Liu, Maosong Sun
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in chart understanding tasks. However, interpreting charts with textual descriptions often leads to information loss, as it fails to fully capture the dense information embedded in charts. In contrast, parsing charts into code provides lossless representations that can effectively contain all critical details. Although existing open-source MLLMs have achieved success in chart understanding tasks, they still face two major challenges when applied to chart-to-code tasks: (1) Low executability and poor restoration of chart details in the generated code and (2) Lack of large-scale and diverse training data. To address these challenges, we propose \textbf{ChartCoder}, the first dedicated chart-to-code MLLM, which leverages Code LLMs as the language backbone to enhance the executability of the generated code. Furthermore, we introduce \textbf{Chart2Code-160k}, the first large-scale and diverse dataset for chart-to-code generation, and propose the \textbf{Snippet-of-Thought (SoT)} method, which transforms direct chart-to-code generation data into step-by-step generation. Experiments demonstrate that ChartCoder, with only 7B parameters, surpasses existing open-source MLLMs on chart-to-code benchmarks, achieving superior chart restoration and code excitability. Our code is available at https://github.com/thunlp/ChartCoder.
Authors:Narges Rashvand, Ghazal Alinezhad Noghre, Armin Danesh Pazho, Shanle Yao, Hamed Tabkhi
Abstract:
Shoplifting poses a significant challenge for retailers, resulting in billions of dollars in annual losses. Traditional security measures often fall short, highlighting the need for intelligent solutions capable of detecting shoplifting behaviors in real time. This paper frames shoplifting detection as an anomaly detection problem, focusing on the identification of deviations from typical shopping patterns. We introduce PoseLift, a privacy-preserving dataset specifically designed for shoplifting detection, addressing challenges such as data scarcity, privacy concerns, and model biases. PoseLift is built in collaboration with a retail store and contains anonymized human pose data from real-world scenarios. By preserving essential behavioral information while anonymizing identities, PoseLift balances privacy and utility. We benchmark state-of-the-art pose-based anomaly detection models on this dataset, evaluating performance using a comprehensive set of metrics. Our results demonstrate that pose-based approaches achieve high detection accuracy while effectively addressing privacy and bias concerns inherent in traditional methods. As one of the first datasets capturing real-world shoplifting behaviors, PoseLift offers researchers a valuable tool to advance computer vision ethically and will be publicly available to foster innovation and collaboration. The dataset is available at https://github.com/TeCSAR-UNCC/PoseLift.
Authors:Xiangru Tang, Tianyu Hu, Muyang Ye, Yanjun Shao, Xunjian Yin, Siru Ouyang, Wangchunshu Zhou, Pan Lu, Zhuosheng Zhang, Yilun Zhao, Arman Cohan, Mark Gerstein
Abstract:
Chemical reasoning usually involves complex, multi-step processes that demand precise calculations, where even minor errors can lead to cascading failures. Furthermore, large language models (LLMs) encounter difficulties handling domain-specific formulas, executing reasoning steps accurately, and integrating code effectively when tackling chemical reasoning tasks. To address these challenges, we present ChemAgent, a novel framework designed to improve the performance of LLMs through a dynamic, self-updating library. This library is developed by decomposing chemical tasks into sub-tasks and compiling these sub-tasks into a structured collection that can be referenced for future queries. Then, when presented with a new problem, ChemAgent retrieves and refines pertinent information from the library, which we call memory, facilitating effective task decomposition and the generation of solutions. Our method designs three types of memory and a library-enhanced reasoning component, enabling LLMs to improve over time through experience. Experimental results on four chemical reasoning datasets from SciBench demonstrate that ChemAgent achieves performance gains of up to 46% (GPT-4), significantly outperforming existing methods. Our findings suggest substantial potential for future applications, including tasks such as drug discovery and materials science. Our code can be found at https://github.com/gersteinlab/chemagent
Authors:Muqing Cao, Thien-Minh Nguyen, Shenghai Yuan, Andreas Anastasiou, Angelos Zacharia, Savvas Papaioannou, Panayiotis Kolios, Christos G. Panayiotou, Marios M. Polycarpou, Xinhang Xu, Mingjie Zhang, Fei Gao, Boyu Zhou, Ben M. Chen, Lihua Xie
Abstract:
We propose the Cooperative Aerial Robot Inspection Challenge (CARIC), a simulation-based benchmark for motion planning algorithms in heterogeneous multi-UAV systems. CARIC features UAV teams with complementary sensors, realistic constraints, and evaluation metrics prioritizing inspection quality and efficiency. It offers a ready-to-use perception-control software stack and diverse scenarios to support the development and evaluation of task allocation and motion planning algorithms. Competitions using CARIC were held at IEEE CDC 2023 and the IROS 2024 Workshop on Multi-Robot Perception and Navigation, attracting innovative solutions from research teams worldwide. This paper examines the top three teams from CDC 2023, analyzing their exploration, inspection, and task allocation strategies while drawing insights into their performance across scenarios. The results highlight the task's complexity and suggest promising directions for future research in cooperative multi-UAV systems.
Authors:Tomohiko Nakamura, Kwanghee Choi, Keigo Hojo, Yoshiaki Bando, Satoru Fukayama, Shinji Watanabe
Abstract:
Self-supervised speech models (S3Ms) have become a common tool for the speech processing community, leveraging representations for downstream tasks. Clustering S3M representations yields discrete speech units (DSUs), which serve as compact representations for speech signals. DSUs are typically obtained by k-means clustering. Using DSUs often leads to strong performance in various tasks, including automatic speech recognition (ASR). However, even with the high dimensionality and redundancy of S3M representations, preprocessing S3M representations for better clustering remains unexplored, even though it can affect the quality of DSUs. In this paper, we investigate the potential of linear preprocessing methods for extracting DSUs. We evaluate standardization, principal component analysis, whitening, and independent component analysis (ICA) on DSU-based ASR benchmarks and demonstrate their effectiveness as preprocessing for k-means. We also conduct extensive analyses of their behavior, such as orthogonality or interpretability of individual components of ICA.
Authors:Xianwei Zhuang, Zhihong Zhu, Yuxin Xie, Liming Liang, Yuexian Zou
Abstract:
Large Vision-Language Models (LVLMs) may produce outputs that are unfaithful to reality, also known as visual hallucinations (VH), which significantly impedes their real-world usage. To alleviate VH, various decoding strategies have been proposed to enhance visual information. However, many of these methods may require secondary decoding and rollback, which significantly reduces inference speed. In this work, we propose an efficient plug-and-play decoding algorithm via Visual-Aware Sparsification (VASparse) from the perspective of token sparsity for mitigating VH. VASparse is inspired by empirical observations: (1) the sparse activation of attention in LVLMs, and (2) visual-agnostic tokens sparsification exacerbates VH. Based on these insights, we propose a novel token sparsification strategy that balances efficiency and trustworthiness. Specifically, VASparse implements a visual-aware token selection strategy during decoding to reduce redundant tokens while preserving visual context effectively. Additionally, we innovatively introduce a sparse-based visual contrastive decoding method to recalibrate the distribution of hallucinated outputs without the time overhead associated with secondary decoding. Subsequently, VASparse recalibrates attention scores to penalize attention sinking of LVLMs towards text tokens. Extensive experiments across four popular benchmarks confirm the effectiveness of VASparse in mitigating VH across different LVLM families without requiring additional training or post-processing. Impressively, VASparse achieves state-of-the-art performance for mitigating VH while maintaining competitive decoding speed. Code is available at https://github.com/mengchuang123/VASparse-github.
Authors:Yiheng Li, Yang Yang, Zhen Lei
Abstract:
Fusing multi-modality inputs from different sensors is an effective way to improve the performance of 3D object detection. However, current methods overlook two important conflicts: point-pixel misalignment and sub-task suppression. The former means a pixel feature from the opaque object is projected to multiple point features of the same ray in the world space, and the latter means the classification prediction and bounding box regression may cause mutual suppression. In this paper, we propose a novel method named Conflict Resolution Network (CoreNet) to address the aforementioned issues. Specifically, we first propose a dual-stream transformation module to tackle point-pixel misalignment. It consists of ray-based and point-based 2D-to-BEV transformations. Both of them achieve approximately unique mapping from the image space to the world space. Moreover, we introduce a task-specific predictor to tackle sub-task suppression. It uses the dual-branch structure which adopts class-specific query and Bbox-specific query to corresponding sub-tasks. Each task-specific query is constructed of task-specific feature and general feature, which allows the heads to adaptively select information of interest based on different sub-tasks. Experiments on the large-scale nuScenes dataset demonstrate the superiority of our proposed CoreNet, by achieving 75.6\% NDS and 73.3\% mAP on the nuScenes test set without test-time augmentation and model ensemble techniques. The ample ablation study also demonstrates the effectiveness of each component. The code is released on https://github.com/liyih/CoreNet.
Authors:Tushar Aggarwal, Aarohi Bhand
Abstract:
In today's fast-paced world, effective presentations have become an essential tool for communication in both online and offline meetings. The crafting of a compelling presentation requires significant time and effort, from gathering key insights to designing slides that convey information clearly and concisely. However, despite the wealth of resources available, people often find themselves manually extracting crucial points, analyzing data, and organizing content in a way that ensures clarity and impact. Furthermore, a successful presentation goes beyond just the slides; it demands rehearsal and the ability to weave a captivating narrative to fully engage the audience. Although there has been some exploration of automating document-to-slide generation, existing research is largely centered on converting research papers. In addition, automation of the delivery of these presentations has yet to be addressed. We introduce PASS, a pipeline used to generate slides from general Word documents, going beyond just research papers, which also automates the oral delivery of the generated slides. PASS analyzes user documents to create a dynamic, engaging presentation with an AI-generated voice. Additionally, we developed an LLM-based evaluation metric to assess our pipeline across three critical dimensions of presentations: relevance, coherence, and redundancy. The data and codes are available at https://github.com/AggarwalTushar/PASS.
Authors:Rui Liu, Zhenqi Jia, Feilong Bao, Haizhou Li
Abstract:
Conversational speech synthesis (CSS) aims to take the current dialogue (CD) history as a reference to synthesize expressive speech that aligns with the conversational style. Unlike CD, stored dialogue (SD) contains preserved dialogue fragments from earlier stages of user-agent interaction, which include style expression knowledge relevant to scenarios similar to those in CD. Note that this knowledge plays a significant role in enabling the agent to synthesize expressive conversational speech that generates empathetic feedback. However, prior research has overlooked this aspect. To address this issue, we propose a novel Retrieval-Augmented Dialogue Knowledge Aggregation scheme for expressive CSS, termed RADKA-CSS, which includes three main components: 1) To effectively retrieve dialogues from SD that are similar to CD in terms of both semantic and style. First, we build a stored dialogue semantic-style database (SDSSD) which includes the text and audio samples. Then, we design a multi-attribute retrieval scheme to match the dialogue semantic and style vectors of the CD with the stored dialogue semantic and style vectors in the SDSSD, retrieving the most similar dialogues. 2) To effectively utilize the style knowledge from CD and SD, we propose adopting the multi-granularity graph structure to encode the dialogue and introducing a multi-source style knowledge aggregation mechanism. 3) Finally, the aggregated style knowledge are fed into the speech synthesizer to help the agent synthesize expressive speech that aligns with the conversational style. We conducted a comprehensive and in-depth experiment based on the DailyTalk dataset, which is a benchmarking dataset for the CSS task.
Both objective and subjective evaluations demonstrate that RADKA-CSS outperforms baseline models in expressiveness rendering. Code and audio samples can be found at: https://github.com/Coder-jzq/RADKA-CSS.
Authors:Maomao Li, Lijian Lin, Yunfei Liu, Ye Zhu, Yu Li
Abstract:
This paper presents Qffusion, a dual-frame-guided framework for portrait video editing. Specifically, we consider a design principle of ``animation for editing'', and train Qffusion as a general animation framework from two still reference images while we can use it for portrait video editing easily by applying modified start and end frames as references during inference. Leveraging the powerful generative power of Stable Diffusion, we propose a Quadrant-grid Arrangement (QGA) scheme for latent re-arrangement, which arranges the latent codes of two reference images and that of four facial conditions into a four-grid fashion, separately. Then, we fuse features of these two modalities and use self-attention for both appearance and temporal learning, where representations at different times are jointly modeled under QGA. Our Qffusion can achieve stable video editing without additional networks or complex training stages, where only the input format of Stable Diffusion is modified. Further, we propose a Quadrant-grid Propagation (QGP) inference strategy, which enjoys a unique advantage on stable arbitrary-length video generation by processing reference and condition frames recursively. Through extensive experiments, Qffusion consistently outperforms state-of-the-art techniques on portrait video editing. Project page: https://qffusion.github.io/page/.
Authors:Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Zhen Qin, Yang Yuan, Quanquan Gu, Andrew C Yao
Abstract:
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, substantially shrinking the KV cache size at inference time. By factorizing these representations into contextual low-rank components and seamlessly integrating with Rotary Position Embedding (RoPE), TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor Product Attention Transformer,(T6), a new model architecture for sequence modeling. Through extensive empirical evaluation on language modeling tasks, we demonstrate that T6 surpasses or matches the performance of standard Transformer baselines, including Multi-Head Attention (MHA), Multi-Query Attention (MQA), Grouped-Query Attention (GQA), and Multi-Head Latent Attention (MLA) across various metrics, including perplexity and a range of established evaluation benchmarks. Notably, TPA's memory efficiency and computational efficiency at the decoding stage enable processing longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. The code is available at https://github.com/tensorgi/T6.
Authors:Jerry Chee, Arturs Backurs, Rainie Heck, Li Zhang, Janardhan Kulkarni, Thomas Rothvoss, Sivakanth Gopi
Abstract:
Quantizing the weights of a neural network has two steps: (1) Finding a good low bit-complexity representation for weights (which we call the quantization grid) and (2) Rounding the original weights to values in the quantization grid. In this paper, we study the problem of rounding optimally given any quantization grid. The simplest and most commonly used way to round is Round-to-Nearest (RTN). By rounding in a data-dependent way instead, one can improve the quality of the quantized model significantly.
We study the rounding problem from the lens of \emph{discrepancy theory}, which studies how well we can round a continuous solution to a discrete solution without affecting solution quality too much. We prove that given $m=\mathrm{poly}(1/ε)$ samples from the data distribution, we can round all but $O(m)$ model weights such that the expected approximation error of the quantized model on the true data distribution is $\le ε$ as long as the space of gradients of the original model is approximately low rank (which we empirically validate).
Our proof, which is algorithmic, inspired a simple and practical rounding algorithm called \emph{DiscQuant}. In our experiments, we demonstrate that DiscQuant significantly improves over the prior state-of-the-art rounding method called GPTQ and the baseline RTN over a range of benchmarks on Phi3mini-3.8B and Llama3.1-8B. For example, rounding Phi3mini-3.8B to a fixed quantization grid with 3.25 bits per parameter using DiscQuant gets 64\% accuracy on the GSM8k dataset, whereas GPTQ achieves 54\% and RTN achieves 31\% (the original model achieves 84\%). We make our code available at https://github.com/jerry-chee/DiscQuant.
Authors:José Ramón Pareja Monturiol, Alejandro Pozas-Kerstjens, David Pérez-GarcÃa
Abstract:
We present a tensorization algorithm for constructing tensor train representations of functions, drawing on sketching and cross interpolation ideas. The method only requires black-box access to the target function and a small set of sample points defining the domain of interest. Thus, it is particularly well-suited for machine learning models, where the domain of interest is naturally defined by the training dataset. We show that this approach can be used to enhance the privacy and interpretability of neural network models. Specifically, we apply our decomposition to (i) obfuscate neural networks whose parameters encode patterns tied to the training data distribution, and (ii) estimate topological phases of matter that are easily accessible from the tensor train representation. Additionally, we show that this tensorization can serve as an efficient initialization method for optimizing tensor trains in general settings, and that, for model compression, our algorithm achieves a superior trade-off between memory and time complexity compared to conventional tensorization methods of neural networks.
Authors:Qian Chen, Yafeng Chen, Yanni Chen, Mengzhe Chen, Yingda Chen, Chong Deng, Zhihao Du, Ruize Gao, Changfeng Gao, Zhifu Gao, Yabin Li, Xiang Lv, Jiaqing Liu, Haoneng Luo, Bin Ma, Chongjia Ni, Xian Shi, Jialong Tang, Hui Wang, Hao Wang, Wen Wang, Yuxuan Wang, Yunlan Xu, Fan Yu, Zhijie Yan, Yexin Yang, Baosong Yang, Xian Yang, Guanrou Yang, Tianyu Zhao, Qinglin Zhang, Shiliang Zhang, Nan Zhao, Pei Zhang, Chong Zhang, Jinren Zhou
Abstract:
Recent advancements in large language models (LLMs) and multimodal speech-text models have laid the groundwork for seamless voice interactions, enabling real-time, natural, and human-like conversations. Previous models for voice interactions are categorized as native and aligned. Native models integrate speech and text processing in one framework but struggle with issues like differing sequence lengths and insufficient pre-training. Aligned models maintain text LLM capabilities but are often limited by small datasets and a narrow focus on speech tasks. In this work, we introduce MinMo, a Multimodal Large Language Model with approximately 8B parameters for seamless voice interaction. We address the main limitations of prior aligned multimodal models. We train MinMo through multiple stages of speech-to-text alignment, text-to-speech alignment, speech-to-speech alignment, and duplex interaction alignment, on 1.4 million hours of diverse speech data and a broad range of speech tasks. After the multi-stage training, MinMo achieves state-of-the-art performance across various benchmarks for voice comprehension and generation while maintaining the capabilities of text LLMs, and also facilitates full-duplex conversation, that is, simultaneous two-way communication between the user and the system. Moreover, we propose a novel and simple voice decoder that outperforms prior models in voice generation. The enhanced instruction-following capabilities of MinMo supports controlling speech generation based on user instructions, with various nuances including emotions, dialects, and speaking rates, and mimicking specific voices. For MinMo, the speech-to-text latency is approximately 100ms, full-duplex latency is approximately 600ms in theory and 800ms in practice. The MinMo project web page is https://funaudiollm.github.io/minmo, and the code and models will be released soon.
Authors:Jing Guo, Nan Li, Ming Xu
Abstract:
Generative AI holds significant potential for ecological and environmental applications such as monitoring, data analysis, education, and policy support. However, its effectiveness is limited by the lack of a unified evaluation framework. To address this, we present the Environmental Large Language model Evaluation (ELLE) question answer (QA) dataset, the first benchmark designed to assess large language models and their applications in ecological and environmental sciences. The ELLE dataset includes 1,130 question answer pairs across 16 environmental topics, categorized by domain, difficulty, and type. This comprehensive dataset standardizes performance assessments in these fields, enabling consistent and objective comparisons of generative AI performance. By providing a dedicated evaluation tool, ELLE dataset promotes the development and application of generative AI technologies for sustainable environmental outcomes. The dataset and code are available at https://elle.ceeai.net/ and https://github.com/CEEAI/elle.
Authors:Mohammad Amin Mirzaee, Hung-Jui Huang, Wenzhen Yuan
Abstract:
Scanning large-scale surfaces is widely demanded in surface reconstruction applications and detecting defects in industries' quality control and maintenance stages. Traditional vision-based tactile sensors have shown promising performance in high-resolution shape reconstruction while suffering limitations such as small sensing areas or susceptibility to damage when slid across surfaces, making them unsuitable for continuous sensing on large surfaces. To address these shortcomings, we introduce a novel vision-based tactile sensor designed for continuous surface sensing applications. Our design uses an elastomeric belt and two wheels to continuously scan the target surface. The proposed sensor showed promising results in both shape reconstruction and surface fusion, indicating its applicability. The dot product of the estimated and reference surface normal map is reported over the sensing area and for different scanning speeds. Results indicate that the proposed sensor can rapidly scan large-scale surfaces with high accuracy at speeds up to 45 mm/s.
Authors:Huaiguang Cai
Abstract:
Class Activation Mapping (CAM) methods are widely used to visualize neural network decisions, yet their underlying mechanisms remain incompletely understood. To enhance the understanding of CAM methods and improve their explainability, we introduce the Content Reserved Game-theoretic (CRG) Explainer. This theoretical framework clarifies the theoretical foundations of GradCAM and HiResCAM by modeling the neural network prediction process as a cooperative game. Within this framework, we develop ShapleyCAM, a new method that leverages gradients and the Hessian matrix to provide more precise and theoretically grounded visual explanations. Due to the computational infeasibility of exact Shapley value calculation, ShapleyCAM employs a second-order Taylor expansion of the cooperative game's utility function to derive a closed-form expression. Additionally, we propose the Residual Softmax Target-Class (ReST) utility function to address the limitations of pre-softmax and post-softmax scores. Extensive experiments across 12 popular networks on the ImageNet validation set demonstrate the effectiveness of ShapleyCAM and its variants. Our findings not only advance CAM explainability but also bridge the gap between heuristic-driven CAM methods and compute-intensive Shapley value-based methods. The code is available at \url{https://github.com/caihuaiguang/pytorch-shapley-cam}.
Authors:Daojun Liang, Haixia Zhang, Dongfeng Yuan
Abstract:
Long-term and Large-scale Wireless Traffic Forecasting (LL-WTF) is pivotal for strategic network management and comprehensive planning on a macro scale. However, LL-WTF poses greater challenges than short-term ones due to the pronounced non-stationarity of extended wireless traffic and the vast number of nodes distributed at the city scale. To cope with this, we propose a Progressive Supervision method based on Label Decomposition (PSLD). Specifically, we first introduce a Random Subgraph Sampling (RSS) algorithm designed to sample a tractable subset from large-scale traffic data, thereby enabling efficient network training. Then, PSLD employs label decomposition to obtain multiple easy-to-learn components, which are learned progressively at shallow layers and combined at deep layers to effectively cope with the non-stationary problem raised by LL-WTF tasks. Finally, we compare the proposed method with various state-of-the-art (SOTA) methods on three large-scale WT datasets. Extensive experimental results demonstrate that the proposed PSLD significantly outperforms existing methods, with an average 2%, 4%, and 11% performance improvement on three WT datasets, respectively. In addition, we built an open source library for WT forecasting (WTFlib) to facilitate related research, which contains numerous SOTA methods and provides a strong benchmark.Experiments can be reproduced through https://github.com/Anoise/WTFlib.
Authors:Yunlong Tang, Junjia Guo, Pinxin Liu, Zhiyuan Wang, Hang Hua, Jia-Xing Zhong, Yunzhong Xiao, Chao Huang, Luchuan Song, Susan Liang, Yizhi Song, Liu He, Jing Bi, Mingqian Feng, Xinyang Li, Zeliang Zhang, Chenliang Xu
Abstract:
Traditional Celluloid (Cel) Animation production pipeline encompasses multiple essential steps, including storyboarding, layout design, keyframe animation, inbetweening, and colorization, which demand substantial manual effort, technical expertise, and significant time investment. These challenges have historically impeded the efficiency and scalability of Cel-Animation production. The rise of generative artificial intelligence (GenAI), encompassing large language models, multimodal models, and diffusion models, offers innovative solutions by automating tasks such as inbetween frame generation, colorization, and storyboard creation. This survey explores how GenAI integration is revolutionizing traditional animation workflows by lowering technical barriers, broadening accessibility for a wider range of creators through tools like AniDoc, ToonCrafter, and AniSora, and enabling artists to focus more on creative expression and artistic innovation. Despite its potential, challenges like visual consistency, stylistic coherence, and ethical considerations persist. Additionally, this paper explores future directions and advancements in AI-assisted animation. For further exploration and resources, please visit our GitHub repository: https://github.com/yunlong10/Awesome-AI4Animation
Authors:Mills Staylor, Amirreza Dolatpour Fathkouhi, Md Khairul Islam, Kaleigh O'Hara, Ryan Ghiles Goudjil, Geoffrey Fox, Judy Fox
Abstract:
Large-scale astronomical image data processing and prediction is essential for astronomers, providing crucial insights into celestial objects, the universe's history, and its evolution. While modern deep learning models offer high predictive accuracy, they often demand substantial computational resources, making them resource-intensive and limiting accessibility. We introduce the Cloud-based Astronomy Inference (CAI) framework to address these challenges. This scalable solution integrates pre-trained foundation models with serverless cloud infrastructure through a Function-as-a-Service (FaaS) Message Interface (FMI). CAI enables efficient and scalable inference on astronomical images without extensive hardware. Using a foundation model for redshift prediction as a case study, our extensive experiments cover user devices, HPC (High-Performance Computing) servers, and Cloud. CAI's significant scalability improvement on large data sizes provides an accessible and effective tool for the astronomy community. The code is accessible at https://github.com/UVA-MLSys/AI-for-Astronomy.
Authors:Nirit Alkalay, Roy Orfaig, Ben-Zion Bobrovsky
Abstract:
4D panoptic LiDAR segmentation is essential for scene understanding in autonomous driving and robotics, combining semantic and instance segmentation with temporal consistency. Current methods, like 4D-PLS and 4D-STOP, use a tracking-by-detection methodology, employing deep learning networks to perform semantic and instance segmentation on each frame. To maintain temporal consistency, large-size instances detected in the current frame are compared and associated with instances within a temporal window that includes the current and preceding frames. However, their reliance on short-term instance detection, lack of motion estimation, and exclusion of small-sized instances lead to frequent identity switches and reduced tracking performance. We address these issues with the NextStop1 tracker, which integrates Kalman filter-based motion estimation, data association, and lifespan management, along with a tracklet state concept to improve prioritization. Evaluated using the LiDAR Segmentation and Tracking Quality (LSTQ) metric on the SemanticKITTI validation set, NextStop demonstrated enhanced tracking performance, particularly for small-sized objects like people and bicyclists, with fewer ID switches, earlier tracking initiation, and improved reliability in complex environments. The source code is available at https://github.com/AIROTAU/NextStop
Authors:Gent Wu
Abstract:
Vision Transformers (ViTs) have demonstrated remarkable success on large-scale datasets, but their performance on smaller datasets often falls short of convolutional neural networks (CNNs). This paper explores the design and optimization of Tiny ViTs for small datasets, using CIFAR-10 as a benchmark. We systematically evaluate the impact of data augmentation, patch token initialization, low-rank compression, and multi-class token strategies on model performance. Our experiments reveal that low-rank compression of queries in Multi-Head Latent Attention (MLA) incurs minimal performance loss, indicating redundancy in ViTs. Additionally, introducing multiple CLS tokens improves global representation capacity, boosting accuracy. These findings provide a comprehensive framework for optimizing Tiny ViTs, offering practical insights for efficient and effective designs. Code is available at https://github.com/erow/PoorViTs.
Authors:Jiayu Guo, Yu Guo, Martha Li, Songtao Tan
Abstract:
LLMs have revolutionized NLP and demonstrated potential across diverse domains. More and more financial LLMs have been introduced for finance-specific tasks, yet comprehensively assessing their value is still challenging. In this paper, we introduce FLAME, a comprehensive financial LLMs evaluation system in Chinese, which includes two core evaluation benchmarks: FLAME-Cer and FLAME-Sce. FLAME-Cer covers 14 types of authoritative financial certifications, including CPA, CFA, and FRM, with a total of approximately 16,000 carefully selected questions. All questions have been manually reviewed to ensure accuracy and representativeness. FLAME-Sce consists of 10 primary core financial business scenarios, 21 secondary financial business scenarios, and a comprehensive evaluation set of nearly 100 tertiary financial application tasks. We evaluate 6 representative LLMs, including GPT-4o, GLM-4, ERNIE-4.0, Qwen2.5, XuanYuan3, and the latest Baichuan4-Finance, revealing Baichuan4-Finance excels other LLMs in most tasks. By establishing a comprehensive and professional evaluation system, FLAME facilitates the advancement of financial LLMs in Chinese contexts. Instructions for participating in the evaluation are available on GitHub: https://github.com/FLAME-ruc/FLAME.
Authors:Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Yuwei Fang, Kwot Sin Lee, Ivan Skorokhodov, Kfir Aberman, Jun-Yan Zhu, Ming-Hsuan Yang, Sergey Tulyakov
Abstract:
Video personalization methods allow us to synthesize videos with specific concepts such as people, pets, and places. However, existing methods often focus on limited domains, require time-consuming optimization per subject, or support only a single subject. We present Video Alchemist $-$ a video model with built-in multi-subject, open-set personalization capabilities for both foreground objects and background, eliminating the need for time-consuming test-time optimization. Our model is built on a new Diffusion Transformer module that fuses each conditional reference image and its corresponding subject-level text prompt with cross-attention layers. Developing such a large model presents two main challenges: dataset and evaluation. First, as paired datasets of reference images and videos are extremely hard to collect, we sample selected video frames as reference images and synthesize a clip of the target video. However, while models can easily denoise training videos given reference frames, they fail to generalize to new contexts. To mitigate this issue, we design a new automatic data construction pipeline with extensive image augmentations. Second, evaluating open-set video personalization is a challenge in itself. To address this, we introduce a personalization benchmark that focuses on accurate subject fidelity and supports diverse personalization scenarios. Finally, our extensive experiments show that our method significantly outperforms existing personalization methods in both quantitative and qualitative evaluations.
Authors:Junfei Xiao, Feng Cheng, Lu Qi, Liangke Gui, Jiepeng Cen, Zhibei Ma, Alan Yuille, Lu Jiang
Abstract:
Recent video generation models have shown promising results in producing high-quality video clips lasting several seconds. However, these models face challenges in generating long sequences that convey clear and informative events, limiting their ability to support coherent narrations. In this paper, we present a large-scale cooking video dataset designed to advance long-form narrative generation in the cooking domain. We validate the quality of our proposed dataset in terms of visual fidelity and textual caption accuracy using state-of-the-art Vision-Language Models (VLMs) and video generation models, respectively. We further introduce a Long Narrative Video Director to enhance both visual and semantic coherence in generated videos and emphasize the role of aligning visual embeddings to achieve improved overall video quality. Our method demonstrates substantial improvements in generating visually detailed and semantically aligned keyframes, supported by finetuning techniques that integrate text and image embeddings within the video generation process. Project page: https://videoauteur.github.io/
Authors:Seul Lee, Karsten Kreis, Srimukh Prasad Veccham, Meng Liu, Danny Reidenbach, Yuxing Peng, Saee Paliwal, Weili Nie, Arash Vahdat
Abstract:
Drug discovery is a complex process that involves multiple stages and tasks. However, existing molecular generative models can only tackle some of these tasks. We present Generalist Molecular generative model (GenMol), a versatile framework that uses only a single discrete diffusion model to handle diverse drug discovery scenarios. GenMol generates Sequential Attachment-based Fragment Embedding (SAFE) sequences through non-autoregressive bidirectional parallel decoding, thereby allowing the utilization of a molecular context that does not rely on the specific token ordering while having better sampling efficiency. GenMol uses fragments as basic building blocks for molecules and introduces fragment remasking, a strategy that optimizes molecules by regenerating masked fragments, enabling effective exploration of chemical space. We further propose molecular context guidance (MCG), a guidance method tailored for masked discrete diffusion of GenMol. GenMol significantly outperforms the previous GPT-based model in de novo generation and fragment-constrained generation, and achieves state-of-the-art performance in goal-directed hit generation and lead optimization. These results demonstrate that GenMol can tackle a wide range of drug discovery tasks, providing a unified and versatile approach for molecular design. Our code is available at https://github.com/NVIDIA-Digital-Bio/genmol.
Authors:Julius Berner, Lorenz Richter, Marcin Sendera, Jarrid Rector-Brooks, Nikolay Malkin
Abstract:
We study the problem of training neural stochastic differential equations, or diffusion models, to sample from a Boltzmann distribution without access to target samples. Existing methods for training such models enforce time-reversal of the generative and noising processes, using either differentiable simulation or off-policy reinforcement learning (RL). We prove equivalences between families of objectives in the limit of infinitesimal discretization steps, linking entropic RL methods (GFlowNets) with continuous-time objects (partial differential equations and path space measures). We further show that an appropriate choice of coarse time discretization during training allows greatly improved sample efficiency and the use of time-local objectives, achieving competitive performance on standard sampling benchmarks with reduced computational cost.
Authors:Haichao Liu, Ruoyu Yao, Wenru Liu, Zhenmin Huang, Shaojie Shen, Jun Ma
Abstract:
The increasing demand for flexible and efficient urban transportation solutions has spotlighted the limitations of traditional Demand Responsive Transport (DRT) systems, particularly in accommodating diverse passenger needs and dynamic urban environments. Autonomous Mobility-on-Demand (AMoD) systems have emerged as a promising alternative, leveraging connected and autonomous vehicles (CAVs) to provide responsive and adaptable services. However, existing methods primarily focus on either vehicle scheduling or path planning, which often simplify complex urban layouts and neglect the necessity for simultaneous coordination and mutual avoidance among CAVs. This oversimplification poses significant challenges to the deployment of AMoD systems in real-world scenarios. To address these gaps, we propose CoDriveVLM, a novel framework that integrates high-fidelity simultaneous dispatching and cooperative motion planning for future AMoD systems. Our method harnesses Vision-Language Models (VLMs) to enhance multi-modality information processing, and this enables comprehensive dispatching and collision risk evaluation. The VLM-enhanced CAV dispatching coordinator is introduced to effectively manage complex and unforeseen AMoD conditions, thus supporting efficient scheduling decision-making. Furthermore, we propose a scalable decentralized cooperative motion planning method via consensus alternating direction method of multipliers (ADMM) focusing on collision risk evaluation and decentralized trajectory optimization. Simulation results demonstrate the feasibility and robustness of CoDriveVLM in various traffic conditions, showcasing its potential to significantly improve the fidelity and effectiveness of AMoD systems in future urban transportation networks. The code is available at https://github.com/henryhcliu/CoDriveVLM.git.
Authors:Leonardo Delfino, Domenico Erriquez, Silvio Martinico, Franco Maria Nardini, Cosimo Rulli, Rossano Venturini
Abstract:
Approximate Nearest Neighbors (ANN) search is a crucial task in several applications like recommender systems and information retrieval. Current state-of-the-art ANN libraries, although being performance-oriented, often lack modularity and ease of use. This translates into them not being fully suitable for easy prototyping and testing of research ideas, an important feature to enable. We address these limitations by introducing kANNolo, a novel research-oriented ANN library written in Rust and explicitly designed to combine usability with performance effectively. kANNolo is the first ANN library that supports dense and sparse vector representations made available on top of different similarity measures, e.g., euclidean distance and inner product. Moreover, it also supports vector quantization techniques, e.g., Product Quantization, on top of the indexing strategies implemented. These functionalities are managed through Rust traits, allowing shared behaviors to be handled abstractly. This abstraction ensures flexibility and facilitates an easy integration of new components. In this work, we detail the architecture of kANNolo and demonstrate that its flexibility does not compromise performance. The experimental analysis shows that kANNolo achieves state-of-the-art performance in terms of speed-accuracy trade-off while allowing fast and easy prototyping, thus making kANNolo a valuable tool for advancing ANN research. Source code available on GitHub: https://github.com/TusKANNy/kannolo.
Authors:Steffen Dereich, Arnulf Jentzen, Adrian Riekert
Abstract:
Deep learning methods - usually consisting of a class of deep neural networks (DNNs) trained by a stochastic gradient descent (SGD) optimization method - are nowadays omnipresent in data-driven learning problems as well as in scientific computing tasks such as optimal control (OC) and partial differential equation (PDE) problems. In practically relevant learning tasks, often not the plain-vanilla standard SGD optimization method is employed to train the considered class of DNNs but instead more sophisticated adaptive and accelerated variants of the standard SGD method such as the popular Adam optimizer are used. Inspired by the classical Polyak-Ruppert averaging approach, in this work we apply averaged variants of the Adam optimizer to train DNNs to approximately solve exemplary scientific computing problems in the form of PDEs and OC problems. We test the averaged variants of Adam in a series of learning problems including physics-informed neural network (PINN), deep backward stochastic differential equation (deep BSDE), and deep Kolmogorov approximations for PDEs (such as heat, Black-Scholes, Burgers, and Allen-Cahn PDEs), including DNN approximations for OC problems, and including DNN approximations for image classification problems (ResNet for CIFAR-10). In each of the numerical examples the employed averaged variants of Adam outperform the standard Adam and the standard SGD optimizers, particularly, in the situation of the scientific machine learning problems. The Python source codes for the numerical experiments associated to this work can be found on GitHub at https://github.com/deeplearningmethods/averaged-adam.
Authors:Cecilia Curreli, Dominik Muhle, Abhishek Saroha, Zhenzhang Ye, Riccardo Marin, Daniel Cremers
Abstract:
Probabilistic human motion prediction aims to forecast multiple possible future movements from past observations. While current approaches report high diversity and realism, they often generate motions with undetected limb stretching and jitter. To address this, we introduce SkeletonDiffusion, a latent diffusion model that embeds an explicit inductive bias on the human body within its architecture and training. Our model is trained with a novel nonisotropic Gaussian diffusion formulation that aligns with the natural kinematic structure of the human skeleton. Results show that our approach outperforms conventional isotropic alternatives, consistently generating realistic predictions while avoiding artifacts such as limb distortion. Additionally, we identify a limitation in commonly used diversity metrics, which may inadvertently favor models that produce inconsistent limb lengths within the same sequence. SkeletonDiffusion sets a new benchmark on real-world datasets, outperforming various baselines across multiple evaluation metrics. Visit our project page at https://ceveloper.github.io/publications/skeletondiffusion/ .
Authors:Oindrila Saha, Logan Lawrence, Grant Van Horn, Subhransu Maji
Abstract:
Transductive zero-shot learning with vision-language models leverages image-image similarities within the dataset to achieve better classification accuracy compared to the inductive setting. However, there is little work that explores the structure of the language space in this context. We propose GTA-CLIP, a novel technique that incorporates supervision from language models for joint transduction in language and vision spaces. Our approach is iterative and consists of three steps: (i) incrementally exploring the attribute space by querying language models, (ii) an attribute-augmented transductive inference procedure, and (iii) fine-tuning the language and vision encoders based on inferred labels within the dataset. Through experiments with CLIP encoders, we demonstrate that GTA-CLIP, yields an average performance improvement of 8.6% and 3.7% across 12 datasets and 3 encoders, over CLIP and transductive CLIP respectively in the zero-shot setting. We also observe similar improvements in a few-shot setting. We present ablation studies that demonstrate the value of each step and visualize how the vision and language spaces evolve over iterations driven by the transductive learning.
Authors:Hongruixuan Chen, Jian Song, Olivier Dietrich, Clifford Broni-Bediako, Weihao Xuan, Junjue Wang, Xinlei Shao, Yimin Wei, Junshi Xia, Cuiling Lan, Konrad Schindler, Naoto Yokoya
Abstract:
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 14 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
Authors:David BojaniÄ, Stefanie Wuhrer, Tomislav PetkoviÄ, Tomislav PribaniÄ
Abstract:
3D digital anthropometry is the study of estimating human body measurements from 3D scans. Precise body measurements are important health indicators in the medical industry, and guiding factors in the fashion, ergonomic and entertainment industries. The measuring protocol consists of scanning the whole subject in the static A-pose, which is maintained without breathing or movement during the scanning process. However, the A-pose is not easy to maintain during the whole scanning process, which can last even up to a couple of minutes. This constraint affects the final quality of the scan, which in turn affects the accuracy of the estimated body measurements obtained from methods that rely on dense geometric data. Additionally, this constraint makes it impossible to develop a digital anthropometry method for subjects unable to assume the A-pose, such as those with injuries or disabilities. We propose a method that can obtain body measurements from sparse landmarks acquired in any pose. We make use of the sparse landmarks of the posed subject to create pose-independent features, and train a network to predict the body measurements as taken from the standard A-pose. We show that our method achieves comparable results to competing methods that use dense geometry in the standard A-pose, but has the capability of estimating the body measurements from any pose using sparse landmarks only. Finally, we address the lack of open-source 3D anthropometry methods by making our method available to the research community at https://github.com/DavidBoja/pose-independent-anthropometry.
Authors:Kevin Mancini, Islem Rekik
Abstract:
Graph Neural Networks (GNNs) are popular deep learning models designed to process graph-structured data through recursive neighborhood aggregations in the message passing process. When applied to semi-supervised node classification, the message-passing enables GNNs to understand short-range spatial interactions, but also causes them to suffer from over-smoothing and over-squashing. These challenges hinder model expressiveness and prevent the use of deeper models to capture long-range node interactions (LRIs) within the graph. Popular solutions for LRIs detection are either too expensive to process large graphs due to high time complexity or fail to generalize across diverse graph structures. To address these limitations, we propose a mechanism called \emph{information flow control}, which leverages a novel connectivity measure, called \emph{information flow score}, to address over-smoothing and over-squashing with linear computational overhead, supported by theoretical evidence. Finally, to prove the efficacy of our methodology we design DeltaGNN, the first scalable and generalizable approach for detecting long-range and short-range interactions. We benchmark our model across 10 real-world datasets, including graphs with varying sizes, topologies, densities, and homophilic ratios, showing superior performance with limited computational complexity. The implementation of the proposed methods are publicly available at https://github.com/basiralab/DeltaGNN.
Authors:Sauda Adiv Hanum, Ashim Dey, Muhammad Ashad Kabir
Abstract:
The skin, as the largest organ of the human body, is vulnerable to a diverse array of conditions collectively known as skin lesions, which encompass various dermatoses. Diagnosing these lesions presents significant challenges for medical practitioners due to the subtle visual differences that are often imperceptible to the naked eye. While not all skin lesions are life-threatening, certain types can act as early indicators of severe diseases, including skin cancers, underscoring the critical need for timely and accurate diagnostic methods. Deep learning algorithms have demonstrated remarkable potential in facilitating the early detection and prognosis of skin lesions. This study advances the field by curating a comprehensive and diverse dataset comprising 39 categories of skin lesions, synthesized from five publicly available datasets. Using this dataset, the performance of five state-of-the-art deep learning models -- MobileNetV2, Xception, InceptionV3, EfficientNetB1, and Vision Transformer - is rigorously evaluated. To enhance the accuracy and robustness of these models, attention mechanisms such as the Efficient Channel Attention (ECA) and the Convolutional Block Attention Module (CBAM) are incorporated into their architectures. Comprehensive evaluation across multiple performance metrics reveals that the Vision Transformer model integrated with CBAM outperforms others, achieving an accuracy of 93.46%, precision of 94%, recall of 93%, F1-score of 93%, and specificity of 93.67%. These results underscore the significant potential of the proposed system in supporting medical professionals with accurate and efficient prognostic tools for diagnosing a broad spectrum of skin lesions. The dataset and code used in this study can be found at https://github.com/akabircs/Skin-Lesions-Classification.
Authors:Kuan Liu, Zongyuan Ying, Jie Jin, Dongyan Li, Ping Huang, Wenjian Wu, Zhe Chen, Jin Qi, Yong Lu, Lianfu Deng, Bo Chen
Abstract:
The conversion from 2D X-ray to 3D shape holds significant potential for improving diagnostic efficiency and safety. However, existing reconstruction methods often rely on hand-crafted features, manual intervention, and prior knowledge, resulting in unstable shape errors and additional processing costs. In this paper, we introduce Swin-X2S, an end-to-end deep learning method for directly reconstructing 3D segmentation and labeling from 2D biplanar orthogonal X-ray images. Swin-X2S employs an encoder-decoder architecture: the encoder leverages 2D Swin Transformer for X-ray information extraction, while the decoder employs 3D convolution with cross-attention to integrate structural features from orthogonal views. A dimension-expanding module is introduced to bridge the encoder and decoder, ensuring a smooth conversion from 2D pixels to 3D voxels. We evaluate proposed method through extensive qualitative and quantitative experiments across nine publicly available datasets covering four anatomies (femur, hip, spine, and rib), with a total of 54 categories. Significant improvements over previous methods have been observed not only in the segmentation and labeling metrics but also in the clinically relevant parameters that are of primary concern in practical applications, which demonstrates the promise of Swin-X2S to provide an effective option for anatomical shape reconstruction in clinical scenarios. Code implementation is available at: \url{https://github.com/liukuan5625/Swin-X2S}.
Authors:Naval Kishore Mehta, Arvind, Himanshu Kumar, Abeer Banerjee, Sumeet Saurav, Sanjay Singh
Abstract:
Detecting and interpreting operator actions, engagement, and object interactions in dynamic industrial workflows remains a significant challenge in human-robot collaboration research, especially within complex, real-world environments. Traditional unimodal methods often fall short of capturing the intricacies of these unstructured industrial settings. To address this gap, we present a novel Multimodal Industrial Activity Monitoring (MIAM) dataset that captures realistic assembly and disassembly tasks, facilitating the evaluation of key meta-tasks such as action localization, object interaction, and engagement prediction. The dataset comprises multi-view RGB, depth, and Inertial Measurement Unit (IMU) data collected from 22 sessions, amounting to 290 minutes of untrimmed video, annotated in detail for task performance and operator behavior. Its distinctiveness lies in the integration of multiple data modalities and its emphasis on real-world, untrimmed industrial workflows-key for advancing research in human-robot collaboration and operator monitoring. Additionally, we propose a multimodal network that fuses RGB frames, IMU data, and skeleton sequences to predict engagement levels during industrial tasks. Our approach improves the accuracy of recognizing engagement states, providing a robust solution for monitoring operator performance in dynamic industrial environments. The dataset and code can be accessed from https://github.com/navalkishoremehta95/MIAM/.
Authors:Ziheng Wu, Zhenghao Chen, Ruipu Luo, Can Zhang, Yuan Gao, Zhentao He, Xian Wang, Haoran Lin, Minghui Qiu
Abstract:
Recently, vision-language models have made remarkable progress, demonstrating outstanding capabilities in various tasks such as image captioning and video understanding. We introduce Valley2, a novel multimodal large language model designed to enhance performance across all domains and extend the boundaries of practical applications in e-commerce and short video scenarios. Notably, Valley2 achieves state-of-the-art (SOTA) performance on e-commerce benchmarks, surpassing open-source models of similar size by a large margin (79.66 vs. 72.76). Additionally, Valley2 ranks second on the OpenCompass leaderboard among models with fewer than 10B parameters, with an impressive average score of 67.4. The code and model weights are open-sourced at https://github.com/bytedance/Valley.
Authors:Zhifan Song, Yuan Zhang, Abd Al Rahman M. Abu Ebayyeh
Abstract:
Detecting small targets in drone imagery is challenging due to low resolution, complex backgrounds, and dynamic scenes. We propose EDNet, a novel edge-target detection framework built on an enhanced YOLOv10 architecture, optimized for real-time applications without post-processing. EDNet incorporates an XSmall detection head and a Cross Concat strategy to improve feature fusion and multi-scale context awareness for detecting tiny targets in diverse environments. Our unique C2f-FCA block employs Faster Context Attention to enhance feature extraction while reducing computational complexity. The WIoU loss function is employed for improved bounding box regression. With seven model sizes ranging from Tiny to XL, EDNet accommodates various deployment environments, enabling local real-time inference and ensuring data privacy. Notably, EDNet achieves up to a 5.6% gain in mAP@50 with significantly fewer parameters. On an iPhone 12, EDNet variants operate at speeds ranging from 16 to 55 FPS, providing a scalable and efficient solution for edge-based object detection in challenging drone imagery. The source code and pre-trained models are available at: https://github.com/zsniko/EDNet.
Authors:Soyeong Jeong, Kangsan Kim, Jinheon Baek, Sung Ju Hwang
Abstract:
Retrieval-Augmented Generation (RAG) is a powerful strategy for improving the factual accuracy of models by retrieving external knowledge relevant to queries and incorporating it into the generation process. However, existing approaches primarily focus on text, with some recent advancements considering images, and they largely overlook videos, a rich source of multimodal knowledge capable of representing contextual details more effectively than any other modality. While very recent studies explore the use of videos in response generation, they either predefine query-associated videos without retrieval or convert videos into textual descriptions losing multimodal richness. To tackle these, we introduce VideoRAG, a framework that not only dynamically retrieves videos based on their relevance with queries but also utilizes both visual and textual information. The operation of VideoRAG is powered by recent Large Video Language Models (LVLMs), which enable the direct processing of video content to represent it for retrieval and the seamless integration of retrieved videos jointly with queries for response generation. Also, inspired by that the context size of LVLMs may not be sufficient to process all frames in extremely long videos and not all frames are equally important, we introduce a video frame selection mechanism to extract the most informative subset of frames, along with a strategy to extract textual information from videos (as it can aid the understanding of video content) when their subtitles are not available. We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines. Code is available at https://github.com/starsuzi/VideoRAG.
Authors:Antonin Poché, Alon Jacovi, Agustin Martin Picard, Victor Boutin, Fanny Jourdan
Abstract:
Concept-based explanations work by mapping complex model computations to human-understandable concepts. Evaluating such explanations is very difficult, as it includes not only the quality of the induced space of possible concepts but also how effectively the chosen concepts are communicated to users. Existing evaluation metrics often focus solely on the former, neglecting the latter. We introduce an evaluation framework for measuring concept explanations via automated simulatability: a simulator's ability to predict the explained model's outputs based on the provided explanations. This approach accounts for both the concept space and its interpretation in an end-to-end evaluation. Human studies for simulatability are notoriously difficult to enact, particularly at the scale of a wide, comprehensive empirical evaluation (which is the subject of this work). We propose using large language models (LLMs) as simulators to approximate the evaluation and report various analyses to make such approximations reliable. Our method allows for scalable and consistent evaluation across various models and datasets. We report a comprehensive empirical evaluation using this framework and show that LLMs provide consistent rankings of explanation methods. Code available at https://github.com/AnonymousConSim/ConSim.
Authors:Xinting Hu, Haoran Wang, Jan Eric Lenssen, Bernt Schiele
Abstract:
We introduce PersonaHOI, a training- and tuning-free framework that fuses a general StableDiffusion model with a personalized face diffusion (PFD) model to generate identity-consistent human-object interaction (HOI) images. While existing PFD models have advanced significantly, they often overemphasize facial features at the expense of full-body coherence, PersonaHOI introduces an additional StableDiffusion (SD) branch guided by HOI-oriented text inputs. By incorporating cross-attention constraints in the PFD branch and spatial merging at both latent and residual levels, PersonaHOI preserves personalized facial details while ensuring interactive non-facial regions. Experiments, validated by a novel interaction alignment metric, demonstrate the superior realism and scalability of PersonaHOI, establishing a new standard for practical personalized face with HOI generation. Our code will be available at https://github.com/JoyHuYY1412/PersonaHOI
Authors:Sunwoo Kim, Minkyu Kim, Dongmin Park
Abstract:
Diffusion models excel in generative tasks, but aligning them with specific objectives while maintaining their versatility remains challenging. Existing fine-tuning methods often suffer from reward over-optimization, while approximate guidance approaches fail to optimize target rewards effectively. Addressing these limitations, we propose a training-free, test-time method based on Sequential Monte Carlo (SMC) to sample from the reward-aligned target distribution. Our approach, tailored for diffusion sampling and incorporating tempering techniques, achieves comparable or superior target rewards to fine-tuning methods while preserving diversity and cross-reward generalization. We demonstrate its effectiveness in single-reward optimization, multi-objective scenarios, and online black-box optimization. This work offers a robust solution for aligning diffusion models with diverse downstream objectives without compromising their general capabilities. Code is available at https://github.com/krafton-ai/DAS.
Authors:Taywon Min, Haeone Lee, Yongchan Kwon, Kimin Lee
Abstract:
In Reinforcement Learning from Human Feedback (RLHF), it is crucial to learn suitable reward models from human feedback to align large language models (LLMs) with human intentions. However, human feedback can often be noisy, inconsistent, or biased, especially when evaluating complex responses. Such feedback can lead to misaligned reward signals, potentially causing unintended side effects during the RLHF process. To address these challenges, we explore the use of influence functions to measure the impact of human feedback on the performance of reward models. We propose a compute-efficient approximation method that enables the application of influence functions to LLM-based reward models and large-scale preference datasets. Our experiments showcase two key applications of influence functions: (1) detecting common labeler biases in human feedback datasets and (2) guiding labelers in refining their strategies to better align with expert feedback. By quantifying the impact of human feedback, we believe that influence functions can enhance feedback interpretability and contribute to scalable oversight in RLHF, helping labelers provide more accurate and consistent feedback. Source code is available at https://github.com/mintaywon/IF_RLHF
Authors:Matthew Baas, Pieter Scholtz, Arnav Mehta, Elliott Dyson, Akshat Prakash, Herman Kamper
Abstract:
Codec-based text-to-speech (TTS) models have shown impressive quality with zero-shot voice cloning abilities. However, they often struggle with more expressive references or complex text inputs. We present MARS6, a robust encoder-decoder transformer for rapid, expressive TTS. MARS6 is built on recent improvements in spoken language modelling. Utilizing a hierarchical setup for its decoder, new speech tokens are processed at a rate of only 12 Hz, enabling efficient modelling of long-form text while retaining reconstruction quality. We combine several recent training and inference techniques to reduce repetitive generation and improve output stability and quality. This enables the 70M-parameter MARS6 to achieve similar performance to models many times larger. We show this in objective and subjective evaluations, comparing TTS output quality and reference speaker cloning ability. Project page: https://camb-ai.github.io/mars6-turbo/
Authors:You Li, Heyu Huang, Chi Chen, Kaiyu Huang, Chao Huang, Zonghao Guo, Zhiyuan Liu, Jinan Xu, Yuhua Li, Ruixuan Li, Maosong Sun
Abstract:
The recent advancement of Multimodal Large Language Models (MLLMs) has significantly improved their fine-grained perception of single images and general comprehension across multiple images. However, existing MLLMs still face challenges in achieving precise grounding in complex multi-image scenarios. To address this, we first explore a Chain-of-Thought (CoT) framework that integrates single-image grounding with multi-image comprehension. While partially effective, it remains unstable and struggles to capture abstract visual information due to its non-end-to-end nature. Therefore, we introduce Migician, the first multi-image grounding model capable of performing free-form and accurate grounding across multiple images. To support this, we present the MGrounding-630k dataset, which comprises data for several multi-image grounding tasks derived from existing datasets, along with newly generated free-form grounding instruction-following data. Furthermore, we propose MIG-Bench, a comprehensive benchmark specifically designed for evaluating multi-image grounding capabilities. Experimental results demonstrate that our model achieves significantly superior multi-image grounding capabilities, outperforming the best existing MLLMs by 24.94% and even surpassing much larger 70B models. Our code, model, dataset, and benchmark are fully open-sourced at https://migician-vg.github.io/.
Authors:Shangjin Zhai, Zhichao Ye, Jialin Liu, Weijian Xie, Jiaqi Hu, Zhen Peng, Hua Xue, Danpeng Chen, Xiaomeng Wang, Lei Yang, Nan Wang, Haomin Liu, Guofeng Zhang
Abstract:
Recent advances in large reconstruction and generative models have significantly improved scene reconstruction and novel view generation. However, due to compute limitations, each inference with these large models is confined to a small area, making long-range consistent scene generation challenging. To address this, we propose StarGen, a novel framework that employs a pre-trained video diffusion model in an autoregressive manner for long-range scene generation. The generation of each video clip is conditioned on the 3D warping of spatially adjacent images and the temporally overlapping image from previously generated clips, improving spatiotemporal consistency in long-range scene generation with precise pose control. The spatiotemporal condition is compatible with various input conditions, facilitating diverse tasks, including sparse view interpolation, perpetual view generation, and layout-conditioned city generation. Quantitative and qualitative evaluations demonstrate StarGen's superior scalability, fidelity, and pose accuracy compared to state-of-the-art methods. Project page: https://zju3dv.github.io/StarGen.
Authors:Seungjoo Shin, Jaesik Park, Sunghyun Cho
Abstract:
We present LocoGS, a locality-aware 3D Gaussian Splatting (3DGS) framework that exploits the spatial coherence of 3D Gaussians for compact modeling of volumetric scenes. To this end, we first analyze the local coherence of 3D Gaussian attributes, and propose a novel locality-aware 3D Gaussian representation that effectively encodes locally-coherent Gaussian attributes using a neural field representation with a minimal storage requirement. On top of the novel representation, LocoGS is carefully designed with additional components such as dense initialization, an adaptive spherical harmonics bandwidth scheme and different encoding schemes for different Gaussian attributes to maximize compression performance. Experimental results demonstrate that our approach outperforms the rendering quality of existing compact Gaussian representations for representative real-world 3D datasets while achieving from 54.6$\times$ to 96.6$\times$ compressed storage size and from 2.1$\times$ to 2.4$\times$ rendering speed than 3DGS. Even our approach also demonstrates an averaged 2.4$\times$ higher rendering speed than the state-of-the-art compression method with comparable compression performance.
Authors:Sungjae Lee, Hyejin Park, Jaechang Kim, Jungseul Ok
Abstract:
Recent advancements in large language models (LLMs) have shown remarkable potential in various complex tasks requiring multi-step reasoning methods like tree search to explore diverse reasoning paths. However, existing methods often suffer from computational inefficiency and redundancy. First, they overlook the diversity of task difficulties, leading to unnecessarily extensive searches even for easy tasks. Second, they neglect the semantics of reasoning paths, resulting in redundant exploration of semantically identical paths. To address these limitations, we propose Semantic Exploration with Adaptive Gating (SEAG), a computationally efficient method. SEAG employs an adaptive gating mechanism that dynamically decides whether to conduct a tree search, based on the confidence level of answers from a preceding simple reasoning method. Furthermore, its tree-based exploration consolidates semantically identical reasoning steps, reducing redundant explorations while maintaining or even improving accuracy. Our extensive experiments demonstrate that SEAG significantly improves accuracy by 4.3% on average while requiring only 31% of computational costs compared to existing tree search-based methods on complex reasoning benchmarks including GSM8K and ARC with diverse language models such as Llama2, Llama3, and Mistral. Our code is available at https://github.com/ml-postech/SEAG-semantic-exploration-with-adaptive-gating .
Authors:Yi Ma, Shuai Wang, Tianchi Liu, Haizhou Li
Abstract:
In speaker verification, we use computational method to verify if an utterance matches the identity of an enrolled speaker. This task is similar to the manual task of forensic voice comparison, where linguistic analysis is combined with auditory measurements to compare and evaluate voice samples. Despite much success, we have yet to develop a speaker verification system that offers explainable results comparable to those from manual forensic voice comparison. A novel approach, Explainable Phonetic Trait-Oriented (ExPO) network, is proposed in this paper to introduce the speaker's phonetic trait which describes the speaker's characteristics at the phonetic level, resembling what forensic comparison does. ExPO not only generates utterance-level speaker embeddings but also allows for fine-grained analysis and visualization of phonetic traits, offering an explainable speaker verification process. Furthermore, we investigate phonetic traits from within-speaker and between-speaker variation perspectives to determine which trait is most effective for speaker verification, marking an important step towards explainable speaker verification. Our code is available at https://github.com/mmmmayi/ExPO.
Authors:Sehyung Kim, Chanhyeong Yang, Jihwan Park, Taehoon Song, Hyunwoo J. Kim
Abstract:
Attribute classification is crucial for identifying specific characteristics within image regions. Vision-Language Models (VLMs) have been effective in zero-shot tasks by leveraging their general knowledge from large-scale datasets. Recent studies demonstrate that transformer-based models with class-wise queries can effectively address zero-shot multi-label classification. However, poor utilization of the relationship between seen and unseen attributes makes the model lack generalizability. Additionally, attribute classification generally involves many attributes, making maintaining the model's scalability difficult. To address these issues, we propose Super-class guided transFormer (SugaFormer), a novel framework that leverages super-classes to enhance scalability and generalizability for zero-shot attribute classification. SugaFormer employs Super-class Query Initialization (SQI) to reduce the number of queries, utilizing common semantic information from super-classes, and incorporates Multi-context Decoding (MD) to handle diverse visual cues. To strengthen generalizability, we introduce two knowledge transfer strategies that utilize VLMs. During training, Super-class guided Consistency Regularization (SCR) aligns model's features with VLMs using super-class guided prompts, and during inference, Zero-shot Retrieval-based Score Enhancement (ZRSE) refines predictions for unseen attributes. Extensive experiments demonstrate that SugaFormer achieves state-of-the-art performance across three widely-used attribute classification benchmarks under zero-shot, and cross-dataset transfer settings. Our code is available at https://github.com/mlvlab/SugaFormer.
Authors:Dominick Reilly, Manish Kumar Govind, Le Xue, Srijan Das
Abstract:
Large Vision Language Models (LVLMs) have demonstrated impressive capabilities in video understanding, yet their adoption for Activities of Daily Living (ADL) remains limited by their inability to capture fine-grained interactions and spatial relationships. To address this, we aim to leverage the complementary nature of egocentric views to enhance LVLM's understanding of exocentric ADL videos. Consequently, we propose ego2exo knowledge distillation to learn ego-augmented exp representations. While effective, this approach requires paired ego-exo videos, which are impractical to collect at scale. To address this, we propose Skeleton-guided Synthetic Ego Generation (SK-EGO), which leverages human skeleton motion to generate synthetic ego views from exocentric videos. To enhance the ego representation of LVLMs trained on synthetic data, we develop a domain-agnostic bootstrapped ego2exo strategy that effectively transfers knowledge from real ego-exo pairs to synthetic ego-exo pairs, while mitigating domain misalignment. We find that the exo representations of our ego-augmented LVLMs successfully learn to extract ego-perspective cues, demonstrated through comprehensive evaluation on six ADL benchmarks and our proposed Ego-in-Exo PerceptionMCQ benchmark designed specifically to assess egocentric understanding from exocentric videos. Code, models, and data will be open-sourced at https://github.com/dominickrei/EgoExo4ADL.
Authors:Shuolong Chen, Xingxing Li, Liu Yuan, Ziao Liu
Abstract:
The bio-inspired event camera has garnered extensive research attention in recent years, owing to its significant potential derived from its high dynamic range and low latency characteristics. Similar to the standard camera, the event camera requires precise intrinsic calibration to facilitate further high-level visual applications, such as pose estimation and mapping. While several calibration methods for event cameras have been proposed, most of them are either (i) engineering-driven, heavily relying on conventional image-based calibration pipelines, or (ii) inconvenient, requiring complex instrumentation. To this end, we propose an accurate and convenient intrinsic calibration method for event cameras, named eKalibr, which builds upon a carefully designed event-based circle grid pattern recognition algorithm. To extract target patterns from events, we perform event-based normal flow estimation to identify potential events generated by circle edges, and cluster them spatially. Subsequently, event clusters associated with the same grid circles are matched and grouped using normal flows, for subsequent time-varying ellipse estimation. Fitted ellipse centers are time-synchronized, for final grid pattern recognition. We conducted extensive experiments to evaluate the performance of eKalibr in terms of pattern extraction and intrinsic calibration. The implementation of eKalibr is open-sourced at (https://github.com/Unsigned-Long/eKalibr) to benefit the research community.
Authors:Yinghao Zhu, Xiaochen Zheng, Ahmed Allam, Michael Krauthammer
Abstract:
We propose TAMER, a Test-time Adaptive MoE-driven framework for Electronic Health Record (EHR) Representation learning. TAMER introduces a framework where a Mixture-of-Experts (MoE) architecture is co-designed with Test-Time Adaptation (TTA) to jointly mitigate the intertwined challenges of patient heterogeneity and distribution shifts in EHR modeling. The MoE focuses on latent patient subgroups through domain-aware expert specialization, while TTA enables real-time adaptation to evolving health status distributions when new patient samples are introduced. Extensive experiments across four real-world EHR datasets demonstrate that TAMER consistently improves predictive performance for both mortality and readmission risk tasks when combined with diverse EHR modeling backbones. TAMER offers a promising approach for dynamic and personalized EHR-based predictions in practical clinical settings.
Authors:Ayush Khot, Xiwei Wang, Avik Roy, Volodymyr Kindratenko, Mark S. Neubauer
Abstract:
Current methods commonly used for uncertainty quantification (UQ) in deep learning (DL) models utilize Bayesian methods which are computationally expensive and time-consuming. In this paper, we provide a detailed study of UQ based on evidential deep learning (EDL) for deep neural network models designed to identify jets in high energy proton-proton collisions at the Large Hadron Collider and explore its utility in anomaly detection. EDL is a DL approach that treats learning as an evidence acquisition process designed to provide confidence (or epistemic uncertainty) about test data. Using publicly available datasets for jet classification benchmarking, we explore hyperparameter optimizations for EDL applied to the challenge of UQ for jet identification. We also investigate how the uncertainty is distributed for each jet class, how this method can be implemented for the detection of anomalies, how the uncertainty compares with Bayesian ensemble methods, and how the uncertainty maps onto latent spaces for the models. Our studies uncover some pitfalls of EDL applied to anomaly detection and a more effective way to quantify uncertainty from EDL as compared with the foundational EDL setup. These studies illustrate a methodological approach to interpreting EDL in jet classification models, providing new insights on how EDL quantifies uncertainty and detects out-of-distribution data which may lead to improved EDL methods for DL models applied to classification tasks.
Authors:Zhao Yang, Bing Su, Jiahao Chen, Ji-Rong Wen
Abstract:
Predicting multiple functions labeled with Enzyme Commission (EC) numbers from the enzyme sequence is of great significance but remains a challenge due to its sparse multi-label classification nature, i.e., each enzyme is typically associated with only a few labels out of more than 6000 possible EC numbers. However, existing machine learning algorithms generally learn a fixed global representation for each enzyme to classify all functions, thereby they lack interpretability and the fine-grained information of some function-specific local residue fragments may be overwhelmed. Here we present an attention-based framework, namely ProtDETR (Protein Detection Transformer), by casting enzyme function prediction as a detection problem. It uses a set of learnable functional queries to adaptatively extract different local representations from the sequence of residue-level features for predicting different EC numbers. ProtDETR not only significantly outperforms existing deep learning-based enzyme function prediction methods, but also provides a new interpretable perspective on automatically detecting different local regions for identifying different functions through cross-attentions between queries and residue-level features. Code is available at https://github.com/yangzhao1230/ProtDETR.
Authors:Joe Eappen, Zikang Xiong, Dipam Patel, Aniket Bera, Suresh Jagannathan
Abstract:
Existing methods for safe multi-agent control using logic specifications like Signal Temporal Logic (STL) often face scalability issues. This is because they rely either on single-agent perspectives or on Mixed Integer Linear Programming (MILP)-based planners, which are complex to optimize. These methods have proven to be computationally expensive and inefficient when dealing with a large number of agents. To address these limitations, we present a new scalable approach to multi-agent control in this setting. Our method treats the relationships between agents using a graph structure rather than in terms of a single-agent perspective. Moreover, it combines a multi-agent collision avoidance controller with a Graph Neural Network (GNN) based planner, models the system in a decentralized fashion, and trains on STL-based objectives to generate safe and efficient plans for multiple agents, thereby optimizing the satisfaction of complex temporal specifications while also facilitating multi-agent collision avoidance. Our experiments show that our approach significantly outperforms existing methods that use a state-of-the-art MILP-based planner in terms of scalability and performance. The project website is https://jeappen.com/mastl-gcbf-website/ and the code is at https://github.com/jeappen/mastl-gcbf .
Authors:Anant Mehta, Bryant McArthur, Nagarjuna Kolloju, Zhengzhong Tu
Abstract:
The rapid progress in deep generative models has led to the creation of incredibly realistic synthetic images that are becoming increasingly difficult to distinguish from real-world data. The widespread use of Variational Models, Diffusion Models, and Generative Adversarial Networks has made it easier to generate convincing fake images and videos, which poses significant challenges for detecting and mitigating the spread of misinformation. As a result, developing effective methods for detecting AI-generated fakes has become a pressing concern. In our research, we propose HFMF, a comprehensive two-stage deepfake detection framework that leverages both hierarchical cross-modal feature fusion and multi-stream feature extraction to enhance detection performance against imagery produced by state-of-the-art generative AI models. The first component of our approach integrates vision Transformers and convolutional nets through a hierarchical feature fusion mechanism. The second component of our framework combines object-level information and a fine-tuned convolutional net model. We then fuse the outputs from both components via an ensemble deep neural net, enabling robust classification performances. We demonstrate that our architecture achieves superior performance across diverse dataset benchmarks while maintaining calibration and interoperability.
Authors:Yifei Li, Junbo Niu, Ziyang Miao, Chunjiang Ge, Yuanhang Zhou, Qihao He, Xiaoyi Dong, Haodong Duan, Shuangrui Ding, Rui Qian, Pan Zhang, Yuhang Zang, Yuhang Cao, Conghui He, Jiaqi Wang
Abstract:
Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.
Authors:Mengshi Qi, Zhe Zhao, Huadong Ma
Abstract:
Generating realistic human grasps is crucial yet challenging for object manipulation in computer graphics and robotics. Current methods often struggle to generate detailed and realistic grasps with full finger-object interaction, as they typically rely on encoding the entire hand and estimating both posture and position in a single step. Additionally, simulating object deformation during grasp generation is still difficult, as modeling such deformation requires capturing the comprehensive relationship among points of the object's surface. To address these limitations, we propose a novel improved Decomposed Vector-Quantized Variational Autoencoder (DVQ-VAE-2), which decomposes the hand into distinct parts and encodes them separately. This part-aware architecture allows for more precise management of hand-object interactions. Furthermore, we introduce a dual-stage decoding strategy that first predicts the grasp type under skeletal constraints and then identifies the optimal grasp position, enhancing both the realism and adaptability of the model to unseen interactions. Furthermore, we introduce a new Mesh UFormer as the backbone network to extract the hierarchical structural representations from the mesh and propose a new normal vector-guided position encoding to simulate the hand-object deformation. In experiments, our model achieves a relative improvement of approximately 14.1% in grasp quality compared to state-of-the-art methods across four widely used benchmarks. Our comparisons with other backbone networks show relative improvements of 2.23% in Hand-object Contact Distance and 5.86% in Quality Index on deformable and rigid object based datasets, respectively. Our source code and model are available at https://github.com/florasion/D-VQVAE.
Authors:Jingyuan Tang, Yuhuan Zhao, Songlin Sun, Yangang Cai
Abstract:
Point clouds, a prominent method of 3D representation, are extensively utilized across industries such as autonomous driving, surveying, electricity, architecture, and gaming, and have been rigorously investigated for their accuracy and resilience. The extraction of semantic information from scenes enhances both human understanding and machine perception. By integrating semantic information from two-dimensional scenes with three-dimensional point clouds, researchers aim to improve the precision and efficiency of various tasks. This paper provides a comprehensive review of the diverse applications and recent advancements in the integration of semantic information within point clouds. We explore the dual roles of semantic information in point clouds, encompassing both implicit guidance and explicit representation, across traditional and emerging tasks. Additionally, we offer a comparative analysis of publicly available datasets tailored to specific tasks and present notable observations. In conclusion, we discuss several challenges and potential issues that may arise in the future when fully utilizing semantic information in point clouds, providing our perspectives on these obstacles. The classified and organized articles related to semantic based point cloud tasks, and continuously followed up on relevant achievements in different fields, which can be accessed through https://github.com/Jasmine-tjy/Semantic-based-Point-Cloud-Tasks.
Authors:Gursimran Singh, Xinglu Wang, Yifan Hu, Timothy Yu, Linzi Xing, Wei Jiang, Zhefeng Wang, Xiaolong Bai, Yi Li, Ying Xiong, Yong Zhang, Zhenan Fan
Abstract:
Large Multimodal Models (LMMs) extend Large Language Models (LLMs) by handling diverse inputs such as images, audio, and video, but at the cost of adding a multimodal encoding stage that increases both computational and memory overhead. This step negatively affects key Service Level Objectives (SLOs), such as time to first token (TTFT) and time per output token (TPOT). We introduce Encode-Prefill-Decode (EPD) Disaggregation, a novel framework that separates the encoding, prefill, and decode stages onto dedicated resources. Unlike current systems, which bundle encoding and prefill together, our approach decouples these steps, unlocking new opportunities and optimizations. These include a mechanism to cache multimedia tokens for efficient transfer, a novel way to parallelize the encoding load within a request, a module for optimal resource allocation for disaggregated serving, and a novel role-switching method to handle changing workload characteristics. Experimental evaluations with popular LMMs show substantial gains in memory efficiency (up to 15x lower peak memory utilization), batch sizes (up to 22x larger), 10x more images per request, and 2.2x larger KV caches. Furthermore, it leads to significant improvements in SLO attainment (up to 90-100% improvement) and TTFT (up to 71% reduction), compared to systems that do not disaggregate. The code is available at https://github.com/vbdi/epdserve.
Authors:Jathushan Rajasegaran, Ilija Radosavovic, Rahul Ravishankar, Yossi Gandelsman, Christoph Feichtenhofer, Jitendra Malik
Abstract:
We empirically study autoregressive pre-training from videos. To perform our study, we construct a series of autoregressive video models, called Toto. We treat videos as sequences of visual tokens and train transformer models to autoregressively predict future tokens. Our models are pre-trained on a diverse dataset of videos and images comprising over 1 trillion visual tokens. We explore different architectural, training, and inference design choices. We evaluate the learned visual representations on a range of downstream tasks including image recognition, video classification, object tracking, and robotics. Our results demonstrate that, despite minimal inductive biases, autoregressive pre-training leads to competitive performance across all benchmarks. Finally, we find that scaling our video models results in similar scaling curves to those seen in language models, albeit with a different rate. More details at https://brjathu.github.io/toto/
Authors:Xingyu Fu, Minqian Liu, Zhengyuan Yang, John Corring, Yijuan Lu, Jianwei Yang, Dan Roth, Dinei Florencio, Cha Zhang
Abstract:
Structured image understanding, such as interpreting tables and charts, requires strategically refocusing across various structures and texts within an image, forming a reasoning sequence to arrive at the final answer. However, current multimodal large language models (LLMs) lack this multihop selective attention capability. In this work, we introduce ReFocus, a simple yet effective framework that equips multimodal LLMs with the ability to generate "visual thoughts" by performing visual editing on the input image through code, shifting and refining their visual focuses. Specifically, ReFocus enables multimodal LLMs to generate Python codes to call tools and modify the input image, sequentially drawing boxes, highlighting sections, and masking out areas, thereby enhancing the visual reasoning process. We experiment upon a wide range of structured image understanding tasks involving tables and charts. ReFocus largely improves performance on all tasks over GPT-4o without visual editing, yielding an average gain of 11.0% on table tasks and 6.8% on chart tasks. We present an in-depth analysis of the effects of different visual edits, and reasons why ReFocus can improve the performance without introducing additional information. Further, we collect a 14k training set using ReFocus, and prove that such visual chain-of-thought with intermediate information offers a better supervision than standard VQA data, reaching a 8.0% average gain over the same model trained with QA pairs and 2.6% over CoT.
Authors:Yifan Yu, Shaohui Liu, Rémi Pautrat, Marc Pollefeys, Viktor Larsson
Abstract:
Monocular depth estimation (MDE) models have undergone significant advancements over recent years. Many MDE models aim to predict affine-invariant relative depth from monocular images, while recent developments in large-scale training and vision foundation models enable reasonable estimation of metric (absolute) depth. However, effectively leveraging these predictions for geometric vision tasks, in particular relative pose estimation, remains relatively under explored. While depths provide rich constraints for cross-view image alignment, the intrinsic noise and ambiguity from the monocular depth priors present practical challenges to improving upon classic keypoint-based solutions. In this paper, we develop three solvers for relative pose estimation that explicitly account for independent affine (scale and shift) ambiguities, covering both calibrated and uncalibrated conditions. We further propose a hybrid estimation pipeline that combines our proposed solvers with classic point-based solvers and epipolar constraints. We find that the affine correction modeling is beneficial to not only the relative depth priors but also, surprisingly, the "metric" ones. Results across multiple datasets demonstrate large improvements of our approach over classic keypoint-based baselines and PnP-based solutions, under both calibrated and uncalibrated setups. We also show that our method improves consistently with different feature matchers and MDE models, and can further benefit from very recent advances on both modules. Code is available at https://github.com/MarkYu98/madpose.
Authors:Runjie Yan, Yinbo Chen, Xiaolong Wang
Abstract:
Score Distillation Sampling (SDS) has made significant strides in distilling image-generative models for 3D generation. However, its maximum-likelihood-seeking behavior often leads to degraded visual quality and diversity, limiting its effectiveness in 3D applications. In this work, we propose Consistent Flow Distillation (CFD), which addresses these limitations. We begin by leveraging the gradient of the diffusion ODE or SDE sampling process to guide the 3D generation. From the gradient-based sampling perspective, we find that the consistency of 2D image flows across different viewpoints is important for high-quality 3D generation. To achieve this, we introduce multi-view consistent Gaussian noise on the 3D object, which can be rendered from various viewpoints to compute the flow gradient. Our experiments demonstrate that CFD, through consistent flows, significantly outperforms previous methods in text-to-3D generation.
Authors:Aniruddha Mahapatra, Long Mai, David Bourgin, Yitian Zhang, Feng Liu
Abstract:
Video tokenizers are essential for latent video diffusion models, converting raw video data into spatiotemporally compressed latent spaces for efficient training. However, extending state-of-the-art video tokenizers to achieve a temporal compression ratio beyond 4x without increasing channel capacity poses significant challenges. In this work, we propose an alternative approach to enhance temporal compression. We find that the reconstruction quality of temporally subsampled videos from a low-compression encoder surpasses that of high-compression encoders applied to original videos. This indicates that high-compression models can leverage representations from lower-compression models. Building on this insight, we develop a bootstrapped high-temporal-compression model that progressively trains high-compression blocks atop well-trained lower-compression models. Our method includes a cross-level feature-mixing module to retain information from the pretrained low-compression model and guide higher-compression blocks to capture the remaining details from the full video sequence. Evaluation of video benchmarks shows that our method significantly improves reconstruction quality while increasing temporal compression compared to directly training the full model. Furthermore, the resulting compact latent space effectively trains a video diffusion model for high-quality video generation with a significantly reduced token budget.
Authors:Yiwen Huang, Aaron Gokaslan, Volodymyr Kuleshov, James Tompkin
Abstract:
There is a widely-spread claim that GANs are difficult to train, and GAN architectures in the literature are littered with empirical tricks. We provide evidence against this claim and build a modern GAN baseline in a more principled manner. First, we derive a well-behaved regularized relativistic GAN loss that addresses issues of mode dropping and non-convergence that were previously tackled via a bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits local convergence guarantees, unlike most existing relativistic losses. Second, our new loss allows us to discard all ad-hoc tricks and replace outdated backbones used in common GANs with modern architectures. Using StyleGAN2 as an example, we present a roadmap of simplification and modernization that results in a new minimalist baseline -- R3GAN. Despite being simple, our approach surpasses StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against state-of-the-art GANs and diffusion models.
Authors:Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, Danqi Chen
Abstract:
Existing benchmarks for evaluating long-context language models (LCLMs) primarily focus on long-context recall, requiring models to produce short responses based on a few critical snippets while processing thousands of irrelevant tokens. We introduce LongProc (Long Procedural Generation), a new benchmark that requires both the integration of highly dispersed information and long-form generation. LongProc consists of six diverse procedural generation tasks, such as extracting structured information from HTML pages into a TSV format and executing complex search procedures to create travel plans. These tasks challenge LCLMs by testing their ability to follow detailed procedural instructions, synthesize and reason over dispersed information, and generate structured, long-form outputs (up to 8K tokens). Furthermore, as these tasks adhere to deterministic procedures and yield structured outputs, they enable reliable rule-based evaluation. We evaluated 23 LCLMs, including instruction-tuned models and recent reasoning models, on LongProc at three difficulty levels, with the maximum number of output tokens set at 500, 2K, and 8K. Notably, while all tested models claim a context window size above 32K tokens, open-weight models typically falter on 2K-token tasks, and closed-source models like GPT-4o show significant degradation on 8K-token tasks. Reasoning models achieve stronger overall performance in long-form generation, benefiting from long CoT training. Further analysis reveals that LCLMs struggle to maintain long-range coherence in long-form generations. These findings highlight critical limitations in current LCLMs and suggest substantial room for improvement. Data and code available at: https://princeton-pli.github.io/LongProc.
Authors:Maximilian Dreyer, Jim Berend, Tobias Labarta, Johanna Vielhaben, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek
Abstract:
Unlike human-engineered systems such as aeroplanes, where each component's role and dependencies are well understood, the inner workings of AI models remain largely opaque, hindering verifiability and undermining trust. This paper introduces SemanticLens, a universal explanation method for neural networks that maps hidden knowledge encoded by components (e.g., individual neurons) into the semantically structured, multimodal space of a foundation model such as CLIP. In this space, unique operations become possible, including (i) textual search to identify neurons encoding specific concepts, (ii) systematic analysis and comparison of model representations, (iii) automated labelling of neurons and explanation of their functional roles, and (iv) audits to validate decision-making against requirements. Fully scalable and operating without human input, SemanticLens is shown to be effective for debugging and validation, summarizing model knowledge, aligning reasoning with expectations (e.g., adherence to the ABCDE-rule in melanoma classification), and detecting components tied to spurious correlations and their associated training data. By enabling component-level understanding and validation, the proposed approach helps bridge the "trust gap" between AI models and traditional engineered systems. We provide code for SemanticLens on https://github.com/jim-berend/semanticlens and a demo on https://semanticlens.hhi-research-insights.eu.
Authors:Shuliang Ning, Yipeng Qin, Xiaoguang Han
Abstract:
Virtual Try-On (VTON) has become a crucial tool in ecommerce, enabling the realistic simulation of garments on individuals while preserving their original appearance and pose. Early VTON methods relied on single generative networks, but challenges remain in preserving fine-grained garment details due to limitations in feature extraction and fusion. To address these issues, recent approaches have adopted a dual-network paradigm, incorporating a complementary "ReferenceNet" to enhance garment feature extraction and fusion. While effective, this dual-network approach introduces significant computational overhead, limiting its scalability for high-resolution and long-duration image/video VTON applications. In this paper, we challenge the dual-network paradigm by proposing a novel single-network VTON method that overcomes the limitations of existing techniques. Our method, namely MNVTON, introduces a Modality-specific Normalization strategy that separately processes text, image and video inputs, enabling them to share the same attention layers in a VTON network. Extensive experimental results demonstrate the effectiveness of our approach, showing that it consistently achieves higher-quality, more detailed results for both image and video VTON tasks. Our results suggest that the single-network paradigm can rival the performance of dualnetwork approaches, offering a more efficient alternative for high-quality, scalable VTON applications.
Authors:Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, Zhicheng Dou
Abstract:
Large reasoning models (LRMs) like OpenAI-o1 have demonstrated impressive long stepwise reasoning capabilities through large-scale reinforcement learning. However, their extended reasoning processes often suffer from knowledge insufficiency, leading to frequent uncertainties and potential errors. To address this limitation, we introduce \textbf{Search-o1}, a framework that enhances LRMs with an agentic retrieval-augmented generation (RAG) mechanism and a Reason-in-Documents module for refining retrieved documents. Search-o1 integrates an agentic search workflow into the reasoning process, enabling dynamic retrieval of external knowledge when LRMs encounter uncertain knowledge points. Additionally, due to the verbose nature of retrieved documents, we design a separate Reason-in-Documents module to deeply analyze the retrieved information before injecting it into the reasoning chain, minimizing noise and preserving coherent reasoning flow. Extensive experiments on complex reasoning tasks in science, mathematics, and coding, as well as six open-domain QA benchmarks, demonstrate the strong performance of Search-o1. This approach enhances the trustworthiness and applicability of LRMs in complex reasoning tasks, paving the way for more reliable and versatile intelligent systems. The code is available at \url{https://github.com/sunnynexus/Search-o1}.
Authors:Samir Sadok, Simon Leglaive, Laurent Girin, Gaël Richard, Xavier Alameda-Pineda
Abstract:
This article introduces AnCoGen, a novel method that leverages a masked autoencoder to unify the analysis, control, and generation of speech signals within a single model. AnCoGen can analyze speech by estimating key attributes, such as speaker identity, pitch, content, loudness, signal-to-noise ratio, and clarity index. In addition, it can generate speech from these attributes and allow precise control of the synthesized speech by modifying them. Extensive experiments demonstrated the effectiveness of AnCoGen across speech analysis-resynthesis, pitch estimation, pitch modification, and speech enhancement.
Authors:Wolfgang Gritz, Anett Hoppe, Ralph Ewerth
Abstract:
Information search has become essential for learning and knowledge acquisition, offering broad access to information and learning resources. The visual complexity of web pages is known to influence search behavior, with previous work suggesting that searchers make evaluative judgments within the first second on a page. However, there is a significant gap in our understanding of how visual complexity impacts searches specifically conducted with a learning intent. This gap is particularly relevant for the development of optimized information retrieval (IR) systems that effectively support educational objectives. To address this research need, we model visual complexity and aesthetics via a diverse set of features, investigating their relationship with search behavior during learning-oriented web sessions. Our study utilizes a publicly available dataset from a lab study where participants learned about thunderstorm formation. Our findings reveal that while content relevance is the most significant predictor for knowledge gain, sessions with less visually complex pages are associated with higher learning success. This observation applies to features associated with the layout of web pages rather than to simpler features (e.g., number of images). The reported results shed light on the impact of visual complexity on learning-oriented searches, informing the design of more effective IR systems for educational contexts. To foster reproducibility, we release our source code (https://github.com/TIBHannover/sal_visual_complexity).
Authors:Xinzi Cao, Xiawu Zheng, Guanhong Wang, Weijiang Yu, Yunhang Shen, Ke Li, Yutong Lu, Yonghong Tian
Abstract:
Generalized Category Discovery (GCD) aims to identify a mix of known and novel categories within unlabeled data sets, providing a more realistic setting for image recognition. Essentially, GCD needs to remember existing patterns thoroughly to recognize novel categories. Recent state-of-the-art method SimGCD transfers the knowledge from known-class data to the learning of novel classes through debiased learning. However, some patterns are catastrophically forgot during adaptation and thus lead to poor performance in novel categories classification. To address this issue, we propose a novel learning approach, LegoGCD, which is seamlessly integrated into previous methods to enhance the discrimination of novel classes while maintaining performance on previously encountered known classes. Specifically, we design two types of techniques termed as Local Entropy Regularization (LER) and Dual-views Kullback Leibler divergence constraint (DKL). The LER optimizes the distribution of potential known class samples in unlabeled data, thus ensuring the preservation of knowledge related to known categories while learning novel classes. Meanwhile, DKL introduces Kullback Leibler divergence to encourage the model to produce a similar prediction distribution of two view samples from the same image. In this way, it successfully avoids mismatched prediction and generates more reliable potential known class samples simultaneously. Extensive experiments validate that the proposed LegoGCD effectively addresses the known category forgetting issue across all datasets, eg, delivering a 7.74% and 2.51% accuracy boost on known and novel classes in CUB, respectively. Our code is available at: https://github.com/Cliffia123/LegoGCD.
Authors:Fabian Hörst, Moritz Rempe, Helmut Becker, Lukas Heine, Julius Keyl, Jens Kleesiek
Abstract:
Digital Pathology is a cornerstone in the diagnosis and treatment of diseases. A key task in this field is the identification and segmentation of cells in hematoxylin and eosin-stained images. Existing methods for cell segmentation often require extensive annotated datasets for training and are limited to a predefined cell classification scheme. To overcome these limitations, we propose $\text{CellViT}^{\scriptscriptstyle ++}$, a framework for generalized cell segmentation in digital pathology. $\text{CellViT}^{\scriptscriptstyle ++}$ utilizes Vision Transformers with foundation models as encoders to compute deep cell features and segmentation masks simultaneously. To adapt to unseen cell types, we rely on a computationally efficient approach. It requires minimal data for training and leads to a drastically reduced carbon footprint. We demonstrate excellent performance on seven different datasets, covering a broad spectrum of cell types, organs, and clinical settings. The framework achieves remarkable zero-shot segmentation and data-efficient cell-type classification. Furthermore, we show that $\text{CellViT}^{\scriptscriptstyle ++}$ can leverage immunofluorescence stainings to generate training datasets without the need for pathologist annotations. The automated dataset generation approach surpasses the performance of networks trained on manually labeled data, demonstrating its effectiveness in creating high-quality training datasets without expert annotations. To advance digital pathology, $\text{CellViT}^{\scriptscriptstyle ++}$ is available as an open-source framework featuring a user-friendly, web-based interface for visualization and annotation. The code is available under https://github.com/TIO-IKIM/CellViT-plus-plus.
Authors:Tianci Wen, Zhiang Liu, Yongchun Fang
Abstract:
3D Gaussian splatting (3D-GS) has recently revolutionized novel view synthesis in the simultaneous localization and mapping (SLAM) problem. However, most existing algorithms fail to fully capture the underlying structure, resulting in structural inconsistency. Additionally, they struggle with abrupt appearance variations, leading to inconsistent visual quality. To address these problems, we propose SEGS-SLAM, a structure-enhanced 3D Gaussian Splatting SLAM, which achieves high-quality photorealistic mapping. Our main contributions are two-fold. First, we propose a structure-enhanced photorealistic mapping (SEPM) framework that, for the first time, leverages highly structured point cloud to initialize structured 3D Gaussians, leading to significant improvements in rendering quality. Second, we propose Appearance-from-Motion embedding (AfME), enabling 3D Gaussians to better model image appearance variations across different camera poses. Extensive experiments on monocular, stereo, and RGB-D datasets demonstrate that SEGS-SLAM significantly outperforms state-of-the-art (SOTA) methods in photorealistic mapping quality, e.g., an improvement of $19.86\%$ in PSNR over MonoGS on the TUM RGB-D dataset for monocular cameras. The project page is available at https://segs-slam.github.io/.
Authors:Xueyi Ke, Satoshi Tsutsui, Yayun Zhang, Bihan Wen
Abstract:
Infants develop complex visual understanding rapidly, even preceding the acquisition of linguistic skills. As computer vision seeks to replicate the human vision system, understanding infant visual development may offer valuable insights. In this paper, we present an interdisciplinary study exploring this question: can a computational model that imitates the infant learning process develop broader visual concepts that extend beyond the vocabulary it has heard, similar to how infants naturally learn? To investigate this, we analyze a recently published model in Science by Vong et al., which is trained on longitudinal, egocentric images of a single child paired with transcribed parental speech. We perform neuron labeling to identify visual concept neurons hidden in the model's internal representations. We then demonstrate that these neurons can recognize objects beyond the model's original vocabulary. Furthermore, we compare the differences in representation between infant models and those in modern computer vision models, such as CLIP and ImageNet pre-trained model. Ultimately, our work bridges cognitive science and computer vision by analyzing the internal representations of a computational model trained on an infant visual and linguistic inputs. Project page is available at https://kexueyi.github.io/webpage-discover-hidden-visual-concepts.
Authors:Xuyang Liu, Ziming Wang, Junjie Chen, Yuhang Han, Yingyao Wang, Jiale Yuan, Jun Song, Linfeng Zhang, Siteng Huang, Honggang Chen
Abstract:
Large vision-language models (LVLMs) excel at visual understanding, but face efficiency challenges due to quadratic complexity in processing long multi-modal contexts. While token compression can reduce computational costs, existing approaches are designed for single-view LVLMs and fail to consider the unique multi-view characteristics of high-resolution LVLMs with dynamic cropping. Existing methods treat all tokens uniformly, but our analysis reveals that global thumbnails can naturally guide the compression of local crops by providing holistic context for informativeness evaluation. In this paper, we first analyze dynamic cropping strategy, revealing both the complementary nature between thumbnails and crops, and the distinctive characteristics across different crops. Based on our observations, we propose "Global Compression Commander" (GlobalCom$^2$), a novel plug-and-play token compression framework for HR-LVLMs. GlobalCom$^2$ leverages thumbnail as the "commander" to guide the compression of local crops, adaptively preserving informative details while eliminating redundancy. Extensive experiments show that GlobalCom$^2$ maintains over 90% performance while compressing 90% visual tokens, reducing FLOPs and peak memory to 9.1% and 60%. Our code is available at https://github.com/xuyang-liu16/GlobalCom2.
Authors:Bhaskar Lalwani, Aniruddha Mukherjee
Abstract:
Kabaddi, a contact team sport of Indian origin, has seen a dramatic rise in global popularity, highlighted by the upcoming Kabaddi World Cup in 2025 with over sixteen international teams participating, alongside flourishing national leagues such as the Indian Pro Kabaddi League (230 million viewers) and the British Kabaddi League. We present the first open-source Python module to make Kabaddi statistical data easily accessible from multiple scattered sources across the internet. The module was developed by systematically web-scraping and collecting team-wise, player-wise and match-by-match data. The data has been cleaned, organized, and categorized into team overviews and player metrics, each filterable by season. The players are classified as raiders and defenders, with their best strategies for attacking, counter-attacking, and defending against different teams highlighted. Our module enables continuous monitoring of exponentially growing data streams, aiding researchers to quickly start building upon the data to answer critical questions, such as the impact of player inclusion/exclusion on team performance, scoring patterns against specific teams, and break down opponent gameplay. The data generated from Kabaddi tournaments has been sparsely used, and coaches and players rely heavily on intuition to make decisions and craft strategies. Our module can be utilized to build predictive models, craft uniquely strategic gameplays to target opponents and identify hidden correlations in the data. This open source module has the potential to increase time-efficiency, encourage analytical studies of Kabaddi gameplay and player dynamics and foster reproducible research. The data and code are publicly available: https://github.com/kabaddiPy/kabaddiPy
Authors:Dewei Zhou, Ji Xie, Zongxin Yang, Yi Yang
Abstract:
The growing demand for controllable outputs in text-to-image generation has driven significant advancements in multi-instance generation (MIG), enabling users to define both instance layouts and attributes. Currently, the state-of-the-art methods in MIG are primarily adapter-based. However, these methods necessitate retraining a new adapter each time a more advanced model is released, resulting in significant resource consumption. A methodology named Depth-Driven Decoupled Instance Synthesis (3DIS) has been introduced, which decouples MIG into two distinct phases: 1) depth-based scene construction and 2) detail rendering with widely pre-trained depth control models. The 3DIS method requires adapter training solely during the scene construction phase, while enabling various models to perform training-free detail rendering. Initially, 3DIS focused on rendering techniques utilizing U-Net architectures such as SD1.5, SD2, and SDXL, without exploring the potential of recent DiT-based models like FLUX. In this paper, we present 3DIS-FLUX, an extension of the 3DIS framework that integrates the FLUX model for enhanced rendering capabilities. Specifically, we employ the FLUX.1-Depth-dev model for depth map controlled image generation and introduce a detail renderer that manipulates the Attention Mask in FLUX's Joint Attention mechanism based on layout information. This approach allows for the precise rendering of fine-grained attributes of each instance. Our experimental results indicate that 3DIS-FLUX, leveraging the FLUX model, outperforms the original 3DIS method, which utilized SD2 and SDXL, and surpasses current state-of-the-art adapter-based methods in terms of both performance and image quality. Project Page: https://limuloo.github.io/3DIS/.
Authors:Daniel Nezamabadi, Magnus Myreen
Abstract:
Dafny is a verification-aware programming language that allows developers to formally specify their programs and prove them correct. Currently, a Dafny program is compiled in two steps: First, a backend translates the input program to a high-level target language like C# or Rust. Second, the translated program is compiled using the target language's toolchain. Recently, an intermediate representation (IR) has been added to Dafny that serves as input to new backends. At the time of writing, none of these steps are verified, resulting in both the backend and the target language's toolchain being part of Dafny's trusted computing base (TCB). To reduce Dafny's TCB, we started developing a new backend that translates Dafny to CakeML, a verified, bootstrapped subset of Standard ML, in the interactive theorem prover HOL4. We also started to define functional big-step semantics for the Dafny IR to prove correctness of the backend.
Authors:Haoyi Xiu, Xin Liu, Taehoon Kim, Kyoung-Sook Kim
Abstract:
The pre-training and fine-tuning paradigm has revolutionized satellite remote sensing applications. However, this approach remains largely underexplored for airborne laser scanning (ALS), an important technology for applications such as forest management and urban planning. In this study, we address this gap by constructing a large-scale ALS point cloud dataset and evaluating its impact on downstream applications. Our dataset comprises ALS point clouds collected across the contiguous United States, provided by the United States Geological Survey's 3D Elevation Program. To ensure efficient data collection while capturing diverse land cover and terrain types, we introduce a geospatial sampling method that selects point cloud tiles based on land cover maps and digital elevation models. As a baseline self-supervised learning model, we adopt BEV-MAE, a state-of-the-art masked autoencoder for 3D outdoor point clouds, and pre-train it on the constructed dataset. The pre-trained models are subsequently fine-tuned for downstream tasks, including tree species classification, terrain scene recognition, and point cloud semantic segmentation. Our results show that the pre-trained models significantly outperform their scratch counterparts across all downstream tasks, demonstrating the transferability of the representations learned from the proposed dataset. Furthermore, we observe that scaling the dataset using our geospatial sampling method consistently enhances performance, whereas pre-training on datasets constructed with random sampling fails to achieve similar improvements. These findings highlight the utility of the constructed dataset and the effectiveness of our sampling strategy in the pre-training and fine-tuning paradigm. The source code and pre-trained models will be made publicly available at \url{https://github.com/martianxiu/ALS_pretraining}.
Authors:Hounsu Kim, Taegyun Kwon, Juhan Nam
Abstract:
Diffusion models have been widely used in the generative domain due to their convincing performance in modeling complex data distributions. Moreover, they have shown competitive results on discriminative tasks, such as image segmentation. While diffusion models have also been explored for automatic music transcription, their performance has yet to reach a competitive level. In this paper, we focus on discrete diffusion model's refinement capabilities and present a novel architecture for piano transcription. Our model utilizes Neighborhood Attention layers as the denoising module, gradually predicting the target high-resolution piano roll, conditioned on the finetuned features of a pretrained acoustic model. To further enhance refinement, we devise a novel strategy which applies distinct transition states during training and inference stage of discrete diffusion models. Experiments on the MAESTRO dataset show that our approach outperforms previous diffusion-based piano transcription models and the baseline model in terms of F1 score. Our code is available in https://github.com/hanshounsu/d3rm.
Authors:Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, Kai Chen
Abstract:
Large Language Models (LLMs) have demonstrated remarkable proficiency across a variety of complex tasks. One significant application of LLMs is in tackling software engineering challenges, particularly in resolving real-world tasks on GitHub by fixing code based on the issues reported by the users. However, many current approaches rely on proprietary LLMs, which limits reproducibility, accessibility, and transparency. The critical components of LLMs for addressing software engineering issues and how their capabilities can be effectively enhanced remain unclear. To address these challenges, we introduce SWE-Fixer, a novel open-source framework designed to effectively and efficiently resolve GitHub issues. SWE-Fixer comprises two essential modules: a code file retrieval module and a code editing module. The retrieval module employs BM25 along with a lightweight model to achieve coarse-to-fine file retrieval. Subsequently, the code editing module utilizes the other model to generate patches for the identified files. To mitigate the lack of publicly available datasets, we compile an extensive dataset that includes 110K GitHub issues along with their corresponding patches and train the two models of SWE-Fixer separately. We assess our approach on the SWE-Bench Lite and Verified benchmarks, achieving competitive performance among open-source models with scores of 22.0% and 30.2%. Furthermore, SWE-Fixer reaches state-of-the-art performance (24.7% on Lite and 32.8% on Verified) with PASS_TO_PASS (P2P) filtering. Additionally, our approach requires only two model calls per instance, making it significantly more efficient than existing methods. These results highlight the effectiveness of SWE-Fixer in real-world code-fixing scenarios. We will make our model, dataset, and code publicly available at https://github.com/InternLM/SWE-Fixer.
Authors:Ronghao Dang, Yuqian Yuan, Wenqi Zhang, Yifei Xin, Boqiang Zhang, Long Li, Liuyi Wang, Qinyang Zeng, Xin Li, Lidong Bing
Abstract:
The enhancement of generalization in robots by large vision-language models (LVLMs) is increasingly evident. Therefore, the embodied cognitive abilities of LVLMs based on egocentric videos are of great interest. However, current datasets for embodied video question answering lack comprehensive and systematic evaluation frameworks. Critical embodied cognitive issues, such as robotic self-cognition, dynamic scene perception, and hallucination, are rarely addressed. To tackle these challenges, we propose ECBench, a high-quality benchmark designed to systematically evaluate the embodied cognitive abilities of LVLMs. ECBench features a diverse range of scene video sources, open and varied question formats, and 30 dimensions of embodied cognition. To ensure quality, balance, and high visual dependence, ECBench uses class-independent meticulous human annotation and multi-round question screening strategies. Additionally, we introduce ECEval, a comprehensive evaluation system that ensures the fairness and rationality of the indicators. Utilizing ECBench, we conduct extensive evaluations of proprietary, open-source, and task-specific LVLMs. ECBench is pivotal in advancing the embodied cognitive capabilities of LVLMs, laying a solid foundation for developing reliable core models for embodied agents. All data and code are available at https://github.com/Rh-Dang/ECBench.
Authors:Yingjie Chen, Yifang Men, Yuan Yao, Miaomiao Cui, Liefeng Bo
Abstract:
Motion-controllable image animation is a fundamental task with a wide range of potential applications. Recent works have made progress in controlling camera or object motion via various motion representations, while they still struggle to support collaborative camera and object motion control with adaptive control granularity. To this end, we introduce 3D-aware motion representation and propose an image animation framework, called Perception-as-Control, to achieve fine-grained collaborative motion control. Specifically, we construct 3D-aware motion representation from a reference image, manipulate it based on interpreted user instructions, and perceive it from different viewpoints. In this way, camera and object motions are transformed into intuitive and consistent visual changes. Then, our framework leverages the perception results as motion control signals, enabling it to support various motion-related video synthesis tasks in a unified and flexible way. Experiments demonstrate the superiority of the proposed approach. For more details and qualitative results, please refer to our anonymous project webpage: https://chen-yingjie.github.io/projects/Perception-as-Control.
Authors:Xiaojie Li, Jianlong Wu, Yue Yu, Liqiang Nie, Min Zhang
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) faces a critical challenge: balancing the retention of prior knowledge with the acquisition of new classes. Existing methods either freeze the backbone to prevent catastrophic forgetting, sacrificing plasticity, or add new modules, incurring high costs. These approaches treat pretrained models as black boxes, overlooking two key opportunities to exploit their internal capacity: reusing redundant representational space within layers and selectively adapting layers based on their sensitivity to forgetting. We propose CKPD-FSCIL, a unified framework that unlocks the underutilized capacity of pretrained weights, achieving a superior stability-plasticity balance with zero inference overhead. Our design integrates two continuously adapting mechanisms: At the weight level, a Continuous Knowledge-Preserving Decomposition mechanism uses feature covariance to split each weight matrix into a frozen subspace that safeguards prior knowledge and a learnable, redundant subspace for new tasks. At the layer level, a Continuous Adaptive Layer Selection mechanism leverages an Adapter Sensitivity Ratio to automatically select layers with the highest redundant capacity and lowest forgetting risk for adaptation. By targeting only safe, high-potential subspaces and layers, CKPD-FSCIL enables efficient adaptation. After each session, the learned adapters are merged back into the original weights, ensuring zero additional parameters or FLOPs during inference. Extensive experiments on multiple FSCIL benchmarks demonstrate that our method consistently outperforms state-of-the-art approaches in both adaptability and knowledge retention. The code is available at https://github.com/xiaojieli0903/CKPD-FSCIL.
Authors:Benjamin Reichman, Xiaofan Yu, Lanxiang Hu, Jack Truxal, Atishay Jain, Rushil Chandrupatla, Tajana Å imuniÄ Rosing, Larry Heck
Abstract:
With the rapid growth in sensor data, effectively interpreting and interfacing with these data in a human-understandable way has become crucial. While existing research primarily focuses on learning classification models, fewer studies have explored how end users can actively extract useful insights from sensor data, often hindered by the lack of a proper dataset. To address this gap, we introduce SensorQA, the first human-created question-answering (QA) dataset for long-term time-series sensor data for daily life monitoring. SensorQA is created by human workers and includes 5.6K diverse and practical queries that reflect genuine human interests, paired with accurate answers derived from sensor data. We further establish benchmarks for state-of-the-art AI models on this dataset and evaluate their performance on typical edge devices. Our results reveal a gap between current models and optimal QA performance and efficiency, highlighting the need for new contributions. The dataset and code are available at: https://github.com/benjamin-reichman/SensorQA.
Authors:HyunGi Kim, Siwon Kim, Jisoo Mok, Sungroh Yoon
Abstract:
Deep Neural Networks have spearheaded remarkable advancements in time series forecasting (TSF), one of the major tasks in time series modeling. Nonetheless, the non-stationarity of time series undermines the reliability of pre-trained source time series forecasters in mission-critical deployment settings. In this study, we introduce a pioneering test-time adaptation framework tailored for TSF (TSF-TTA). TAFAS, the proposed approach to TSF-TTA, flexibly adapts source forecasters to continuously shifting test distributions while preserving the core semantic information learned during pre-training. The novel utilization of partially-observed ground truth and gated calibration module enables proactive, robust, and model-agnostic adaptation of source forecasters. Experiments on diverse benchmark datasets and cutting-edge architectures demonstrate the efficacy and generality of TAFAS, especially in long-term forecasting scenarios that suffer from significant distribution shifts. The code is available at https://github.com/kimanki/TAFAS.
Authors:Haoran Zhu, Zhenyuan Dong, Kristi Topollai, Anna Choromanska
Abstract:
As opposed to human drivers, current autonomous driving systems still require vast amounts of labeled data to train. Recently, world models have been proposed to simultaneously enhance autonomous driving capabilities by improving the way these systems understand complex real-world environments and reduce their data demands via self-supervised pre-training. In this paper, we present AD-L-JEPA (aka Autonomous Driving with LiDAR data via a Joint Embedding Predictive Architecture), a novel self-supervised pre-training framework for autonomous driving with LiDAR data that, as opposed to existing methods, is neither generative nor contrastive. Our method learns spatial world models with a joint embedding predictive architecture. Instead of explicitly generating masked unknown regions, our self-supervised world models predict Bird's Eye View (BEV) embeddings to represent the diverse nature of autonomous driving scenes. Our approach furthermore eliminates the need to manually create positive and negative pairs, as is the case in contrastive learning. AD-L-JEPA leads to simpler implementation and enhanced learned representations. We qualitatively and quantitatively demonstrate high-quality of embeddings learned with AD-L-JEPA. We furthermore evaluate the accuracy and label efficiency of AD-L-JEPA on popular downstream tasks such as LiDAR 3D object detection and associated transfer learning. Our experimental evaluation demonstrates that AD-L-JEPA is a plausible approach for self-supervised pre-training in autonomous driving applications and is the best available approach outperforming SOTA, including most recently proposed Occupancy-MAE [1] and ALSO [2]. The source code of AD-L-JEPA is available at https://github.com/HaoranZhuExplorer/AD-L-JEPA-Release.
Authors:Wenqian Cui, Xiaoqi Jiao, Ziqiao Meng, Irwin King
Abstract:
With the rising need for speech-based interaction models, end-to-end Spoken Language Models (SLMs) have emerged as a promising solution. While these models require comprehensive world knowledge for meaningful and reliable human interactions, existing question-answering (QA) benchmarks fall short in evaluating SLMs' knowledge understanding due to their inability to support end-to-end speech evaluation and account for varied input audio conditions. To address these limitations, we present VoxEval, a novel SpeechQA benchmark that assesses SLMs' knowledge understanding through pure speech interactions. Our benchmark 1) uniquely maintains speech format for both inputs and outputs, 2) evaluates model robustness across diverse input audio conditions, and 3) pioneers the assessment of complex tasks like mathematical reasoning in spoken format. Systematic evaluation demonstrates that VoxEval presents significant challenges to current SLMs, revealing their sensitivity to varying audio conditions and highlighting the need to enhance reasoning capabilities in future development. We hope this benchmark could guide the advancement of more sophisticated and reliable SLMs. VoxEval dataset is available at: https://github.com/dreamtheater123/VoxEval
Authors:Lei Li, Xinglin Zhang, Jun Liang, Tao Chen
Abstract:
Deep learning models in medical imaging face dual challenges: domain shift, where models perform poorly when deployed in settings different from their training environment, and class imbalance, where certain disease conditions are naturally underrepresented. We present Imbalance-Aware Domain Adaptation (IADA), a novel framework that simultaneously tackles both challenges through three key components: (1) adaptive feature learning with class-specific attention mechanisms, (2) balanced domain alignment with dynamic weighting, and (3) adaptive threshold optimization. Our theoretical analysis establishes convergence guarantees and complexity bounds. Through extensive experiments on embryo development assessment across four imaging modalities, IADA demonstrates significant improvements over existing methods, achieving up to 25.19\% higher accuracy while maintaining balanced performance across classes. In challenging scenarios with low-quality imaging systems, IADA shows robust generalization with AUC improvements of up to 12.56\%. These results demonstrate IADA's potential for developing reliable and equitable medical imaging systems for diverse clinical settings. The code is made public available at \url{https://github.com/yinghemedical/imbalance-aware_domain_adaptation}
Authors:Qingyu Ren, Jie Zeng, Qianyu He, Jiaqing Liang, Yanghua Xiao, Weikang Zhou, Zeye Sun, Fei Yu
Abstract:
It is crucial for large language models (LLMs) to follow instructions that involve multiple constraints. However, it is an unexplored area to enhance LLMs' ability to follow soft constraints. To bridge the gap, we initially design a pipeline to construct datasets with high-quality outputs automatically. Additionally, to fully utilize the positive and negative samples generated during the data construction process, we choose Direct Preference Optimization (DPO) as the training method. Furthermore, taking into account the difficulty of soft constraints indicated by the number of constraints, we design a curriculum learning training paradigm based on the constraint quantity. We experimentally evaluate the effectiveness of our methods in improving LLMs' soft constraint following ability and analyze the factors driving the improvements.The datasets and code are publicly available at https://github.com/Rainier-rq/FollowSoftConstraint.
Authors:Yapeng Li, Yong Luo, Lefei Zhang, Zengmao Wang, Bo Du
Abstract:
Transformer has been extensively explored for hyperspectral image (HSI) classification. However, transformer poses challenges in terms of speed and memory usage because of its quadratic computational complexity. Recently, the Mamba model has emerged as a promising approach, which has strong long-distance modeling capabilities while maintaining a linear computational complexity. However, representing the HSI is challenging for the Mamba due to the requirement for an integrated spatial and spectral understanding. To remedy these drawbacks, we propose a novel HSI classification model based on a Mamba model, named MambaHSI, which can simultaneously model long-range interaction of the whole image and integrate spatial and spectral information in an adaptive manner. Specifically, we design a spatial Mamba block (SpaMB) to model the long-range interaction of the whole image at the pixel-level. Then, we propose a spectral Mamba block (SpeMB) to split the spectral vector into multiple groups, mine the relations across different spectral groups, and extract spectral features. Finally, we propose a spatial-spectral fusion module (SSFM) to adaptively integrate spatial and spectral features of a HSI. To our best knowledge, this is the first image-level HSI classification model based on the Mamba. We conduct extensive experiments on four diverse HSI datasets. The results demonstrate the effectiveness and superiority of the proposed model for HSI classification. This reveals the great potential of Mamba to be the next-generation backbone for HSI models. Codes are available at https://github.com/li-yapeng/MambaHSI .
Authors:Guannan Lai, Yihui Feng, Xin Yang, Xiaoyu Deng, Hao Yu, Shuyin Xia, Guoyin Wang, Tianrui Li
Abstract:
Federated Learning (FL) facilitates collaborative model training while prioritizing privacy by avoiding direct data sharing. However, most existing articles attempt to address challenges within the model's internal parameters and corresponding outputs, while neglecting to solve them at the input level. To address this gap, we propose a novel framework called Granular-Ball Federated Learning (GrBFL) for image classification. GrBFL diverges from traditional methods that rely on the finest-grained input data. Instead, it segments images into multiple regions with optimal coarse granularity, which are then reconstructed into a graph structure. We designed a two-dimensional binary search segmentation algorithm based on variance constraints for GrBFL, which effectively removes redundant information while preserving key representative features. Extensive theoretical analysis and experiments demonstrate that GrBFL not only safeguards privacy and enhances efficiency but also maintains robust utility, consistently outperforming other state-of-the-art FL methods. The code is available at https://github.com/AIGNLAI/GrBFL.
Authors:Sun-Hyuk Choi, Hayoung Jo, Seong-Whan Lee
Abstract:
Referring video object segmentation aims to segment objects within a video corresponding to a given text description. Existing transformer-based temporal modeling approaches face challenges related to query inconsistency and the limited consideration of context. Query inconsistency produces unstable masks of different objects in the middle of the video. The limited consideration of context leads to the segmentation of incorrect objects by failing to adequately account for the relationship between the given text and instances. To address these issues, we propose the Multi-context Temporal Consistency Module (MTCM), which consists of an Aligner and a Multi-Context Enhancer (MCE). The Aligner removes noise from queries and aligns them to achieve query consistency. The MCE predicts text-relevant queries by considering multi-context. We applied MTCM to four different models, increasing performance across all of them, particularly achieving 47.6 J&F on the MeViS. Code is available at https://github.com/Choi58/MTCM.
Authors:Zhenghui Zhao, Chen Wu, Lixiang Ru, Di Wang, Hongruixuan Chen, Cuiqun Chen
Abstract:
Existing Weakly-Supervised Change Detection (WSCD) methods often encounter the problem of "instance lumping" under scene-level supervision, particularly in scenarios with a dense distribution of changed instances (i.e., changed objects). In these scenarios, unchanged pixels between changed instances are also mistakenly identified as changed, causing multiple changes to be mistakenly viewed as one. In practical applications, this issue prevents the accurate quantification of the number of changes. To address this issue, we propose a Dense Instance Separation (DISep) method as a plug-and-play solution, refining pixel features from a unified instance perspective under scene-level supervision. Specifically, our DISep comprises a three-step iterative training process: 1) Instance Localization: We locate instance candidate regions for changed pixels using high-pass class activation maps. 2) Instance Retrieval: We identify and group these changed pixels into different instance IDs through connectivity searching. Then, based on the assigned instance IDs, we extract corresponding pixel-level features on a per-instance basis. 3) Instance Separation: We introduce a separation loss to enforce intra-instance pixel consistency in the embedding space, thereby ensuring separable instance feature representations. The proposed DISep adds only minimal training cost and no inference cost. It can be seamlessly integrated to enhance existing WSCD methods. We achieve state-of-the-art performance by enhancing {three Transformer-based and four ConvNet-based methods} on the LEVIR-CD, WHU-CD, DSIFN-CD, SYSU-CD, and CDD datasets. Additionally, our DISep can be used to improve fully-supervised change detection methods. Code is available at https://github.com/zhenghuizhao/Plug-and-Play-DISep-for-Change-Detection.
Authors:Jake H. Lee, Michael Kiper, David R. Thompson, Philip G. Brodrick
Abstract:
Current and upcoming generations of visible-shortwave infrared (VSWIR) imaging spectrometers promise unprecedented capacity to quantify Earth System processes across the globe. However, reliable cloud screening remains a fundamental challenge for these instruments, where traditional spatial and temporal approaches are limited by cloud variability and limited temporal coverage. The Spectroscopic Transformer (SpecTf) addresses these challenges with a spectroscopy-specific deep learning architecture that performs cloud detection using only spectral information (no spatial or temporal data are required). By treating spectral measurements as sequences rather than image channels, SpecTf learns fundamental physical relationships without relying on spatial context. Our experiments demonstrate that SpecTf significantly outperforms the current baseline approach implemented for the EMIT instrument, and performs comparably with other machine learning methods with orders of magnitude fewer learned parameters. Critically, we demonstrate SpecTf's inherent interpretability through its attention mechanism, revealing physically meaningful spectral features the model has learned. Finally, we present SpecTf's potential for cross-instrument generalization by applying it to a different instrument on a different platform without modifications, opening the door to instrument agnostic data driven algorithms for future imaging spectroscopy tasks.
Authors:Golriz Hosseinimanesh, Farnoosh Ghadiri, Francois Guibault, Farida Cheriet, Julia Keren
Abstract:
Designing a dental crown is a time-consuming and labor intensive process. Our goal is to simplify crown design and minimize the tediousness of making manual adjustments while still ensuring the highest level of accuracy and consistency. To this end, we present a new end- to-end deep learning approach, coined Dental Mesh Completion (DMC), to generate a crown mesh conditioned on a point cloud context. The dental context includes the tooth prepared to receive a crown and its surroundings, namely the two adjacent teeth and the three closest teeth in the opposing jaw. We formulate crown generation in terms of completing this point cloud context. A feature extractor first converts the input point cloud into a set of feature vectors that represent local regions in the point cloud. The set of feature vectors is then fed into a transformer to predict a new set of feature vectors for the missing region (crown). Subsequently, a point reconstruction head, followed by a multi-layer perceptron, is used to predict a dense set of points with normals. Finally, a differentiable point-to-mesh layer serves to reconstruct the crown surface mesh. We compare our DMC method to a graph-based convolutional neural network which learns to deform a crown mesh from a generic crown shape to the target geometry. Extensive experiments on our dataset demonstrate the effectiveness of our method, which attains an average of 0.062 Chamfer Distance.The code is available at:https://github.com/Golriz-code/DMC.gi
Authors:Yiyao Yang, Fu Teng, Pengju Liu, Mengnan Qi, Chenyang Lv, Ji Li, Xuhong Zhang, Zhezhi He
Abstract:
Recently, the use of large language models (LLMs) for Verilog code generation has attracted great research interest to enable hardware design automation. However, previous works have shown a gap between the ability of LLMs and the practical demands of hardware description language (HDL) engineering. This gap includes differences in how engineers phrase questions and hallucinations in the code generated. To address these challenges, we introduce HaVen, a novel LLM framework designed to mitigate hallucinations and align Verilog code generation with the practices of HDL engineers. HaVen tackles hallucination issues by proposing a comprehensive taxonomy and employing a chain-of-thought (CoT) mechanism to translate symbolic modalities (e.g. truth tables, state diagrams, etc.) into accurate natural language descriptions. Furthermore, HaVen bridges this gap by using a data augmentation strategy. It synthesizes high-quality instruction-code pairs that match real HDL engineering practices. Our experiments demonstrate that HaVen significantly improves the correctness of Verilog code generation, outperforming state-of-the-art LLM-based Verilog generation methods on VerilogEval and RTLLM benchmark. HaVen is publicly available at https://github.com/Intelligent-Computing-Research-Group/HaVen.
Authors:Seyed Amir Bidaki, Amir Mohammadkhah, Kiyan Rezaee, Faeze Hassani, Sadegh Eskandari, Maziar Salahi, Mohammad M. Ghassemi
Abstract:
Online Continual Learning (OCL) is a critical area in machine learning, focusing on enabling models to adapt to evolving data streams in real-time while addressing challenges such as catastrophic forgetting and the stability-plasticity trade-off. This study conducts the first comprehensive Systematic Literature Review (SLR) on OCL, analyzing 81 approaches, extracting over 1,000 features (specific tasks addressed by these approaches), and identifying more than 500 components (sub-models within approaches, including algorithms and tools). We also review 83 datasets spanning applications like image classification, object detection, and multimodal vision-language tasks. Our findings highlight key challenges, including reducing computational overhead, developing domain-agnostic solutions, and improving scalability in resource-constrained environments. Furthermore, we identify promising directions for future research, such as leveraging self-supervised learning for multimodal and sequential data, designing adaptive memory mechanisms that integrate sparse retrieval and generative replay, and creating efficient frameworks for real-world applications with noisy or evolving task boundaries. By providing a rigorous and structured synthesis of the current state of OCL, this review offers a valuable resource for advancing this field and addressing its critical challenges and opportunities. The complete SLR methodology steps and extracted data are publicly available through the provided link: https://github.com/kiyan-rezaee/ Systematic-Literature-Review-on-Online-Continual-Learning
Authors:Long Mai, Julie Carson-Berndsen
Abstract:
Recent advancements in large language models (LLMs) have led to significant progress in text-based dialogue systems. These systems can now generate high-quality responses that are accurate and coherent across a wide range of topics and tasks. However, spoken dialogue systems still lag behind in terms of naturalness. They tend to produce robotic interactions, with issues such as slow response times, overly generic or cautious replies, and a lack of natural rhythm and fluid turn-taking. This shortcoming is largely due to the over-reliance on the traditional cascaded design, which involve separate, sequential components, as well as the use of text as an intermediate representation. This paper propose a real-time, textless spoken dialogue generation model (RTTL-DG) that aims to overcome these challenges. Our system enables fluid turn-taking and generates responses with minimal delay by processing streaming spoken conversation directly. Additionally, our model incorporates backchannels, filters, laughter, and other paralinguistic signals, which are often absent in cascaded dialogue systems, to create more natural and human-like interactions. The implementations and generated samples are available in our repository: https://github.com/mailong25/rts2s-dg
Authors:Hafiz Mughees Ahmad, Dario Morle, Afshin Rahimi
Abstract:
Deep learning models have demonstrated remarkable performance across various computer vision tasks, yet their vulnerability to distribution shifts remains a critical challenge. Despite sophisticated neural network architectures, existing models often struggle to maintain consistent performance when confronted with Out-of-Distribution (OOD) samples, including natural corruptions, adversarial perturbations, and anomalous patterns. We introduce LayerMix, an innovative data augmentation approach that systematically enhances model robustness through structured fractal-based image synthesis. By meticulously integrating structural complexity into training datasets, our method generates semantically consistent synthetic samples that significantly improve neural network generalization capabilities. Unlike traditional augmentation techniques that rely on random transformations, LayerMix employs a structured mixing pipeline that preserves original image semantics while introducing controlled variability. Extensive experiments across multiple benchmark datasets, including CIFAR-10, CIFAR-100, ImageNet-200, and ImageNet-1K demonstrate LayerMixs superior performance in classification accuracy and substantially enhances critical Machine Learning (ML) safety metrics, including resilience to natural image corruptions, robustness against adversarial attacks, improved model calibration and enhanced prediction consistency. LayerMix represents a significant advancement toward developing more reliable and adaptable artificial intelligence systems by addressing the fundamental challenges of deep learning generalization. The code is available at https://github.com/ahmadmughees/layermix.
Authors:Yachuan Li, Xavier Soria Poma, Yun Bai, Qian Xiao, Chaozhi Yang, Guanlin Li, Zongmin Li
Abstract:
Transformer-based models have made significant progress in edge detection, but their high computational cost is prohibitive. Recently, vision Mamba have shown excellent ability in efficiently capturing long-range dependencies. Drawing inspiration from this, we propose a novel edge detector with Mamba, termed EDMB, to efficiently generate high-quality multi-granularity edges. In EDMB, Mamba is combined with a global-local architecture, therefore it can focus on both global information and fine-grained cues. The fine-grained cues play a crucial role in edge detection, but are usually ignored by ordinary Mamba. We design a novel decoder to construct learnable Gaussian distributions by fusing global features and fine-grained features. And the multi-grained edges are generated by sampling from the distributions. In order to make multi-granularity edges applicable to single-label data, we introduce Evidence Lower Bound loss to supervise the learning of the distributions. On the multi-label dataset BSDS500, our proposed EDMB achieves competitive single-granularity ODS 0.837 and multi-granularity ODS 0.851 without multi-scale test or extra PASCAL-VOC data. Remarkably, EDMB can be extended to single-label datasets such as NYUDv2 and BIPED. The source code is available at https://github.com/Li-yachuan/EDMB.
Authors:Jiteng Mu, Nuno Vasconcelos, Xiaolong Wang
Abstract:
Recent progress in controllable image generation and editing is largely driven by diffusion-based methods. Although diffusion models perform exceptionally well in specific tasks with tailored designs, establishing a unified model is still challenging. In contrast, autoregressive models inherently feature a unified tokenized representation, which simplifies the creation of a single foundational model for various tasks. In this work, we propose EditAR, a single unified autoregressive framework for a variety of conditional image generation tasks, e.g., image editing, depth-to-image, edge-to-image, segmentation-to-image. The model takes both images and instructions as inputs, and predicts the edited images tokens in a vanilla next-token paradigm. To enhance the text-to-image alignment, we further propose to distill the knowledge from foundation models into the autoregressive modeling process. We evaluate its effectiveness across diverse tasks on established benchmarks, showing competitive performance to various state-of-the-art task-specific methods. Project page: https://jitengmu.github.io/EditAR/
Authors:Yuzhou Huang, Ziyang Yuan, Quande Liu, Qiulin Wang, Xintao Wang, Ruimao Zhang, Pengfei Wan, Di Zhang, Kun Gai
Abstract:
Text-to-video generation has made remarkable advancements through diffusion models. However, Multi-Concept Video Customization (MCVC) remains a significant challenge. We identify two key challenges for this task: 1) the identity decoupling issue, where directly adopting existing customization methods inevitably mix identity attributes when handling multiple concepts simultaneously, and 2) the scarcity of high-quality video-entity pairs, which is crucial for training a model that can well represent and decouple various customized concepts in video generation. To address these challenges, we introduce ConceptMaster, a novel framework that effectively addresses the identity decoupling issues while maintaining concept fidelity in video customization. Specifically, we propose to learn decoupled multi-concept embeddings and inject them into diffusion models in a standalone manner, which effectively guarantees the quality of customized videos with multiple identities, even for highly similar visual concepts. To overcome the scarcity of high-quality MCVC data, we establish a data construction pipeline, which enables collection of high-quality multi-concept video-entity data pairs across diverse scenarios. A multi-concept video evaluation set is further devised to comprehensively validate our method from three dimensions, including concept fidelity, identity decoupling ability, and video generation quality, across six different concept composition scenarios. Extensive experiments demonstrate that ConceptMaster significantly outperforms previous methods for video customization tasks, showing great potential to generate personalized and semantically accurate content for video diffusion models.
Authors:Lucas Prieto, Melih Barsbey, Pedro A. M. Mediano, Tolga Birdal
Abstract:
Grokking, the sudden generalization that occurs after prolonged overfitting, is a surprising phenomenon challenging our understanding of deep learning. Although significant progress has been made in understanding grokking, the reasons behind the delayed generalization and its dependence on regularization remain unclear. In this work, we argue that without regularization, grokking tasks push models to the edge of numerical stability, introducing floating point errors in the Softmax function, which we refer to as Softmax Collapse (SC). We demonstrate that SC prevents grokking and that mitigating SC enables grokking without regularization. Investigating the root cause of SC, we find that beyond the point of overfitting, the gradients strongly align with what we call the naïve loss minimization (NLM) direction. This component of the gradient does not alter the model's predictions but decreases the loss by scaling the logits, typically by scaling the weights along their current direction. We show that this scaling of the logits explains the delay in generalization characteristic of grokking and eventually leads to SC, halting further learning. To validate our hypotheses, we introduce two key contributions that address the challenges in grokking tasks: StableMax, a new activation function that prevents SC and enables grokking without regularization, and $\perp$Grad, a training algorithm that promotes quick generalization in grokking tasks by preventing NLM altogether. These contributions provide new insights into grokking, elucidating its delayed generalization, reliance on regularization, and the effectiveness of existing grokking-inducing methods. Code for this paper is available at https://github.com/LucasPrietoAl/grokking-at-the-edge-of-numerical-stability.
Authors:Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao Liu, Wenxiang Hu, Zhongxin Guo, Yangyu Huang, Ying Xin, Yujiu Yang, Jinsong Su, Qi Chen, Scarlett Li
Abstract:
Existing methods for code generation use code snippets as seed data, restricting the complexity and diversity of the synthesized data. In this paper, we introduce a novel feature tree-based synthesis framework, which revolves around hierarchical code features derived from high-level abstractions of code. The feature tree is constructed from raw data and refined iteratively to increase the quantity and diversity of the extracted features, which captures and recognizes more complex patterns and relationships within the code. By adjusting the depth and breadth of the sampled subtrees, our framework provides precise control over the complexity of the generated code, enabling functionalities that range from function-level operations to multi-file scenarios. We fine-tuned widely-used base models to obtain EpiCoder series, achieving state-of-the-art performance on multiple benchmarks at both the function and file levels. In particular, empirical evidence indicates that our approach shows significant potential in the synthesizing of repository-level code data. Our code and data are publicly available at https://github.com/microsoft/EpiCoder.
Authors:Ruilin Luo, Zhuofan Zheng, Yifan Wang, Xinzhe Ni, Zicheng Lin, Songtao Jiang, Yiyao Yu, Chufan Shi, Ruihang Chu, Jin Zeng, Yujiu Yang
Abstract:
Process Reward Models (PRMs) have shown promise in enhancing the mathematical reasoning capabilities of Large Language Models (LLMs) through Test-Time Scaling (TTS). However, their integration into multimodal reasoning remains largely unexplored. In this work, we take the first step toward unlocking the potential of PRMs in multimodal mathematical reasoning. We identify three key challenges: (1) the scarcity of high-quality reasoning data constrains the capabilities of foundation Multimodal Large Language Models (MLLMs), which imposes further limitations on the upper bounds of TTS and reinforcement learning (RL); (2) a lack of automated methods for process labeling within multimodal contexts persists; (3) the employment of process rewards in unimodal RL faces issues like reward hacking, which may extend to multimodal scenarios. To address these issues, we introduce URSA, a three-stage Unfolding multimodal Process-Supervision Aided training framework. We first construct MMathCoT-1M, a high-quality large-scale multimodal Chain-of-Thought (CoT) reasoning dataset, to build a stronger math reasoning foundation MLLM, URSA-8B. Subsequently, we go through an automatic process to synthesize process supervision data, which emphasizes both logical correctness and perceptual consistency. We introduce DualMath-1.1M to facilitate the training of URSA-8B-RM. Finally, we propose Process-Supervised Group-Relative-Policy-Optimization (PS-GRPO), pioneering a multimodal PRM-aided online RL method that outperforms vanilla GRPO. With PS-GRPO application, URSA-8B-PS-GRPO outperforms Gemma3-12B and GPT-4o by 8.4% and 2.7% on average across 6 benchmarks. Code, data and checkpoint can be found at https://github.com/URSA-MATH.
Authors:Charles Corbière, Simon Roburin, Syrielle Montariol, Antoine Bosselut, Alexandre Alahi
Abstract:
While chain-of-thought (CoT) prompting improves reasoning in large language models, its effectiveness in vision-language models (VLMs) remains limited due to over-reliance on textual cues and memorized knowledge. To investigate the visual reasoning capabilities of VLMs in complex real-world scenarios, we introduce DrivingVQA, a visual question answering dataset derived from driving theory exams, which contains 3,931 multiple-choice problems with expert-written explanations and grounded entities relevant to the reasoning process. Leveraging this dataset, we propose RIV-CoT, a Retrieval-Based Interleaved Visual Chain-of-Thought method that enables VLMs to reason using visual crops corresponding to these relevant entities. Our experiments demonstrate that RIV-CoT improves answer accuracy by 3.1% and reasoning accuracy by 4.6% over vanilla CoT prompting. Furthermore, we demonstrate that our method effectively scales to the larger A-OKVQA reasoning dataset by leveraging automatically generated pseudo-labels, outperforming CoT prompting.
Authors:Tarek Naous, Wei Xu
Abstract:
Language Models (LMs) have been shown to exhibit a strong preference towards entities associated with Western culture when operating in non-Western languages. In this paper, we aim to uncover the origins of entity-related cultural biases in LMs by analyzing several contributing factors, including the representation of entities in pre-training data and the impact of variations in linguistic phenomena across languages. We introduce CAMeL-2, a parallel Arabic-English benchmark of 58,086 entities associated with Arab and Western cultures and 367 masked natural contexts for entities. Our evaluations using CAMeL-2 reveal reduced performance gaps between cultures by LMs when tested in English compared to Arabic. We find that LMs struggle in Arabic with entities that appear at high frequencies in pre-training, where entities can hold multiple word senses. This also extends to entities that exhibit high lexical overlap with languages that are not Arabic but use the Arabic script. Further, we show how frequency-based tokenization leads to this issue in LMs, which gets worse with larger Arabic vocabularies. We will make CAMeL-2 available at: https://github.com/tareknaous/camel2
Authors:Hanzhao Li, Yuke Li, Xinsheng Wang, Jingbin Hu, Qicong Xie, Shan Yang, Lei Xie
Abstract:
Controllable speech generation methods typically rely on single or fixed prompts, hindering creativity and flexibility. These limitations make it difficult to meet specific user needs in certain scenarios, such as adjusting the style while preserving a selected speaker's timbre, or choosing a style and generating a voice that matches a character's visual appearance. To overcome these challenges, we propose \textit{FleSpeech}, a novel multi-stage speech generation framework that allows for more flexible manipulation of speech attributes by integrating various forms of control. FleSpeech employs a multimodal prompt encoder that processes and unifies different text, audio, and visual prompts into a cohesive representation. This approach enhances the adaptability of speech synthesis and supports creative and precise control over the generated speech. Additionally, we develop a data collection pipeline for multimodal datasets to facilitate further research and applications in this field. Comprehensive subjective and objective experiments demonstrate the effectiveness of FleSpeech. Audio samples are available at https://kkksuper.github.io/FleSpeech/
Authors:Weitian Zhang, Yichao Yan, Sijing Wu, Manwen Liao, Xiaokang Yang
Abstract:
Clothed avatar generation has wide applications in virtual and augmented reality, filmmaking, and more. Previous methods have achieved success in generating diverse digital avatars, however, generating avatars with disentangled components (\eg, body, hair, and clothes) has long been a challenge. In this paper, we propose LayerAvatar, the first feed-forward diffusion-based method for generating component-disentangled clothed avatars. To achieve this, we first propose a layered UV feature plane representation, where components are distributed in different layers of the Gaussian-based UV feature plane with corresponding semantic labels. This representation supports high-resolution and real-time rendering, as well as expressive animation including controllable gestures and facial expressions. Based on the well-designed representation, we train a single-stage diffusion model and introduce constrain terms to address the severe occlusion problem of the innermost human body layer. Extensive experiments demonstrate the impressive performances of our method in generating disentangled clothed avatars, and we further explore its applications in component transfer. The project page is available at: https://olivia23333.github.io/LayerAvatar/
Authors:Han Huang, Yulun Wu, Chao Deng, Ge Gao, Ming Gu, Yu-Shen Liu
Abstract:
Recently, Gaussian Splatting has sparked a new trend in the field of computer vision. Apart from novel view synthesis, it has also been extended to the area of multi-view reconstruction. The latest methods facilitate complete, detailed surface reconstruction while ensuring fast training speed. However, these methods still require dense input views, and their output quality significantly degrades with sparse views. We observed that the Gaussian primitives tend to overfit the few training views, leading to noisy floaters and incomplete reconstruction surfaces. In this paper, we present an innovative sparse-view reconstruction framework that leverages intra-view depth and multi-view feature consistency to achieve remarkably accurate surface reconstruction. Specifically, we utilize monocular depth ranking information to supervise the consistency of depth distribution within patches and employ a smoothness loss to enhance the continuity of the distribution. To achieve finer surface reconstruction, we optimize the absolute position of depth through multi-view projection features. Extensive experiments on DTU and BlendedMVS demonstrate that our method outperforms state-of-the-art methods with a speedup of 60x to 200x, achieving swift and fine-grained mesh reconstruction without the need for costly pre-training.
Authors:Daniele Molino, Francesco Di Feola, Eliodoro Faiella, Deborah Fazzini, Domiziana Santucci, Linlin Shen, Valerio Guarrasi, Paolo Soda
Abstract:
The adoption of Artificial Intelligence in medical imaging holds great promise, yet it remains hindered by challenges such as data scarcity, privacy concerns, and the need for robust multimodal integration. While recent advances in generative modeling have enabled high-quality synthetic data generation, existing approaches are often limited to unimodal, unidirectional synthesis and therefore lack the ability to jointly synthesize multiple modalities while preserving clinical consistency. To address this challenge, we introduce XGeM, a 6.77-billion-parameter multimodal generative model designed to support flexible, any-to-any synthesis between medical data modalities. XGeM constructs a shared latent space via contrastive learning and introduces a novel Multi-Prompt Training strategy, enabling conditioning on arbitrary subsets of input modalities. This design allows the model to adapt to heterogeneous clinical inputs and generate multiple outputs jointly, preserving both semantic and structural coherence. We extensively validate XGeM: first we benchmark it against five competitors on the MIMIC-CXR dataset, a state-of-the-art dataset for multi-view Chest X-ray and radiological report generation. Secondly, we perform a Visual Turing Test with expert radiologists to assess the realism and clinical relevance of the generated data, ensuring alignment with real-world scenarios. Finally, we show how XGeM can support key medical data challenges such as anonymization, class imbalance, and data scarcity, underscoring its utility as a foundation model for medical data synthesis. Project page is at https://cosbidev.github.io/XGeM/.
Authors:Eric Chen, Xi Chen, Arian Maleki, Shirin Jalali
Abstract:
Unrolled networks have become prevalent in various computer vision and imaging tasks. Although they have demonstrated remarkable efficacy in solving specific computer vision and computational imaging tasks, their adaptation to other applications presents considerable challenges. This is primarily due to the multitude of design decisions that practitioners working on new applications must navigate, each potentially affecting the network's overall performance. These decisions include selecting the optimization algorithm, defining the loss function, and determining the number of convolutional layers, among others. Compounding the issue, evaluating each design choice requires time-consuming simulations to train, fine-tune the neural network, and optimize for its performance. As a result, the process of exploring multiple options and identifying the optimal configuration becomes time-consuming and computationally demanding. The main objectives of this paper are (1) to unify some ideas and methodologies used in unrolled networks to reduce the number of design choices a user has to make, and (2) to report a comprehensive ablation study to discuss the impact of each of the choices involved in designing unrolled networks and present practical recommendations based on our findings. We anticipate that this study will help scientists and engineers design unrolled networks for their applications and diagnose problems within their networks efficiently.
Authors:Boyang Sun, Hanzhi Chen, Stefan Leutenegger, Cesar Cadena, Marc Pollefeys, Hermann Blum
Abstract:
Exploration of unknown environments is crucial for autonomous robots; it allows them to actively reason and decide on what new data to acquire for different tasks, such as mapping, object discovery, and environmental assessment. Existing solutions, such as frontier-based exploration approaches, rely heavily on 3D map operations, which are limited by map quality and, more critically, often overlook valuable context from visual cues. This work aims at leveraging 2D visual cues for efficient autonomous exploration, addressing the limitations of extracting goal poses from a 3D map. We propose a visual-only frontier-based exploration system, with FrontierNet as its core component. FrontierNet is a learning-based model that (i) proposes frontiers, and (ii) predicts their information gain, from posed RGB images enhanced by monocular depth priors. Our approach provides an alternative to existing 3D-dependent goal-extraction approaches, achieving a 15\% improvement in early-stage exploration efficiency, as validated through extensive simulations and real-world experiments. The project is available at https://github.com/cvg/FrontierNet.
Authors:Yuhang Liu, Pengxiang Li, Zishu Wei, Congkai Xie, Xueyu Hu, Xinchen Xu, Shengyu Zhang, Xiaotian Han, Hongxia Yang, Fei Wu
Abstract:
Graphical User Interface (GUI) Agents, powered by multimodal large language models (MLLMs), have shown great potential for task automation on computing devices such as computers and mobile phones. However, existing agents face challenges in multi-step reasoning and reliance on textual annotations, limiting their effectiveness. We introduce \textit{InfiGUIAgent}, an MLLM-based GUI Agent trained with a two-stage supervised fine-tuning pipeline. Stage 1 enhances fundamental skills such as GUI understanding and grounding, while Stage 2 integrates hierarchical reasoning and expectation-reflection reasoning skills using synthesized data to enable native reasoning abilities of the agents. \textit{InfiGUIAgent} achieves competitive performance on several GUI benchmarks, highlighting the impact of native reasoning skills in enhancing GUI interaction for automation tasks. Resources are available at \url{https://github.com/Reallm-Labs/InfiGUIAgent}.
Authors:Qingmei Wang, Yuxin Wu, Yujie Long, Jing Huang, Fengyuan Ran, Bing Su, Hongteng Xu
Abstract:
An event sequence generated by a temporal point process is often associated with a hidden and structured event branching process that captures the triggering relations between its historical and current events. In this study, we design a new plug-and-play module based on the Bregman ADMM (BADMM) algorithm, which infers event branches associated with event sequences in the maximum likelihood estimation framework of temporal point processes (TPPs). Specifically, we formulate the inference of event branches as an optimization problem for the event transition matrix under sparse and low-rank constraints, which is embedded in existing TPP models or their learning paradigms. We can implement this optimization problem based on subspace clustering and sparse group-lasso, respectively, and solve it using the Bregman ADMM algorithm, whose unrolling leads to the proposed BADMM module. When learning a classic TPP (e.g., Hawkes process) by the expectation-maximization algorithm, the BADMM module helps derive structured responsibility matrices in the E-step. Similarly, the BADMM module helps derive low-rank and sparse attention maps for the neural TPPs with self-attention layers. The structured responsibility matrices and attention maps, which work as learned event transition matrices, indicate event branches, e.g., inferring isolated events and those key events triggering many subsequent events. Experiments on both synthetic and real-world data show that plugging our BADMM module into existing TPP models and learning paradigms can improve model performance and provide us with interpretable structured event branches. The code is available at \url{https://github.com/qingmeiwangdaily/BADMM_TPP}.
Authors:Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, Mao Yang
Abstract:
We present rStar-Math to demonstrate that small language models (SLMs) can rival or even surpass the math reasoning capability of OpenAI o1, without distillation from superior models. rStar-Math achieves this by exercising "deep thinking" through Monte Carlo Tree Search (MCTS), where a math policy SLM performs test-time search guided by an SLM-based process reward model. rStar-Math introduces three innovations to tackle the challenges in training the two SLMs: (1) a novel code-augmented CoT data sythesis method, which performs extensive MCTS rollouts to generate step-by-step verified reasoning trajectories used to train the policy SLM; (2) a novel process reward model training method that avoids naïve step-level score annotation, yielding a more effective process preference model (PPM); (3) a self-evolution recipe in which the policy SLM and PPM are built from scratch and iteratively evolved to improve reasoning capabilities. Through 4 rounds of self-evolution with millions of synthesized solutions for 747k math problems, rStar-Math boosts SLMs' math reasoning to state-of-the-art levels. On the MATH benchmark, it improves Qwen2.5-Math-7B from 58.8% to 90.0% and Phi3-mini-3.8B from 41.4% to 86.4%, surpassing o1-preview by +4.5% and +0.9%. On the USA Math Olympiad (AIME), rStar-Math solves an average of 53.3% (8/15) of problems, ranking among the top 20% the brightest high school math students. Code and data will be available at https://github.com/microsoft/rStar.
Authors:Zhi Jin, Yuwei Qiu, Kaihao Zhang, Hongdong Li, Wenhan Luo
Abstract:
Recently, Transformer networks have demonstrated outstanding performance in the field of image restoration due to the global receptive field and adaptability to input. However, the quadratic computational complexity of Softmax-attention poses a significant limitation on its extensive application in image restoration tasks, particularly for high-resolution images. To tackle this challenge, we propose a novel variant of the Transformer. This variant leverages the Taylor expansion to approximate the Softmax-attention and utilizes the concept of norm-preserving mapping to approximate the remainder of the first-order Taylor expansion, resulting in a linear computational complexity. Moreover, we introduce a multi-branch architecture featuring multi-scale patch embedding into the proposed Transformer, which has four distinct advantages: 1) various sizes of the receptive field; 2) multi-level semantic information; 3) flexible shapes of the receptive field; 4) accelerated training and inference speed. Hence, the proposed model, named the second version of Taylor formula expansion-based Transformer (for short MB-TaylorFormer V2) has the capability to concurrently process coarse-to-fine features, capture long-distance pixel interactions with limited computational cost, and improve the approximation of the Taylor expansion remainder. Experimental results across diverse image restoration benchmarks demonstrate that MB-TaylorFormer V2 achieves state-of-the-art performance in multiple image restoration tasks, such as image dehazing, deraining, desnowing, motion deblurring, and denoising, with very little computational overhead. The source code is available at https://github.com/FVL2020/MB-TaylorFormerV2.
Authors:Xin Zhang, Xue Yang, Yuxuan Li, Jian Yang, Ming-Ming Cheng, Xiang Li
Abstract:
Rotated object detection has made significant progress in the optical remote sensing. However, advancements in the Synthetic Aperture Radar (SAR) field are laggard behind, primarily due to the absence of a large-scale dataset. Annotating such a dataset is inefficient and costly. A promising solution is to employ a weakly supervised model (e.g., trained with available horizontal boxes only) to generate pseudo-rotated boxes for reference before manual calibration. Unfortunately, the existing weakly supervised models exhibit limited accuracy in predicting the object's angle. Previous works attempt to enhance angle prediction by using angle resolvers that decouple angles into cosine and sine encodings. In this work, we first reevaluate these resolvers from a unified perspective of dimension mapping and expose that they share the same shortcomings: these methods overlook the unit cycle constraint inherent in these encodings, easily leading to prediction biases. To address this issue, we propose the Unit Cycle Resolver, which incorporates a unit circle constraint loss to improve angle prediction accuracy. Our approach can effectively improve the performance of existing state-of-the-art weakly supervised methods and even surpasses fully supervised models on existing optical benchmarks (i.e., DOTA-v1.0 dataset). With the aid of UCR, we further annotate and introduce RSAR, the largest multi-class rotated SAR object detection dataset to date. Extensive experiments on both RSAR and optical datasets demonstrate that our UCR enhances angle prediction accuracy. Our dataset and code can be found at: https://github.com/zhasion/RSAR.
Authors:PaweÅ Batorski, Jannik Brinkmann, Paul Swoboda
Abstract:
The Abstraction and Reasoning Corpus (ARC) evaluates general reasoning capabilities that are difficult for both machine learning models and combinatorial search methods. We propose a neuro-symbolic approach that combines a transformer for proposal generation with combinatorial search using a domain-specific language. The transformer narrows the search space by proposing promising search directions, which allows the combinatorial search to find the actual solution in short time. We pre-train the trainsformer with synthetically generated data. During test-time we generate additional task-specific training tasks and fine-tune our model. Our results surpass comparable state of the art on the ARC evaluation set by 27% and compare favourably on the ARC train set. We make our code and dataset publicly available at https://github.com/Batorskq/NSA.
Authors:Falguni Roy, Yiduo Shen, Na Zhao, Xiaofeng Ding, Md. Omar Faruk
Abstract:
The movie recommender system typically leverages user feedback to provide personalized recommendations that align with user preferences and increase business revenue. This study investigates the impact of gender stereotypes on such systems through a specific attack scenario. In this scenario, an attacker determines users' gender, a private attribute, by exploiting gender stereotypes about movie preferences and analyzing users' feedback data, which is either publicly available or observed within the system. The study consists of two phases. In the first phase, a user study involving 630 participants identified gender stereotypes associated with movie genres, which often influence viewing choices. In the second phase, four inference algorithms were applied to detect gender stereotypes by combining the findings from the first phase with users' feedback data. Results showed that these algorithms performed more effectively than relying solely on feedback data for gender inference. Additionally, we quantified the extent of gender stereotypes to evaluate their broader impact on digital computational science. The latter part of the study utilized two major movie recommender datasets: MovieLens 1M and Yahoo!Movie. Detailed experimental information is available on our GitHub repository: https://github.com/fr-iit/GSMRS
Authors:Sofie Verhees, Chandrasekhar Venkataraman, Mariya Ptashnyk
Abstract:
We derive and simulate a mathematical model for mechanotransduction related to the Rho GTPase signalling pathway. The model addresses the bidirectional coupling between signalling processes and cell mechanics. A numerical method based on bulk-surface finite elements is proposed for the approximation of the coupled system of nonlinear reaction-diffusion equations, defined inside the cell and on the cell membrane, and the equations of elasticity. Our simulation results illustrate novel emergent features such as the strong dependence of the dynamics on cell shape, a threshold-like response to changes in substrate stiffness, and the fact that coupling mechanics and signalling can lead to the robustness of cell deformation to larger changes in substrate stiffness, ensuring mechanical homeostasis in agreement with experiments.
Authors:Yucheng Ruan, Daniel J. Tan, See Kiong Ng, Ling Huang, Mengling Feng
Abstract:
Accurate Intensive Care Unit (ICU) outcome prediction is critical for improving patient treatment quality and ICU resource allocation. Existing research mainly focuses on structured data, e.g. demographics and vital signs, and lacks effective frameworks to integrate clinical notes from heterogeneous electronic health records (EHRs). This study aims to explore a multimodal framework based on belief function theory that can effectively fuse heterogeneous structured EHRs and free-text notes for accurate and reliable ICU outcome prediction. The fusion strategy accounts for prediction uncertainty within each modality and conflicts between multimodal data. The experiments on MIMIC-III dataset show that our framework provides more accurate and reliable predictions than existing approaches. Specifically, it outperformed the best baseline by 1.05%/1.02% in BACC, 9.74%/6.04% in F1 score, 1.28%/0.9% in AUROC, and 6.21%/2.68% in AUPRC for predicting mortality and PLOS, respectively. Additionally, it improved the reliability of the predictions with a 26.8%/15.1% reduction in the Brier score and a 25.0%/13.3% reduction in negative log-likelihood. By effectively reducing false positives, the model can aid in better allocation of medical resources in the ICU. Furthermore, the proposed method is very versatile and can be extended to analyzing multimodal EHRs for other clinical tasks. The code implementation is available on https://github.com/yuchengruan/evid_multimodal_ehr.
Authors:Feng Liu, Bao Deng, Rui Su, Lei Bai, Wanli Ouyang
Abstract:
Surface wave dispersion curve inversion is crucial for estimating subsurface shear-wave velocity (vs), yet traditional methods often face challenges related to computational cost, non-uniqueness, and sensitivity to initial models. While deep learning approaches show promise, many require large labeled datasets and struggle with real-world datasets, which often exhibit varying period ranges, missing values, and low signal-to-noise ratios. To address these limitations, this study introduces DispFormer, a transformer-based neural network for $v_s$ profile inversion from Rayleigh-wave phase and group dispersion curves. DispFormer processes dispersion data independently at each period, allowing it to handle varying lengths without requiring network modifications or strict alignment between training and testing datasets. A depth-aware training strategy is also introduced, incorporating physical constraints derived from the depth sensitivity of dispersion data. DispFormer is pre-trained on a global synthetic dataset and evaluated on two regional synthetic datasets using zero-shot and few-shot strategies. Results show that even without labeled data, the zero-shot DispFormer generates inversion profiles that outperform the interpolated reference model used as the pretraining target, providing a deployable initial model generator to assist traditional workflows. When partial labeled data available, the few-shot trained DispFormer surpasses traditional global search methods. Real-world tests further confirm that DispFormer generalizes well to dispersion data with varying lengths and achieves lower data residuals than reference models. These findings underscore the potential of DispFormer as a foundation model for dispersion curve inversion and demonstrate the advantages of integrating physics-informed deep learning into geophysical applications.
Authors:Michal Nohel, Constantin Ulrich, Jonathan Suprijadi, Tassilo Wald, Klaus Maier-Hein
Abstract:
This study presents an open-source toolkit to address critical challenges in preprocessing data for self-supervised learning (SSL) for 3D medical imaging, focusing on data privacy and computational efficiency. The toolkit comprises two main components: a segmentation network that delineates foreground regions to optimize data sampling and thus reduce training time, and a segmentation network that identifies anonymized regions, preventing erroneous supervision in reconstruction-based SSL methods. Experimental results demonstrate high robustness, with mean Dice scores exceeding 98.5 across all anonymization methods and surpassing 99.5 for foreground segmentation tasks, highlighting the efficacy of the toolkit in supporting SSL applications in 3D medical imaging for both CT and MRI images. The weights and code is available at https://github.com/MIC-DKFZ/Foreground-and-Anonymization-Area-Segmentation.
Authors:Xueqiang Ouyang, Jia Wei, Wenjie Huo, Xiaocong Wang, Rui Li, Jianlong Zhou
Abstract:
Temporal embryo images and parental fertility table indicators are both valuable for pregnancy prediction in \textbf{in vitro fertilization embryo transfer} (IVF-ET). However, current machine learning models cannot make full use of the complementary information between the two modalities to improve pregnancy prediction performance. In this paper, we propose a Decoupling Fusion Network called DeFusion to effectively integrate the multi-modal information for IVF-ET pregnancy prediction. Specifically, we propose a decoupling fusion module that decouples the information from the different modalities into related and unrelated information, thereby achieving a more delicate fusion. And we fuse temporal embryo images with a spatial-temporal position encoding, and extract fertility table indicator information with a table transformer. To evaluate the effectiveness of our model, we use a new dataset including 4046 cases collected from Southern Medical University. The experiments show that our model outperforms state-of-the-art methods. Meanwhile, the performance on the eye disease prediction dataset reflects the model's good generalization. Our code is available at https://github.com/Ou-Young-1999/DFNet.
Authors:Clément Fuchs, Maxime Zanella, Christophe De Vleeschouwer
Abstract:
Online test-time adaptation (OTTA) of vision-language models (VLMs) has recently garnered increased attention to take advantage of data observed along a stream to improve future predictions. Unfortunately, existing methods rely on dataset-specific hyperparameters, significantly limiting their adaptability to unseen tasks. In response, we propose Online Gaussian Adaptation (OGA), a novel method that models the likelihoods of visual features using Gaussian distributions and incorporates zero-shot priors into an interpretable Maximum A Posteriori (MAP) estimation framework with fixed hyper-parameters across all datasets. We demonstrate that OGA outperforms state-of-the-art methods on most datasets and runs. Additionally, we show that combining OTTA with popular few-shot techniques (a practical yet overlooked setting in prior research) is highly beneficial. Furthermore, our experimental study reveals that common OTTA evaluation protocols, which average performance over at most three runs per dataset, are inadequate due to the substantial variability observed across runs for all OTTA methods. Therefore, we advocate for more rigorous evaluation practices, including increasing the number of runs and considering additional quantitative metrics, such as our proposed Expected Tail Accuracy (ETA), calculated as the average accuracy in the worst 10% of runs. We hope these contributions will encourage more rigorous and diverse evaluation practices in the OTTA community. Code is available at https://github.com/cfuchs2023/OGA .
Authors:Qiang Sun, Sirui Li, Du Huynh, Mark Reynolds, Wei Liu
Abstract:
Question answering over temporal knowledge graphs (TKGs) is crucial for understanding evolving facts and relationships, yet its development is hindered by limited datasets and difficulties in generating custom QA pairs. We propose a novel categorization framework based on timeline-context relationships, along with \textbf{TimelineKGQA}, a universal temporal QA generator applicable to any TKGs. The code is available at: \url{https://github.com/PascalSun/TimelineKGQA} as an open source Python package.
Authors:Dong-Hai Zhu, Yu-Jie Xiong, Jia-Chen Zhang, Xi-Jiong Xie, Chun-Ming Xia
Abstract:
Chain-of-Thought (CoT) Prompting is a dominant paradigm in Large Language Models (LLMs) to enhance complex reasoning. It guides LLMs to present multi-step reasoning, rather than generating the final answer directly. However, CoT encounters difficulties when key information required for reasoning is implicit or missing. This occurs because CoT emphasizes the sequence of reasoning steps while overlooking the early extraction of essential information. We propose a pre-prompting method called Iterative Summarization Pre-Prompting (ISP^2) to refine LLM reasoning when key information is not explicitly provided. First, entities and their corresponding descriptions are extracted to form potential key information pairs. Next, we use a reliability rating to assess these pairs, then merge the two lowest-ranked pairs into a new entity description. This process is repeated until a unique key information pair is obtained. Finally, that pair, along with the original question, is fed into LLMs to produce the answer. Extensive experiments demonstrate a 7.1% improvement compared to existing methods. Unlike traditional prompting, ISP^2 adopts an inductive approach with pre-prompting, offering flexible integration into diverse reasoning frameworks. The code is available at https://github.com/zdhgreat/ISP-2.
Authors:Miao Rang, Zhenni Bi, Chuanjian Liu, Yehui Tang, Kai Han, Yunhe Wang
Abstract:
Multimodal vision language models (VLMs) have made significant progress with the support of continuously increasing model sizes and data volumes. Running VLMs on edge devices has become a challenge for their widespread application. There are several efficient VLM efforts, but they often sacrifice linguistic capabilities to enhance multimodal abilities, or require extensive training. To address this quandary,we introduce the innovative framework of Efficient Vision Language Models with Elastic Visual Experts (Eve). By strategically incorporating adaptable visual expertise at multiple stages of training, Eve strikes a balance between preserving linguistic abilities and augmenting multimodal capabilities. This balanced approach results in a versatile model with only 1.8B parameters that delivers significant improvements in both multimodal and linguistic tasks. Notably, in configurations below 3B parameters, Eve distinctly outperforms in language benchmarks and achieves state-of-the-art results 68.87% in VLM Benchmarks. Additionally, its multimodal accuracy outstrips that of the larger 7B LLaVA-1.5 model. Our code is available at https://github.com/rangmiao/Eve.
Authors:Ziming Luo, Zonglin Yang, Zexin Xu, Wei Yang, Xinya Du
Abstract:
In recent years, the rapid advancement of Large Language Models (LLMs) has transformed the landscape of scientific research, offering unprecedented support across various stages of the research cycle. This paper presents the first systematic survey dedicated to exploring how LLMs are revolutionizing the scientific research process. We analyze the unique roles LLMs play across four critical stages of research: hypothesis discovery, experiment planning and implementation, scientific writing, and peer reviewing. Our review comprehensively showcases the task-specific methodologies and evaluation benchmarks. By identifying current challenges and proposing future research directions, this survey not only highlights the transformative potential of LLMs, but also aims to inspire and guide researchers and practitioners in leveraging LLMs to advance scientific inquiry. Resources are available at the following repository: https://github.com/du-nlp-lab/LLM4SR
Authors:Hyogon Ryu, NaHyeon Park, Hyunjung Shim
Abstract:
Despite the widespread use of text-to-image diffusion models across various tasks, their computational and memory demands limit practical applications. To mitigate this issue, quantization of diffusion models has been explored. It reduces memory usage and computational costs by compressing weights and activations into lower-bit formats. However, existing methods often struggle to preserve both image quality and text-image alignment, particularly in lower-bit($<$ 8bits) quantization. In this paper, we analyze the challenges associated with quantizing text-to-image diffusion models from a distributional perspective. Our analysis reveals that activation outliers play a crucial role in determining image quality. Additionally, we identify distinctive patterns in cross-attention scores, which significantly affects text-image alignment. To address these challenges, we propose Distribution-aware Group Quantization (DGQ), a method that identifies and adaptively handles pixel-wise and channel-wise outliers to preserve image quality. Furthermore, DGQ applies prompt-specific logarithmic quantization scales to maintain text-image alignment. Our method demonstrates remarkable performance on datasets such as MS-COCO and PartiPrompts. We are the first to successfully achieve low-bit quantization of text-to-image diffusion models without requiring additional fine-tuning of weight quantization parameters. Code is available at https://github.com/ugonfor/DGQ.
Authors:Youran Zhou, Mohamed Reda Bouadjenek, Jonathan Wells, Sunil Aryal
Abstract:
Handling incomplete and heterogeneous data remains a central challenge in real-world machine learning, where missing values may follow complex mechanisms (MCAR, MAR, MNAR) and features can be of mixed types (numerical and categorical). Existing methods often rely on imputation, which may introduce bias or privacy risks, or fail to jointly address data heterogeneity and structured missingness. We propose the \textbf{H}eterogeneous \textbf{I}ncomplete \textbf{P}robability \textbf{M}ass \textbf{K}ernel (\textbf{HI-PMK}), a novel data-dependent representation learning approach that eliminates the need for imputation. HI-PMK introduces two key innovations: (1) a probability mass-based dissimilarity measure that adapts to local data distributions across heterogeneous features (numerical, ordinal, nominal), and (2) a missingness-aware uncertainty strategy (MaxU) that conservatively handles all three missingness mechanisms by assigning maximal plausible dissimilarity to unobserved entries. Our approach is privacy-preserving, scalable, and readily applicable to downstream tasks such as classification and clustering. Extensive experiments on over 15 benchmark datasets demonstrate that HI-PMK consistently outperforms traditional imputation-based pipelines and kernel methods across a wide range of missing data settings. Code is available at: https://github.com/echoid/Incomplete-Heter-Kernel
Authors:Hyungjin Chung, Dohun Lee, Zihui Wu, Byung-Hoon Kim, Katherine L. Bouman, Jong Chul Ye
Abstract:
Compressed sensing MRI seeks to accelerate MRI acquisition processes by sampling fewer k-space measurements and then reconstructing the missing data algorithmically. The success of these approaches often relies on strong priors or learned statistical models. While recent diffusion model-based priors have shown great potential, previous methods typically ignore clinically available metadata (e.g. patient demographics, imaging parameters, slice-specific information). In practice, metadata contains meaningful cues about the anatomy and acquisition protocol, suggesting it could further constrain the reconstruction problem. In this work, we propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process. We train a pixel-space diffusion model directly on minimally processed, complex-valued MRI images. During inference, metadata is converted into a structured text prompt and fed to the model via CLIP text embeddings. By conditioning the prior on metadata, we unlock more accurate reconstructions and show consistent gains across multiple datasets, acceleration factors, and undersampling patterns. Our experiments demonstrate that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance. This work highlights the untapped potential of leveraging clinical context for inverse problems and opens a new direction for metadata-driven MRI reconstruction.
Authors:Yuze Wang, Rong Xiao, Haifeng Li, Mariana Belgiu, Chao Tao
Abstract:
In remote sensing scene classification, leveraging the transfer methods with well-trained optical models is an efficient way to overcome label scarcity. However, cloud contamination leads to optical information loss and significant impacts on feature distribution, challenging the reliability and stability of transferred target models. Common solutions include cloud removal for optical data or directly using Synthetic aperture radar (SAR) data in the target domain. However, cloud removal requires substantial auxiliary data for support and pre-training, while directly using SAR disregards the unobstructed portions of optical data. This study presents a scene classification transfer method that synergistically combines multi-modality data, which aims to transfer the source domain model trained on cloudfree optical data to the target domain that includes both cloudy optical and SAR data at low cost. Specifically, the framework incorporates two parts: (1) the collaborative transfer strategy, based on knowledge distillation, enables the efficient prior knowledge transfer across heterogeneous data; (2) the information regulation mechanism (IRM) is proposed to address the modality imbalance issue during transfer. It employs auxiliary models to measure the contribution discrepancy of each modality, and automatically balances the information utilization of modalities during the target model learning process at the sample-level. The transfer experiments were conducted on simulated and real cloud datasets, demonstrating the superior performance of the proposed method compared to other solutions in cloud-covered scenarios. We also verified the importance and limitations of IRM, and further discussed and visualized the modality imbalance problem during the model transfer. Codes are available at https://github.com/wangyuze-csu/ESCCS
Authors:Parv Kapoor, Kazuki Mizuta, Eunsuk Kang, Karen Leung
Abstract:
Signal Temporal Logic (STL) offers a concise yet expressive framework for specifying and reasoning about spatio-temporal behaviors of robotic systems. Attractively, STL admits the notion of robustness, the degree to which an input signal satisfies or violates an STL specification, thus providing a nuanced evaluation of system performance. In particular, the differentiability of STL robustness enables direct integration to robotic workflows that rely on gradient-based optimization, such as trajectory optimization and deep learning. However, existing approaches to evaluating and differentiating STL robustness rely on recurrent computations, which become inefficient with longer sequences, limiting their use in time-sensitive applications. In this paper, we present STLCG++, a masking-based approach that parallelizes STL robustness evaluation and backpropagation across timesteps, \revised{achieving more than 1000$\times$ faster computation time than the recurrent approach (STLCG++).}{achieving significant speed-ups compared to a recurrent approach.} We also introduce a smoothing technique to enable the differentiation of time interval bounds, thereby expanding STL's applicability in gradient-based optimization tasks involving spatial and temporal variables. Finally, we demonstrate STLCG++'s benefits through three robotics use cases and provide JAX and PyTorch libraries for seamless integration into modern robotics workflows. Project website with demo and code: https://uw-ctrl.github.io/stlcg/.
Authors:Sungjae Park, Seungho Lee, Mingi Choi, Jiye Lee, Jeonghwan Kim, Jisoo Kim, Hanbyul Joo
Abstract:
We present a method for teaching dexterous manipulation tasks to robots from human hand motion demonstrations. Unlike existing approaches that solely rely on kinematics information without taking into account the plausibility of robot and object interaction, our method directly infers plausible robot manipulation actions from human motion demonstrations. To address the embodiment gap between the human hand and the robot system, our approach learns a joint motion manifold that maps human hand movements, robot hand actions, and object movements in 3D, enabling us to infer one motion component from others. Our key idea is the generation of pseudo-supervision triplets, which pair human, object, and robot motion trajectories synthetically. Through real-world experiments with robot hand manipulation, we demonstrate that our data-driven retargeting method significantly outperforms conventional retargeting techniques, effectively bridging the embodiment gap between human and robotic hands. Website at https://rureadyo.github.io/MocapRobot/.
Authors:Siddharth Joshi, Besmira Nushi, Vidhisha Balachandran, Varun Chandrasekaran, Vibhav Vineet, Neel Joshi, Baharan Mirzasoleiman
Abstract:
Vision-language models (VLMs) are highly effective but often underperform on specialized tasks; for example, Llava-1.5 struggles with chart and diagram understanding due to scarce task-specific training data. Existing training data, sourced from general-purpose datasets, fails to capture the nuanced details needed for these tasks. We introduce MM-Gen, a scalable method that generates task-specific, high-quality synthetic text for candidate images by leveraging stronger models. MM-Gen employs a three-stage targeted process: partitioning data into subgroups, generating targeted text based on task descriptions, and filtering out redundant and outlier data. Fine-tuning VLMs with data generated by MM-Gen leads to significant performance gains, including 29% on spatial reasoning and 15% on diagram understanding for Llava-1.5 (7B). Compared to human-curated caption data, MM-Gen achieves up to 1.6x better improvements for the original models, proving its effectiveness in enhancing task-specific VLM performance and bridging the gap between general-purpose datasets and specialized requirements. Code available at https://github.com/sjoshi804/MM-Gen.
Authors:Kam Woh Ng, Jing Yang, Jia Wei Sii, Jiankang Deng, Chee Seng Chan, Yi-Zhe Song, Tao Xiang, Xiatian Zhu
Abstract:
We present Chirpy3D, a novel approach for fine-grained 3D object generation, tackling the challenging task of synthesizing creative 3D objects in a zero-shot setting, with access only to unposed 2D images of seen categories. Without structured supervision -- such as camera poses, 3D part annotations, or object-specific labels -- the model must infer plausible 3D structures, capture fine-grained details, and generalize to novel objects using only category-level labels from seen categories. To address this, Chirpy3D introduces a multi-view diffusion model that decomposes training objects into anchor parts in an unsupervised manner, representing the latent space of both seen and unseen parts as continuous distributions. This allows smooth interpolation and flexible recombination of parts to generate entirely new objects with species-specific details. A self-supervised feature consistency loss further ensures structural and semantic coherence. The result is the first system capable of generating entirely novel 3D objects with species-specific fine-grained details through flexible part sampling and composition. Our experiments demonstrate that Chirpy3D surpasses existing methods in generating creative 3D objects with higher quality and fine-grained details. Code will be released at https://github.com/kamwoh/chirpy3d.
Authors:Xiaoqing Zhang, Ang Lv, Yuhan Liu, Flood Sung, Wei Liu, Jian Luan, Shuo Shang, Xiuying Chen, Rui Yan
Abstract:
Large language models (LLMs) excel at few-shot in-context learning (ICL) without requiring parameter updates. However, as ICL demonstrations increase from a few to many, performance tends to plateau and eventually decline. We identify two primary causes for this trend: the suboptimal negative log-likelihood (NLL) optimization objective and the incremental data noise. To address these issues, we introduce \textit{DrICL}, a novel optimization method that enhances model performance through \textit{Differentiated} and \textit{Reweighting} objectives. Globally, DrICL utilizes differentiated learning to optimize the NLL objective, ensuring that many-shot performance surpasses zero-shot levels. Locally, it dynamically adjusts the weighting of many-shot demonstrations by leveraging cumulative advantages inspired by reinforcement learning, thereby mitigating the impact of noisy data. Recognizing the lack of multi-task datasets with diverse many-shot distributions, we develop the \textit{Many-Shot ICL Benchmark} (ICL-50)-a large-scale benchmark of 50 tasks that cover shot numbers from 1 to 350 within sequences of up to 8,000 tokens-for both fine-tuning and evaluation purposes. Experimental results demonstrate that LLMs enhanced with DrICL achieve significant improvements in many-shot setups across various tasks, including both in-domain and out-of-domain scenarios. We release the code and dataset hoping to facilitate further research in many-shot ICL\footnote{https://github.com/xiaoqzhwhu/DrICL}.
Authors:Yuqi Li, Xingyou Lin, Kai Zhang, Chuanguang Yang, Zhongliang Guo, Jianping Gou, Yanli Li
Abstract:
Federated Learning (FL) provides novel solutions for machine learning (ML)-based lithography hotspot detection (LHD) under distributed privacy-preserving settings. Currently, two research pipelines have been investigated to aggregate local models and achieve global consensus, including parameter/nonparameter based (also known as knowledge distillation, namely KD). While these two kinds of methods show effectiveness in specific scenarios, we note they have not fully utilized and transferred the information learned, leaving the potential of FL-based LDH remains unexplored. Thus, we propose FedKDhybrid in this study to mitigate the research gap. Specifically, FedKD-hybrid clients agree on several identical layers across all participants and a public dataset for achieving global consensus. During training, the trained local model will be evaluated on the public dataset, and the generated logits will be uploaded along with the identical layer parameters. The aggregated information is consequently used to update local models via the public dataset as a medium. We compare our proposed FedKD-hybrid with several state-of-the-art (SOTA) FL methods under ICCAD-2012 and FAB (real-world collected) datasets with different settings; the experimental results demonstrate the superior performance of the FedKD-hybrid algorithm. Our code is available at https://github.com/itsnotacie/NN-FedKD-hybrid
Authors:Rui Liu, Hongyu Yuan, Haizhou Li
Abstract:
Unlike traditional Automatic Speech Recognition (ASR), Audio-Visual Speech Recognition (AVSR) takes audio and visual signals simultaneously to infer the transcription. Recent studies have shown that Large Language Models (LLMs) can be effectively used for Generative Error Correction (GER) in ASR by predicting the best transcription from ASR-generated N-best hypotheses. However, these LLMs lack the ability to simultaneously understand audio and visual, making the GER approach challenging to apply in AVSR. In this work, we propose a novel GER paradigm for AVSR, termed AVGER, that follows the concept of ``listening and seeing again''. Specifically, we first use the powerful AVSR system to read the audio and visual signals to get the N-Best hypotheses, and then use the Q-former-based Multimodal Synchronous Encoder to read the audio and visual information again and convert them into an audio and video compression representation respectively that can be understood by LLM. Afterward, the audio-visual compression representation and the N-Best hypothesis together constitute a Cross-modal Prompt to guide the LLM in producing the best transcription. In addition, we also proposed a Multi-Level Consistency Constraint training criterion, including logits-level, utterance-level and representations-level, to improve the correction accuracy while enhancing the interpretability of audio and visual compression representations. The experimental results on the LRS3 dataset show that our method outperforms current mainstream AVSR systems. The proposed AVGER can reduce the Word Error Rate (WER) by 24% compared to them. Code and models can be found at: https://github.com/CircleRedRain/AVGER.
Authors:Haobo Yuan, Xiangtai Li, Tao Zhang, Zilong Huang, Shilin Xu, Shunping Ji, Yunhai Tong, Lu Qi, Jiashi Feng, Ming-Hsuan Yang
Abstract:
This work presents Sa2VA, the first unified model for dense grounded understanding of both images and videos. Unlike existing multi-modal large language models, which are often limited to specific modalities and tasks, Sa2VA supports a wide range of image and video tasks, including referring segmentation and conversation, with minimal one-shot instruction tuning. Sa2VA combines SAM-2, a foundation video segmentation model, with LLaVA, an advanced vision-language model, and unifies text, image, and video into a shared LLM token space. Using the LLM, Sa2VA generates instruction tokens that guide SAM-2 in producing precise masks, enabling a grounded, multi-modal understanding of both static and dynamic visual content. Additionally, we introduce Ref-SAV, an auto-labeled dataset containing over 72k object expressions in complex video scenes, designed to boost model performance. We also manually validate 2k video objects in the Ref-SAV datasets to benchmark referring video object segmentation in complex environments. Experiments show that Sa2VA achieves state-of-the-art across multiple tasks, particularly in referring video object segmentation, highlighting its potential for complex real-world applications.
Authors:Sagi Polaczek, Yuval Alaluf, Elad Richardson, Yael Vinker, Daniel Cohen-Or
Abstract:
Vector graphics are essential in design, providing artists with a versatile medium for creating resolution-independent and highly editable visual content. Recent advancements in vision-language and diffusion models have fueled interest in text-to-vector graphics generation. However, existing approaches often suffer from over-parameterized outputs or treat the layered structure - a core feature of vector graphics - as a secondary goal, diminishing their practical use. Recognizing the importance of layered SVG representations, we propose NeuralSVG, an implicit neural representation for generating vector graphics from text prompts. Inspired by Neural Radiance Fields (NeRFs), NeuralSVG encodes the entire scene into the weights of a small MLP network, optimized using Score Distillation Sampling (SDS). To encourage a layered structure in the generated SVG, we introduce a dropout-based regularization technique that strengthens the standalone meaning of each shape. We additionally demonstrate that utilizing a neural representation provides an added benefit of inference-time control, enabling users to dynamically adapt the generated SVG based on user-provided inputs, all with a single learned representation. Through extensive qualitative and quantitative evaluations, we demonstrate that NeuralSVG outperforms existing methods in generating structured and flexible SVG.
Authors:Satchel French, Faith Zhu, Amish Jain, Naimul Khan
Abstract:
Automated viewpoint classification in echocardiograms can help under-resourced clinics and hospitals in providing faster diagnosis and screening when expert technicians may not be available. We propose a novel approach towards echocardiographic viewpoint classification. We show that treating viewpoint classification as video classification rather than image classification yields advantage. We propose a CNN-GRU architecture with a novel temporal feature weaving method, which leverages both spatial and temporal information to yield a 4.33\% increase in accuracy over baseline image classification while using only four consecutive frames. The proposed approach incurs minimal computational overhead. Additionally, we publish the Neonatal Echocardiogram Dataset (NED), a professionally-annotated dataset providing sixteen viewpoints and associated echocardipgraphy videos to encourage future work and development in this field. Code available at: https://github.com/satchelfrench/NED
Authors:Xiangrui Meng, Ying Tan
Abstract:
Swarm intelligence optimization algorithms have gained significant attention due to their ability to solve complex optimization problems. However, the efficiency of optimization in large-scale problems limits the use of related methods. This paper presents a GPU-accelerated version of the Multi-Guiding Spark Fireworks Algorithm (MGFWA), which significantly improves the computational efficiency compared to its traditional CPU-based counterpart. We benchmark the GPU-MGFWA on several neural network black-box optimization problems and demonstrate its superior performance in terms of both speed and solution quality. By leveraging the parallel processing power of modern GPUs, the proposed GPU-MGFWA results in faster convergence and reduced computation time for large-scale optimization tasks. The proposed implementation offers a promising approach to accelerate swarm intelligence algorithms, making them more suitable for real-time applications and large-scale industrial problems. Source code is released at https://github.com/mxxxr/MGFWA.
Authors:Hao Zheng, Xinyan Guan, Hao Kong, Jia Zheng, Weixiang Zhou, Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, Le Sun
Abstract:
Automatically generating presentations from documents is a challenging task that requires accommodating content quality, visual appeal, and structural coherence. Existing methods primarily focus on improving and evaluating the content quality in isolation, overlooking visual appeal and structural coherence, which limits their practical applicability. To address these limitations, we propose PPTAgent, which comprehensively improves presentation generation through a two-stage, edit-based approach inspired by human workflows. PPTAgent first analyzes reference presentations to extract slide-level functional types and content schemas, then drafts an outline and iteratively generates editing actions based on selected reference slides to create new slides. To comprehensively evaluate the quality of generated presentations, we further introduce PPTEval, an evaluation framework that assesses presentations across three dimensions: Content, Design, and Coherence. Results demonstrate that PPTAgent significantly outperforms existing automatic presentation generation methods across all three dimensions.
Authors:Yuechen Zhang, Yaoyang Liu, Bin Xia, Bohao Peng, Zexin Yan, Eric Lo, Jiaya Jia
Abstract:
We present Magic Mirror, a framework for generating identity-preserved videos with cinematic-level quality and dynamic motion. While recent advances in video diffusion models have shown impressive capabilities in text-to-video generation, maintaining consistent identity while producing natural motion remains challenging. Previous methods either require person-specific fine-tuning or struggle to balance identity preservation with motion diversity. Built upon Video Diffusion Transformers, our method introduces three key components: (1) a dual-branch facial feature extractor that captures both identity and structural features, (2) a lightweight cross-modal adapter with Conditioned Adaptive Normalization for efficient identity integration, and (3) a two-stage training strategy combining synthetic identity pairs with video data. Extensive experiments demonstrate that Magic Mirror effectively balances identity consistency with natural motion, outperforming existing methods across multiple metrics while requiring minimal parameters added. The code and model will be made publicly available at: https://github.com/dvlab-research/MagicMirror/
Authors:Jiakang Yuan, Xiangchao Yan, Shiyang Feng, Bo Zhang, Tao Chen, Botian Shi, Wanli Ouyang, Yu Qiao, Lei Bai, Bowen Zhou
Abstract:
The scientific research paradigm is undergoing a profound transformation owing to the development of Artificial Intelligence (AI). Recent works demonstrate that various AI-assisted research methods can largely improve research efficiency by improving data analysis, accelerating computation, and fostering novel idea generation. To further move towards the ultimate goal (i.e., automatic scientific research), in this paper, we introduce Dolphin, a closed-loop LLM-driven framework to enhance the automation level of scientific research. Dolphin first generates novel ideas based on feedback from previous experiments and relevant papers ranked by the topic and task attributes. Then, the generated ideas can be implemented using a code template refined and debugged with the designed exception-traceback-guided local code structure. Finally, Dolphin automatically analyzes the results of each idea and feeds the results back to the next round of idea generation. Experiments are conducted on the benchmark datasets of different topics and a subset of MLE-bench. Results show that Dolphin can continuously improve the performance of the input topic in a loop. We highlight that Dolphin can automatically propose methods that are comparable to the state-of-the-art in some tasks such as 3D point classification.
Authors:Shaolei Zhang, Qingkai Fang, Zhe Yang, Yang Feng
Abstract:
The advent of real-time large multimodal models (LMMs) like GPT-4o has sparked considerable interest in efficient LMMs. LMM frameworks typically encode visual inputs into vision tokens (continuous representations) and integrate them and textual instructions into the context of large language models (LLMs), where large-scale parameters and numerous context tokens (predominantly vision tokens) result in substantial computational overhead. Previous efforts towards efficient LMMs always focus on replacing the LLM backbone with smaller models, while neglecting the crucial issue of token quantity. In this paper, we introduce LLaVA-Mini, an efficient LMM with minimal vision tokens. To achieve a high compression ratio of vision tokens while preserving visual information, we first analyze how LMMs understand vision tokens and find that most vision tokens only play a crucial role in the early layers of LLM backbone, where they mainly fuse visual information into text tokens. Building on this finding, LLaVA-Mini introduces modality pre-fusion to fuse visual information into text tokens in advance, thereby facilitating the extreme compression of vision tokens fed to LLM backbone into one token. LLaVA-Mini is a unified large multimodal model that can support the understanding of images, high-resolution images, and videos in an efficient manner. Experiments across 11 image-based and 7 video-based benchmarks demonstrate that LLaVA-Mini outperforms LLaVA-v1.5 with just 1 vision token instead of 576. Efficiency analyses reveal that LLaVA-Mini can reduce FLOPs by 77%, deliver low-latency responses within 40 milliseconds, and process over 10,000 frames of video on the GPU hardware with 24GB of memory.
Authors:Zekai Gu, Rui Yan, Jiahao Lu, Peng Li, Zhiyang Dou, Chenyang Si, Zhen Dong, Qifeng Liu, Cheng Lin, Ziwei Liu, Wenping Wang, Yuan Liu
Abstract:
Diffusion models have demonstrated impressive performance in generating high-quality videos from text prompts or images. However, precise control over the video generation process, such as camera manipulation or content editing, remains a significant challenge. Existing methods for controlled video generation are typically limited to a single control type, lacking the flexibility to handle diverse control demands. In this paper, we introduce Diffusion as Shader (DaS), a novel approach that supports multiple video control tasks within a unified architecture. Our key insight is that achieving versatile video control necessitates leveraging 3D control signals, as videos are fundamentally 2D renderings of dynamic 3D content. Unlike prior methods limited to 2D control signals, DaS leverages 3D tracking videos as control inputs, making the video diffusion process inherently 3D-aware. This innovation allows DaS to achieve a wide range of video controls by simply manipulating the 3D tracking videos. A further advantage of using 3D tracking videos is their ability to effectively link frames, significantly enhancing the temporal consistency of the generated videos. With just 3 days of fine-tuning on 8 H800 GPUs using less than 10k videos, DaS demonstrates strong control capabilities across diverse tasks, including mesh-to-video generation, camera control, motion transfer, and object manipulation.
Authors:Yindu Su, Huike Zou, Lin Sun, Ting Zhang, Haiyang Yang, Liyu Chen, David Lo, Qingheng Zhang, Shuguang Han, Jufeng Chen
Abstract:
Product Attribute Value Identification (PAVI) involves identifying attribute values from product profiles, a key task for improving product search, recommendation, and business analytics on e-commerce platforms. However, existing PAVI methods face critical challenges, such as inferring implicit values, handling out-of-distribution (OOD) values, and producing normalized outputs. To address these limitations, we introduce Taxonomy-Aware Contrastive Learning Retrieval (TACLR), the first retrieval-based method for PAVI. TACLR formulates PAVI as an information retrieval task by encoding product profiles and candidate values into embeddings and retrieving values based on their similarity. It leverages contrastive training with taxonomy-aware hard negative sampling and employs adaptive inference with dynamic thresholds. TACLR offers three key advantages: (1) it effectively handles implicit and OOD values while producing normalized outputs; (2) it scales to thousands of categories, tens of thousands of attributes, and millions of values; and (3) it supports efficient inference for high-load industrial deployment. Extensive experiments on proprietary and public datasets validate the effectiveness and efficiency of TACLR. Further, it has been successfully deployed on the real-world e-commerce platform Xianyu, processing millions of product listings daily with frequently updated, large-scale attribute taxonomies. We release the code to facilitate reproducibility and future research at https://github.com/SuYindu/TACLR.
Authors:Zhe Li, Man-wai Mak, Mert Pilanci, Hung-yi Lee, Helen Meng
Abstract:
Previous research has shown that the principal singular vectors of a pre-trained model's weight matrices capture critical knowledge. In contrast, those associated with small singular values may contain noise or less reliable information. As a result, the LoRA-based parameter-efficient fine-tuning (PEFT) approach, which does not constrain the use of the spectral space, may not be effective for tasks that demand high representation capacity. In this study, we enhance existing PEFT techniques by incorporating the spectral information of pre-trained weight matrices into the fine-tuning process. We investigate spectral adaptation strategies with a particular focus on the additive adjustment of top singular vectors. This is accomplished by applying singular value decomposition (SVD) to the pre-trained weight matrices and restricting the fine-tuning within the top spectral space. Extensive speaker verification experiments on VoxCeleb1 and CN-Celeb1 demonstrate enhanced tuning performance with the proposed approach. Code is released at https://github.com/lizhepolyu/SpectralFT.
Authors:Jiayao Gu, Liting Chen, Yihong Li
Abstract:
Data selection is critical for enhancing the performance of language models, particularly when aligning training datasets with a desired target distribution. This study explores the effects of different data selection methods and feature types on model performance. We evaluate whether selecting data subsets can influence downstream tasks, whether n-gram features improve alignment with target distributions, and whether embedding-based neural features provide complementary benefits. Through comparative experiments using baseline random selection methods and distribution aligned approaches, we provide insights into the interplay between data selection strategies and model training efficacy. All code for this study can be found on \href{https://github.com/jgu13/HIR-Hybrid-Importance-Resampling-for-Language-Models}{github repository}.
Authors:Eduarda Caldeira, Guray Ozgur, Tahar Chettaoui, Marija Ivanovska, Peter Peer, Fadi Boutros, Vitomir Struc, Naser Damer
Abstract:
Despite the considerable performance improvements of face recognition algorithms in recent years, the same scientific advances responsible for this progress can also be used to create efficient ways to attack them, posing a threat to their secure deployment. Morphing attack detection (MAD) systems aim to detect a specific type of threat, morphing attacks, at an early stage, preventing them from being considered for verification in critical processes. Foundation models (FM) learn from extensive amounts of unlabelled data, achieving remarkable zero-shot generalization to unseen domains. Although this generalization capacity might be weak when dealing with domain-specific downstream tasks such as MAD, FMs can easily adapt to these settings while retaining the built-in knowledge acquired during pre-training. In this work, we recognize the potential of FMs to perform well in the MAD task when properly adapted to its specificities. To this end, we adapt FM CLIP architectures with LoRA weights while simultaneously training a classification header. The proposed framework, MADation surpasses our alternative FM and transformer-based frameworks and constitutes the first adaption of FMs to the MAD task. MADation presents competitive results with current MAD solutions in the literature and even surpasses them in several evaluation scenarios. To encourage reproducibility and facilitate further research in MAD, we publicly release the implementation of MADation at https://github.com/gurayozgur/MADation
Authors:Xinbin Yuan, Zhaohui Zheng, Yuxuan Li, Xialei Liu, Li Liu, Xiang Li, Qibin Hou, Ming-Ming Cheng
Abstract:
While witnessed with rapid development, remote sensing object detection remains challenging for detecting high aspect ratio objects. This paper shows that large strip convolutions are good feature representation learners for remote sensing object detection and can detect objects of various aspect ratios well. Based on large strip convolutions, we build a new network architecture called Strip R-CNN, which is simple, efficient, and powerful. Unlike recent remote sensing object detectors that leverage large-kernel convolutions with square shapes, our Strip R-CNN takes advantage of sequential orthogonal large strip convolutions in our backbone network StripNet to capture spatial information. In addition, we improve the localization capability of remote-sensing object detectors by decoupling the detection heads and equipping the localization branch with strip convolutions in our strip head. Extensive experiments on several benchmarks, for example DOTA, FAIR1M, HRSC2016, and DIOR, show that our Strip R-CNN can greatly improve previous work. In particular, our 30M model achieves 82.75% mAP on DOTA-v1.0, setting a new state-of-the-art record. Our code will be made publicly available.Code is available at https://github.com/YXB-NKU/Strip-R-CNN.
Authors:Maxime Zanella, Clément Fuchs, Christophe De Vleeschouwer, Ismail Ben Ayed
Abstract:
The zero-shot capabilities of Vision-Language Models (VLMs) have been widely leveraged to improve predictive performance. However, previous works on transductive or test-time adaptation (TTA) often make strong assumptions about the data distribution, such as the presence of all classes. Our work challenges these favorable deployment scenarios, and introduces a more realistic evaluation framework, including: (i) a variable number of effective classes for adaptation within a single batch, and (ii) non-i.i.d. batches of test samples in online adaptation settings. We provide comprehensive evaluations, comparisons, and ablation studies that demonstrate how current transductive or TTA methods for VLMs systematically compromise the models' initial zero-shot robustness across various realistic scenarios, favoring performance gains under advantageous assumptions about the test samples' distributions. Furthermore, we introduce StatA, a versatile method that could handle a wide range of deployment scenarios, including those with a variable number of effective classes at test time. Our approach incorporates a novel regularization term designed specifically for VLMs, which acts as a statistical anchor preserving the initial text-encoder knowledge, particularly in low-data regimes. Code available at https://github.com/MaxZanella/StatA.
Authors:Lezhong Wang, Duc Minh Tran, Ruiqi Cui, Thomson TG, Anders Bjorholm Dahl, Siavash Arjomand Bigdeli, Jeppe Revall Frisvad, Manmohan Chandraker
Abstract:
Achieving physically consistent image editing remains a significant challenge in computer vision. Existing image editing methods typically rely on neural networks, which struggle to accurately handle shadows and refractions. Conversely, physics-based inverse rendering often requires multi-view optimization, limiting its practicality in single-image scenarios. In this paper, we propose Materialist, a method combining a learning-based approach with physically based progressive differentiable rendering. Given an image, our method leverages neural networks to predict initial material properties. Progressive differentiable rendering is then used to optimize the environment map and refine the material properties with the goal of closely matching the rendered result to the input image. Our approach enables a range of applications, including material editing, object insertion, and relighting, while also introducing an effective method for editing material transparency without requiring full scene geometry. Furthermore, Our envmap estimation method also achieves state-of-the-art performance, further enhancing the accuracy of image editing task. Experiments demonstrate strong performance across synthetic and real-world datasets, excelling even on challenging out-of-domain images. Project website: https://lez-s.github.io/materialist_project/
Authors:Sangwoon Kwak, Joonsoo Kim, Jun Young Jeong, Won-Sik Cheong, Jihyong Oh, Munchurl Kim
Abstract:
3D Gaussian Splatting (3DGS) has made significant strides in scene representation and neural rendering, with intense efforts focused on adapting it for dynamic scenes. Despite delivering remarkable rendering quality and speed, existing methods struggle with storage demands and representing complex real-world motions. To tackle these issues, we propose MoDecGS, a memory-efficient Gaussian splatting framework designed for reconstructing novel views in challenging scenarios with complex motions. We introduce GlobaltoLocal Motion Decomposition (GLMD) to effectively capture dynamic motions in a coarsetofine manner. This approach leverages Global Canonical Scaffolds (Global CS) and Local Canonical Scaffolds (Local CS), extending static Scaffold representation to dynamic video reconstruction. For Global CS, we propose Global Anchor Deformation (GAD) to efficiently represent global dynamics along complex motions, by directly deforming the implicit Scaffold attributes which are anchor position, offset, and local context features. Next, we finely adjust local motions via the Local Gaussian Deformation (LGD) of Local CS explicitly. Additionally, we introduce Temporal Interval Adjustment (TIA) to automatically control the temporal coverage of each Local CS during training, allowing MoDecGS to find optimal interval assignments based on the specified number of temporal segments. Extensive evaluations demonstrate that MoDecGS achieves an average 70% reduction in model size over stateoftheart methods for dynamic 3D Gaussians from realworld dynamic videos while maintaining or even improving rendering quality.
Authors:Avishai Elmakies, Omri Abend, Yossi Adi
Abstract:
In this paper, we introduce an unsupervised approach for Speech Segmentation, which builds on previously researched approaches, e.g., Speaker Diarization, while being applicable to an inclusive set of acoustic-semantic distinctions, paving a path towards a general Unsupervised Speech Segmentation approach. Unlike traditional speech and audio segmentation, which mainly focuses on spectral changes in the input signal, e.g., phone segmentation, our approach tries to segment the spoken utterance into chunks with differing acoustic-semantic styles, focusing on acoustic-semantic information that does not translate well into text, e.g., emotion or speaker. While most Speech Segmentation tasks only handle one style change, e.g., emotion diarization, our approach tries to handle multiple acoustic-semantic style changes. Leveraging recent advances in Speech Language Models (SLMs), we propose a simple unsupervised method to segment a given speech utterance. We empirically demonstrate the effectiveness of the proposed approach by considering several setups. Results suggest that the proposed method is superior to the evaluated baselines on boundary detection, segment purity, and over-segmentation. Code is available at https://github.com/avishaiElmakies/unsupervised_speech_segmentation_using_slm.
Authors:Mengshi Qi, Hao Ye, Jiaxuan Peng, Huadong Ma
Abstract:
Action Quality Assessment (AQA), which aims at automatic and fair evaluation of athletic performance, has gained increasing attention in recent years. However, athletes are often in rapid movement and the corresponding visual appearance variances are subtle, making it challenging to capture fine-grained pose differences and leading to poor estimation performance. Furthermore, most common AQA tasks, such as diving in sports, are usually divided into multiple sub-actions, each of which contains different durations. However, existing methods focus on segmenting the video into fixed frames, which disrupts the temporal continuity of sub-actions resulting in unavoidable prediction errors. To address these challenges, we propose a novel action quality assessment method through hierarchically pose-guided multi-stage contrastive regression. Firstly, we introduce a multi-scale dynamic visual-skeleton encoder to capture fine-grained spatio-temporal visual and skeletal features. Then, a procedure segmentation network is introduced to separate different sub-actions and obtain segmented features. Afterwards, the segmented visual and skeletal features are both fed into a multi-modal fusion module as physics structural priors, to guide the model in learning refined activity similarities and variances. Finally, a multi-stage contrastive learning regression approach is employed to learn discriminative representations and output prediction results. In addition, we introduce a newly-annotated FineDiving-Pose Dataset to improve the current low-quality human pose labels. In experiments, the results on FineDiving and MTL-AQA datasets demonstrate the effectiveness and superiority of our proposed approach. Our source code and dataset are available at https://github.com/Lumos0507/HP-MCoRe.
Authors:Jiaxuan Li, Qing Xu, Xiangjian He, Ziyu Liu, Daokun Zhang, Ruili Wang, Rong Qu, Guoping Qiu
Abstract:
Medical image segmentation plays an important role in computer-aided diagnosis. Existing methods mainly utilize spatial attention to highlight the region of interest. However, due to limitations of medical imaging devices, medical images exhibit significant heterogeneity, posing challenges for segmentation. Ultrasound images, for instance, often suffer from speckle noise, low resolution, and poor contrast between target tissues and background, which may lead to inaccurate boundary delineation. To address these challenges caused by heterogeneous image quality, we propose a hybrid CNN-Transformer model,called CFFormer, which leverages effective channel feature extraction to enhance the model' s ability to accurately identify tissue regions by capturing rich contextual information. The proposed architecture contains two key components: the Cross Feature Channel Attention (CFCA) module and the X-Spatial Feature Fusion (XFF) module. The model incorporates dual encoders, with the CNN encoder focusing on capturing local features and the Transformer encoder modeling global features. The CFCA module filters and facilitates interactions between the channel features from the two encoders, while the XFF module effectively reduces the significant semantic information differences in spatial features, enabling a smooth and cohesive spatial feature fusion. We evaluate our model across eight datasets covering five modalities to test its generalization capability. Experimental results demonstrate that our model outperforms current state-of-the-art methods and maintains accurate tissue region segmentation across heterogeneous medical image datasets. The code is available at https://github.com/JiaxuanFelix/CFFormer.
Authors:Liyue Chen, Jiangyi Fang, Tengfei Liu, Fangyuan Gao, Leye Wang
Abstract:
In smart cities, context-aware spatio-temporal crowd flow prediction (STCFP) models leverage contextual features (e.g., weather) to identify unusual crowd mobility patterns and enhance prediction accuracy. However, the best practice for incorporating contextual features remains unclear due to inconsistent usage of contextual features in different papers. Developing a multifaceted dataset with rich types of contextual features and STCFP scenarios is crucial for establishing a principled context modeling paradigm. Existing open crowd flow datasets lack an adequate range of contextual features, which poses an urgent requirement to build a multifaceted dataset to fill these research gaps. To this end, we create STContext, a multifaceted dataset for developing context-aware STCFP models. Specifically, STContext provides nine spatio-temporal datasets across five STCFP scenarios and includes ten contextual features, including weather, air quality index, holidays, points of interest, road networks, etc. Besides, we propose a unified workflow for incorporating contextual features into deep STCFP methods, with steps including feature transformation, dependency modeling, representation fusion, and training strategies. Through extensive experiments, we have obtained several useful guidelines for effective context modeling and insights for future research. The STContext is open-sourced at https://github.com/Liyue-Chen/STContext.
Authors:NVIDIA, :, Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chattopadhyay, Yongxin Chen, Yin Cui, Yifan Ding, Daniel Dworakowski, Jiaojiao Fan, Michele Fenzi, Francesco Ferroni, Sanja Fidler, Dieter Fox, Songwei Ge, Yunhao Ge, Jinwei Gu, Siddharth Gururani, Ethan He, Jiahui Huang, Jacob Huffman, Pooya Jannaty, Jingyi Jin, Seung Wook Kim, Gergely Klár, Grace Lam, Shiyi Lan, Laura Leal-Taixe, Anqi Li, Zhaoshuo Li, Chen-Hsuan Lin, Tsung-Yi Lin, Huan Ling, Ming-Yu Liu, Xian Liu, Alice Luo, Qianli Ma, Hanzi Mao, Kaichun Mo, Arsalan Mousavian, Seungjun Nah, Sriharsha Niverty, David Page, Despoina Paschalidou, Zeeshan Patel, Lindsey Pavao, Morteza Ramezanali, Fitsum Reda, Xiaowei Ren, Vasanth Rao Naik Sabavat, Ed Schmerling, Stella Shi, Bartosz Stefaniak, Shitao Tang, Lyne Tchapmi, Przemek Tredak, Wei-Cheng Tseng, Jibin Varghese, Hao Wang, Haoxiang Wang, Heng Wang, Ting-Chun Wang, Fangyin Wei, Xinyue Wei, Jay Zhangjie Wu, Jiashu Xu, Wei Yang, Lin Yen-Chen, Xiaohui Zeng, Yu Zeng, Jing Zhang, Qinsheng Zhang, Yuxuan Zhang, Qingqing Zhao, Artur Zolkowski
Abstract:
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make Cosmos open-source and our models open-weight with permissive licenses available via https://github.com/nvidia-cosmos/cosmos-predict1.
Authors:Zetian Feng, Dong Ni, Yi Wang
Abstract:
Prostate cancer is a leading cause of cancer-related mortality in men. The registration of magnetic resonance (MR) and transrectal ultrasound (TRUS) can provide guidance for the targeted biopsy of prostate cancer. In this study, we propose a salient region matching framework for fully automated MR-TRUS registration. The framework consists of prostate segmentation, rigid alignment and deformable registration. Prostate segmentation is performed using two segmentation networks on MR and TRUS respectively, and the predicted salient regions are used for the rigid alignment. The rigidly-aligned MR and TRUS images serve as initialization for the deformable registration. The deformable registration network has a dual-stream encoder with cross-modal spatial attention modules to facilitate multi-modality feature learning, and a salient region matching loss to consider both structure and intensity similarity within the prostate region. Experiments on a public MR-TRUS dataset demonstrate that our method achieves satisfactory registration results, outperforming several cutting-edge methods. The code is publicly available at https://github.com/mock1ngbrd/salient-region-matching.
Authors:Fatemeh Ghofrani, Pooyan Jamshidi
Abstract:
Self-supervised learning (SSL) has significantly advanced image representation learning, yet efficiency challenges persist, particularly with adversarial training. Many SSL methods require extensive epochs to achieve convergence, a demand further amplified in adversarial settings. To address this inefficiency, we revisit the robust EMP-SSL framework, emphasizing the importance of increasing the number of crops per image to accelerate learning. Unlike traditional contrastive learning, robust EMP-SSL leverages multi-crop sampling, integrates an invariance term and regularization, and reduces training epochs, enhancing time efficiency. Evaluated with both standard linear classifiers and multi-patch embedding aggregation, robust EMP-SSL provides new insights into SSL evaluation strategies.
Our results show that robust crop-based EMP-SSL not only accelerates convergence but also achieves a superior balance between clean accuracy and adversarial robustness, outperforming multi-crop embedding aggregation. Additionally, we extend this approach with free adversarial training in Multi-Crop SSL, introducing the Cost-Free Adversarial Multi-Crop Self-Supervised Learning (CF-AMC-SSL) method. CF-AMC-SSL demonstrates the effectiveness of free adversarial training in reducing training time while simultaneously improving clean accuracy and adversarial robustness. These findings underscore the potential of CF-AMC-SSL for practical SSL applications. Our code is publicly available at https://github.com/softsys4ai/CF-AMC-SSL.
Authors:Nandan Kumar Jha, Brandon Reagen
Abstract:
The pervasiveness of proprietary language models has raised critical privacy concerns, necessitating advancements in private inference (PI), where computations are performed directly on encrypted data without revealing users' sensitive information. While PI offers a promising solution, its practical deployment is hindered by substantial communication and latency overheads, primarily stemming from nonlinear operations. To address this, we introduce an information-theoretic framework to characterize the role of nonlinearities in decoder-only language models, laying a principled foundation for optimizing transformer-architectures tailored to the demands of PI.
By leveraging Shannon's entropy as a quantitative measure, we uncover the previously unexplored dual significance of nonlinearities: beyond ensuring training stability, they are crucial for maintaining attention head diversity. Specifically, we find that their removal triggers two critical failure modes: {\em entropy collapse} in deeper layers that destabilizes training, and {\em entropic overload} in earlier layers that leads to under-utilization of Multi-Head Attention's (MHA) representational capacity.
We propose an entropy-guided attention mechanism paired with a novel entropy regularization technique to mitigate entropic overload. Additionally, we explore PI-friendly alternatives to layer normalization for preventing entropy collapse and stabilizing the training of LLMs with reduced-nonlinearities. Our study bridges the gap between information theory and architectural design, establishing entropy dynamics as a principled guide for developing efficient PI architectures. The code and implementation are available at https://github.com/Nandan91/entropy-guided-attention-llm
Authors:Chuang Niu, Wenjun Xia, Hongming Shan, Ge Wang
Abstract:
Self-supervised learning (SSL) has emerged as a crucial technique in image processing, encoding, and understanding, especially for developing today's vision foundation models that utilize large-scale datasets without annotations to enhance various downstream tasks. This study introduces a novel SSL approach, Information-Maximized Soft Variable Discretization (IMSVD), for image representation learning. Specifically, IMSVD softly discretizes each variable in the latent space, enabling the estimation of their probability distributions over training batches and allowing the learning process to be directly guided by information measures. Motivated by the MultiView assumption, we propose an information-theoretic objective function to learn transform-invariant, non-travail, and redundancy-minimized representation features. We then derive a joint-cross entropy loss function for self-supervised image representation learning, which theoretically enjoys superiority over the existing methods in reducing feature redundancy. Notably, our non-contrastive IMSVD method statistically performs contrastive learning. Extensive experimental results demonstrate the effectiveness of IMSVD on various downstream tasks in terms of both accuracy and efficiency. Thanks to our variable discretization, the embedding features optimized by IMSVD offer unique explainability at the variable level. IMSVD has the potential to be adapted to other learning paradigms. Our code is publicly available at https://github.com/niuchuangnn/IMSVD.
Authors:Yannis Katsis, Sara Rosenthal, Kshitij Fadnis, Chulaka Gunasekara, Young-Suk Lee, Lucian Popa, Vraj Shah, Huaiyu Zhu, Danish Contractor, Marina Danilevsky
Abstract:
Retrieval-augmented generation (RAG) has recently become a very popular task for Large Language Models (LLMs). Evaluating them on multi-turn RAG conversations, where the system is asked to generate a response to a question in the context of a preceding conversation is an important and often overlooked task with several additional challenges. We present MTRAG: an end-to-end human-generated multi-turn RAG benchmark that reflects several real-world properties across diverse dimensions for evaluating the full RAG pipeline. MTRAG contains 110 conversations averaging 7.7 turns each across four domains for a total of 842 tasks. We also explore automation paths via synthetic data and LLM-as-a-Judge evaluation. Our human and automatic evaluations show that even state-of-the-art LLM RAG systems struggle on MTRAG. We demonstrate the need for strong retrieval and generation systems that can handle later turns, unanswerable questions, non-standalone questions, and multiple domains. MTRAG is available at https://github.com/ibm/mt-rag-benchmark.
Authors:Xiao Wang, Fuling Wang, Haowen Wang, Bo Jiang, Chuanfu Li, Yaowei Wang, Yonghong Tian, Jin Tang
Abstract:
X-ray image based medical report generation achieves significant progress in recent years with the help of the large language model, however, these models have not fully exploited the effective information in visual image regions, resulting in reports that are linguistically sound but insufficient in describing key diseases. In this paper, we propose a novel associative memory-enhanced X-ray report generation model that effectively mimics the process of professional doctors writing medical reports. It considers both the mining of global and local visual information and associates historical report information to better complete the writing of the current report. Specifically, given an X-ray image, we first utilize a classification model along with its activation maps to accomplish the mining of visual regions highly associated with diseases and the learning of disease query tokens. Then, we employ a visual Hopfield network to establish memory associations for disease-related tokens, and a report Hopfield network to retrieve report memory information. This process facilitates the generation of high-quality reports based on a large language model and achieves state-of-the-art performance on multiple benchmark datasets, including the IU X-ray, MIMIC-CXR, and Chexpert Plus. The source code of this work is released on \url{https://github.com/Event-AHU/Medical_Image_Analysis}.
Authors:Soonbin Lee, Fangwen Shu, Yago Sanchez, Thomas Schierl, Cornelius Hellge
Abstract:
3D Gaussian Splatting is a recognized method for 3D scene representation, known for its high rendering quality and speed. However, its substantial data requirements present challenges for practical applications. In this paper, we introduce an efficient compression technique that significantly reduces storage overhead by using compact representation. We propose a unified architecture that combines point cloud data and feature planes through a progressive tri-plane structure. Our method utilizes 2D feature planes, enabling continuous spatial representation. To further optimize these representations, we incorporate entropy modeling in the frequency domain, specifically designed for standard video codecs. We also propose channel-wise bit allocation to achieve a better trade-off between bitrate consumption and feature plane representation. Consequently, our model effectively leverages spatial correlations within the feature planes to enhance rate-distortion performance using standard, non-differentiable video codecs. Experimental results demonstrate that our method outperforms existing methods in data compactness while maintaining high rendering quality. Our project page is available at https://fraunhoferhhi.github.io/CodecGS
Authors:Xuyang Wang, Ziang Cheng, Zhenyu Li, Jiayu Yang, Haorui Ji, Pan Ji, Mehrtash Harandi, Richard Hartley, Hongdong Li
Abstract:
This paper addresses the problem of generating textures for 3D mesh assets. Existing approaches often rely on image diffusion models to generate multi-view image observations, which are then transformed onto the mesh surface to produce a single texture. However, due to the gap between multi-view images and 3D space, such process is susceptible to arange of issues such as geometric inconsistencies, visibility occlusion, and baking artifacts. To overcome this problem, we propose a novel approach that directly generates texture on 3D meshes. Our approach leverages heat dissipation diffusion, which serves as an efficient operator that propagates features on the geometric surface of a mesh, while remaining insensitive to the specific layout of the wireframe. By integrating this technique into a generative diffusion pipeline, we significantly improve the efficiency of texture generation compared to existing texture generation methods. We term our approach DoubleDiffusion, as it combines heat dissipation diffusion with denoising diffusion to enable native generative learning on 3D mesh surfaces.
Authors:Pengwei Tang, Xiaolin Hu, Yong Liu
Abstract:
Prompt Tuning (PT) enables the adaptation of Pre-trained Large Language Models (PLMs) to downstream tasks by optimizing a small amount of soft virtual tokens, which are prepended to the input token embeddings. Recently, Decomposed Prompt Tuning (DePT) has demonstrated superior adaptation capabilities by decomposing the soft prompt into a shorter soft prompt and a pair of low-rank matrices. The product of the pair of low-rank matrices is added to the input token embeddings to offset them. Additionally, DePT achieves faster inference compared to PT due to the shorter soft prompt. However, in this paper, we find that the position-based token embedding offsets of DePT restrict its ability to generalize across diverse model inputs, and that the shared embedding offsets across many token embeddings result in sub-optimization. To tackle these issues, we introduce Adaptive Decomposed Prompt Tuning (ADePT), which is composed of a short soft prompt and a shallow token-shared feed-forward neural network. ADePT utilizes the token-shared feed-forward neural network to learn the embedding offsets for each token, enabling adaptive embedding offsets that vary according to the model input and better optimization of token embedding offsets. This enables ADePT to achieve superior adaptation performance without requiring more inference time or additional trainable parameters compared to vanilla PT and its variants. In comprehensive experiments across 23 natural language processing tasks and 4 typical PLMs of different scales, ADePT consistently surpasses the other leading parameter-efficient fine-tuning methods, and even outperforms the full fine-tuning in certain scenarios. We also provide a theoretical analysis towards ADePT. Code is available at https://github.com/HungerPWAY/ADePT.
Authors:Liyang Qin, Xiaoli Wang, Chunhua Yang, Huaiwen Zou, Haochuan Zhang
Abstract:
Among the existing Transformer-based multivariate time series forecasting methods, iTransformer, which treats each variable sequence as a token and only explicitly extracts cross-variable dependencies, and PatchTST, which adopts a channel-independent strategy and only explicitly extracts cross-time dependencies, both significantly outperform most Channel-Dependent Transformer that simultaneously extract cross-time and cross-variable dependencies. This indicates that existing Transformer-based multivariate time series forecasting methods still struggle to effectively fuse these two types of information. We attribute this issue to the dynamic time lags in the causal relationships between different variables. Therefore, we propose a new multivariate time series forecasting Transformer, Sensorformer, which first compresses the global patch information and then simultaneously extracts cross-variable and cross-time dependencies from the compressed representations. Sensorformer can effectively capture the correct inter-variable correlations and causal relationships, even in the presence of dynamic causal lags between variables, while also reducing the computational complexity of pure cross-patch self-attention from $O(D^2 \cdot Patch\_num^2 \cdot d\_model)$ to $O(D^2 \cdot Patch\_num \cdot d\_model)$. Extensive comparative and ablation experiments on 9 mainstream real-world multivariate time series forecasting datasets demonstrate the superiority of Sensorformer. The implementation of Sensorformer, following the style of the Time-series-library and scripts for reproducing the main results, is publicly available at https://github.com/BigYellowTiger/Sensorformer
Authors:Haozhen Zhang, Haodong Yue, Xi Xiao, Le Yu, Qing Li, Zhen Ling, Ye Zhang
Abstract:
With the growing significance of network security, the classification of encrypted traffic has emerged as an urgent challenge. Traditional byte-based traffic analysis methods are constrained by the rigid granularity of information and fail to fully exploit the diverse correlations between bytes. To address these limitations, this paper introduces MH-Net, a novel approach for classifying network traffic that leverages multi-view heterogeneous traffic graphs to model the intricate relationships between traffic bytes. The essence of MH-Net lies in aggregating varying numbers of traffic bits into multiple types of traffic units, thereby constructing multi-view traffic graphs with diverse information granularities. By accounting for different types of byte correlations, such as header-payload relationships, MH-Net further endows the traffic graph with heterogeneity, significantly enhancing model performance. Notably, we employ contrastive learning in a multi-task manner to strengthen the robustness of the learned traffic unit representations. Experiments conducted on the ISCX and CIC-IoT datasets for both the packet-level and flow-level traffic classification tasks demonstrate that MH-Net achieves the best overall performance compared to dozens of SOTA methods.
Authors:Peihai Jiang, Xixiang Lyu, Yige Li, Jing Ma
Abstract:
Supervised fine-tuning has become the predominant method for adapting large pretrained models to downstream tasks. However, recent studies have revealed that these models are vulnerable to backdoor attacks, where even a small number of malicious samples can successfully embed backdoor triggers into the model. While most existing defense methods focus on post-training backdoor defense, efficiently defending against backdoor attacks during training phase remains largely unexplored. To address this gap, we propose a novel defense method called Backdoor Token Unlearning (BTU), which proactively detects and neutralizes trigger tokens during the training stage. Our work is based on two key findings: 1) backdoor learning causes distinctive differences between backdoor token parameters and clean token parameters in word embedding layers, and 2) the success of backdoor attacks heavily depends on backdoor token parameters. The BTU defense leverages these properties to identify aberrant embedding parameters and subsequently removes backdoor behaviors using a fine-grained unlearning technique. Extensive evaluations across three datasets and four types of backdoor attacks demonstrate that BTU effectively defends against these threats while preserving the model's performance on primary tasks. Our code is available at https://github.com/XDJPH/BTU.
Authors:Qi Wang, Marco Federici, Herke van Hoof
Abstract:
The neural process (NP) is a family of computationally efficient models for learning distributions over functions. However, it suffers from under-fitting and shows suboptimal performance in practice. Researchers have primarily focused on incorporating diverse structural inductive biases, \textit{e.g.} attention or convolution, in modeling. The topic of inference suboptimality and an analysis of the NP from the optimization objective perspective has hardly been studied in earlier work. To fix this issue, we propose a surrogate objective of the target log-likelihood of the meta dataset within the expectation maximization framework. The resulting model, referred to as the Self-normalized Importance weighted Neural Process (SI-NP), can learn a more accurate functional prior and has an improvement guarantee concerning the target log-likelihood. Experimental results show the competitive performance of SI-NP over other NPs objectives and illustrate that structural inductive biases, such as attention modules, can also augment our method to achieve SOTA performance. Our code is available at \url{https://github.com/hhq123gogogo/SI_NPs}.
Authors:Jian Hu, Jason Klein Liu, Haotian Xu, Wei Shen
Abstract:
Reinforcement Learning from Human Feedback (RLHF) plays a crucial role in aligning large language models (LLMs) with human values and preferences. While state-of-the-art applications like ChatGPT or GPT-4 commonly employ Proximal Policy Optimization (PPO), the inclusion of a critic network introduces significant computational overhead. REINFORCE-based methods, such as REINFORCE Leave One-Out (RLOO), ReMax, and Group Relative Policy Optimization (GRPO), address this limitation by eliminating the critic network. However, these approaches face challenges in accurate advantage estimation. Specifically, they estimate advantages independently for responses to each prompt, which can lead to overfitting on simpler prompts and vulnerability to reward hacking and may be biased. To address these challenges, we introduce REINFORCE++, a novel approach that removes the critic model while using the global advantage normalization which is unbiased to improve the training stability. Our empirical evaluation demonstrates that REINFORCE++ exhibits robust performance across various reward models without requiring prompt set truncation. Furthermore, it achieves superior generalization in both RLHF and long chain-of-thought (CoT) settings compared to existing REINFORCE-based methods. The implementation is available at https://github.com/OpenRLHF/OpenRLHF.
Authors:Thi Thuy Ngan Duong, Duy-Nam Bui, Manh Duong Phung
Abstract:
Path planning is essential for unmanned aerial vehicles (UAVs) as it determines the path that the UAV needs to follow to complete a task. This work addresses this problem by introducing a new algorithm called navigation variable-based multi-objective particle swarm optimization (NMOPSO). It first models path planning as an optimization problem via the definition of a set of objective functions that include optimality and safety requirements for UAV operation. The NMOPSO is then used to minimize those functions through Pareto optimal solutions. The algorithm features a new path representation based on navigation variables to include kinematic constraints and exploit the maneuverable characteristics of the UAV. It also includes an adaptive mutation mechanism to enhance the diversity of the swarm for better solutions. Comparisons with various algorithms have been carried out to benchmark the proposed approach. The results indicate that the NMOPSO performs better than not only other particle swarm optimization variants but also other state-of-the-art multi-objective and metaheuristic optimization algorithms. Experiments have also been conducted with real UAVs to confirm the validity of the approach for practical flights. The source code of the algorithm is available at https://github.com/ngandng/NMOPSO.
Authors:Jathushan Rajasegaran, Xinlei Chen, Rulilong Li, Christoph Feichtenhofer, Jitendra Malik, Shiry Ginosar
Abstract:
This paper explores Masked Autoencoders (MAE) with Gaussian Splatting. While reconstructive self-supervised learning frameworks such as MAE learns good semantic abstractions, it is not trained for explicit spatial awareness. Our approach, named Gaussian Masked Autoencoder, or GMAE, aims to learn semantic abstractions and spatial understanding jointly. Like MAE, it reconstructs the image end-to-end in the pixel space, but beyond MAE, it also introduces an intermediate, 3D Gaussian-based representation and renders images via splatting. We show that GMAE can enable various zero-shot learning capabilities of spatial understanding (e.g., figure-ground segmentation, image layering, edge detection, etc.) while preserving the high-level semantics of self-supervised representation quality from MAE. To our knowledge, we are the first to employ Gaussian primitives in an image representation learning framework beyond optimization-based single-scene reconstructions. We believe GMAE will inspire further research in this direction and contribute to developing next-generation techniques for modeling high-fidelity visual data. More details at https://brjathu.github.io/gmae
Authors:Guoxuan Chen, Lianghao Xia, Chao Huang
Abstract:
Graph neural networks (GNNs) have demonstrated superior performance in collaborative recommendation through their ability to conduct high-order representation smoothing, effectively capturing structural information within users' interaction patterns. However, existing GNN paradigms face significant challenges in scalability and robustness when handling large-scale, noisy, and real-world datasets. To address these challenges, we present LightGNN, a lightweight and distillation-based GNN pruning framework designed to substantially reduce model complexity while preserving essential collaboration modeling capabilities. Our LightGNN framework introduces a computationally efficient pruning module that adaptively identifies and removes redundant edges and embedding entries for model compression. The framework is guided by a resource-friendly hierarchical knowledge distillation objective, whose intermediate layer augments the observed graph to maintain performance, particularly in high-rate compression scenarios. Extensive experiments on public datasets demonstrate LightGNN's effectiveness, significantly improving both computational efficiency and recommendation accuracy. Notably, LightGNN achieves an 80% reduction in edge count and 90% reduction in embedding entries while maintaining performance comparable to more complex state-of-the-art baselines. The implementation of our LightGNN framework is available at the github repository: https://github.com/HKUDS/LightGNN.
Authors:Beichen Zhang, Yuhong Liu, Xiaoyi Dong, Yuhang Zang, Pan Zhang, Haodong Duan, Yuhang Cao, Dahua Lin, Jiaqi Wang
Abstract:
Large language models (LLMs) have demonstrated impressive ability in solving complex mathematical problems with multi-step reasoning and can be further enhanced with well-designed in-context learning (ICL) examples. However, this potential is often constrained by two major challenges in ICL: granularity mismatch and irrelevant information. We observe that while LLMs excel at decomposing mathematical problems, they often struggle with reasoning errors in fine-grained steps. Moreover, ICL examples retrieved at the question level may omit critical steps or even mislead the model with irrelevant details. To address this issue, we propose BoostStep, a method that enhances reasoning accuracy through step-aligned ICL, a novel mechanism that carefully aligns retrieved reference steps with the corresponding reasoning steps. Additionally, BoostStep incorporates an effective "first-try" strategy to deliver exemplars highly relevant to the current state of reasoning. BoostStep is a flexible and powerful method that integrates seamlessly with chain-of-thought (CoT) and tree search algorithms, refining both candidate selection and decision-making. Empirical results show that BoostStep improves GPT-4o's CoT performance by 4.6% across mathematical benchmarks, significantly surpassing traditional few-shot learning's 1.2%. Moreover, it can achieve an additional 7.5\% gain combined with tree search. Surprisingly, it enhances state-of-the-art LLMs to solve challenging math problems using simpler examples. It improves DeepSeek-R1-671B's performance on AIME by 2.2%, leveraging simple examples only from the MATH dataset.
Authors:Tingyang Zhang, Chen Wang, Zhiyang Dou, Qingzhe Gao, Jiahui Lei, Baoquan Chen, Lingjie Liu
Abstract:
We propose ProTracker, a novel framework for accurate and robust long-term dense tracking of arbitrary points in videos. Previous methods relying on global cost volumes effectively handle large occlusions and scene changes but lack precision and temporal awareness. In contrast, local iteration-based methods accurately track smoothly transforming scenes but face challenges with occlusions and drift. To address these issues, we propose a probabilistic framework that marries the strengths of both paradigms by leveraging local optical flow for predictions and refined global heatmaps for observations. This design effectively combines global semantic information with temporally aware low-level features, enabling precise and robust long-term tracking of arbitrary points in videos. Extensive experiments demonstrate that ProTracker attains state-of-the-art performance among optimization-based approaches and surpasses supervised feed-forward methods on multiple benchmarks. The code and model will be released after publication.
Authors:Rui Qian, Shuangrui Ding, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Dahua Lin, Jiaqi Wang
Abstract:
Active Real-time interaction with video LLMs introduces a new paradigm for human-computer interaction, where the model not only understands user intent but also responds while continuously processing streaming video on the fly. Unlike offline video LLMs, which analyze the entire video before answering questions, active real-time interaction requires three capabilities: 1) Perception: real-time video monitoring and interaction capturing. 2) Decision: raising proactive interaction in proper situations, 3) Reaction: continuous interaction with users. However, inherent conflicts exist among the desired capabilities. The Decision and Reaction require a contrary Perception scale and grain, and the autoregressive decoding blocks the real-time Perception and Decision during the Reaction. To unify the conflicted capabilities within a harmonious system, we present Dispider, a system that disentangles Perception, Decision, and Reaction. Dispider features a lightweight proactive streaming video processing module that tracks the video stream and identifies optimal moments for interaction. Once the interaction is triggered, an asynchronous interaction module provides detailed responses, while the processing module continues to monitor the video in the meantime. Our disentangled and asynchronous design ensures timely, contextually accurate, and computationally efficient responses, making Dispider ideal for active real-time interaction for long-duration video streams. Experiments show that Dispider not only maintains strong performance in conventional video QA tasks, but also significantly surpasses previous online models in streaming scenario responses, thereby validating the effectiveness of our architecture. The code and model are released at \url{https://github.com/Mark12Ding/Dispider}.
Authors:Libing Yuan, Shuaibo Hu, Kui Yu, Le Wu
Abstract:
The widespread application of pre-trained language models (PLMs) in natural language processing (NLP) has led to increasing concerns about their explainability. Selective rationalization is a self-explanatory framework that selects human-intelligible input subsets as rationales for predictions. Recent studies have shown that applying existing rationalization frameworks to PLMs will result in severe degeneration and failure problems, producing sub-optimal or meaningless rationales. Such failures severely damage trust in rationalization methods and constrain the application of rationalization techniques on PLMs. In this paper, we find that the homogeneity of tokens in the sentences produced by PLMs is the primary contributor to these problems. To address these challenges, we propose a method named Pre-trained Language Model's Rationalization (PLMR), which splits PLMs into a generator and a predictor to deal with NLP tasks while providing interpretable rationales. The generator in PLMR also alleviates homogeneity by pruning irrelevant tokens, while the predictor uses full-text information to standardize predictions. Experiments conducted on two widely used datasets across multiple PLMs demonstrate the effectiveness of the proposed method PLMR in addressing the challenge of applying selective rationalization to PLMs. Codes: https://github.com/ylb777/PLMR.
Authors:Ali Al-Lawati, Jason Lucas, Prasenjit Mitra
Abstract:
Large Language Models (LLMs) have demonstrated remarkable performance in various NLP tasks, including semantic parsing, which translates natural language into formal code representations. However, the reverse process, translating code into natural language, termed semantic captioning, has received less attention. This task is becoming increasingly important as LLMs are integrated into platforms for code generation, security analysis, and educational purposes. In this paper, we focus on the captioning of SQL query (SQL2Text) to address the critical need for understanding and explaining SQL queries in an era where LLM-generated code poses potential security risks. We repurpose Text2SQL datasets for SQL2Text by introducing an iterative ICL prompt using GPT-4o to generate multiple additional utterances, which enhances the robustness of the datasets for the reverse task. We conduct our experiments using in-context learning (ICL) based on different sample selection methods, emphasizing smaller, more computationally efficient LLMs. Our findings demonstrate that leveraging the inherent graph properties of SQL for ICL sample selection significantly outperforms random selection by up to 39% on BLEU score and provides better results than alternative methods. Dataset and codes are published: https://github.com/aliwister/ast-icl.
Authors:Valery Istomin, Oleg Pereziabov, Ilya Afanasyev
Abstract:
This research focuses on developing a method for restoring the topology of digital images of paper documents captured by a camera, using algorithms for detection, segmentation, geometry restoration, and dewarping. Our methodology employs deep learning (DL) for document outline detection, followed by computer vision (CV) to create a topological 2D grid using cubic polynomial interpolation and correct nonlinear distortions by remapping the image. Using classical CV methods makes the document topology restoration process more efficient and faster, as it requires significantly fewer computational resources and memory. We developed a new pipeline for automatic document dewarping and reconstruction, along with a framework and annotated dataset to demonstrate its efficiency. Our experiments confirm the promise of our methodology and its superiority over existing benchmarks (including mobile apps and popular DL solutions, such as RectiNet, DocGeoNet, and DocTr++) both visually and in terms of document readability via Optical Character Recognition (OCR) and geometry restoration metrics. This paves the way for creating high-quality digital copies of paper documents and enhancing the efficiency of OCR systems. Project page: https://github.com/HorizonParadox/DRCCBI
Authors:Yuxiang Bao, Guoliang Kang, Linlin Yang, Xiaoyue Duan, Bo Zhao, Baochang Zhang
Abstract:
In real-world scenarios, the number of training samples across classes usually subjects to a long-tailed distribution. The conventionally trained network may achieve unexpected inferior performance on the rare class compared to the frequent class. Most previous works attempt to rectify the network bias from the data-level or from the classifier-level. Differently, in this paper, we identify that the bias towards the frequent class may be encoded into features, i.e., the rare-specific features which play a key role in discriminating the rare class are much weaker than the frequent-specific features. Based on such an observation, we introduce a simple yet effective approach, normalizing the parameters of Batch Normalization (BN) layer to explicitly rectify the feature bias. To achieve this end, we represent the Weight/Bias parameters of a BN layer as a vector, normalize it into a unit one and multiply the unit vector by a scalar learnable parameter. Through decoupling the direction and magnitude of parameters in BN layer to learn, the Weight/Bias exhibits a more balanced distribution and thus the strength of features becomes more even. Extensive experiments on various long-tailed recognition benchmarks (i.e., CIFAR-10/100-LT, ImageNet-LT and iNaturalist 2018) show that our method outperforms previous state-of-the-arts remarkably. The code and checkpoints are available at https://github.com/yuxiangbao/NBN.
Authors:Dylan Bouchard, Mohit Singh Chauhan, David Skarbrevik, Viren Bajaj, Zeya Ahmad
Abstract:
Large Language Models (LLMs) have been observed to exhibit bias in numerous ways, potentially creating or worsening outcomes for specific groups identified by protected attributes such as sex, race, sexual orientation, or age. To help address this gap, we introduce LangFair, an open-source Python package that aims to equip LLM practitioners with the tools to evaluate bias and fairness risks relevant to their specific use cases. The package offers functionality to easily generate evaluation datasets, comprised of LLM responses to use-case-specific prompts, and subsequently calculate applicable metrics for the practitioner's use case. To guide in metric selection, LangFair offers an actionable decision framework.
Authors:Yibin Wu, Jian Kuang, Xiaoji Niu, Cyrill Stachniss, Lasse Klingbeil, Heiner Kuhlmann
Abstract:
A long-term accurate and robust localization system is essential for mobile robots to operate efficiently outdoors. Recent studies have shown the significant advantages of the wheel-mounted inertial measurement unit (Wheel-IMU)-based dead reckoning system. However, it still drifts over extended periods because of the absence of external correction signals. To achieve the goal of long-term accurate localization, we propose Wheel-GINS, a Global Navigation Satellite System (GNSS)/inertial navigation system (INS) integrated navigation system using a Wheel-IMU. Wheel-GINS fuses the GNSS position measurement with the Wheel-IMU via an extended Kalman filter to limit the long-term error drift and provide continuous state estimation when the GNSS signal is blocked. Considering the specificities of the GNSS/Wheel-IMU integration, we conduct detailed modeling and online estimation of the Wheel-IMU installation parameters, including the Wheel-IMU leverarm and mounting angle and the wheel radius error. Experimental results have shown that Wheel-GINS outperforms the traditional GNSS/Odometer/INS integrated navigation system during GNSS outages. At the same time, Wheel-GINS can effectively estimate the Wheel-IMU installation parameters online and, consequently, improve the localization accuracy and practicality of the system. The source code of our implementation is publicly available (https://github.com/i2Nav-WHU/Wheel-GINS).
Authors:Haojin Li, Heng Li, Jianyu Chen, Rihan Zhong, Ke Niu, Huazhu Fu, Jiang Liu
Abstract:
Decoupling domain-variant information (DVI) from domain-invariant information (DII) serves as a prominent strategy for mitigating domain shifts in the practical implementation of deep learning algorithms. However, in medical settings, concerns surrounding data collection and privacy often restrict access to both training and test data, hindering the empirical decoupling of information by existing methods. To tackle this issue, we propose an Autonomous Information Filter-driven Source-free Domain Adaptation (AIF-SFDA) algorithm, which leverages a frequency-based learnable information filter to autonomously decouple DVI and DII. Information Bottleneck (IB) and Self-supervision (SS) are incorporated to optimize the learnable frequency filter. The IB governs the information flow within the filter to diminish redundant DVI, while SS preserves DII in alignment with the specific task and image modality. Thus, the autonomous information filter can overcome domain shifts relying solely on target data. A series of experiments covering various medical image modalities and segmentation tasks were conducted to demonstrate the benefits of AIF-SFDA through comparisons with leading algorithms and ablation studies. The code is available at https://github.com/JingHuaMan/AIF-SFDA.
Authors:Guy Yariv, Yuval Kirstain, Amit Zohar, Shelly Sheynin, Yaniv Taigman, Yossi Adi, Sagie Benaim, Adam Polyak
Abstract:
We consider the task of Image-to-Video (I2V) generation, which involves transforming static images into realistic video sequences based on a textual description. While recent advancements produce photorealistic outputs, they frequently struggle to create videos with accurate and consistent object motion, especially in multi-object scenarios. To address these limitations, we propose a two-stage compositional framework that decomposes I2V generation into: (i) An explicit intermediate representation generation stage, followed by (ii) A video generation stage that is conditioned on this representation. Our key innovation is the introduction of a mask-based motion trajectory as an intermediate representation, that captures both semantic object information and motion, enabling an expressive but compact representation of motion and semantics. To incorporate the learned representation in the second stage, we utilize object-level attention objectives. Specifically, we consider a spatial, per-object, masked-cross attention objective, integrating object-specific prompts into corresponding latent space regions and a masked spatio-temporal self-attention objective, ensuring frame-to-frame consistency for each object. We evaluate our method on challenging benchmarks with multi-object and high-motion scenarios and empirically demonstrate that the proposed method achieves state-of-the-art results in temporal coherence, motion realism, and text-prompt faithfulness. Additionally, we introduce \benchmark, a new challenging benchmark for single-object and multi-object I2V generation, and demonstrate our method's superiority on this benchmark. Project page is available at https://guyyariv.github.io/TTM/.
Authors:Duygu Sezen Islakoglu, Jan-Christoph Kalo
Abstract:
Large Language Models (LLMs) have achieved remarkable success in various NLP tasks, yet they still face significant challenges in reasoning and arithmetic. Temporal reasoning, a critical component of natural language understanding, has raised increasing research attention. However, comprehensive testing of Allen's interval relations (e.g., before, after, during) -- a fundamental framework for temporal relationships -- remains underexplored. To fill this gap, we present ChronoSense, a new benchmark for evaluating LLMs' temporal understanding. It includes 16 tasks, focusing on identifying the Allen relation between two temporal events and temporal arithmetic, using both abstract events and real-world data from Wikidata. We assess the performance of seven recent LLMs using this benchmark and the results indicate that models handle Allen relations, even symmetrical ones, quite differently. Moreover, the findings suggest that the models may rely on memorization to answer time-related questions. Overall, the models' low performance highlights the need for improved temporal understanding in LLMs and ChronoSense offers a robust framework for future research in this area. Our dataset and the source code are available at https://github.com/duyguislakoglu/chronosense.
Authors:Luozhou Wang, Yijun Li, Zhifei Chen, Jui-Hsien Wang, Zhifei Zhang, He Zhang, Zhe Lin, Yingcong Chen
Abstract:
Text-to-video generative models have made significant strides, enabling diverse applications in entertainment, advertising, and education. However, generating RGBA video, which includes alpha channels for transparency, remains a challenge due to limited datasets and the difficulty of adapting existing models. Alpha channels are crucial for visual effects (VFX), allowing transparent elements like smoke and reflections to blend seamlessly into scenes. We introduce TransPixeler, a method to extend pretrained video models for RGBA generation while retaining the original RGB capabilities. TransPixar leverages a diffusion transformer (DiT) architecture, incorporating alpha-specific tokens and using LoRA-based fine-tuning to jointly generate RGB and alpha channels with high consistency. By optimizing attention mechanisms, TransPixar preserves the strengths of the original RGB model and achieves strong alignment between RGB and alpha channels despite limited training data. Our approach effectively generates diverse and consistent RGBA videos, advancing the possibilities for VFX and interactive content creation.
Authors:Xiang Zheng, Longxiang Wang, Yi Liu, Xingjun Ma, Chao Shen, Cong Wang
Abstract:
Auditing Large Language Models (LLMs) is a crucial and challenging task. In this study, we focus on auditing black-box LLMs without access to their parameters, only to the provided service. We treat this type of auditing as a black-box optimization problem where the goal is to automatically uncover input-output pairs of the target LLMs that exhibit illegal, immoral, or unsafe behaviors. For instance, we may seek a non-toxic input that the target LLM responds to with a toxic output or an input that induces the hallucinative response from the target LLM containing politically sensitive individuals. This black-box optimization is challenging due to the scarcity of feasible points, the discrete nature of the prompt space, and the large search space. To address these challenges, we propose Curiosity-Driven Auditing for Large Language Models (CALM), which uses intrinsically motivated reinforcement learning to finetune an LLM as the auditor agent to uncover potential harmful and biased input-output pairs of the target LLM. CALM successfully identifies derogatory completions involving celebrities and uncovers inputs that elicit specific names under the black-box setting. This work offers a promising direction for auditing black-box LLMs. Our code is available at https://github.com/x-zheng16/CALM.git.
Authors:Xianhao Zhou, Jianghao Wu, Huangxuan Zhao, Lei Chen, Shaoting Zhang, Guotai Wang
Abstract:
Generating synthetic Computed Tomography (CT) images from Cone Beam Computed Tomography (CBCT) is desirable for improving the image quality of CBCT. Existing synthetic CT (sCT) generation methods using Convolutional Neural Networks (CNN) and Transformers often face difficulties in effectively capturing both global and local features and contrasts for high-quality sCT generation. In this work, we propose a Global-Local Feature and Contrast learning (GLFC) framework for sCT generation. First, a Mamba-Enhanced UNet (MEUNet) is introduced by integrating Mamba blocks into the skip connections of a high-resolution UNet for effective global and local feature learning. Second, we propose a Multiple Contrast Loss (MCL) that calculates synthetic loss at different intensity windows to improve quality for both soft tissues and bone regions. Experiments on the SynthRAD2023 dataset demonstrate that GLFC improved the SSIM of sCT from 77.91% to 91.50% compared with the original CBCT, and significantly outperformed several existing methods for sCT generation. The code is available at https://github.com/HiLab-git/GLFC
Authors:Zhi Qu, Yiran Wang, Jiannan Mao, Chenchen Ding, Hideki Tanaka, Masao Utiyama, Taro Watanabe
Abstract:
The multilingual neural machine translation (MNMT) aims for arbitrary translations across multiple languages. Although MNMT-specific models trained on parallel data offer low costs in training and deployment, their performance consistently lags behind that of large language models (LLMs). In this work, we introduce registering, a novel method that enables a small MNMT-specific model to compete with LLMs. Specifically, we insert a set of artificial tokens specifying the target language, called registers, into the input sequence between the source and target tokens. By modifying the attention mask, the target token generation only pays attention to the activation of registers, representing the source tokens in the target language space. Experiments on EC-40, a large-scale benchmark, show that our method advances the state-of-the-art of MNMT. We further pre-train two models, namely MITRE (multilingual translation with registers), by 9.3 billion sentence pairs across 24 languages collected from public corpora. One of them, MITRE-913M, outperforms NLLB-3.3B, achieves comparable performance with commercial LLMs, and shows strong adaptability in fine-tuning. Finally, we open-source our models to facilitate further research and development in MNMT: https://github.com/zhiqu22/mitre.
Authors:Chuanbo Hua, Federico Berto, Jiwoo Son, Seunghyun Kang, Changhyun Kwon, Jinkyoo Park
Abstract:
The profiled vehicle routing problem (PVRP) is a generalization of the heterogeneous capacitated vehicle routing problem (HCVRP) in which the objective is to optimize the routes of vehicles to serve client demands subject to different vehicle profiles, with each having a preference or constraint on a per-client basis. While existing learning methods have shown promise for solving the HCVRP in real-time, no learning method exists to solve the more practical and challenging PVRP. In this paper, we propose a Collaborative Attention Model with Profiles (CAMP), a novel approach that learns efficient solvers for PVRP using multi-agent reinforcement learning. CAMP employs a specialized attention-based encoder architecture to embed profiled client embeddings in parallel for each vehicle profile. We design a communication layer between agents for collaborative decision-making across profiled embeddings at each decoding step and a batched pointer mechanism to attend to the profiled embeddings to evaluate the likelihood of the next actions. We evaluate CAMP on two variants of PVRPs: PVRP with preferences, which explicitly influence the reward function, and PVRP with zone constraints with different numbers of agents and clients, demonstrating that our learned solvers achieve competitive results compared to both classical state-of-the-art neural multi-agent models in terms of solution quality and computational efficiency. We make our code openly available at https://github.com/ai4co/camp.
Authors:Can Gao, Xiaofeng Tan, Jie Zhou, Weiping Ding, Witold Pedrycz
Abstract:
Outlier detection refers to the identification of anomalous samples that deviate significantly from the distribution of normal data and has been extensively studied and used in a variety of practical tasks. However, most unsupervised outlier detection methods are carefully designed to detect specified outliers, while real-world data may be entangled with different types of outliers. In this study, we propose a fuzzy rough sets-based multi-scale outlier detection method to identify various types of outliers. Specifically, a novel fuzzy rough sets-based method that integrates relative fuzzy granule density is first introduced to improve the capability of detecting local outliers. Then, a multi-scale view generation method based on granular-ball computing is proposed to collaboratively identify group outliers at different levels of granularity. Moreover, reliable outliers and inliers determined by the three-way decision are used to train a weighted support vector machine to further improve the performance of outlier detection. The proposed method innovatively transforms unsupervised outlier detection into a semi-supervised classification problem and for the first time explores the fuzzy rough sets-based outlier detection from the perspective of multi-scale granular balls, allowing for high adaptability to different types of outliers. Extensive experiments carried out on both artificial and UCI datasets demonstrate that the proposed outlier detection method significantly outperforms the state-of-the-art methods, improving the results by at least 8.48% in terms of the Area Under the ROC Curve (AUROC) index. { The source codes are released at \url{https://github.com/Xiaofeng-Tan/MGBOD}. }
Authors:Stephan Goerttler, Yucheng Wang, Emadeldeen Eldele, Min Wu, Fei He
Abstract:
Recent advancements in machine learning-based signal analysis, coupled with open data initiatives, have fuelled efforts in automatic sleep stage classification. Despite the proliferation of classification models, few have prioritised reducing model complexity, which is a crucial factor for practical applications. In this work, we introduce Multi-Scale and Attention Convolutional Neural Network (MSA-CNN), a lightweight architecture featuring as few as ~10,000 parameters. MSA-CNN leverages a novel multi-scale module employing complementary pooling to eliminate redundant filter parameters and dense convolutions. Model complexity is further reduced by separating temporal and spatial feature extraction and using cost-effective global spatial convolutions. This separation of tasks not only reduces model complexity but also mirrors the approach used by human experts in sleep stage scoring. We evaluated both small and large configurations of MSA-CNN against nine state-of-the-art baseline models across three public datasets, treating univariate and multivariate models separately. Our evaluation, based on repeated cross-validation and re-evaluation of all baseline models, demonstrated that the large MSA-CNN outperformed all baseline models on all three datasets in terms of accuracy and Cohen's kappa, despite its significantly reduced parameter count. Lastly, we explored various model variants and conducted an in-depth analysis of the key modules and techniques, providing deeper insights into the underlying mechanisms. The code for our models, baselines, and evaluation procedures is available at https://github.com/sgoerttler/MSA-CNN.
Authors:Shi Bin Hoo, Samuel Müller, David Salinas, Frank Hutter
Abstract:
Foundation models have become increasingly popular for forecasting due to their ability to provide predictions without requiring a lot of training data. In this work, we demonstrate how TabPFN-v2, a general tabular foundation model, can be effectively applied to time series forecasting. We introduce TabPFN-TS, a simple method that combines TabPFN-v2 with lightweight feature engineering to enable both point and probabilistic forecasting. Despite its simplicity and compact size (11M parameters), TabPFN-TS achieves top rank on the public GIFT-Eval leaderboard in both forecasting tasks. Through ablation studies, we investigate factors contributing to this surprising effectiveness, especially considering TabPFN-v2 was pretrained solely on synthetic tabular data with no exposure to time series. Our results highlights the potential of tabular foundation models like TabPFN-v2 as a valuable new approach for time series forecasting. Our implementation is available at https://github.com/PriorLabs/tabpfn-time-series.
Authors:Jiexi Zhong, Zhiheng Li, Yubo Cui, Zheng Fang
Abstract:
Semantic segmentation of LiDAR points has significant value for autonomous driving and mobile robot systems. Most approaches explore spatio-temporal information of multi-scan to identify the semantic classes and motion states for each point. However, these methods often overlook the segmentation consistency in space and time, which may result in point clouds within the same object being predicted as different categories. To handle this issue, our core idea is to generate cluster labels across multiple frames that can reflect the complete spatial structure and temporal information of objects. These labels serve as explicit guidance for our dual-branch network, 4D-CS, which integrates point-based and cluster-based branches to enable more consistent segmentation. Specifically, in the point-based branch, we leverage historical knowledge to enrich the current feature through temporal fusion on multiple views. In the cluster-based branch, we propose a new strategy to produce cluster labels of foreground objects and apply them to gather point-wise information to derive cluster features. We then merge neighboring clusters across multiple scans to restore missing features due to occlusion. Finally, in the point-cluster fusion stage, we adaptively fuse the information from the two branches to optimize segmentation results. Extensive experiments confirm the effectiveness of the proposed method, and we achieve state-of-the-art results on the multi-scan semantic and moving object segmentation on SemanticKITTI and nuScenes datasets. The code will be available at https://github.com/NEU-REAL/4D-CS.git.
Authors:Sahar Salimpour, Jorge Peña-Queralta, Diego Paez-Granados, Jukka Heikkonen, Tomi Westerlund
Abstract:
Unprecedented agility and dexterous manipulation have been demonstrated with controllers based on deep reinforcement learning (RL), with a significant impact on legged and humanoid robots. Modern tooling and simulation platforms, such as NVIDIA Isaac Sim, have been enabling such advances. This article focuses on demonstrating the applications of Isaac in local planning and obstacle avoidance as one of the most fundamental ways in which a mobile robot interacts with its environments. Although there is extensive research on proprioception-based RL policies, the article highlights less standardized and reproducible approaches to exteroception. At the same time, the article aims to provide a base framework for end-to-end local navigation policies and how a custom robot can be trained in such simulation environment. We benchmark end-to-end policies with the state-of-the-art Nav2, navigation stack in Robot Operating System (ROS). We also cover the sim-to-real transfer process by demonstrating zero-shot transferability of policies trained in the Isaac simulator to real-world robots. This is further evidenced by the tests with different simulated robots, which show the generalization of the learned policy. Finally, the benchmarks demonstrate comparable performance to Nav2, opening the door to quick deployment of state-of-the-art end-to-end local planners for custom robot platforms, but importantly furthering the possibilities by expanding the state and action spaces or task definitions for more complex missions. Overall, with this article we introduce the most important steps, and aspects to consider, in deploying RL policies for local path planning and obstacle avoidance with Isaac Sim training, Gazebo testing, and ROS 2 for real-time inference in real robots. The code is available at https://github.com/sahars93/RL-Navigation.
Authors:Guray Ozgur, Eduarda Caldeira, Tahar Chettaoui, Fadi Boutros, Raghavendra Ramachandra, Naser Damer
Abstract:
Although face recognition systems have seen a massive performance enhancement in recent years, they are still targeted by threats such as presentation attacks, leading to the need for generalizable presentation attack detection (PAD) algorithms. Current PAD solutions suffer from two main problems: low generalization to unknown cenarios and large training data requirements. Foundation models (FM) are pre-trained on extensive datasets, achieving remarkable results when generalizing to unseen domains and allowing for efficient task-specific adaption even when little training data are available. In this work, we recognize the potential of FMs to address common PAD problems and tackle the PAD task with an adapted FM for the first time. The FM under consideration is adapted with LoRA weights while simultaneously training a classification header. The resultant architecture, FoundPAD, is highly generalizable to unseen domains, achieving competitive results in several settings under different data availability scenarios and even when using synthetic training data. To encourage reproducibility and facilitate further research in PAD, we publicly release the implementation of FoundPAD at https://github.com/gurayozgur/FoundPAD .
Authors:Asma Alkalbani, Muhammad Saqib, Ahmed Salim Alrawahi, Abbas Anwar, Chandarnath Adak, Saeed Anwar
Abstract:
Road damage detection and assessment are crucial components of infrastructure maintenance. However, current methods often struggle with detecting multiple types of road damage in a single image, particularly at varying scales. This is due to the lack of road datasets with various damage types having varying scales. To overcome this deficiency, first, we present a novel dataset called Diverse Road Damage Dataset (DRDD) for road damage detection that captures the diverse road damage types in individual images, addressing a crucial gap in existing datasets. Then, we provide our model, RDD4D, that exploits Attention4D blocks, enabling better feature refinement across multiple scales. The Attention4D module processes feature maps through an attention mechanism combining positional encoding and "Talking Head" components to capture local and global contextual information. In our comprehensive experimental analysis comparing various state-of-the-art models on our proposed, our enhanced model demonstrated superior performance in detecting large-sized road cracks with an Average Precision (AP) of 0.458 and maintained competitive performance with an overall AP of 0.445. Moreover, we also provide results on the CrackTinyNet dataset; our model achieved around a 0.21 increase in performance. The code, model weights, dataset, and our results are available on \href{https://github.com/msaqib17/Road_Damage_Detection}{https://github.com/msaqib17/Road\_Damage\_Detection}.
Authors:Chunxin Zheng, Yulin Li, Zhiyuan Song, Zhihai Bi, Jinni Zhou, Boyu Zhou, Jun Ma
Abstract:
Mobile manipulators typically encounter significant challenges in navigating narrow, cluttered environments due to their high-dimensional state spaces and complex kinematics. While reactive methods excel in dynamic settings, they struggle to efficiently incorporate complex, coupled constraints across the entire state space. In this work, we present a novel local reactive controller that reformulates the time-domain single-step problem into a multi-step optimization problem in the spatial domain, leveraging the propagation of a serial kinematic chain. This transformation facilitates the formulation of customized, decoupled link-specific constraints, which is further solved efficiently with augmented Lagrangian differential dynamic programming (AL-DDP). Our approach naturally absorbs spatial kinematic propagation in the forward pass and processes all link-specific constraints simultaneously during the backward pass, enhancing both constraint management and computational efficiency. Notably, in this framework, we formulate collision avoidance constraints for each link using accurate geometric models with extracted free regions, and this improves the maneuverability of the mobile manipulator in narrow, cluttered spaces. Experimental results showcase significant improvements in safety, efficiency, and task completion rates. These findings underscore the robustness of the proposed method, particularly in narrow, cluttered environments where conventional approaches could falter. The open-source project can be found at https://github.com/Chunx1nZHENG/MM-with-Whole-Body-Safety-Release.git.
Authors:Niloufar Eghbali, Hassan Bagher-Ebadian, Tuka Alhanai, Mohammad M. Ghassemi
Abstract:
Vision Transformers (ViTs) have shown promise in medical image semantic segmentation (MISS) by capturing long-range correlations. However, ViTs often struggle to model local spatial information effectively, which is essential for accurately segmenting fine anatomical details, particularly when applied to small datasets without extensive pre-training. We introduce Gabor and Laplacian of Gaussian Convolutional Swin Network (GLoG-CSUnet), a novel architecture enhancing Transformer-based models by incorporating learnable radiomic features. This approach integrates dynamically adaptive Gabor and Laplacian of Gaussian (LoG) filters to capture texture, edge, and boundary information, enhancing the feature representation processed by the Transformer model. Our method uniquely combines the long-range dependency modeling of Transformers with the texture analysis capabilities of Gabor and LoG features. Evaluated on the Synapse multi-organ and ACDC cardiac segmentation datasets, GLoG-CSUnet demonstrates significant improvements over state-of-the-art models, achieving a 1.14% increase in Dice score for Synapse and 0.99% for ACDC, with minimal computational overhead (only 15 and 30 additional parameters, respectively). GLoG-CSUnet's flexible design allows integration with various base models, offering a promising approach for incorporating radiomics-inspired feature extraction in Transformer architectures for medical image analysis. The code implementation is available on GitHub at: https://github.com/HAAIL/GLoG-CSUnet.
Authors:Binyu Zhang, Zhu Meng, Junhao Dong, Fei Su, Zhicheng Zhao
Abstract:
Survival prediction is a crucial task in the medical field and is essential for optimizing treatment options and resource allocation. However, current methods often rely on limited data modalities, resulting in suboptimal performance. In this paper, we propose an Integrated Cross-modal Fusion Network (ICFNet) that integrates histopathology whole slide images, genomic expression profiles, patient demographics, and treatment protocols. Specifically, three types of encoders, a residual orthogonal decomposition module and a unification fusion module are employed to merge multi-modal features to enhance prediction accuracy. Additionally, a balanced negative log-likelihood loss function is designed to ensure fair training across different patients. Extensive experiments demonstrate that our ICFNet outperforms state-of-the-art algorithms on five public TCGA datasets, including BLCA, BRCA, GBMLGG, LUAD, and UCEC, and shows its potential to support clinical decision-making and advance precision medicine. The codes are available at: https://github.com/binging512/ICFNet.
Authors:Haoyu Liu, Shaohan Huang, Jianfeng Liu, Yuefeng Zhan, Hao Sun, Weiwei Deng, Feng Sun, Furu Wei, Qi Zhang
Abstract:
Document retrieval techniques are essential for developing large-scale information systems. The common approach involves using a bi-encoder to compute the semantic similarity between a query and documents. However, the scalar similarity often fail to reflect enough information, hindering the interpretation of retrieval results. In addition, this process primarily focuses on global semantics, overlooking the finer-grained semantic relationships between the query and the document's content. In this paper, we introduce a novel method, $\textbf{Ge}$neration $\textbf{A}$ugmented $\textbf{R}$etrieval ($\textbf{GeAR}$), which not only improves the global document-query similarity through contrastive learning, but also integrates well-designed fusion and decoding modules. This enables GeAR to generate relevant context within the documents based on a given query, facilitating learning to retrieve local fine-grained information. Furthermore, when used as a retriever, GeAR does not incur any additional computational cost over bi-encoders. GeAR exhibits competitive retrieval performance across diverse scenarios and tasks. Moreover, qualitative analysis and the results generated by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and models will be released at \href{https://github.com/microsoft/LMOps}{https://github.com/microsoft/LMOps}.
Authors:Yifan Li, Zhixin Lai, Wentao Bao, Zhen Tan, Anh Dao, Kewei Sui, Jiayi Shen, Dong Liu, Huan Liu, Yu Kong
Abstract:
Visual-language models (VLM) have emerged as a powerful tool for learning a unified embedding space for vision and language. Inspired by large language models, which have demonstrated strong reasoning and multi-task capabilities, visual large language models (VLLMs) are gaining increasing attention for building general-purpose VLMs. Despite the significant progress made in VLLMs, the related literature remains limited, particularly from a comprehensive application perspective, encompassing generalized and specialized applications across vision (image, video, depth), action, and language modalities. In this survey, we focus on the diverse applications of VLLMs, examining their using scenarios, identifying ethics consideration and challenges, and discussing future directions for their development. By synthesizing these contents, we aim to provide a comprehensive guide that will pave the way for future innovations and broader applications of VLLMs. The paper list repository is available: https://github.com/JackYFL/awesome-VLLMs.
Authors:Xiaojiao Guo, Xuhang Chen, Shuqiang Wang, Chi-Man Pun
Abstract:
Underwater imaging grapples with challenges from light-water interactions, leading to color distortions and reduced clarity. In response to these challenges, we propose a novel Color Balance Prior \textbf{Guided} \textbf{Hyb}rid \textbf{Sens}e \textbf{U}nderwater \textbf{I}mage \textbf{R}estoration framework (\textbf{GuidedHybSensUIR}). This framework operates on multiple scales, employing the proposed \textbf{Detail Restorer} module to restore low-level detailed features at finer scales and utilizing the proposed \textbf{Feature Contextualizer} module to capture long-range contextual relations of high-level general features at a broader scale. The hybridization of these different scales of sensing results effectively addresses color casts and restores blurry details. In order to effectively point out the evolutionary direction for the model, we propose a novel \textbf{Color Balance Prior} as a strong guide in the feature contextualization step and as a weak guide in the final decoding phase. We construct a comprehensive benchmark using paired training data from three real-world underwater datasets and evaluate on six test sets, including three paired and three unpaired, sourced from four real-world underwater datasets. Subsequently, we tested 14 traditional and retrained 23 deep learning existing underwater image restoration methods on this benchmark, obtaining metric results for each approach. This effort aims to furnish a valuable benchmarking dataset for standard basis for comparison. The extensive experiment results demonstrate that our method outperforms 37 other state-of-the-art methods overall on various benchmark datasets and metrics, despite not achieving the best results in certain individual cases. The code and dataset are available at \href{https://github.com/CXH-Research/GuidedHybSensUIR}{https://github.com/CXH-Research/GuidedHybSensUIR}.
Authors:Weikang Bian, Zhaoyang Huang, Xiaoyu Shi, Yijin Li, Fu-Yun Wang, Hongsheng Li
Abstract:
4D video control is essential in video generation as it enables the use of sophisticated lens techniques, such as multi-camera shooting and dolly zoom, which are currently unsupported by existing methods. Training a video Diffusion Transformer (DiT) directly to control 4D content requires expensive multi-view videos. Inspired by Monocular Dynamic novel View Synthesis (MDVS) that optimizes a 4D representation and renders videos according to different 4D elements, such as camera pose and object motion editing, we bring pseudo 4D Gaussian fields to video generation. Specifically, we propose a novel framework that constructs a pseudo 4D Gaussian field with dense 3D point tracking and renders the Gaussian field for all video frames. Then we finetune a pretrained DiT to generate videos following the guidance of the rendered video, dubbed as GS-DiT. To boost the training of the GS-DiT, we also propose an efficient Dense 3D Point Tracking (D3D-PT) method for the pseudo 4D Gaussian field construction. Our D3D-PT outperforms SpatialTracker, the state-of-the-art sparse 3D point tracking method, in accuracy and accelerates the inference speed by two orders of magnitude. During the inference stage, GS-DiT can generate videos with the same dynamic content while adhering to different camera parameters, addressing a significant limitation of current video generation models. GS-DiT demonstrates strong generalization capabilities and extends the 4D controllability of Gaussian splatting to video generation beyond just camera poses. It supports advanced cinematic effects through the manipulation of the Gaussian field and camera intrinsics, making it a powerful tool for creative video production. Demos are available at https://wkbian.github.io/Projects/GS-DiT/.
Authors:Yang Ouyang, Hengrui Gu, Shuhang Lin, Wenyue Hua, Jie Peng, Bhavya Kailkhura, Meijun Gao, Tianlong Chen, Kaixiong Zhou
Abstract:
As large language models (LLMs) are increasingly deployed in diverse applications, including chatbot assistants and code generation, aligning their behavior with safety and ethical standards has become paramount. However, jailbreak attacks, which exploit vulnerabilities to elicit unintended or harmful outputs, threaten LLMs' safety significantly. In this paper, we introduce Layer-AdvPatcher, a novel methodology designed to defend against jailbreak attacks by utilizing an unlearning strategy to patch specific layers within LLMs through self-augmented datasets. Our insight is that certain layer(s), tend to produce affirmative tokens when faced with harmful prompts. By identifying these layers and adversarially exposing them to generate more harmful data, one can understand their inherent and diverse vulnerabilities to attacks. With these exposures, we then "unlearn" these issues, reducing the impact of affirmative tokens and hence minimizing jailbreak risks while keeping the model's responses to safe queries intact. We conduct extensive experiments on two models, four benchmark datasets, and multiple state-of-the-art jailbreak attacks to demonstrate the efficacy of our approach. Results indicate that our framework reduces the harmfulness and attack success rate of jailbreak attacks without compromising utility for benign queries compared to recent defense methods. Our code is publicly available at: https://github.com/oyy2000/LayerAdvPatcher
Authors:Saleh Ashkboos, Mahdi Nikdan, Soroush Tabesh, Roberto L. Castro, Torsten Hoefler, Dan Alistarh
Abstract:
Quantized training of Large Language Models (LLMs) remains an open challenge, as maintaining accuracy while performing all matrix multiplications in low precision has proven difficult. This is particularly the case when fine-tuning pre-trained models, which can have large weight and activation outlier values that make lower-precision optimization difficult. To address this, we present HALO, a novel quantization-aware training approach for Transformers that enables accurate and efficient low-precision training by combining 1) strategic placement of Hadamard rotations in both forward and backward passes, which mitigate outliers, 2) high-performance kernel support, and 3) FSDP integration for low-precision communication. Our approach ensures that all large matrix multiplications during the forward and backward passes are executed in lower precision. Applied to LLAMA-family models, HALO achieves near-full-precision-equivalent results during fine-tuning on various tasks, while delivering up to 1.41x end-to-end speedup for full fine-tuning on RTX 4090 GPUs. HALO efficiently supports both standard and parameterefficient fine-tuning (PEFT). Our results demonstrate the first practical approach to fully quantized LLM fine-tuning that maintains accuracy in 8-bit precision, while delivering performance benefits. Code is available at \url{https://github.com/IST-DASLab/HALO}.
Authors:Ziyang Song, Zerong Wang, Bo Li, Hao Zhang, Ruijie Zhu, Li Liu, Peng-Tao Jiang, Tianzhu Zhang
Abstract:
Monocular depth estimation within the diffusion-denoising paradigm demonstrates impressive generalization ability but suffers from low inference speed. Recent methods adopt a single-step deterministic paradigm to improve inference efficiency while maintaining comparable performance. However, they overlook the gap between generative and discriminative features, leading to suboptimal results. In this work, we propose DepthMaster, a single-step diffusion model designed to adapt generative features for the discriminative depth estimation task. First, to mitigate overfitting to texture details introduced by generative features, we propose a Feature Alignment module, which incorporates high-quality semantic features to enhance the denoising network's representation capability. Second, to address the lack of fine-grained details in the single-step deterministic framework, we propose a Fourier Enhancement module to adaptively balance low-frequency structure and high-frequency details. We adopt a two-stage training strategy to fully leverage the potential of the two modules. In the first stage, we focus on learning the global scene structure with the Feature Alignment module, while in the second stage, we exploit the Fourier Enhancement module to improve the visual quality. Through these efforts, our model achieves state-of-the-art performance in terms of generalization and detail preservation, outperforming other diffusion-based methods across various datasets. Our project page can be found at https://indu1ge.github.io/DepthMaster_page.
Authors:Jiaping Wang, Simiao Zhang, Qiao-Chu He, Yifan Chen
Abstract:
The machine learning and data science community has made significant while dispersive progress in accelerating transformer-based large language models (LLMs), and one promising approach is to replace the original causal attention in a generative pre-trained transformer (GPT) with \emph{exponentially decaying causal linear attention}. In this paper, we present LeetDecoding, which is the first Python package that provides a large set of computation routines for this fundamental operator. The launch of LeetDecoding was motivated by the current lack of (1) clear understanding of the complexity regarding this operator, (2) a comprehensive collection of existing computation methods (usually spread in seemingly unrelated fields), and (3) CUDA implementations for fast inference on GPU. LeetDecoding's design is easy to integrate with existing linear-attention LLMs, and allows for researchers to benchmark and evaluate new computation methods for exponentially decaying causal linear attention. The usage of LeetDecoding does not require any knowledge of GPU programming and the underlying complexity analysis, intentionally making LeetDecoding accessible to LLM practitioners. The source code of LeetDecoding is provided at \href{https://github.com/Computational-Machine-Intelligence/LeetDecoding}{this GitHub repository}, and users can simply install LeetDecoding by the command \texttt{pip install leet-decoding}.
Authors:Lin Wang, Qing Li
Abstract:
Graph condensation reduces the size of large graphs while preserving performance, addressing the scalability challenges of Graph Neural Networks caused by computational inefficiencies on large datasets. Existing methods often rely on bi-level optimization, requiring extensive GNN training and limiting their scalability. To address these issues, this paper proposes Graph Condensation via Gaussian Process (GCGP), a novel and computationally efficient approach to graph condensation. GCGP utilizes a Gaussian Process (GP), with the condensed graph serving as observations, to estimate the posterior distribution of predictions. This approach eliminates the need for the iterative and resource-intensive training typically required by GNNs. To enhance the capability of the GCGP in capturing dependencies between function values, we derive a specialized covariance function that incorporates structural information. This covariance function broadens the receptive field of input nodes by local neighborhood aggregation, thereby facilitating the representation of intricate dependencies within the nodes. To address the challenge of optimizing binary structural information in condensed graphs, Concrete random variables are utilized to approximate the binary adjacency matrix in a continuous counterpart. This relaxation process allows the adjacency matrix to be represented in a differentiable form, enabling the application of gradient-based optimization techniques to discrete graph structures. Experimental results show that the proposed GCGP method efficiently condenses large-scale graph data while preserving predictive performance, addressing the scalability and efficiency challenges. The implementation of our method is publicly available at https://github.com/WANGLin0126/GCGP.
Authors:Yibo Zhang
Abstract:
Medical image segmentation is a critical task in medical imaging analysis. Traditional CNN-based methods struggle with modeling long-range dependencies, while Transformer-based models, despite their success, suffer from quadratic computational complexity. To address these limitations, we propose KM-UNet, a novel U-shaped network architecture that combines the strengths of Kolmogorov-Arnold Networks (KANs) and state-space models (SSMs). KM-UNet leverages the Kolmogorov-Arnold representation theorem for efficient feature representation and SSMs for scalable long-range modeling, achieving a balance between accuracy and computational efficiency. We evaluate KM-UNet on five benchmark datasets: ISIC17, ISIC18, CVC, BUSI, and GLAS. Experimental results demonstrate that KM-UNet achieves competitive performance compared to state-of-the-art methods in medical image segmentation tasks. To the best of our knowledge, KM-UNet is the first medical image segmentation framework integrating KANs and SSMs. This work provides a valuable baseline and new insights for the development of more efficient and interpretable medical image segmentation systems. The code is open source at https://github.com/2760613195/KM_UNet
Keywords:KAN,Manba, state-space models,UNet, Medical image segmentation, Deep learning
Authors:Jaeyoung Kim, Jongho Lee, Hong-Jun Choi, Ting-Yao Hsu, Chieh-Yang Huang, Sungchul Kim, Ryan Rossi, Tong Yu, Clyde Lee Giles, Ting-Hao 'Kenneth' Huang, Sungchul Choi
Abstract:
Scientific figure captioning is a complex task that requires generating contextually appropriate descriptions of visual content. However, existing methods often fall short by utilizing incomplete information, treating the task solely as either an image-to-text or text summarization problem. This limitation hinders the generation of high-quality captions that fully capture the necessary details. Moreover, existing data sourced from arXiv papers contain low-quality captions, posing significant challenges for training large language models (LLMs). In this paper, we introduce a framework called Multi-LLM Collaborative Figure Caption Generation (MLBCAP) to address these challenges by leveraging specialized LLMs for distinct sub-tasks. Our approach unfolds in three key modules: (Quality Assessment) We utilize multimodal LLMs to assess the quality of training data, enabling the filtration of low-quality captions. (Diverse Caption Generation) We then employ a strategy of fine-tuning/prompting multiple LLMs on the captioning task to generate candidate captions. (Judgment) Lastly, we prompt a prominent LLM to select the highest quality caption from the candidates, followed by refining any remaining inaccuracies. Human evaluations demonstrate that informative captions produced by our approach rank better than human-written captions, highlighting its effectiveness. Our code is available at https://github.com/teamreboott/MLBCAP
Authors:Haichao Liu, Kai Chen, Yulin Li, Zhenmin Huang, Ming Liu, Jun Ma
Abstract:
Current autonomous driving systems often struggle to balance decision-making and motion control while ensuring safety and traffic rule compliance, especially in complex urban environments. Existing methods may fall short due to separate handling of these functionalities, leading to inefficiencies and safety compromises. To address these challenges, we introduce UDMC, an interpretable and unified Level 4 autonomous driving framework. UDMC integrates decision-making and motion control into a single optimal control problem (OCP), considering the dynamic interactions with surrounding vehicles, pedestrians, road lanes, and traffic signals. By employing innovative potential functions to model traffic participants and regulations, and incorporating a specialized motion prediction module, our framework enhances on-road safety and rule adherence. The integrated design allows for real-time execution of flexible maneuvers suited to diverse driving scenarios. High-fidelity simulations conducted in CARLA exemplify the framework's computational efficiency, robustness, and safety, resulting in superior driving performance when compared against various baseline models. Our open-source project is available at https://github.com/henryhcliu/udmc_carla.git.
Authors:Yaohui Wang, Zicong Wang, Fanfeng Meng, Yanjing Wang, Yang Ou, Lizhou Wu, Wentao Hong, Xuran Ge, Jijun Cao
Abstract:
Compute eXpress Link (CXL) is a promising technology for memory disaggregation and expansion. Especially, CXL makes it more effectively for large-capacity storage devices such as Solid State Drive (SSD) to be deployed in the memory pool. However, CXL-based SSDs are still in early stages, necessitating the development of reliable simulation tools. In this paper, we propose CXL-SSD-Sim, the first open-source full-system simulator designed to simulate CXL-based SSD memory system. Constructed on the foundation of gem5 and SimpleSSD, CXL-SSD-Sim extends an high fidelity SSD memory expander model along with the corresponding device driver. In addition, CXL-SSD-Sim models a DRAM layer as a caching mechanism for the SSD, meticulously engineered to counteract latency issues inherent to CXL-based SSD memory access. Experiments are performed among five different memory devices with CXL-SSD-Sim in aspect of latency, bandwidth and real-world benchmark performance. These experiments serve to underscore the efficacy of our simulation tool in providing a comprehensive analysis of CXL-based SSD memory systems. The CXL-SSD-Sim simulator is available at https://github.com/WangYaohuii/CXL-SSD-Sim.
Authors:Dawei Dai, Mingming Jia, Yinxiu Zhou, Hang Xing, Chenghang Li
Abstract:
Facial images have extensive practical applications. Although the current large-scale text-image diffusion models exhibit strong generation capabilities, it is challenging to generate the desired facial images using only text prompt. Image prompts are a logical choice. However, current methods of this type generally focus on general domain. In this paper, we aim to optimize image makeup techniques to generate the desired facial images. Specifically, (1) we built a dataset of 4 million high-quality face image-text pairs (FaceCaptionHQ-4M) based on LAION-Face to train our Face-MakeUp model; (2) to maintain consistency with the reference facial image, we extract/learn multi-scale content features and pose features for the facial image, integrating these into the diffusion model to enhance the preservation of facial identity features for diffusion models. Validation on two face-related test datasets demonstrates that our Face-MakeUp can achieve the best comprehensive performance.All codes are available at:https://github.com/ddw2AIGROUP2CQUPT/Face-MakeUp
Authors:Sung Jin Um, Dongjin Kim, Sangmin Lee, Jung Uk Kim
Abstract:
The goal of video moment retrieval and highlight detection is to identify specific segments and highlights based on a given text query. With the rapid growth of video content and the overlap between these tasks, recent works have addressed both simultaneously. However, they still struggle to fully capture the overall video context, making it challenging to determine which words are most relevant. In this paper, we present a novel Video Context-aware Keyword Attention module that overcomes this limitation by capturing keyword variation within the context of the entire video. To achieve this, we introduce a video context clustering module that provides concise representations of the overall video context, thereby enhancing the understanding of keyword dynamics. Furthermore, we propose a keyword weight detection module with keyword-aware contrastive learning that incorporates keyword information to enhance fine-grained alignment between visual and textual features. Extensive experiments on the QVHighlights, TVSum, and Charades-STA benchmarks demonstrate that our proposed method significantly improves performance in moment retrieval and highlight detection tasks compared to existing approaches. Our code is available at: https://github.com/VisualAIKHU/Keyword-DETR
Authors:Zhe Chen, Yusheng Liao, Shuyang Jiang, Pingjie Wang, Yiqiu Guo, Yanfeng Wang, Yu Wang
Abstract:
Large language models hold promise for addressing medical challenges, such as medical diagnosis reasoning, research knowledge acquisition, clinical decision-making, and consumer health inquiry support. However, they often generate hallucinations due to limited medical knowledge. Incorporating external knowledge is therefore critical, which necessitates multi-source knowledge acquisition. We address this challenge by framing it as a source planning problem, which is to formulate context-appropriate queries tailored to the attributes of diverse sources. Existing approaches either overlook source planning or fail to achieve it effectively due to misalignment between the model's expectation of the sources and their actual content. To bridge this gap, we present MedOmniKB, a repository comprising multigenre and multi-structured medical knowledge sources. Leveraging these sources, we propose the Source Planning Optimisation method, which enhances multi-source utilisation. Our approach involves enabling an expert model to explore and evaluate potential plans while training a smaller model to learn source alignment. Experimental results demonstrate that our method substantially improves multi-source planning performance, enabling the optimised small model to achieve state-of-the-art results in leveraging diverse medical knowledge sources.
Authors:Yihang Tao, Senkang Hu, Yue Hu, Haonan An, Hangcheng Cao, Yuguang Fang
Abstract:
Collaborative perception significantly enhances autonomous driving safety by extending each vehicle's perception range through message sharing among connected and autonomous vehicles. Unfortunately, it is also vulnerable to adversarial message attacks from malicious agents, resulting in severe performance degradation. While existing defenses employ hypothesis-and-verification frameworks to detect malicious agents based on single-shot outliers, they overlook temporal message correlations, which can be circumvented by subtle yet harmful perturbations in model input and output spaces. This paper reveals a novel blind area confusion (BAC) attack that compromises existing single-shot outlier-based detection methods. As a countermeasure, we propose GCP, a Guarded Collaborative Perception framework based on spatial-temporal aware malicious agent detection, which maintains single-shot spatial consistency through a confidence-scaled spatial concordance loss, while simultaneously examining temporal anomalies by reconstructing historical bird's eye view motion flows in low-confidence regions. We also employ a joint spatial-temporal Benjamini-Hochberg test to synthesize dual-domain anomaly results for reliable malicious agent detection. Extensive experiments demonstrate GCP's superior performance under diverse attack scenarios, achieving up to 34.69% improvements in AP@0.5 compared to the state-of-the-art CP defense strategies under BAC attacks, while maintaining consistent 5-8% improvements under other typical attacks. Code will be released at https://github.com/CP-Security/GCP.git.
Authors:Binh-Nguyen Nguyen, Yang He
Abstract:
Dataset pruning aims to select a subset of a dataset for efficient model training. While data efficiency in natural language processing has primarily focused on within-corpus scenarios during model pre-training, efficient dataset pruning for task-specific fine-tuning across diverse datasets remains challenging due to variability in dataset sizes, data distributions, class imbalance and label spaces. Current cross-dataset pruning techniques for fine-tuning often rely on computationally expensive sample ranking processes, typically requiring full dataset training or reference models. We address this gap by proposing Swift Cross-Dataset Pruning (SCDP). Specifically, our approach uses TF-IDF embeddings with geometric median to rapidly evaluate sample importance. We then apply dataset size-adaptive pruning to ensure diversity: for smaller datasets, we retain samples far from the geometric median, while for larger ones, we employ distance-based stratified pruning. Experimental results on six diverse datasets demonstrate the effectiveness of our method, spanning various tasks and scales while significantly reducing computational resources. Source code is available at: https://github.com/he-y/NLP-Dataset-Pruning
Authors:Tara Radvand, Mojtaba Abdolmaleki, Mohamed Mostagir, Ambuj Tewari
Abstract:
Verifying the provenance of content is crucial to the function of many organizations, e.g., educational institutions, social media platforms, firms, etc. This problem is becoming increasingly challenging as text generated by Large Language Models (LLMs) becomes almost indistinguishable from human-generated content. In addition, many institutions utilize in-house LLMs and want to ensure that external, non-sanctioned LLMs do not produce content within the institution. In this paper, we answer the following question: Given a piece of text, can we identify whether it was produced by a particular LLM or not? We model LLM-generated text as a sequential stochastic process with complete dependence on history. We then design zero-shot statistical tests to (i) distinguish between text generated by two different known sets of LLMs $A$ (non-sanctioned) and $B$ (in-house), and (ii) identify whether text was generated by a known LLM or generated by any unknown model, e.g., a human or some other language generation process. We prove that the type I and type II errors of our test decrease exponentially with the length of the text. For that, we show that if $B$ generates the text, then except with an exponentially small probability in string length, the log-perplexity of the string under $A$ converges to the average cross-entropy of $B$ and $A$. We then present experiments using LLMs with white-box access to support our theoretical results and empirically examine the robustness of our results to black-box settings and adversarial attacks. In the black-box setting, our method achieves an average TPR of 82.5\% at a fixed FPR of 5\%. Under adversarial perturbations, our minimum TPR is 48.6\% at the same FPR threshold. Both results outperform all non-commercial baselines. See https://github.com/TaraRadvand74/llm-text-detection for code, data, and an online demo of the project.
Authors:Sichao Wang, Ming Yuan, Chuang Zhang, Qing Xu, Lei He, Jianqiang Wang
Abstract:
In V2X collaborative perception, the domain gaps between heterogeneous nodes pose a significant challenge for effective information fusion. Pose errors arising from latency and GPS localization noise further exacerbate the issue by leading to feature misalignment. To overcome these challenges, we propose V2X-DGPE, a high-accuracy and robust V2X feature-level collaborative perception framework. V2X-DGPE employs a Knowledge Distillation Framework and a Feature Compensation Module to learn domain-invariant representations from multi-source data, effectively reducing the feature distribution gap between vehicles and roadside infrastructure. Historical information is utilized to provide the model with a more comprehensive understanding of the current scene. Furthermore, a Collaborative Fusion Module leverages a heterogeneous self-attention mechanism to extract and integrate heterogeneous representations from vehicles and infrastructure. To address pose errors, V2X-DGPE introduces a deformable attention mechanism, enabling the model to adaptively focus on critical parts of the input features by dynamically offsetting sampling points. Extensive experiments on the real-world DAIR-V2X dataset demonstrate that the proposed method outperforms existing approaches, achieving state-of-the-art detection performance. The code is available at https://github.com/wangsch10/V2X-DGPE.
Authors:Ambroise Odonnat, Wassim Bouaziz, Vivien Cabannes
Abstract:
Gradient descent is the method of choice for training large artificial intelligence systems. As these systems become larger, a better understanding of the mechanisms behind gradient training would allow us to alleviate compute costs and help steer these systems away from harmful behaviors. To that end, we suggest utilizing the circuit perspective brought forward by mechanistic interpretability. After laying out our intuition, we illustrate how it enables us to design a curriculum for efficient learning in a controlled setting. The code is available at \url{https://github.com/facebookresearch/pal}.
Authors:Yonglin Tian, Fei Lin, Yiduo Li, Tengchao Zhang, Qiyao Zhang, Xuan Fu, Jun Huang, Xingyuan Dai, Yutong Wang, Chunwei Tian, Bai Li, Yisheng Lv, Levente Kovács, Fei-Yue Wang
Abstract:
Low-altitude mobility, exemplified by unmanned aerial vehicles (UAVs), has introduced transformative advancements across various domains, like transportation, logistics, and agriculture. Leveraging flexible perspectives and rapid maneuverability, UAVs extend traditional systems' perception and action capabilities, garnering widespread attention from academia and industry. However, current UAV operations primarily depend on human control, with only limited autonomy in simple scenarios, and lack the intelligence and adaptability needed for more complex environments and tasks. The emergence of large language models (LLMs) demonstrates remarkable problem-solving and generalization capabilities, offering a promising pathway for advancing UAV intelligence. This paper explores the integration of LLMs and UAVs, beginning with an overview of UAV systems' fundamental components and functionalities, followed by an overview of the state-of-the-art in LLM technology. Subsequently, it systematically highlights the multimodal data resources available for UAVs, which provide critical support for training and evaluation. Furthermore, it categorizes and analyzes key tasks and application scenarios where UAVs and LLMs converge. Finally, a reference roadmap towards agentic UAVs is proposed, aiming to enable UAVs to achieve agentic intelligence through autonomous perception, memory, reasoning, and tool utilization. Related resources are available at https://github.com/Hub-Tian/UAVs_Meet_LLMs.
Authors:Liye Jia, Runwei Guan, Haocheng Zhao, Qiuchi Zhao, Ka Lok Man, Jeremy Smith, Limin Yu, Yutao Yue
Abstract:
3D object detection is crucial for Autonomous Driving (AD) and Advanced Driver Assistance Systems (ADAS). However, most 3D detectors prioritize detection accuracy, often overlooking network inference speed in practical applications. In this paper, we propose RadarNeXt, a real-time and reliable 3D object detector based on the 4D mmWave radar point clouds. It leverages the re-parameterizable neural networks to catch multi-scale features, reduce memory cost and accelerate the inference. Moreover, to highlight the irregular foreground features of radar point clouds and suppress background clutter, we propose a Multi-path Deformable Foreground Enhancement Network (MDFEN), ensuring detection accuracy while minimizing the sacrifice of speed and excessive number of parameters. Experimental results on View-of-Delft and TJ4DRadSet datasets validate the exceptional performance and efficiency of RadarNeXt, achieving 50.48 and 32.30 mAPs with the variant using our proposed MDFEN. Notably, our RadarNeXt variants achieve inference speeds of over 67.10 FPS on the RTX A4000 GPU and 28.40 FPS on the Jetson AGX Orin. This research demonstrates that RadarNeXt brings a novel and effective paradigm for 3D perception based on 4D mmWave radar.
Authors:Zongwei Li, Lianghao Xia, Hua Hua, Shijie Zhang, Shuangyang Wang, Chao Huang
Abstract:
Recent advances in Graph Neural Networks (GNNs) have revolutionized graph-structured data modeling, yet traditional GNNs struggle with complex heterogeneous structures prevalent in real-world scenarios. Despite progress in handling heterogeneous interactions, two fundamental challenges persist: noisy data significantly compromising embedding quality and learning performance, and existing methods' inability to capture intricate semantic transitions among heterogeneous relations, which impacts downstream predictions. To address these fundamental issues, we present the Heterogeneous Graph Diffusion Model (DiffGraph), a pioneering framework that introduces an innovative cross-view denoising strategy. This advanced approach transforms auxiliary heterogeneous data into target semantic spaces, enabling precise distillation of task-relevant information. At its core, DiffGraph features a sophisticated latent heterogeneous graph diffusion mechanism, implementing a novel forward and backward diffusion process for superior noise management. This methodology achieves simultaneous heterogeneous graph denoising and cross-type transition, while significantly simplifying graph generation through its latent-space diffusion capabilities. Through rigorous experimental validation on both public and industrial datasets, we demonstrate that DiffGraph consistently surpasses existing methods in link prediction and node classification tasks, establishing new benchmarks for robustness and efficiency in heterogeneous graph processing. The model implementation is publicly available at: https://github.com/HKUDS/DiffGraph.
Authors:Mengting Wei, Tuomas Varanka, Xingxun Jiang, Huai-Qian Khor, Guoying Zhao
Abstract:
We address the problem of facial expression editing by controling the relative variation of facial action-unit (AU) from the same person. This enables us to edit this specific person's expression in a fine-grained, continuous and interpretable manner, while preserving their identity, pose, background and detailed facial attributes. Key to our model, which we dub MagicFace, is a diffusion model conditioned on AU variations and an ID encoder to preserve facial details of high consistency. Specifically, to preserve the facial details with the input identity, we leverage the power of pretrained Stable-Diffusion models and design an ID encoder to merge appearance features through self-attention. To keep background and pose consistency, we introduce an efficient Attribute Controller by explicitly informing the model of current background and pose of the target. By injecting AU variations into a denoising UNet, our model can animate arbitrary identities with various AU combinations, yielding superior results in high-fidelity expression editing compared to other facial expression editing works. Code is publicly available at https://github.com/weimengting/MagicFace.
Authors:Mian Zou, Baosheng Yu, Yibing Zhan, Kede Ma
Abstract:
The detection of AI-generated faces is commonly approached as a binary classification task. Nevertheless, the resulting detectors frequently struggle to adapt to novel AI face generators, which evolve rapidly. In this paper, we describe an anomaly detection method for AI-generated faces by leveraging self-supervised learning of camera-intrinsic and face-specific features purely from photographic face images. The success of our method lies in designing a pretext task that trains a feature extractor to rank four ordinal exchangeable image file format (EXIF) tags and classify artificially manipulated face images. Subsequently, we model the learned feature distribution of photographic face images using a Gaussian mixture model. Faces with low likelihoods are flagged as AI-generated. Both quantitative and qualitative experiments validate the effectiveness of our method. Our code is available at \url{https://github.com/MZMMSEC/AIGFD_EXIF.git}.
Authors:Zongxia Li, Xiyang Wu, Hongyang Du, Fuxiao Liu, Huy Nghiem, Guangyao Shi
Abstract:
Multimodal Vision Language Models (VLMs) have emerged as a transformative topic at the intersection of computer vision and natural language processing, enabling machines to perceive and reason about the world through both visual and textual modalities. For example, models such as CLIP, Claude, and GPT-4V demonstrate strong reasoning and understanding abilities on visual and textual data and beat classical single modality vision models on zero-shot classification [93]. With their rapid advancements in research and growing popularity in various applications, we provide a comprehensive survey of VLMs. Specifically, we provide a systematic overview of VLMs in the following aspects: [1] model information of the major VLMs developed up to 2025; [2] the transition of VLM architectures and the newest VLM alignment methods; [3] summary and categorization of the popular benchmarks and evaluation metrics of VLMs; [4] the challenges and issues faced by current VLMs such as hallucination, alignment, fairness, and safety. Detailed collections including papers and model repository links are listed in https://github.com/zli12321/Vision-Language-Models-Overview.
Authors:Zhizheng Liu, Joe Lin, Wayne Wu, Bolei Zhou
Abstract:
Reconstructing human motion and its surrounding environment is crucial for understanding human-scene interaction and predicting human movements in the scene. While much progress has been made in capturing human-scene interaction in constrained environments, those prior methods can hardly reconstruct the natural and diverse human motion and scene context from web videos. In this work, we propose JOSH, a novel optimization-based method for 4D human-scene reconstruction in the wild from monocular videos. JOSH uses techniques in both dense scene reconstruction and human mesh recovery as initialization, and then it leverages the human-scene contact constraints to jointly optimize the scene, the camera poses, and the human motion. Experiment results show JOSH achieves better results on both global human motion estimation and dense scene reconstruction by joint optimization of scene geometry and human motion. We further design a more efficient model, JOSH3R, and directly train it with pseudo-labels from web videos. JOSH3R outperforms other optimization-free methods by only training with labels predicted from JOSH, further demonstrating its accuracy and generalization ability.
Authors:Yuanpeng Tu, Xi Chen, Ser-Nam Lim, Hengshuang Zhao
Abstract:
Open-vocabulary panoptic segmentation has received significant attention due to its applicability in the real world. Despite claims of robust generalization, we find that the advancements of previous works are attributed mainly on trained categories, exposing a lack of generalization to novel classes. In this paper, we explore boosting existing models from a data-centric perspective. We propose DreamMask, which systematically explores how to generate training data in the open-vocabulary setting, and how to train the model with both real and synthetic data. For the first part, we propose an automatic data generation pipeline with off-the-shelf models. We propose crucial designs for vocabulary expansion, layout arrangement, data filtering, etc. Equipped with these techniques, our generated data could significantly outperform the manually collected web data. To train the model with generated data, a synthetic-real alignment loss is designed to bridge the representation gap, bringing noticeable improvements across multiple benchmarks. In general, DreamMask significantly simplifies the collection of large-scale training data, serving as a plug-and-play enhancement for existing methods. For instance, when trained on COCO and tested on ADE20K, the model equipped with DreamMask outperforms the previous state-of-the-art by a substantial margin of 2.1% mIoU.
Authors:Juntao Zhang, Shaogeng Liu, Kun Bian, You Zhou, Pei Zhang, Jianning Liu, Jun Zhou, Bingyan Liu
Abstract:
Mamba is an efficient State Space Model (SSM) with linear computational complexity. Although SSMs are not suitable for handling non-causal data, Vision Mamba (ViM) methods still demonstrate good performance in tasks such as image classification and object detection. Recent studies have shown that there is a rich theoretical connection between state space models and attention variants. We propose a novel separable self attention method, for the first time introducing some excellent design concepts of Mamba into separable self-attention. To ensure a fair comparison with ViMs, we introduce VMINet, a simple yet powerful prototype architecture, constructed solely by stacking our novel attention modules with the most basic down-sampling layers. Notably, VMINet differs significantly from the conventional Transformer architecture. Our experiments demonstrate that VMINet has achieved competitive results on image classification and high-resolution dense prediction tasks.Code is available at: https://github.com/yws-wxs/VMINet.
Authors:Benjamin Shiue-Hal Chou, Purvish Jajal, Nicholas John Eliopoulos, Tim Nadolsky, Cheng-Yun Yang, Nikita Ravi, James C. Davis, Kristen Yeon-Ji Yun, Yung-Hsiang Lu
Abstract:
Beginner musicians often struggle to identify specific errors in their performances, such as playing incorrect notes or rhythms. There are two limitations in existing tools for music error detection: (1) Existing approaches rely on automatic alignment; therefore, they are prone to errors caused by small deviations between alignment targets.; (2) There is a lack of sufficient data to train music error detection models, resulting in over-reliance on heuristics. To address (1), we propose a novel transformer model, Polytune, that takes audio inputs and outputs annotated music scores. This model can be trained end-to-end to implicitly align and compare performance audio with music scores through latent space representations. To address (2), we present a novel data generation technique capable of creating large-scale synthetic music error datasets. Our approach achieves a 64.1% average Error Detection F1 score, improving upon prior work by 40 percentage points across 14 instruments. Additionally, compared with existing transcription methods repurposed for music error detection, our model can handle multiple instruments. Our source code and datasets are available at https://github.com/ben2002chou/Polytune.
Authors:Ziwei Zheng, Junyao Zhao, Le Yang, Lijun He, Fan Li
Abstract:
With the integration of an additional modality, large vision-language models (LVLMs) exhibit greater vulnerability to safety risks (e.g., jailbreaking) compared to their language-only predecessors. Although recent studies have devoted considerable effort to the post-hoc alignment of LVLMs, the inner safety mechanisms remain largely unexplored. In this paper, we discover that internal activations of LVLMs during the first token generation can effectively identify malicious prompts across different attacks. This inherent safety perception is governed by sparse attention heads, which we term ``safety heads." Further analysis reveals that these heads act as specialized shields against malicious prompts; ablating them leads to higher attack success rates, while the model's utility remains unaffected. By locating these safety heads and concatenating their activations, we construct a straightforward but powerful malicious prompt detector that integrates seamlessly into the generation process with minimal extra inference overhead. Despite its simple structure of a logistic regression model, the detector surprisingly exhibits strong zero-shot generalization capabilities. Experiments across various prompt-based attacks confirm the effectiveness of leveraging safety heads to protect LVLMs. Code is available at \url{https://github.com/Ziwei-Zheng/SAHs}.
Authors:Hwa Hui Tew, Fan Ding, Gaoxuan Li, Junn Yong Loo, Chee-Ming Ting, Ze Yang Ding, Chee Pin Tan
Abstract:
Higher-order sensor networks are more accurate in characterizing the nonlinear dynamics of sensory time-series data in modern industrial settings by allowing multi-node connections beyond simple pairwise graph edges. In light of this, we propose a deep spatio-temporal hypergraph convolutional neural network for soft sensing (ST-HCSS). In particular, our proposed framework is able to construct and leverage a higher-order graph (hypergraph) to model the complex multi-interactions between sensor nodes in the absence of prior structural knowledge. To capture rich spatio-temporal relationships underlying sensor data, our proposed ST-HCSS incorporates stacked gated temporal and hypergraph convolution layers to effectively aggregate and update hypergraph information across time and nodes. Our results validate the superiority of ST-HCSS compared to existing state-of-the-art soft sensors, and demonstrates that the learned hypergraph feature representations aligns well with the sensor data correlations. The code is available at https://github.com/htew0001/ST-HCSS.git
Authors:Keng Hou Leong, Yuxuan Xiu, Wai Kin, Chan
Abstract:
The representations of conditional entropy and conditional mutual information are significant in explaining the unique effects among variables. While previous studies based on conditional contrastive sampling have effectively removed information regarding discrete sensitive variables, they have not yet extended their scope to continuous cases. This paper introduces Information Subtraction, a framework designed to generate representations that preserve desired information while eliminating the undesired. We implement a generative-based architecture that outputs these representations by simultaneously maximizing an information term and minimizing another. With its flexibility in disentangling information, we can iteratively apply Information Subtraction to represent arbitrary information components between continuous variables, thereby explaining the various relationships that exist between them. Our results highlight the representations' ability to provide semantic features of conditional entropy. By subtracting sensitive and domain-specific information, our framework demonstrates effective performance in fair learning and domain generalization. The code for this paper is available at https://github.com/jh-liang/Information-Subtraction
Authors:Delin An, Chaoli Wang
Abstract:
Unlike their line-based counterparts, surface-based techniques have yet to be thoroughly investigated in flow visualization due to their significant placement, speed, perception, and evaluation challenges. This paper presents SurfPatch, a novel framework supporting exploratory stream surface visualization. To begin with, we translate the issue of surface placement to surface selection and trace a large number of stream surfaces from a given flow field dataset. Then, we introduce a three-stage process: vertex-level classification, patch-level matching, and surface-level clustering that hierarchically builds the connection between vertices and patches and between patches and surfaces. This bottom-up approach enables fine-grained, multiscale patch-level matching, sharply contrasts surface-level matching offered by existing works, and provides previously unavailable flexibility during querying. We design an intuitive visual interface for users to conveniently visualize and analyze the underlying collection of stream surfaces in an exploratory manner. SurfPatch is not limited to stream surfaces traced from steady flow datasets. We demonstrate its effectiveness through experiments on stream surfaces produced from steady and unsteady flows as well as isosurfaces extracted from scalar fields. The code is available at https://github.com/adlsn/SurfPatch.
Authors:Tianyu Fu, Tengxuan Liu, Qinghao Han, Guohao Dai, Shengen Yan, Huazhong Yang, Xuefei Ning, Yu Wang
Abstract:
The increasing demand to process long and high-resolution videos significantly burdens Large Vision-Language Models (LVLMs) due to the enormous number of visual tokens. Existing token reduction methods primarily prune tokens based on importance metrics, such as cumulative attention scores. However, even important tokens may exhibit high redundancy caused by similarity among adjacent video frames and repetitive visual elements. To address this limitation, we propose FrameFusion, a novel token reduction approach integrating similarity-based merging with importance-based pruning. We conduct a thorough study on token similarity characteristics, revealing three key insights: (1) spatially corresponding visual tokens between adjacent frames have higher cosine similarities compared to other token pairs; (2) high token similarities prominently decrease in deeper model layers; and (3) token similarity rankings are highly consistent across different layers. Guided by these observations, FrameFusion computes token similarities exclusively between corresponding visual tokens from adjacent frames, applies token merging at initial successive layers followed by pruning in deeper layers, and adopts a cascaded merging strategy to further enhance efficiency. We evaluate FrameFusion comprehensively across six diverse LVLMs, ranging from 2B to 72B parameters, using five video benchmarks encompassing video retrieval, question-answering, and spatial-temporal understanding tasks. Experiments show that FrameFusion reduces visual tokens by 70%, achieving 1.6-3.6x end-to-end speedups, with an average performance impact of less than 3%. Our code is available at: https://github.com/thu-nics/FrameFusion.
Authors:Atharva Divekar, Atharva Sonawane
Abstract:
The AUTO-PCOS Classification Challenge seeks to advance the diagnostic capabilities of artificial intelligence (AI) in identifying Polycystic Ovary Syndrome (PCOS) through automated classification of healthy and unhealthy ultrasound frames. This report outlines our methodology for building a robust AI pipeline utilizing transfer learning with the InceptionV3 architecture to achieve high accuracy in binary classification. Preprocessing steps ensured the dataset was optimized for training, validation, and testing, while interpretability methods like LIME and saliency maps provided valuable insights into the model's decision-making. Our approach achieved an accuracy of 90.52%, with precision, recall, and F1-score metrics exceeding 90% on validation data, demonstrating its efficacy. The project underscores the transformative potential of AI in healthcare, particularly in addressing diagnostic challenges like PCOS. Key findings, challenges, and recommendations for future enhancements are discussed, highlighting the pathway for creating reliable, interpretable, and scalable AI-driven medical diagnostic tools.
Authors:Jiahao Qin, Feng Liu
Abstract:
Electrocardiogram (ECG) analysis plays a crucial role in diagnosing cardiovascular diseases, but accurate interpretation of these complex signals remains challenging. This paper introduces a novel multimodal framework(GAF-FusionNet) for ECG classification that integrates time-series analysis with image-based representation using Gramian Angular Fields (GAF). Our approach employs a dual-layer cross-channel split attention module to adaptively fuse temporal and spatial features, enabling nuanced integration of complementary information. We evaluate GAF-FusionNet on three diverse ECG datasets: ECG200, ECG5000, and the MIT-BIH Arrhythmia Database. Results demonstrate significant improvements over state-of-the-art methods, with our model achieving 94.5\%, 96.9\%, and 99.6\% accuracy on the respective datasets. Our code will soon be available at https://github.com/Cross-Innovation-Lab/GAF-FusionNet.git.
Authors:Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen, Xiaoyu Liu, Haoyu Cao, Zuwei Long, Heting Gao, Ke Li, Long Ma, Xiawu Zheng, Rongrong Ji, Xing Sun, Caifeng Shan, Ran He
Abstract:
Recent Multimodal Large Language Models (MLLMs) have typically focused on integrating visual and textual modalities, with less emphasis placed on the role of speech in enhancing interaction. However, speech plays a crucial role in multimodal dialogue systems, and implementing high-performance in both vision and speech tasks remains a significant challenge due to the fundamental modality differences. In this paper, we propose a carefully designed multi-stage training methodology that progressively trains LLM to understand both visual and speech information, ultimately enabling fluent vision and speech interaction. Our approach not only preserves strong vision-language capacity, but also enables efficient speech-to-speech dialogue capabilities without separate ASR and TTS modules, significantly accelerating multimodal end-to-end response speed. By comparing our method against state-of-the-art counterparts across benchmarks for image, video, and speech tasks, we demonstrate that our model is equipped with both strong visual and speech capabilities, making near real-time vision and speech interaction.
Authors:Tianyu Gao, Alexander Wettig, Luxi He, Yihe Dong, Sadhika Malladi, Danqi Chen
Abstract:
The vast diversity of styles, domains, and quality levels present in language model pre-training corpora is essential in developing general model capabilities, but efficiently learning and deploying the correct behaviors exemplified in each of these heterogeneous data sources is challenging. To address this, we propose a new method, termed Metadata Conditioning then Cooldown (MeCo), to incorporate additional learning cues during pre-training. MeCo first provides metadata (e.g., URLs like www$.$wikipedia$.$org) alongside the text during training and later uses a cooldown phase with only the standard text, thereby enabling the model to function normally even without metadata. MeCo significantly accelerates pre-training across different model scales (600M to 8B parameters) and training sources (C4, RefinedWeb, and DCLM). For instance, a 1.6B language model trained with MeCo matches the downstream task performance of standard pre-training while using 33% less data. Additionally, MeCo enables us to steer language models by conditioning the inference prompt on either real or fabricated metadata that encodes the desired properties of the output: for example, prepending wikipedia$.$org to reduce harmful generations or factquizmaster$.$com (fabricated) to improve common knowledge task performance. We also demonstrate that MeCo is compatible with different types of metadata, such as model-generated topics. MeCo is remarkably simple, adds no computational overhead, and demonstrates promise in producing more capable and steerable language models.
Authors:Weizhi Zhang, Yuanchen Bei, Liangwei Yang, Henry Peng Zou, Peilin Zhou, Aiwei Liu, Yinghui Li, Hao Chen, Jianling Wang, Yu Wang, Feiran Huang, Sheng Zhou, Jiajun Bu, Allen Lin, James Caverlee, Fakhri Karray, Irwin King, Philip S. Yu
Abstract:
Cold-start problem is one of the long-standing challenges in recommender systems, focusing on accurately modeling new or interaction-limited users or items to provide better recommendations. Due to the diversification of internet platforms and the exponential growth of users and items, the importance of cold-start recommendation (CSR) is becoming increasingly evident. At the same time, large language models (LLMs) have achieved tremendous success and possess strong capabilities in modeling user and item information, providing new potential for cold-start recommendations. However, the research community on CSR still lacks a comprehensive review and reflection in this field. Based on this, in this paper, we stand in the context of the era of large language models and provide a comprehensive review and discussion on the roadmap, related literature, and future directions of CSR. Specifically, we have conducted an exploration of the development path of how existing CSR utilizes information, from content features, graph relations, and domain information, to the world knowledge possessed by large language models, aiming to provide new insights for both the research and industrial communities on CSR. Related resources of cold-start recommendations are collected and continuously updated for the community in https://github.com/YuanchenBei/Awesome-Cold-Start-Recommendation.
Authors:Jiaming Li, Jiacheng Zhang, Zequn Jie, Lin Ma, Guanbin Li
Abstract:
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks. Despite their success, LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content. To address this issue, some approaches have introduced inference-time interventions, such as contrastive decoding and attention rectification, to reduce overreliance on language priors. However, these approaches overlook hallucinations stemming from spurious inter-modality correlations. In this paper, we propose an Inter-Modality Correlation Calibration Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner. In this method, we design a Cross-Modal Value-Enhanced Decoding(CMVED) module to alleviate hallucination by a novel contrastive decoding mechanism. During the estimation of distorted distribution, CMVED masks the value vectors associated with significant cross-modal attention weights, which address both uni-modality overreliance and misleading inter-modality correlations. Additionally, a Content-Driven Attention Refinement(CDAR) module refines cross-modal attention weights, guiding LVLMs to focus on important visual content. Experimental results on diverse hallucination benchmarks validate the superiority of our method over existing state-of-the-art techniques in reducing hallucinations in LVLM text generation. Our code will be available at https://github.com/lijm48/IMCCD.
Authors:Brandon Y. Feng, Rodrigo Ferrer-Chávez, Aviad Levis, Jason J. Wang, Katherine L. Bouman, William T. Freeman
Abstract:
Direct imaging of exoplanets is crucial for advancing our understanding of planetary systems beyond our solar system, but it faces significant challenges due to the high contrast between host stars and their planets. Wavefront aberrations introduce speckles in the telescope science images, which are patterns of diffracted starlight that can mimic the appearance of planets, complicating the detection of faint exoplanet signals. Traditional post-processing methods, operating primarily in the image intensity domain, do not integrate wavefront sensing data. These data, measured mainly for adaptive optics corrections, have been overlooked as a potential resource for post-processing, partly due to the challenge of the evolving nature of wavefront aberrations. In this paper, we present a differentiable rendering approach that leverages these wavefront sensing data to improve exoplanet detection. Our differentiable renderer models wave-based light propagation through a coronagraphic telescope system, allowing gradient-based optimization to significantly improve starlight subtraction and increase sensitivity to faint exoplanets. Simulation experiments based on the James Webb Space Telescope configuration demonstrate the effectiveness of our approach, achieving substantial improvements in contrast and planet detection limits. Our results showcase how the computational advancements enabled by differentiable rendering can revitalize previously underexploited wavefront data, opening new avenues for enhancing exoplanet imaging and characterization.
Authors:Yifan Du, Zikang Liu, Yifan Li, Wayne Xin Zhao, Yuqi Huo, Bingning Wang, Weipeng Chen, Zheng Liu, Zhongyuan Wang, Ji-Rong Wen
Abstract:
Recently, slow-thinking reasoning systems, built upon large language models (LLMs), have garnered widespread attention by scaling the thinking time during inference. There is also growing interest in adapting this capability to multimodal large language models (MLLMs). Given that MLLMs handle more complex data semantics across different modalities, it is intuitively more challenging to implement multimodal slow-thinking systems.
To address this issue, in this paper, we explore a straightforward approach by fine-tuning a capable MLLM with a small amount of textual long-form thought data, resulting in a multimodal slow-thinking system, Virgo (Visual reasoning with long thought). We find that these long-form reasoning processes, expressed in natural language, can be effectively transferred to MLLMs. Moreover, it seems that such textual reasoning data can be even more effective than visual reasoning data in eliciting the slow-thinking capacities of MLLMs. While this work is preliminary, it demonstrates that slow-thinking capacities are fundamentally associated with the language model component, which can be transferred across modalities or domains. This finding can be leveraged to guide the development of more powerful slow-thinking reasoning systems. We release our resources at https://github.com/RUCAIBox/Virgo.
Authors:Shvetank Prakash, Andrew Cheng, Jason Yik, Arya Tschand, Radhika Ghosal, Ikechukwu Uchendu, Jessica Quaye, Jeffrey Ma, Shreyas Grampurohit, Sofia Giannuzzi, Arnav Balyan, Fin Amin, Aadya Pipersenia, Yash Choudhary, Ankita Nayak, Amir Yazdanbakhsh, Vijay Janapa Reddi
Abstract:
We introduce QuArch, a dataset of 1500 human-validated question-answer pairs designed to evaluate and enhance language models' understanding of computer architecture. The dataset covers areas including processor design, memory systems, and performance optimization. Our analysis highlights a significant performance gap: the best closed-source model achieves 84% accuracy, while the top small open-source model reaches 72%. We observe notable struggles in memory systems, interconnection networks, and benchmarking. Fine-tuning with QuArch improves small model accuracy by up to 8%, establishing a foundation for advancing AI-driven computer architecture research. The dataset and leaderboard are at https://harvard-edge.github.io/QuArch/.
Authors:Huaxiang Zhang, Kai Liu, Zhongxue Gan, Guo-Niu Zhu
Abstract:
Unmanned aerial vehicle object detection (UAV-OD) has been widely used in various scenarios. However, most existing UAV-OD algorithms rely on manually designed components, which require extensive tuning. End-to-end models that do not depend on such manually designed components are mainly designed for natural images, which are less effective for UAV imagery. To address such challenges, this paper proposes an efficient detection transformer (DETR) framework tailored for UAV imagery, i.e., UAV-DETR. The framework includes a multi-scale feature fusion with frequency enhancement module, which captures both spatial and frequency information at different scales. In addition, a frequency-focused down-sampling module is presented to retain critical spatial details during down-sampling. A semantic alignment and calibration module is developed to align and fuse features from different fusion paths. Experimental results demonstrate the effectiveness and generalization of our approach across various UAV imagery datasets. On the VisDrone dataset, our method improves AP by 3.1\% and $\text{AP}_{50}$ by 4.2\% over the baseline. Similar enhancements are observed on the UAVVaste dataset. The project page: https://github.com/ValiantDiligent/UAV-DETR
Authors:Aobo Kong, Wentao Ma, Shiwan Zhao, Yongbin Li, Yuchuan Wu, Ke Wang, Xiaoqian Liu, Qicheng Li, Yong Qin, Fei Huang
Abstract:
Social agents powered by large language models (LLMs) can simulate human social behaviors but fall short in handling complex social dialogues. Direct Preference Optimization (DPO) has proven effective in aligning LLM behavior with human preferences across various agent tasks. However, standard DPO focuses solely on individual turns, which limits its effectiveness in multi-turn social interactions. Several DPO-based multi-turn alignment methods with session-level data have shown potential in addressing this problem.While these methods consider multiple turns across entire sessions, they are often overly coarse-grained, introducing training noise, and lack robust theoretical support. To resolve these limitations, we propose Segment-Level Direct Preference Optimization (SDPO), which dynamically select key segments within interactions to optimize multi-turn agent behavior. SDPO minimizes training noise and is grounded in a rigorous theoretical framework. Evaluations on the SOTOPIA benchmark demonstrate that SDPO-tuned agents consistently outperform both existing DPO-based methods and proprietary LLMs like GPT-4o, underscoring SDPO's potential to advance the social intelligence of LLM-based agents. We release our code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/SDPO.
Authors:Hu Ding, Yan Yan, Yang Lu, Jing-Hao Xue, Hanzi Wang
Abstract:
Most facial expression recognition (FER) models are trained on large-scale expression data with centralized learning. Unfortunately, collecting a large amount of centralized expression data is difficult in practice due to privacy concerns of facial images. In this paper, we investigate FER under the framework of personalized federated learning, which is a valuable and practical decentralized setting for real-world applications. To this end, we develop a novel uncertainty-Aware label refineMent on hYpergraphs (AMY) method. For local training, each local model consists of a backbone, an uncertainty estimation (UE) block, and an expression classification (EC) block. In the UE block, we leverage a hypergraph to model complex high-order relationships between expression samples and incorporate these relationships into uncertainty features. A personalized uncertainty estimator is then introduced to estimate reliable uncertainty weights of samples in the local client. In the EC block, we perform label propagation on the hypergraph, obtaining high-quality refined labels for retraining an expression classifier. Based on the above, we effectively alleviate heterogeneous sample uncertainty across clients and learn a robust personalized FER model in each client. Experimental results on two challenging real-world facial expression databases show that our proposed method consistently outperforms several state-of-the-art methods. This indicates the superiority of hypergraph modeling for uncertainty estimation and label refinement on the personalized federated FER task. The source code will be released at https://github.com/mobei1006/AMY.
Authors:Nouran Khallaf, Carlo Eugeni, Serge Sharoff
Abstract:
Our research aims at better understanding what makes a text difficult to read for specific audiences with intellectual disabilities, more specifically, people who have limitations in cognitive functioning, such as reading and understanding skills, an IQ below 70, and challenges in conceptual domains. We introduce a scheme for the annotation of difficulties which is based on empirical research in psychology as well as on research in translation studies. The paper describes the annotated dataset, primarily derived from the parallel texts (standard English and Easy to Read English translations) made available online. we fine-tuned four different pre-trained transformer models to perform the task of multiclass classification to predict the strategies required for simplification. We also investigate the possibility to interpret the decisions of this language model when it is aimed at predicting the difficulty of sentences. The resources are available from https://github.com/Nouran-Khallaf/why-tough
Authors:Zhengcong Fei, Debang Li, Di Qiu, Changqian Yu, Mingyuan Fan
Abstract:
This paper presents a powerful framework to customize video creations by incorporating multiple specific identity (ID) photos, with video diffusion Transformers, referred to as Ingredients. Generally, our method consists of three primary modules: (i) a facial extractor that captures versatile and precise facial features for each human ID from both global and local perspectives; (ii) a multi-scale projector that maps face embeddings into the contextual space of image query in video diffusion transformers; (iii) an ID router that dynamically combines and allocates multiple ID embedding to the corresponding space-time regions. Leveraging a meticulously curated text-video dataset and a multi-stage training protocol, Ingredients demonstrates superior performance in turning custom photos into dynamic and personalized video content. Qualitative evaluations highlight the advantages of proposed method, positioning it as a significant advancement toward more effective generative video control tools in Transformer-based architecture, compared to existing methods. The data, code, and model weights are publicly available at: https://github.com/feizc/Ingredients.
Authors:Er Jin, Qihui Feng, Yongli Mou, Stefan Decker, Gerhard Lakemeyer, Oliver Simons, Johannes Stegmaier
Abstract:
Logical image understanding involves interpreting and reasoning about the relationships and consistency within an image's visual content. This capability is essential in applications such as industrial inspection, where logical anomaly detection is critical for maintaining high-quality standards and minimizing costly recalls. Previous research in anomaly detection (AD) has relied on prior knowledge for designing algorithms, which often requires extensive manual annotations, significant computing power, and large amounts of data for training. Autoregressive, multimodal Vision Language Models (AVLMs) offer a promising alternative due to their exceptional performance in visual reasoning across various domains. Despite this, their application to logical AD remains unexplored. In this work, we investigate using AVLMs for logical AD and demonstrate that they are well-suited to the task. Combining AVLMs with format embedding and a logic reasoner, we achieve SOTA performance on public benchmarks, MVTec LOCO AD, with an AUROC of 86.0% and F1-max of 83.7%, along with explanations of anomalies. This significantly outperforms the existing SOTA method by a large margin.
Authors:Simon Rouard, Robin San Roman, Yossi Adi, Axel Roebel
Abstract:
While most music generation models generate a mixture of stems (in mono or stereo), we propose to train a multi-stem generative model with 3 stems (bass, drums and other) that learn the musical dependencies between them. To do so, we train one specialized compression algorithm per stem to tokenize the music into parallel streams of tokens. Then, we leverage recent improvements in the task of music source separation to train a multi-stream text-to-music language model on a large dataset. Finally, thanks to a particular conditioning method, our model is able to edit bass, drums or other stems on existing or generated songs as well as doing iterative composition (e.g. generating bass on top of existing drums). This gives more flexibility in music generation algorithms and it is to the best of our knowledge the first open-source multi-stem autoregressive music generation model that can perform good quality generation and coherent source editing. Code and model weights will be released and samples are available on https://simonrouard.github.io/musicgenstem/.
Authors:Ruikang Chen, Yan Yan, Jing-Hao Xue, Yang Lu, Hanzi Wang
Abstract:
Automatic X-ray prohibited item detection is vital for public safety. Existing deep learning-based methods all assume that the annotations of training X-ray images are correct. However, obtaining correct annotations is extremely hard if not impossible for large-scale X-ray images, where item overlapping is ubiquitous.As a result, X-ray images are easily contaminated with noisy annotations, leading to performance deterioration of existing methods.In this paper, we address the challenging problem of training a robust prohibited item detector under noisy annotations (including both category noise and bounding box noise) from a novel perspective of data augmentation, and propose an effective label-aware mixed patch paste augmentation method (Mix-Paste). Specifically, for each item patch, we mix several item patches with the same category label from different images and replace the original patch in the image with the mixed patch. In this way, the probability of containing the correct prohibited item within the generated image is increased. Meanwhile, the mixing process mimics item overlapping, enabling the model to learn the characteristics of X-ray images. Moreover, we design an item-based large-loss suppression (LLS) strategy to suppress the large losses corresponding to potentially positive predictions of additional items due to the mixing operation. We show the superiority of our method on X-ray datasets under noisy annotations. In addition, we evaluate our method on the noisy MS-COCO dataset to showcase its generalization ability. These results clearly indicate the great potential of data augmentation to handle noise annotations. The source code is released at https://github.com/wscds/Mix-Paste.
Authors:Hanxin Zhu, Tianyu He, Xiqian Yu, Junliang Guo, Zhibo Chen, Jiang Bian
Abstract:
Recent advancements in generative models have ignited substantial interest in dynamic 3D content creation (\ie, 4D generation). Existing approaches primarily rely on Score Distillation Sampling (SDS) to infer novel-view videos, typically leading to issues such as limited diversity, spatial-temporal inconsistency and poor prompt alignment, due to the inherent randomness of SDS. To tackle these problems, we propose AR4D, a novel paradigm for SDS-free 4D generation. Specifically, our paradigm consists of three stages. To begin with, for a monocular video that is either generated or captured, we first utilize pre-trained expert models to create a 3D representation of the first frame, which is further fine-tuned to serve as the canonical space. Subsequently, motivated by the fact that videos happen naturally in an autoregressive manner, we propose to generate each frame's 3D representation based on its previous frame's representation, as this autoregressive generation manner can facilitate more accurate geometry and motion estimation. Meanwhile, to prevent overfitting during this process, we introduce a progressive view sampling strategy, utilizing priors from pre-trained large-scale 3D reconstruction models. To avoid appearance drift introduced by autoregressive generation, we further incorporate a refinement stage based on a global deformation field and the geometry of each frame's 3D representation. Extensive experiments have demonstrated that AR4D can achieve state-of-the-art 4D generation without SDS, delivering greater diversity, improved spatial-temporal consistency, and better alignment with input prompts.
Authors:Jiajun Cao, Yuan Zhang, Tao Huang, Ming Lu, Qizhe Zhang, Ruichuan An, Ningning MA, Shanghang Zhang
Abstract:
Visual encoders are fundamental components in vision-language models (VLMs), each showcasing unique strengths derived from various pre-trained visual foundation models. To leverage the various capabilities of these encoders, recent studies incorporate multiple encoders within a single VLM, leading to a considerable increase in computational cost. In this paper, we present Mixture-of-Visual-Encoder Knowledge Distillation (MoVE-KD), a novel framework that distills the unique proficiencies of multiple vision encoders into a single, efficient encoder model. Specifically, to mitigate conflicts and retain the unique characteristics of each teacher encoder, we employ low-rank adaptation (LoRA) and mixture-of-experts (MoEs) to selectively activate specialized knowledge based on input features, enhancing both adaptability and efficiency. To regularize the KD process and enhance performance, we propose an attention-based distillation strategy that adaptively weighs the different encoders and emphasizes valuable visual tokens, reducing the burden of replicating comprehensive but distinct features from multiple teachers. Comprehensive experiments on popular VLMs, such as LLaVA and LLaVA-NeXT, validate the effectiveness of our method. Our code is available at: https://github.com/hey-cjj/MoVE-KD.
Authors:Fengrui Zhang, Yujia Yin, Hongzong Li, Yifan Chen, Tianyi Qu
Abstract:
Despite significant advancements in causal research on graphs and its application to cracking label imbalance, the role of edge features in detecting the causal effects within graphs has been largely overlooked, leaving existing methods with untapped potential for further performance gains. In this paper, we enhance the causal attention mechanism through effectively leveraging edge information to disentangle the causal subgraph from the original graph, as well as further utilizing edge features to reshape graph representations. Capturing more comprehensive causal signals, our design leads to improved performance on graph classification tasks with label imbalance issues. We evaluate our approach on real-word datasets PTC, Tox21, and ogbg-molhiv, observing improvements over baselines. Overall, we highlight the importance of edge features in graph causal detection and provide a promising direction for addressing label imbalance challenges in graph-level tasks. The model implementation details and the codes are available on https://github.com/fengrui-z/ECAL
Authors:Jina Kim, Jihoo Lee, Je-Won Kang
Abstract:
Neural representation for video (NeRV), which employs a neural network to parameterize video signals, introduces a novel methodology in video representations. However, existing NeRV-based methods have difficulty in capturing fine spatial details and motion patterns due to spectral bias, in which a neural network learns high-frequency (HF) components at a slower rate than low-frequency (LF) components. In this paper, we propose spectra-preserving NeRV (SNeRV) as a novel approach to enhance implicit video representations by efficiently handling various frequency components. SNeRV uses 2D discrete wavelet transform (DWT) to decompose video into LF and HF features, preserving spatial structures and directly addressing the spectral bias issue. To balance the compactness, we encode only the LF components, while HF components that include fine textures are generated by a decoder. Specialized modules, including a multi-resolution fusion unit (MFU) and a high-frequency restorer (HFR), are integrated into a backbone to facilitate the representation. Furthermore, we extend SNeRV to effectively capture temporal correlations between adjacent video frames, by casting the extension as additional frequency decomposition to a temporal domain. This approach allows us to embed spatio-temporal LF features into the network, using temporally extended up-sampling blocks (TUBs). Experimental results demonstrate that SNeRV outperforms existing NeRV models in capturing fine details and achieves enhanced reconstruction, making it a promising approach in the field of implicit video representations. The codes are available at https://github.com/qwertja/SNeRV.
Authors:Tengfei Wang, Xin Wang, Yongmao Hou, Yiwei Xu, Wendi Zhang, Zongqian Zhan
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a transformative method in the field of real-time novel synthesis. Based on 3DGS, recent advancements cope with large-scale scenes via spatial-based partition strategy to reduce video memory and optimization time costs. In this work, we introduce a parallel Gaussian splatting method, termed PG-SAG, which fully exploits semantic cues for both partitioning and Gaussian kernel optimization, enabling fine-grained building surface reconstruction of large-scale urban areas without downsampling the original image resolution. First, the Cross-modal model - Language Segment Anything is leveraged to segment building masks. Then, the segmented building regions is grouped into sub-regions according to the visibility check across registered images. The Gaussian kernels for these sub-regions are optimized in parallel with masked pixels. In addition, the normal loss is re-formulated for the detected edges of masks to alleviate the ambiguities in normal vectors on edges. Finally, to improve the optimization of 3D Gaussians, we introduce a gradient-constrained balance-load loss that accounts for the complexity of the corresponding scenes, effectively minimizing the thread waiting time in the pixel-parallel rendering stage as well as the reconstruction lost. Extensive experiments are tested on various urban datasets, the results demonstrated the superior performance of our PG-SAG on building surface reconstruction, compared to several state-of-the-art 3DGS-based methods. Project Web:https://github.com/TFWang-9527/PG-SAG.
Authors:Bohan Zhang, Xiaokang Zhang, Jing Zhang, Jifan Yu, Sijia Luo, Jie Tang
Abstract:
Current inference scaling methods, such as Self-consistency and Best-of-N, have proven effective in improving the accuracy of LLMs on complex reasoning tasks. However, these methods rely heavily on the quality of candidate responses and are unable to produce correct answers when all candidates are incorrect. In this paper, we propose a novel inference scaling strategy, CoT-based Synthesizer, which leverages CoT reasoning to synthesize superior answers by analyzing complementary information from multiple candidate responses, even when all candidate responses are flawed. To enable a lightweight and cost-effective implementation, we introduce an automated data generation pipeline that creates diverse training data. This allows smaller LLMs trained on this data to improve the inference accuracy of larger models, including API-based LLMs. Experimental results across four benchmark datasets with seven policy models demonstrate that our method significantly enhances performance, with gains of 11.8% for Llama3-8B and 10.3% for GPT-4o on the MATH dataset. The corresponding training data and code are publicly available on https://github.com/RUCKBReasoning/CoT-based-Synthesizer.
Authors:Yin Cai, Zhouhong Gu, Zhaohan Du, Zheyu Ye, Shaosheng Cao, Yiqian Xu, Hongwei Feng, Ping Chen
Abstract:
Large Language Models (LLMs) have shown remarkable capabilities in environmental perception, reasoning-based decision-making, and simulating complex human behaviors, particularly in interactive role-playing contexts. This paper introduces the Multiverse Interactive Role-play Ability General Evaluation (MIRAGE), a comprehensive framework designed to assess LLMs' proficiency in portraying advanced human behaviors through murder mystery games. MIRAGE features eight intricately crafted scripts encompassing diverse themes and styles, providing a rich simulation. To evaluate LLMs' performance, MIRAGE employs four distinct methods: the Trust Inclination Index (TII) to measure dynamics of trust and suspicion, the Clue Investigation Capability (CIC) to measure LLMs' capability of conducting information, the Interactivity Capability Index (ICI) to assess role-playing capabilities and the Script Compliance Index (SCI) to assess LLMs' capability of understanding and following instructions. Our experiments indicate that even popular models like GPT-4 face significant challenges in navigating the complexities presented by the MIRAGE. The datasets and simulation codes are available in \href{https://github.com/lime728/MIRAGE}{github}.
Authors:Kang Yi, Haoran Tang, Yumeng Li, Jing Xu, Jun Zhang
Abstract:
RGB-D salient object detection (SOD), aiming to highlight prominent regions of a given scene by jointly modeling RGB and depth information, is one of the challenging pixel-level prediction tasks. Recently, the dual-attention mechanism has been devoted to this area due to its ability to strengthen the detection process. However, most existing methods directly fuse attentional cross-modality features under a manual-mandatory fusion paradigm without considering the inherent discrepancy between the RGB and depth, which may lead to a reduction in performance. Moreover, the long-range dependencies derived from global and local information make it difficult to leverage a unified efficient fusion strategy. Hence, in this paper, we propose the GL-DMNet, a novel dual mutual learning network with global-local awareness. Specifically, we present a position mutual fusion module and a channel mutual fusion module to exploit the interdependencies among different modalities in spatial and channel dimensions. Besides, we adopt an efficient decoder based on cascade transformer-infused reconstruction to integrate multi-level fusion features jointly. Extensive experiments on six benchmark datasets demonstrate that our proposed GL-DMNet performs better than 24 RGB-D SOD methods, achieving an average improvement of ~3% across four evaluation metrics compared to the second-best model (S3Net). Codes and results are available at https://github.com/kingkung2016/GL-DMNet.
Authors:Tien Dang, Viet Thanh Duy Nguyen, Minh Tuan Le, Truong-Son Hy
Abstract:
Biomedical Knowledge Graphs (BKGs) integrate diverse datasets to elucidate complex relationships within the biomedical field. Effective link prediction on these graphs can uncover valuable connections, such as potential novel drug-disease relations. We introduce a novel multimodal approach that unifies embeddings from specialized Language Models (LMs) with Graph Contrastive Learning (GCL) to enhance intra-entity relationships while employing a Knowledge Graph Embedding (KGE) model to capture inter-entity relationships for effective link prediction. To address limitations in existing BKGs, we present PrimeKG++, an enriched knowledge graph incorporating multimodal data, including biological sequences and textual descriptions for each entity type. By combining semantic and relational information in a unified representation, our approach demonstrates strong generalizability, enabling accurate link predictions even for unseen nodes. Experimental results on PrimeKG++ and the DrugBank drug-target interaction dataset demonstrate the effectiveness and robustness of our method across diverse biomedical datasets. Our source code, pre-trained models, and data are publicly available at https://github.com/HySonLab/BioMedKG
Authors:Zihao Wang, Yuxiang Wei, Fan Li, Renjing Pei, Hang Xu, Wangmeng Zuo
Abstract:
Recent advance in text-to-image diffusion models have significantly facilitated the generation of high-quality images, but also raising concerns about the illegal creation of harmful content, such as copyrighted images. Existing concept erasure methods achieve superior results in preventing the production of erased concept from prompts, but typically perform poorly in preventing undesired editing. To address this issue, we propose an Anti-Editing Concept Erasure (ACE) method, which not only erases the target concept during generation but also filters out it during editing. Specifically, we propose to inject the erasure guidance into both conditional and the unconditional noise prediction, enabling the model to effectively prevent the creation of erasure concepts during both editing and generation. Furthermore, a stochastic correction guidance is introduced during training to address the erosion of unrelated concepts. We conducted erasure editing experiments with representative editing methods (i.e., LEDITS++ and MasaCtrl) to erase IP characters, and the results indicate that our ACE effectively filters out target concepts in both types of edits. Additional experiments on erasing explicit concepts and artistic styles further demonstrate that our ACE performs favorably against state-of-the-art methods. Our code will be publicly available at https://github.com/120L020904/ACE.
Authors:Yun Zhu, Dong Zhang, Yi Lin, Yifei Feng, Jinhui Tang
Abstract:
Medical image segmentation demands the aggregation of global and local feature representations, posing a challenge for current methodologies in handling both long-range and short-range feature interactions. Recently, vision mamba (ViM) models have emerged as promising solutions for addressing model complexities by excelling in long-range feature iterations with linear complexity. However, existing ViM approaches overlook the importance of preserving short-range local dependencies by directly flattening spatial tokens and are constrained by fixed scanning patterns that limit the capture of dynamic spatial context information. To address these challenges, we introduce a simple yet effective method named context clustering ViM (CCViM), which incorporates a context clustering module within the existing ViM models to segment image tokens into distinct windows for adaptable local clustering. Our method effectively combines long-range and short-range feature interactions, thereby enhancing spatial contextual representations for medical image segmentation tasks. Extensive experimental evaluations on diverse public datasets, i.e., Kumar, CPM17, ISIC17, ISIC18, and Synapse demonstrate the superior performance of our method compared to current state-of-the-art methods. Our code can be found at https://github.com/zymissy/CCViM.
Authors:Yao Ding, Weijie Kang, Aitao Yang, Zhili Zhang, Junyang Zhao, Jie Feng, Danfeng Hong, Qinhe Zheng
Abstract:
Hyperspectral image (HSI) clustering has been a fundamental but challenging task with zero training labels. Currently, some deep graph clustering methods have been successfully explored for HSI due to their outstanding performance in effective spatial structural information encoding. Nevertheless, insufficient structural information utilization, poor feature presentation ability, and weak graph update capability limit their performance. Thus, in this paper, a homophily structure graph learning with an adaptive filter clustering method (AHSGC) for HSI is proposed. Specifically, homogeneous region generation is first developed for HSI processing and constructing the original graph. Afterward, an adaptive filter graph encoder is designed to adaptively capture the high and low frequency features on the graph for subsequence processing. Then, a graph embedding clustering self-training decoder is developed with KL Divergence, with which the pseudo-label is generated for network training. Meanwhile, homophily-enhanced structure learning is introduced to update the graph according to the clustering task, in which the orient correlation estimation is adopted to estimate the node connection, and graph edge sparsification is designed to adjust the edges in the graph dynamically. Finally, a joint network optimization is introduced to achieve network self-training and update the graph. The K-means is adopted to express the latent features. Extensive experiments and repeated comparative analysis have verified that our AHSGC contains high clustering accuracy, low computational complexity, and strong robustness. The code source will be available at https://github.com/DY-HYX.
Authors:Honghu Chen, Bo Peng, Yunfan Tao, Juyong Zhang
Abstract:
We introduce D$^3$-Human, a method for reconstructing Dynamic Disentangled Digital Human geometry from monocular videos. Past monocular video human reconstruction primarily focuses on reconstructing undecoupled clothed human bodies or only reconstructing clothing, making it difficult to apply directly in applications such as animation production. The challenge in reconstructing decoupled clothing and body lies in the occlusion caused by clothing over the body. To this end, the details of the visible area and the plausibility of the invisible area must be ensured during the reconstruction process. Our proposed method combines explicit and implicit representations to model the decoupled clothed human body, leveraging the robustness of explicit representations and the flexibility of implicit representations. Specifically, we reconstruct the visible region as SDF and propose a novel human manifold signed distance field (hmSDF) to segment the visible clothing and visible body, and then merge the visible and invisible body. Extensive experimental results demonstrate that, compared with existing reconstruction schemes, D$^3$-Human can achieve high-quality decoupled reconstruction of the human body wearing different clothing, and can be directly applied to clothing transfer and animation.
Authors:Juliette Fenogli, Laurence Grimaud, Rodolphe Vuilleumier
Abstract:
The integration of machine learning (ML) into chemistry offers transformative potential in the design of molecules with targeted properties. However, the focus has often been on creating highly efficient predictive models, sometimes at the expense of interpretability. In this study, we leverage explainable AI techniques to explore the rational design of boron-based Lewis acids, which play a pivotal role in organic reactions due to their electron-ccepting properties. Using Fluoride Ion Affinity as a proxy for Lewis acidity, we developed interpretable ML models based on chemically meaningful descriptors, including ab initio computed features and substituent-based parameters derived from the Hammett linear free-energy relationship. By constraining the chemical space to well-defined molecular scaffolds, we achieved highly accurate predictions (mean absolute error < 6 kJ/mol), surpassing conventional black-box deep learning models in low-data regimes. Interpretability analyses of the models shed light on the origin of Lewis acidity in these compounds and identified actionable levers to modulate it through the nature and positioning of substituents on the molecular scaffold. This work bridges ML and chemist's way of thinking, demonstrating how explainable models can inspire molecular design and enhance scientific understanding of chemical reactivity.
Authors:Lihao Wang
Abstract:
Surround-View System (SVS) is an essential component in Advanced Driver Assistance System (ADAS) and requires precise calibrations. However, conventional offline extrinsic calibration methods are cumbersome and time-consuming as they rely heavily on physical patterns. Additionally, these methods primarily focus on short-range areas surrounding the vehicle, resulting in lower calibration quality in more distant zones. To address these limitations, we propose Click-Calib, a pattern-free approach for offline SVS extrinsic calibration. Without requiring any special setup, the user only needs to click a few keypoints on the ground in natural scenes. Unlike other offline calibration approaches, Click-Calib optimizes camera poses over a wide range by minimizing reprojection distance errors of keypoints, thereby achieving accurate calibrations at both short and long distances. Furthermore, Click-Calib supports both single-frame and multiple-frame modes, with the latter offering even better results. Evaluations on our in-house dataset and the public WoodScape dataset demonstrate its superior accuracy and robustness compared to baseline methods. Code is available at https://github.com/lwangvaleo/click_calib.
Authors:Ved G. Shah, Alex Gagliano, Konstantin Malanchev, Gautham Narayan, The LSST Dark Energy Science Collaboration
Abstract:
We present ORACLE, the first hierarchical deep-learning model for real-time, context-aware classification of transient and variable astrophysical phenomena. ORACLE is a recurrent neural network with Gated Recurrent Units (GRUs), and has been trained using a custom hierarchical cross-entropy loss function to provide high-confidence classifications along an observationally-driven taxonomy with as little as a single photometric observation. Contextual information for each object, including host galaxy photometric redshift, offset, ellipticity and brightness, is concatenated to the light curve embedding and used to make a final prediction. Training on $\sim$0.5M events from the Extended LSST Astronomical Time-Series Classification Challenge, we achieve a top-level (Transient vs Variable) macro-averaged precision of 0.96 using only 1 day of photometric observations after the first detection in addition to contextual information, for each event; this increases to $>$0.99 once 64 days of the light curve has been obtained, and 0.83 at 1024 days after first detection for 19-way classification (including supernova sub-types, active galactic nuclei, variable stars, microlensing events, and kilonovae). We also compare ORACLE with other state-of-the-art classifiers and report comparable performance for the 19-way classification task, in addition to delivering accurate top-level classifications much earlier. The code and model weights used in this work are publicly available at our associated GitHub repository (https://github.com/uiucsn/ELAsTiCC-Classification).
Authors:George Yuanji Wang, Srisharan Murugesan, Aditya Prince Rohatgi
Abstract:
Identifying druggable genes is essential for developing effective pharmaceuticals. With the availability of extensive, high-quality data, computational methods have become a significant asset. Protein Interaction Network (PIN) is valuable but challenging to implement due to its high dimensionality and sparsity. Previous methods relied on indirect integration, leading to resolution loss. This study proposes GAN-TAT, a framework utilizing an advanced graph embedding technology, ImGAGN, to directly integrate PIN for druggable gene inference work. Tested on three Pharos datasets, GAN-TAT achieved the highest AUC-ROC score of 0.951 on Tclin. Further evaluation shows that GAN-TAT's predictions are supported by clinical evidence, highlighting its potential practical applications in pharmacogenomics. This research represents a methodological attempt with the direct utilization of PIN, expanding potential new solutions for developing drug targets. The source code of GAN-TAT is available at (https://github.com/george-yuanji-wang/GAN-TAT).
Authors:Xincheng Shuai, Henghui Ding, Zhenyuan Qin, Hao Luo, Xingjun Ma, Dacheng Tao
Abstract:
Controlling the movements of dynamic objects and the camera within generated videos is a meaningful yet challenging task. Due to the lack of datasets with comprehensive 6D pose annotations, existing text-to-video methods can not simultaneously control the motions of both camera and objects in 3D-aware manner, resulting in limited controllability over generated contents. To address this issue and facilitate the research in this field, we introduce a Synthetic Dataset for Free-Form Motion Control (SynFMC). The proposed SynFMC dataset includes diverse object and environment categories and covers various motion patterns according to specific rules, simulating common and complex real-world scenarios. The complete 6D pose information facilitates models learning to disentangle the motion effects from objects and the camera in a video.~To provide precise 3D-aware motion control, we further propose a method trained on SynFMC, Free-Form Motion Control (FMC). FMC can control the 6D poses of objects and camera independently or simultaneously, producing high-fidelity videos. Moreover, it is compatible with various personalized text-to-image (T2I) models for different content styles. Extensive experiments demonstrate that the proposed FMC outperforms previous methods across multiple scenarios.
Authors:Gaurav Parmar, Or Patashnik, Kuan-Chieh Wang, Daniil Ostashev, Srinivasa Narasimhan, Jun-Yan Zhu, Daniel Cohen-Or, Kfir Aberman
Abstract:
We introduce a method for composing object-level visual prompts within a text-to-image diffusion model. Our approach addresses the task of generating semantically coherent compositions across diverse scenes and styles, similar to the versatility and expressiveness offered by text prompts. A key challenge in this task is to preserve the identity of the objects depicted in the input visual prompts, while also generating diverse compositions across different images. To address this challenge, we introduce a new KV-mixed cross-attention mechanism, in which keys and values are learned from distinct visual representations. The keys are derived from an encoder with a small bottleneck for layout control, whereas the values come from a larger bottleneck encoder that captures fine-grained appearance details. By mixing keys and values from these complementary sources, our model preserves the identity of the visual prompts while supporting flexible variations in object arrangement, pose, and composition. During inference, we further propose object-level compositional guidance to improve the method's identity preservation and layout correctness. Results show that our technique produces diverse scene compositions that preserve the unique characteristics of each visual prompt, expanding the creative potential of text-to-image generation.
Authors:Jingfeng Yao, Bin Yang, Xinggang Wang
Abstract:
Latent diffusion models with Transformer architectures excel at generating high-fidelity images. However, recent studies reveal an optimization dilemma in this two-stage design: while increasing the per-token feature dimension in visual tokenizers improves reconstruction quality, it requires substantially larger diffusion models and more training iterations to achieve comparable generation performance. Consequently, existing systems often settle for sub-optimal solutions, either producing visual artifacts due to information loss within tokenizers or failing to converge fully due to expensive computation costs. We argue that this dilemma stems from the inherent difficulty in learning unconstrained high-dimensional latent spaces. To address this, we propose aligning the latent space with pre-trained vision foundation models when training the visual tokenizers. Our proposed VA-VAE (Vision foundation model Aligned Variational AutoEncoder) significantly expands the reconstruction-generation frontier of latent diffusion models, enabling faster convergence of Diffusion Transformers (DiT) in high-dimensional latent spaces. To exploit the full potential of VA-VAE, we build an enhanced DiT baseline with improved training strategies and architecture designs, termed LightningDiT. The integrated system achieves state-of-the-art (SOTA) performance on ImageNet 256x256 generation with an FID score of 1.35 while demonstrating remarkable training efficiency by reaching an FID score of 2.11 in just 64 epochs--representing an over 21 times convergence speedup compared to the original DiT. Models and codes are available at: https://github.com/hustvl/LightningDiT.
Authors:Xudong Jiang, Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys
Abstract:
Learning-based visual localization methods that use scene coordinate regression (SCR) offer the advantage of smaller map sizes. However, on datasets with complex illumination changes or image-level ambiguities, it remains a less robust alternative to feature matching methods. This work aims to close the gap. We introduce a covisibility graph-based global encoding learning and data augmentation strategy, along with a depth-adjusted reprojection loss to facilitate implicit triangulation. Additionally, we revisit the network architecture and local feature extraction module. Our method achieves state-of-the-art on challenging large-scale datasets without relying on network ensembles or 3D supervision. On Aachen Day-Night, we are 10$\times$ more accurate than previous SCR methods with similar map sizes and require at least 5$\times$ smaller map sizes than any other SCR method while still delivering superior accuracy. Code is available at: https://github.com/cvg/scrstudio .
Authors:Yoshitomo Matsubara, Matteo Mendula, Marco Levorato
Abstract:
Split computing ($\neq$ split learning) is a promising approach to deep learning models for resource-constrained edge computing systems, where weak sensor (mobile) devices are wirelessly connected to stronger edge servers through channels with limited communication capacity. State-of-theart work on split computing presents methods for single tasks such as image classification, object detection, or semantic segmentation. The application of existing methods to multitask problems degrades model accuracy and/or significantly increase runtime latency. In this study, we propose Ladon, the first multi-task-head supervised compression model for multi-task split computing. Experimental results show that the multi-task supervised compression model either outperformed or rivaled strong lightweight baseline models in terms of predictive performance for ILSVRC 2012, COCO 2017, and PASCAL VOC 2012 datasets while learning compressed representations at its early layers. Furthermore, our models reduced end-to-end latency (by up to 95.4%) and energy consumption of mobile devices (by up to 88.2%) in multi-task split computing scenarios.
Authors:Or Patashnik, Rinon Gal, Daniil Ostashev, Sergey Tulyakov, Kfir Aberman, Daniel Cohen-Or
Abstract:
Personalizing text-to-image models to generate images of specific subjects across diverse scenes and styles is a rapidly advancing field. Current approaches often face challenges in maintaining a balance between identity preservation and alignment with the input text prompt. Some methods rely on a single textual token to represent a subject, which limits expressiveness, while others employ richer representations but disrupt the model's prior, diminishing prompt alignment. In this work, we introduce Nested Attention, a novel mechanism that injects a rich and expressive image representation into the model's existing cross-attention layers. Our key idea is to generate query-dependent subject values, derived from nested attention layers that learn to select relevant subject features for each region in the generated image. We integrate these nested layers into an encoder-based personalization method, and show that they enable high identity preservation while adhering to input text prompts. Our approach is general and can be trained on various domains. Additionally, its prior preservation allows us to combine multiple personalized subjects from different domains in a single image.
Authors:Yidi Shao, Chen Change Loy, Bo Dai
Abstract:
Garment animation is ubiquitous in various applications, such as virtual reality, gaming, and film producing. Recently, learning-based approaches obtain compelling performance in animating diverse garments under versatile scenarios. Nevertheless, to mimic the deformations of the observed garments, data-driven methods require large scale of garment data, which are both resource-wise expensive and time-consuming. In addition, forcing models to match the dynamics of observed garment animation may hinder the potentials to generalize to unseen cases. In this paper, instead of using garment-wise supervised-learning we adopt a disentangled scheme to learn how to animate observed garments: 1). learning constitutive behaviors from the observed cloth; 2). dynamically animate various garments constrained by the learned constitutive laws. Specifically, we propose Energy Unit network (EUNet) to model the constitutive relations in the format of energy. Without the priors from analytical physics models and differentiable simulation engines, EUNet is able to directly capture the constitutive behaviors from the observed piece of cloth and uniformly describes the change of energy caused by deformations, such as stretching and bending. We further apply the pre-trained EUNet to animate various garments based on energy optimizations. The disentangled scheme alleviates the need of garment data and enables us to utilize the dynamics of a piece of cloth for animating garments. Experiments show that while EUNet effectively delivers the energy gradients due to the deformations, models constrained by EUNet achieve more stable and physically plausible performance comparing with those trained in garment-wise supervised manner. Code is available at https://github.com/ftbabi/EUNet_NeurIPS2024.git .
Authors:Xuyin Qi, Zeyu Zhang, Aaron Berliano Handoko, Huazhan Zheng, Mingxi Chen, Ta Duc Huy, Vu Minh Hieu Phan, Lei Zhang, Linqi Cheng, Shiyu Jiang, Zhiwei Zhang, Zhibin Liao, Yang Zhao, Minh-Son To
Abstract:
Prostate cancer, a growing global health concern, necessitates precise diagnostic tools, with Magnetic Resonance Imaging (MRI) offering high-resolution soft tissue imaging that significantly enhances diagnostic accuracy. Recent advancements in explainable AI and representation learning have significantly improved prostate cancer diagnosis by enabling automated and precise lesion classification. However, existing explainable AI methods, particularly those based on frameworks like generative adversarial networks (GANs), are predominantly developed for natural image generation, and their application to medical imaging often leads to suboptimal performance due to the unique characteristics and complexity of medical image. To address these challenges, our paper introduces three key contributions. First, we propose ProjectedEx, a generative framework that provides interpretable, multi-attribute explanations, effectively linking medical image features to classifier decisions. Second, we enhance the encoder module by incorporating feature pyramids, which enables multiscale feedback to refine the latent space and improves the quality of generated explanations. Additionally, we conduct comprehensive experiments on both the generator and classifier, demonstrating the clinical relevance and effectiveness of ProjectedEx in enhancing interpretability and supporting the adoption of AI in medical settings. Code will be released at https://github.com/Richardqiyi/ProjectedEx
Authors:Xize Cheng, Dongjie Fu, Xiaoda Yang, Minghui Fang, Ruofan Hu, Jingyu Lu, Bai Jionghao, Zehan Wang, Shengpeng Ji, Rongjie Huang, Linjun Li, Yu Chen, Tao Jin, Zhou Zhao
Abstract:
With the rapid development of large language models, researchers have created increasingly advanced spoken dialogue systems that can naturally converse with humans. However, these systems still struggle to handle the full complexity of real-world conversations, including audio events, musical contexts, and emotional expressions, mainly because current dialogue datasets are constrained in both scale and scenario diversity. In this paper, we propose leveraging synthetic data to enhance the dialogue models across diverse scenarios. We introduce ShareChatX, the first comprehensive, large-scale dataset for spoken dialogue that spans diverse scenarios. Based on this dataset, we introduce OmniChat, a multi-turn dialogue system with a heterogeneous feature fusion module, designed to optimize feature selection in different dialogue contexts. In addition, we explored critical aspects of training dialogue systems using synthetic data. Through comprehensive experimentation, we determined the ideal balance between synthetic and real data, achieving state-of-the-art results on the real-world dialogue dataset DailyTalk. We also highlight the crucial importance of synthetic data in tackling diverse, complex dialogue scenarios, especially those involving audio and music. For more details, please visit our demo page at \url{https://sharechatx.github.io/}.
Authors:Yong Zhao, Yang Deng, See-Kiong Ng, Tat-Seng Chua
Abstract:
Large Language Models (LLMs) have demonstrated impressive capabilities in complex reasoning tasks. However, they can be easily misled by unfaithful arguments during conversations, even when their original statements are correct. To this end, we investigate the problem of maintaining faithful integrity in LLMs. This involves ensuring that LLMs adhere to their faithful statements in the face of opposing arguments and are able to correct their incorrect statements when presented with faithful arguments. In this work, we propose a novel framework, named Alignment for Faithful Integrity with Confidence Estimation (AFICE), which aims to align the LLM responses with faithful integrity. Specifically, AFICE first designs a Bilateral Confidence Estimation (BCE) approach for estimating the uncertainty of each response generated by the LLM given a specific context, which simultaneously estimate the model's confidence to the question based on the internal states during decoding as well as to the answer based on cumulative probability ratios. With the BCE, we construct a conversational preference dataset composed of context, original statement, and argument, which is adopted for aligning the LLM for faithful integrity using Direct Preference Optimization (DPO). Extensive experimental results on a wide range of benchmarks demonstrate significant improvements in the LLM's ability to maintain faithful responses when encountering opposing arguments, ensuring both the practical utility and trustworthiness of LLMs in complex interactive settings. Code and data will be released via https://github.com/zhaoy777/AFICE.git
Authors:Jianyi Wang, Zhijie Lin, Meng Wei, Yang Zhao, Ceyuan Yang, Fei Xiao, Chen Change Loy, Lu Jiang
Abstract:
Video restoration poses non-trivial challenges in maintaining fidelity while recovering temporally consistent details from unknown degradations in the wild. Despite recent advances in diffusion-based restoration, these methods often face limitations in generation capability and sampling efficiency. In this work, we present SeedVR, a diffusion transformer designed to handle real-world video restoration with arbitrary length and resolution. The core design of SeedVR lies in the shifted window attention that facilitates effective restoration on long video sequences. SeedVR further supports variable-sized windows near the boundary of both spatial and temporal dimensions, overcoming the resolution constraints of traditional window attention. Equipped with contemporary practices, including causal video autoencoder, mixed image and video training, and progressive training, SeedVR achieves highly-competitive performance on both synthetic and real-world benchmarks, as well as AI-generated videos. Extensive experiments demonstrate SeedVR's superiority over existing methods for generic video restoration.
Authors:Leandro Di Bella, Yangxintong Lyu, Bruno Cornelis, Adrian Munteanu
Abstract:
The evolution of Advanced Driver Assistance Systems (ADAS) has increased the need for robust and generalizable algorithms for multi-object tracking. Traditional statistical model-based tracking methods rely on predefined motion models and assumptions about system noise distributions. Although computationally efficient, they often lack adaptability to varying traffic scenarios and require extensive manual design and parameter tuning. To address these issues, we propose a novel 3D multi-object tracking approach for vehicles, HybridTrack, which integrates a data-driven Kalman Filter (KF) within a tracking-by-detection paradigm. In particular, it learns the transition residual and Kalman gain directly from data, which eliminates the need for manual motion and stochastic parameter modeling. Validated on the real-world KITTI dataset, HybridTrack achieves 82.72% HOTA accuracy, significantly outperforming state-of-the-art methods. We also evaluate our method under different configurations, achieving the fastest processing speed of 112 FPS. Consequently, HybridTrack eliminates the dependency on scene-specific designs while improving performance and maintaining real-time efficiency. The code is publicly available at: https://github.com/leandro-svg/HybridTrack.
Authors:Xiaoshuai Song, Yanan Wu, Weixun Wang, Jiaheng Liu, Wenbo Su, Bo Zheng
Abstract:
Self-Correction aims to enable large language models (LLMs) to self-verify and self-refine their initial responses without external feedback. However, LLMs often fail to effectively self-verify and generate correct feedback, further misleading refinement and leading to the failure of self-correction, especially in complex reasoning tasks. In this paper, we propose Program-driven Self-Correction (ProgCo). First, program-driven verification (ProgVe) achieves complex verification logic and extensive validation through self-generated, self-executing verification pseudo-programs. Then, program-driven refinement (ProgRe) receives feedback from ProgVe, conducts dual reflection and refinement on both responses and verification programs to mitigate misleading of incorrect feedback in complex reasoning tasks. Experiments on three instruction-following and mathematical benchmarks indicate that ProgCo achieves effective self-correction, and can be further enhance performance when combined with real program tools. We release our code at https://github.com/songxiaoshuai/progco.
Authors:Yongle Huang, Haodong Chen, Zhenbang Xu, Zihan Jia, Haozhou Sun, Dian Shao
Abstract:
Human action understanding is crucial for the advancement of multimodal systems. While recent developments, driven by powerful large language models (LLMs), aim to be general enough to cover a wide range of categories, they often overlook the need for more specific capabilities. In this work, we address the more challenging task of Fine-grained Action Recognition (FAR), which focuses on detailed semantic labels within shorter temporal duration (e.g., "salto backward tucked with 1 turn"). Given the high costs of annotating fine-grained labels and the substantial data needed for fine-tuning LLMs, we propose to adopt semi-supervised learning (SSL). Our framework, SeFAR, incorporates several innovative designs to tackle these challenges. Specifically, to capture sufficient visual details, we construct Dual-level temporal elements as more effective representations, based on which we design a new strong augmentation strategy for the Teacher-Student learning paradigm through involving moderate temporal perturbation. Furthermore, to handle the high uncertainty within the teacher model's predictions for FAR, we propose the Adaptive Regulation to stabilize the learning process. Experiments show that SeFAR achieves state-of-the-art performance on two FAR datasets, FineGym and FineDiving, across various data scopes. It also outperforms other semi-supervised methods on two classical coarse-grained datasets, UCF101 and HMDB51. Further analysis and ablation studies validate the effectiveness of our designs. Additionally, we show that the features extracted by our SeFAR could largely promote the ability of multimodal foundation models to understand fine-grained and domain-specific semantics.
Authors:Zhiyao Wang, Xu Chen, Chengming Xu, Junwei Zhu, Xiaobin Hu, Jiangning Zhang, Chengjie Wang, Yuqi Liu, Yiyi Zhou, Rongrong Ji
Abstract:
Face Restoration (FR) is a crucial area within image and video processing, focusing on reconstructing high-quality portraits from degraded inputs. Despite advancements in image FR, video FR remains relatively under-explored, primarily due to challenges related to temporal consistency, motion artifacts, and the limited availability of high-quality video data. Moreover, traditional face restoration typically prioritizes enhancing resolution and may not give as much consideration to related tasks such as facial colorization and inpainting. In this paper, we propose a novel approach for the Generalized Video Face Restoration (GVFR) task, which integrates video BFR, inpainting, and colorization tasks that we empirically show to benefit each other. We present a unified framework, termed as stable video face restoration (SVFR), which leverages the generative and motion priors of Stable Video Diffusion (SVD) and incorporates task-specific information through a unified face restoration framework. A learnable task embedding is introduced to enhance task identification. Meanwhile, a novel Unified Latent Regularization (ULR) is employed to encourage the shared feature representation learning among different subtasks. To further enhance the restoration quality and temporal stability, we introduce the facial prior learning and the self-referred refinement as auxiliary strategies used for both training and inference. The proposed framework effectively combines the complementary strengths of these tasks, enhancing temporal coherence and achieving superior restoration quality. This work advances the state-of-the-art in video FR and establishes a new paradigm for generalized video face restoration. Code and video demo are available at https://github.com/wangzhiyaoo/SVFR.git.
Authors:Amil Bhagat, Milind Jain, A. V. Subramanyam
Abstract:
Consistency models have emerged as a promising alternative to diffusion models, offering high-quality generative capabilities through single-step sample generation. However, their application to multi-domain image translation tasks, such as cross-modal translation and low-light image enhancement remains largely unexplored. In this paper, we introduce Conditional Consistency Models (CCMs) for multi-domain image translation by incorporating additional conditional inputs. We implement these modifications by introducing task-specific conditional inputs that guide the denoising process, ensuring that the generated outputs retain structural and contextual information from the corresponding input domain. We evaluate CCMs on 10 different datasets demonstrating their effectiveness in producing high-quality translated images across multiple domains. Code is available at https://github.com/amilbhagat/Conditional-Consistency-Models.
Authors:Yitong Zhu, Zhuowen Liang, Yiming Wu, Tangyao Li, Yuyang Wang
Abstract:
Cybersickness remains a major obstacle to the widespread adoption of immersive virtual reality (VR), particularly in consumer-grade environments. While prior methods rely on invasive signals such as electroencephalography (EEG) for high predictive accuracy, these approaches require specialized hardware and are impractical for real-world applications. In this work, we propose a scalable, deployable framework for personalized cybersickness prediction leveraging only non-invasive signals readily available from commercial VR headsets, including head motion, eye tracking, and physiological responses. Our model employs a modality-specific graph neural network enhanced with a Difference Attention Module to extract temporal-spatial embeddings capturing dynamic changes across modalities. A cross-modal alignment module jointly trains the video encoder to learn personalized traits by aligning video features with sensor-derived representations. Consequently, the model accurately predicts individual cybersickness using only video input during inference. Experimental results show our model achieves 88.4\% accuracy, closely matching EEG-based approaches (89.16\%), while reducing deployment complexity. With an average inference latency of 90ms, our framework supports real-time applications, ideal for integration into consumer-grade VR platforms without compromising personalization or performance. The code will be relesed at https://github.com/U235-Aurora/PTGNN.
Authors:Yulun Wu, Han Huang, Wenyuan Zhang, Chao Deng, Ge Gao, Ming Gu, Yu-Shen Liu
Abstract:
In recent years, reconstructing indoor scene geometry from multi-view images has achieved encouraging accomplishments. Current methods incorporate monocular priors into neural implicit surface models to achieve high-quality reconstructions. However, these methods require hundreds of images for scene reconstruction. When only a limited number of views are available as input, the performance of monocular priors deteriorates due to scale ambiguity, leading to the collapse of the reconstructed scene geometry. In this paper, we propose a new method, named Sparis, for indoor surface reconstruction from sparse views. Specifically, we investigate the impact of monocular priors on sparse scene reconstruction, introducing a novel prior based on inter-image matching information. Our prior offers more accurate depth information while ensuring cross-view matching consistency. Additionally, we employ an angular filter strategy and an epipolar matching weight function, aiming to reduce errors due to view matching inaccuracies, thereby refining the inter-image prior for improved reconstruction accuracy. The experiments conducted on widely used benchmarks demonstrate superior performance in sparse-view scene reconstruction.
Authors:Dat Nguyen, Marcella Astrid, Anis Kacem, Enjie Ghorbel, Djamila Aouada
Abstract:
Detecting deepfake videos is highly challenging given the complexity of characterizing spatio-temporal artifacts. Most existing methods rely on binary classifiers trained using real and fake image sequences, therefore hindering their generalization capabilities to unseen generation methods. Moreover, with the constant progress in generative Artificial Intelligence (AI), deepfake artifacts are becoming imperceptible at both the spatial and the temporal levels, making them extremely difficult to capture. To address these issues, we propose a fine-grained deepfake video detection approach called FakeSTormer that enforces the modeling of subtle spatio-temporal inconsistencies while avoiding overfitting. Specifically, we introduce a multi-task learning framework that incorporates two auxiliary branches for explicitly attending artifact-prone spatial and temporal regions. Additionally, we propose a video-level data synthesis strategy that generates pseudo-fake videos with subtle spatio-temporal artifacts, providing high-quality samples and hand-free annotations for our additional branches. Extensive experiments on several challenging benchmarks demonstrate the superiority of our approach compared to recent state-of-the-art methods. The code is available at https://github.com/10Ring/FakeSTormer.
Authors:Lixiong Qin, Ning Jiang, Yang Zhang, Yuhan Qiu, Dingheng Zeng, Jiani Hu, Weihong Deng
Abstract:
Existing deepfake analysis methods are primarily based on discriminative models, which significantly limit their application scenarios. This paper aims to explore interactive deepfake analysis by performing instruction tuning on multi-modal large language models (MLLMs). This will face challenges such as the lack of datasets and benchmarks, and low training efficiency. To address these issues, we introduce (1) a GPT-assisted data construction process resulting in an instruction-following dataset called DFA-Instruct, (2) a benchmark named DFA-Bench, designed to comprehensively evaluate the capabilities of MLLMs in deepfake detection, deepfake classification, and artifact description, and (3) construct an interactive deepfake analysis system called DFA-GPT, as a strong baseline for the community, with the Low-Rank Adaptation (LoRA) module. The dataset and code will be made available at https://github.com/lxq1000/DFA-Instruct to facilitate further research.
Authors:Yuxiang Chai, Hanhao Li, Jiayu Zhang, Liang Liu, Guangyi Liu, Guozhi Wang, Shuai Ren, Siyuan Huang, Hongsheng Li
Abstract:
AI agents have become increasingly prevalent in recent years, driven by significant advancements in the field of large language models (LLMs). Mobile GUI agents, a subset of AI agents, are designed to autonomously perform tasks on mobile devices. While numerous studies have introduced agents, datasets, and benchmarks to advance mobile GUI agent research, many existing datasets focus on static frame evaluations and fail to provide a comprehensive platform for assessing performance on real-world, in-the-wild tasks. To address this gap, we present Android Agent Arena (A3), a novel evaluation platform. Unlike existing in-the-wild systems, A3 offers: (1) meaningful and practical tasks, such as real-time online information retrieval and operational instructions; (2) a larger, more flexible action space, enabling compatibility with agents trained on any dataset; and (3) automated business-level LLM-based evaluation process. A3 includes 21 widely used general third-party apps and 201 tasks representative of common user scenarios, providing a robust foundation for evaluating mobile GUI agents in real-world situations and a new autonomous evaluation process for less human labor and coding expertise. The project is available at https://yuxiangchai.github.io/Android-Agent-Arena/.
Authors:Anugunj Naman, Aaron Ault, Yaguang Zhang, James Krogmeier
Abstract:
Winter road maintenance is a critical priority for the Indiana Department of Transportation, which manages an extensive fleet across thousands of lane miles. The current manual tracking of snowplow workloads is inefficient and prone to errors. To address these challenges, we developed an in-browser web application that automates the creation and verification of work orders using a large-scale GPS dataset from telematics systems. The application processes millions of GPS data points from hundreds of vehicles over winter, significantly reducing manual labor and minimizing errors. Key features include geohashing for efficient road segment identification, detailed segment-level work records, and robust visualization of vehicle movements, even on repeated routes. Our proposed solution has the potential to enhance the accuracy and granularity of work records, support more effective resource allocation, ensure timely compensation for drivers, alleviate administrative burdens, and allow managers to focus on strategic planning and real-time challenges. The web application can be accessed at https://github.com/oats-center/arrtrack/
Authors:Feng Han, Kai Chen, Chao Gong, Zhipeng Wei, Jingjing Chen, Yu-Gang Jiang
Abstract:
The exceptional generative capability of text-to-image models has raised substantial safety concerns regarding the generation of Not-Safe-For-Work (NSFW) content and potential copyright infringement. To address these concerns, previous methods safeguard the models by eliminating inappropriate concepts. Nonetheless, these models alter the parameters of the backbone network and exert considerable influences on the structural (low-frequency) components of the image, which undermines the model's ability to retain non-target concepts. In this work, we propose our Dual encoder Modulation network (DuMo), which achieves precise erasure of inappropriate target concepts with minimum impairment to non-target concepts. In contrast to previous methods, DuMo employs the Eraser with PRior Knowledge (EPR) module which modifies the skip connection features of the U-NET and primarily achieves concept erasure on details (high-frequency) components of the image. To minimize the damage to non-target concepts during erasure, the parameters of the backbone U-NET are frozen and the prior knowledge from the original skip connection features is introduced to the erasure process. Meanwhile, the phenomenon is observed that distinct erasing preferences for the image structure and details are demonstrated by the EPR at different timesteps and layers. Therefore, we adopt a novel Time-Layer MOdulation process (TLMO) that adjusts the erasure scale of EPR module's outputs across different layers and timesteps, automatically balancing the erasure effects and model's generative ability. Our method achieves state-of-the-art performance on Explicit Content Erasure, Cartoon Concept Removal and Artistic Style Erasure, clearly outperforming alternative methods. Code is available at https://github.com/Maplebb/DuMo
Authors:Jian Lang, Zhangtao Cheng, Ting Zhong, Fan Zhou
Abstract:
Multimodal learning with incomplete modality is practical and challenging. Recently, researchers have focused on enhancing the robustness of pre-trained MultiModal Transformers (MMTs) under missing modality conditions by applying learnable prompts. However, these prompt-based methods face several limitations: (1) incomplete modalities provide restricted modal cues for task-specific inference, (2) dummy imputation for missing content causes information loss and introduces noise, and (3) static prompts are instance-agnostic, offering limited knowledge for instances with various missing conditions. To address these issues, we propose RAGPT, a novel Retrieval-AuGmented dynamic Prompt Tuning framework. RAGPT comprises three modules: (I) the multi-channel retriever, which identifies similar instances through a within-modality retrieval strategy, (II) the missing modality generator, which recovers missing information using retrieved contexts, and (III) the context-aware prompter, which captures contextual knowledge from relevant instances and generates dynamic prompts to largely enhance the MMT's robustness. Extensive experiments conducted on three real-world datasets show that RAGPT consistently outperforms all competitive baselines in handling incomplete modality problems. The code of our work and prompt-based baselines is available at https://github.com/Jian-Lang/RAGPT.
Authors:Xuan Yu, Yuxuan Xie, Yili Liu, Haojian Lu, Rong Xiong, Yiyi Liao, Yue Wang
Abstract:
Open-vocabulary panoptic reconstruction offers comprehensive scene understanding, enabling advances in embodied robotics and photorealistic simulation. In this paper, we propose PanopticRecon++, an end-to-end method that formulates panoptic reconstruction through a novel cross-attention perspective. This perspective models the relationship between 3D instances (as queries) and the scene's 3D embedding field (as keys) through their attention map. Unlike existing methods that separate the optimization of queries and keys or overlook spatial proximity, PanopticRecon++ introduces learnable 3D Gaussians as instance queries. This formulation injects 3D spatial priors to preserve proximity while maintaining end-to-end optimizability. Moreover, this query formulation facilitates the alignment of 2D open-vocabulary instance IDs across frames by leveraging optimal linear assignment with instance masks rendered from the queries. Additionally, we ensure semantic-instance segmentation consistency by fusing query-based instance segmentation probabilities with semantic probabilities in a novel panoptic head supervised by a panoptic loss. During training, the number of instance query tokens dynamically adapts to match the number of objects. PanopticRecon++ shows competitive performance in terms of 3D and 2D segmentation and reconstruction performance on both simulation and real-world datasets, and demonstrates a user case as a robot simulator. Our project website is at: https://yuxuan1206.github.io/panopticrecon_pp/
Authors:Jimin Park, AHyun Ji, Minji Park, Mohammad Saidur Rahman, Se Eun Oh
Abstract:
Continual Learning (CL) for malware classification tackles the rapidly evolving nature of malware threats and the frequent emergence of new types. Generative Replay (GR)-based CL systems utilize a generative model to produce synthetic versions of past data, which are then combined with new data to retrain the primary model. Traditional machine learning techniques in this domain often struggle with catastrophic forgetting, where a model's performance on old data degrades over time.
In this paper, we introduce a GR-based CL system that employs Generative Adversarial Networks (GANs) with feature matching loss to generate high-quality malware samples. Additionally, we implement innovative selection schemes for replay samples based on the model's hidden representations.
Our comprehensive evaluation across Windows and Android malware datasets in a class-incremental learning scenario -- where new classes are introduced continuously over multiple tasks -- demonstrates substantial performance improvements over previous methods. For example, our system achieves an average accuracy of 55% on Windows malware samples, significantly outperforming other GR-based models by 28%. This study provides practical insights for advancing GR-based malware classification systems. The implementation is available at \url {https://github.com/MalwareReplayGAN/MalCL}\footnote{The code will be made public upon the presentation of the paper}.
Authors:Haina Zhu, Yizhi Zhou, Hangting Chen, Jianwei Yu, Ziyang Ma, Rongzhi Gu, Yi Luo, Wei Tan, Xie Chen
Abstract:
Recent years have witnessed the success of foundation models pre-trained with self-supervised learning (SSL) in various music informatics understanding tasks, including music tagging, instrument classification, key detection, and more. In this paper, we propose a self-supervised music representation learning model for music understanding. Distinguished from previous studies adopting random projection or existing neural codec, the proposed model, named MuQ, is trained to predict tokens generated by Mel Residual Vector Quantization (Mel-RVQ). Our Mel-RVQ utilizes residual linear projection structure for Mel spectrum quantization to enhance the stability and efficiency of target extraction and lead to better performance. Experiments in a large variety of downstream tasks demonstrate that MuQ outperforms previous self-supervised music representation models with only 0.9K hours of open-source pre-training data. Scaling up the data to over 160K hours and adopting iterative training consistently improve the model performance. To further validate the strength of our model, we present MuQ-MuLan, a joint music-text embedding model based on contrastive learning, which achieves state-of-the-art performance in the zero-shot music tagging task on the MagnaTagATune dataset. Code and checkpoints are open source in https://github.com/tencent-ailab/MuQ.
Authors:Shuo Yu, Shan Jin, Ming Li, Tabinda Sarwar, Feng Xia
Abstract:
Understanding communication and information processing among brain regions of interest (ROIs) is highly dependent on long-range connectivity, which plays a crucial role in facilitating diverse functional neural integration across the entire brain. However, previous studies generally focused on the short-range dependencies within brain networks while neglecting the long-range dependencies, limiting an integrated understanding of brain-wide communication. To address this limitation, we propose Adaptive Long-range aware TransformER (ALTER), a brain graph transformer to capture long-range dependencies between brain ROIs utilizing biased random walk. Specifically, we present a novel long-range aware strategy to explicitly capture long-range dependencies between brain ROIs. By guiding the walker towards the next hop with higher correlation value, our strategy simulates the real-world brain-wide communication. Furthermore, by employing the transformer framework, ALERT adaptively integrates both short- and long-range dependencies between brain ROIs, enabling an integrated understanding of multi-level communication across the entire brain. Extensive experiments on ABIDE and ADNI datasets demonstrate that ALTER consistently outperforms generalized state-of-the-art graph learning methods (including SAN, Graphormer, GraphTrans, and LRGNN) and other graph learning based brain network analysis methods (including FBNETGEN, BrainNetGNN, BrainGNN, and BrainNETTF) in neurological disease diagnosis. Cases of long-range dependencies are also presented to further illustrate the effectiveness of ALTER. The implementation is available at https://github.com/yushuowiki/ALTER.
Authors:Hong Zhang, Zhongjie Duan, Xingjun Wang, Yingda Chen, Yu Zhang
Abstract:
Recent advancements in diffusion models have significantly advanced text-to-image generation, yet global text prompts alone remain insufficient for achieving fine-grained control over individual entities within an image. To address this limitation, we present EliGen, a novel framework for Entity-level controlled image Generation. Firstly, we put forward regional attention, a mechanism for diffusion transformers that requires no additional parameters, seamlessly integrating entity prompts and arbitrary-shaped spatial masks. By contributing a high-quality dataset with fine-grained spatial and semantic entity-level annotations, we train EliGen to achieve robust and accurate entity-level manipulation, surpassing existing methods in both spatial precision and image quality. Additionally, we propose an inpainting fusion pipeline, extending its capabilities to multi-entity image inpainting tasks. We further demonstrate its flexibility by integrating it with other open-source models such as IP-Adapter, In-Context LoRA and MLLM, unlocking new creative possibilities. The source code, model, and dataset are published at https://github.com/modelscope/DiffSynth-Studio.git.
Authors:Xiaohui Chen, Yinkai Wang, Jiaxing He, Yuanqi Du, Soha Hassoun, Xiaolin Xu, Li-Ping Liu
Abstract:
Graph generation is a critical task in numerous domains, including molecular design and social network analysis, due to its ability to model complex relationships and structured data. While most modern graph generative models utilize adjacency matrix representations, this work revisits an alternative approach that represents graphs as sequences of node set and edge set. We advocate for this approach due to its efficient encoding of graphs and propose a novel representation. Based on this representation, we introduce the Graph Generative Pre-trained Transformer (G2PT), an auto-regressive model that learns graph structures via next-token prediction. To further exploit G2PT's capabilities as a general-purpose foundation model, we explore fine-tuning strategies for two downstream applications: goal-oriented generation and graph property prediction. We conduct extensive experiments across multiple datasets. Results indicate that G2PT achieves superior generative performance on both generic graph and molecule datasets. Furthermore, G2PT exhibits strong adaptability and versatility in downstream tasks from molecular design to property prediction. Code available at https://github.com/tufts-ml/G2PT,
Authors:Md Osama, Ashim Dey, Kawsar Ahmed, Muhammad Ashad Kabir
Abstract:
Automatic text summarization, particularly headline generation, remains a critical yet underexplored area for Bengali religious news. Existing approaches to headline generation typically rely solely on the article content, overlooking crucial contextual features such as sentiment, category, and aspect. This limitation significantly hinders their effectiveness and overall performance. This study addresses this limitation by introducing a novel corpus, BeliN (Bengali Religious News) - comprising religious news articles from prominent Bangladeshi online newspapers, and MultiGen - a contextual multi-input feature fusion headline generation approach. Leveraging transformer-based pre-trained language models such as BanglaT5, mBART, mT5, and mT0, MultiGen integrates additional contextual features - including category, aspect, and sentiment - with the news content. This fusion enables the model to capture critical contextual information often overlooked by traditional methods. Experimental results demonstrate the superiority of MultiGen over the baseline approach that uses only news content, achieving a BLEU score of 18.61 and ROUGE-L score of 24.19, compared to baseline approach scores of 16.08 and 23.08, respectively. These findings underscore the importance of incorporating contextual features in headline generation for low-resource languages. By bridging linguistic and cultural gaps, this research advances natural language processing for Bengali and other underrepresented languages. To promote reproducibility and further exploration, the dataset and implementation code are publicly accessible at https://github.com/akabircs/BeliN.
Authors:Youngjun Son, Chaewon Kim, Jaejin Lee
Abstract:
Dataset deduplication plays a crucial role in enhancing data quality, ultimately improving the training performance and efficiency of large language models. A commonly used method for data deduplication is the MinHash LSH algorithm. Recently, NVIDIA introduced a GPU-based MinHash LSH deduplication method, but it remains suboptimal, leaving room for further improvement in processing efficiency. This paper proposes a GPU-accelerated deduplication framework, FED, that optimizes MinHash LSH for GPU clusters and leverages computationally efficient, partially reusable non-cryptographic hash functions. FED significantly outperforms the CPU-based deduplication tool in SlimPajama (using 64 logical CPU cores) by up to 107.2 times and the GPU-based tool in NVIDIA NeMo Curator by up to 6.3 times when processing 30 million documents on a node with four GPUs. Notably, our method dramatically accelerates the previously time-consuming MinHash signature generation phase, achieving speed-ups of up to 260 compared to the CPU baseline. Despite these gains in efficiency, FED maintains high deduplication quality, with the duplicate document sets reaching a Jaccard similarity of over 0.96 compared to those identified by the standard MinHash algorithm. In large-scale experiments, the deduplication of 1.2 trillion tokens is completed in just 6 hours in a four-node, 16-GPU environment. The related code is publicly available on GitHub (\href{https://github.com/mcrl/FED}{https://github.com/mcrl/FED}).
Authors:Bin Wang, Xunlong Zou, Shuo Sun, Wenyu Zhang, Yingxu He, Zhuohan Liu, Chengwei Wei, Nancy F. Chen, AiTi Aw
Abstract:
Singlish, a Creole language rooted in English, is a key focus in linguistic research within multilingual and multicultural contexts. However, its spoken form remains underexplored, limiting insights into its linguistic structure and applications. To address this gap, we standardize and annotate the largest spoken Singlish corpus, introducing the Multitask National Speech Corpus (MNSC). These datasets support diverse tasks, including Automatic Speech Recognition (ASR), Spoken Question Answering (SQA), Spoken Dialogue Summarization (SDS), and Paralinguistic Question Answering (PQA). We release standardized splits and a human-verified test set to facilitate further research. Additionally, we propose SingAudioLLM, a multi-task multimodal model leveraging multimodal large language models to handle these tasks concurrently. Experiments reveal our models adaptability to Singlish context, achieving state-of-the-art performance and outperforming prior models by 10-30% in comparison with other AudioLLMs and cascaded solutions.
Authors:Ziyang Chen, Wenting Li, Yongjun Zhang, Yabo Wu, Bingshu Wang, Yong Zhao, C. L. Philip Chen
Abstract:
Constrained by the low-rank bottleneck inherent in attention mechanisms, current stereo matching transformers suffer from limited nonlinear expressivity, which renders their feature representations sensitive to challenging conditions such as reflections. To overcome this difficulty, we present the Hadamard Attention Recurrent Stereo Transformer (HART). HART includes a novel attention mechanism that incorporates the following components: 1) The Dense Attention Kernel (DAK) maps the attention weight distribution into a high-dimensional space over (0, +$\infty$). By removing the upper bound constraint on attention weights, DAK enables more flexible modeling of complex feature interactions. This reduces feature collinearity. 2) The Multi Kernel & Order Interaction (MKOI) module extends the attention mechanism by unifying semantic and spatial knowledge learning. This integration improves the ability of HART to learn features in binocular images. Experimental results demonstrate the effectiveness of our HART. In reflective area, HART ranked 1st on the KITTI 2012 benchmark among all published methods at the time of submission. Code is available at https://github.com/ZYangChen/HART.
Authors:Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen, Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, Luis Ceze
Abstract:
Transformers, driven by attention mechanisms, form the foundation of large language models (LLMs). As these models scale up, efficient GPU attention kernels become essential for high-throughput and low-latency inference. Diverse LLM applications demand flexible and high-performance attention solutions. We present FlashInfer: a customizable and efficient attention engine for LLM serving. FlashInfer tackles KV-cache storage heterogeneity using block-sparse format and composable formats to optimize memory access and reduce redundancy. It also offers a customizable attention template, enabling adaptation to various settings through Just-In-Time (JIT) compilation. Additionally, FlashInfer's load-balanced scheduling algorithm adjusts to dynamism of user requests while maintaining compatibility with CUDAGraph which requires static configuration. FlashInfer have been integrated into leading LLM serving frameworks like SGLang, vLLM and MLC-Engine. Comprehensive kernel-level and end-to-end evaluations demonstrate FlashInfer's ability to significantly boost kernel performance across diverse inference scenarios: compared to state-of-the-art LLM serving solutions, FlashInfer achieve 29-69% inter-token-latency reduction compared to compiler backends for LLM serving benchmark, 28-30% latency reduction for long-context inference, and 13-17% speedup for LLM serving with parallel generation.
Authors:Wenqi Zhang, Hang Zhang, Xin Li, Jiashuo Sun, Yongliang Shen, Weiming Lu, Deli Zhao, Yueting Zhuang, Lidong Bing
Abstract:
Compared to image-text pair data, interleaved corpora enable Vision-Language Models (VLMs) to understand the world more naturally like humans. However, such existing datasets are crawled from webpage, facing challenges like low knowledge density, loose image-text relations, and poor logical coherence between images. On the other hand, the internet hosts vast instructional videos (e.g., online geometry courses) that are widely used by humans to learn foundational subjects, yet these valuable resources remain underexplored in VLM training. In this paper, we introduce a high-quality \textbf{multimodal textbook} corpus with richer foundational knowledge for VLM pretraining. It collects over 2.5 years of instructional videos, totaling 22,000 class hours. We first use an LLM-proposed taxonomy to systematically gather instructional videos. Then we progressively extract and refine visual (keyframes), audio (ASR), and textual knowledge (OCR) from the videos, and organize as an image-text interleaved corpus based on temporal order. Compared to its counterparts, our video-centric textbook offers more coherent context, richer knowledge, and better image-text alignment. Experiments demonstrate its superb pretraining performance, particularly in knowledge- and reasoning-intensive tasks like ScienceQA and MathVista. Moreover, VLMs pre-trained on our textbook exhibit outstanding interleaved context awareness, leveraging visual and textual cues in their few-shot context for task solving. Our code are available at https://github.com/DAMO-NLP-SG/multimodal_textbook.
Authors:David Wu, Sanjiban Choudhury
Abstract:
Aligning large language models (LLMs) to human preferences is challenging in domains where preference data is unavailable. We address the problem of learning reward models for such target domains by leveraging feedback collected from simpler source domains, where human preferences are easier to obtain. Our key insight is that, while domains may differ significantly, human preferences convey \emph{domain-agnostic} concepts that can be effectively captured by a reward model. We propose \method, a framework that trains domain-invariant reward models by optimizing a dual loss: a domain loss that minimizes the divergence between source and target distribution, and a source loss that optimizes preferences on the source domain. We show \method is a general approach that we evaluate and analyze across 4 distinct settings: (1) Cross-lingual transfer (accuracy: $0.621 \rightarrow 0.661$), (2) Clean-to-noisy (accuracy: $0.671 \rightarrow 0.703$), (3) Few-shot-to-full transfer (accuracy: $0.845 \rightarrow 0.920$), and (4) Simple-to-complex tasks transfer (correlation: $0.508 \rightarrow 0.556$). Our code, models and data are available at \url{https://github.com/portal-cornell/dial}.
Authors:Chenyang Liu, Keyan Chen, Rui Zhao, Zhengxia Zou, Zhenwei Shi
Abstract:
Generative foundation models have advanced large-scale text-driven natural image generation, becoming a prominent research trend across various vertical domains. However, in the remote sensing field, there is still a lack of research on large-scale text-to-image (text2image) generation technology. Existing remote sensing image-text datasets are small in scale and confined to specific geographic areas and scene types. Besides, existing text2image methods have struggled to achieve global-scale, multi-resolution controllable, and unbounded image generation. To address these challenges, this paper presents two key contributions: the Git-10M dataset and the Text2Earth foundation model. Git-10M is a global-scale image-text dataset comprising 10.5 million image-text pairs, 5 times larger than the previous largest one. The dataset covers a wide range of geographic scenes and contains resolution information, significantly surpassing existing datasets in both size and diversity. Building on Git-10M, we propose Text2Earth, a 1.3 billion parameter generative foundation model based on the diffusion framework to model global-scale remote sensing scenes. Text2Earth integrates a resolution guidance mechanism, enabling users to specify image resolutions. A dynamic condition adaptation strategy is proposed for training and inference to improve image quality. Text2Earth excels in zero-shot text2image generation and demonstrates robust generalization and flexibility across multiple tasks, including unbounded scene construction, image editing, and cross-modal image generation. This robust capability surpasses previous models restricted to the basic fixed size and limited scene types. On the previous benchmark dataset, Text2Earth outperforms previous models with an improvement of +26.23 FID and +20.95% Zero-shot Cls-OA metric.Our project page is https://chen-yang-liu.github.io/Text2Earth
Authors:Libin Lan, Lu Jiang, Tianshu Yu, Xiaojuan Liu, Zhongshi He
Abstract:
Video summarization aims to generate a compact, informative, and representative synopsis of raw videos, which is crucial for browsing, analyzing, and understanding video content. Dominant approaches in video summarization primarily rely on recurrent or convolutional neural networks, and more recently on encoder-only transformer architectures. However, these methods typically suffer from several limitations in parallelism, modeling long-range dependencies, and providing explicit generative capabilities. To address these issues, we propose a transformer-like architecture named FullTransNet with two-fold ideas. First, it uses a full transformer with an encoder-decoder structure as an alternative architecture for video summarization. As the full transformer is specifically designed for sequence transduction tasks, its direct application to video summarization is both intuitive and effective. Second, it replaces the standard full attention mechanism with a combination of local and global sparse attention, enabling the model to capture long-range dependencies while significantly reducing computational costs. This local-global sparse attention is applied exclusively at the encoder side, where the majority of computations occur, further enhancing efficiency. Extensive experiments on two widely used benchmark datasets, SumMe and TVSum, demonstrate that our model achieves F-scores of 54.4% and 63.9%, respectively, while maintaining relatively low computational and memory requirements. These results surpass the second-best performing methods by 0.1% and 0.3%, respectively, verifying the effectiveness and efficiency of FullTransNet.
Authors:Teng Hu, Jiangning Zhang, Ran Yi, Jieyu Weng, Yabiao Wang, Xianfang Zeng, Zhucun Xue, Lizhuang Ma
Abstract:
Employing LLMs for visual generation has recently become a research focus. However, the existing methods primarily transfer the LLM architecture to visual generation but rarely investigate the fundamental differences between language and vision. This oversight may lead to suboptimal utilization of visual generation capabilities within the LLM framework. In this paper, we explore the characteristics of visual embedding space under the LLM framework and discover that the correlation between visual embeddings can help achieve more stable and robust generation results. We present IAR, an Improved AutoRegressive Visual Generation Method that enhances the training efficiency and generation quality of LLM-based visual generation models. Firstly, we propose a Codebook Rearrangement strategy that uses balanced k-means clustering algorithm to rearrange the visual codebook into clusters, ensuring high similarity among visual features within each cluster. Leveraging the rearranged codebook, we propose a Cluster-oriented Cross-entropy Loss that guides the model to correctly predict the cluster where the token is located. This approach ensures that even if the model predicts the wrong token index, there is a high probability the predicted token is located in the correct cluster, which significantly enhances the generation quality and robustness. Extensive experiments demonstrate that our method consistently enhances the model training efficiency and performance from 100M to 1.4B, reducing the training time by half while achieving the same FID. Additionally, our approach can be applied to various LLM-based visual generation models and adheres to the scaling law, providing a promising direction for future research in LLM-based visual generation. The code is available at: https://github.com/sjtuplayer/IAR.
Authors:Mingjia Li, Shuang Li, Tongrui Su, Longhui Yuan, Jian Liang, Wei Li
Abstract:
Capitalizing on the complementary advantages of generative and discriminative models has always been a compelling vision in machine learning, backed by a growing body of research. This work discloses the hidden semantic structure within score-based generative models, unveiling their potential as effective discriminative priors. Inspired by our theoretical findings, we propose DUSA to exploit the structured semantic priors underlying diffusion score to facilitate the test-time adaptation of image classifiers or dense predictors. Notably, DUSA extracts knowledge from a single timestep of denoising diffusion, lifting the curse of Monte Carlo-based likelihood estimation over timesteps. We demonstrate the efficacy of our DUSA in adapting a wide variety of competitive pre-trained discriminative models on diverse test-time scenarios. Additionally, a thorough ablation study is conducted to dissect the pivotal elements in DUSA. Code is publicly available at https://github.com/BIT-DA/DUSA.
Authors:Nicholas Magal, Minh Tran, Riku Arakawa, Suzanne Nie
Abstract:
This paper aims to document an effective way to improve multimodal co-learning by using aggressive modality dropout. We find that by using aggressive modality dropout we are able to reverse negative co-learning (NCL) to positive co-learning (PCL). Aggressive modality dropout can be used to "prep" a multimodal model for unimodal deployment, and dramatically increases model performance during negative co-learning, where during some experiments we saw a 20% gain in accuracy. We also benchmark our modality dropout technique against PCL to show that our modality drop out technique improves co-learning during PCL, although it does not have as much as an substantial effect as it does during NCL. Github: https://github.com/nmagal/modality_drop_for_colearning
Authors:Van Quang Nguyen, Quoc Chuong Nguyen, Thu Huong Dang, Truong-Son Hy
Abstract:
The Hierarchical Directed Capacitated Arc Routing Problem (HDCARP) is an extension of the Capacitated Arc Routing Problem (CARP), where the arcs of a graph are divided into classes based on their priority. The traversal of these classes is determined by either precedence constraints or a hierarchical objective, resulting in two distinct HDCARP variants. To the best of our knowledge, only one matheuristic has been proposed for these variants, but it performs relatively slowly, particularly for large-scale instances (Ha et al., 2024). In this paper, we propose a fast heuristic to efficiently address the computational challenges of HDCARP. Furthermore, we incorporate Reinforcement Learning (RL) into our heuristic to effectively guide the selection of local search operators, resulting in a hybrid algorithm. We name this hybrid algorithm as the Hybrid Reinforcement Learning and Heuristic Algorithm for Directed Arc Routing (HRDA). The hybrid algorithm adapts to changes in the problem dynamically, using real-time feedback to improve routing strategies and solution's quality by integrating heuristic methods. Extensive computational experiments on artificial instances demonstrate that this hybrid approach significantly improves the speed of the heuristic without deteriorating the solution quality. Our source code is publicly available at: https://github.com/HySonLab/ArcRoute
Authors:Yulong Ye, Tao Chen, Miqing Li
Abstract:
Modern configurable systems provide tremendous opportunities for engineering future intelligent software systems. A key difficulty thereof is how to effectively self-adapt the configuration of a running system such that its performance (e.g., runtime and throughput) can be optimized under time-varying workloads. This unfortunately remains unaddressed in existing approaches as they either overlook the available past knowledge or rely on static exploitation of past knowledge without reasoning the usefulness of information when planning for self-adaptation. In this paper, we tackle this challenging problem by proposing DLiSA, a framework that self-adapts configurable systems. DLiSA comes with two properties: firstly, it supports lifelong planning, and thereby the planning process runs continuously throughout the lifetime of the system, allowing dynamic exploitation of the accumulated knowledge for rapid adaptation. Secondly, the planning for a newly emerged workload is boosted via distilled knowledge seeding, in which the knowledge is dynamically purified such that only useful past configurations are seeded when necessary, mitigating misleading information. Extensive experiments suggest that the proposed DLiSA significantly outperforms state-of-the-art approaches, demonstrating a performance improvement of up to 229% and a resource acceleration of up to 2.22x on generating promising adaptation configurations. All data and sources can be found at our repository: https://github.com/ideas-labo/dlisa.
Authors:Binglu Wang, Yao Tian, Shunzhou Wang, Le Yang
Abstract:
The task of long-term action anticipation demands solutions that can effectively model temporal dynamics over extended periods while deeply understanding the inherent semantics of actions. Traditional approaches, which primarily rely on recurrent units or Transformer layers to capture long-term dependencies, often fall short in addressing these challenges. Large Language Models (LLMs), with their robust sequential modeling capabilities and extensive commonsense knowledge, present new opportunities for long-term action anticipation. In this work, we introduce the ActionLLM framework, a novel approach that treats video sequences as successive tokens, leveraging LLMs to anticipate future actions. Our baseline model simplifies the LLM architecture by setting future tokens, incorporating an action tuning module, and reducing the textual decoder layer to a linear layer, enabling straightforward action prediction without the need for complex instructions or redundant descriptions. To further harness the commonsense reasoning of LLMs, we predict action categories for observed frames and use sequential textual clues to guide semantic understanding. In addition, we introduce a Cross-Modality Interaction Block, designed to explore the specificity within each modality and capture interactions between vision and textual modalities, thereby enhancing multimodal tuning. Extensive experiments on benchmark datasets demonstrate the superiority of the proposed ActionLLM framework, encouraging a promising direction to explore LLMs in the context of action anticipation. Code is available at https://github.com/2tianyao1/ActionLLM.git.
Authors:Suho Park, SuBeen Lee, Hyun Seok Seong, Jaejoon Yoo, Jae-Pil Heo
Abstract:
We propose Foreground-Covering Prototype Generation and Matching to resolve Few-Shot Segmentation (FSS), which aims to segment target regions in unlabeled query images based on labeled support images. Unlike previous research, which typically estimates target regions in the query using support prototypes and query pixels, we utilize the relationship between support and query prototypes. To achieve this, we utilize two complementary features: SAM Image Encoder features for pixel aggregation and ResNet features for class consistency. Specifically, we construct support and query prototypes with SAM features and distinguish query prototypes of target regions based on ResNet features. For the query prototype construction, we begin by roughly guiding foreground regions within SAM features using the conventional pseudo-mask, then employ iterative cross-attention to aggregate foreground features into learnable tokens. Here, we discover that the cross-attention weights can effectively alternate the conventional pseudo-mask. Therefore, we use the attention-based pseudo-mask to guide ResNet features to focus on the foreground, then infuse the guided ResNet feature into the learnable tokens to generate class-consistent query prototypes. The generation of the support prototype is conducted symmetrically to that of the query one, with the pseudo-mask replaced by the ground-truth mask. Finally, we compare these query prototypes with support ones to generate prompts, which subsequently produce object masks through the SAM Mask Decoder. Our state-of-the-art performances on various datasets validate the effectiveness of the proposed method for FSS. Our official code is available at https://github.com/SuhoPark0706/FCP
Authors:Haoxuan Li, Wei song, Peiwu Qin, Xi Yuan, Zhenglin Chen
Abstract:
Breast cancer lesion segmentation in DCE-MRI remains challenging due to heterogeneous tumor morphology and indistinct boundaries. To address these challenges, this study proposes a novel hybrid segmentation network, HCMA-UNet, for lesion segmentation of breast cancer. Our network consists of a lightweight CNN backbone and a Multi-view Axial Self-Attention Mamba (MISM) module. The MISM module integrates Visual State Space Block (VSSB) and Axial Self-Attention (ASA) mechanism, effectively reducing parameters through Asymmetric Split Channel (ASC) strategy to achieve efficient tri-directional feature extraction. Our lightweight model achieves superior performance with 2.87M parameters and 126.44 GFLOPs. A Feature-guided Region-aware loss function (FRLoss) is proposed to enhance segmentation accuracy. Extensive experiments on one private and two public DCE-MRI breast cancer datasets demonstrate that our approach achieves state-of-the-art performance while maintaining computational efficiency. FRLoss also exhibits good cross-architecture generalization capabilities. The source code is available at https://github.com/Haoxuanli-Thu/HCMA-UNet.
Authors:Yiwei Qin, Yixiu Liu, Pengfei Liu
Abstract:
Recent advances in large language models (LLMs) have demonstrated the effectiveness of Iterative Self-Improvement (ISI) techniques. However, continuous training on self-generated data leads to reduced output diversity, a limitation particularly critical in reasoning tasks where diverse solution paths are essential. We present DIVE (Diversified Iterative Self-Improvement), a novel framework that addresses this challenge through two key components: Sample Pool Expansion for broader solution exploration, and Data Selection for balancing diversity and quality in preference pairs. Experiments on MATH and GSM8k datasets show that DIVE achieves a 10% to 45% relative increase in output diversity metrics while maintaining performance quality compared to vanilla ISI. Our ablation studies confirm both components' significance in achieving these improvements. Code is available at https://github.com/qinyiwei/DIVE.
Authors:Mengran Li, Chaojun Ding, Junzhou Chen, Wenbin Xing, Cong Ye, Ronghui Zhang, Songlin Zhuang, Jia Hu, Tony Z. Qiu, Huijun Gao
Abstract:
Missing attribute issues are prevalent in the graph learning, leading to biased outcomes in Graph Neural Networks (GNNs). Existing methods that rely on feature propagation are prone to cold start problem, particularly when dealing with attribute resetting and low-degree nodes, which hinder effective propagation and convergence. To address these challenges, we propose AttriReBoost (ARB), a novel method that incorporates propagation-based method to mitigate cold start problems in attribute-missing graphs. ARB enhances global feature propagation by redefining initial boundary conditions and strategically integrating virtual edges, thereby improving node connectivity and ensuring more stable and efficient convergence. This method facilitates gradient-free attribute reconstruction with lower computational overhead. The proposed method is theoretically grounded, with its convergence rigorously established. Extensive experiments on several real-world benchmark datasets demonstrate the effectiveness of ARB, achieving an average accuracy improvement of 5.11% over state-of-the-art methods. Additionally, ARB exhibits remarkable computational efficiency, processing a large-scale graph with 2.49 million nodes in just 16 seconds on a single GPU. Our code is available at https://github.com/limengran98/ARB.
Authors:Ruibin Li, Tao Yang, Song Guo, Lei Zhang
Abstract:
Despite the significant advancements, existing object removal methods struggle with incomplete removal, incorrect content synthesis and blurry synthesized regions, resulting in low success rates. Such issues are mainly caused by the lack of high-quality paired training data, as well as the self-supervised training paradigm adopted in these methods, which forces the model to in-paint the masked regions, leading to ambiguity between synthesizing the masked objects and restoring the background. To address these issues, we propose a semi-supervised learning strategy with human-in-the-loop to create high-quality paired training data, aiming to train a Robust Object Remover (RORem). We first collect 60K training pairs from open-source datasets to train an initial object removal model for generating removal samples, and then utilize human feedback to select a set of high-quality object removal pairs, with which we train a discriminator to automate the following training data generation process. By iterating this process for several rounds, we finally obtain a substantial object removal dataset with over 200K pairs. Fine-tuning the pre-trained stable diffusion model with this dataset, we obtain our RORem, which demonstrates state-of-the-art object removal performance in terms of both reliability and image quality. Particularly, RORem improves the object removal success rate over previous methods by more than 18\%. The dataset, source code and trained model are available at https://github.com/leeruibin/RORem.
Authors:Chuanting Zhang, Haixia Zhang, Shuping Dang, Basem Shihada, Mohamed-Slim Alouini
Abstract:
Wireless traffic prediction plays an indispensable role in cellular networks to achieve proactive adaptation for communication systems. Along this line, Federated Learning (FL)-based wireless traffic prediction at the edge attracts enormous attention because of the exemption from raw data transmission and enhanced privacy protection. However FL-based wireless traffic prediction methods still rely on heavy data transmissions between local clients and the server for local model updates. Besides, how to model the spatial dependencies of local clients under the framework of FL remains uncertain. To tackle this, we propose an innovative FL algorithm that employs gradient compression and correlation-driven techniques, effectively minimizing data transmission load while preserving prediction accuracy. Our approach begins with the introduction of gradient sparsification in wireless traffic prediction, allowing for significant data compression during model training. We then implement error feedback and gradient tracking methods to mitigate any performance degradation resulting from this compression. Moreover, we develop three tailored model aggregation strategies anchored in gradient correlation, enabling the capture of spatial dependencies across diverse clients. Experiments have been done with two real-world datasets and the results demonstrate that by capturing the spatio-temporal characteristics and correlation among local clients, the proposed algorithm outperforms the state-of-the-art algorithms and can increase the communication efficiency by up to two orders of magnitude without losing prediction accuracy. Code is available at https://github.com/chuanting/FedGCC.
Authors:Jiajun Zhu, Peihao Wang, Ruisi Cai, Jason D. Lee, Pan Li, Zhangyang Wang
Abstract:
Transformers rely on both content-based and position-based addressing mechanisms to make predictions, but existing positional encoding techniques often diminish the effectiveness of position-based addressing. Many current methods enforce rigid patterns in attention maps, limiting the ability to model long-range dependencies and adapt to diverse tasks. Additionally, most positional encodings are learned as general biases, lacking the specialization required for different instances within a dataset. To address this, we propose con\textbf{T}extualized equivari\textbf{A}nt \textbf{P}osition \textbf{E}ncoding (\textbf{TAPE}), a novel framework that enhances positional embeddings by incorporating sequence content across layers. TAPE introduces dynamic, context-aware positional encodings, overcoming the constraints of traditional fixed patterns. We show that TAPE can provably facilitate LLM reasoning ability by emulating a broader class of algorithms. By enforcing permutation and orthogonal equivariance, TAPE ensures the stability of positional encodings during updates, improving long-context ability. Our method can be easily integrated into pre-trained transformers, offering parameter-efficient fine-tuning with minimal overhead. Extensive experiments show that TAPE achieves superior performance in language modeling, arithmetic reasoning, and long-context retrieval tasks compared to existing positional embedding techniques. Code is available at https://github.com/VITA-Group/TAPE.
Authors:Chethan Bhateja, Joseph O'Brien, Afnaan Hashmi, Eva Prakash
Abstract:
In machine learning, metric elicitation refers to the selection of performance metrics that best reflect an individual's implicit preferences for a given application. Currently, metric elicitation methods only consider metrics that depend on the accuracy values encoded within a given model's confusion matrix. However, focusing solely on confusion matrices does not account for other model feasibility considerations such as varied monetary costs or latencies. In our work, we build upon the multiclass metric elicitation framework of Hiranandani et al., extrapolating their proposed Diagonal Linear Performance Metric Elicitation (DLPME) algorithm to account for additional bounded costs and rewards. Our experimental results with synthetic data demonstrate our approach's ability to quickly converge to the true metric.
Authors:Md Rakibul Hasan, Yue Yao, Md Zakir Hossain, Aneesh Krishna, Imre Rudas, Shafin Rahman, Tom Gedeon
Abstract:
Large language models (LLMs) have revolutionised many fields, with LLM-as-a-service (LLMSaaS) offering accessible, general-purpose solutions without costly task-specific training. In contrast to the widely studied prompt engineering for directly solving tasks (in vivo), this paper explores LLMs' potential for in-vitro applications: using LLM-generated labels to improve supervised training of mainstream models. We examine two strategies - (1) noisy label correction and (2) training data augmentation - in empathy computing, an emerging task to predict psychology-based questionnaire outcomes from inputs like textual narratives. Crowdsourced datasets in this domain often suffer from noisy labels that misrepresent underlying empathy. We show that replacing or supplementing these crowdsourced labels with LLM-generated labels, developed using psychology-based scale-aware prompts, achieves statistically significant accuracy improvements. Notably, the RoBERTa pre-trained language model (PLM) trained with noise-reduced labels yields a state-of-the-art Pearson correlation coefficient of 0.648 on the public NewsEmp benchmarks. This paper further analyses evaluation metric selection and demographic biases to help guide the future development of more equitable empathy computing models. Code and LLM-generated labels are available at https://github.com/hasan-rakibul/LLMPathy.
Authors:Peihao Wang, Ruisi Cai, Yuehao Wang, Jiajun Zhu, Pragya Srivastava, Zhangyang Wang, Pan Li
Abstract:
Structured State Space Models (SSMs) have emerged as alternatives to transformers. While SSMs are often regarded as effective in capturing long-sequence dependencies, we rigorously demonstrate that they are inherently limited by strong recency bias. Our empirical studies also reveal that this bias impairs the models' ability to recall distant information and introduces robustness issues. Our scaling experiments then discovered that deeper structures in SSMs can facilitate the learning of long contexts. However, subsequent theoretical analysis reveals that as SSMs increase in depth, they exhibit another inevitable tendency toward over-smoothing, e.g., token representations becoming increasingly indistinguishable. This fundamental dilemma between recency and over-smoothing hinders the scalability of existing SSMs. Inspired by our theoretical findings, we propose to polarize two channels of the state transition matrices in SSMs, setting them to zero and one, respectively, simultaneously addressing recency bias and over-smoothing. Experiments demonstrate that our polarization technique consistently enhances the associative recall accuracy of long-range tokens and unlocks SSMs to benefit further from deeper architectures. All source codes are released at https://github.com/VITA-Group/SSM-Bottleneck.
Authors:Abdesselam Ferdi
Abstract:
Computer-aided diagnosis (CAD) systems have greatly improved the interpretation of medical images by radiologists and surgeons. However, current CAD systems for fracture detection in X-ray images primarily rely on large, resource-intensive detectors, which limits their practicality in clinical settings. To address this limitation, we propose a novel lightweight CAD system based on the YOLO detector for fracture detection. This system, named ghost convolution-based YOLOv11 (G-YOLOv11), builds on the latest version of the YOLO detector family and incorporates the ghost convolution operation for feature extraction. The ghost convolution operation generates the same number of feature maps as traditional convolution but requires fewer linear operations, thereby reducing the detector's computational resource requirements. We evaluated the performance of the proposed G-YOLOv11 detector on the GRAZPEDWRI-DX dataset, achieving an mAP@0.5 of 0.535 with an inference time of 2.4 ms on an NVIDIA A10 GPU. Compared to the standard YOLOv11l, G-YOLOv11l achieved reductions of 13.6% in mAP@0.5 and 68.7% in size. These results establish a new state-of-the-art benchmark in terms of efficiency, outperforming existing detectors. Code and models are available at https://github.com/AbdesselamFerdi/G-YOLOv11.
Authors:Kim Sung-Bin, Kim Jun-Seong, Junseok Ko, Yewon Kim, Tae-Hyun Oh
Abstract:
We propose SoundBrush, a model that uses sound as a brush to edit and manipulate visual scenes. We extend the generative capabilities of the Latent Diffusion Model (LDM) to incorporate audio information for editing visual scenes. Inspired by existing image-editing works, we frame this task as a supervised learning problem and leverage various off-the-shelf models to construct a sound-paired visual scene dataset for training. This richly generated dataset enables SoundBrush to learn to map audio features into the textual space of the LDM, allowing for visual scene editing guided by diverse in-the-wild sound. Unlike existing methods, SoundBrush can accurately manipulate the overall scenery or even insert sounding objects to best match the audio inputs while preserving the original content. Furthermore, by integrating with novel view synthesis techniques, our framework can be extended to edit 3D scenes, facilitating sound-driven 3D scene manipulation. Demos are available at https://soundbrush.github.io/.
Authors:Yuchuan Tian, Jing Han, Chengcheng Wang, Yuchen Liang, Chao Xu, Hanting Chen
Abstract:
Diffusion models have shown exceptional performance in visual generation tasks. Recently, these models have shifted from traditional U-Shaped CNN-Attention hybrid structures to fully transformer-based isotropic architectures. While these transformers exhibit strong scalability and performance, their reliance on complicated self-attention operation results in slow inference speeds. Contrary to these works, we rethink one of the simplest yet fastest module in deep learning, 3x3 Convolution, to construct a scaled-up purely convolutional diffusion model. We first discover that an Encoder-Decoder Hourglass design outperforms scalable isotropic architectures for Conv3x3, but still under-performing our expectation. Further improving the architecture, we introduce sparse skip connections to reduce redundancy and improve scalability. Based on the architecture, we introduce conditioning improvements including stage-specific embeddings, mid-block condition injection, and conditional gating. These improvements lead to our proposed Diffusion CNN (DiC), which serves as a swift yet competitive diffusion architecture baseline. Experiments on various scales and settings show that DiC surpasses existing diffusion transformers by considerable margins in terms of performance while keeping a good speed advantage. Project page: https://github.com/YuchuanTian/DiC
Authors:Jiawei Yang, Jiahui Huang, Yuxiao Chen, Yan Wang, Boyi Li, Yurong You, Apoorva Sharma, Maximilian Igl, Peter Karkus, Danfei Xu, Boris Ivanovic, Yue Wang, Marco Pavone
Abstract:
We present STORM, a spatio-temporal reconstruction model designed for reconstructing dynamic outdoor scenes from sparse observations. Existing dynamic reconstruction methods often rely on per-scene optimization, dense observations across space and time, and strong motion supervision, resulting in lengthy optimization times, limited generalization to novel views or scenes, and degenerated quality caused by noisy pseudo-labels for dynamics. To address these challenges, STORM leverages a data-driven Transformer architecture that directly infers dynamic 3D scene representations--parameterized by 3D Gaussians and their velocities--in a single forward pass. Our key design is to aggregate 3D Gaussians from all frames using self-supervised scene flows, transforming them to the target timestep to enable complete (i.e., "amodal") reconstructions from arbitrary viewpoints at any moment in time. As an emergent property, STORM automatically captures dynamic instances and generates high-quality masks using only reconstruction losses. Extensive experiments on public datasets show that STORM achieves precise dynamic scene reconstruction, surpassing state-of-the-art per-scene optimization methods (+4.3 to 6.6 PSNR) and existing feed-forward approaches (+2.1 to 4.7 PSNR) in dynamic regions. STORM reconstructs large-scale outdoor scenes in 200ms, supports real-time rendering, and outperforms competitors in scene flow estimation, improving 3D EPE by 0.422m and Acc5 by 28.02%. Beyond reconstruction, we showcase four additional applications of our model, illustrating the potential of self-supervised learning for broader dynamic scene understanding.
Authors:Jiageng Mao, Boyi Li, Boris Ivanovic, Yuxiao Chen, Yan Wang, Yurong You, Chaowei Xiao, Danfei Xu, Marco Pavone, Yue Wang
Abstract:
Synthesizing photo-realistic visual observations from an ego vehicle's driving trajectory is a critical step towards scalable training of self-driving models. Reconstruction-based methods create 3D scenes from driving logs and synthesize geometry-consistent driving videos through neural rendering, but their dependence on costly object annotations limits their ability to generalize to in-the-wild driving scenarios. On the other hand, generative models can synthesize action-conditioned driving videos in a more generalizable way but often struggle with maintaining 3D visual consistency. In this paper, we present DreamDrive, a 4D spatial-temporal scene generation approach that combines the merits of generation and reconstruction, to synthesize generalizable 4D driving scenes and dynamic driving videos with 3D consistency. Specifically, we leverage the generative power of video diffusion models to synthesize a sequence of visual references and further elevate them to 4D with a novel hybrid Gaussian representation. Given a driving trajectory, we then render 3D-consistent driving videos via Gaussian splatting. The use of generative priors allows our method to produce high-quality 4D scenes from in-the-wild driving data, while neural rendering ensures 3D-consistent video generation from the 4D scenes. Extensive experiments on nuScenes and street view images demonstrate that DreamDrive can generate controllable and generalizable 4D driving scenes, synthesize novel views of driving videos with high fidelity and 3D consistency, decompose static and dynamic elements in a self-supervised manner, and enhance perception and planning tasks for autonomous driving.
Authors:Daniel Sanchez, David Alfaya, Jaime Pizarroso
Abstract:
We present a new Python package called "motives", a symbolic manipulation package based on SymPy capable of handling and simplifying motivic expressions in the Grothendieck ring of Chow motives and other types of $λ$-rings. The package is able to manipulate and compare arbitrary expressions in $λ$-rings and, in particular, it contains explicit tools for manipulating motives of several types of commonly used moduli schemes and moduli stacks of decorated bundles on curves. We have applied this new tool to advance in the verification of Mozgovoy's conjectural formula for the motive of the moduli space of twisted Higgs bundles, proving that it holds in rank 2 and 3 for any curve of genus up to 18 and any twisting bundle of small degree.
Authors:Yomal De Mel, Kasun Wickramasinghe, Nisansa de Silva, Surangika Ranathunga
Abstract:
Due to reasons of convenience and lack of tech literacy, transliteration (i.e., Romanizing native scripts instead of using localization tools) is eminently prevalent in the context of low-resource languages such as Sinhala, which have their own writing script. In this study, our focus is on Romanized Sinhala transliteration. We propose two methods to address this problem: Our baseline is a rule-based method, which is then compared against our second method where we approach the transliteration problem as a sequence-to-sequence task akin to the established Neural Machine Translation (NMT) task. For the latter, we propose a Transformer-based Encode-Decoder solution. We witnessed that the Transformer-based method could grab many ad-hoc patterns within the Romanized scripts compared to the rule-based method. The code base associated with this paper is available on GitHub - https://github.com/kasunw22/Sinhala-Transliterator/
Authors:Madeleine Darbyshire, Elizabeth Sklar, Simon Parsons
Abstract:
Precision agriculture leverages data and machine learning so that farmers can monitor their crops and target interventions precisely. This enables the precision application of herbicide only to weeds, or the precision application of fertilizer only to undernourished crops, rather than to the entire field. The approach promises to maximize yields while minimizing resource use and harm to the surrounding environment. To this end, we propose a hierarchical panoptic segmentation method that simultaneously determines leaf count (as an identifier of plant growth)and locates weeds within an image. In particular, our approach aims to improve the segmentation of smaller instances like the leaves and weeds by incorporating focal loss and boundary loss. Not only does this result in competitive performance, achieving a PQ+ of 81.89 on the standard training set, but we also demonstrate we can improve leaf-counting accuracy with our method. The code is available at https://github.com/madeleinedarbyshire/HierarchicalMask2Former.
Authors:Ke Yang, Volodymyr Kindratenko, ChengXiang Zhai
Abstract:
Training language models (LMs) and their application agents is increasingly costly due to large datasets and models, making test failures difficult to bear. Simplified language environments serve as primordial training and testing grounds, retaining essential commonsense and communication skills but in a more digestible form, potentially enhancing the learning efficiency of LMs, and thus reducing the required model size and data volume for effective training and evaluation. In these simplified language environments, workable strategies for small models, datasets, and agents may be adaptable to larger models, datasets, and agents in complex language environments.
To create such environments, we focus on two aspects: i) minimizing language dataset noise and complexity, and ii) preserving the essential text distribution characteristics. Unlike previous methods, we propose a pipeline to refine text data by eliminating noise, minimizing vocabulary, and maintaining genre-specific patterns (e.g., for books, conversation, code, etc.). Implementing this pipeline with large LMs, we have created a leaner suite of LM training and evaluation datasets: 71M Leaner-Pretrain, 7M Leaner-Instruct, Leaner-Glue for assessing linguistic proficiency, and Leaner-Eval for testing instruction-following ability.
Our experiments show that leaner pre-training boosts LM learning efficiency. Tiny LMs trained on these datasets outperform those trained on original datasets in instruction-following across different language granularity levels. Moreover, the Leaner-Pretrain dataset's alignment with conventional large LM training sets enables resource-optimized analysis of how learning objectives, model architectures, and training techniques impact performance on language modeling and downstream tasks. Our code and datasets are available at https://github.com/EmpathYang/TinyHelen.git.
Authors:Zhaoliang Wan, Yonggen Ling, Senlin Yi, Lu Qi, Wangwei Lee, Minglei Lu, Sicheng Yang, Xiao Teng, Peng Lu, Xu Yang, Ming-Hsuan Yang, Hui Cheng
Abstract:
This paper addresses the scarcity of large-scale datasets for accurate object-in-hand pose estimation, which is crucial for robotic in-hand manipulation within the ``Perception-Planning-Control" paradigm. Specifically, we introduce VinT-6D, the first extensive multi-modal dataset integrating vision, touch, and proprioception, to enhance robotic manipulation. VinT-6D comprises 2 million VinT-Sim and 0.1 million VinT-Real splits, collected via simulations in MuJoCo and Blender and a custom-designed real-world platform. This dataset is tailored for robotic hands, offering models with whole-hand tactile perception and high-quality, well-aligned data. To the best of our knowledge, the VinT-Real is the largest considering the collection difficulties in the real-world environment so that it can bridge the gap of simulation to real compared to the previous works. Built upon VinT-6D, we present a benchmark method that shows significant improvements in performance by fusing multi-modal information. The project is available at https://VinT-6D.github.io/.
Authors:Jianjie Luo, Jingwen Chen, Yehao Li, Yingwei Pan, Jianlin Feng, Hongyang Chao, Ting Yao
Abstract:
Recently, zero-shot image captioning has gained increasing attention, where only text data is available for training. The remarkable progress in text-to-image diffusion model presents the potential to resolve this task by employing synthetic image-caption pairs generated by this pre-trained prior. Nonetheless, the defective details in the salient regions of the synthetic images introduce semantic misalignment between the synthetic image and text, leading to compromised results. To address this challenge, we propose a novel Patch-wise Cross-modal feature Mix-up (PCM) mechanism to adaptively mitigate the unfaithful contents in a fine-grained manner during training, which can be integrated into most of encoder-decoder frameworks, introducing our PCM-Net. Specifically, for each input image, salient visual concepts in the image are first detected considering the image-text similarity in CLIP space. Next, the patch-wise visual features of the input image are selectively fused with the textual features of the salient visual concepts, leading to a mixed-up feature map with less defective content. Finally, a visual-semantic encoder is exploited to refine the derived feature map, which is further incorporated into the sentence decoder for caption generation. Additionally, to facilitate the model training with synthetic data, a novel CLIP-weighted cross-entropy loss is devised to prioritize the high-quality image-text pairs over the low-quality counterparts. Extensive experiments on MSCOCO and Flickr30k datasets demonstrate the superiority of our PCM-Net compared with state-of-the-art VLMs-based approaches. It is noteworthy that our PCM-Net ranks first in both in-domain and cross-domain zero-shot image captioning. The synthetic dataset SynthImgCap and code are available at https://jianjieluo.github.io/SynthImgCap.
Authors:Fangchen Yu, Ruilizhen Hu, Yidong Lin, Yuqi Ma, Zhenghao Huang, Wenye Li
Abstract:
The Kolmogorov-Arnold Network (KAN) has recently gained attention as an alternative to traditional multi-layer perceptrons (MLPs), offering improved accuracy and interpretability by employing learnable activation functions on edges. In this paper, we introduce the Kolmogorov-Arnold Auto-Encoder (KAE), which integrates KAN with autoencoders (AEs) to enhance representation learning for retrieval, classification, and denoising tasks. Leveraging the flexible polynomial functions in KAN layers, KAE captures complex data patterns and non-linear relationships. Experiments on benchmark datasets demonstrate that KAE improves latent representation quality, reduces reconstruction errors, and achieves superior performance in downstream tasks such as retrieval, classification, and denoising, compared to standard autoencoders and other KAN variants. These results suggest KAE's potential as a useful tool for representation learning. Our code is available at \url{https://github.com/SciYu/KAE/}.
Authors:Wenhao Dong, Yueyang Li, Weiming Zeng, Lei Chen, Hongjie Yan, Wai Ting Siok, Nizhuan Wang
Abstract:
Many existing methods that use functional magnetic resonance imaging (fMRI) classify brain disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), often overlook the integration of spatial and temporal dependencies of the blood oxygen level-dependent (BOLD) signals, which may lead to inaccurate or imprecise classification results. To solve this problem, we propose a Spatio-Temporal Aggregation eorganization ransformer (STARFormer) that effectively captures both spatial and temporal features of BOLD signals by incorporating three key modules. The region of interest (ROI) spatial structure analysis module uses eigenvector centrality (EC) to reorganize brain regions based on effective connectivity, highlighting critical spatial relationships relevant to the brain disorder. The temporal feature reorganization module systematically segments the time series into equal-dimensional window tokens and captures multiscale features through variable window and cross-window attention. The spatio-temporal feature fusion module employs a parallel transformer architecture with dedicated temporal and spatial branches to extract integrated features. The proposed STARFormer has been rigorously evaluated on two publicly available datasets for the classification of ASD and ADHD. The experimental results confirm that the STARFormer achieves state-of-the-art performance across multiple evaluation metrics, providing a more accurate and reliable tool for the diagnosis of brain disorders and biomedical research. The codes are available at: https://github.com/NZWANG/STARFormer.
Authors:Wanlong Liu, Junying Chen, Ke Ji, Li Zhou, Wenyu Chen, Benyou Wang
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a key paradigm for enhancing large language models (LLMs) by incorporating external knowledge. However, current RAG methods face two limitations: (1) they only cover limited RAG scenarios. (2) They suffer from limited task diversity due to the lack of a general RAG dataset. To address these limitations, we propose RAG-Instruct, a general method for synthesizing diverse and high-quality RAG instruction data based on any source corpus. Our approach leverages (1) five RAG paradigms, which encompass diverse query-document relationships, and (2) instruction simulation, which enhances instruction diversity and quality by utilizing the strengths of existing instruction datasets. Using this method, we construct a 40K instruction dataset from Wikipedia, comprehensively covering diverse RAG scenarios and tasks. Experiments demonstrate that RAG-Instruct effectively enhances LLMs' RAG capabilities, achieving strong zero-shot performance and significantly outperforming various RAG baselines across a diverse set of tasks. RAG-Instruct is publicly available at https://github.com/FreedomIntelligence/RAG-Instruct.
Authors:Runnan Chen, Zhaoqing Wang, Jiepeng Wang, Yuexin Ma, Mingming Gong, Wenping Wang, Tongliang Liu
Abstract:
Understanding geometric, semantic, and instance information in 3D scenes from sequential video data is essential for applications in robotics and augmented reality. However, existing Simultaneous Localization and Mapping (SLAM) methods generally focus on either geometric or semantic reconstruction. In this paper, we introduce PanoSLAM, the first SLAM system to integrate geometric reconstruction, 3D semantic segmentation, and 3D instance segmentation within a unified framework. Our approach builds upon 3D Gaussian Splatting, modified with several critical components to enable efficient rendering of depth, color, semantic, and instance information from arbitrary viewpoints. To achieve panoptic 3D scene reconstruction from sequential RGB-D videos, we propose an online Spatial-Temporal Lifting (STL) module that transfers 2D panoptic predictions from vision models into 3D Gaussian representations. This STL module addresses the challenges of label noise and inconsistencies in 2D predictions by refining the pseudo labels across multi-view inputs, creating a coherent 3D representation that enhances segmentation accuracy. Our experiments show that PanoSLAM outperforms recent semantic SLAM methods in both mapping and tracking accuracy. For the first time, it achieves panoptic 3D reconstruction of open-world environments directly from the RGB-D video. (https://github.com/runnanchen/PanoSLAM)
Authors:Runnan Chen, Xiangyu Sun, Zhaoqing Wang, Youquan Liu, Jiepeng Wang, Lingdong Kong, Jiankang Deng, Mingming Gong, Liang Pan, Wenping Wang, Tongliang Liu
Abstract:
Open-vocabulary scene understanding using 3D Gaussian (3DGS) representations has garnered considerable attention. However, existing methods mostly lift knowledge from large 2D vision models into 3DGS on a scene-by-scene basis, restricting the capabilities of open-vocabulary querying within their training scenes so that lacking the generalizability to novel scenes. In this work, we propose \textbf{OVGaussian}, a generalizable \textbf{O}pen-\textbf{V}ocabulary 3D semantic segmentation framework based on the 3D \textbf{Gaussian} representation. We first construct a large-scale 3D scene dataset based on 3DGS, dubbed \textbf{SegGaussian}, which provides detailed semantic and instance annotations for both Gaussian points and multi-view images. To promote semantic generalization across scenes, we introduce Generalizable Semantic Rasterization (GSR), which leverages a 3D neural network to learn and predict the semantic property for each 3D Gaussian point, where the semantic property can be rendered as multi-view consistent 2D semantic maps. In the next, we propose a Cross-modal Consistency Learning (CCL) framework that utilizes open-vocabulary annotations of 2D images and 3D Gaussians within SegGaussian to train the 3D neural network capable of open-vocabulary semantic segmentation across Gaussian-based 3D scenes. Experimental results demonstrate that OVGaussian significantly outperforms baseline methods, exhibiting robust cross-scene, cross-domain, and novel-view generalization capabilities. Code and the SegGaussian dataset will be released. (https://github.com/runnanchen/OVGaussian).
Authors:Ling Fu, Zhebin Kuang, Jiajun Song, Mingxin Huang, Biao Yang, Yuzhe Li, Linghao Zhu, Qidi Luo, Xinyu Wang, Hao Lu, Zhang Li, Guozhi Tang, Bin Shan, Chunhui Lin, Qi Liu, Binghong Wu, Hao Feng, Hao Liu, Can Huang, Jingqun Tang, Wei Chen, Lianwen Jin, Yuliang Liu, Xiang Bai
Abstract:
Scoring the Optical Character Recognition (OCR) capabilities of Large Multimodal Models (LMMs) has witnessed growing interest. Existing benchmarks have highlighted the impressive performance of LMMs in text recognition; however, their abilities in certain challenging tasks, such as text localization, handwritten content extraction, and logical reasoning, remain underexplored. To bridge this gap, we introduce OCRBench v2, a large-scale bilingual text-centric benchmark with currently the most comprehensive set of tasks (4x more tasks than the previous multi-scene benchmark OCRBench), the widest coverage of scenarios (31 diverse scenarios), and thorough evaluation metrics, with 10,000 human-verified question-answering pairs and a high proportion of difficult samples. Moreover, we construct a private test set with 1,500 manually annotated images. The consistent evaluation trends observed across both public and private test sets validate the OCRBench v2's reliability. After carefully benchmarking state-of-the-art LMMs, we find that most LMMs score below 50 (100 in total) and suffer from five-type limitations, including less frequently encountered text recognition, fine-grained perception, layout perception, complex element parsing, and logical reasoning. The project website is at: https://99franklin.github.io/ocrbench_v2/
Authors:Mahir Labib Dihan, Md Tanvir Hassan, Md Tanvir Parvez, Md Hasebul Hasan, Md Almash Alam, Muhammad Aamir Cheema, Mohammed Eunus Ali, Md Rizwan Parvez
Abstract:
Recent advancements in foundation models have improved autonomous tool usage and reasoning, but their capabilities in map-based reasoning remain underexplored. To address this, we introduce MapEval, a benchmark designed to assess foundation models across three distinct tasks - textual, API-based, and visual reasoning - through 700 multiple-choice questions spanning 180 cities and 54 countries, covering spatial relationships, navigation, travel planning, and real-world map interactions. Unlike prior benchmarks that focus on simple location queries, MapEval requires models to handle long-context reasoning, API interactions, and visual map analysis, making it the most comprehensive evaluation framework for geospatial AI. On evaluation of 30 foundation models, including Claude-3.5-Sonnet, GPT-4o, and Gemini-1.5-Pro, none surpass 67% accuracy, with open-source models performing significantly worse and all models lagging over 20% behind human performance. These results expose critical gaps in spatial inference, as models struggle with distances, directions, route planning, and place-specific reasoning, highlighting the need for better geospatial AI to bridge the gap between foundation models and real-world navigation. All the resources are available at: https://mapeval.github.io/.
Authors:Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh Halappanavar, Ryan A. Rossi, Subhabrata Mukherjee, Xianfeng Tang, Qi He, Zhigang Hua, Bo Long, Tong Zhao, Neil Shah, Amin Javari, Yinglong Xia, Jiliang Tang
Abstract:
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information, such as knowledge, skills, and tools from external sources. Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information, making it a golden resource for RAG in tremendous real-world applications. As a result, we have recently witnessed increasing attention on equipping RAG with Graph, i.e., GraphRAG. However, unlike conventional RAG, where the retriever, generator, and external data sources can be uniformly designed in the neural-embedding space, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains. Given the broad applicability, the associated design challenges, and the recent surge in GraphRAG, a systematic and up-to-date survey of its key concepts and techniques is urgently desired. Following this motivation, we present a comprehensive and up-to-date survey on GraphRAG. Our survey first proposes a holistic GraphRAG framework by defining its key components, including query processor, retriever, organizer, generator, and data source. Furthermore, recognizing that graphs in different domains exhibit distinct relational patterns and require dedicated designs, we review GraphRAG techniques uniquely tailored to each domain. Finally, we discuss research challenges and brainstorm directions to inspire cross-disciplinary opportunities. Our survey repository is publicly maintained at https://github.com/Graph-RAG/GraphRAG/.
Authors:Shi-Feng Peng, Guolei Sun, Yong Li, Hongsong Wang, Guo-Sen Xie
Abstract:
The primary challenge of cross-domain few-shot segmentation (CD-FSS) is the domain disparity between the training and inference phases, which can exist in either the input data or the target classes. Previous models struggle to learn feature representations that generalize to various unknown domains from limited training domain samples. In contrast, the large-scale visual model SAM, pre-trained on tens of millions of images from various domains and classes, possesses excellent generalizability. In this work, we propose a SAM-aware graph prompt reasoning network (GPRN) that fully leverages SAM to guide CD-FSS feature representation learning and improve prediction accuracy. Specifically, we propose a SAM-aware prompt initialization module (SPI) to transform the masks generated by SAM into visual prompts enriched with high-level semantic information. Since SAM tends to divide an object into many sub-regions, this may lead to visual prompts representing the same semantic object having inconsistent or fragmented features. We further propose a graph prompt reasoning (GPR) module that constructs a graph among visual prompts to reason about their interrelationships and enable each visual prompt to aggregate information from similar prompts, thus achieving global semantic consistency. Subsequently, each visual prompt embeds its semantic information into the corresponding mask region to assist in feature representation learning. To refine the segmentation mask during testing, we also design a non-parameter adaptive point selection module (APS) to select representative point prompts from query predictions and feed them back to SAM to refine inaccurate segmentation results. Experiments on four standard CD-FSS datasets demonstrate that our method establishes new state-of-the-art results. Code: https://github.com/CVL-hub/GPRN.
Authors:Rajat Talak, Charis Georgiou, Jingnan Shi, Luca Carlone
Abstract:
Robust training of machine learning models in the presence of outliers has garnered attention across various domains. The use of robust losses is a popular approach and is known to mitigate the impact of outliers. We bring to light two literatures that have diverged in their ways of designing robust losses: one using M-estimation, which is popular in robotics and computer vision, and another using a risk-minimization framework, which is popular in deep learning. We first show that a simple modification of the Black-Rangarajan duality provides a unifying view. The modified duality brings out a definition of a robust loss kernel $Ï$ that is satisfied by robust losses in both the literatures. Secondly, using the modified duality, we propose an Adaptive Alternation Algorithm (AAA) for training machine learning models with outliers. The algorithm iteratively trains the model by using a weighted version of the non-robust loss, while updating the weights at each iteration. The algorithm is augmented with a novel parameter update rule by interpreting the weights as inlier probabilities, and obviates the need for complex parameter tuning. Thirdly, we investigate convergence of the adaptive alternation algorithm to outlier-free optima. Considering arbitrary outliers (i.e., with no distributional assumption on the outliers), we show that the use of robust loss kernels Ï increases the region of convergence. We experimentally show the efficacy of our algorithm on regression, classification, and neural scene reconstruction problems. We release our implementation code: https://github.com/MIT-SPARK/ORT.
Authors:Edwin Arkel Rios, Jansen Christopher Yuanda, Vincent Leon Ghanz, Cheng-Wei Yu, Bo-Cheng Lai, Min-Chun Hu
Abstract:
Ultra-fine-grained image recognition (UFGIR) is a challenging task that involves classifying images within a macro-category. While traditional FGIR deals with classifying different species, UFGIR goes beyond by classifying sub-categories within a species such as cultivars of a plant. In recent times the usage of Vision Transformer-based backbones has allowed methods to obtain outstanding recognition performances in this task but this comes at a significant cost in terms of computation specially since this task significantly benefits from incorporating higher resolution images. Therefore, techniques such as token reduction have emerged to reduce the computational cost. However, dropping tokens leads to loss of essential information for fine-grained categories, specially as the token keep rate is reduced. Therefore, to counteract the loss of information brought by the usage of token reduction we propose a novel Cross-Layer Aggregation Classification Head and a Cross-Layer Cache mechanism to recover and access information from previous layers in later locations. Extensive experiments covering more than 2000 runs across diverse settings including 5 datasets, 9 backbones, 7 token reduction methods, 5 keep rates, and 2 image sizes demonstrate the effectiveness of the proposed plug-and-play modules and allow us to push the boundaries of accuracy vs cost for UFGIR by reducing the kept tokens to extremely low ratios of up to 10\% while maintaining a competitive accuracy to state-of-the-art models. Code is available at: \url{https://github.com/arkel23/CLCA}
Authors:Duo Zhou, Christopher Brix, Grani A Hanasusanto, Huan Zhang
Abstract:
Recently, cutting-plane methods such as GCP-CROWN have been explored to enhance neural network verifiers and made significant advances. However, GCP-CROWN currently relies on generic cutting planes (cuts) generated from external mixed integer programming (MIP) solvers. Due to the poor scalability of MIP solvers, large neural networks cannot benefit from these cutting planes. In this paper, we exploit the structure of the neural network verification problem to generate efficient and scalable cutting planes specific for this problem setting. We propose a novel approach, Branch-and-bound Inferred Cuts with COnstraint Strengthening (BICCOS), which leverages the logical relationships of neurons within verified subproblems in the branch-and-bound search tree, and we introduce cuts that preclude these relationships in other subproblems. We develop a mechanism that assigns influence scores to neurons in each path to allow the strengthening of these cuts. Furthermore, we design a multi-tree search technique to identify more cuts, effectively narrowing the search space and accelerating the BaB algorithm. Our results demonstrate that BICCOS can generate hundreds of useful cuts during the branch-and-bound process and consistently increase the number of verifiable instances compared to other state-of-the-art neural network verifiers on a wide range of benchmarks, including large networks that previous cutting plane methods could not scale to. BICCOS is part of the $α,β$-CROWN verifier, the VNN-COMP 2024 winner. The code is available at http://github.com/Lemutisme/BICCOS .
Authors:James P. Beno
Abstract:
Bidirectional transformers excel at sentiment analysis, and Large Language Models (LLM) are effective zero-shot learners. Might they perform better as a team? This paper explores collaborative approaches between ELECTRA and GPT-4o for three-way sentiment classification. We fine-tuned (FT) four models (ELECTRA Base/Large, GPT-4o/4o-mini) using a mix of reviews from Stanford Sentiment Treebank (SST) and DynaSent. We provided input from ELECTRA to GPT as: predicted label, probabilities, and retrieved examples. Sharing ELECTRA Base FT predictions with GPT-4o-mini significantly improved performance over either model alone (82.50 macro F1 vs. 79.14 ELECTRA Base FT, 79.41 GPT-4o-mini) and yielded the lowest cost/performance ratio (\$0.12/F1 point). However, when GPT models were fine-tuned, including predictions decreased performance. GPT-4o FT-M was the top performer (86.99), with GPT-4o-mini FT close behind (86.70) at much less cost (\$0.38 vs. \$1.59/F1 point). Our results show that augmenting prompts with predictions from fine-tuned encoders is an efficient way to boost performance, and a fine-tuned GPT-4o-mini is nearly as good as GPT-4o FT at 76% less cost. Both are affordable options for projects with limited resources.
Authors:Zhengqi Xu, Han Zheng, Jie Song, Li Sun, Mingli Song
Abstract:
Model merging has attracted significant attention as a powerful paradigm for model reuse, facilitating the integration of task-specific models into a singular, versatile framework endowed with multifarious capabilities. Previous studies, predominantly utilizing methods such as Weight Average (WA), have shown that model merging can effectively leverage pretrained models without the need for laborious retraining. However, the inherent heterogeneity among models poses a substantial constraint on its applicability, particularly when confronted with discrepancies in model architectures. To overcome this challenge, we propose an innovative model merging framework designed for heterogeneous models, encompassing both depth and width heterogeneity. To address depth heterogeneity, we introduce a layer alignment strategy that harmonizes model layers by segmenting deeper models, treating consecutive layers with similar representations as a cohesive segment, thus enabling the seamless merging of models with differing layer depths. For width heterogeneity, we propose a novel elastic neuron zipping algorithm that projects the weights from models of varying widths onto a common dimensional space, eliminating the need for identical widths. Extensive experiments validate the efficacy of these proposed methods, demonstrating that the merging of structurally heterogeneous models can achieve performance levels comparable to those of homogeneous merging, across both vision and NLP tasks. Our code is publicly available at https://github.com/zju-vipa/training_free_heterogeneous_model_merging.
Authors:Witold WydmaÅski, Ulvi Movsum-zada, Jacek Tabor, Marek Åmieja
Abstract:
Although deep learning models have had great success in natural language processing and computer vision, we do not observe comparable improvements in the case of tabular data, which is still the most common data type used in biological, industrial and financial applications. In particular, it is challenging to transfer large-scale pre-trained models to downstream tasks defined on small tabular datasets. To address this, we propose VisTabNet -- a cross-modal transfer learning method, which allows for adapting Vision Transformer (ViT) with pre-trained weights to process tabular data. By projecting tabular inputs to patch embeddings acceptable by ViT, we can directly apply a pre-trained Transformer Encoder to tabular inputs. This approach eliminates the conceptual cost of designing a suitable architecture for processing tabular data, while reducing the computational cost of training the model from scratch. Experimental results on multiple small tabular datasets (less than 1k samples) demonstrate VisTabNet's superiority, outperforming both traditional ensemble methods and recent deep learning models. The proposed method goes beyond conventional transfer learning practice and shows that pre-trained image models can be transferred to solve tabular problems, extending the boundaries of transfer learning. We share our example implementation as a GitHub repository available at https://github.com/wwydmanski/VisTabNet.
Authors:Dibakar Gope, David Mansell, Danny Loh, Ian Bratt
Abstract:
Large language models (LLMs) have transformed the way we think about language understanding and generation, enthralling both researchers and developers. However, deploying LLMs for inference has been a significant challenge due to their unprecedented size and resource requirements. While quantizing model weights to sub-byte precision has emerged as a promising solution to ease memory pressure, the group quantization formats commonly used for LLM quantization have significant compute overheads and a resource-intensive dequantization process. As a result, a higher proportion of compute instructions do not perform multiplies, i.e., real work, rendering them unsuitable for meeting the required latency requirements for LLMs deployed on commodity CPUs. In this work, we propose a set of highly optimized kernels to accelerate LLM inference and unleash the full potential of CPUs, particularly Arm CPUs. These kernels amortize the cost of loading the operands and the cost of weight unpacking across multiple output rows. This, along with the introduction of an optimized interleaved group data layout for weights and decompression path optimizations to reduce unnecessary operations and dequantization overhead while maximizing the use of vector and matrix multiply operations, significantly improves the efficiency of MAC operations. Furthermore, we present a groupwise non-uniform codebook-based quantization method for ultra-low-precision quantization of LLMs to better match non-uniform patterns in their weight distributions, demonstrating better throughput during token generation while ensuring better quality than the state-of-the-art. Applying these improvements to 4-bit LLMs results in a 3-3.2x improvement in prompt processing and a 2x improvement in autoregressive decoding on Arm CPUs, compared to LLaMA.cpp-based solution. The optimized kernels are available at https://github.com/ggerganov/llama.cpp.